

Getting Started with Python

Understand key data structures and use Python in
object-oriented programming

Fabrizio Romano
Benjamin Baka
Dusty Phillips

BIRMINGHAM - MUMBAI

Getting Started with Python

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in
a retrieval system, or transmitted in any form or by any means,
without the prior written permission of the publisher, except in the
case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure
the accuracy of the information presented. However, the information
contained in this book is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing or its dealers and
distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information
about all of the companies and products mentioned in this book by
the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

First published: February 2019

Production reference: 1270219

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83855-191-9

www.packtpub.com

http://www.packtpub.com/

mapt.io

Mapt is an online digital library that gives you full access to over
5,000 books and videos, as well as industry leading tools to help you
plan your personal development and advance your career. For more
information, please visit our website.

https://mapt.io/

Why subscribe?
Spend less time learning and more time coding with practical
eBooks and Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to
the eBook version at www.packt.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive
exclusive discounts and offers on Packt books and eBooks.

http://www.packt.com/
http://www.packt.com/

Contributors

About the authors
Fabrizio Romano holds a master's degree in computer science
engineering from the University of Padova. He is also a certified
scrum master, Reiki master and teacher, and a member of CNHC.
He moved to London in 2011 to work for companies, such as
Glasses Direct and TBG/Sprinklr. He now works at Sohonet as a
principal engineer/team lead. He has given talks on Teaching Python
and TDD at two editions of EuroPython, and at Skillsmatter and
ProgSCon in London.

Benjamin Baka works as a software developer and considers himself
to be language agnostic and seeks out the elegant solutions which
his toolset of C, Java, Python, Ruby, and other languages can
enable him to accomplish. With a huge interest in algorithms, he
seeks to always write code that borrows from Dr. Knuth's words,
both simple and elegant. He also enjoys playing the bass guitar and
listening to silence. He currently works with mPedigree Network.

Dusty Phillips is a software developer and author currently living in
New Brunswick. He has been active in the open source community
for two decades and has been programming in Python for nearly as
long. He holds a master's degree in computer science and has

worked for Facebook, the United Nations, and several start-ups.
He's currently researching privacy-preserving technology at
beanstalk.network. Python 3 Object-Oriented Programming is his
first book. He has also written Creating Apps in Kivy, and self-
published Hacking Happy, a journey to mental wellness for the
technically inclined. A work of fiction is coming as well, so stay
tuned!

Packt is searching for authors
like you
If you're interested in becoming an author for Packt, please visit author
s.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share
their insight with the global tech community. You can make a general
application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

http://authors.packtpub.com/

Table of Contents
Title Page

Copyright and Credits

Getting Started with Python

About Packt

Why subscribe?

Packt.com

Contributors

About the authors

Packt is searching for authors like you

Preface

Who this book is for

What this book covers

To get the most out of this book

Download the example code files

Conventions used

Get in touch

Reviews

1. A Gentle Introduction to Python
A proper introduction

Enter the Python

About Python

Portability

Coherence

Developer productivity

An extensive library

Software quality

Software integration

Satisfaction and enjoyment

What are the drawbacks?

Who is using Python today?

Setting up the environment

Python 2 versus Python 3

Installing Python

Setting up the Python interpreter

About virtualenv

Your first virtual environment

Your friend, the console

How you can run a Python program

Running Python scripts

Running the Python interactive shell

Running Python as a service

Running Python as a GUI application

How is Python code organized?

How do we use modules and packages?

Python's execution model

Names and namespaces

Scopes

Objects and classes

Guidelines on how to write good code

The Python culture

A note on IDEs

Summary

2. Built-in Data Types
Everything is an object

Mutable or immutable? That is the question

Numbers

Integers

Booleans

Real numbers

Complex numbers

Fractions and decimals

Immutable sequences

Strings and bytes

Encoding and decoding strings

Indexing and slicing strings

String formatting

Tuples

Mutable sequences

Lists

Byte arrays

Set types

Mapping types – dictionaries

The collections module

namedtuple

defaultdict

ChainMap

Enums

Final considerations

Small values caching

How to choose data structures

About indexing and slicing

About the names

Summary

3. Iterating and Making Decisions
Conditional programming

A specialized else – elif

The ternary operator

Looping

The for loop

Iterating over a range

Iterating over a sequence

Iterators and iterables

Iterating over multiple sequences

The while loop

The break and continue statements

A special else clause

Putting all this together

A prime generator

Applying discounts

A quick peek at the itertools module

Infinite iterators

Iterators terminating on the shortest input sequence

Combinatoric generators

Summary

4. Functions, the Building Blocks of Code
Why use functions?

Reducing code duplication

Splitting a complex task

Hiding implementation details

Improving readability

Improving traceability

Scopes and name resolution

The global and nonlocal statements

Input parameters

Argument passing

Assignment to argument names doesn't affect the caller

Changing a mutable affects the caller

How to specify input parameters

Positional arguments

Keyword arguments and default values

Variable positional arguments

Variable keyword arguments

Keyword-only arguments

Combining input parameters

Additional unpacking generalizations

Avoid the trap! Mutable defaults

Return values

Returning multiple values

A few useful tips

Recursive functions

Anonymous functions

Function attributes

Built-in functions

One final example

Documenting your code

Importing objects

Relative imports

Summary

5. Files and Data Persistence
Working with files and directories

Opening files

Using a context manager to open a file

Reading and writing to a file

Reading and writing in binary mode

Protecting against overriding an existing file

Checking for file and directory existence

Manipulating files and directories

Manipulating pathnames

Temporary files and directories

Directory content

File and directory compression

Data interchange formats

Working with JSON

Custom encoding/decoding with JSON

IO, streams, and requests

Using an in-memory stream

Making HTTP requests

Persisting data on disk

Serializing data with pickle

Saving data with shelve

Saving data to a database

Summary

6. Principles of Algorithm Design
Algorithm design paradigms

Recursion and backtracking

Backtracking

Divide and conquer - long multiplication

Can we do better? A recursive approach

Runtime analysis

Asymptotic analysis

Big O notation

Composing complexity classes

Omega notation (Ω)

Theta notation (ϴ)

Amortized analysis

Summary

7. Lists and Pointer Structures
Arrays

Pointer structures

Nodes

Finding endpoints

Node

Other node types

Singly linked lists

Singly linked list class

Append operation

A faster append operation

Getting the size of the list

Improving list traversal

Deleting nodes

List search

Clearing a list

Doubly linked lists

A doubly linked list node

Doubly linked list

Append operation

Delete operation

List search

Circular lists

Appending elements

Deleting an element

Iterating through a circular list

Summary

8. Stacks and Queues
Stacks

Stack implementation

Push operation

Pop operation

Peek

Bracket-matching application

Queues

List-based queue

Enqueue operation

Dequeue operation

Stack-based queue

Enqueue operation

Dequeue operation

Node-based queue

Queue class

Enqueue operation

Dequeue operation

Application of queues

Media player queue

Summary

9. Trees
Terminology

Tree nodes

Binary trees

Binary search trees

Binary search tree implementation

Binary search tree operations

Finding the minimum and maximum nodes

Inserting nodes

Deleting nodes

Searching the tree

Tree traversal

Depth-first traversal

In-order traversal and infix notation

Pre-order traversal and prefix notation

Post-order traversal and postfix notation.

Breadth-first traversal

Benefits of a binary search tree

Expression trees

Parsing a reverse Polish expression

Balancing trees

Heaps

Summary

10. Hashing and Symbol Tables
Hashing

Perfect hashing functions

Hash table

Putting elements

Getting elements

Testing the hash table

Using [] with the hash table

Non-string keys

Growing a hash table

Open addressing

Chaining

Symbol tables

Summary

11. Graphs and Other Algorithms
Graphs

Directed and undirected graphs

Weighted graphs

Graph representation

Adjacency list

Adjacency matrix

Graph traversal

Breadth-first search

Depth-first search

Other useful graph methods

Priority queues and heaps

Inserting

Pop

Testing the heap

Selection algorithms

Summary

12. Searching
Linear Search

Unordered linear search

Ordered linear search

Binary search

Interpolation search

Choosing a search algorithm

Summary

13. Sorting
Sorting algorithms

Bubble sort

Insertion sort

Selection sort

Quick sort

List partitioning

Pivot selection

Implementation

Heap sort

Summary

14. Selection Algorithms
Selection by sorting

Randomized selection

Quick select

Partition step

Deterministic selection

Pivot selection

Median of medians

Partitioning step

Summary

15. Object-Oriented Design
Introducing object-oriented

Objects and classes

Specifying attributes and behaviors

Data describes objects

Behaviors are actions

Hiding details and creating the public interface

Composition

Inheritance

Inheritance provides abstraction

Multiple inheritance

Case study

Exercises

Summary

16. Objects in Python
Creating Python classes

Adding attributes

Making it do something

Talking to yourself

More arguments

Initializing the object

Explaining yourself

Modules and packages

Organizing modules

Absolute imports

Relative imports

Organizing module content

Who can access my data?

Third-party libraries

Case study

Exercises

Summary

17. When Objects Are Alike
Basic inheritance

Extending built-ins

Overriding and super

Multiple inheritance

The diamond problem

Different sets of arguments

Polymorphism

Abstract base classes

Using an abstract base class

Creating an abstract base class

Demystifying the magic

Case study

Exercises

Summary

18. Expecting the Unexpected
Raising exceptions

Raising an exception

The effects of an exception

Handling exceptions

The exception hierarchy

Defining our own exceptions

Case study

Exercises

Summary

19. When to Use Object-Oriented Programming
Treat objects as objects

Adding behaviors to class data with properties

Properties in detail

Decorators – another way to create properties

Deciding when to use properties

Manager objects

Removing duplicate code

In practice

Case study

Exercises

Summary

20. Python Object-Oriented Shortcuts
Python built-in functions

The len() function

Reversed

Enumerate

File I/O

Placing it in context

An alternative to method overloading

Default arguments

Variable argument lists

Unpacking arguments

Functions are objects too

Using functions as attributes

Callable objects

Case study

Exercises

Summary

21. The Iterator Pattern
Design patterns in brief

Iterators

The iterator protocol

Comprehensions

List comprehensions

Set and dictionary comprehensions

Generator expressions

Generators

Yield items from another iterable

Coroutines

Back to log parsing

Closing coroutines and throwing exceptions

The relationship between coroutines, generators, and functions

Case study

Exercises

Summary

22. Python Design Patterns I
The decorator pattern

A decorator example

Decorators in Python

The observer pattern

An observer example

The strategy pattern

A strategy example

Strategy in Python

The state pattern

A state example

State versus strategy

State transition as coroutines

The singleton pattern

Singleton implementation

Module variables can mimic singletons

The template pattern

A template example

Exercises

Summary

23. Python Design Patterns II
The adapter pattern

The facade pattern

The flyweight pattern

The command pattern

The abstract factory pattern

The composite pattern

Exercises

Summary

24. Testing Object-Oriented Programs

Why test?

Test-driven development

Unit testing

Assertion methods

Reducing boilerplate and cleaning up

Organizing and running tests

Ignoring broken tests

Testing with pytest

One way to do setup and cleanup

A completely different way to set up variables

Skipping tests with pytest

Imitating expensive objects

How much testing is enough?

Case study

Implementing it

Exercises

Summary

Other Books You May Enjoy

Leave a review - let other readers know what you think

Preface
This learning path helps you get comfortable in the world of Python.
It starts with a thorough and practical introduction to Python. You'll
quickly start writing programs in the first part of the learning path.
With the power of linked lists, binary searches, and sorting
algorithms, you'll easily create complex data structures, such as
graphs, stacks, and queues. After understanding cooperative
inheritance, you'll expertly raise, handle, and manipulate exceptions.
You will effortlessly integrate the object-oriented and not-so-object-
oriented aspects of Python, and create maintainable applications
using higher level design patterns. Once you've covered the core
topics, you’ll understand the joy of unit testing and just how easy it is
to create unit tests.

By the end of this learning path, you will have built components that
are easy to understand, debug, and can be used across different
applications.

This learning path includes content from the following Packt
products:

Learn Python Programming - Second Edition by Fabrizio Romano

Python Data Structures and Algorithms by Benjamin Baka

Python 3 Object-Oriented Programming by Dusty Phillips

https://www.packtpub.com/application-development/learn-python-programming-second-edition
https://www.packtpub.com/application-development/python-data-structures-and-algorithms
https://www.packtpub.com/application-development/python-3-object-oriented-programming-third-edition

Who this book is for
If you are relatively new to coding and want to write scripts or
programs to accomplish tasks using Python, or if you are an object-
oriented programmer for other languages and seeking a leg up in the
world of Python, then this learning path is for you. Though not
essential, it will help you to have basic knowledge of programming
and OOP.

What this book covers
Chapter 1, A Gentle Introduction to Python, introduces you to
fundamental programming concepts. It guides you through getting
Python up and running on your computer and introduces you to
some of its constructs.

Chapter 2, Built-in Data Types, introduces you to Python built-in data
types. Python has a very rich set of native data types, and this
chapter will give you a description and a short example for each of
them.

Chapter 3, Iterating and Making Decisions, teaches you how to control
the flow of your code by inspecting conditions, applying logic, and
performing loops.

Chapter 4, Functions, the Building Blocks of Code, teaches you how to
write functions. Functions are the keys to reusing code, to reducing
debugging time, and, in general, to writing better code.

Chapter 5, Files and Data Persistence, teaches you how to deal with
files, streams, data interchange formats, and databases, among
other things.

Chapter 6, Principles of Algorithm Design, covers how we can build
structures with specific capabilities using the existing Python data
structures. In general, the data structures we create need to conform
to a number of principles. These principles include robustness,
adaptability, reusability, and separating the structure from a function.
We look at the role iteration plays and introduce recursive data
structures.

Chapter 7, Lists and Pointer Structures, covers linked lists, which are
one of the most common data structures and are often used to

implement other structures, such as stacks and queues. In this
chapter, we describe their operation and implementation. We
compare their behavior to arrays and discuss the relative
advantages and disadvantages of each.

Chapter 8, Stacks and Queues, discusses the behavior and
demonstrates some implementations of these linear data structures.
We give examples of typical applications.

Chapter 9, Trees, will look at how to implement a binary tree. Trees
form the basis of many of the most important advanced data
structures. We will examine how to traverse trees and retrieve and
insert values. We will also look at how to create structures such as
heaps.

Chapter 10, Hashing and Symbol Tables, describes symbol tables,
gives some typical implementations, and discusses various
applications. We will look at the process of hashing, give an
implementation of a hash table, and discuss the various design
considerations.

Chapter 11, Graphs and Other Algorithms, looks at some of the more
specialized structures, including graphs and spatial structures.
Representing data as a set of nodes and vertices is convenient in a
number of applications, and from this, we can create structures such
as directed and undirected graphs. We will also introduce some
other structures and concepts such as priority queues, heaps, and
selection algorithms.

Chapter 12, Searching, discusses the most common searching
algorithms and gives examples of their use for various data
structures. Searching a data structure is a fundamental task
and there are a number of approaches.

Chapter 13, Sorting, looks at the most common approaches to sorting.
This will include bubble sort, insertion sort, and selection sort.

Chapter 14, Selection Algorithms, covers algorithms that involve finding
statistics, such as the minimum, maximum, or median elements in a
list. There are a number of approaches and one of the most common
approaches is to first apply a sort operation. Other
approaches include partition and linear selection.

Chapter 15, Object-Oriented Design, covers important object-oriented
concepts. It deals mainly with terminology such as abstraction,
classes, encapsulation, and inheritance. We also briefly look at UML
to model our classes and objects.

Chapter 16, Objects in Python, discusses classes and objects as they
are used in Python. We will learn about attributes and behaviors of
Python objects, and the organization of classes into packages and
modules. Lastly, we will see how to protect our data.

Chapter 17, When Objects Are Alike, gives us a more in-depth look into
inheritance. It covers multiple inheritance and shows us how to
extend built-in. This chapter also covers how polymorphism and
duck typing work in Python.

Chapter 18, Expecting the Unexpected, looks into exceptions and
exception handling. We will learn how to create our own exceptions
and how to use exceptions for program flow control.

Chapter 19, When to Use Object-Oriented Programming, deals with
creating and using objects. We will see how to wrap data using
properties and restrict data access. This chapter also discusses the
DRY principle and how not to repeat code.

Chapter 20, Python Object-Oriented Shortcuts, as the name suggests,
deals with time-savers in Python. We will look at many useful built-in
functions, such as method overloading using default arguments.
We'll also see that functions themselves are objects and how this
is useful.

Chapter 21, The Iterator Pattern, introduces the concept of design
patterns and covers Python's iconic implementation of the iterator
pattern. We'll learn about list, set, and dictionary comprehensions.
We'll also demystify generators and coroutines.

Chapter 22, Python Design Patterns I, covers several design patterns,
including the decorator, observer, strategy, state, singleton, and
template patterns. Each pattern is discussed with suitable examples
and programs implemented in Python.

Chapter 23, Python Design Patterns II, wraps up our discussion of
design patterns with coverage of the adapter, facade, flyweight,
command, abstract, and composite patterns. More examples of how
idiomatic Python code differs from canonical implementations
are provided.

Chapter 24, Testing Object-Oriented Programs, opens with why testing
is so important in Python applications. It focuses on test-driven
development and introduces two different testing suites: unittest and
py.test. Finally, it discusses mocking test objects and code coverage.

To get the most out of this book
The code in this book will require you to run Python 2.7.x or higher.
Python's default interactive environment can also be used to run the
snippets of code.

Some of the examples in this book rely on third-party libraries that do
not ship with Python. They are introduced within the book at the time
they are used, so you do not need to install them in advance.

Download the example code
files
You can download the example code files for this book from your
account at www.packt.com. If you purchased this book elsewhere, you
can visit www.packt.com/support and register to have the files emailed
directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packt.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the

onscreen instructions.

Once the file is downloaded, please make sure that you unzip or
extract the folder using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://githu
b.com/PacktPublishing/Getting-Started-with-Python. In case there's an update to
the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and
videos available at https://github.com/PacktPublishing/. Check them out!

http://www.packt.com/
http://www.packt.com/support
http://www.packt.com/
https://github.com/PacktPublishing/Getting-Started-with-Python
https://github.com/PacktPublishing/

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder
names, filenames, file extensions, pathnames, dummy URLs, user
input, and Twitter handles. Here is an example: "The if, else, and elif
statements control the conditional execution of statements."

A block of code is set as follows:

a=10; b=20
def my_function():

When we wish to draw your attention to a particular part of a code
block, the relevant lines or items are set in bold:

if "WARNING" in l:
 yield l.replace("\tWARNING", "")

Any command-line input or output is written as follows:

>>> print(warnings_filter([]))

Bold: Indicates a new term, an important word, or words that you
see onscreen. For example, words in menus or dialog boxes appear
in the text like this. Here is an example: "Then you have to manually
click Yes or No if the label matches the color."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this
book, mention the book title in the subject of your message
and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy
of our content, mistakes do happen. If you have found a mistake in
this book, we would be grateful if you would report this to us. Please
visit www.packt.com/submit-errata, selecting your book, clicking on the
Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any
form on the Internet, we would be grateful if you would provide us
with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that
you have expertise in and you are interested in either writing or
contributing to a book, please visit authors.packtpub.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/

Reviews
Please leave a review. Once you have read and used this book, why
not leave a review on the site that you purchased it from? Potential
readers can then see and use your unbiased opinion to make
purchase decisions, we at Packt can understand what you think
about our products, and our authors can see your feedback on their
book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/

A Gentle Introduction to Python
"Give a man a fish and you feed him for a day. Teach a man to fish and you feed him for a lifetime."

– Chinese proverb

According to Wikipedia, computer programming is:

"...a process that leads from an original formulation of a computing problem to executable computer programs.
Programming involves activities such as analysis, developing understanding, generating algorithms,
verification of requirements of algorithms including their correctness and resources consumption, and
implementation (commonly referred to as coding) of algorithms in a target programming language."

In a nutshell, coding is telling a computer to do something using a
language it understands.

Computers are very powerful tools, but unfortunately, they can't think
for themselves. They need to be told everything: how to perform a
task, how to evaluate a condition to decide which path to follow, how
to handle data that comes from a device, such as the network or a
disk, and how to react when something unforeseen happens, say,
something is broken or missing.

You can code in many different styles and languages. Is it hard? I
would say yes and no. It's a bit like writing. Everybody can learn how
to write, and you can too. But, what if you wanted to become a poet?
Then writing alone is not enough. You have to acquire a whole other
set of skills and this will take a longer and greater effort.

In the end, it all comes down to how far you want to go down the
road. Coding is not just putting together some instructions that work.
It is so much more!

Good code is short, fast, elegant, easy to read and understand,
simple, easy to modify and extend, easy to scale and refactor, and
easy to test. It takes time to be able to write code that has all these
qualities at the same time, but the good news is that you're taking
the first step towards it at this very moment by reading this book.

And I have no doubt you can do it. Anyone can; in fact, we all
program all the time, only we aren't aware of it.

Would you like an example?

Say you want to make instant coffee. You have to get a mug, the
instant coffee jar, a teaspoon, water, and the kettle. Even if you're not
aware of it, you're evaluating a lot of data. You're making sure that
there is water in the kettle and that the kettle is plugged in, that the
mug is clean, and that there is enough coffee in the jar. Then, you
boil the water and maybe, in the meantime, you put some coffee in
the mug. When the water is ready, you pour it into the cup, and stir.

So, how is this programming?

Well, we gathered resources (the kettle, coffee, water, teaspoon, and
mug) and we verified some conditions concerning them (the kettle is
plugged in, the mug is clean, and there is enough coffee). Then we
started two actions (boiling the water and putting coffee in the mug),
and when both of them were completed, we finally ended the
procedure by pouring water in to the mug and stirring.

Can you see it? I have just described the high-level functionality of a
coffee program. It wasn't that hard because this is what the brain
does all day long: evaluate conditions, decide to take actions, carry
out tasks, repeat some of them, and stop at some point. Clean
objects, put them back, and so on.

All you need now is to learn how to deconstruct all those actions you
do automatically in real life so that a computer can actually make
some sense of them. And you need to learn a language as well, to
instruct it.

So this is what this book is for. I'll tell you how to do it and I'll try to do
that by means of many simple but focused examples (my favorite
kind).

In this chapter, we are going to cover the following:

Python's characteristics and ecosystem
Guidelines on how to get up and running with Python and virtual
environments
How to run Python programs
How to organize Python code and Python's execution model

A proper introduction
I love to make references to the real world when I teach coding; I
believe they help people retain the concepts better. However, now is
the time to be a bit more rigorous and see what coding is from a
more technical perspective.

When we write code, we're instructing a computer about the things it
has to do. Where does the action happen? In many places: the
computer memory, hard drives, network cables, the CPU, and so on.
It's a whole world, which most of the time is the representation of a
subset of the real world.

If you write a piece of software that allows people to buy clothes
online, you will have to represent real people, real clothes, real
brands, sizes, and so on and so forth, within the boundaries of a
program.

In order to do so, you will need to create and handle objects in the
program you're writing. A person can be an object. A car is an
object. A pair of socks is an object. Luckily, Python understands
objects very well.

The two main features any object has are properties and methods.
Let's take a person object as an example. Typically in a computer
program, you'll represent people as customers or employees. The
properties that you store against them are things like the name, the
SSN, the age, if they have a driving license, their email, gender, and
so on. In a computer program, you store all the data you need in
order to use an object for the purpose you're serving. If you are
coding a website to sell clothes, you probably want to store the
heights and weights as well as other measures of your customers so
that you can suggest the appropriate clothes for them. So, properties
are characteristics of an object. We use them all the time: Could you

pass me that pen?—Which one?—The black one. Here, we used the
black property of a pen to identify it (most likely among a blue and a
red one).

Methods are things that an object can do. As a person, I have
methods such as speak, walk, sleep, wake up, eat, dream, write,
read, and so on. All the things that I can do could be seen as
methods of the objects that represent me.

So, now that you know what objects are and that they expose
methods that you can run and properties that you can inspect, you're
ready to start coding. Coding in fact is simply about managing those
objects that live in the subset of the world that we're reproducing in
our software. You can create, use, reuse, and delete objects as you
please.

According to the Data Model chapter on the official Python
documentation (https://docs.python.org/3/reference/datamodel.html):

"Objects are Python's abstraction for data. All data in a Python program is represented by objects or by
relations between objects."

We'll take a closer look at Python objects in later chapters. For now,
all we need to know is that every object in Python has an ID (or
identity), a type, and a value.

Once created, the ID of an object is never changed. It's a unique
identifier for it, and it's used behind the scenes by Python to retrieve
the object when we want to use it.

The type, as well, never changes. The type tells what operations are
supported by the object and the possible values that can be
assigned to it.

We'll see Python's most important data types in Chapter 2, Built-in Data
Types.

https://docs.python.org/3/reference/datamodel.html

The value can either change or not. If it can, the object is said to be
mutable, while when it cannot, the object is said to be immutable.

How do we use an object? We give it a name, of course! When you
give an object a name, then you can use the name to retrieve the
object and use it.

In a more generic sense, objects such as numbers, strings (text),
collections, and so on are associated with a name. Usually, we say
that this name is the name of a variable. You can see the variable as
being like a box, which you can use to hold data.

So, you have all the objects you need; what now? Well, we need to
use them, right? We may want to send them over a network
connection or store them in a database. Maybe display them on a
web page or write them into a file. In order to do so, we need to react
to a user filling in a form, or pressing a button, or opening a web
page and performing a search. We react by running our code,
evaluating conditions to choose which parts to execute, how many
times, and under which circumstances.

And to do all this, basically we need a language. That's what Python
is for. Python is the language we'll use together throughout this book
to instruct the computer to do something for us.

Now, enough of this theoretical stuff; let's get started.

Enter the Python
Python is the marvelous creation of Guido Van Rossum, a Dutch
computer scientist and mathematician who decided to gift the world
with a project he was playing around with over Christmas 1989. The
language appeared to the public somewhere around 1991, and since
then has evolved to be one of the leading programming languages
used worldwide today.

I started programming when I was 7 years old, on a Commodore
VIC-20, which was later replaced by its bigger brother, the
Commodore 64. Its language was BASIC. Later on, I landed on
Pascal, Assembly, C, C++, Java, JavaScript, Visual Basic, PHP,
ASP, ASP .NET, C#, and other minor languages I cannot even
remember, but only when I landed on Python did I finally have that
feeling that you have when you find the right couch in the shop.
When all of your body parts are yelling, Buy this one! This one is
perfect for us!

It took me about a day to get used to it. Its syntax is a bit different
from what I was used to, but after getting past that initial feeling of
discomfort (like having new shoes), I just fell in love with it. Deeply.
Let's see why.

About Python
Before we get into the gory details, let's get a sense of why someone
would want to use Python (I would recommend you to read the
Python page on Wikipedia to get a more detailed introduction).

To my mind, Python epitomizes the following qualities.

Portability
Python runs everywhere, and porting a program from Linux to
Windows or Mac is usually just a matter of fixing paths and settings.
Python is designed for portability and it takes care of
specific operating system (OS) quirks behind interfaces that shield
you from the pain of having to write code tailored to a specific
platform.

Coherence
Python is extremely logical and coherent. You can see it was
designed by a brilliant computer scientist. Most of the time, you can
just guess how a method is called, if you don't know it.

You may not realize how important this is right now, especially if you
are at the beginning, but this is a major feature. It means less
cluttering in your head, as well as less skimming through the
documentation, and less need for mappings in your brain when you
code.

Developer productivity
According to Mark Lutz (Learning Python, 5th Edition, O'Reilly
Media), a Python program is typically one-fifth to one-third the size of
equivalent Java or C++ code. This means the job gets done faster.
And faster is good. Faster means a faster response on the market.
Less code not only means less code to write, but also less code to
read (and professional coders read much more than they write), less
code to maintain, to debug, and to refactor.

Another important aspect is that Python runs without the need for
lengthy and time-consuming compilation and linkage steps, so you
don't have to wait to see the results of your work.

An extensive library
Python has an incredibly wide standard library (it's said to come with
batteries included). If that wasn't enough, the Python community all
over the world maintains a body of third-party libraries, tailored to
specific needs, which you can access freely at the Python Package
Index (PyPI). When you code Python and you realize that you need
a certain feature, in most cases, there is at least one library where
that feature has already been implemented for you.

Software quality
Python is heavily focused on readability, coherence, and quality. The
language uniformity allows for high readability and this is crucial
nowadays where coding is more of a collective effort than a solo
endeavor. Another important aspect of Python is its intrinsic
multiparadigm nature. You can use it as a scripting language, but
you also can exploit object-oriented, imperative, and functional
programming styles. It is versatile.

Software integration
Another important aspect is that Python can be extended and
integrated with many other languages, which means that even when
a company is using a different language as their mainstream tool,
Python can come in and act as a glue agent between complex
applications that need to talk to each other in some way. This is kind
of an advanced topic, but in the real world, this feature is very
important.

Satisfaction and enjoyment
Last, but not least, there is the fun of it! Working with Python is fun. I
can code for 8 hours and leave the office happy and satisfied, alien
to the struggle other coders have to endure because they use
languages that don't provide them with the same amount of well-
designed data structures and constructs. Python makes coding fun,
no doubt about it. And fun promotes motivation and productivity.

What are the drawbacks?
Probably, the only drawback that one could find in Python, which is
not due to personal preferences, is its execution speed. Typically,
Python is slower than its compiled brothers. The standard
implementation of Python produces, when you run an application, a
compiled version of the source code called byte code (with the
extension .pyc), which is then run by the Python interpreter. The
advantage of this approach is portability, which we pay for with a
slowdown due to the fact that Python is not compiled down to
machine level as are other languages.

However, Python speed is rarely a problem today, hence its wide use
regardless of this suboptimal feature. What happens is that, in real
life, hardware cost is no longer a problem, and usually it's easy
enough to gain speed by parallelizing tasks. Moreover, many
programs spend a great proportion of the time waiting for IO
operations to complete; therefore, the raw execution speed is often a
secondary factor to the overall performance. When it comes to
number crunching though, one can switch to faster Python
implementations, such as PyPy, which provides an average five-fold
speedup by implementing advanced compilation techniques (check h
ttp://pypy.org/ for reference).

When doing data science, you'll most likely find that the libraries that
you use with Python, such as Pandas and NumPy, achieve native
speed due to the way they are implemented.

If that wasn't a good-enough argument, you can always consider that
Python has been used to drive the backend of services such as
Spotify and Instagram, where performance is a concern.
Nonetheless, Python has done its job perfectly adequately.

http://pypy.org/

Who is using Python today?
Not yet convinced? Let's take a very brief look at the companies that
are using Python today: Google, YouTube, Dropbox, Yahoo!, Zope
Corporation, Industrial Light & Magic, Walt Disney Feature
Animation, Blender 3D, Pixar, NASA, the NSA, Red Hat, Nokia, IBM,
Netflix, Yelp, Intel, Cisco, HP, Qualcomm, and JPMorgan Chase, to
name just a few.

Even games such as Battlefield 2, Civilization IV, and QuArK are
implemented using Python.

Python is used in many different contexts, such as system
programming, web programming, GUI applications, gaming and
robotics, rapid prototyping, system integration, data science,
database applications, and much more. Several prestigious
universities have also adopted Python as their main language in
computer science courses.

Setting up the environment
Before we talk about installing Python on your system, let me tell you
about which Python version I'll be using in this book.

Python 2 versus Python 3
Python comes in two main versions: Python 2, which is the past, and
Python 3, which is the present. The two versions, though very
similar, are incompatible in some respects.

In the real world, Python 2 is actually quite far from being the past. In
short, even though Python 3 has been out since 2008, the transition
phase from Version 2 is still far from being over. This is mostly due to
the fact that Python 2 is widely used in the industry, and of course,
companies aren't so keen on updating their systems just for the sake
of updating them, following the if it ain't broke, don't fix it philosophy.
You can read all about the transition between the two versions on
the web.

Another issue that has hindered the transition is the availability of
third-party libraries. Usually, a Python project relies on tens of
external libraries, and of course, when you start a new project, you
need to be sure that there is already a Version-3-compatible library
for any business requirement that may come up. If that's not the
case, starting a brand-new project in Python 3 means introducing a
potential risk, which many companies are not happy to take.

At the time of writing, though, the majority of the most widely used
libraries have been ported to Python 3, and it's quite safe to start a
project in Python 3 for most cases. Many of the libraries have been
rewritten so that they are compatible with both versions, mostly
harnessing the power of the six library (the name comes from the
multiplication 2 x 3, due to the porting from Version 2 to 3), which
helps introspecting and adapting the behavior according to the
version used. According to PEP 373 (https://legacy.python.org/dev/peps/pep
-0373/), the end of life (EOL) of Python 2.7 has been set to 2020, and
there won't be a Python 2.8, so this is the time when companies that

https://legacy.python.org/dev/peps/pep-0373/

have projects running in Python 2 need to start devising an upgrade
strategy to move to Python 3 before it's too late.

On my box (MacBook Pro), this is the latest Python version I have:

>>> import sys
>>> print(sys.version)
3.7.0a3 (default, Jan 27 2018, 00:46:45)
[Clang 9.0.0 (clang-900.0.39.2)]

So you can see that the version is an alpha release of Python 3.7,
which will be released in June 2018. The preceding text is a little bit
of Python code that I typed into my console. We'll talk about it in a
moment.

All the examples in this book will be run using Python 3.7. Even
though at the moment the final version might still be slightly different
than what I have, I will make sure that all the code and examples are
up to date with 3.7 by the time the book is published.

Some of the code can also run in Python 2.7, either as it is or with
minor tweaks, but at this point in time, I think it's better to learn
Python 3, and then, if you need to, learn the differences it has with
Python 2, rather than going the other way around.

Don't worry about this version thing though; it's not that big an issue
in practice.

Installing Python
I never really got the point of having a setup section in a book,
regardless of what it is that you have to set up. Most of the time,
between the time the author writes the instructions and the time you
actually try them out, months have passed. That is, if you're lucky.
One version change and things may not work in the way that is
described in the book. Luckily, we have the web now, so in order to
help you get up and running, I'll just give you pointers and objectives.

I am conscious that the majority of readers would probably have
preferred to have guidelines in the book. I doubt it would have made
their life much easier, as I strongly believe that if you want to get
started with Python you have to put in that initial effort in order to get
familiar with the ecosystem. It is very important, and it will boost your
confidence to face the material in the chapters ahead. If you get
stuck, remember that Google is your friend.

Setting up the Python
interpreter
First of all, let's talk about your OS. Python is fully integrated and
most likely already installed in basically almost every Linux
distribution. If you have a macOS, it's likely that Python is already
there as well (however, possibly only Python 2.7), whereas if you're
using Windows, you probably need to install it.

Getting Python and the libraries you need up and running requires a
bit of handiwork. Linux and macOS seem to be the most user-
friendly OSes for Python programmers; Windows, on the other hand,
is the one that requires the biggest effort.

My current system is a MacBook Pro, and this is what I will use
throughout the book, along with Python 3.7.

The place you want to start is the official Python website: https://www.py
thon.org. This website hosts the official Python documentation and
many other resources that you will find very useful. Take the time to
explore it.

Another excellent, resourceful website on Python and its ecosystem is http://docs.python-guide.
org. You can find instructions to set up Python on different operating systems, using different
methods.

Find the download section and choose the installer for your OS. If
you are on Windows, make sure that when you run the installer, you
check the option install pip (actually, I would suggest to make a
complete installation, just to be safe, of all the components the
installer holds). We'll talk about pip later.

Now that Python is installed in your system, the objective is to be
able to open a console and run the Python interactive shell by typing
python.

https://www.python.org/
http://docs.python-guide.org/

Please note that I usually refer to the Python interactive shell simply as the Python console.

To open the console in Windows, go to the Start menu, choose Run,
and type cmd. If you encounter anything that looks like a permission
problem while working on the examples in this book, please make
sure you are running the console with administrator rights.

On the macOS X, you can start a Terminal by going to Applications |
Utilities | Terminal.

If you are on Linux, you know all that there is to know about the
console.

I will use the term console interchangeably to indicate the Linux
console, the Windows Command Prompt, and the Macintosh
Terminal. I will also indicate the command-line prompt with the Linux
default format, like this:

$ sudo apt-get update

If you're not familiar with that, please take some time to learn the
basics on how a console works. In a nutshell, after the $ sign, you
normally find an instruction that you have to type. Pay attention to
capitalization and spaces, as they are very important.

Whatever console you open, type python at the prompt, and make
sure the Python interactive shell shows up. Type exit() to quit. Keep
in mind that you may have to specify python3 if your OS comes with
Python 2.* preinstalled.

This is roughly what you should see when you run Python (it will
change in some details according to the version and OS):

$ python3.7
Python 3.7.0a3 (default, Jan 27 2018, 00:46:45)
[Clang 9.0.0 (clang-900.0.39.2)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

Now that Python is set up and you can run it, it's time to make sure
you have the other tool that will be indispensable to follow the
examples in the book: virtualenv.

About virtualenv
As you probably have guessed by its name, virtualenv is all about
virtual environments. Let me explain what they are and why we need
them and let me do it by means of a simple example.

You install Python on your system and you start working on a
website for Client X. You create a project folder and start coding.
Along the way, you also install some libraries; for example, the
Django framework. Let's say the Django version you install for
Project X is 1.7.1.

Now, your website is so good that you get another client, Y. She
wants you to build another website, so you start Project Y and, along
the way, you need to install Django again. The only issue is that now
the Django version is 1.8 and you cannot install it on your system
because this would replace the version you installed for Project X.
You don't want to risk introducing incompatibility issues, so you have
two choices: either you stick with the version you have currently on
your machine, or you upgrade it and make sure the first project is still
fully working correctly with the new version.

Let's be honest, neither of these options is very appealing, right?
Definitely not. So, here's the solution: virtualenv!

virtualenv is a tool that allows you to create a virtual environment. In
other words, it is a tool to create isolated Python environments, each
of which is a folder that contains all the necessary executables to
use the packages that a Python project would need (think of
packages as libraries for the time being).

So you create a virtual environment for Project X, install all the
dependencies, and then you create a virtual environment for Project
Y, installing all its dependencies without the slightest worry because

every library you install ends up within the boundaries of the
appropriate virtual environment. In our example, Project X will hold
Django 1.7.1, while Project Y will hold Django 1.8.

It is of vital importance that you never install libraries directly at the system level. Linux, for
example, relies on Python for many different tasks and operations, and if you fiddle with the
system installation of Python, you risk compromising the integrity of the whole system (guess to
whom this happened...). So take this as a rule, such as brushing your teeth before going to bed:
always, always create a virtual environment when you start a new project.

To install virtualenv on your system, there are a few different ways.
On a Debian-based distribution of Linux, for example, you can install
it with the following command:

$ sudo apt-get install python-virtualenv

Probably, the easiest way is to follow the instructions you can find on
the virtualenv official website: https://virtualenv.pypa.io.

You will find that one of the most common ways to install virtualenv is
by using pip, a package management system used to install and
manage software packages written in Python.

As of Python 3.5, the suggested way to create a virtual environment is to use the venv module.
Please see the official documentation for further information. However, at the time of
writing, virtualenv is still by far the tool most used for creating virtual environments.

https://virtualenv.pypa.io/
https://docs.python.org/3.7/library/venv.html

Your first virtual environment
It is very easy to create a virtual environment, but according to how
your system is configured and which Python version you want the
virtual environment to run, you need to run the command properly.
Another thing you will need to do with virtualenv, when you want to
work with it, is to activate it. Activating virtualenv basically produces
some path juggling behind the scenes so that when you call the
Python interpreter, you're actually calling the active virtual
environment one, instead of the mere system one.

I'll show you a full example on my Macintosh console. We will:

1. Create a folder named learn.pp under your project root (which in
my case is a folder called srv, in my home folder). Please adapt
the paths according to the setup you fancy on your box.

2. Within the learn.pp folder, we will create a virtual environment
called learnpp.

Some developers prefer to call all virtual environments using the same name (for example, .venv).
This way they can run scripts against any virtualenv by just knowing the name of the project they
dwell in. The dot in .venv is there because in Linux/macOS prepending a name with a dot makes
that file or folder invisible.

3. After creating the virtual environment, we will activate it. The
methods are slightly different between Linux, macOS, and
Windows.

4. Then, we'll make sure that we are running the desired Python
version (3.7.*) by running the Python interactive shell.

5. Finally, we will deactivate the virtual environment using the
deactivate command.

These five simple steps will show you all you have to do to start and
use a project.

Here's an example of how those steps might look (note that you
might get a slightly different result, according to your OS, Python
version, and so on) on the macOS (commands that start with a # are
comments, spaces have been introduced for readability, and ⇢
indicates where the line has wrapped around due to lack of space):

fabmp:srv fab$ # step 1 - create folder
fabmp:srv fab$ mkdir learn.pp
fabmp:srv fab$ cd learn.pp

fabmp:learn.pp fab$ # step 2 - create virtual environment
fabmp:learn.pp fab$ which python3.7
/Users/fab/.pyenv/shims/python3.7
fabmp:learn.pp fab$ virtualenv -p
⇢ /Users/fab/.pyenv/shims/python3.7 learnpp
Running virtualenv with interpreter /Users/fab/.pyenv/shims/python3.7
Using base prefix '/Users/fab/.pyenv/versions/3.7.0a3'
New python executable in /Users/fab/srv/learn.pp/learnpp/bin/python3.7
Also creating executable in /Users/fab/srv/learn.pp/learnpp/bin/python
Installing setuptools, pip, wheel...done.

fabmp:learn.pp fab$ # step 3 - activate virtual environment
fabmp:learn.pp fab$ source learnpp/bin/activate

(learnpp) fabmp:learn.pp fab$ # step 4 - verify which python
(learnpp) fabmp:learn.pp fab$ which python
/Users/fab/srv/learn.pp/learnpp/bin/python

(learnpp) fabmp:learn.pp fab$ python
Python 3.7.0a3 (default, Jan 27 2018, 00:46:45)
[Clang 9.0.0 (clang-900.0.39.2)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> exit()

(learnpp) fabmp:learn.pp fab$ # step 5 - deactivate
(learnpp) fabmp:learn.pp fab$ deactivate
fabmp:learn.pp fab$

Notice that I had to tell virtualenv explicitly to use the Python 3.7
interpreter because on my box Python 2.7 is the default one. Had I
not done that, I would have had a virtual environment with Python
2.7 instead of Python 3.7.

You can combine the two instructions for step 2 in one single
command like this:

$ virtualenv -p $(which python3.7) learnpp

I chose to be explicitly verbose in this instance, to help you
understand each bit of the procedure.

Another thing to notice is that in order to activate a virtual
environment, we need to run the /bin/activate script, which needs to
be sourced. When a script is sourced, it means that it is executed in
the current shell, and therefore its effects last after the execution.
This is very important. Also notice how the prompt changes after we
activate the virtual environment, showing its name on the left (and
how it disappears when we deactivate it). On Linux, the steps are the
same so I won't repeat them here. On Windows, things change
slightly, but the concepts are the same. Please refer to the official
virtualenv website for guidance.

At this point, you should be able to create and activate a virtual
environment. Please try and create another one without me guiding
you. Get acquainted with this procedure because it's something that
you will always be doing: we never work system-wide with
Python, remember? It's extremely important.

So, with the scaffolding out of the way, we're ready to talk a bit more
about Python and how you can use it. Before we do that though,
allow me to speak a few words about the console.

Your friend, the console
In this era of GUIs and touchscreen devices, it seems a little
ridiculous to have to resort to a tool such as the console, when
everything is just about one click away.

But the truth is every time you remove your right hand from the
keyboard (or the left one, if you're a lefty) to grab your mouse and
move the cursor over to the spot you want to click on, you're losing
time. Getting things done with the console, counter-intuitive as it may
be, results in higher productivity and speed. I know, you have to trust
me on this.

Speed and productivity are important and, personally, I have nothing
against the mouse, but there is another very good reason for which
you may want to get well-acquainted with the console: when you
develop code that ends up on some server, the console might be the
only available tool. If you make friends with it, I promise you, you will
never get lost when it's of utmost importance that you don't (typically,
when the website is down and you have to investigate very quickly
what's going on).

So it's really up to you. If you're undecided, please grant me the
benefit of the doubt and give it a try. It's easier than you think, and
you'll never regret it. There is nothing more pitiful than a good
developer who gets lost within an SSH connection to a server
because they are used to their own custom set of tools, and only to
that.

Now, let's get back to Python.

How you can run a Python
program
There are a few different ways in which you can run a Python
program.

Running Python scripts
Python can be used as a scripting language. In fact, it always proves
itself very useful. Scripts are files (usually of small dimensions) that
you normally execute to do something like a task. Many developers
end up having their own arsenal of tools that they fire when they
need to perform a task. For example, you can have scripts to parse
data in a format and render it into another different format. Or you
can use a script to work with files and folders. You can create or
modify configuration files, and much more. Technically, there is not
much that cannot be done in a script.

It's quite common to have scripts running at a precise time on a
server. For example, if your website database needs cleaning every
24 hours (for example, the table that stores the user sessions, which
expire pretty quickly but aren't cleaned automatically), you could set
up a Cron job that fires your script at 3:00 A.M. every day.

According to Wikipedia, the software utility Cron is a time-based job scheduler in Unix-like
computer operating systems. People who set up and maintain software environments use Cron to
schedule jobs (commands or shell scripts) to run periodically at fixed times, dates, or intervals.

Running the Python interactive
shell
Another way of running Python is by calling the interactive shell. This
is something we already saw when we typed python on the command
line of our console.

So, open a console, activate your virtual environment (which by now
should be second nature to you, right?), and type python. You will be
presented with a couple of lines that should look like this:

$ python
Python 3.7.0a3 (default, Jan 27 2018, 00:46:45)
[Clang 9.0.0 (clang-900.0.39.2)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

Those >>> are the prompt of the shell. They tell you that Python is
waiting for you to type something. If you type a simple instruction,
something that fits in one line, that's all you'll see. However, if you
type something that requires more than one line of code, the shell
will change the prompt to ..., giving you a visual clue that you're
typing a multiline statement (or anything that would require more
than one line of code).

Go on, try it out; let's do some basic math:

>>> 2 + 4
6
>>> 10 / 4
2.5
>>> 2 ** 1024

1797693134862315907729305190789024733617976978942306572734300811577326758
0550096313270847732240753602112011387987139335765878976881441662249284743
0639474124377767893424865485276302219601246094119453082952085005768838150
6823424628814739131105408272371633505106845862982399472459384797163048353
56329624224137216

The last operation is showing you something incredible. We raise 2 to
the power of 1024, and Python is handling this task with no trouble at
all. Try to do it in Java, C++, or C#. It won't work, unless you use
special libraries to handle such big numbers.

I use the interactive shell every day. It's extremely useful to debug
very quickly, for example, to check if a data structure supports an
operation. Or maybe to inspect or run a piece of code.

When you use Django (a web framework), the interactive shell is
coupled with it and allows you to work your way through the
framework tools, to inspect the data in the database, and many more
things. You will find that the interactive shell will soon become one of
your dearest friends on the journey you are embarking on.

Another solution, which comes in a much nicer graphic layout, is to
use Integrated DeveLopment Environment (IDLE). It's quite a
simple IDE, which is intended mostly for beginners. It has a slightly
larger set of capabilities than the naked interactive shell you get in
the console, so you may want to explore it. It comes for free in the
Windows Python installer and you can easily install it in any other
system. You can find information about it on the Python website.

Guido Van Rossum named Python after the British comedy group,
Monty Python, so it's rumored that the name IDLE has been chosen
in honor of Eric Idle, one of Monty Python's founding members.

Running Python as a service
Apart from being run as a script, and within the boundaries of a shell,
Python can be coded and run as an application. We'll see many
examples throughout the book about this mode. And we'll
understand more about it in a moment, when we'll talk about how
Python code is organized and run.

Running Python as a GUI
application
Python can also be run as a graphical user interface (GUI). There
are several frameworks available, some of which are cross-platform
and some others are platform-specific.

Among the other GUI frameworks, we find that the following are the
most widely used:

PyQt
Tkinter
wxPython
PyGTK

Describing them in detail is outside the scope of this book, but you
can find all the information you need on the Python website (https://do
cs.python.org/3/faq/gui.html) in the What platform-independent GUI
toolkits exist for Python? section. If GUIs are what you're looking for,
remember to choose the one you want according to some principles.
Make sure they:

Offer all the features you may need to develop your project
Run on all the platforms you may need to support
Rely on a community that is as wide and active as possible
Wrap graphic drivers/tools that you can easily install/access

https://docs.python.org/3/faq/gui.html

How is Python code organized?
Let's talk a little bit about how Python code is organized. In this
section, we'll start going down the rabbit hole a little bit more and
introduce more technical names and concepts.

Starting with the basics, how is Python code organized? Of course,
you write your code into files. When you save a file with the
extension .py, that file is said to be a Python module.

If you're on Windows or macOS that typically hide file extensions from the user, please make sure
you change the configuration so that you can see the complete names of the files. This is not
strictly a requirement, but a suggestion.

It would be impractical to save all the code that it is required for
software to work within one single file. That solution works for
scripts, which are usually not longer than a few hundred lines (and
often they are quite shorter than that).

A complete Python application can be made of hundreds of
thousands of lines of code, so you will have to scatter it through
different modules, which is better, but not nearly good enough. It
turns out that even like this, it would still be impractical to work with
the code. So Python gives you another structure, called package,
which allows you to group modules together. A package is nothing
more than a folder, which must contain a special file, __init__.py, that
doesn't need to hold any code but whose presence is required to tell
Python that the folder is not just some folder, but it's actually a
package (note that as of Python 3.3, the __init__.py module is not
strictly required any more).

As always, an example will make all of this much clearer. I have
created an example structure in my book project, and when I type in
my console:

$ tree -v example

I get a tree representation of the contents of the ch1/example folder,
which holds the code for the examples of this chapter. Here's what
the structure of a really simple application could look like:

example
├── core.py
├── run.py
└── util
 ├── __init__.py
 ├── db.py
 ├── math.py
 └── network.py

You can see that within the root of this example, we have two
modules, core.py and run.py, and one package: util. Within core.py, there
may be the core logic of our application. On the other hand, within
the run.py module, we can probably find the logic to start the
application. Within the util package, I expect to find various utility
tools, and in fact, we can guess that the modules there are named
based on the types of tools they hold: db.py would hold tools to work
with databases, math.py would, of course, hold mathematical tools
(maybe our application deals with financial data), and network.py would
probably hold tools to send/receive data on networks.

As explained before, the __init__.py file is there just to tell Python that
util is a package and not just a mere folder.

Had this software been organized within modules only, it would have
been harder to infer its structure. I put a module only example under
the ch1/files_only folder; see it for yourself:

$ tree -v files_only

This shows us a completely different picture:

files_only/
├── core.py
├── db.py
├── math.py
├── network.py
└── run.py

It is a little harder to guess what each module does, right? Now,
consider that this is just a simple example, so you can guess how
much harder it would be to understand a real application if we
couldn't organize the code in packages and modules.

How do we use modules and
packages?
When a developer is writing an application, it is likely that they will
need to apply the same piece of logic in different parts of it. For
example, when writing a parser for the data that comes from a form
that a user can fill in a web page, the application will have to validate
whether a certain field is holding a number or not. Regardless of how
the logic for this kind of validation is written, it's likely that it will be
needed in more than one place.

For example, in a poll application, where the user is asked many
questions, it's likely that several of them will require a numeric
answer. For example:

What is your age?
How many pets do you own?
How many children do you have?
How many times have you been married?

It would be very bad practice to copy/paste (or, more properly said:
duplicate) the validation logic in every place where we expect a
numeric answer. This would violate the don't repeat yourself (DRY)
principle, which states that you should never repeat the same piece
of code more than once in your application. I feel the need to stress
the importance of this principle: you should never repeat the same
piece of code more than once in your application (pun intended).

There are several reasons why repeating the same piece of logic
can be very bad, the most important ones being:

There could be a bug in the logic, and therefore, you would have
to correct it in every place that the logic is applied.

You may want to amend the way you carry out the validation,
and again you would have to change it in every place it is
applied.
You may forget to fix/amend a piece of logic because you
missed it when searching for all its occurrences. This would
leave wrong/inconsistent behavior in your application.
Your code would be longer than needed, for no good reason.

Python is a wonderful language and provides you with all the tools
you need to apply all the coding best practices. For this particular
example, we need to be able to reuse a piece of code. To be able to
reuse a piece of code, we need to have a construct that will hold the
code for us so that we can call that construct every time we need to
repeat the logic inside it. That construct exists, and it's called
a function.

I'm not going too deep into the specifics here, so please just
remember that a function is a block of organized, reusable code that
is used to perform a task. Functions can assume many forms and
names, according to what kind of environment they belong to, but for
now this is not important. We'll see the details when we are able to
appreciate them, later on, in the book. Functions are the building
blocks of modularity in your application, and they are almost
indispensable. Unless you're writing a super-simple script, you'll use
functions all the time. We'll explore functions in Chapter 4, Functions,
the Building Blocks of Code.

Python comes with a very extensive library, as I have already said a
few pages ago. Now, maybe it's a good time to define what a library
is: a library is a collection of functions and objects that provide
functionalities that enrich the abilities of a language.

For example, within Python's math library, we can find a plethora of
functions, one of which is the factorial function, which of course
calculates the factorial of a number.

In mathematics, the factorial of a non-negative integer number N, denoted as N!, is defined as
the product of all positive integers less than or equal to N. For example, the factorial of 5 is
calculated as:
5! = 5 * 4 * 3 * 2 * 1 = 120
The factorial of 0 is 0! = 1, to respect the convention for an empty product.

So, if you wanted to use this function in your code, all you would
have to do is to import it and call it with the right input values. Don't
worry too much if input values and the concept of calling is not very
clear for now; please just concentrate on the import part. We use a
library by importing what we need from it, and then we use it.

In Python, to calculate the factorial of number 5, we just need the
following code:

>>> from math import factorial
>>> factorial(5)
120

Whatever we type in the shell, if it has a printable representation, will be printed on the console for
us (in this case, the result of the function call: 120).

So, let's go back to our example, the one with core.py, run.py, util, and
so on.

In our example, the package util is our utility library. Our custom
utility belt that holds all those reusable tools (that is, functions),
which we need in our application. Some of them will deal with
databases (db.py), some with the network (network.py), and some will
perform mathematical calculations (math.py) that are outside the scope
of Python's standard math library and, therefore, we have to code
them for ourselves.

We will see in detail how to import functions and use them in their
dedicated chapter. Let's now talk about another very important
concept: Python's execution model.

Python's execution model
In this section, I would like to introduce you to a few very important
concepts, such as scope, names, and namespaces. You can read all
about Python's execution model in the official language reference, of
course, but I would argue that it is quite technical and abstract, so let
me give you a less formal explanation first.

Names and namespaces
Say you are looking for a book, so you go to the library and ask
someone for the book you want to fetch. They tell you something like
Second Floor, Section X, Row Three. So you go up the stairs, look
for Section X, and so on.

It would be very different to enter a library where all the books are
piled together in random order in one big room. No floors, no
sections, no rows, no order. Fetching a book would be extremely
hard.

When we write code, we have the same issue: we have to try and
organize it so that it will be easy for someone who has no prior
knowledge about it to find what they're looking for. When software is
structured correctly, it also promotes code reuse. On the other hand,
disorganized software is more likely to expose scattered pieces of
duplicated logic.

First of all, let's start with the book. We refer to a book by its title and
in Python lingo, that would be a name. Python names are the closest
abstraction to what other languages call variables. Names basically
refer to objects and are introduced by name-binding operations. Let's
make a quick example (notice that anything that follows a # is a
comment):

>>> n = 3 # integer number
>>> address = "221b Baker Street, NW1 6XE, London" # Sherlock Holmes'
address
>>> employee = {
... 'age': 45,
... 'role': 'CTO',
... 'SSN': 'AB1234567',
... }
>>> # let's print them
>>> n
3
>>> address
'221b Baker Street, NW1 6XE, London'

>>> employee
{'age': 45, 'role': 'CTO', 'SSN': 'AB1234567'}
>>> other_name
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'other_name' is not defined

We defined three objects in the preceding code (do you remember
what are the three features every Python object has?):

An integer number n (type: int, value: 3)
A string address (type: str, value: Sherlock Holmes' address)
A dictionary employee (type: dict, value: a dictionary that holds
three key/value pairs)

Don't worry, I know you're not supposed to know what a dictionary is.
We'll see in Chapter 2, Built-in Data Types, that it's the king of
Python data structures.

Have you noticed that the prompt changed from >>> to ... when I typed in the definition of
employee? That's because the definition spans over multiple lines.

So, what are n, address, and employee? They are names. Names that we
can use to retrieve data within our code. They need to be kept
somewhere so that whenever we need to retrieve those objects, we
can use their names to fetch them. We need some space to hold
them, hence: namespaces!

A namespace is therefore a mapping from names to objects.
Examples are the set of built-in names (containing functions that are
always accessible in any Python program), the global names in a
module, and the local names in a function. Even the set of attributes
of an object can be considered a namespace.

The beauty of namespaces is that they allow you to define and
organize your names with clarity, without overlapping or interference.
For example, the namespace associated with that book we were
looking for in the library can be used to import the book itself, like
this:

from library.second_floor.section_x.row_three import book

We start from the library namespace, and by means of the dot (.)
operator, we walk into that namespace. Within this namespace, we
look for second_floor, and again we walk into it with the . operator. We
then walk into section_x, and finally within the last namespace,
row_three, we find the name we were looking for: book.

Walking through a namespace will be clearer when we'll be dealing
with real code examples. For now, just keep in mind that
namespaces are places where names are associated with objects.

There is another concept, which is closely related to that of a
namespace, which I'd like to briefly talk about: the scope.

Scopes
According to Python's documentation:

" A scope is a textual region of a Python program, where a namespace is directly accessible."

Directly accessible means that when you're looking for an
unqualified reference to a name, Python tries to find it in the
namespace.

Scopes are determined statically, but actually, during runtime, they
are used dynamically. This means that by inspecting the source
code, you can tell what the scope of an object is, but this doesn't
prevent the software from altering that during runtime. There are four
different scopes that Python makes accessible (not necessarily all of
them are present at the same time, of course):

The local scope, which is the innermost one and contains the
local names.
The enclosing scope, that is, the scope of any enclosing
function. It contains non-local names and also non-global
names.
The global scope contains the global names.
The built-in scope contains the built-in names. Python comes
with a set of functions that you can use in an off-the-shelf
fashion, such as print, all, abs, and so on. They live in the built-in
scope.

The rule is the following: when we refer to a name, Python starts
looking for it in the current namespace. If the name is not found,
Python continues the search to the enclosing scope and this
continues until the built-in scope is searched. If a name hasn't been
found after searching the built-in scope, then Python raises a
NameError exception, which basically means that the name hasn't been
defined (you saw this in the preceding example).

The order in which the namespaces are scanned when looking for a
name is therefore: local, enclosing, global, built-in (LEGB).

This is all very theoretical, so let's see an example. In order to show
you local and enclosing namespaces, I will have to define a few
functions. Don't worry if you are not familiar with their syntax for the
moment. We'll study functions in Chapter 4, Functions, the Building
Blocks of Code. Just remember that in the following code, when you
see def, it means I'm defining a function:

scopes1.py
Local versus Global

we define a function, called local
def local():
 m = 7
 print(m)

m = 5
print(m)

we call, or `execute` the function local
local()

In the preceding example, we define the same name m, both in the
global scope and in the local one (the one defined by the
local function). When we execute this program with the following
command (have you activated your virtualenv?):

$ python scopes1.py

We see two numbers printed on the console: 5 and 7.

What happens is that the Python interpreter parses the file, top to
bottom. First, it finds a couple of comment lines, which are skipped,
then it parses the definition of the function local. When called, this
function does two things: it sets up a name to an object representing
number 7 and prints it. The Python interpreter keeps going and it
finds another name binding. This time the binding happens in the
global scope and the value is 5. The next line is a call to the print
function, which is executed (and so we get the first value printed on
the console: 5).

After this, there is a call to the function local. At this point, Python
executes the function, so at this time, the binding m = 7 happens and
it's printed.

One very important thing to notice is that the part of the code that
belongs to the definition of the local function is indented by four
spaces on the right. Python, in fact, defines scopes by indenting the
code. You walk into a scope by indenting, and walk out of it by
unindenting. Some coders use two spaces, others three, but the
suggested number of spaces to use is four. It's a good measure to
maximize readability. We'll talk more about all the conventions you
should embrace when writing Python code later.

What would happen if we removed that m = 7 line? Remember the
LEGB rule. Python would start looking for m in the local scope
(function local), and, not finding it, it would go to the next enclosing
scope. The next one, in this case, is the global one because there is
no enclosing function wrapped around local. Therefore, we would see
two numbers 5 printed on the console. Let's actually see what the
code would look like:

scopes2.py
Local versus Global

def local():
 # m doesn't belong to the scope defined by the local function
 # so Python will keep looking into the next enclosing scope.
 # m is finally found in the global scope
 print(m, 'printing from the local scope')

m = 5
print(m, 'printing from the global scope')

local()

Running scopes2.py will print this:

$ python scopes2.py
5 printing from the global scope
5 printing from the local scope

As expected, Python prints m the first time, then when the function
local is called, m isn't found in its scope, so Python looks for it

following the LEGB chain until m is found in the global scope.

Let's see an example with an extra layer, the enclosing scope:

scopes3.py
Local, Enclosing and Global

def enclosing_func():
 m = 13

 def local():
 # m doesn't belong to the scope defined by the local
 # function so Python will keep looking into the next
 # enclosing scope. This time m is found in the enclosing
 # scope
 print(m, 'printing from the local scope')

 # calling the function local
 local()

m = 5
print(m, 'printing from the global scope')

enclosing_func()

Running scopes3.py will print on the console:

$ python scopes3.py
(5, 'printing from the global scope')
(13, 'printing from the local scope')

As you can see, the print instruction from the function local is referring
to m as before. m is still not defined within the function itself, so Python
starts walking scopes following the LEGB order. This time m is found
in the enclosing scope.

Don't worry if this is still not perfectly clear for now. It will come to you
as we go through the examples in the book. The Classes section of
the Python tutorial (https://docs.python.org/3/tutorial/classes.html) has an
interesting paragraph about scopes and namespaces. Make sure
you read it at some point if you want a deeper understanding of the
subject.

Before we finish off this chapter, I would like to talk a bit more about
objects. After all, basically everything in Python is an object, so I

https://docs.python.org/3/tutorial/classes.html

think they deserve a bit more attention.

Objects and classes
When I introduced objects previously in the A proper introduction
section of the chapter, I said that we use them to represent real-life
objects. For example, we sell goods of any kind on the web
nowadays and we need to be able to handle, store, and represent
them properly. But objects are actually so much more than that. Most
of what you will ever do, in Python, has to do with manipulating
objects.

So, without going into too much detail (we'll do that in later chapters),
I want to give you the in a nutshell kind of explanation about classes
and objects.

We've already seen that objects are Python's abstraction for data. In
fact, everything in Python is an object, infact numbers, strings (data
structures that hold text), containers, collections, even functions. You
can think of them as if they were boxes with at least three features:
an ID (unique), a type, and a value.

But how do they come to life? How do we create them? How do we
write our own custom objects? The answer lies in one simple word:
classes.

Objects are, in fact, instances of classes. The beauty of Python is
that classes are objects themselves, but let's not go down this road.
It leads to one of the most advanced concepts of this language:
metaclasses. For now, the best way for you to get the difference
between classes and objects is by means of an example.

Say a friend tells you, I bought a new bike! You immediately
understand what she's talking about. Have you seen the bike? No.
Do you know what color it is? Nope. The brand? Nope. Do you know
anything about it? Nope. But at the same time, you know everything

you need in order to understand what your friend meant when she
told you she bought a new bike. You know that a bike has two
wheels attached to a frame, a saddle, pedals, handlebars, brakes,
and so on. In other words, even if you haven't seen the bike itself,
you know the concept of bike. An abstract set of features and
characteristics that together form something called bike.

In computer programming, that is called a class. It's that simple.
Classes are used to create objects. In fact, objects are said to be
instances of classes.

In other words, we all know what a bike is; we know the class. But
then I have my own bike, which is an instance of the bike class. And
my bike is an object with its own characteristics and methods. You
have your own bike. Same class, but different instance. Every bike
ever created in the world is an instance of the bike class.

Let's see an example. We will write a class that defines a bike and
then we'll create two bikes, one red and one blue. I'll keep the code
very simple, but don't fret if you don't understand everything about it;
all you need to care about at this moment is to understand the
difference between a class and an object (or instance of a class):

bike.py
let's define the class Bike
class Bike:

 def __init__(self, colour, frame_material):
 self.colour = colour
 self.frame_material = frame_material

 def brake(self):
 print("Braking!")

let's create a couple of instances
red_bike = Bike('Red', 'Carbon fiber')
blue_bike = Bike('Blue', 'Steel')

let's inspect the objects we have, instances of the Bike class.
print(red_bike.colour) # prints: Red
print(red_bike.frame_material) # prints: Carbon fiber
print(blue_bike.colour) # prints: Blue
print(blue_bike.frame_material) # prints: Steel

let's brake!
red_bike.brake() # prints: Braking!

I hope by now I don't need to tell you to run the file every time, right? The filename is indicated in
the first line of the code block. Just run $ python filename, and you'll be fine. But remember to
have your virtualenv activated!

So many interesting things to notice here. First things first; the
definition of a class happens with the class statement. Whatever code
comes after the class statement, and is indented, is called the body of
the class. In our case, the last line that belongs to the class definition
is the print("Braking!") one.

After having defined the class, we're ready to create instances. You
can see that the class body hosts the definition of two methods. A
method is basically (and simplistically) a function that belongs to a
class.

The first method, __init__, is an initializer. It uses some Python magic
to set up the objects with the values we pass when we create it.

Every method that has leading and trailing double underscores, in Python, is called a magic
method. Magic methods are used by Python for a multitude of different purposes; hence it's
never a good idea to name a custom method using two leading and trailing underscores. This
naming convention is best left to Python.

The other method we defined, brake, is just an example of an
additional method that we could call if we wanted to brake the bike. It
contains just a print statement, of course; it's an example.

We created two bikes then. One has red color and a carbon fiber
frame, and the other one has blue color and a steel frame. We pass
those values upon creation. After creation, we print out the color
property and frame type of the red bike, and the frame type of the
blue one just as an example. We also call the brake method of the
red_bike.

One last thing to notice. You remember I told you that the set of
attributes of an object is considered to be a namespace? I hope it's
clearer what I meant now. You see that by getting to the frame_type

property through different namespaces (red_bike, blue_bike), we obtain
different values. No overlapping, no confusion.

The dot (.) operator is of course the means we use to walk into a
namespace, in the case of objects as well.

Guidelines on how to write
good code
Writing good code is not as easy as it seems. As I already said
before, good code exposes a long list of qualities that is quite hard to
put together. Writing good code is, to some extent, an art.
Regardless of where on the path you will be happy to settle, there is
something that you can embrace which will make your code instantly
better: PEP 8.

According to Wikipedia:

"Python's development is conducted largely through the Python Enhancement Proposal (PEP) process. The
PEP process is the primary mechanism for proposing major new features, for collecting community input on an
issue, and for documenting the design decisions that have gone into Python."

PEP 8 is perhaps the most famous of all PEPs. It lays out a simple
but effective set of guidelines to define Python aesthetics so that we
write beautiful Python code. If you take one suggestion out of this
chapter, please let it be this: use it. Embrace it. You will thank me
later.

Coding today is no longer a check-in/check-out business. Rather, it's
more of a social effort. Several developers collaborate on a piece of
code through tools such as Git and Mercurial, and the result is code
that is fathered by many different hands.

Git and Mercurial are probably the distributed revision control systems that are most used today.
They are essential tools designed to help teams of developers collaborate on the same software.

These days, more than ever, we need to have a consistent way of
writing code, so that readability is maximized. When all developers of
a company abide by PEP 8, it's not uncommon for any of them
landing on a piece of code to think they wrote it themselves. It
actually happens to me all the time (I always forget the code I write).

This has a tremendous advantage: when you read code that you
could have written yourself, you read it easily. Without a convention,
every coder would structure the code the way they like most, or
simply the way they were taught or are used to, and this would mean
having to interpret every line according to someone else's style. It
would mean having to lose much more time just trying to understand
it. Thanks to PEP 8, we can avoid this. I'm such a fan of it that I won't
sign off a code review if the code doesn't respect it. So, please take
the time to study it; it's very important.

In the examples in this book, I will try to respect it as much as I can.
Unfortunately, I don't have the luxury of 79 characters (which is the
maximum line length suggested by PEP 8), and I will have to cut
down on blank lines and other things, but I promise you I'll try to lay
out my code so that it's as readable as possible.

The Python culture
Python has been adopted widely in all coding industries. It's used by
many different companies for many different purposes, and it's also
used in education (it's an excellent language for that purpose,
because of its many qualities and the fact that it's easy to learn).

One of the reasons Python is so popular today is that the community
around it is vast, vibrant, and full of brilliant people. Many events are
organized all over the world, mostly either around Python or its main
web framework, Django.

Python is open, and very often so are the minds of those who
embrace it. Check out the community page on the Python website
for more information and get involved!

There is another aspect to Python which revolves around the notion
of being Pythonic. It has to do with the fact that Python allows you
to use some idioms that aren't found elsewhere, at least not in the
same form or as easy to use (I feel quite claustrophobic when I have
to code in a language which is not Python now).

Anyway, over the years, this concept of being Pythonic has emerged
and, the way I understand it, is something along the lines of doing
things the way they are supposed to be done in Python.

To help you understand a little bit more about Python's culture and
about being Pythonic, I will show you the Zen of Python. A lovely
Easter egg that is very popular. Open up a Python console and type
import this. What follows is the result of this line:

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.

Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

There are two levels of reading here. One is to consider it as a set of
guidelines that have been put down in a fun way. The other one is to
keep it in mind, and maybe read it once in a while, trying to
understand how it refers to something deeper: some Python
characteristics that you will have to understand deeply in order to
write Python the way it's supposed to be written. Start with the fun
level, and then dig deeper. Always dig deeper.

A note on IDEs
Just a few words about IDEs. To follow the examples in this book,
you don't need one; any text editor will do fine. If you want to have
more advanced features, such as syntax coloring and auto
completion, you will have to fetch yourself an IDE. You can find a
comprehensive list of open source IDEs (just Google Python IDEs)
on the Python website. I personally use Sublime Text editor. It's free
to try out and it costs just a few dollars. I have tried many IDEs in my
life, but this is the one that makes me most productive.

Two important pieces of advice:

Whatever IDE you choose to use, try to learn it well so that you
can exploit its strengths, but don't depend on it. Exercise
yourself to work with VIM (or any other text editor) once in a
while; learn to be able to do some work on any platform, with
any set of tools.
Whatever text editor/IDE you use, when it comes to writing
Python, indentation is four spaces. Don't use tabs, don't mix
them with spaces. Use four spaces, not two, not three, not five.
Just use four. The whole world works like that, and you don't
want to become an outcast because you were fond of the three-
space layout.

Summary
In this chapter, we started to explore the world of programming and
that of Python. We've barely scratched the surface, just a little,
touching concepts that will be discussed later on in the book in
greater detail.

We talked about Python's main features, who is using it and for what,
and what are the different ways in which we can write a Python
program.

In the last part of the chapter, we flew over the fundamental notions
of namespaces, scopes, classes, and objects. We also saw how
Python code can be organized using modules and packages.

On a practical level, we learned how to install Python on our system,
how to make sure we have the tools we need, pip and virtualenv, and
we also created and activated our first virtual environment. This will
allow us to work in a self-contained environment without the risk of
compromising the Python system installation.

Now you're ready to start this journey with me. All you need is
enthusiasm, an activated virtual environment, this book, your fingers,
and some coffee.

Try to follow the examples; I'll keep them simple and short. If you put
them under your fingertips, you will retain them much better than if
you just read them.

In the next chapter, we will explore Python's rich set of built-in data
types. There's much to cover and much to learn!

Built-in Data Types
"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."

– Sherlock Holmes – The Adventure of the Copper Beeches

Everything you do with a computer is managing data. Data comes in
many different shapes and flavors. It's the music you listen to, the
movies you stream, the PDFs you open. Even the source of the
chapter you're reading at this very moment is just a file, which is
data.

Data can be simple, an integer number to represent an age, or
complex, like an order placed on a website. It can be about a single
object or about a collection of them. Data can even be about data,
that is, metadata. Data that describes the design of other data
structures or data that describes application data or its context. In
Python, objects are abstraction for data, and Python has an amazing
variety of data structures that you can use to represent data, or
combine them to create your own custom data.

In this chapter, we are going to cover the following:

Python objects' structures
Mutability and immutability
Built-in data types: numbers, strings, sequences, collections,
and mapping types
The collections module
Enumerations

Everything is an object
Before we delve into the specifics, I want you to be very clear about
objects in Python, so let's talk a little bit more about them. As we
already said, everything in Python is an object. But what really
happens when you type an instruction like age = 42 in a Python
module?

If you go to http://pythontutor.com/, you can type that instruction into a text box and get its visual
representation. Keep this website in mind; it's very useful to consolidate your understanding of
what goes on behind the scenes.

So, what happens is that an object is created. It gets an id, the type is
set to int (integer number), and the value to 42. A name age is placed in
the global namespace, pointing to that object. Therefore, whenever
we are in the global namespace, after the execution of that line, we
can retrieve that object by simply accessing it through its name: age.

If you were to move house, you would put all the knives, forks, and
spoons in a box and label it cutlery. Can you see it's exactly the same
concept? Here's a screenshot of what it may look like (you may have
to tweak the settings to get to the same view):

http://pythontutor.com/

So, for the rest of this chapter, whenever you read something such as
name = some_value, think of a name placed in the namespace that is tied to
the scope in which the instruction was written, with a nice arrow
pointing to an object that has an id, a type, and a value. There is a little
bit more to say about this mechanism, but it's much easier to talk
about it over an example, so we'll get back to this later.

Mutable or immutable? That is
the question
A first fundamental distinction that Python makes on data is about
whether or not the value of an object changes. If the value can
change, the object is called mutable, while if the value cannot
change, the object is called immutable.

It is very important that you understand the distinction between
mutable and immutable because it affects the code you write, so
here's a question:

>>> age = 42
>>> age
42
>>> age = 43 #A
>>> age
43

In the preceding code, on the line #A, have I changed the value of
age? Well, no. But now it's 43 (I hear you say...). Yes, it's 43, but 42
was an integer number, of the type int, which is immutable. So, what
happened is really that on the first line, age is a name that is set to
point to an int object, whose value is 42. When we type age = 43, what
happens is that another object is created, of the type int and value 43
(also, the id will be different), and the name age is set to point to it. So,
we didn't change that 42 to 43. We actually just pointed age to a
different location: the new int object whose value is 43. Let's see the
same code also printing the IDs:

>>> age = 42
>>> id(age)
4377553168
>>> age = 43
>>> id(age)
4377553200

Notice that we print the IDs by calling the built-in id function. As you
can see, they are different, as expected. Bear in mind that age points
to one object at a time: 42 first, then 43. Never together.

Now, let's see the same example using a mutable object. For this
example, let's just use a Person object, that has a property age (don't
worry about the class declaration for now; it's there only for
completeness):

>>> class Person():
... def __init__(self, age):
... self.age = age
...
>>> fab = Person(age=42)
>>> fab.age
42
>>> id(fab)
4380878496
>>> id(fab.age)
4377553168
>>> fab.age = 25 # I wish!
>>> id(fab) # will be the same
4380878496
>>> id(fab.age) # will be different
4377552624

In this case, I set up an object fab whose type is Person (a custom
class). On creation, the object is given the age of 42. I'm printing it,
along with the object id, and the ID of age as well. Notice that, even
after I change age to be 25, the ID of fab stays the same (while the ID
of age has changed, of course). Custom objects in Python are
mutable (unless you code them not to be). Keep this concept in
mind; it's very important. I'll remind you about it throughout the rest
of the chapter.

Numbers
Let's start by exploring Python's built-in data types for numbers.
Python was designed by a man with a master's degree in
mathematics and computer science, so it's only logical that it has
amazing support for numbers.

Numbers are immutable objects.

Integers
Python integers have an unlimited range, subject only to the
available virtual memory. This means that it doesn't really matter how
big a number you want to store is: as long as it can fit in your
computer's memory, Python will take care of it. Integer numbers can
be positive, negative, and 0 (zero). They support all the basic
mathematical operations, as shown in the following example:

>>> a = 14
>>> b = 3
>>> a + b # addition
17
>>> a - b # subtraction
11
>>> a * b # multiplication
42
>>> a / b # true division
4.666666666666667
>>> a // b # integer division
4
>>> a % b # modulo operation (reminder of division)
2
>>> a ** b # power operation
2744

The preceding code should be easy to understand. Just notice one
important thing: Python has two division operators, one performs the
so-called true division (/), which returns the quotient of the
operands, and the other one, the so-called integer division (//),
which returns the floored quotient of the operands. It might be worth
noting that in Python 2 the division operator / behaves differently
than in Python 3. See how that is different for positive and negative
numbers:

>>> 7 / 4 # true division
1.75
>>> 7 // 4 # integer division, truncation returns 1
1
>>> -7 / 4 # true division again, result is opposite of previous
-1.75
>>> -7 // 4 # integer div., result not the opposite of previous
-2

This is an interesting example. If you were expecting a -1 on the last
line, don't feel bad, it's just the way Python works. The result of an
integer division in Python is always rounded towards minus infinity.
If, instead of flooring, you want to truncate a number to an integer,
you can use the built-in int function, as shown in the following
example:

>>> int(1.75)
1
>>> int(-1.75)
-1

Notice that the truncation is done toward 0.

There is also an operator to calculate the remainder of a division. It's
called a modulo operator, and it's represented by a percentage (%):

>>> 10 % 3 # remainder of the division 10 // 3
1
>>> 10 % 4 # remainder of the division 10 // 4
2

One nice feature introduced in Python 3.6 is the ability to add
underscores within number literals (between digits or base
specifiers, but not leading or trailing). The purpose is to help make
some numbers more readable, like for example 1_000_000_000:

>>> n = 1_024
>>> n
1024
>>> hex_n = 0x_4_0_0 # 0x400 == 1024
>>> hex_n
1024

Booleans
Boolean algebra is that subset of algebra in which the values of the
variables are the truth values: true and false. In Python, True and False
are two keywords that are used to represent truth values. Booleans
are a subclass of integers, and behave respectively like 1 and 0. The
equivalent of the int class for Booleans is the bool class, which
returns either True or False. Every built-in Python object has a value in
the Boolean context, which means they basically evaluate to either
True or False when fed to the bool function. We'll see all about this in Chap
ter 3, Iterating and Making Decisions.

Boolean values can be combined in Boolean expressions using the
logical operators and, or, and not. Again, we'll see them in full in the
next chapter, so for now let's just see a simple example:

>>> int(True) # True behaves like 1
1
>>> int(False) # False behaves like 0
0
>>> bool(1) # 1 evaluates to True in a boolean context
True
>>> bool(-42) # and so does every non-zero number
True
>>> bool(0) # 0 evaluates to False
False
>>> # quick peak at the operators (and, or, not)
>>> not True
False
>>> not False
True
>>> True and True
True
>>> False or True
True

You can see that True and False are subclasses of integers when you
try to add them. Python upcasts them to integers and performs the
addition:

>>> 1 + True
2

>>> False + 42
42
>>> 7 - True
6

Upcasting is a type conversion operation that goes from a subclass to its parent. In the example
presented here, True and False, which belong to a class derived from the integer class, are
converted back to integers when needed.

Real numbers
Real numbers, or floating point numbers, are represented in Python
according to the IEEE 754 double-precision binary floating-point
format, which is stored in 64 bits of information divided into three
sections: sign, exponent, and mantissa.

Quench your thirst for knowledge about this format on Wikipedia: http://en.wikipedia.org/wiki/D
ouble-precision_floating-point_format.

Usually, programming languages give coders two different formats:
single and double precision. The former takes up 32 bits of memory,
and the latter 64. Python supports only the double format. Let's see
a simple example:

>>> pi = 3.1415926536 # how many digits of PI can you remember?
>>> radius = 4.5
>>> area = pi * (radius ** 2)
>>> area
63.617251235400005

In the calculation of the area, I wrapped the radius ** 2 within braces. Even though that wasn't
necessary because the power operator has higher precedence than the multiplication one, I think
the formula reads more easily like that. Moreover, should you get a slightly different result for the
area, don't worry. It might depend on your OS, how Python was compiled, and so on. As long as
the first few decimal digits are correct, you know it's a correct result.

The sys.float_info struct sequence holds information about how
floating point numbers will behave on your system. This is what I see
on my box:

>>> import sys
>>> sys.float_info
sys.float_info(max=1.7976931348623157e+308, max_exp=1024, max_10_exp=308,
min=2.2250738585072014e-308, min_exp=-1021, min_10_exp=-307, dig=15,
mant_dig=53, epsilon=2.220446049250313e-16, radix=2, rounds=1)

Let's make a few considerations here: we have 64 bits to represent
float numbers. This means we can represent at most 2 ** 64 ==
18,446,744,073,709,551,616 numbers with that amount of bits. Take a look
at the max and epsilon values for the float numbers, and you'll realize
it's impossible to represent them all. There is just not enough space,

http://en.wikipedia.org/wiki/Double-precision_floating-point_format

so they are approximated to the closest representable number. You
probably think that only extremely big or extremely small numbers
suffer from this issue. Well, think again and try the following in your
console:

>>> 0.3 - 0.1 * 3 # this should be 0!!!
-5.551115123125783e-17

What does this tell you? It tells you that double precision numbers
suffer from approximation issues even when it comes to simple
numbers like 0.1 or 0.3. Why is this important? It can be a big problem
if you're handling prices, or financial calculations, or any kind of data
that needs not to be approximated. Don't worry, Python gives you the
decimal type, which doesn't suffer from these issues; we'll see them
in a moment.

Complex numbers
Python gives you complex numbers support out of the box. If you
don't know what complex numbers are, they are numbers that can
be expressed in the form a + ib where a and b are real numbers, and
i (or j if you're an engineer) is the imaginary unit, that is, the square
root of -1. a and b are called, respectively, the real and imaginary
part of the number.

It's actually unlikely you'll be using them, unless you're coding
something scientific. Let's see a small example:

>>> c = 3.14 + 2.73j
>>> c.real # real part
3.14
>>> c.imag # imaginary part
2.73
>>> c.conjugate() # conjugate of A + Bj is A - Bj
(3.14-2.73j)
>>> c * 2 # multiplication is allowed
(6.28+5.46j)
>>> c ** 2 # power operation as well
(2.4067000000000007+17.1444j)
>>> d = 1 + 1j # addition and subtraction as well
>>> c - d
(2.14+1.73j)

Fractions and decimals
Let's finish the tour of the number department with a look at fractions
and decimals. Fractions hold a rational numerator and denominator
in their lowest forms. Let's see a quick example:

>>> from fractions import Fraction
>>> Fraction(10, 6) # mad hatter?
Fraction(5, 3) # notice it's been simplified
>>> Fraction(1, 3) + Fraction(2, 3) # 1/3 + 2/3 == 3/3 == 1/1
Fraction(1, 1)
>>> f = Fraction(10, 6)
>>> f.numerator
5
>>> f.denominator
3

Although they can be very useful at times, it's not that common to
spot them in commercial software. Much easier instead, is to see
decimal numbers being used in all those contexts where precision is
everything; for example, in scientific and financial calculations.

It's important to remember that arbitrary precision decimal numbers come at a price in
performance, of course. The amount of data to be stored for each number is far greater than it is
for fractions or floats as well as the way they are handled, which causes the Python interpreter
much more work behind the scenes. Another interesting thing to note is that you can get and set
the precision by accessing decimal.getcontext().prec.

Let's see a quick example with decimal numbers:

>>> from decimal import Decimal as D # rename for brevity
>>> D(3.14) # pi, from float, so approximation issues
Decimal('3.140000000000000124344978758017532527446746826171875')
>>> D('3.14') # pi, from a string, so no approximation issues
Decimal('3.14')
>>> D(0.1) * D(3) - D(0.3) # from float, we still have the issue
Decimal('2.775557561565156540423631668E-17')
>>> D('0.1') * D(3) - D('0.3') # from string, all perfect
Decimal('0.0')
>>> D('1.4').as_integer_ratio() # 7/5 = 1.4 (isn't this cool?!)
(7, 5)

Notice that when we construct a Decimal number from a float, it takes
on all the approximation issues float may come from. On the other

hand, when the Decimal has no approximation issues (for example,
when we feed an int or a string representation to the constructor),
then the calculation has no quirky behavior. When it comes to
money, use decimals.

This concludes our introduction to built-in numeric types. Let's now
look at sequences.

Immutable sequences
Let's start with immutable sequences: strings, tuples, and bytes.

Strings and bytes
Textual data in Python is handled with str objects, more commonly
known as strings. They are immutable sequences of Unicode code
points. Unicode code points can represent a character, but can also
have other meanings, such as formatting data, for example. Python,
unlike other languages, doesn't have a char type, so a single
character is rendered simply by a string of length 1.

Unicode is an excellent way to handle data, and should be used for
the internals of any application. When it comes to storing textual data
though, or sending it on the network, you may want to encode it,
using an appropriate encoding for the medium you're using. The
result of an encoding produces a bytes object, whose syntax and
behavior is similar to that of strings. String literals are written in
Python using single, double, or triple quotes (both single or double).
If built with triple quotes, a string can span on multiple lines. An
example will clarify this:

>>> # 4 ways to make a string
>>> str1 = 'This is a string. We built it with single quotes.'
>>> str2 = "This is also a string, but built with double quotes."
>>> str3 = '''This is built using triple quotes,
... so it can span multiple lines.'''
>>> str4 = """This too
... is a multiline one
... built with triple double-quotes."""
>>> str4 #A
'This too\nis a multiline one\nbuilt with triple double-quotes.'
>>> print(str4) #B
This too
is a multiline one
built with triple double-quotes.

In #A and #B, we print str4, first implicitly, and then explicitly, using the
print function. A nice exercise would be to find out why they are
different. Are you up to the challenge? (hint: look up the str function.)

Strings, like any sequence, have a length. You can get this by calling
the len function:

>>> len(str1)
49

Encoding and decoding strings
Using the encode/decode methods, we can encode Unicode strings and
decode bytes objects. UTF-8 is a variable length character encoding,
capable of encoding all possible Unicode code points. It is the
dominant encoding for the web. Notice also that by adding a literal b
in front of a string declaration, we're creating a bytes object:

>>> s = "This is üŋíc0de" # unicode string: code points
>>> type(s)
<class 'str'>
>>> encoded_s = s.encode('utf-8') # utf-8 encoded version of s
>>> encoded_s
b'This is \xc3\xbc\xc5\x8b\xc3\xadc0de' # result: bytes object
>>> type(encoded_s) # another way to verify it
<class 'bytes'>
>>> encoded_s.decode('utf-8') # let's revert to the original
'This is üŋíc0de'
>>> bytes_obj = b"A bytes object" # a bytes object
>>> type(bytes_obj)
<class 'bytes'>

Indexing and slicing strings
When manipulating sequences, it's very common to have to access
them at one precise position (indexing), or to get a subsequence out
of them (slicing). When dealing with immutable sequences, both
operations are read-only.

While indexing comes in one form, a zero-based access to any
position within the sequence, slicing comes in different forms. When
you get a slice of a sequence, you can specify the start and stop
positions, and the step. They are separated with a colon (:) like this:
my_sequence[start:stop:step]. All the arguments are optional, start is
inclusive, and stop is exclusive. It's much easier to show an example,
rather than explain them further in words:

>>> s = "The trouble is you think you have time."
>>> s[0] # indexing at position 0, which is the first char
'T'
>>> s[5] # indexing at position 5, which is the sixth char
'r'
>>> s[:4] # slicing, we specify only the stop position
'The '
>>> s[4:] # slicing, we specify only the start position
'trouble is you think you have time.'
>>> s[2:14] # slicing, both start and stop positions
'e trouble is'
>>> s[2:14:3] # slicing, start, stop and step (every 3 chars)
'erb '
>>> s[:] # quick way of making a copy
'The trouble is you think you have time.'

Of all the lines, the last one is probably the most interesting. If you
don't specify a parameter, Python will fill in the default for you. In this
case, start will be the start of the string, stop will be the end of the
string, and step will be the default 1. This is an easy and quick way of
obtaining a copy of the string s (same value, but different object).
Can you find a way to get the reversed copy of a string using slicing
(don't look it up; find it for yourself)?

String formatting
One of the features strings have is the ability to be used as a
template. There are several different ways of formatting a string, and
for the full list of possibilities, I encourage you to look up the
documentation. Here are some common examples:

>>> greet_old = 'Hello %s!'
>>> greet_old % 'Fabrizio'
'Hello Fabrizio!'

>>> greet_positional = 'Hello {} {}!'
>>> greet_positional.format('Fabrizio', 'Romano')
'Hello Fabrizio Romano!'

>>> greet_positional_idx = 'This is {0}! {1} loves {0}!'
>>> greet_positional_idx.format('Python', 'Fabrizio')
'This is Python! Fabrizio loves Python!'
>>> greet_positional_idx.format('Coffee', 'Fab')
'This is Coffee! Fab loves Coffee!'

>>> keyword = 'Hello, my name is {name} {last_name}'
>>> keyword.format(name='Fabrizio', last_name='Romano')
'Hello, my name is Fabrizio Romano'

In the previous example, you can see four different ways of
formatting stings. The first one, which relies on the % operator, is
deprecated and shouldn't be used any more. The current, modern
way to format a string is by using the format string method. You can
see, from the different examples, that a pair of curly braces acts as a
placeholder within the string. When we call format, we feed it data that
replaces the placeholders. We can specify indexes (and much more)
within the curly braces, and even names, which implies we'll have to
call format using keyword arguments instead of positional ones.

Notice how greet_positional_idx is rendered differently by feeding
different data to the call to format. Apparently, I'm into Python and
coffee... big surprise!

One last feature I want to show you is a relatively new addition to
Python (Version 3.6) and it's called formatted string literals. This
feature is quite cool: strings are prefixed with f, and contain
replacement fields surrounded by curly braces. Replacement fields
are expressions evaluated at runtime, and then formatted using the
format protocol:

>>> name = 'Fab'
>>> age = 42
>>> f"Hello! My name is {name} and I'm {age}"
"Hello! My name is Fab and I'm 42"
>>> from math import pi
>>> f"No arguing with {pi}, it's irrational..."
"No arguing with 3.141592653589793, it's irrational..."

Check out the official documentation to learn everything about string
formatting and how powerful it can be.

Tuples
The last immutable sequence type we're going to see is the tuple. A
tuple is a sequence of arbitrary Python objects. In a tuple, items are
separated by commas. They are used everywhere in Python,
because they allow for patterns that are hard to reproduce in other
languages. Sometimes tuples are used implicitly; for example, to set
up multiple variables on one line, or to allow a function to return
multiple different objects (usually a function returns one object only,
in many other languages), and even in the Python console, you can
use tuples implicitly to print multiple elements with one single
instruction. We'll see examples for all these cases:

>>> t = () # empty tuple
>>> type(t)
<class 'tuple'>
>>> one_element_tuple = (42,) # you need the comma!
>>> three_elements_tuple = (1, 3, 5) # braces are optional here
>>> a, b, c = 1, 2, 3 # tuple for multiple assignment
>>> a, b, c # implicit tuple to print with one instruction
(1, 2, 3)
>>> 3 in three_elements_tuple # membership test
True

Notice that the membership operator in can also be used with lists,
strings, dictionaries, and, in general, with collection and sequence
objects.

Notice that to create a tuple with one item, we need to put that comma after the item. The reason
is that without the comma that item is just itself wrapped in braces, kind of in a redundant
mathematical expression. Notice also that on assignment, braces are optional so my_tuple = 1,
2, 3 is the same as my_tuple = (1, 2, 3).

One thing that tuple assignment allows us to do, is one-line swaps,
with no need for a third temporary variable. Let's see first a more
traditional way of doing it:

>>> a, b = 1, 2
>>> c = a # we need three lines and a temporary var c
>>> a = b
>>> b = c

>>> a, b # a and b have been swapped
(2, 1)

And now let's see how we would do it in Python:

>>> a, b = 0, 1
>>> a, b = b, a # this is the Pythonic way to do it
>>> a, b
(1, 0)

Take a look at the line that shows you the Pythonic way of swapping
two values. Do you remember what I wrote in Chapter 1, A Gentle
Introduction to Python? A Python program is typically one-fifth to
one-third the size of equivalent Java or C++ code, and features like
one-line swaps contribute to this. Python is elegant, where elegance
in this context also means economy.

Because they are immutable, tuples can be used as keys for
dictionaries (we'll see this shortly). To me, tuples are Python's built-in
data that most closely represent a mathematical vector. This doesn't
mean that this was the reason for which they were created though.
Tuples usually contain an heterogeneous sequence of elements,
while on the other hand, lists are most of the times homogeneous.
Moreover, tuples are normally accessed via unpacking or indexing,
while lists are usually iterated over.

Mutable sequences
Mutable sequences differ from their immutable sisters in that they
can be changed after creation. There are two mutable sequence
types in Python: lists and byte arrays. I said before that the dictionary
is the king of data structures in Python. I guess this makes the list its
rightful queen.

Lists
Python lists are mutable sequences. They are very similar to tuples,
but they don't have the restrictions of immutability. Lists are
commonly used to storing collections of homogeneous objects, but
there is nothing preventing you from store heterogeneous collections
as well. Lists can be created in many different ways. Let's see an
example:

>>> [] # empty list
[]
>>> list() # same as []
[]
>>> [1, 2, 3] # as with tuples, items are comma separated
[1, 2, 3]
>>> [x + 5 for x in [2, 3, 4]] # Python is magic
[7, 8, 9]
>>> list((1, 3, 5, 7, 9)) # list from a tuple
[1, 3, 5, 7, 9]
>>> list('hello') # list from a string
['h', 'e', 'l', 'l', 'o']

In the previous example, I showed you how to create a list using
different techniques. I would like you to take a good look at the line
that says Python is magic, which I am not expecting you to fully
understand at this point (unless you cheated and you're not a
novice!). That is called a list comprehension, a very powerful
functional feature of Python.

Creating lists is good, but the real fun comes when we use them, so
let's see the main methods they gift us with:

>>> a = [1, 2, 1, 3]
>>> a.append(13) # we can append anything at the end
>>> a
[1, 2, 1, 3, 13]
>>> a.count(1) # how many `1` are there in the list?
2
>>> a.extend([5, 7]) # extend the list by another (or sequence)
>>> a
[1, 2, 1, 3, 13, 5, 7]
>>> a.index(13) # position of `13` in the list (0-based indexing)
4

>>> a.insert(0, 17) # insert `17` at position 0
>>> a
[17, 1, 2, 1, 3, 13, 5, 7]
>>> a.pop() # pop (remove and return) last element
7
>>> a.pop(3) # pop element at position 3
1
>>> a
[17, 1, 2, 3, 13, 5]
>>> a.remove(17) # remove `17` from the list
>>> a
[1, 2, 3, 13, 5]
>>> a.reverse() # reverse the order of the elements in the list
>>> a
[5, 13, 3, 2, 1]
>>> a.sort() # sort the list
>>> a
[1, 2, 3, 5, 13]
>>> a.clear() # remove all elements from the list
>>> a
[]

The preceding code gives you a roundup of a list's main methods. I
want to show you how powerful they are, using extend as an example.
You can extend lists using any sequence type:

>>> a = list('hello') # makes a list from a string
>>> a
['h', 'e', 'l', 'l', 'o']
>>> a.append(100) # append 100, heterogeneous type
>>> a
['h', 'e', 'l', 'l', 'o', 100]
>>> a.extend((1, 2, 3)) # extend using tuple
>>> a
['h', 'e', 'l', 'l', 'o', 100, 1, 2, 3]
>>> a.extend('...') # extend using string
>>> a
['h', 'e', 'l', 'l', 'o', 100, 1, 2, 3, '.', '.', '.']

Now, let's see what are the most common operations you can do
with lists:

>>> a = [1, 3, 5, 7]
>>> min(a) # minimum value in the list
1
>>> max(a) # maximum value in the list
7
>>> sum(a) # sum of all values in the list
16
>>> len(a) # number of elements in the list
4
>>> b = [6, 7, 8]
>>> a + b # `+` with list means concatenation

[1, 3, 5, 7, 6, 7, 8]
>>> a * 2 # `*` has also a special meaning
[1, 3, 5, 7, 1, 3, 5, 7]

The last two lines in the preceding code are quite interesting
because they introduce us to a concept called
operator overloading. In short, it means that operators such as +, -.
*, %, and so on, may represent different operations according to the
context they are used in. It doesn't make any sense to sum two lists,
right? Therefore, the + sign is used to concatenate them. Hence, the
* sign is used to concatenate the list to itself according to the right
operand.

Now, let's take a step further and see something a little more
interesting. I want to show you how powerful the sorted method can
be and how easy it is in Python to achieve results that require a
great deal of effort in other languages:

>>> from operator import itemgetter
>>> a = [(5, 3), (1, 3), (1, 2), (2, -1), (4, 9)]
>>> sorted(a)
[(1, 2), (1, 3), (2, -1), (4, 9), (5, 3)]
>>> sorted(a, key=itemgetter(0))
[(1, 3), (1, 2), (2, -1), (4, 9), (5, 3)]
>>> sorted(a, key=itemgetter(0, 1))
[(1, 2), (1, 3), (2, -1), (4, 9), (5, 3)]
>>> sorted(a, key=itemgetter(1))
[(2, -1), (1, 2), (5, 3), (1, 3), (4, 9)]
>>> sorted(a, key=itemgetter(1), reverse=True)
[(4, 9), (5, 3), (1, 3), (1, 2), (2, -1)]

The preceding code deserves a little explanation. First of all, a is a
list of tuples. This means each element in a is a tuple (a 2-tuple, to
be precise). When we call sorted(some_list), we get a sorted version of
some_list. In this case, the sorting on a 2-tuple works by sorting them
on the first item in the tuple, and on the second when the first one is
the same. You can see this behavior in the result of sorted(a), which
yields [(1, 2), (1, 3), ...]. Python also gives us the ability to control
which element(s) of the tuple the sorting must be run against. Notice
that when we instruct the sorted function to work on the first element
of each tuple (by key=itemgetter(0)), the result is different: [(1, 3), (1, 2),
...]. The sorting is done only on the first element of each tuple

(which is the one at position 0). If we want to replicate the default
behavior of a simple sorted(a) call, we need to use key=itemgetter(0, 1),
which tells Python to sort first on the elements at position 0 within the
tuples, and then on those at position 1. Compare the results and
you'll see they match.

For completeness, I included an example of sorting only on the
elements at position 1, and the same but in reverse order. If you
have ever seen sorting in Java, I expect you to be quite impressed at
this moment.

The Python sorting algorithm is very powerful, and it was written by
Tim Peters (we've already seen this name, can you recall when?). It
is aptly named Timsort, and it is a blend between merge and
insertion sort and has better time performances than most other
algorithms used for mainstream programming languages. Timsort is
a stable sorting algorithm, which means that when multiple records
have the same key, their original order is preserved. We've seen this
in the result of sorted(a, key=itemgetter(0)), which has yielded [(1, 3), (1,
2), ...], in which the order of those two tuples has been preserved
because they have the same value at position 0.

Byte arrays
To conclude our overview of mutable sequence types, let's spend a
couple of minutes on the bytearray type. Basically, they represent the
mutable version of bytes objects. They expose most of the usual
methods of mutable sequences as well as most of the methods of
the bytes type. Items are integers in the range [0, 256).

When it comes to intervals, I'm going to use the standard notation for open/closed ranges. A
square bracket on one end means that the value is included, while a round brace means it's
excluded. The granularity is usually inferred by the type of the edge elements so, for example, the
interval [3, 7] means all integers between 3 and 7, inclusive. On the other hand, (3, 7) means all
integers between 3 and 7 exclusive (hence 4, 5, and 6). Items in a bytearray type are integers
between 0 and 256; 0 is included, 256 is not. One reason intervals are often expressed like this is
to ease coding. If we break a range [a, b) into N consecutive ranges, we can easily represent the
original one as a concatenation like this:
[a,k1)+[k1,k2)+[k2,k3)+...+[kN-1,b)
The middle points (ki) being excluded on one end, and included on the other end, allow for easy
concatenation and splitting when intervals are handled in the code.

Let's see a quick example with the bytearray type:

>>> bytearray() # empty bytearray object
bytearray(b'')
>>> bytearray(10) # zero-filled instance with given length
bytearray(b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00')
>>> bytearray(range(5)) # bytearray from iterable of integers
bytearray(b'\x00\x01\x02\x03\x04')
>>> name = bytearray(b'Lina') #A - bytearray from bytes
>>> name.replace(b'L', b'l')
bytearray(b'lina')
>>> name.endswith(b'na')
True
>>> name.upper()
bytearray(b'LINA')
>>> name.count(b'L')
1

As you can see in the preceding code, there are a few ways to
create a bytearray object. They can be useful in many situations; for
example, when receiving data through a socket, they eliminate the
need to concatenate data while polling, hence they can prove to be
very handy. On the line #A, I created a bytearray named as name from the
bytes literal b'Lina' to show you how the bytearray object exposes

methods from both sequences and strings, which is extremely
handy. If you think about it, they can be considered as mutable
strings.

Set types
Python also provides two set types, set and frozenset. The set type is
mutable, while frozenset is immutable. They are unordered collections
of immutable objects. Hashability is a characteristic that allows an
object to be used as a set member as well as a key for a dictionary,
as we'll see very soon.

From the official documentation: "An object is hashable if it has a hash value which never
changes during its lifetime, and can be compared to other objects. Hashability makes an object
usable as a dictionary key and a set member, because these data structures use the hash value
internally. All of Python’s immutable built-in objects are hashable while mutable containers are
not."

Objects that compare equally must have the same hash value. Sets
are very commonly used to test for membership, so let's introduce
the in operator in the following example:

>>> small_primes = set() # empty set
>>> small_primes.add(2) # adding one element at a time
>>> small_primes.add(3)
>>> small_primes.add(5)
>>> small_primes
{2, 3, 5}
>>> small_primes.add(1) # Look what I've done, 1 is not a prime!
>>> small_primes
{1, 2, 3, 5}
>>> small_primes.remove(1) # so let's remove it
>>> 3 in small_primes # membership test
True
>>> 4 in small_primes
False
>>> 4 not in small_primes # negated membership test
True
>>> small_primes.add(3) # trying to add 3 again
>>> small_primes
{2, 3, 5} # no change, duplication is not allowed
>>> bigger_primes = set([5, 7, 11, 13]) # faster creation
>>> small_primes | bigger_primes # union operator `|`
{2, 3, 5, 7, 11, 13}
>>> small_primes & bigger_primes # intersection operator `&`
{5}
>>> small_primes - bigger_primes # difference operator `-`
{2, 3}

In the preceding code, you can see two different ways to create a
set. One creates an empty set and then adds elements one at a
time. The other creates the set using a list of numbers as an
argument to the constructor, which does all the work for us. Of
course, you can create a set from a list or tuple (or any iterable) and
then you can add and remove members from the set as you please.

We'll look at iterable objects and iteration in the next chapter. For now, just know that iterable
objects are objects you can iterate on in a direction.

Another way of creating a set is by simply using the curly braces
notation, like this:

>>> small_primes = {2, 3, 5, 5, 3}
>>> small_primes
{2, 3, 5}

Notice I added some duplication to emphasize that the resulting set
won't have any. Let's see an example about the immutable
counterpart of the set type, frozenset:

>>> small_primes = frozenset([2, 3, 5, 7])
>>> bigger_primes = frozenset([5, 7, 11])
>>> small_primes.add(11) # we cannot add to a frozenset
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'frozenset' object has no attribute 'add'
>>> small_primes.remove(2) # neither we can remove
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'frozenset' object has no attribute 'remove'
>>> small_primes & bigger_primes # intersect, union, etc. allowed
frozenset({5, 7})

As you can see, frozenset objects are quite limited in respect of their
mutable counterpart. They still prove very effective for membership
test, union, intersection, and difference operations, and for
performance reasons.

Mapping types – dictionaries
Of all the built-in Python data types, the dictionary is easily the most
interesting one. It's the only standard mapping type, and it is the
backbone of every Python object.

A dictionary maps keys to values. Keys need to be hashable objects,
while values can be of any arbitrary type. Dictionaries are mutable
objects. There are quite a few different ways to create a dictionary,
so let me give you a simple example of how to create a dictionary
equal to {'A': 1, 'Z': -1} in five different ways:

>>> a = dict(A=1, Z=-1)
>>> b = {'A': 1, 'Z': -1}
>>> c = dict(zip(['A', 'Z'], [1, -1]))
>>> d = dict([('A', 1), ('Z', -1)])
>>> e = dict({'Z': -1, 'A': 1})
>>> a == b == c == d == e # are they all the same?
True # They are indeed

Have you noticed those double equals? Assignment is done with one
equal, while to check whether an object is the same as another one
(or five in one go, in this case), we use double equals. There is also
another way to compare objects, which involves the is operator, and
checks whether the two objects are the same (if they have the same
ID, not just the value), but unless you have a good reason to use it,
you should use the double equals instead. In the preceding code, I
also used one nice function: zip. It is named after the real-life zip,
which glues together two things taking one element from each at a
time. Let me show you an example:

>>> list(zip(['h', 'e', 'l', 'l', 'o'], [1, 2, 3, 4, 5]))
[('h', 1), ('e', 2), ('l', 3), ('l', 4), ('o', 5)]
>>> list(zip('hello', range(1, 6))) # equivalent, more Pythonic
[('h', 1), ('e', 2), ('l', 3), ('l', 4), ('o', 5)]

In the preceding example, I have created the same list in two
different ways, one more explicit, and the other a little bit more

Pythonic. Forget for a moment that I had to wrap the list constructor
around the zip call (the reason is because zip returns an iterator, not
a list, so if I want to see the result I need to exhaust that iterator into
something—a list in this case), and concentrate on the result. See
how zip has coupled the first elements of its two arguments together,
then the second ones, then the third ones, and so on and so forth?
Take a look at your pants (or at your purse, if you're a lady) and you'll
see the same behavior in your actual zip. But let's go back to
dictionaries and see how many wonderful methods they expose for
allowing us to manipulate them as we want.

Let's start with the basic operations:

>>> d = {}
>>> d['a'] = 1 # let's set a couple of (key, value) pairs
>>> d['b'] = 2
>>> len(d) # how many pairs?
2
>>> d['a'] # what is the value of 'a'?
1
>>> d # how does `d` look now?
{'a': 1, 'b': 2}
>>> del d['a'] # let's remove `a`
>>> d
{'b': 2}
>>> d['c'] = 3 # let's add 'c': 3
>>> 'c' in d # membership is checked against the keys
True
>>> 3 in d # not the values
False
>>> 'e' in d
False
>>> d.clear() # let's clean everything from this dictionary
>>> d
{}

Notice how accessing keys of a dictionary, regardless of the type of
operation we're performing, is done through square brackets. Do you
remember strings, lists, and tuples? We were accessing elements at
some position through square brackets as well, which is yet another
example of Python's consistency.

Let's see now three special objects called dictionary views: keys,
values, and items. These objects provide a dynamic view of the

dictionary entries and they change when the dictionary changes.
keys() returns all the keys in the dictionary, values() returns all the
values in the dictionary, and items() returns all the (key, value) pairs in
the dictionary.

According to the Python documentation: "Keys and values are iterated over in an arbitrary order
which is non-random, varies across Python implementations, and depends on the dictionary’s
history of insertions and deletions. If keys, values and items views are iterated over with no
intervening modifications to the dictionary, the order of items will directly correspond."

Enough with this chatter; let's put all this down into code:

>>> d = dict(zip('hello', range(5)))
>>> d
{'h': 0, 'e': 1, 'l': 3, 'o': 4}
>>> d.keys()
dict_keys(['h', 'e', 'l', 'o'])
>>> d.values()
dict_values([0, 1, 3, 4])
>>> d.items()
dict_items([('h', 0), ('e', 1), ('l', 3), ('o', 4)])
>>> 3 in d.values()
True
>>> ('o', 4) in d.items()
True

There are a few things to notice in the preceding code. First, notice
how we're creating a dictionary by iterating over the zipped version
of the string 'hello' and the list [0, 1, 2, 3, 4]. The string 'hello' has two
'l' characters inside, and they are paired up with the values 2 and 3
by the zip function. Notice how in the dictionary, the second
occurrence of the 'l' key (the one with value 3), overwrites the first
one (the one with value 2). Another thing to notice is that when
asking for any view, the original order is now preserved, while before
Version 3.6 there was no guarantee of that.

As of Python 3.6, the dict type has been reimplemented to use a more compact representation.
This resulted in dictionaries using 20% to 25% less memory when compared to Python 3.5.
Moreover, in Python 3.6, as a side effect, dictionaries are natively ordered. This feature has
received such a welcome from the community that in 3.7 it has become a legit feature of the
language rather than an implementation side effect. A dict is ordered if it remembers the order in
which keys were first inserted.

We'll see how these views are fundamental tools when we talk about
iterating over collections. Let's take a look now at some other

methods exposed by Python's dictionaries; there's plenty of them
and they are very useful:

>>> d
{'e': 1, 'h': 0, 'o': 4, 'l': 3}
>>> d.popitem() # removes a random item (useful in algorithms)
('o', 4)
>>> d
{'h': 0, 'e': 1, 'l': 3}
>>> d.pop('l') # remove item with key `l`
3
>>> d.pop('not-a-key') # remove a key not in dictionary: KeyError
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'not-a-key'
>>> d.pop('not-a-key', 'default-value') # with a default value?
'default-value' # we get the default value
>>> d.update({'another': 'value'}) # we can update dict this way
>>> d.update(a=13) # or this way (like a function call)
>>> d
{'h': 0, 'e': 1, 'another': 'value', 'a': 13}
>>> d.get('a') # same as d['a'] but if key is missing no KeyError
13
>>> d.get('a', 177) # default value used if key is missing
13
>>> d.get('b', 177) # like in this case
177
>>> d.get('b') # key is not there, so None is returned

All these methods are quite simple to understand, but it's worth
talking about that None, for a moment. Every function in Python returns
None, unless the return statement is explicitly used to return something
else, but we'll see this when we explore functions. None is frequently
used to represent the absence of a value, and it is quite commonly
used as a default value for arguments in function declaration. Some
inexperienced coders sometimes write code that returns either False
or None. Both False and None evaluate to False in a Boolean context so it
may seem there is not much difference between them. But actually, I
would argue there is quite an important difference: False means that
we have information, and the information we have is False. None means
no information. And no information is very different from information
that is False. In layman's terms, if you ask your mechanic, Is my car
ready?, there is a big difference between the answer, No, it's not
(False) and, I have no idea (None).

