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I N T R O D U C T I O N

The higher arithmetic, or the theory of numbers, is concerned with the
properties of the natural numbers 1, 2, 3, . . . . These numbers must have
exercised human curiosity from a very early period; and in all the records
of ancient civilizations there is evidence of some preoccupation with arith-
metic over and above the needs of everyday life. But as a systematic and
independent science, the higher arithmetic is entirely a creation of modern
times, and can be said to date from the discoveries of Fermat (1601–1665).

A peculiarity of the higher arithmetic is the great difficulty which has
often been experienced in proving simple general theorems which had
been suggested quite naturally by numerical evidence. ‘It is just this,’ said
Gauss, ‘which gives the higher arithmetic that magical charm which has
made it the favourite science of the greatest mathematicians, not to men-
tion its inexhaustible wealth, wherein it so greatly surpasses other parts of
mathematics.’

The theory of numbers is generally considered to be the ‘purest’ branch
of pure mathematics. It certainly has very few direct applications to
other sciences, but it has one feature in common with them, namely the
inspiration which it derives from experiment, which takes the form of test-
ing possible general theorems by numerical examples. Such experiment,
though necessary in some form to progress in every part of mathematics,
has played a greater part in the development of the theory of numbers than
elsewhere; for in other branches of mathematics the evidence found in this
way is too often fragmentary and misleading.

As regards the present book, the author is well aware that it will not be
read without effort by those who are not, in some sense at least, mathe-
maticians. But the difficulty is partly that of the subject itself. It cannot be
evaded by using imperfect analogies, or by presenting the proofs in a way
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Introduction ix

which may convey the main idea of the argument, but is inaccurate in detail.
The theory of numbers is by its nature the most exact of all the sciences,
and demands exactness of thought and exposition from its devotees.

The theorems and their proofs are often illustrated by numerical exam-
ples. These are generally of a very simple kind, and may be despised by
those who enjoy numerical calculation. But the function of these examples
is solely to illustrate the general theory, and the question of how arithmeti-
cal calculations can most effectively be carried out is beyond the scope of
this book.

The author is indebted to many friends, and most of all to Professor
Erdős, Professor Mordell and Professor Rogers, for suggestions and cor-
rections. He is also indebted to Captain Draim for permission to include an
account of his algorithm.

The material for the fifth edition was prepared by Professor D. J. Lewis
and Dr J. H. Davenport. The problems and answers are based on the
suggestions of Professor R. K. Guy.

Chapter VIII and the associated exercises were written for the sixth edi-
tion by Professor J. H. Davenport. For the seventh edition, he updated
Chapter VII to mention Wiles’ proof of Fermat’s Last Theorem, and is
grateful to Professor J. H. Silverman for his comments.

For the eighth edition, many people contributed suggestions, notably
Dr J. F. McKee and Dr G. K. Sankaran. Cambridge University Press
kindly re-typeset the book for the eighth edition, which has allowed
a few corrections and the preparation of an electronic complement:
www.cambridge.org/davenport. References to further material in
the electronic complement, when known at the time this book went to print,
are marked thus: ♠:0.





I

F A C T O R I Z A T I O N A N D T H E P R I M E S

1. The laws of arithmetic
The object of the higher arithmetic is to discover and to establish general
propositions concerning the natural numbers 1, 2, 3, . . . of ordinary arith-
metic. Examples of such propositions are the fundamental theorem (I.4)∗
that every natural number can be factorized into prime numbers in one
and only one way, and Lagrange’s theorem (V.4) that every natural num-
ber can be expressed as a sum of four or fewer perfect squares. We are not
concerned with numerical calculations, except as illustrative examples, nor
are we much concerned with numerical curiosities except where they are
relevant to general propositions.

We learn arithmetic experimentally in early childhood by playing with
objects such as beads or marbles. We first learn addition by combining two
sets of objects into a single set, and later we learn multiplication, in the form
of repeated addition. Gradually we learn how to calculate with numbers,
and we become familiar with the laws of arithmetic: laws which probably
carry more conviction to our minds than any other propositions in the whole
range of human knowledge.