One last method I really like about dictionaries is setdefault. It behaves
like get, but also sets the key with the given value if it is not there.
Let's see an example:

>>> d = {}
>>> d.setdefault('a', 1) # 'a' is missing, we get default value
1
>>> d
{'a': 1} # also, the key/value pair ('a', 1) has now been added
>>> d.setdefault('a', 5) # let's try to override the value
1
>>> d
{'a': 1} # no override, as expected

So, we're now at the end of this tour. Test your knowledge about
dictionaries by trying to foresee what d looks like after this line:

>>> d = {}
>>> d.setdefault('a', {}).setdefault('b', []).append(1)

Don't worry if you don't get it immediately. I just wanted to encourage
you to experiment with dictionaries.

This concludes our tour of built-in data types. Before I discuss some
considerations about what we've seen in this chapter, I want to take
a peek briefly at the collections module.

The collections module
When Python general purpose built-in containers (tuple, list, set, and
dict) aren't enough, we can find specialized container datatypes in
the collections module. They are:

Data
type Description

namedtuple()
Factory function for creating tuple subclasses with
named fields

deque
List-like container with fast appends and pops on
either end

ChainMap
Dictionary-like class for creating a single view of
multiple mappings

Counter Dictionary subclass for counting hashable objects

OrderedDict
Dictionary subclass that remembers the order entries
were added

defaultdict
Dictionary subclass that calls a factory function to
supply missing values

UserDict Wrapper around dictionary objects for easier
dictionary subclassing

UserList
Wrapper around list objects for easier list
subclassing

UserString
Wrapper around string objects for easier string
subclassing

We don't have the room to cover all of them, but you can find plenty
of examples in the official documentation, so here I'll just give a small
example to show you namedtuple, defaultdict, and ChainMap.

namedtuple
A namedtuple is a tuple-like object that has fields accessible by attribute
lookup as well as being indexable and iterable (it's actually a
subclass of tuple). This is sort of a compromise between a full-fledged
object and a tuple, and it can be useful in those cases where you
don't need the full power of a custom object, but you want your code
to be more readable by avoiding weird indexing. Another use case is
when there is a chance that items in the tuple need to change their
position after refactoring, forcing the coder to refactor also all the
logic involved, which can be very tricky. As usual, an example is
better than a thousand words (or was it a picture?). Say we are
handling data about the left and right eyes of a patient. We save one
value for the left eye (position 0) and one for the right eye (position
1) in a regular tuple. Here's how that might be:

>>> vision = (9.5, 8.8)
>>> vision
(9.5, 8.8)
>>> vision[0] # left eye (implicit positional reference)
9.5
>>> vision[1] # right eye (implicit positional reference)
8.8

Now let's pretend we handle vision objects all the time, and at some
point the designer decides to enhance them by adding information
for the combined vision, so that a vision object stores data in this
format: (left eye, combined, right eye).

Do you see the trouble we're in now? We may have a lot of code that
depends on vision[0] being the left eye information (which it still is)
and vision[1] being the right eye information (which is no longer the
case). We have to refactor our code wherever we handle these
objects, changing vision[1] to vision[2], and it can be painful. We could
have probably approached this a bit better from the beginning, by
using a namedtuple. Let me show you what I mean:

>>> from collections import namedtuple
>>> Vision = namedtuple('Vision', ['left', 'right'])
>>> vision = Vision(9.5, 8.8)
>>> vision[0]
9.5
>>> vision.left # same as vision[0], but explicit
9.5
>>> vision.right # same as vision[1], but explicit
8.8

If within our code, we refer to the left and right eyes using vision.left
and vision.right, all we need to do to fix the new design issue is to
change our factory and the way we create instances. The rest of the
code won't need to change:

>>> Vision = namedtuple('Vision', ['left', 'combined', 'right'])
>>> vision = Vision(9.5, 9.2, 8.8)
>>> vision.left # still correct
9.5
>>> vision.right # still correct (though now is vision[2])
8.8
>>> vision.combined # the new vision[1]
9.2

You can see how convenient it is to refer to those values by name
rather than by position. After all, a wise man once wrote, Explicit is
better than implicit (can you recall where? Think Zen if you can't...).
This example may be a little extreme; of course, it's not likely that
our code designer will go for a change like this, but you'd be amazed
to see how frequently issues similar to this one happen in a
professional environment, and how painful it is to refactor them.

defaultdict
The defaultdict data type is one of my favorites. It allows you to avoid
checking if a key is in a dictionary by simply inserting it for you on
your first access attempt, with a default value whose type you pass
on creation. In some cases, this tool can be very handy and shorten
your code a little. Let's see a quick example. Say we are updating
the value of age, by adding one year. If age is not there, we assume it
was 0 and we update it to 1:

>>> d = {}
>>> d['age'] = d.get('age', 0) + 1 # age not there, we get 0 + 1
>>> d
{'age': 1}
>>> d = {'age': 39}
>>> d['age'] = d.get('age', 0) + 1 # age is there, we get 40
>>> d
{'age': 40}

Now let's see how it would work with a defaultdict data type. The
second line is actually the short version of a four-lines-long if clause
that we would have to write if dictionaries didn't have the get method
(we'll see all about if clauses in Chapter 3, Iterating and Making
Decisions):

>>> from collections import defaultdict
>>> dd = defaultdict(int) # int is the default type (0 the value)
>>> dd['age'] += 1 # short for dd['age'] = dd['age'] + 1
>>> dd
defaultdict(<class 'int'>, {'age': 1}) # 1, as expected

Notice how we just need to instruct the defaultdict factory that we want
an int number to be used in case the key is missing (we'll get 0,
which is the default for the int type). Also, notice that even though in
this example there is no gain on the number of lines, there is
definitely a gain in readability, which is very important. You can also
use a different technique to instantiate a defaultdict data type, which
involves creating a factory object. To dig deeper, please refer to the
official documentation.

ChainMap
ChainMap is an extremely nice data type which was introduced in
Python 3.3. It behaves like a normal dictionary but according to the
Python documentation: "is provided for quickly linking a number of
mappings so they can be treated as a single unit""". This is usually
much faster than creating one dictionary and running multiple update
calls on it. ChainMap can be used to simulate nested scopes and is
useful in templating. The underlying mappings are stored in a list.
That list is public and can be accessed or updated using the maps
attribute. Lookups search the underlying mappings successively until
a key is found. By contrast, writes, updates, and deletions only
operate on the first mapping.

A very common use case is providing defaults, so let's see an
example:

>>> from collections import ChainMap
>>> default_connection = {'host': 'localhost', 'port': 4567}
>>> connection = {'port': 5678}
>>> conn = ChainMap(connection, default_connection) # map creation
>>> conn['port'] # port is found in the first dictionary
5678
>>> conn['host'] # host is fetched from the second dictionary
'localhost'
>>> conn.maps # we can see the mapping objects
[{'port': 5678}, {'host': 'localhost', 'port': 4567}]
>>> conn['host'] = 'packtpub.com' # let's add host
>>> conn.maps
[{'port': 5678, 'host': 'packtpub.com'},
 {'host': 'localhost', 'port': 4567}]
>>> del conn['port'] # let's remove the port information
>>> conn.maps
[{'host': 'packtpub.com'}, {'host': 'localhost', 'port': 4567}]
>>> conn['port'] # now port is fetched from the second dictionary
4567
>>> dict(conn) # easy to merge and convert to regular dictionary
{'host': 'packtpub.com', 'port': 4567}

I just love how Python makes your life easy. You work on a ChainMap
object, configure the first mapping as you want, and when you need
a complete dictionary with all the defaults as well as the customized

items, you just feed the ChainMap object to a dict constructor. If you
have never coded in other languages, such as Java or C++, you
probably won't be able to appreciate fully how precious this is, and
how Python makes your life so much easier. I do, I feel
claustrophobic every time I have to code in some other language.

Enums
Technically not a built-in data type, as you have to import them from
the enum module, but definitely worth mentioning, are enumerations.
They were introduced in Python 3.4, and though it is not that
common to see them in professional code (yet), I thought I'd give
you an example anyway.

The official definition goes like this: "An enumeration is a set of
symbolic names (members) bound to unique, constant values.
Within an enumeration, the members can be compared by identity,
and the enumeration itself can be iterated over."

Say you need to represent traffic lights. In your code, you might
resort to doing this:

>>> GREEN = 1
>>> YELLOW = 2
>>> RED = 4
>>> TRAFFIC_LIGHTS = (GREEN, YELLOW, RED)
>>> # or with a dict
>>> traffic_lights = {'GREEN': 1, 'YELLOW': 2, 'RED': 4}

There's nothing special about the preceding code. It's something, in
fact, that is very common to find. But, consider doing this instead:

>>> from enum import Enum
>>> class TrafficLight(Enum):
... GREEN = 1
... YELLOW = 2
... RED = 4
...
>>> TrafficLight.GREEN
<TrafficLight.GREEN: 1>
>>> TrafficLight.GREEN.name
'GREEN'
>>> TrafficLight.GREEN.value
1
>>> TrafficLight(1)
<TrafficLight.GREEN: 1>
>>> TrafficLight(4)
<TrafficLight.RED: 4>

Ignoring for a moment the (relative) complexity of a class definition,
you can appreciate how this might be more advantageous. The data
structure is much cleaner, and the API it provides is much more
powerful. I encourage you to check out the official documentation to
explore all the great features you can find in the enum module. I think
it's worth exploring, at least once.

Final considerations
That's it. Now you have seen a very good proportion of the data
structures that you will use in Python. I encourage you to take a dive
into the Python documentation and experiment further with each and
every data type we've seen in this chapter. It's worth it, believe me.
Everything you'll write will be about handling data, so make sure
your knowledge about it is rock solid.

Before we leap into Chapter 3, Iterating and Making Decisions, I'd like
to share some final considerations about different aspects that to my
mind are important and not to be neglected.

Small values caching
When we discussed objects at the beginning of this chapter, we saw
that when we assigned a name to an object, Python creates the
object, sets its value, and then points the name to it. We can assign
different names to the same value and we expect different objects to
be created, like this:

>>> a = 1000000
>>> b = 1000000
>>> id(a) == id(b)
False

In the preceding example, a and b are assigned to two int objects,
which have the same value but they are not the same object, as you
can see, their id is not the same. So let's do it again:

>>> a = 5
>>> b = 5
>>> id(a) == id(b)
True

Oh, oh! Is Python broken? Why are the two objects the same now?
We didn't do a = b = 5, we set them up separately. Well, the answer is
performances. Python caches short strings and small numbers, to
avoid having many copies of them clogging up the system memory.
Everything is handled properly under the hood so you don't need to
worry a bit, but make sure that you remember this behavior should
your code ever need to fiddle with IDs.

How to choose data structures
As we've seen, Python provides you with several built-in data types
and sometimes, if you're not that experienced, choosing the one that
serves you best can be tricky, especially when it comes to
collections. For example, say you have many dictionaries to store,
each of which represents a customer. Within each customer
dictionary, there's an 'id': 'code' unique identification code. In what
kind of collection would you place them? Well, unless I know more
about these customers, it's very hard to answer. What kind of access
will I need? What sort of operations will I have to perform on each of
them, and how many times? Will the collection change over time?
Will I need to modify the customer dictionaries in any way? What is
going to be the most frequent operation I will have to perform on the
collection?

If you can answer the preceding questions, then you will know what
to choose. If the collection never shrinks or grows (in other words, it
won't need to add/delete any customer object after creation) or
shuffles, then tuples are a possible choice. Otherwise, lists are a
good candidate. Every customer dictionary has a unique identifier
though, so even a dictionary could work. Let me draft these options
for you:

example customer objects
customer1 = {'id': 'abc123', 'full_name': 'Master Yoda'}
customer2 = {'id': 'def456', 'full_name': 'Obi-Wan Kenobi'}
customer3 = {'id': 'ghi789', 'full_name': 'Anakin Skywalker'}
collect them in a tuple
customers = (customer1, customer2, customer3)
or collect them in a list
customers = [customer1, customer2, customer3]
or maybe within a dictionary, they have a unique id after all
customers = {
 'abc123': customer1,
 'def456': customer2,
 'ghi789': customer3,
}

Some customers we have there, right? I probably wouldn't go with
the tuple option, unless I wanted to highlight that the collection is not
going to change. I'd say usually a list is better, as it allows for more
flexibility.

Another factor to keep in mind is that tuples and lists are ordered
collections. If you use a dictionary (prior to Python 3.6) or a set, you
lose the ordering, so you need to know if ordering is important in
your application.

What about performances? For example, in a list, operations such as
insertion and membership can take O(n), while they are O(1) for a
dictionary. It's not always possible to use dictionaries though, if we
don't have the guarantee that we can uniquely identify each item of
the collection by means of one of its properties, and that the property
in question is hashable (so it can be a key in dict).

If you're wondering what O(n) and O(1) mean, please Google big O notation. In this context, let's
just say that if performing an operation Op on a data structure takes O(f(n)), it would mean that
Op takes at most a time t ≤ c * f(n) to complete, where c is some positive constant, n is the size of
the input, and f is some function. So, think of O(...) as an upper bound for the running time of an
operation (it can be used also to size other measurable quantities, of course).

Another way of understanding if you have chosen the right data structure is by looking at the code
you have to write in order to manipulate it. If everything comes easily and flows naturally, then you
probably have chosen correctly, but if you find yourself thinking your code is getting unnecessarily
complicated, then you probably should try and decide whether you need to reconsider your
choices. It's quite hard to give advice without a practical case though, so when you choose a data
structure for your data, try to keep ease of use and performance in mind and give precedence to
what matters most in the context you are in.

About indexing and slicing
At the beginning of this chapter, we saw slicing applied on strings.
Slicing, in general, applies to a sequence: tuples, lists, strings, and so
on. With lists, slicing can also be used for assignment. I've almost
never seen this used in professional code, but still, you know you
can. Could you slice dictionaries or sets? I hear you scream, Of
course not!. Excellent; I see we're on the same page here, so let's
talk about indexing.

There is one characteristic about Python indexing I haven't mentioned
before. I'll show you by way of an example. How do you address the
last element of a collection? Let's see:

>>> a = list(range(10)) # `a` has 10 elements. Last one is 9.
>>> a
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> len(a) # its length is 10 elements
10
>>> a[len(a) - 1] # position of last one is len(a) - 1
9
>>> a[-1] # but we don't need len(a)! Python rocks!
9
>>> a[-2] # equivalent to len(a) - 2
8
>>> a[-3] # equivalent to len(a) - 3
7

If the list a has 10 elements, because of the 0-index positioning
system of Python, the first one is at position 0 and the last one is at
position 9. In the preceding example, the elements are conveniently
placed in a position equal to their value: 0 is at position 0, 1 at position
1, and so on.

So, in order to fetch the last element, we need to know the length of
the whole list (or tuple, or string, and so on) and then subtract 1.
Hence: len(a) - 1. This is so common an operation that Python
provides you with a way to retrieve elements using
negative indexing. This proves very useful when you do data

manipulation. Here's a nice diagram about how indexing works on the
string "HelloThere" (which is Obi-Wan Kenobi sarcastically greeting
General Grievous):

Trying to address indexes greater than 9 or smaller than -10 will raise
an IndexError, as expected.

About the names
You may have noticed that, in order to keep the examples as short
as possible, I have called many objects using simple letters, like a, b,
c, d, and so on. This is perfectly OK when you debug on the console
or when you show that a + b == 7, but it's bad practice when it comes
to professional coding (or any type of coding, for that matter). I hope
you will indulge me if I sometimes do it; the reason is to present the
code in a more compact way.

In a real environment though, when you choose names for your data,
you should choose them carefully and they should reflect what the
data is about. So, if you have a collection of Customer objects, customers
is a perfectly good name for it. Would customers_list, customers_tuple, or
customers_collection work as well? Think about it for a second. Is it good
to tie the name of the collection to the datatype? I don't think so, at
least in most cases. So I'd say if you have an excellent reason to do
so, go ahead; otherwise, don't. The reason is, once that customers_tuple
starts being used in different places of your code, and you realize
you actually want to use a list instead of a tuple, you're up for some
fun refactoring (also known as wasted time). Names for data should
be nouns, and names for functions should be verbs. Names should
be as expressive as possible. Python is actually a very good
example when it comes to names. Most of the time you can just
guess what a function is called if you know what it does. Crazy, huh?

Chapter 2 of Meaningful Names of Clean Code, Robert C. Martin,
Prentice Hall is entirely dedicated to names. It's an amazing book
that helped me improve my coding style in many different ways, and
is a must-read if you want to take your coding to the next level.

Summary
In this chapter, we've explored the built-in data types of Python.
We've seen how many there are and how much can be achieved by
just using them in different combinations.

We've seen number types, sequences, sets, mappings,
collections (and a special guest appearance by Enum), we've seen that
everything is an object, we've learned the difference between
mutable and immutable, and we've also learned about slicing and
indexing (and, proudly, negative indexing as well).

We've presented simple examples, but there's much more that you
can learn about this subject, so stick your nose into the official
documentation and explore.

Most of all, I encourage you to try out all the exercises by yourself,
get your fingers using that code, build some muscle memory, and
experiment, experiment, experiment. Learn what happens when you
divide by zero, when you combine different number types into a
single expression, when you manage strings. Play with all data
types. Exercise them, break them, discover all their methods, enjoy
them, and learn them very, very well.

If your foundation is not rock solid, how good can your code be? And
data is the foundation for everything. Data shapes what dances
around it.

The more you progress with the book, the more it's likely that you will
find some discrepancies or maybe a small typo here and there in my
code (or yours). You will get an error message, something will break.
That's wonderful! When you code, things break all the time, you
debug and fix all the time, so consider errors as useful exercises to
learn something new about the language you're using, and not as

failures or problems. Errors will keep coming up until your very last
line of code, that's for sure, so you may as well start making your
peace with them now.

The next chapter is about iterating and making decisions. We'll see
how actually to put those collections to use, and take decisions
based on the data we're presented with. We'll start to go a little faster
now that your knowledge is building up, so make sure you're
comfortable with the contents of this chapter before you move to the
next one. Once more, have fun, explore, break things. It's a very
good way to learn.

Iterating and Making Decisions
"Insanity: doing the same thing over and over again and expecting different results."

– Albert Einstein

In the previous chapter, we looked at Python's built-in data types.
Now that you're familiar with data in its many forms and shapes, it's
time to start looking at how a program can use it.

According to Wikipedia:

In computer science, control flow (or alternatively, flow of control) refers to the specification of the order in
which the individual statements, instructions or function calls of an imperative program are executed or
evaluated.

In order to control the flow of a program, we have two main
weapons: conditional programming (also known as branching)
and looping. We can use them in many different combinations and
variations, but in this chapter, instead of going through all the
possible forms of those two constructs in a documentation fashion,
I'd rather give you the basics and then I'll write a couple of small
scripts with you. In the first one, we'll see how to create a
rudimentary prime-number generator, while in the second one, we'll
see how to apply discounts to customers based on coupons. This
way, you should get a better feeling for how conditional programming
and looping can be used.

In this chapter, we are going to cover the following:

Conditional programming
Looping in Python
A quick peek at the itertools module

Conditional programming
Conditional programming, or branching, is something you do every
day, every moment. It's about evaluating conditions: if the light is
green, then I can cross; if it's raining, then I'm taking the
umbrella; and if I'm late for work, then I'll call my manager.

The main tool is the if statement, which comes in different forms and
colors, but basically it evaluates an expression and, based on the
result, chooses which part of the code to execute. As usual, let's look
at an example:

conditional.1.py
late = True
if late:
 print('I need to call my manager!')

This is possibly the simplest example: when fed to the if statement,
late acts as a conditional expression, which is evaluated in a Boolean
context (exactly like if we were calling bool(late)). If the result of the
evaluation is True, then we enter the body of the code immediately
after the if statement. Notice that the print instruction is indented: this
means it belongs to a scope defined by the if clause. Execution of
this code yields:

$ python conditional.1.py
I need to call my manager!

Since late is True, the print statement was executed. Let's expand on
this example:

conditional.2.py
late = False
if late:
 print('I need to call my manager!') #1
else:
 print('no need to call my manager...') #2

This time I set late = False, so when I execute the code, the result is
different:

$ python conditional.2.py
no need to call my manager...

Depending on the result of evaluating the late expression, we can
either enter block #1 or block #2, but not both. Block #1 is executed
when late evaluates to True, while block #2 is executed when late
evaluates to False. Try assigning False/True values to the late name, and
see how the output for this code changes accordingly.

The preceding example also introduces the else clause, which
becomes very handy when we want to provide an alternative set of
instructions to be executed when an expression evaluates to False
within an if clause. The else clause is optional, as is evident by
comparing the preceding two examples.

A specialized else – elif
Sometimes all you need is to do something if a condition is met (a
simple if clause). At other times, you need to provide an alternative,
in case the condition is False (if/else clause), but there are situations
where you may have more than two paths to choose from, so, since
calling the manager (or not calling them) is kind of a binary type of
example (either you call or you don't), let's change the type of
example and keep expanding. This time, we decide on tax
percentages. If my income is less than $10,000, I won't pay any
taxes. If it is between $10,000 and $30,000, I'll pay 20% in taxes. If it
is between $30,000 and $100,000, I'll pay 35% in taxes, and if it's
over $100,000, I'll (gladly) pay 45% in taxes. Let's put this all down
into beautiful Python code:

taxes.py
income = 15000
if income < 10000:
 tax_coefficient = 0.0 #1
elif income < 30000:
 tax_coefficient = 0.2 #2
elif income < 100000:
 tax_coefficient = 0.35 #3
else:
 tax_coefficient = 0.45 #4

print('I will pay:', income * tax_coefficient, 'in taxes')

Executing the preceding code yields:

$ python taxes.py
I will pay: 3000.0 in taxes

Let's go through the example line by line: we start by setting up the
income value. In the example, my income is $15,000. We enter the
if clause. Notice that this time we also introduced the elif clause,
which is a contraction of else-if, and it's different from a bare else
clause in that it also has its own condition. So, the if expression
of income < 10000 evaluates to False, therefore block #1 is not executed.

The control passes to the next condition evaluator: elif income < 30000.
This one evaluates to True, therefore block #2 is executed, and
because of this, Python then resumes execution after the whole
if/elif/elif/else clause (which we can just call the if clause from now
on). There is only one instruction after the if clause, the print call,
which tells us I will pay 3000.0 in taxes this year (15,000 * 20%).
Notice that the order is mandatory: if comes first, then (optionally) as
many elif clauses as you need, and then (optionally) an else clause.

Interesting, right? No matter how many lines of code you may have
within each block, when one of the conditions evaluates to True, the
associated block is executed and then execution resumes after the
whole clause. If none of the conditions evaluates to True (for example,
income = 200000), then the body of the else clause would be executed
(block #4). This example expands our understanding of the behavior
of the else clause. Its block of code is executed when none of the
preceding if/elif/.../elif expressions has evaluated to True.

Try to modify the value of income until you can comfortably execute all
blocks at will (one per execution, of course). And then try the
boundaries. This is crucial, whenever you have conditions
expressed as equalities or inequalities (==, !=, <, >, <=, >=), those
numbers represent boundaries. It is essential to test boundaries
thoroughly. Should I allow you to drive at 18 or 17? Am I checking
your age with age < 18, or age <= 18? You can't imagine how many times
I've had to fix subtle bugs that stemmed from using the wrong
operator, so go ahead and experiment with the preceding code.
Change some < to <= and set income to be one of the boundary
values (10,000, 30,000, 100,000) as well as any value in between.
See how the result changes, and get a good understanding of it
before proceeding.

Let's now see another example that shows us how to nest if
clauses. Say your program encounters an error. If the alert system is
the console, we print the error. If the alert system is an email, we
send it according to the severity of the error. If the alert system is

anything other than console or email, we don't know what to do,
therefore we do nothing. Let's put this into code:

errorsalert.py
alert_system = 'console' # other value can be 'email'
error_severity = 'critical' # other values: 'medium' or 'low'
error_message = 'OMG! Something terrible happened!'

if alert_system == 'console':
 print(error_message) #1
elif alert_system == 'email':
 if error_severity == 'critical':
 send_email('admin@example.com', error_message) #2
 elif error_severity == 'medium':
 send_email('support.1@example.com', error_message) #3
 else:
 send_email('support.2@example.com', error_message) #4

The preceding example is quite interesting, because of its silliness. It
shows us two nested if clauses (outer and inner). It also shows us
that the outer if clause doesn't have any else, while the inner one
does. Notice how indentation is what allows us to nest one clause
within another one.

If alert_system == 'console', body #1 is executed, and nothing else
happens. On the other hand, if alert_system == 'email', then we enter
into another if clause, which we called inner. In the inner if clause,
according to error_severity, we send an email to either an admin, first-
level support, or second-level support (blocks #2, #3, and #4). The
send_email function is not defined in this example, therefore trying to
run it would give you an error. In the source code of the book, which
you can download from the website, I included a trick to redirect that
call to a regular print function, just so you can experiment on the
console without actually sending an email. Try changing the values
and see how it all works.

The ternary operator
One last thing I would like to show you, before moving on to the next
subject, is the ternary operator or, in layman's terms, the short
version of an if/else clause. When the value of a name is to be
assigned according to some condition, sometimes it's easier and
more readable to use the ternary operator instead of a proper if
clause. In the following example, the two code blocks do exactly the
same thing:

ternary.py
order_total = 247 # GBP

classic if/else form
if order_total > 100:
 discount = 25 # GBP
else:
 discount = 0 # GBP
print(order_total, discount)

ternary operator
discount = 25 if order_total > 100 else 0
print(order_total, discount)

For simple cases like this, I find it very nice to be able to express that
logic in one line instead of four. Remember, as a coder, you spend
much more time reading code than writing it, so Python's
conciseness is invaluable.

Are you clear on how the ternary operator works? Basically, name =
something if condition else something-else. So name is assigned something if
condition evaluates to True, and something-else if condition evaluates to False.

Now that you know everything about controlling the path of the code,
let's move on to the next subject: looping.

Looping
If you have any experience with looping in other programming
languages, you will find Python's way of looping a bit different. First
of all, what is looping? Looping means being able to repeat the
execution of a code block more than once, according to the loop
parameters we're given. There are different looping constructs,
which serve different purposes, and Python has distilled all of them
down to just two, which you can use to achieve everything you need.
These are the for and while statements.

While it's definitely possible to do everything you need using either of
them, they serve different purposes and therefore they're usually
used in different contexts. We'll explore this difference thoroughly in
this chapter.

The for loop
The for loop is used when looping over a sequence, such as a list,
tuple, or a collection of objects. Let's start with a simple example and
expand on the concept to see what the Python syntax allows us to
do:

simple.for.py
for number in [0, 1, 2, 3, 4]:
 print(number)

This simple snippet of code, when executed, prints all numbers from
0 to 4. The for loop is fed the list [0, 1, 2, 3, 4] and at each iteration,
number is given a value from the sequence (which is iterated
sequentially, in order), then the body of the loop is executed (the
print line). The number value changes at every iteration, according to
which value is coming next from the sequence. When the sequence
is exhausted, the for loop terminates, and the execution of the code
resumes normally with the code after the loop.

Iterating over a range
Sometimes we need to iterate over a range of numbers, and it would
be quite unpleasant to have to do so by hardcoding the list
somewhere. In such cases, the range function comes to the rescue.
Let's see the equivalent of the previous snippet of code:

simple.for.py
for number in range(5):
 print(number)

The range function is used extensively in Python programs when it
comes to creating sequences: you can call it by passing one value,
which acts as stop (counting from 0), or you can pass two values (start
and stop), or even three (start, stop, and step). Check out the following
example:

>>> list(range(10)) # one value: from 0 to value (excluded)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(3, 8)) # two values: from start to stop (excluded)
[3, 4, 5, 6, 7]
>>> list(range(-10, 10, 4)) # three values: step is added
[-10, -6, -2, 2, 6]

For the moment, ignore that we need to wrap range(...) within a list.
The range object is a little bit special, but in this case, we're just
interested in understanding what values it will return to us. You can
see that the deal is the same with slicing: start is included, stop
excluded, and optionally you can add a step parameter, which by
default is 1.

Try modifying the parameters of the range() call in our simple.for.py code
and see what it prints. Get comfortable with it.

Iterating over a sequence
Now we have all the tools to iterate over a sequence, so let's build
on that example:

simple.for.2.py
surnames = ['Rivest', 'Shamir', 'Adleman']
for position in range(len(surnames)):
 print(position, surnames[position])

The preceding code adds a little bit of complexity to the game.
Execution will show this result:

$ python simple.for.2.py
0 Rivest
1 Shamir
2 Adleman

Let's use the inside-out technique to break it down, OK? We start
from the innermost part of what we're trying to understand, and we
expand outward. So, len(surnames) is the length of the surnames list: 3.
Therefore, range(len(surnames)) is actually transformed into range(3). This
gives us the range [0, 3), which is basically a sequence (0, 1, 2). This
means that the for loop will run three iterations. In the first one,
position will take value 0, while in the second one, it will take value 1,
and finally value 2 in the third and last iteration. What is (0, 1, 2), if not
the possible indexing positions for the surnames list? At position 0, we
find 'Rivest', at position 1, 'Shamir', and at position 2, 'Adleman'. If you are
curious about what these three men created together, change
print(position, surnames[position]) to print(surnames[position][0], end=''), add a
final print() outside of the loop, and run the code again.

Now, this style of looping is actually much closer to languages such
as Java or C++. In Python, it's quite rare to see code like this. You
can just iterate over any sequence or collection, so there is no need
to get the list of positions and retrieve elements out of a sequence at

each iteration. It's expensive, needlessly expensive. Let's change the
example into a more Pythonic form:

simple.for.3.py
surnames = ['Rivest', 'Shamir', 'Adleman']
for surname in surnames:
 print(surname)

Now that's something! It's practically English. The for loop can iterate
over the surnames list, and it gives back each element in order at each
interaction. Running this code will print the three surnames, one at a
time. It's much easier to read, right?

What if you wanted to print the position as well though? Or what if
you actually needed it? Should you go back to the range(len(...))
form? No. You can use the enumerate built-in function, like this:

simple.for.4.py
surnames = ['Rivest', 'Shamir', 'Adleman']
for position, surname in enumerate(surnames):
 print(position, surname)

This code is very interesting as well. Notice that enumerate gives
back a two-tuple (position, surname) at each iteration, but still, it's much
more readable (and more efficient) than the range(len(...)) example.
You can call enumerate with a start parameter, such as enumerate(iterable,
start), and it will start from start, rather than 0. Just another little thing
that shows you how much thought has been given in designing
Python so that it makes your life easier.

You can use a for loop to iterate over lists, tuples, and in general
anything that Python calls iterable. This is a very important concept,
so let's talk about it a bit more.

Iterators and iterables
According to the Python documentation (https://docs.python.org/3/glossar
y.html), an iterable is:

An object capable of returning its members one at a time. Examples of iterables include all sequence types
(such as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes
you define with an __iter__() or __getitem__() method. Iterables can be used in a for loop and in many other
places where a sequence is needed (zip(), map(), ...). When an iterable object is passed as an argument to
the built-in function iter(), it returns an iterator for the object. This iterator is good for one pass over the set of
values. When using iterables, it is usually not necessary to call iter() or deal with iterator objects yourself. The
for statement does that automatically for you, creating a temporary unnamed variable to hold the iterator for
the duration of the loop.

Simply put, what happens when you write for k in sequence: ... body ...,
is that the for loop asks sequence for the next element, it gets
something back, it calls that something k, and then executes its body.
Then, once again, the for loop asks sequence for the next element, it
calls it k again, and executes the body again, and so on and so forth,
until the sequence is exhausted. Empty sequences will result in zero
executions of the body.

Some data structures, when iterated over, produce their elements in
order, such as lists, tuples, and strings, while some others don't,
such as sets and dictionaries (prior to Python 3.6). Python gives us
the ability to iterate over iterables, using a type of object called
an iterator.

According to the official documentation (https://docs.python.org/3/glossary.
html), an iterator is:

An object representing a stream of data. Repeated calls to the iterator's __next__() method (or passing it to
the built-in function next()) return successive items in the stream. When no more data are available a
StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further calls to
its __next__() method just raise StopIteration again. Iterators are required to have an __iter__() method that
returns the iterator object itself so every iterator is also iterable and may be used in most places where other
iterables are accepted. One notable exception is code which attempts multiple iteration passes. A container
object (such as a list) produces a fresh new iterator each time you pass it to the iter() function or use it in a for
loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous
iteration pass, making it appear like an empty container.

https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html

Don't worry if you don't fully understand all the preceding legalese,
you will in due time. I put it here as a handy reference for the future.

In practice, the whole iterable/iterator mechanism is somewhat
hidden behind the code. Unless you need to code your own iterable
or iterator for some reason, you won't have to worry about this too
much. But it's very important to understand how Python handles this
key aspect of control flow because it will shape the way you will write
your code.

Iterating over multiple
sequences
Let's see another example of how to iterate over two sequences of
the same length, in order to work on their respective elements in
pairs. Say we have a list of people and a list of numbers
representing the age of the people in the first list. We want to print a
pair person/age on one line for all of them. Let's start with an
example and let's refine it gradually:

multiple.sequences.py
people = ['Conrad', 'Deepak', 'Heinrich', 'Tom']
ages = [29, 30, 34, 36]
for position in range(len(people)):
 person = people[position]
 age = ages[position]
 print(person, age)

By now, this code should be pretty straightforward for you to
understand. We need to iterate over the list of positions (0, 1, 2, 3)
because we want to retrieve elements from two different lists.
Executing it we get the following:

$ python multiple.sequences.py
Conrad 29
Deepak 30
Heinrich 34
Tom 36

This code is both inefficient and not Pythonic. It's inefficient because
retrieving an element given the position can be an expensive
operation, and we're doing it from scratch at each iteration. The
postal worker doesn't go back to the beginning of the road each time
they deliver a letter, right? They move from house to house. From
one to the next one. Let's try to make it better using enumerate:

multiple.sequences.enumerate.py
people = ['Conrad', 'Deepak', 'Heinrich', 'Tom']
ages = [29, 30, 34, 36]

for position, person in enumerate(people):
 age = ages[position]
 print(person, age)

That's better, but still not perfect. And it's still a bit ugly. We're
iterating properly on people, but we're still fetching age using positional
indexing, which we want to lose as well. Well, no worries, Python
gives you the zip function, remember? Let's use it:

multiple.sequences.zip.py
people = ['Conrad', 'Deepak', 'Heinrich', 'Tom']
ages = [29, 30, 34, 36]
for person, age in zip(people, ages):
 print(person, age)

Ah! So much better! Once again, compare the preceding code with
the first example and admire Python's elegance. The reason I
wanted to show this example is twofold. On the one hand, I wanted
to give you an idea of how shorter code in Python can be compared
to other languages where the syntax doesn't allow you to iterate over
sequences or collections as easily. And on the other hand, and much
more importantly, notice that when the for loop asks zip(sequenceA,
sequenceB) for the next element, it gets back a tuple, not just a single
object. It gets back a tuple with as many elements as the number of
sequences we feed to the zip function. Let's expand a little on the
previous example in two ways, using explicit and implicit assignment:

multiple.sequences.explicit.py
people = ['Conrad', 'Deepak', 'Heinrich', 'Tom']
ages = [29, 30, 34, 36]
nationalities = ['Poland', 'India', 'South Africa', 'England']
for person, age, nationality in zip(people, ages, nationalities):
 print(person, age, nationality)

In the preceding code, we added the nationalities list. Now that we
feed three sequences to the zip function, the for loop gets back a
three-tuple at each iteration. Notice that the position of the elements
in the tuple respects the position of the sequences in the zip call.
Executing the code will yield the following result:

$ python multiple.sequences.explicit.py
Conrad 29 Poland
Deepak 30 India

Heinrich 34 South Africa
Tom 36 England

Sometimes, for reasons that may not be clear in a simple example
such as the preceding one, you may want to explode the tuple within
the body of the for loop. If that is your desire, it's perfectly possible to
do so:

multiple.sequences.implicit.py
people = ['Conrad', 'Deepak', 'Heinrich', 'Tom']
ages = [29, 30, 34, 36]
nationalities = ['Poland', 'India', 'South Africa', 'England']
for data in zip(people, ages, nationalities):
 person, age, nationality = data
 print(person, age, nationality)

It's basically doing what the for loop does automatically for you, but
in some cases you may want to do it yourself. Here, the three-tuple
data that comes from zip(...) is exploded within the body of the for
loop into three variables: person, age, and nationality.

The while loop
In the preceding pages, we saw the for loop in action. It's incredibly
useful when you need to loop over a sequence or a collection. The
key point to keep in mind, when you need to be able to discriminate
which looping construct to use, is that the for loop rocks when you
have to iterate over a finite amount of elements. It can be a huge
amount, but still, something that ends at some point.

There are other cases though, when you just need to loop until some
condition is satisfied, or even loop indefinitely until the application is
stopped, such as cases where we don't really have something to
iterate on, and therefore the for loop would be a poor choice. But fear
not, for these cases, Python provides us with the while loop.

The while loop is similar to the for loop, in that they both loop, and at
each iteration they execute a body of instructions. What is different
between them is that the while loop doesn't loop over a sequence (it
can, but you have to write the logic manually and it wouldn't make
any sense, you would just want to use a for loop), rather, it loops as
long as a certain condition is satisfied. When the condition is no
longer satisfied, the loop ends.

As usual, let's see an example that will clarify everything for us. We
want to print the binary representation of a positive number. In order
to do so, we can use a simple algorithm that collects the remainders
of division by 2 (in reverse order), and that turns out to be the binary
representation of the number itself:

6 / 2 = 3 (remainder: 0)
3 / 2 = 1 (remainder: 1)
1 / 2 = 0 (remainder: 1)
List of remainders: 0, 1, 1.
Inverse is 1, 1, 0, which is also the binary representation of 6: 110

Let's write some code to calculate the binary representation for the
number 39: 1001112:

binary.py
n = 39
remainders = []
while n > 0:
 remainder = n % 2 # remainder of division by 2
 remainders.insert(0, remainder) # we keep track of remainders
 n //= 2 # we divide n by 2

print(remainders)

In the preceding code, I highlighted n > 0, which is the condition to
keep looping. We can make the code a little shorter (and more
Pythonic), by using the divmod function, which is called with a number
and a divisor, and returns a tuple with the result of the integer
division and its remainder. For example, divmod(13, 5) would return (2,
3), and indeed 5 * 2 + 3 = 13:

binary.2.py
n = 39
remainders = []
while n > 0:
 n, remainder = divmod(n, 2)
 remainders.insert(0, remainder)

print(remainders)

In the preceding code, we have reassigned n to the result of the
division by 2, and the remainder, in one single line.

Notice that the condition in a while loop is a condition to continue
looping. If it evaluates to True, then the body is executed and then
another evaluation follows, and so on, until the condition evaluates to
False. When that happens, the loop is exited immediately without
executing its body.

If the condition never evaluates to False, the loop becomes a so-called infinite loop. Infinite loops
are used, for example, when polling from network devices: you ask the socket whether there is
any data, you do something with it if there is any, then you sleep for a small amount of time, and
then you ask the socket again, over and over again, without ever stopping.

Having the ability to loop over a condition, or to loop indefinitely, is
the reason why the for loop alone is not enough, and therefore

Python provides the while loop.

By the way, if you need the binary representation of a number, check out the bin function.

Just for fun, let's adapt one of the examples (multiple.sequences.py) using
the while logic:

multiple.sequences.while.py
people = ['Conrad', 'Deepak', 'Heinrich', 'Tom']
ages = [29, 30, 34, 36]
position = 0
while position < len(people):
 person = people[position]
 age = ages[position]
 print(person, age)
 position += 1

In the preceding code, I have highlighted the initialization, condition,
and update of the position variable, which makes it possible to
simulate the equivalent for loop code by handling the iteration
variable manually. Everything that can be done with a for loop can
also be done with a while loop, even though you can see there's a bit
of boilerplate you have to go through in order to achieve the same
result. The opposite is also true, but unless you have a reason to do
so, you ought to use the right tool for the job, and 99.9% of the time
you'll be fine.

So, to recap, use a for loop when you need to iterate over an
iterable, and a while loop when you need to loop according to a
condition being satisfied or not. If you keep in mind the difference
between the two purposes, you will never choose the wrong looping
construct.

Let's now see how to alter the normal flow of a loop.

The break and continue
statements
According to the task at hand, sometimes you will need to alter the
regular flow of a loop. You can either skip a single iteration (as many
times as you want), or you can break out of the loop entirely. A
common use case for skipping iterations is, for example, when
you're iterating over a list of items and you need to work on each of
them only if some condition is verified. On the other hand, if you're
iterating over a collection of items, and you have found one of them
that satisfies some need you have, you may decide not to continue
the loop entirely and therefore break out of it. There are countless
possible scenarios, so it's better to see a couple of examples.

Let's say you want to apply a 20% discount to all products in a
basket list for those that have an expiration date of today. The way
you achieve this is to use the continue statement, which tells the
looping construct (for or while) to stop execution of the body
immediately and go to the next iteration, if any. This example will
take us a little deeper down the rabbit hole, so be ready to jump:

discount.py
from datetime import date, timedelta

today = date.today()
tomorrow = today + timedelta(days=1) # today + 1 day is tomorrow
products = [
 {'sku': '1', 'expiration_date': today, 'price': 100.0},
 {'sku': '2', 'expiration_date': tomorrow, 'price': 50},
 {'sku': '3', 'expiration_date': today, 'price': 20},
]

for product in products:
 if product['expiration_date'] != today:
 continue
 product['price'] *= 0.8 # equivalent to applying 20% discount
 print(
 'Price for sku', product['sku'],
 'is now', product['price'])

We start by importing the date and timedelta objects, then we set up our
products. Those with sku as 1 and 3 have an expiration date of today,
which means we want to apply a 20% discount on them. We loop
over each product and we inspect the expiration date. If it is not
(inequality operator, !=) today, we don't want to execute the rest of the
body suite, so we continue.

Notice that it is not important where in the body suite you place the
continue statement (you can even use it more than once). When you
reach it, execution stops and goes back to the next iteration. If we
run the discount.py module, this is the output:

$ python discount.py
Price for sku 1 is now 80.0
Price for sku 3 is now 16.0

This shows you that the last two lines of the body haven't been
executed for sku number 2.

Let's now see an example of breaking out of a loop. Say we want to
tell whether at least one of the elements in a list evaluates to True
when fed to the bool function. Given that we need to know whether
there is at least one, when we find it, we don't need to keep scanning
the list any further. In Python code, this translates to using the break
statement. Let's write this down into code:

any.py
items = [0, None, 0.0, True, 0, 7] # True and 7 evaluate to True

found = False # this is called "flag"
for item in items:
 print('scanning item', item)
 if item:
 found = True # we update the flag
 break

if found: # we inspect the flag
 print('At least one item evaluates to True')
else:
 print('All items evaluate to False')

The preceding code is such a common pattern in programming, you
will see it a lot. When you inspect items this way, basically what you

do is to set up a flag variable, then start the inspection. If you find
one element that matches your criteria (in this example, that
evaluates to True), then you update the flag and stop iterating. After
iteration, you inspect the flag and take action accordingly. Execution
yields:

$ python any.py
scanning item 0
scanning item None
scanning item 0.0
scanning item True
At least one item evaluates to True

See how execution stopped after True was found? The break statement
acts exactly like the continue one, in that it stops executing the body of
the loop immediately, but also, prevents any other iteration from
running, effectively breaking out of the loop. The continue and break
statements can be used together with no limitation in their numbers,
both in the for and while looping constructs.

By the way, there is no need to write code to detect whether there is at least one element in a
sequence that evaluates to True. Just check out the built-in any function.

A special else clause
One of the features I've seen only in the Python language is the
ability to have else clauses after while and for loops. It's very rarely
used, but it's definitely nice to have. In short, you can have an else
suite after a for or while loop. If the loop ends normally, because of
exhaustion of the iterator (for loop) or because the condition is finally
not met (while loop), then the else suite (if present) is executed. In
case execution is interrupted by a break statement, the else clause is
not executed. Let's take an example of a for loop that iterates over a
group of items, looking for one that would match some condition. In
case we don't find at least one that satisfies the condition, we want
to raise an exception. This means we want to arrest the regular
execution of the program and signal that there was an error, or
exception, that we cannot deal with. Exceptions will be the subject of
a later chapter, so don't worry if you don't fully understand them now.
Just bear in mind that they will alter the regular flow of the code.

Let me now show you two examples that do exactly the same thing,
but one of them is using the special for...else syntax. Say that we
want to find, among a collection of people, one that could drive a car:

for.no.else.py
class DriverException(Exception):
 pass

people = [('James', 17), ('Kirk', 9), ('Lars', 13), ('Robert', 8)]
driver = None
for person, age in people:
 if age >= 18:
 driver = (person, age)
 break

if driver is None:
 raise DriverException('Driver not found.')

Notice the flag pattern again. We set the driver to be None, then if we
find one, we update the driver flag, and then, at the end of the loop,
we inspect it to see whether one was found. I kind of have the feeling

that those kids would drive a very metallic car, but anyway, notice
that if a driver is not found, DriverException is raised, signaling to the
program that execution cannot continue (we're lacking the driver).

The same functionality can be rewritten a bit more elegantly using
the following code:

for.else.py
class DriverException(Exception):
 pass

people = [('James', 17), ('Kirk', 9), ('Lars', 13), ('Robert', 8)]
for person, age in people:
 if age >= 18:
 driver = (person, age)
 break
else:
 raise DriverException('Driver not found.')

Notice that we aren't forced to use the flag pattern any more. The
exception is raised as part of the for loop logic, which makes good
sense because the for loop is checking on some condition. All we
need is to set up a driver object in case we find one, because the rest
of the code is going to use that information somewhere. Notice the
code is shorter and more elegant, because the logic is now correctly
grouped together where it belongs.

In the Transforming Code into Beautiful, Idiomatic Python video, Raymond Hettinger suggests a
much better name for the else statement associated with a for loop: nobreak. If you struggle
remembering how the else works for a for loop, simply remembering this fact should help you.

Putting all this together
Now that you have seen all there is to see about conditionals and
loops, it's time to spice things up a little, and look at those two
examples I anticipated at the beginning of this chapter. We'll mix and
match here, so you can see how you can use all these concepts
together. Let's start by writing some code to generate a list of prime
numbers up to some limit. Please bear in mind that I'm going to write
a very inefficient and rudimentary algorithm to detect primes. The
important thing for you is to concentrate on those bits in the code
that belong to this chapter's subject.

A prime generator
According to Wikipedia:

A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other than 1 and
itself. A natural number greater than 1 that is not a prime number is called a composite number.

Based on this definition, if we consider the first 10 natural numbers,
we can see that 2, 3, 5, and 7 are primes, while 1, 4, 6, 8, 9, and 10
are not. In order to have a computer tell you whether a number, N, is
prime, you can divide that number by all natural numbers in the
range [2, N). If any of those divisions yields zero as a remainder,
then the number is not a prime. Enough chatter, let's get down to
business. I'll write two versions of this, the second of which will
exploit the for...else syntax:

primes.py
primes = [] # this will contain the primes in the end
upto = 100 # the limit, inclusive
for n in range(2, upto + 1):
 is_prime = True # flag, new at each iteration of outer for
 for divisor in range(2, n):
 if n % divisor == 0:
 is_prime = False
 break

 if is_prime: # check on flag
 primes.append(n)
print(primes)

There are a lot of things to notice in the preceding code. First of all,
we set up an empty primes list, which will contain the primes at the
end. The limit is 100, and you can see it's inclusive in the way we call
range() in the outer loop. If we wrote range(2, upto) that would be [2,
upto), right? Therefore range(2, upto + 1) gives us [2, upto + 1) == [2,
upto].

So, there are two for loops. In the outer one, we loop over the
candidate primes, that is, all natural numbers from 2 to upto. Inside
each iteration of this outer loop, we set up a flag (which is set to True

at each iteration), and then start dividing the current n by all numbers
from 2 to n - 1. If we find a proper divisor for n, it means n is
composite, and therefore we set the flag to False and break the loop.
Notice that when we break the inner one, the outer one keeps on
going normally. The reason why we break after having found a
proper divisor for n is that we don't need any further information to be
able to tell that n is not a prime.

When we check on the is_prime flag, if it is still True, it means we
couldn't find any number in [2, n) that is a proper divisor for n,
therefore n is a prime. We append n to the primes list, and hop! Another
iteration proceeds, until n equals 100.

Running this code yields:

$ python primes.py
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83, 89, 97]

Before we proceed, one question: of all the iterations of the outer
loop, one of them is different from all the others. Could you tell which
one, and why? Think about it for a second, go back to the code, try
to figure it out for yourself, and then keep reading on.

Did you figure it out? If not, don't feel bad, it's perfectly normal. I
asked you to do it as a small exercise because it's what coders do all
the time. The skill to understand what the code does by simply
looking at it is something you build over time. It's very important, so
try to exercise it whenever you can. I'll tell you the answer now: the
iteration that behaves differently from all others is the first one. The
reason is because in the first iteration, n is 2. Therefore the innermost
for loop won't even run, because it's a for loop that iterates over
range(2, 2), and what is that if not [2, 2)? Try it out for yourself, write a
simple for loop with that iterable, put a print in the body suite, and see
whether anything happens (it won't...).

Now, from an algorithmic point of view, this code is inefficient, so let's
at least make it more beautiful:

primes.else.py
primes = []
upto = 100
for n in range(2, upto + 1):
 for divisor in range(2, n):
 if n % divisor == 0:
 break
 else:
 primes.append(n)
print(primes)

Much nicer, right? The is_prime flag is gone, and we append n to the
primes list when we know the inner for loop hasn't encountered any
break statements. See how the code looks cleaner and reads better?

Applying discounts
In this example, I want to show you a technique I like a lot. In many
programming languages, other than the if/elif/else constructs, in
whatever form or syntax they may come, you can find another
statement, usually called switch/case, that in Python is missing. It is the
equivalent of a cascade of if/elif/.../elif/else clauses, with a syntax
similar to this (warning! JavaScript code!):

/* switch.js */
switch (day_number) {
 case 1:
 case 2:
 case 3:
 case 4:
 case 5:
 day = "Weekday";
 break;
 case 6:
 day = "Saturday";
 break;
 case 0:
 day = "Sunday";
 break;
 default:
 day = "";

 alert(day_number + ' is not a valid day number.')
}

In the preceding code, we switch on a variable called day_number. This
means we get its value and then we decide what case it fits in (if
any). From 1 to 5 there is a cascade, which means no matter the
number, [1, 5] all go down to the bit of logic that sets day as "Weekday".
Then we have single cases for 0 and 6, and a default case to prevent
errors, which alerts the system that day_number is not a valid day
number, that is, not in [0, 6]. Python is perfectly capable of realizing
such logic using if/elif/else statements:

switch.py
if 1 <= day_number <= 5:
 day = 'Weekday'
elif day_number == 6:

 day = 'Saturday'
elif day_number == 0:
 day = 'Sunday'
else:
 day = ''
 raise ValueError(
 str(day_number) + ' is not a valid day number.')

In the preceding code, we reproduce the same logic of the
JavaScript snippet in Python, using if/elif/else statements. I raised
the ValueError exception just as an example at the end, if day_number is
not in [0, 6]. This is one possible way of translating the switch/case logic,
but there is also another one, sometimes called dispatching, which I
will show you in the last version of the next example.

By the way, did you notice the first line of the previous snippet? Have you noticed that Python can
make double (actually, even multiple) comparisons? It's just wonderful!

Let's start the new example by simply writing some code that
assigns a discount to customers based on their coupon value. I'll
keep the logic down to a minimum here, remember that all we really
care about is understanding conditionals and loops:

coupons.py
customers = [
 dict(id=1, total=200, coupon_code='F20'), # F20: fixed, £20
 dict(id=2, total=150, coupon_code='P30'), # P30: percent, 30%
 dict(id=3, total=100, coupon_code='P50'), # P50: percent, 50%
 dict(id=4, total=110, coupon_code='F15'), # F15: fixed, £15
]
for customer in customers:
 code = customer['coupon_code']
 if code == 'F20':
 customer['discount'] = 20.0
 elif code == 'F15':
 customer['discount'] = 15.0
 elif code == 'P30':
 customer['discount'] = customer['total'] * 0.3
 elif code == 'P50':
 customer['discount'] = customer['total'] * 0.5
 else:
 customer['discount'] = 0.0

for customer in customers:
 print(customer['id'], customer['total'], customer['discount'])

We start by setting up some customers. They have an order total, a
coupon code, and an ID. I made up four different types of coupons,

two are fixed and two are percentage-based. You can see that in the
if/elif/else cascade I apply the discount accordingly, and I set it as a
'discount' key in the customer dictionary.

At the end, I just print out part of the data to see whether my code is
working properly:

$ python coupons.py
1 200 20.0
2 150 45.0
3 100 50.0
4 110 15.0

This code is simple to understand, but all those clauses are kind of
cluttering the logic. It's not easy to see what's going on at a first
glance, and I don't like it. In cases like this, you can exploit a
dictionary to your advantage, like this:

coupons.dict.py
customers = [
 dict(id=1, total=200, coupon_code='F20'), # F20: fixed, £20
 dict(id=2, total=150, coupon_code='P30'), # P30: percent, 30%
 dict(id=3, total=100, coupon_code='P50'), # P50: percent, 50%
 dict(id=4, total=110, coupon_code='F15'), # F15: fixed, £15
]
discounts = {
 'F20': (0.0, 20.0), # each value is (percent, fixed)
 'P30': (0.3, 0.0),
 'P50': (0.5, 0.0),
 'F15': (0.0, 15.0),
}
for customer in customers:
 code = customer['coupon_code']
 percent, fixed = discounts.get(code, (0.0, 0.0))
 customer['discount'] = percent * customer['total'] + fixed

for customer in customers:
 print(customer['id'], customer['total'], customer['discount'])

Running the preceding code yields exactly the same result we had
from the snippet before it. We spared two lines, but more importantly,
we gained a lot in readability, as the body of the for loop now is just
three lines long, and very easy to understand. The concept here is to
use a dictionary as a dispatcher. In other words, we try to fetch
something from the dictionary based on a code (our coupon_code), and

by using dict.get(key, default), we make sure we also cater for when
the code is not in the dictionary and we need a default value.

Notice that I had to apply some very simple linear algebra in order to
calculate the discount properly. Each discount has a percentage and
fixed part in the dictionary, represented by a two-tuple. By applying
percent * total + fixed, we get the correct discount. When percent is 0, the
formula just gives the fixed amount, and it gives percent * total when
fixed is 0.

This technique is important because it is also used in other contexts,
with functions, where it actually becomes much more powerful than
what we've seen in the preceding snippet. Another advantage of
using it is that you can code it in such a way that the keys and values
of the discounts dictionary are fetched dynamically (for example, from
a database). This will allow the code to adapt to whatever discounts
and conditions you have, without having to modify anything.

If it's not completely clear to you how it works, I suggest you take
your time and experiment with it. Change values and add print
statements to see what's going on while the program is running.

A quick peek at the itertools
module
A chapter about iterables, iterators, conditional logic, and looping
wouldn't be complete without a few words about the itertools module.
If you are into iterating, this is a kind of heaven.

According to the Python official documentation (https://docs.python.org/2/
library/itertools.html), the itertools module is:

This module which implements a number of iterator building blocks inspired by constructs from APL, Haskell,
and SML. Each has been recast in a form suitable for Python. The module standardizes a core set of fast,
memory efficient tools that are useful by themselves or in combination. Together, they form an “iterator
algebra” making it possible to construct specialized tools succinctly and efficiently in pure Python.

By no means do I have the room here to show you all the goodies
you can find in this module, so I encourage you to go check it out for
yourself, I promise you'll enjoy it. In a nutshell, it provides you with
three broad categories of iterators. I will give you a very small
example of one iterator taken from each one of them, just to make
your mouth water a little.

https://docs.python.org/2/library/itertools.html

Infinite iterators
Infinite iterators allow you to work with a for loop in a different
fashion, such as if it were a while loop:

infinite.py
from itertools import count

for n in count(5, 3):
 if n > 20:
 break
 print(n, end=', ') # instead of newline, comma and space

Running the code gives this:

$ python infinite.py
5, 8, 11, 14, 17, 20,

The count factory class makes an iterator that just goes on and on
counting. It starts from 5 and keeps adding 3 to it. We need to break it
manually if we don't want to get stuck in an infinite loop.

Iterators terminating on the
shortest input sequence
This category is very interesting. It allows you to create an iterator
based on multiple iterators, combining their values according to
some logic. The key point here is that among those iterators, in case
any of them are shorter than the rest, the resulting iterator won't
break, it will simply stop as soon as the shortest iterator is
exhausted. This is very theoretical, I know, so let me give you an
example using compress. This iterator gives you back the data
according to a corresponding item in a selector being True or False:

compress('ABC', (1, 0, 1)) would give back 'A' and 'C', because they
correspond to 1. Let's see a simple example:

compress.py
from itertools import compress
data = range(10)
even_selector = [1, 0] * 10
odd_selector = [0, 1] * 10

even_numbers = list(compress(data, even_selector))
odd_numbers = list(compress(data, odd_selector))

print(odd_selector)
print(list(data))
print(even_numbers)
print(odd_numbers)

Notice that odd_selector and even_selector are 20 elements long, while data
is just 10 elements long. compress will stop as soon as data has yielded
its last element. Running this code produces the following:

$ python compress.py
[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 2, 4, 6, 8]
[1, 3, 5, 7, 9]

It's a very fast and nice way of selecting elements out of an iterable.
The code is very simple, just notice that instead of using a for loop to
iterate over each value that is given back by the compress calls, we
used list(), which does the same, but instead of executing a body of
instructions, puts all the values into a list and returns it.

Combinatoric generators
Last but not least, combinatoric generators. These are really fun, if
you are into this kind of thing. Let's just see a simple example on
permutations.

According to Wolfram Mathworld:

A permutation, also called an "arrangement number" or "order", is a rearrangement of the elements of an
ordered list S into a one-to-one correspondence with S itself.

For example, there are six permutations of ABC: ABC, ACB, BAC,
BCA, CAB, and CBA.

If a set has N elements, then the number of permutations of them is
N! (N factorial). For the ABC string, the permutations are 3! = 3 * 2 *
1 = 6. Let's do it in Python:

permutations.py
from itertools import permutations
print(list(permutations('ABC')))

This very short snippet of code produces the following result:

$ python permutations.py
[('A', 'B', 'C'), ('A', 'C', 'B'), ('B', 'A', 'C'), ('B', 'C', 'A'),
('C', 'A', 'B'), ('C', 'B', 'A')]

Be very careful when you play with permutations. Their number
grows at a rate that is proportional to the factorial of the number of
the elements you're permuting, and that number can get really big,
really fast.

Summary
In this chapter, we've taken another step toward expanding our
coding vocabulary. We've seen how to drive the execution of the
code by evaluating conditions, and we've seen how to loop and
iterate over sequences and collections of objects. This gives us the
power to control what happens when our code is run, which means
we are getting an idea of how to shape it so that it does what we
want and it reacts to data that changes dynamically.

We've also seen how to combine everything together in a couple of
simple examples, and in the end, we took a brief look at the itertools
module, which is full of interesting iterators that can enrich our
abilities with Python even more.

Now it's time to switch gears, take another step forward, and talk
about functions. The next chapter is all about them because they are
extremely important. Make sure you're comfortable with what has
been covered up to now. I want to provide you with interesting
examples, so I'll have to go a little faster. Ready? Turn the page.

Functions, the Building Blocks
of Code
To create architecture is to put in order. Put what in order? Functions and objects."

 – Le Corbusier

In the previous chapters, we have seen that everything is an object
in Python, and functions are no exception. But, what exactly is a
function? A function is a sequence of instructions that perform a
task, bundled as a unit. This unit can then be imported and used
wherever it's needed. There are many advantages to using functions
in your code, as we'll see shortly.

In this chapter, we are going to cover the following:

Functions—what they are and why we should use them
Scopes and name resolution
Function signatures—input parameters and return values
Recursive and anonymous functions
Importing objects for code reuse

I believe the saying, a picture is worth one thousand words, is
particularly true when explaining functions to someone who is new to
this concept, so please take a look at the following diagram:

As you can see, a function is a block of instructions, packaged as a
whole, like a box. Functions can accept input arguments and

produce output values. Both of these are optional, as we'll see in the
examples in this chapter.

A function in Python is defined by using the def keyword, after which
the name of the function follows, terminated by a pair of
parentheses (which may or may not contain input parameters), and a
colon (:) signals the end of the function definition line. Immediately
afterwards, indented by four spaces, we find the body of the function,
which is the set of instructions that the function will execute when
called.

Note that the indentation by four spaces is not mandatory, but it is the amount of spaces
suggested by PEP 8, and, in practice, it is the most widely used spacing measure.

A function may or may not return an output. If a function wants to
return an output, it does so by using the return keyword, followed by
the desired output. If you have an eagle eye, you may have noticed
the little * after Optional in the output section of the preceding
diagram. This is because a function always returns something in
Python, even if you don't explicitly use the return clause. If the
function has no return statement in its body, or no value is given to
the return statement itself, the function returns None. The reasons
behind this design choice are outside the scope of an introductory
chapter, so all you need to know is that this behavior will make your
life easier. As always, thank you, Python.

Why use functions?
Functions are among the most important concepts and constructs of
any language, so let me give you a few reasons why we need them:

They reduce code duplication in a program. By having a specific
task taken care of by a nice block of packaged code that we can
import and call whenever we want, we don't need to duplicate its
implementation.
They help in splitting a complex task or procedure into smaller
blocks, each of which becomes a function.
They hide the implementation details from their users.
They improve traceability.
They improve readability.

Let's look at a few examples to get a better understanding of each
point.

Reducing code duplication
Imagine that you are writing a piece of scientific software, and you
need to calculate primes up to a limit, as we did in the previous
chapter. You have a nice algorithm to calculate them, so you copy
and paste it to wherever you need. One day, though, your friend, B.
Riemann, gives you a better algorithm to calculate primes, which will
save you a lot of time. At this point, you need to go over your whole
code base and replace the old code with the new one.

This is actually a bad way to go about it. It's error-prone, you never
know what lines you are chopping out or leaving in by mistake, when
you cut and paste code into other code, and you may also risk
missing one of the places where prime calculation is done, leaving
your software in an inconsistent state where the same action is
performed in different places in different ways. What if, instead of
replacing code with a better version of it, you need to fix a bug, and
you miss one of the places? That would be even worse.

So, what should you do? Simple! You write a function,
get_prime_numbers(upto), and use it anywhere you need a list of primes.
When B. Riemann comes to you and gives you the new code, all you
have to do is replace the body of that function with the new
implementation, and you're done! The rest of the software will
automatically adapt, since it's just calling the function.

Your code will be shorter, it will not suffer from inconsistencies
between old and new ways of performing a task, or undetected bugs
due to copy-and-paste failures or oversights. Use functions, and
you'll only gain from it, I promise.

Splitting a complex task
Functions are also very useful for splitting long or complex tasks into
smaller ones. The end result is that the code benefits from it in
several ways, for example, readability, testability, and reuse. To give
you a simple example, imagine that you're preparing a report. Your
code needs to fetch data from a data source, parse it, filter it, polish
it, and then a whole series of algorithms needs to be run against it, in
order to produce the results that will feed the Report class. It's not
uncommon to read procedures like this that are just one
big do_report(data_source) function. There are tens or hundreds of lines
of code that end with return report.

These situations are slightly more common in scientific code, which
tend to be brilliant from an algorithmic point of view, but sometimes
lack the touch of experienced programmers when it comes to the
style in which they are written. Now, picture a few hundred lines of
code. It's very hard to follow through, to find the places where things
are changing context (such as finishing one task and starting the
next one). Do you have the picture in your mind? Good. Don't do it!
Instead, look at this code:

data.science.example.py
def do_report(data_source):
 # fetch and prepare data
 data = fetch_data(data_source)
 parsed_data = parse_data(data)
 filtered_data = filter_data(parsed_data)
 polished_data = polish_data(filtered_data)

 # run algorithms on data
 final_data = analyse(polished_data)

 # create and return report
 report = Report(final_data)
 return report

The previous example is fictitious, of course, but can you see how
easy it would be to go through the code? If the end result looks

wrong, it would be very easy to debug each of the single data
outputs in the do_report function. Moreover, it's even easier to exclude
part of the process temporarily from the whole procedure (you just
need to comment out the parts you need to suspend). Code like this
is easier to deal with.

Hiding implementation details
Let's stay with the preceding example to talk about this point as well.
You can see that, by going through the code of the do_report function,
you can get a pretty good understanding without reading one single
line of implementation. This is because functions hide the
implementation details. This feature means that, if you don't need to
delve into the details, you are not forced to, in the way you would if
do_report was just one big, fat function. In order to understand what
was going on, you would have to read every single line of code. With
functions, you don't need to. This reduces the time you spend
reading the code and since, in a professional environment, reading
code takes much more time than actually writing it, it's very important
to reduce it by as much as we can.

Improving readability
Coders sometimes don't see the point in writing a function with a
body of one or two lines of code, so let's look at an example that
shows you why you should do it.

Imagine that you need to multiply two matrices:

Would you prefer to have to read this code:

matrix.multiplication.nofunc.py
a = [[1, 2], [3, 4]]
b = [[5, 1], [2, 1]]

c = [[sum(i * j for i, j in zip(r, c)) for c in zip(*b)]
 for r in a]

Or would you prefer this one:

matrix.multiplication.func.py
this function could also be defined in another module
def matrix_mul(a, b):
 return [[sum(i * j for i, j in zip(r, c)) for c in zip(*b)]
 for r in a]

a = [[1, 2], [3, 4]]
b = [[5, 1], [2, 1]]
c = matrix_mul(a, b)

It's much easier to understand that c is the result of the multiplication
between a and b in the second example. It's much easier to read
through the code and, if you don't need to modify that multiplication
logic, you don't even need to go into the implementation details.
Therefore, readability is improved here while, in the first snippet, you
would have to spend time trying to understand what that complicated
list comprehension is doing.

Improving traceability
Imagine that you have written an e-commerce website. You have
displayed the product prices all over the pages. Imagine that the
prices in your database are stored with no VAT (sales tax), but you
want to display them on the website with VAT at 20%. Here's a few
ways of calculating the VAT-inclusive price from the VAT-exclusive
price:

vat.py
price = 100 # GBP, no VAT
final_price1 = price * 1.2
final_price2 = price + price / 5.0
final_price3 = price * (100 + 20) / 100.0
final_price4 = price + price * 0.2

All these four different ways of calculating a VAT-inclusive price are
perfectly acceptable, and I promise you I have found them all in my
colleagues' code, over the years. Now, imagine that you have started
selling your products in different countries and some of them have
different VAT rates, so you need to refactor your code (throughout
the website) in order to make that VAT calculation dynamic.

How do you trace all the places in which you are performing a VAT
calculation? Coding today is a collaborative task and you cannot be
sure that the VAT has been calculated using only one of those forms.
It's going to be hell, believe me.

So, let's write a function that takes the input values, vat and price
(VAT-exclusive), and returns a VAT-inclusive price:

vat.function.py
def calculate_price_with_vat(price, vat):
 return price * (100 + vat) / 100

Now you can import that function and use it in any place in your
website where you need to calculate a VAT-inclusive price, and when

you need to trace those calls, you can search for
calculate_price_with_vat.

Note that, in the preceding example, price is assumed to be VAT-exclusive, and vat is a
percentage value (for example, 19, 20, or 23).

Scopes and name resolution
Do you remember when we talked about scopes and namespaces in
Chapter 1, A Gentle Introduction to Python? We're going to expand on
that concept now. Finally, we can talk about functions and this will
make everything easier to understand. Let's start with a very simple
example:

scoping.level.1.py
def my_function():
 test = 1 # this is defined in the local scope of the function
 print('my_function:', test)

test = 0 # this is defined in the global scope
my_function()
print('global:', test)

I have defined the test name in two different places in the previous
example. It is actually in two different scopes. One is the global
scope (test = 0), and the other is the local scope of
the my_function function (test = 1). If you execute the code, you'll see
this:

$ python scoping.level.1.py
my_function: 1
global: 0

It's clear that test = 1 shadows the test = 0 assignment in my_function. In
the global context, test is still 0, as you can see from the output of the
program, but we define the test name again in the function body, and
we set it to point to an integer of value 1. Both the two test names
therefore exist, one in the global scope, pointing to an int object with
a value of 0, the other in the my_function scope, pointing to an int object
with a value of 1. Let's comment out the line with test = 1. Python
searches for the test name in the next enclosing namespace (recall
the LEGB rule: local, enclosing, global, built-in described in Chapter
1, A Gentle Introduction to Python) and, in this case, we will see the
value 0 printed twice. Try it in your code.

Now, let's raise the stakes here and level up:

scoping.level.2.py
def outer():
 test = 1 # outer scope
 def inner():
 test = 2 # inner scope
 print('inner:', test)

 inner()
 print('outer:', test)

test = 0 # global scope
outer()
print('global:', test)

In the preceding code, we have two levels of shadowing. One level is
in the function outer, and the other one is in the function inner. It is far
from rocket science, but it can be tricky. If we run the code, we get:

$ python scoping.level.2.py
inner: 2
outer: 1
global: 0

Try commenting out the test = 1 line. Can you figure out what the
result will be? Well, when reaching the print('outer:', test) line, Python
will have to look for test in the next enclosing scope, therefore it will
find and print 0, instead of 1. Make sure you comment out test = 2 as
well, to see whether you understand what happens, and whether the
LEGB rule is clear, before proceeding.

Another thing to note is that Python gives you the ability to define a
function in another function. The inner function's name is defined
within the namespace of the outer function, exactly as would happen
with any other name.

The global and nonlocal
statements
Going back to the preceding example, we can alter what happens to
the shadowing of the test name by using one of these two special
statements: global and nonlocal. As you can see from the previous
example, when we define test = 2 in the inner function, we overwrite
test neither in the outer function nor in the global scope. We can get
read access to those names if we use them in a nested scope that
doesn't define them, but we cannot modify them because, when we
write an assignment instruction, we're actually defining a new name
in the current scope.

How do we change this behavior? Well, we can use the nonlocal
statement. According to the official documentation:

"The nonlocal statement causes the listed identifiers to refer to previously bound variables in the nearest
enclosing scope excluding globals."

Let's introduce it in the inner function, and see what happens:

scoping.level.2.nonlocal.py
def outer():
 test = 1 # outer scope
 def inner():
 nonlocal test
 test = 2 # nearest enclosing scope (which is 'outer')
 print('inner:', test)

 inner()
 print('outer:', test)

test = 0 # global scope
outer()
print('global:', test)

Notice how in the body of the inner function, I have declared the test
name to be nonlocal. Running this code produces the following result:

$ python scoping.level.2.nonlocal.py
inner: 2
outer: 2
global: 0

Wow, look at that result! It means that, by declaring test to be nonlocal
in the inner function, we actually get to bind the test name to the one
declared in the outer function. If we removed the nonlocal test line from
the inner function and tried the same trick in the outer function, we
would get a SyntaxError, because the nonlocal statement works on
enclosing scopes excluding the global one.

Is there a way to get to that test = 0 in the global namespace then? Of
course, we just need to use the global statement:

scoping.level.2.global.py
def outer():
 test = 1 # outer scope
 def inner():
 global test
 test = 2 # global scope
 print('inner:', test)

 inner()
 print('outer:', test)

test = 0 # global scope
outer()
print('global:', test)

Note that we have now declared the test name to be global, which will
basically bind it to the one we defined in the global namespace (test =
0). Run the code and you should get the following:

$ python scoping.level.2.global.py
inner: 2
outer: 1
global: 2

This shows that the name affected by the test = 2 assignment is now
the global one. This trick would also work in the outer function
because, in this case, we're referring to the global scope. Try it for
yourself and see what changes, get comfortable with scopes and
name resolution, it's very important. Also, could you tell what
happens if you defined inner outside outer in the preceding examples?

Input parameters
At the beginning of this chapter, we saw that a function can take
input parameters. Before we delve into all possible type of
parameters, let's make sure you have a clear understanding of what
passing a parameter to a function means. There are three key points
to keep in mind:

Argument passing is nothing more than assigning an object to a
local variable name
Assigning an object to an argument name inside a function
doesn't affect the caller
Changing a mutable object argument in a function affects the
caller

Let's look at an example for each of these points.

Argument passing
Take a look at the following code. We declare a name, x, in the global
scope, then we declare a function, func(y), and finally we call it,
passing x:

key.points.argument.passing.py
x = 3

def func(y):
 print(y)
func(x) # prints: 3

When func is called with x, within its local scope, a name, y, is created,
and it's pointed to the same object x is pointing to. This is better
clarified by the following figure (don't worry about Python 3.3, this is a
feature that hasn't changed):

The right part of the preceding figure depicts the state of the program
when execution has reached the end, after func has returned (None).
Take a look at the Frames column, and note that we have two names,
x and func, in the global namespace (Global frame), pointing to an int
(with a value of 3) and to a function object, respectively. Right beneath

it, in the rectangle titled func, we can see the function's local
namespace, in which only one name has been defined: y. Because
we have called func with x (line 5 in the left part of the figure), y is
pointing to the same object that x is pointing to. This is what happens
under the hood when an argument is passed to a function. If we had
used the name x instead of y in the function definition, things would
have been exactly the same (only maybe a bit confusing at first),
there would be a local x in the function, and a global x outside, as we
saw in the Scopes and name resolution section previously in this
chapter.

So, in a nutshell, what really happens is that the function creates, in
its local scope, the names defined as arguments and, when we call it,
we basically tell Python which objects those names must be pointed
toward.

Assignment to argument names
doesn't affect the caller
This is something that can be tricky to understand at first, so let's
look at an example:

key.points.assignment.py
x = 3
def func(x):
 x = 7 # defining a local x, not changing the global one
func(x)
print(x) # prints: 3

In the preceding code, when the x = 7 line is executed, within the
local scope of the func function, the name, x, is pointed to an integer
with a value of 7, leaving the global x unaltered.

Changing a mutable affects the
caller
This is the final point, and it's very important because Python
apparently behaves differently with mutables (just apparently,
though). Let's look at an example:

key.points.mutable.py
x = [1, 2, 3]
def func(x):
 x[1] = 42 # this affects the caller!

func(x)
print(x) # prints: [1, 42, 3]

Wow, we actually changed the original object! If you think about it,
there is nothing weird in this behavior. The x name in the function is
set to point to the caller object by the function call and within the
body of the function, we're not changing x, in that we're not changing
its reference, or, in other words, we are not changing the object x is
pointing to. We're accessing that object's element at position 1, and
changing its value.

Remember point #2 under the Input parameters section: Assigning
an object to an argument name within a function doesn't affect the
caller. If that is clear to you, the following code should not be
surprising:

key.points.mutable.assignment.py
x = [1, 2, 3]
def func(x):
 x[1] = 42 # this changes the caller!
 x = 'something else' # this points x to a new string object

func(x)
print(x) # still prints: [1, 42, 3]

Take a look at the two lines I have highlighted. At first, like before, we
just access the caller object again, at position 1, and change its

value to number 42. Then, we reassign x to point to the 'something
else' string. This leaves the caller unaltered and, in fact, the output is
the same as that of the previous snippet.

Take your time to play around with this concept, and experiment with
prints and calls to the id function until everything is clear in your
mind. This is one of the key aspects of Python and it must be very
clear, otherwise you risk introducing subtle bugs into your code.
Once again, the Python Tutor website (http://www.pythontutor.com/) will
help you a lot by giving you a visual representation of these
concepts.

Now that we have a good understanding of input parameters and
how they behave, let's see how we can specify them.

http://www.pythontutor.com/

How to specify input
parameters
There are five different ways of specifying input parameters:

Positional arguments
Keyword arguments
Variable positional arguments
Variable keyword arguments
Keyword-only arguments

Let's look at them one by one.

Positional arguments
Positional arguments are read from left to right and they are the most
common type of arguments:

arguments.positional.py
def func(a, b, c):
 print(a, b, c)
func(1, 2, 3) # prints: 1 2 3

There is not much else to say. They can be as numerous as you
want and they are assigned by position. In the function call, 1 comes
first, 2 comes second, and 3 comes third, therefore they are assigned
to a, b, and c, respectively.

Keyword arguments and default
values
Keyword arguments are assigned by keyword using the name=value
syntax:

arguments.keyword.py
def func(a, b, c):
 print(a, b, c)
func(a=1, c=2, b=3) # prints: 1 3 2

Keyword arguments are matched by name, even when they don't
respect the definition's original position (we'll see that there is a
limitation to this behavior later, when we mix and match different
types of arguments).

The counterpart of keyword arguments, on the definition side, is
default values. The syntax is the same, name=value, and allows us to
not have to provide an argument if we are happy with the given
default:

arguments.default.py
def func(a, b=4, c=88):
 print(a, b, c)

func(1) # prints: 1 4 88
func(b=5, a=7, c=9) # prints: 7 5 9
func(42, c=9) # prints: 42 4 9
func(42, 43, 44) # prints: 42, 43, 44

The are two things to notice, which are very important. First of all,
you cannot specify a default argument on the left of a positional one.
Second, note how in the examples, when an argument is passed
without using the argument_name=value syntax, it must be the first one in
the list, and it is always assigned to a. Notice also that passing
values in a positional fashion still works, and follows the function
signature order (last line of the example).

Try and scramble those arguments and see what happens. Python
error messages are very good at telling you what's wrong. So, for
example, if you tried something such as this:

arguments.default.error.py
def func(a, b=4, c=88):
 print(a, b, c)
func(b=1, c=2, 42) # positional argument after keyword one

You would get the following error:

$ python arguments.default.error.py
 File "arguments.default.error.py", line 4
 func(b=1, c=2, 42) # positional argument after keyword one
 ^
SyntaxError: positional argument follows keyword argument

This informs you that you've called the function incorrectly.

Variable positional arguments
Sometimes you may want to pass a variable number of positional
arguments to a function, and Python provides you with the ability to
do it. Let's look at a very common use case, the minimum function. This
is a function that calculates the minimum of its input values:

arguments.variable.positional.py
def minimum(*n):
 # print(type(n)) # n is a tuple
 if n: # explained after the code
 mn = n[0]
 for value in n[1:]:
 if value < mn:
 mn = value
 print(mn)

minimum(1, 3, -7, 9) # n = (1, 3, -7, 9) - prints: -7
minimum() # n = () - prints: nothing

As you can see, when we specify a parameter prepending a * to its
name, we are telling Python that that parameter will be collecting a
variable number of positional arguments, according to how the
function is called. Within the function, n is a tuple.
Uncomment print(type(n)) to see for yourself and play around with it
for a bit.

Have you noticed how we checked whether n wasn't empty with a simple if n:? This is because
collection objects evaluate to True when non-empty, and otherwise False in Python. This is true
for tuples, sets, lists, dictionaries, and so on.
One other thing to note is that we may want to throw an error when we call the function with no
arguments, instead of silently doing nothing. In this context, we're not concerned about making
this function robust, but in understanding variable positional arguments.

Let's make another example to show you two things that, in my
experience, are confusing to those who are new to this:

arguments.variable.positional.unpacking.py
def func(*args):
 print(args)

values = (1, 3, -7, 9)
func(values) # equivalent to: func((1, 3, -7, 9))
func(*values) # equivalent to: func(1, 3, -7, 9)

Take a good look at the last two lines of the preceding example. In
the first one, we call func with one argument, a four-elements tuple. In
the second example, by using the * syntax, we're doing something
called unpacking, which means that the four-elements tuple is
unpacked, and the function is called with four arguments: 1, 3, -7, 9.

This behavior is part of the magic Python does to allow you to do
amazing things when calling functions dynamically.

Variable keyword arguments
Variable keyword arguments are very similar to variable positional
arguments. The only difference is the syntax (** instead of *) and that
they are collected in a dictionary. Collection and unpacking work in
the same way, so let's look at an example:

arguments.variable.keyword.py
def func(**kwargs):
 print(kwargs)

All calls equivalent. They print: {'a': 1, 'b': 42}
func(a=1, b=42)
func(**{'a': 1, 'b': 42})
func(**dict(a=1, b=42))

All the calls are equivalent in the preceding example. You can see
that adding a ** in front of the parameter name in the function
definition tells Python to use that name to collect a variable number
of keyword parameters. On the other hand, when we call the
function, we can either pass name=value arguments explicitly, or unpack
a dictionary using the same ** syntax.

The reason why being able to pass a variable number of keyword
parameters is so important may not be evident at the moment, so,
how about a more realistic example? Let's define a function that
connects to a database. We want to connect to a default database
by simply calling this function with no parameters. We also want to
connect to any other database by passing the function the
appropriate arguments. Before you read on, try to spend a couple of
minutes figuring out a solution by yourself:

arguments.variable.db.py
def connect(**options):
 conn_params = {
 'host': options.get('host', '127.0.0.1'),
 'port': options.get('port', 5432),
 'user': options.get('user', ''),
 'pwd': options.get('pwd', ''),
 }

 print(conn_params)
 # we then connect to the db (commented out)
 # db.connect(**conn_params)

connect()
connect(host='127.0.0.42', port=5433)
connect(port=5431, user='fab', pwd='gandalf')

Note that in the function, we can prepare a dictionary of connection
parameters (conn_params) using default values as fallbacks, allowing
them to be overwritten if they are provided in the function call. There
are better ways to do this with fewer lines of code, but we're not
concerned with that right now. Running the preceding code yields the
following result:

$ python arguments.variable.db.py
{'host': '127.0.0.1', 'port': 5432, 'user': '', 'pwd': ''}
{'host': '127.0.0.42', 'port': 5433, 'user': '', 'pwd': ''}
{'host': '127.0.0.1', 'port': 5431, 'user': 'fab', 'pwd': 'gandalf'}

Note the correspondence between the function calls and the output.
Notice how default values are overridden according to what was
passed to the function.

Keyword-only arguments
Python 3 allows for a new type of parameter: the keyword-only
parameter. We are going to study them only briefly as their use
cases are not that frequent. There are two ways of specifying them,
either after the variable positional arguments, or after a bare *. Let's
see an example of both:

arguments.keyword.only.py
def kwo(*a, c):
 print(a, c)

kwo(1, 2, 3, c=7) # prints: (1, 2, 3) 7
kwo(c=4) # prints: () 4
kwo(1, 2) # breaks, invalid syntax, with the following error
TypeError: kwo() missing 1 required keyword-only argument: 'c'

def kwo2(a, b=42, *, c):
 print(a, b, c)

kwo2(3, b=7, c=99) # prints: 3 7 99
kwo2(3, c=13) # prints: 3 42 13
kwo2(3, 23) # breaks, invalid syntax, with the following error
TypeError: kwo2() missing 1 required keyword-only argument: 'c'

As anticipated, the function, kwo, takes a variable number of positional
arguments (a) and a keyword-only one, c. The results of the calls are
straightforward and you can uncomment the third call to see what
error Python returns.

The same applies to the function, kwo2, which differs from kwo in that it
takes a positional argument, a, a keyword argument, b, and then a
keyword-only one, c. You can uncomment the third call to see the
error.

Now that you know how to specify different types of input
parameters, let's see how you can combine them in function
definitions.

Combining input parameters
You can combine input parameters, as long as you follow these
ordering rules:

When defining a function, normal positional arguments come
first (name), then any default arguments (name=value), then the
variable positional arguments (*name or simply *), then any
keyword-only arguments (either name or name=value form is good),
and then any variable keyword arguments (**name).

On the other hand, when calling a function, arguments must be
given in the following order: positional arguments first (value),
then any combination of keyword arguments (name=value), variable
positional arguments (*name), and then variable keyword
arguments (**name).

Since this can be a bit tricky when left hanging in the theoretical
world, let's look at a couple of quick examples:

arguments.all.py
def func(a, b, c=7, *args, **kwargs):
 print('a, b, c:', a, b, c)
 print('args:', args)
 print('kwargs:', kwargs)

func(1, 2, 3, *(5, 7, 9), **{'A': 'a', 'B': 'b'})
func(1, 2, 3, 5, 7, 9, A='a', B='b') # same as previous one

Note the order of the parameters in the function definition, and that
the two calls are equivalent. In the first one, we're using the
unpacking operators for iterables and dictionaries, while in the
second one we're using a more explicit syntax. The execution of this
yields the following (I printed only the result of one call, the other one
being the same):

$ python arguments.all.py
a, b, c: 1 2 3

args: (5, 7, 9)
kwargs: {'A': 'a', 'B': 'b'}

Let's now look at an example with keyword-only arguments:

arguments.all.kwonly.py
def func_with_kwonly(a, b=42, *args, c, d=256, **kwargs):
 print('a, b:', a, b)
 print('c, d:', c, d)
 print('args:', args)
 print('kwargs:', kwargs)

both calls equivalent
func_with_kwonly(3, 42, c=0, d=1, *(7, 9, 11), e='E', f='F')
func_with_kwonly(3, 42, *(7, 9, 11), c=0, d=1, e='E', f='F')

Note that I have highlighted the keyword-only arguments in the
function declaration. They come after the *args variable positional
argument, and it would be the same if they came right after a single *
(in which case there wouldn't be a variable positional argument).

The execution of this yields the following (I printed only the result of
one call):

$ python arguments.all.kwonly.py
a, b: 3 42
c, d: 0 1
args: (7, 9, 11)
kwargs: {'e': 'E', 'f': 'F'}

One other thing to note is the names I gave to the variable positional
and keyword arguments. You're free to choose differently, but be
aware that args and kwargs are the conventional names given to these
parameters, at least generically.

Additional unpacking
generalizations
One of the recent new features, introduced in Python 3.5, is the
ability to extend the iterable (*) and dictionary (**) unpacking
operators to allow unpacking in more positions, an arbitrary number
of times, and in additional circumstances. I'll present you with an
example concerning function calls:

additional.unpacking.py
def additional(*args, **kwargs):
 print(args)
 print(kwargs)

args1 = (1, 2, 3)
args2 = [4, 5]
kwargs1 = dict(option1=10, option2=20)
kwargs2 = {'option3': 30}
additional(*args1, *args2, **kwargs1, **kwargs2)

In the previous example, we defined a simple function that prints its
input arguments, args and kwargs. The new feature lies in the way we
call this function. Notice how we can unpack multiple iterables and
dictionaries, and they are correctly coalesced under args and kwargs.
The reason why this feature is important is that it allows us not to
have to merge args1 with args2, and kwargs1 with kwargs2 in the code.
Running the code produces:

$ python additional.unpacking.py
(1, 2, 3, 4, 5)
{'option1': 10, 'option2': 20, 'option3': 30}

Please refer to PEP 448 (https://www.python.org/dev/peps/pep-0448/) to learn
the full extent of this new feature and see further examples.

https://www.python.org/dev/peps/pep-0448/

Avoid the trap! Mutable defaults
One thing to be very aware of with Python is that default values are
created at def time, therefore, subsequent calls to the same function
will possibly behave differently according to the mutability of their
default values. Let's look at an example:

arguments.defaults.mutable.py
def func(a=[], b={}):
 print(a)
 print(b)
 print('#' * 12)
 a.append(len(a)) # this will affect a's default value
 b[len(a)] = len(a) # and this will affect b's one

func()
func()
func()

Both parameters have mutable default values. This means that, if
you affect those objects, any modification will stick around in
subsequent function calls. See if you can understand the output of
those calls:

$ python arguments.defaults.mutable.py
[]
{}
############
[0]
{1: 1}
############
[0, 1]
{1: 1, 2: 2}
############

It's interesting, isn't it? While this behavior may seem very weird at
first, it actually makes sense, and it's very handy, for example, when
using memoization techniques (Google an example of that, if you're
interested). Even more interesting is what happens when, between
the calls, we introduce one that doesn't use defaults, such as this:

arguments.defaults.mutable.intermediate.call.py
func()

func(a=[1, 2, 3], b={'B': 1})
func()

When we run this code, this is the output:

$ python arguments.defaults.mutable.intermediate.call.py
[]
{}
############
[1, 2, 3]
{'B': 1}
############
[0]
{1: 1}
############

This output shows us that the defaults are retained even if we call
the function with other values. One question that comes to mind is,
how do I get a fresh empty value every time? Well, the convention is
the following:

arguments.defaults.mutable.no.trap.py
def func(a=None):
 if a is None:
 a = []
 # do whatever you want with `a` ...

Note that, by using the preceding technique, if a isn't passed when
calling the function, you always get a brand new, empty list.

Okay, enough with the input, let's look at the other side of the coin,
the output.

Return values
The return values of functions are one of those things where Python
is ahead of most other languages. Functions are usually allowed to
return one object (one value) but, in Python, you can return a tuple,
and this implies that you can return whatever you want. This feature
allows a coder to write software that would be much harder to write
in any other language, or certainly more tedious. We've already said
that to return something from a function we need to use the return
statement, followed by what we want to return. There can be as
many return statements as needed in the body of a function.

On the other hand, if within the body of a function we don't return
anything, or we invoke a bare return statement, the function will return
None. This behavior is harmless and, even though I don't have the
room here to go into detail explaining why Python was designed like
this, let me just tell you that this feature allows for several interesting
patterns, and confirms Python as a very consistent language.

I say it's harmless because you are never forced to collect the result
of a function call. I'll show you what I mean with an example:

return.none.py
def func():
 pass
func() # the return of this call won't be collected. It's lost.
a = func() # the return of this one instead is collected into `a`
print(a) # prints: None

Note that the whole body of the function is composed only of the pass
statement. As the official documentation tells us, pass is a null
operation. When it is executed, nothing happens. It is useful as a
placeholder when a statement is required syntactically, but no code
needs to be executed. In other languages, we would probably just
indicate that with a pair of curly brackets ({}), which define an empty

scope, but in Python, a scope is defined by indenting code, therefore
a statement such as pass is necessary.

Notice also that the first call of the func function returns a value (None)
which we don't collect. As I said before, collecting the return value of
a function call is not mandatory.

Now, that's good but not very interesting so, how about we write an
interesting function? Remember that in Chapter 1, A Gentle
Introduction to Python, we talked about the factorial of a function.
Let's write our own here (for simplicity, I will assume the function is
always called correctly with appropriate values so I won't sanity-
check the input argument):

return.single.value.py
def factorial(n):
 if n in (0, 1):
 return 1
 result = n
 for k in range(2, n):
 result *= k
 return result

f5 = factorial(5) # f5 = 120

Note that we have two points of return. If n is either 0 or 1 (in Python
it's common to use the in type of check, as I did instead of the more
verbose if n == 0 or n == 1:), we return 1. Otherwise, we perform the
required calculation and we return result. Let's try to write this
function a little bit more succinctly:

return.single.value.2.py
from functools import reduce
from operator import mul

def factorial(n):
 return reduce(mul, range(1, n + 1), 1)

f5 = factorial(5) # f5 = 120

I know what you're thinking: one line? Python is elegant, and
concise! I think this function is readable even if you have never seen
reduce or mul, but if you can't read it or understand it, set aside a few

minutes and do some research on the Python documentation until its
behavior is clear to you. Being able to look up functions in the
documentation and understand code written by someone else is a
task every developer needs to be able to perform, so take this as a
challenge.

To this end, make sure you look up the help function, which proves quite helpful when exploring
with the console.

Returning multiple values
Unlike in most other languages, in Python it's very easy to return
multiple objects from a function. This feature opens up a whole world
of possibilities and allows you to code in a style that is hard to
reproduce with other languages. Our thinking is limited by the tools
we use, therefore when Python gives you more freedom than other
languages, it is actually boosting your own creativity as well. To
return multiple values is very easy, you just use tuples (either
explicitly or implicitly). Let's look at a simple example that mimics the
divmod built-in function:

return.multiple.py
def moddiv(a, b):
 return a // b, a % b

print(moddiv(20, 7)) # prints (2, 6)

I could have wrapped the highlighted part in the preceding code in
brackets, making it an explicit tuple, but there's no need for that. The
preceding function returns both the result and the remainder of the
division, at the same time.

In the source code for this example, I have left a simple example of a test function to make sure
my code is doing the correct calculation.

A few useful tips
When writing functions, it's very useful to follow guidelines so that
you write them well. I'll quickly point some of them out:

Functions should do one thing: Functions that do one thing
are easy to describe in one short sentence. Functions that do
multiple things can be split into smaller functions that do one
thing. These smaller functions are usually easier to read and
understand. Remember the data science example we saw a few
pages ago.
Functions should be small: The smaller they are, the easier it
is to test them and to write them so that they do one thing.
The fewer input parameters, the better: Functions that take a
lot of arguments quickly become harder to manage (among
other issues).
Functions should be consistent in their return values:
Returning False or None is not the same thing, even if within a
Boolean context they both evaluate to False. False means that we
have information (False), while None means that there is no
information. Try writing functions that return in a consistent way,
no matter what happens in their body.
Functions shouldn't have side effects: In other words,
functions should not affect the values you call them with. This is
probably the hardest statement to understand at this point, so I'll
give you an example using lists. In the following code, note how
numbers is not sorted by the sorted function, which actually returns a
sorted copy of numbers. Conversely, the list.sort() method is acting
on the numbers object itself, and that is fine because it is a method
(a function that belongs to an object and therefore has the rights
to modify it):

>>> numbers = [4, 1, 7, 5]
>>> sorted(numbers) # won't sort the original `numbers` list
[1, 4, 5, 7]
>>> numbers # let's verify
[4, 1, 7, 5] # good, untouched

>>> numbers.sort() # this will act on the list
>>> numbers
[1, 4, 5, 7]

Follow these guidelines and you'll write better functions, which will
serve you well.

Recursive functions
When a function calls itself to produce a result, it is said to be
recursive. Sometimes recursive functions are very useful in that
they make it easier to write code. Some algorithms are very easy to
write using the recursive paradigm, while others are not. There is no
recursive function that cannot be rewritten in an iterative fashion, so
it's usually up to the programmer to choose the best approach for the
case at hand.

The body of a recursive function usually has two sections: one where
the return value depends on a subsequent call to itself, and one
where it doesn't (called a base case).

As an example, we can consider the (hopefully familiar by now)
factorial function, N!. The base case is when N is either 0 or 1. The
function returns 1 with no need for further calculation. On the other
hand, in the general case, N! returns the product 1 * 2 * ... * (N-1) *
N. If you think about it, N! can be rewritten like this: N! = (N-1)! * N.
As a practical example, consider 5! = 1 * 2 * 3 * 4 * 5 = (1 * 2 * 3 * 4)
* 5 = 4! * 5.

Let's write this down in code:

recursive.factorial.py
def factorial(n):
 if n in (0, 1): # base case
 return 1
 return factorial(n - 1) * n # recursive case

When writing recursive functions, always consider how many nested calls you make, since there
is a limit. For further information on this, check out sys.getrecursionlimit() and
sys.setrecursionlimit().

Recursive functions are used a lot when writing algorithms and they
can be really fun to write. As an exercise, try to solve a couple of
simple problems using both a recursive and an iterative approach.

Anonymous functions
One last type of functions that I want to talk about are anonymous
functions. These functions, which are called lambdas in Python, are
usually used when a fully-fledged function with its own name would
be overkill, and all we want is a quick, simple one-liner that does the
job.

Imagine that you want a list of all the numbers up to N that are
multiples of five. Imagine that you want to filter those out using the
filter function, which takes a function and an iterable and constructs
a filter object that you can iterate on, from those elements of
iterables for which the function returns True. Without using an
anonymous function, you would do something like this:

filter.regular.py
def is_multiple_of_five(n):
 return not n % 5

def get_multiples_of_five(n):
 return list(filter(is_multiple_of_five, range(n)))

Note how we use is_multiple_of_five to filter the first n natural numbers.
This seems a bit excessive, the task is simple and we don't need to
keep the is_multiple_of_five function around for anything else. Let's
rewrite it using a lambda function:

filter.lambda.py
def get_multiples_of_five(n):
 return list(filter(lambda k: not k % 5, range(n)))

The logic is exactly the same but the filtering function is now a
lambda. Defining a lambda is very easy and follows this form:
func_name = lambda [parameter_list]: expression. A function object is returned,
which is equivalent to this: def func_name([parameter_list]): return expression.

Note that optional parameters are indicated following the common syntax of wrapping them in
square brackets.

Let's look at another couple of examples of equivalent functions
defined in the two forms:

lambda.explained.py
example 1: adder
def adder(a, b):
 return a + b

is equivalent to:
adder_lambda = lambda a, b: a + b

example 2: to uppercase
def to_upper(s):
 return s.upper()

is equivalent to:
to_upper_lambda = lambda s: s.upper()

The preceding examples are very simple. The first one adds two
numbers, and the second one produces the uppercase version of a
string. Note that I assigned what is returned by the lambda expressions
to a name (adder_lambda, to_upper_lambda), but there is no need for that
when you use lambdas in the way we did in the filter example.

Function attributes
Every function is a fully-fledged object and, as such, they have many
attributes. Some of them are special and can be used in an
introspective way to inspect the function object at runtime. The
following script is an example that shows a part of them and how to
display their value for an example function:

func.attributes.py
def multiplication(a, b=1):
 """Return a multiplied by b. """
 return a * b

special_attributes = [
 "__doc__", "__name__", "__qualname__", "__module__",
 "__defaults__", "__code__", "__globals__", "__dict__",
 "__closure__", "__annotations__", "__kwdefaults__",
]

for attribute in special_attributes:
 print(attribute, '->', getattr(multiplication, attribute))

I used the built-in getattr function to get the value of those attributes.
getattr(obj, attribute) is equivalent to obj.attribute and comes in handy
when we need to get an attribute at runtime using its string name.
Running this script yields:

$ python func.attributes.py
__doc__ -> Return a multiplied by b.
__name__ -> multiplication
__qualname__ -> multiplication
__module__ -> __main__
__defaults__ -> (1,)
__code__ -> <code object multiplication at 0x10caf7660, file
"func.attributes.py", line 1>
__globals__ -> {...omitted...}
__dict__ -> {}

__closure__ -> None
__annotations__ -> {}
__kwdefaults__ -> None

I have omitted the value of the __globals__ attribute, as it was too big.
An explanation of the meaning of this attribute can be found in the

Callable types section of the Python Data Model documentation
page (https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarc
hy). Should you want to see all the attributes of an object, just
call dir(object_name) and you'll be given the list of all of its attributes.

https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy

Built-in functions
Python comes with a lot of built-in functions. They are available
anywhere and you can get a list of them by inspecting the builtins
module with dir(__builtins__), or by going to the official Python
documentation. Unfortunately, I don't have the room to go through all
of them here. We've already seen some of them, such as any, bin, bool,
divmod, filter, float, getattr, id, int, len, list, min, print, set, tuple, type, and
zip, but there are many more, which you should read at least once.
Get familiar with them, experiment, write a small piece of code for
each of them, and make sure you have them at your finger tips so
that you can use them when you need them.

One final example
Before we finish off this chapter, how about one last example? I was
thinking we could write a function to generate a list of prime numbers
up to a limit. We've already seen the code for this so let's make it a
function and, to keep it interesting, let's optimize it a bit.

It turns out that you don't need to divide it by all numbers from 2 to
N-1 to decide whether a number, N, is prime. You can stop at √N.
Moreover, you don't need to test the division for all numbers from 2
to √N, you can just use the primes in that range. I'll leave it to you to
figure out why this works, if you're interested. Let's see how the code
changes:

primes.py
from math import sqrt, ceil

def get_primes(n):
 """Calculate a list of primes up to n (included). """
 primelist = []
 for candidate in range(2, n + 1):
 is_prime = True
 root = ceil(sqrt(candidate)) # division limit
 for prime in primelist: # we try only the primes
 if prime > root: # no need to check any further
 break
 if candidate % prime == 0:
 is_prime = False
 break
 if is_prime:
 primelist.append(candidate)
 return primelist

The code is the same as in the previous chapter. We have changed
the division algorithm so that we only test divisibility using the
previously calculated primes and we stopped once the testing divisor
was greater than the root of the candidate. We used
the primelist result list to get the primes for the division. We calculated
the root value using a fancy formula, the integer value of the ceiling
of the root of the candidate. While a simple int(k ** 0.5) + 1 would
have served our purpose as well, the formula I chose is cleaner and

requires me to use a couple of imports, which I wanted to show you.
Check out the functions in the math module, they are very interesting!

Documenting your code
I'm a big fan of code that doesn't need documentation. When you
program correctly, choose the right names and take care of the
details, your code should come out as self-explanatory and
documentation should not be needed. Sometimes a comment is very
useful though, and so is some documentation. You can find the
guidelines for documenting Python in PEP 257 - Docstring
conventions (https://www.python.org/dev/peps/pep-0257/), but I'll show you the
basics here.

Python is documented with strings, which are aptly called
docstrings. Any object can be documented, and you can use either
one-line or multiline docstrings. One-liners are very simple. They
should not provide another signature for the function, but clearly
state its purpose:

docstrings.py
def square(n):
 """Return the square of a number n. """
 return n ** 2

def get_username(userid):
 """Return the username of a user given their id. """
 return db.get(user_id=userid).username

Using triple double-quoted strings allows you to expand easily later
on. Use sentences that end in a period, and don't leave blank lines
before or after.

Multiline comments are structured in a similar way. There should be
a one-liner that briefly gives you the gist of what the object is about,
and then a more verbose description. As an example, I have
documented a fictitious connect function, using the Sphinx notation, in
the following example:

def connect(host, port, user, password):
 """Connect to a database.

https://www.python.org/dev/peps/pep-0257/

 Connect to a PostgreSQL database directly, using the given
 parameters.

 :param host: The host IP.
 :param port: The desired port.
 :param user: The connection username.
 :param password: The connection password.
 :return: The connection object.
 """
 # body of the function here...
 return connection

Sphinx is probably the most widely used tool for creating Python documentation. In fact, the
official Python documentation was written with it. It's definitely worth spending some time
checking it out.

Importing objects
Now that you know a lot about functions, let's look at how to use
them. The whole point of writing functions is to be able to reuse them
later, and in Python, this translates to importing them into the
namespace where you need them. There are many different ways to
import objects into a namespace, but the most common ones
are import module_name and from module_name import function_name. Of course,
these are quite simplistic examples, but bear with me for the time
being.

The import module_name form finds the module_name module and defines a
name for it in the local namespace where the import statement is
executed. The from module_name import identifier form is a little bit more
complicated than that, but basically does the same thing. It finds
module_name and searches for an attribute (or a submodule) and stores
a reference to identifier in the local namespace.

Both forms have the option to change the name of the imported
object using the as clause:

from mymodule import myfunc as better_named_func

Just to give you a flavor of what importing looks like, here's an
example from a test module of one of my projects (notice that the
blank lines between blocks of imports follow the guidelines from PEP
8 at https://www.python.org/dev/peps/pep-0008/#imports: standard library, third
party, and local code):

from datetime import datetime, timezone # two imports on the same line
from unittest.mock import patch # single import

import pytest # third party library

from core.models import (# multiline import
 Exam,
 Exercise,

https://www.python.org/dev/peps/pep-0008/#imports

 Solution,
)

When you have a structure of files starting in the root of your project,
you can use the dot notation to get to the object you want to import
into your current namespace, be it a package, a module, a class, a
function, or anything else. The from module import syntax also allows a
catch-all clause, from module import *, which is sometimes used to get all
the names from a module into the current namespace at once, but
it's frowned upon for several reasons, such as performance and the
risk of silently shadowing other names. You can read all that there is
to know about imports in the official Python documentation but,
before we leave the subject, let me give you a better example.

Imagine that you have defined a couple of functions: square(n) and
cube(n) in a module, funcdef.py, which is in the lib folder. You want to
use them in a couple of modules that are at the same level of the lib
folder, called func_import.py and func_from.py. Showing the tree structure
of that project produces something like this:

├── func_from.py
├── func_import.py
├── lib
 ├── funcdef.py
 └── __init__.py

Before I show you the code of each module, please remember that
in order to tell Python that it is actually a package, we need to put a
__init__.py module in it.

There are two things to note about the __init__.py file. First of all, it is a fully-fledged Python
module so you can put code into it as you would with any other module. Second, as of Python
3.3, its presence is no longer required to make a folder be interpreted as a Python package.

The code is as follows:

funcdef.py
def square(n):
 return n ** 2
def cube(n):
 return n ** 3

func_import.py

import lib.funcdef
print(lib.funcdef.square(10))
print(lib.funcdef.cube(10))

func_from.py
from lib.funcdef import square, cube
print(square(10))
print(cube(10))

Both these files, when executed, print 100 and 1000. You can see how
differently we then access the square and cube functions, according to
how and what we imported in the current scope.

Relative imports
The imports we've seen so far are called absolute, that is, they
define the whole path of the module that we want to import, or from
which we want to import an object. There is another way of importing
objects into Python, which is called a relative import. It's helpful in
situations where we want to rearrange the structure of large
packages without having to edit sub-packages, or when we want to
make a module inside a package able to import itself. Relative
imports are done by adding as many leading dots in front of the
module as the number of folders we need to backtrack, in order to
find what we're searching for. Simply put, it is something such as
this:

from .mymodule import myfunc

For a complete explanation of relative imports, refer to PEP 328 (http
s://www.python.org/dev/peps/pep-0328/).

https://www.python.org/dev/peps/pep-0328/

Summary
In this chapter, we explored the world of functions. They are
extremely important and, from now on, we'll use them basically
everywhere. We talked about the main reasons for using them, the
most important of which are code reuse and implementation hiding.

We saw that a function object is like a box that takes optional inputs
and produces outputs. We can feed input values to a function in
many different ways, using positional and keyword arguments, and
using variable syntax for both types.

Now you should know how to write a function, document it, import it
into your code, and call it.

In the next chapter, we're going to see how to deal with files and how
to persist data in several different ways and formats.

Files and Data Persistence
"Persistence is the key to the adventure we call life."

 – Torsten Alexander Lange

In the previous chapters, we have explored several different aspects
of Python. As the examples have a didactic purpose, we've run them
in a simple Python shell, or in the form of a Python module. They
ran, maybe printed something on the console, and then they
terminated, leaving no trace of their brief existence.

Real-world applications though are generally much different.
Naturally, they still run in memory, but they interact with networks,
disks, and databases. They also exchange information with other
applications and devices, using formats that are suitable for the
situation.

In this chapter, we are going to start closing in to the real world by
exploring the following:

Files and directories
Compression
Networks and streams
The JSON data-interchange format
Data persistence with pickle and shelve, from the standard
library
Data persistence with SQLAlchemy

As usual, I will try to balance breadth and depth, so that by the end
of the chapter, you will have a solid grasp of the fundamentals and
will know how to fetch further information on the web.

Working with files and
directories
When it comes to files and directories, Python offers plenty of useful
tools. In particular, in the following examples, we will leverage
the os and shutil modules. As we'll be reading and writing on the disk,
I will be using a file, fear.txt, which contains an excerpt from Fear, by
Thich Nhat Hanh, as a guinea pig for some of our examples.

Opening files
Opening a file in Python is very simple and intuitive. In fact, we just
need to use the open function. Let's see a quick example:

files/open_try.py
fh = open('fear.txt', 'rt') # r: read, t: text

for line in fh.readlines():
 print(line.strip()) # remove whitespace and print

fh.close()

The previous code is very simple. We call open, passing the filename,
and telling open that we want to read it in text mode. There is no path
information before the filename; therefore, open will assume the file is
in the same folder the script is run from. This means that if we run
this script from outside the files folder, then fear.txt won't be found.

Once the file has been opened, we obtain a file object back, fh,
which we can use to work on the content of the file. In this case, we
use the readlines() method to iterate over all the lines in the file, and
print them. We call strip() on each line to get rid of any extra spaces
around the content, including the line termination character at the
end, since print will already add one for us. This is a quick and dirty
solution that works in this example, but should the content of the file
contain meaningful spaces that need to be preserved, you will have
to be slightly more careful in how you sanitize the data. At the end of
the script, we flush and close the stream.

Closing a file is very important, as we don't want to risk failing to
release the handle we have on it. Therefore, we need to apply some
precaution, and wrap the previous logic in a try/finally block. This has
the effect that, whatever error might occur while we try to open and
read the file, we can rest assured that close() will be called:

files/open_try.py
try:
 fh = open('fear.txt', 'rt')
 for line in fh.readlines():
 print(line.strip())
finally:
 fh.close()

The logic is exactly the same, but now it is also safe.

Don't worry if you don't understand try/finally for now. We will explore how to deal with
exceptions in a later chapter. For now, suffice to say that putting code within the body of a try
block adds a mechanism around that code that allows us to detect errors (which are
called exceptions) and decide what to do if they happen. In this case, we don't really do anything
in case of errors, but by closing the file within the finally block, we make sure that line is
executed whether or not any error has happened.

We can simplify the previous example this way:

files/open_try.py
try:
 fh = open('fear.txt') # rt is default
 for line in fh: # we can iterate directly on fh
 print(line.strip())
finally:
 fh.close()

As you can see, rt is the default mode for opening files, so we don't
need to specify it. Moreover, we can simply iterate on fh, without
explicitly calling readlines() on it. Python is very nice and gives us
shorthands to make our code shorter and simpler to read.

All the previous examples produce a print of the file on the console
(check out the source code to read the whole content):

An excerpt from Fear - By Thich Nhat Hanh

The Present Is Free from Fear

When we are not fully present, we are not really living. We’re not really
there, either for our loved ones or for ourselves. If we’re not there,
then where are we? We are running, running, running, even during our
sleep. We run because we’re trying to escape from our fear.
...

Using a context manager to
open a file
Let's admit it: the prospect of having to disseminate our code
with try/finally blocks is not one of the best. As usual, Python gives
us a much nicer way to open a file in a secure fashion: by using a
context manager. Let's see the code first:

files/open_with.py
with open('fear.txt') as fh:
 for line in fh:
 print(line.strip())

The previous example is equivalent to the one before it, but reads so
much better. The with statement supports the concept of a runtime
context defined by a context manager. This is implemented using a
pair of methods, __enter__ and __exit__, that allow user-defined classes
to define a runtime context that is entered before the statement body
is executed and exited when the statement ends. The open function is
capable of producing a file object when invoked by a context
manager, but the true beauty of it lies in the fact that fh.close() will be
called automatically for us, even in case of errors.

Context managers are used in several different scenarios, such
as thread synchronization, closure of files or other objects, and
management of network and database connections. You can find
information about them in the contextlib documentation page (https://do
cs.python.org/3.7/library/contextlib.html).

https://docs.python.org/3.7/library/contextlib.html

Reading and writing to a file
Now that we know how to open a file, let's see a couple of different
ways that we have to read and write to it:

files/print_file.py
with open('print_example.txt', 'w') as fw:
 print('Hey I am printing into a file!!!', file=fw)

A first approach uses the print function, which you've seen plenty of
times in the previous chapters. After obtaining a file object, this time
specifying that we intend to write to it ("w"), we can tell the call to print
to direct its effects on the file, instead of the default sys.stdout, which,
when executed on a console, is mapped to it.

The previous code has the effect of creating the print_example.txt file if
it doesn't exist, or truncate it in case it does, and writes the line Hey I
am printing into a file!!! to it.