The higher arithmetic is a deductive science, based on the laws of arith-
metic which we all know, though we may never have seen them formulated
in general terms. They can be expressed as follows.

∗ References in this form are to chapters and sections of chapters of this book.
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2 The Higher Arithmetic

Addition. Any two natural numbers a and b have a sum, denoted by
a + b, which is itself a natural number. The operation of addition satisfies
the two laws:

a + b = b + a (commutative law of addition),

a + (b + c) = (a + b) + c (associative law of addition),

the brackets in the last formula serving to indicate the way in which the
operations are carried out.

Multiplication. Any two natural numbers a and b have a product, denoted
by a × b or ab, which is itself a natural number. The operation of
multiplication satisfies the two laws

ab = ba (commutative law of multiplication),

a(bc) = (ab)c (associative law of multiplication).

There is also a law which involves operations both of addition and of
multiplication:

a(b + c) = ab + ac (the distributive law).

Order. If a and b are any two natural numbers, then either a is equal
to b or a is less than b or b is less than a, and of these three possibilities
exactly one must occur. The statement that a is less than b is expressed
symbolically by a < b, and when this is the case we also say that b is
greater than a, expressed by b > a. The fundamental law governing this
notion of order is that

i f a < b and b < c then a < c.

There are also two other laws which connect the notion of order with the
operations of addition and multiplication. They are that

i f a < b then a + c < b + c and ac < bc

for any natural number c.
Cancellation. There are two laws of cancellation which, though they

follow logically from the laws of order which have just been stated, are
important enough to be formulated explicitly. The first is that

i f a + x = a + y then x = y.

This follows from the fact that if x < y then a + x < a + y, which is
contrary to the hypothesis, and similarly it is impossible that y < x , and
therefore x = y. In the same way we get the second law of cancellation,
which states that

i f ax = ay then x = y.
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Subtraction. To subtract a number b from a number a means to find, if
possible, a number x such that b + x = a. The possibility of subtraction
is related to the notion of order by the law that b can be subtracted from a
if and only if b is less than a. It follows from the first cancellation law that
if subtraction is possible, the resulting number is unique; for if b + x = a
and b + y = a we get x = y. The result of subtracting b from a is denoted
by a − b. Rules for operating with the minus sign, such as a − (b − c) =
a − b + c, follow from the definition of subtraction and the commutative
and associative laws of addition.

Division. To divide a number a by a number b means to find, if possible,
a number x such that bx = a. If such a number exists it is denoted by a

b or
a/b. It follows from the second cancellation law that if division is possible
the resulting number is unique.

All the laws set out above become more or less obvious when one gives
addition and multiplication their primitive meanings as operations on sets
of objects. For example, the commutative law of multiplication becomes
obvious when one thinks of objects arranged in a rectangular pattern with
a rows and b columns (fig. 1); the total number of objects is ab and is also
ba. The distributive law becomes obvious when one considers the arrange-
ment of objects indicated in fig. 2; there are a(b + c) objects altogether
and these are made up of ab objects together with ac more objects. Rather
less obvious, perhaps, is the associative law of multiplication, which asserts
that a(bc) = (ab)c. To make this apparent, consider the same rectangle as
in fig. 1, but replace each object by the number c. Then the sum of all the
numbers in any one row is bc, and as there are a rows the total sum is a(bc).
On the other hand, there are altogether ab numbers each of which is c, and
therefore the total sum is (ab)c. It follows that a(bc) = (ab)c, as stated.

b

a

Fig. 1

b c

a

Fig. 2

The laws of arithmetic, supplemented by the principle of induction
(which we shall discuss in the next section), form the basis for the logi-
cal development of the theory of numbers. They allow us to prove general
theorems about the natural numbers without it being necessary to go back
to the primitive meanings of the numbers and of the operations carried out



4 The Higher Arithmetic

on them. Some quite advanced results in the theory of numbers, it is true,
are most easily proved by counting the same collection of things in two
different ways, but there are not very many such.