This is all nice and easy, but not what we typically do when we want
to write to a file. Let's see a much more common approach:

files/read_write.py
with open('fear.txt') as f:
 lines = [line.rstrip() for line in f]

with open('fear_copy.txt', 'w') as fw:
 fw.write('\n'.join(lines))

In the previous example, we first open fear.txt and collect its content
into a list, line by line. Notice that this time, I'm calling a more precise
method, rstrip(), as an example, to make sure I only strip the
whitespace on the right-hand side of every line.

In the second part of the snippet, we create a new file, fear_copy.txt,
and we write to it all the lines from the original file, joined by a
newline, \n. Python is gracious and works by default with universal
newlines, which means that even though the original file might have

a newline that is different than \n, it will be translated automatically
for us before the line is returned. This behavior is, of course,
customizable, but normally it is exactly what you want. Speaking of
newlines, can you think of one of them that might be missing in the
copy?

Reading and writing in binary
mode
Notice that by opening a file passing t in the options (or omitting it,
as it is the default), we're opening the file in text mode. This means
that the content of the file is treated and interpreted as text. If you
wish to write bytes to a file, you can open it in binary mode. This is a
common requirement when you deal with files that don't just contain
raw text, such as images, audio/video, and, in general, any other
proprietary format.

In order to handle files in binary mode, simply specify the b flag when
opening them, as in the following example:

files/read_write_bin.py
with open('example.bin', 'wb') as fw:
 fw.write(b'This is binary data...')

with open('example.bin', 'rb') as f:
 print(f.read()) # prints: b'This is binary data...'

In this example, I'm still using text as binary data, but it could be
anything you want. You can see it's treated as a binary by the fact
that you get the b'This ...' prefix in the output.

Protecting against overriding
an existing file
Python gives us the ability to open files for writing. By using
the w flag, we open a file and truncate its content. This means the file
is overwritten with an empty file, and the original content is lost. If
you wish to only open a file for writing in case it doesn't exist, you
can use the x flag instead, in the following example:

files/write_not_exists.py
with open('write_x.txt', 'x') as fw:
 fw.write('Writing line 1') # this succeeds

with open('write_x.txt', 'x') as fw:
 fw.write('Writing line 2') # this fails

If you run the previous snippet, you will find a file called write_x.txt in
your directory, containing only one line of text. The second part of
the snippet, in fact, fails to execute. This is the output I get on my
console:

$ python write_not_exists.py
Traceback (most recent call last):
 File "write_not_exists.py", line 6, in <module>
 with open('write_x.txt', 'x') as fw:
FileExistsError: [Errno 17] File exists: 'write_x.txt'

Checking for file and directory
existence
If you want to make sure a file or directory exists (or it doesn't),
the os.path module is what you need. Let's see a small example:

files/existence.py
import os

filename = 'fear.txt'
path = os.path.dirname(os.path.abspath(filename))

print(os.path.isfile(filename)) # True
print(os.path.isdir(path)) # True
print(path) # /Users/fab/srv/lpp/ch5/files

The preceding snippet is quite interesting. After declaring the
filename with a relative reference (in that it is missing the path
information), we use abspath to calculate the full, absolute path of the
file. Then, we get the path information (by removing the filename at
the end) by calling dirname on it. The result, as you can see, is printed
on the last line. Notice also how we check for existence, both for a
file and a directory, by calling isfile and isdir. In the os.path
module, you find all the functions you need to work with pathnames.

Should you ever need to work with paths in a different way, you can check out pathlib.
While os.path works with strings, pathlib offers classes representing filesystem paths with
semantics appropriate for different operating systems. It is beyond the scope of this chapter, but if
you're interested, check out PEP428 (https://www.python.org/dev/peps/pep-0428/), and its page
in the standard library.

https://www.python.org/dev/peps/pep-0428/

Manipulating files and
directories
Let's see a couple of quick examples on how to manipulate files and
directories. The first example manipulates the content:

files/manipulation.py
from collections import Counter
from string import ascii_letters

chars = ascii_letters + ' '

def sanitize(s, chars):
 return ''.join(c for c in s if c in chars)

def reverse(s):
 return s[::-1]

with open('fear.txt') as stream:
 lines = [line.rstrip() for line in stream]

with open('raef.txt', 'w') as stream:
 stream.write('\n'.join(reverse(line) for line in lines))

now we can calculate some statistics
lines = [sanitize(line, chars) for line in lines]
whole = ' '.join(lines)
cnt = Counter(whole.lower().split())
print(cnt.most_common(3))

The previous example defines two functions: sanitize and reverse. They
are simple functions whose purpose is to remove anything that is not
a letter or space from a string, and produce the reversed copy of a
string, respectively.

We open fear.txt and we read its content into a list. Then we create a
new file, raef.txt, which will contain the horizontally-mirrored version
of the original one. We write all the content of lines with a single
operation, using join on a new line character. Maybe more
interesting, is the bit in the end. First, we reassign lines to a sanitized
version of itself, by means of list comprehension. Then we put them

together in the whole string, and finally, we pass the result to Counter.
Notice that we split the string and put it in lowercase. This way, each
word will be counted correctly, regardless of its case, and, thanks
to split, we don't need to worry about extra spaces anywhere. When
we print the three most common words, we realize that truly Thich
Nhat Hanh's focus is on others, as we is the most common word in
the text:

$ python manipulation.py
[('we', 17), ('the', 13), ('were', 7)]

Let's now see an example of manipulation more oriented to disk
operations, in which we put the shutil module to use:

files/ops_create.py
import shutil
import os

BASE_PATH = 'ops_example' # this will be our base path
os.mkdir(BASE_PATH)

path_b = os.path.join(BASE_PATH, 'A', 'B')
path_c = os.path.join(BASE_PATH, 'A', 'C')
path_d = os.path.join(BASE_PATH, 'A', 'D')

os.makedirs(path_b)
os.makedirs(path_c)

for filename in ('ex1.txt', 'ex2.txt', 'ex3.txt'):
 with open(os.path.join(path_b, filename), 'w') as stream:
 stream.write(f'Some content here in {filename}\n')

shutil.move(path_b, path_d)

shutil.move(
 os.path.join(path_d, 'ex1.txt'),

 os.path.join(path_d, 'ex1d.txt')
)

In the previous code, we start by declaring a base path, which will
safely contain all the files and folders we're going to create. We then
use makedirs to create two directories: ops_example/A/B and ops_example/A/C.
(Can you think of a way of creating the two directories by using map?).

We use os.path.join to concatenate directory names, as using / would
specialize the code to run on a platform where the directory
separator is /, but then the code would fail on platforms with a
different separator. Let's delegate to join the task to figure out which
is the appropriate separator.

After creating the directories, within a simple for loop, we put some
code that creates three files in directory B. Then, we move the
folder B and its content to a different name: D. And finally, we
rename ex1.txt to ex1d.txt. If you open that file, you'll see it still
contains the original text from the for loop. Calling tree on the result
produces the following:

$ tree ops_example/
ops_example/
└── A
 ├── C
 └── D
 ├── ex1d.txt
 ├── ex2.txt
 └── ex3.txt

Manipulating pathnames
Let's explore a little more the abilities of os.path by means of a simple
example:

files/paths.py
import os

filename = 'fear.txt'
path = os.path.abspath(filename)

print(path)
print(os.path.basename(path))
print(os.path.dirname(path))
print(os.path.splitext(path))
print(os.path.split(path))

readme_path = os.path.join(
 os.path.dirname(path), '..', '..', 'README.rst')

print(readme_path)
print(os.path.normpath(readme_path))

Reading the result is probably a good enough explanation for this
simple example:

/Users/fab/srv/lpp/ch5/files/fear.txt # path
fear.txt # basename
/Users/fab/srv/lpp/ch5/files # dirname
('/Users/fab/srv/lpp/ch5/files/fear', '.txt') # splitext
('/Users/fab/srv/lpp/ch5/files', 'fear.txt') # split
/Users/fab/srv/lpp/ch5/files/../../README.rst # readme_path
/Users/fab/srv/lpp/README.rst # normalized

Temporary files and directories
Sometimes, it's very useful to be able to create a temporary directory
or file when running some code. For example, when writing tests that
affect the disk, you can use temporary files and directories to run
your logic and assert that it's correct, and to be sure that at the end
of the test run, the test folder has no leftovers. Let's see how you do
it in Python:

files/tmp.py
import os
from tempfile import NamedTemporaryFile, TemporaryDirectory

with TemporaryDirectory(dir='.') as td:
 print('Temp directory:', td)
 with NamedTemporaryFile(dir=td) as t:
 name = t.name
 print(os.path.abspath(name))

The preceding example is quite straightforward: we create a
temporary directory in the current one ("."), and we create a named
temporary file in it. We print the filename, as well as its full path:

$ python tmp.py
Temp directory: ./tmpwa9bdwgo
/Users/fab/srv/lpp/ch5/files/tmpwa9bdwgo/tmp3d45hm46

Running this script will produce a different result every time. After all,
it's a temporary random name we're creating here, right?

Directory content
With Python, you can also inspect the content of a directory. I'll show
you two ways of doing this:

files/listing.py
import os

with os.scandir('.') as it:
 for entry in it:
 print(
 entry.name, entry.path,
 'File' if entry.is_file() else 'Folder'
)

This snippet uses os.scandir, called on the current directory. We iterate
on the results, each of which is an instance of os.DirEntry, a nice class
that exposes useful properties and methods. In the code, we access
a subset of those: name, path, and is_file(). Running the code yields the
following (I omitted a few results for brevity):

$ python listing.py
fixed_amount.py ./fixed_amount.py File
existence.py ./existence.py File
...
ops_example ./ops_example Folder
...

A more powerful way to scan a directory tree is given to us by os.walk.
Let's see an example:

files/walking.py
import os

for root, dirs, files in os.walk('.'):
 print(os.path.abspath(root))
 if dirs:
 print('Directories:')
 for dir_ in dirs:
 print(dir_)
 print()
 if files:
 print('Files:')
 for filename in files:

 print(filename)
 print()

Running the preceding snippet will produce a list of all files and
directories in the current one, and it will do the same for each sub-
directory.

File and directory compression
Before we leave this section, let me give you an example of how to
create a compressed file. In the source code of the book, I have two
examples: one creates a ZIP file, while the other one creates a tar.gz
file. Python allows you to create compressed files in several different
ways and formats. Here, I am going to show you how to create the
most common one, ZIP:

files/compression/zip.py
from zipfile import ZipFile

with ZipFile('example.zip', 'w') as zp:
 zp.write('content1.txt')
 zp.write('content2.txt')
 zp.write('subfolder/content3.txt')
 zp.write('subfolder/content4.txt')

with ZipFile('example.zip') as zp:
 zp.extract('content1.txt', 'extract_zip')
 zp.extract('subfolder/content3.txt', 'extract_zip')

In the preceding code, we import ZipFile, and then, within a context
manager, we write into it four dummy context files (two of which are
in a sub-folder, to show ZIP preserves the full path). Afterwards, as
an example, we open the compressed file and extract a couple of
files from it, into the extract_zip directory. If you are interested in
learning more about data compression, make sure you check out
the Data Compression and Archiving section on the standard library
(https://docs.python.org/3.7/library/archiving.html), where you'll be able to
learn all about this topic.

https://docs.python.org/3.7/library/archiving.html

Data interchange formats
Modern software architecture tends to split an application into
several components. Whether you embrace the service-oriented
architecture paradigm, or you push it even further into the
microservices realm, these components will have to exchange data.
But even if you are coding a monolithic application, whose code
base is contained in one project, chances are that you have to still
exchange data with APIs, other programs, or simply handle the data
flow between the frontend and the backend part of your website,
which very likely won't speak the same language.

Choosing the right format in which to exchange information is crucial.
A language-specific format has the advantage that the language
itself is very likely to provide you with all the tools to make
serialization and deserialization a breeze. However, you will lose the
ability to talk to other components that have been written in different
versions of the same language, or in different languages altogether.
Regardless of what the future looks like, going with a language-
specific format should only be done if it is the only possible choice
for the given situation.

A much better approach is to choose a format that is language
agnostic, and can be spoken by all (or at least most) languages. In
the team I lead, we have people from England, Poland, South Africa,
Spain, Greece, India, Italy, to mention just a few. We all speak
English, so regardless of our native tongue, we can all understand
each other (well... mostly!).

In the software world, some popular formats have become the de
facto standard over recent years. The most famous ones probably
are XML, YAML, and JSON. The Python standard library features
the xml and json modules, and, on PyPI (https://docs.python.org/3.7/library/

https://docs.python.org/3.7/library/archiving.html

archiving.html), you can find a few different packages to work with
YAML.

In the Python environment, JSON is probably the most commonly
used one. It wins over the other two because of being part of the
standard library, and for its simplicity. If you have ever worked with
XML, you know what a nightmare it can be.

https://docs.python.org/3.7/library/archiving.html

Working with JSON
JSON is the acronym of JavaScript Object Notation, and it is a
subset of the JavaScript language. It has been there for almost two
decades now, so it is well known and widely adopted by basically all
languages, even though it is actually language independent. You can
read all about it on its website (https://www.json.org/), but I'm going to
give you a quick introduction to it now.

JSON is based on two structures: a collection of name/value pairs,
and an ordered list of values. You will immediately realize that these
two objects map to the dictionary and list data types in Python,
respectively. As data types, it offers strings, numbers, objects, and
values, such as true, false, and null. Let's see a quick example to get
us started:

json_examples/json_basic.py
import sys
import json

data = {
 'big_number': 2 ** 3141,
 'max_float': sys.float_info.max,
 'a_list': [2, 3, 5, 7],
}

json_data = json.dumps(data)
data_out = json.loads(json_data)
assert data == data_out # json and back, data matches

We begin by importing the sys and json modules. Then we create a
simple dictionary with some numbers inside and a list. I wanted to
test serializing and deserializing using very big numbers, both int
and float, so I put 23141 and whatever is the biggest floating point
number my system can handle.

We serialize with json.dumps, which takes data and converts it into a
JSON formatted string. That data is then fed into json.loads, which
does the opposite: from a JSON formatted string, it reconstructs the

https://www.json.org/

data into Python. On the last line, we make sure that the original
data and the result of the serialization/deserialization through JSON
match.

Let's see, in the next example, what JSON data would look like if we
printed it:

json_examples/json_basic.py
import json

info = {
 'full_name': 'Sherlock Holmes',
 'address': {
 'street': '221B Baker St',
 'zip': 'NW1 6XE',
 'city': 'London',
 'country': 'UK',
 }
}

print(json.dumps(info, indent=2, sort_keys=True))

In this example, we create a dictionary with Sherlock Holmes' data in
it. If, like me, you're a fan of Sherlock Holmes, and are in London,
you'll find his museum at that address (which I recommend visiting,
it's small but very nice).

Notice how we call json.dumps, though. We have told it to indent with
two spaces, and sort keys alphabetically. The result is this:

$ python json_basic.py
{
 "address": {
 "city": "London",
 "country": "UK",
 "street": "221B Baker St",
 "zip": "NW1 6XE"
 },
 "full_name": "Sherlock Holmes"
}

The similarity with Python is huge. The one difference is that if you
place a comma on the last element in a dictionary, like I've done in
Python (as it is customary), JSON will complain.

Let me show you something interesting:

json_examples/json_tuple.py
import json

data_in = {
 'a_tuple': (1, 2, 3, 4, 5),
}

json_data = json.dumps(data_in)
print(json_data) # {"a_tuple": [1, 2, 3, 4, 5]}
data_out = json.loads(json_data)
print(data_out) # {'a_tuple': [1, 2, 3, 4, 5]}

In this example, we have put a tuple, instead of a list. The interesting
bit is that, conceptually, a tuple is also an ordered list of items. It
doesn't have the flexibility of a list, but still, it is considered the same
from the perspective of JSON. Therefore, as you can see by the first
print, in JSON a tuple is transformed into a list. Naturally then, the
information that it was a tuple is lost, and when deserialization
happens, what we have in data_out, a_tuple is actually a list. It is
important that you keep this in mind when dealing with data, as
going through a transformation process that involves a format that
only comprises a subset of the data structures you can use implies
there will be information loss. In this case, we lost the information
about the type (tuple versus list).

This is actually a common problem. For example, you can't serialize
all Python objects to JSON, as it is not clear if JSON should revert
that (or how). Think about datetime, for example. An instance of that
class is a Python object that JSON won't allow serializing. If we
transform it into a string such as 2018-03-04T12:00:30Z, which is the ISO
8601 representation of a date with time and time zone information,
what should JSON do when deserializing? Should it say this is
actually deserializable into a datetime object, so I'd better do it, or
should it simply consider it as a string and leave it as it is? What
about data types that can be interpreted in more than one way?

The answer is that when dealing with data interchange, we often
need to transform our objects into a simpler format prior to serializing
them with JSON. This way, we will know how to reconstruct them
correctly when we deserialize them.

In some cases, though, and mostly for internal use, it is useful to be
able to serialize custom objects, so, just for fun, I'm going to show
you how with two examples: complex numbers (because I love math)
and datetime objects.

Custom encoding/decoding
with JSON
In the JSON world, we can consider terms like encoding/decoding as
synonyms to serializing/deserializing. They basically all mean
transforming to and back from JSON. In the following example, I'm
going to show you how to encode complex numbers:

json_examples/json_cplx.py
import json

class ComplexEncoder(json.JSONEncoder):
 def default(self, obj):
 if isinstance(obj, complex):
 return {
 '_meta': '_complex',
 'num': [obj.real, obj.imag],
 }
 return json.JSONEncoder.default(self, obj)

data = {
 'an_int': 42,
 'a_float': 3.14159265,
 'a_complex': 3 + 4j,
}

json_data = json.dumps(data, cls=ComplexEncoder)
print(json_data)

def object_hook(obj):
 try:
 if obj['_meta'] == '_complex':
 return complex(*obj['num'])
 except (KeyError, TypeError):
 return obj

data_out = json.loads(json_data, object_hook=object_hook)
print(data_out)

We start by defining a ComplexEncoder class, which needs to implement
the default method. This method is passed to all the objects that have
to be serialized, one at a time, in the obj variable. At some point, obj
will be our complex number, 3+4j. When that is true, we return a
dictionary with some custom meta information, and a list that

contains both the real and the imaginary part of the number. That is
all we need to do to avoid losing information for a complex number.

We then call json.dumps, but this time we use the cls argument to
specify our custom encoder. The result is printed:

{"an_int": 42, "a_float": 3.14159265, "a_complex": {"_meta": "_complex",
"num": [3.0, 4.0]}}

Half the job is done. For the deserialization part, we could have
written another class that would inherit from JSONDecoder, but, just for
fun, I've used a different technique that is simpler and uses a small
function: object_hook.

Within the body of object_hook, we find another try block. The important
part is the two lines within the body of the try block itself. The
function receives an object (notice, the function is only called
when obj is a dictionary), and if the metadata matches our convention
for complex numbers, we pass the real and imaginary parts to the
complex function. The try/except block is there only to prevent malformed
JSON from ruining the party (and if that happens, we simply return
the object as it is).

The last print returns:

{'an_int': 42, 'a_float': 3.14159265, 'a_complex': (3+4j)}

You can see that a_complex has been correctly deserialized.

Let's see a slightly more complex (no pun intended) example now:
dealing with datetime objects. I'm going to split the code into two
blocks, the serializing part, and the deserializing afterwards:

json_examples/json_datetime.py
import json
from datetime import datetime, timedelta, timezone

now = datetime.now()
now_tz = datetime.now(tz=timezone(timedelta(hours=1)))

class DatetimeEncoder(json.JSONEncoder):
 def default(self, obj):

 if isinstance(obj, datetime):
 try:
 off = obj.utcoffset().seconds
 except AttributeError:
 off = None

 return {
 '_meta': '_datetime',
 'data': obj.timetuple()[:6] + (obj.microsecond,),
 'utcoffset': off,
 }
 return json.JSONEncoder.default(self, obj)

data = {
 'an_int': 42,
 'a_float': 3.14159265,
 'a_datetime': now,
 'a_datetime_tz': now_tz,
}

json_data = json.dumps(data, cls=DatetimeEncoder)
print(json_data)

The reason why this example is slightly more complex lies in the fact
that datetime objects in Python can be time zone aware or not;
therefore, we need to be more careful. The flow is basically the same
as before, only it is dealing with a different data type. We start by
getting the current date and time information, and we do it both
without (now) and with (now_tz) time zone awareness, just to make sure
our script works. We then proceed to define a custom encoder as
before, and we implement once again the default method. The
important bits in that method are how we get the time zone offset
(off) information, in seconds, and how we structure the dictionary
that returns the data. This time, the metadata says it's a datetime
information, and then we save the first six items in the time tuple
(year, month, day, hour, minute, and second), plus the microseconds
in the data key, and the offset after that. Could you tell that the value
of data is a concatenation of tuples? Good job if you could!

When we have our custom encoder, we proceed to create some
data, and then we serialize. The print statement returns (after I've
done some prettifying):

{
 "a_datetime": {

 "_meta": "_datetime",
 "data": [2018, 3, 18, 17, 57, 27, 438792],
 "utcoffset": null
 },
 "a_datetime_tz": {
 "_meta": "_datetime",
 "data": [2018, 3, 18, 18, 57, 27, 438810],
 "utcoffset": 3600
 },
 "a_float": 3.14159265,
 "an_int": 42
}

Interestingly, we find out that None is translated to null, its JavaScript
equivalent. Moreover, we can see our data seems to have been
encoded properly. Let's proceed to the second part of the script:

json_examples/json_datetime.py
def object_hook(obj):
 try:
 if obj['_meta'] == '_datetime':
 if obj['utcoffset'] is None:
 tz = None
 else:
 tz = timezone(timedelta(seconds=obj['utcoffset']))
 return datetime(*obj['data'], tzinfo=tz)
 except (KeyError, TypeError):
 return obj

data_out = json.loads(json_data, object_hook=object_hook)

Once again, we first verify that the metadata is telling us it's a datetime,
and then we proceed to fetch the time zone information. Once we
have that, we pass the 7-tuple (using * to unpack its values in the
call) and the time zone information to the datetime call, getting back
our original object. Let's verify it by printing data_out:

{
 'a_datetime': datetime.datetime(2018, 3, 18, 18, 1, 46, 54693),
 'a_datetime_tz': datetime.datetime(
 2018, 3, 18, 19, 1, 46, 54711,
 tzinfo=datetime.timezone(datetime.timedelta(seconds=3600))),
 'a_float': 3.14159265,
 'an_int': 42
}

As you can see, we got everything back correctly. As an exercise, I'd
like to challenge you to write the same logic, but for a date object,
which should be simpler.

Before we move on to the next topic, a word of caution. Perhaps it is
counter-intuitive, but working with datetime objects can be one of the
trickiest things to do, so, although I'm pretty sure this code is doing
what it is supposed to do, I want to stress that I only tested it very
lightly. So if you intend to grab it and use it, please do test it
thoroughly. Test for different time zones, test for daylight saving time
being on and off, test for dates before the epoch, and so on. You
might find that the code in this section then would need some
modifications to suit your cases.

Let's now move to the next topic, IO.

IO, streams, and requests
IO stands for input/output, and it broadly refers to the
communication between a computer and the outside world. There
are several different types of IO, and it is outside the scope of this
chapter to explain all of them, but I still want to offer you a couple of
examples.

Using an in-memory stream
The first will show you the io.StringIO class, which is an in-memory
stream for text IO. The second one instead will escape the locality of
our computer, and show you how to perform an HTTP request. Let's
see the first example:

io_examples/string_io.py
import io

stream = io.StringIO()
stream.write('Learning Python Programming.\n')
print('Become a Python ninja!', file=stream)

contents = stream.getvalue()
print(contents)

stream.close()

In the preceding code snippet, we import the io module from the
standard library. This is a very interesting module that features many
tools related to streams and IO. One of them is StringIO, which is an
in-memory buffer in which we're going to write two sentences, using
two different methods, as we did with files in the first examples of
this chapter. We can both call StringIO.write or we can use print, and
tell it to direct the data to our stream.

By calling getvalue, we can get the content of the stream (and print it),
and finally we close it. The call to close causes the text buffer to be
immediately discarded.

There is a more elegant way to write the previous code (can you
guess it, before you look?):

io_examples/string_io.py
with io.StringIO() as stream:
 stream.write('Learning Python Programming.\n')
 print('Become a Python ninja!', file=stream)
 contents = stream.getvalue()
 print(contents)

Yes, it is again a context manager. Like open, io.StringIO works well
within a context manager block. Notice the similarity with open: in this
case too, we don't need to manually close the stream.

In-memory objects can be useful in a multitude of situations. Memory
is much faster than a disk and, for small amounts of data, can be the
perfect choice.

When running the script, the output is:

$ python string_io.py
Learning Python Programming.
Become a Python ninja!

Making HTTP requests
Let's now explore a couple of examples on HTTP requests. I will use
the requests library for these examples, which you can install with pip.
We're going to perform HTTP requests against the httpbin.org API,
which, interestingly, was developed by Kenneth Reitz, the creator of
the requests library itself. This library is amongst the most widely
adopted all over the world:

import requests

urls = {
 'get': 'https://httpbin.org/get?title=learn+python+programming',
 'headers': 'https://httpbin.org/headers',
 'ip': 'https://httpbin.org/ip',
 'now': 'https://now.httpbin.org/',
 'user-agent': 'https://httpbin.org/user-agent',
 'UUID': 'https://httpbin.org/uuid',
}

def get_content(title, url):
 resp = requests.get(url)
 print(f'Response for {title}')
 print(resp.json())

for title, url in urls.items():
 get_content(title, url)
 print('-' * 40)

The preceding snippet should be simple to understand. I declare a
dictionary of URLs against which I want to perform requests. I have
encapsulated the code that performs the request into a tiny
function: get_content. As you can see, very simply, we perform a GET
request (by using requests.get), and we print the title and the JSON
decoded version of the body of the response. Let me spend a word
about this last bit.

When we perform a request to a website, or API, we get back a
response object, which is, very simply, what was returned by the
server we performed the request against. The body of all responses
from httpbin.org happens to be JSON encoded, so instead of getting

http://httpbin.org/
https://httpbin.org/

the body as it is (by getting resp.text) and manually decoding it,
calling json.loads on it, we simply combine the two by leveraging
the json method on the response object. There are plenty of reasons
why the requests package has become so widely adopted, and one of
them is definitely its ease of use.

Now, when you perform a request in your application, you will want
to have a much more robust approach in dealing with errors and so
on, but for this chapter, a simple example will do.

Going back to our code, in the end, we run a for loop and get all the
URLs. When you run it, you will see the result of each call printed on
your console, like this (prettified and trimmed for brevity):

$ python reqs.py
Response for get
{
 "args": {
 "title": "learn python programming"
 },
 "headers": {
 "Accept": "*/*",
 "Accept-Encoding": "gzip, deflate",
 "Connection": "close",
 "Host": "httpbin.org",
 "User-Agent": "python-requests/2.19.0"
 },
 "origin": "82.47.175.158",
 "url": "https://httpbin.org/get?title=learn+python+programming"
}
... rest of the output omitted ...

Notice that you might get a slightly different output in terms of
version numbers and IPs, which is fine. Now, GET is only one of the
HTTP verbs, and it is definitely the most commonly used. The
second one is the ubiquitous POST, which is the type of request you
make when you need to send data to the server. Every time you
submit a form on the web, you're basically making a POST request.
So, let's try to make one programmatically:

io_examples/reqs_post.py
import requests

url = 'https://httpbin.org/post'
data = dict(title='Learn Python Programming')

resp = requests.post(url, data=data)
print('Response for POST')
print(resp.json())

The previous code is very similar to the one we saw before, only this
time we don't call get, but post, and because we want to send some
data, we specify that in the call. The requests library offers much,
much more than this, and it has been praised by the community for
the beautiful API it exposes. It is a project that I encourage you to
check out and explore, as you will end up using it all the time,
anyway.

Running the previous script (and applying some prettifying magic to
the output) yields the following:

$ python reqs_post.py
Response for POST
{ 'args': {},
 'data': '',
 'files': {},
 'form': {'title': 'Learn Python Programming'},
 'headers': { 'Accept': '*/*',
 'Accept-Encoding': 'gzip, deflate',
 'Connection': 'close',
 'Content-Length': '30',
 'Content-Type': 'application/x-www-form-urlencoded',
 'Host': 'httpbin.org',
 'User-Agent': 'python-requests/2.7.0 CPython/3.7.0b2 '
 'Darwin/17.4.0'},
 'json': None,

 'origin': '82.45.123.178',
 'url': 'https://httpbin.org/post'}

Notice how the headers are now different, and we find the data we
sent in the form key/value pair of the response body.

I hope these short examples are enough to get you started,
especially with requests. The web changes every day, so it's worth
learning the basics and then brush up every now and then.

Let's now move on to the last topic of this chapter: persisting data on
disk in different formats.

Persisting data on disk
In the last section of this chapter, we're exploring how to persist data
on disk in three different formats. We will explore pickle, shelve, and a
short example that will involve accessing a database using
SQLAlchemy, the most widely adopted ORM library in the Python
ecosystem.

Serializing data with pickle
The pickle module, from the Python standard library, offers tools to
convert Python objects into byte streams, and vice versa. Even
though there is a partial overlap in the API that pickle and json expose,
the two are quite different. As we have seen previously in this
chapter, JSON is a text format, human readable, language
independent, and supports only a restricted subset of Python data
types. The pickle module, on the other hand, is not human readable,
translates to bytes, is Python specific, and, thanks to the wonderful
Python introspection capabilities, it supports an extremely large
amount of data types.

Regardless of these differences, though, which you should know
when you consider whether to use one or the other, I think that the
most important concern regarding pickle lies in the security threats
you are exposed to when you use it. Unpickling erroneous or
malicious data from an untrusted source can be very dangerous, so
if you decide to adopt it in your application, you need to be extra
careful.

That said, let's see it in action, by means of a simple example:

persistence/pickler.py
import pickle
from dataclasses import dataclass

@dataclass
class Person:
 first_name: str
 last_name: str
 id: int

 def greet(self):
 print(f'Hi, I am {self.first_name} {self.last_name}'
 f' and my ID is {self.id}'
)

people = [
 Person('Obi-Wan', 'Kenobi', 123),
 Person('Anakin', 'Skywalker', 456),

]

save data in binary format to a file
with open('data.pickle', 'wb') as stream:
 pickle.dump(people, stream)

load data from a file
with open('data.pickle', 'rb') as stream:
 peeps = pickle.load(stream)

for person in peeps:
 person.greet()

In the previous example, we create a Person class using the dataclass
decorator (we will cover how to do this in later chapters). The only
reason I wrote this example with a data class is to show you how
effortlessly pickle deals with it, with no need for us to do anything we
wouldn't do for a simpler data type.

The class has three attributes: first_name, last_name, and id. It also
exposes a greet method, which simply prints a hello message with the
data.

We create a list of instances, and then we save it to a file. In order to
do so, we use pickle.dump, to which we feed the content to be pickled,
and the stream to which we want to write. Immediately after that, we
read from that same file, and by using pickle.load, we convert back
into Python the whole content of that stream. Just to make sure that
the objects have been converted correctly, we call the greet method
on both of them. The result is the following:

$ python pickler.py
Hi, I am Obi-Wan Kenobi and my ID is 123
Hi, I am Anakin Skywalker and my ID is 456

The pickle module also allows you to convert to (and from) byte
objects, by means of the dumps and loads functions (note the s at the
end of both names). In day-to-day applications, pickle is usually used
when we need to persist Python data that is not supposed to be
exchanged with another application. One example I stumbled upon
recently was the session management in a flask plugin, which pickles

the session object before sending it to Redis. In practice, though,
you are unlikely to have to deal with this library very often.

Another tool that is possibly used even less, but that proves to be
very useful when you are short of resources, is shelve.

Saving data with shelve
A shelf, is a persistent dictionary-like object. The beauty of it is that
the values you save into a shelf can be any object you can pickle, so
you're not restricted like you would be if you were using a database.
Albeit interesting and useful, the shelve module is used quite rarely in
practice. Just for completeness, let's see a quick example of how it
works:

persistence/shelf.py
import shelve

class Person:
 def __init__(self, name, id):
 self.name = name
 self.id = id

with shelve.open('shelf1.shelve') as db:
 db['obi1'] = Person('Obi-Wan', 123)
 db['ani'] = Person('Anakin', 456)
 db['a_list'] = [2, 3, 5]
 db['delete_me'] = 'we will have to delete this one...'

 print(list(db.keys())) # ['ani', 'a_list', 'delete_me', 'obi1']

 del db['delete_me'] # gone!

 print(list(db.keys())) # ['ani', 'a_list', 'obi1']

 print('delete_me' in db) # False
 print('ani' in db) # True

 a_list = db['a_list']
 a_list.append(7)
 db['a_list'] = a_list
 print(db['a_list']) # [2, 3, 5, 7]

Apart from the wiring and the boilerplate around it, the previous
example resembles an exercise with dictionaries. We create a
simple Person class and then we open a shelve file within a context
manager. As you can see, we use the dictionary syntax to store four
objects: two Person instances, a list, and a string. If we print the keys,
we get a list containing the four keys we used. Immediately after
printing it, we delete the (aptly named) delete_me key/value pair

from shelf. Printing the keys again shows the deletion has succeeded.
We then test a couple of keys for membership, and finally, we
append number 7 to a_list. Notice how we have to extract the list from
the shelf, modify it, and save it again.

In case this behavior is undesired, there is something we can do:

persistence/shelf.py
with shelve.open('shelf2.shelve', writeback=True) as db:
 db['a_list'] = [11, 13, 17]
 db['a_list'].append(19) # in-place append!
 print(db['a_list']) # [11, 13, 17, 19]

By opening the shelf with writeback=True, we enable the writeback feature,
which allows us to simply append to a_list as if it actually was a value
within a regular dictionary. The reason why this feature is not active
by default is that it comes with a price that you pay in terms of
memory consumption and slower closing of the shelf.

Now that we have paid homage to the standard library modules
related to data persistence, let's take a look at the most widely
adopted ORM in the Python ecosystem: SQLAlchemy.

Saving data to a database
For this example, we are going to work with an in-memory database,
which will make things simpler for us. In the source code of the book,
I have left a couple of comments to show you how to generate
a SQLite file, so I hope you'll explore that option as well.

You can find a free database browser for SQLite at sqlitebrowser.org. If you are not satisfied with
it, you will be able to find a wide range of tools, some free, some not free, that you can use to
access and manipulate a database file.

Before we dive into the code, allow me to briefly introduce the
concept of a relational database.

A relational database is a database that allows you to save data
following the relational model, invented in 1969 by Edgar F. Codd.
In this model, data is stored in one or more tables. Each table has
rows (also known as records, or tuples), each of which represents
an entry in the table. Tables also have columns (also known as
attributes), each of which represents an attribute of the records.
Each record is identified through a unique key, more commonly
known as the primary key, which is the union of one or more
columns in the table. To give you an example: imagine a table called
Users, with columns id, username, password, name, and surname. Such a table
would be perfect to contain users of our system. Each row would
represent a different user. For example, a row with the values 3,
gianchub, my_wonderful_pwd, Fabrizio, and Romano, would represent my user in
the system.

The reason why the model is called relational is because you can
establish relations between tables. For example, if you added a table
called PhoneNumbers to our fictitious database, you could insert phone
numbers into it, and then, through a relation, establish which phone
number belongs to which user.

http://sqlitebrowser.org/

In order to query a relational database, we need a special language.
The main standard is called SQL, which stands for Structured
Query Language. It is born out of something called relational
algebra, which is a very nice family of algebras used to model data
stored according to the relational model, and performing queries on
it. The most common operations you can perform usually involve
filtering on the rows or columns, joining tables, aggregating the
results according to some criteria, and so on. To give you an
example in English, a query on our imaginary database could
be: Fetch all users (username, name, surname) whose username
starts with "m", who have at most one phone number. In this query,
we are asking for a subset of the columns in the User table. We are
filtering on users by taking only those whose username starts with
the letter m, and even further, only those who have at most one
phone number.

Back in the days when I was a student in Padova, I spent a whole semester learning both the
relational algebra semantics, and the standard SQL (amongst other things). If it wasn't for a major
bicycle accident I had the day of the exam, I would say that this was one of the most fun exams I
ever had to prepare.

Now, each database comes with its own flavor of SQL. They all
respect the standard to some extent, but none fully does, and they
are all different from one another in some respects. This poses an
issue in modern software development. If our application contains
SQL code, it is quite likely that if we decided to use a different
database engine, or maybe a different version of the same engine,
we would find our SQL code needs amending.

This can be quite painful, especially since SQL queries can become
very, very complicated quite quickly. In order to alleviate this pain a
little, computer scientists (bless them) have created code that maps
objects of a particular language to tables of a relational database.
Unsurprisingly, the name of such tools is Object-Relational
Mapping (ORMs).

In modern application development, you would normally start
interacting with a database by using an ORM, and should you find

yourself in a situation where you can't perform a query you need to
perform, through the ORM, you would then resort to using SQL
directly. This is a good compromise between having no SQL at all,
and using no ORM, which ultimately means specializing the code
that interacts with the database, with the aforementioned
disadvantages.

In this section, I'd like to show an example that
leverages SQLAlchemy, the most popular Python ORM. We are
going to define two models (Person and Address) which map to a table
each, and then we're going to populate the database and perform a
few queries on it.

Let's start with the model declarations:

persistence/alchemy_models.py
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import (
 Column, Integer, String, ForeignKey, create_engine)
from sqlalchemy.orm import relationship

At the beginning, we import some functions and types. The first thing
we need to do then is to create an engine. This engine
tells SQLAlchemy about the type of database we have chosen for
our example:

persistence/alchemy_models.py
engine = create_engine('sqlite:///:memory:')
Base = declarative_base()

class Person(Base):
 __tablename__ = 'person'

 id = Column(Integer, primary_key=True)
 name = Column(String)
 age = Column(Integer)

 addresses = relationship(
 'Address',
 back_populates='person',
 order_by='Address.email',
 cascade='all, delete-orphan'
)

 def __repr__(self):
 return f'{self.name}(id={self.id})'

class Address(Base):
 __tablename__ = 'address'

 id = Column(Integer, primary_key=True)
 email = Column(String)
 person_id = Column(ForeignKey('person.id'))
 person = relationship('Person', back_populates='addresses')

 def __str__(self):
 return self.email
 __repr__ = __str__

Base.metadata.create_all(engine)

Each model then inherits from the Base table, which in this example
consists of the mere default, returned by declarative_base(). We
define Person, which maps to a table called person, and exposes the
attributes id, name, and age. We also declare a relationship with
the Address model, by stating that accessing the addresses attribute will
fetch all the entries in the address table that are related to the
particular Person instance we're dealing with. The cascade option affects
how creation and deletion work, but it is a more advanced concept,
so I'd suggest you glide on it for now and maybe investigate more
later on.

The last thing we declare is the __repr__ method, which provides us
with the official string representation of an object. This is supposed
to be a representation that can be used to completely reconstruct the
object, but in this example, I simply use it to provide something in
output. Python redirects repr(obj) to a call to obj.__repr__().

We also declare the Address model, which will contain email
addresses, and a reference to the person they belong to. You can
see the person_id and person attributes are both about setting a relation
between the Address and Person instances. Note how I declared
the __str__ method on Address, and then assigned an alias to it,
called __repr__. This means that calling both repr and str on Address
objects will ultimately result in calling the __str__ method. This is quite
a common technique in Python, so I took the opportunity to show it
to you here.

On the last line, we tell the engine to create tables in the database
according to our models.

A deeper understanding of this code would require much more
space than I can afford, so I encourage you to read up on database
management systems (DBMS), SQL, Relational Algebra, and
SQLAlchemy.

Now that we have our models, let's use them to persist some data!

Let's take a look at the following example:

persistence/alchemy.py
from alchemy_models import Person, Address, engine
from sqlalchemy.orm import sessionmaker

Session = sessionmaker(bind=engine)
session = Session()

First we create session, which is the object we use to manage the
database. Next, we proceed by creating two people:

anakin = Person(name='Anakin Skywalker', age=32)
obi1 = Person(name='Obi-Wan Kenobi', age=40)

We then add email addresses to both of them, using two different
techniques. One assigns them to a list, and the other one simply
appends them:

obi1.addresses = [
 Address(email='obi1@example.com'),
 Address(email='wanwan@example.com'),
]

anakin.addresses.append(Address(email='ani@example.com'))
anakin.addresses.append(Address(email='evil.dart@example.com'))
anakin.addresses.append(Address(email='vader@example.com'))

We haven't touched the database yet. It's only when we use the
session object that something actually happens in it:

session.add(anakin)
session.add(obi1)
session.commit()

Adding the two Person instances is enough to also add their addresses
(this is thanks to the cascading effect). Calling commit is what actually
tells SQLAlchemy to commit the transaction and save the data in the
database. A transaction is an operation that provides something like
a sandbox, but in a database context. As long as the transaction
hasn't been committed, we can roll back any modification we have
done to the database, and by so doing, revert to the state we were
before starting the transaction itself. SQLAlchemy offers more
complex and granular ways to deal with transactions, which you can
study in its official documentation, as it is quite an advanced topic.

We now query for all the people whose name starts with Obi by
using like, which hooks to the LIKE operator in SQL:

obi1 = session.query(Person).filter(
 Person.name.like('Obi%')
).first()
print(obi1, obi1.addresses)

We take the first result of that query (we know we only have Obi-
Wan anyway), and print it. We then fetch anakin, by using an exact
match on his name (just to show you a different way of filtering):

anakin = session.query(Person).filter(
 Person.name=='Anakin Skywalker'
).first()
print(anakin, anakin.addresses)

We then capture Anakin's ID, and delete the anakin object from the
global frame:

anakin_id = anakin.id
del anakin

The reason we do this is because I want to show you how to fetch an
object by its ID. Before we do that, we write the display_info function,
which we will use to display the full content of the database (fetched
starting from the addresses, in order to demonstrate how to fetch
objects by using a relation attribute in SQLAlchemy):

def display_info():
 # get all addresses first
 addresses = session.query(Address).all()

 # display results
 for address in addresses:
 print(f'{address.person.name} <{address.email}>')

 # display how many objects we have in total
 print('people: {}, addresses: {}'.format(
 session.query(Person).count(),
 session.query(Address).count())
)

The display_info function prints all the addresses, along with the
respective person's name, and, at the end, produces a final piece of
information regarding the number of objects in the database. We call
the function, then we fetch and delete anakin (think about Darth Vader
and you won't be sad about deleting him), and then we display the
info again, to verify he's actually disappeared from the database:

display_info()

anakin = session.query(Person).get(anakin_id)
session.delete(anakin)
session.commit()

display_info()

The output of all these snippets run together is the following (for your
convenience, I have separated the output into four blocks, to reflect
the four blocks of code that actually produce that output):

$ python alchemy.py
Obi-Wan Kenobi(id=2) [obi1@example.com, wanwan@example.com]

Anakin Skywalker(id=1) [ani@example.com, evil.dart@example.com,
vader@example.com]

Anakin Skywalker <ani@example.com>
Anakin Skywalker <evil.dart@example.com>
Anakin Skywalker <vader@example.com>
Obi-Wan Kenobi <obi1@example.com>
Obi-Wan Kenobi <wanwan@example.com>
people: 2, addresses: 5

Obi-Wan Kenobi <obi1@example.com>
Obi-Wan Kenobi <wanwan@example.com>
people: 1, addresses: 2

As you can see from the last two blocks, deleting anakin has deleted
one Person object, and the three addresses associated with it. Again,
this is due to the fact that cascading took place when we
deleted anakin.

This concludes our brief introduction to data persistence. It is a vast
and, at times, complex domain, which I encourage you to explore
learning as much theory as possible. Lack of knowledge or proper
understanding, when it comes to database systems, can really bite.

Summary
In this chapter, we have explored working with files and directories.
We have learned how to open files for reading and writing and how
to do that more elegantly by using context managers. We also
explored directories: how to list their content, both recursively and
not. We also learned about pathnames, which are the gateway to
accessing both files and directories.

We then briefly saw how to create a ZIP archive, and extract its
content. The source code of the book also contains an example with
a different compression format: tar.gz.

We talked about data interchange formats, and have explored JSON
in some depth. We had some fun writing custom encoders and
decoders for specific Python data types.

Then we explored IO, both with in-memory streams and HTTP
requests.

And finally, we saw how to persist data using pickle, shelve, and
the SQLAlchemy ORM library.

You should now have a pretty good idea of how to deal with files and
data persistence, and I hope you will take the time to explore these
topics in much more depth by yourself.

From the next chapter, we will begin our journey into data structures
and algorithms, beginning with the principles of algorithm design.

Principles of Algorithm Design
Why do we want to study algorithm design? There are of course
many reasons, and our motivation for learning something is very
much dependent on our own circumstances. There are without doubt
important professional reasons for being interested in algorithm
design. Algorithms are the foundations of all computing. We think of
a computer as being a piece of hardware, a hard drive, memory
chips, processors, and so on. However, the essential component, the
thing that, if missing, would render modern technology impossible, is
algorithms.

The theoretical foundation of algorithms, in the form of the Turing
machine, was established several decades before digital logic
circuits could actually implement such a machine. The Turing
machine is essentially a mathematical model that, using a predefined
set of rules, translates a set of inputs into a set of outputs. The first
implementations of Turing machines were mechanical and the next
generation may likely see digital logic circuits replaced by quantum
circuits or something similar. Regardless of the platform, algorithms
play a central predominant role.

Another aspect is the effect algorithms have in technological
innovation. As an obvious example, consider the page rank search
algorithm, a variation of which the Google search engine is based
on. Using this and similar algorithms allows researchers, scientists,
technicians, and others to quickly search through vast amounts of
information extremely quickly. This has a massive effect on the rate
at which new research can be carried out, new discoveries made,
and new innovative technologies developed.

The study of algorithms is also important because it trains us to think
very specifically about certain problems. It can serve to increase our
mental and problem solving abilities by helping us isolate the

components of a problem and define relationships between these
components. In summary, there are four broad reasons for studying
algorithms:

1. They are essential for computer science and intelligent systems.
2. They are important in many other domains (computational

biology, economics, ecology, communications, ecology, physics,
and so on).

3. They play a role in technology innovation.
4. They improve problem solving and analytical thinking.

Algorithms, in their simplest form, are just a sequence of actions, a
list of instructions. It may just be a linear construct of the form do x,
then do y, then do z, then finish. However, to make things more
useful we add clauses to the effect of, x then do y, in Python the if-
else statements. Here, the future course of action is dependent on
some conditions; say the state of a data structure. To this we also
add the operation, iteration, the while, and for statements. Expanding
our algorithmic literacy further we add recursion. Recursion can often
achieve the same result as iteration, however, they are
fundamentally different. A recursive function calls itself, applying the
same function to progressively smaller inputs. The input of any
recursive step is the output of the previous recursive step.

Essentially, we can say that algorithms are composed of the
following four elements:

Sequential operations
Actions based on the state of a data structure
Iteration, repeating an action a number of times
Recursion, calling itself on a subset of inputs

Algorithm design paradigms
In general, we can discern three broad approaches to algorithm
design. They are:

Divide and conquer
Greedy algorithms
Dynamic programming

As the name suggests, the divide and conquer paradigm involves
breaking a problem into smaller sub problems, and then in some way
combining the results to obtain a global solution. This is a very
common and natural problem solving technique, and is, arguably, the
most commonly used approach to algorithm design.

Greedy algorithms often involve optimization and combinatorial
problems; the classic example is applying it to the traveling
salesperson problem, where a greedy approach always chooses the
closest destination first. This shortest path strategy involves finding
the best solution to a local problem in the hope that this will lead to a
global solution.

The dynamic programming approach is useful when our sub
problems overlap. This is different from divide and conquer. Rather
than break our problem into independent sub problems, with
dynamic programming, intermediate results are cached and can be
used in subsequent operations. Like divide and conquer it uses
recursion; however, dynamic programming allows us to compare
results at different stages. This can have a performance advantage
over divide and conquer for some problems because it is often
quicker to retrieve a previously calculated result from memory rather
than having to recalculate it.

Recursion and backtracking
Recursion is particularly useful for divide and conquer problems;
however, it can be difficult to understand exactly what is happening,
since each recursive call is itself spinning off other recursive calls. At
the core of a recursive function are two types of cases: base cases,
which tell the recursion when to terminate, and recursive cases that
call the function they are in. A simple problem that naturally lends
itself to a recursive solution is calculating factorials. The recursive
factorial algorithm defines two cases: the base case when n is zero,
and the recursive case when n is greater than zero. A typical
implementation is the following:

 def factorial(n):
 #test for a base case
 if n==0:
 return 1
 # make a calculation and a recursive call
 f= n*factorial(n-1)
 print(f)
 return(f)
 factorial(4)

This code prints out the digits 1, 2, 4, 24. To calculate 4 requires four
recursive calls plus the initial parent call. On each recursion, a copy
of the methods variables is stored in memory. Once the method
returns it is removed from memory. The following is a way we can
visualize this process:

It may not necessarily be clear if recursion or iteration is a better
solution to a particular problem; after all they both repeat a series of
operations and both are very well suited to divide and conquer
approaches to algorithm design. Iteration churns away until the
problem is done. Recursion breaks the problem down into smaller
and smaller chunks and then combines the results. Iteration is often
easier for programmers, because control stays local to a loop,
whereas recursion can more closely represent mathematical
concepts such as factorials. Recursive calls are stored in memory,
whereas iterations are not. This creates a trade off between
processor cycles and memory usage, so choosing which one to use
may depend on whether the task is processor or memory intensive.
The following table outlines the key differences between recursion
and iteration:

Recursion Iteration

Terminates when a base case is
reached

Terminates when a defined
condition is met

Each recursive call requires
space in memory

Each iteration is not stored in
memory

An infinite recursion results in a
stack overflow error

An infinite iteration will run
while the hardware is
powered

Some problems are naturally
better suited to recursive
solutions

Iterative solutions may not
always be obvious

Backtracking
Backtracking is a form of recursion that is particularly useful for types
of problems such as traversing tree structures, where we are
presented with a number of options at each node, from which we
must choose one. Subsequently we are presented with a different set
of options, and depending on the series of choices made either a goal
state or a dead end is reached. If it is the latter, we must backtrack to
a previous node and traverse a different branch. Backtracking is a
divide and conquer method for exhaustive search. Importantly
backtracking prunes branches that cannot give a result.

An example of back tracking is given in the following example. Here,
we have used a recursive approach to generating all the possible
permutations of a given string, s, of a given length n:

 def bitStr(n, s):

 if n == 1: return s
 return [digit + bits for digit in bitStr(1,s)for bits in
bitStr(n - 1,s)]

 print (bitStr(3,'abc'))

This generates the following output:

Notice the double list compression and the two recursive calls within
this comprehension. This recursively concatenates each element of
the initial sequence, returned when n = 1, with each element of the
string generated in the previous recursive call. In this sense it is
backtracking to uncover previously ingenerated combinations. The
final string that is returned is all n letter combinations of the initial
string.

Divide and conquer - long
multiplication
For recursion to be more than just a clever trick, we need to
understand how to compare it to other approaches, such as iteration,
and to understand when its use will lead to a faster algorithm. An
iterative algorithm that we are all familiar with is the procedure we
learned in primary math classes, used to multiply two large numbers.
That is, long multiplication. If you remember, long multiplication
involved iterative multiplying and carry operations followed by a
shifting and addition operation.

Our aim here is to examine ways to measure how efficient this
procedure is and attempt to answer the question; is this the most
efficient procedure we can use for multiplying two large numbers
together?

In the following figure, we can see that multiplying two 4 digit
numbers together requires 16 multiplication operations, and we can
generalize to say that an n digit number requires, approximately, n2
multiplication operations:

This method of analyzing algorithms, in terms of the number of
computational primitives such as multiplication and addition, is
important because it gives us a way to understand the relationship
between the time it takes to complete a certain computation and the
size of the input to that computation. In particular, we want to know
what happens when the input, the number of digits, n, is very large.
This topic, called asymptotic analysis, or time complexity, is essential
to our study of algorithms and we will revisit it often during this
chapter and the rest of this book.

Can we do better? A recursive
approach
It turns out that in the case of long multiplication the answer is yes,
there are in fact several algorithms for multiplying large numbers that
require less operations. One of the most well-known alternatives to
long multiplication is the Karatsuba algorithm, first published in
1962. This takes a fundamentally different approach: rather than
iteratively multiplying single digit numbers, it recursively carries out
multiplication operations on progressively smaller inputs. Recursive
programs call themselves on smaller subsets of the input. The first
step in building a recursive algorithm is to decompose a large
number into several smaller numbers. The most natural way to do
this is to simply split the number in to two halves, the first half of
most significant digits, and a second half of least significant digits.
For example, our four-digit number, 2345, becomes a pair of two-
digit numbers, 23 and 45. We can write a more general
decomposition of any 2 n digit numbers, x and y using the following,
where m is any positive integer less than n:

So now we can rewrite our multiplication problem x, y as follows:

When we expand and gather like terms we get the following:

More conveniently, we can write it like this:

Where:

It should be pointed out that this suggests a recursive approach to
multiplying two numbers since this procedure does itself involve
multiplication. Specifically, the products ac, ad, bc, and bd all involve
numbers smaller than the input number and so it is conceivable that
we could apply the same operation as a partial solution to the overall
problem. This algorithm, so far, consists of four recursive
multiplication steps and it is not immediately clear if it will be faster
than the classic long multiplication approach.

What we have discussed so far in regards to the recursive approach
to multiplication, has been well known to mathematicians since the
late 19th century. The Karatsuba algorithm improves on this is by
making the following observation. We really only need to know three
quantities: z2= ac ; z1=ad +bc, and z0= bd to solve equation 3.1. We
need to know the values of a, b, c, d only in so far as they contribute
to the overall sum and products involved in calculating the quantities
z2, z1, and z0. This suggests the possibility that perhaps we can
reduce the number of recursive steps. It turns out that this is indeed
the situation.

Since the products ac and bd are already in their simplest form, it
seems unlikely that we can eliminate these calculations. We can
however make the following observation:

When we subtract the quantities ac and bd, which we have
calculated in the previous recursive step, we get the quantity we
need, namely (ad + bc):

This shows that we can indeed compute the sum of ad + bc without
separately computing each of the individual quantities. In summary,
we can improve on equation 3.1 by reducing from four recursive
steps to three. These three steps are as follows:

1. Recursively calculate ac.
2. Recursively calculate bd.
3. Recursively calculate (a +b)(c + d) and subtract ac and bd.

The following example shows a Python implementation of the
Karatsuba algorithm:

 from math import log10
 def karatsuba(x,y):

 # The base case for recursion
 if x < 10 or y < 10:
 return x*y

 #sets n, the number of digits in the highest input number
 n = max(int(log10(x)+1), int(log10(y)+1))

 # rounds up n/2
 n_2 = int(math.ceil(n / 2.0))
 #adds 1 if n is uneven
 n = n if n % 2 == 0 else n + 1

 #splits the input numbers
 a, b = divmod(x, 10**n_2)
 c, d = divmod(y, 10**n_2)

 #applies the three recursive steps
 ac = karatsuba(a,c)
 bd = karatsuba(b,d)
 ad_bc = karatsuba((a+b),(c+d)) - ac - bd

 #performs the multiplication
 return (((10**n)*ac) + bd + ((10**n_2)*(ad_bc)))

To satisfy ourselves that this does indeed work, we can run the
following test function:

 import random
 def test():
 for i in range(1000):
 x = random.randint(1,10**5)

 y = random.randint(1,10**5)
 expected = x * y
 result = karatsuba(x, y)
 if result != expected:
 return("failed")
 return('ok')

Runtime analysis
It should be becoming clear that an important aspect to algorithm design is
gauging the efficiency both in terms of space (memory) and time (number of
operations). This second measure, called runtime performance, is the subject of
this section. It should be mentioned that an identical metric is used to measure
an algorithm's memory performance. There are a number of ways we could,
conceivably, measure run time and probably the most obvious is simply to
measure the time the algorithm takes to complete. The major problem with this
approach is that the time it takes for an algorithm to run is very much dependent
on the hardware it is run on. A platform-independent way to gauge an algorithm's
runtime is to count the number of operations involved. However, this is also
problematic in that there is no definitive way to quantify an operation. This is
dependent on the programming language, the coding style, and how we decide
to count operations. We can use this idea, though, of counting operations, if we
combine it with the expectation that as the size of the input increases the runtime
will increase in a specific way. That is, there is a mathematical relationship
between n, the size of the input, and the time it takes for the algorithm to run.

Much of the discussion that follows will be framed by the following three guiding
principles. The rational and importance of these principles should become
clearer as we proceed. These principles are as follows:

Worst case analysis. Make no assumptions on the input data.
Ignore or suppress constant factors and lower order terms. At large inputs
higher order terms dominate.
Focus on problems with large input sizes.

Worst case analysis is useful because it gives us a tight upper bound that our
algorithm is guaranteed not to exceed. Ignoring small constant factors, and lower
order terms is really just about ignoring the things that, at large values of the
input size, n, do not contribute, in a large degree, to the overall run time. Not only
does it make our work mathematically easier, it also allows us to focus on the
things that are having the most impact on performance.

We saw with the Karatsuba algorithm that the number of multiplication operations
increased to the square of the size, n, of the input. If we have a four-digit number
the number of multiplication operations is 16; an eight-digit number requires 64
operations. Typically, though, we are not really interested in the behavior of an
algorithm at small values of n, so we most often ignore factors that increase at

slower rates, say linearly with n. This is because at high values of n, the
operations that increase the fastest as we increase n, will dominate.

We will explain this in more detail with an example, the merge sort algorithm.
Sorting is the subject of Chapter 13, Sorting, however, as a precursor and as a
useful way to learn about runtime performance, we will introduce merge sort
here.

The merge sort algorithm is a classic algorithm developed over 60 years ago. It
is still used widely in many of the most popular sorting libraries. It is relatively
simple and efficient. It is a recursive algorithm that uses a divide and conquer
approach. This involves breaking the problem into smaller sub problems,
recursively solving them, and then somehow combining the results. Merge sort is
one of the most obvious demonstrations of the divide and conquer paradigm.

The merge sort algorithm consists of three simple steps:

1. Recursively sort the left half of the input array.
2. Recursively sort the right half of the input array.
3. Merge two sorted sub arrays into one.

A typical problem is sorting a list of numbers into a numerical order. Merge sort
works by splitting the input into two halves and working on each half in parallel.
We can illustrate this process schematically with the following diagram:

Here is the Python code for the merge sort algorithm:

 def mergeSort(A):
 #base case if the input array is one or zero just return.
 if len(A) > 1:
 # splitting input array
 print('splitting ', A)
 mid = len(A)//2
 left = A[:mid]
 right = A[mid:]
 #recursive calls to mergeSort for left and right sub arrays
 mergeSort(left)
 mergeSort(right)
 #initalizes pointers for left (i) right (j) and output array (k)
 # 3 initalization operations
 i = j = k = 0
 #Traverse and merges the sorted arrays
 while i <len(left) and j<len(right):
 # if left < right comparison operation
 if left[i] < right[j]:
 # if left < right Assignment operation
 A[k]=left[i]
 i=i+1
 else:
 #if right <= left assignment
 A[k]= right[j]
 j=j+1
 k=k+1

 while i<len(left):
 #Assignment operation
 A[k]=left[i]
 i=i+1
 k=k+1

 while j<len(right):
 #Assignment operation
 A[k]=right[j]
 j=j+1
 k=k+1
 print('merging ', A)
 return(A)

We run this program for the following results:

The problem that we are interested in is how we determine the running time
performance, that is, what is the rate of growth in the time it takes for the

algorithm to complete relative to the size of n. To understand this a bit better, we
can map each recursive call onto a tree structure.

Each node in the tree is a recursive call working on progressively smaller sub
problems:

Each invocation of merge-sort subsequently creates two recursive calls, so we
can represent this with a binary tree. Each of the child nodes receives a sub set
of the input. Ultimately we want to know the total time it takes for the algorithm to
complete relative to the size of n. To begin with we can calculate the amount of
work and the number of operations at each level of the tree.

Focusing on the runtime analysis, at level 1, the problem is split into two n/2 sub
problems, at level 2 there is four n/4 sub problems, and so on. The question is
when does the recursion bottom out, that is, when does it reach its base case.
This is simply when the array is either zero or one.

The number of recursive levels is exactly the number of times you need to divide
n by 2 until you get a number that is at most 1. This is precisely the definition of
log2. Since we are counting the initial recursive call as level 0, the total number
of levels is log2n + 1.

Let's just pause to refine our definitions. So far we have been describing the
number of elements in our input by the letter n. This refers to the number of
elements in the first level of the recursion, that is, the length of the initial input.
We are going to need to differentiate between the size of the input at subsequent
recursive levels. For this we will use the letter m or specifically mj for the length
of the input at recursive level j.

Also there are a few details we have overlooked, and I am sure you are
beginning to wonder about. For example, what happens when m/2 is not an
integer, or when we have duplicates in our input array. It turns out that this does
not have an important impact on our analysis here.

The advantage of using a recursion tree to analyze algorithms is that we can
calculate the work done at each level of the recursion. How to define this work is
simply as the total number of operations and this of course is related to the size
of the input. It is important to measure and compare the performance of
algorithms in a platform independent way. The actual run time will of course be
dependent on the hardware on which it is run. Counting the number of operations
is important because it gives us a metric that is directly related to an algorithm's
performance, independent of the platform.

In general, since each invocation of merge sort is making two recursive calls, the
number of calls is doubling at each level. At the same time each of these calls is
working on an input that is half of its parents. We can formalize this and say that:

For level j , where j is an integer 0, 1, 2 ... log2n, there are two j sub problems each of size n/2j.

To calculate the total number of operations, we need to know the number of
operations encompassed by a single merge of two sub arrays. Let's count the
number of operations in the previous Python code. What we are interested in is
all the code after the two recursive calls have been made. Firstly, we have the
three assignment operations. This is followed by three while loops. In the first
loop we have an if else statement and within each of are two operations, a
comparison followed by an assignment. Since there are only one of these sets of
operations within the if else statements, we can count this block of code as two
operations carried out m times. This is followed by two while loops with an
assignment operation each. This makes a total of 4m + 3 operations for each
recursion of merge sort.

Since m must be at least 1, the upper bound for the number of operations is 7m.
It has to be said that this has no pretense at being an exact number. We could of
course decide to count operations in a different way. We have not counted the
increment operations or any of the housekeeping operations; however, this is not
so important as we are more concerned with the rate of growth of the runtime
with respect to n at high values of n.

This may seem a little daunting since each call of a recursive call itself spins off
more recursive calls, and seemingly explodes exponentially. The key fact that
makes this manageable is that as the number of recursive calls doubles, the size

of each sub problem halves. These two opposing forces cancel out nicely as we
can demonstrate.

To calculate the maximum number of operations at each level of the recursion
tree we simply multiply the number of sub problems by the number of operations
in each sub problem as follows:

Importantly this shows that, because the 2j cancels out the number of operations
at each level is independent of the level. This gives us an upper bound to the
number of operations carried out on each level, in this example, 7n. It should be
pointed out that this includes the number of operations performed by each
recursive call on that level, not the recursive calls made on subsequent levels.
This shows that the work done, as the number of recursive calls doubles with
each level, is exactly counter balanced by the fact that the input size for each sub
problem is halved.

To find the total number of operations for a complete merge sort we simply
multiply the number of operations on each level by the number of levels. This
gives us the following:

When we expand this out, we get the following:

The key point to take from this is that there is a logarithmic component to the
relationship between the size of the input and the total running time. If you
remember from school mathematics, the distinguishing characteristic of the
logarithm function is that it flattens off very quickly. As an input variable, x,
increases in size, the output variable, y increases by smaller and smaller
amounts. For example, compare the log function to a linear function:

In the previous example, multiplying the nlog2n component and comparing it to
n2 .

Notice how for very low values of n, the time to complete, t , is actually lower for
an algorithm that runs in n2 time. However, for values above about 40, the log
function begins to dominate, flattening the output until at the comparatively
moderate size n = 100, the performance is more than twice than that of an

algorithm running in n2 time. Notice also that the disappearance of the constant
factor, + 7 is irrelevant at high values of n.

The code used to generate these graphs is as follows:

 import matplotlib.pyplot as plt
 import math
 x=list(range(1,100))
 l =[]; l2=[]; a = 1
 plt.plot(x , [y * y for y in x])
 plt.plot(x, [(7 *y)* math.log(y, 2) for y in x])
 plt.show()

You will need to install the matplotlib library, if it is not installed already, for this to
work. Details can be found at the following address; I encourage you to
experiment with this list comprehension expression used to generate the plots.
For example, adding the following plot statement:

 plt.plot(x, [(6 *y)* math.log(y, 2) for y in x])

Gives the following output:

The preceding graph shows the difference between counting six operations or
seven operations. We can see how the two cases diverge, and this is important
when we are talking about the specifics of an application. However, what we are
more interested in here is a way to characterize growth rates. We are not so
much concerned with the absolute values, but how these values change as we
increase n. In this way we can see that the two lower curves have similar growth
rates, when compared to the top (x2) curve. We say that these two lower curves

have the same complexity class. This is a way to understand and describe
different runtime behaviors. We will formalize this performance metric in the next
section.

Asymptotic analysis
There are essentially three things that characterize an algorithm's
runtime performance. They are:

Worst case - Use an input that gives the slowest performance
Best case - Use an input that give, the best results
Average case - Assumes the input is random

To calculate each of these, we need to know the upper and lower
bounds. We have seen a way to represent an algorithm's runtime
using mathematical expressions, essentially adding and multiplying
operations. To use asymptotic analyses, we simply create two
expressions, one each for the best and worst cases.

Big O notation
The letter "O" in big O notation stands for order, in recognition that
rates of growth are defined as the order of a function. We say that
one function T(n) is a big O of another function, F(n), and we define
this as follows:

The function, g(n), of the input size, n, is based on the observation
that for all sufficiently large values of n, g(n) is bounded above by a
constant multiple of f(n). The objective is to find the smallest rate of
growth that is less than or equal to f(n). We only care what happens
at higher values of n. The variable n0represents the threshold below
which the rate of growth is not important, The function T(n)
represents the tight upper bound F(n). In the following plot we see
that T(n) = n2 + 500 = O(n2) with C = 2 and n0 is approximately 23:

You will also see the notation f(n) = O(g(n)). This describes the fact
that O(g(n)) is really a set of functions that include all functions with
the same or smaller rates of growth than f(n). For example, O(n2)
also includes the functions O(n), O(nlogn), and so on.

In the following table, we list the most common growth rates in order
from lowest to highest. We sometimes call these growth rates the
time complexity of a function, or the complexity class of a function:

Complexity
Class Name Example operations

O(1) Constant append, get item, set item.

O(logn) Logarithmic Finding an element in a sorted
array.

O(n) Linear copy, insert, delete, iteration.

nLogn Linear-
Logarithmic Sort a list, merge - sort.

n2 Quadratic Find the shortest path between two
nodes in a graph. Nested loops.

n3 Cubic Matrix multiplication.

2n Exponential 'Towers of Hanoi' problem,
backtracking.

Composing complexity classes
Normally, we need to find the total running time of a number of basic
operations. It turns out that we can combine the complexity classes
of simple operations to find the complexity class of more complex,
combined operations. The goal is to analyze the combined
statements in a function or method to understand the total time
complexity of executing several operations. The simplest way to
combine two complexity classes is to add them. This occurs when
we have two sequential operations. For example, consider the two
operations of inserting an element into a list and then sorting that list.
We can see that inserting an item occurs in O(n) time and sorting is
O(nlogn) time. We can write the total time complexity as O(n +
nlogn), that is, we bring the two functions inside the O(...). We are
only interested in the highest order term, so this leaves us with just
O(nlogn).

If we repeat an operation, for example, in a while loop, then we
multiply the complexity class by the number of times the operation is
carried out. If an operation with time complexity O(f(n)) is repeated
O(n) times then we multiply the two complexities:

O(f(n) * O(n)) = O(nf(n)).

For example, suppose the function f(...) has a time complexity of
O(n2) and it is executed n times in a while loop as follows:

 for i n range(n):
 f(...)

The time complexity of this loop then becomes O(n2) * O(n) = O(n *
n2) = O(n3). Here we are simply multiplying the time complexity of
the operation with the number of times this operation executes. The
running time of a loop is at most the running time of the statements
inside the loop multiplied by the number of iterations. A single nested

loop, that is, one loop nested inside another loop, will run in n2 time
assuming both loops run n times. For example:

 for i in range(0,n):
 for j in range(0,n)
 #statements

Each statement is a constant, c, executed nn times, so we can
express the running time as ; cn n = cn2 = O(n2).

For consecutive statements within nested loops we add the time
complexities of each statement and multiply by the number of times
the statement executed. For example:

 n = 500 #c0
 #executes n times
 for i in range(0,n):
 print(i) #c1
 #executes n times
 for i in range(0,n):
 #executes n times
 for j in range(0,n):
 print(j) #c2

This can be written as c0 +c1n + cn2 = O(n2).

We can define (base 2) logarithmic complexity, reducing the size of
the problem by ½, in constant time. For example, consider the
following snippet:

 i = 1
 while i <= n:
 i=i * 2
 print(i)

Notice that i is doubling on each iteration, if we run this with n = 10
we see that it prints out four numbers; 2, 4, 8, and 16. If we double n
we see it prints out five numbers. With each subsequent doubling of
n the number of iterations is only increased by 1. If we assume k
iterations, we can write this as follows:

From this we can conclude that the total time = O(log(n)).

Although Big O is the most used notation involved in asymptotic
analysis, there are two other related notations that should be briefly
mentioned. They are Omega notation and Theta notation.

Omega notation (Ω)
In a similar way that Big O notation describes the upper bound,
Omega notation describes a tight lower bound. The definition is as
follows:

The objective is to give the largest rate of growth that is equal to or
less than the given algorithms, T(n), rate of growth.

Theta notation (ϴ)
It is often the case where both the upper and lower bounds of a given
function are the same and the purpose of Theta notation is to
determine if this is the case. The definition is as follows:

Although Omega and Theta notations are required to completely
describe growth rates, the most practically useful is Big O notation
and this is the one you will see most often.

Amortized analysis
Often we are not so interested in the time complexity of individual
operations, but rather the time averaged running time of sequences
of operations. This is called amortized analysis. It is different from
average case analysis, which we will discuss shortly, in that it makes
no assumptions regarding the data distribution of input values. It
does, however, take into account the state change of data structures.
For example, if a list is sorted it should make any subsequent find
operations quicker. Amortized analysis can take into account the
state change of data structures because it analyzes sequences of
operations, rather then simply aggregating single operations.

Amortized analysis finds an upper bound on runtime by imposing an
artificial cost on each operation in a sequence of operations, and
then combining each of these costs. The artificial cost of a sequence
takes in to account that the initial expensive operations can make
subsequent operations cheaper.

When we have a small number of expensive operations, such as
sorting, and lots of cheaper operations such as lookups, standard
worst case analysis can lead to overly pessimistic results, since it
assumes that each lookup must compare each element in the list
until a match is found. We should take into account that once we sort
the list we can make subsequent find operations cheaper.

So far in our runtime analysis we have assumed that the input data
was completely random and have only looked at the effect the size
of the input has on the runtime. There are two other common
approaches to algorithm analysis; they are:

Average case analysis
Benchmarking

Average case analysis finds the average running time based on
some assumptions regarding the relative frequencies of various input
values. Using real-world data, or data that replicates the distribution
of real-world data, is many times on a particular data distribution and
the average running time is calculated.

Benchmarking is simply having an agreed set of typical inputs that
are used to measure performance. Both benchmarking and average
time analysis rely on having some domain knowledge. We need to
know what the typical or expected datasets are. Ultimately we will try
to find ways to improve performance by fine-tuning to a very specific
application setting.

Let's look at a straightforward way to benchmark an algorithm's
runtime performance. This can be done by simply timing how long
the algorithm takes to complete given various input sizes. As we
mentioned earlier, this way of measuring runtime performance is
dependent on the hardware that it is run on. Obviously faster
processors will give better results, however, the relative growth rates
as we increase the input size will retain characteristics of the
algorithm itself rather than the hardware it is run on. The absolute
time values will differ between hardware (and software) platforms;
however, their relative growth will still be bound by the time
complexity of the algorithm.

Let's take a simple example of a nested loop. It should be fairly
obvious that the time complexity of this algorithm is O(n2) since for
each n iterations in the outer loop there are also n iterations in the
inter loop. For example, our simple nested for loop consists of a
simple statement executed on the inner loop:

 def nest(n):
 for i in range(n):
 for j in range(n):
 i+j

The following code is a simple test function that runs the nest
function with increasing values of n. With each iteration we calculate

the time this function takes to complete using the timeit.timeit
function. The timeit function, in this example, takes three arguments,
a string representation of the function to be timed, a setup function
that imports the nest function, and an int parameter that indicates the
number of times to execute the main statement. Since we are
interested in the time the nest function takes to complete relative to
the input size, n, it is sufficient, for our purposes, to call the nest
function once on each iteration. The following function returns a list
of the calculated runtimes for each value of n:

 import timeit
 def test2(n):
 ls=[]
 for n in range(n):
 t=timeit.timeit("nest(" + str(n) +")", setup="from __main__
import nest", number = 1)
 ls.append(t)
 return ls

In the following code we run the test2 function and graph the results,
together with the appropriately scaled n2 function for comparison,
represented by the dashed line:

 import matplotlib.pyplot as plt
 n=1000
 plt.plot(test2(n))
 plt.plot([x*x/10000000 for x in range(n)])

This gives the following results:

As we can see, this gives us pretty much what we expect. It should
be remembered that this represents both the performance of the
algorithm itself as well as the behavior of underlying software and
hardware platforms, as indicated by both the variability in the
measured runtime and the relative magnitude of the runtime.
Obviously a faster processor will result in faster runtimes, and also
performance will be affected by other running processes, memory
constraints, clock speed, and so on.

Summary
In this chapter, we have taken a general overview of algorithm
design. Importantly, we saw a platform independent way to measure
an algorithm's performance. We looked at some different
approaches to algorithmic problems. We looked at a way to
recursively multiply large numbers and also a recursive approach for
merge sort. We saw how to use backtracking for exhaustive search
and generating strings. We also introduced the idea of benchmarking
and a simple platform-dependent way to measure runtime. In the
following chapters, we will revisit many of these ideas with reference
to specific data structures. In the next chapter, we will discuss linked
lists and other pointer structures.

Lists and Pointer Structures
You will have already seen lists in Python. They are convenient and
powerful. Normally, any time you need to store something in a list,
you use python's built-in list implementation. In this chapter,
however, we are more interested in understanding how lists work. So
we are going to study list internals. As you will notice, there are
different types of lists.

Python's list implementation is designed to be powerful and to
encompass several different use cases. We are going to be a bit
more strict in our definition of what a list is. The concept of a node is
very important to lists. We shall discuss them in this chapter, but this
concept will, in different forms, come back throughout the rest of the
book.

The focus of this chapter will be the following:

Understand pointers in Python
Treating the concept of nodes
Implementing singly, doubly, and circularly linked lists

In this chapter, we are going to deal quite a bit with pointers. So it
may be useful to remind ourselves what these are. To begin with,
imagine that you have a house that you want to sell. Lacking time,
you contact an agent to find interested buyers. So you pick up your
house and take it over to the agent, who will in turn carry the house
to anybody who may want to buy it. Ludicrous, you say? Now
imagine that you have a few Python functions that work with images.
So you pass high-resolution image data between your functions.

Of course, you don't carry your house around. What you would do is
write the address of the house down on a piece of scrap paper and
hand it over to the agent. The house remains where it is, but the note

containing the directions to the house is passed around. You might
even write it down on several pieces of paper. Each one is small
enough to fit in your wallet, but they all point to the same house.

As it turns out, things are not very different in Python land. Those
large image files remain in one single place in memory. What you do
is create variables that hold the locations of those images in
memory. These variables are small and can easily be passed around
between different functions.

That is the big benefit of pointers: they allow you to point to a
potentially large segment of memory with just a simple memory
address.

Support for pointers exists in your computer's hardware, where it is
known as indirect addressing.

In Python, you don't manipulate pointers directly, unlike in some
other languages, such as C or Pascal. This has led some people to
think that pointers aren't used in Python. Nothing could be further
from the truth. Consider this assignment in the Python interactive
shell:

 >>> s = set()

We would normally say that s is a variable of the type set. That is, s is
a set. This is not strictly true, however. The variable s is rather a
reference (a "safe" pointer) to a set. The set constructor creates a
set somewhere in memory and returns the memory location where
that set starts. This is what gets stored in s.

Python hides this complexity from us. We can safely assume that s is
a set and that everything works fine.

Arrays
An array is a sequential list of data. Being sequential means that
each element is stored right after the previous one in memory. If your
array is really big and you are low on memory, it could be impossible
to find large enough storage to fit your entire array. This will lead to
problems.

Of course, the flip side of the coin is that arrays are very fast. Since
each element follows from the previous one in memory, there is no
need to jump around between different memory locations. This can
be a very important point to take into consideration when choosing
between a list and an array in your own real-world applications.

Pointer structures
Contrary to arrays, pointer structures are lists of items that can be
spread out in memory. This is because each item contains one or
more links to other items in the structure. What type of links these
are dependent on the type of structure we have. If we are dealing
with linked lists, then we will have links to the next (and possibly
previous) items in the structure. In the case of a tree, we have
parent-child links as well as sibling links. In a tile-based game where
the game map is built up of hexes, each node will have links to up to
six adjacent map cells.

There are several benefits with pointer structures. First of all, they
don't require sequential storage space. Second, they can start small
and grow arbitrarily as you add more nodes to the structure.

This, however, comes at a cost. If you have a list of integers, each
node is going to take up the space of an integer, as well as an
additional integer for storing the pointer to the next node.

Nodes
At the heart of lists (and several other data structures) is the concept
of a node. Before we go any further, let us consider this idea for a
while.

To begin with, we shall create a few strings:

>>> a = "eggs"
>>> b = "ham"
>>> c = "spam"

Now you have three variables, each with a unique name, a type, and
a value. What we do not have is a way of saying in which way the
variables relate to each other. Nodes allow us to do this. A node is a
container of data, together with one or more links to other nodes. A
link is a pointer.

A simple type of node is one that only has a link to the next node.

Of course, knowing what we do about pointers, we realize that this is
not entirely true. The string is not really stored in the node, but is
rather a pointer to the actual string:

Thus the storage requirement for this simple node is two memory
addresses. The data attribute of the nodes are pointers to the strings
eggs and ham.

Finding endpoints
We have created three nodes: one containing eggs, one ham, and
another spam. The eggs node points to the ham node, which in turn
points to the spam node. But what does the spam node point to?
Since this is the last element in the list, we need to make sure its
next member has a value that makes this clear.

If we make the last element point to nothing then we make this fact
clear. In python, we will use the special value None to denote nothing:

The last node has its next point pointing to None. As such it is the
last node in the chain of nodes.

Node
Here is a simple node implementation of what we have discussed so
far:

 class Node:
 def __init__(self, data=None):
 self.data = data
 self.next = None

Do not confuse the concept of a node with Node.js, a server-side technology implemented in
JavaScript.

The next pointer is initialized to None, meaning that unless you change
the value of next, the node is going to be an end-point. This is a good
idea, so that we do not forget to terminate the list properly.

You can add other things to the node class as you see fit. Just make
sure that you keep in mind the distinction between node and data. If
your node is going to contain customer data, then create a Customer
class and put all the data there.

One thing you may want to do is implement the __str__ method so
that it calls the __str__ method of the contained object is called when
the node object is passed to print:

 def __str__(self):
 return str(data)

Other node types
We have assumed nodes that have a pointer to the next node. This is
probably the simplest type of node. However, depending on our
requirements, we can create a number of other types of nodes.

Sometimes we want to go from A to B, but at the same time from B to
A. In that case, we add a previous pointer in addition to the next
pointer:

As you can see from the figure, we let both the last and the first
nodes point to None, to indicate that we have reached they form the
boundary of our list end-point. The first node’s previous pointer points
to None since it has no predecessor, just as the last item’s next
pointer points to None because it no successor node.

You might also be creating tiles for a tile-based game. In such a case,
instead of previous and next, you might use north, south, east, and
west. There are more types of pointers, but the principle is the same.
Tiles at the end of the map will point to None:

You can take this as far as you need to. If you need to be able to
move north-west, north-east, south-east, and south-west as well, all
you have to do is add these pointers to your node class.

Singly linked lists
A singly linked list is a list with only one pointer between two
successive nodes. It can only be traversed in a single direction, that
is, you can go from the first node in the list to the last node, but you
cannot move from the last node to the first node.

We can actually use the node class that we created earlier to
implement a very simple singly linked list:

 >>> n1 = Node('eggs')
 >>> n2 = Node('ham')
 >>> n3 = Node('spam')

Next we link the nodes together so that they form a chain:

 >>> n1.next = n2
 >>> n2.next = n3

To traverse the list, you could do something like the following. We
start by setting the variable current to the first item in the list:

 current = n1
 while current:
 print(current.data)
 current = current.next

In the loop we print out the current element after which we set
current to point to the next element in the list. We keep doing this
until we have reached the end of the list.

There are, however, several problems with this simplistic list
implementation:

It requires too much manual work by the programmer
It is too error-prone (this is a consequence of the first point)
Too much of the inner workings of the list is exposed to the
programmer

We are going to address all these issues in the following sections.

Singly linked list class
A list is clearly a separate concept from a node. So we start by
creating a very simple class to hold our list. We will start with a
constructor that holds a reference to the very first node in the list.
Since this list is initially empty, we will start by setting this reference
to None:

 class SinglyLinkedList:
 def __init__(self):
 self.tail = None

Append operation
The first operation that we need to perform is to append items to the
list. This operation is sometimes called an insert operation. Here we
get a chance to hide away the Node class. The user of our list class
should really never have to interact with Node objects. These are
purely for internal use.

A first shot at an append() method may look like this:

 class SinglyLinkedList:
 # ...

 def append(self, data):
 # Encapsulate the data in a Node
 node = Node(data)

 if self.tail == None:
 self.tail = node
 else:
 current = self.tail
 while current.next:
 current = current.next
 current.next = node

We encapsulate data in a node, so that it now has the next pointer
attribute. From here we check if there are any existing nodes in the
list (that is, does self.tail point to a Node). If there is none, we make
the new node the first node of the list; otherwise, find the insertion
point by traversing the list to the last node, updating the next pointer
of the last node to the new node.

We can append a few items:

>>> words = SinglyLinkedList()
 >>> words.append('egg')
 >>> words.append('ham')
 >>> words.append('spam')

List traversal will work more or less like before. You will get the first
element of the list from the list itself:

>>> current = words.tail
>>> while current:
 print(current.data)
 current = current.next

A faster append operation
There is a big problem with the append method in the previous
section: it has to traverse the entire list to find the insertion point.
This may not be a problem when there are just a few items in the list,
but wait until you need to add thousands of items. Each append will
be slightly slower than the previous one. A O(n) goes to prove how
slow our current implementation of the append method will actually be.

To fix this, we will store, not only a reference to the first node in the
list, but also a reference to the last node. That way, we can quickly
append a new node at the end of the list. The worst case running
time of the append operation is now reduced from O(n) to O(1). All
we have to do is make sure the previous last node points to the new
node, that is about to be appended to the list. Here is our updated
code:

 class SinglyLinkedList:
 def __init__(self):
 # ...
 self.tail = None

 def append(self, data):
 node = Node(data)
 if self.head:
 self.head.next = node
 self.head = node
 else:
 self.tail = node
 self.head = node

Take note of the convention being used. The point at which we
append new nodes is through self.head. The self.tail variable points to
the first node in the list.

Getting the size of the list
We would like to be able to get the size of the list by counting the
number of nodes. One way we could do this is by traversing the
entire list and increasing a counter as we go along:

 def size(self):
 count = 0
 current = self.tail
 while current:
 count += 1
 current = current.next
 return count

This works, but list traversal is potentially an expensive operation
that we should avoid when we can. So instead, we shall opt for
another rewrite of the method. We add a size member to the
SinglyLinkedList class, initializing it to 0 in the constructor. Then we
increment size by one in the append method:

class SinglyLinkedList:
 def __init__(self):
 # ...
 self.size = 0

 def append(self, data):
 # ...
 self.size += 1

Because we are now only reading the size attribute of the node
object, and not using a loop to count the number of nodes in the list,
we get to reduce the worst case running time from O(n) to O(1).

Improving list traversal
If you notice how we traverse our list. That one place where we are
still exposed to the node class. We need to use node.data to get the
contents of the node and node.next to get the next node. But we
mentioned earlier that client code should never need to interact with
Node objects. We can achieve this by creating a method that returns
a generator. It looks as follows:

 def iter(self):
 current = self.tail
 while current:
 val = current.data
 current = current.next
 yield val

Now list traversal is much simpler and looks a lot better as well. We
can completely ignore the fact that there is anything called a Node
outside of the list:

 for word in words.iter():
 print(word)

Notice that since the iter() method yields the data member of the
node, our client code doesn't need to worry about that at all.

Deleting nodes
Another common operation that you would need to be able to do on a
list is to delete nodes. This may seem simple, but we'd first have to
decide how to select a node for deletion. Is it going to be by an index
number or by the data the node contains? Here we will choose to
delete a node by the data it contains.

The following is a figure of a special case considered when deleting a
node from the list:

When we want to delete a node that is between two other nodes, all
we have to do is make the previous node directly to the successor of
its next node. That is, we simply cut the node to be deleted out of the
chain as in the preceding image.

Here is the implementation of the delete() method may look like:

 def delete(self, data):
 current = self.tail
 prev = self.tail
 while current:
 if current.data == data:
 if current == self.tail:
 self.tail = current.next
 else:
 prev.next = current.next
 self.size -= 1
 return
 prev = current
 current = current.next

 It should take a O(n) to delete a node.

List search
We may also need a way to check whether a list contains an item.
This method is fairly easy to implement thanks to the iter() method
we previously wrote. Each pass of the loop compares the current
data to the data being searched for. If a match is found, True is
returned, or else False is returned:

def search(self, data):
 for node in self.iter():
 if data == node:
 return True
 return False

Clearing a list
We may want a quick way to clear a list. Fortunately for us, this is
very simple. All we do is clear the pointers head and tail by setting
them to None:

def clear(self):
 """ Clear the entire list. """
 self.tail = None
 self.head = None

In one fell swoop, we orphan all the nodes at the tail and head
pointers of the list. This has a ripple effect of orphaning all the nodes
in between.

Doubly linked lists
Now that we have a solid grounding on what a singly linked list is
and the kind of operations that can be performed on it, we shall now
turn our focus one notch higher to the topic of doubly linked lists.

A doubly linked list is somehow similar to a singly linked list in that
we make use of the same fundamental idea of stringing nodes
together. In a Singly linked list, there exists one link between each
successive node. A node in a doubly linked list has two pointers: a
pointer to the next node and a pointer to the previous node:

A node in a singly linked list can only determine the next node
associated with it. But the referenced node or next node has no way
of telling who is doing the referencing. The flow of direction is only
one way.

In a doubly linked list, we add to each node the ability to not only
reference the next node but also the previous node.

Let's examine the nature of the linkages that exist between two
successive nodes for better understanding:

With the existence of two pointers that point to the next and previous
nodes, doubly linked lists become equipped with certain capabilities.

Doubly linked lists can be traversed in any direction. Depending on
the operation being performed, a node within a doubly linked list can
easily refer to its previous node where necessary without having to
designate a variable to keep track of that node. Because a Singly
linked list can only be traversed in one direction it may sometimes
mean moving to the start or beginning of the list in order to effect
certain changes buried within the list.

Since there is immediate access to both next and previous nodes,
deletion operations are much easier to perform, as you will see later
on in this chapter.

A doubly linked list node
The Python code that creates a class to capture what a doubly linked
list node is includes in its initializing method, the prev, next, and data
instance variables. When a node is newly created, all these variables
default to None:

 class Node(object):
 def __init__(self, data=None, next=None, prev=None):
 self.data = data
 self.next = next
 self.prev = prev

The prev variable holds a reference to the previous node, while the
next variable continues to hold a reference to the next node.

Doubly linked list
It is still important to create a class that captures the data that our
functions will be operating on:

 class DoublyLinkedList(object):
 def __init__(self):
 self.head = None
 self.tail = None
 self.count = 0

For the purposes of enhancing the size method, we also set the count
instance variable to 0. head and tail will point to the head and tail of
the list when we begin to insert nodes into the list.

We adopt a new convention where self.head points to the beginner node of the list and self.tail
points to the latest node added to the list. This is contrary to the convention we used in the singly
linked list. There are no fixed rules as to the naming of the head and tail node pointers.

Doubly linked lists also need to provide functions that return the size
of the list, inserts into the list, and also deletes nodes from the list.
We will be examining some of the code to do this. Let's commence
with the append operation.

Append operation
During an append operation, it is important to check whether the head is
None. If it is None, it means that the list is empty and should have the head
set pointing to the just-created node. The tail of the list is also pointed
at the new node through the head. By the end of these series of
steps, head and tail will now be pointing to the same node:

 def append(self, data):
 """ Append an item to the list. """

 new_node = Node(data, None, None)
 if self.head is None:
 self.head = new_node
 self.tail = self.head
 else:
 new_node.prev = self.tail
 self.tail.next = new_node
 self.tail = new_node

 self.count += 1

The following diagram illustrates the head and tail pointers of the
doubly linked list when a new node is added to an empty list.

The else part of the algorithm is only executed if the list is not empty.
The new node's previous variable is set to the tail of the list:

 new_node.prev = self.tail

The tail's next pointer (or variable) is set to the new node:

 self.tail.next = new_node

Lastly, we update the tail pointer to point to the new node:

 self.tail = new_node

Since an append operation increases the number of nodes by one, we
increase the counter by one:

 self.count += 1

A visual representation of the append operation is as follows:

Delete operation
Unlike the singly linked list, where we needed to keep track of the
previously encountered node anytime we traversed the whole length
of the list, the doubly linked list avoids that whole step. This is made
possible by the use of the previous pointer.

The algorithm for removing nodes from a doubly linked list caters for
basically four scenarios before deletion of a node is completed.
These are:

When the search item is not found at all
When the search item is found at the very beginning of the list
When the search item is found at the tail end of the list
When the search item is found somewhere in the middle of the
list

The node to be removed is identified when its data instance variable
matches the data that is passed to the method to be used in the
search for the node. If a matching node is found and subsequently
removed, the variable node_deleted is set to True. Any other outcome
results in node_deleted being set to False:

 def delete(self, data):
 current = self.head
 node_deleted = False
 ...

In the delete method, the current variable is set to the head of the list
(that is, it points to the self.head of the list). A set of if... else
statements are then used to search the various parts of the list to find
the node with the specified data.

The head node is searched first. Since current is pointing at head, if current
is None, it is presumed that the list has no nodes for a search to even
begin to find the node to be removed:

 if current is None:
 node_deleted = False

However, if current (which now points to head) contains the very data
being searched for, then self.head is set to point to the current next
node. Since there is no node behind head now, self.head.prev is set to
None:

 elif current.data == data:
 self.head = current.next
 self.head.prev = None
 node_deleted = True

A similar strategy is adopted if the node to be removed is located at
the tail end of the list. This is the third statement that searches for the
possibility that the node to be removed might be located at the end of
the list:

 elif self.tail.data == data:
 self.tail = self.tail.prev
 self.tail.next = None
 node_deleted = True

Lastly, the algorithm to find and remove a node loops through the list
of nodes. If a matching node is found, current's previous node is
connected to current's next node. After that step, current's next node is
connected to previous node of current:

else
 while current:
 if current.data == data:
 current.prev.next = current.next
 current.next.prev = current.prev
 node_deleted = True
 current = current.next

The node_delete variable is then checked after all the if-else statements
has been evaluated. If any of the if-else statements changed this
variable, then it means a node has been deleted from the list. The
count variable is therefore decremented by 1:

 if node_deleted:
 self.count -= 1

As an example of deleting a node that is buried within a list, assume
the existence of three nodes, A, B, and C. To delete node B in the
middle of the list, we will essentially make A point to C as its next
node, while making C point to A as its previous node:

After such an operation, we end up with the following list:

List search
The search algorithm is similar to that of the search method in a singly
linked list. We call the internal method iter() to return the data in all
the nodes. As we loop through the data, each is matched against the
data passed into the contain method. If there is a match, we return
True, or else we return False to symbolize that no match was found:

 def contain(self, data):
 for node_data in self.iter():
 if data == node_data:
 return True
 return False

Our doubly linked list has a O(1) for the append operation and O(n) for
the delete operation.

Circular lists
A circular list is a special case of a linked list. It is a list where the
endpoints are connected. That is, the last node in the list points back
to the first node. Circular lists can be based on both singly and
doubly linked lists. In the case of a doubly linked circular list, the first
node also needs to point to the last node.

Here we are going to look at an implementation of a singly linked
circular list. It should be straightforward to implement a doubly linked
circular list, once you have grasped the basic concepts.

We can reuse the node class that we created in the section on singly
linked lists. As a matter of fact, we can reuse most parts of the
SinglyLinkedList class as well. So we are going to focus on the methods
where the circular list implementation differs from the normal singly
linked list.

Appending elements
When we append an element to the circular list, we need to make
sure that the new node points back to the tail node. This is
demonstrated in the following code. There is one extra line as
compared to the singly linked list implementation:

 def append(self, data):
 node = Node(data)
 if self.head:
 self.head.next = node
 self.head = node
 else:
 self.head = node
 self.tail = node
 self.head.next = self.tail
 self.size += 1

Deleting an element
We may think that we can follow the same principle as for append
and simply make sure the head points to the tail. This would give us
the following implementation:

 def delete(self, data):
 current = self.tail
 prev = self.tail
 while current:
 if current.data == data:
 if current == self.tail:
 self.tail = current.next
 self.head.next = self.tail
 else:
 prev.next = current.next
 self.size -= 1
 return
 prev = current
 current = current.next

As previously, there is just a single line that needs to change. It is
only when we remove the tail node that we need to make sure that
the head node is updated to point to the new tail node.

However, there is a serious problem with this code. In the case of a
circular list, we cannot loop until current becomes None, since that will
never happen. If you delete an existing node, you wouldn't see this,
but try deleting a nonexistent node and you will get stuck in an
indefinite loop.

We thus need to find a different way to control the while loop. We
cannot check whether current has reached head, because then it will
never check the last node. But we could use prev, since it lags behind
current by one node. There is a special case, however. The very first
loop iteration, current and prev, will point to the same node, namely the
tail node. We want to ensure that the loop does run here, since we
need to take the one node list into consideration. The updated delete
method now looks as follows:

def delete(self, data):
 current = self.tail
 prev = self.tail
 while prev == current or prev != self.head:
 if current.data == data:
 if current == self.tail:
 self.tail = current.next
 self.head.next = self.tail
 else:
 prev.next = current.next
 self.size -= 1
 return
 prev = current
 current = current.next

Iterating through a circular list
You do not need to modify the iter() method. It will work perfectly well
for our circular list. But you do need to put in an exit condition when
you are iterating through the circular list, otherwise your program will
get stuck in a loop. Here is a way you could do this, by using a
counter variable:

 words = CircularList()
 words.append('eggs')
 words.append('ham')
 words.append('spam')

 counter = 0
 for word in words.iter():
 print(word)
 counter += 1
 if counter > 1000:
 break

Once we have printed out 1,000 elements, we break out of the loop.

Summary
In this chapter, we have looked at linked lists. We have studied the
concepts that underlie lists, such as nodes and pointers to other
nodes. We implemented the major operations that occur on these
types of list and saw how their worst case running times compare.

In the next chapter, we are going to look at two other data structures
that are usually implemented using lists: stacks and queues.

Stacks and Queues
In this chapter, we are going to build upon the skills we learned in the
last chapter in order to create special list implementations. We are
still sticking to linear structures. We will get to more complex data
structures in the coming chapters.

In this chapter, we are going to look at the following:

Implementing stacks and queues
Some applications of stacks and queues

Stacks
A stack is a data structure that is often likened to a stack of plates. If
you have just washed a plate, you put it on top of the stack. When
you need a plate, you take it off the top of the stack. So the last plate
to be added to the stack will be the first to be removed from the
stack. Thus, a stack is a last in, first out (LIFO) structure:

The preceding figure depicts a stack of plates. Adding a plate to the
pile is only possible by leaving that plate on top of the pile. To
remove a plate from the pile of plates means to remove the plate that
is on top of the pile.

There are two primary operations that are done on stacks: push and
pop. When an element is added to the top of the stack, it is pushed
onto the stack. When an element is taken off the top of the stack, it is
popped off the stack. Another operation which is used sometimes is
peek, which makes it possible to see the element on the stack without
popping it off.

Stacks are used for a number of things. One very common usage for
stacks is to keep track of the return address during function calls.
Let's imagine that we have the following little program:

def b():
 print('b')

def a():
 b()

a()
print("done")

When the program execution gets to the call to a(), it first pushes the
address of the following instruction onto the stack, then jumps to a.
Inside a, b() is called, but before that, the return address is pushed
onto the stack. Once in b() and the function is done, the return
address is popped off the stack, which takes us back to a(). When a
has completed, the return address is popped off the stack, which
takes us back to the print statement.

Stacks are actually also used to pass data between functions. Say
you have the following function call somewhere in your code:

 somefunc(14, 'eggs', 'ham', 'spam')

What is going to happen is that 14, 'eggs', 'ham' and 'spam' will be
pushed onto the stack, one at a time:

When the code jumps into the function, the values for a, b, c, d will be
popped off the stack. The spam element will be popped off first and
assigned to d, then "ham" will be assigned to c, and so on:

 def somefunc(a, b, c, d):
 print("function executed")

Stack implementation
Now let us study an implementation of a stack in Python. We start off
by creating a node class, just as we did in the previous chapter with
lists:

class Node:
 def __init__(self, data=None):
 self.data = data
 self.next = None

This should be familiar to you by now: a node holds data and a
reference to the next item in a list. We are going to implement a
stack instead of a list, but the same principle of nodes linked
together still applies.

Now let us look at the stack class. It starts off similar to a singly linked
list. We need to know the node at the top of the stack. We would
also like to keep track of the number of nodes in the stack. So we will
add these fields to our class:

class Stack:
 def __init__(self):
 self.top = None
 self.size = 0

Push operation
The push operation is used to add an element to the top of the stack.
Here is an implementation:

 def push(self, data):
 node = Node(data)
 if self.top:
 node.next = self.top
 self.top = node
 else:
 self.top = node
 self.size += 1

In the following figure, there is no existing node after creating our
new node. Thus self.top will point to this new node. The else part of
the if statement guarantees that this happens:

In a scenario where we have an existing stack, we move self.top so
that it points to the newly created node. The newly created node
must have its next pointer, pointing to the node that used to be the
top node on the stack:

Pop operation
Now we need a pop method to remove the top element from the
stack. As we do so, we need to return the topmost element as well.
We will make the stack return None if there are no more elements:

 def pop(self):
 if self.top:
 data = self.top.data
 self.size -= 1
 if self.top.next:
 self.top = self.top.next
 else:
 self.top = None
 return data
 else:
 return None

The thing to pay attention to here is the inner if statement. If the top
node has its next attribute pointing to another node, then we must
set the top of the stack to now point to that node:

When there is only one node in the stack, the pop operation will
proceed as follows:

Removing such a node results in self.top pointing to None:

Peek
As we said earlier, we could also add a peek method. This will just
return the top of the stack without removing it from the stack,
allowing us to look at the top element without changing the stack
itself. This operation is very straightforward. If there is a top element,
return its data, otherwise return None (so that the behavior of peek
matches that of pop):

 def peek(self):
 if self.top
 return self.top.data
 else:
 return None

Bracket-matching application
Now let us look at an example of how we can use our stack
implementation. We are going to write a little function that will verify
whether a statement containing brackets--(, [, or {--is balanced, that
is, whether the number of closing brackets matches the number of
opening brackets. It will also ensure that one pair of brackets really is
contained in another:

 def check_brackets(statement):
 stack = Stack()
 for ch in statement:
 if ch in ('{', '[', '('):
 stack.push(ch)
 if ch in ('}', ']', ')'):
 last = stack.pop()
 if last is '{' and ch is '}':
 continue
 elif last is '[' and ch is ']':
 continue
 elif last is '(' and ch is ')':
 continue
 else:
 return False
 if stack.size > 0:
 return False
 else:
 return True

Our function parses each character in the statement passed to it. If it
gets an open bracket, it pushes it onto the stack. If it gets a closing
bracket, it pops the top element off the stack and compares the two
brackets to make sure their types match: (should match), [should
match], and { should match }. If they don't, we return False, otherwise
we continue parsing.

Once we have got to the end of the statement, we need to do one last
check. If the stack is empty, then we are fine and we can return True.
But if the stack is not empty, then we have some opening bracket
which does not have a matching closing bracket and we shall return
False. We can test the bracket-matcher with the following little code:

sl = (
 "{(foo)(bar)}[hello](((this)is)a)test",
 "{(foo)(bar)}[hello](((this)is)atest",
 "{(foo)(bar)}[hello](((this)is)a)test))"
)
for s in sl:
 m = check_brackets(s)
 print("{}: {}".format(s, m))

Only the first of the three statements should match. And when we run
the code, we get the following output:

True, False, False. The code works. In summary, the push and pop
operations of the stack data structure attract a O(1). The stack data
structure is simply enough but is used to implement a whole range of
functionality in the real world. The back and forward buttons on the
browser are made possible by stacks. To be able to have undo and
redo functionality in word processors, stacks are also used.

Queues
Another special type of list is the queue data structure. This data
structure is no different from the regular queue you are accustomed
to in real life. If you have stood in line at an airport or to be served
your favorite burger at your neighborhood shop, then you should
know how things work in a queue.

Queues are also a very fundamental and important concept to grasp
since many other data structures are built on them.

The way a queue works is that the first person to join the queue
usually gets served first, all things being equal. The acronym FIFO
best explains this. FIFO stands for first in, first out. When people
are standing in a queue waiting for their turn to be served, service is
only rendered at the front of the queue. The only time people exit the
queue is when they have been served, which only occurs at the very
front of the queue. By strict definition, it is illegal for people to join the
queue at the front where people are being served:

To join the queue, participants must first move behind the last person
in the queue. The length of the queue does not matter. This is the
only legal or permitted way by which the queue accepts new entrants.

As human as we are, the queues that we form do not conform to strict
rules. It may have people who are already in the queue deciding to
fall out or even have others substituting for them. It is not our intent to
model all the dynamics that happen in a real queue. Abstracting what
a queue is and how it behaves enables us to solve a plethora of
challenges, especially in computing.

We shall provide various implementations of a queue but all will
revolve around the same idea of FIFO. We shall call the operation to
add an element to the queue enqueue. To remove an element from
the queue, we will create a dequeue operation. Anytime an element is
enqueued, the length or size of the queue increases by one.
Conversely, dequeuing items reduce the number of elements in the
queue by one.

To demonstrate the two operations, the following table shows the
effect of adding and removing elements from a queue:

Queue
operation Size Contents Operation results

Queue() 0 [] Queue object created

Enqueue "Mark" 1 ['mark'] Mark added to queue

Enqueue "John" 2 ['mark','john'] John added to queue

Size() 2 ['mark','john']
Number of items in queue
returned

Dequeue() 1 ['mark'] John is dequeued and
returned

Dequeue() 0 []
Mark is dequeued and
returned

List-based queue
To put into code everything discussed about queues to this point,
let's go ahead and implement a very simple queue using Python's
list class. This is to help us develop quickly and learn about queues.
The operations that must be performed on the queue are
encapsulated in the ListQueue class:

class ListQueue:
 def __init__(self):
 self.items = []
 self.size = 0

In the initialization method __init__, the items instance variable is set to
[], which means the queue is empty when created. The size of the
queue is also set to zero. The more interesting methods are the enqueue
and dequeue methods.

Enqueue operation
The enqueue operation or method uses the insert method of the list
class to insert items (or data) at the front of the list:

 def enqueue(self, data):
 self.items.insert(0, data)
 self.size += 1

Do note how we implement insertions to the end of the queue. Index
0 is the first position in any list or array. However, in our
implementation of a queue using a Python list, the array index 0 is
the only place where new data elements are inserted into the queue.
The insert operation will shift existing data elements in the list by one
position up and then insert the new data in the space created at
index 0. The following figure visualizes this process:

To make our queue reflect the addition of the new element, the size
is increased by one:

self.size += 1
We could have used Python's shift method on the list as another way of implementing the "insert
at 0". At the end of the day, an implementation is the overall objective of the exercise.

Dequeue operation
The dequeue operation is used to remove items from the queue. With
reference to the introduction to the topic of queues, this operation
captures the point where we serve the customer who joined the
queue first and also waited the longest:

 def dequeue(self):
 data = self.items.pop()
 self.size -= 1
 return data

The Python list class has a method called pop(). The pop method does
the following:

1. Removes the last item from the list.
2. Returns the removed item from the list back to the user or code

that called it.

The last item in the list is popped and saved in the data variable. In the
last line of the method, the data is returned.

Consider the tunnel in the following figure as our queue. To perform a
dequeue operation, the node with data 1 is removed from the front of the
queue:

The resulting elements in the queue are as shown as follows:

What can we say about the enqueue operation? It is highly inefficient in more than one way. The
method has to first shift all the elements by one space. Imagine when there are 1 million elements
in a list which need to be shifted around anytime a new element is being added to the queue. This
will generally make the enqueue process very slow for large lists.

Stack-based queue
Yet another implementation of a queue is to use two stacks. Once
more, the Python list class will be used to simulate a stack:

class Queue:
 def __init__(self):
 self.inbound_stack = []
 self.outbound_stack = []

The preceding queue class sets the two instance variables to empty
lists upon initialization. These are the stacks that will help us
implement a queue. The stacks in this case are simply Python lists
that allow us to call push and pop methods on them.

The inbound_stack is only used to store elements that are added to the
queue. No other operation can be performed on this stack.

Enqueue operation
The enqueue method is what adds elements to the queue:

def enqueue(self, data):
 self.inbound_stack.append(data)

The method is a simple one that only receives the data the client
wants to append to the queue. This data is then passed to the append
method of the inbound_stack in the queue class. Furthermore, the append
method is used to mimic the push operation, which pushes elements
to the top of the stack.

To enqueue data onto the inbound_stack, the following code does justice:

queue = Queue()
queue.enqueue(5)
queue.enqueue(6)
queue.enqueue(7)
print(queue.inbound_stack)

A command-line output of the inbound_stack inside the queue is as
follows:

[5, 6, 7]

Dequeue operation
The dequeue operation is a little more involved than its enqueue
counterpart operation. New elements added to our queue end up in
the inbound_stack. Instead of removing elements from the inbound_stack,
we shift our attention to the outbound_stack. As we said, elements can
be deleted from our queue only through the outbound_stack:

 if not self.outbound_stack:
 while self.inbound_stack:
 self.outbound_stack.append(self.inbound_stack.pop())
 return self.outbound_stack.pop()

The if statement first checks whether the outbound_stack is empty or
not. If it is not empty, we proceed to remove the element at the front
of the queue by doing the following:

return self.outbound_stack.pop()

If the outbound_stack is empty instead, all the elements in the inbound _stack
are moved to the outbound_stack before the front element in the queue is
popped out:

while self.inbound_stack:
 self.outbound_stack.append(self.inbound_stack.pop())

The while loop will continue to be executed as long as there are
elements in the inbound_stack.

The statement self.inbound_stack.pop() will remove the latest element
that was added to the inbound_stack and immediately pass the popped
data to the self.outbound_stack.append() method call.

Initially, our inbound_stack was filled with the elements 5, 6 and 7:

After executing the body of the while loop, the outbound_stack looks like
this:

The last line in the dequeue method will return 5 as the result of the pop
operation on the outbound_stack:

return self.outbound_stack.pop()

This leaves the outbound_stack with only two elements:

The next time the dequeue operation is called, the while loop will not be
executed because there are no elements in the outbound_stack, which
makes the outer if statement fail.

The pop operation is called right away in that case so that only the
element in the queue that has waited the longest is returned.

A typical run of code to use this queue implementation is as follows:

queue = Queue()
queue.enqueue(5)
queue.enqueue(6)
queue.enqueue(7)
print(queue.inbound_stack)
queue.dequeue()
print(queue.inbound_stack)
print(queue.outbound_stack)
queue.dequeue()
print(queue.outbound_stack)

The output for the preceding code is as follows:

 [5, 6, 7]
 []
 [7, 6]
 [7]

The code sample adds elements to a queue and prints out the
elements within the queue. The dequeue method is called, after which a

change in the number of elements is observed when the queue is
printed out again.

Implementing a queue with two stacks is a popular question posed during interviews.

Node-based queue
Using a Python list to implement a queue is a good starter to get the
feel of how queues work. It is completely possible for us to
implement our own queue data structure by utilizing our knowledge
of pointer structures.

A queue can be implemented using a doubly linked list, and insertion
and deletion operations on this data structure have a time complexity
of O(1).

The definition for the node class remains the same as the Node we
defined when we touched on doubly linked list, The doubly linked list
can be treated as a queue if it enables a FIFO kind of data access,
where the first element added to the list is the first to be removed.

Queue class
The queue class is very similar to that of the doubly linked list class:

class Queue:
def __init__(self):
 self.head = None
 self.tail = None
 self.count = 0

self.head and self.tail pointers are set to None upon creation of an
instance of the queue class. To keep a count of the number of nodes in
Queue, the count instance variable is maintained here too and set to 0.

Enqueue operation
Elements are added to a Queue object via the enqueue method. The
elements in this case are the nodes:

 def enqueue(self, data):
 new_node = Node(data, None, None)
 if self.head is None:
 self.head = new_node
 self.tail = self.head
 else:
 new_node.prev = self.tail
 self.tail.next = new_node
 self.tail = new_node

 self.count += 1

The enqueue method code is the same code already explained in the
append operation of the doubly linked list. It creates a node from the
data passed to it and appends it to the tail of the queue, or points
both self.head and self.tail to the newly created node if the queue is
empty. The total count of elements in the queue is increased by the
line self.count += 1.

Dequeue operation
The other operation that makes our doubly linked list behave as a
queue is the dequeue method. This method is what removes the node
at the front of the queue.

To remove the first element pointed to by self.head, an if statement is
used:

def dequeue(self):
current = self.head
 if self.count == 1:
 self.count -= 1
 self.head = None
 self.tail = None
 elif self.count > 1:
 self.head = self.head.next
 self.head.prev = None
 self.count -= 1

current is initialized by pointing it to self.head. If self.count is 1, then it
means only one node is in the list and invariably the queue. Thus, to
remove the associated node (pointed to by self.head), the self.head and
self.tail variables are set to None.

If, on the other hand, the queue has many nodes, then the head
pointer is shifted to point to self.head's next node.

After the if statement is run, the method returns the node that was
pointed to by head. self.count is decremented by one in either way the
if statement execution path flows.

Equipped with these methods, we have successfully implemented a
queue, borrowing heavily from the idea of a doubly linked list.

Remember also that the only things transforming our doubly linked
list into a queue are the two methods, namely enqueue and dequeue.

Application of queues
Queues are used to implement a variety of functionalities in
computer land. For instance, instead of providing each computer on
a network with its own printer, a network of computers can be made
to share one printer by queuing what each printer wants to print.
When the printer is ready to print, it will pick one of the items (usually
called jobs) in the queue to print out.

Operating systems also queue processes to be executed by the
CPU. Let's create an application that makes use of a queue to create
a bare-bones media player.

Media player queue
Most music player software allows users the chance to add songs to
a playlist. Upon hitting the play button, all the songs in the main
playlist are played one after the other. The sequential playing of the
songs can be implemented with queues because the first song to be
queued is the first song that is played. This aligns with the FIFO
acronym. We shall implement our own playlist queue that plays
songs in the FIFO manner.

Basically, our media player queue will only allow for the addition of
tracks and a way to play all the tracks in the queue. In a full-blown
music player, threads would be used to improve how the queue is
interacted with, while the music player continues to be used to select
the next song to be played, paused, or even stopped.

The track class will simulate a musical track:

from random import randint
class Track:

 def __init__(self, title=None):
 self.title = title
 self.length = randint(5, 10)

Each track holds a reference to the title of the song and also the
length of the song. The length is a random number between 5 and
10. The random module provides the randint method to enable us
generate the random numbers. The class represents any MP3 track
or file that contains music. The random length of a track is used to
simulate the number of seconds it takes to play a song or track.

To create a few tracks and print out their lengths, we do the
following:

track1 = Track("white whistle")
track2 = Track("butter butter")

print(track1.length)
print(track2.length)

The output of the preceding code is as follows:

 6
 7

Your output may be different depending on the random length
generated for the two tracks.

Now, let's create our queue. Using inheritance, we simply inherit
from the queue class:

import time
class MediaPlayerQueue(Queue):

 def __init__(self):
 super(MediaPlayerQueue, self).__init__()

A call is made to properly initialize the queue by making a call to
super. This class is essentially a queue that holds a number of track
objects in a queue. To add tracks to the queue, an add_track method is
created:

 def add_track(self, track):
 self.enqueue(track)

The method passes a track object to the enqueue method of the queue
super class. This will, in effect, create a Node using the track object (as
the node's data) and point either the tail, if the queue is not empty, or
both head and tail, if the queue is empty, to this new node.

Assuming the tracks in the queue are played sequentially from the
first track added to the last (FIFO), then the play function has to loop
through the elements in the queue:

def play(self):
 while self.count > 0:
 current_track_node = self.dequeue()
 print("Now playing {}".format(current_track_node.data.title))
 time.sleep(current_track_node.data.length)

self.count keeps count of when a track is added to our queue and
when tracks have been dequeued. If the queue is not empty, a call to
the dequeue method will return the node (which houses the track object)
at the front of the queue. The print statement then accesses the title
of the track through the data attribute of the node. To further simulate
the playing of a track, the time.sleep() method halts program execution
till the number of seconds of the track has elapsed:

time.sleep(current_track_node.data.length)

The media player queue is made up of nodes. When a track is
added to the queue, the track is hidden in a newly created node and
associated with the data attribute of the node. That explains why we
access a node's track object through the data property of the node
which is returned by the call to dequeue:

You can see, instead of our node object just storing just any data, it
stores tracks in this case.

Let's take our music player for a spin:

track1 = Track("white whistle")
track2 = Track("butter butter")
track3 = Track("Oh black star")
track4 = Track("Watch that chicken")
track5 = Track("Don't go")

We create five track objects with random words as titles:

print(track1.length)
print(track2.length)
>> 8
>> 9

The output should be different from what you get on your machine
due to the random length.

Next, an instance of the MediaPlayerQueue class is created:

media_player = MediaPlayerQueue()

The tracks will be added and the output of the play function should
print out the tracks being played in the same order in which we
queued them:

media_player.add_track(track1)
media_player.add_track(track2)
media_player.add_track(track3)
media_player.add_track(track4)
media_player.add_track(track5)
media_player.play()

The output of the preceding code is as follows:

 >>Now playing white whistle
 >>Now playing butter butter
 >>Now playing Oh black star
 >>Now playing Watch that chicken
 >>Now playing Don't go

Upon execution of the program, it can be seen that the tracks are
played in the order in which they were queued. When playing the
track, the system also pauses for the number of seconds equal to
that of the length of the track.

Summary
In this chapter, we used our knowledge of linking nodes together to
create other data structures, namely stacks and queues. We have
seen how these data structures closely mimic stacks and queues in
the real world. Concrete implementations, together with their varying
types, have been shown. We later applied the concept of stacks and
queues to write real-life programs.

We shall consider trees in the next chapter. The major operations on
a tree will be discussed, likewise the different spheres in which to
apply the data structure.

Trees
A tree is a hierarchical form of data structure. When we dealt with
lists, queues, and stacks, items followed each other. But in a tree,
there is a parent-child relationship between items.

To visualize what trees look like, imagine a tree growing up from the
ground. Now remove that image from your mind. Trees are normally
drawn downward, so you would be better off imagining the root
structure of the tree growing downward.

At the top of every tree is the so-called root node. This is the
ancestor of all other nodes in the tree.

Trees are used for a number of things, such as parsing expressions,
and searches. Certain document types, such as XML and HTML,
can also be represented in a tree form. We shall look at some of the
uses of trees in this chapter.

In this chapter, we will cover the following areas:

Terms and definitions of trees
Binary trees and binary search trees
Tree traversal

Terminology
Let's consider some terms associated with trees.

To understand trees, we need to first understand the basic ideas on
which they rest. The following figure contains a typical tree
consisting of character nodes lettered A through to M.

Here is a list of terms associated with a Tree:

Node: Each circled alphabet represents a node. A node is any
structure that holds data.
Root node: The root node is the only node from which all other
nodes come. A tree with an undistinguishable root node cannot
be considered as a tree. The root node in our tree is the node A.
Sub-tree: A sub-tree of a tree is a tree with its nodes being a
descendant of some other tree. Nodes F, K, and L form a sub-
tree of the original tree consisting of all the nodes.

Degree: The number of sub-trees of a given node. A tree
consisting of only one node has a degree of 0. This one tree
node is also considered as a tree by all standards. The degree
of node A is 2.
Leaf node: This is a node with a degree of 0. Nodes J, E, K, L,
H, M, and I are all leaf nodes.
Edge: The connection between two nodes. An edge can
sometimes connect a node to itself, making the edge appear as
a loop.
Parent: A node in the tree with other connecting nodes is the
parent of those nodes. Node B is the parent of nodes D, E, and
F.
Child: This is a node connected to its parent. Nodes B and C
are children of node A, the parent and root node.
Sibling: All nodes with the same parent are siblings. This
makes the nodes B and C siblings.
Level: The level of a node is the number of connections from
the root node. The root node is at level 0. Nodes B and C are at
level 1.
Height of a tree: This is the number of levels in a tree. Our tree
has a height of 4.
Depth: The depth of a node is the number of edges from the
root of the tree to that node. The depth of node H is 2.

We shall begin our treatment of trees by considering the node in a
tree and abstracting a class.

Tree nodes
Just as was the case with other data structures that we encountered,
such as lists and stacks, trees are built up of nodes. But the nodes
that make up a tree need to contain data about the parent-child
relationship that we mentioned earlier.

Let us now look at how to build a binary tree node class in Python:

 class Node:
 def __init__(self, data):
 self.data = data
 self.right_child = None
 self.left_child = None

Just like in our previous implementations, a node is a container for
data and holds references to other nodes. Being a binary tree node,
these references are to the left and the right children.

To test this class out, we first create a few nodes:

 n1 = Node("root node")
 n2 = Node("left child node")
 n3 = Node("right child node")
 n4 = Node("left grandchild node")

Next, we connect the nodes to each other. We let n1 be the root node
with n2 and n3 as its children. Finally, we hook n4 as the left child to n2,
so that we get a few iterations when we traverse the left sub-tree:

 n1.left_child = n2
 n1.right_child = n3
 n2.left_child = n4

Once we have our tree structure set up, we are ready to traverse it.
As mentioned previously, we shall traverse the left sub-tree. We print
out the node and move down the tree to the next left node. We keep
doing this until we have reached the end of the left sub-tree:

 current = n1
 while current:
 print(current.data)
 current = current.left_child

As you will probably have noticed, this requires quite a bit of work in
the client code, as you have to manually build up the tree structure.

Binary trees
A binary tree is one in which each node has a maximum of two
children. Binary trees are very common and we shall use them to
build up a BST implementation in Python.

The following figure is an example of a binary tree with 5 being the
root node:

Each child is identified as being the right or left child of its parent.
Since the parent node is also a node by itself, each node will hold a
reference to a right and left node even if the nodes do not exist.

A regular binary tree has no rules as to how elements are arranged
in the tree. It only satisfies the condition that each node should have
a maximum of two children.

Binary search trees
A binary search tree (BST) is a special kind of a binary tree. That
is, it is a tree that is structurally a binary tree. Functionally, it is a tree
that stores its nodes in such a way to be able to search through the
tree efficiently.

There is a structure to a BST. For a given node with a value, all the
nodes in the left sub-tree are less than or equal to the value of that
node. Also, all the nodes in the right sub-tree of this node are greater
than that of the parent node. As an example, consider the following
tree:

This is an example of a BST. Testing our tree for the properties of a
BST, you realize that all the nodes in the left sub-tree of the root
node have a value less than 5. Likewise, all the nodes in the right
sub-tree have a value that is greater than 5. This property applies to
all the nodes in a BST, with no exceptions:

Despite the fact that the preceding figure looks similar to the
previous figure, it does not qualify as a BST. Node 7 is greater than
the root node 5; however, it is located to the left of the root node.
Node 4 is to the right sub-tree of its parent node 7, which is incorrect.

Binary search tree
implementation
Let us begin our implementation of a BST. We will want the tree to
hold a reference to its own root node:

 class Tree:
 def __init__(self):
 self.root_node = None

That's all that is needed to maintain the state of a tree. Let's examine
the main operations on the tree in the next section.

Binary search tree operations
There are essentially two operations that are needful for having a
usable BST. These are the insert and remove operations. These
operations must occur with the one rule that they must maintain the
principle that gives the BST its structure.

Before we tackle the insertion and removal of nodes, let's discuss
some equally important operations that will help us better understand
the insert and remove operations.

Finding the minimum and
maximum nodes
The structure of the BST makes looking for the node with the
maximum and minimum values very easy.

To find the node with smallest value, we start our traversal from the
root of the tree and visit the left node each time we reach a sub-tree.
We do the opposite to find the node with the biggest value in the tree:

We move down from node 6 to 3 to 1 to get to the node with smallest
value. Likewise, we go down 6, 8 to node 10, which is the node with
the largest value.

This same means of finding the minimum and maximum nodes
applies to sub-trees too. The minimum node in the sub-tree with root
node 8 is 7. The node within that sub-tree with the maximum value is
10.

The method that returns the minimum node is as follows:

 def find_min(self):
 current = self.root_node
 while current.left_child:
 current = current.left_child

 return current

The while loop continues to get the left node and visits it until the last
left node points to None. It is a very simple method. The method to
return the maximum node does the opposite, where current.left_child
now becomes current.right_child.

It takes O(h) to find the minimum or maximum value in a BST, where
h is the height of the tree.

Inserting nodes
One of the operations on a BST is the need to insert data as nodes.
Whereas in our first implementation, we had to insert the nodes
ourselves, here we are going to let the tree be in charge of storing its
data.

In order to make a search possible, the nodes must be stored in a
specific way. For each given node, its left child node will hold data
that is less than its own value, as already discussed. That node's
right child node will hold data greater than that of its parent node.

We are going to create a new BST of integers by starting with the
data 5. To do this, we will create a node with its data attribute set to
5.

Now, to add the second node with value 3, 3 is compared with 5, the
root node:

Since 5 is greater than 3, it will be put in the left sub-tree of node 5.
Our BST will look as follows:

The tree satisfies the BST rule, where all the nodes in the left sub-
tree are less than its parent.

To add another node of value 7 to the tree, we start from the root
node with value 5 and do a comparison:

Since 7 is greater than 5, the node with value 7 is situated to the
right of this root.

What happens when we want to add a node that is equal to an
existing node? We will simply add it as a left node and maintain this
rule throughout the structure.

If a node already has a child in the place where the new node goes,
then we have to move down the tree and attach it.

Let's add another node with value 1. Starting from the root of the
tree, we do a comparison between 1 and 5:

The comparison reveals that 1 is less than 5, so we move our
attention to the left node of 5, which is the node with value 3:

We compare 1 with 3 and since 1 is less than 3, we move a level
below node 3 and to its left. But there is no node there. Therefore,
we create a node with the value 1 and associate it with the left
pointer of node 3 to obtain the following structure:

So far, we have been dealing only with nodes that contain only
integers or numbers. For numbers, the idea of greater than and
lesser than are clearly defined. Strings would be compared
alphabetically, so there are no major problems there either. But if you
want to store your own custom data types inside a BST, you would
have to make sure that your class supports ordering.

Let's now create a function that enables us to add data as nodes to
the BST. We begin with a function declaration:

 def insert(self, data):

By now, you will be used to the fact that we encapsulate the data in a
node. This way, we hide away the node class from the client code,

who only needs to deal with the tree:

 node = Node(data)

A first check will be to find out whether we have a root node. If we
don't, the new node becomes the root node (we cannot have a tree
without a root node):

 if self.root_node is None:
 self.root_node = node
 else:

As we walk down the tree, we need to keep track of the current node
we are working on, as well as its parent. The variable current is
always used for this purpose:

 current = self.root_node
 parent = None
 while True:
 parent = current

Here we must perform a comparison. If the data held in the new
node is less than the data held in the current node, then we check
whether the current node has a left child node. If it doesn't, this is
where we insert the new node. Otherwise, we keep traversing:

 if node.data < current.data:
 current = current.left_child
 if current is None:
 parent.left_child = node
 return

Now we take care of the greater than or equal case. If the current
node doesn't have a right child node, then the new node is inserted
as the right child node. Otherwise, we move down and continue
looking for an insertion point:

 else:
 current = current.right_child
 if current is None:
 parent.right_child = node
 return

Insertion of a node in a BST takes O(h), where h is the height of the
tree.

Deleting nodes
Another important operation on a BST is the deletion or removal of
nodes. There are three scenarios that we need to cater for during
this process. The node that we want to remove might have the
following:

No children
One child
Two children

The first scenario is the easiest to handle. If the node about to be
removed has no children, we simply detach it from its parent:

Because node A has no children, we will simply dissociate it from its
parent, node Z.

On the other hand, when the node we want to remove has one child,
the parent of that node is made to point to the child of that particular
node:

In order to remove node 6, which has as its only child, node 5, we
point the left pointer of node 9 to node 5. The relationship between
the parent node and child has to be preserved. That is why we need
to take note of how the child node is connected to its parent (which is
the node about to be deleted). The child node of the deleted node is
stored. Then we connect the parent of the deleted node to that child
node.

A more complex scenario arises when the node we want to delete
has two children:

We cannot simply replace node 9 with either node 6 or 13. What we
need to do is to find the next biggest descendant of node 9. This is
node 12. To get to node 12, we move to the right node of node 9.
And then move left to find the leftmost node. Node 12 is called the
in-order successor of node 9. The second step resembles the move
to find the maximum node in a sub-tree.

We replace the value of node 9 with the value 12 and remove node
12. In removing node 12, we end up with a simpler form of node
removal that has been addressed previously. Node 12 has no
children, so we apply the rule for removing nodes without children
accordingly.

Our node class does not have reference to a parent. As such, we need
to use a helper method to search for and return the node with its
parent node. This method is similar to the search method:

 def get_node_with_parent(self, data):
 parent = None
 current = self.root_node
 if current is None:
 return (parent, None)
 while True:
 if current.data == data:
 return (parent, current)
 elif current.data > data:
 parent = current
 current = current.left_child
 else:
 parent = current

 current = current.right_child

 return (parent, current)

The only difference is that before we update the current variable
inside the loop, we store its parent with parent = current. The method to
do the actual removal of a node begins with this search:

 def remove(self, data):
 parent, node = self.get_node_with_parent(data)

 if parent is None and node is None:
 return False

 # Get children count
 children_count = 0

 if node.left_child and node.right_child:
 children_count = 2
 elif (node.left_child is None) and (node.right_child is None):
 children_count = 0
 else:
 children_count = 1

We pass the parent and the found node to parent and node respectively
with the line parent, node = self.get_node_with_parent(data). It is helpful to
know the number of children that the node we want to delete has.
That is the purpose of the if statement.

After this, we need to begin handling the various conditions under
which a node can be deleted. The first part of the if statement
handles the case where the node has no children:

 if children_count == 0:
 if parent:
 if parent.right_child is node:
 parent.right_child = None
 else:
 parent.left_child = None
 else:
 self.root_node = None

if parent: is used to handle cases where there is a BST that has only
one node in the whole of the three.

In the case where the node about to be deleted has only one child,
the elif part of the if statement does the following:

 elif children_count == 1:
 next_node = None
 if node.left_child:
 next_node = node.left_child
 else:
 next_node = node.right_child

 if parent:
 if parent.left_child is node:
 parent.left_child = next_node
 else:
 parent.right_child = next_node
 else:
 self.root_node = next_node

next_node is used to keep track of where the single node pointed to by
the node we want to delete is. We then connect parent.left_child or
parent.right_child to next_node.

Lastly, we handle the condition where the node we want to delete
has two children:

 ...
 else:
 parent_of_leftmost_node = node
 leftmost_node = node.right_child
 while leftmost_node.left_child:
 parent_of_leftmost_node = leftmost_node
 leftmost_node = leftmost_node.left_child

 node.data = leftmost_node.data

In finding the in-order successor, we move to the right node with
leftmost_node = node.right_child. As long as there exists a left node,
leftmost_node.left_child will evaluate to True and the while loop will run.
When we get to the leftmost node, it will either be a leaf node
(meaning that it will have no child node) or have a right child.

We update the node about to be removed with the value of the in-
order successor with node.data = leftmost_node.data:

 if parent_of_leftmost_node.left_child == leftmost_node:
 parent_of_leftmost_node.left_child = leftmost_node.right_child

 else:
 parent_of_leftmost_node.right_child = leftmost_node.right_child

The preceding statement allows us to properly attach the parent of
the leftmost node with any child node. Observe how the right-hand
side of the equals sign stays unchanged. That is because the in-
order successor can only have a right child as its only child.

The remove operation takes O(h), where h is the height of the tree.

Searching the tree
Since the insert method organizes data in a specific way, we will
follow the same procedure to find the data. In this implementation,
we will simply return the data if it was found or None if the data wasn't
found:

 def search(self, data):

We need to start searching at the very top, that is, at the root node:

 current = self.root_node
 while True:

We may have passed a leaf node, in which case the data doesn't
exist in the tree and we return None to the client code:

 if current is None:
 return None

We might also have found the data, in which case we return it:

 elif current.data is data:
 return data

As per the rules for how data is stored in the BST, if the data we are
searching for is less than that of the current node, we need to go
down the tree to the left:

 elif current.data > data:
 current = current.left_child

Now we only have one option left: the data we are looking for is
greater than the data held in the current node, which means we go
down the tree to the right:

 else:
 current = current.right_child

Finally, we can write some client code to test how the BST works.
We create a tree and insert a few numbers between 1 and 10. Then
we search for all the numbers in that range. The ones that exist in
the tree get printed:

 tree = Tree()
 tree.insert(5)
 tree.insert(2)
 tree.insert(7)
 tree.insert(9)
 tree.insert(1)

 for i in range(1, 10):
 found = tree.search(i)
 print("{}: {}".format(i, found))

Tree traversal
Visiting all the nodes in a tree can be done depth first or breadth first.
These modes of traversal are not peculiar to only binary search trees
but trees in general.

Depth-first traversal
In this traversal mode, we follow a branch (or edge) to its limit before
recoiling upwards to continue traversal. We will be using the
recursive approach for the traversal. There are three forms of depth-
first traversal, namely in-order, pre-order, and post-order.

In-order traversal and infix
notation
Most of us are probably used to this way of representing an
arithmetic expression, since this is the way we are normally taught in
schools. The operator is inserted (infixed) between the operands, as
in 3 + 4. When necessary, parentheses can be used to build a more
complex expression: (4 + 5) * (5 - 3).

In this mode of traversal, you would visit the left sub-tree, the parent
node, and finally the right sub-tree.

The recursive function to return an in-order listing of nodes in a tree
is as follows:

 def inorder(self, root_node):
 current = root_node
 if current is None:
 return
 self.inorder(current.left_child)
 print(current.data)
 self.inorder(current.right_child)

We visit the node by printing the node and making two recursive
calls with current.left_child and current.right_child.

Pre-order traversal and prefix
notation
Prefix notation is commonly referred to as Polish notation. Here, the
operator comes before its operands, as in + 3 4. Since there is no
ambiguity of precedence, parentheses are not required: * + 4 5 - 5 3.

To traverse a tree in pre-order mode, you would visit the node, the
left sub-tree, and the right sub-tree node, in that order.

Prefix notation is well known to LISP programmers.

The recursive function for this traversal is as follows:

 def preorder(self, root_node):
 current = root_node
 if current is None:
 return
 print(current.data)
 self.preorder(current.left_child)
 self.preorder(current.right_child)

Note the order in which the recursive call is made.

Post-order traversal and postfix
notation.
Postfix or reverse Polish notation (RPN) places the operator after
its operands, as in 3 4 +. As is the case with Polish notation, there is
never any confusion over the precedence of operators, so
parentheses are never needed: 4 5 + 5 3 - *.

In this mode of traversal, you would visit the left sub-tree, the right
sub-tree, and lastly the root node.

The post-order method is as follows:

 def postorder(self, root_node):
 current = root_node
 if current is None:
 return
 self.postorder(current.left_child)
 self.postorder(current.right_child)

 print(current.data)

Breadth-first traversal
This kind of traversal starts from the root of a tree and visits the node
from one level of the tree to the other:

The node at level 1 is node 4. We visit this node by printing out its
value. Next, we move to level 2 and visit the nodes on that level,
which are nodes 2 and 8. On the last level, level 3, we visit nodes 1,
3, 5, and 10.

The complete output of such a traversal is 4, 2, 8, 1, 3, 5, and 10.

This mode of traversal is made possible by using a queue data
structure. Starting with the root node, we push it into a queue. The
node at the front of the queue is accessed (dequeued) and either
printed and stored for later use. The left node is added to the queue
followed by the right node. Since the queue is not empty, we repeat
the process.

A dry run of the algorithm will enqueue the root node 4, dequeue,
and access, or visit the node. Nodes 2 and 8 are enqueued as they
are the left and right nodes respectively. Node 2 is dequeued in
order to be visited. Its left and right nodes, 1 and 3, are enqueued. At
this point, the node at the front of the queue is 8. We dequeue and
visit node 8, after which we enqueue its left and right nodes. So the
process continues until the queue is empty.

The algorithm is as follows:

 from collections import deque
 class Tree:
 def breadth_first_traversal(self):
 list_of_nodes = []
 traversal_queue = deque([self.root_node])

We enqueue the root node and keep a list of the visited nodes in the
list_of_nodes list. The dequeue class is used to maintain a queue:

 while len(traversal_queue) > 0:
 node = traversal_queue.popleft()
 list_of_nodes.append(node.data)

 if node.left_child:
 traversal_queue.append(node.left_child)

 if node.right_child:
 traversal_queue.append(node.right_child)
 return list_of_nodes

If the number of elements in the traversal_queue is greater than zero,
the body of the loop is executed. The node at the front of the queue
is popped off and appended to the list_of_nodes list. The first if
statement will enqueue the left child node of the node provided a left node
exists. The second if statement does the same for the right child
node.

The list_of_nodes is returned in the last statement.

Benefits of a binary search tree
We shall now briefly look at what makes a BST a better idea than
using a list for data that needs to be searched. Let us assume that
we have the following dataset: 5, 3, 7, 1, 4, 6, and 9. Using a list, the
worst-case scenario would require you to search through the entire
list of seven elements before finding the search term:

Searching for 9 requires six jumps.

With a tree, the worst-case scenario is three comparisons:

Searching for 9 requires two steps.

Notice, however, that if you insert the elements into the tree in the
order 1, 2, 3, 5, 6, 7, 9, then the tree would not be more efficient than
the list. We would have to balance the tree first:

So not only is it important to use a BST but choosing a self-balancing
tree helps to improve the search operation.

Expression trees
The tree structure is also used to parse arithmetic and Boolean
expressions. For example, the expression tree for 3 + 4 would look as
follows:

For a slightly more complex expression, (4 + 5) * (5-3), we would get
the following:

Parsing a reverse Polish
expression
Now we are going to build up a tree for an expression written in
postfix notation. Then we will calculate the result. We will use a
simple tree implementation. To keep it really simple, since we are
going to grow the tree by merging smaller trees, we only need a tree
node implementation:

 class TreeNode:
 def __init__(self, data=None):
 self.data = data
 self.right = None
 self.left = None

In order to build the tree, we are going to enlist the help of a stack.
You will see why soon. But for the time being, let us just create an
arithmetic expression and set up our stack:

 expr = "4 5 + 5 3 - *".split()
 stack = Stack()

Since Python is a language that tries hard to have sensible defaults,
its split() method splits on whitespace by default. (If you think about
it, this is most likely what you would expect as well.) The result is
going to be that expr is a list with the values 4, 5, +, 5, 3, - and *.

Each element of the expr list is going to be either an operator or an
operand. If we get an operand then we embed it in a tree node and
push it onto the stack. If we get an operator, on the other hand, then
we embed the operator into a tree node and pop its two operands
into the node's left and right children. Here we have to take care to
ensure that the first pop goes into the right child, otherwise we will
have problems with subtraction and division.

Here is the code to build the tree:

 for term in expr:
 if term in "+-*/":
 node = TreeNode(term)
 node.right = stack.pop()
 node.left = stack.pop()
 else:
 node = TreeNode(int(term))
 stack.push(node)

Notice that we perform a conversion from string to int in the case of
an operand. You could use float() instead, if you wanted to support
floating point operands.

At the end of this operation, we should have one single element in
the stack, and that holds the full tree.

We may now want to be able to evaluate the expression. We build
the following little function to help us:

 def calc(node):
 if node.data is "+":
 return calc(node.left) + calc(node.right)
 elif node.data is "-":
 return calc(node.left) - calc(node.right)
 elif node.data is "*":
 return calc(node.left) * calc(node.right)
 elif node.data is "/":
 return calc(node.left) / calc(node.right)
 else:
 return node.data

This function is very simple. We pass in a node. If the node contains
an operand, then we simply return that value. If we get an operator,
however, then we perform the operation that the operator represents,
on the node's two children. However, since one or more of the
children could also contain either operators or operands, we call the
calc() function recursively on the two child nodes (bearing in mind
that all the children of every node are also nodes).

Now we just need to pop the root node off the stack and pass it into
the calc() function and we should have the result of the calculation:

 root = stack.pop()
 result = calc(root)
 print(result)

Running this program should yield the result 18, which is the result of
(4 + 5) * (5 - 3).

Balancing trees
Earlier, we mentioned that if nodes are inserted into the tree in a
sequential order, then the tree behaves more or less like a list, that
is, each node has exactly one child node. We normally would like to
reduce the height of the tree as much as possible, by filling up each
row in the tree. This process is called balancing the tree.

There are a number of types of self-balancing trees, such as red-
black trees, AA trees, and scapegoat trees. These balance the tree
during each operation that modifies the tree, such as insert or delete.

There are also external algorithms that balance a tree. The benefit of
these is that you wouldn't need to balance the tree on every single
operation, but could rather leave balancing to the point when you
need it.

Heaps
At this point, we shall briefly introduce the heap data structure. A
heap is a specialization of a tree in which the nodes are ordered in a
specific way. Heaps are divided into max and min heaps. In a max
heap, each parent node must always be greater than or equal to its
children. It follows that the root node must be the greatest value in
the tree. A min heap is the opposite. Each parent node must be less
than or equal to both its children. As a consequence, the root node
holds the lowest value.

Heaps are used for a number of different things. For one, they are
used to implement priority queues. There is also a very efficient
sorting algorithm, called heap sort, that uses heaps. We are going to
study these in depth in subsequent chapters.

Summary
In this chapter, we have looked at tree structures and some example
uses of them. We studied binary trees in particular, which is a
subtype of trees where each node has at most two children.

We looked at how a binary tree can be used as a searchable data
structure with a BST. We saw that, in most cases, finding data in a
BST is faster than in a linked list, although this is not the case if the
data is inserted sequentially, unless of course the tree is balanced.

The breadth- and depth-first search traversal modes were also
implemented using queue recursion.

We also looked at how a binary tree can be used to represent an
arithmetic or a Boolean expression. We built up an expression tree
to represent an arithmetic expression. We showed how to use a
stack to parse an expression written in RPN, build up the expression
tree, and finally traverse it to get the result of the arithmetic
expression.

Finally, we mentioned heaps, a specialization of a tree structure. We
have tried to at least lay down the theoretical foundation for the heap
in this chapter, so that we can go on to implement heaps for different
purposes in upcoming chapters.

Hashing and Symbol Tables
We have previously looked at lists, where items are stored in
sequence and accessed by index number. Index numbers work well
for computers. They are integers so they are fast and easy to
manipulate. However, they don't always work so well for us. If we
have an address book entry, for example, with index number 56, that
number doesn't tell us much. There is nothing to link a particular
contact with number 56. It just happens to be the next available
position in the list.

In this chapter, we are going to look at a similar structure: a
dictionary. A dictionary uses a keyword instead of an index number.
So, if that contact was called James, we would probably use the
keyword James to locate the contact. That is, instead of accessing
the contact by calling contacts [56], we would use contacts ["james"].

Dictionaries are often built using hash tables. As the name suggests,
hash tables rely on a concept called hashing. That is where we are
going to begin our discussion.

We will cover the following topics in this chapter:

Hashing
Hash tables
Different functions with elements

Hashing
Hashing is the concept of converting data of arbitrary size into data
of fixed size. A little bit more specifically, we are going to use this to
turn strings (or possibly other data types) into integers. This possibly
sounds more complex than it is so let's look at an example. We want
to hash the expression hello world, that is, we want to get a numeric
value that we could say represents the string.

By using the ord() function, we can get the ordinal value of any
character. For example, the ord('f') function gives 102. To get the
hash of the whole string, we could just sum the ordinal numbers of
each character in the string:

>>> sum(map(ord, 'hello world'))
1116

This works fine. However, note that we could change the order of the
characters in the string and get the same hash:

>>> sum(map(ord, 'world hello'))
1116

And the sum of the ordinal values of the characters would be the
same for the string gello xorld as well, since g has an ordinal value
which is one less than that of h, and x has an ordinal value that is
one greater than that of w, hence:

>>> sum(map(ord, 'gello xorld'))
1116

Perfect hashing functions
A perfect hashing function is one in which each string (as we are
limiting the discussion to strings for now) is guaranteed to be unique.
In practice, hashing functions normally need to be very fast, so trying
to create a function that will give each string a unique hash value is
normally not possible. Instead, we live with the fact that we
sometimes get collisions (two or more strings having the same hash
value), and when that happens, we come up with a strategy for
resolving them.

In the meantime, we can at least come up with a way to avoid some
of the collisions. We could, for example, add a multiplier, so that the
hash value for each character becomes the multiplier value,
multiplied by the ordinal value of the character. The multiplier then
increases as we progress through the string. This is shown in the
following function:

 def myhash(s):
 mult = 1
 hv = 0
 for ch in s:
 hv += mult * ord(ch)
 mult += 1
 return hv

We can test this function on the strings that we used earlier:

 for item in ('hello world', 'world hello', 'gello xorld'):
 print("{}: {}".format(item, myhash(item)))

Running the program, we get the following output:

% python hashtest.py

hello world: 6736
world hello: 6616
gello xorld: 6742

Note that the last row is the result of multiplying the values in rows 2
and 3 such that 104 x 1 equals 104, as an example.

This time we get different hash values for our strings. Of course, this
doesn't mean that we have a perfect hash. Let us try the strings ad
and ga:

% python hashtest.py

ad: 297
ga: 297

There we still get the same hash value for two different strings. As we
have said before, this doesn't have to be a problem, but we need to
devise a strategy for resolving collisions. We shall look at that shortly,
but first we will study an implementation of a hash table.

Hash table
A hash table is a form of list where elements are accessed by a
keyword rather than an index number. At least, this is how the client
code will see it. Internally, it will use a slightly modified version of our
hashing function in order to find the index position in which the
element should be inserted. This gives us fast lookups, since we are
using an index number which corresponds to the hash value of the
key.

We start by creating a class to hold hash table items. These need to
have a key and a value, since our hash table is a key-value store:

 class HashItem:
 def __init__(self, key, value):
 self.key = key
 self.value = value

This gives us a very simple way to store items. Next, we start
working on the hash table class itself. As usual, we start off with a
constructor:

 class HashTable:
 def __init__(self):
 self.size = 256
 self.slots = [None for i in range(self.size)]
 self.count = 0

The hash table uses a standard Python list to store its elements. We
could equally well have used the linked list that we developed
previously, but right now our focus is on understanding the hash
table, so we shall use what is at our disposal.

We set the size of the hash table to 256 elements to start with. Later,
we will look at strategies for how to grow the table as we begin filling
it up. We now initialize a list containing 256 elements. These
elements are often referred to as slots or buckets. Finally, we add a
counter for the number of actual hash table elements we have:

It is important to notice the difference between the size and count of
a table. Size of a table refers to the total number of slots in the table
(used or unused). Count of the table, on the other hand, simply
refers to the number of slots that are filled, or put another way, the
number of actual key-value pairs we have added to the table.

Now, we are going to add our hashing function to the table. It will be
similar to what we evolved in the section on hashing functions, but
with a slight difference: we need to ensure that our hashing function
returns a value between 1 and 256 (the size of the table). A good
way of doing so is to return the remainder of dividing the hash by the
size of the table, since the remainder is always going to be an
integer value between 0 and 255.

As the hashing function is only meant to be used internally by the
class, we put an underscore(_) at the beginning of the name to
indicate this. This is a normal Python convention for indicating that
something is meant for internal use:

 def _hash(self, key):
 mult = 1
 hv = 0
 for ch in key:
 hv += mult * ord(ch)
 mult += 1
 return hv % self.size

For the time being, we are going to assume that keys are strings. We
shall discuss how one can use non-string keys later. For now, just
bear in mind that the _hash() function is going to generate the hash
value of a string.

Putting elements
We add elements to the hash with the put() function and retrieve with
the get() function. First, we will look at the implementation of the put()
function. We start by embedding the key and the value into
the HashItem class and computing the hash of the key:

 def put(self, key, value):
 item = HashItem(key, value)
 h = self._hash(key)

Now we need to find an empty slot. We start at the slot that
corresponds to the hash value of the key. If that slot is empty, we
insert our item there.

However, if the slot is not empty and the key of the item is not the
same as our current key, then we have a collision. This is where we
need to figure out a way to handle a conflict. We are going to do this
by adding one to the previous hash value we had and getting the
remainder of dividing this value by the size of the hash table. This is
a linear way of resolving collisions and it is quite simple:

 while self.slots[h] is not None:
 if self.slots[h].key is key:
 break
 h = (h + 1) % self.size

We have found our insertion point. If this is a new element (that is, it
contained None previously), then we increase the count by one.
Finally, we insert the item into the list at the required position:

 if self.slots[h] is None:
 self.count += 1
 self.slots[h] = item

Getting elements
The implementation of the get() method should return the value that
corresponds to a key. We also have to decide what to do in the event
that the key does not exist in the table. We start by calculating the
hash of the key:

 def get(self, key):
 h = self._hash(key)

Now, we simply start looking through the list for an element that has
the key we are searching for, starting at the element which has the
hash value of the key that was passed in. If the current element is not
the correct one, then, just like in the put() method, we add one to the
previous hash value and get the remainder of dividing this value by
the size of the list. This becomes our new index. If we find an element
that contains None, we stop looking. If we find our key, we return the
value:

 while self.slots[h] is not None:
 if self.slots[h].key is key:

 return self.slots[h].value
 h = (h+ 1) % self.size

Finally, we decide what to do if the key was not found in the table.
Here we will choose to return None. Another good alternative may be to
raise an exception:

 return None

Testing the hash table
To test our hash table, we create a HashTable, put a few elements in it,
then try to retrieve these. We will also try to get() a key that does not
exist. Remember the two strings ad and ga which returned the same
hash value by our hashing function? For good measure, we throw
those in as well, just to see that the collision is properly resolved:

 ht = HashTable()
 ht.put("good", "eggs")
 ht.put("better", "ham")
 ht.put("best", "spam")
 ht.put("ad", "do not")
 ht.put("ga", "collide")

 for key in ("good", "better", "best", "worst", "ad", "ga"):
 v = ht.get(key)
 print(v)

Running this returns the following:

% python hashtable.py

eggs
ham
spam
None
do not
collide

As you can see, looking up the key worst returns None, since the key
does not exist. The keys ad and ga also return their corresponding
values, showing that the collision between them is dealt with.

Using [] with the hash table
Using the put() and get() methods doesn't look very good, however.
We want to be able to treat our hash table as a list, that is, we would
like to be able to use ht["good"] instead of ht.get("good"). This is easily
done with the special methods __setitem__() and __getitem__():

 def __setitem__(self, key, value):
 self.put(key, value)

 def __getitem__(self, key):
 return self.get(key)

Our test code can now look like this instead:

 ht = HashTable()
 ht["good"] = "eggs"
 ht["better"] = "ham"
 ht["best"] = "spam"
 ht["ad"] = "do not"
 ht["ga"] = "collide"

 for key in ("good", "better", "best", "worst", "ad", "ga"):
 v = ht[key]
 print(v)

 print("The number of elements is: {}".format(ht.count))

Notice that we also print the number of elements in the hash table.
This is useful for our next discussion.

Non-string keys
In most cases, it makes more sense to just use strings for the keys.
However, if necessary, you could use any other Python type. If you
create your own class that you want to use as a key, you will
probably want to override the special __hash__() function for that class,
so that you get reliable hash values.

Note that you would still have to calculate the modulo (%) of the
hash value and the size of the hash table to get the slot. That
calculation should happen in the hash table and not in the key class,
since the table knows its own size (the key class should not know
anything about the table that it belongs to).

Growing a hash table
In our example, the hash table's size was set to 256. Obviously, as
we add elements to the list, we begin to fill up the empty slots. At
some point, all the slots will be filled up and the table will be full. To
avoid this, we can grow the table when it is getting full.

To do this, we compare the size and the count. Remember that size
held the total number of slots and count the number of those slots that
contained elements? Well, if count equals size then we have filled up
the table.

The hash table's load factor gives us an indication of how large a
portion of the available slots are being used. It is defined as follows:

As the load factor approaches 1, we need to grow the table. In fact,
we should do it before it gets there in order to avoid gets becoming
too slow. A value of 0.75 may be a good value in which to grow the
table.

The next question is how much to grow the table by. One strategy
would be to simply double the size of the table.

Open addressing
The collision resolution mechanism we used in our example, linear
probing, is an example of an open addressing strategy. Linear
probing is really simple since we use a fixed interval between our
probes. There are other open addressing strategies as well but they
all share the idea that there is an array of slots. When we want to
insert a key, we check whether the slot already has an item or not. If
it does, we look for the next available slot.

If we have a hash table that contains 256 slots, then 256 is the
maximum number of elements in that hash. Moreover, as the load
factor increases, it will take longer to find the insertion point for the
new element.

Because of these limitations, we may prefer to use a different
strategy to resolve collisions, such as chaining.

Chaining
Chaining is a strategy for resolving conflicts and avoiding the limit to
the number of elements in a hash table. In chaining, the slots in the
hash table are initialized with empty lists:

When an element is inserted, it will be appended to the list that
corresponds to that element's hash value. That is, if you have two
elements that both have the hash value 1167, these two elements will
both be added to the list that exists in slot 1167 of the hash table:

The preceding diagram shows a list of entries with hash value 51.

Chaining then avoids conflict by allowing multiple elements to have
the same hash value. It also avoids the problem of insertions as the
load factor increases, since we don't have to look for a slot. Moreover,

the hash table can hold more values than the number of available
slots, since each slot holds a list that can grow.

Of course, if a particular slot has many items, searching them can get
very slow, since we have to do a linear search through the list until we
find the element that has the key we want. This can slow down
retrieval, which is not good, since hash tables are meant to be
efficient:

The preceding diagram demonstrates a linear search through list
items until we find a match.

Instead of using lists in the table slots, we could use another structure
that allows for fast searching. We have already looked at binary
search trees (BSTs). We could simply put an (initially empty) BST in
each slot:

Slot 51 holds a BST which we search for the key. But we would still
have a potential problem: depending on the order in which the items
were added to the BST, we could end up with a search tree that is as
inefficient as a list. That is, each node in the tree has exactly one
child. To avoid this, we would need to ensure that our BST is self-
balancing.

Symbol tables
Symbol tables are used by compilers and interpreters to keep track of
the symbols that have been declared and information about them.
Symbol tables are often built using hash tables, since it is important
to efficiently retrieve a symbol in the table.

Let us look at an example. Suppose we have the following Python
code:

 name = "Joe"
 age = 27

Here we have two symbols, name and age. They belong to a
namespace, which could be __main__, but it could also be the name of a
module if you placed it there. Each symbol has a value; name has the
value Joe and age has the value 27. A symbol table allows the compiler
or the interpreter to look these values up. The symbols name and age
become the keys in our hash table. All the other information
associated with it, such as the value, become part of the value of the
symbol table entry.

Not only variables are symbols, but functions and classes as well.
They will all be added to our symbol table, so that when any one of
them needs to be accessed, they are accessible from the symbol
table:

In Python, each module that is loaded has its own symbol table. The
symbol table is given the name of that module. This way, modules act
as namespaces. We can have multiple symbols called age, as long
as they exist in different symbol tables. To access either one, we
access it through the appropriate symbol table:

Summary
In this chapter, we have looked at hash tables. We looked at how to
write a hashing function to turn string data into integer data. Then we
looked at how we can use hashed keys to quickly and efficiently look
up the value that corresponds to a key.

We also noticed how hashing functions are not perfect and that
several strings can end up having the same hash value. This led us
to look at collision resolution strategies.

We looked at growing a hash table and how to look at the load factor
of the table in order to determine exactly when to grow the hash.

In the last section of the chapter, we studied symbol tables, which
often are built using hash tables. Symbol tables allow a compiler or
an interpreter to look up a symbol (variable, function, class, and so
on) that has been defined and retrieve all information about it.

In the next chapter, we will talk about graphs and other algorithms.

Graphs and Other Algorithms
In this chapter, we are going to talk about graphs. This is a concept
that comes from the branch of mathematics called graph theory.

Graphs are used to solve a number of computing problems. They
also have much less structure than other data structures we have
looked at and things like traversal can be much more
unconventional, as we shall see.

By the end of this chapter, you should be able to do the following:

Understand what graphs are
Know the types of graphs and their constituents
Know how to represent a graph and traverse it
Get a fundamental idea of what priority queues are
Be able to implement a priority queue
Be able to determine the ith smallest element in a list

Graphs
A graph is a set of vertices and edges that form connections
between the vertices. In a more formal approach, a graph G is an
ordered pair of a set V of vertices and a set E of edges given as G =
(V, E) in formal mathematical notation.

An example of a graph is given here:

Let's now go through some definitions of a graph:

Node or vertex: A point, usually represented by a dot in a
graph. The vertices or nodes are A, B, C, D, and E.
Edge: This is a connection between two vertices. The line
connecting A and B is an example of an edge.
Loop: When an edge from a node is incident on itself, that edge
forms a loop.
Degree of a vertex: This is the number of vertices that are
incident on a given vertex. The degree of vertex B is 4.
Adjacency: This refers to the connection(s) between a node
and its neighbor. The node C is adjacent to node A because

there is an edge between them.
Path: A sequence of vertices where each adjacent pair is
connected by an edge.

Directed and undirected graphs
Graphs can be classified based on whether they are undirected or
directed. An undirected graph simply represents edges as lines
between the nodes. There is no additional information about the
relationship between the nodes than the fact that they are
connected:

In a directed graph, the edges provide orientation in addition to
connecting nodes. That is, the edges, which will be drawn as lines
with an arrow, will point in which direction the edge connects the two
nodes:

The arrow of an edge determines the flow of direction. One can only
move from A to B in the preceding diagram. Not B to A.

Weighted graphs
A weighted graph adds a bit of extra information to the edges. This
can be a numerical value that indicates something. Let's say, for
example, that the following graph indicates different ways to get from
point A to point D. You can either go straight from A to D, or choose
to pass through B and C. Associated with each edge is the amount
of time in minutes the journey to the next node will take:

Perhaps the journey AD would require you to ride a bike (or walk). B
and C might represent bus stops. At B you would have to change to
a different bus. Finally, CD may be a short walk to reach D.

In this example, AD and ABCD represent two different paths. A path
is simply a sequence of edges that you pass through between two
nodes. Following these paths, you see that the total journey AD
takes 40 minutes, whereas the journey ABCD takes 25 minutes. If
your only concern is time, you would be better off traveling along
ABCD, even with the added inconvenience of changing buses.

The fact that edges can be directed and may hold other information,
such as time taken or whatever other value the move along a path is
associated with, indicates something interesting. In previous data
structures that we have worked with, the lines we have drawn
between nodes have simply been connectors. Even when they had

arrows pointing from a node to another, that was easy to represent in
the node class by using next or previous, parent or child.

With graphs, it makes sense to see edges as objects just as much
as nodes. Just like nodes, edges can contain extra information that
is necessary to follow a particular path.

Graph representation
Graphs can be represented in two main forms. One way is to use an
adjacency matrix and the other is to use an adjacency list.

We shall be working with the following figure to develop both types of
representation for graphs:

Adjacency list
A simple list can be used to present a graph. The indices of the list
will represent the nodes or vertices in the graph. At each index, the
adjacent nodes to that vertex can be stored:

The numbers in the box represent the vertices. Index 0 represents
vertex A, with its adjacent nodes being B and C.

Using a list for the representation is quite restrictive because we lack
the ability to directly use the vertex labels. A dictionary is therefore
more suited. To represent the graph in the diagram, we can use the
following statements:

 graph = dict()
 graph['A'] = ['B', 'C']
 graph['B'] = ['E','A']
 graph['C'] = ['A', 'B', 'E','F']
 graph['E'] = ['B', 'C']
 graph['F'] = ['C']

Now we easy establish that vertex A has the adjacent vertices B and
C. Vertex F has vertex C as its only neighbor.

Adjacency matrix
Another approach by which a graph can be represented is by using
an adjacency matrix. A matrix is a two-dimensional array. The idea
here is to represent the cells with a 1 or 0 depending on whether two
vertices are connected by an edge.

Given an adjacency list, it should be possible to create an adjacency
matrix. A sorted list of keys of graph is required:

 matrix_elements = sorted(graph.keys())
 cols = rows = len(matrix_elements)

The length of the keys is used to provide the dimensions of the
matrix which are stored in cols and rows. These values in cols and rows
are equal:

 adjacency_matrix = [[0 for x in range(rows)] for y in range(cols)]
 edges_list = []

We then set up a cols by rows array, filling it with zeros. The edges_list
variable will store the tuples that form the edges of in the graph. For
example, an edge between node A and B will be stored as (A, B).

The multidimensional array is filled using a nested for loop:

 for key in matrix_elements:
 for neighbor in graph[key]:
 edges_list.append((key,neighbor))

The neighbors of a vertex are obtained by graph[key]. The key in
combination with the neighbor is then used to create the tuple stored in
edges_list.

The output of the iteration is as follows:

>>> [('A', 'B'), ('A', 'C'), ('B', 'E'), ('B', 'A'), ('C', 'A'),
 ('C', 'B'), ('C', 'E'), ('C', 'F'), ('E', 'B'), ('E', 'C'),
 ('F', 'C')]

What needs to be done now is to fill the our multidimensional array
by using 1 to mark the presence of an edge with the line
adjacency_matrix[index_of_first_vertex][index_of_second_vertex] = 1:

 for edge in edges_list:
 index_of_first_vertex = matrix_elements.index(edge[0])
 index_of_second_vertex = matrix_elements.index(edge[1])
 adjacecy_matrix[index_of_first_vertex][index_of_second_vertex] =
1

The matrix_elements array has its rows and cols starting from A through to
E with the indices 0 through to 5. The for loop iterates through our list
of tuples and uses the index method to get the corresponding index
where an edge is to be stored.

The adjacency matrix produced looks like so:

>>>
[0, 1, 1, 0, 0]
[1, 0, 0, 1, 0]
[1, 1, 0, 1, 1]
[0, 1, 1, 0, 0]
[0, 0, 1, 0, 0]

At column 1 and row 1, the 0 there represents the absence of an
edge between A and A. On column 2 and row 3, there is an edge
between C and B.

Graph traversal
Since graphs don't necessarily have an ordered structure, traversing
a graph can be more involving. Traversal normally involves keeping
track of which nodes or vertices have already been visited and which
ones have not. A common strategy is to follow a path until a dead
end is reached, then walking back up until there is a point where
there is an alternative path. We can also iteratively move from one
node to another in order to traverse the full graph or part of it. In the
next section, we will discuss breadth and depth-first search
algorithms for graph traversal.

Breadth-first search
The breadth-first search algorithm starts at a node, chooses that
node or vertex as its root node, and visits the neighboring nodes,
after which it explores neighbors on the next level of the graph.

Consider the following diagram as a graph:

The diagram is an example of an undirected graph. We continue to
use this type of graph to help make explanation easy without being
too verbose.

The adjacency list for the graph is as follows:

 graph = dict()
 graph['A'] = ['B', 'G', 'D']
 graph['B'] = ['A', 'F', 'E']
 graph['C'] = ['F', 'H']
 graph['D'] = ['F', 'A']
 graph['E'] = ['B', 'G']
 graph['F'] = ['B', 'D', 'C']
 graph['G'] = ['A', 'E']
 graph['H'] = ['C']

In trying to traverse this graph breadth first, we will employ the use of
a queue. The algorithm creates a list to store the nodes that have
been visited as the traversal process proceeds. We shall start our
traversal from node A.

Node A is queued and added to the list of visited nodes. Afterward,
we use a while loop to effect traversal of the graph. In the while loop,
node A is dequeued. Its unvisited adjacent nodes B, G, and D are
sorted in alphabetical order and queued up. The queue will now
contain the nodes B, D, and G. These nodes are also added to the
list of visited nodes. At this point, we start another iteration of the
while loop because the queue is not empty, which also means we are
not really done with the traversal.

Node B is dequeued. Out of its adjacent nodes A, F, and E, node A
has already been visited. Therefore, we only enqueue the nodes E
and F in alphabetical order. Nodes E and F are then added to the list
of visited nodes.

Our queue now holds the following nodes at this point: D, G, E, and
F. The list of visited nodes contains A, B, D, G, E, F.

Node D is dequeued but all of its adjacent nodes have been visited
so we simply dequeue it. The next node at the front of the queue is
G. We dequeue node G but we also find out that all its adjacent
nodes have been visited because they are in the list of visited nodes.
Node G is also dequeued. We dequeue node E too because all of its
nodes have been visited. The only node in the queue now is node F.

Node F is dequeued and we realize that out of its adjacent nodes B,
D, and C, only node C has not been visited. We then enqueue node
C and add it to the list of visited nodes. Node C is dequeued. Node C
has the adjacent nodes F and H but F has already been visited,
leaving node H. Node H is enqueued and added to the list of visited
nodes.

Finally, the last iteration of the while loop will lead to node H being
dequeued. Its only adjacent node C has already been visited. Once
the queue is completely empty, the loop breaks.

The output of the traversing the graph in the diagram is A, B, D, G,
E, F, C, H.

The code for a breadth-first search is given as follows:

 from collections import deque

 def breadth_first_search(graph, root):
 visited_vertices = list()
 graph_queue = deque([root])
 visited_vertices.append(root)
 node = root

 while len(graph_queue) > 0:
 node = graph_queue.popleft()
 adj_nodes = graph[node]

 remaining_elements =
 set(adj_nodes).difference(set(visited_vertices))
 if len(remaining_elements) > 0:
 for elem in sorted(remaining_elements):
 visited_vertices.append(elem)
 graph_queue.append(elem)

 return visited_vertices
When we want to find out whether a set of nodes are in the list of visited nodes, we use the
statement remaining_elements = set(adj_nodes).difference(set(visited_vertices)). This uses
the set object's difference method to find the nodes that are in adj_nodes but not in
visited_vertices.

In the worst-case scenario, each vertex or node and edge will be
traversed, thus the time complexity of the algorithm is O(|V| + |E|),
where |V| is the number of vertices or nodes while |E| is the number
of edges in the graph.

Depth-first search
As the name suggests, this algorithm traverses the depth of any
particular path in the graph before traversing its breadth. As such,
child nodes are visited first before sibling nodes. It works on finite
graphs and requires the use of a stack to maintain the state of the
algorithm:

 def depth_first_search(graph, root):
 visited_vertices = list()
 graph_stack = list()

 graph_stack.append(root)
 node = root

The algorithm begins by creating a list to store the visited nodes. The
graph_stack stack variable is used to aid the traversal process. For
continuity's sake, we are using a regular Python list as a stack.

The starting node, called root, is passed with the graph's adjacency
matrix, graph. root is pushed onto the stack. node = root holds the first
node in the stack:

 while len(graph_stack) > 0:

 if node not in visited_vertices:
 visited_vertices.append(node)

 adj_nodes = graph[node]

 if set(adj_nodes).issubset(set(visited_vertices)):
 graph_stack.pop()
 if len(graph_stack) > 0:
 node = graph_stack[-1]
 continue
 else:
 remaining_elements =
 set(adj_nodes).difference(set(visited_vertices))

 first_adj_node = sorted(remaining_elements)[0]
 graph_stack.append(first_adj_node)

 node = first_adj_node
 return visited_vertices

The body of the while loop will be executed provided the stack is not
empty. If node is not in the list of visited nodes, we add it. All adjacent
nodes to node are collected by adj_nodes = graph[node]. If all the adjacent
nodes have been visited, we pop that node from the stack and set
node to graph_stack[-1]. graph_stack[-1] is the top node on the stack. The
continue statement jumps back to the beginning of the while loop's test
condition.

If, on the other hand, not all the adjacent nodes have been visited,
the nodes that are yet to be visited are obtained by finding the
difference between the adj_nodes and visited_vertices with the statement
remaining_elements = set(adj_nodes).difference(set(visited_vertices)).

The first item within sorted(remaining_elements) is assigned to first_adj_node,
and pushed onto the stack. We then point the top of the stack to this
node.

When the while loop exists, we will return the visited_vertices.

Dry running the algorithm will prove useful. Consider the following
graph:

The adjacency list of such a graph is given as follows:

 graph = dict()
 graph['A'] = ['B', 'S']
 graph['B'] = ['A']
 graph['S'] = ['A','G','C']
 graph['D'] = ['C']
 graph['G'] = ['S','F','H']
 graph['H'] = ['G','E']
 graph['E'] = ['C','H']
 graph['F'] = ['C','G']
 graph['C'] = ['D','S','E','F']

Node A is chosen as our beginning node. Node A is pushed onto the
stack and added to the visisted_vertices list. In doing so, we mark it as
having been visited. The stack graph_stack is implemented with a
simple Python list. Our stack now has A as its only element. We
examine node A's adjacent nodes B and S. To test whether all the
adjacent nodes of A have been visited, we use the if statement:

 if set(adj_nodes).issubset(set(visited_vertices)):
 graph_stack.pop()
 if len(graph_stack) > 0:
 node = graph_stack[-1]
 continue

If all the nodes have been visited, we pop the top of the stack. If the
stack graph_stack is not empty, we assign the node on top of the stack
to node and start the beginning of another execution of the body of the
while loop. The statement set(adj_nodes).issubset(set(visited_vertices)) will
evaluate to True if all the nodes in adj_nodes are a subset of
visited_vertices. If the if statement fails, it means that some nodes
remain to be visited. We obtain that list of nodes with remaining_elements
= set(adj_nodes).difference(set(visited_vertices)).

From the diagram, nodes B and S will be stored in remaining_elements.
We will access the list in alphabetical order:

 first_adj_node = sorted(remaining_elements)[0]
 graph_stack.append(first_adj_node)
 node = first_adj_node

We sort remaining_elements and return the first node to first_adj_node. This
will return B. We push node B onto the stack by appending it to the
graph_stack. We prepare node B for access by assigning it to node.

On the next iteration of the while loop, we add node B to the list of
visited nodes. We discover that the only adjacent node to B, which is A,
has already been visited. Because all the adjacent nodes of B have
been visited, we pop it off the stack, leaving node A as the only
element on the stack. We return to node A and examine whether all
of its adjacent nodes have been visited. The node A now has S as
the only unvisited node. We push S to the stack and begin the whole
process again.

The output of the traversal is A-B-S-C-D-E-H-G-F.

Depth-first searches find application in solving maze problems,
finding connected components, and finding the bridges of a graph,
among others.

Other useful graph methods
Very often, you are concerned with finding a path between two
nodes. You may also want to find all the paths between nodes.
Another useful method would be to find the shortest path between
nodes. In an unweighted graph, this would simply be the path with
the lowest number of edges between them. In a weighted graph, as
you have seen, this could involve calculating the total weight of
passing through a set of edges.

Of course, in a different situation, you may want to find the longest or
shortest path.

Priority queues and heaps
A priority queue is basically a type of queue that will always return
items in order of priority. This priority could be, for example, that the
lowest item is always popped off first. Although it is called a queue,
priority queues are often implemented using a heap, since it is very
efficient for this purpose.

Consider that, in a store, customers queue in a line where service is
only rendered at the front of the queue. Each customer will spend
some time in the queue to get served. If the waiting times for the
customers in the queue are 4, 30, 2, and 1, then the average time
spent in the queue becomes (4 + 34 + 36 + 37)/4, which is 27.75.
However, if we change the order of service such that customers with
the least amount of waiting time are served first, then we obtain a
different average waiting time. In doing so, we calculate our new
average waiting time by (1 + 3 + 7 + 37)/4, which now equals 12, a
better average waiting time. Clearly, there is merit to serving the
customers from the least waiting time upward. This method of
selecting the next item by priority or some other criterion is the basis
for creating priority queues.

A heap is a data structure that satisfies the heap property. The heap
property states that there must be a certain relationship between a
parent node and its child nodes. This property must apply through
the entire heap.

In a min heap, the relationship between parent and children is that
the parent must always be less than or equal to its children. As a
consequence of this, the lowest element in the heap must be the root
node.

In a max heap, on the other hand, the parent is greater than or equal
to its child or its children. It follows from this that the largest value

makes up the root node.

As you can see from what we just mentioned, heaps are trees and,
to be more specific, binary trees.

Although we are going to use a binary tree, we will actually use a list
to represent it. This is possible because the heap will store a
complete binary tree. A complete binary tree is one in which each
row must be fully filled before starting to fill the next row:

To make the math with indexes easier, we are going to leave the first
item in the list (index 0) empty. After that, we place the tree nodes
into the list, from top to bottom, left to right:

If you observe carefully, you will notice that you can retrieve the
children of any node n very easily. The left child is located at 2n and
the right child is located at 2n + 1. This will always hold true.

We are going to look at a min heap implementation. It shouldn't be
difficult to reverse the logic in order to get a max heap:

 class Heap:
 def __init__(self):
 self.heap = [0]
 self.size = 0

We initialize our heap list with a zero to represent the dummy first
element (remember that we are only doing this to make the math
simpler). We also create a variable to hold the size of the heap. This
would not be necessary as such, since we could check the size of
the list, but we would always have to remember to reduce it by one.
So we chose to keep a separate variable instead.

Inserting
Inserting an item is very simple in itself. We add the new element to
the end of the list (which we understand to be the bottom of the tree).
Then we increment the size of the heap by one.

But after each insert, we need to float the new element up if needed.
Bear in mind that the lowest element in the min heap needs to be the
root element. We first create a helper method called float that takes
care of this. Let us look at how it is meant to behave. Imagine that
we have the following heap and want to insert the value 2:

The new element has occupied the last slot in the third row or level.
Its index value is 7. Now we compare that value with its parent. The
parent is at index 7/2 = 3 (integer division). That element holds 6 so
we swap the 2:

Our new element has been swapped and moved up to index 3. We
have not reached the top of the heap yet (3 / 2 > 0), so we continue.
The new parent of our element is at index 3/2 = 1. So we compare
and, if necessary, swap again:

After the final swap, we are left with the heap looking as follows.
Notice how it adheres to the definition of a heap:

Here follows an implementation of what we have just described:

 def float(self, k):

We are going to loop until we have reached the root node so that we
can keep floating the element up as high as it needs to go. Since we
are using integer division, as soon as we get below 2, the loop will
break out:

 while k // 2 > 0:

Compare parent and child. If the parent is greater than the child,
swap the two values:

 if self.heap[k] < self.heap[k//2]:
 self.heap[k], self.heap[k//2] = self.heap[k//2],
 self.heap[k]

Finally, let's not forget to move up the tree:

 k //= 2

This method ensures that the elements are ordered properly. Now
we just need to call this from our insert method:

 def insert(self, item):
 self.heap.append(item)

 self.size += 1
 self.float(self.size)

Notice the last line in insert calls the float() method to reorganize the
heap as necessary.

Pop
Just like insert, pop() is by itself a simple operation. We remove the
root node and decrement the size of the heap by one. However,
once the root has been popped off, we need a new root node.

To make this as simple as possible, we just take the last item in the
list and make it the new root. That is, we move it to the beginning of
the list. But now we might not have the lowest element at the top of
the heap, so we perform the opposite of the float operation: we let
the new root node sink down as required.

As we did with insert, let us have a look at how the whole operation
is meant to work on an existing heap. Imagine the following heap.
We pop off the root element, leaving the heap temporarily rootless:

Since we cannot have a rootless heap, we need to fill this slot with
something. If we choose to move up one of the children, we will have
to figure out how to rebalance the entire tree structure. So instead,
we do something really interesting. We move up the very last
element in the list to fill the position of the root element:

Now this element clearly is not the lowest in the heap. This is where
we begin to sink it down. First we need to determine where to sink it
down. We compare the two children, so that the lowest element will
be the one to float up as the root sinks down:

The right child is clearly less. Its index is 3, which represents the root
index * 2 + 1. We go ahead and compare our new root node with the
value at this index:

Now our node has jumped down to index 3. We need to compare it
to the lesser of its children. However, now we only have one child, so
we don't need to worry about which child to compare against (for a
min heap, it is always the lesser child):

There is no need to swap here. Since there are no more rows either,
we are done. Notice again how, after the sink() operation is
completed, our heap adheres to the definition of a heap.

Now we can begin implementing this. Before we do the sink() method
itself, notice how we need to determine which of the children to
compare our parent node against. Well, let us put that selection in its
own little method, just to make the code look a little simpler:

 def minindex(self, k):

We may get beyond the end of the list, in which case we return the
index of the left child:

 if k * 2 + 1 > self.size:
 return k * 2

Otherwise, we simply return the index of the lesser of the two
children:

 elif self.heap[k*2] < self.heap[k*2+1]:
 return k * 2
 else:
 return k * 2 + 1

Now we can create the sink function:

 def sink(self, k):

As before, we are going to loop so that we can sink our element
down as far as is needed:

 while k * 2 <= self.size:

Next we need to know which of the left or the right child to compare
against. This is where we make use of the minindex() function:

 mi = self.minindex(k)

As we did in the float() method, we compare parent and child to see
whether we need to swap:

 if self.heap[k] > self.heap[mi]:
 self.heap[k], self.heap[mi] = self.heap[mi],
 self.heap[k]

And we need to make sure that we move down the tree so that we
don't get stuck in a loop:

 k = mi

The only thing remaining now is to implement pop() itself. This is very
straightforward as the grunt work is performed by the sink() method:

 def pop(self):
 item = self.heap[1]
 self.heap[1] = self.heap[self.size]
 self.size -= 1
 self.heap.pop()
 self.sink(1)
 return item

Testing the heap
Now we just need some code to test the heap. We begin by creating
our heap and inserting some data:

 h = Heap()
 for i in (4, 8, 7, 2, 9, 10, 5, 1, 3, 6):
 h.insert(i)

We can print the heap list, just to inspect how the elements are
ordered. If you redraw this as a tree structure, you should notice that
it meets the required properties of a heap:

 print(h.heap)

Now we will pop off the items, one at a time. Notice how the items
come out in a sorted order, from lowest to highest. Also notice how
the heap list changes after each pop. It is a good idea to take out a
pen and paper and to redraw this list as a tree after each pop, to fully
understand how the sink() method works:

 for i in range(10):
 n = h.pop()
 print(n)
 print(h.heap)

In the chapter on sorting algorithms, we will reorganize the code for
the heap sort algorithm.

Once you have the min heap working properly and understand how it
works, it should be a simple task to implement a max heap. All you
have to do is to reverse the logic.

Selection algorithms
Selection algorithms fall under a class of algorithms that seek to
answer the problem of finding the ith-smallest element in a list. When
a list is sorted in ascending order, the first element in the list will be
the smallest item in the list. The second element in the list will be the
second-smallest element in the list. The last element in the list will be
the last-smallest element in the list but that will also qualify as the
largest element in the list.

In creating the heap data structure, we have come to the
understanding that a call to the pop method will return the smallest
element in the heap. The first element to pop off a min heap is the
first-smallest element in the list. Similarly, the seventh element to be
popped off the min heap will be the seventh-smallest element in the
list. Therefore, to find the ith-smallest element in a list will require us
to pop the heap i number of times. That is a very simple and efficient
way of finding the ith-smallest element in a list.

But in Chapter 14, Selection Algorithms, we will study another approach
by which we can find the ith-smallest element in a list.

Selection algorithms have applications in filtering out noisy data,
finding the median, smallest, and largest elements in a list, and can
even be applied in computer chess programs.

Summary
Graphs and heaps have been treated in this chapter. We looked at
ways to represent a graph in Python using lists and dictionaries. In
order to traverse the graph, we looked at breadth-first searches and
depth-first searches.

We then switched our attention to heaps and priority queues to
understand their implementation. The chapter ended with using the
concept of a heap to find the ith-smallest element in a list.

The subject of graphs is very complicated and just one chapter will
not do justice to it. The journey with nodes will end with this chapter.
The next chapter will usher us into the arena of searching and the
various means by which we can efficiently search for items in lists.

Searching
With the data structures that have been developed in the preceding
chapters, one critical operation performed on all of them is
searching. In this chapter, we shall explore the different strategies
that can be used to find elements in a collection of items.

One other important operation that makes use of searching is
sorting. It is virtually impossible to sort without some variant of a
search operation. The "how of searching" is also important as it has
a bearing on how quick a sorting algorithm ends up performing.

Searching algorithms are categorized under two broad types. One
category assumes that the list of items to apply the searching
operation on, has already been sorted whiles the other does not.

The performance of a search operation is heavily influenced by
whether the items about to be searched have already been sorted or
not as we will see in the subsequent topics too.

Linear Search
Let us focus our discussions on linear search, performed on a typical
Python list.

The preceding list has elements that are accessible through the list
index. To find an element in the list we employ the linear searching
technique. This technique traverses the list of elements, by using the
index to move from the beginning of the list to the end. Each element
is examined and if it does not match the search item, the next item is
examined. By hopping from one item to its next, the list is traversed
sequentially.

In treating the sections in this chapter and others, we use a list with integers to enhance our
understanding since integers lend themselves to easy comparison.

Unordered linear search
A list containing elements 60, 1, 88, 10, and 100 is an example of an
unordered list. The items in the list have no order by magnitude. To
perform a search operation on such a list, one proceeds from the
very first item, compares that with the search item. If a match is not
made the next element in the list is examined. This continues till we
reach the last element in the list or until a match is made.

 def search(unordered_list, term):
 unordered_list_size = len(unordered_list)
 for i in range(unordered_list_size):
 if term == unordered_list[i]:
 return i

 return None

The search function takes as parameters, the list that houses our data
and the item that we are looking for called the search term.

The size of the array is obtained and determines the number of times
the for loop is executed.

 if term == unordered_list[i]:
 ...

On every pass of the for loop, we test if the search term is equal to
the item that the index points to. If true, then there is no need to
proceed with the search. We return the position where the match
occurred.

If the loop runs to the end of the list with no match being made, None
is returned to signify that there is no such item in the list.

In an unordered list of items, there is no guiding rule for how
elements are inserted. This therefore impacts the way the search is
done. The lack of order means that we cannot rely on any rule to
perform the search. As such, we must visit the items in the list one

after the other. As can be seen in the following image, the search for
the term 66, starts from the first element and moves to next element
in the list. Thus 60 compared with 66 and if it is not equal, we
compare 66 with 1, 88 and so on till we find the search term in the
list.

The unordered linear search has a worst case running time of O(n).
All the elements may need to be visited before finding the search
term. This will be the case if the search term is located at the last
position of the list.

Ordered linear search
In the case where the elements of a list have been already sorted,
our search algorithm can be improved. Assuming the elements have
been sorted in ascending order, the search operation can take
advantage of the ordered nature of the list to make search more
efficient.

The algorithm is reduced to the following steps:

1. Move through the list sequentially.
2. If a search item is greater than the object or item currently under

inspection in the loop, then quit and return None.

In the process of iterating through the list, if the search term is
greater than the current item, then there is no need to continue with
the search.

When the search operation starts and the first element is compared
with (5), no match is made. But because there are more elements in
the list the search operation moves on to examine the next element.
A more compelling reason to move on is that we know the search
item may match any of the elements greater than 2.

After the 4th comparison, we come to the conclusion that the search
term, can not be found in any position above where 6 is located. In
other words, if the current item is greater than the search term, then
it means there is no need to further search the list.

 def search(ordered_list, term):
 ordered_list_size = len(ordered_list)
 for i in range(ordered_list_size):
 if term == ordered_list[i]:
 return i
 elif ordered_list[i] > term:
 return None

 return None

The if statement now caters for this check. The elif portion tests the
condition where ordered_list[i] > term. The method returns None if the
comparison evaluates to True.

The last line in the method returns None because the loop may go
through the list and still not find any element matching the search
term.

The worst case time complexity of an ordered linear search is O(n). In
general, this kind of search is considered inefficient especially when
dealing with large data sets.

Binary search
A binary search is a search strategy used to find elements within a
list by consistently reducing the amount of data to be searched and
thereby increasing the rate at which the search term is found.

To use a binary search algorithm, the list to be operated on must
have already been sorted.

The binary term carries a number of meanings and helps us put our
minds in the right frame to understand the algorithm.

A binary decision has to be made at each attempt to find an item in
the list. One critical decision is to guess which part of the list is likely
to house the item we are looking for. Would the search term be in the
first half of second half of the list, that is, if we always perceive the list
as being comprised of two parts?

Instead of moving from one cell of the list to the other, if we employ
the use of an educated guessing strategy, we are likely to arrive at
the position where the item will be found much faster.

As an example, lets take it that we want to find the middle page of a
1000 page book. We already know that every book has its pages
numbered sequentially from 1 upwards. So it figures that the 500th
page should be found right at the middle of the book, instead of
moving and flipping from page 1, 2 to reach the 500th page. Let's say
we decide to now look for the page 250. We can still use our strategy
to find the page easily. We guess that page 500 cuts the book in half.
Page 250, will lay to the left of the book. No need to worry about
whether we can find 250th page between page 500 and 1000
because it can never be found there. So using page 500 as
reference, we can open to about half of the pages that lay between

the 1st and 500th page. That brings us closer to finding the 250th
page.

The following is the algorithm for conducting a binary search on an
ordered list of items:

def binary_search(ordered_list, term):

 size_of_list = len(ordered_list) - 1

 index_of_first_element = 0
 index_of_last_element = size_of_list

 while index_of_first_element <= index_of_last_element:
 mid_point = (index_of_first_element + index_of_last_element)/2

 if ordered_list[mid_point] == term:
 return mid_point

 if term > ordered_list[mid_point]:
 index_of_first_element = mid_point + 1
 else:
 index_of_last_element = mid_point - 1

 if index_of_first_element > index_of_last_element:
 return None

Let's assume we have to find the position where the item 10 is
located in the list as follows:

The algorithm uses a while loop to iteratively adjust the limits in the list
within which to find a search term. So far as the difference between
the starting index, index_of_first_element and the index_of_last_element index
is positive, the while loop will run.

The algorithm first finds the mid point of the list by adding the index of
the first element (0) to that of the last (4) and dividing it by 2 to find

the middle index, mid_point.

mid_point = (index_of_first_element + index_of_last_element)/2

In this case, 10 is not found at the middle position or index in the list.
If we were searching for 120, we would have had to adjust the
index_of_first_element to mid_point +1. But because 10 lies on the other side
of the list, we adjust index_of_last_element to mid_point-1:

With our new index of index_of_first_element and index_of_last_element now
being 0 and 1 respectively, we compute the mid (0 + 1)/2, which
equals 0. The new midpoint is 0 , We find the middle item and
compare with the search item, ordered_list[0] which yields the value 10.
Voila! Our search term is found.

This reduction of our list size by half, by re-adjusting the index of the
index_of_first_element and index_of_last_element continues as long as
index_of_first_element is less than index_of_last_element. When this fails to be
the case it is most likely that our search term is not in the list.

The implementation here is an iterative one. We can also develop a
recursive variant of the algorithm by applying the same principle of
shifting the pointers that mark the beginning and ending of the search
list.

def binary_search(ordered_list, first_element_index, last_element_index,
term):

 if (last_element_index < first_element_index):
 return None
 else:
 mid_point = first_element_index + ((last_element_index -

first_element_index) / 2)

 if ordered_list[mid_point] > term:
 return binary_search(ordered_list, first_element_index,
mid_point-1,term)
 elif ordered_list[mid_point] < term:
 return binary_search(ordered_list, mid_point+1,
last_element_index, term)
 else:
 return mid_point

A call to this recursive implementation of the binary search algorithm
and its output is as follows:

 store = [2, 4, 5, 12, 43, 54, 60, 77]
 print(binary_search(store, 0, 7, 2))

Output:
>> 0

There only distinction between the recursive binary search and the
iterative binary search is the function definition and also the way in
which mid_point is calculated. The calculation for the mid_point after the
((last_element_index - first_element_index) / 2) operation must add its result
to first_element_index. That way we define the portion of the list to
attempt the search.

The binary search algorithm has a worst time complexity of O(log n).
The half-ing of the list on each iteration follows a log n of the number
of elements progression.

It goes without saying that in log x is assumed to be referring to log base 2.

Interpolation search
There is another variant of the binary search algorithm that may
closely be said to mimic more, how humans perform search on any
list of items. It is still based off trying to make a good guess of where
in a sorted list of items, a search item is likely to be found.

Examine the following list of items for example:

To find 120, we know to look at the right hand portion of the list. Our
initial treatment of binary search would typically examine the middle
element first in order to determine if it matches the search term.

A more human thing would be to pick a middle element in a such a
way as to not only split the array in half but to get as close as
possible to the search term. The middle position was calculated for
using the following rule:

mid_point = (index_of_first_element + index_of_last_element)/2

We shall replace this formula with a better one that brings us close to
the search term. mid_point will receive the return value of the nearest_mid
function.

def nearest_mid(input_list, lower_bound_index, upper_bound_index,
search_value):
 return lower_bound_index + ((upper_bound_index -lower_bound_index)/
(input_list[upper_bound_index] -input_list[lower_bound_index])) *
(search_value -input_list[lower_bound_index])

The nearest_mid function takes as arguments, the list on which to
perform the search. The lower_bound_index and upper_bound_index parameters

represent the bounds in the list within which we are hoping to find the
search term. search_value represents the value being searched for.

These are used in the formula:

lower_bound_index + ((upper_bound_index - lower_bound_index)/
(input_list[upper_bound_index] - input_list[lower_bound_index])) *
(search_value - input_list[lower_bound_index])

Given our search list, 44, 60, 75, 100, 120, 230 and 250, the nearest_mid
will be computed with the following values:

lower_bound_index = 0
upper_bound_index = 6
input_list[upper_bound_index] = 250
input_list[lower_bound_index] = 44
search_value = 230

It can now be seen that, the mid_point will receive the value 5, which is
the index of the location of our search term. A binary search would
have chosen 100 as the mid which will require another run of the
algorithm.

A more visual illustration of how a typical binary search differs from
an interpolation is given as follows. For a typical binary search finds
the midpoint like so:

One can see that the midpoint is actually standing approximately in
the middle of the preceding list. This is as a result of dividing by list 2.

An interpolation search on the other hand would move like so:

In interpolation search, our midpoint is swayed more to the left or
right. This is caused by the effect of the multiplier used when dividing
to obtain the midpoint. From the preceding image, our midpoint has
been skewed to the right.

The remainder of the interpolation algorithm remains the same as
that of the binary search except for the way the mid position is
calculated for.

def interpolation_search(ordered_list, term):

 size_of_list = len(ordered_list) - 1

 index_of_first_element = 0
 index_of_last_element = size_of_list

 while index_of_first_element <= index_of_last_element:
 mid_point = nearest_mid(ordered_list, index_of_first_element,
index_of_last_element, term)

 if mid_point > index_of_last_element or mid_point <
index_of_first_element:
 return None

 if ordered_list[mid_point] == term:
 return mid_point

 if term > ordered_list[mid_point]:
 index_of_first_element = mid_point + 1
 else:
 index_of_last_element = mid_point - 1

 if index_of_first_element > index_of_last_element:
 return None

The nearest_mid function makes use of a multiplication operation. This
can produce values that are greater than the upper_bound_index or lower
than the lower_bound_index. When this occurs, it means the search term,
term, is not in the list. None is therefore returned to represent this.

So what happens when ordered_list[mid_point] does not equal the search
them? Well, we must now re-adjust the index_of_first_element and
index_of_last_element such that the algorithm will focus on the part of the
array that is likely to contain the search term. This is like exactly what
we did in the binary search.

if term > ordered_list[mid_point]:
index_of_first_element = mid_point + 1

If the search term is greater than the value stored at
ordered_list[mid_point], then we only adjust the index_of_first_element
variable to point to the index mid_point + 1.

The following image shows how the adjustment occurs. The
index_of_first_element is adjusted and pointed to the index of mid_point+1.

The image only illustrates the adjustment of the midpoint. In interpolation rarely does the midpoint
divide the list in 2 equal halves.

On the other hand, if the search term is lesser than the value stored
at ordered_list[mid_point], then we only adjust the index_of_last_element
variable to point to the index mid_point - 1. This logic is captured in the
else part of the if statement index_of_last_element = mid_point - 1.

The image shows the effect of the recalculation of index_of_last_element
on the position of the midpoint.

Let's use a more practical example to understand the inner workings
of both the binary search and interpolation algorithms.

Take the list with elements:

[2, 4, 5, 12, 43, 54, 60, 77]

At index 0 is stored 2 and at index 7 is found the value 77. Now,
assume that we want to find the element 2 in the list. How will the two
different algorithms go about it?

If we pass this list to the interpolation search function, the nearest_mid
function will return a value equal to 0. Just by one comparison, we
would have found the search term.

On the other hand, the binary search algorithm would need three
comparisons to arrive at the search term as illustrated in the following

image:

The first mid_point calculated is 3. The second mid_point is 1 and the last
mid_point where the search term is found is 0.

Choosing a search algorithm
The binary search and interpolation search operations are better in
performance than both ordered and unordered linear search
functions. Because of the sequential probing of elements in the list to
find the search term, ordered and unordered linear search have a
time complexity of O(n). This gives very poor performance when the
list is large.

The binary search operation on the other hand, slices the list in two,
anytime a search is attempted. On each iteration, we approach the
search term much faster than in a linear strategy. The time
complexity yields O(log n). Despite the speed gain in using binary
search, it is most it can not be used on an unsorted list of items
neither is it advised to be used for list of small sizes.

The ability to get to the portion of the list that houses a search term
determines to a large extent, how well a search algorithm will
perform. In the interpolation search algorithm, the mid is calculated
for which gives a higher probability of obtaining our search term. The
time complexity of the interpolation search is O(log (log n)). This
gives rise to a faster search compared to its variant, binary search.

Summary
In this chapter, we have examined two breeds of search algorithms.
The implementation of both linear and binary search algorithms have
been discussed and their comparisons drawn. The binary search
variant, interpolation search has also been treated in this section.
Knowing which kind of search operation to use will be relevant in
subsequent chapters.

In our next chapter, we shall use the knowledge that we have gained
to enable us perform sorting operations on a list of items.

Sorting
Whenever data is collected, there comes a time when it becomes
necessary to sort the data. The sorting operation is common to all
datasets, be it a collection of names, telephone numbers, or items on
a simple to-do list.

In this chapter, we'll study a few sorting techniques, including the
following:

Bubble sort
Insertion sort
Selection sort
Quick sort
Heap sort

In our treatment of these sorting algorithms, we will take into
consideration their asymptotic behavior. Some of the algorithms are
relatively easy to develop but may perform poorly. Other algorithms
that are a little complex to write will show impressive performance.

After sorting, it becomes much easier to conduct search operations
on a collection of items. We'll start with the simplest of all sorting
algorithms--the bubble sort algorithm.

Sorting algorithms
In this chapter, we will go through a number of sorting algorithms that
have varying levels of difficulty of implementation. Sorting algorithms
are categorized by their memory usage, complexity, recursion,
whether they are comparison-based among other considerations.

Some of the algorithms use more CPU cycles and as such have bad
asymptotic values. Others chew on more memory and other
computing resources as they sort a number of values. Another
consideration is how sorting algorithms lend themselves to being
expressed recursively or iteratively or both. There are algorithms that
use comparison as the basis for sorting elements. An example of this
is the bubble sort algorithm. Examples of a non-comparison sorting
algorithm are the buck sort and pigeonhole sort.

Bubble sort
The idea behind a bubble sort algorithm is very simple. Given an
unordered list, we compare adjacent elements in the list, each time,
putting in the right order of magnitude, only two elements. The
algorithm hinges on a swap procedure.

Take a list with only two elements:

To sort this list, simply swap them into the right position with 2
occupying index 0 and 5 occupying index 1. To effectively swap
these elements, we need to have a temporary storage area:

Implementation of the bubble sort algorithm starts with the swap
method, illustrated in the preceding image. First, element 5 will be
copied to a temporary location, temp. Then element 2 will be moved to
index 0. Finally, 5 will be moved from temp to index 1. At the end of it
all, the elements will have been swapped. The list will now contain
the element: [2, 5]. The following code will swap the elements
of unordered_list[j] with unordered_list[j+1] if they are not in the
right order:

 temp = unordered_list[j]
 unordered_list[j] = unordered_list[j+1]
 unordered_list[j+1] = temp

Now that we have been able to swap a two-element array, it should
be simple to use this same idea to sort a whole list.

We'll run this swap operation in a double-nested loop. The inner loop
is as follows:

 for j in range(iteration_number):
 if unordered_list[j] > unordered_list[j+1]:
 temp = unordered_list[j]

 unordered_list[j] = unordered_list[j+1]
 unordered_list[j+1] = temp

Knowing how many times to swap is important when implementing a
bubble sort algorithm. To sort a list of numbers such as [3, 2, 1], we
need to swap the elements a maximum of twice. This is equal to the
length of the list minus 1, iteration_number = len(unordered_list)-1. We
subtract 1 because it gives us exactly the maximum number of
iterations to run:

By swapping the adjacent elements in exactly two iterations, the
largest number ends up at the last position on the list.

The if statement makes sure that no needless swaps occur if two
adjacent elements are already in the right order. The inner for loop
only causes the swapping of adjacent elements to occur exactly
twice in our list.

However, you'll realize that the running of the for loop for the first
time does not entirely sort our list. How many times does this

swapping operation have to occur in order for the entire list to be
sorted? If we repeat the whole process of swapping the adjacent
elements a number of times, the list will be sorted. An outer loop is
used to make this happen. The swapping of elements in the list
results in the following dynamics:

We recognize that a total of four comparisons at most were needed
to get our list sorted. Therefore, both inner and outer loops have to
run len(unordered_list)-1 times for all elements to be sorted:

iteration_number = len(unordered_list)-1
 for i in range(iteration_number):
 for j in range(iteration_number):
 if unordered_list[j] > unordered_list[j+1]:
 temp = unordered_list[j]
 unordered_list[j] = unordered_list[j+1]
 unordered_list[j+1] = temp

The same principle is used even if the list contains many elements.
There are a lot of variations of the bubble sort too that minimize the

number of iterations and comparisons.

The bubble sort is a highly inefficient sorting algorithm with a time
complexity of O(n2) and best case of O(n). Generally, the bubble sort
algorithm should not be used to sort large lists. However, on
relatively small lists, it performs fairly well.

There is a variant of the bubble sort algorithm where if there is no
comparison within the inner loop, we simply quit the entire sorting
process. The absence of the need to swap elements in the inner
loop suggests the list has already been sorted. In a way, this can
help speed up the generally considered slow algorithm.

Insertion sort
The idea of swapping adjacent elements to sort a list of items can
also be used to implement the insertion sort. In the insertion sort
algorithm, we assume that a certain portion of the list has already
been sorted, while the other portion remains unsorted. With this
assumption, we move through the unsorted portion of the list, picking
one element at a time. With this element, we go through the sorted
portion of the list and insert it in the right order so that the sorted
portion of the list remains sorted. That is a lot of grammar. Let's walk
through the explanation with an example.

Consider the following array:

The algorithm starts by using a for loop to run between the indexes 1
and 4. We start from index 1 because we assume the sub-array with
index 0 to already be in the sorted order:

At the start of the execution of the loop, we have the following:

 for index in range(1, len(unsorted_list)):
 search_index = index
 insert_value = unsorted_list[index]

At the beginning of the execution of each run of the for loop, the
element at unsorted_list[index] is stored in the insert_value variable. Later,
when we find the appropriate position in the sorted portion of the list,
insert_value will be stored at that index or location:

 for index in range(1, len(unsorted_list)):
 search_index = index
 insert_value = unsorted_list[index]

 while search_index > 0 and unsorted_list[search_index-1] >
 insert_value :
 unsorted_list[search_index] = unsorted_list[search_index-1]
 search_index -= 1

 unsorted_list[search_index] = insert_value

The search_index is used to provide information to the while loop--exactly
where to find the next element that needs to be inserted in the sorted
portion of the list.

The while loop traverses the list backwards, guided by two conditions:
first, if search_index > 0, then it means that there are more elements in
the sorted portion of the list; second, for the while loop to run,
unsorted_list[search_index-1] must be greater than the insert_value.

The unsorted_list[search_index-1] array will do either of the following
things:

Point to the element just before the unsorted_list[search_index]
before the while loop is executed the first time
Point to one element before unsorted_list[search_index-1] after the
while loop has been run the first time

In our list example, the while loop will be executed because 5 > 1. In
the body of the while loop, the element at unsorted_list[search_index-1] is
stored at unsorted_list[search_index]. search_index -= 1 moves the list
traversal backwards till it bears the value 0.

Our list now looks like this:

After the while loop exits, the last known position of search_index (which
in this case is 0) now helps us to know where to insert insert_value:

On the second iteration of the for loop, search_index will have the value
2, which is the index of the third element in the array. At this point,
we start our comparison in the direction to the left (towards index 0).
100 will be compared with 5 but because 100 is greater than 5, the
while loop will not be executed. 100 will be replaced by itself
because the search_index variable never got decremented. As
such, unsorted_list[search_index] = insert_value will have no effect.

When search_index is pointing at index 3, we compare 2 with 100 and
move 100 to where 2 is stored. We then compare 2 with 5 and move
5 to where 100 was initially stored. At this point, the while loop will
break and 2 will be stored in index 1. The array will be partially
sorted with the values [1, 2, 5, 100, 10].

The preceding step will occur one last time for the list to be sorted.

The insertion sort algorithm is considered stable in that it does not
change the relative order of elements that have equal keys. It also

only requires no more memory than what is consumed by the list
because it does the swapping in-place.

Its worst case value is O(n2) and its best case is O(n).

Selection sort
Another popular sorting algorithm is the selection sort. This sorting
algorithm is simple to understand, yet also inefficient, with its worst
and best asymptotic values being O(n2). It begins by finding the
smallest element in an array and interchanging it with data at, for
instance, array index [0]. The same operation is done a second time;
however, the smallest element in the remainder of the list after
finding the first smallest element is interchanged with the data at
index [1].

In a bid to throw more light on how the algorithm works, lets sort a
list of numbers:

Starting at index 0, we search for the smallest item in the list that
exists between index 1 and the index of the last element. When this
element has been found, it is exchanged with the data found at index
0. We simply repeat this process until the list becomes sorted.

Searching for the smallest item within the list is an incremental
process:

A comparison of elements 2 and 5 selects 2 as the lesser of the two.
The two elements are swapped.

After the swap operation, the array looks like this:

Still at index 0, we compare 2 with 65:

Since 65 is greater than 2, the two elements are not swapped. A
further comparison is made between the element at index 0, which is
2, with element at index 3, which is 10. No swap takes place. When

we get to the last element in the list, we will have the smallest
element occupying index 0.

A new set of comparisons will begin, but this time, from index 1. We
repeat the whole process of comparing the element stored there with
all the elements between index 2 through to the last index.

The first step of the second iteration will look like this:

The following is an implementation of the selection sort algorithm.
The argument to the function is the unsorted list of items we want to
put in ascending order of magnitude:

 def selection_sort(unsorted_list):

 size_of_list = len(unsorted_list)

 for i in range(size_of_list):
 for j in range(i+1, size_of_list):

 if unsorted_list[j] < unsorted_list[i]:
 temp = unsorted_list[i]
 unsorted_list[i] = unsorted_list[j]
 unsorted_list[j] = temp

The algorithm begins by using the outer for loop to go through the
list, size_of_list, a number of times. Because we pass size_of_list to the
range method, it will produce a sequence from 0 through to size_of_list-
1. It is a subtle note.

The inner loop is responsible for going through the list and making
the necessary swap any time that we encounter an element less
than the element pointed to by unsorted_list[i]. Notice that the inner

loop begins from i+1 up to size_of_list-1. The inner loop begins its
search for the smallest element between i+1 but uses the j index:

The preceding diagram shows the direction in which the algorithm
searches for the next smallest item.

Quick sort
The quick sort algorithm falls under the divide and conquer class of
algorithms, where we break (divide) a problem into smaller chunks
that are much simpler to solve (conquer). In this case, an unsorted
array is broken into sub-arrays that are partially sorted, until all
elements in the list are in the right position, by which time our
unsorted list will have become sorted.

List partitioning
Before we divide the list into smaller chunks, we have to partition it.
This is the heart of the quick sort algorithm. To partition the array, we
must first select a pivot. All the elements in the array will be
compared with this pivot. At the end of the partitioning process, all
elements that are less than the pivot will be to the left of the pivot,
while all elements greater than the pivot will lie to the right of the
pivot in the array.

Pivot selection
For the sake of simplicity, we'll take the first element in any array as
the pivot. This kind of pivot selection degrades in performance,
especially when sorting an already sorted list. Randomly picking the
middle or last element in the array as the pivot does not improve the
situation any further. In the next chapter, we will adopt a better
approach to selecting the pivot in order to help us find the smallest
element in a list.

Implementation
Before we delve into the code, let's run through the sorting of a list
using the quick sort algorithm. The partitioning step is very important
to understand so we'll tackle that operation first.

Consider the following list of integers. We shall partition this list using
the partition function below:

 def partition(unsorted_array, first_index, last_index):

 pivot = unsorted_array[first_index]
 pivot_index = first_index
 index_of_last_element = last_index

 less_than_pivot_index = index_of_last_element
 greater_than_pivot_index = first_index + 1
 ...

The partition function receives the array that we need to partition as
its parameters: the index of its first element and the index of its last
element.

The value of the pivot is stored in the pivot variable, while its index is
stored in pivot_index. We are not using unsorted_array[0] because when
the unsorted array parameter is called with a segment of an array,
index 0 will not necessarily point to the first element in that array. The
index of the next element to the pivot, first_index + 1, marks the
position where we begin to look for the element in the array that is
greater than the pivot, greater_than_pivot_index = first_index + 1.

less_than_pivot_index = index_of_last_element marks the position of the last
element in the list which is, where we begin the search for the
element that is less than the pivot:

 while True:

 while unsorted_array[greater_than_pivot_index] < pivot and
 greater_than_pivot_index < last_index:
 greater_than_pivot_index += 1

 while unsorted_array[less_than_pivot_index] > pivot and
 less_than_pivot_index >= first_index:
 less_than_pivot_index -= 1

At the beginning of the execution of the main while loop the array looks
like this:

The first inner while loop moves one index to the right until it lands on
index 2, because the value at that index is greater than 43. At this
point, the first while loop breaks and does not continue. At each test of
the condition in the first while loop, greater_than_pivot_index += 1 is
evaluated only if the while loop's test condition evaluates to True. This
makes the search for the element greater than the pivot progress to
the next element on the right.

The second inner while loop moves one index at a time to the left, until
it lands on index 5, whose value, 20, is less than 43:

At this point, neither inner while loop can be executed any further:

 if greater_than_pivot_index < less_than_pivot_index:
 temp = unsorted_array[greater_than_pivot_index]
 unsorted_array[greater_than_pivot_index] =
 unsorted_array[less_than_pivot_index]
 unsorted_array[less_than_pivot_index] = temp
 else:
 break

Since greater_than_pivot_index < less_than_pivot_index, the body of the if
statement swaps the element at those indexes. The else condition
breaks the infinite loop any time greater_than_pivot_index becomes greater
than less_than_pivot_index. In such a condition, it means
that greater_than_pivot_index and less_than_pivot_index have crossed over
each other.

Our array now looks like this:

The break statement is executed when less_than_pivot_index is equal to 3
and greater_than_pivot_index is equal to 4.

As soon as we exit the while loop, we interchange the element at
unsorted_array[less_than_pivot_index] with that of less_than_pivot_index, which is
returned as the index of the pivot:

 unsorted_array[pivot_index]=unsorted_array[less_than_pivot_index]
 unsorted_array[less_than_pivot_index]=pivot
 return less_than_pivot_index

The image below shows how the code interchanges 4 with 43 as the
last step in the partitioning process:

To recap, the first time the quick sort function was called, it was
partitioned about the element at index 0. After the return of the
partitioning function, we obtain the array [4, 3, 20, 43, 89, 77].

As you can see, all elements to the right of element 43 are greater,
while those to the left are smaller. The partitioning is complete.

Using the split point 43 with index 3, we will recursively sort the two
sub-arrays [4, 30, 20] and [89, 77] using the same process we just went
through.

The body of the main quick sort function is as follows:

 def quick_sort(unsorted_array, first, last):
 if last - first <= 0:
 return
 else:

 partition_point = partition(unsorted_array, first, last)
 quick_sort(unsorted_array, first, partition_point-1)
 quick_sort(unsorted_array, partition_point+1, last)

The quick sort function is a very simple method, no more than 6 lines
of code. The heavy lifting is done by the partition function. When the
partition method is called it returns the partition point. This is the point
in the unsorted_array where all elements to the left are less than the pivot
and all elements to its right are greater than it.

When we print the state of unsorted_array immediately after the partition
progress, we see clearly how the partitioning is happening:

Output:
[43, 3, 20, 89, 4, 77]
[4, 3, 20, 43, 89, 77]
[3, 4, 20, 43, 89, 77]
[3, 4, 20, 43, 77, 89]
[3, 4, 20, 43, 77, 89]

Taking a step back, let's sort the first sub array after the first partition
has happened. The partitioning of the [4, 3, 20] sub array will stop
when greater_than_pivot_index is at index 2 and less_than_pivot_index is at
index 1. At that point, the two markers are said to have crossed.
Because greater_than_pivot_index is greater than less_than_pivot_index, further
execution of the while loop will cease. Pivot 4 will be exchanged with 3,
while index 1 is returned as the partition point.

The quick sort algorithm has a O(n2) worst case complexity, but it is
efficient when sorting large amounts of data.

Heap sort
In Chapter 11, Graphs and Other Algorithms, we implemented the
(binary) heap data structure. Our implementation always made sure
that after an element has been removed or added to a heap, the
heap order property is maintained by using the sink and float helper
methods.

The heap data structure can be used to implement the sorting
algorithm called the heap sort. As a recap, let's create a simple heap
with the following items:

 h = Heap()
 unsorted_list = [4, 8, 7, 2, 9, 10, 5, 1, 3, 6]
 for i in unsorted_list:
 h.insert(i)
 print("Unsorted list: {}".format(unsorted_list))

The heap, h, is created and the elements in the unsorted_list are
inserted. After each method call to insert, the heap order property is
restored by the subsequent call to the float method. After loop has
terminated, at the top of our heap will be element 4.

The number of elements in our heap is 10. If we call the pop method
on the heap object h, 10 times and store the actual elements being
popped, we end up with a sorted list. After each pop operation, the
heap is readjusted to maintain the heap order property.

The heap_sort method is as follows:

 class Heap:
 ...
 def heap_sort(self):
 sorted_list = []
 for node in range(self.size):
 n = self.pop()
 sorted_list.append(n)

 return sorted_list

The for loop simply calls the pop method self.size number of times.
sorted_list will contain a sorted list of items after the loop terminates.

The insert method is called n number of times. Together with the float
method, the insert operation takes a worst case runtime of O(n log n),
as does the pop method. As such, this sorting algorithm incurs a worst
case runtime of O(n log n).

Summary
In this chapter, we have explored a number of sorting algorithms.
Quick sort performs much better than the other sorting algorithms. Of
all the algorithms discussed, quick sort preserves the index of the list
that it sorts. We'll use this property in the next chapter as we explore
the selection algorithms.

Selection Algorithms
One interesting set of algorithms related to finding elements in an
unordered list of items is selection algorithms. In doing so, we shall
be answering questions that have to do with selecting the median of
a set of numbers and selecting the ith-smallest or -largest element in
a list, among other things.

In this chapter, we will cover the following topics:

Selection by sorting
Randomized selection
Deterministic selection

Selection by sorting
Items in a list may undergo statistical enquiries such as finding the
mean, median, and mode values. Finding the mean and mode
values do not require the list to be ordered. However, to find the
median in a list of numbers, the list must first be ordered. Finding the
median requires one to find the element in the middle position of the
ordered list. But what if we want to find the last-smallest item in the
list or the first-smallest item in the list?

To find the ith-smallest number in an unordered list of items, the
index of where that item occurs is important to obtain. But because
the elements have not been sorted, it is difficult to know whether the
element at index 0 in a list is really the first-smallest number.

A pragmatic and obvious thing to do when dealing with unordered
lists is to first sort the list. Once the list is sorted, one is assured that
the zeroth element in the list will house the first-smallest element in
the list. Likewise, the last element in the list will house the last-
smallest element in the list.

Assume that perhaps the luxury of sorting before performing the
search cannot be afforded. Is it possible to find the ith-smallest
element without having to sort the list in the first place?

Randomized selection
In the previous chapter, we examined the quick sort algorithm. The
quick sort algorithm allows us to sort an unordered list of items but
has a way of preserving the index of elements as the sorting
algorithm runs. Generally speaking, the quick sort algorithm does the
following:

1. Selects a pivot.
2. Partitions the unsorted list around the pivot.
3. Recursively sorts the two halves of the partitioned list using step

1 and step 2.

One interesting and important fact is that after every partitioning
step, the index of the pivot will not change even after the list has
become sorted. It is this property that enables us to be able to work
with a not-so-fully sorted list to obtain the ith-smallest number.
Because randomized selection is based on the quick sort algorithm,
it is generally referred to as quick select.

Quick select
The quick select algorithm is used to obtain the ith-smallest element
in an unordered list of items, in this case, numbers. We declare the
main method of the algorithm as follows:

 def quick_select(array_list, left, right, k):

 split = partition(array_list, left, right)

 if split == k:
 return array_list[split]
 elif split < k:
 return quick_select(array_list, split + 1, right, k)
 else:
 return quick_select(array_list, left, split-1, k)

The quick_select function takes as parameters the index of the first
element in the list as well as the last. The ith element is specified by
the third parameter k. Values greater or equal to zero (0) are allowed
in such a way that when k is 0, we know to search for the first-
smallest item in the list. Others like to treat the k parameter so that it
maps directly with the index that the user is searching for, so that the
first-smallest number maps to the 0 index of a sorted list. It's all a
matter of preference.

A method call to the partition function, split = partition(array_list, left,
right), returns the split index. This index of split array is the position
in the unordered list where all elements between right to split-1 are
less than the element contained in the array split, while all elements
between split+1 to left are greater.

When the partition function returns the split value, we compare it with
k to find out if the split corresponds to the kth items.

If split is less than k, then it means that the kth-smallest item should
exist or be found between split+1 and right:

In the preceding example, a split within an imaginary unordered list
occurs at index 5, while we are searching for the second-smallest
number. Since 5<2 yields false, a recursive call to return
quick_select(array_list, left, split-1, k) is made so that the other half of
the list is searched:

If the split index was less than k, then we would make a call to
quick_select like this:

Partition step
The partition step is exactly like we had in the quick sort algorithm.
There are a couple of things worthy of note:

 def partition(unsorted_array, first_index, last_index):
 if first_index == last_index:
 return first_index

 pivot = unsorted_array[first_index]
 pivot_index = first_index
 index_of_last_element = last_index

 less_than_pivot_index = index_of_last_element
 greater_than_pivot_index = first_index + 1

 while True:

 while unsorted_array[greater_than_pivot_index] < pivot and
 greater_than_pivot_index < last_index:
 greater_than_pivot_index += 1
 while unsorted_array[less_than_pivot_index] > pivot and
 less_than_pivot_index >= first_index:
 less_than_pivot_index -= 1

 if greater_than_pivot_index < less_than_pivot_index:
 temp = unsorted_array[greater_than_pivot_index]
 unsorted_array[greater_than_pivot_index] =
 unsorted_array[less_than_pivot_index]
 unsorted_array[less_than_pivot_index] = temp
 else:
 break

 unsorted_array[pivot_index] =
 unsorted_array[less_than_pivot_index]
 unsorted_array[less_than_pivot_index] = pivot

 return less_than_pivot_index

An if statement has been inserted at the beginning of the function
definition to cater for situations where first_index is equal to last_index.
In such cases, it means there is only one element in our sublist. We
therefore simply return any of the function parameters, in this case,
first_index.

The first element is always chosen as the pivot. This choice to make
the first element the pivot is a random decision. It often does not
yield a good split and subsequently a good partition. However, the ith
element will eventually be found even though the pivot is chosen at
random.

The partition function returns the pivot index pointed to by
less_than_pivot_index, as we saw in the preceding chapter.

From this point on, you will need to follow the program execution
with a pencil and paper to get a better feel of how the split variable is
being used to determine the section of the list to search for the ith-
smallest item.

Deterministic selection
The worst-case performance of a randomized selection algorithm is
O(n2). It is possible to improve on a section of the randomized
selection algorithm to obtain a worst-case performance of O(n). This
kind of algorithm is called deterministic selection.

The general approach to the deterministic algorithm is listed here:

1. Select a pivot:
1. Split a list of unordered items into groups of five elements

each.
2. Sort and find the median of all the groups.
3. Repeat step 1 and step 2 recursively to obtain the true

median of the list.
2. Use the true median to partition the list of unordered items.
3. Recurse into the part of the partitioned list that may contain the

ith-smallest element.

Pivot selection
Previously, in the random selection algorithm, we selected the first
element as the pivot. We shall replace that step with a sequence of
steps that enables us to obtain the true or approximate median. This
will improve the partitioning of the list about the pivot:

 def partition(unsorted_array, first_index, last_index):

 if first_index == last_index:
 return first_index
 else:
 nearest_median =
 median_of_medians(unsorted_array[first_index:last_index])

 index_of_nearest_median =
 get_index_of_nearest_median(unsorted_array, first_index,
 last_index, nearest_median)

 swap(unsorted_array, first_index, index_of_nearest_median)

 pivot = unsorted_array[first_index]
 pivot_index = first_index
 index_of_last_element = last_index

 less_than_pivot_index = index_of_last_element
 greater_than_pivot_index = first_index + 1

Let's now study the code for the partition function. The nearest_median
variable stores the true or approximate median of a given list:

 def partition(unsorted_array, first_index, last_index):

 if first_index == last_index:
 return first_index
 else:
 nearest_median =
 median_of_medians(unsorted_array[first_index:last_index])

If the unsorted_array parameter has only one element, first_index and
last_index will be equal. first_index is therefore returned anyway.

However, if the list size is greater than one, we call the median_of_medians
function with the section of the array, demarcated by first_index and

last_index. The return value is yet again stored in nearest_median.

Median of medians
The median_of_medians function is responsible for finding the approximate
median of any given list of items. The function uses recursion to
return the true median:

def median_of_medians(elems):

 sublists = [elems[j:j+5] for j in range(0, len(elems), 5)]

 medians = []
 for sublist in sublists:
 medians.append(sorted(sublist)[len(sublist)/2])

 if len(medians) <= 5:
 return sorted(medians)[len(medians)/2]
 else:
 return median_of_medians(medians)

The function begins by splitting the list, elems, into groups of five
elements each. This means that if elems contains 100 items, there will
be 20 groups created by the statement sublists = [elems[j:j+5] for j in
range(0, len(elems), 5)], with each containing exactly five elements or
fewer:

 medians = []
 for sublist in sublists:
 medians.append(sorted(sublist)[len(sublist)/2])

An empty array is created and assigned to medians, which stores the
medians in each of the five element arrays assigned to sublists.

The for loop iterates over the list of lists inside sublists. Each sublist is
sorted, the median found, and stored in the medians list.

The medians.append(sorted(sublist)[len(sublist)/2]) statement will sort the list
and obtain the element stored in its middle index. This becomes the
median of the five-element list. The use of an existing sorting
function will not impact the performance of the algorithm due to the
list's small size.

We understood from the outset that we would not sort the list in order to find the ith-smallest
element, so why employ Python's sorted method? Well, since we are sorting a very small list of
five elements or fewer, the impact of that operation on the overall performance of the algorithm is
considered negligible.

Thereafter, if the list now contains five or fewer elements, we shall
sort the medians list and return the element located in its middle index:

 if len(medians) <= 5:
 return sorted(medians)[len(medians)/2]

If, on the other hand, the size of the list is greater than five, we
recursively call the median_of_medians function again, supplying it with the
list of the medians stored in medians.

Take, for instance, the following list of numbers:

[2, 3, 5, 4, 1, 12, 11, 13, 16, 7, 8, 6, 10, 9, 17, 15, 19, 20, 18, 23, 21,
22, 25, 24, 14]

We can break this list into groups of five elements each with the
code statement sublists = [elems[j:j+5] for j in range(0, len(elems), 5)], to
obtain the following list:

[[2, 3, 5, 4, 1], [12, 11, 13, 16, 7], [8, 6, 10, 9, 17], [15, 19, 20, 18, 23],
[21, 22, 25, 24, 14]]

Sorting each of the five-element lists and obtaining their medians
produces the following list:

[3, 12, 9, 19, 22]

Since the list is five elements in size, we only return the median of
the sorted list, or we would have made another call to the
median_of_median function.

Partitioning step
Now that we have obtained the approximate median, the
get_index_of_nearest_median function takes the bounds of the list indicated
by the first and last parameters:

 def get_index_of_nearest_median(array_list, first, second, median):
 if first == second:
 return first
 else:
 return first + array_list[first:second].index(median)

Once again, we only return the first index if there is only one element
in the list. The arraylist[first:second] returns an array with index 0 up to
the size of the list -1. When we find the index of the median, we lose
the portion in the list where it occurs because of the new range
indexing the [first:second] code returns. Therefore, we must add
whatever index is returned by arraylist[first:second] to first to obtain the
true index where the median was found:

 swap(unsorted_array, first_index, index_of_nearest_median)

We then swap the first element in unsorted_array with
index_of_nearest_median, using the swap function.

The utility function to swap two array elements is shown here:

def swap(array_list, first, second):
 temp = array_list[first]
 array_list[first] = array_list[second]
 array_list[second] = temp

Our approximate median is now stored at first_index of the unsorted
list.

The partition function continues as it would in the code of the quick
select algorithm. After the partitioning step, the array looks like this:

 def deterministic_select(array_list, left, right, k):

 split = partition(array_list, left, right)

 if split == k:
 return array_list[split]
 elif split < k :
 return deterministic_select(array_list, split + 1, right, k)
 else:
 return deterministic_select(array_list, left, split-1, k)

As you will have already observed, the main function of the
deterministic selection algorithm looks exactly the same as its
random selection counterpart. After the initial array_list has been
partitioned about the approximate median, a comparison with the kth
element is made.

If split is less than k, then a recursive call to
deterministic_select(array_list, split + 1, right, k) is made. This will look for
the kth element in that half of the array. Otherwise the function call to
deterministic_select(array_list, left, split-1, k) is made.

Summary
This chapter has examined ways to answer the question of how to
find the ith-smallest element in a list. The trivial solution of simply
sorting a list to perform the operation of finding the ith-smallest has
been explored.

There is also the possibility of not necessarily sorting the list before
we can determine the ith-smallest element. The random selection
algorithm allows us to modify the quick sort algorithm to determine
the ith-smallest element.

To further improve upon the random selection algorithm so that we
can obtain a time complexity of O(n), we embark on finding the
median of medians to enable us find a good split during partitioning.

From the next chapter, we will change our focus and take a deep
dive into Python's OOP concepts.

Object-Oriented Design
In software development, design is often considered as the step
done before programming. This isn't true; in reality, analysis,
programming, and design tend to overlap, combine, and interweave.
In this chapter, we will cover the following topics:

What object-oriented means
The difference between object-oriented design and object-
oriented programming
The basic principles of object-oriented design
Basic Unified Modeling Language (UML) and when it isn't evil

Introducing object-oriented
Everyone knows what an object is: a tangible thing that we can
sense, feel, and manipulate. The earliest objects we interact with are
typically baby toys. Wooden blocks, plastic shapes, and over-sized
puzzle pieces are common first objects. Babies learn quickly that
certain objects do certain things: bells ring, buttons are pressed, and
levers are pulled.

The definition of an object in software development is not terribly
different. Software objects may not be tangible things that you can
pick up, sense, or feel, but they are models of something that can do
certain things and have certain things done to them. Formally, an
object is a collection of data and associated behaviors.

So, knowing what an object is, what does it mean to be object-
oriented? In the dictionary, oriented means directed toward. So
object-oriented means functionally directed toward modeling objects.
This is one of many techniques used for modeling complex systems.
It is defined by describing a collection of interacting objects via their
data and behavior.

If you've read any hype, you've probably come across the terms
object-oriented analysis, object-oriented design, object-oriented
analysis and design, and object-oriented programming. These are all
highly related concepts under the general object-oriented umbrella.