Although the laws of arithmetic form the logical basis for the theory of
numbers (as indeed they do for most of mathematics), it would be extremely
tedious to refer back to them for each step of every argument, and we shall
in fact assume that the reader already has some knowledge of elementary
mathematics. We have set out the laws in detail in order to show where the
subject really begins.

We conclude this section by discussing briefly the relationship between
the system of natural numbers and two other number-systems that are
important in the higher arithmetic and in mathematics generally, namely
the system of all integers and the system of all rational numbers.

The operations of addition and multiplication can always be carried out,
but those of subtraction and division cannot always be carried out within the
natural number system. It is to overcome the limited possibility of subtrac-
tion that there have been introduced into mathematics the number 0 and the
negative integers −1,−2, . . . . These, together with the natural numbers,
form the system of all integers:

. . . ,−2,−1, 0, 1, 2, . . . ,

within which subtraction is always possible, with a unique result. One
learns in elementary algebra how to define multiplication in this extended
number-system, by the ‘rule of signs’, in such a way that the laws of arith-
metic governing addition and multiplication remain valid. The notion of
order also extends in such a way that the laws governing it remain valid,
with one exception: the law that if a < b then ac < bc remains true only
if c is positive. This involves an alteration in the second cancellation law,
which is only true in the extended system if the factor cancelled is not 0:

if ax = ay then x = y, provided that a �= 0.

Thus the integers (positive, negative and zero) satisfy the same laws of
arithmetic as the natural numbers except that subtraction is now always pos-
sible, and that the law of order and the second cancellation law are modified
as just stated. The natural numbers can now be described as the positive
integers.

Let us return to the natural numbers. As we all know, it is not always
possible to divide one natural number by another, with a result which is
itself a natural number. If it is possible to divide a natural number b by a
natural number a within the system, we say that a is a factor or divisor of b,
or that b is a multiple of a. All these express the same thing. As illustrations
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of the definition, we note that 1 is a factor of every number, and that a is
itself a factor of a (the quotient being 1). As another illustration, we observe
that the numbers divisible by 2 are the even numbers 2, 4, 6, . . . , and those
not divisible by 2 are the odd numbers 1, 3, 5, . . . .

The notion of divisibility is one that is peculiar to the theory of numbers,
and to a few other branches of mathematics that are closely related to the
theory of numbers. In this first chapter we shall consider various questions
concerning divisibility which arise directly out of the definition. For the
moment, we merely note a few obvious facts.

(i) If a divides b then a � b (that is, a is either less than or equal to b).
For b = ax , so that b − a = a(x − 1), and here x − 1 is either 0 or a
natural number.

(ii) If a divides b and b divides c then a divides c. For b = ax and c = by,
whence c = a(xy), where x and y denote natural numbers.

(iii) If two numbers b and c are both divisible by a, then b + c and b − c
(if c < b) are also divisible by a. For b = ax and c = ay, whence

b + c = a(x + y) and b − c = a(x − y).

There is no need to impose the restriction that b > c when consider-
ing b − c in the last proposition, if we extend the notion of divisibility
to the integers as a whole in the obvious way: an integer b is said to be
divisible by a natural number a if the quotient b

a is an integer. Thus a
negative integer −b is divisible by a if and only if b is divisible by a.
Note that 0 is divisible by every natural number, since the quotient is
the integer 0.

(iv) If two integers b and c are both divisible by the natural number a, then
every integer that is expressible in the form ub + vc, where u and v
are integers, is also divisible by a. For b = ax and c = ay, whence
ub + vc = (ux + vy)a. This result includes those stated in (iii) as
special cases; if we take u and v to be 1 we get b + c, and if we take u
to be 1 and v to be −1 we get b − c.

Just as the limitation on the possibility of subtraction can be removed
by enlarging the natural number system through the introduction of 0 and
the negative integers, so also the limitation on the possibility of division
can be removed by enlarging the natural number system through the intro-
duction of all positive fractions, that is, all fractions a

b , where a and b
are natural numbers. If both methods of extension are combined, we get
the system of rational numbers, comprising all integers and all fractions,
both positive and negative. In this system of numbers, all four operations
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of arithmetic—addition, multiplication, subtraction and division—can be
carried out without limitation, except that division by zero is necessarily
excluded.