In fact, analysis, design, and programming are all stages of software
development. Calling them object-oriented simply specifies what
level of software development is being pursued.

Object-oriented analysis (OOA) is the process of looking at a
problem, system, or task (that somebody wants to turn into an

application) and identifying the objects and interactions between
those objects. The analysis stage is all about what needs to be done.

The output of the analysis stage is a set of requirements. If we were
to complete the analysis stage in one step, we would have turned a
task, such as I need a website, into a set of requirements. As an
example, here or some requirements as to what a website visitor
might need to do (italic represents actions, bold represents objects):

Review our history
Apply for jobs
Browse, compare, and order products

In some ways, analysis is a misnomer. The baby we discussed
earlier doesn't analyze the blocks and puzzle pieces. Instead, she
explores her environment, manipulates shapes, and sees where they
might fit. A better turn of phrase might be object-oriented exploration.
In software development, the initial stages of analysis include
interviewing customers, studying their processes, and eliminating
possibilities.

Object-oriented design (OOD) is the process of converting such
requirements into an implementation specification. The designer
must name the objects, define the behaviors, and formally specify
which objects can activate specific behaviors on other objects. The
design stage is all about how things should be done.

The output of the design stage is an implementation specification. If
we were to complete the design stage in a single step, we would
have turned the requirements defined during object-oriented analysis
into a set of classes and interfaces that could be implemented in
(ideally) any object-oriented programming language.

Object-oriented programming (OOP) is the process of converting
this perfectly-defined design into a working program that does
exactly what the CEO originally requested.

Yeah, right! It would be lovely if the world met this ideal and we could
follow these stages one by one, in perfect order, like all the old
textbooks told us to. As usual, the real world is much murkier. No
matter how hard we try to separate these stages, we'll always find
things that need further analysis while we're designing. When we're
programming, we find features that need clarification in the design.

Most twenty-first century development happens in an iterative
development model. In iterative development, a small part of the task
is modeled, designed, and programmed, and then the program is
reviewed and expanded to improve each feature and include new
features in a series of short development cycles.

The rest of this book is about object-oriented programming, but in
this chapter, we will cover the basic object-oriented principles in the
context of design. This allows us to understand these (rather simple)
concepts without having to argue with software syntax or Python
tracebacks.

Objects and classes
So, an object is a collection of data with associated behaviors. How
do we differentiate between types of objects? Apples and oranges
are both objects, but it is a common adage that they cannot be
compared. Apples and oranges aren't modeled very often in
computer programming, but let's pretend we're doing an inventory
application for a fruit farm. To facilitate the example, we can assume
that apples go in barrels and oranges go in baskets.

Now, we have four kinds of objects: apples, oranges, baskets, and
barrels. In object-oriented modeling, the term used for a kind of
object is class. So, in technical terms, we now have four classes of
objects.

It's important to understand the difference between an object and a
class. Classes describe objects. They are like blueprints for creating
an object. You might have three oranges sitting on the table in front
of you. Each orange is a distinct object, but all three have the
attributes and behaviors associated with one class: the general class
of oranges.

The relationship between the four classes of objects in our inventory
system can be described using a Unified Modeling Language
(invariably referred to as UML, because three-letter acronyms never
go out of style) class diagram. Here is our first class diagram:

This diagram shows that an Orange is somehow associated with a
Basket and that an Apple is also somehow associated with a
Barrel. Association is the most basic way for two classes to be
related.

UML is very popular among managers, and occasionally disparaged
by programmers. The syntax of a UML diagram is generally pretty
obvious; you don't have to read a tutorial to (mostly) understand
what is going on when you see one. UML is also fairly easy to draw,
and quite intuitive. After all, many people, when describing classes
and their relationships, will naturally draw boxes with lines between
them. Having a standard based on these intuitive diagrams makes it
easy for programmers to communicate with designers, managers,
and each other.

However, some programmers think UML is a waste of time. Citing
iterative development, they will argue that formal specifications done
up in fancy UML diagrams are going to be redundant before they're
implemented, and that maintaining these formal diagrams will only
waste time and not benefit anyone.

Depending on the corporate structure involved, this may or may not
be true. However, every programming team consisting of more than
one person will occasionally have to sit down and hash out the
details of the subsystem it is currently working on. UML is extremely
useful in these brainstorming sessions for quick and easy
communication. Even those organizations that scoff at formal class
diagrams tend to use some informal version of UML in their design
meetings or team discussions.

Furthermore, the most important person you will ever have to
communicate with is yourself. We all think we can remember the
design decisions we've made, but there will always be the Why did I
do that? moments hiding in our future. If we keep the scraps of
papers we did our initial diagramming on when we started a design,
we'll eventually find them a useful reference.

This chapter, however, is not meant to be a tutorial on UML. There
are many of those available on the internet, as well as numerous
books on the topic. UML covers far more than class and object
diagrams; it also has a syntax for use cases, deployment, state
changes, and activities. We'll be dealing with some common class
diagram syntax in this discussion of object-oriented design. You can
pick up the structure by example, and you'll subconsciously choose
the UML-inspired syntax in your own team or personal design
sessions.

Our initial diagram, while correct, does not remind us that apples go
in barrels or how many barrels a single apple can go in. It only tells
us that apples are somehow associated with barrels. The association
between classes is often obvious and needs no further explanation,
but we have the option to add further clarification as needed.

The beauty of UML is that most things are optional. We only need to
specify as much information in a diagram as makes sense for the
current situation. In a quick whiteboard session, we might just quickly
draw lines between boxes. In a formal document, we might go into
more detail. In the case of apples and barrels, we can be fairly
confident that the association is many apples go in one barrel, but
just to make sure nobody confuses it with one apple spoils one
barrel, we can enhance the diagram as shown:

This diagram tells us that oranges go in baskets, with a little arrow
showing what goes in what. It also tells us the number of that object
that can be used in the association on both sides of the relationship.
One Basket can hold many (represented by a *) Orange objects.
Any one Orange can go in exactly one Basket. This number is
referred to as the multiplicity of the object. You may also hear it
described as the cardinality. These are actually slightly distinct
terms. Cardinality refers to the actual number of items in the set,
whereas multiplicity specifies how small or how large the set could
be.

I sometimes forget which end of the relationship line is supposed to
have which multiplicity number. The multiplicity nearest to a class is
the number of objects of that class that can be associated with any
one object at the other end of the association. For the apple goes in
barrel association, reading from left to right, many instances of the
Apple class (that is many Apple objects) can go in any one Barrel.
Reading from right to left, exactly one Barrel can be associated with
any one Apple.

Specifying attributes and
behaviors
We now have a grasp of some basic object-oriented terminology.
Objects are instances of classes that can be associated with each
other. An object instance is a specific object with its own set of data
and behaviors; a specific orange on the table in front of us is said to
be an instance of the general class of oranges. That's simple
enough, but let's dive into the meaning of those two words, data and
behaviors.

Data describes objects
Let's start with data. Data represents the individual characteristics of
a certain object. A class can define specific sets of characteristics
that are shared by all objects from that class. Any specific object can
have different data values for the given characteristics. For example,
the three oranges on our table (if we haven't eaten any) could each
weigh a different amount. The orange class could have a weight
attribute to represent that datum. All instances of the orange class
have a weight attribute, but each orange has a different value for this
attribute. Attributes don't have to be unique, though; any two
oranges may weigh the same amount. As a more realistic example,
two objects representing different customers might have the same
value for a first name attribute.

Attributes are frequently referred to as members or properties.
Some authors suggest that the terms have different meanings,
usually that attributes are settable, while properties are read-only. In
Python, the concept of read-only is rather pointless, so throughout
this book, we'll see the two terms used interchangeably. In addition,
as we'll discuss in Chapter 19, When to Use Object-Oriented
Programming, the property keyword has a special meaning in Python
for a particular kind of attribute.

In our fruit inventory application, the fruit farmer may want to know
what orchard the orange came from, when it was picked, and how
much it weighs. They might also want to keep track of where each
Basket is stored. Apples might have a color attribute, and barrels
might come in different sizes. Some of these properties may also
belong to multiple classes (we may want to know when apples are
picked, too), but for this first example, let's just add a few different
attributes to our class diagram:

Depending on how detailed our design needs to be, we can also
specify the type for each attribute. Attribute types are often primitives
that are standard to most programming languages, such as integer,
floating-point number, string, byte, or Boolean. However, they can
also represent data structures such as lists, trees, or graphs, or most
notably, other classes. This is one area where the design stage can
overlap with the programming stage. The various primitives or
objects available in one programming language may be different
from what is available in another:

Usually, we don't need to be overly concerned with data types at the
design stage, as implementation-specific details are chosen during
the programming stage. Generic names are normally sufficient for
design. If our design calls for a list container type, Java programmers
can choose to use a LinkedList or an ArrayList when implementing it,
while Python programmers (that's us!) might choose between the list
built-in and a tuple.

In our fruit-farming example so far, our attributes are all basic
primitives. However, there are some implicit attributes that we can
make explicit—the associations. For a given orange, we might have
an attribute referring to the basket that holds that orange.

Behaviors are actions
Now that we know what data is, the last undefined term is behaviors.
Behaviors are actions that can occur on an object. The behaviors that
can be performed on a specific class of object are called methods. At
the programming level, methods are like functions in structured
programming, but they magically have access to all the data
associated with this object. Like functions, methods can also accept
parameters and return values.

A method's parameters are provided to it as a list of objects that need
to be passed into that method. The actual object instances that are
passed into a method during a specific invocation are usually referred
to as arguments. These objects are used by the method to perform
whatever behavior or task it is meant to do. Returned values are the
results of that task.

We've stretched our comparing apples and oranges example into a
basic (if far-fetched) inventory application. Let's stretch it a little
further and see whether it breaks. One action that can be associated
with oranges is the pick action. If you think about implementation,
pick would need to do two things:

Place the orange in a basket by updating the Basket attribute of
the orange
Add the orange to the Orange list on the given Basket.

So, pick needs to know what basket it is dealing with. We do this by
giving the pick method a Basket parameter. Since our fruit farmer
also sells juice, we can add a squeeze method to the Orange class.
When called, the squeeze method might return the amount of juice
retrieved, while also removing the Orange from the Basket it was in.

The class Basket can have a sell action. When a basket is sold, our
inventory system might update some data on as-yet unspecified

objects for accounting and profit calculations. Alternatively, our basket
of oranges might go bad before we can sell them, so we add a
discard method. Let's add these methods to our diagram:

Adding attributes and methods to individual objects allows us to
create a system of interacting objects. Each object in the system is a
member of a certain class. These classes specify what types of data
the object can hold and what methods can be invoked on it. The data
in each object can be in a different state from other instances of the
same class; each object may react to method calls differently
because of the differences in state.

Object-oriented analysis and design is all about figuring out what
those objects are and how they should interact. The next section
describes principles that can be used to make those interactions as
simple and intuitive as possible.

Hiding details and creating the
public interface
The key purpose of modeling an object in object-oriented design is to
determine what the public interface of that object will be. The
interface is the collection of attributes and methods that other objects
can access to interact with that object. They do not need, and are
often not allowed, to access the internal workings of the object.

A common real-world example is the television. Our interface to the
television is the remote control. Each button on the remote control
represents a method that can be called on the television object.
When we, as the calling object, access these methods, we do not
know or care if the television is getting its signal from a cable
connection, a satellite dish, or an internet-enabled device. We don't
care what electronic signals are being sent to adjust the volume, or
whether the sound is destined for speakers or headphones. If we
open the television to access the internal workings, for example, to
split the output signal to both external speakers and a set of
headphones, we will void the warranty.

This process of hiding the implementation of an object is suitably
called information hiding. It is also sometimes referred to as
encapsulation, but encapsulation is actually a more all-
encompassing term. Encapsulated data is not necessarily hidden.
Encapsulation is, literally, creating a capsule (think of creating a time
capsule). If you put a bunch of information into a time capsule, and
lock and bury it, it is both encapsulated and the information is
hidden. On the other hand, if the time capsule, has not been buried
and is unlocked or made of clear plastic, the items inside it are still
encapsulated, but there is no information hiding.

The distinction between encapsulation and information hiding is
largely irrelevant, especially at the design level. Many practical
references use these terms interchangeably. As Python
programmers, we don't actually have or need true information hiding
(we'll discuss the reasons for this in Chapter 16, Objects in Python), so
the more encompassing definition for encapsulation is suitable.

The public interface, however, is very important. It needs to be
carefully designed as it is difficult to change it in the future. Changing
the interface will break any client objects that are accessing it. We
can change the internals all we like, for example, to make it more
efficient, or to access data over the network as well as locally, and
the client objects will still be able to talk to it, unmodified, using the
public interface. On the other hand, if we alter the interface by
changing publicly accessed attribute names or the order or types of
arguments that a method can accept, all client classes will also have
to be modified. When designing public interfaces, keep it simple.
Always design the interface of an object based on how easy it is to
use, not how hard it is to code (this advice applies to user interfaces
as well).

Remember, program objects may represent real objects, but that
does not make them real objects. They are models. One of the
greatest gifts of modeling is the ability to ignore irrelevant details.
The model car I built as a child looked like a real 1956 Thunderbird
on the outside, but it obviously doesn't run. When I was too young to
drive, these details were overly complex and irrelevant. The model is
an abstraction of a real concept.

Abstraction is another object-oriented term related to encapsulation
and information hiding. Abstraction means dealing with the level of
detail that is most appropriate to a given task. It is the process of
extracting a public interface from the inner details. A car's driver
needs to interact with the steering, accelerator, and brakes. The
workings of the motor, drive train, and brake subsystem don't matter
to the driver. A mechanic, on the other hand, works at a different

level of abstraction, tuning the engine and bleeding the brakes.
Here's an example of two abstraction levels for a car:

Now, we have several new terms that refer to similar concepts. Let's
summarize all this jargon in a couple of sentences: abstraction is the
process of encapsulating information with separate public and
private interfaces. The private interfaces can be subject to
information hiding.

The important lesson to take from all these definitions is to make our
models understandable to other objects that have to interact with
them. This means paying careful attention to small details. Ensure
methods and properties have sensible names. When analyzing a
system, objects typically represent nouns in the original problem,
while methods are normally verbs. Attributes may show up as
adjectives or more nouns. Name your classes, attributes, and
methods accordingly.

When designing the interface, imagine you are the object and that
you have a very strong preference for privacy. Don't let other objects
have access to data about you unless you feel it is in your best
interest for them to have it. Don't give them an interface to force you
to perform a specific task unless you are certain you want them to be
able to do that to you.

Composition
So far, we have learned to design systems as a group of interacting
objects, where each interaction involves viewing objects at an
appropriate level of abstraction. But we don't know yet how to create
these levels of abstraction. There are a variety of ways to do this;
we'll discuss some advanced design patterns in Chapter 21, The Iterator
Pattern. But even most design patterns rely on two basic object-
oriented principles known as composition and inheritance.
Composition is simpler, so let's start with it.

Composition is the act of collecting several objects together to create
a new one. Composition is usually a good choice when one object is
part of another object. We've already seen a first hint of composition
in the mechanic example. A fossil-fueled car is composed of an
engine, transmission, starter, headlights, and windshield, among
numerous other parts. The engine, in turn, is composed of pistons, a
crank shaft, and valves. In this example, composition is a good way
to provide levels of abstraction. The Car object can provide the
interface required by a driver, while also giving access to its
component parts, which offers the deeper level of abstraction suitable
for a mechanic. Those component parts can, of course, be further
broken down if the mechanic needs more information to diagnose a
problem or tune the engine.

A car is a common introductory example of composition, but it's not
overly useful when it comes to designing computer systems. Physical
objects are easy to break into component objects. People have been
doing this at least since the ancient Greeks originally postulated that
atoms were the smallest units of matter (they, of course, didn't have
access to particle accelerators). Computer systems are generally less
complicated than physical objects, yet identifying the component
objects in such systems does not happen as naturally.

The objects in an object-oriented system occasionally represent
physical objects such as people, books, or telephones. More often,
however, they represent abstract ideas. People have names, books
have titles, and telephones are used to make calls. Calls, titles,
accounts, names, appointments, and payments are not usually
considered objects in the physical world, but they are all frequently-
modeled components in computer systems.

Let's try modeling a more computer-oriented example to see
composition in action. We'll be looking at the design of a
computerized chess game. This was a very popular pastime among
academics in the 80s and 90s. People were predicting that computers
would one day be able to defeat a human chess master. When this
happened in 1997 (IBM's Deep Blue defeated world chess champion,
Gary Kasparov), interest in the problem waned. Nowadays, the
computer always wins.

As a basic, high-level analysis, a game of chess is played between
two players, using a chess set featuring a board containing sixty-four
positions in an 8x8 grid. The board can have two sets of sixteen
pieces that can be moved, in alternating turns by the two players in
different ways. Each piece can take other pieces. The board will be
required to draw itself on the computer screen after each turn.

I've identified some of the possible objects in the description using
italics, and a few key methods using bold. This is a common first step
in turning an object-oriented analysis into a design. At this point, to
emphasize composition, we'll focus on the board, without worrying
too much about the players or the different types of pieces.

Let's start at the highest level of abstraction possible. We have two
players interacting with a Chess Set by taking turns making moves:

This doesn't quite look like our earlier class diagrams, which is a good
thing since it isn't one! This is an object diagram, also called an
instance diagram. It describes the system at a specific state in time,
and is describing specific instances of objects, not the interaction
between classes. Remember, both players are members of the same
class, so the class diagram looks a little different:

The diagram shows that exactly two players can interact with one
chess set. This also indicates that any one player can be playing with
only one Chess Set at a time.

However, we're discussing composition, not UML, so let's think about
what the Chess Set is composed of. We don't care what the player is
composed of at this time. We can assume that the player has a heart
and brain, among other organs, but these are irrelevant to our model.
Indeed, there is nothing stopping said player from being Deep Blue
itself, which has neither a heart nor a brain.

The chess set, then, is composed of a board and 32 pieces. The
board further comprises 64 positions. You could argue that pieces are
not part of the chess set because you could replace the pieces in a
chess set with a different set of pieces. While this is unlikely or

impossible in a computerized version of chess, it introduces us to
aggregation.

Aggregation is almost exactly like composition. The difference is that
aggregate objects can exist independently. It would be impossible for
a position to be associated with a different chess board, so we say
the board is composed of positions. But the pieces, which might exist
independently of the chess set, are said to be in an aggregate
relationship with that set.

Another way to differentiate between aggregation and composition is
to think about the lifespan of the object. If the composite (outside)
object controls when the related (inside) objects are created and
destroyed, composition is most suitable. If the related object is
created independently of the composite object, or can outlast that
object, an aggregate relationship makes more sense. Also, keep in
mind that composition is aggregation; aggregation is simply a more
general form of composition. Any composite relationship is also an
aggregate relationship, but not vice versa.

Let's describe our current Chess Set composition and add some
attributes to the objects to hold the composite relationships:

The composition relationship is represented in UML as a solid
diamond. The hollow diamond represents the aggregate relationship.
You'll notice that the board and pieces are stored as part of the
Chess Set in exactly the same way a reference to them is stored as
an attribute on the chess set. This shows that, once again, in
practice, the distinction between aggregation and composition is often
irrelevant once you get past the design stage. When implemented,
they behave in much the same way. However, it can help to
differentiate between the two when your team is discussing how the
different objects interact. Often, you can treat them as the same
thing, but when you need to distinguish between them (usually when
talking about how long related objects exist), it's great to know the
difference.

Inheritance
We discussed three types of relationships between objects:
association, composition, and aggregation. However, we have not
fully specified our chess set, and these tools don't seem to give us all
the power we need. We discussed the possibility that a player might
be a human or it might be a piece of software featuring artificial
intelligence. It doesn't seem right to say that a player is associated
with a human, or that the artificial intelligence implementation is part
of the player object. What we really need is the ability to say
that Deep Blue is a player, or that Gary Kasparov is a player.

The is a relationship is formed by inheritance. Inheritance is the
most famous, well-known, and over-used relationship in object-
oriented programming. Inheritance is sort of like a family tree. My
grandfather's last name was Phillips and my father inherited that
name. I inherited it from him. In object-oriented programming, instead
of inheriting features and behaviors from a person, one class can
inherit attributes and methods from another class.

For example, there are 32 chess pieces in our chess set, but there
are only six different types of pieces (pawns, rooks, bishops, knights,
king, and queen), each of which behaves differently when it is moved.
All of these classes of piece have properties, such as color and the
chess set they are part of, but they also have unique shapes when
drawn on the chess board, and make different moves. Let's see how
the six types of pieces can inherit from a Piece class:

The hollow arrows indicate that the individual classes of pieces inherit
from the Piece class. All the child classes automatically have a
chess_set and color attribute inherited from the base class. Each
piece provides a different shape property (to be drawn on the screen
when rendering the board), and a different move method to move the
piece to a new position on the board at each turn.

We actually know that all subclasses of the Piece class need to have
a move method; otherwise, when the board tries to move the piece, it
will get confused. It is possible that we would want to create a new
version of the game of chess that has one additional piece (the
wizard). Our current design will allow us to design this piece without
giving it a move method. The board would then choke when it asked
the piece to move itself.

We can fix this by creating a dummy move method on the Piece
class. The subclasses can then override this method with a more
specific implementation. The default implementation might, for

example, pop up an error message that says That piece cannot be
moved.

Overriding methods in subclasses allows very powerful object-
oriented systems to be developed. For example, if we wanted to
implement a Player class with artificial intelligence, we might provide
a calculate_move method that takes a Board object and decides which
piece to move where. A very basic class might randomly choose a
piece and direction and move it accordingly. We could then override
this method in a subclass with the Deep Blue implementation. The
first class would be suitable for play against a raw beginner; the latter
would challenge a grand master. The important thing is that other
methods in the class, such as the ones that inform the board as to
which move was chosen, need not be changed; this implementation
can be shared between the two classes.

In the case of chess pieces, it doesn't really make sense to provide a
default implementation of the move method. All we need to do is
specify that the move method is required in any subclasses. This can
be done by making Piece an abstract class with the move method
declared abstract. Abstract methods basically say this:

We demand this method exist in any non-abstract subclass, but we are declining to specify an implementation
in this class.

Indeed, it is possible to make a class that does not implement any
methods at all. Such a class would simply tell us what the class
should do, but provides absolutely no advice on how to do it. In
object-oriented parlance, such classes are called interfaces.

Inheritance provides
abstraction
Let's explore the longest word in object-oriented argot.
Polymorphism is the ability to treat a class differently, depending on
which subclass is implemented. We've already seen it in action with
the pieces system we've described. If we took the design a bit
further, we'd probably see that the Board object can accept a move
from the player and call the move function on the piece. The board
need not ever know what type of piece it is dealing with. All it has to
do is call the move method, and the proper subclass will take care of
moving it as a Knight or a Pawn.

Polymorphism is pretty cool, but it is a word that is rarely used in
Python programming. Python goes an extra step past allowing a
subclass of an object to be treated like a parent class. A board
implemented in Python could take any object that has a move
method, whether it is a bishop piece, a car, or a duck. When move is
called, the Bishop will move diagonally on the board, the car will
drive someplace, and the duck will swim or fly, depending on its
mood.

This sort of polymorphism in Python is typically referred to as duck
typing: if it walks like a duck or swims like a duck, it's a duck. We
don't care if it really is a duck (is a being a cornerstone of
inheritance), only that it swims or walks. Geese and swans might
easily be able to provide the duck-like behavior we are looking for.
This allows future designers to create new types of birds without
actually specifying an inheritance hierarchy for aquatic birds. It also
allows them to create completely different drop-in behaviors that the
original designers never planned for. For example, future designers
might be able to make a walking, swimming penguin that works with
the same interface without ever suggesting that penguins are ducks.

Multiple inheritance
When we think of inheritance in our own family tree, we can see that
we inherit features from more than just one parent. When strangers
tell a proud mother that her son has his father's eyes, she will
typically respond along the lines of, yes, but he got my nose.

Object-oriented design can also feature such multiple inheritance,
which allows a subclass to inherit functionality from multiple parent
classes. In practice, multiple inheritance can be a tricky business,
and some programming languages (most famously, Java) strictly
prohibit it. However, multiple inheritance can have its uses. Most
often, it can be used to create objects that have two distinct sets of
behaviors. For example, an object designed to connect to a scanner
and send a fax of the scanned document might be created by
inheriting from two separate scanner and faxer objects.

As long as two classes have distinct interfaces, it is not normally
harmful for a subclass to inherit from both of them. However, it gets
messy if we inherit from two classes that provide overlapping
interfaces. For example, if we have a motorcycle class that has a move
method, and a boat class also featuring a move method, and we want
to merge them into the ultimate amphibious vehicle, how does the
resulting class know what to do when we call move? At the design
level, this needs to be explained, and, at the implementation level,
each programming language has different ways of deciding which
parent class's method is called, or in what order.

Often, the best way to deal with it is to avoid it. If you have a design
showing up like this, you're probably doing it wrong. Take a step
back, analyze the system again, and see if you can remove the
multiple inheritance relationship in favor of some other association or
composite design.

Inheritance is a very powerful tool for extending behavior. It is also
one of the most marketable advancements of object-oriented design
over earlier paradigms. Therefore, it is often the first tool that object-
oriented programmers reach for. However, it is important to
recognize that owning a hammer does not turn screws into nails.
Inheritance is the perfect solution for obvious is a relationships, but it
can be abused. Programmers often use inheritance to share code
between two kinds of objects that are only distantly related, with no
is a relationship in sight. While this is not necessarily a bad design, it
is a terrific opportunity to ask just why they decided to design it that
way, and whether a different relationship or design pattern would
have been more suitable.

Case study
Let's tie all our new object-oriented knowledge together by going
through a few iterations of object-oriented design on a somewhat
real-world example. The system we'll be modeling is a library catalog.
Libraries have been tracking their inventory for centuries, originally
using card catalogs, and more recently, electronic inventories.
Modern libraries have web-based catalogs that we can query from
our homes.

Let's start with an analysis. The local librarian has asked us to write a
new card catalog program because their ancient Windows XP-based
program is ugly and out of date. That doesn't give us much detail, but
before we start asking for more information, let's consider what we
already know about library catalogs.

Catalogs contain lists of books. People search them to find books on
certain subjects, with specific titles, or by a particular author. Books
can be uniquely identified by an International Standard Book
Number (ISBN). Each book has a Dewey Decimal System (DDS)
number assigned to help find it on a particular shelf.

This simple analysis tells us some of the obvious objects in the
system. We quickly identify Book as the most important object, with
several attributes already mentioned, such as author, title, subject,
ISBN, and DDS number, and catalog as a sort of manager for books.

We also notice a few other objects that may or may not need to be
modeled in the system. For cataloging purposes, all we need to
search a book by author is an author_name attribute on the book.
However, authors are also objects, and we might want to store some
other data about the author. As we ponder this, we might remember
that some books have multiple authors. Suddenly, the idea of having

a single author_name attribute on objects seems a bit silly. A list of
authors associated with each book is clearly a better idea.

The relationship between author and book is clearly association,
since you would never say a book is an author (it's not inheritance),
and saying a book has an author, though grammatically correct, does
not imply that authors are part of books (it's not aggregation). Indeed,
any one author may be associated with multiple books.

We should also pay attention to the noun (nouns are always good
candidates for objects) shelf. Is a shelf an object that needs to be
modeled in a cataloging system? How do we identify an individual
shelf? What happens if a book is stored at the end of one shelf, and
later moved to the beginning of the next shelf because a new book
was inserted in the previous shelf?

DDS was designed to help locate physical books in a library. As such,
storing a DDS attribute with the book should be enough to locate it,
regardless of which shelf it is stored on. So we can, at least for the
moment, remove shelf from our list of contending objects.

Another questionable object in the system is the user. Do we need to
know anything about a specific user, such as their name, address, or
list of overdue books? So far, the librarian has told us only that they
want a catalog; they said nothing about tracking subscriptions or
overdue notices. In the back of our minds, we also note that authors
and users are both specific kinds of people; there might be a useful
inheritance relationship here in the future.

For cataloging purposes, we decide we don't need to identify the user
for now. We can assume that a user will be searching the catalog, but
we don't have to actively model them in the system, beyond providing
an interface that allows them to search.

We have identified a few attributes on the book, but what properties
does a catalog have? Does any one library have more than one
catalog? Do we need to uniquely identify them? Obviously, the

catalog has to have a collection of the books it contains, somehow,
but this list is probably not part of the public interface.

What about behaviors? The catalog clearly needs a search method,
possibly separate ones for authors, titles, and subjects. Are there any
behaviors on books? Would it need a preview method? Or could
preview be identified by a first page attribute instead of a method?

The questions in the preceding discussion are all part of the object-
oriented analysis phase. But intermixed with the questions, we have
already identified a few key objects that are part of the design.
Indeed, what you have just seen are several microiterations between
analysis and design.

Likely, these iterations would all occur in an initial meeting with the
librarian. Before this meeting, however, we can already sketch out a
most basic design for the objects we have concretely identified, as
follows:

Armed with this basic diagram and a pencil to interactively improve it,
we meet up with the librarian. They tell us that this is a good start, but
libraries don't serve only books; they also have DVDs, magazines,

and CDs, none of which have an ISBN or DDS number. All of these
types of items can be uniquely identified by a UPC number, though.
We remind the librarian that they have to find the items on the shelf,
and these items probably aren't organized by UPC.

The librarian explains that each type is organized in a different way.
The CDs are mostly audio books, and they only have two dozen in
stock, so they are organized by the author's last name. DVDs are
divided into genre and further organized by title. Magazines are
organized by title and then refined by the volume and issue number.
Books are, as we had guessed, organized by the DDS number.

With no previous object-oriented design experience, we might
consider adding separate lists of DVDs, CDs, magazines, and books
to our catalog, and search each one in turn. The trouble is, except for
certain extended attributes, and identifying the physical location of the
item, these items all behave much the same. This is a job for
inheritance! We quickly update our UML diagram as follows:

The librarian understands the gist of our sketched diagram, but is a
bit confused by the locate functionality. We explain using a specific
use case where the user is searching for the word bunnies. The user
first sends a search request to the catalog. The catalog queries its
internal list of items and finds a book and a DVD with bunnies in the
title. At this point, the catalog doesn't care whether it is holding a
DVD, book, CD, or magazine; all items are the same, as far as the
catalog is concerned. However, the user wants to know how to find
the physical items, so the catalog would be remiss if it simply
returned a list of titles. So, it calls the locate method on the two items
it has uncovered. The book's locate method returns a DDS number
that can be used to find the shelf holding the book. The DVD is
located by returning the genre and title of the DVD. The user can then
visit the DVD section, find the section containing that genre, and find
the specific DVD as sorted by the titles.

As we explain, we sketch a UML sequence diagram, explaining how
the various objects are communicating:

While class diagrams describe the relationships between classes,
sequence diagrams describe specific sequences of messages
passed between objects. The dashed line hanging from each object
is a lifeline describing the lifetime of the object. The wider boxes on
each lifeline represent active processing in that object (where there's
no box, the object is basically sitting idle, waiting for something to
happen). The horizontal arrows between the lifelines indicate specific
messages. The solid arrows represent methods being called, while
the dashed arrows with solid heads represent the method return
values.

The half arrowheads indicate asynchronous messages sent to or
from an object. An asynchronous message typically means the first
object calls a method on the second object, which returns
immediately. After some processing, the second object calls a method
on the first object to give it a value. This is in contrast to normal
method calls, which do the processing in the method, and return a
value immediately.

Sequence diagrams, like all UML diagrams, are best used only when
they are needed. There is no point in drawing a UML diagram for the
sake of drawing a diagram. However, when you need to communicate
a series of interactions between two objects, the sequence diagram is
a very useful tool.

Unfortunately, our class diagram so far is still a messy design. We
notice that actors on DVDs and artists on CDs are all types of people,
but are being treated differently from the book authors. The librarian
also reminds us that most of their CDs are audio books, which have
authors instead of artists.

How can we deal with different kinds of people that contribute to a
title? One obvious implementation is to create a Person class with the
person's name and other relevant details, and then create subclasses
of this for the artists, authors, and actors. However, is inheritance
really necessary here? For searching and cataloging purposes, we
don't really care that acting and writing are two very different
activities. If we were doing an economic simulation, it would make
sense to give separate actor and author classes, and different
calculate_income and perform_job methods, but for cataloging purposes, it is
enough to know how the person contributed to the item. Having
thought this through, we recognize that all items have one or more
Contributor objects, so we move the author relationship from the book
to its parent class:

The multiplicity of the Contributor/LibraryItem relationship is many-
to-many, as indicated by the * character at both ends of one
relationship. Any one library item might have more than one
contributor (for example, several actors and a director on a DVD).
And many authors write many books, so they be attached to multiple
library items.

This little change, while it looks a bit cleaner and simpler, has lost
some vital information. We can still tell who contributed to a specific
library item, but we don't know how they contributed. Were they the
director or an actor? Did they write the audio book, or were they the
voice that narrated the book?

It would be nice if we could just add a contributor_type attribute on the
Contributor class, but this will fall apart when dealing with multi-
talented people who have both authored books and directed movies.

One option is to add attributes to each of our LibraryItem subclasses
to hold the information we need, such as Author on Book, or Artist
on CD, and then make the relationship to those properties all point to
the Contributor class. The problem with this is that we lose a lot of

polymorphic elegance. If we want to list the contributors to an item,
we have to look for specific attributes on that item, such as Authors
or Actors. We can solve this by adding a GetContributors method
on the LibraryItem class that subclasses can override. Then the
catalog never has to know what attributes the objects are querying;
we've abstracted the public interface:

Just looking at this class diagram, it feels like we are doing something
wrong. It is bulky and fragile. It may do everything we need, but it
feels like it will be hard to maintain or extend. There are too many

relationships, and too many classes would be affected by
modifications to any one class. It looks like spaghetti and meatballs.

Now that we've explored inheritance as an option, and found it
wanting, we might look back at our previous composition-based
diagram, where Contributor was attached directly to LibraryItem.
With some thought, we can see that we actually only need to add one
more relationship to a brand-new class to identify the type of
contributor. This is an important step in object-oriented design. We
are now adding a class to the design that is intended to support the
other objects, rather than modeling any part of the initial
requirements. We are refactoring the design to facilitate the objects
in the system, rather than objects in real life. Refactoring is an
essential process in the maintenance of a program or design. The
goal of refactoring is to improve the design by moving code around,
removing duplicate code or complex relationships in favor of simpler,
more elegant designs.

This new class is composed of a Contributor and an extra attribute
identifying the type of contribution the person has made to the given
LibraryItem. There can be many such contributions to a particular
LibraryItem, and one contributor can contribute in the same way to
different items. The following diagram communicates this design very
well:

At first, this composition relationship looks less natural than the
inheritance-based relationships. However, it has the advantage of
allowing us to add new types of contributions without adding a new
class to the design. Inheritance is most useful when the subclasses
have some kind of specialization. Specialization is creating or
changing attributes or behaviors on the subclass to make it somehow
different from the parent class. It seems silly to create a bunch of
empty classes solely for identifying different types of objects (this
attitude is less prevalent among Java and other everything is an
object programmers, but it is common among more pragmatic Python
designers). If we look at the inheritance version of the diagram, we
can see a bunch of subclasses that don't actually do anything:

Sometimes, it is important to recognize when not to use object-
oriented principles. This example of when not to use inheritance is a
good reminder that objects are just tools, and not rules.

Exercises
This is a practical book, not a textbook. As such, I'm not assigning a
bunch of fake object-oriented analysis problems to create designs for
you to analyze and design. Instead, I want to give you some ideas
that you can apply to your own projects. If you have previous object-
oriented experience, you won't need to put much effort into this
chapter. However, they are useful mental exercises if you've been
using Python for a while, but have never really cared about all that
class stuff.

First, think about a recent programming project you've completed.
Identify the most prominent object in the design. Try to think of as
many attributes for this object as possible. Did it have the following:
Color? Weight? Size? Profit? Cost? Name? ID number? Price?
Style?

Think about the attribute types. Were they primitives or classes?
Were some of those attributes actually behaviors in disguise?
Sometimes, what looks like data is actually calculated from other
data on the object, and you can use a method to do those
calculations. What other methods or behaviors did the object have?
Which objects called those methods? What kinds of relationships did
they have with this object?

Now, think about an upcoming project. It doesn't matter what the
project is; it might be a fun free-time project or a multi-million-dollar
contract. It doesn't have to be a complete application; it could just be
one subsystem. Perform a basic object-oriented analysis. Identify the
requirements and the interacting objects. Sketch out a class diagram
featuring the highest level of abstraction on that system. Identify the
major interacting objects. Identify minor supporting objects. Go into
detail for the attributes and methods of some of the most interesting
ones. Take different objects to different levels of abstraction. Look for

places where you can use inheritance or composition. Look for
places where you should avoid inheritance.

The goal is not to design a system (although you're certainly
welcome to do so if inclination meets both ambition and available
time). The goal is to think about object-oriented design. Focusing on
projects that you have worked on, or are expecting to work on in the
future, simply makes it real.

Lastly, visit your favorite search engine and look up some tutorials on
UML. There are dozens, so find one that suits your preferred method
of study. Sketch some class diagrams or a sequence diagram for the
objects you identified earlier. Don't get too hung up on memorizing
the syntax (after all, if it is important, you can always look it up
again); just get a feel for the language. Something will stay lodged in
your brain, and it can make communicating a bit easier if you can
quickly sketch a diagram for your next OOP discussion.

Summary
In this chapter, we took a whirlwind tour through the terminology of
the object-oriented paradigm, focusing on object-oriented design.
We can separate different objects into a taxonomy of different
classes and describe the attributes and behaviors of those objects
via the class interface. Abstraction, encapsulation, and information
hiding are highly-related concepts. There are many different kinds of
relationships between objects, including association, composition,
and inheritance. UML syntax can be useful for fun and
communication.

In the next chapter, we'll explore how to implement classes and
methods in Python.

Objects in Python
So, we now have a design in hand and are ready to turn that design
into a working program! Of course, it doesn't usually happen this
way. We'll be seeing examples and hints for good software design
throughout the book, but our focus is object-oriented programming.
So, let's have a look at the Python syntax that allows us to create
object-oriented software.

After completing this chapter, we will understand the following:

How to create classes and instantiate objects in Python
How to add attributes and behaviors to Python objects
How to organize classes into packages and modules
How to suggest that people don't clobber our data

Creating Python classes
We don't have to write much Python code to realize that Python is a
very clean language. When we want to do something, we can just do
it, without having to set up a bunch of prerequisite code. The
ubiquitous hello world in Python, as you've likely seen, is only one
line.

Similarly, the simplest class in Python 3 looks like this:

class MyFirstClass:
 pass

There's our first object-oriented program! The class definition starts
with the class keyword. This is followed by a name (of our choice)
identifying the class, and is terminated with a colon.

The class name must follow standard Python variable naming rules (it must start with a letter or
underscore, and can only be comprised of letters, underscores, or numbers). In addition, the
Python style guide (search the web for PEP 8) recommends that classes should be named using
CapWords notation (start with a capital letter; any subsequent words should also start with a
capital).

The class definition line is followed by the class contents, indented.
As with other Python constructs, indentation is used to delimit the
classes, rather than braces, keywords, or brackets, as many other
languages use. Also in line with the style guide, use four spaces for
indentation unless you have a compelling reason not to (such as
fitting in with somebody else's code that uses tabs for indents).

Since our first class doesn't actually add any data or behaviors, we
simply use the pass keyword on the second line to indicate that no
further action needs to be taken.

We might think there isn't much we can do with this most basic class,
but it does allow us to instantiate objects of that class. We can load
the class into the Python 3 interpreter, so we can interactively play

with it. To do this, save the class definition mentioned earlier in a file
named first_class.py and then run the python -i first_class.py command.
The -i argument tells Python to run the code and then drop to the
interactive interpreter. The following interpreter session
demonstrates a basic interaction with this class:

>>> a = MyFirstClass()
>>> b = MyFirstClass()
>>> print(a)
<__main__.MyFirstClass object at 0xb7b7faec>
>>> print(b)
<__main__.MyFirstClass object at 0xb7b7fbac>
>>>

This code instantiates two objects from the new class, named a and
b. Creating an instance of a class is a simple matter of typing the
class name, followed by a pair of parentheses. It looks much like a
normal function call, but Python knows we're calling a class and not
a function, so it understands that its job is to create a new object.
When printed, the two objects tell us which class they are and what
memory address they live at. Memory addresses aren't used much
in Python code, but here, they demonstrate that there are two
distinct objects involved.

Adding attributes
Now, we have a basic class, but it's fairly useless. It doesn't contain
any data, and it doesn't do anything. What do we have to do to
assign an attribute to a given object?

In fact, we don't have to do anything special in the class definition.
We can set arbitrary attributes on an instantiated object using dot
notation:

class Point:
 pass

p1 = Point()
p2 = Point()

p1.x = 5
p1.y = 4

p2.x = 3
p2.y = 6

print(p1.x, p1.y)
print(p2.x, p2.y)

If we run this code, the two print statements at the end tell us the
new attribute values on the two objects:

5 4
3 6

This code creates an empty Point class with no data or behaviors.
Then, it creates two instances of that class and assigns each of
those instances x and y coordinates to identify a point in two
dimensions. All we need to do to assign a value to an attribute on an
object is use the <object>.<attribute> = <value> syntax. This is sometimes
referred to as dot notation. You have likely encountered this same
notation before when reading attributes on objects provided by the
standard library or a third-party library. The value can be anything: a

Python primitive, a built-in data type, or another object. It can even
be a function or another class!

Making it do something
Now, having objects with attributes is great, but object-oriented
programming is really about the interaction between objects. We're
interested in invoking actions that cause things to happen to those
attributes. We have data; now it's time to add behaviors to our
classes.

Let's model a couple of actions on our Point class. We can start with a
method called reset, which moves the point to the origin (the origin is
the place where x and y are both zero). This is a good introductory
action because it doesn't require any parameters:

class Point:
 def reset(self):
 self.x = 0
 self.y = 0

p = Point()
p.reset()
print(p.x, p.y)

This print statement shows us the two zeros on the attributes:

0 0

In Python, a method is formatted identically to a function. It starts
with the def keyword , followed by a space, and the name of the
method. This is followed by a set of parentheses containing the
parameter list (we'll discuss that self parameter in just a moment),
and terminated with a colon. The next line is indented to contain the
statements inside the method. These statements can be arbitrary
Python code operating on the object itself and any parameters
passed in, as the method sees fit.

Talking to yourself
The one difference, syntactically, between methods and normal
functions is that all methods have one required argument. This
argument is conventionally named self; I've never seen a Python
programmer use any other name for this variable (convention is a
very powerful thing). There's nothing stopping you, however, from
calling it this or even Martha.

The self argument to a method is a reference to the object that the
method is being invoked on. We can access attributes and methods
of that object as if it were any another object. This is exactly what we
do inside the reset method when we set the x and y attributes of the
self object.

Pay attention to the difference between a class and an object in this discussion. We can think of
the method as a function attached to a class. The self parameter is a specific instance of that
class. When you call the method on two different objects, you are calling the same method twice,
but passing two different objects as the self parameter.

Notice that when we call the p.reset() method, we do not have to pass
the self argument into it. Python automatically takes care of this part
for us. It knows we're calling a method on the p object, so it
automatically passes that object to the method.

However, the method really is just a function that happens to be on a
class. Instead of calling the method on the object, we could invoke
the function on the class, explicitly passing our object as the self
argument:

>>> p = Point()
>>> Point.reset(p)
>>> print(p.x, p.y)

The output is the same as in the previous example because,
internally, the exact same process has occurred.

What happens if we forget to include the self argument in our class
definition? Python will bail with an error message, as follows:

>>> class Point:
... def reset():
... pass
...
>>> p = Point()
>>> p.reset()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: reset() takes 0 positional arguments but 1 was given

The error message is not as clear as it could be (Hey, silly, you forgot
the self argument would be more informative). Just remember that
when you see an error message that indicates missing arguments,
the first thing to check is whether you forgot self in the method
definition.

More arguments
So, how do we pass multiple arguments to a method? Let's add a
new method that allows us to move a point to an arbitrary position,
not just to the origin. We can also include one that accepts another
Point object as input and returns the distance between them:

import math

class Point:
 def move(self, x, y):
 self.x = x
 self.y = y

 def reset(self):
 self.move(0, 0)

 def calculate_distance(self, other_point):
 return math.sqrt(
 (self.x - other_point.x) ** 2
 + (self.y - other_point.y) ** 2
)

how to use it:
point1 = Point()
point2 = Point()

point1.reset()
point2.move(5, 0)
print(point2.calculate_distance(point1))
assert point2.calculate_distance(point1) == point1.calculate_distance(
 point2
)
point1.move(3, 4)
print(point1.calculate_distance(point2))
print(point1.calculate_distance(point1))

The print statements at the end give us the following output:

5.0
4.47213595499958
0.0

A lot has happened here. The class now has three methods. The move
method accepts two arguments, x and y, and sets the values on the

self object, much like the old reset method from the previous example.
The old reset method now calls move, since a reset is just a move to a
specific known location.

The calculate_distance method uses the not-too-complex Pythagorean
theorem to calculate the distance between two points. I hope you
understand the math (**2 means squared, and math.sqrt calculates a
square root), but it's not a requirement for our current focus, learning
how to write methods.

The sample code at the end of the preceding example shows how to
call a method with arguments: simply include the arguments inside
the parentheses, and use the same dot notation to access the
method. I just picked some random positions to test the methods.
The test code calls each method and prints the results on the
console. The assert function is a simple test tool; the program will bail
if the statement after assert evaluates to False (or zero, empty, or None).
In this case, we use it to ensure that the distance is the same
regardless of which point called the other point's calculate_distance
method.

Initializing the object
If we don't explicitly set the x and y positions on our Point object, either
using move or by accessing them directly, we have a broken point with
no real position. What will happen when we try to access it?

Well, let's just try it and see. Try it and see is an extremely useful tool
for Python study. Open up your interactive interpreter and type away.
The following interactive session shows what happens if we try to
access a missing attribute. If you saved the previous example as a
file or are using the examples distributed with the book, you can load
it into the Python interpreter with the python -i
more_arguments.py command:

>>> point = Point()
>>> point.x = 5
>>> print(point.x)
5
>>> print(point.y)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'Point' object has no attribute 'y'

Well, at least it threw a useful exception. We'll cover exceptions in
detail in Chapter 18, Expecting the Unexpected. You've probably seen
them before (especially the ubiquitous SyntaxError, which means
you typed something incorrectly!). At this point, simply be aware that
it means something went wrong.

The output is useful for debugging. In the interactive interpreter, it
tells us the error occurred at line 1, which is only partially true (in an
interactive session, only one line is executed at a time). If we were
running a script in a file, it would tell us the exact line number,
making it easy to find the offending code. In addition, it tells us that
the error is an AttributeError, and gives a helpful message telling us
what that error means.

We can catch and recover from this error, but in this case, it feels like
we should have specified some sort of default value. Perhaps every
new object should be reset() by default, or maybe it would be nice if
we could force the user to tell us what those positions should be
when they create the object.

Most object-oriented programming languages have the concept of a
constructor, a special method that creates and initializes the object
when it is created. Python is a little different; it has a constructor and
an initializer. The constructor function is rarely used, unless you're
doing something very exotic. So, we'll start our discussion with the
much more common initialization method.

The Python initialization method is the same as any other method,
except it has a special name, __init__. The leading and trailing double
underscores mean this is a special method that the Python
interpreter will treat as a special case.

Never name a method of your own with leading and trailing double underscores. It may mean
nothing to Python today, but there's always the possibility that the designers of Python will add a
function that has a special purpose with that name in the future, and when they do, your code will
break.

Let's add an initialization function on our Point class that requires the
user to supply x and y coordinates when the Point object is
instantiated:

class Point:
 def __init__(self, x, y):
 self.move(x, y)

 def move(self, x, y):
 self.x = x
 self.y = y

 def reset(self):
 self.move(0, 0)

Constructing a Point
point = Point(3, 5)
print(point.x, point.y)

Now, our point can never go without a y coordinate! If we try to
construct a point without including the proper initialization
parameters, it will fail with a not enough arguments error similar to the one
we received earlier when we forgot the self argument.

If we don't want to make the two arguments required, we can use the
same syntax Python functions use to provide default arguments. The
keyword argument syntax appends an equals sign after each
variable name. If the calling object does not provide this argument,
then the default argument is used instead. The variables will still be
available to the function, but they will have the values specified in the
argument list. Here's an example:

class Point:
 def __init__(self, x=0, y=0):
 self.move(x, y)

Most of the time, we put our initialization statements in an __init__
function. But as mentioned earlier, Python has a constructor in
addition to its initialization function. You may never need to use the
other Python constructor (in well over a decade of professional
Python coding, I can only think of two cases where I've used it, and
in one of them, I probably shouldn't have!), but it helps to know it
exists, so we'll cover it briefly.

The constructor function is called __new__ as opposed to __init__, and
accepts exactly one argument; the class that is being constructed (it
is called before the object is constructed, so there is no self
argument). It also has to return the newly created object. This has
interesting possibilities when it comes to the complicated art of
metaprogramming, but is not very useful in day-to-day Python. In
practice, you will rarely, if ever, need to use __new__. The __init__
method will almost always be sufficient.

Explaining yourself
Python is an extremely easy-to-read programming language; some
might say it is self-documenting. However, when carrying out object-
oriented programming, it is important to write API documentation that
clearly summarizes what each object and method does. Keeping
documentation up to date is difficult; the best way to do it is to write it
right into our code.

Python supports this through the use of docstrings. Each class,
function, or method header can have a standard Python string as the
first line following the definition (the line that ends in a colon). This
line should be indented the same as the code that follows it.

Docstrings are simply Python strings enclosed with apostrophes (') or
quotation marks (") characters. Often, docstrings are quite long and
span multiple lines (the style guide suggests that the line length
should not exceed 80 characters), which can be formatted as multi-
line strings, enclosed in matching triple apostrophe (''') or triple quote
(""") characters.

A docstring should clearly and concisely summarize the purpose of
the class or method it is describing. It should explain any parameters
whose usage is not immediately obvious, and is also a good place to
include short examples of how to use the API. Any caveats or
problems an unsuspecting user of the API should be aware of should
also be noted.

To illustrate the use of docstrings, we will end this section with our
completely documented Point class:

import math

class Point:
 "Represents a point in two-dimensional geometric coordinates"

 def __init__(self, x=0, y=0):
 """Initialize the position of a new point. The x and y
 coordinates can be specified. If they are not, the
 point defaults to the origin."""
 self.move(x, y)

 def move(self, x, y):
 "Move the point to a new location in 2D space."
 self.x = x
 self.y = y

 def reset(self):
 "Reset the point back to the geometric origin: 0, 0"
 self.move(0, 0)

 def calculate_distance(self, other_point):
 """Calculate the distance from this point to a second
 point passed as a parameter.

 This function uses the Pythagorean Theorem to calculate
 the distance between the two points. The distance is
 returned as a float."""

 return math.sqrt(
 (self.x - other_point.x) ** 2
 + (self.y - other_point.y) ** 2
)

Try typing or loading (remember, it's python -i point.py) this file into the
interactive interpreter. Then, enter help(Point)<enter> at the Python
prompt.

You should see nicely formatted documentation for the class, as
shown in the following screenshot:

Modules and packages
Now we know how to create classes and instantiate objects. You
don't need to write too many classes (or non-object-oriented code,
for that matter) before you start to lose track of them. For small
programs, we can just put all our classes into one file and add a little
script at the end of the file to start them interacting. However, as our
projects grow, it can become difficult to find the one class that needs
to be edited among the many classes we've defined. This is where
modules come in. Modules are simply Python files, nothing more.
The single file in our small program is a module. Two Python files are
two modules. If we have two files in the same folder, we can load a
class from one module for use in the other module.

For example, if we are building an e-commerce system, we will likely
be storing a lot of data in a database. We can put all the classes and
functions related to database access into a separate file (we'll call it
something sensible: database.py). Then, our other modules (for
example, customer models, product information, and inventory) can
import classes from that module in order to access the database.

The import statement is used for importing modules or specific
classes or functions from modules. We've already seen an example
of this in our Point class in the previous section. We used the import
statement to get Python's built-in math module and use its sqrt function
in the distance calculation.

Here's a concrete example. Assume we have a module called
database.py, which contains a class called Database. A second module
called products.py is responsible for product-related queries. At this
point, we don't need to think too much about the contents of these
files. What we know is that products.py needs to instantiate the Database
class from database.py so that it can execute queries on the product
table in the database.

There are several variations on the import statement syntax that can
be used to access the class:

import database
db = database.Database()
Do queries on db

This version imports the database module into the products namespace
(the list of names currently accessible in a module or function), so
any class or function in the database module can be accessed using
the database.<something> notation. Alternatively, we can import just the
one class we need using the from...import syntax:

from database import Database
db = Database()
Do queries on db

If, for some reason, products already has a class called Database, and we
don't want the two names to be confused, we can rename the class
when used inside the products module:

from database import Database as DB
db = DB()
Do queries on db

We can also import multiple items in one statement. If our database
module also contains a Query class, we can import both classes using
the following code:

from database import Database, Query

Some sources say that we can import all classes and functions from
the database module using this syntax:

from database import *

Don't do this. Most experienced Python programmers will tell you
that you should never use this syntax (a few will tell you there are
some very specific situations where it is useful, but I disagree).
They'll use obscure justifications such as it clutters up the
namespace, which doesn't make much sense to beginners. One way

to learn why to avoid this syntax is to use it and try to understand
your code two years later. But we can save some time and two years
of poorly written code with a quick explanation now!

When we explicitly import the database class at the top of our file using
from database import Database, we can easily see where the Database class
comes from. We might use db = Database() 400 lines later in the file,
and we can quickly look at the imports to see where that Database
class came from. Then, if we need clarification as to how to use the
Database class, we can visit the original file (or import the module in the
interactive interpreter and use the help(database.Database) command).
However, if we use the from database import * syntax, it takes a lot longer
to find where that class is located. Code maintenance becomes a
nightmare.

In addition, most code editors are able to provide extra functionality,
such as reliable code completion, the ability to jump to the definition
of a class, or inline documentation, if normal imports are used. The
import * syntax usually completely destroys their ability to do this
reliably.

Finally, using the import * syntax can bring unexpected objects into
our local namespace. Sure, it will import all the classes and functions
defined in the module being imported from, but it will also import any
classes or modules that were themselves imported into that file!

Every name used in a module should come from a well-specified
place, whether it is defined in that module, or explicitly imported from
another module. There should be no magic variables that seem to
come out of thin air. We should always be able to immediately
identify where the names in our current namespace originated. I
promise that if you use this evil syntax, you will one day have
extremely frustrating moments of where on earth can this class be
coming from?

For fun, try typing import this into your interactive interpreter. It prints a nice poem (with a couple
of inside jokes you can ignore) summarizing some of the idioms that Pythonistas tend to practice.

Specific to this discussion, note the line Explicit is better than implicit. Explicitly importing names
into your namespace makes your code much easier to navigate than the implicit import * syntax.

Organizing modules
As a project grows into a collection of more and more modules, we
may find that we want to add another level of abstraction, some kind
of nested hierarchy on our modules' levels. However, we can't put
modules inside modules; one file can hold only one file after all, and
modules are just files.

Files, however, can go in folders, and so can modules. A package is
a collection of modules in a folder. The name of the package is the
name of the folder. We need to tell Python that a folder is a package
to distinguish it from other folders in the directory. To do this, place a
(normally empty) file in the folder named __init__.py. If we forget this
file, we won't be able to import modules from that folder.

Let's put our modules inside an ecommerce package in our working
folder, which will also contain a main.py file to start the program. Let's
additionally add another package inside the ecommerce package for
various payment options. The folder hierarchy will look like this:

parent_directory/
 main.py
 ecommerce/
 __init__.py
 database.py
 products.py
 payments/
 __init__.py
 square.py
 stripe.py

When importing modules or classes between packages, we have to
be cautious about the syntax. In Python 3, there are two ways of
importing modules: absolute imports and relative imports.

Absolute imports
Absolute imports specify the complete path to the module, function,
or class we want to import. If we need access to the Product class
inside the products module, we could use any of these syntaxes to
perform an absolute import:

import ecommerce.products
product = ecommerce.products.Product()

//or

from ecommerce.products import Product
product = Product()

//or

from ecommerce import products
product = products.Product()

The import statements use the period operator to separate packages
or modules.

These statements will work from any module. We could instantiate a
Product class using this syntax in main.py, in the database module, or in
either of the two payment modules. Indeed, assuming the packages
are available to Python, it will be able to import them. For example,
the packages can also be installed in the Python site packages
folder, or the PYTHONPATH environment variable could be customized to
dynamically tell Python which folders to search for packages and
modules it is going to import.

So, with these choices, which syntax do we choose? It depends on
your personal taste and the application at hand. If there are dozens
of classes and functions inside the products module that I want to use,
I generally import the module name using the from ecommerce import
products syntax, and then access the individual classes using
products.Product. If I only need one or two classes from the products

module, I can import them directly using the from ecommerce.products import
Product syntax. I don't personally use the first syntax very often, unless
I have some kind of name conflict (for example, I need to access two
completely different modules called products and I need to separate
them). Do whatever you think makes your code look more elegant.

Relative imports
When working with related modules inside a package, it seems kind
of redundant to specify the full path; we know what our parent
module is named. This is where relative imports come in. Relative
imports are basically a way of saying find a class, function, or
module as it is positioned relative to the current module. For
example, if we are working in the products module and we want to
import the Database class from the database module next to it, we could
use a relative import:

from .database import Database

The period in front of database says use the database module inside
the current package. In this case, the current package is the
package containing the products.py file we are currently editing, that is,
the ecommerce package.

If we were editing the paypal module inside the ecommerce.payments
package, we would want, for example, to use the database package
inside the parent package instead. This is easily done with two
periods, as shown here:

from ..database import Database

We can use more periods to go further up the hierarchy. Of course,
we can also go down one side and back up the other. We don't have
a deep enough example hierarchy to illustrate this properly, but the
following would be a valid import if we had an ecommerce.contact package
containing an email module and wanted to import the send_mail function
into our paypal module:

from ..contact.email import send_mail

This import uses two periods indicating, the parent of the payments
package, and then uses the normal package.module syntax to go back

down into the contact package.

Finally, we can import code directly from packages, as opposed to
just modules inside packages. In this example, we have an ecommerce
package containing two modules named database.py and products.py.
The database module contains a db variable that is accessed from a
lot of places. Wouldn't it be convenient if this could be imported as
import ecommerce.db instead of import ecommerce.database.db?

Remember the __init__.py file that defines a directory as a package?
This file can contain any variable or class declarations we like, and
they will be available as part of the package. In our example, if the
ecommerce/__init__.py file contained the following line:

from .database import db

We could then access the db attribute from main.py or any other file
using the following import:

from ecommerce import db

It might help to think of the __init__.py file as if it were an ecommerce.py
file, if that file were a module instead of a package. This can also be
useful if you put all your code in a single module and later decide to
break it up into a package of modules. The __init__.py file for the new
package can still be the main point of contact for other modules
talking to it, but the code can be internally organized into several
different modules or subpackages.

I recommend not putting much code in an __init__.py file, though.
Programmers do not expect actual logic to happen in this file, and
much like with from x import *, it can trip them up if they are looking for
the declaration of a particular piece of code and can't find it until they
check __init__.py.

Organizing module content
Inside any one module, we can specify variables, classes, or
functions. They can be a handy way to store the global state without
namespace conflicts. For example, we have been importing the
Database class into various modules and then instantiating it, but it
might make more sense to have only one database object globally
available from the database module. The database module might look like
this:

class Database:
 # the database implementation
 pass

database = Database()

Then we can use any of the import methods we've discussed to
access the database object, for example:

from ecommerce.database import database

A problem with the preceding class is that the database object is
created immediately when the module is first imported, which is
usually when the program starts up. This isn't always ideal, since
connecting to a database can take a while, slowing down startup, or
the database connection information may not yet be available. We
could delay creating the database until it is actually needed by
calling an initialize_database function to create a module-level variable:

class Database:
 # the database implementation
 pass

database = None

def initialize_database():
 global database
 database = Database()

The global keyword tells Python that the database variable inside
initialize_database is the module level one we just defined. If we had
not specified the variable as global, Python would have created a
new local variable that would be discarded when the method exits,
leaving the module-level value unchanged.

As these two examples illustrate, all module-level code is executed
immediately at the time it is imported. However, if it is inside a
method or function, the function will be created, but its internal code
will not be executed until the function is called. This can be a tricky
thing for scripts that perform execution (such as the main script in
our e-commerce example). Sometimes, we write a program that
does something useful, and then later find that we want to import a
function or class from that module into a different program. However,
as soon as we import it, any code at the module level is immediately
executed. If we are not careful, we can end up running the first
program when we really only meant to access a couple of functions
inside that module.

To solve this, we should always put our start up code in a function
(conventionally, called main) and only execute that function when we
know we are running the module as a script, but not when our code
is being imported from a different script. We can do this by guarding
the call to main inside a conditional statement, demonstrated as
follows:

class UsefulClass:
 """This class might be useful to other modules."""

 pass

def main():
 """Creates a useful class and does something with it for our
module."""
 useful = UsefulClass()
 print(useful)

if __name__ == "__main__":
 main()

Every module has a __name__ special variable (remember, Python uses
double underscores for special variables, such as a class's __init__
method) that specifies the name of the module when it was imported.
When the module is executed directly with python module.py, it is never
imported, so the __name__ is arbitrarily set to the "__main__" string. Make it
a policy to wrap all your scripts in an if __name__ == "__main__": test, just
in case you write a function that you may want to be imported by
other code at some point in the future.

So, methods go in classes, which go in modules, which go in
packages. Is that all there is to it?

Actually, no. This is the typical order of things in a Python program,
but it's not the only possible layout. Classes can be defined
anywhere. They are typically defined at the module level, but they
can also be defined inside a function or method, like this:

def format_string(string, formatter=None):
 """Format a string using the formatter object, which
 is expected to have a format() method that accepts
 a string."""

 class DefaultFormatter:
 """Format a string in title case."""

 def format(self, string):
 return str(string).title()

 if not formatter:
 formatter = DefaultFormatter()

 return formatter.format(string)

hello_string = "hello world, how are you today?"
print(" input: " + hello_string)
print("output: " + format_string(hello_string))

The output would be as follows:

 input: hello world, how are you today?
output: Hello World, How Are You Today?

The format_string function accepts a string and optional formatter
object, and then applies the formatter to that string. If no formatter is

supplied, it creates a formatter of its own as a local class and
instantiates it. Since it is created inside the scope of the function, this
class cannot be accessed from anywhere outside of that function.
Similarly, functions can be defined inside other functions as well; in
general, any Python statement can be executed at any time.

These inner classes and functions are occasionally useful for one-off
items that don't require or deserve their own scope at the module
level, or only make sense inside a single method. However, it is not
common to see Python code that frequently uses this technique.

Who can access my data?
Most object-oriented programming languages have a concept of
access control. This is related to abstraction. Some attributes and
methods on an object are marked private, meaning only that object
can access them. Others are marked protected, meaning only that
class and any subclasses have access. The rest are public, meaning
any other object is allowed to access them.

Python doesn't do this. Python doesn't really believe in enforcing
laws that might someday get in your way. Instead, it provides
unenforced guidelines and best practices. Technically, all methods
and attributes on a class are publicly available. If we want to suggest
that a method should not be used publicly, we can put a note in
docstrings indicating that the method is meant for internal use only
(preferably, with an explanation of how the public-facing API works!).

By convention, we should also prefix an internal attribute or method
with an underscore character, _. Python programmers will interpret
this as this is an internal variable, think three times before accessing
it directly. But there is nothing inside the interpreter to stop them
from accessing it if they think it is in their best interest to do so.
Because, if they think so, why should we stop them? We may not
have any idea what future uses our classes may be put to.

There's another thing you can do to strongly suggest that outside
objects don't access a property or method: prefix it with a double
underscore, __. This will perform name mangling on the attribute in
question. In essence, name mangling means that the method can
still be called by outside objects if they really want to do so, but it
requires extra work and is a strong indicator that you demand that
your attribute remains private. Here is an example code snippet:

class SecretString:
 """A not-at-all secure way to store a secret string."""

 def __init__(self, plain_string, pass_phrase):
 self.__plain_string = plain_string
 self.__pass_phrase = pass_phrase

 def decrypt(self, pass_phrase):
 """Only show the string if the pass_phrase is correct."""
 if pass_phrase == self.__pass_phrase:
 return self.__plain_string
 else:
 return ""

If we load this class and test it in the interactive interpreter, we can
see that it hides the plain text string from the outside world:

>>> secret_string = SecretString("ACME: Top Secret", "antwerp")
>>> print(secret_string.decrypt("antwerp"))
ACME: Top Secret
>>> print(secret_string.__plain_string)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'SecretString' object has no attribute
'__plain_string'

It looks like it works; nobody can access our plain_string attribute
without the passphrase, so it must be safe. Before we get too
excited, though, let's see how easy it can be to hack our security:

>>> print(secret_string._SecretString__plain_string)
ACME: Top Secret

Oh no! Somebody has discovered our secret string. Good thing we
checked.

This is Python name mangling at work. When we use a double
underscore, the property is prefixed with _<classname>. When methods
in the class internally access the variable, they are automatically
unmangled. When external classes wish to access it, they have to do
the name mangling themselves. So, name mangling does not
guarantee privacy; it only strongly recommends it. Most Python
programmers will not touch a double underscore variable on another
object unless they have an extremely compelling reason to do so.

However, most Python programmers will not touch a single
underscore variable without a compelling reason either. Therefore,

there are very few good reasons to use a name-mangled variable in
Python, and doing so can cause grief. For example, a name-
mangled variable may be useful to an as-yet-unknown subclass, and
it would have to do the mangling itself. Let other objects access your
hidden information if they want to. Just let them know, using a single-
underscore prefix or some clear docstrings, that you think this is not
a good idea.

Third-party libraries
Python ships with a lovely standard library, which is a collection of
packages and modules that are available on every machine that runs
Python. However, you'll soon find that it doesn't contain everything
you need. When this happens, you have two options:

Write a supporting package yourself
Use somebody else's code

We won't be covering the details about turning your packages into
libraries, but if you have a problem you need to solve and you don't
feel like coding it (the best programmers are extremely lazy and
prefer to reuse existing, proven code, rather than write their own),
you can probably find the library you want on the Python Package
Index (PyPI) at http://pypi.python.org/. Once you've identified a
package that you want to install, you can use a tool called pip to
install it. However, pip does not come with Python, but Python 3.4
and higher contain a useful tool called ensurepip. You can use this
command to install it:

$python -m ensurepip

This may fail for you on Linux, macOS, or other Unix systems, in
which case, you'll need to become a root user to make it work. On
most modern Unix systems, this can be done with sudo python -m
ensurepip.

If you are using an older version of Python than Python 3.4, you'll need to download and install
pip yourself, since ensurepip isn't available. You can do this by following the instructions at: htt
p://pip.readthedocs.org/.

Once pip is installed and you know the name of the package you
want to install, you can install it using syntax such as the following:

$pip install requests

http://pypi.python.org/
http://pip.readthedocs.org/

However, if you do this, you'll either be installing the third-party
library directly into your system Python directory, or, more likely, will
get an error that you don't have permission to do so. You could force
the installation as an administrator, but common consensus in the
Python community is that you should only use system installers to
install the third-party library to your system Python directory.

Instead, Python 3.4 (and higher) supplies the venv tool. This utility
basically gives you a mini Python installation called a virtual
environment in your working directory. When you activate the mini
Python, commands related to Python will work on that directory
instead of the system directory. So, when you run pip or python, it won't
touch the system Python at all. Here's how to use it:

cd project_directory
python -m venv env
source env/bin/activate # on Linux or macOS
env/bin/activate.bat # on Windows

Typically, you'll create a different virtual environment for each Python
project you work on. You can store your virtual environments
anywhere, but I traditionally keep mine in the same directory as the
rest of my project files (but ignored in version control), so first we cd
into that directory. Then, we run the venv utility to create a virtual
environment named env. Finally, we use one of the last two lines
(depending on the operating system, as indicated in the comments)
to activate the environment. We'll need to execute this line each time
we want to use that particular virtualenv, and then use the deactivate
command when we are done working on this project.

Virtual environments are a terrific way to keep your third-party
dependencies separate. It is common to have different projects that
depend on different versions of a particular library (for example, an
older website might run on Django 1.8, while newer versions run on
Django 2.1). Keeping each project in separate virtualenvs makes it
easy to work in either version of Django. Furthermore, it prevents
conflicts between system-installed packages and pip-installed
packages if you try to install the same package using different tools.

There are several third-party tools for managing virtual environments effectively. Some of these
include pyenv, virtualenvwrapper, and conda. My personal preference at the time of writing is
pyenv, but there is no clear winner here. Do a quick web search and see what works for you.

Case study
To tie it all together, let's build a simple command-line notebook
application. This is a fairly simple task, so we won't be experimenting
with multiple packages. We will, however, see common usage of
classes, functions, methods, and docstrings.

Let's start with a quick analysis: notes are short memos stored in a
notebook. Each note should record the day it was written and can
have tags added for easy querying. It should be possible to modify
notes. We also need to be able to search for notes. All of these
things should be done from the command line.

An obvious object is the Note object; a less obvious one is a Notebook
container object. Tags and dates also seem to be objects, but we
can use dates from Python's standard library and a comma-
separated string for tags. To avoid complexity, in the prototype, we
need not define separate classes for these objects.

Note objects have attributes for memo itself, tags, and creation_date. Each
note will also need a unique integer id so that users can select them
in a menu interface. Notes could have a method to modify note
content and another for tags, or we could just let the notebook
access those attributes directly. To make searching easier, we
should put a match method on the Note object. This method will accept
a string and can tell us whether a note matches the string without
accessing the attributes directly. This way, if we want to modify the
search parameters (to search tags instead of note contents, for
example, or to make the search case-insensitive), we only have to
do it in one place.

The Notebook object obviously has the list of notes as an attribute. It
will also need a search method that returns a list of filtered notes.

But how do we interact with these objects? We've specified a
command-line app, which can mean either that we run the program
with different options to add or edit commands, or we have some
kind of menu that allows us to pick different things to do to the
notebook. We should try to design it such that either interface is
supported and future interfaces, such as a GUI toolkit or web-based
interface, could be added in the future.

As a design decision, we'll implement the menu interface now, but
will keep the command-line options version in mind to ensure we
design our Notebook class with extensibility in mind.

If we have two command-line interfaces, each interacting with the
Notebook object, then Notebook will need some methods for those
interfaces to interact with. We need to be able to add a new note, and
modify an existing note by id, in addition to the search method we've
already discussed. The interfaces will also need to be able to list all
notes, but they can do that by accessing the notes list attribute
directly.

We may be missing a few details, but we have a really good
overview of the code we need to write. We can summarize all this
analysis in a simple class diagram:

Before writing any code, let's define the folder structure for this
project. The menu interface should clearly be in its own module,
since it will be an executable script, and we may have other
executable scripts accessing the notebook in the future. The Notebook
and Note objects can live together in one module. These modules can
both exist in the same top-level directory without having to put them
in a package. An empty command_option.py module can help remind us in
the future that we were planning to add new user interfaces:

parent_directory/
 notebook.py
 menu.py
 command_option.py

Now let's see some code. We start by defining the Note class, as it
seems simplest. The following example presents Note in its entirety.
Docstrings within the example explain how it all fits together,
demonstrated as follows:

import datetime

Store the next available id for all new notes
last_id = 0

class Note:
 """Represent a note in the notebook. Match against a
 string in searches and store tags for each note."""

 def __init__(self, memo, tags=""):
 """initialize a note with memo and optional
 space-separated tags. Automatically set the note's
 creation date and a unique id."""
 self.memo = memo
 self.tags = tags
 self.creation_date = datetime.date.today()
 global last_id
 last_id += 1
 self.id = last_id

 def match(self, filter):
 """Determine if this note matches the filter
 text. Return True if it matches, False otherwise.

 Search is case sensitive and matches both text and
 tags."""
 return filter in self.memo or filter in self.tags

Before continuing, we should quickly fire up the interactive
interpreter and test our code so far. Test frequently and often,
because things never work the way you expect them to. Indeed,
when I tested my first version of this example, I found out I had
forgotten the self argument in the match function! We'll discuss
automated testing in Chapter 24, Testing Object-Oriented Programs.
For now, it suffices to check a few things using the interpreter:

>>> from notebook import Note
>>> n1 = Note("hello first")
>>> n2 = Note("hello again")
>>> n1.id
1
>>> n2.id
2
>>> n1.match('hello')
True
>>> n2.match('second')
False

It looks like everything is behaving as expected. Let's create our
notebook next:

class Notebook:
 """Represent a collection of notes that can be tagged,
 modified, and searched."""

 def __init__(self):
 """Initialize a notebook with an empty list."""
 self.notes = []

 def new_note(self, memo, tags=""):
 """Create a new note and add it to the list."""
 self.notes.append(Note(memo, tags))

 def modify_memo(self, note_id, memo):
 """Find the note with the given id and change its
 memo to the given value."""
 for note in self.notes:
 if note.id == note_id:
 note.memo = memo
 break

 def modify_tags(self, note_id, tags):
 """Find the note with the given id and change its
 tags to the given value."""
 for note in self.notes:
 if note.id == note_id:
 note.tags = tags
 break

 def search(self, filter):
 """Find all notes that match the given filter
 string."""
 return [note for note in self.notes if note.match(filter)]

We'll clean this up in a minute. First, let's test it to make sure it
works:

>>> from notebook import Note, Notebook
>>> n = Notebook()
>>> n.new_note("hello world")
>>> n.new_note("hello again")
>>> n.notes
[<notebook.Note object at 0xb730a78c>, <notebook.Note object at
0xb73103ac>]
>>> n.notes[0].id
1
>>> n.notes[1].id
2
>>> n.notes[0].memo
'hello world'
>>> n.search("hello")
[<notebook.Note object at 0xb730a78c>, <notebook.Note object at
0xb73103ac>]
>>> n.search("world")
[<notebook.Note object at 0xb730a78c>]
>>> n.modify_memo(1, "hi world")

>>> n.notes[0].memo
'hi world'

It does work. The code is a little messy though; our modify_tags and
modify_memo methods are almost identical. That's not good coding
practice. Let's see how we can improve it.

Both methods are trying to identify the note with a given ID before
doing something to that note. So, let's add a method to locate the
note with a specific ID. We'll prefix the method name with an
underscore to suggest that the method is for internal use only, but, of
course, our menu interface can access the method if it wants to:

 def _find_note(self, note_id):
 """Locate the note with the given id."""
 for note in self.notes:
 if note.id == note_id:
 return note
 return None

 def modify_memo(self, note_id, memo):
 """Find the note with the given id and change its
 memo to the given value."""
 self._find_note(note_id).memo = memo

 def modify_tags(self, note_id, tags):
 """Find the note with the given id and change its
 tags to the given value."""
 self._find_note(note_id).tags = tags

This should work for now. Let's have a look at the menu interface.
The interface needs to present a menu and allow the user to input
choices. Here's our first attempt:

import sys
from notebook import Notebook

class Menu:
 """Display a menu and respond to choices when run."""

 def __init__(self):
 self.notebook = Notebook()
 self.choices = {
 "1": self.show_notes,
 "2": self.search_notes,
 "3": self.add_note,
 "4": self.modify_note,
 "5": self.quit,

 }

 def display_menu(self):
 print(
 """
Notebook Menu

1. Show all Notes
2. Search Notes
3. Add Note
4. Modify Note
5. Quit
"""
)

 def run(self):
 """Display the menu and respond to choices."""
 while True:
 self.display_menu()
 choice = input("Enter an option: ")
 action = self.choices.get(choice)
 if action:
 action()
 else:
 print("{0} is not a valid choice".format(choice))

 def show_notes(self, notes=None):
 if not notes:
 notes = self.notebook.notes
 for note in notes:
 print("{0}: {1}\n{2}".format(note.id, note.tags, note.memo))

 def search_notes(self):
 filter = input("Search for: ")
 notes = self.notebook.search(filter)
 self.show_notes(notes)

 def add_note(self):
 memo = input("Enter a memo: ")
 self.notebook.new_note(memo)
 print("Your note has been added.")

 def modify_note(self):
 id = input("Enter a note id: ")
 memo = input("Enter a memo: ")
 tags = input("Enter tags: ")
 if memo:
 self.notebook.modify_memo(id, memo)
 if tags:
 self.notebook.modify_tags(id, tags)

 def quit(self):
 print("Thank you for using your notebook today.")
 sys.exit(0)

if __name__ == "__main__":
 Menu().run()

This code first imports the notebook objects using an absolute
import. Relative imports wouldn't work because we haven't placed
our code inside a package. The Menu class's run method repeatedly
displays a menu and responds to choices by calling functions on the
notebook. This is done using an idiom that is rather peculiar to
Python; it is a lightweight version of the command pattern that we will
discuss in Chapter 22, Python Design Patterns I. The choices entered
by the user are strings. In the menu's __init__ method, we create a
dictionary that maps strings to functions on the menu object itself.
Then, when the user makes a choice, we retrieve the object from the
dictionary. The action variable actually refers to a specific method,
and is called by appending empty brackets (since none of the
methods require parameters) to the variable. Of course, the user
might have entered an inappropriate choice, so we check if the
action really exists before calling it.

Each of the various methods request user input and call appropriate
methods on the Notebook object associated with it. For the search
implementation, we notice that after we've filtered the notes, we
need to show them to the user, so we make the show_notes function
serve double duty; it accepts an optional notes parameter. If it's
supplied, it displays only the filtered notes, but if it's not, it displays
all notes. Since the notes parameter is optional, show_notes can still be
called with no parameters as an empty menu item.

If we test this code, we'll find that it fails if we try to modify a note.
There are two bugs, namely:

The notebook crashes when we enter a note ID that does not
exist. We should never trust our users to enter correct data!
Even if we enter a correct ID, it will crash because the note IDs
are integers, but our menu is passing a string.

The latter bug can be solved by modifying the Notebook class's _find_note
method to compare the values using strings instead of the integers
stored in the note, as follows:

 def _find_note(self, note_id):
 """Locate the note with the given id."""
 for note in self.notes:
 if str(note.id) == str(note_id):
 return note
 return None

We simply convert both the input (note_id) and the note's ID to strings
before comparing them. We could also convert the input to an
integer, but then we'd have trouble if the user entered the letter
a instead of the number 1.

The problem with users entering note IDs that don't exist can be
fixed by changing the two modify methods on the notebook to check
whether _find_note returned a note or not, like this:

 def modify_memo(self, note_id, memo):
 """Find the note with the given id and change its
 memo to the given value."""
 note = self._find_note(note_id)
 if note:
 note.memo = memo
 return True
 return False

This method has been updated to return True or False, depending on
whether a note has been found. The menu could use this return
value to display an error if the user entered an invalid note.

This code is a bit unwieldy. It would look a bit better if it raised an exception instead. We'll cover
those in Chapter 18, Expecting the Unexpected.

Exercises
Write some object-oriented code. The goal is to use the principles
and syntax you learned in this chapter to ensure you understand the
topics we've covered. If you've been working on a Python project, go
back over it and see whether there are some objects you can create
and add properties or methods to. If it's large, try dividing it into a few
modules or even packages and play with the syntax.

If you don't have such a project, try starting a new one. It doesn't
have to be something you intend to finish; just stub out some basic
design parts. You don't need to fully implement everything; often, just
a print("this method will do something") is all you need to get the overall
design in place. This is called top-down design, in which you work
out the different interactions and describe how they should work
before actually implementing what they do. The converse, bottom-
up design, implements details first and then ties them all together.
Both patterns are useful at different times, but for understanding
object-oriented principles, a top-down workflow is more suitable.

If you're having trouble coming up with ideas, try writing a to-do
application. (Hint: it would be similar to the design of the notebook
application, but with extra date management methods.) It can keep
track of things you want to do each day, and allow you to mark them
as completed.

Now try designing a bigger project. As before, it doesn't have to
actually do anything, but make sure you experiment with the
package and module-importing syntax. Add some functions in
various modules and try importing them from other modules and
packages. Use relative and absolute imports. See the difference,
and try to imagine scenarios where you would want to use each one.

Summary
In this chapter, we learned how simple it is to create classes and
assign properties and methods in Python. Unlike many languages,
Python differentiates between a constructor and an initializer. It has a
relaxed attitude toward access control. There are many different
levels of scope, including packages, modules, classes, and
functions. We understood the difference between relative and
absolute imports, and how to manage third-party packages that don't
come with Python.

In the next chapter, we'll learn how to share implementation using
inheritance.

When Objects Are Alike
In the programming world, duplicate code is considered evil. We
should not have multiple copies of the same, or similar, code in
different places.

There are many ways to merge pieces of code or objects that have a
similar functionality. In this chapter, we'll be covering the most
famous object-oriented principle: inheritance. As discussed in Chapter
15, Object-Oriented Design, inheritance allows us to create is a
relationships between two or more classes, abstracting common
logic into superclasses and managing specific details in the
subclass. In particular, we'll be covering the Python syntax and
principles for the following:

Basic inheritance
Inheriting from built-in types
Multiple inheritance
Polymorphism and duck typing

Basic inheritance
Technically, every class we create uses inheritance. All Python
classes are subclasses of the special built-in class named object. This
class provides very little in terms of data and behaviors (the
behaviors it does provide are all double-underscore methods
intended for internal use only), but it does allow Python to treat all
objects in the same way.

If we don't explicitly inherit from a different class, our classes will
automatically inherit from object. However, we can openly state that
our class derives from object using the following syntax:

class MySubClass(object):
 pass

This is inheritance! This example is, technically, no different from our
very first example in Chapter 16, Objects in Python, since Python 3
automatically inherits from object if we don't explicitly provide a
different superclass. A superclass, or parent class, is a class that is
being inherited from. A subclass is a class that is inheriting from a
superclass. In this case, the superclass is object, and MySubClass is the
subclass. A subclass is also said to be derived from its parent class
or that the subclass extends the parent.

As you've probably figured out from the example, inheritance
requires a minimal amount of extra syntax over a basic class
definition. Simply include the name of the parent class inside
parentheses between the class name and the colon that follows.
This is all we have to do to tell Python that the new class should be
derived from the given superclass.

How do we apply inheritance in practice? The simplest and most
obvious use of inheritance is to add functionality to an existing class.
Let's start with a simple contact manager that tracks the name and

email address of several people. The Contact class is responsible for
maintaining a list of all contacts in a class variable, and for initializing
the name and address for an individual contact:

class Contact:
 all_contacts = []

 def __init__(self, name, email):
 self.name = name
 self.email = email
 Contact.all_contacts.append(self)

This example introduces us to class variables. The all_contacts list,
because it is part of the class definition, is shared by all instances of
this class. This means that there is only one Contact.all_contacts list. We
can also access it as self.all_contacts from within any method on an
instance of the Contact class. If a field can't be found on the object (via
self), then it will be found on the class and will thus refer to the same
single list.

Be careful with this syntax, for if you ever set the variable using self.all_contacts, you will
actually be creating a new instance variable associated just with that object. The class variable
will still be unchanged and accessible as Contact.all_contacts.

This is a simple class that allows us to track a couple of pieces of
data about each contact. But what if some of our contacts are also
suppliers that we need to order supplies from? We could add an order
method to the Contact class, but that would allow people to
accidentally order things from contacts who are customers or family
friends. Instead, let's create a new Supplier class that acts like our
Contact class, but has an additional order method:

class Supplier(Contact):
 def order(self, order):
 print(
 "If this were a real system we would send "
 f"'{order}' order to '{self.name}'"
)

Now, if we test this class in our trusty interpreter, we see that all
contacts, including suppliers, accept a name and email address in
their __init__, but that only suppliers have a functional order method:

>>> c = Contact("Some Body", "somebody@example.net")
>>> s = Supplier("Sup Plier", "supplier@example.net")
>>> print(c.name, c.email, s.name, s.email)
Some Body somebody@example.net Sup Plier supplier@example.net
>>> c.all_contacts
[<__main__.Contact object at 0xb7375ecc>,
 <__main__.Supplier object at 0xb7375f8c>]
>>> c.order("I need pliers")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'Contact' object has no attribute 'order'
>>> s.order("I need pliers")
If this were a real system we would send 'I need pliers' order to
'Sup Plier '

So, now our Supplier class can do everything a contact can do
(including adding itself to the list of all_contacts) and all the special
things it needs to handle as a supplier. This is the beauty of
inheritance.

Extending built-ins
One interesting use of this kind of inheritance is adding functionality
to built-in classes. In the Contact class seen earlier, we are adding
contacts to a list of all contacts. What if we also wanted to search
that list by name? Well, we could add a method on the Contact class to
search it, but it feels like this method actually belongs to the list itself.
We can do this using inheritance:

class ContactList(list):
 def search(self, name):
 """Return all contacts that contain the search value
 in their name."""
 matching_contacts = []
 for contact in self:
 if name in contact.name:
 matching_contacts.append(contact)
 return matching_contacts

class Contact:
 all_contacts = ContactList()

 def __init__(self, name, email):
 self.name = name
 self.email = email
 Contact.all_contacts.append(self)

Instead of instantiating a normal list as our class variable, we create
a new ContactList class that extends the built-in list data type. Then,
we instantiate this subclass as our all_contacts list. We can test the
new search functionality as follows:

>>> c1 = Contact("John A", "johna@example.net")
>>> c2 = Contact("John B", "johnb@example.net")
>>> c3 = Contact("Jenna C", "jennac@example.net")
>>> [c.name for c in Contact.all_contacts.search('John')]
['John A', 'John B']

Are you wondering how we changed the built-in syntax [] into
something we can inherit from? Creating an empty list with [] is
actually a shortcut for creating an empty list using list(); the two
syntaxes behave identically:

>>> [] == list()
True

In reality, the [] syntax is actually so-called syntactic sugar that
calls the list() constructor under the hood. The list data type is a
class that we can extend. In fact, the list itself extends the object
class:

>>> isinstance([], object)
True

As a second example, we can extend the dict class, which is, similar
to the list, the class that is constructed when using the {} syntax
shorthand:

class LongNameDict(dict):
 def longest_key(self):
 longest = None
 for key in self:
 if not longest or len(key) > len(longest):
 longest = key
 return longest

This is easy to test in the interactive interpreter:

>>> longkeys = LongNameDict()
>>> longkeys['hello'] = 1
>>> longkeys['longest yet'] = 5
>>> longkeys['hello2'] = 'world'
>>> longkeys.longest_key()
'longest yet'

Most built-in types can be similarly extended. Commonly extended
built-ins are object, list, set, dict, file, and str. Numerical types such as
int and float are also occasionally inherited from.

Overriding and super
So, inheritance is great for adding new behavior to existing classes,
but what about changing behavior? Our Contact class allows only a
name and an email address. This may be sufficient for most
contacts, but what if we want to add a phone number for our close
friends?

As we saw in Chapter 16, Objects in Python, we can do this easily by
just setting a phone attribute on the contact after it is constructed. But if
we want to make this third variable available on initialization, we
have to override __init__. Overriding means altering or replacing a
method of the superclass with a new method (with the same name)
in the subclass. No special syntax is needed to do this; the
subclass's newly created method is automatically called instead of
the superclass's method. As shown in the following code:

class Friend(Contact):
 def __init__(self, name, email, phone): self.name = name
 self.email = email
 self.phone = phone

Any method can be overridden, not just __init__. Before we go on,
however, we need to address some problems in this example. Our
Contact and Friend classes have duplicate code to set up the name and
email properties; this can make code maintenance complicated, as we
have to update the code in two or more places. More alarmingly, our
Friend class is neglecting to add itself to the all_contacts list we have
created on the Contact class.

What we really need is a way to execute the original __init__ method
on the Contact class from inside our new class. This is what the super
function does; it returns the object as an instance of the parent class,
allowing us to call the parent method directly:

class Friend(Contact):
 def __init__(self, name, email, phone):
 super().__init__(name, email)
 self.phone = phone

This example first gets the instance of the parent object using super,
and calls __init__ on that object, passing in the expected arguments.
It then does its own initialization, namely, setting the phone attribute.

A super() call can be made inside any method. Therefore, all methods
can be modified via overriding and calls to super. The call to super can
also be made at any point in the method; we don't have to make the
call as the first line. For example, we may need to manipulate or
validate incoming parameters before forwarding them to the
superclass.

Multiple inheritance
Multiple inheritance is a touchy subject. In principle, it's simple: a
subclass that inherits from more than one parent class is able to
access functionality from both of them. In practice, this is less useful
than it sounds and many expert programmers recommend against
using it.

As a humorous rule of thumb, if you think you need multiple inheritance, you're probably wrong,
but if you know you need it, you might be right.

The simplest and most useful form of multiple inheritance is called a
mixin. A mixin is a superclass that is not intended to exist on its
own, but is meant to be inherited by some other class to provide
extra functionality. For example, let's say we wanted to add
functionality to our Contact class that allows sending an email to
self.email. Sending email is a common task that we might want to use
on many other classes. So, we can write a simple mixin class to do
the emailing for us:

class MailSender:
 def send_mail(self, message):
 print("Sending mail to " + self.email)
 # Add e-mail logic here

For brevity, we won't include the actual email logic here; if you're
interested in studying how it's done, see the smtplib module in the
Python standard library.

This class doesn't do anything special (in fact, it can barely function
as a standalone class), but it does allow us to define a new class
that describes both a Contact and a MailSender, using multiple
inheritance:

class EmailableContact(Contact, MailSender):
 pass

The syntax for multiple inheritance looks like a parameter list in the
class definition. Instead of including one base class inside the
parentheses, we include two (or more), separated by a comma. We
can test this new hybrid to see the mixin at work:

>>> e = EmailableContact("John Smith", "jsmith@example.net")
>>> Contact.all_contacts
[<__main__.EmailableContact object at 0xb7205fac>]
>>> e.send_mail("Hello, test e-mail here")
Sending mail to jsmith@example.net

The Contact initializer is still adding the new contact to the all_contacts
list, and the mixin is able to send mail to self.email, so we know that
everything is working.

This wasn't so hard, and you're probably wondering what the dire
warnings about multiple inheritance are. We'll get into the
complexities in a minute, but let's consider some other options we
had for this example, rather than using a mixin:

We could have used single inheritance and added the send_mail
function to the subclass. The disadvantage here is that the email
functionality then has to be duplicated for any other classes that
need an email.
We can create a standalone Python function for sending an
email, and just call that function with the correct email address
supplied as a parameter when the email needs to be sent (this
would be my choice).
We could have explored a few ways of using composition
instead of inheritance. For example, EmailableContact could have a
MailSender object as a property instead of inheriting from it.
We could monkey patch (we'll briefly cover monkey patching in C
hapter 20, Python Object-Oriented Shortcuts) the Contact class to
have a send_mail method after the class has been created. This is
done by defining a function that accepts the self argument, and
setting it as an attribute on an existing class.

Multiple inheritance works all right when mixing methods from
different classes, but it gets very messy when we have to call

methods on the superclass. There are multiple superclasses. How
do we know which one to call? How do we know what order to call
them in?

Let's explore these questions by adding a home address to our Friend
class. There are a few approaches we might take. An address is a
collection of strings representing the street, city, country, and other
related details of the contact. We could pass each of these strings as
a parameter into the Friend class's __init__ method. We could also
store these strings in a tuple, dictionary, or dataclass and pass them
into __init__ as a single argument. This is probably the best course of
action if there are no methods that need to be added to the address.

Another option would be to create a new Address class to hold those
strings together, and then pass an instance of this class into the
__init__ method in our Friend class. The advantage of this solution is
that we can add behavior (say, a method to give directions or to print
a map) to the data instead of just storing it statically. This is an
example of composition, as we discussed in Chapter 15, Object-
Oriented Design. Composition is a perfectly viable solution to this
problem and allows us to reuse Address classes in other entities, such
as buildings, businesses, or organizations.

However, inheritance is also a viable solution, and that's what we
want to explore. Let's add a new class that holds an address. We'll
call this new class AddressHolder instead of Address because inheritance
defines an is a relationship. It is not correct to say a Friend class is an
Address class, but since a friend can have an Address class, we can
argue that a Friend class is an AddressHolder class. Later, we could
create other entities (companies, buildings) that also hold addresses.
Then again, such convoluted naming is a decent indication we
should be sticking with composition, rather than inheritance. But for
pedagogical purposes, we'll stick with inheritance. Here's our
AddressHolder class:

class AddressHolder:
 def __init__(self, street, city, state, code):

 self.street = street
 self.city = city
 self.state = state
 self.code = code

We just take all the data and toss it into instance variables upon
initialization.

The diamond problem
We can use multiple inheritance to add this new class as a parent of
our existing Friend class. The tricky part is that we now have two
parent __init__ methods, both of which need to be initialized. And they
need to be initialized with different arguments. How do we do this?
Well, we could start with a naive approach:

class Friend(Contact, AddressHolder):
 def __init__(
 self, name, email, phone, street, city, state, code):
 Contact.__init__(self, name, email)
 AddressHolder.__init__(self, street, city, state, code)
 self.phone = phone

In this example, we directly call the __init__ function on each of the
superclasses and explicitly pass the self argument. This example
technically works; we can access the different variables directly on
the class. But there are a few problems.

First, it is possible for a superclass to go uninitialized if we neglect to
explicitly call the initializer. That wouldn't break this example, but it
could cause hard-to-debug program crashes in common scenarios.
Imagine trying to insert data into a database that has not been
connected to, for example.

A more insidious possibility is a superclass being called multiple
times because of the organization of the class hierarchy. Look at this
inheritance diagram:

The __init__ method from the Friend class first calls __init__ on Contact,
which implicitly initializes the object superclass (remember, all classes
derive from object). Friend then calls __init__ on AddressHolder, which
implicitly initializes the object superclass again. This means the parent
class has been set up twice. With the object class, that's relatively
harmless, but in some situations, it could spell disaster. Imagine
trying to connect to a database twice for every request!

The base class should only be called once. Once, yes, but when?
Do we call Friend, then Contact, then Object, and then AddressHolder? Or
Friend, then Contact, then AddressHolder, and then Object?

The order in which methods can be called can be adapted on the fly by modifying the __mro__
(Method Resolution Order) attribute on the class. This is beyond the scope of this book. If you
think you need to understand it, we recommend Expert Python Programming, Tarek Ziadé, Packt
Publishing, or read the original documentation (beware, it's deep!) on the topic at http://www.pyth
on.org/download/releases/2.3/mro/.

Let's look at a second contrived example, which illustrates this
problem more clearly. Here, we have a base class that has a method
named call_me. Two subclasses override that method, and then
another subclass extends both of these using multiple inheritance.
This is called diamond inheritance because of the diamond shape of
the class diagram:

http://www.python.org/download/releases/2.3/mro/

Let's convert this diagram to code; this example shows when the
methods are called:

class BaseClass:
 num_base_calls = 0

 def call_me(self):
 print("Calling method on Base Class")
 self.num_base_calls += 1

class LeftSubclass(BaseClass):
 num_left_calls = 0

 def call_me(self):
 BaseClass.call_me(self)
 print("Calling method on Left Subclass")
 self.num_left_calls += 1

class RightSubclass(BaseClass):
 num_right_calls = 0

 def call_me(self):
 BaseClass.call_me(self)
 print("Calling method on Right Subclass")
 self.num_right_calls += 1

class Subclass(LeftSubclass, RightSubclass):
 num_sub_calls = 0

 def call_me(self):
 LeftSubclass.call_me(self)
 RightSubclass.call_me(self)
 print("Calling method on Subclass")
 self.num_sub_calls += 1

This example ensures that each overridden call_me method directly
calls the parent method with the same name. It lets us know each
time a method is called by printing the information to the screen. It
also updates a static variable on the class to show how many times it
has been called. If we instantiate one Subclass object and call the
method on it once, we get the output:

>>> s = Subclass()
>>> s.call_me()
Calling method on Base Class
Calling method on Left Subclass
Calling method on Base Class
Calling method on Right Subclass
Calling method on Subclass
>>> print(
... s.num_sub_calls,
... s.num_left_calls,
... s.num_right_calls,
... s.num_base_calls)
1 1 1 2

Thus, we can clearly see the base class's call_me method being called
twice. This could lead to some pernicious bugs if that method is
doing actual work, such as depositing into a bank account, twice.

The thing to keep in mind with multiple inheritance is that we only
want to call the next method in the class hierarchy, not the
parent method. In fact, that next method may not be on a parent or
ancestor of the current class. The super keyword comes to our rescue
once again. Indeed, super was originally developed to make
complicated forms of multiple inheritance possible. Here is the same
code written using super:

class BaseClass:
 num_base_calls = 0

 def call_me(self):

 print("Calling method on Base Class")
 self.num_base_calls += 1

class LeftSubclass(BaseClass):
 num_left_calls = 0

 def call_me(self):
 super().call_me()
 print("Calling method on Left Subclass")
 self.num_left_calls += 1

class RightSubclass(BaseClass):
 num_right_calls = 0

 def call_me(self):
 super().call_me()
 print("Calling method on Right Subclass")
 self.num_right_calls += 1

class Subclass(LeftSubclass, RightSubclass):
 num_sub_calls = 0

 def call_me(self):
 super().call_me()
 print("Calling method on Subclass")
 self.num_sub_calls += 1

The change is pretty minor; we only replaced the naive direct calls
with calls to super(), although the bottom subclass only calls super once
rather than having to make the calls for both the left and right. The
change is easy enough, but look at the difference when we execute
it:

>>> s = Subclass()
>>> s.call_me()
Calling method on Base Class
Calling method on Right Subclass
Calling method on Left Subclass
Calling method on Subclass
>>> print(s.num_sub_calls, s.num_left_calls, s.num_right_calls,
s.num_base_calls)
1 1 1 1

Looks good; our base method is only being called once. But what is
super() actually doing here? Since the print statements are executed
after the super calls, the printed output is in the order each method is

actually executed. Let's look at the output from back to front to see
who is calling what.

First, call_me of Subclass calls super().call_me(), which happens to refer
to LeftSubclass.call_me(). The LeftSubclass.call_me() method then calls
super().call_me(), but in this case, super() is referring to
RightSubclass.call_me().

Pay particular attention to this: the super call is not calling the
method on the superclass of LeftSubclass (which is BaseClass). Rather, it
is calling RightSubclass, even though it is not a direct parent of
LeftSubclass! This is the next method, not the parent method.
RightSubclass then calls BaseClass and the super calls have ensured each
method in the class hierarchy is executed once.

Different sets of arguments
This is going to make things complicated as we return to our Friend
multiple inheritance example. In the __init__ method for Friend, we
were originally calling __init__ for both parent classes, with different
sets of arguments:

Contact.__init__(self, name, email)
AddressHolder.__init__(self, street, city, state, code)

How can we manage different sets of arguments when using super?
We don't necessarily know which class super is going to try to initialize
first. Even if we did, we need a way to pass the extra arguments so
that subsequent calls to super, on other subclasses, receive the right
arguments.

Specifically, if the first call to super passes the name and email arguments
to Contact.__init__, and Contact.__init__ then calls super, it needs to be able
to pass the address-related arguments to the next method, which is
AddressHolder.__init__.

This problem manifests itself anytime we want to call superclass
methods with the same name, but with different sets of arguments.
Most often, the only time you would want to call a superclass with a
completely different set of arguments is in __init__, as we're doing
here. Even with regular methods, though, we may want to add
optional parameters that only make sense to one subclass or set of
subclasses.

Sadly, the only way to solve this problem is to plan for it from the
beginning. We have to design our base class parameter lists to
accept keyword arguments for any parameters that are not required
by every subclass implementation. Finally, we must ensure the
method freely accepts unexpected arguments and passes them on

to its super call, in case they are necessary to later methods in the
inheritance order.

Python's function parameter syntax provides all the tools we need to
do this, but it makes the overall code look cumbersome. Have a look
at the proper version of the Friend multiple inheritance code, as
follows:

class Contact:
 all_contacts = []

 def __init__(self, name="", email="", **kwargs):
 super().__init__(**kwargs)
 self.name = name
 self.email = email
 self.all_contacts.append(self)

class AddressHolder:
 def __init__(self, street="", city="", state="", code="", **kwargs):
 super().__init__(**kwargs)
 self.street = street
 self.city = city
 self.state = state
 self.code = code

class Friend(Contact, AddressHolder):
 def __init__(self, phone="", **kwargs):
 super().__init__(**kwargs)
 self.phone = phone

We've changed all arguments to keyword arguments by giving them
an empty string as a default value. We've also ensured that a **kwargs
parameter is included to capture any additional parameters that our
particular method doesn't know what to do with. It passes these
parameters up to the next class with the super call.

If you aren't familiar with the **kwargs syntax, it basically collects any keyword arguments passed
into the method that were not explicitly listed in the parameter list. These arguments are stored in
a dictionary named kwargs (we can call the variable whatever we like, but convention suggests kw,
or kwargs). When we call a different method (for example, super().__init__) with a **kwargs
syntax, it unpacks the dictionary and passes the results to the method as normal keyword
arguments. We'll cover this in detail in Chapter 20, Python Object-Oriented Shortcuts.

The previous example does what it is supposed to do. But it's
starting to look messy, and it is difficult to answer the question, What

arguments do we need to pass into Friend.__init__? This is the
foremost question for anyone planning to use the class, so a
docstring should be added to the method to explain what is
happening.

Furthermore, even this implementation is insufficient if we want to
reuse variables in parent classes. When we pass the **kwargs variable
to super, the dictionary does not include any of the variables that were
included as explicit keyword arguments. For example, in
Friend.__init__, the call to super does not have phone in the kwargs
dictionary. If any of the other classes need the phone parameter, we
need to ensure it is in the dictionary that is passed. Worse, if we
forget to do this, it will be extremely frustrating to debug because the
superclass will not complain, but will simply assign the default value
(in this case, an empty string) to the variable.

There are a few ways to ensure that the variable is passed upward.
Assume the Contact class does, for some reason, need to be
initialized with a phone parameter, and the Friend class will also need
access to it. We can do any of the following:

Don't include phone as an explicit keyword argument. Instead,
leave it in the kwargs dictionary. Friend can look it up using
the kwargs['phone'] syntax. When it passes **kwargs to the super call,
phone will still be in the dictionary.
Make phone an explicit keyword argument, but update the kwargs
dictionary before passing it to super, using the standard
dictionary kwargs['phone'] = phone syntax.
Make phone an explicit keyword argument, but update the kwargs
dictionary using the kwargs.update method. This is useful if you
have several arguments to update. You can create the
dictionary passed into update using either the dict(phone=phone)
constructor, or the dictionary {'phone': phone} syntax.
Make phone an explicit keyword argument, but pass it to the super
call explicitly with the super().__init__(phone=phone, **kwargs) syntax.

We have covered many of the caveats involved with multiple
inheritance in Python. When we need to account for all possible
situations, we have to plan for them and our code will get messy.
Basic multiple inheritance can be handy but, in many cases, we may
want to choose a more transparent way of combining two disparate
classes, usually using composition or one of the design patterns we'll
be covering in Chapter 22, Design Patterns I, and Chapter 23, Design
Patterns II.

I have wasted entire days of my life trawling through complex multiple inheritance hierarchies
trying to figure out what arguments I need to pass into one of the deeply nested subclasses. The
author of the code tended not to document his classes and often passed the kwargs—Just in
case they might be needed someday. This was a particularly bad example of using multiple
inheritance when it was not needed. Multiple inheritance is a big fancy term that new coders like
to show off, but I recommend avoiding it, even when you think it's a good choice. Your future self
and other coders will be glad they understand your code when they have to read it later.

Polymorphism
We were introduced to polymorphism in Chapter 15, Object-Oriented
Design. It is a showy name describing a simple concept: different
behaviors happen depending on which subclass is being used,
without having to explicitly know what the subclass actually is. As an
example, imagine a program that plays audio files. A media player
might need to load an AudioFile object and then play it. We can put a
play() method on the object, which is responsible for decompressing
or extracting the audio and routing it to the sound card and speakers.
The act of playing an AudioFile could feasibly be as simple as:

audio_file.play()

However, the process of decompressing and extracting an audio file
is very different for different types of files. While .wav files are stored
uncompressed, .mp3, .wma, and .ogg files all utilize totally different
compression algorithms.

We can use inheritance with polymorphism to simplify the design.
Each type of file can be represented by a different subclass of
AudioFile, for example, WavFile and MP3File. Each of these would have a
play() method that would be implemented differently for each file to
ensure that the correct extraction procedure is followed. The media
player object would never need to know which subclass of AudioFile it
is referring to; it just calls play() and polymorphically lets the object
take care of the actual details of playing. Let's look at a quick
skeleton showing how this might look:

class AudioFile:
 def __init__(self, filename):
 if not filename.endswith(self.ext):
 raise Exception("Invalid file format")

 self.filename = filename

class MP3File(AudioFile):

 ext = "mp3"

 def play(self):
 print("playing {} as mp3".format(self.filename))

class WavFile(AudioFile):
 ext = "wav"

 def play(self):
 print("playing {} as wav".format(self.filename))

class OggFile(AudioFile):
 ext = "ogg"

 def play(self):
 print("playing {} as ogg".format(self.filename))

All audio files check to ensure that a valid extension was given upon
initialization. But did you notice how the __init__ method in the parent
class is able to access the ext class variable from different
subclasses? That's polymorphism at work. If the filename doesn't
end with the correct name, it raises an exception (exceptions will be
covered in detail in the next chapter). The fact that the AudioFile parent
class doesn't actually store a reference to the ext variable doesn't
stop it from being able to access it on the subclass.

In addition, each subclass of AudioFile implements play() in a different
way (this example doesn't actually play the music; audio
compression algorithms really deserve a separate book!). This is
also polymorphism in action. The media player can use the exact
same code to play a file, no matter what type it is; it doesn't care
what subclass of AudioFile it is looking at. The details of
decompressing the audio file are encapsulated. If we test this
example, it works as we would hope:

>>> ogg = OggFile("myfile.ogg")
>>> ogg.play()
playing myfile.ogg as ogg
>>> mp3 = MP3File("myfile.mp3")
>>> mp3.play()
playing myfile.mp3 as mp3
>>> not_an_mp3 = MP3File("myfile.ogg")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "polymorphic_audio.py", line 4, in __init__

 raise Exception("Invalid file format")
Exception: Invalid file format

See how AudioFile.__init__ is able to check the file type without actually
knowing which subclass it is referring to?

Polymorphism is actually one of the coolest things about object-
oriented programming, and it makes some programming designs
obvious that weren't possible in earlier paradigms. However, Python
makes polymorphism seem less awesome because of duck typing.
Duck typing in Python allows us to use any object that provides the
required behavior without forcing it to be a subclass. The dynamic
nature of Python makes this trivial. The following example does not
extend AudioFile, but it can be interacted with in Python using the
exact same interface:

class FlacFile:
 def __init__(self, filename):
 if not filename.endswith(".flac"):
 raise Exception("Invalid file format")

 self.filename = filename

 def play(self):
 print("playing {} as flac".format(self.filename))

Our media player can play this object just as easily as one that
extends AudioFile.

Polymorphism is one of the most important reasons to use
inheritance in many object-oriented contexts. Because any objects
that supply the correct interface can be used interchangeably in
Python, it reduces the need for polymorphic common superclasses.
Inheritance can still be useful for sharing code, but if all that is being
shared is the public interface, duck typing is all that is required. This
reduced need for inheritance also reduces the need for multiple
inheritance; often, when multiple inheritance appears to be a valid
solution, we can just use duck typing to mimic one of the multiple
superclasses.

Of course, just because an object satisfies a particular interface (by
providing required methods or attributes) does not mean it will simply
work in all situations. It has to fulfill that interface in a way that makes
sense in the overall system. Just because an object provides a play()
method does not mean it will automatically work with a media player.
For example, our chess AI object from Chapter 15, Object-Oriented
Design, may have a play() method that moves a chess piece. Even
though it satisfies the interface, this class would likely break in
spectacular ways if we tried to plug it into a media player!

Another useful feature of duck typing is that the duck-typed object
only needs to provide those methods and attributes that are actually
being accessed. For example, if we needed to create a fake file
object to read data from, we can create a new object that has a read()
method; we don't have to override the write method if the code that is
going to interact with the fake object will not be calling it. More
succinctly, duck typing doesn't need to provide the entire interface of
an object that is available; it only needs to fulfill the interface that is
actually accessed.

Abstract base classes
While duck typing is useful, it is not always easy to tell in advance if
a class is going to fulfill the protocol you require. Therefore, Python
introduced the idea of abstract base classes (ABCs). Abstract base
classes define a set of methods and properties that a class must
implement in order to be considered a duck-type instance of that
class. The class can extend the abstract base class itself in order to
be used as an instance of that class, but it must supply all the
appropriate methods.

In practice, it's rarely necessary to create new abstract base classes,
but we may find occasions to implement instances of existing ABCs.
We'll cover implementing ABCs first, and then briefly see how to
create your own, should you ever need to.

Using an abstract base class
Most of the abstract base classes that exist in the Python standard
library live in the collections module. One of the simplest ones is the
Container class. Let's inspect it in the Python interpreter to see what
methods this class requires:

>>> from collections import Container
>>> Container.__abstractmethods__
frozenset(['__contains__'])

So, the Container class has exactly one abstract method that needs to
be implemented, __contains__. You can issue help(Container.__contains__) to
see what the function signature should look like:

Help on method __contains__ in module _abcoll:
 __contains__(self, x) unbound _abcoll.Container method

We can see that __contains__ needs to take a single argument.
Unfortunately, the help file doesn't tell us much about what that
argument should be, but it's pretty obvious from the name of the
ABC and the single method it implements that this argument is the
value the user is checking to see whether the container holds.

This method is implemented by list, str, and dict to indicate whether
or not a given value is in that data structure. However, we can also
define a silly container that tells us whether a given value is in the
set of odd integers:

class OddContainer:
 def __contains__(self, x):
 if not isinstance(x, int) or not x % 2:
 return False
 return True

Here's the interesting part: we can instantiate an OddContainer object
and determine that, even though we did not extend Container, the
class is a Container object:

>>> from collections import Container
>>> odd_container = OddContainer()
>>> isinstance(odd_container, Container)
True
>>> issubclass(OddContainer, Container)
True

And that is why duck typing is way more awesome than classical
polymorphism. We can create is a relationships without the overhead
of writing the code to set up inheritance (or worse, multiple
inheritance).

One cool thing about the Container ABC is that any class that
implements it gets to use the in keyword for free. In fact, in is just
syntax sugar that delegates to the __contains__ method. Any class that
has a __contains__ method is a Container and can therefore be queried by
the in keyword, for example:

>>> 1 in odd_container
True
>>> 2 in odd_container
False
>>> 3 in odd_container
True
>>> "a string" in odd_container
False

Creating an abstract base class
As we saw earlier, it's not necessary to have an abstract base class
to enable duck typing. However, imagine we were creating a media
player with third-party plugins. It is advisable to create an abstract
base class in this case to document what API the third-party plugins
should provide (documentation is one of the stronger use cases for
ABCs). The abc module provides the tools you need to do this, but I'll
warn you in advance, this utilizes some of Python's most
arcane concepts, as demonstrated in the following block of code::

import abc

class MediaLoader(metaclass=abc.ABCMeta):
 @abc.abstractmethod
 def play(self):
 pass

 @abc.abstractproperty
 def ext(self):
 pass

 @classmethod
 def __subclasshook__(cls, C):
 if cls is MediaLoader:
 attrs = set(dir(C))
 if set(cls.__abstractmethods__) <= attrs:
 return True

 return NotImplemented

This is a complicated example that includes several Python features
that won't be explained until later in this book. It is included here for
completeness, but you do not need to understand all of it to get the
gist of how to create your own ABC.

The first weird thing is the metaclass keyword argument that is passed
into the class where you would normally see the list of parent
classes. This is a seldom-used construct from the mystic art of
metaclass programming. We won't be covering metaclasses in this
book, so all you need to know is that by assigning the ABCMeta

metaclass, you are giving your class superhero (or at least
superclass) abilities.

Next, we see the @abc.abstractmethod and @abc.abstractproperty constructs.
These are Python decorators. We'll discuss those in Chapter 22, Python
Design Patterns I. For now, just know that by marking a method or
property as being abstract, you are stating that any subclass of this
class must implement that method or supply that property in order to
be considered a proper member of the class.

See what happens if you implement subclasses that do, or don't,
supply those properties:

>>> class Wav(MediaLoader):
... pass
...
>>> x = Wav()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class Wav with abstract methods
ext, play
>>> class Ogg(MediaLoader):
... ext = '.ogg'
... def play(self):
... pass
...
>>> o = Ogg()

Since the Wav class fails to implement the abstract attributes, it is not
possible to instantiate that class. The class is still a legal abstract
class, but you'd have to subclass it to actually do anything. The Ogg
class supplies both attributes, so it instantiates cleanly.

Going back to the MediaLoader ABC, let's dissect that __subclasshook__
method. It is basically saying that any class that supplies concrete
implementations of all the abstract attributes of this ABC should be
considered a subclass of MediaLoader, even if it doesn't actually inherit
from the MediaLoader class.

More common object-oriented languages have a clear separation
between the interface and the implementation of a class. For
example, some languages provide an explicit interface keyword that

allows us to define the methods that a class must have without any
implementation. In such an environment, an abstract class is one
that provides both an interface and a concrete implementation of
some, but not all, methods. Any class can explicitly state that it
implements a given interface.

Python's ABCs help to supply the functionality of interfaces without
compromising on the benefits of duck typing.

Demystifying the magic
You can copy and paste the subclass code without understanding it
if you want to make abstract classes that fulfill this particular
contract. We'll cover most of the unusual syntaxes in the book, but
let's go over it line by line to get an overview:

 @classmethod

This decorator marks the method as a class method. It essentially
says that the method can be called on a class instead of an
instantiated object:

 def __subclasshook__(cls, C):

This defines the __subclasshook__ class method. This special method is
called by the Python interpreter to answer the question: Is the class C
a subclass of this class?

 if cls is MediaLoader:

We check to see whether the method was called specifically on this
class, rather than, say, a subclass of this class. This prevents, for
example, the Wav class from being thought of as a parent class of the
Ogg class:

 attrs = set(dir(C))

All this line does is get the set of methods and properties that the
class has, including any parent classes in its class hierarchy:

 if set(cls.__abstractmethods__) <= attrs:

This line uses set notation to see whether the set of abstract
methods in this class has been supplied in the candidate class. Note
that it doesn't check to see whether the methods have been

implemented; just if they are there. Thus, it's possible for a class to
be a subclass and yet still be an abstract class itself.

 return True

If all the abstract methods have been supplied, then the candidate
class is a subclass of this class and we return True. The method can
legally return one of the three values: True, False, or NotImplemented. True
and False indicate that the class is, or isn't, definitively a subclass of
this class:

return NotImplemented

If any of the conditionals have not been met (that is, the class is not
MediaLoader or not all abstract methods have been supplied), then
return NotImplemented. This tells the Python machinery to use the default
mechanism (does the candidate class explicitly extend this class?)
for subclass detection.

In short, we can now define the Ogg class as a subclass of the
MediaLoader class without actually extending the MediaLoader class:

>>> class Ogg(): ... ext = '.ogg' ... def play(self): ... print("this
will play an ogg file") ... >>> issubclass(Ogg, MediaLoader) True >>>
isinstance(Ogg(), MediaLoader) True

Case study
Let's try to tie everything we've learned together with a larger
example. We'll be developing an automated grading system for
programming assignments, similar to that employed at Dataquest or
Coursera. The system will need to provide a simple class-based
interface for course writers to create their assignments and should
give a useful error message if it does not fulfill that interface. The
writers need to be able to supply their lesson content and to write
custom answer checking code to make sure their students got the
answer right. It will also be nice for them to have access to the
students' names to make the content seem a little friendlier.

The grader itself will need to keep track of which assignment the
student is currently working on. A student might make several
attempts at an assignment before they get it right. We want to keep
track of the number of attempts so the course authors can improve
the content of the more difficult lessons.

Let's start by defining the interface that the course authors will need
to use. Ideally, it will require the course authors to write a minimal
amount of extra code besides their lesson content and answer
checking code. Here is the simplest class I could come up with:

class IntroToPython:
 def lesson(self):
 return f"""
 Hello {self.student}. define two variables,
 an integer named a with value 1
 and a string named b with value 'hello'

 """

 def check(self, code):
 return code == "a = 1\nb = 'hello'"

Admittedly, that particular course author may be a little naive in how
they do their answer checking.

We can start with an abstract base class that defines this interface,
as follows:

class Assignment(metaclass=abc.ABCMeta):
 @abc.abstractmethod
 def lesson(self, student):
 pass

 @abc.abstractmethod
 def check(self, code):
 pass

 @classmethod
 def __subclasshook__(cls, C):
 if cls is Assignment:
 attrs = set(dir(C))
 if set(cls.__abstractmethods__) <= attrs:
 return True

 return NotImplemented

This ABC defines the two required abstract methods and provides
the magic __subclasshook__ method to allow a class to be perceived as a
subclass without having to explicitly extend it (I usually just copy and
paste this code. It isn't worth memorizing.)

We can confirm that the IntroToPython class fulfills this interface using
issubclass(IntroToPython, Assignment), which should return True. Of course,
we can explicitly extend the Assignment class if we prefer, as seen in
this second assignment:

class Statistics(Assignment):
 def lesson(self):
 return (
 "Good work so far, "
 + self.student
 + ". Now calculate the average of the numbers "
 + " 1, 5, 18, -3 and assign to a variable named 'avg'"
)

 def check(self, code):
 import statistics

 code = "import statistics\n" + code

 local_vars = {}
 global_vars = {}
 exec(code, global_vars, local_vars)

 return local_vars.get("avg") == statistics.mean([1, 5, 18, -3])

This course author, unfortunately, is also rather naive. The exec call
will execute the student's code right inside the grading system,
giving them access to the entire system. Obviously, the first thing
they will do is hack the system to make their grades 100%. They
probably think that's easier than doing the assignments correctly!

Next, we'll create a class that manages how many attempts the
student has made at a given assignment:

class AssignmentGrader:
 def __init__(self, student, AssignmentClass):
 self.assignment = AssignmentClass()
 self.assignment.student = student
 self.attempts = 0
 self.correct_attempts = 0

 def check(self, code):
 self.attempts += 1
 result = self.assignment.check(code)
 if result:
 self.correct_attempts += 1

 return result

 def lesson(self):
 return self.assignment.lesson()

This class uses composition instead of inheritance. At first glance, it
would make sense for these methods to exist on the Assignment
superclass. That would eliminate the annoying lesson method, which
just proxies through to the same method on the assignment object. It
would certainly be possible to put all this logic directly on the
Assignment abstract base class, or even to have the ABC inherit from
this AssignmentGrader class. In fact, I would normally recommend that,
but in this case, it would force all course authors to explicitly extend
the class, which violates our request that content authoring be as
simple as possible.

Finally, we can start to put together the Grader class, which is
responsible for managing which assignments are available and
which one each student is currently working on. The most interesting
part is the register method:

import uuid

class Grader:
 def __init__(self):
 self.student_graders = {}
 self.assignment_classes = {}

 def register(self, assignment_class):
 if not issubclass(assignment_class, Assignment):
 raise RuntimeError(
 "Your class does not have the right methods"
)

 id = uuid.uuid4()
 self.assignment_classes[id] = assignment_class
 return id

This code block includes the initializer, which includes two
dictionaries we'll discuss in a minute. The register method is a bit
complex, so we'll dissect it thoroughly.

The first odd thing is the parameter this method accepts:
assignment_class. This parameter is intended to be an actual class, not
an instance of the class. Remember, classes are objects, too, and
can be passed around like other classes. Given the IntroToPython class
we defined earlier, we might register it without instantiating it, as
follows:

from grader import Grader
from lessons import IntroToPython, Statistics

grader = Grader()
itp_id = grader.register(IntroToPython)

The method first checks whether that class is a subclass of the
Assignment class. Of course, we implemented a custom __subclasshook__
method, so this includes classes that do not explicitly subclass
Assignment. The naming is, perhaps, a bit deceitful! If it doesn't have the
two required methods, it raises an exception. Exceptions are a topic

we'll cover in detail in the next chapter; for now, just assume that it
makes the program get angry and quit.

Then, we generate a random identifier to represent that specific
assignment. We store the assignment_class in a dictionary indexed by
that ID, and return the ID so that the calling code can look that
assignment up in the future. Presumably, another object would then
place that ID in a course syllabus of some sort so students do the
assignments in order, but we won't be doing that for this part of the
project.

The uuid function returns a specially formatted string called a universally unique identifier, also
known as a globally unique identifier. It essentially represents an extremely large random number
that is almost, but not quite, impossible to conflict with another similarly generated identifier. It is a
great, quick, and clean way to create an arbitrary ID to keep track of items.

Next up, we have the start_assignment function, which allows a student
to start working on an assignment given the ID of that assignment.
All it does is construct an instance of the AssignmentGrader class we
defined earlier and plop it in a dictionary stored on the Grader class, as
follows:

 def start_assignment(self, student, id):
 self.student_graders[student] = AssignmentGrader(
 student, self.assignment_classes[id]
)

After that, we write a couple of proxy methods that get the lesson or
check the code for whatever assignment the student is currently
working on:

 def get_lesson(self, student):
 assignment = self.student_graders[student]
 return assignment.lesson()

 def check_assignment(self, student, code):
 assignment = self.student_graders[student]
 return assignment.check(code)

Finally, we create a method that gives a summary of a student's
current assignment progress. It looks up the assignment object and

creates a formatted string with all the information we have about that
student:

 def assignment_summary(self, student):
 grader = self.student_graders[student]
 return f"""
 {student}'s attempts at {grader.assignment.__class__.__name__}:

 attempts: {grader.attempts}
 correct: {grader.correct_attempts}

 passed: {grader.correct_attempts > 0}
 """

And that's it. You'll notice that this case study does not use a ton of
inheritance, which may seem a bit odd given the topic of the chapter,
but duck typing is very prevalent. It is quite common for Python
programs to be designed with inheritance that gets simplified into
more versatile constructs as it is iterated on. As another example, I
originally defined the AssignmentGrader as an inheritance relationship, but
realized halfway through that it would be better to use composition,
for the reasons outlined previously.

Here's a bit of test code that shows all these objects connected
together:

grader = Grader()
itp_id = grader.register(IntroToPython)
stat_id = grader.register(Statistics)

grader.start_assignment("Tammy", itp_id)
print("Tammy's Lesson:", grader.get_lesson("Tammy"))
print(
 "Tammy's check:",
 grader.check_assignment("Tammy", "a = 1 ; b = 'hello'"),
)
print(
 "Tammy's other check:",
 grader.check_assignment("Tammy", "a = 1\nb = 'hello'"),
)

print(grader.assignment_summary("Tammy"))

grader.start_assignment("Tammy", stat_id)
print("Tammy's Lesson:", grader.get_lesson("Tammy"))
print("Tammy's check:", grader.check_assignment("Tammy", "avg=5.25"))
print(
 "Tammy's other check:",

 grader.check_assignment(
 "Tammy", "avg = statistics.mean([1, 5, 18, -3])"
),
)

print(grader.assignment_summary("Tammy"))

Exercises
Look around you at some of the physical objects in your workspace
and see if you can describe them in an inheritance hierarchy.
Humans have been dividing the world into taxonomies like this for
centuries, so it shouldn't be difficult. Are there any non-obvious
inheritance relationships between classes of objects? If you were to
model these objects in a computer application, what properties and
methods would they share? Which ones would have to be
polymorphically overridden? What properties would be completely
different between them?

Now write some code. No, not for the physical hierarchy; that's
boring. Physical items have more properties than methods. Just
think about a pet programming project you've wanted to tackle in the
past year, but never gotten around to. For whatever problem you
want to solve, try to think of some basic inheritance relationships and
then implement them. Make sure that you also pay attention to the
sorts of relationships that you actually don't need to use inheritance
for. Are there any places where you might want to use multiple
inheritance? Are you sure? Can you see any place where you would
want to use a mixin? Try to knock together a quick prototype. It
doesn't have to be useful or even partially working. You've seen how
you can test code using python -i already; just write some code and
test it in the interactive interpreter. If it works, write some more. If it
doesn't, fix it!

Now, take a look at the student grader system in the case study.
There is a lot missing from it, and not just decent course content!
How do students get into the system? Is there a curriculum that
defines which order they should study lessons in? What happens if
you change the AssignmentGrader to use inheritance, rather than
composition, on the Assignment objects?

Finally, try to come up with some good use cases for mixins, then
experiment with them until you realize that there is probably a better
design using composition!

Summary
We've gone from simple inheritance, one of the most useful tools in
the object-oriented programmer's toolbox, all the way through to
multiple inheritance—One of the most complicated. Inheritance can
be used to add functionality to existing classes and built-ins using
inheritance. Abstracting similar code into a parent class can help
increase maintainability. Methods on parent classes can be called
using super and argument lists must be formatted safely for these
calls to work when using multiple inheritance. Abstract base classes
allow you to document what methods and properties a class must
have to fulfill a particular interface, and even allow you to change the
very definition of subclass.

In the next chapter, we'll cover the subtle art of handling exceptional
circumstances.

Expecting the Unexpected
Programs are very fragile. It would be ideal if code always returned a
valid result, but sometimes a valid result can't be calculated. For
example, it's not possible to divide by zero, or to access the eighth
item in a five-item list.

In the old days, the only way around this was to rigorously check the
inputs for every function to make sure they made sense. Typically,
functions had special return values to indicate an error condition; for
example, they could return a negative number to indicate that a
positive value couldn't be calculated. Different numbers might mean
different errors occurred. Any code that called this function would
have to explicitly check for an error condition and act accordingly. A
lot of developers didn't bother to do this, and programs simply
crashed. However, in the object-oriented world, this is not the case.

In this chapter, we will study exceptions, special error objects that
only need to be handled when it makes sense to handle them. In
particular, we will cover the following:

How to cause an exception to occur
How to recover when an exception has occurred
How to handle different exception types in different ways
Cleaning up when an exception has occurred
Creating new types of exception
Using the exception syntax for flow control

Raising exceptions
In principle, an exception is just an object. There are many different
exception classes available, and we can easily define more of our
own. The one thing they all have in common is that they inherit from
a built-in class called BaseException. These exception objects become
special when they are handled inside the program's flow of control.
When an exception occurs, everything that was supposed to happen
doesn't happen, unless it was supposed to happen when an
exception occurred. Make sense? Don't worry, it will!

The easiest way to cause an exception to occur is to do something
silly. Chances are you've done this already and seen the exception
output. For example, any time Python encounters a line in your
program that it can't understand, it bails with SyntaxError, which is a
type of exception. Here's a common one:

>>> print "hello world"
 File "<stdin>", line 1
 print "hello world"
 ^
SyntaxError: invalid syntax

This print statement was a valid command way back in the Python 2
and earlier days, but in Python 3, because print is a function, we
have to enclose the arguments in parentheses. So, if we type the
preceding command into a Python 3 interpreter, we get SyntaxError.

In addition to SyntaxError, some other common exceptions are shown
in the following example:

>>> x = 5 / 0
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: int division or modulo by zero

>>> lst = [1,2,3]
>>> print(lst[3])
Traceback (most recent call last):

 File "<stdin>", line 1, in <module>
IndexError: list index out of range

>>> lst + 2
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: can only concatenate list (not "int") to list

>>> lst.add
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'list' object has no attribute 'add'

>>> d = {'a': 'hello'}
>>> d['b']
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'b'

>>> print(this_is_not_a_var)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'this_is_not_a_var' is not defined

Sometimes, these exceptions are indicators of something wrong in
our program (in which case, we would go to the indicated line
number and fix it), but they also occur in legitimate situations. A
ZeroDivisionError error doesn't always mean we received an invalid
input. It could also mean we have received a different input. The
user may have entered a zero by mistake, or on purpose, or it may
represent a legitimate value, such as an empty bank account or the
age of a newborn child.

You may have noticed all the preceding built-in exceptions end with
the name Error. In Python, the words error and Exception are used
almost interchangeably. Errors are sometimes considered more dire
than exceptions, but they are dealt with in exactly the same way.
Indeed, all the error classes in the preceding example have Exception
(which extends BaseException) as their superclass.

Raising an exception
We'll get to responding to such exceptions in a minute, but first, let's
discover what we should do if we're writing a program that needs to
inform the user or a calling function that the inputs are invalid. We
can use the exact same mechanism that Python uses. Here's a
simple class that adds items to a list only if they are even numbered
integers:

class EvenOnly(list):
 def append(self, integer):
 if not isinstance(integer, int):
 raise TypeError("Only integers can be added")
 if integer % 2:
 raise ValueError("Only even numbers can be added")
 super().append(integer)

This class extends the list built-in, as we discussed in Chapter 16,
Objects in Python, and overrides the append method to check two
conditions that ensure the item is an even integer. We first check
whether the input is an instance of the int type, and then use the
modulus operator to ensure it is divisible by two. If either of the two
conditions is not met, the raise keyword causes an exception to
occur. The raise keyword is followed by the object being raised as an
exception. In the preceding example, two objects are constructed
from the built-in TypeError and ValueError classes. The raised object
could just as easily be an instance of a new Exception class we create
ourselves (we'll see how shortly), an exception that was defined
elsewhere, or even an Exception object that has been previously raised
and handled.

If we test this class in the Python interpreter, we can see that it is
outputting useful error information when exceptions occur, just as
before:

>>> e = EvenOnly()
>>> e.append("a string")
Traceback (most recent call last):

 File "<stdin>", line 1, in <module>
 File "even_integers.py", line 7, in add
 raise TypeError("Only integers can be added")
TypeError: Only integers can be added

>>> e.append(3)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "even_integers.py", line 9, in add
 raise ValueError("Only even numbers can be added")
ValueError: Only even numbers can be added
>>> e.append(2)

While this class is effective for demonstrating exceptions in action, it isn't very good at its job. It is
still possible to get other values into the list using index notation or slice notation. This can all be
avoided by overriding other appropriate methods, some of which are magic double-underscore
methods.

The effects of an exception
When an exception is raised, it appears to stop program execution
immediately. Any lines that were supposed to run after the exception
is raised are not executed, and unless the exception is dealt with, the
program will exit with an error message. Take a look at this basic
function:

def no_return():
 print("I am about to raise an exception")
 raise Exception("This is always raised")
 print("This line will never execute")
 return "I won't be returned"

If we execute this function, we see that the first print call is executed
and then the exception is raised. The second print function call is
never executed, nor is the return statement:

>>> no_return()
I am about to raise an exception
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "exception_quits.py", line 3, in no_return
 raise Exception("This is always raised")
Exception: This is always raised

Furthermore, if we have a function that calls another function that
raises an exception, nothing is executed in the first function after the
point where the second function was called. Raising an exception
stops all execution right up through the function call stack until it is
either handled or forces the interpreter to exit. To demonstrate, let's
add a second function that calls the earlier one:

def call_exceptor():
 print("call_exceptor starts here...")
 no_return()
 print("an exception was raised...")
 print("...so these lines don't run")

When we call this function, we see that the first print statement
executes, as well as the first line in the no_return function. But once the

exception is raised, nothing else executes:

>>> call_exceptor()
call_exceptor starts here...
I am about to raise an exception
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "method_calls_excepting.py", line 9, in call_exceptor
 no_return()
 File "method_calls_excepting.py", line 3, in no_return
 raise Exception("This is always raised")
Exception: This is always raised

We'll soon see that when the interpreter is not actually taking a
shortcut and exiting immediately, we can react to and deal with the
exception inside either method. Indeed, exceptions can be handled
at any level after they are initially raised.

Look at the exception's output (called a traceback) from bottom to
top, and notice how both methods are listed. Inside no_return, the
exception is initially raised. Then, just above that, we see that inside
call_exceptor, that pesky no_return function was called and the exception
bubbled up to the calling method. From there, it went up one more
level to the main interpreter, which, not knowing what else to do with
it, gave up and printed a traceback.

Handling exceptions
Now let's look at the tail side of the exception coin. If we encounter
an exception situation, how should our code react to or recover from
it? We handle exceptions by wrapping any code that might throw one
(whether it is exception code itself, or a call to any function or
method that may have an exception raised inside it) inside a
try...except clause. The most basic syntax looks like this:

try:
 no_return()
except:
 print("I caught an exception")
print("executed after the exception")

If we run this simple script using our existing no_return function—
which, as we know very well, always throws an exception—we get
this output:

I am about to raise an exception
I caught an exception
executed after the exception

The no_return function happily informs us that it is about to raise an
exception, but we fooled it and caught the exception. Once caught,
we were able to clean up after ourselves (in this case, by outputting
that we were handling the situation), and continue on our way, with
no interference from that offensive function. The remainder of the
code in the no_return function still went unexecuted, but the code that
called the function was able to recover and continue.

Note the indentation around try and except. The try clause wraps any code that might throw an
exception. The except clause is then back on the same indentation level as the try line. Any code
to handle the exception is indented after the except clause. Then normal code resumes at the
original indentation level.

The problem with the preceding code is that it will catch any type of
exception. What if we were writing some code that could raise
both TypeError and ZeroDivisionError? We might want to

catch ZeroDivisionError, but let TypeError propagate to the console. Can
you guess the syntax?

Here's a rather silly function that does just that:

def funny_division(divider):
 try:
 return 100 / divider
 except ZeroDivisionError:
 return "Zero is not a good idea!"

print(funny_division(0))
print(funny_division(50.0))
print(funny_division("hello"))

The function is tested with the print statements that show it behaving
as expected:

Zero is not a good idea!
2.0
Traceback (most recent call last):
 File "catch_specific_exception.py", line 9, in <module>
 print(funny_division("hello"))
 File "catch_specific_exception.py", line 3, in funny_division
 return 100 / divider
TypeError: unsupported operand type(s) for /: 'int' and 'str'.

The first line of output shows that if we enter 0, we get properly
mocked. If we call with a valid number (note that it's not an integer,
but it's still a valid divisor), it operates correctly. Yet if we enter a
string (you were wondering how to get a TypeError, weren't you?), it
fails with an exception. If we had used an empty except clause that
didn't specify a ZeroDivisionError, it would have accused us of dividing
by zero when we sent it a string, which is not a proper behavior at
all.

The bare except syntax is generally frowned upon, even if you really do want to catch all
instances of an exception. Use the except Exception: syntax to explicitly catch all exception
types. This tell the reader that you meant to catch exception objects and all subclasses of
Exception. The bare except syntax is actually the same as using except BaseException:, which
actually catches system-level exceptions that are very rare to intentionally want to catch, as we'll
see in the next section. If you really do want to catch them, explicitly use except BaseException:
so that anyone who reads your code knows that you didn't just forget to specify what kind of
exception you wanted.

We can even catch two or more different exceptions and handle
them with the same code. Here's an example that raises three
different types of exception. It handles TypeError and ZeroDivisionError
with the same exception handler, but it may also raise a
ValueError error if you supply the number 13:

def funny_division2(divider):
 try:
 if divider == 13:
 raise ValueError("13 is an unlucky number")
 return 100 / divider
 except (ZeroDivisionError, TypeError):
 return "Enter a number other than zero"

for val in (0, "hello", 50.0, 13):

 print("Testing {}:".format(val), end=" ")
 print(funny_division2(val))

The for loop at the bottom loops over several test inputs and prints
the results. If you're wondering about that end argument in the print
statement, it just turns the default trailing newline into a space so
that it's joined with the output from the next line. Here's a run of the
program:

Testing 0: Enter a number other than zero
Testing hello: Enter a number other than zero
Testing 50.0: 2.0
Testing 13: Traceback (most recent call last):
 File "catch_multiple_exceptions.py", line 11, in <module>
 print(funny_division2(val))
 File "catch_multiple_exceptions.py", line 4, in funny_division2
 raise ValueError("13 is an unlucky number")
ValueError: 13 is an unlucky number

The number 0 and the string are both caught by the except clause, and
a suitable error message is printed. The exception from the number
13 is not caught because it is a ValueError, which was not included in
the types of exceptions being handled. This is all well and good, but
what if we want to catch different exceptions and do different things
with them? Or maybe we want to do something with an exception
and then allow it to continue to bubble up to the parent function, as if
it had never been caught?

We don't need any new syntax to deal with these cases. It's possible
to stack the except clauses, and only the first match will be executed.
For the second question, the raise keyword, with no arguments, will
re-raise the last exception if we're already inside an exception
handler. Observe the following code:

def funny_division3(divider):
 try:
 if divider == 13:
 raise ValueError("13 is an unlucky number")
 return 100 / divider
 except ZeroDivisionError:
 return "Enter a number other than zero"
 except TypeError:
 return "Enter a numerical value"
 except ValueError:
 print("No, No, not 13!")
 raise

The last line re-raises the ValueError error, so after outputting No, No, not
13!, it will raise the exception again; we'll still get the original stack
trace on the console.

If we stack exception clauses like we did in the preceding example,
only the first matching clause will be run, even if more than one of
them fits. How can more than one clause match? Remember that
exceptions are objects, and can therefore be subclassed. As we'll
see in the next section, most exceptions extend the Exception class
(which is itself derived from BaseException). If we catch Exception before
we catch TypeError, then only the Exception handler will be executed,
because TypeError is an Exception by inheritance.

This can come in handy in cases where we want to handle some
exceptions specifically, and then handle all remaining exceptions as
a more general case. We can simply catch Exception after catching all
the specific exceptions and handle the general case there.

Often, when we catch an exception, we need a reference to the
Exception object itself. This most often happens when we define our
own exceptions with custom arguments, but can also be relevant
with standard exceptions. Most exception classes accept a set of

arguments in their constructor, and we might want to access those
attributes in the exception handler. If we define our own Exception
class, we can even call custom methods on it when we catch it. The
syntax for capturing an exception as a variable uses the as keyword:

try:
 raise ValueError("This is an argument")
except ValueError as e:
 print("The exception arguments were", e.args)

If we run this simple snippet, it prints out the string argument that we
passed into ValueError upon initialization.

We've seen several variations on the syntax for handling exceptions,
but we still don't know how to execute code regardless of whether or
not an exception has occurred. We also can't specify code that
should be executed only if an exception does not occur. Two more
keywords, finally and else, can provide the missing pieces. Neither
one takes any extra arguments. The following example randomly
picks an exception to throw and raises it. Then some not-so-
complicated exception handling code runs that illustrates the newly
introduced syntax:

import random
some_exceptions = [ValueError, TypeError, IndexError, None]

try:
 choice = random.choice(some_exceptions)
 print("raising {}".format(choice))
 if choice:
 raise choice("An error")
except ValueError:
 print("Caught a ValueError")
except TypeError:
 print("Caught a TypeError")
except Exception as e:
 print("Caught some other error: %s" %
 (e.__class__.__name__))
else:
 print("This code called if there is no exception")
finally:
 print("This cleanup code is always called")

If we run this example—which illustrates almost every conceivable
exception handling scenario—a few times, we'll get different output

each time, depending on which exception random chooses. Here are
some example runs:

$ python finally_and_else.py
raising None
This code called if there is no exception
This cleanup code is always called

$ python finally_and_else.py
raising <class 'TypeError'>
Caught a TypeError
This cleanup code is always called

$ python finally_and_else.py
raising <class 'IndexError'>
Caught some other error: IndexError
This cleanup code is always called

$ python finally_and_else.py
raising <class 'ValueError'>
Caught a ValueError
This cleanup code is always called

Note how the print statement in the finally clause is executed no
matter what happens. This is extremely useful when we need to
perform certain tasks after our code has finished running (even if an
exception has occurred). Some common examples include the
following:

Cleaning up an open database connection
Closing an open file
Sending a closing handshake over the network

The finally clause is also very important when we execute a return statement from inside a try
clause. The finally handler will still be executed before the value is returned without executing
any code following the try...finally clause.

Also, pay attention to the output when no exception is raised: both
the else and the finally clauses are executed. The else clause may
seem redundant, as the code that should be executed only when no
exception is raised could just be placed after the entire try...except
block. The difference is that the else block will not be executed if an
exception is caught and handled. We'll see more on this when we
discuss using exceptions as flow control later.

Any of the except, else, and finally clauses can be omitted after a try
block (although else by itself is invalid). If you include more than one,
the except clauses must come first, then the else clause, with the finally
clause at the end. The order of the except clauses normally goes from
most specific to most generic.

The exception hierarchy
We've already seen several of the most common built-in exceptions,
and you'll probably encounter the rest over the course of your
regular Python development. As we noticed earlier, most exceptions
are subclasses of the Exception class. But this is not true of all
exceptions. Exception itself actually inherits from a class called
BaseException. In fact, all exceptions must extend the BaseException class
or one of its subclasses.

There are two key built-in the exception classes, SystemExit and
KeyboardInterrupt, that derive directly from BaseException instead of Exception.
The SystemExit exception is raised whenever the program exits
naturally, typically because we called the sys.exit function somewhere
in our code (for example, when the user selected an exit menu item,
clicked the Close button on a window, or entered a command to shut
down a server). The exception is designed to allow us to clean up
code before the program ultimately exits. However, we generally
don't need to handle it explicitly because cleanup code can happen
inside a finally clause.

If we do handle it, we would normally re-raise the exception, since
catching it would stop the program from exiting. There are, of course,
situations where we might want to stop the program exiting; for
example, if there are unsaved changes and we want to prompt the
user if they really want to exit. Usually, if we handle SystemExit at all,
it's because we want to do something special with it, or are
anticipating it directly. We especially don't want it to be accidentally
caught in generic clauses that catch all normal exceptions. This is
why it derives directly from BaseException.

The KeyboardInterrupt exception is common in command-line programs.
It is thrown when the user explicitly interrupts program execution with
an OS-dependent key combination (normally, Ctrl + C). This is a

standard way for the user to deliberately interrupt a running program,
and like SystemExit, it should almost always respond by terminating the
program. Also, like SystemExit, it should handle any cleanup tasks
inside the finally blocks.

Here is a class diagram that fully illustrates the hierarchy:

When we use the except: clause without specifying any type of
exception, it will catch all subclasses of BaseException; which is to say, it
will catch all exceptions, including the two special ones. Since we
almost always want these to get special treatment, it is unwise to use
the except: statement without arguments. If you want to catch all
exceptions other than SystemExit and KeyboardInterrupt, explicitly catch
Exception. Most Python developers assume that except: without a type is
an error and will flag it in code review. If you really do want to catch
everything, just explicitly use except BaseException:.

Defining our own exceptions
Occasionally, when we want to raise an exception, we find that none
of the built-in exceptions are suitable. Luckily, it's trivial to define new
exceptions of our own. The name of the class is usually designed to
communicate what went wrong, and we can provide arbitrary
arguments in the initializer to include additional information.

All we have to do is inherit from the Exception class. We don't even
have to add any content to the class! We can, of course, extend
BaseException directly, but I have never encountered a use case where
this would make sense.

Here's a simple exception we might use in a banking application:

class InvalidWithdrawal(Exception):
 pass

raise InvalidWithdrawal("You don't have $50 in your account")

The last line illustrates how to raise the newly defined exception. We
are able to pass an arbitrary number of arguments into the
exception. Often a string message is used, but any object that might
be useful in a later exception handler can be stored. The
Exception.__init__ method is designed to accept any arguments and
store them as a tuple in an attribute named args. This makes
exceptions easier to define without needing to override __init__.

Of course, if we do want to customize the initializer, we are free to do
so. Here's an exception whose initializer accepts the current balance
and the amount the user wanted to withdraw. In addition, it adds a
method to calculate how overdrawn the request was:

class InvalidWithdrawal(Exception):
 def __init__(self, balance, amount):
 super().__init__(f"account doesn't have ${amount}")
 self.amount = amount
 self.balance = balance

 def overage(self):
 return self.amount - self.balance

raise InvalidWithdrawal(25, 50)

The raise statement at the end illustrates how to construct this
exception. As you can see, we can do anything with an exception
that we would do with other objects.

Here's how we would handle an InvalidWithdrawal exception if one was
raised:

try:
 raise InvalidWithdrawal(25, 50)
except InvalidWithdrawal as e:
 print("I'm sorry, but your withdrawal is "
 "more than your balance by "
 f"${e.overage()}")

Here we see a valid use of the as keyword. By convention, most
Python coders name the exception e or the ex variable, although, as
usual, you are free to call it exception, or aunt_sally if you prefer.

There are many reasons for defining our own exceptions. It is often
useful to add information to the exception or log it in some way. But
the utility of custom exceptions truly comes to light when creating a
framework, library, or API that is intended for access by other
programmers. In that case, be careful to ensure your code is raising
exceptions that make sense to the client programmer. They should
be easy to handle and clearly describe what went on. The client
programmer should easily see how to fix the error (if it reflects a bug
in their code) or handle the exception (if it's a situation they need to
be made aware of).

Exceptions aren't exceptional. Novice programmers tend to think of
exceptions as only useful for exceptional circumstances. However,
the definition of exceptional circumstances can be vague and subject
to interpretation. Consider the following two functions:

def divide_with_exception(number, divisor):
 try:

 print(f"{number} / {divisor} = {number / divisor}")
 except ZeroDivisionError:
 print("You can't divide by zero")

def divide_with_if(number, divisor):
 if divisor == 0:
 print("You can't divide by zero")
 else:
 print(f"{number} / {divisor} = {number / divisor}")

These two functions behave identically. If divisor is zero, an error
message is printed; otherwise, a message printing the result of
division is displayed. We could avoid ZeroDivisionError ever being
thrown by testing for it with an if statement. Similarly, we can
avoid IndexError by explicitly checking whether or not the parameter is
within the confines of the list, and KeyError by checking whether the
key is in a dictionary.

But we shouldn't do this. For one thing, we might write an if
statement that checks whether or not the index is lower than the
parameters of the list, but forget to check negative values.

Remember, Python lists support negative indexing; -1 refers to the last element in the list.

Eventually, we would discover this and have to find all the places
where we were checking code. But if we had simply caught IndexError
and handled it, our code would just work.

Python programmers tend to follow a model of ask forgiveness
rather than permission, which is to say, they execute code and then
deal with anything that goes wrong. The alternative, to look before
you leap, is generally less popular. There are a few reasons for this,
but the main one is that it shouldn't be necessary to burn CPU cycles
looking for an unusual situation that is not going to arise in the
normal path through the code. Therefore, it is wise to use exceptions
for exceptional circumstances, even if those circumstances are only
a little bit exceptional. Taking this argument further, we can actually
see that the exception syntax is also effective for flow control. Like

an if statement, exceptions can be used for decision making,
branching, and message passing.

Imagine an inventory application for a company that sells widgets
and gadgets. When a customer makes a purchase, the item can
either be available, in which case the item is removed from inventory
and the number of items left is returned, or it might be out of stock.
Now, being out of stock is a perfectly normal thing to happen in an
inventory application. It is certainly not an exceptional circumstance.
But what do we return if it's out of stock? A string saying out of
stock? A negative number? In both cases, the calling method would
have to check whether the return value is a positive integer or
something else, to determine if it is out of stock. That seems a bit
messy, especially if we forget to do it somewhere in our code.

Instead, we can raise OutOfStock and use the try statement to direct
program flow control. Make sense? In addition, we want to make
sure we don't sell the same item to two different customers, or sell
an item that isn't in stock yet. One way to facilitate this is to lock
each type of item to ensure only one person can update it at a time.
The user must lock the item, manipulate the item (purchase, add
stock, count items left...), and then unlock the item. Here's an
incomplete Inventory example with docstrings that describes what
some of the methods should do:

class Inventory:
 def lock(self, item_type):
 """Select the type of item that is going to
 be manipulated. This method will lock the
 item so nobody else can manipulate the
 inventory until it's returned. This prevents
 selling the same item to two different
 customers."""
 pass

 def unlock(self, item_type):
 """Release the given type so that other
 customers can access it."""
 pass

 def purchase(self, item_type):
 """If the item is not locked, raise an
 exception. If the item_type does not exist,

 raise an exception. If the item is currently
 out of stock, raise an exception. If the item
 is available, subtract one item and return
 the number of items left."""
 pass

We could hand this object prototype to a developer and have them
implement the methods to do exactly as they say while we work on
the code that needs to make a purchase. We'll use Python's robust
exception handling to consider different branches, depending on how
the purchase was made:

item_type = "widget"
inv = Inventory()
inv.lock(item_type)
try:
 num_left = inv.purchase(item_type)
except InvalidItemType:
 print("Sorry, we don't sell {}".format(item_type))
except OutOfStock:
 print("Sorry, that item is out of stock.")
else:
 print("Purchase complete. There are {num_left} {item_type}s left")
finally:
 inv.unlock(item_type)

Pay attention to how all the possible exception handling clauses are
used to ensure the correct actions happen at the correct time. Even
though OutOfStock is not a terribly exceptional circumstance, we are
able to use an exception to handle it suitably. This same code could
be written with an if...elif...else structure, but it wouldn't be as easy
to read or maintain.

We can also use exceptions to pass messages between different
methods. For example, if we wanted to inform the customer as to
what date the item is expected to be in stock again, we could ensure
our OutOfStock object requires a back_in_stock parameter when it is
constructed. Then, when we handle the exception, we can check
that value and provide additional information to the customer. The
information attached to the object can be easily passed between two
different parts of the program. The exception could even provide a
method that instructs the inventory object to reorder or backorder an
item.

Using exceptions for flow control can make for some handy program
designs. The important thing to take from this discussion is that
exceptions are not a bad thing that we should try to avoid. Having an
exception occur does not mean that you should have prevented this
exceptional circumstance from happening. Rather, it is just a
powerful way to communicate information between two sections of
code that may not be directly calling each other.

Case study
We've been looking at the use and handling of exceptions at a fairly
low level of detail—syntax and definitions. This case study will help
tie it all in with our previous chapters so we can see how exceptions
are used in the larger context of objects, inheritance, and modules.

Today, we'll be designing a simple central authentication and
authorization system. The entire system will be placed in one
module, and other code will be able to query that module object for
authentication and authorization purposes. We should admit, from
the start, that we aren't security experts, and that the system we are
designing may be full of security holes.

Our purpose is to study exceptions, not to secure a system. It will be
sufficient, however, for a basic login and permission system that
other code can interact with. Later, if that other code needs to be
made more secure, we can have a security or cryptography expert
review or rewrite our module, preferably without changing the API.

Authentication is the process of ensuring a user is really the person
they say they are. We'll follow the lead of common web systems
today, which use a username and private password combination.
Other methods of authentication include voice recognition, fingerprint
or retinal scanners, and identification cards.

Authorization, on the other hand, is all about determining whether a
given (authenticated) user is permitted to perform a specific action.
We'll create a basic permission list system that stores a list of the
specific people allowed to perform each action.

In addition, we'll add some administrative features to allow new
users to be added to the system. For brevity, we'll leave out editing
of passwords or changing of permissions once they've been added,

but these (highly necessary) features can certainly be added in the
future.

There's a simple analysis; now let's proceed with design. We're
obviously going to need a User class that stores the username and an
encrypted password. This class will also allow a user to log in by
checking whether a supplied password is valid. We probably won't
need a Permission class, as those can just be strings mapped to a list
of users using a dictionary. We should have a central Authenticator
class that handles user management and logging in or out. The last
piece of the puzzle is an Authorizor class that deals with permissions
and checking whether a user can perform an activity. We'll provide a
single instance of each of these classes in the auth module so that
other modules can use this central mechanism for all their
authentication and authorization needs. Of course, if they want to
instantiate private instances of these classes, for non-central
authorization activities, they are free to do so.

We'll also be defining several exceptions as we go along. We'll start
with a special AuthException base class that accepts a username and
optional user object as parameters; most of our self-defined
exceptions will inherit from this one.

Let's build the User class first; it seems simple enough. A new user
can be initialized with a username and password. The password will
be stored encrypted to reduce the chances of its being stolen. We'll
also need a check_password method to test whether a supplied password
is the correct one. Here is the class in full:

import hashlib

class User:
 def __init__(self, username, password):
 """Create a new user object. The password
 will be encrypted before storing."""
 self.username = username
 self.password = self._encrypt_pw(password)
 self.is_logged_in = False

 def _encrypt_pw(self, password):

 """Encrypt the password with the username and return
 the sha digest."""
 hash_string = self.username + password
 hash_string = hash_string.encode("utf8")
 return hashlib.sha256(hash_string).hexdigest()

 def check_password(self, password):
 """Return True if the password is valid for this
 user, false otherwise."""
 encrypted = self._encrypt_pw(password)
 return encrypted == self.password

Since the code for encrypting a password is required in both __init__
and check_password, we pull it out to its own method. This way, it only
needs to be changed in one place if someone realizes it is insecure
and needs improvement. This class could easily be extended to
include mandatory or optional personal details, such as names,
contact information, and birth dates.

Before we write code to add users (which will happen in the as-yet
undefined Authenticator class), we should examine some use cases. If
all goes well, we can add a user with a username and password; the
User object is created and inserted into a dictionary. But in what ways
can all not go well? Well, clearly we don't want to add a user with a
username that already exists in the dictionary.

If we did so, we'd overwrite an existing user's data and the new user
might have access to that user's privileges. So, we'll need a
UsernameAlreadyExists exception. Also, for security's sake, we should
probably raise an exception if the password is too short. Both of
these exceptions will extend AuthException, which we mentioned earlier.
So, before writing the Authenticator class, let's define these three
exception classes:

class AuthException(Exception):
 def __init__(self, username, user=None):
 super().__init__(username, user)
 self.username = username
 self.user = user

class UsernameAlreadyExists(AuthException):
 pass

class PasswordTooShort(AuthException):
 pass

The AuthException requires a username and has an optional user
parameter. This second parameter should be an instance of the User
class associated with that username. The two specific exceptions
we're defining simply need to inform the calling class of an
exceptional circumstance, so we don't need to add any extra
methods to them.

Now let's start on the Authenticator class. It can simply be a mapping of
usernames to user objects, so we'll start with a dictionary in the
initialization function. The method for adding a user needs to check
the two conditions (password length and previously existing users)
before creating a new User instance and adding it to the dictionary:

class Authenticator:
 def __init__(self):
 """Construct an authenticator to manage
 users logging in and out."""
 self.users = {}

 def add_user(self, username, password):
 if username in self.users:
 raise UsernameAlreadyExists(username)
 if len(password) < 6:
 raise PasswordTooShort(username)
 self.users[username] = User(username, password)

We could, of course, extend the password validation to raise
exceptions for passwords that are too easy to crack in other ways, if
we desired. Now let's prepare the login method. If we weren't thinking
about exceptions just now, we might just want the method to return
True or False, depending on whether the login was successful or not.
But we are thinking about exceptions, and this could be a good place
to use them for a not-so-exceptional circumstance. We could raise
different exceptions, for example, if the username does not exist or
the password does not match. This will allow anyone trying to log a
user in to elegantly handle the situation using a try/except/else clause.
So, first we add these new exceptions:

class InvalidUsername(AuthException):
 pass

class InvalidPassword(AuthException):
 pass

Then we can define a simple login method to our Authenticator class
that raises these exceptions if necessary. If not, it flags the user as
logged in and returns the following:

 def login(self, username, password):
 try:
 user = self.users[username]
 except KeyError:
 raise InvalidUsername(username)

 if not user.check_password(password):
 raise InvalidPassword(username, user)

 user.is_logged_in = True
 return True

Notice how KeyError is handled. This could have been handled using if
username not in self.users: instead, but we chose to handle the exception
directly. We end up eating up this first exception and raising a brand
new one of our own that better suits the user-facing API.

We can also add a method to check whether a particular username
is logged in. Deciding whether to use an exception here is trickier.
Should we raise an exception if the username does not exist?
Should we raise an exception if the user is not logged in?

To answer these questions, we need to think about how the method
would be accessed. Most often, this method will be used to answer
the yes/no question, should I allow them access to
<something>? The answer will either be, yes, the username is valid
and they are logged in, or no, the username is not valid or they are
not logged in. Therefore, a Boolean return value is sufficient. There
is no need to use exceptions here, just for the sake of using an
exception:

 def is_logged_in(self, username):
 if username in self.users:

 return self.users[username].is_logged_in
 return False

Finally, we can add a default authenticator instance to our module so
that the client code can access it easily using auth.authenticator:

authenticator = Authenticator()

This line goes at the module level, outside any class definition, so
the authenticator variable can be accessed as auth.authenticator. Now we
can start on the Authorizor class, which maps permissions to users.
The Authorizor class should not permit user access to a permission if
they are not logged in, so they'll need a reference to a specific
authenticator. We'll also need to set up the permission dictionary
upon initialization:

class Authorizor:
 def __init__(self, authenticator):
 self.authenticator = authenticator
 self.permissions = {}

Now we can write methods to add new permissions and to set up
which users are associated with each permission:

 def add_permission(self, perm_name):
 '''Create a new permission that users
 can be added to'''
 try:
 perm_set = self.permissions[perm_name]
 except KeyError:
 self.permissions[perm_name] = set()
 else:
 raise PermissionError("Permission Exists")

 def permit_user(self, perm_name, username):
 '''Grant the given permission to the user'''
 try:
 perm_set = self.permissions[perm_name]
 except KeyError:
 raise PermissionError("Permission does not exist")
 else:
 if username not in self.authenticator.users:
 raise InvalidUsername(username)
 perm_set.add(username)

The first method allows us to create a new permission, unless it
already exists, in which case an exception is raised. The second

allows us to add a username to a permission, unless either the
permission or the username doesn't yet exist.

We use set instead of list for usernames, so that even if you grant a
user permission more than once, the nature of sets means the user
is only in the set once.

A PermissionError error is raised in both methods. This new error
doesn't require a username, so we'll make it extend Exception directly,
instead of our custom AuthException:

class PermissionError(Exception):
 pass

Finally, we can add a method to check whether a user has a specific
permission or not. In order for them to be granted access, they have to
be both logged into the authenticator and in the set of people who
have been granted access to that privilege. If either of these
conditions is unsatisfied, an exception is raised:

 def check_permission(self, perm_name, username):
 if not self.authenticator.is_logged_in(username):
 raise NotLoggedInError(username)
 try:
 perm_set = self.permissions[perm_name]
 except KeyError:
 raise PermissionError("Permission does not exist")
 else:
 if username not in perm_set:
 raise NotPermittedError(username)
 else:
 return True

There are two new exceptions in here; they both take usernames, so
we'll define them as subclasses of AuthException:

class NotLoggedInError(AuthException):
 pass

class NotPermittedError(AuthException):
 pass

Finally, we can add a default authorizor to go with our default
authenticator:

authorizor = Authorizor(authenticator)

That completes a basic authentication/authorization system. We can
test the system at the Python prompt, checking to see whether a
user, joe, is permitted to do tasks in the paint department:

>>> import auth
>>> auth.authenticator.add_user("joe", "joepassword")
>>> auth.authorizor.add_permission("paint")
>>> auth.authorizor.check_permission("paint", "joe")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "auth.py", line 109, in check_permission
 raise NotLoggedInError(username)
auth.NotLoggedInError: joe
>>> auth.authenticator.is_logged_in("joe")
False
>>> auth.authenticator.login("joe", "joepassword")
True
>>> auth.authorizor.check_permission("paint", "joe")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "auth.py", line 116, in check_permission
 raise NotPermittedError(username)
auth.NotPermittedError: joe
>>> auth.authorizor.check_permission("mix", "joe")
Traceback (most recent call last):
 File "auth.py", line 111, in check_permission
 perm_set = self.permissions[perm_name]
KeyError: 'mix'

During handling of the above exception, another exception occurred:
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "auth.py", line 113, in check_permission
 raise PermissionError("Permission does not exist")
auth.PermissionError: Permission does not exist
>>> auth.authorizor.permit_user("mix", "joe")
Traceback (most recent call last):
 File "auth.py", line 99, in permit_user
 perm_set = self.permissions[perm_name]
KeyError: 'mix'

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "auth.py", line 101, in permit_user
 raise PermissionError("Permission does not exist")
auth.PermissionError: Permission does not exist
>>> auth.authorizor.permit_user("paint", "joe")
>>> auth.authorizor.check_permission("paint", "joe")
True

While verbose, the preceding output shows all of our code and most
of our exceptions in action, but to really understand the API we've
defined, we should write some exception handling code that actually
uses it. Here's a basic menu interface that allows certain users to
change or test a program:

import auth

Set up a test user and permission
auth.authenticator.add_user("joe", "joepassword")
auth.authorizor.add_permission("test program")
auth.authorizor.add_permission("change program")
auth.authorizor.permit_user("test program", "joe")

class Editor:
 def __init__(self):
 self.username = None
 self.menu_map = {
 "login": self.login,
 "test": self.test,
 "change": self.change,
 "quit": self.quit,
 }

 def login(self):
 logged_in = False
 while not logged_in:
 username = input("username: ")
 password = input("password: ")
 try:
 logged_in = auth.authenticator.login(username, password)
 except auth.InvalidUsername:
 print("Sorry, that username does not exist")
 except auth.InvalidPassword:
 print("Sorry, incorrect password")
 else:
 self.username = username

 def is_permitted(self, permission):
 try:
 auth.authorizor.check_permission(permission, self.username)
 except auth.NotLoggedInError as e:
 print("{} is not logged in".format(e.username))
 return False
 except auth.NotPermittedError as e:
 print("{} cannot {}".format(e.username, permission))
 return False
 else:
 return True

 def test(self):
 if self.is_permitted("test program"):
 print("Testing program now...")

 def change(self):
 if self.is_permitted("change program"):
 print("Changing program now...")

 def quit(self):
 raise SystemExit()

 def menu(self):
 try:
 answer = ""
 while True:
 print(
 """
Please enter a command:
\tlogin\tLogin
\ttest\tTest the program
\tchange\tChange the program
\tquit\tQuit
"""
)
 answer = input("enter a command: ").lower()
 try:
 func = self.menu_map[answer]
 except KeyError:
 print("{} is not a valid option".format(answer))
 else:
 func()
 finally:
 print("Thank you for testing the auth module")

Editor().menu()

This rather long example is conceptually very simple. The is_permitted
method is probably the most interesting; this is a mostly internal
method that is called by both test and change to ensure the user is
permitted access before continuing. Of course, those two methods
are stubs, but we aren't writing an editor here; we're illustrating the
use of exceptions and exception handlers by testing an
authentication and authorization framework.

Exercises
If you've never dealt with exceptions before, the first thing you need
to do is look at any old Python code you've written and notice if there
are places you should have been handling exceptions. How would
you handle them? Do you need to handle them at all? Sometimes,
letting the exception propagate to the console is the best way to
communicate to the user, especially if the user is also the script's
coder. Sometimes, you can recover from the error and allow the
program to continue. Sometimes, you can only reformat the error
into something the user can understand and display it to them.

Some common places to look are file I/O (is it possible your code will
try to read a file that doesn't exist?), mathematical expressions (is it
possible that a value you are dividing by is zero?), list indices (is the
list empty?), and dictionaries (does the key exist?). Ask yourself
whether you should ignore the problem, handle it by checking values
first, or handle it with an exception. Pay special attention to areas
where you might have used finally and else to ensure the correct
code is executed under all conditions.

Now write some new code. Think of a program that requires
authentication and authorization, and try writing some code that uses
the auth module we built in the case study. Feel free to modify the
module if it's not flexible enough. Try to handle
all the exceptions in a sensible way. If you're having trouble coming
up with something that requires authentication, try adding
authorization to the Notepad example from Chapter 16, Objects in
Python, or add authorization to the auth module itself—it's not a
terribly useful module if just anybody can start adding permissions!
Maybe require an administrator username and password before
allowing privileges to be added or changed.

Finally, try to think of places in your code where you can raise
exceptions. It can be in code you've written or are working on; or you
can write a new project as an exercise. You'll probably have the best
luck for designing a small framework or API that is meant to be used
by other people; exceptions are a terrific communication tool
between your code and someone else's. Remember to design and
document any self-raised exceptions as part of the API, or they won't
know whether or how to handle them!

Summary
In this chapter, we went into the gritty details of raising, handling,
defining, and manipulating exceptions. Exceptions are a powerful
way to communicate unusual circumstances or error conditions
without requiring a calling function to explicitly check return values.
There are many built-in exceptions and raising them is trivially easy.
There are several different syntaxes for handling different exception
events.

In the next chapter, everything we've studied so far will come
together as we discuss how object-oriented programming principles
and structures should best be applied in Python applications.

When to Use Object-Oriented
Programming
In previous chapters, we've covered many of the defining features of
object-oriented programming. We now know the principles and
paradigms of object-oriented design, and we've covered the syntax
of object-oriented programming in Python.

Yet, we don't know exactly how and, especially, when to utilize these
principles and syntax in practice. In this chapter, we'll discuss some
useful applications of the knowledge we've gained, looking at some
new topics along the way:

How to recognize objects
Data and behaviors, once again
Wrapping data behaviors using properties
Restricting data using behaviors
The Don't Repeat Yourself principle
Recognizing repeated code

Treat objects as objects
This may seem obvious; you should generally give separate objects
in your problem domain a special class in your code. We've seen
examples of this in the case studies in previous chapters: first, we
identify objects in the problem, and then model their data and
behaviors.

Identifying objects is a very important task in object-oriented analysis
and programming. But it isn't always as easy as counting the nouns
in short paragraphs that, frankly, I have constructed explicitly for that
purpose. Remember, objects are things that have both data and
behavior. If we are working only with data, we are often better off
storing it in a list, set, dictionary, or other Python data structure. On
the other hand, if we are working only with behavior, but no stored
data, a simple function is more suitable.

An object, however, has both data and behavior. Proficient Python
programmers use built-in data structures unless (or until) there is an
obvious need to define a class. There is no reason to add an extra
level of abstraction if it doesn't help organize our code. On the other
hand, the obvious need is not always self-evident.

We can often start our Python programs by storing data in a few
variables. As the program expands, we will later find that we are
passing the same set of related variables to a set of functions. This
is the time to think about grouping both variables and functions into a
class. If we are designing a program to model polygons in two-
dimensional space, we might start with each polygon represented as
a list of points. The points would be modeled as two tuples (x, y)
describing where that point is located. This is all data, stored in a set
of nested data structures (specifically, a list of tuples):

square = [(1,1), (1,2), (2,2), (2,1)]

Now, if we want to calculate the distance around the perimeter of the
polygon, we need to sum the distances between each point. To do
this, we need a function to calculate the distance between two
points. Here are two such functions:

import math

def distance(p1, p2):
 return math.sqrt((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2)

def perimeter(polygon):
 perimeter = 0
 points = polygon + [polygon[0]]
 for i in range(len(polygon)):
 perimeter += distance(points[i], points[i+1])
 return perimeter

Now, as object-oriented programmers, we clearly recognize that a
polygon class could encapsulate the list of points (data) and the
perimeter function (behavior). Further, a point class, such as we defined
in Chapter 16, Objects in Python, might encapsulate the x and y
coordinates and the distance method. The question is: is it valuable to
do this?

For the previous code, maybe yes, maybe no. With our recent
experience in object-oriented principles, we can write an object-
oriented version in record time. Let's compare them as follows:

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def distance(self, p2):
 return math.sqrt((self.x-p2.x)**2 + (self.y-p2.y)**2)

class Polygon:
 def __init__(self):
 self.vertices = []

 def add_point(self, point):
 self.vertices.append((point))

 def perimeter(self):
 perimeter = 0
 points = self.vertices + [self.vertices[0]]
 for i in range(len(self.vertices)):

 perimeter += points[i].distance(points[i+1])
 return perimeter

As we can see from the highlighted sections, there is twice as much
code here as there was in our earlier version, although we could
argue that the add_point method is not strictly necessary.

Now, to understand the differences a little better, let's compare the
two APIs in use. Here's how to calculate the perimeter of a square
using the object-oriented code:

>>> square = Polygon()
>>> square.add_point(Point(1,1))
>>> square.add_point(Point(1,2))
>>> square.add_point(Point(2,2))
>>> square.add_point(Point(2,1))
>>> square.perimeter()
4.0

That's fairly succinct and easy to read, you might think, but let's
compare it to the function-based code:

>>> square = [(1,1), (1,2), (2,2), (2,1)]
>>> perimeter(square)
4.0

Hmm, maybe the object-oriented API isn't so compact! That said, I'd
argue that it was easier to read than the functional example. How do
we know what the list of tuples is supposed to represent in the
second version? How do we remember what kind of object we're
supposed to pass into the perimeter function? (a list of two tuples?
That's not intuitive!) We would need a lot of documentation to explain
how these functions should be used.

In contrast, the object-oriented code is relatively self-documenting.
We just have to look at the list of methods and their parameters to
know what the object does and how to use it. By the time we wrote
all the documentation for the functional version, it would probably be
longer than the object-oriented code.

Finally, code length is not a good indicator of code complexity. Some
programmers get hung up on complicated one liners that do an
incredible amount of work in one line of code. This can be a fun
exercise, but the result is often unreadable, even to the original
author the following day. Minimizing the amount of code can often
make a program easier to read, but do not blindly assume this is the
case.

Luckily, this trade-off isn't necessary. We can make the object-
oriented Polygon API as easy to use as the functional implementation.
All we have to do is alter our Polygon class so that it can be
constructed with multiple points. Let's give it an initializer that
accepts a list of Point objects. In fact, let's allow it to accept tuples
too, and we can construct the Point objects ourselves, if needed:

def __init__(self, points=None):
 points = points if points else []
 self.vertices = []
 for point in points:
 if isinstance(point, tuple):
 point = Point(*point)
 self.vertices.append(point)

This initializer goes through the list and ensures that any tuples are
converted to points. If the object is not a tuple, we leave it as is,
assuming that it is either a Point object already, or an unknown duck-
typed object that can act like a Point object.

If you are experimenting with the above code, you could subclass Polygon and override the
__init__ function instead of replacing the initializer or copying the add_point and perimeter
methods.

Still, there's no clear winner between the object-oriented and more
data-oriented versions of this code. They both do the same thing. If
we have new functions that accept a polygon argument, such as
area(polygon) or point_in_polygon(polygon, x, y), the benefits of the object-
oriented code become increasingly obvious. Likewise, if we add
other attributes to the polygon, such as color or texture, it makes more
and more sense to encapsulate that data into a single class.

The distinction is a design decision, but in general, the more
important a set of data is, the more likely it is to have multiple
functions specific to that data, and the more useful it is to use a class
with attributes and methods instead.

When making this decision, it also pays to consider how the class
will be used. If we're only trying to calculate the perimeter of one
polygon in the context of a much greater problem, using a function
will probably be quickest to code and easier to use one time only. On
the other hand, if our program needs to manipulate numerous
polygons in a wide variety of ways (calculating the perimeter, area,
and intersection with other polygons, moving or scaling them, and so
on), we have almost certainly identified an object; one that needs to
be extremely versatile.

Additionally, pay attention to the interaction between objects. Look
for inheritance relationships; inheritance is impossible to model
elegantly without classes, so make sure to use them. Look for the
other types of relationships we discussed in Chapter 15, Object-
Oriented Design, association and composition. Composition can,
technically, be modeled using only data structures; for example, we
can have a list of dictionaries holding tuple values, but it is
sometimes less complicated to create a few classes of objects,
especially if there is behavior associated with the data.

Don't rush to use an object just because you can use an object, but don't neglect to create a class
when you need to use a class.

Adding behaviors to class data
with properties
Throughout this book, we've focused on the separation of behavior
and data. This is very important in object-oriented programming, but
we're about to see that, in Python, the distinction is uncannily blurry.
Python is very good at blurring distinctions; it doesn't exactly help us
to think outside the box. Rather, it teaches us to stop thinking about
the box.

Before we get into the details, let's discuss some bad object-oriented
theory. Many object-oriented languages teach us to never access
attributes directly (Java is the most notorious). They insist that we
write attribute access like this:

class Color:
 def __init__(self, rgb_value, name):
 self._rgb_value = rgb_value
 self._name = name

 def set_name(self, name):
 self._name = name

 def get_name(self):
 return self._name

The variables are prefixed with an underscore to suggest that they
are private (other languages would actually force them to be private).
Then, the get and set methods provide access to each variable. This
class would be used in practice as follows:

>>> c = Color("#ff0000", "bright red")
>>> c.get_name()
'bright red'
>>> c.set_name("red")
>>> c.get_name()
'red'

This is not nearly as readable as the direct access version that
Python favors:

class Color:
 def __init__(self, rgb_value, name):
 self.rgb_value = rgb_value
 self.name = name

c = Color("#ff0000", "bright red")
print(c.name)
c.name = "red"
print(c.name)

So, why would anyone insist upon the method-based syntax? Their
reasoning is that, someday, we may want to add extra code when a
value is set or retrieved. For example, we could decide to cache a
value to avoid complex computations, or we might want to validate
that a given value is a suitable input.

In code, for example, we could decide to change the set_name()
method as follows:

def set_name(self, name):
 if not name:
 raise Exception("Invalid Name")
 self._name = name

Now, in Java and similar languages, if we had written our original
code for direct attribute access, and then later changed it to a
method like the preceding one, we'd have a problem: anyone who
had written code that accessed the attribute directly would now have
to access a method. If they didn't then change the access style from
attribute access to a function call, their code will be broken.

The mantra in these languages is that we should never make public
members private. This doesn't make much sense in Python since
there isn't any real concept of private members!

Python gives us the property keyword to make methods that look like
attributes. We can therefore write our code to use direct member
access, and if we ever unexpectedly need to alter the
implementation to do some calculation when getting or setting that

attribute's value, we can do so without changing the interface. Let's
see how it looks:

class Color:
 def __init__(self, rgb_value, name):
 self.rgb_value = rgb_value
 self._name = name

 def _set_name(self, name):
 if not name:
 raise Exception("Invalid Name")
 self._name = name

 def _get_name(self):
 return self._name

 name = property(_get_name, _set_name)

Compared to the earlier class, we first change the name attribute into a
(semi-)private _name attribute. Then, we add two more (semi-)private
methods to get and set that variable, performing our validation when
we set it.

Finally, we have the property declaration at the bottom. This is the
Python magic. It creates a new attribute on the Color class called name,
to replace the direct name attribute. It sets this attribute to be a
property. Under the hood, property calls the two methods we just
created whenever the value is accessed or changed. This new
version of the Color class can be used exactly the same way as the
earlier version, yet it now performs validation when we set the name
attribute:

>>> c = Color("#0000ff", "bright red")
>>> print(c.name)
bright red
>>> c.name = "red"
>>> print(c.name)
red
>>> c.name = ""
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "setting_name_property.py", line 8, in _set_name
 raise Exception("Invalid Name")
Exception: Invalid Name

So, if we'd previously written code to access the name attribute, and
then changed it to use our property-based object, the previous code
would still work, unless it was sending an empty property value, which
is the behavior we wanted to forbid in the first place. Success!

Bear in mind that, even with the name property, the previous code is
not 100% safe. People can still access the _name attribute directly and
set it to an empty string if they want to. But if they access a variable
we've explicitly marked with an underscore to suggest it is private,
they're the ones that have to deal with the consequences, not us.

Properties in detail
Think of the property function as returning an object that proxies any
requests to set or access the attribute value through the methods we
have specified. The property built-in is like a constructor for such an
object, and that object is set as the public-facing member for the
given attribute.

This property constructor can actually accept two additional
arguments, a delete function and a docstring for the property. The
delete function is rarely supplied in practice, but it can be useful for
logging the fact that a value has been deleted, or possibly to veto
deleting if we have reason to do so. The docstring is just a string
describing what the property does, no different from the docstrings
we discussed in Chapter 16, Objects in Python. If we do not supply this
parameter, the docstring will instead be copied from the docstring for
the first argument: the getter method. Here is a silly example that
states whenever any of the methods are called:

class Silly:
 def _get_silly(self):
 print("You are getting silly")
 return self._silly

 def _set_silly(self, value):
 print("You are making silly {}".format(value))
 self._silly = value

 def _del_silly(self):
 print("Whoah, you killed silly!")
 del self._silly

 silly = property(_get_silly, _set_silly, _del_silly, "This is a silly
property")

If we actually use this class, it does indeed print out the correct
strings when we ask it to:

>>> s = Silly()
>>> s.silly = "funny"
You are making silly funny

>>> s.silly
You are getting silly
'funny'
>>> del s.silly
Whoah, you killed silly!

Further, if we look at the help file for the Silly class (by issuing
help(Silly) at the interpreter prompt), it shows us the custom docstring
for our silly attribute:

Help on class Silly in module __main__:

class Silly(builtins.object)
 | Data descriptors defined here:
 |
 | __dict__
 | dictionary for instance variables (if defined)
 |
 | __weakref__
 | list of weak references to the object (if defined)
 |
 | silly
 | This is a silly property

Once again, everything is working as we planned. In practice,
properties are normally only defined with the first two parameters:
the getter and setter functions. If we want to supply a docstring for a
property, we can define it on the getter function; the property proxy
will copy it into its own docstring. The delete function is often left
empty because object attributes are so rarely deleted. If a coder
does try to delete a property that doesn't have a delete function
specified, it will raise an exception. Therefore, if there is a legitimate
reason to delete our property, we should supply that function.

Decorators – another way to
create properties
If you've never used Python decorators before, you might want to
skip this section and come back to it after we've discussed the
decorator pattern in Chapter 22, Python Design Patterns I. However,
you don't need to understand what's going on to use the decorator
syntax in order to make property methods more readable.

The property function can be used with the decorator syntax to turn a
get function into a property function, as follows:

class Foo:
 @property
 def foo(self):
 return "bar"

This applies the property function as a decorator, and is equivalent to
the previous foo = property(foo) syntax. The main difference, from a
readability perspective, is that we get to mark the foo function as a
property at the top of the method, instead of after it is defined, where
it can be easily overlooked. It also means we don't have to create
private methods with underscore prefixes just to define a property.

Going one step further, we can specify a setter function for the new
property as follows:

class Foo:
 @property
 def foo(self):
 return self._foo

 @foo.setter
 def foo(self, value):
 self._foo = value

This syntax looks pretty odd, although the intent is obvious. First, we
decorate the foo method as a getter. Then, we decorate a second

method with exactly the same name by applying the setter attribute of
the originally decorated foo method! The property function returns an
object; this object always comes with its own setter attribute, which
can then be applied as a decorator to other functions. Using the
same name for the get and set methods is not required, but it does
help to group together the multiple methods that access one
property.

We can also specify a delete function with @foo.deleter. We cannot
specify a docstring using property decorators, so we need to rely on
the property copying the docstring from the initial getter method.
Here's our previous Silly class rewritten to use property as a decorator:

class Silly:
 @property
 def silly(self):
 "This is a silly property"
 print("You are getting silly")
 return self._silly

 @silly.setter
 def silly(self, value):
 print("You are making silly {}".format(value))
 self._silly = value

 @silly.deleter
 def silly(self):
 print("Whoah, you killed silly!")
 del self._silly

This class operates exactly the same as our earlier version, including
the help text. You can use whichever syntax you feel is more
readable and elegant.

Deciding when to use
properties
With the built-in property clouding the division between behavior and
data, it can be confusing to know when to choose an attribute, or a
method, or a property. The use case example we saw earlier is one
of the most common uses of properties; we have some data on a
class that we later want to add behavior to. There are also other
factors to take into account when deciding to use a property.

Technically, in Python, data, properties, and methods are all
attributes on a class. The fact that a method is callable does not
distinguish it from other types of attributes; indeed, we'll see in Chapter
20, Python Object-Oriented Shortcuts, that it is possible to create
normal objects that can be called like functions. We'll also discover
that functions and methods are themselves normal objects.

The fact that methods are just callable attributes, and properties are
just customizable attributes, can help us make this decision.
Methods should typically represent actions; things that can be done
to, or performed by, the object. When you call a method, even with
only one argument, it should do something. Method names are
generally verbs.

Once confirming that an attribute is not an action, we need to decide
between standard data attributes and properties. In general, always
use a standard attribute until you need to control access to that
property in some way. In either case, your attribute is usually a noun.
The only difference between an attribute and a property is that we
can invoke custom actions automatically when a property is
retrieved, set, or deleted.

Let's look at a more realistic example. A common need for custom
behavior is caching a value that is difficult to calculate or expensive
to look up (requiring, for example, a network request or database
query). The goal is to store the value locally to avoid repeated calls
to the expensive calculation.

We can do this with a custom getter on the property. The first time
the value is retrieved, we perform the lookup or calculation. Then, we
can locally cache the value as a private attribute on our object (or in
dedicated caching software), and the next time the value is
requested, we return the stored data. Here's how we might cache a
web page:

from urllib.request import urlopen

class WebPage:
 def __init__(self, url):
 self.url = url
 self._content = None

 @property
 def content(self):
 if not self._content:
 print("Retrieving New Page...")
 self._content = urlopen(self.url).read()
 return self._content

We can test this code to see that the page is only retrieved once:

>>> import time
>>> webpage = WebPage("http://ccphillips.net/")
>>> now = time.time()
>>> content1 = webpage.content
Retrieving New Page...
>>> time.time() - now
22.43316888809204
>>> now = time.time()
>>> content2 = webpage.content
>>> time.time() - now
1.9266459941864014
>>> content2 == content1
True

I was on an awful satellite connection when I originally tested this
code for the first version of this book back in 2010 and it took 20

seconds the first time I loaded the content. The second time, I got
the result in 2 seconds (which is really just the amount of time it took
to type the lines into the interpreter). On my more modern
connection it looks as follows:

>>> webpage = WebPage("https://dusty.phillips.codes")
>>> import time
>>> now = time.time() ; content1 = webpage.content ; print(time.time() -
now)
Retrieving New Page...
0.6236202716827393
>>> now = time.time() ; content2 = webpage.content ; print(time.time() -
now)
1.7881393432617188e-05M

It takes about 620 milliseconds to retrieve a page from my web host.
From my laptop's RAM, it takes 0.018 milliseconds!

Custom getters are also useful for attributes that need to be
calculated on the fly, based on other object attributes. For example,
we might want to calculate the average for a list of integers:

class AverageList(list):
 @property
 def average(self):
 return sum(self) / len(self)

This very simple class inherits from list, so we get list-like behavior
for free. We just add a property to the class, and hey presto, our list
can have an average as follows:

>>> a = AverageList([1,2,3,4])
>>> a.average
2.5

Of course, we could have made this a method instead, but then we
ought to call it calculate_average(), since methods represent actions. But
a property called average is more suitable, and is both easier to type
and easier to read.

Custom setters are useful for validation, as we've already seen, but
they can also be used to proxy a value to another location. For
example, we could add a content setter to the WebPage class that

automatically logs into our web server and uploads a new page
whenever the value is set.

Manager objects
We've been focused on objects and their attributes and methods.
Now, we'll take a look at designing higher-level objects; the kind of
objects that manage other objects – the objects that tie everything
together.

The difference between these objects and most of the previous
examples is that the latter usually represent concrete ideas.
Management objects are more like office managers; they don't do
the actual visible work out on the floor, but without them, there would
be no communication between departments and nobody would know
what they are supposed to do (although, this can be true anyway if
the organization is badly managed!). Analogously, the attributes on a
management class tend to refer to other objects that do the
visible work; the behaviors on such a class delegate to those other
classes at the right time, and pass messages between them.

As an example, we'll write a program that does a find-and-replace
action for text files stored in a compressed ZIP file. We'll need
objects to represent the ZIP file and each individual text file (luckily,
we don't have to write these classes, as they're available in the
Python standard library). The manager object will be responsible for
ensuring the following three steps occur in order:

1. Unzipping the compressed file
2. Performing the find-and-replace action
3. Zipping up the new files

The class is initialized with the .zip filename, and search and replace
strings. We create a temporary directory to store the unzipped files
in, so that the folder stays clean. The pathlib library helps out with file
and directory manipulation. The interface should be pretty clear in
the following example:

import sys
import shutil
import zipfile
from pathlib import Path

class ZipReplace:
 def __init__(self, filename, search_string, replace_string):
 self.filename = filename
 self.search_string = search_string
 self.replace_string = replace_string
 self.temp_directory = Path(f"unzipped-{filename}")

Then, we create an overall manager method for each of the three
steps. This method delegates responsibility to other objects:

def zip_find_replace(self):
 self.unzip_files()
 self.find_replace()
 self.zip_files()

Obviously, we could do all three steps in one method, or indeed in
one script, without ever creating an object. There are several
advantages to separating the three steps:

Readability: The code for each step is in a self-contained unit
that is easy to read and understand. The method name
describes what the method does, and less additional
documentation is required to understand what is going on.
Extensibility: If a subclass wanted to use compressed TAR files
instead of ZIP files, it could override the zip and unzip methods
without having to duplicate the find_replace method.
Partitioning: An external class could create an instance of this
class and call the find_replace method directly on some folder
without having to zip the content.

The delegation method is the first in the following code; the rest of
the methods are included for completeness:

 def unzip_files(self):
 self.temp_directory.mkdir()
 with zipfile.ZipFile(self.filename) as zip:
 zip.extractall(self.temp_directory)

 def find_replace(self):
 for filename in self.temp_directory.iterdir():
 with filename.open() as file:

 contents = file.read()
 contents = contents.replace(self.search_string,
self.replace_string)
 with filename.open("w") as file:
 file.write(contents)

 def zip_files(self):
 with zipfile.ZipFile(self.filename, "w") as file:
 for filename in self.temp_directory.iterdir():
 file.write(filename, filename.name)
 shutil.rmtree(self.temp_directory)

if __name__ == "__main__":
 ZipReplace(*sys.argv[1:4]).zip_find_replace()

For brevity, the code for zipping and unzipping files is sparsely
documented. Our current focus is on object-oriented design; if you
are interested in the inner details of the zipfile module, refer to the
documentation in the standard library, either online or by typing import
zipfile ; help(zipfile) into your interactive interpreter. Note that this toy
example only searches the top-level files in a ZIP file; if there are any
folders in the unzipped content, they will not be scanned, nor will any
files inside those folders.

If you are using a Python version older than 3.6, you will need to convert the path objects to
strings before calling extractall, rmtree, and file.write on the ZipFile object.

The last two lines in the example allow us to run the program from
the command line by passing the zip filename, the search string, and
the replace string as arguments, as follows:

$python zipsearch.py hello.zip hello hi

Of course, this object does not have to be created from the
command line; it could be imported from another module (to perform
batch ZIP file processing), or accessed as part of a GUI interface or
even a higher-level management object that knows where to get ZIP
files (for example, to retrieve them from an FTP server or back them
up to an external disk).

As programs become more and more complex, the objects being
modeled become less and less like physical objects. Properties are

other abstract objects, and methods are actions that change the
state of those abstract objects. But at the heart of every object, no
matter how complex, is a set of concrete data and well-defined
behaviors.

Removing duplicate code
Often, the code in management style classes such as ZipReplace is
quite generic and can be applied in a variety of ways. It is possible to
use either composition or inheritance to help keep this code in one
place, thus eliminating duplicate code. Before we look at any
examples of this, let's discuss a tiny bit of theory. Specifically, why is
duplicate code a bad thing?

There are several reasons, but they all boil down to readability and
maintainability. When we're writing a new piece of code that is similar
to an earlier piece, the easiest thing to do is copy the old code and
change whatever needs to be changed (variable names, logic,
comments) to make it work in the new location. Alternatively, if we're
writing new code that seems similar, but not identical, to code
elsewhere in the project, it is often easier to write fresh code with
similar behavior, rather than figuring out how to extract the
overlapping functionality.

But as soon as someone has to read and understand the code and
they come across duplicate blocks, they are faced with a dilemma.
Code that might have appeared to make sense suddenly has to be
understood. How is one section different from the other? How are
they the same? Under what conditions is one section called? When
do we call the other? You might argue that you're the only one
reading your code, but if you don't touch that code for eight months,
it will be as incomprehensible to you as it is to a fresh coder. When
we're trying to read two similar pieces of code, we have to
understand why they're different, as well as how they're different.
This wastes the reader's time; code should always be written to be
readable first.

I once had to try to understand someone's code that had three identical copies of the same 300
lines of very poorly written code. I had been working with the code for a month before I finally
comprehended that the three identical versions were actually performing slightly different tax

calculations. Some of the subtle differences were intentional, but there were also obvious areas
where someone had updated a calculation in one function without updating the other two. The
number of subtle, incomprehensible bugs in the code could not be counted. I eventually replaced
all 900 lines with an easy-to-read function of 20 lines or so.

Reading such duplicate code can be tiresome, but code
maintenance is even more tormenting. As the preceding story
suggests, keeping two similar pieces of code up to date can be a
nightmare. We have to remember to update both sections whenever
we update one of them, and we have to remember how multiple
sections differ so we can modify our changes when we are editing
each of them. If we forget to update all sections, we will end up with
extremely annoying bugs that usually manifest themselves as, But I
fixed that already, why is it still happening?

The result is that people who are reading or maintaining our code
have to spend astronomical amounts of time understanding and
testing it compared to the time required to write it in a non-repetitive
manner in the first place. It's even more frustrating when we are the
ones doing the maintenance; we find ourselves saying, Why didn't I
do this right the first time? The time we save by copying and pasting
existing code is lost the very first time we have to maintain it. Code is
both read and modified many more times and much more often than
it is written. Comprehensible code should always be a priority.

This is why programmers, especially Python programmers (who tend
to value elegant code more than average developers), follow what is
known as the Don't Repeat Yourself (DRY) principle. DRY code is
maintainable code. My advice for beginning programmers is to never
use the copy-and-paste feature of their editor. To intermediate
programmers, I suggest they think thrice before they hit Ctrl + C.

But what should we do instead of code duplication? The simplest
solution is often to move the code into a function that accepts
parameters to account for whatever parts are different. This isn't a
terribly object-oriented solution, but it is frequently optimal.

For example, if we have two pieces of code that unzip a ZIP file into
two different directories, we can easily replace it with a function that
accepts a parameter for the directory to which it should be unzipped.
This may make the function itself slightly more difficult to read, but a
good function name and docstring can easily make up for that, and
any code that invokes the function will be easier to read.

That's certainly enough theory! The moral of the story is: always
make the effort to refactor your code to be easier to read instead of
writing bad code that may seem easier to write.

In practice
Let's explore two ways we can reuse existing code. After writing our
code to replace strings in a ZIP file full of text files, we are later
contracted to scale all the images in a ZIP file to 640 x 480. It looks
like we could use a very similar paradigm to what we used in
ZipReplace. Our first impulse might be to save a copy of that file and
change the find_replace method to scale_image or something similar.

But, that's suboptimal. What if someday we want to change the unzip
and zip methods to also open TAR files? Or maybe we'll want to use
a guaranteed unique directory name for temporary files. In either
case, we'd have to change it in two different places!

We'll start by demonstrating an inheritance-based solution to this
problem. First, we'll modify our original ZipReplace class into a
superclass for processing generic ZIP files:

import sys
import shutil
import zipfile
from pathlib import Path

class ZipProcessor:
 def __init__(self, zipname):
 self.zipname = zipname
 self.temp_directory = Path(f"unzipped-{zipname[:-4]}")

 def process_zip(self):
 self.unzip_files()
 self.process_files()
 self.zip_files()

 def unzip_files(self):
 self.temp_directory.mkdir()
 with zipfile.ZipFile(self.zipname) as zip:
 zip.extractall(self.temp_directory)

 def zip_files(self):
 with zipfile.ZipFile(self.zipname, "w") as file:
 for filename in self.temp_directory.iterdir():
 file.write(filename, filename.name)
 shutil.rmtree(self.temp_directory)

We changed the filename property to zipname to avoid confusion with the
filename local variables inside the various methods. This helps make
the code more readable, even though it isn't actually a change in
design.

We also dropped the two parameters to __init__ (search_string and
replace_string) that were specific to ZipReplace. Then, we renamed the
zip_find_replace method to process_zip and made it call an (as yet
undefined) process_files method instead of find_replace; these name
changes help demonstrate the more generalized nature of our new
class. Notice that we have removed the find_replace method
altogether; that code is specific to ZipReplace and has no business
here.

This new ZipProcessor class doesn't actually define a process_files
method. If we ran it directly, it would raise an exception. Because it
isn't meant to run directly, we removed the main call at the bottom of
the original script. We could make this an abstract base class in
order to communicate that this method needs to be defined in a
subclass, but I've left it out for brevity.

Now, before we move on to our image processing application, let's
fix up our original zipsearch class to make use of this parent class, as
follows:

class ZipReplace(ZipProcessor):
 def __init__(self, filename, search_string, replace_string):
 super().__init__(filename)
 self.search_string = search_string
 self.replace_string = replace_string

 def process_files(self):
 """perform a search and replace on all files in the
 temporary directory"""
 for filename in self.temp_directory.iterdir():
 with filename.open() as file:
 contents = file.read()
 contents = contents.replace(self.search_string,
self.replace_string)
 with filename.open("w") as file:
 file.write(contents)

This code is shorter than the original version, since it inherits its ZIP
processing abilities from the parent class. We first import the base
class we just wrote and make ZipReplace extend that class. Then, we
use super() to initialize the parent class. The find_replace method is still
here, but we renamed it process_files so the parent class can call it
from its management interface. Because this name isn't as
descriptive as the old one, we added a docstring to describe what it
is doing.

Now, that was quite a bit of work, considering that all we have now is
a program that is functionally not different from the one we started
with! But having done that work, it is now much easier for us to write
other classes that operate on files in a ZIP archive, such as the
(hypothetically requested) photo scaler. Further, if we ever want to
improve or bug fix the zip functionality, we can do it for all subclasses
at once by changing only the one ZipProcessor base class. Therefore
maintenance will be much more effective.

See how simple it is now to create a photo scaling class that takes
advantage of the ZipProcessor functionality:

from PIL import Image

class ScaleZip(ZipProcessor):

 def process_files(self):
 '''Scale each image in the directory to 640x480'''
 for filename in self.temp_directory.iterdir():
 im = Image.open(str(filename))
 scaled = im.resize((640, 480))
 scaled.save(filename)

if __name__ == "__main__":
 ScaleZip(*sys.argv[1:4]).process_zip()

Look how simple this class is! All that work we did earlier paid off. All
we do is open each file (assuming that it is an image; it will
unceremoniously crash if a file cannot be opened or isn't an image),
scale it, and save it back. The ZipProcessor class takes care of the
zipping and unzipping without any extra work on our part.

Case study
For this case study, we'll try to delve further into the question, When
should I choose an object versus a built-in type? We'll be modeling a
Document class that might be used in a text editor or word processor.
What objects, functions, or properties should it have?

We might start with a str for the Document contents, but in Python,
strings aren't mutable (able to be changed). Once a str is defined, it
is forever. We can't insert a character into it or remove one without
creating a brand new string object. That would be leaving a lot of str
objects taking up memory until Python's garbage collector sees fit to
clean up behind us.

So, instead of a string, we'll use a list of characters, which we can
modify at will. In addition, we'll need to know the current cursor
position within the list, and should probably also store a filename for
the document.

Real text editors use a binary tree-based data structure called a rope to model their document
contents. This book's title isn't Advanced Data Structures, so if you're interested in learning more
about this fascinating topic, you may want to search the web for rope data structure.

There are a lot of things we might want to do to a text document,
including inserting, deleting, and selecting characters; cutting,
copying, and, pasting the selection; and saving or closing the
document. It looks like there are copious amounts of both data and
behavior, so it makes sense to put all this stuff into its own Document
class.

A pertinent question is: should this class be composed of a bunch of
basic Python objects such as str filenames, int cursor positions, and
a list of characters? Or should some or all of those things be
specially defined objects in their own right? What about individual
lines and characters? Do they need to have classes of their own?

We'll answer these questions as we go, but let's start with the
simplest possible class first- Document and see what it can do:

class Document:
 def __init__(self):
 self.characters = []
 self.cursor = 0
 self.filename = ''

 def insert(self, character):
 self.characters.insert(self.cursor, character)
 self.cursor += 1

 def delete(self):
 del self.characters[self.cursor]

 def save(self):
 with open(self.filename, 'w') as f:
 f.write(''.join(self.characters))

 def forward(self):
 self.cursor += 1

 def back(self):
 self.cursor -= 1

This basic class allows us full control over editing a basic document.
Have a look at it in action:

>>> doc = Document()
>>> doc.filename = "test_document"
>>> doc.insert('h')
>>> doc.insert('e')
>>> doc.insert('l')
>>> doc.insert('l')
>>> doc.insert('o')
>>> "".join(doc.characters)
'hello'
>>> doc.back()
>>> doc.delete()
>>> doc.insert('p')
>>> "".join(doc.characters)
'hellp'

It looks like it's working. We could connect a keyboard's letter and
arrow keys to these methods and the document would track
everything just fine.

But what if we want to connect more than just arrow keys. What if we
want to connect the Home and End keys as well? We could add

more methods to the Document class that search forward or backward
for newline characters (a newline character, escaped as \n,
represents the end of one line and the beginning of a new one) in the
string and jump to them, but if we did that for every possible
movement action (move by words, move by sentences, Page Up,
Page Down, end of line, beginning of white space, and others), the
class would be huge. Maybe it would be better to put those methods
on a separate object. So, let's turn the Cursor attribute into an object
that is aware of its position and can manipulate that position. We can
move the forward and back methods to that class, and add a couple
more for the Home and End keys, as follows:

class Cursor:
 def __init__(self, document):
 self.document = document
 self.position = 0

 def forward(self):
 self.position += 1

 def back(self):
 self.position -= 1

 def home(self):
 while self.document.characters[self.position - 1].character !=
"\n":
 self.position -= 1
 if self.position == 0:
 # Got to beginning of file before newline
 break

 def end(self):
 while (
 self.position < len(self.document.characters)
 and self.document.characters[self.position] != "\n"
):
 self.position += 1

This class takes the document as an initialization parameter so the
methods have access to the content of the document's character list.
It then provides simple methods for moving backward and forward,
as before, and for moving to the home and end positions.

This code is not very safe. You can very easily move past the ending position, and if you try to go
home on an empty file, it will crash. These examples are kept short to make them readable, but
that doesn't mean they are defensive! You can improve the error checking of this code as an
exercise; it might be a great opportunity to expand your exception-handling skills.

The Document class itself is hardly changed, except for removing the
two methods that were moved to the Cursor class:

class Document:
 def __init__(self):
 self.characters = []
 self.cursor = Cursor(self)
 self.filename = ''

 def insert(self, character):
 self.characters.insert(self.cursor.position,
 character)
 self.cursor.forward()

 def delete(self):
 del self.characters[self.cursor.position]

 def save(self):
 with open(self.filename, "w") as f:
 f.write("".join(self.characters))

We just updated anything that accessed the old cursor integer to use
the new object instead. We can now test that the home method is really
moving to the newline character, as follows:

>>> d = Document()
>>> d.insert('h')
>>> d.insert('e')
>>> d.insert('l')
>>> d.insert('l')
>>> d.insert('o')
>>> d.insert('\n')
>>> d.insert('w')
>>> d.insert('o')
>>> d.insert('r')
>>> d.insert('l')
>>> d.insert('d')
>>> d.cursor.home()
>>> d.insert("*")
>>> print("".join(d.characters))
hello
*world

Now, since we've been using that string join function a lot (to
concatenate the characters so we can see the actual document
contents), we can add a property to the Document class to give us the
complete string as follows:

@property
def string(self):

 return "".join(self.characters)

This makes our testing a little simpler:

>>> print(d.string)
hello
world

This framework is simple to extend, create and edit a complete plain
text document (though it might be a bit time consuming!) Now, let's
extend it to work for rich text; text that can have bold, underlined, or
italic characters.

There are two ways we could process this. The first is to insert
fake characters into our character list that act like instructions, such
as bold characters until you find a stop bold character. The second is
to add information to each character, indicating what formatting it
should have. While the former method is more common in real
editors, we'll implement the latter solution. To do that, we're
obviously going to need a class for characters. This class will have
an attribute representing the character, as well as three Boolean
attributes representing whether it is bold, italic, or underlined.

Hmm, wait! Is this Character class going to have any methods? If not,
maybe we should use one of the many Python data structures
instead; a tuple or named tuple would probably be sufficient. Are
there any actions that we would want to execute or invoke on a
character?

Well, clearly, we might want to do things with characters, such as
delete or copy them, but those are things that need to be handled at
the Document level, since they are really modifying the list of characters.
Are there things that need to be done to individual characters?

Actually, now that we're thinking about what a Character class actually
is... what is it? Would it be safe to say that a Character class is a
string? Maybe we should use an inheritance relationship here? Then

we can take advantage of the numerous methods that str instances
come with.

What sorts of methods are we talking about? There's startswith, strip,
find, lower, and many more. Most of these methods expect to be
working on strings that contain more than one character. In contrast,
if Character were to subclass str, we'd probably be wise to override
__init__ to raise an exception if a multi-character string were supplied.
Since all those methods we'd get for free wouldn't really apply to our
Character class, it seems we shouldn't use inheritance, after all.

This brings us back to our original question; should Character even be
a class? There is a very important special method on the object class
that we can take advantage of to represent our characters. This
method, called __str__ (two underscores at each end, like __init__), is
used in string-manipulation functions such as print and the str
constructor to convert any class to a string. The default
implementation does some boring stuff, such as printing the name of
the module and class, and its address in memory. But if we override
it, we can make it print whatever we like.

For our implementation, we could make it prefix characters with
special characters to represent whether they are bold, italic, or
underlined. So, we will create a class to represent a character, and
here it is:

class Character:
 def __init__(self, character,
 bold=False, italic=False, underline=False):
 assert len(character) == 1
 self.character = character
 self.bold = bold
 self.italic = italic
 self.underline = underline

 def __str__(self):
 bold = "*" if self.bold else ''
 italic = "/" if self.italic else ''
 underline = "_" if self.underline else ''
 return bold + italic + underline + self.character

This class allows us to create characters and prefix them with a
special character when the str() function is applied to them. Nothing
too exciting there. We only have to make a few minor modifications
to the Document and Cursor classes to work with this class. In the Document
class, we add these two lines at the beginning of the insert method,
as follows:

def insert(self, character):
 if not hasattr(character, 'character'):
 character = Character(character)

This is a rather strange bit of code. Its basic purpose is to check
whether the character being passed in is a Character or a str. If it is a
string, it is wrapped in a Character class so all objects in the list are
Character objects. However, it is entirely possible that someone using
our code would want to use a class that is neither a Character nor a
string, using duck typing. If the object has a character attribute, we
assume it is a Character-like object. But if it does not, we assume it is a
str-like object and wrap it in Character. This helps the program take
advantage of duck typing as well as polymorphism; as long as an
object has a character attribute, it can be used in the Document class.

This generic check could be very useful. For example, if we wanted
to make a programmer's editor with syntax highlighting, we'd need
extra data on the character, such as what type of syntax token the
character belongs to. Note that, if we are doing a lot of this kind of
comparison, it's probably better to implement Character as an abstract
base class with an appropriate __subclasshook__, as discussed in Chapter 1
7, When Objects Are Alike.

In addition, we need to modify the string property on Document to accept
the new Character values. All we need to do is call str() on each
character before we join it, as demonstrated in the following:

 @property
 def string(self):
 return "".join((str(c) for c in self.characters))

This code uses a generator expression, which we'll discuss in Chapter
21, The Iterator Pattern. It's a shortcut to perform a specific action on
all the objects in a sequence.

Finally, we also need to check Character.character, instead of just the
string character we were storing before, in the home and end functions
when we're looking to see whether it matches a newline character,
as demonstrated in the following:

 def home(self):
 while self.document.characters[
 self.position-1].character != '\n':
 self.position -= 1
 if self.position == 0:
 # Got to beginning of file before newline
 break

 def end(self):
 while self.position < len(
 self.document.characters) and \
 self.document.characters[
 self.position
].character != '\n':
 self.position += 1

This completes the formatting of characters. We can test it to see
that it works as follows:

>>> d = Document()
>>> d.insert('h')
>>> d.insert('e')
>>> d.insert(Character('l', bold=True))
>>> d.insert(Character('l', bold=True))
>>> d.insert('o')
>>> d.insert('\n')
>>> d.insert(Character('w', italic=True))
>>> d.insert(Character('o', italic=True))
>>> d.insert(Character('r', underline=True))
>>> d.insert('l')
>>> d.insert('d')
>>> print(d.string)
he*l*lo
/w/o_rld
>>> d.cursor.home()
>>> d.delete()
>>> d.insert('W')
>>> print(d.string)
he*l*lo
W/o_rld
>>> d.characters[0].underline = True

>>> print(d.string)
_he*l*lo
W/o_rld

As expected, whenever we print the string, each bold character is
preceded by a * character, each italicized character by a / character,
and each underlined character by a _ character. All our functions
seem to work, and we can modify characters in the list after the fact.
We have a working rich text document object that could be plugged
into a proper graphical user interface and hooked up with a keyboard
for input and a screen for output. Naturally, we'd want to display real
bold, italic, and underlined fonts in a UI, instead of using our __str__
method, but it was sufficient for the basic testing we demanded of it.

Exercises
We've looked at various ways that objects, data, and methods can
interact with each other in an object-oriented Python program. As
usual, your first thoughts should be how you can apply these
principles to your own work. Do you have any messy scripts lying
around that could be rewritten using an object-oriented manager?
Look through some of your old code and look for methods that are
not actions. If the name isn't a verb, try rewriting it as a property.

Think about code you've written in any language. Does it break the
DRY principle? Is there any duplicate code? Did you copy and paste
code? Did you write two versions of similar pieces of code because
you didn't feel like understanding the original code? Go back over
some of your recent code now and see whether you can refactor the
duplicate code using inheritance or composition. Try to pick a project
you're still interested in maintaining; not code so old that you never
want to touch it again. That will help to keep you interested when you
do the improvements!

Now, look back over some of the examples we looked at in this
chapter. Start with the cached web page example that uses a
property to cache the retrieved data. An obvious problem with this
example is that the cache is never refreshed. Add a timeout to the
property's getter, and only return the cached page if the page has
been requested before the timeout has expired. You can use the time
module (time.time() - an_old_time returns the number of seconds that
have elapsed since an_old_time) to determine whether the cache has
expired.

Also look at the inheritance-based ZipProcessor. It might be reasonable
to use composition instead of inheritance here. Instead of extending
the class in the ZipReplace and ScaleZip classes, you could pass

instances of those classes into the ZipProcessor constructor and call
them to do the processing part. Implement this.

Which version do you find easier to use? Which is more elegant?
What is easier to read? These are subjective questions; the answer
varies for each of us. Knowing the answer, however, is important. If
you find you prefer inheritance over composition, you need to pay
attention that you don't overuse inheritance in your daily coding. If
you prefer composition, make sure you don't miss opportunities to
create an elegant inheritance-based solution.

Finally, add some error handlers to the various classes we created in
the case study. They should ensure single characters are entered,
that you don't try to move the cursor past the end or beginning of the
file, that you don't delete a character that doesn't exist, and that you
don't save a file without a filename. Try to think of as many edge
cases as you can, and account for them (thinking about edge cases
is about 90% of a professional programmer's job!). Consider different
ways to handle them; should you raise an exception when the user
tries to move past the end of the file, or just stay on the last
character?

In your daily coding, pay attention to the copy and paste commands.
Every time you use them in your editor, consider whether it would be
a good idea to improve your program's organization so that you only
have one version of the code you are about to copy.

Summary
In this chapter, we focused on identifying objects, especially objects
that are not immediately apparent; objects that manage and control.
Objects should have both data and behaviors, but properties can be
used to blur the distinction between the two. The DRY principle is an
important indicator of code quality, and inheritance and composition
can be applied to reduce code duplication.

In the next chapter, we'll discuss how to integrate the object-oriented
and not-so-object-oriented aspects of Python. Along the way, we'll
discover that it's more object-oriented than it looks at first sight!

Python Object-Oriented
Shortcuts
There are many aspects of Python that appear more reminiscent of
structural or functional programming than object-oriented
programming. Although object-oriented programming has been the
most visible paradigm of the past two decades, the old models have
seen a recent resurgence. As with Python's data structures, most of
these tools are syntactic sugar over an underlying object-oriented
implementation; we can think of them as a further abstraction layer
built on top of the (already abstracted) object-oriented paradigm. In
this chapter, we'll be covering a grab bag of Python features that are
not strictly object-oriented:

Built-in functions that take care of common tasks in one call
File I/O and context managers
An alternative to method overloading
Functions as objects

Python built-in functions
There are numerous functions in Python that perform a task or
calculate a result on certain types of objects without being methods
on the underlying class. They usually abstract common calculations
that apply to multiple types of classes. This is duck typing at its best;
these functions accept objects that have certain attributes or
methods, and are able to perform generic operations using those
methods. We've used many of the built-in functions already, but let's
quickly go through the important ones and pick up a few neat tricks
along the way.

The len() function
The simplest example is the len() function, which counts the number
of items in some kind of container object, such as a dictionary or list.
You've seen it before, demonstrated as follows::

>>> len([1,2,3,4])
4

You may wonder why these objects don't have a length property
instead of having to call a function on them. Technically, they do.
Most objects that len() will apply to have a method called __len__() that
returns the same value. So len(myobj) seems to call myobj.__len__().

Why should we use the len() function instead of the __len__ method?
Obviously, __len__ is a special double-underscore method, suggesting
that we shouldn't call it directly. There must be an explanation for
this. The Python developers don't make such design decisions
lightly.

The main reason is efficiency. When we call __len__ on an object, the
object has to look the method up in its namespace, and, if the
special __getattribute__ method (which is called every time an attribute
or method on an object is accessed) is defined on that object, it has
to be called as well. Furthermore, the __getattribute__ for that particular
method may have been written to do something nasty, such as
refusing to give us access to special methods such as __len__! The
len() function doesn't encounter any of this. It actually calls the __len__
function on the underlying class, so len(myobj) maps to
MyObj.__len__(myobj).

Another reason is maintainability. In the future, Python developers
may want to change len() so that it can calculate the length of objects
that don't have __len__, for example, by counting the number of items
returned in an iterator. They'll only have to change one function

instead of countless __len__ methods in many objects across the
board.

There is one other extremely important and often overlooked reason
for len() being an external function: backward compatibility. This is
often cited in articles as for historical reasons, which is a mildly
dismissive phrase that an author will use to say something is the way
it is because a mistake was made long ago and we're stuck with it.
Strictly speaking, len() isn't a mistake, it's a design decision, but that
decision was made in a less object-oriented time. It has stood the
test of time and has some benefits, so do get used to it.

Reversed
The reversed() function takes any sequence as input, and returns a
copy of that sequence in reverse order. It is normally used in for
loops when we want to loop over items from back to front.

Similar to len, reversed calls the __reversed__() function on the class for
the parameter. If that method does not exist, reversed builds the
reversed sequence itself using calls to __len__ and __getitem__, which
are used to define a sequence. We only need to override __reversed__ if
we want to somehow customize or optimize the process, as
demonstrated in the following code:

normal_list = [1, 2, 3, 4, 5]

class CustomSequence:
 def __len__(self):
 return 5

 def __getitem__(self, index):
 return f"x{index}"

class FunkyBackwards:
 def __reversed__(self):
 return "BACKWARDS!"

for seq in normal_list, CustomSequence(), FunkyBackwards():
 print(f"\n{seq.__class__.__name__}: ", end="")
 for item in reversed(seq):
 print(item, end=", ")

The for loops at the end print reversed versions of a normal list, and
instances of the two custom sequences. The output shows that
reversed works on all three of them, but has very different results when
we define __reversed__ ourselves:

list: 5, 4, 3, 2, 1,
CustomSequence: x4, x3, x2, x1, x0,
FunkyBackwards: B, A, C, K, W, A, R, D, S, !,

When we reverse CustomSequence, the __getitem__ method is called for
each item, which just inserts an x before the index. For FunkyBackwards,
the __reversed__ method returns a string, each character of which is
output individually in the for loop.

The preceding two classes aren't very good sequences, as they don't define a proper version of
__iter__, so a forward for loop over them would never end.

Enumerate
Sometimes, when we're looping over a container in a for loop, we
want access to the index (the current position in the list) of the
current item being processed. The for loop doesn't provide us with
indexes, but the enumerate function gives us something better: it
creates a sequence of tuples, where the first object in each tuple is
the index and the second is the original item.

This is useful if we need to use index numbers directly. Consider
some simple code that outputs each of the lines in a file with line
numbers:

import sys

filename = sys.argv[1]

with open(filename) as file:
 for index, line in enumerate(file):
 print(f"{index+1}: {line}", end="")

Running this code using its own filename as the input file shows how
it works:

1: import sys
2:
3: filename = sys.argv[1]
4:
5: with open(filename) as file:
6: for index, line in enumerate(file):
7: print(f"{index+1}: {line}", end="")

The enumerate function returns a sequence of tuples, our for loop splits
each tuple into two values, and the print statement formats them
together. It adds one to the index for each line number, since
enumerate, like all sequences, is zero-based.

We've only touched on a few of the more important Python built-in
functions. As you can see, many of them call into object-oriented
concepts, while others subscribe to purely functional or procedural

paradigms. There are numerous others in the standard library; some
of the more interesting ones include the following:

all and any, which accept an iterable object and return True if all,
or any, of the items evaluate to true (such as a non-empty string
or list, a non-zero number, an object that is not None, or the literal
True).
eval, exec, and compile, which execute string as code inside the
interpreter. Be careful with these ones; they are not safe, so
don't execute code an unknown user has supplied to you (in
general, assume all unknown users are malicious, foolish, or
both).
hasattr, getattr, setattr, and delattr, which allow attributes on an
object to be manipulated by their string names.
zip, which takes two or more sequences and returns a new
sequence of tuples, where each tuple contains a single value
from each sequence.
And many more! See the interpreter help documentation for
each of the functions listed in dir(__builtins__).

File I/O
Our examples so far that have touched the filesystem have operated
entirely on text files without much thought as to what is going on
under the hood. Operating systems, however, actually represent files
as a sequence of bytes, not text. Reading textual data from a file is a
fairly involved process. Python, especially Python 3, takes care of
most of this work for us behind the scenes. Aren't we lucky?!

The concept of files has been around since long before anyone
coined the term object-oriented programming. However, Python has
wrapped the interface that operating systems provide in a sweet
abstraction that allows us to work with file (or file-like, vis-à-vis duck
typing) objects.

The open() built-in function is used to open a file and return a file
object. For reading text from a file, we only need to pass the name of
the file into the function. The file will be opened for reading, and the
bytes will be converted to text using the platform default encoding.

Of course, we don't always want to read files; often we want to write
data to them! To open a file for writing, we need to pass a mode
argument as the second positional argument, with a value of "w":

contents = "Some file contents"
file = open("filename", "w")
file.write(contents)
file.close()

We could also supply the value "a" as a mode argument, to append
to the end of the file, rather than completely overwriting existing file
content.

These files with built-in wrappers for converting bytes to text are
great, but it'd be awfully inconvenient if the file we wanted to open
was an image, executable, or other binary file, wouldn't it?

To open a binary file, we modify the mode string to append 'b'. So,
'wb' would open a file for writing bytes, while 'rb' allows us to read
them. They will behave like text files, but without the automatic
encoding of text to bytes. When we read such a file, it will return bytes
objects instead of str, and when we write to it, it will fail if we try to
pass a text object.

These mode strings for controlling how files are opened are rather cryptic and are neither
Pythonic nor object-oriented. However, they are consistent with virtually every other programming
language out there. File I/O is one of the fundamental jobs an operating system has to handle,
and all programming languages have to talk to the operating system using the same system calls.
Just be glad that Python returns a file object with useful methods instead of the integer that most
major operating systems use to identify a file handle!

Once a file is opened for reading, we can call the read, readline, or
readlines methods to get the contents of the file. The read method
returns the entire contents of the file as a str or bytes object,
depending on whether there is 'b' in the mode. Be careful not to use
this method without arguments on huge files. You don't want to find
out what happens if you try to load that much data into memory!

It is also possible to read a fixed number of bytes from a file; we
pass an integer argument to the read method, describing how many
bytes we want to read. The next call to read will load the next
sequence of bytes, and so on. We can do this inside a while loop to
read the entire file in manageable chunks.

The readline method returns a single line from the file (where each
line ends in a newline, a carriage return, or both, depending on the
operating system on which the file was created). We can call it
repeatedly to get additional lines. The plural readlines method returns
a list of all the lines in the file. Like the read method, it's not safe to
use on very large files. These two methods even work when the file
is open in bytes mode, but it only makes sense if we are parsing text-
like data that has newlines at reasonable positions. An image or
audio file, for example, will not have newline characters in it (unless
the newline byte happened to represent a certain pixel or sound), so
applying readline wouldn't make sense.

For readability, and to avoid reading a large file into memory at once,
it is often better to use a for loop directly on a file object. For text
files, it will read each line, one at a time, and we can process it inside
the loop body. For binary files, it's better to read fixed-sized chunks
of data using the read() method, passing a parameter for the
maximum number of bytes to read.

Writing to a file is just as easy; the write method on file objects writes
a string (or bytes, for binary data) object to the file. It can be called
repeatedly to write multiple strings, one after the other. The writelines
method accepts a sequence of strings and writes each of the iterated
values to the file. The writelines method does not append a new line
after each item in the sequence. It is basically a poorly named
convenience function to write the contents of a sequence of strings
without having to explicitly iterate over it using a for loop.

Lastly, and I do mean lastly, we come to the close method. This
method should be called when we are finished reading or writing the
file, to ensure any buffered writes are written to the disk, that the file
has been properly cleaned up, and that all resources associated with
the file are released back to the operating system. Technically, this
will happen automatically when the script exits, but it's better to be
explicit and clean up after ourselves, especially in long-running
processes.

Placing it in context
The need to close files when we are finished with them can make
our code quite ugly. Because an exception may occur at any time
during file I/O, we ought to wrap all calls to a file in a try...finally
clause. The file should be closed in the finally clause, regardless of
whether I/O was successful. This isn't very Pythonic. Of course,
there is a more elegant way to do it.

If we run dir on a file-like object, we see that it has two special
methods named __enter__ and __exit__. These methods turn the file
object into what is known as a context manager. Basically, if we use
a special syntax called the with statement, these methods will be
called before and after nested code is executed. On file objects, the
__exit__ method ensures the file is closed, even if an exception is
raised. We no longer have to explicitly manage the closing of the file.
Here is what the with statement looks like in practice:

with open('filename') as file:
 for line in file:
 print(line, end='')

The open call returns a file object, which has __enter__ and __exit__
methods. The returned object is assigned to the variable named file
by the as clause. We know the file will be closed when the code
returns to the outer indentation level, and that this will happen even if
an exception is raised.

The with statement is used in several places in the standard library,
where start up or cleanup code needs to be executed. For example,
the urlopen call returns an object that can be used in a with statement
to clean up the socket when we're done. Locks in the threading
module can automatically release the lock when the statement has
been executed.

Most interestingly, because the with statement can apply to any
object that has the appropriate special methods, we can use it in our
own frameworks. For example, remember that strings are
immutable, but sometimes you need to build a string from multiple
parts. For efficiency, this is usually done by storing the component
strings in a list and joining them at the end. Let's create a simple
context manager that allows us to construct a sequence of
characters and automatically convert it to a string upon exit:

class StringJoiner(list):
 def __enter__(self):
 return self

 def __exit__(self, type, value, tb):
 self.result = "".join(self)

This code adds the two special methods required of a context
manager to the list class it inherits from. The __enter__ method
performs any required setup code (in this case, there isn't any) and
then returns the object that will be assigned to the variable after as in
the with statement. Often, as we've done here, this is just the context
manager object itself. The __exit__ method accepts three arguments.
In a normal situation, these are all given a value of None. However, if
an exception occurs inside the with block, they will be set to values
related to the type, value, and traceback for the exception. This
allows the __exit__ method to perform any cleanup code that may be
required, even if an exception occurred. In our example, we take the
irresponsible path and create a result string by joining the characters
in the string, regardless of whether an exception was thrown.

While this is one of the simplest context managers we could write,
and its usefulness is dubious, it does work with a with statement.
Have a look at it in action:

import random, string
with StringJoiner() as joiner:
 for i in range(15):
 joiner.append(random.choice(string.ascii_letters))

print(joiner.result)

This code constructs a string of 15 random characters. It appends
these to a StringJoiner using the append method it inherited from list.
When the with statement goes out of scope (back to the outer
indentation level), the __exit__ method is called, and the result attribute
becomes available on the joiner object. We then print this value to
see a random string.

An alternative to method
overloading
One prominent feature of many object-oriented programming
languages is a tool called method overloading. Method overloading
simply refers to having multiple methods with the same name that
accept different sets of arguments. In statically typed languages, this
is useful if we want to have a method that accepts either an integer
or a string, for example. In non-object-oriented languages, we might
need two functions, called add_s and add_i, to accommodate such
situations. In statically typed object-oriented languages, we'd need
two methods, both called add, one that accepts strings, and one that
accepts integers.

In Python, we've already seen that we only need one method, which
accepts any type of object. It may have to do some testing on the
object type (for example, if it is a string, convert it to an integer), but
only one method is required.

However, method overloading is also useful when we want a method
with the same name to accept different numbers or sets of
arguments. For example, an email message method might come in
two versions, one of which accepts an argument for the from email
address. The other method might look up a default from email
address instead. Python doesn't permit multiple methods with the
same name, but it does provide a different, equally flexible, interface.

We've seen some of the possible ways to send arguments to
methods and functions in previous examples, but now we'll cover all
the details. The simplest function accepts no arguments. We
probably don't need an example, but here's one for completeness:

def no_args():
 pass

And here's how it's called:

no_args()

A function that does accept arguments will provide the names of
those arguments in a comma-separated list. Only the name of each
argument needs to be supplied.

When calling the function, these positional arguments must be
specified in order, and none can be missed or skipped. This is the
most common way in which we've specified arguments in our
previous examples:

def mandatory_args(x, y, z):
 pass

To call it, type the following::

mandatory_args("a string", a_variable, 5)

Any type of object can be passed as an argument: an object, a
container, a primitive, even functions and classes. The preceding call
shows a hardcoded string, an unknown variable, and an integer
passed into the function.

Default arguments
If we want to make an argument optional, rather than creating a
second method with a different set of arguments, we can specify a
default value in a single method, using an equals sign. If the calling
code does not supply this argument, it will be assigned a default
value. However, the calling code can still choose to override the
default by passing in a different value. Often, a default value of None,
or an empty string or list, is suitable.

Here's a function definition with default arguments:

def default_arguments(x, y, z, a="Some String", b=False):
 pass

The first three arguments are still mandatory and must be passed by
the calling code. The last two parameters have default arguments
supplied.

There are several ways we can call this function. We can supply all
arguments in order, as though all the arguments were positional
arguments, as can be seen in the following::

default_arguments("a string", variable, 8, "", True)

Alternatively, we can supply just the mandatory arguments in order,
leaving the keyword arguments to be assigned their default values:

default_arguments("a longer string", some_variable, 14)

We can also use the equals sign syntax when calling a function to
provide values in a different order, or to skip default values that we
aren't interested in. For example, we can skip the first keyword
arguments and supply the second one:

default_arguments("a string", variable, 14, b=True)

Surprisingly, we can even use the equals sign syntax to mix up the
order of positional arguments, so long as all of them are supplied:

>>> default_arguments(y=1,z=2,x=3,a="hi")
3 1 2 hi False

You may occasionally find it useful to make a keyword-
only argument, that is, an argument that must be supplied as a
keyword argument. You can do that by placing a * before the
keyword-only arguments:

def kw_only(x, y='defaultkw', *, a, b='only'):
 print(x, y, a, b)

This function has one positional argument, x, and three keyword
arguments, y, a, and b. x and y are both mandatory, but a can only be
passed as a keyword argument. y and b are both optional with default
values, but if b is supplied, it can only be a keyword argument.

This function fails if you don't pass a:

>>> kw_only('x')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: kw_only() missing 1 required keyword-only argument: 'a'

It also fails if you pass a as a positional argument:

>>> kw_only('x', 'y', 'a')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: kw_only() takes from 1 to 2 positional arguments but 3 were
given

But you can pass a and b as keyword arguments:

>>> kw_only('x', a='a', b='b')
x defaultkw a b

With so many options, it may seem hard to pick one, but if you think
of the positional arguments as an ordered list, and keyword
arguments as sort of like a dictionary, you'll find that the correct
layout tends to fall into place. If you need to require the caller to

specify an argument, make it mandatory; if you have a sensible
default, then make it a keyword argument. Choosing how to call the
method normally takes care of itself, depending on which values
need to be supplied, and which can be left at their defaults.
Keyword-only arguments are relatively rare, but when the use case
comes up, they can make for a more elegant API.

One thing to take note of with keyword arguments is that anything
we provide as a default argument is evaluated when the function is
first interpreted, not when it is called. This means we can't have
dynamically generated default values. For example, the following
code won't behave quite as expected:

number = 5
def funky_function(number=number):
 print(number)

number=6
funky_function(8)
funky_function()
print(number)

If we run this code, it outputs the number 8 first, but then it outputs
the number 5 for the call with no arguments. We had set the variable
to the number 6, as evidenced by the last line of output, but when the
function is called, the number 5 is printed; the default value was
calculated when the function was defined, not when it was called.

This is tricky with empty containers such as lists, sets, and
dictionaries. For example, it is common to ask calling code to supply
a list that our function is going to manipulate, but the list is optional.
We'd like to make an empty list as a default argument. We can't do
this; it will create only one list, when the code is first constructed,
demonstrated as follows::

//DON'T DO THIS
>>> def hello(b=[]):
... b.append('a')
... print(b)
...
>>> hello()
['a']

>>> hello()
['a', 'a']

Whoops, that's not quite what we expected! The usual way to get
around this is to make the default value None, and then use the
iargument = argument if argument else [] idiom inside the method. Pay close
attention!

Variable argument lists
Default values alone do not allow us all the flexible benefits of
method overloading. One thing that makes Python really slick is the
ability to write methods that accept an arbitrary number of positional
or keyword arguments without explicitly naming them. We can also
pass arbitrary lists and dictionaries into such functions.

For example, a function to accept a link or list of links and download
the web pages could use such variadic arguments, or varargs.
Instead of accepting a single value that is expected to be a list of
links, we can accept an arbitrary number of arguments, where each
argument is a different link. We do this by specifying the * operator in
the function definition, as follows:

def get_pages(*links):
 for link in links:
 #download the link with urllib
 print(link)

The *links parameter says, I'll accept any number of arguments and
put them all in a list named links. If we supply only one argument, it'll
be a list with one element; if we supply no arguments, it'll be an
empty list. Thus, all these function calls are valid:

get_pages()
get_pages('http://www.archlinux.org')
get_pages('http://www.archlinux.org',
 'http://ccphillips.net/')

We can also accept arbitrary keyword arguments. These arrive in the
function as a dictionary. They are specified with two asterisks (as in
**kwargs) in the function declaration. This tool is commonly used in
configuration setups. The following class allows us to specify a set of
options with default values:

class Options:
 default_options = {

 'port': 21,
 'host': 'localhost',
 'username': None,
 'password': None,
 'debug': False,
 }
 def __init__(self, **kwargs):
 self.options = dict(Options.default_options)
 self.options.update(kwargs)

 def __getitem__(self, key):
 return self.options[key]

All the interesting stuff in this class happens in the __init__ method.
We have a dictionary of default options and values at the class level.
The first thing the __init__ method does is make a copy of this
dictionary. We do that instead of modifying the dictionary directly, in
case we instantiate two separate sets of options. (Remember, class-
level variables are shared between instances of the class.) Then,
__init__ uses the update method on the new dictionary to change any
non-default values to those supplied as keyword arguments. The
__getitem__ method simply allows us to use the new class using
indexing syntax. Here's a session demonstrating the class in action:

>>> options = Options(username="dusty", password="drowssap",
 debug=True)
>>> options['debug']
True
>>> options['port']
21
>>> options['username']
'dusty'

We're able to access our options instance using dictionary indexing
syntax, and the dictionary includes both default values and the ones
we set using keyword arguments.

The keyword argument syntax can be dangerous, as it may break
the explicit is better than implicit rule. In the preceding example, it's
possible to pass arbitrary keyword arguments to the Options initializer
to represent options that don't exist in the default dictionary. This
may not be a bad thing, depending on the purpose of the class, but it
makes it hard for someone using the class to discover what valid
options are available. It also makes it easy to enter a confusing typo

(Debug instead of debug, for example) that adds two options where
only one should have existed.

Keyword arguments are also very useful when we need to accept
arbitrary arguments to pass to a second function, but we don't know
what those arguments will be. We saw this in action in Chapter 17,
When Objects Are Alike, when we were building support for multiple
inheritance. We can, of course, combine the variable argument and
variable keyword argument syntax in one function call, and we can
use normal positional and default arguments as well. The following
example is somewhat contrived, but demonstrates the four types in
action:

import shutil
import os.path

def augmented_move(
 target_folder, *filenames, verbose=False, **specific
):
 """Move all filenames into the target_folder, allowing
 specific treatment of certain files."""

 def print_verbose(message, filename):
 """print the message only if verbose is enabled"""
 if verbose:
 print(message.format(filename))

 for filename in filenames:
 target_path = os.path.join(target_folder, filename)
 if filename in specific:
 if specific[filename] == "ignore":
 print_verbose("Ignoring {0}", filename)
 elif specific[filename] == "copy":
 print_verbose("Copying {0}", filename)
 shutil.copyfile(filename, target_path)
 else:
 print_verbose("Moving {0}", filename)
 shutil.move(filename, target_path)

This example processes an arbitrary list of files. The first argument is
a target folder, and the default behavior is to move all remaining non-
keyword argument files into that folder. Then there is a keyword-only
argument, verbose, which tells us whether to print information on each
file processed. Finally, we can supply a dictionary containing actions
to perform on specific filenames; the default behavior is to move the

file, but if a valid string action has been specified in the keyword
arguments, it can be ignored or copied instead. Notice the ordering
of the parameters in the function; first, the positional argument is
specified, then the *filenames list, then any specific keyword-only
arguments, and finally, a **specific dictionary to hold remaining
keyword arguments.

We create an inner helper function, print_verbose, which will print
messages only if the verbose key has been set. This function keeps
code readable by encapsulating this functionality in a single location.

In common cases, assuming the files in question exist, this function
could be called as follows:

>>> augmented_move("move_here", "one", "two")

This command would move the files one and two into the move_here
directory, assuming they exist (there's no error checking or exception
handling in the function, so it would fail spectacularly if the files or
target directory didn't exist). The move would occur without any
output, since verbose is False by default.

If we want to see the output, we can call it with the help of the
following command:

>>> augmented_move("move_here", "three", verbose=True)
Moving three

This moves one file named three, and tells us what it's doing. Notice
that it is impossible to specify verbose as a positional argument in this
example; we must pass a keyword argument. Otherwise, Python
would think it was another filename in the *filenames list.

If we want to copy or ignore some of the files in the list, instead of
moving them, we can pass additional keyword arguments, as
follows:

>>> augmented_move("move_here", "four", "five", "six",
 four="copy", five="ignore")

This will move the sixth file and copy the fourth, but won't display any
output, since we didn't specify verbose. Of course, we can do that too,
and keyword arguments can be supplied in any order, demonstrated
as follows:

>>> augmented_move("move_here", "seven", "eight", "nine",
 seven="copy", verbose=True, eight="ignore")
Copying seven
Ignoring eight
Moving nine

Unpacking arguments
There's one more nifty trick involving variable arguments and
keyword arguments. We've used it in some of our previous
examples, but it's never too late for an explanation. Given a list or
dictionary of values, we can pass those values into a function as if
they were normal positional or keyword arguments. Have a look at
this code:

def show_args(arg1, arg2, arg3="THREE"):
 print(arg1, arg2, arg3)

some_args = range(3)
more_args = {
 "arg1": "ONE",
 "arg2": "TWO"}

print("Unpacking a sequence:", end=" ")

show_args(*some_args)
print("Unpacking a dict:", end=" ")

show_args(**more_args)

Here's what it looks like when we run it:

Unpacking a sequence: 0 1 2
Unpacking a dict: ONE TWO THREE

The function accepts three arguments, one of which has a default
value. But when we have a list of three arguments, we can use the *
operator inside a function call to unpack it into the three arguments.
If we have a dictionary of arguments, we can use the ** syntax to
unpack it as a collection of keyword arguments.

This is most often useful when mapping information that has been
collected from user input or from an outside source (for example, an
internet page or a text file) to a function or method call.

Remember our earlier example that used headers and lines in a text
file to create a list of dictionaries with contact information? Instead of
just adding the dictionaries to a list, we could use keyword unpacking
to pass the arguments to the __init__ method on a specially built
Contact object that accepts the same set of arguments. See if you can
adapt the example to make this work.

This unpacking syntax can be used in some areas outside of
function calls, too. The Options class earlier had an __init__ method that
looked like this:

 def __init__(self, **kwargs):
 self.options = dict(Options.default_options)
 self.options.update(kwargs)

An even more succinct way to do this would be to unpack the two
dictionaries like this:

 def __init__(self, **kwargs):
 self.options = {**Options.default_options, **kwargs}

Because the dictionaries are unpacked in order from left to right, the
resulting dictionary will contain all the default options, with any of the
kwarg options replacing some of the keys. Here's an example:

>>> x = {'a': 1, 'b': 2}
>>> y = {'b': 11, 'c': 3}
>>> z = {**x, **y}
>>> z
{'a': 1, 'b': 11, 'c': 3}

Functions are objects too
Programming languages that overemphasize object-oriented
principles tend to frown on functions that are not methods. In such
languages, you're expected to create an object to sort of wrap the
single method involved. There are numerous situations where we'd
like to pass around a small object that is simply called to perform an
action. This is most frequently done in event-driven programming,
such as graphical toolkits or asynchronous servers; we'll see some
design patterns that use it in Chapter 22, Python Design Patterns I, and
Chapter 23, Python Design Patterns II.

In Python, we don't need to wrap such methods in an object because
functions already are objects! We can set attributes on functions
(though this isn't a common activity), and we can pass them around
to be called at a later date. They even have a few special properties
that can be accessed directly. Here's yet another contrived example:

def my_function():
 print("The Function Was Called")

my_function.description = "A silly function"

def second_function():
 print("The second was called")

second_function.description = "A sillier function."

def another_function(function):
 print("The description:", end=" ")
 print(function.description)
 print("The name:", end=" ")
 print(function.__name__)
 print("The class:", end=" ")
 print(function.__class__)
 print("Now I'll call the function passed in")
 function()

another_function(my_function)
another_function(second_function)

If we run this code, we can see that we were able to pass two
different functions into our third function, and get different output for
each one:

The description: A silly function
The name: my_function
The class: <class 'function'>
Now I'll call the function passed in
The Function Was Called
The description: A sillier function.
The name: second_function
The class: <class 'function'>
Now I'll call the function passed in
The second was called

We set an attribute on the function, named description (not very good
descriptions, admittedly). We were also able to see the function's
__name__ attribute, and to access its class, demonstrating that the
function really is an object with attributes. Then, we called the
function by using the callable syntax (the parentheses).

The fact that functions are top-level objects is most often used to
pass them around to be executed at a later date, for example, when
a certain condition has been satisfied. Let's build an event-driven
timer that does just this:

import datetime
import time

class TimedEvent:
 def __init__(self, endtime, callback):
 self.endtime = endtime
 self.callback = callback

 def ready(self):
 return self.endtime <= datetime.datetime.now()

class Timer:
 def __init__(self):
 self.events = []

 def call_after(self, delay, callback):
 end_time = datetime.datetime.now() + datetime.timedelta(

 seconds=delay
)

 self.events.append(TimedEvent(end_time, callback))

 def run(self):
 while True:
 ready_events = (e for e in self.events if e.ready())
 for event in ready_events:
 event.callback(self)
 self.events.remove(event)
 time.sleep(0.5)

In production, this code should definitely have extra documentation
using docstrings! The call_after method should at least mention that
the delay parameter is in seconds, and that the callback function should
accept one argument: the timer doing the calling.

We have two classes here. The TimedEvent class is not really meant to
be accessed by other classes; all it does is store endtime and callback.
We could even use a tuple or namedtuple here, but as it is convenient to
give the object a behavior that tells us whether or not the event is
ready to run, we use a class instead.

The Timer class simply stores a list of upcoming events. It has a
call_after method to add a new event. This method accepts a delay
parameter representing the number of seconds to wait before
executing the callback, and the callback function itself: a function to be
executed at the correct time. This callback function should accept one
argument.

The run method is very simple; it uses a generator expression to filter
out any events whose time has come, and executes them in order.
The timer loop then continues indefinitely, so it has to be interrupted
with a keyboard interrupt (Ctrl + C, or Ctrl + Break). We sleep for half
a second after each iteration so as to not grind the system to a halt.

The important things to note here are the lines that touch callback
functions. The function is passed around like any other object and
the timer never knows or cares what the original name of the
function is or where it was defined. When it's time to call the function,

the timer simply applies the parenthesis syntax to the stored
variable.

Here's a set of callbacks that test the timer:

def format_time(message, *args):
 now = datetime.datetime.now()
 print(f"{now:%I:%M:%S}: {message}")

def one(timer):
 format_time("Called One")

def two(timer):
 format_time("Called Two")

def three(timer):
 format_time("Called Three")

class Repeater:
 def __init__(self):
 self.count = 0

 def repeater(self, timer):
 format_time(f"repeat {self.count}")
 self.count += 1
 timer.call_after(5, self.repeater)

timer = Timer()
timer.call_after(1, one)
timer.call_after(2, one)
timer.call_after(2, two)
timer.call_after(4, two)
timer.call_after(3, three)
timer.call_after(6, three)
repeater = Repeater()
timer.call_after(5, repeater.repeater)
format_time("Starting")
timer.run()

This example allows us to see how multiple callbacks interact with
the timer. The first function is the format_time function. It uses the
format string syntax to add the current time to the message; we'll
read about them in the next chapter. Next, we create three simple
callback methods that simply output the current time and a short
message telling us which callback has been fired.

The Repeater class demonstrates that methods can be used as
callbacks too, since they are really just functions that happen to be
bound to an object. It also shows why the timer argument to the
callback functions is useful: we can add a new timed event to the
timer from inside a presently running callback. We then create a
timer and add several events to it that are called after different
amounts of time. Finally, we start the timer running; the output shows
that events are run in the expected order:

02:53:35: Starting
02:53:36: Called One
02:53:37: Called One
02:53:37: Called Two
02:53:38: Called Three
02:53:39: Called Two
02:53:40: repeat 0
02:53:41: Called Three
02:53:45: repeat 1
02:53:50: repeat 2
02:53:55: repeat 3
02:54:00: repeat 4

Python 3.4 introduced a generic event loop architecture similar to
this.

Using functions as attributes
One of the interesting effects of functions being objects is that they
can be set as callable attributes on other objects. It is possible to add
or change a function to an instantiated object, demonstrated as
follows:

class A:
 def print(self):
 print("my class is A")

def fake_print():
 print("my class is not A")

a = A()
a.print()
a.print = fake_print
a.print()

This code creates a very simple class with a print method that
doesn't tell us anything we didn't know. Then, we create a new
function that tells us something we don't believe.

When we call print on an instance of the A class, it behaves as
expected. If we then set the print method to point at a new function, it
tells us something different:

my class is A
my class is not A

It is also possible to replace methods on classes instead of objects,
although, in that case, we have to add the self argument to the
parameter list. This will change the method for all instances of that
object, even ones that have already been instantiated. Obviously,
replacing methods like this can be both dangerous and confusing to
maintain. Somebody reading the code will see that a method has
been called and look up that method on the original class. But the
method on the original class is not the one that was called. Figuring

out what really happened can become a tricky, frustrating debugging
session.

It does have its uses though. Often, replacing or adding methods at
runtime (called monkey patching) is used in automated testing. If
testing a client-server application, we may not want to actually
connect to the server while testing the client; this may result in
accidental transfers of funds or embarrassing test emails being sent
to real people. Instead, we can set up our test code to replace some
of the key methods on the object that sends requests to the server
so that it only records that the methods have been called.

Monkey-patching can also be used to fix bugs or add features in
third-party code that we are interacting with, and does not behave
quite the way we need it to. It should, however, be applied sparingly;
it's almost always a messy hack. Sometimes, though, it is the only
way to adapt an existing library to suit our needs.

Callable objects
Just as functions are objects that can have attributes set on them, it
is possible to create an object that can be called as though it were a
function.

Any object can be made callable by simply giving it a __call__ method
that accepts the required arguments. Let's make our Repeater class,
from the timer example, a little easier to use by making it a callable,
as follows:

class Repeater:
 def __init__(self):
 self.count = 0

 def __call__(self, timer):
 format_time(f"repeat {self.count}")
 self.count += 1

 timer.call_after(5, self)

timer = Timer()

timer.call_after(5, Repeater())
format_time("{now}: Starting")
timer.run()

This example isn't much different from the earlier class; all we did
was change the name of the repeater function to __call__ and pass the
object itself as a callable. Note that, when we make the call_after call,
we pass the argument Repeater(). Those two parentheses are creating
a new instance of the class; they are not explicitly calling the class.
This happens later, inside the timer. If we want to execute the __call__
method on a newly instantiated object, we'd use a rather odd syntax:
Repeater()(). The first set of parentheses constructs the object; the
second set executes the __call__ method. If we find ourselves doing
this, we may not be using the correct abstraction. Only implement
the __call__ function on an object if the object is meant to be treated
like a function.

Case study
To tie together some of the principles presented in this chapter, let's
build a mailing list manager. The manager will keep track of email
addresses categorized into named groups. When it's time to send a
message, we can pick a group and send the message to all email
addresses assigned to that group.

Now, before we start working on this project, we ought to have a safe
way to test it, without sending emails to a bunch of real people.
Luckily, Python has our back here; like the test HTTP server, it has a
built-in Simple Mail Transfer Protocol (SMTP) server that we can
instruct to capture any messages we send without actually sending
them. We can run the server with the following command:

$python -m smtpd -n -c DebuggingServer localhost:1025

Running this command at command prompt will start an SMTP
server running on port 1025 on the local machine. But we've
instructed it to use the DebuggingServer class (this class comes with the
built-in SMTP module), which, instead of sending mails to the
intended recipients, simply prints them on the terminal screen as it
receives them.

Now, before writing our mailing list, let's write some code that
actually sends mail. Of course, Python supports this in the standard
library, too, but it's a bit of an odd interface, so we'll write a new
function to wrap it all cleanly, as can be seen in the following code
snipet:

import smtplib
from email.mime.text import MIMEText

def send_email(
 subject,
 message,

 from_addr,
 *to_addrs,
 host="localhost",
 port=1025,
 **headers
):

 email = MIMEText(message)
 email["Subject"] = subject
 email["From"] = from_addr
 for header, value in headers.items():
 email[header] = value

 sender = smtplib.SMTP(host, port)
 for addr in to_addrs:
 del email["To"]
 email["To"] = addr
 sender.sendmail(from_addr, addr, email.as_string())
 sender.quit()

We won't cover the code inside this method too thoroughly; the
documentation in the standard library can give you all the information
you need to use the smtplib and email modules effectively.

We've used both variable argument and keyword argument syntax in
the function call. The variable argument list allows us to supply a
single string in the default case of having a single to address, as well
as permitting multiple addresses to be supplied if required. Any extra
keyword arguments are mapped to email headers. This is an exciting
use of variable arguments and keyword arguments, but it's not really
a great interface for the person calling the function. In fact, it makes
many things the programmer will want to do impossible.

The headers passed into the function represent auxiliary headers
that can be attached to a method. Such headers might include Reply-
To, Return-Path, or X-pretty-much-anything. But in order to be a valid
identifier in Python, a name cannot include the - character. In
general, that character represents subtraction. So, it's not possible to
call a function with Reply-To=my@email.com. As often happens, it appears
we were too eager to use keyword arguments because they are a
shiny new tool we just learned.

We'll have to change the argument to a normal dictionary; this will
work because any string can be used as a key in a dictionary. By
default, we'd want this dictionary to be empty, but we can't make the
default parameter an empty dictionary. So, we'll have to make the
default argument None, and then set up the dictionary at the beginning
of the method, as follows:

def send_email(subject, message, from_addr, *to_addrs,
 host="localhost", port=1025, headers=None):

 headers = headers if headers else {}

If we have our debugging SMTP server running in one terminal, we
can test this code in a Python interpreter:

>>> send_email("A model subject", "The message contents",
 "from@example.com", "to1@example.com", "to2@example.com")

Then, if we check the output from the debugging SMTP server, we
get the following:

---------- MESSAGE FOLLOWS ----------
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Subject: A model subject
From: from@example.com
To: to1@example.com
X-Peer: 127.0.0.1

The message contents
------------ END MESSAGE ------------
---------- MESSAGE FOLLOWS ----------
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Subject: A model subject
From: from@example.com
To: to2@example.com
X-Peer: 127.0.0.1

The message contents
------------ END MESSAGE ------------

Excellent, it has sent our email to the two expected addresses with
subject and message contents included. Now that we can send
messages, let's work on the email group management system. We'll

need an object that somehow matches email addresses with the
groups they are in. Since this is a many-to-many relationship (any
one email address can be in multiple groups; any one group can be
associated with multiple email addresses), none of the data
structures we've studied seem ideal. We could try a dictionary of
group names matched to a list of associated email addresses, but
that would duplicate email addresses. We could also try a dictionary
of email addresses matched to groups, resulting in a duplication of
groups. Neither seems optimal. For fun, let's try this latter version,
even though intuition tells me the groups to email address solution
would be more straightforward.

Since the values in our dictionary will always be collections of unique
email addresses, we can store them in a set container. We can use
defaultdict to ensure that there is always a set container available for
each key, demonstrated as follows:

from collections import defaultdict

class MailingList:
 """Manage groups of e-mail addresses for sending e-mails."""

 def __init__(self):
 self.email_map = defaultdict(set)

 def add_to_group(self, email, group):
 self.email_map[email].add(group)

Now, let's add a method that allows us to collect all the email
addresses in one or more groups. This can be done by converting
the list of groups to a set:

def emails_in_groups(self, *groups): groups = set(groups) emails = set()
for e, g in self.email_map.items(): if g & groups: emails.add(e) return
emails

First, look at what we're iterating over: self.email_map.items(). This
method, of course, returns a tuple of key-value pairs for each item in
the dictionary. The values are sets of strings representing the
groups. We split these into two variables named e and g, short for
email and groups. We add the email address to the set of return

values only if the passed-in groups intersect with the email address
groups. The g&groups syntax is a shortcut for g.intersection(groups); the set
class does this by implementing the special __and__ method to call
intersection.

This code could be made a wee bit more concise using a set comprehension, which we'll discuss
in Chapter 21, The Iterator Pattern.

Now, with these building blocks, we can trivially add a method to our
MailingList class that sends messages to specific groups:

 def send_mailing(
 self, subject, message, from_addr, *groups, headers=None
):
 emails = self.emails_in_groups(*groups)
 send_email(
 subject, message, from_addr, *emails, headers=headers
)

This function relies on variable argument lists. As input, it takes a list
of groups as variable arguments. It gets the list of emails for the
specified groups and passes those as variable arguments into
send_email, along with other arguments that were passed into this
method.

The program can be tested by ensuring that the SMTP debugging
server is running in one command prompt, and, in a second prompt,
loading the code using the following:

$python -i mailing_list.py

Create a MailingList object with the help of the following command:

>>> m = MailingList()

Then, create a few fake email addresses and groups, along the lines
of:

>>> m.add_to_group("friend1@example.com", "friends")
>>> m.add_to_group("friend2@example.com", "friends")
>>> m.add_to_group("family1@example.com", "family")
>>> m.add_to_group("pro1@example.com", "professional")

Finally, use a command like this to send emails to specific groups:

>>> m.send_mailing("A Party",
"Friends and family only: a party", "me@example.com", "friends",
"family", headers={"Reply-To": "me2@example.com"})

Emails to each of the addresses in the specified groups should show
up in the console on the SMTP server.

The mailing list works fine as it is, but it's kind of useless; as soon as
we exit the program, our database of information is lost. Let's modify
it to add a couple of methods to load and save the list of email
groups from and to a file.

In general, when storing structured data on disk, it is a good idea to
put a lot of thought into how it is stored. One of the reasons myriad
database systems exist is that if someone else has put this thought
into how data is stored, you don't have to. We'll be looking at some
data serialization mechanisms in the next chapter, but for this
example, let's keep it simple and go with the first solution that could
possibly work.

The data format I have in mind is to store each email address
followed by a space, followed by a comma-separated list of groups.
This format seems reasonable, and we're going to go with it because
data formatting isn't the topic of this chapter. However, to illustrate
just why you need to think hard about how you format data on disk,
let's highlight a few problems with the format.

First, the space character is technically legal in email addresses.
Most email providers prohibit it (with good reason), but the
specification defining email addresses says an email can contain a
space if it is in quotation marks. If we are to use a space as a
sentinel in our data format, we should technically be able to
differentiate between that space and a space that is part of an email.
We're going to pretend this isn't true, for simplicity's sake, but real-
life data encoding is full of stupid issues like this.

Second, consider the comma-separated list of groups. What
happens if someone decides to put a comma in a group name? If we
decide to make commas illegal in group names, we should add
validation to enforce such naming in our add_to_group method. For
pedagogical clarity, we'll ignore this problem too. Finally, there are
many security implications we need to consider: can someone get
themselves into the wrong group by putting a fake comma in their
email address? What does the parser do if it encounters an invalid
file?

The takeaway from this discussion is to try to use a data storage
method that has been field tested, rather than designing our own
data serialization protocols. There are a ton of bizarre edge cases
you might overlook, and it's better to use code that has already
encountered and fixed those edge cases.

But forget that. Let's just write some basic code that uses an
unhealthy dose of wishful thinking to pretend this simple data format
is safe, demonstrated as follows:

email1@mydomain.com group1,group2
email2@mydomain.com group2,group3

The code to do this is as follows:

 def save(self):
 with open(self.data_file, "w") as file:
 for email, groups in self.email_map.items():
 file.write("{} {}\n".format(email, ",".join(groups)))

 def load(self):
 self.email_map = defaultdict(set)
 with suppress(IOError):
 with open(self.data_file) as file:
 for line in file:
 email, groups = line.strip().split(" ")
 groups = set(groups.split(","))
 self.email_map[email] = groups

In the save method, we open the file in a context manager and write
the file as a formatted string. Remember the newline character;
Python doesn't add that for us. The load method first resets the

dictionary (in case it contains data from a previous call to load). It
adds a call to the standard library suppress context manager, available
as from contextlib import suppress. This context manager catches any I/O
Errors and ignores them. Not the best error handling, but it's prettier
than try...finally...pass.

Then, the load method uses the for...in syntax, which loops over
each line in the file. Again, the newline character is included in the
line variable, so we have to call .strip() to take it off. We'll learn more
about such string manipulation in the next chapter.

Before using these methods, we need to make sure the object has a
self.data_file attribute, which can be done by modifying __init__ as
follows:

 def __init__(self, data_file):
 self.data_file = data_file
 self.email_map = defaultdict(set)

We can test these two methods in the interpreter as follows:

>>> m = MailingList('addresses.db')
>>> m.add_to_group('friend1@example.com', 'friends')
>>> m.add_to_group('family1@example.com', 'friends')
>>> m.add_to_group('family1@example.com', 'family')
>>> m.save()

The resulting addresses.db file contains the following lines, as expected:

friend1@example.com friends
family1@example.com friends,family

We can also load this data back into a MailingList object successfully:

>>> m = MailingList('addresses.db')
>>> m.email_map
defaultdict(<class 'set'>, {})
>>> m.load()
>>> m.email_map
defaultdict(<class 'set'>, {'friend2@example.com': {'friends\n'},
'family1@example.com': {'family\n'}, 'friend1@example.com':
{'friends\n'}})

As you can see, I forgot to add the load command, and it might be
easy to forget the save command as well. To make this a little easier
for anyone who wants to use our MailingList API in their own code,
let's provide the methods to support a context manager:

 def __enter__(self):
 self.load()
 return self

 def __exit__(self, type, value, tb):
 self.save()

These simple methods just delegate their work to load and save, but
we can now write code like this in the interactive interpreter and
know that all the previously stored addresses were loaded on our
behalf, and that the whole list will be saved to the file when we are
done:

>>> with MailingList('addresses.db') as ml:
... ml.add_to_group('friend2@example.com', 'friends')
... ml.send_mailing("What's up", "hey friends, how's it going",
'me@example.com',
 'friends')

Exercises
If you haven't encountered the with statements and context managers
before, I encourage you, as usual, to go through your old code, find
all the places where you were opening files, and make sure they are
safely closed using the with statement. Look for places to write your
own context managers as well. Ugly or repetitive try...finally clauses
are a good place to start, but you may find them useful any time you
need to do before and/or after tasks in context.

You've probably used many of the basic built-in functions before
now. We covered several of them, but didn't go into a great deal of
detail. Play with enumerate, zip, reversed, any, and all, until you know you'll
remember to use them when they are the right tool for the job. The
enumerate function is especially important, because not using it results
in some pretty ugly while loops.

Also explore some applications that pass functions around as
callable objects, as well as using the __call__ method to make your
own objects callable. You can get the same effect by attaching
attributes to functions or by creating a __call__ method on an object.
In which case would you use one syntax, and when would it be more
suitable to use the other?

Our mailing list object could overwhelm an email server if there is a
massive number of emails to be sent out. Try refactoring it so that
you can use different send_email functions for different purposes. One
such function could be the version we used here. A different version
might put the emails in a queue to be sent by a server in a different
thread or process. A third version could just output the data to the
terminal, obviating the need for a dummy SMTP server. Can you
construct the mailing list with a callback such that the send_mailing
function uses whatever is passed in? It would default to the current
version if no callback is supplied.

The relationship between arguments, keyword arguments, variable
arguments, and variable keyword arguments can be a bit confusing.
We saw how painfully they can interact when we covered multiple
inheritance. Devise some other examples to see how they can work
well together, as well as to understand when they don't.

Summary
We covered a grab bag of topics in this chapter. Each represented
an important non-object-oriented feature that is popular in Python.
Just because we can use object-oriented principles does not always
mean we should!

However, we also saw that Python typically implements such
features by providing a syntax shortcut to traditional object-oriented
syntax. Knowing the object-oriented principles underlying these tools
allows us to use them more effectively in our own classes.

We discussed a series of built-in functions and file I/O operations.
There are a whole bunch of different syntaxes available to us when
calling functions with arguments, keyword arguments, and variable
argument lists. Context managers are useful for the common pattern
of sandwiching a piece of code between two method calls. Even
functions are objects, and, conversely, any normal object can be
made callable.

In the next chapter, we'll learn more about string and file
manipulation, and even spend some time with one of the least
object-oriented topics in the standard library: regular expressions.

The Iterator Pattern
We've discussed how many of Python's built-ins and idioms seem, at
first blush, to fly in the face of object-oriented principles, but are
actually providing access to real objects under the hood. In this
chapter, we'll discuss how the for loop, which seems so structured, is
actually a lightweight wrapper around a set of object-oriented
principles. We'll also see a variety of extensions to this syntax that
automatically create even more types of object. We will cover the
following topics:

What design patterns are
The iterator protocol—one of the most powerful design patterns
List, set, and dictionary comprehensions
Generators and coroutines

Design patterns in brief
When engineers and architects decide to build a bridge, or a tower,
or a building, they follow certain principles to ensure structural
integrity. There are various possible designs for bridges (suspension
and cantilever, for example), but if the engineer doesn't use one of
the standard designs, and doesn't have a brilliant new design, it is
likely the bridge he/she designs will collapse.

Design patterns are an attempt to bring this same formal definition
for correctly designed structures to software engineering. There are
many different design patterns to solve different general problems.
Design patterns typically solve a specific common problem faced by
developers in some specific situation. The design pattern is then a
suggestion as to the ideal solution for that problem, in terms of
object-oriented design.

Knowing a design pattern and choosing to use it in our software
does not, however, guarantee that we are creating a correct solution.
In 1907, the Québec Bridge (to this day, the longest cantilever bridge
in the world) collapsed before construction was completed, because
the engineers who designed it grossly underestimated the weight of
the steel used to construct it. Similarly, in software development, we
may incorrectly choose or apply a design pattern, and create
software that collapses under normal operating situations or when
stressed beyond its original design limits.

Any one design pattern proposes a set of objects interacting in a
specific way to solve a general problem. The job of the programmer
is to recognize when they are facing a specific version of such a
problem, then to choose and adapt the general design in their
precise needs.

In this chapter, we'll be covering the iterator design pattern. This
pattern is so powerful and pervasive that the Python developers
have provided multiple syntaxes to access the object-oriented
principles underlying the pattern. We will be covering other design
patterns in the next two chapters. Some of them have language
support and some don't, but none of them is so intrinsically a part of
the Python coder's daily life as the iterator pattern.

Iterators
In typical design pattern parlance, an iterator is an object with a next()
method and a done() method; the latter returns True if there are no
items left in the sequence. In a programming language without built-
in support for iterators, the iterator would be looped over like this:

while not iterator.done():
 item = iterator.next()
 # do something with the item

In Python, iteration is a special feature, so the method gets a special
name, __next__. This method can be accessed using the next(iterator)
built-in. Rather than a done method, Python's iterator protocol raises
StopIteration to notify the loop that it has completed. Finally, we have
the much more readable foriteminiterator syntax to actually access
items in an iterator instead of messing around with a while loop. Let's
look at these in more detail.

The iterator protocol
The Iterator abstract base class, in the collections.abc module, defines
the iterator protocol in Python. As mentioned, it must have a __next__
method that the for loop (and other features that support iteration)
can call to get a new element from the sequence. In addition, every
iterator must also fulfill the Iterable interface. Any class that provides
an __iter__ method is iterable. That method must return an Iterator
instance that will cover all the elements in that class.

This might sound a bit confusing, so have a look at the following
example, but note that this is a very verbose way to solve this
problem. It clearly explains iteration and the two protocols in
question, but we'll be looking at several more readable ways to get
this effect later in this chapter:

class CapitalIterable:
 def __init__(self, string):
 self.string = string

 def __iter__(self):
 return CapitalIterator(self.string)

class CapitalIterator:
 def __init__(self, string):
 self.words = [w.capitalize() for w in string.split()]
 self.index = 0

 def __next__(self):
 if self.index == len(self.words):
 raise StopIteration()

 word = self.words[self.index]
 self.index += 1
 return word

 def __iter__(self):
 return self

This example defines an CapitalIterable class whose job is to loop over
each of the words in a string and output them with the first letter

capitalized. Most of the work of that iterable is passed to the
CapitalIterator implementation. The canonical way to interact with this
iterator is as follows:

>>> iterable = CapitalIterable('the quick brown fox jumps over the lazy
dog')
>>> iterator = iter(iterable)
>>> while True:
... try:
... print(next(iterator))
... except StopIteration:
... break
...
The
Quick
Brown
Fox
Jumps
Over
The
Lazy
Dog

This example first constructs an iterable and retrieves an iterator
from it. The distinction may need explanation; the iterable is an
object with elements that can be looped over. Normally, these
elements can be looped over multiple times, maybe even at the
same time or in overlapping code. The iterator, on the other hand,
represents a specific location in that iterable; some of the items have
been consumed and some have not. Two different iterators might be
at different places in the list of words, but any one iterator can mark
only one place.

Each time next() is called on the iterator, it returns another token from
the iterable, in order. Eventually, the iterator will be exhausted (won't
have any more elements to return), in which case Stopiteration is
raised, and we break out of the loop.

Of course, we already know a much simpler syntax for constructing
an iterator from an iterable:

>>> for i in iterable:
... print(i)
...
The

Quick
Brown
Fox
Jumps
Over
The
Lazy
Dog

As you can see, the for statement, in spite of not looking remotely
object-oriented, is actually a shortcut to some obviously object-
oriented design principles. Keep this in mind as we discuss
comprehensions, as they, too, appear to be the polar opposite of an
object-oriented tool. Yet, they use the exact same iteration protocol
as for loops and are just another kind of shortcut.

Comprehensions
Comprehensions are simple, but powerful, syntaxes that allow us to
transform or filter an iterable object in as little as one line of code.
The resultant object can be a perfectly normal list, set, or dictionary,
or it can be a generator expression that can be efficiently consumed
while keeping just one element in memory at a time.

List comprehensions
List comprehensions are one of the most powerful tools in Python,
so people tend to think of them as advanced. They're not. Indeed,
I've taken the liberty of littering previous examples with
comprehensions, assuming you would understand them. While it's
true that advanced programmers use comprehensions a lot, it's not
because they're advanced. It's because they're trivial, and handle
some of the most common operations in software development.

Let's have a look at one of those common operations; namely,
converting a list of items into a list of related items. Specifically, let's
assume we just read a list of strings from a file, and now we want to
convert it to a list of integers. We know every item in the list is an
integer, and we want to do some activity (say, calculate an average)
on those numbers. Here's one simple way to approach it:

input_strings = ["1", "5", "28", "131", "3"]

output_integers = []
for num in input_strings:
 output_integers.append(int(num))

This works fine and it's only three lines of code. If you aren't used to
comprehensions, you may not even think it looks ugly! Now, look at
the same code using a list comprehension:

input_strings = ["1", "5", "28", "131", "3"]
output_integers = [int(num) for num in input_strings]

We're down to one line and, importantly for performance, we've
dropped an append method call for each item in the list. Overall, it's
pretty easy to tell what's going on, even if you're not used to
comprehension syntax.

The square brackets indicate, as always, that we're creating a list.
Inside this list is a for loop that iterates over each item in the input

sequence. The only thing that may be confusing is what's happening
between the list's opening brace and the start of the for loop.
Whatever happens here is applied to each of the items in the input
list. The item in question is referenced by the num variable from the
loop. So, it's calling the int function for each element and storing the
resulting integer in the new list.

That's all there is to a basic list comprehension. Comprehensions
are highly optimized C code; list comprehensions are far faster than
for loops when looping over a large number of items. If readability
alone isn't a convincing reason to use them as much as possible,
speed should be.

Converting one list of items into a related list isn't the only thing we
can do with a list comprehension. We can also choose to exclude
certain values by adding an if statement inside the comprehension.
Have a look:

output_integers = [int(num) for num in input_strings if len(num) < 3]

All that's different between this example and the previous one is the
if len(num) < 3 part. This extra code excludes any strings with more
than two characters. The if statement is applied to each element
before the int function, so it's testing the length of a string. Since our
input strings are all integers at heart, it excludes any number over
99.

List comprehensions are used to map input values to output values,
applying a filter along the way to include or exclude any values that
meet a specific condition.

Any iterable can be the input to a list comprehension. In other words,
anything we can wrap in a for loop can also be placed inside a
comprehension. For example, text files are iterable; each call to
__next__ on the file's iterator will return one line of the file. We could
load a tab-delimited file where the first line is a header row into a
dictionary using the zip function:

import sys

filename = sys.argv[1]

with open(filename) as file:
 header = file.readline().strip().split("\t")
 contacts = [
 dict(
 zip(header, line.strip().split("\t")))
 for line in file
]

for contact in contacts:
 print("email: {email} -- {last}, {first}".format(**contact))

This time, I've added some whitespace to make it more readable (list
comprehensions don't have to fit on one line). This example creates
a list of dictionaries from the zipped header and split lines for each
line in the file.

Er, what? Don't worry if that code or explanation doesn't make
sense; it's confusing. One list comprehension is doing a pile of work
here, and the code is hard to understand, read, and ultimately,
maintain. This example shows that list comprehensions aren't
always the best solution; most programmers would agree that a for
loop would be more readable than this version.

Remember: the tools we are provided with should not be abused! Always pick the right tool for the
job, which is always to write maintainable code.

Set and dictionary
comprehensions
Comprehensions aren't restricted to lists. We can use a similar
syntax with braces to create sets and dictionaries as well. Let's start
with sets. One way to create a set is to wrap a list comprehension in
the set() constructor, which converts it to a set. But why waste
memory on an intermediate list that gets discarded, when we can
create a set directly?

Here's an example that uses a named tuple to model
author/title/genre triads, and then retrieves a set of all the authors
that write in a specific genre:

from collections import namedtuple

Book = namedtuple("Book", "author title genre")
books = [
 Book("Pratchett", "Nightwatch", "fantasy"),
 Book("Pratchett", "Thief Of Time", "fantasy"),
 Book("Le Guin", "The Dispossessed", "scifi"),
 Book("Le Guin", "A Wizard Of Earthsea", "fantasy"),
 Book("Turner", "The Thief", "fantasy"),
 Book("Phillips", "Preston Diamond", "western"),
 Book("Phillips", "Twice Upon A Time", "scifi"),
]

fantasy_authors = {b.author for b in books if b.genre == "fantasy"}

The highlighted set comprehension sure is short in comparison to
the demo-data setup! If we were to use a list comprehension, of
course, Terry Pratchett would have been listed twice. As it is, the
nature of sets removes the duplicates, and we end up with the
following:

>>> fantasy_authors
{'Turner', 'Pratchett', 'Le Guin'}

Still using braces, we can introduce a colon to create a dictionary
comprehension. This converts a sequence into a dictionary using
key:value pairs. For example, it may be useful to quickly look up the
author or genre in a dictionary if we know the title. We can use a
dictionary comprehension to map titles to books objects:

fantasy_titles = {b.title: b for b in books if b.genre == "fantasy"}

Now, we have a dictionary, and can look up books by title using the
normal syntax.

In summary, comprehensions are not advanced Python, nor are they
non-object-oriented tools that should be avoided. They are simply a
more concise and optimized syntax for creating a list, set, or
dictionary from an existing sequence.

Generator expressions
Sometimes we want to process a new sequence without pulling a
new list, set, or dictionary into system memory. If we're just looping
over items one at a time, and don't actually care about having a
complete container (such as a list or dictionary) created, creating
that container is a waste of memory. When processing one item at a
time, we only need the current object available in memory at any one
moment. But when we create a container, all the objects have to be
stored in that container before we start processing them.

For example, consider a program that processes log files. A very
simple log might contain information in this format:

Jan 26, 2015 11:25:25 DEBUG This is a debugging message. Jan 26, 2015
11:25:36 INFO This is an information method. Jan 26, 2015 11:25:46
WARNING This is a warning. It could be serious. Jan 26, 2015 11:25:52
WARNING Another warning sent. Jan 26, 2015 11:25:59 INFO Here's some
information. Jan 26, 2015 11:26:13 DEBUG Debug messages are only useful
if you want to figure something out. Jan 26, 2015 11:26:32 INFO
Information is usually harmless, but helpful. Jan 26, 2015 11:26:40
WARNING Warnings should be heeded. Jan 26, 2015 11:26:54 WARNING Watch
for warnings.

Log files for popular web servers, databases, or email servers can
contain many gigabytes of data (I once had to clean nearly 2
terabytes of logs off a misbehaving system). If we want to process
each line in the log, we can't use a list comprehension; it would
create a list containing every line in the file. This probably wouldn't fit
in RAM and could bring the computer to its knees, depending on the
operating system.

If we used a for loop on the log file, we could process one line at a
time before reading the next one into memory. Wouldn't be nice if we
could use comprehension syntax to get the same effect?

This is where generator expressions come in. They use the same
syntax as comprehensions, but they don't create a final container
object. To create a generator expression, wrap the comprehension in
() instead of [] or {}.

The following code parses a log file in the previously presented
format and outputs a new log file that contains only the WARNING lines:

import sys

inname = sys.argv[1]
outname = sys.argv[2]

with open(inname) as infile:
 with open(outname, "w") as outfile:
 warnings = (l for l in infile if 'WARNING' in l)
 for l in warnings:
 outfile.write(l)

This program takes the two filenames on the command line, uses a
generator expression to filter out the warnings (in this case, it uses
the if syntax and leaves the line unmodified), and then outputs the
warnings to another file. If we run it on our sample file, the output
looks like this:

Jan 26, 2015 11:25:46 WARNING This is a warning. It could be serious.
Jan 26, 2015 11:25:52 WARNING Another warning sent.
Jan 26, 2015 11:26:40 WARNING Warnings should be heeded.
Jan 26, 2015 11:26:54 WARNING Watch for warnings.

Of course, with such a short input file, we could have safely used a
list comprehension, but if the file is millions of lines long, the
generator expression will have a huge impact on both memory and
speed.

Wrapping a for expression in parenthesis creates a generator expression, not a tuple.

Generator expressions are frequently most useful inside function
calls. For example, we can call sum, min, or max on a generator
expression instead of a list, since these functions process one object
at a time. We're only interested in the aggregate result, not any
intermediate container.

In general, of the four options, a generator expression should be
used whenever possible. If we don't actually need a list, set, or
dictionary, but simply need to filter or convert items in a sequence, a
generator expression will be most efficient. If we need to know the
length of a list, or sort the result, remove duplicates, or create a
dictionary, we'll have to use the comprehension syntax.

Generators
Generator expressions are actually a sort of comprehension too;
they compress the more advanced (this time it really is more
advanced!) generator syntax into one line. The greater generator
syntax looks even less object-oriented than anything we've seen, but
we'll discover that once again, it is a simple syntax shortcut to create
a kind of object.

Let's take the log file example a little further. If we want to delete the
WARNING column from our output file (since it's redundant: this file
contains only warnings), we have several options at various levels of
readability. We can do it with a generator expression:

import sys

generator expression
inname, outname = sys.argv[1:3]

with open(inname) as infile:
 with open(outname, "w") as outfile:
 warnings = (
 l.replace("\tWARNING", "") for l in infile if "WARNING" in l
)
 for l in warnings:
 outfile.write(l)

That's perfectly readable, though I wouldn't want to make the
expression much more complicated than that. We could also do it
with a normal for loop:

with open(inname) as infile:
 with open(outname, "w") as outfile:
 for l in infile:
 if "WARNING" in l:
 outfile.write(l.replace("\tWARNING", ""))

That's clearly maintainable, but so many levels of indent in so few
lines is kind of ugly. More alarmingly, if we wanted to do something

other than printing the lines out, we'd have to duplicate the looping
and conditional code, too.

Now let's consider a truly object-oriented solution, without any
shortcuts:

class WarningFilter:
 def __init__(self, insequence):
 self.insequence = insequence

 def __iter__(self):
 return self

 def __next__(self):
 l = self.insequence.readline()
 while l and "WARNING" not in l:
 l = self.insequence.readline()
 if not l:
 raise StopIteration
 return l.replace("\tWARNING", "")

with open(inname) as infile:
 with open(outname, "w") as outfile:
 filter = WarningFilter(infile)
 for l in filter:
 outfile.write(l)

No doubt about it: that is so ugly and difficult to read that you may
not even be able to tell what's going on. We created an object that
takes a file object as input, and provides a __next__ method like any
iterator.

This __next__ method reads lines from the file, discarding them if they
are not WARNING lines. When we encounter a WARNING line, we modify and
return it. Then our for loop calls __next__ again to process the
subsequent WARNING line. When we run out of lines, we raise
StopIteration to tell the loop we're finished iterating. It's pretty ugly
compared to the other examples, but it's also powerful; now that we
have a class in our hands, we can do whatever we want with it.

With that background behind us, we finally get to see true generators
in action. This next example does exactly the same thing as the

previous one: it creates an object with a __next__ method that raises
StopIteration when it's out of inputs:

def warnings_filter(insequence):
 for l in insequence:
 if "WARNING" in l:
 yield l.replace("\tWARNING", "")

with open(inname) as infile:
 with open(outname, "w") as outfile:
 filter = warnings_filter(infile)
 for l in filter:
 outfile.write(l)

OK, that's pretty readable, maybe... at least it's short. But what on
earth is going on here? It makes no sense whatsoever. And what is
yield, anyway?

In fact, yield is the key to generators. When Python sees yield in a
function, it takes that function and wraps it up in an object not unlike
the one in our previous example. Think of the yield statement as
similar to the return statement; it exits the function and returns a line.
Unlike return, however, when the function is called again (via next()), it
will start where it left off—on the line after the yield statement—
instead of at the beginning of the function.

In this example, there is no line after the yield statement, so it jumps
to the next iteration of the for loop. Since the yield statement is inside
an if statement, it only yields lines that contain WARNING.

While it looks like this is just a function looping over the lines, it is
actually creating a special type of object, a generator object:

>>> print(warnings_filter([]))
<generator object warnings_filter at 0xb728c6bc>

I passed an empty list into the function to act as an iterator. All the
function does is create and return a generator object. That object
has __iter__ and __next__ methods on it, just like the one we created in
the previous example. (You can call the dir built-in function on it to
confirm.) Whenever __next__ is called, the generator runs the function

until it finds a yield statement. It then returns the value from yield, and
the next time __next__ is called, it picks up where it left off.

This use of generators isn't that advanced, but if you don't realize the
function is creating an object, it can seem like magic. This example
was quite simple, but you can get really powerful effects by making
multiple calls to yield in a single function; on each loop, the generator
will simply pick up at the most recent yield and continue to the next
one.

Yield items from another
iterable
Often, when we build a generator function, we end up in a situation
where we want to yield data from another iterable object, possibly a
list comprehension or generator expression we constructed inside
the generator, or perhaps some external items that were passed into
the function. This has always been possible by looping over the
iterable and individually yielding each item. However, in Python
version 3.3, the Python developers introduced a new syntax to make
it a little more elegant.

Let's adapt the generator example a bit so that instead of accepting
a sequence of lines, it accepts a filename. This would normally be
frowned upon as it ties the object to a particular paradigm. When
possible we should operate on iterators as input; this way the same
function could be used regardless of whether the log lines came from
a file, memory, or the web.

This version of the code illustrates that your generator can do some
basic setup before yielding information from another iterable (in this
case, a generator expression):

def warnings_filter(infilename):
 with open(infilename) as infile:
 yield from (
 l.replace("\tWARNING", "") for l in infile if "WARNING" in l
)

filter = warnings_filter(inname)
with open(outname, "w") as outfile:
 for l in filter:
 outfile.write(l)

This code combines the for loop from the previous example into a
generator expression. Notice that this transformation didn't help

anything; the previous example with a for loop was more readable.

So, let's consider an example that is more readable than its
alternative. It can be useful to construct a generator that yields data
from multiple other generators. The itertools.chain function, for
example, yields data from iterables in sequence until they have all
been exhausted. This can be implemented far too easily using the
yield from syntax, so let's consider a classic computer science
problem: walking a general tree.

A common implementation of the general tree data structure is a
computer's filesystem. Let's model a few folders and files in a Unix
filesystem so we can use yield from to walk them effectively:

class File:
 def __init__(self, name):
 self.name = name

class Folder(File):
 def __init__(self, name):
 super().__init__(name)
 self.children = []

root = Folder("")
etc = Folder("etc")
root.children.append(etc)
etc.children.append(File("passwd"))
etc.children.append(File("groups"))
httpd = Folder("httpd")
etc.children.append(httpd)
httpd.children.append(File("http.conf"))
var = Folder("var")
root.children.append(var)
log = Folder("log")
var.children.append(log)
log.children.append(File("messages"))
log.children.append(File("kernel"))

This setup code looks like a lot of work, but in a real filesystem, it
would be even more involved. We'd have to read data from the hard
drive and structure it into the tree. Once in memory, however, the
code that outputs every file in the filesystem is quite elegant:

def walk(file):
 if isinstance(file, Folder):
 yield file.name + "/"
 for f in file.children:
 yield from walk(f)
 else:
 yield file.name

If this code encounters a directory, it recursively asks walk() to
generate a list of all files subordinate to each of its children, and then
yields all that data plus its own filename. In the simple case that it
has encountered a normal file, it just yields that name.

As an aside, solving the preceding problem without using a
generator is tricky enough that it is a common interview question. If
you answer it as shown like this, be prepared for your interviewer to
be both impressed and somewhat irritated that you answered it so
easily. They will likely demand that you explain exactly what is going
on. Of course, armed with the principles you've learned in this
chapter, you won't have any problem. Good luck!

The yield from syntax is a useful shortcut when writing chained
generators. It was added to the language for a different reason, to
support coroutines. It is not used all that much anymore, however,
because it's usage has been replaced with async and await syntax.
We'll see examples of both in the next section.

Coroutines
Coroutines are extremely powerful constructs that are often
confused with generators. Many authors inappropriately describe
coroutines as generators with a bit of extra syntax. This is an easy
mistake to make, as, way back in Python 2.5, when coroutines were
introduced, they were presented as we added a send method to the
generator syntax. The difference is actually a lot more nuanced and
will make more sense after you've seen a few examples.

Coroutines are pretty hard to understand. Outside the asyncio module,
they are not used all that often in the wild. You can definitely skip this
section and happily develop in Python for years without ever
encountering coroutines. There are a couple of libraries that use
coroutines extensively (mostly for concurrent or asynchronous
programming), but they are normally written such that you can use
coroutines without actually understanding how they work! So, if you
get lost in this section, don't despair.

If I haven't scared you off, let's get started! Here's one of the simplest
possible coroutines; it allows us to keep a running tally that can be
increased by arbitrary values:

def tally():
 score = 0
 while True:
 increment = yield score
 score += increment

This code looks like black magic that couldn't possibly work, so let's
prove it works before going into a line-by-line description. This
simple object could be used by a scoring application for a baseball
team. Separate tallies could be kept for each team, and their score
could be incremented by the number of runs accumulated at the end
of every half-innings. Look at this interactive session:

>>> white_sox = tally()
>>> blue_jays = tally()
>>> next(white_sox)
0
>>> next(blue_jays)
0
>>> white_sox.send(3)
3
>>> blue_jays.send(2)
2
>>> white_sox.send(2)
5
>>> blue_jays.send(4)
6

First, we construct two tally objects, one for each team. Yes, they
look like functions, but as with the generator objects in the previous
section, the fact that there is a yield statement inside the function tells
Python to put a great deal of effort into turning the simple function
into an object.

We then call next() on each of the coroutine objects. This does the
same thing as calling next on any generator, which is to say, it
executes each line of code until it encounters a yield statement,
returns the value at that point, and then pauses until the next next()
call.

So far, then, there's nothing new. But look back at the yield statement
in our coroutine:

increment = yield score

Unlike with generators, this yield function looks like it's supposed to
return a value and assign it to a variable. In fact, this is exactly
what's happening. The coroutine is still paused at the yield statement
and waiting to be activated again by another call to next().

Except we don't call next(). As you see in the interactive session, we
instead call to a method called send(). The send() method does exactly
the same thing as next() except that in addition to advancing the
generator to the next yield statement, it also allows you to pass in a

value from outside the generator. This value is what gets assigned to
the left side of the yield statement.

The thing that is really confusing for many people is the order in
which this happens:

1. yield occurs and the generator pauses
2. send() occurs from outside the function and the generator wakes

up
3. The value sent in is assigned to the left side of the yield

statement
4. The generator continues processing until it encounters another

yield statement

So, in this particular example, after we construct the coroutine and
advance it to the yield statement with a single call to next(), each
successive call to send() passes a value into the coroutine. We add
this value to its score. Then we go back to the top of the while loop,
and keep processing until we hit the yield statement. The yield
statement returns a value, which becomes the return value of our
most recent call to send. Don't miss that: like next(), the send() method
does not just submit a value to the generator, it also returns the
value from the upcoming yield statement. This is how we define the
difference between a generator and a coroutine: a generator only
produces values, while a coroutine can also consume them.

The behavior and syntax of next(i), i.__next__(), and i.send(value) are rather unintuitive and
frustrating. The first is a normal function, the second is a special method, and the last is a normal
method. But all three do the same thing: advance the generator until it yields a value and pause.
Further, the next() function and associated method can be replicated by calling i.send(None).
There is value to having two different method names here, since it helps the reader of our code
easily see whether they are interacting with a coroutine or a generator. I just find the fact that in
one case it's a function call and in the other it's a normal method somewhat irritating.

Back to log parsing
Of course, the previous example could easily have been coded using
a couple of integer variables and calling x += increment on them. Let's
look at a second example where coroutines actually save us some
code. This example is a somewhat simplified (for pedagogical
reasons) version of a problem I had to solve while working at
Facebook.

The Linux kernel log contains lines that look almost, but not quite
entirely, unlike this:

unrelated log messages
sd 0:0:0:0 Attached Disk Drive
unrelated log messages
sd 0:0:0:0 (SERIAL=ZZ12345)
unrelated log messages
sd 0:0:0:0 [sda] Options
unrelated log messages
XFS ERROR [sda]
unrelated log messages
sd 2:0:0:1 Attached Disk Drive
unrelated log messages
sd 2:0:0:1 (SERIAL=ZZ67890)
unrelated log messages
sd 2:0:0:1 [sdb] Options
unrelated log messages
sd 3:0:1:8 Attached Disk Drive
unrelated log messages
sd 3:0:1:8 (SERIAL=WW11111)
unrelated log messages
sd 3:0:1:8 [sdc] Options
unrelated log messages
XFS ERROR [sdc]
unrelated log messages

There are a whole bunch of interspersed kernel log messages, some
of which pertain to hard disks. The hard disk messages might be
interspersed with other messages, but they occur in a predictable
format and order. For each, a specific drive with a known serial
number is associated with a bus identifier (such as 0:0:0:0). A block

device identifier (such as sda) is also associated with that bus. Finally,
if the drive has a corrupt filesystem, it might fail with an XFS error.

Now, given the preceding log file, the problem we need to solve is
how to obtain the serial number of any drives that have XFS errors
on them. This serial number might later be used by a data center
technician to identify and replace the drive.

We know we can identify the individual lines using regular
expressions, but we'll have to change the regular expressions as we
loop through the lines, since we'll be looking for different things
depending on what we found previously. The other difficult bit is that
if we find an error string, the information about which bus contains
that string as well as the serial number have already been
processed. This can easily be solved by iterating through the lines of
the file in reverse order.

Before you look at this example, be warned—the amount of code
required for a coroutine-based solution is scarily small:

import re

def match_regex(filename, regex):
 with open(filename) as file:
 lines = file.readlines()
 for line in reversed(lines):
 match = re.match(regex, line)
 if match:
 regex = yield match.groups()[0]

def get_serials(filename):
 ERROR_RE = "XFS ERROR (\[sd[a-z]\])"
 matcher = match_regex(filename, ERROR_RE)
 device = next(matcher)
 while True:
 try:
 bus = matcher.send(
 "(sd \S+) {}.*".format(re.escape(device))
)
 serial = matcher.send("{} \(SERIAL=([^)]*)\)".format(bus))
 yield serial
 device = matcher.send(ERROR_RE)
 except StopIteration:
 matcher.close()

 return

for serial_number in get_serials("EXAMPLE_LOG.log"):
 print(serial_number)

This code neatly divides the job into two separate tasks. The first
task is to loop over all the lines and spit out any lines that match a
given regular expression. The second task is to interact with the first
task and give it guidance as to what regular expression it is
supposed to be searching for at any given time.

Look at the match_regex coroutine first. Remember, it doesn't execute
any code when it is constructed; rather, it just creates a coroutine
object. Once constructed, someone outside the coroutine will
eventually call next() to start the code running. Then it stores the state
of two variables filename and regex. It then reads all the lines in the file
and iterates over them in reverse. Each line is compared to the
regular expression that was passed in until it finds a match. When
the match is found, the coroutine yields the first group from the
regular expression and waits.

At some point in the future, other code will send in a new regular
expression to search for. Note that the coroutine never cares what
regular expression it is trying to match; it's just looping over lines and
comparing them to a regular expression. It's somebody else's
responsibility to decide what regular expression to supply.

In this case, that somebody else is the get_serials generator. It doesn't
care about the lines in the file; in fact, it isn't even aware of them.
The first thing it does is create a matcher object from the match_regex
coroutine constructor, giving it a default regular expression to search
for. It advances the coroutine to its first yield and stores the value it
returns. It then goes into a loop that instructs the matcher object to
search for a bus ID based on the stored device ID, and then a serial
number based on that bus ID.

It idly yields that serial number to the outside for loop before
instructing the matcher to find another device ID and repeat the
cycle.

Basically, the coroutine's job is to search for the next important line in
the file, while the generator's (get_serial, which uses the yield syntax
without assignment) job is to decide which line is important. The
generator has information about this particular problem, such as
what order lines will appear in the file.

The coroutine, on the other hand, could be plugged into any problem
that required searching a file for given regular expressions.

Closing coroutines and
throwing exceptions
Normal generators signal their exit from inside by raising StopIteration.
If we chain multiple generators together (for example, by iterating
over one generator from inside another), the StopIteration exception
will be propagated outward. Eventually, it will hit a for loop that will
see the exception and know that it's time to exit the loop.

Even though they use a similar syntax, coroutines don't normally
follow the iteration mechanism. Instead of pulling data through one
until an exception is encountered, data is usually pushed into it
(using send). The entity doing the pushing is normally the one in
charge of telling the coroutine when it's finished. It does this by
calling the close() method on the coroutine in question.

When called, the close() method will raise a GeneratorExit exception at
the point the coroutine was waiting for a value to be sent in. It is
normally good policy for coroutines to wrap their yield statements in a
try...finally block so that any cleanup tasks (such as closing
associated files or sockets) can be performed.

If we need to raise an exception inside a coroutine, we can use the
throw() method in a similar way. It accepts an exception type with
optional value and traceback arguments. The latter is useful when we
encounter an exception in one coroutine and want to cause an
exception to occur in an adjacent coroutine while maintaining the
traceback.

The previous example could be written without coroutines and would be about equally readable.
The truth is, correctly managing all the state between coroutines is pretty difficult, especially when
you take things like context managers and exceptions into account. Luckily, the Python standard
library contains a package called asyncio that can manage all of this for you. In general, I
recommend you avoid using bare coroutines unless you are specifically coding for asyncio. The
logging example could almost be considered an anti-pattern; a design pattern that should be
avoided rather than embraced.

The relationship between
coroutines, generators, and
functions
We've seen coroutines in action, so now let's go back to that
discussion of how they are related to generators. In Python, as is so
often the case, the distinction is quite blurry. In fact, all coroutines
are generator objects, and authors often use the two terms
interchangeably. Sometimes, they describe coroutines as a subset of
generators (only generators that return values from yield are
considered coroutines). This is technically true in Python, as we've
seen in the previous sections.

However, in the greater sphere of theoretical computer science,
coroutines are considered the more general principles, and
generators are a specific type of coroutine. Further, normal functions
are yet another distinct subset of coroutines.

A coroutine is a routine that can have data passed in at one or more
points and get it out at one or more points. In Python, the point
where data is passed in and out is the yield statement.

A function, or subroutine, is the simplest type of coroutine. You can
pass data in at one point, and get data out at one other point when
the function returns. While a function can have multiple return
statements, only one of them can be called for any given invocation
of the function.

Finally, a generator is a type of coroutine that can have data passed
in at one point, but can pass data out at multiple points. In Python,
the data would be passed out at a yield statement, but you can't pass
data back in. If you called send, the data would be silently discarded.

So, in theory, generators are types of coroutines, functions are types
of coroutines, and there are coroutines that are neither functions nor
generators. That's simple enough, eh? So, why does it feel more
complicated in Python?

In Python, generators and coroutines are both constructed using a
syntax that looks like we are constructing a function. But the
resulting object is not a function at all; it's a totally different kind of
object. Functions are, of course, also objects. But they have a
different interface; functions are callable and return values,
generators have data pulled out using next(), and coroutines have
data pushed in using send.

There is an alternate syntax for coroutines using the async and await keywords. The syntax
makes it clearer that the code is a coroutine and further breaks the deceiving symmetry between
coroutines and generators.

Case study
One of the fields in which Python is the most popular these days is
data science. In honor of that fact, let's implement a basic machine
learning algorithm.

Machine learning is a huge topic, but the general idea is to make
predictions or classifications about future data by using knowledge
gained from past data. Uses of such algorithms abound, and data
scientists are finding new ways to apply machine learning every day.
Some important machine learning applications include computer
vision (such as image classification or facial recognition), product
recommendation, identifying spam, and self-driving cars.

So as not to digress into an entire book on machine learning, we'll
look at a simpler problem: given an RGB color definition, what name
would humans identify that color as?

There are more than 16 million colors in the standard RGB color
space, and humans have come up with names for only a fraction of
them. While there are thousands of names (some quite ridiculous;
just go to any car dealership or paint store), let's build a classifier
that attempts to divide the RGB space into the basic colors:

Red
Purple
Blue
Green
Yellow
Orange
Gray
Pink

(In my testing, I classified whitish and blackish colors as gray, and
brownish colors as orange.)

The first thing we need is a dataset to train our algorithm on. In a
production system, you might scrape a list of colors website or
survey thousands of people. Instead, I created a simple application
that renders a random color and asks the user to select one of the
preceding eight options to classify it. I implemented it using tkinter,
the user interface toolkit that ships with Python. I'm not going to go
into the details of what this script does, but here it is in its entirety for
completeness (it's a trifle long, so you may want to pull it from
Packt's GitHub repository with the examples for this book instead of
typing it in):

import random
import tkinter as tk
import csv

class Application(tk.Frame):
 def __init__(self, master=None):
 super().__init__(master)
 self.grid(sticky="news")
 master.columnconfigure(0, weight=1)
 master.rowconfigure(0, weight=1)
 self.create_widgets()
 self.file = csv.writer(open("colors.csv", "a"))

 def create_color_button(self, label, column, row):
 button = tk.Button(
 self, command=lambda: self.click_color(label), text=label
)
 button.grid(column=column, row=row, sticky="news")

 def random_color(self):
 r = random.randint(0, 255)
 g = random.randint(0, 255)
 b = random.randint(0, 255)

 return f"#{r:02x}{g:02x}{b:02x}"

 def create_widgets(self):
 self.color_box = tk.Label(
 self, bg=self.random_color(), width="30", height="15"
)
 self.color_box.grid(
 column=0, columnspan=2, row=0, sticky="news"
)
 self.create_color_button("Red", 0, 1)

 self.create_color_button("Purple", 1, 1)
 self.create_color_button("Blue", 0, 2)
 self.create_color_button("Green", 1, 2)
 self.create_color_button("Yellow", 0, 3)
 self.create_color_button("Orange", 1, 3)
 self.create_color_button("Pink", 0, 4)
 self.create_color_button("Grey", 1, 4)
 self.quit = tk.Button(
 self, text="Quit", command=root.destroy, bg="#ffaabb"
)
 self.quit.grid(column=0, row=5, columnspan=2, sticky="news")

 def click_color(self, label):
 self.file.writerow([label, self.color_box["bg"]])
 self.color_box["bg"] = self.random_color()

root = tk.Tk()
app = Application(master=root)
app.mainloop()

You can easily add more buttons for other colors if you like. You may get tripped up on the layout;
the second and third argument to create_color_button represent the row and column of a two
column grid that the button goes in. Once you have all your colors in place, you will want to move
the Quit button to the last row.

For the purposes of this case study, the important thing to know
about this application is the output. It creates a Comma-Separated
Value (CSV) file named colors.csv. This file contains two CSVs: the
label the user assigned to the color, and the hex RGB value for the
color. Here's an example:

Green,#6edd13
Purple,#814faf
Yellow,#c7c26d
Orange,#61442c
Green,#67f496
Purple,#c757d5
Blue,#106a98
Pink,#d40491
.
.
.
Blue,#a4bdfa
Green,#30882f
Pink,#f47aad
Green,#83ddb2
Grey,#baaec9
Grey,#8aa28d
Blue,#533eda

I made over 250 datapoints before I got bored and decided it was
time to start machine learning on my dataset. My datapoints are

shipped with the examples for this chapter if you would like to use it
(nobody's ever told me I'm colorblind, so it should be somewhat
reasonable).

We'll be implementing one of the simpler machine learning
algorithms, referred to as k-nearest neighbor. This algorithm relies
on some kind of distance calculation between points in the dataset
(in our case, we can use a three-dimensional version of the
Pythagorean theorem). Given a new datapoint, it finds a certain
number (referred to as k, which is the k in k-nearest) of datapoints
that are closest to it when measured by that distance calculation.
Then it combines those datapoints in some way (an average might
work for linear calculations; for our classification problem, we'll use
the mode), and returns the result.

We won't go into too much detail about what the algorithm does;
rather, we'll focus on some of the ways we can apply the iterator
pattern or iterator protocol to this problem.

Let's now write a program that performs the following steps in order:

1. Load the sample data from the file and construct a model from
it.

2. Generate 100 random colors.
3. Classify each color and output it to a file in the same format as

the input.

The first step is a fairly simple generator that loads CSV data and
converts it into a format that is amenable to our needs:

import csv

dataset_filename = "colors.csv"

def load_colors(filename):
 with open(filename) as dataset_file:
 lines = csv.reader(dataset_file)
 for line in lines:
 label, hex_color = line
 yield (hex_to_rgb(hex_color), label)

We haven't seen the csv.reader function before. It returns an iterator
over the lines in the file. Each value returned by the iterator is a list
of strings, as separated by commas. So, the line Green,#6edd13 is
returned as ["Green", "#6edd13"].

The load_colors generator then consumes that iterator, one line at a
time, and yields a tuple of RGB values as well as the label. It is quite
common for generators to be chained in this way, where one iterator
calls another that calls another and so on. You may want to look at
the itertools module in the Python Standard Library for a whole host
of such ready-made generators waiting for you.

The RGB values in this case are tuples of integers between 0 and
255. The conversion from hex to RGB is a bit tricky, so we pulled it
out into a separate function:

def hex_to_rgb(hex_color):
 return tuple(int(hex_color[i : i + 2], 16) for i in range(1, 6, 2))

This generator expression is doing a lot of work. It takes a string
such as "#12abfe" as input and returns a tuple such as (18, 171, 254).
Let's break it down from back to front.

The range call will return the numbers [1, 3, 5]. These represent the
indexes of the three color channels in the hex string. The index, 0, is
skipped, since it represents the character "#", which we don't care
about. For each of the three numbers, it extracts the two character
string between i and i+2. For the preceding example string , that
would be 12, ab, and fe. Then it converts this string value to an integer.
The 16 passed as the second argument to the int function tells the
function to use base-16 (hexadecimal) instead of the usual base-10
(decimal) for the conversion.

Given how difficult the generator expression is to read, do you think
it should have been represented in a different format? It could be
created as a sequence of multiple generator expressions, for

example, or be unrolled into a normal generator function with yield
statements. Which would you prefer?

In this case, I am comfortable trusting the function name to explain
what the ugly line of code is doing.

Now that we've loaded the training data (manually classified colors,
we need some new data to test how well the algorithm is working.
We can do this by generating a hundred random colors, each
composed of three random numbers between 0 and 255.

There are so many ways this can be done:

A list comprehension with a nested generator
expression: [tuple(randint(0,255) for c in range(3)) for r in range(100)]
A basic generator function
A class that implements the __iter__ and __next__ protocols
Push the data through a pipeline of coroutines
Even just a basic for loop

The generator version seems to be most readable, so let's add that
function to our program:

from random import randint

def generate_colors(count=100):
 for i in range(count):
 yield (randint(0, 255), randint(0, 255), randint(0, 255))

Notice how we parameterize the number of colors to generate. We
can now reuse this function for other color-generating tasks in the
future.

Now, before we do the classification step, we need a function to
calculate the distance between two colors. Since it's possible to think
of colors as being three dimensional (red, green, and blue could map
to the x, y, and z axes, for example), let's use a little basic math:

def color_distance(color1, color2):
 channels = zip(color1, color2)

 sum_distance_squared = 0
 for c1, c2 in channels:
 sum_distance_squared += (c1 - c2) ** 2
 return sum_distance_squared

This is a pretty basic-looking function; it doesn't look like it's even
using the iterator protocol. There's no yield function, no
comprehensions. However, there is a for loop, and that call to the zip
function is doing some real iteration as well (if you aren't familiar with
it, zip yields tuples, each containing one element from each input
iterator).

This distance calculation is the three-dimensional version of the
Pythagorean theorem you may remember from school: a2 + b2 = c2.
Since we are using three dimensions, I guess it would actually be a2

+ b2 + c2 = d2. The distance is technically the square root of a2 + b2

+ c2, but there isn't any need to perform the somewhat expensive
sqrt calculation since the squared distances are all the same relative
size to each other.

Now that we have some plumbing in place, let's do the actual k-
nearest neighbor implementation. This routine can be thought of as
consuming and combining the two generators we've already seen
(load_colors and generate_colors):

def nearest_neighbors(model_colors, target_colors, num_neighbors=5):
 model_colors = list(model_colors)

 for target in target_colors:
 distances = sorted(
 ((color_distance(c[0], target), c) for c in model_colors)
)
 yield target, distances[:5]

We first convert the model_colors generator to a list because it has to be
consumed multiple times, once for each of the target_colors. If we
didn't do this, we would have to load the colors from the source file
repeatedly, which would perform a lot of unnecessary disk reads.

The downside of this decision is that the entire list has to be stored in
memory all at once. If we had a massive dataset that didn't fit in

memory, it would actually be necessary to reload the generator from
disk each time (though we'd actually be looking at different machine
learning algorithms in that case).

The nearest_neighbors generator loops over each target color (a three-
tuple, such as (255, 14, 168)) and calls the color_distance function on it
inside a generator expression. The sorted call surrounding that
generator expression then sorts the results by their first element,
which is the distance. It is a complicated piece of code and isn't
object-oriented at all. You may want to break it down into a normal
for loop to ensure you understand what the generator expression is
doing.

The yield statement is a bit less complicated. For each RGB three-
tuple from the target_colors generator, it yields the target, and a list
comprehension of the num_neighbors (that's the k in k-nearest, by the
way. Many mathematicians and, by extension, data scientists, have
a horrible tendency to use unintelligible one-letter variable names)
closest colors.

The contents of each element in the list comprehension is an
element from the model_colors generator; that is, a tuple of a tuple of
three RGB values and the string name that was manually entered for
that color. So, one element might look like this: ((104, 195, 77), 'Green').
The first thing I think when I see nested tuples like that is, that is not
the right datastructure. The RGB color should probably be
represented as a named tuple, and the two attributes should maybe
go on a dataclass.

We can now add another generator to the chain to figure out what
name we should give this target color:

from collections import Counter

def name_colors(model_colors, target_colors, num_neighbors=5):
 for target, near in nearest_neighbors(
 model_colors, target_colors, num_neighbors=5
):
 print(target, near)

 name_guess = Counter(n[1] for n in near).most_common()[0][0]
 yield target, name_guess

This generator is unpacking the tuple returned by nearest_neighbors into
the three-tuple target and the five nearest datapoints. It uses a Counter
to find the name that appears most often among the colors that were
returned. There is yet another generator expression in the Counter
constructor; this one extracts the second element (the color name)
from each datapoint. Then it yields a tuple RGB value and the
guessed name. An example of the return value is (91, 158, 250) Blue.

We can write a function that accepts the output from the name_colors
generator and writes it to a CSV file, with the RGB colors
represented as hex values:

def write_results(colors, filename="output.csv"):
 with open(filename, "w") as file:
 writer = csv.writer(file)
 for (r, g, b), name in colors:
 writer.writerow([name, f"#{r:02x}{g:02x}{b:02x}"])

This is a function, not a generator. It's consuming the generator in a
for loop, but it's not yielding anything. It constructs a CSV writer and
outputs rows of name, hex value (for example, Purple,#7f5f95) pairs for
each of the target colors. The only thing that might be confusing in
here is the contents of the format string. The :02x modifier used with
each of the r,g, and b channels outputs the number as a zero-padded
two-digit hexadecimal number.

Now all we have to do is connect these various generators and
pipelines together, and kick off the process with a single function call:

def process_colors(dataset_filename="colors.csv"):
 model_colors = load_colors(dataset_filename)
 colors = name_colors(model_colors, generate_colors(), 5)
 write_results(colors)

if __name__ == "__main__":
 process_colors()

So, this function, unlike almost every other function we've defined, is
a perfectly normal function without any yield statements or for loops.
It doesn't do any iteration at all.

It does, however, construct three generators. Can you see all three?:

load_colors returns a generator
generate_colors returns a generator
name_guess returns a generator

The name_guess generator consumes the first two generators. It, in turn,
is then consumed by the write_results function.

I wrote a second Tkinter app to check the accuracy of the algorithm.
It is similar to the first app, except it renders each color and the label
associated with that color. Then you have to manually click Yes or
No if the label matches the color. For my example data, I got around
95% accuracy. This could be improved by implementing the
following:

Adding more color names
Adding more training data by manually classifying more colors
Tweaking the value of num_neighbors
Using a more advanced machine learning algorithm

Here's the code for the output checking app, though I recommend
downloading the example code instead. This would be tedious to
type in:

import tkinter as tk
import csv

class Application(tk.Frame):
 def __init__(self, master=None):
 super().__init__(master)
 self.grid(sticky="news")
 master.columnconfigure(0, weight=1)
 master.rowconfigure(0, weight=1)
 self.csv_reader = csv.reader(open("output.csv"))
 self.create_widgets()
 self.total_count = 0

 self.right_count = 0

 def next_color(self):
 return next(self.csv_reader)

 def mk_grid(self, widget, column, row, columnspan=1):
 widget.grid(
 column=column, row=row, columnspan=columnspan, sticky="news"
)

 def create_widgets(self):
 color_text, color_bg = self.next_color()
 self.color_box = tk.Label(
 self, bg=color_bg, width="30", height="15"
)
 self.mk_grid(self.color_box, 0, 0, 2)

 self.color_label = tk.Label(self, text=color_text, height="3")
 self.mk_grid(self.color_label, 0, 1, 2)

 self.no_button = tk.Button(
 self, command=self.count_next, text="No"
)
 self.mk_grid(self.no_button, 0, 2)

 self.yes_button = tk.Button(
 self, command=self.count_yes, text="Yes"
)
 self.mk_grid(self.yes_button, 1, 2)

 self.percent_accurate = tk.Label(self, height="3", text="0%")
 self.mk_grid(self.percent_accurate, 0, 3, 2)

 self.quit = tk.Button(
 self, text="Quit", command=root.destroy, bg="#ffaabb"
)
 self.mk_grid(self.quit, 0, 4, 2)

 def count_yes(self):
 self.right_count += 1
 self.count_next()

 def count_next(self):
 self.total_count += 1
 percentage = self.right_count / self.total_count
 self.percent_accurate["text"] = f"{percentage:.0%}"
 try:
 color_text, color_bg = self.next_color()
 except StopIteration:
 color_text = "DONE"
 color_bg = "#ffffff"
 self.color_box["text"] = "DONE"
 self.yes_button["state"] = tk.DISABLED
 self.no_button["state"] = tk.DISABLED
 self.color_label["text"] = color_text
 self.color_box["bg"] = color_bg

root = tk.Tk()
app = Application(master=root)
app.mainloop()

You might be wondering, what does any of this have to do with
object-oriented programming? There isn't even one class in this
code!. In some ways, you'd be right; generators are not commonly
considered object-oriented. However, the functions that create them
return objects; in fact, you could think of those functions as
constructors. The constructed object has an appropriate __next__()
method. Basically, the generator syntax is a syntax shortcut for a
particular kind of object that would be quite verbose to create without
it.

Exercises
If you don't use comprehensions in your daily coding very often, the
first thing you should do is search through some existing code and
find some for loops. See whether any of them can be trivially
converted to a generator expression or a list, set, or dictionary
comprehension.

Test the claim that list comprehensions are faster than for loops. This
can be done with the built-in timeit module. Use the help
documentation for the timeit.timeit function to find out how to use it.
Basically, write two functions that do the same thing, one using a list
comprehension, and one using a for loop to iterate over several
thousand items. Pass each function into timeit.timeit, and compare
the results. If you're feeling adventurous, compare generators and
generator expressions as well. Testing code using timeit can become
addictive, so bear in mind that code does not need to be hyperfast
unless it's being executed an immense number of times, such as on
a huge input list or file.

Play around with generator functions. Start with basic iterators that
require multiple values (mathematical sequences are canonical
examples; the Fibonacci sequence is overused if you can't think of
anything better). Try some more advanced generators that do things
such as take multiple input lists and somehow yield values that
merge them. Generators can also be used on files; can you write a
simple generator that shows lines that are identical in two files?

Coroutines abuse the iterator protocol but don't actually fulfill the
iterator pattern. Can you build a non-coroutine version of the code
that gets a serial number from a log file? Take an object-oriented
approach so that you can store an additional state on a class. You'll
learn a lot about coroutines if you can create an object that is a drop-
in replacement for the existing coroutine.

The case study for this chapter has a lot of odd tuples of tuples being
passed around that are hard to keep track of. See whether you can
replace those return values with more object-oriented solutions.
Also, experiment with moving some of the functions that share data
(for example, model_colors and target_colors) into a class. That should
reduce the number of arguments that have to be passed into most of
the generators since they can look them up on self.

Summary
In this chapter, we learned that design patterns are useful
abstractions that provide best-practice solutions for common
programming problems. We covered our first design pattern, the
iterator, as well as numerous ways that Python uses and abuses this
pattern for its own nefarious purposes. The original iterator pattern is
extremely object-oriented, but it is also rather ugly and verbose to
code around. However, Python's built-in syntax abstracts the
ugliness away, leaving us with a clean interface to these object-
oriented constructs.

Comprehensions and generator expressions can combine container
construction with iteration in a single line. Generator objects can be
constructed using the yield syntax. Coroutines look like generators on
the outside but serve a much different purpose.

We'll cover several more design patterns in the next two chapters.

Python Design Patterns I
In the previous chapter, we were briefly introduced to design
patterns, and covered the iterator pattern, a pattern so useful and
common that it has been abstracted into the core of the
programming language itself. In this chapter, we'll be reviewing other
common patterns, and how they are implemented in Python. As with
iteration, Python often provides an alternative syntax to make
working with such problems simpler. We will cover both the
traditional design, and the Python version for these patterns.

In summary, we'll see:

Numerous specific patterns
A canonical implementation of each pattern in Python
Python syntax to replace certain patterns

The decorator pattern
The decorator pattern allows us to wrap an object that provides core
functionality with other objects that alter this functionality. Any object
that uses the decorated object will interact with it in exactly the same
way as if it were undecorated (that is, the interface of the decorated
object is identical to that of the core object).

There are two primary uses of the decorator pattern:

Enhancing the response of a component as it sends data to a
second component
Supporting multiple optional behaviors

The second option is often a suitable alternative to multiple
inheritance. We can construct a core object, and then create a
decorator wrapping that core. Since the decorator object has the
same interface as the core object, we can even wrap the new object
in other decorators. Here's how it looks in a UML diagram:

Here, Core and all the decorators implement a specific Interface.
The decorators maintain a reference to another instance of that
Interface via composition. When called, the decorator does some

added processing before or after calling its wrapped interface. The
wrapped object may be another decorator, or the core functionality.
While multiple decorators may wrap each other, the object in the
center of all those decorators provides the core functionality.

A decorator example
Let's look at an example from network programming. We'll be using a
TCP socket. The socket.send() method takes a string of input bytes and
outputs them to the receiving socket at the other end. There are
plenty of libraries that accept sockets and access this function to
send data on the stream. Let's create such an object; it will be an
interactive shell that waits for a connection from a client and then
prompts the user for a string response:

import socket

def respond(client):
 response = input("Enter a value: ")
 client.send(bytes(response, "utf8"))
 client.close()

server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.bind(("localhost", 2401))
server.listen(1)
try:
 while True:
 client, addr = server.accept()
 respond(client)
finally:
 server.close()

The respond function accepts a socket parameter and prompts for data to
be sent as a reply, then sends it. To use it, we construct a server
socket and tell it to listen on port 2401 (I picked the port randomly) on
the local computer. When a client connects, it calls the respond function,
which requests data interactively and responds appropriately. The
important thing to notice is that the respond function only cares about
two methods of the socket interface: send and close.

To test this, we can write a very simple client that connects to the
same port and outputs the response before exiting:

import socket

client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
client.connect(("localhost", 2401))
print("Received: {0}".format(client.recv(1024)))
client.close()

To use these programs, follow these steps:

1. Start the server in one Terminal.
2. Open a second Terminal window and run the client.
3. At the Enter a value: prompt in the server window, type a value

and press Enter.
4. The client will receive what you typed, print it to the console, and

exit. Run the client a second time; the server will prompt for a
second value.

The result will look something like this:

Now, looking back at our server code, we see two sections. The
respond function sends data into a socket object. The remaining script is
responsible for creating that socket object. We'll create a pair of
decorators that customize the socket behavior without having to
extend or modify the socket itself.

Let's start with a logging decorator. This object outputs any data
being sent to the server's console before it sends it to the client:

class LogSocket:
 def __init__(self, socket):
 self.socket = socket

 def send(self, data):
 print(
 "Sending {0} to {1}".format(
 data, self.socket.getpeername()[0]
)
)
 self.socket.send(data)

 def close(self):
 self.socket.close()

This class decorates a socket object and presents the send and close
interface to client sockets. A better decorator would also implement
(and possibly customize) all of the remaining socket methods. It should
properly implement all of the arguments to send, (which actually
accepts an optional flags argument) as well, but let's keep our
example simple. Whenever send is called on this object, it logs the
output to the screen before sending data to the client using the
original socket.

We only have to change one line in our original code to use this
decorator. Instead of calling respond with the socket, we call it with a
decorated socket:

respond(LogSocket(client))

While that's quite simple, we have to ask ourselves why we didn't just
extend the socket class and override the send method. We could call
super().send to do the actual sending, after we logged it. There is
nothing wrong with this design either.

When faced with a choice between decorators and inheritance, we
should only use decorators if we need to modify the object
dynamically, according to some condition. For example, we may only
want to enable the logging decorator if the server is currently in
debugging mode. Decorators also beat multiple inheritance when we
have more than one optional behavior. As an example, we can write a
second decorator that compresses data using gzip compression
whenever send is called:

import gzip
from io import BytesIO

class GzipSocket:
 def __init__(self, socket):
 self.socket = socket

 def send(self, data):
 buf = BytesIO()
 zipfile = gzip.GzipFile(fileobj=buf, mode="w")
 zipfile.write(data)
 zipfile.close()
 self.socket.send(buf.getvalue())

 def close(self):
 self.socket.close()

The send method in this version compresses the incoming data before
sending it on to the client.

Now that we have these two decorators, we can write code that
dynamically switches between them when responding. This example
is not complete, but it illustrates the logic we might follow to mix and
match decorators:

 client, addr = server.accept()
 if log_send:
 client = LogSocket(client)
 if client.getpeername()[0] in compress_hosts:
 client = GzipSocket(client)
 respond(client)

This code checks a hypothetical configuration variable named log_send.
If it's enabled, it wraps the socket in a LogSocket decorator. Similarly, it
checks whether the client that has connected is in a list of addresses

known to accept compressed content. If so, it wraps the client in a
GzipSocket decorator. Notice that none, either, or both of the decorators
may be enabled, depending on the configuration and connecting
client. Try writing this using multiple inheritance and see how
confused you get!

Decorators in Python
The decorator pattern is useful in Python, but there are other
options. For example, we may be able to use monkey-patching (for
example, socket.socket.send = log_send) to get a similar effect. Single
inheritance, where the optional calculations are done in one large
method, could be an option, and multiple inheritance should not be
written off just because it's not suitable for the specific example seen
previously.

In Python, it is very common to use this pattern on functions. As we
saw in a previous chapter, functions are objects too. In fact, function
decoration is so common that Python provides a special syntax to
make it easy to apply such decorators to functions.

For example, we can look at the logging example in a more general
way. Instead of logging, only send calls on sockets; we may find it
helpful to log all calls to certain functions or methods. The following
example implements a decorator that does just this:

import time

def log_calls(func):
 def wrapper(*args, **kwargs):
 now = time.time()
 print(
 "Calling {0} with {1} and {2}".format(
 func.__name__, args, kwargs
)
)
 return_value = func(*args, **kwargs)
 print(
 "Executed {0} in {1}ms".format(
 func.__name__, time.time() - now
)
)
 return return_value

 return wrapper

def test1(a, b, c):
 print("\ttest1 called")

def test2(a, b):
 print("\ttest2 called")

def test3(a, b):
 print("\ttest3 called")
 time.sleep(1)

test1 = log_calls(test1)
test2 = log_calls(test2)
test3 = log_calls(test3)

test1(1, 2, 3)
test2(4, b=5)
test3(6, 7)

This decorator function is very similar to the example we explored
earlier; in those cases, the decorator took a socket-like object and
created a socket-like object. This time, our decorator takes a function
object and returns a new function object. This code comprises three
separate tasks:

A function, log_calls, that accepts another function
This function defines (internally) a new function, named wrapper,
that does some extra work before calling the original function
The inner function is returned from the outer function

Three sample functions demonstrate the decorator in use. The third
one includes a sleep call to demonstrate the timing test. We pass
each function into the decorator, which returns a new function. We
assign this new function to the original variable name, effectively
replacing the original function with a decorated one.

This syntax allows us to build up decorated function objects
dynamically, just as we did with the socket example. If we don't
replace the name, we can even keep decorated and non-decorated
versions for different situations.

Typically, these decorators are general modifications that are applied
permanently to different functions. In this situation, Python supports
a special syntax to apply the decorator at the time the function is
defined. We've already seen this syntax in a few places; now, let's
understand how it works.

Instead of applying the decorator function after the method definition,
we can use the @decorator syntax to do it all at once:

@log_calls
def test1(a,b,c):
 print("\ttest1 called")

The primary benefit of this syntax is that we can easily see that the
function has been decorated whenever we read the function
definition. If the decorator is applied later, someone reading the code
may miss that the function has been altered at all. Answering a
question like, Why is my program logging function calls to the
console? can become much more difficult! However, the syntax can
only be applied to functions we define, since we don't have access to
the source code of other modules. If we need to decorate functions
that are part of somebody else's third-party library, we have to use
the earlier syntax.

There is more to the decorator syntax than we've seen here. We
don't have room to cover the advanced topics here, so check the
Python reference manual or other tutorials for more information.
Decorators can be created as callable objects, not just functions that
return functions. Classes can also be decorated; in that case, the
decorator returns a new class instead of a new function. Finally,
decorators can take arguments to customize them on a per-function
basis.

The observer pattern
The observer pattern is useful for state monitoring and event
handling situations. This pattern allows a given object to be
monitored by an unknown and dynamic group of observer objects.

Whenever a value on the core object changes, it lets all the observer
objects know that a change has occurred, by calling an update()
method. Each observer may be responsible for different tasks
whenever the core object changes; the core object doesn't know or
care what those tasks are, and the observers don't typically know or
care what other observers are doing.

Here it is in UML:

An observer example
The observer pattern might be useful in a redundant backup system.
We can write a core object that maintains certain values, and then
have one or more observers create serialized copies of that object.
These copies might be stored in a database, on a remote host, or in
a local file, for example. Let's implement the core object using
properties:

class Inventory:
 def __init__(self):
 self.observers = []
 self._product = None
 self._quantity = 0

 def attach(self, observer):
 self.observers.append(observer)

 @property
 def product(self):
 return self._product

 @product.setter
 def product(self, value):
 self._product = value
 self._update_observers()

 @property
 def quantity(self):
 return self._quantity

 @quantity.setter
 def quantity(self, value):
 self._quantity = value
 self._update_observers()

 def _update_observers(self):
 for observer in self.observers:
 observer()

This object has two properties that, when set, call the _update_observers
method on itself. All this method does is loop over any registered
observers and let each know that something has changed. In this
case, we call the observer object directly; the object will have to
implement __call__ to process the update. This would not be possible

in many object-oriented programming languages, but it's a useful
shortcut in Python that can help make our code more readable.

Now let's implement a simple observer object; this one will just print
out some state to the console:

class ConsoleObserver:
 def __init__(self, inventory):
 self.inventory = inventory

 def __call__(self):
 print(self.inventory.product)
 print(self.inventory.quantity)

There's nothing terribly exciting here; the observed object is set up in
the initializer, and when the observer is called, we do something. We
can test the observer in an interactive console:

 >>> i = Inventory()
 >>> c = ConsoleObserver(i)
 >>> i.attach(c)
 >>> i.product = "Widget"
 Widget
 0
 >>> i.quantity = 5
 Widget
 5

After attaching the observer to the Inventory object, whenever we
change one of the two observed properties, the observer is called
and its action is invoked. We can even add two different observer
instances:

 >>> i = Inventory()
 >>> c1 = ConsoleObserver(i)
 >>> c2 = ConsoleObserver(i)
 >>> i.attach(c1)
 >>> i.attach(c2)
 >>> i.product = "Gadget"
 Gadget
 0
 Gadget
 0

This time when we change the product, there are two sets of output,
one for each observer. The key idea here is that we can easily add

totally different types of observers that back up the data in a file,
database, or internet application at the same time.

The observer pattern detaches the code being observed from the
code doing the observing. If we were not using this pattern, we
would have had to put code in each of the properties to handle the
different cases that might come up; logging to the console, updating
a database or file, and so on. The code for each of these tasks
would all be mixed in with the observed object. Maintaining it would
be a nightmare, and adding new monitoring functionality at a later
date would be painful.

The strategy pattern
The strategy pattern is a common demonstration of abstraction in
object-oriented programming. The pattern implements different
solutions to a single problem, each in a different object. The client
code can then choose the most appropriate implementation
dynamically at runtime.

Typically, different algorithms have different trade-offs; one might be
faster than another, but uses a lot more memory, while a third
algorithm may be most suitable when multiple CPUs are present or a
distributed system is provided. Here is the strategy pattern in UML:

The User code connecting to the strategy pattern simply needs to
know that it is dealing with the Abstraction interface. The actual
implementation chosen performs the same task, but in different
ways; either way, the interface is identical.

A strategy example
The canonical example of the strategy pattern is sort routines; over
the years, numerous algorithms have been invented for sorting a
collection of objects; quick sort, merge sort, and heap sort are all fast
sort algorithms with different features, each useful in its own right,
depending on the size and type of inputs, how out of order they are,
and the requirements of the system.

If we have client code that needs to sort a collection, we could pass
it to an object with a sort() method. This object may be a QuickSorter or
MergeSorter object, but the result will be the same in either case: a
sorted list. The strategy used to do the sorting is abstracted from the
calling code, making it modular and replaceable.

Of course, in Python, we typically just call the sorted function or
list.sort method and trust that it will do the sorting in a near-optimal
fashion. So, we really need to look at a better example.

Let's consider a desktop wallpaper manager. When an image is
displayed on a desktop background, it can be adjusted to the screen
size in different ways. For example, assuming the image is smaller
than the screen, it can be tiled across the screen, centered on it, or
scaled to fit.

There are other, more complicated, strategies that can be used as
well, such as scaling to the maximum height or width, combining it
with a solid, semi-transparent, or gradient background color, or other
manipulations. While we may want to add these strategies later, let's
start with the basic ones.

Our strategy objects take two inputs; the image to be displayed, and
a tuple of the width and height of the screen. They each return a new
image the size of the screen, with the image manipulated to fit

according to the given strategy. You'll need to install the pillow
module with pip3 install pillow for this example to work:

from PIL import Image

class TiledStrategy:
 def make_background(self, img_file, desktop_size):
 in_img = Image.open(img_file)
 out_img = Image.new("RGB", desktop_size)
 num_tiles = [
 o // i + 1 for o, i in zip(out_img.size, in_img.size)
]
 for x in range(num_tiles[0]):
 for y in range(num_tiles[1]):
 out_img.paste(
 in_img,
 (
 in_img.size[0] * x,
 in_img.size[1] * y,
 in_img.size[0] * (x + 1),
 in_img.size[1] * (y + 1),
),
)
 return out_img

class CenteredStrategy:
 def make_background(self, img_file, desktop_size):
 in_img = Image.open(img_file)
 out_img = Image.new("RGB", desktop_size)
 left = (out_img.size[0] - in_img.size[0]) // 2
 top = (out_img.size[1] - in_img.size[1]) // 2
 out_img.paste(
 in_img,
 (left, top, left + in_img.size[0], top + in_img.size[1]),
)
 return out_img

class ScaledStrategy:
 def make_background(self, img_file, desktop_size):
 in_img = Image.open(img_file)
 out_img = in_img.resize(desktop_size)
 return out_img

Here we have three strategies, each using PIL to perform their task.
Individual strategies have a make_background method that accepts the
same set of parameters. Once selected, the appropriate strategy can
be called to create a correctly sized version of the desktop image.
TiledStrategy loops over the number of input images that would fit in
the width and height of the image and copies it into each location,

repeatedly. CenteredStrategy figures out how much space needs to be
left on the four edges of the image to center it. ScaledStrategy forces the
image to the output size (ignoring aspect ratio).

Consider how switching between these options would be
implemented without the strategy pattern. We'd need to put all the
code inside one great big method and use an awkward if statement
to select the expected one. Every time we wanted to add a new
strategy, we'd have to make the method even more ungainly.

Strategy in Python
The preceding canonical implementation of the strategy pattern,
while very common in most object-oriented libraries, is rarely seen in
Python programming.

These classes each represent objects that do nothing but provide a
single function. We could just as easily call that function __call__ and
make the object callable directly. Since there is no other data
associated with the object, we need do no more than create a set of
top-level functions and pass them around as our strategies instead.

Opponents of design pattern philosophy will therefore say, because
Python has first-class functions, the strategy pattern is unnecessary.
In truth, Python's first-class functions allow us to implement the
strategy pattern in a more straightforward way. Knowing the pattern
exists can still help us choose a correct design for our program, but
implement it using a more readable syntax. The strategy pattern, or
a top-level function implementation of it, should be used when we
need to allow client code or the end user to select from multiple
implementations of the same interface.

The state pattern
The state pattern is structurally similar to the strategy pattern, but its
intent and purpose are very different. The goal of the state pattern is
to represent state-transition systems: systems where it is obvious that
an object can be in a specific state, and that certain activities may
drive it to a different state.

To make this work, we need a manager, or context class that provides
an interface for switching states. Internally, this class contains a
pointer to the current state. Each state knows what other states it is
allowed to be in and will transition to those states depending on
actions invoked upon it.

So, we have two types of classes: the context class and multiple state
classes. The context class maintains the current state, and forwards
actions to the state classes. The state classes are typically hidden
from any other objects that are calling the context; it acts like a black
box that happens to perform state management internally. Here's how
it looks in UML:

A state example
To illustrate the state pattern, let's build an XML parsing tool. The
context class will be the parser itself. It will take a string as input and
place the tool in an initial parsing state. The various parsing states
will eat characters, looking for a specific value, and when that value
is found, change to a different state. The goal is to create a tree of
node objects for each tag and its contents. To keep things
manageable, we'll parse only a subset of XML – tags and tag
names. We won't be able to handle attributes on tags. It will parse
text content of tags, but won't attempt to parse mixed content, which
has tags inside of text. Here is an example simplified XML file that
we'll be able to parse:

<book>
 <author>Dusty Phillips</author>
 <publisher>Packt Publishing</publisher>
 <title>Python 3 Object Oriented Programming</title>
 <content>
 <chapter>
 <number>1</number>
 <title>Object Oriented Design</title>
 </chapter>
 <chapter>
 <number>2</number>
 <title>Objects In Python</title>
 </chapter>
 </content>
</book>

Before we look at the states and the parser, let's consider the output
of this program. We know we want a tree of Node objects, but what
does a Node look like? It will clearly need to know the name of the tag
it is parsing, and since it's a tree, it should probably maintain a
pointer to the parent node and a list of the node's children in order.
Some nodes have a text value, but not all of them. Let's look at this
Node class first:

class Node:
 def __init__(self, tag_name, parent=None):
 self.parent = parent

 self.tag_name = tag_name
 self.children = []
 self.text = ""

 def __str__(self):
 if self.text:
 return self.tag_name + ": " + self.text
 else:
 return self.tag_name

This class sets default attribute values upon initialization. The __str__
method is supplied to help visualize the tree structure when we're
finished.

Now, looking at the example document, we need to consider what
states our parser can be in. Clearly, it's going to start in a state
where no nodes have yet been processed. We'll need a state for
processing opening tags and closing tags. And when we're inside a
tag with text contents, we'll have to process that as a separate state,
too.

Switching states can be tricky; how do we know if the next node is
an opening tag, a closing tag, or a text node? We could put a little
logic in each state to work this out, but it actually makes more sense
to create a new state whose sole purpose is figuring out which state
we'll be switching to next. If we call this transition state ChildNode,
we end up with the following states:

FirstTag

ChildNode

OpenTag

CloseTag

Text

The FirstTag state will switch to ChildNode, which is responsible for
deciding which of the other three states to switch to; when those
states are finished, they'll switch back to ChildNode. The following
state-transition diagram shows the available state changes:

The states are responsible for taking what's left of the string,
processing as much of it as they know what to do with, and then
telling the parser to take care of the rest of it. Let's construct the
Parser class first:

class Parser:
 def __init__(self, parse_string):
 self.parse_string = parse_string
 self.root = None
 self.current_node = None

 self.state = FirstTag()

 def process(self, remaining_string):
 remaining = self.state.process(remaining_string, self)
 if remaining:
 self.process(remaining)

 def start(self):
 self.process(self.parse_string)

The initializer sets up a few variables on the class that the individual
states will access. The parse_string instance variable is the text that we
are trying to parse. The root node is the top node in the XML
structure. The current_node instance variable is the one that we are
currently adding children to.

The important feature of this parser is the process method, which
accepts the remaining string, and passes it off to the current state.

The parser (the self argument) is also passed into the state's process
method so that the state can manipulate it. The state is expected to
return the remainder of the unparsed string when it is finished
processing. The parser then recursively calls the process method on
this remaining string to construct the rest of the tree.

Now let's have a look at the FirstTag state:

class FirstTag:
 def process(self, remaining_string, parser):
 i_start_tag = remaining_string.find("<")
 i_end_tag = remaining_string.find(">")
 tag_name = remaining_string[i_start_tag + 1 : i_end_tag]
 root = Node(tag_name)
 parser.root = parser.current_node = root
 parser.state = ChildNode()
 return remaining_string[i_end_tag + 1 :]

This state finds the index (the i_ stands for index) of the opening and
closing angle brackets on the first tag. You may think this state is
unnecessary, since XML requires that there be no text before an
opening tag. However, there may be whitespace that needs to be
consumed; this is why we search for the opening angle bracket
instead of assuming it is the first character in the document.

Note that this code is assuming a valid input file. A proper implementation would be rigorously
testing for invalid input, and would attempt to recover or display an extremely descriptive error
message.

The method extracts the name of the tag and assigns it to the root
node of the parser. It also assigns it to current_node, since that's the
one we'll be adding children to next.

Then comes the important part: the method changes the current
state on the parser object to a ChildNode state. It then returns the
remainder of the string (after the opening tag) to allow it to be
processed.

The ChildNode state, which seems quite complicated, turns out to
require nothing but a simple conditional:

class ChildNode:
 def process(self, remaining_string, parser):
 stripped = remaining_string.strip()
 if stripped.startswith("</"):
 parser.state = CloseTag()
 elif stripped.startswith("<"):
 parser.state = OpenTag()
 else:
 parser.state = TextNode()
 return stripped

The strip() call removes whitespace from the string. Then the parser
determines if the next item is an opening or closing tag, or a string of
text. Depending on which possibility occurs, it sets the parser to a
particular state, and then tells it to parse the remainder of the string.

The OpenTag state is similar to the FirstTag state, except that it adds the
newly created node to the previous current_node object's children and
sets it as the new current_node. It places the processor back in the
ChildNode state before continuing:

class OpenTag:
 def process(self, remaining_string, parser):
 i_start_tag = remaining_string.find("<")
 i_end_tag = remaining_string.find(">")
 tag_name = remaining_string[i_start_tag + 1 : i_end_tag]
 node = Node(tag_name, parser.current_node)
 parser.current_node.children.append(node)
 parser.current_node = node
 parser.state = ChildNode()
 return remaining_string[i_end_tag + 1 :]

The CloseTag state basically does the opposite; it sets the parser's
current_node back to the parent node so any further children in the
outside tag can be added to it:

class CloseTag:
 def process(self, remaining_string, parser):
 i_start_tag = remaining_string.find("<")
 i_end_tag = remaining_string.find(">")
 assert remaining_string[i_start_tag + 1] == "/"
 tag_name = remaining_string[i_start_tag + 2 : i_end_tag]
 assert tag_name == parser.current_node.tag_name
 parser.current_node = parser.current_node.parent
 parser.state = ChildNode()
 return remaining_string[i_end_tag + 1 :].strip()

The two assert statements help ensure that the parse strings are
consistent.

Finally, the TextNode state very simply extracts the text before the next
close tag and sets it as a value on the current node:

class TextNode:
 def process(self, remaining_string, parser):
 i_start_tag = remaining_string.find('<')
 text = remaining_string[:i_start_tag]
 parser.current_node.text = text
 parser.state = ChildNode()
 return remaining_string[i_start_tag:]

Now we just have to set up the initial state on the parser object we
created. The initial state is a FirstTag object, so just add the following
to the __init__ method:

 self.state = FirstTag()

To test the class, let's add a main script that opens an file from the
command line, parses it, and prints the nodes:

if __name__ == "__main__":
 import sys
 with open(sys.argv[1]) as file:
 contents = file.read()
 p = Parser(contents)
 p.start()

 nodes = [p.root]
 while nodes:
 node = nodes.pop(0)
 print(node)
 nodes = node.children + nodes

This code opens the file, loads the contents, and parses the result.
Then it prints each node and its children in order. The __str__ method
we originally added on the node class takes care of formatting the
nodes for printing. If we run the script on the earlier example, it
outputs the tree as follows:

 book
 author: Dusty Phillips
 publisher: Packt Publishing
 title: Python 3 Object Oriented Programming

 content
 chapter
 number: 1
 title: Object Oriented Design
 chapter
 number: 2
 title: Objects In Python

Comparing this to the original simplified XML document tells us the
parser is working.

State versus strategy
The state pattern looks very similar to the strategy pattern; indeed,
the UML diagrams for the two are identical. The implementation, too,
is identical. We could even have written our states as first-class
functions instead of wrapping them in objects, as was suggested for
strategy.

While the two patterns have identical structures, they solve
completely different problems. The strategy pattern is used to
choose an algorithm at runtime; generally, only one of those
algorithms is going to be chosen for a particular use case. The state
pattern, on the other hand, is designed to allow switching between
different states dynamically, as some process evolves. In code, the
primary difference is that the strategy pattern is not typically aware of
other strategy objects. In the state pattern, either the state or the
context needs to know which other states that it can switch to.

State transition as coroutines
The state pattern is the canonical object-oriented solution to state-
transition problems. However, you can get a similar effect by
constructing your objects as coroutines. Remember the regular
expression log file parser we built in Chapter 21, The Iterator Pattern?
That was a state-transition problem in disguise. The main difference
between that implementation and one that defines all the objects (or
functions) used in the state pattern is that the coroutine solution
allows us to encode more of the boilerplate in language constructs.
There are two implementations, but neither one is inherently better
than the other. The state pattern is actually the only place I would
consider using coroutines outside of asyncio.

The singleton pattern
The singleton pattern is one of the most controversial patterns; many
have accused it of being an anti-pattern, a pattern that should be
avoided, not promoted. In Python, if someone is using the singleton
pattern, they're almost certainly doing something wrong, probably
because they're coming from a more restrictive programming
language.

So, why discuss it at all? Singleton is one of the most famous of all
design patterns. It is useful in overly object-oriented languages, and
is a vital part of traditional object-oriented programming. More
relevantly, the idea behind singleton is useful, even if we implement
the concept in a totally different way in Python.

The basic idea behind the singleton pattern is to allow exactly one
instance of a certain object to exist. Typically, this object is a sort of
manager class like those we discussed in Chapter 19, When to Use
Object-Oriented Programming. Such objects often need to be
referenced by a wide variety of other objects, and passing
references to the manager object around to the methods and
constructors that need them can make code hard to read.

Instead, when a singleton is used, the separate objects request the
single instance of the manager object from the class, so a reference
to it need not to be passed around. The UML diagram doesn't fully
describe it, but here it is for completeness:

In most programming environments, singletons are enforced by
making the constructor private (so no one can create additional
instances of it), and then providing a static method to retrieve the
single instance. This method creates a new instance the first time it
is called, and then returns that same instance for all subsequent
calls.

Singleton implementation
Python doesn't have private constructors, but for this purpose, we
can use the __new__ class method to ensure that only one instance is
ever created:

class OneOnly:
 _singleton = None
 def __new__(cls, *args, **kwargs):
 if not cls._singleton:
 cls._singleton = super(OneOnly, cls
).__new__(cls, *args, **kwargs)
 return cls._singleton

When __new__ is called, it normally constructs a new instance of that
class. When we override it, we first check whether our singleton
instance has been created; if not, we create it using a super call.
Thus, whenever we call the constructor on OneOnly, we always get the
exact same instance:

 >>> o1 = OneOnly()
 >>> o2 = OneOnly()
 >>> o1 == o2
 True
 >>> o1
 <__main__.OneOnly object at 0xb71c008c>
 >>> o2
 <__main__.OneOnly object at 0xb71c008c>

The two objects are equal and located at the same address; thus,
they are the same object. This particular implementation isn't very
transparent, since it's not obvious that a singleton object has been
created. Whenever we call a constructor, we expect a new instance
of that object; in this case, that contract is violated. Perhaps, good
docstrings on the class could alleviate this problem if we really think
we need a singleton.

But we don't need it. Python coders frown on forcing the users of
their code into a specific mindset. We may think only one instance of
a class will ever be required, but other programmers may have

different ideas. Singletons can interfere with distributed computing,
parallel programming, and automated testing, for example. In all
those cases, it can be very useful to have multiple or alternative
instances of a specific object, even though a normal operation may
never require one.

Module variables can mimic
singletons
Normally, in Python, the singleton pattern can be sufficiently
mimicked using module-level variables. It's not as safe as a
singleton in that people could reassign those variables at any time,
but as with the private variables we discussed in Chapter 16, Objects in
Python, this is acceptable in Python. If someone has a valid reason
to change those variables, why should we stop them? It also doesn't
stop people from instantiating multiple instances of the object, but
again, if they have a valid reason to do so, why interfere?

Ideally, we should give them a mechanism to get access to the
default singleton value, while also allowing them to create other
instances if they need them. While technically not a singleton at all, it
provides the most Pythonic mechanism for singleton-like behavior.

To use module-level variables instead of a singleton, we instantiate
an instance of the class after we've defined it. We can improve our
state pattern to use singletons. Instead of creating a new object
every time we change states, we can create a module-level variable
that is always accessible:

class Node:
 def __init__(self, tag_name, parent=None):
 self.parent = parent
 self.tag_name = tag_name
 self.children = []
 self.text = ""

 def __str__(self):
 if self.text:
 return self.tag_name + ": " + self.text
 else:
 return self.tag_name

class FirstTag:
 def process(self, remaining_string, parser):

 i_start_tag = remaining_string.find("<")
 i_end_tag = remaining_string.find(">")
 tag_name = remaining_string[i_start_tag + 1 : i_end_tag]
 root = Node(tag_name)
 parser.root = parser.current_node = root
 parser.state = child_node
 return remaining_string[i_end_tag + 1 :]

class ChildNode:
 def process(self, remaining_string, parser):
 stripped = remaining_string.strip()
 if stripped.startswith("</"):
 parser.state = close_tag
 elif stripped.startswith("<"):
 parser.state = open_tag
 else:
 parser.state = text_node
 return stripped

class OpenTag:
 def process(self, remaining_string, parser):
 i_start_tag = remaining_string.find("<")
 i_end_tag = remaining_string.find(">")
 tag_name = remaining_string[i_start_tag + 1 : i_end_tag]
 node = Node(tag_name, parser.current_node)
 parser.current_node.children.append(node)
 parser.current_node = node
 parser.state = child_node
 return remaining_string[i_end_tag + 1 :]

class TextNode:
 def process(self, remaining_string, parser):
 i_start_tag = remaining_string.find("<")
 text = remaining_string[:i_start_tag]
 parser.current_node.text = text
 parser.state = child_node
 return remaining_string[i_start_tag:]

class CloseTag:
 def process(self, remaining_string, parser):
 i_start_tag = remaining_string.find("<")
 i_end_tag = remaining_string.find(">")
 assert remaining_string[i_start_tag + 1] == "/"
 tag_name = remaining_string[i_start_tag + 2 : i_end_tag]
 assert tag_name == parser.current_node.tag_name
 parser.current_node = parser.current_node.parent
 parser.state = child_node
 return remaining_string[i_end_tag + 1 :].strip()

first_tag = FirstTag()
child_node = ChildNode()
text_node = TextNode()

open_tag = OpenTag()
close_tag = CloseTag()

All we've done is create instances of the various state classes that
can be reused. Notice how we can access these module variables
inside the classes, even before the variables have been defined?
This is because the code inside the classes is not executed until the
method is called, and by this point, the entire module will have been
defined.

The difference in this example is that instead of wasting memory
creating a bunch of new instances that must be garbage collected,
we are reusing a single state object for each state. Even if multiple
parsers are running at once, only these state classes need to be
used.

When we originally created the state-based parser, you may have
wondered why we didn't pass the parser object to __init__ on each
individual state, instead of passing it into the process method as we
did. The state could then have been referenced as self.parser. This is
a perfectly valid implementation of the state pattern, but it would not
have allowed leveraging the singleton pattern. If the state objects
maintain a reference to the parser, then they cannot be used
simultaneously to reference other parsers.

Remember, these are two different patterns with different purposes; the fact that singleton's
purpose may be useful for implementing the state pattern does not mean the two patterns are
related.

The template pattern
The template pattern is useful for removing duplicate code; it's
intended to support the Don't Repeat Yourself principle we
discussed in Chapter 19, When to Use Object-Oriented Programming. It
is designed for situations where we have several different tasks to
accomplish that have some, but not all, steps in common. The
common steps are implemented in a base class, and the distinct
steps are overridden in subclasses to provide custom behavior. In
some ways, it's like a generalized strategy pattern, except similar
sections of the algorithms are shared using a base class. Here it is in
the UML format:

A template example
Let's create a car sales reporter as an example. We can store
records of sales in an SQLite database table. SQLite is a simple file-
based database engine that allows us to store records using SQL
syntax. Python includes SQLite in its standard library, so there are
no extra modules required.

We have two common tasks we need to perform:

Select all sales of new vehicles and output them to the screen in
a comma-delimited format
Output a comma-delimited list of all salespeople with their gross
sales and save it to a file that can be imported to a spreadsheet

These seem like quite different tasks, but they have some common
features. In both cases, we need to perform the following steps:

1. Connect to the database.
2. Construct a query for new vehicles or gross sales.
3. Issue the query.
4. Format the results into a comma-delimited string.
5. Output the data to a file or email.

The query construction and output steps are different for the two
tasks, but the remaining steps are identical. We can use the
template pattern to put the common steps in a base class, and the
varying steps in two subclasses.

Before we start, let's create a database and put some sample data in
it, using a few lines of SQL:

import sqlite3

conn = sqlite3.connect("sales.db")

conn.execute(

 "CREATE TABLE Sales (salesperson text, "
 "amt currency, year integer, model text, new boolean)"
)
conn.execute(
 "INSERT INTO Sales values"
 " ('Tim', 16000, 2010, 'Honda Fit', 'true')"
)
conn.execute(
 "INSERT INTO Sales values"
 " ('Tim', 9000, 2006, 'Ford Focus', 'false')"
)
conn.execute(
 "INSERT INTO Sales values"
 " ('Gayle', 8000, 2004, 'Dodge Neon', 'false')"
)
conn.execute(
 "INSERT INTO Sales values"
 " ('Gayle', 28000, 2009, 'Ford Mustang', 'true')"
)
conn.execute(
 "INSERT INTO Sales values"
 " ('Gayle', 50000, 2010, 'Lincoln Navigator', 'true')"
)
conn.execute(
 "INSERT INTO Sales values"
 " ('Don', 20000, 2008, 'Toyota Prius', 'false')"
)
conn.commit()
conn.close()

Hopefully, you can see what's going on here even if you don't know
SQL; we've created a table to hold the data, and used six insert
statements to add sales records. The data is stored in a file named
sales.db. Now we have a sample we can work with in developing our
template pattern.

Since we've already outlined the steps that the template has to
perform, we can start by defining the base class that contains the
steps. Each step gets its own method (to make it easy to selectively
override any one step), and we have one more managerial method
that calls the steps in turn. Without any method content, here's how it
might look:

class QueryTemplate:
 def connect(self):
 pass

 def construct_query(self):
 pass

 def do_query(self):
 pass

 def format_results(self):
 pass

 def output_results(self):
 pass

 def process_format(self):
 self.connect()
 self.construct_query()
 self.do_query()
 self.format_results()
 self.output_results()

The process_format method is the primary method to be called by an
outside client. It ensures each step is executed in order, but it does
not care whether that step is implemented in this class or in a
subclass. For our examples, we know that three methods are going
to be identical between our two classes:

import sqlite3

class QueryTemplate:
 def connect(self):
 self.conn = sqlite3.connect("sales.db")

 def construct_query(self):
 raise NotImplementedError()

 def do_query(self):
 results = self.conn.execute(self.query)
 self.results = results.fetchall()

 def format_results(self):
 output = []
 for row in self.results:
 row = [str(i) for i in row]
 output.append(", ".join(row))
 self.formatted_results = "\n".join(output)

 def output_results(self):
 raise NotImplementedError()

To help with implementing subclasses, the two methods that are not
specified raise NotImplementedError. This is a common way to specify
abstract interfaces in Python when abstract base classes seem too
heavyweight. The methods could have empty implementations (with
pass), or could be fully unspecified. Raising NotImplementedError, however,

helps the programmer understand that the class is meant to be
subclassed and these methods overridden. Empty methods or
methods that do not exist are harder to identify as needing to be
implemented and to debug if we forget to implement them.

Now we have a template class that takes care of the boring details,
but is flexible enough to allow the execution and formatting of a wide
variety of queries. The best part is, if we ever want to change our
database engine from SQLite to another database engine (such as
py-postgresql), we only have to do it here, in this template class, and
we don't have to touch the two (or two hundred) subclasses we
might have written.

Let's have a look at the concrete classes now:

import datetime

class NewVehiclesQuery(QueryTemplate):
 def construct_query(self):
 self.query = "select * from Sales where new='true'"

 def output_results(self):
 print(self.formatted_results)

class UserGrossQuery(QueryTemplate):
 def construct_query(self):
 self.query = (
 "select salesperson, sum(amt) "
 + " from Sales group by salesperson"
)

 def output_results(self):
 filename = "gross_sales_{0}".format(
 datetime.date.today().strftime("%Y%m%d")
)
 with open(filename, "w") as outfile:
 outfile.write(self.formatted_results)

These two classes are actually pretty short, considering what they're
doing: connecting to a database, executing a query, formatting the
results, and outputting them. The superclass takes care of the
repetitive work, but lets us easily specify those steps that vary
between tasks. Further, we can also easily change steps that are
provided in the base class. For example, if we wanted to output

something other than a comma-delimited string (for example: an
HTML report to be uploaded to a website), we can still override
format_results.

Exercises
While writing the examples for this chapter, I discovered that it can
be very difficult, and extremely educational, to come up with good
examples where specific design patterns should be used. Instead of
going over current or old projects to see where you can apply these
patterns, as I've suggested in previous chapters, think about the
patterns and different situations where they might come up. Try to
think outside your own experiences. If your current projects are in
the banking business, consider how you'd apply these design
patterns in a retail or point-of-sale application. If you normally write
web applications, think about using design patterns while writing a
compiler.

Look at the decorator pattern and come up with some good
examples of when to apply it. Focus on the pattern itself, not the
Python syntax we discussed. It's a bit more general than the actual
pattern. The special syntax for decorators is, however, something
you may want to look for places to apply in existing projects too.

What are some good areas to use the observer pattern? Why? Think
about not only how you'd apply the pattern, but how you would
implement the same task without using observer? What do you gain,
or lose, by choosing to use it?

Consider the difference between the strategy and state patterns.
Implementation-wise, they look very similar, yet they have different
purposes. Can you think of cases where the patterns could be
interchanged? Would it be reasonable to redesign a state-based
system to use strategy instead, or vice versa? How different would
the design actually be?

The template pattern is such an obvious application of inheritance to
reduce duplicate code that you may have used it before, without

knowing its name. Try to think of at least half a dozen different
scenarios where it would be useful. If you can do this, you'll be
finding places for it in your daily coding all the time.

Summary
This chapter discussed several common design patterns in detail,
with examples, UML diagrams, and a discussion of the differences
between Python and statically typed object-oriented languages. The
decorator pattern is often implemented using Python's more generic
decorator syntax. The observer pattern is a useful way to decouple
events from actions taken on those events. The strategy pattern
allows different algorithms to be chosen to accomplish the same
task. The state pattern looks similar, but is used instead to represent
systems can move between different states using well-defined
actions. The singleton pattern, popular in some statically typed
languages, is almost always an anti-pattern in Python.

In the next chapter, we'll wrap up our discussion of design patterns.

Python Design Patterns II
In this chapter, we will be introduced to several more design
patterns. Once again, we'll cover the canonical examples as well as
any common alternative implementations in Python. We'll be
discussing the following:

The adapter pattern
The facade pattern
Lazy initialization and the flyweight pattern
The command pattern
The abstract factory pattern
The composition pattern

The adapter pattern
Unlike most of the patterns we reviewed in the previous chapter, the
adapter pattern is designed to interact with existing code. We would
not design a brand new set of objects that implement the adapter
pattern. Adapters are used to allow two preexisting objects to work
together, even if their interfaces are not compatible. Like the display
adapters that allow you to plug your Micro USB charging cable into a
USB-C phone, an adapter object sits between two different
interfaces, translating between them on the fly. The adapter object's
sole purpose is to perform this translation. Adapting may entail a
variety of tasks, such as converting arguments to a different format,
rearranging the order of arguments, calling a differently named
method, or supplying default arguments.

In structure, the adapter pattern is similar to a simplified decorator
pattern. Decorators typically provide the same interface that they
replace, whereas adapters map between two different interfaces.
This is depicted in UML form in the following diagram:

Here, Interface1 is expecting to call a method called
make_action(some, arguments). We already have this perfect
Interface2 class that does everything we want (and to avoid
duplication, we don't want to rewrite it!), but it provides a method
called different_action(other, arguments) instead. The Adapter
class implements the make_action interface and maps the
arguments to the existing interface.

The advantage here is that the code that maps from one interface to
another is all in one place. The alternative would be really ugly; we'd
have to perform the translation in multiple places whenever we need
to access this code.

For example, imagine we have the following preexisting class, which
takes a string date in the format YYYY-MM-DD and calculates a person's
age on that date:

class AgeCalculator:
 def __init__(self, birthday):
 self.year, self.month, self.day = (
 int(x) for x in birthday.split("-")
)

 def calculate_age(self, date):
 year, month, day = (int(x) for x in date.split("-"))
 age = year - self.year
 if (month, day) < (self.month, self.day):
 age -= 1
 return age

This is a pretty simple class that does what it's supposed to do. But
we have to wonder what the programmer was thinking, using a
specifically formatted string instead of using Python's incredibly
useful built-in datetime library. As conscientious programmers who
reuse code whenever possible, most of the programs we write will
interact with datetime objects, not strings.

We have several options to address this scenario. We could rewrite
the class to accept datetime objects, which would probably be more
accurate anyway. But if this class had been provided by a third party
and we don't know how to or can't change its internal structure, we

need an alternative. We could use the class as it is, and whenever
we want to calculate the age on a datetime.date object, we could call
datetime.date.strftime('%Y-%m-%d') to convert it to the proper format. But
that conversion would be happening in a lot of places, and worse, if
we mistyped the %m as %M, it would give us the current minute instead
of the month entered. Imagine if you wrote that in a dozen different
places only to have to go back and change it when you realized your
mistake. It's not maintainable code, and it breaks the DRY principle.

Instead, we can write an adapter that allows a normal date to be
plugged into a normal AgeCalculator class, as shown in the following
code:

import datetime

class DateAgeAdapter:
 def _str_date(self, date):
 return date.strftime("%Y-%m-%d")

 def __init__(self, birthday):
 birthday = self._str_date(birthday)
 self.calculator = AgeCalculator(birthday)

 def get_age(self, date):
 date = self._str_date(date)
 return self.calculator.calculate_age(date)

This adapter converts datetime.date and datetime.time (they have the
same interface to strftime) into a string that our original AgeCalculator
can use. Now we can use the original code with our new interface. I
changed the method signature to get_age to demonstrate that the
calling interface may also be looking for a different method name,
not just a different type of argument.

Creating a class as an adapter is the usual way to implement this
pattern, but, as usual, there are other ways to do it in Python.
Inheritance and multiple inheritance can be used to add functionality
to a class. For example, we could add an adapter on the date class so
that it works with the original AgeCalculator class, as follows:

import datetime
class AgeableDate(datetime.date):
 def split(self, char):
 return self.year, self.month, self.day

It's code like this that makes one wonder whether Python should
even be legal. We have added a split method to our subclass that
takes a single argument (which we ignore) and returns a tuple of
year, month, and day. This works flawlessly with the original
AgeCalculator class because the code calls strip on a specially
formatted string, and strip, in that case, returns a tuple of year,
month, and day. The AgeCalculator code only cares if strip exists and
returns acceptable values; it doesn't care if we really passed in a
string. The following code really works:

>>> bd = AgeableDate(1975, 6, 14)
>>> today = AgeableDate.today()
>>> today
AgeableDate(2015, 8, 4)
>>> a = AgeCalculator(bd)
>>> a.calculate_age(today)
40

It works but it's a stupid idea. In this particular instance, such an
adapter would be hard to maintain. We'd soon forget why we needed
to add a strip method to a date class. The method name is
ambiguous. That can be the nature of adapters, but creating an
adapter explicitly instead of using inheritance usually clarifies its
purpose.

Instead of inheritance, we can sometimes also use monkey-patching
to add a method to an existing class. It won't work with the datetime
object, as it doesn't allow attributes to be added at runtime. In
normal classes, however, we can just add a new method that
provides the adapted interface that is required by calling code.
Alternatively, we could extend or monkey-patch the AgeCalculator itself
to replace the calculate_age method with something more amenable to
our needs.

Finally, it is often possible to use a function as an adapter; this
doesn't obviously fit the actual design of the adapter pattern, but if
we recall that functions are essentially objects with a __call__ method,
it becomes an obvious adapter adaptation.

The facade pattern
The facade pattern is designed to provide a simple interface to a
complex system of components. For complex tasks, we may need to
interact with these objects directly, but there is often a typical usage
for the system for which these complicated interactions aren't
necessary. The facade pattern allows us to define a new object that
encapsulates this typical usage of the system. Any time we want
access to common functionality, we can use the single object's
simplified interface. If another part of the project needs access to
more complicated functionality, it is still able to interact with the
system directly. The UML diagram for the facade pattern is really
dependent on the subsystem, but in a cloudy way, it looks like this:

A facade is, in many ways, like an adapter. The primary difference is
that a facade tries to abstract a simpler interface out of a complex

one, while an adapter only tries to map one existing interface to
another.

Let's write a simple facade for an email application. The low-level
library for sending email in Python, as we saw in Chapter 20, Python
Object-Oriented Shortcuts, is quite complicated. The two libraries for
receiving messages are even worse.

It would be nice to have a simple class that allows us to send a
single email, and list the emails currently in the inbox on an IMAP or
POP3 connection. To keep our example short, we'll stick with IMAP
and SMTP: two totally different subsystems that happen to deal with
email. Our facade performs only two tasks: sending an email to a
specific address, and checking the inbox on an IMAP connection. It
makes some common assumptions about the connection, such as
that the host for both SMTP and IMAP is at the same address, that
the username and password for both is the same, and that they use
standard ports. This covers the case for many email servers, but if a
programmer needs more flexibility, they can always bypass the
facade and access the two subsystems directly.

The class is initialized with the hostname of the email server, a
username, and a password to log in:

import smtplib
import imaplib

class EmailFacade:
 def __init__(self, host, username, password):
 self.host = host
 self.username = username
 self.password = password

The send_email method formats the email address and message, and
sends it using smtplib. This isn't a complicated task, but it requires
quite a bit of fiddling to massage the natural input parameters that
are passed into the facade to the correct format to enable smtplib to
send the message, as follows:

 def send_email(self, to_email, subject, message):
 if not "@" in self.username:
 from_email = "{0}@{1}".format(self.username, self.host)
 else:
 from_email = self.username
 message = (
 "From: {0}\r\n" "To: {1}\r\n" "Subject: {2}\r\n\r\n{3}"
).format(from_email, to_email, subject, message)

 smtp = smtplib.SMTP(self.host)
 smtp.login(self.username, self.password)
 smtp.sendmail(from_email, [to_email], message)

The if statement at the beginning of the method is catching whether
or not the username is the entire from email address or just the part on
the left-hand side of the @ symbol; different hosts treat the login
details differently.

Finally, the code to get the messages currently in the inbox is a royal
mess. The IMAP protocol is painfully over-engineered, and the imaplib
standard library is only a thin layer over the protocol. But we get to
simplify it, as follows:

 def get_inbox(self):
 mailbox = imaplib.IMAP4(self.host)
 mailbox.login(
 bytes(self.username, "utf8"), bytes(self.password, "utf8")
)
 mailbox.select()
 x, data = mailbox.search(None, "ALL")
 messages = []
 for num in data[0].split():
 x, message = mailbox.fetch(num, "(RFC822)")
 messages.append(message[0][1])
 return messages

Now, if we add all this together, we have a simple facade class that
can send and receive messages in a fairly straightforward manner;
much simpler than if we had to interact with these complex libraries
directly.

Although it is rarely mentioned by name in the Python community,
the facade pattern is an integral part of the Python ecosystem.
Because Python emphasizes language readability, both the
language and its libraries tend to provide easy-to-comprehend

interfaces to complicated tasks. For example, for loops, list
comprehensions, and generators are all facades into a more
complicated iterator protocol. The defaultdict implementation is a
facade that abstracts away annoying corner cases when a key
doesn't exist in a dictionary. The third-party requests library is a
powerful facade over less readable libraries for HTTP requests,
which are themselves a facade over managing the text-based HTTP
protocol yourself.

The flyweight pattern
The flyweight pattern is a memory optimization pattern. Novice
Python programmers tend to ignore memory optimization, assuming
the built-in garbage collector will take care of them. This is usually
perfectly acceptable, but when developing larger applications with
many related objects, paying attention to memory concerns can have
a huge payoff.

The flyweight pattern ensures that objects that share a state can use
the same memory for that shared state. It is normally implemented
only after a program has demonstrated memory problems. It may
make sense to design an optimal configuration from the beginning in
some situations, but bear in mind that premature optimization is the
most effective way to create a program that is too complicated to
maintain.

Let's have a look at the following UML diagram for the flyweight
pattern:

Each Flyweight has no specific state. Any time it needs to perform
an operation on SpecificState, that state needs to be passed into
the Flyweight by the calling code. Traditionally, the factory that
returns a flyweight is a separate object; its purpose is to return a

flyweight for a given key identifying that flyweight. It works like the
singleton pattern we discussed in Chapter 22, Python Design Patterns I;
if the flyweight exists, we return it; otherwise, we create a new one.
In many languages, the factory is implemented, not as a separate
object, but as a static method on the Flyweight class itself.

Think of an inventory system for car sales. Each individual car has a
specific serial number and is a specific color. But most of the details
about that car are the same for all cars of a particular model. For
example, the Honda Fit DX model is a bare-bones car with few
features. The LX model has A/C, tilt, cruise, and power windows and
locks. The Sport model has fancy wheels, a USB charger, and a
spoiler. Without the flyweight pattern, each individual car object
would have to store a long list of which features it did and did not
have. Considering the number of cars Honda sells in a year, this
would add up to a huge amount of wasted memory.

Using the flyweight pattern, we can instead have shared objects for
the list of features associated with a model, and then simply
reference that model, along with a serial number and color, for
individual vehicles. In Python, the flyweight factory is often
implemented using that funky __new__ constructor, similar to what we
did with the singleton pattern.

Unlike the singleton pattern, which only needs to return one instance
of the class, we need to be able to return different instances
depending on the keys. We could store the items in a dictionary and
look them up based on the key. This solution is problematic,
however, because the item will remain in memory as long as it is in
the dictionary. If we sold out of LX model Fits, the Fit flyweight would
no longer be necessary, yet it would still be in the dictionary. We
could clean this up whenever we sell a car, but isn't that what a
garbage collector is for?

We can solve this by taking advantage of Python's weakref module.
This module provides a WeakValueDictionary object, which basically

allows us to store items in a dictionary without the garbage collector
caring about them. If a value is in a weak referenced dictionary and
there are no other references to that object stored anywhere in the
application (that is, we sold out of LX models), the garbage collector
will eventually clean up for us.

Let's build the factory for our car flyweights first, as follows:

import weakref

class CarModel:
 _models = weakref.WeakValueDictionary()

 def __new__(cls, model_name, *args, **kwargs):
 model = cls._models.get(model_name)
 if not model:
 model = super().__new__(cls)
 cls._models[model_name] = model

 return model

Basically, whenever we construct a new flyweight with a given name,
we first look up that name in the weak referenced dictionary; if it
exists, we return that model; if not, we create a new one. Either way,
we know the __init__ method on the flyweight will be called every
time, regardless of whether it is a new or existing object. Our __init__
method can therefore look like the following code snippet:

 def __init__(
 self,
 model_name,
 air=False,
 tilt=False,
 cruise_control=False,
 power_locks=False,
 alloy_wheels=False,
 usb_charger=False,
):
 if not hasattr(self, "initted"):
 self.model_name = model_name
 self.air = air
 self.tilt = tilt
 self.cruise_control = cruise_control
 self.power_locks = power_locks
 self.alloy_wheels = alloy_wheels
 self.usb_charger = usb_charger
 self.initted = True

The if statement ensures that we only initialize the object the first
time __init__ is called. This means we can call the factory later with
just the model name and get the same flyweight object back.
However, because the flyweight will be garbage-collected if no
external references to it exist, we must be careful not to accidentally
create a new flyweight with null values.

Let's add a method to our flyweight that hypothetically looks up a
serial number on a specific model of vehicle, and determines
whether it has been involved in any accidents. This method needs
access to the car's serial number, which varies from car to car; it
cannot be stored with the flyweight. Therefore, this data must be
passed into the method by the calling code, as follows:

 def check_serial(self, serial_number):
 print(
 "Sorry, we are unable to check "
 "the serial number {0} on the {1} "
 "at this time".format(serial_number, self.model_name)
)

We can define a class that stores the additional information, as well
as a reference to the flyweight, as follows:

class Car:
 def __init__(self, model, color, serial):
 self.model = model
 self.color = color
 self.serial = serial

 def check_serial(self):
 return self.model.check_serial(self.serial)

We can also keep track of the available models, as well as the
individual cars on the lot, as follows:

>>> dx = CarModel("FIT DX")
>>> lx = CarModel("FIT LX", air=True, cruise_control=True,
... power_locks=True, tilt=True)
>>> car1 = Car(dx, "blue", "12345")
>>> car2 = Car(dx, "black", "12346")
>>> car3 = Car(lx, "red", "12347")

Now, let's demonstrate the weak referencing at work in the following
code snippet:

>>> id(lx)
3071620300
>>> del lx
>>> del car3
>>> import gc
>>> gc.collect()
0
>>> lx = CarModel("FIT LX", air=True, cruise_control=True,
... power_locks=True, tilt=True)
>>> id(lx)
3071576140
>>> lx = CarModel("FIT LX")
>>> id(lx)
3071576140
>>> lx.air
True

The id function tells us the unique identifier for an object. When we
call it a second time, after deleting all references to the LX model
and forcing garbage collection, we see that the ID has changed. The
value in the CarModel __new__ factory dictionary was deleted and a fresh
one was created. If we then try to construct a second CarModel
instance, however, it returns the same object (the IDs are the same),
and, even though we did not supply any arguments in the second
call, the air variable is still set to True. This means the object was not
initialized the second time, just as we designed.

Obviously, using the flyweight pattern is more complicated than just
storing features on a single car class. When should we choose to
use it? The flyweight pattern is designed for conserving memory; if
we have hundreds of thousands of similar objects, combining similar
properties into a flyweight can have an enormous impact on memory
consumption.

It is common for programming solutions that optimize CPU, memory,
or disk space to result in more complicated code than their
unoptimized brethren. It is therefore important to weigh up the trade-
offs when deciding between code maintainability and optimization.
When choosing optimization, try to use patterns such as flyweight to

ensure that the complexity introduced by optimization is confined to
a single (well-documented) section of the code.

If you have a lot of Python objects in one program, one of the quickest ways to save memory is
through the use of __slots__. The __slots__ magic method is beyond the scope of this book, but
there is plenty of information available if you check online. If you are still low on memory, flyweight
may be a reasonable solution.

The command pattern
The command pattern adds a level of abstraction between actions
that must be done and the object that invokes those actions,
normally at a later time. In the command pattern, client code creates
a Command object that can be executed at a later date. This object
knows about a receiver object that manages its own internal state
when the command is executed on it. The Command object implements a
specific interface (typically, it has an execute or do_action method, and
also keeps track of any arguments required to perform the action.
Finally, one or more Invoker objects execute the command at the
correct time.

Here's the UML diagram:

A common example of the command pattern is actions on a
graphical window. Often, an action can be invoked by a menu item
on the menu bar, a keyboard shortcut, a toolbar icon, or a context
menu. These are all examples of Invoker objects. The actions that
actually occur, such as Exit, Save, or Copy, are implementations of
CommandInterface. A GUI window to receive exit, a document to receive

save, and ClipboardManager to receive copy commands, are all examples
of possible Receivers.

Let's implement a simple command pattern that provides commands
for Save and Exit actions. We'll start with some modest receiver
classes, themselves with the following code:

import sys

class Window:
 def exit(self):
 sys.exit(0)

class Document:
 def __init__(self, filename):
 self.filename = filename
 self.contents = "This file cannot be modified"

 def save(self):
 with open(self.filename, 'w') as file:
 file.write(self.contents)

These mock classes model objects that would likely be doing a lot
more in a working environment. The window would need to handle
mouse movement and keyboard events, and the document would
need to handle character insertion, deletion, and selection. But for
our example, these two classes will do what we need.

Now let's define some invoker classes. These will model toolbar,
menu, and keyboard events that can happen; again, they aren't
actually hooked up to anything, but we can see how they are
decoupled from the command, receiver, and client code in the
following code snippet:

class ToolbarButton:
 def __init__(self, name, iconname):
 self.name = name
 self.iconname = iconname

 def click(self):
 self.command.execute()

class MenuItem:
 def __init__(self, menu_name, menuitem_name):
 self.menu = menu_name

 self.item = menuitem_name

 def click(self):
 self.command.execute()

class KeyboardShortcut:
 def __init__(self, key, modifier):
 self.key = key
 self.modifier = modifier

 def keypress(self):
 self.command.execute()

Notice how the various action methods each call the execute method
on their respective commands? This code doesn't show the command
attribute being set on each object. They could be passed into the
__init__ function, but because they may be changed (for example,
with a customizable keybinding editor), it makes more sense to set
the attributes on the objects afterwards.

Now, let's hook up the commands themselves with the following
code:

class SaveCommand:
 def __init__(self, document):
 self.document = document

 def execute(self):
 self.document.save()

class ExitCommand:
 def __init__(self, window):
 self.window = window

 def execute(self):
 self.window.exit()

These commands are straightforward; they demonstrate the basic
pattern, but it is important to note that we can store state and other
information with the command if necessary. For example, if we had a
command to insert a character, we could maintain state for the
character currently being inserted.

Now all we have to do is hook up some client and test code to make
the commands work. For basic testing, we can just include the
following code at the end of the script:

window = Window()
document = Document("a_document.txt")
save = SaveCommand(document)
exit = ExitCommand(window)

save_button = ToolbarButton('save', 'save.png')
save_button.command = save
save_keystroke = KeyboardShortcut("s", "ctrl")
save_keystroke.command = save
exit_menu = MenuItem("File", "Exit")
exit_menu.command = exit

First, we create two receivers and two commands. Then, we create
several of the available invokers and set the correct command on
each of them. To test, we can use python3-ifilename.py and run code
such as exit_menu.click(), which will end the program, or
save_keystroke.keystroke(), which will save the fake file.

Unfortunately, the preceding examples do not feel terribly Pythonic.
They have a lot of "boilerplate code" (code that does not accomplish
anything, but only provides structure to the pattern), and the Command
classes are all eerily similar to each other. Perhaps we could create
a generic command object that takes a function as a callback?

In fact, why bother? Can we just use a function or method object for
each command? Instead of an object with an execute() method, we
can write a function and use that as the command directly. The
following is a common paradigm for the command pattern in Python:

import sys

class Window:
 def exit(self):
 sys.exit(0)

class MenuItem:
 def click(self):
 self.command()

window = Window()
menu_item = MenuItem()
menu_item.command = window.exit

Now that looks a lot more like Python. At first glance, it looks like
we've removed the command pattern altogether, and we've tightly
connected the menu_item and Window classes. But if we look closer, we
find there is no tight coupling at all. Any callable can be set up as the
command on MenuItem, just as before. And the Window.exit method can
be attached to any invoker. Most of the flexibility of the command
pattern has been maintained. We have sacrificed complete
decoupling for readability, but this code is, in my opinion, and that of
many Python programmers, more maintainable than the fully
abstracted version.

Of course, since we can add a __call__ method to any object, we
aren't restricted to functions. The previous example is a useful
shortcut when the method being called doesn't have to maintain
state, but in more advanced usage, we can use the following code
as well:

class Document:
 def __init__(self, filename):
 self.filename = filename
 self.contents = "This file cannot be modified"

 def save(self):
 with open(self.filename, "w") as file:
 file.write(self.contents)

class KeyboardShortcut:
 def keypress(self):
 self.command()

class SaveCommand:
 def __init__(self, document):
 self.document = document

 def __call__(self):
 self.document.save()

document = Document("a_file.txt")
shortcut = KeyboardShortcut()

save_command = SaveCommand(document)
shortcut.command = save_command

Here, we have something that looks like the first command pattern,
but a bit more idiomatic. As you can see, making the invoker call a
callable instead of a command object with an execute method has not
restricted us in any way. In fact, it's given us more flexibility. We can
link to functions directly when that works, yet we can build a
complete callable command object when the situation calls for it.

The command pattern is often extended to support undoable
commands. For example, a text program may wrap each insertion in
a separate command with not only an execute method, but also an undo
method that will delete that insertion. A graphics program may wrap
each drawing action (rectangle, line, freehand pixels, and so on) in a
command that has an undo method that resets the pixels to their
original state. In such cases, the decoupling of the command pattern
is much more obviously useful, because each action has to maintain
enough of its state to undo that action at a later date.

The abstract factory pattern
The abstract factory pattern is normally used when we have multiple
possible implementations of a system that depend on some
configuration or platform issue. The calling code requests an object
from the abstract factory, not knowing exactly what class of object will
be returned. The underlying implementation returned may depend on
a variety of factors, such as current locale, operating system, or local
configuration.

Common examples of the abstract factory pattern include code for
operating-system-independent toolkits, database backends, and
country-specific formatters or calculators. An operating-system-
independent GUI toolkit might use an abstract factory pattern that
returns a set of WinForm widgets under Windows, Cocoa widgets
under Mac, GTK widgets under Gnome, and QT widgets under KDE.
Django provides an abstract factory that returns a set of object
relational classes for interacting with a specific database backend
(MySQL, PostgreSQL, SQLite, and others) depending on a
configuration setting for the current site. If the application needs to be
deployed in multiple places, each one can use a different database
backend by changing only one configuration variable. Different
countries have different systems for calculating taxes, subtotals, and
totals on retail merchandise; an abstract factory can return a
particular tax calculation object.

The UML class diagram for an abstract factory pattern is hard to
understand without a specific example, so let's turn things around and
create a concrete example first. In our example, we'll create a set of
formatters that depend on a specific locale and help us format dates
and currencies. There will be an abstract factory class that picks the
specific factory, as well as a couple of example concrete factories,
one for France and one for the USA. Each of these will create

formatter objects for dates and times, which can be queried to format
a specific value. This is depicted in the following diagram:

Comparing that image to the earlier, simpler text shows that a picture
is not always worth a thousand words, especially considering we
haven't even allowed for factory selection code here.

Of course, in Python, we don't have to implement any interface
classes, so we can discard DateFormatter, CurrencyFormatter, and
FormatterFactory. The formatting classes themselves are pretty
straightforward, if verbose, shown here:

class FranceDateFormatter:
 def format_date(self, y, m, d):
 y, m, d = (str(x) for x in (y, m, d))
 y = "20" + y if len(y) == 2 else y
 m = "0" + m if len(m) == 1 else m
 d = "0" + d if len(d) == 1 else d

 return "{0}/{1}/{2}".format(d, m, y)

class USADateFormatter:
 def format_date(self, y, m, d):
 y, m, d = (str(x) for x in (y, m, d))
 y = "20" + y if len(y) == 2 else y
 m = "0" + m if len(m) == 1 else m
 d = "0" + d if len(d) == 1 else d
 return "{0}-{1}-{2}".format(m, d, y)

class FranceCurrencyFormatter:
 def format_currency(self, base, cents):
 base, cents = (str(x) for x in (base, cents))
 if len(cents) == 0:
 cents = "00"
 elif len(cents) == 1:
 cents = "0" + cents

 digits = []
 for i, c in enumerate(reversed(base)):
 if i and not i % 3:
 digits.append(" ")
 digits.append(c)
 base = "".join(reversed(digits))
 return "{0}€{1}".format(base, cents)

class USACurrencyFormatter:
 def format_currency(self, base, cents):
 base, cents = (str(x) for x in (base, cents))
 if len(cents) == 0:
 cents = "00"
 elif len(cents) == 1:
 cents = "0" + cents
 digits = []
 for i, c in enumerate(reversed(base)):
 if i and not i % 3:
 digits.append(",")
 digits.append(c)
 base = "".join(reversed(digits))
 return "${0}.{1}".format(base, cents)

These classes use some basic string manipulation to try to turn a
variety of possible inputs (integers, strings of different lengths, and
others) into the following formats:

USA France

Date mm-dd-yyyy dd/mm/yyyy

Currency $14,500.50 14 500€50

There could obviously be more validation on the input in this code,
but let's keep it simple for this example.

Now that we have the formatters set up, we just need to create the
formatter factories, as follows:

class USAFormatterFactory:
 def create_date_formatter(self):
 return USADateFormatter()

 def create_currency_formatter(self):
 return USACurrencyFormatter()

class FranceFormatterFactory:
 def create_date_formatter(self):
 return FranceDateFormatter()

 def create_currency_formatter(self):
 return FranceCurrencyFormatter()

Now we set up the code that picks the appropriate formatter. Since
this is the kind of thing that only needs to be set up once, we could
make it a singleton–except singletons aren't very useful in Python.
Let's just make the current formatter a module-level variable instead:

country_code = "US"
factory_map = {"US": USAFormatterFactory, "FR": FranceFormatterFactory}
formatter_factory = factory_map.get(country_code)()

In this example, we hardcode the current country code; in practice, it
would likely introspect the locale, the operating system, or a
configuration file to choose the code. This example uses a dictionary
to associate the country codes with factory classes. Then, we grab
the correct class from the dictionary and instantiate it.

It is easy to see what needs to be done when we want to add support
for more countries: create the new formatter classes and the abstract
factory itself. Bear in mind that Formatter classes might be reused; for
example, Canada formats its currency the same way as the USA, but
its date format is more sensible than its Southern neighbor.

Abstract factories often return a singleton object, but this is not
required. In our code, it's returning a new instance of each formatter
every time it's called. There's no reason the formatters couldn't be
stored as instance variables and the same instance returned for each
factory.

Looking back at these examples, we see that, once again, there
appears to be a lot of boilerplate code for factories that just doesn't
feel necessary in Python. Often, the requirements that might call for
an abstract factory can be more easily fulfilled by using a separate
module for each factory type (for example: the USA and France), and
then ensuring that the correct module is being accessed in a factory
module. The package structure for such modules might look like this:

localize/
 __init__.py
 backends/
 __init__.py
 USA.py
 France.py
 ...

The trick is that __init__.py in the localize package can contain logic that
redirects all requests to the correct backend. There are a variety of
ways this might be done.

If we know that the backend is never going to change dynamically
(that is, without a program restart), we can just put some if
statements in __init__.py that check the current country code, and use
the (normally unacceptable) from.backends.USAimport* syntax to import all
variables from the appropriate backend. Or, we could import each of
the backends and set a current_backend variable to point at a specific
module, as follows:

from .backends import USA, France

if country_code == "US":
 current_backend = USA

Depending on which solution we choose, our client code would have
to call either localize.format_date or localize.current_backend.format_date to get
a date formatted in the current country's locale. The end result is
much more Pythonic than the original abstract factory pattern and, in
typical usage, is just as flexible.

The composite pattern
The composite pattern allows complex tree-like structures to be built
from simple components. These components, called composite
objects, are able to behave sort of like a container and sort of like a
variable, depending on whether they have child components.
Composite objects are container objects, where the content may
actually be another composite object.

Traditionally, each component in a composite object must be either a
leaf node (that cannot contain other objects) or a composite node.
The key is that both composite and leaf nodes can have the same
interface. The following UML diagram is very simple:

This simple pattern, however, allows us to create complex
arrangements of elements, all of which satisfy the interface of the
component object. The following diagram depicts a concrete
instance of such a complicated arrangement:

The composite pattern is commonly useful in file/folder-like trees.
Regardless of whether a node in the tree is a normal file or a folder,
it is still subject to operations such as moving, copying, or deleting
the node. We can create a component interface that supports these
operations, and then use a composite object to represent folders,
and leaf nodes to represent normal files.

Of course, in Python, once again, we can take advantage of duck
typing to implicitly provide the interface, so we only need to write two
classes. Let's define these interfaces first in the following code:

class Folder:
 def __init__(self, name):
 self.name = name
 self.children = {}

 def add_child(self, child):
 pass

 def move(self, new_path):
 pass

 def copy(self, new_path):
 pass

 def delete(self):
 pass

class File:
 def __init__(self, name, contents):
 self.name = name
 self.contents = contents

 def move(self, new_path):

 pass

 def copy(self, new_path):
 pass

 def delete(self):
 pass

For each folder (composite) object, we maintain a dictionary of
children. For many composite implementations, a list is sufficient, but
in this case, a dictionary will be useful for looking up children by
name. Our paths will be specified as node names separated by the /
character, similar to paths in a Unix shell.

Thinking about the methods involved, we can see that moving or
deleting a node behaves in a similar way, regardless of whether or
not it is a file or folder node. Copying, however, has to do a recursive
copy for folder nodes, while copying a file node is a trivial operation.

To take advantage of the similar operations, we can extract some of
the common methods into a parent class. Let's take that discarded
Component interface and change it to a base class with the following
code:

class Component:
 def __init__(self, name):
 self.name = name

 def move(self, new_path):
 new_folder = get_path(new_path)
 del self.parent.children[self.name]
 new_folder.children[self.name] = self
 self.parent = new_folder

 def delete(self):
 del self.parent.children[self.name]

class Folder(Component):
 def __init__(self, name):
 super().__init__(name)
 self.children = {}

 def add_child(self, child):
 pass

 def copy(self, new_path):
 pass

class File(Component):
 def __init__(self, name, contents):
 super().__init__(name)
 self.contents = contents

 def copy(self, new_path):
 pass

root = Folder("")

def get_path(path):
 names = path.split("/")[1:]
 node = root
 for name in names:
 node = node.children[name]
 return node

We've created the move and delete methods on the Component class. Both
of them access a mysterious parent variable that we haven't set yet.
The move method uses a module-level get_path function that finds a
node from a predefined root node, given a path. All files will be
added to this root node or a child of that node. For the move method,
the target should be an existing folder, or we'll get an error. As in
many examples in technical books, error handling is woefully absent,
to help focus on the principles under consideration.

Let's set up that mysterious parent variable in the folder's add_child
method, as follows:

 def add_child(self, child):
 child.parent = self
 self.children[child.name] = child

Well, that was easy enough. Let's see if our composite file hierarchy
is working properly with the following code snippet:

$ python3 -i 1261_09_18_add_child.py

>>> folder1 = Folder('folder1')
>>> folder2 = Folder('folder2')
>>> root.add_child(folder1)
>>> root.add_child(folder2)
>>> folder11 = Folder('folder11')
>>> folder1.add_child(folder11)

>>> file111 = File('file111', 'contents')
>>> folder11.add_child(file111)
>>> file21 = File('file21', 'other contents')
>>> folder2.add_child(file21)
>>> folder2.children
{'file21': <__main__.File object at 0xb7220a4c>}
>>> folder2.move('/folder1/folder11')
>>> folder11.children
{'folder2': <__main__.Folder object at 0xb722080c>, 'file111':
<__main__.File object at
0xb72209ec>}
>>> file21.move('/folder1')
>>> folder1.children
{'file21': <__main__.File object at 0xb7220a4c>, 'folder11':
<__main__.Folder object at
0xb722084c>}

Yes, we can create folders, add folders to other folders, add files to
folders, and move them around! What more could we ask for in a file
hierarchy?

Well, we could ask for copying to be implemented, but to conserve
trees, let's leave that as an exercise.

The composite pattern is extremely useful for a variety of tree-like
structures, including GUI widget hierarchies, file hierarchies, tree
sets, graphs, and HTML DOM. It can be a useful pattern in Python
when implemented according to the traditional implementation, as in
the example demonstrated earlier. Sometimes, if only a shallow tree
is being created, we can get away with a list of lists or a dictionary of
dictionaries, and do not need to implement custom component, leaf,
and composite classes. Other times, we can get away with
implementing only one composite class, and treating leaf and
composite objects as a single class. Alternatively, Python's duck
typing can make it easy to add other objects to a composite
hierarchy, as long as they have the correct interface.

Exercises
Before diving into exercises for each design pattern, take a moment
to implement the copy method for the File and Folder objects in the
previous section. The File method should be quite trivial; just create a
new node with the same name and contents, and add it to the new
parent folder. The copy method on Folder is quite a bit more
complicated, as you first have to duplicate the folder, and then
recursively copy each of its children to the new location. You can call
the copy() method on the children indiscriminately, regardless of
whether each is a file or a folder object. This will drive home just how
powerful the composite pattern can be.

Now, as in the previous chapter, look at the patterns we've discussed
and consider ideal places where you might implement them. You
may want to apply the adapter pattern to existing code, as it is
usually applicable when interfacing with existing libraries, rather than
new code. How can you use an adapter to force two interfaces to
interact with each other correctly?

Can you think of a system complex enough to justify using the
facade pattern? Consider how facades are used in real-life
situations, such as the driver-facing interface of a car, or the control
panel in a factory. It is similar in software, except the users of the
facade interface are other programmers, rather than people trained
to use them. Are there complex systems in your latest project that
could benefit from the facade pattern?

It's possible you don't have any huge, memory-consuming code that
would benefit from the flyweight pattern, but can you think of
situations where it might be useful? Anywhere that large amounts of
overlapping data need to be processed, a flyweight is waiting to be
used. Would it be useful in the banking industry? In web

applications? At what point does adopting the flyweight pattern make
sense? When is it overkill?

What about the command pattern? Can you think of any common (or
better yet, uncommon) examples of places where the decoupling of
action from invocation would be useful? Look at the programs you
use on a daily basis and imagine how they are implemented
internally. It's likely that many of them use the command pattern for
one purpose or another.

The abstract factory pattern, or the somewhat more Pythonic
derivatives we discussed, can be very useful for creating one-touch-
configurable systems. Can you think of places where such systems
are useful?

Finally, consider the composite pattern. There are tree-like structures
all around us in programming; some of them, like our file hierarchy
example, are blatant; others are fairly subtle. What situations might
arise where the composite pattern would be useful? Can you think of
places where you can use it in your own code? What if you adapted
the pattern slightly; for example, to contain different types of leaf or
composite nodes for different types of objects?

Summary
In this chapter, we went into detail on several more design patterns,
covering their canonical descriptions as well as alternatives for
implementing them in Python, which is often more flexible and
versatile than traditional object-oriented languages. The adapter
pattern is useful for matching interfaces, while the facade pattern is
suited to simplifying them. Flyweight is a complicated pattern and
only useful if memory optimization is required. In Python, the
command pattern is often more aptly implemented using first class
functions as callbacks. Abstract factories allow runtime separation of
implementations depending on configuration or system information.
The composite pattern is used universally for tree-like structures.

In the next chapter, we'll discuss how important it is to test Python
programs, and how to do it, focusing on object-oriented principles.

Testing Object-Oriented
Programs
Skilled Python programmers agree that testing is one of the most
important aspects of software development. Even though this
chapter is placed near the end of the book, it is not an afterthought;
everything we have studied so far will help us when writing tests. In
this chapter, we'll look at the following topics:

The importance of unit testing and test-driven development
The standard unittest module
The pytest automated testing suite
The mock module
Code coverage
Cross-platform testing with tox

Why test?
Many programmers already know how important it is to test their
code. If you're among them, feel free to skim this section. You'll find
the next section–where we actually see how to create tests in
Python–much more scintillating. If you're not convinced of the
importance of testing, I promise that your code is broken, you just
don't know it. Read on!

Some people argue that testing is more important in Python code
because of its dynamic nature; compiled languages such as Java
and C++ are occasionally thought to be somehow safer because
they enforce type checking at compile time. However, Python tests
rarely check types. They check values. They make sure that the right
attributes have been set at the right time or that the sequence has
the right length, order, and values. These higher-level concepts need
to be tested in any language.

The real reason Python programmers test more than programmers
of other languages is that it is so easy to test in Python!

But why test? Do we really need to test? What if we didn't test? To
answer those questions, write a tic-tac-toe game from scratch
without any testing at all. Don't run it until it is completely written,
start to finish. Tic-tac-toe is fairly simple to implement if you make
both players human players (no artificial intelligence). You don't even
have to try to calculate who the winner is. Now run your program.
And fix all the errors. How many were there? I recorded eight in my
tic-tac-toe implementation, and I'm not sure I caught them all. Did
you?

We need to test our code to make sure it works. Running the
program, as we just did, and fixing the errors is one crude form of
testing. Python's interactive interpreter and near-zero compile times

makes it easy to write a few lines of code and run the program to
make sure those lines are doing what is expected. But changing a
few lines of code can affect parts of the program that we haven't
realized will be influenced by the changes, and therefore neglect to
test those parts. Furthermore, as a program grows, the number of
paths that the interpreter can take through that code also grow, and it
quickly becomes impossible to manually test all of them.

To handle this, we write automated tests. These are programs that
automatically run certain inputs through other programs or parts of
programs. We can run these test programs in seconds and cover far
more potential input situations than one programmer would think to
test every time they change something.

There are four main reasons to write tests:

To ensure that code is working the way the developer thinks it
should
To ensure that code continues working when we make changes
To ensure that the developer understood the requirements
To ensure that the code we are writing has a maintainable
interface

The first point really doesn't justify the time it takes to write a test; we
can test the code directly in the interactive interpreter in the same
time or less. But when we have to perform the same sequence of
test actions multiple times, it takes less time to automate those steps
once and then run them whenever necessary. It is a good idea to run
tests every time we change code, whether it is during initial
development or maintenance releases. When we have a
comprehensive set of automated tests, we can run them after code
changes and know that we didn't inadvertently break anything that
was tested.

The last two of the preceding points are more interesting. When we
write tests for code, it helps us design the API, interface, or pattern
that code takes. Thus, if we misunderstood the requirements, writing

a test can help highlight that misunderstanding. From the other side,
if we're not certain how we want to design a class, we can write a
test that interacts with that class so we have an idea of the most
natural way to interface with it. In fact, it is often beneficial to write
the tests before we write the code we are testing.

Test-driven development
Write tests first is the mantra of test-driven development. Test-driven
development takes the untested code is broken code concept one
step further and suggests that only unwritten code should be
untested. We don't write any code until we have written the tests that
will prove it works. The first time we run a test it should fail, since the
code hasn't been written. Then, we write the code that ensures the
test passes, then write another test for the next segment of code.

Test-driven development is fun; it allows us to build little puzzles to
solve. Then, we implement the code to solve those puzzles. Then,
we make a more complicated puzzle, and we write code that solves
the new puzzle without unsolving the previous one.

There are two goals to the test-driven methodology. The first is to
ensure that tests really get written. It's so very easy, after we have
written code, to say:

"Hmm, it seems to work. I don't have to write any tests for this. It was just a small change; nothing could have
broken."

If the test is already written before we write the code, we will know
exactly when it works (because the test will pass), and we'll know in
the future if it is ever broken by a change we or someone else has
made.

Secondly, writing tests first forces us to consider exactly how the
code will be used. It tells us what methods objects need to have and
how attributes will be accessed. It helps us break up the initial
problem into smaller, testable problems, and then to recombine the
tested solutions into larger, also tested, solutions. Writing tests can
thus become a part of the design process. Often, when we're writing
a test for a new object, we discover anomalies in the design that
force us to consider new aspects of the software.

As a concrete example, imagine writing code that uses an object-
relational mapper to store object properties in a database. It is
common to use an automatically assigned database ID in such
objects. Our code might use this ID for various purposes. If we are
writing a test for such code, before we write it, we may realize that
our design is faulty because objects do not have IDs assigned until
they have been saved to the database. If we want to manipulate an
object without saving it in our test, it will highlight this problem before
we have written code based on the faulty premise.

Testing makes software better. Writing tests before we release the
software makes it better before the end user sees or purchases the
buggy version (I have worked for companies that thrive on the users
can test it philosophy; it's not a healthy business model). Writing
tests before we write software makes it better the first time it is
written.

Unit testing
Let's start our exploration with Python's built-in test library. This
library provides a common object-oriented interface for unit tests.
Unit tests focus on testing the least amount of code possible in any
one test. Each one tests a single unit of the total amount of available
code.

The Python library for this is called, unsurprisingly, unittest. It
provides several tools for creating and running unit tests, the most
important being the TestCase class. This class provides a set of
methods that allow us to compare values, set up tests, and clean up
when they have finished.

When we want to write a set of unit tests for a specific task, we
create a subclass of TestCase and write individual methods to do the
actual testing. These methods must all start with the name test.
When this convention is followed, the tests automatically run as part
of the test process. Normally, the tests set some values on an object
and then run a method, and use the built-in comparison methods to
ensure that the right results were calculated. Here's a very simple
example:

import unittest

class CheckNumbers(unittest.TestCase):
 def test_int_float(self):
 self.assertEqual(1, 1.0)

if __name__ == "__main__":
 unittest.main()

This code simply subclasses the TestCase class and adds a method
that calls the TestCase.assertEqual method. This method will either
succeed or raise an exception, depending on whether the two

parameters are equal. If we run this code, the main function from
unittest will give us the following output:

.
--
Ran 1 test in 0.000s

OK

Did you know that floats and integers can be compared as equal?
Let's add a failing test, as follows:

 def test_str_float(self):
 self.assertEqual(1, "1")

The output of this code is more sinister, as integers and strings are
not
considered equal:

.F
==
FAIL: test_str_float (__main__.CheckNumbers)
--
Traceback (most recent call last):
 File "first_unittest.py", line 9, in test_str_float
 self.assertEqual(1, "1")
AssertionError: 1 != '1'

--
Ran 2 tests in 0.001s

FAILED (failures=1)

The dot on the first line indicates that the first test (the one we wrote
before) passed successfully; the letter F after it shows that the
second test failed. Then, at the end, it gives us some informative
output telling us how and where the test failed, along with a
summary of the number of failures.

We can have as many test methods on one TestCase class as we like.
As long as the method name begins with test, the test runner will
execute each one as a separate, isolated test. Each test should be
completely independent of other tests. Results or calculations from a
previous test should have no impact on the current test. The key to

writing good unit tests is keeping each test method as short as
possible, testing a small unit of code with each test case. If our code
does not seem to naturally break up into such testable units, it's
probably a sign that the code needs to be redesigned.

Assertion methods
The general layout of a test case is to set certain variables to known
values, run one or more functions, methods, or processes, and then
prove that correct expected results were returned or calculated by
using TestCase assertion methods.

There are a few different assertion methods available to confirm that
specific results have been achieved. We just saw assertEqual, which
will cause a test failure if the two parameters do not pass an equality
check. The inverse, assertNotEqual, will fail if the two parameters do
compare as equal. The assertTrue and assertFalse methods each accept
a single expression, and fail if the expression does not pass an if
test. These tests do not check for the Boolean values True or False.
Rather, they test the same condition as though an if statement were
used: False, None, 0, or an empty list, dictionary, string, set, or tuple
would pass a call to the assertFalse method. Nonzero numbers,
containers with values in them, or the value True would succeed when
calling the assertTrue method.

There is an assertRaises method that can be used to ensure that a
specific function call raises a specific exception or, optionally, it can
be used as a context manager to wrap inline code. The test passes if
the code inside the with statement raises the proper exception;
otherwise, it fails. The following code snippet is an example of both
versions:

import unittest

def average(seq):
 return sum(seq) / len(seq)

class TestAverage(unittest.TestCase):
 def test_zero(self):
 self.assertRaises(ZeroDivisionError, average, [])

 def test_with_zero(self):
 with self.assertRaises(ZeroDivisionError):
 average([])

if __name__ == "__main__":
 unittest.main()

The context manager allows us to write the code the way we would
normally write it (by calling functions or executing code directly),
rather than having to wrap the function call in another function call.

There are also several other assertion methods, summarized in the
following table:

Methods Description

assertGreater

assertGreaterEqual

assertLess

assertLessEqual

Accept two comparable objects
and ensure the named inequality
holds.

assertIn

assertNotIn

Ensure an element is (or is not) an
element in a container object.

assertIsNone

assertIsNotNone

Ensure an element is (or is not) the
exact None value (but not another
falsey value).

assertSameElements Ensure two container objects have
the same elements, ignoring the
order.

assertSequenceEqualassertDictEqual

assertSetEqual

assertListEqual

assertTupleEqual

Ensure two containers have the
same elements in the same order.
If there's a failure, show a code
difference comparing the two lists
to see where they differ. The last
four methods also test the type of
the list.

Each of the assertion methods accepts an optional argument named
msg. If supplied, it is included in the error message if the assertion
fails. This can be useful for clarifying what was expected or
explaining where a bug may have occurred to cause the assertion to
fail. I rarely use this syntax, however, preferring to use descriptive
names for the test method instead.

Reducing boilerplate and
cleaning up
After writing a few small tests, we often find that we have to write the
same setup code for several related tests. For example, the following
list subclass has three methods for statistical calculations:

from collections import defaultdict

class StatsList(list):
 def mean(self):
 return sum(self) / len(self)

 def median(self):
 if len(self) % 2:
 return self[int(len(self) / 2)]
 else:
 idx = int(len(self) / 2)
 return (self[idx] + self[idx-1]) / 2

 def mode(self):
 freqs = defaultdict(int)
 for item in self:
 freqs[item] += 1
 mode_freq = max(freqs.values())
 modes = []
 for item, value in freqs.items():
 if value == mode_freq:
 modes.append(item)
 return modes

Clearly, we're going to want to test situations with each of these
three methods that have very similar inputs. We'll want to see what
happens with empty lists, with lists containing non-numeric values, or
with lists containing a normal dataset, for example. We can use the
setUp method on the TestCase class to perform initialization for each test.
This method accepts no arguments, and allows us to do arbitrary
setup before each test is run. For example, we can test all three
methods on identical lists of integers as follows:

from stats import StatsList
import unittest

class TestValidInputs(unittest.TestCase):
 def setUp(self):
 self.stats = StatsList([1, 2, 2, 3, 3, 4])

 def test_mean(self):
 self.assertEqual(self.stats.mean(), 2.5)

 def test_median(self):
 self.assertEqual(self.stats.median(), 2.5)
 self.stats.append(4)
 self.assertEqual(self.stats.median(), 3)

 def test_mode(self):
 self.assertEqual(self.stats.mode(), [2, 3])
 self.stats.remove(2)
 self.assertEqual(self.stats.mode(), [3])

if __name__ == "__main__":
 unittest.main()

If we run this example, it indicates that all tests pass. Notice first that
the setUp method is never explicitly called inside the three test_*
methods. The test suite does this on our behalf. More importantly,
notice how test_median alters the list, by adding an additional 4 to it, yet
when the subsequent test_mode is called, the list has returned to the
values specified in setUp. If it had not, there would be two fours in the
list, and the mode method would have returned three values. This
demonstrates that setUp is called individually before each test,
ensuring the test class starts with a clean slate. Tests can be
executed in any order, and the results of one test must never depend
on any other tests.

In addition to the setUp method, TestCase offers a no-argument tearDown
method, which can be used for cleaning up after each and every test
on the class has run. This method is useful if cleanup requires
anything other than letting an object be garbage collected.

For example, if we are testing code that does file I/O, our tests may
create new files as a side effect of testing. The tearDown method can
remove these files and ensure the system is in the same state it was
before the tests ran. Test cases should never have side effects. In
general, we group test methods into separate TestCase subclasses

depending on what setup code they have in common. Several tests
that require the same or similar setup will be placed in one class,
while tests that require unrelated setup go in another class.

Organizing and running tests
It doesn't take long for a collection of unit tests to grow very large
and unwieldy. It can quickly become complicated to load and run all
the tests at once. This is a primary goal of unit testing: trivially run all
tests on our program and get a quick yes or no answer to the
question, did my recent changes break anything?.

As with normal program code, we should divide our test classes into
modules and packages that keep them organized. If you name each
test module starting with the four characters test, there's an easy
way to find and run them all. Python's discover module looks for any
modules in the current folder or subfolders with names that start with
test. If it finds any TestCase objects in these modules, the tests are
executed. It's a painless way to ensure we don't miss running any
tests. To use it, ensure your test modules are named test_<something>.py
and then run the python3-munittestdiscover command.

Most Python programmers choose to put their tests in a separate
package (usually named tests/ alongside their source directory). This
is not required, however. Sometimes it makes sense to put the test
modules for different packages in a subpackage next to that
package, for example.

Ignoring broken tests
Sometimes, a test is known to fail, but we don't want the test suite to
report the failure. This may be because a broken or unfinished
feature has tests written, but we aren't currently focusing on
improving it. More often, it happens because a feature is only
available on a certain platform, Python version, or for advanced
versions of a specific library. Python provides us with a few
decorators to mark tests as expected to fail or to be skipped under
known conditions.

These decorators are as follows:

expectedFailure()

skip(reason)

skipIf(condition, reason)

skipUnless(condition, reason)

These are applied using the Python decorator syntax. The first one
accepts no arguments, and simply tells the test runner not to record
the test as a failure when it fails. The skip method goes one step
further and doesn't even bother to run the test. It expects a single
string argument describing why the test was skipped. The other two
decorators accept two arguments, one a Boolean expression that
indicates whether or not the test should be run, and a similar
description. In use, these three decorators might be applied as they
are in the following code:

import unittest
import sys

class SkipTests(unittest.TestCase):
 @unittest.expectedFailure
 def test_fails(self):
 self.assertEqual(False, True)

 @unittest.skip("Test is useless")

 def test_skip(self):
 self.assertEqual(False, True)

 @unittest.skipIf(sys.version_info.minor == 4, "broken on 3.4")
 def test_skipif(self):
 self.assertEqual(False, True)

 @unittest.skipUnless(
 sys.platform.startswith("linux"), "broken unless on linux"
)
 def test_skipunless(self):
 self.assertEqual(False, True)

if __name__ == "__main__":
 unittest.main()

The first test fails, but it is reported as an expected failure; the
second test is never run. The other two tests may or may not be run
depending on the current Python version and operating system. On
my Linux system, running Python 3.7, the output looks as follows:

xssF
==
FAIL: test_skipunless (__main__.SkipTests)
--
Traceback (most recent call last):
 File "test_skipping.py", line 22, in test_skipunless
 self.assertEqual(False, True)
AssertionError: False != True

--
Ran 4 tests in 0.001s

FAILED (failures=1, skipped=2, expected failures=1)

The x on the first line indicates an expected failure; the two s
characters represent skipped tests, and the F indicates a real failure,
since the conditional to skipUnless was True on my system.

Testing with pytest
The Python unittest module requires a lot of boilerplate code to set up
and initialize tests. It is based on the very popular JUnit testing
framework for Java. It even uses the same method names (you may
have noticed they don't conform to the PEP-8 naming standard,
which suggests snake_case rather than CamelCase to indicate a
method name) and test layout. While this is effective for testing in
Java, it's not necessarily the best design for Python testing. I actually
find the unittest framework to be an excellent example of overusing
object-oriented principles.

Because Python programmers like their code to be elegant and
simple, other test frameworks have been developed, outside the
standard library. Two of the more popular ones are pytest and nose.
The former is more robust and has had Python 3 support for much
longer, so we'll discuss it here.

Since pytest is not part of the standard library, you'll need to download
and install it yourself. You can get it from the pytest home page at htt
p://pytest.org/. The website has comprehensive installation
instructions for a variety of interpreters and platforms, but you can
usually get away with the more common Python package installer,
pip. Just type pip install pytest on your command line and you'll be
good to go.

pytest has a substantially different layout from the unittest module. It
doesn't require test cases to be classes. Instead, it takes advantage
of the fact that Python functions are objects, and allows any properly
named function to behave like a test. Rather than providing a bunch
of custom methods for asserting equality, it uses the assert statement
to verify results. This makes tests more readable and maintainable.

http://pytest.org/

When we run pytest, it starts in the current folder and searches for
any modules or subpackages with names beginning with the
characters test_. If any functions in this module also start with test,
they will be executed as individual tests. Furthermore, if there are
any classes in the module whose name starts with Test, any methods
on that class that start with test_ will also be executed in the test
environment.

Using the following code, let's port the simplest possible unittest
example we wrote earlier to pytest:

def test_int_float():
 assert 1 == 1.0

For the exact same test, we've written two lines of more readable
code, in comparison to the six lines required in our first unittest
example.

However, we are not forbidden from writing class-based tests.
Classes can be useful for grouping related tests together or for tests
that need to access related attributes or methods on the class. The
following example shows an extended class with a passing and a
failing test; we'll see that the error output is more comprehensive
than that provided by the unittest module:

class TestNumbers:
 def test_int_float(self):
 assert 1 == 1.0

 def test_int_str(self):
 assert 1 == "1"

Notice that the class doesn't have to extend any special objects to
be picked up as a test (although pytest will run standard unittest
TestCases just fine). If we run pytest <filename>, the output looks as
follows:

============================== test session starts
==============================
platform linux -- Python 3.7.0, pytest-3.8.0, py-1.6.0, pluggy-0.7.1
rootdir: /home/dusty/Py3OOP/Chapter 24: Testing Object-oriented Programs,
inifile:

collected 3 items

test_with_pytest.py ..F [100%]

=================================== FAILURES
====================================
___________________________ TestNumbers.test_int_str

self = <test_with_pytest.TestNumbers object at 0x7fdb95e31390>

 def test_int_str(self):
> assert 1 == "1"
E AssertionError: assert 1 == '1'

test_with_pytest.py:10: AssertionError
====================== 1 failed, 2 passed in 0.03 seconds
=======================

The output starts with some useful information about the platform
and interpreter. This can be useful for sharing or discussing bugs
across disparate systems. The third line tells us the name of the file
being tested (if there are multiple test modules picked up, they will all
be displayed), followed by the familiar .F we saw in the unittest
module; the . character indicates a passing test, while the letter F
demonstrates a failure.

After all tests have run, the error output for each of them is
displayed. It presents a summary of local variables (there is only one
in this example: the self parameter passed into the function), the
source code where the error occurred, and a summary of the error
message. In addition, if an exception other than an AssertionError is
raised, pytest will present us with a complete traceback, including
source code references.

By default, pytest suppresses output from print statements if the test is
successful. This is useful for test debugging; when a test is failing,
we can add print statements to the test to check the values of
specific variables and attributes as the test runs. If the test fails,
these values are output to help with diagnosis. However, once the
test is successful, the print statement output is not displayed, and
they are easily ignored. We don't have to clean up output by

removing print statements. If the tests ever fail again, due to future
changes, the debugging output will be immediately available.

One way to do setup and
cleanup
pytest supports setup and teardown methods similar to those used in
unittest, but it provides even more flexibility. We'll discuss these
briefly, since they are familiar, but they are not used as extensively
as in the unittest module, as pytest provides us with a powerful fixtures
facility, which we'll discuss in the next section.

If we are writing class-based tests, we can use two methods called
setup_method and teardown_method in the same way that setUp and tearDown are
called in unittest. They are called before and after each test method
in the class to perform setup and cleanup duties. There is one
difference from the unittest methods though. Both methods accept an
argument: the function object representing the method being called.

In addition, pytest provides other setup and teardown functions to give
us more control over when setup and cleanup code is executed. The
setup_class and teardown_class methods are expected to be class
methods; they accept a single argument (there is no self argument)
representing the class in question. These methods are only run
when the class is initiated rather than on each test run.

Finally, we have the setup_module and teardown_module functions, which are
run immediately before and after all tests (in functions or classes) in
that module. These can be useful for one time setup, such as
creating a socket or database connection that will be used by all
tests in the module. Be careful with this one, as it can accidentally
introduce dependencies between tests if the object stores state that
isn't correctly cleaned up between tests.

That short description doesn't do a great job of explaining exactly
when these methods are called, so let's look at an example that

illustrates exactly when it happens:

def setup_module(module):
 print("setting up MODULE {0}".format(module.__name__))

def teardown_module(module):
 print("tearing down MODULE {0}".format(module.__name__))

def test_a_function():
 print("RUNNING TEST FUNCTION")

class BaseTest:
 def setup_class(cls):
 print("setting up CLASS {0}".format(cls.__name__))

 def teardown_class(cls):
 print("tearing down CLASS {0}\n".format(cls.__name__))

 def setup_method(self, method):
 print("setting up METHOD {0}".format(method.__name__))

 def teardown_method(self, method):
 print("tearing down METHOD {0}".format(method.__name__))

class TestClass1(BaseTest):
 def test_method_1(self):
 print("RUNNING METHOD 1-1")

 def test_method_2(self):
 print("RUNNING METHOD 1-2")

class TestClass2(BaseTest):
 def test_method_1(self):
 print("RUNNING METHOD 2-1")

 def test_method_2(self):
 print("RUNNING METHOD 2-2")

The sole purpose of the BaseTest class is to extract four methods that
are otherwise identical to the test classes, and use inheritance to
reduce the amount of duplicate code. So, from the point of view of
pytest, the two subclasses have not only two test methods each, but
also two setup and two teardown methods (one at the class level,
one at the method level).

If we run these tests using pytest with the print function output
suppression disabled (by passing the -s or --capture=no flag), they show
us when the various functions are called in relation to the tests
themselves:

setup_teardown.py
setting up MODULE setup_teardown
RUNNING TEST FUNCTION
.setting up CLASS TestClass1
setting up METHOD test_method_1
RUNNING METHOD 1-1
.tearing down METHOD test_method_1
setting up METHOD test_method_2
RUNNING METHOD 1-2
.tearing down METHOD test_method_2
tearing down CLASS TestClass1
setting up CLASS TestClass2
setting up METHOD test_method_1
RUNNING METHOD 2-1
.tearing down METHOD test_method_1
setting up METHOD test_method_2
RUNNING METHOD 2-2
.tearing down METHOD test_method_2
tearing down CLASS TestClass2

tearing down MODULE setup_teardown

The setup and teardown methods for the module are executed at the
beginning and end of the session. Then the lone module-level test
function is run. Next, the setup method for the first class is executed,
followed by the two tests for that class. These tests are each
individually wrapped in separate setup_method and teardown_method calls.
After the tests have executed, the teardown method on the class is
called. The same sequence happens for the second class, before
the teardown_module method is finally called, exactly once.

A completely different way to
set up variables
One of the most common uses for the various setup and teardown
functions is to ensure certain class or module variables are available
with a known value before each test method is run.

pytest offers a completely different way of doing this, using what are
known as fixtures. Fixtures are basically named variables that are
predefined in a test configuration file. This allows us to separate
configuration from the execution of tests, and allows fixtures to be
used across multiple classes and modules.

To use them, we add parameters to our test function. The names of
the parameters are used to look up specific arguments in specially
named functions. For example, if we wanted to test the StatsList class
we used while demonstrating unittest, we would again want to
repeatedly test a list of valid integers. But we can write our tests as
follows instead of using a setup method:

import pytest
from stats import StatsList

@pytest.fixture
def valid_stats():
 return StatsList([1, 2, 2, 3, 3, 4])

def test_mean(valid_stats):
 assert valid_stats.mean() == 2.5

def test_median(valid_stats):
 assert valid_stats.median() == 2.5
 valid_stats.append(4)
 assert valid_stats.median() == 3

def test_mode(valid_stats):
 assert valid_stats.mode() == [2, 3]

 valid_stats.remove(2)
 assert valid_stats.mode() == [3]

Each of the three test methods accepts a parameter named
valid_stats; this parameter is created by calling the valid_stats function,
which was decorated with @pytest.fixture.

Fixtures can do a lot more than return basic variables. A request object
can be passed into the fixture factory to provide extremely useful
methods and attributes to modify the funcarg's behavior. The module,
cls, and function attributes allow us to see exactly which test is
requesting the fixture. The config attribute allows us to check
command-line arguments and a great deal of other configuration
data.

If we implement the fixture as a generator, we can run cleanup code
after each test is run. This provides the equivalent of a teardown
method, except on a per-fixture basis. We can use it to clean up
files, close connections, empty lists, or reset queues. For example,
the following code tests the os.mkdir functionality by creating a
temporary directory fixture:

import pytest
import tempfile
import shutil
import os.path

@pytest.fixture
def temp_dir(request):
 dir = tempfile.mkdtemp()
 print(dir)
 yield dir
 shutil.rmtree(dir)

def test_osfiles(temp_dir):
 os.mkdir(os.path.join(temp_dir, "a"))
 os.mkdir(os.path.join(temp_dir, "b"))
 dir_contents = os.listdir(temp_dir)
 assert len(dir_contents) == 2
 assert "a" in dir_contents
 assert "b" in dir_contents

The fixture creates a new empty temporary directory for files to be
created in. It yields this for use in the test, but removes that directory
(using shutil.rmtree, which recursively removes a directory and
anything inside it) after the test has completed. The filesystem is
then left in the same state in which it started.

We can pass a scope parameter to create a fixture that lasts longer
than one test. This is useful when setting up an expensive operation
that can be reused by multiple tests, as long as the resource reuse
doesn't break the atomic or unit nature of the tests (so that one test
does not rely on, and is not impacted by, a previous one). For
example, if we were to test the following echo server, we may want
to run only one instance of the server in a separate process, and
then have multiple tests connect to that instance:

import socket

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
s.bind(('localhost',1028))
s.listen(1)

 while True:
 client, address = s.accept()
 data = client.recv(1024)
 client.send(data)
 client.close()

All this code does is listen on a specific port and wait for input from a
client socket. When it receives input, it sends the same value back.
To test this, we can start the server in a separate process and cache
the result for use in multiple tests. Here's how the test code might
look:

import subprocess
import socket
import time
import pytest

@pytest.fixture(scope="session")
def echoserver():
 print("loading server")
 p = subprocess.Popen(["python3", "echo_server.py"])
 time.sleep(1)

 yield p
 p.terminate()

@pytest.fixture
def clientsocket(request):
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 s.connect(("localhost", 1028))
 yield s
 s.close()

def test_echo(echoserver, clientsocket):
 clientsocket.send(b"abc")
 assert clientsocket.recv(3) == b"abc"

def test_echo2(echoserver, clientsocket):
 clientsocket.send(b"def")
 assert clientsocket.recv(3) == b"def"

We've created two fixtures here. The first runs the echo server in a
separate process, and yields the process object, cleaning it up when
it's finished. The second instantiates a new socket object for each
test, and closes the socket when the test has completed.

The first fixture is the one we're currently interested in. From the
scope="session" keyword argument passed into the decorator's
constructor, pytest knows that we only want this fixture to be initialized
and terminated once for the duration of the unit test session.

The scope can be one of the strings class, module, package, or session. It
determines just how long the argument will be cached. We set it to
session in this example, so it is cached for the duration of the entire
pytest run. The process will not be terminated or restarted until all
tests have run. The module scope, of course, caches it only for tests in
that module, and the class scope treats the object more like a normal
class setup and teardown.

At the time the third edition of this book went to print, the package scope was labeled experimental
in pytest. Be careful with it, and they request that you supply bug reports.

Skipping tests with pytest
As with the unittest module, it is frequently necessary to skip tests in
pytest, for a similar variety of reasons: the code being tested hasn't
been written yet, the test only runs on certain interpreters or
operating systems, or the test is time-consuming and should only be
run under certain circumstances.

We can skip tests at any point in our code, using the pytest.skip
function. It accepts a single argument: a string describing why it has
been skipped. This function can be called anywhere. If we call it
inside a test function, the test will be skipped. If we call it at the
module level, all the tests in that module will be skipped. If we call it
inside a fixture, all tests that call that funcarg will be skipped.

Of course, in all these locations, it is often desirable to skip tests only
if certain conditions are or are not met. Since we can execute the skip
function at any place in Python code, we can execute it inside an if
statement. So we may write a test that looks as follows:

import sys
import pytest

def test_simple_skip():
 if sys.platform != "fakeos":
 pytest.skip("Test works only on fakeOS")

 fakeos.do_something_fake()
 assert fakeos.did_not_happen

That's some pretty silly code, really. There is no Python platform
named fakeos, so this test will skip on all operating systems. It shows
how we can skip conditionally, and since the if statement can check
any valid conditional, we have a lot of power over when tests are
skipped. Often, we check sys.version_info to check the Python
interpreter version, sys.platform to check the operating system, or

some_library.__version__ to check whether we have a recent enough
version of a given API.

Since skipping an individual test method or function based on a
certain conditional is one of the most common uses of test skipping,
pytest provides a convenience decorator that allows us to do this in
one line. The decorator accepts a single string, which can contain
any executable Python code that evaluates to a Boolean value. For
example, the following test will only run on Python 3 or higher:

@pytest.mark.skipif("sys.version_info <= (3,0)")
def test_python3():
 assert b"hello".decode() == "hello"

The pytest.mark.xfail decorator behaves similarly, except that it marks
a test as expected to fail, similar to unittest.expectedFailure(). If the test
is successful, it will be recorded as a failure. If it fails, it will be
reported as expected behavior. In the case of xfail, the conditional
argument is optional. If it is not supplied, the test will be marked as
expected to fail under all conditions.

The pytest has a ton of other features besides those described here
and the developers are constantly adding innovative new ways to
make your testing experience more enjoyable. They have thorough
documentation on their website at https://docs.pytest.org/.

The pytest can find and run tests defined using the standard unittest library in addition to its own
testing infrastructure. This means that if you want to migrate from unittest to pytest, you don't
have to rewrite all your old tests.

https://docs.pytest.org/

Imitating expensive objects
Sometimes, we want to test code that requires an object be supplied
that is either expensive or difficult to construct. In some cases, this
may mean your API needs rethinking to have a more testable
interface (which typically means a more usable interface). But we
sometimes find ourselves writing test code that has a ton of
boilerplate to set up objects that are only incidentally related to the
code under test.

For example, imagine we have some code that keeps track of flight
statuses in an external key-value store (such as redis or memcache), such
that we can store the timestamp and the most recent status. A basic
version of such code might look as follows:

import datetime
import redis

class FlightStatusTracker:
 ALLOWED_STATUSES = {"CANCELLED", "DELAYED", "ON TIME"}

 def __init__(self):
 self.redis = redis.StrictRedis()

 def change_status(self, flight, status):
 status = status.upper()
 if status not in self.ALLOWED_STATUSES:
 raise ValueError("{} is not a valid status".format(status))

 key = "flightno:{}".format(flight)
 value = "{}|{}".format(
 datetime.datetime.now().isoformat(), status
)
 self.redis.set(key, value)

There are a lot of things we ought to test for that change_status method.
We should check that it raises the appropriate error if a bad status is
passed in. We need to ensure that it converts statuses to uppercase.
We can see that the key and value have the correct formatting when
the set() method is called on the redis object.

One thing we don't have to check in our unit tests, however, is that
the redis object is properly storing the data. This is something that
absolutely should be tested in integration or application testing, but
at the unit test level, we can assume that the py-redis developers
have tested their code and that this method does what we want it to.
As a rule, unit tests should be self-contained and shouldn't rely on
the existence of outside resources, such as a running Redis
instance.

Instead, we only need to test that the set() method was called the
appropriate number of times and with the appropriate arguments.
We can use Mock() objects in our tests to replace the troublesome
method with an object we can introspect. The following example
illustrates the use of Mock:

from flight_status_redis import FlightStatusTracker
from unittest.mock import Mock
import pytest

@pytest.fixture
def tracker():
 return FlightStatusTracker()

def test_mock_method(tracker):
 tracker.redis.set = Mock()
 with pytest.raises(ValueError) as ex:
 tracker.change_status("AC101", "lost")
 assert ex.value.args[0] == "LOST is not a valid status"
 assert tracker.redis.set.call_count == 0

This test, written using pytest syntax, asserts that the correct
exception is raised when an inappropriate argument is passed in. In
addition, it creates a Mock object for the set method and makes sure
that it is never called. If it was, it would mean there was a bug in our
exception handling code.

Simply replacing the method worked fine in this case, since the
object being replaced was destroyed in the end. However, we often
want to replace a function or method only for the duration of a test.
For example, if we want to test the timestamp formatting in the Mock

method, we need to know exactly what datetime.datetime.now() is going
to return. However, this value changes from run to run. We need
some way to pin it to a specific value so we can test it
deterministically.

Temporarily setting a library function to a specific value is one of the
few valid use cases for monkey-patching. The mock library provides
a patch context manager that allows us to replace attributes on
existing libraries with mock objects. When the context manager exits,
the original attribute is automatically restored so as not to impact
other test cases. Here's an example:

import datetime
from unittest.mock import patch

def test_patch(tracker):
 tracker.redis.set = Mock()
 fake_now = datetime.datetime(2015, 4, 1)
 with patch("datetime.datetime") as dt:
 dt.now.return_value = fake_now
 tracker.change_status("AC102", "on time")
 dt.now.assert_called_once_with()
 tracker.redis.set.assert_called_once_with(
 "flightno:AC102", "2015-04-01T00:00:00|ON TIME"
)

In the preceding example, we first construct a value called fake_now,
which we will set as the return value of the datetime.datetime.now
function. We have to construct this object before we patch
datetime.datetime, because otherwise we'd be calling the patched now
function before we constructed it.

The with statement invites the patch to replace the datetime.datetime
module with a mock object, which is returned as the dt value. The
neat thing about mock objects is that any time you access an
attribute or method on that object, it returns another mock object.
Thus, when we access dt.now, it gives us a new mock object. We set
the return_value of that object to our fake_now object. Now, whenever the
datetime.datetime.now function is called, it will return our object instead of
a new mock object. But when the interpreter exits the context
manager, the original datetime.datetime.now() functionality is restored.

After calling our change_status method with known values, we use the
assert_called_once_with function of the Mock class to ensure that the now
function was indeed called exactly once with no arguments. We then
call it a second time to prove that the redis.set method was called with
arguments that were formatted as we expected them to be.

Mocking dates so you can have deterministic test results is a common patching scenario. If you
are in a situation where you are doing a lot of this, you might appreciate the freezegun and
pytest-freezegun projects available in the Python Package Index.

The previous example is a good indication of how writing tests can
guide our API design. The FlightStatusTracker object looks sensible at
first glance; we construct a redis connection when the object is
constructed, and we call into it when we need it. When we write tests
for this code, however, we discover that even if we mock out that
self.redis variable on a FlightStatusTracker, the redis connection still has
to be constructed. This call actually fails if there is no Redis server
running, and our tests also fail.

We could solve this problem by mocking out the redis.StrictRedis class
to return a mock in a setUp method. A better idea, however, might be
to rethink our implementation. Instead of constructing the redis
instance inside__init__, perhaps we should allow the user to pass one
in, as in the following example:

 def __init__(self, redis_instance=None):
 self.redis = redis_instance if redis_instance else
redis.StrictRedis()

This allows us to pass a mock in when we are testing, so the
StrictRedis method never gets constructed. Additionally, it allows any
client code that talks to FlightStatusTracker to pass in their own redis
instance. There are a variety of reasons they might want to do this:
they may have already constructed one for other parts of their code;
they may have created an optimized implementation of the redis API;
perhaps they have one that logs metrics to their internal monitoring
systems. By writing a unit test, we've uncovered a use case that
makes our API more flexible from the start, rather than waiting for
clients to demand we support their exotic needs.

This has been a brief introduction to the wonders of mocking code.
Mocks are part of the standard unittest library since Python 3.3, but
as you see from these examples, they can also be used with pytest
and other libraries. Mocks have other more advanced features that
you may need to take advantage of as your code gets more
complicated. For example, you can use the spec argument to invite a
mock to imitate an existing class so that it raises an error if code tries
to access an attribute that does not exist on the imitated class. You
can also construct mock methods that return different arguments
each time they are called by passing a list as the side_effect argument.
The side_effect parameter is quite versatile; you can also use it to
execute arbitrary functions when the mock is called or to raise an
exception.

In general, we should be quite stingy with mocks. If we find
ourselves mocking out multiple elements in a given unit test, we may
end up testing the mock framework rather than our real code. This
serves no useful purpose whatsoever; after all, mocks are well-
tested already! If our code is doing a lot of this, it's probably another
sign that the API we are testing is poorly designed. Mocks should
exist at the boundaries between the code under test and the libraries
they interface with. If this isn't happening, we may need to change
the API so that the boundaries are redrawn in a different place.

How much testing is enough?
We've already established that untested code is broken code. But
how can we tell how well our code is tested? How do we know how
much of our code is actually being tested and how much is broken?
The first question is the more important one, but it's hard to answer.
Even if we know we have tested every line of code in our application,
we do not know that we have tested it properly. For example, if we
write a stats test that only checks what happens when we provide a
list of integers, it may still fail spectacularly if used on a list of floats,
strings, or self-made objects. The onus of designing complete test
suites still lies with the programmer.

The second question–how much of our code is actually being
tested–is easy to verify. Code coverage is an estimate of the
number of lines of code that are executed by a program. If we know
that number and the number of lines that are in the program, we can
get an estimate of what percentage of the code was really tested, or
covered. If we additionally have an indicator as to which lines were
not tested, we can more easily write new tests to ensure those lines
are less broken.

The most popular tool for testing code coverage is called,
memorably enough, coverage.py. It can be installed like most other
third-party libraries, using the pip install coverage command.

We don't have space to cover all the details of the coverage API, so
we'll just look at a few typical examples. If we have a Python script
that runs all our unit tests for us (for example, using unittest.main,
discover, pytest, or a custom test runner), we can use the following
command to perform a coverage analysis:

$coverage run coverage_unittest.py

This command will exit normally, but it creates a file named .coverage,
which holds the data from the run. We can now use the coveragereport
command to get an analysis of the code coverage:

$coverage report

The resulting output should be as follows:

Name Stmts Exec Cover
--
coverage_unittest 7 7 100%
stats 19 6 31%
--
TOTAL 26 13 50%

This basic report lists the files that were executed (our unit test and a
module it imported). The number of lines of code in each file, and the
number that were executed by the test are also listed. The two
numbers are then combined to estimate the amount of code
coverage. If we pass the -m option to the report command, it will
additionally add a column that looks as follows:

Missing

8-12, 15-23

The ranges of lines listed here identify lines in the stats module that
were not executed during the test run.

The example we just ran the code coverage tool on uses the same
stats module we created earlier in the chapter. However, it
deliberately uses a single test that fails to test a lot of code in the file.
Here's the test:

from stats import StatsList
import unittest

class TestMean(unittest.TestCase):
 def test_mean(self):
 self.assertEqual(StatsList([1,2,2,3,3,4]).mean(), 2.5)

if __name__ == "__main__":

 unittest.main()

This code doesn't test the median or mode functions, which
correspond to the line numbers that the coverage output told us were
missing.

The textual report provides sufficient information, but if we use the
coverage html command, we can get an even more useful interactive
HTML report, which we can view in a web browser. The web page
even highlights which lines in the source code were and were not
tested. Here's how it looks:

We can use the coverage.py module with pytest as well. We'll need to
install the pytest plugin for code coverage, using pip install pytest-
coverage. The plugin adds several command-line options to pytest, the
most useful being --cover-report, which can be set to html, report, or

annotate (the latter actually modifies the original source code to
highlight any lines that were not covered).

Unfortunately, if we could somehow run a coverage report on this
section of the chapter, we'd find that we have not covered most of
what there is to know about code coverage! It is possible to use the
coverage API to manage code coverage from within our own
programs (or test suites), and coverage.py accepts numerous
configuration options that we haven't touched on. We also haven't
discussed the difference between statement coverage and branch
coverage (the latter is much more useful, and the default in recent
versions of coverage.py), or other styles of code coverage.

Bear in mind that while 100 percent code coverage is a lofty goal
that we should all strive for, 100 percent coverage is not enough!
Just because a statement was tested does not mean that it was
tested properly for all possible inputs.

Case study
Let's walk through test-driven development by writing a small, tested,
cryptography application. Don't worry–you won't need to understand
the mathematics behind complicated modern encryption algorithms
such as AES or RSA. Instead, we'll be implementing a sixteenth-
century algorithm known as the Vigenère cipher. The application
simply needs to be able to encode and decode a message, given an
encoding keyword, using this cipher.

If you want a deep dive into how the RSA algorithm works, I wrote one on my blog at https://dus
ty.phillips.codes/.

First, we need to understand how the cipher works if we apply it
manually (without a computer). We start with a table like the
following one:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

https://dusty.phillips.codes/

Given a keyword, TRAIN, we can encode the message ENCODED
IN PYTHON as follows:

1. Repeat the keyword and message together, such that it is easy
to map letters from one to the other:

E N C O D E D I N P Y T H O N
T R A I N T R A I N T R A I N

2. For each letter in the plaintext, find the row that begins with that
letter in the table.

3. Find the column with the letter associated with the keyword
letter for the chosen plaintext letter.

4. The encoded character is at the intersection of this row and
column.

For example, the row starting with E intersects the column starting
with T at character X. So, the first letter in the ciphertext is X. The
row starting with N intersects the column starting with R at character
E, leading to the ciphertext XE. C intersects A at C, and O intersects
I at W. D and N map to Q, while E and T map to X. The full encoded
message is XECWQXUIVCRKHWA.

Decoding follows the opposite procedure. First, find the row with the
character for the shared keyword (the T row), then find the location
in that row where the encoded character (the X) is located. The
plaintext character is at the top of the column for that row (the E).

Implementing it
Our program will need an encode method that takes a keyword and
plaintext and returns the ciphertext, and a decode method that accepts
a keyword and ciphertext and returns the original message.

But rather than just writing those methods, let's follow a test-driven
development strategy. We'll be using pytest for our unit testing. We
need an encode method, and we know what it has to do; let's write a
test for that method first, as follows:

def test_encode():
 cipher = VigenereCipher("TRAIN")
 encoded = cipher.encode("ENCODEDINPYTHON")
 assert encoded == "XECWQXUIVCRKHWA"

This test fails, naturally, because we aren't importing a VigenereCipher
class anywhere. Let's create a new module to hold that class.

Let's start with the following VigenereCipher class:

class VigenereCipher:
 def __init__(self, keyword):
 self.keyword = keyword

 def encode(self, plaintext):
 return "XECWQXUIVCRKHWA"

If we add a fromvigenere_cipherimportVigenereCipher line to the top of our test
class and run pytest, the preceding test will pass! We've finished our
first test-driven development cycle.

This may seem like a ridiculously silly thing to test, but it's actually
verifying a lot. The first time I implemented it, I mispelled cipher as
cypher in the class name. Even my basic unit test helped catch a
bug. Even so, returning a hardcoded string is obviously not the most
sensible implementation of a cipher class, so let's add a second test,
as follows:

def test_encode_character():
 cipher = VigenereCipher("TRAIN")
 encoded = cipher.encode("E")
 assert encoded == "X"

Ah, now that test will fail. It looks like we're going to have to work
harder. But I just thought of something: what if someone tries to
encode a string with spaces or lowercase characters? Before we
start implementing the encoding, let's add some tests for these
cases, so we don't forget them. The expected behavior will be to
remove spaces, and to convert lowercase letters to capitals, as
follows:

def test_encode_spaces():
 cipher = VigenereCipher("TRAIN")
 encoded = cipher.encode("ENCODED IN PYTHON")
 assert encoded == "XECWQXUIVCRKHWA"

def test_encode_lowercase():
 cipher = VigenereCipher("TRain")
 encoded = cipher.encode("encoded in Python")
 assert encoded == "XECWQXUIVCRKHWA"

If we run the new test suite, we find that the new tests pass (they
expect the same hardcoded string). But they ought to fail later if we
forget to account for these cases.

Now that we have some test cases, let's think about how to
implement our encoding algorithm. Writing code to use a table like
we used in the earlier manual algorithm is possible, but seems
complicated, considering that each row is just an alphabet rotated by
an offset number of characters. It turns out (I asked Wikipedia) that
we can use modular arithmetic to combine the characters instead of
doing a table lookup.

Given plaintext and keyword characters, if we convert the two letters
to their numerical values (according to their position in the alphabet,
with A being 0 and Z being 25), add them together, and take the
remainder mod 26, we get the ciphertext character! This is a
straightforward calculation, but since it happens on a character-by-
character basis, we should probably put it in its own function. Before

we do that, then, we should write a test for the new function, as
follows:

from vigenere_cipher import combine_character
def test_combine_character():
 assert combine_character("E", "T") == "X"
 assert combine_character("N", "R") == "E"

Now we can write the code to make this function work. In all honesty,
I had to run the test several times before I got this function
completely correct. First, I accidentally returned an integer, and then
I forgot to shift the character back up to the normal ASCII scale from
the zero-based scale. Having the test available made it easy to test
and debug these errors. This is another bonus of test-driven
development. The final, working version of the code looks like the
following:

def combine_character(plain, keyword):
 plain = plain.upper()
 keyword = keyword.upper()
 plain_num = ord(plain) - ord('A')
 keyword_num = ord(keyword) - ord('A')
 return chr(ord('A') + (plain_num + keyword_num) % 26)

Now that combine_characters is tested, I thought we'd be ready to
implement our encode function. However, the first thing we want inside
that function is a repeating version of the keyword string that is as
long as the plaintext. Let's implement a function for that first. Oops, I
mean let's implement the test first, as follows:

def test_extend_keyword(): cipher = VigenereCipher("TRAIN") extended =
cipher.extend_keyword(16) assert extended == "TRAINTRAINTRAINT"

Before writing this test, I expected to write extend_keyword as a
standalone function that accepted a keyword and an integer. But as I
started drafting the test, I realized it made more sense to use it as a
helper method on the VigenereCipher class so it could access the
self.keyword attribute. This shows how test-driven development can
help design more sensible APIs. The following is the method
implementation:

 def extend_keyword(self, number):
 repeats = number // len(self.keyword) + 1
 return (self.keyword * repeats)[:number]

Once again, this took a few runs of the test to get right. I ended up
adding an amended copy of the test, one with fifteen and one with
sixteen letters, to make sure it works if the integer division has an
even number.

Now we're finally ready to write our encode method, as follows:

 def encode(self, plaintext):
 cipher = []
 keyword = self.extend_keyword(len(plaintext))
 for p,k in zip(plaintext, keyword):
 cipher.append(combine_character(p,k))
 return "".join(cipher)

That looks correct. Our test suite should pass now, right?

Actually, if we run it, we'll find that two tests are still failing. The
previously failing encode test is actually passing, but we totally forgot
about the spaces and lowercase characters! It is a good thing we
wrote those tests to remind us. We'll have to add the following line at
the beginning of the method:

 plaintext = plaintext.replace(" ", "").upper()
If we have an idea about a corner case in the middle of implementing something, we can create a
test describing that idea. We don't even have to implement the test; we can just run assert False
to remind us to implement it later. The failing test will never let us forget the corner case and it
can't be ignored as easily as a ticket in an issue tracker. If it takes a while to get around to fixing
the implementation, we can mark the test as an expected failure.

Now all the tests pass successfully. This chapter is pretty long, so
we'll condense the examples for decoding. The following are a
couple of tests:

def test_separate_character():
 assert separate_character("X", "T") == "E"
 assert separate_character("E", "R") == "N"

def test_decode():
 cipher = VigenereCipher("TRAIN")
 decoded = cipher.decode("XECWQXUIVCRKHWA")
 assert decoded == "ENCODEDINPYTHON"

And the following is the separate_character function:

def separate_character(cypher, keyword):
 cypher = cypher.upper()
 keyword = keyword.upper()
 cypher_num = ord(cypher) - ord('A')
 keyword_num = ord(keyword) - ord('A')
 return chr(ord('A') + (cypher_num - keyword_num) % 26)

Now we can add the decode method:

 def decode(self, ciphertext):
 plain = []
 keyword = self.extend_keyword(len(ciphertext))
 for p,k in zip(ciphertext, keyword):
 plain.append(separate_character(p,k))
 return "".join(plain)

These methods have a lot of similarity to those used for encoding.
The great thing about having all these tests written and passing is
that we can now go back and modify our code, knowing it is still
safely passing the tests. For example, if we replace our existing encode
and decode methods with the following refactored methods, our tests
still pass:

 def _code(self, text, combine_func):
 text = text.replace(" ", "").upper()
 combined = []
 keyword = self.extend_keyword(len(text))
 for p,k in zip(text, keyword):
 combined.append(combine_func(p,k))
 return "".join(combined)

 def encode(self, plaintext):
 return self._code(plaintext, combine_character)

 def decode(self, ciphertext):
 return self._code(ciphertext, separate_character)

This is the final benefit of test-driven development, and the most
important. Once the tests are written, we can improve our code as
much as we like and be confident that our changes didn't break
anything we have been testing for. Furthermore, we know exactly
when our refactor is finished: when the tests all pass.

Of course, our tests may not comprehensively test everything we
need them to; maintenance or code refactoring can still cause
undiagnosed bugs that don't show up in testing. Automated tests are
not foolproof. If bugs do occur, however, it is still possible to follow a
test-driven plan, as follows:

1. Write a test (or multiple tests) that duplicates or proves that the
bug in question is occurring. This will, of course, fail.

2. Then write the code to make the tests stop failing. If the tests
were comprehensive, the bug will be fixed, and we will know if it
ever happens again, as soon as we run the test suite.

Finally, we can try to determine how well our tests operate on this
code. With the pytest coverage plugin installed, pytest -coverage-
report=report tells us that our test suite has 100 percent code
coverage. This is a great statistic, but we shouldn't get too cocky
about it. Our code hasn't been tested when encoding messages that
have numbers, and its behavior with such inputs is thus undefined.

Exercises
Practice test-driven development. That is your first exercise. It's
easier to do this if you're starting a new project, but if you have
existing code you need to work on, you can start by writing tests for
each new feature you implement. This can become frustrating as
you become more enamored with automated tests. The old, untested
code will start to feel rigid and tightly coupled, and will become
uncomfortable to maintain; you'll start feeling like changes you make
are breaking the code and you have no way of knowing, for lack of
tests. But if you start small, adding tests to the code base improves it
over time.

So, to get your feet wet with test-driven development, start a fresh
project. Once you've started to appreciate the benefits (you will) and
realize that the time spent writing tests is quickly regained in terms of
more maintainable code, you'll want to start writing tests for existing
code. This is when you should start doing it, not before. Writing tests
for code that we know works is boring. It is hard to get interested in
the project until you realize just how broken the code we thought was
working really is.

Try writing the same set of tests using both the built-in unittest
module and pytest. Which do you prefer? unittest is more similar to
test frameworks in other languages, while pytest is arguably more
Pythonic. Both allow us to write object-oriented tests and to test
object-oriented programs with ease.

We used pytest in our case study, but we didn't touch on any features
that wouldn't have been easily testable using unittest. Try adapting
the tests to use test skipping or fixtures (an instance of VignereCipher
would be helpful). Try the various setup and teardown methods, and
compare their use to funcargs. Which feels more natural to you?

Try running a coverage report on the tests you've written. Did you
miss testing any lines of code? Even if you have 100 percent
coverage, have you tested all the possible inputs? If you're doing
test-driven development, 100 percent coverage should follow quite
naturally, as you will write a test before the code that satisfies that
test. However, if writing tests for existing code, it is more likely that
there will be edge conditions that go untested.

Think carefully about the values that are somehow different, such as
the following, for example:

Empty lists when you expect full ones
Negative numbers, zero, one, or infinity compared to positive
integers
Floats that don't round to an exact decimal place
Strings when you expected numerals
Unicode strings when you expected ASCII
The ubiquitous None value when you expected something
meaningful

If your tests cover such edge cases, your code will be in good shape.

Summary
We have finally covered the most important topic in Python
programming: automated testing. Test-driven development is
considered a best practice. The standard library unittest module
provides a great out-of-the-box solution for testing, while the pytest
framework has some more Pythonic syntaxes. Mocks can be used to
emulate complex classes in our tests. Code coverage gives us an
estimate of how much of our code is being run by our tests, but it
does not tell us that we have tested the right things.

Thank you for reading Getting Started with Python. I hope
you've enjoyed the ride and are eager to start implementing object-
oriented software in all your future projects!

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books
by Packt:

Applied Data Science with Python and Jupyter
Alex Galea

ISBN: 978-1-78995-817-1

Get up and running with the Jupyter ecosystem
Identify potential areas of investigation and perform exploratory
data analysis
Plan a machine learning classification strategy and train
classification models
Use validation curves and dimensionality reduction to tune and
enhance your models
Scrape tabular data from web pages and transform it into
Pandas DataFrames
Create interactive, web-friendly visualizations to clearly
communicate your findings

Python Data Science Essentials - Third Edition
Alberto Boschetti, Luca Massaron

ISBN: 978-1-78953-786-4

Set up your data science toolbox on Windows, Mac, and Linux
Use the core machine learning methods offered by the scikit-
learn library
Manipulate, fix, and explore data to solve data science problems
Learn advanced explorative and manipulative techniques to
solve data operations
Optimize your machine learning models for optimized
performance
Explore and cluster graphs, taking advantage of
interconnections and links in your data

Leave a review - let other
readers know what you think
Please share your thoughts on this book with others by leaving a
review on the site that you bought it from. If you purchased the book
from Amazon, please leave us an honest review on this book's
Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we
can understand what our customers think about our products, and
our authors can see your feedback on the title that they have worked
with Packt to create. It will only take a few minutes of your time, but
is valuable to other potential customers, our authors, and Packt.
Thank you!

	Title Page
	Copyright and Credits
	Getting Started with Python

	About Packt
	Why subscribe?
	Packt.com

	Contributors
	About the authors
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used

	Get in touch
	Reviews

	A Gentle Introduction to Python
	A proper introduction
	Enter the Python
	About Python
	Portability
	Coherence
	Developer productivity
	An extensive library
	Software quality
	Software integration
	Satisfaction and enjoyment

	What are the drawbacks?
	Who is using Python today?
	Setting up the environment
	Python 2 versus Python 3

	Installing Python
	Setting up the Python interpreter
	About virtualenv
	Your first virtual environment
	Your friend, the console

	How you can run a Python program
	Running Python scripts
	Running the Python interactive shell
	Running Python as a service
	Running Python as a GUI application

	How is Python code organized?
	How do we use modules and packages?

	Python's execution model
	Names and namespaces
	Scopes
	Objects and classes

	Guidelines on how to write good code
	The Python culture
	A note on IDEs
	Summary

	Built-in Data Types
	Everything is an object
	Mutable or immutable? That is the question
	Numbers
	Integers
	Booleans
	Real numbers
	Complex numbers
	Fractions and decimals

	Immutable sequences
	Strings and bytes
	Encoding and decoding strings
	Indexing and slicing strings
	String formatting

	Tuples

	Mutable sequences
	Lists
	Byte arrays

	Set types
	Mapping types – dictionaries
	The collections module
	namedtuple
	defaultdict
	ChainMap

	Enums
	Final considerations
	Small values caching
	How to choose data structures
	About indexing and slicing
	About the names

	Summary

	Iterating and Making Decisions
	Conditional programming
	A specialized else – elif
	The ternary operator

	Looping
	The for loop
	Iterating over a range
	Iterating over a sequence

	Iterators and iterables
	Iterating over multiple sequences
	The while loop
	The break and continue statements
	A special else clause

	Putting all this together
	A prime generator
	Applying discounts

	A quick peek at the itertools module
	Infinite iterators
	Iterators terminating on the shortest input sequence
	Combinatoric generators

	Summary

	Functions, the Building Blocks of Code
	Why use functions?
	Reducing code duplication
	Splitting a complex task
	Hiding implementation details
	Improving readability
	Improving traceability

	Scopes and name resolution
	The global and nonlocal statements

	Input parameters
	Argument passing
	Assignment to argument names doesn't affect the caller
	Changing a mutable affects the caller
	How to specify input parameters
	Positional arguments
	Keyword arguments and default values
	Variable positional arguments
	Variable keyword arguments
	Keyword-only arguments
	Combining input parameters
	Additional unpacking generalizations
	Avoid the trap! Mutable defaults

	Return values
	Returning multiple values

	A few useful tips
	Recursive functions
	Anonymous functions
	Function attributes
	Built-in functions
	One final example
	Documenting your code
	Importing objects
	Relative imports

	Summary

	Files and Data Persistence
	Working with files and directories
	Opening files
	Using a context manager to open a file

	Reading and writing to a file
	Reading and writing in binary mode
	Protecting against overriding an existing file

	Checking for file and directory existence
	Manipulating files and directories
	Manipulating pathnames

	Temporary files and directories
	Directory content
	File and directory compression

	Data interchange formats
	Working with JSON
	Custom encoding/decoding with JSON

	IO, streams, and requests
	Using an in-memory stream
	Making HTTP requests

	Persisting data on disk
	Serializing data with pickle
	Saving data with shelve
	Saving data to a database

	Summary

	Principles of Algorithm Design
	Algorithm design paradigms
	Recursion and backtracking
	Backtracking
	Divide and conquer - long multiplication
	Can we do better? A recursive approach

	Runtime analysis
	Asymptotic analysis
	Big O notation
	Composing complexity classes
	Omega notation (Ω)
	Theta notation (ϴ)

	Amortized analysis
	Summary

	Lists and Pointer Structures
	Arrays
	Pointer structures
	Nodes
	Finding endpoints
	Node
	Other node types

	Singly linked lists
	Singly linked list class
	Append operation

	A faster append operation
	Getting the size of the list
	Improving list traversal
	Deleting nodes
	List search

	Clearing a list
	Doubly linked lists
	A doubly linked list node
	Doubly linked list

	Append operation
	Delete operation
	List search

	Circular lists
	Appending elements
	Deleting an element
	Iterating through a circular list

	Summary

	Stacks and Queues
	Stacks
	Stack implementation
	Push operation
	Pop operation
	Peek

	Bracket-matching application

	Queues
	List-based queue
	Enqueue operation
	Dequeue operation

	Stack-based queue
	Enqueue operation
	Dequeue operation

	Node-based queue
	Queue class
	Enqueue operation
	Dequeue operation

	Application of queues
	Media player queue

	Summary

	Trees
	Terminology
	Tree nodes
	Binary trees
	Binary search trees
	Binary search tree implementation
	Binary search tree operations
	Finding the minimum and maximum nodes

	Inserting nodes
	Deleting nodes
	Searching the tree
	Tree traversal
	Depth-first traversal
	In-order traversal and infix notation
	Pre-order traversal and prefix notation
	Post-order traversal and postfix notation.

	Breadth-first traversal

	Benefits of a binary search tree
	Expression trees
	Parsing a reverse Polish expression

	Balancing trees
	Heaps

	Summary

	Hashing and Symbol Tables
	Hashing
	Perfect hashing functions

	Hash table
	Putting elements
	Getting elements
	Testing the hash table
	Using [] with the hash table
	Non-string keys
	Growing a hash table
	Open addressing
	Chaining

	Symbol tables

	Summary

	Graphs and Other Algorithms
	Graphs
	Directed and undirected graphs
	Weighted graphs
	Graph representation
	Adjacency list
	Adjacency matrix

	Graph traversal
	Breadth-first search
	Depth-first search

	Other useful graph methods
	Priority queues and heaps
	Inserting
	Pop
	Testing the heap

	Selection algorithms
	Summary

	Searching
	Linear Search
	Unordered linear search
	Ordered linear search

	Binary search
	Interpolation search
	Choosing a search algorithm

	Summary

	Sorting
	Sorting algorithms
	Bubble sort
	Insertion sort
	Selection sort
	Quick sort
	List partitioning
	Pivot selection

	Implementation
	Heap sort

	Summary

	Selection Algorithms
	Selection by sorting
	Randomized selection
	Quick select
	Partition step

	Deterministic selection
	Pivot selection
	Median of medians
	Partitioning step

	Summary

	Object-Oriented Design
	Introducing object-oriented
	Objects and classes
	Specifying attributes and behaviors
	Data describes objects
	Behaviors are actions

	Hiding details and creating the public interface
	Composition
	Inheritance
	Inheritance provides abstraction
	Multiple inheritance

	Case study
	Exercises
	Summary

	Objects in Python
	Creating Python classes
	Adding attributes
	Making it do something
	Talking to yourself
	More arguments

	Initializing the object
	Explaining yourself

	Modules and packages
	Organizing modules
	Absolute imports
	Relative imports

	Organizing module content
	Who can access my data?
	Third-party libraries
	Case study
	Exercises
	Summary

	When Objects Are Alike
	Basic inheritance
	Extending built-ins
	Overriding and super

	Multiple inheritance
	The diamond problem
	Different sets of arguments

	Polymorphism
	Abstract base classes
	Using an abstract base class
	Creating an abstract base class
	Demystifying the magic

	Case study
	Exercises
	Summary

	Expecting the Unexpected
	Raising exceptions
	Raising an exception
	The effects of an exception
	Handling exceptions
	The exception hierarchy
	Defining our own exceptions

	Case study
	Exercises
	Summary

	When to Use Object-Oriented Programming
	Treat objects as objects
	Adding behaviors to class data with properties
	Properties in detail
	Decorators – another way to create properties
	Deciding when to use properties

	Manager objects
	Removing duplicate code
	In practice

	Case study
	Exercises
	Summary

	Python Object-Oriented Shortcuts
	Python built-in functions
	The len() function
	Reversed
	Enumerate
	File I/O
	Placing it in context

	An alternative to method overloading
	Default arguments
	Variable argument lists
	Unpacking arguments

	Functions are objects too
	Using functions as attributes
	Callable objects

	Case study
	Exercises
	Summary

	The Iterator Pattern
	Design patterns in brief
	Iterators
	The iterator protocol

	Comprehensions
	List comprehensions
	Set and dictionary comprehensions
	Generator expressions

	Generators
	Yield items from another iterable

	Coroutines
	Back to log parsing
	Closing coroutines and throwing exceptions
	The relationship between coroutines, generators, and functions

	Case study
	Exercises
	Summary

	Python Design Patterns I
	The decorator pattern
	A decorator example
	Decorators in Python

	The observer pattern
	An observer example

	The strategy pattern
	A strategy example
	Strategy in Python

	The state pattern
	A state example
	State versus strategy
	State transition as coroutines

	The singleton pattern
	Singleton implementation
	Module variables can mimic singletons

	The template pattern
	A template example

	Exercises
	Summary

	Python Design Patterns II
	The adapter pattern
	The facade pattern
	The flyweight pattern
	The command pattern
	The abstract factory pattern
	The composite pattern
	Exercises
	Summary

	Testing Object-Oriented Programs
	Why test?
	Test-driven development

	Unit testing
	Assertion methods
	Reducing boilerplate and cleaning up
	Organizing and running tests
	Ignoring broken tests

	Testing with pytest
	One way to do setup and cleanup
	A completely different way to set up variables
	Skipping tests with pytest

	Imitating expensive objects
	How much testing is enough?
	Case study
	Implementing it

	Exercises
	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