The main concern of the theory of numbers is with the natural num-
bers. But it is often convenient to work in the system of all integers or in
the system of rational numbers. It is, of course, important that the reader,
when following any particular train of reasoning, should note carefully
what kinds of numbers are represented by the various symbols.

2. Proof by induction
Most of the propositions of the theory of numbers make some assertion
about every natural number; for example Lagrange’s theorem asserts that
every natural number is representable as the sum of at most four squares.
How can we prove that an assertion is true for every natural number?
There are, of course, some assertions that follow directly from the laws of
arithmetic, as for instance algebraic identities like

(n + 1)2 = n2 + 2n + 1.

But the more interesting and more genuinely arithmetical propositions are
not of this simple kind.

It is plain that we can never prove a general proposition by verifying that
it is true when the number in question is 1 or 2 or 3, and so on, because
we cannot carry out infinitely many verifications. Even if we verify that a
proposition is true for every number up to a million, or a million million,
we are no nearer to establishing that it is true always. In fact it has some-
times happened that propositions in the theory of numbers, suggested by
extensive numerical evidence, have proved to be wide of the truth.

It may be, however, that we can find a general argument by which we
can prove that if the proposition in question is true for all the numbers

1, 2, 3, . . . , n − 1,

then it is true for the next number, n. If we have such an argument, then the
fact that the proposition is true for the number 1 will imply that it is true
for the next number, 2; and then the fact that it is true for the numbers 1
and 2 will imply that it is true for the number 3, and so on indefinitely. The
proposition will therefore be true for every natural number if it is true for
the number 1.

This is the principle of proof by induction. The principle relates to propo-
sitions which assert that something is true for every natural number, and
in order to apply the principle we need to prove two things: first, that the
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assertion in question is true for the number 1, and secondly that if the asser-
tion is true for each of the numbers 1, 2, 3, . . . , n−1 preceding any number
n, then it is true for the number n. Under these circumstances we conclude
that the proposition is true for every natural number.

A simple example will illustrate the principle. Suppose we examine the
sum 1 + 3 + 5 + · · · of the successive odd numbers, up to any particular
one. We may notice that

1 = 12, 1 + 3 = 22, 1 + 3 + 5 = 32, 1 + 3 + 5 + 7 = 42,

and so on. This suggests the general proposition that for every natural num-
ber n, the sum of the first n odd numbers is n2. Let us prove this general
proposition by induction. It is certainly true when n is 1. Now we have to
prove that the result is true for any number n, and by the principle of induc-
tion we are entitled to suppose that it is already known to be true for any
number less than n. In particular, therefore, we are entitled to suppose that
we already know that the sum of the first n − 1 odd numbers is (n − 1)2.
The sum of the first n odd numbers is obtained from this by adding the nth
odd number, which is 2n − 1. So the sum of the first n odd numbers is

(n − 1)2 + (2n − 1),

which is in fact n2. This proves the proposition generally.
Proofs by induction are sometimes puzzling to the inexperienced, who

are liable to complain that ‘you are assuming the proposition that is to be
proved’. The fact is, of course, that a proposition of the kind now under
consideration is a proposition with an infinity of cases, one for each of the
natural numbers 1, 2, 3, . . .; and all that the principle of induction allows
us to do is to suppose, when proving any one case, that the preceding cases
have already been settled.

Some care is called for in expressing a proof by induction in a form
which will not cause confusion. In the example above, the proposition in
question was that the sum of the first n odd numbers is n2. Here n is any one
of the natural numbers, and, of course, the statement means just the same
if we change n into any other symbol, provided we use the same symbol in
the two places where it occurs. But once we have embarked on the proof, n
becomes a particular number, and we are then in danger of using the same
symbol in two senses, and even of writing such nonsense as ‘the proposition
is true when n is n−1’. The proper course is to use different symbols where
necessary.

From a commonsense point of view, nothing can be more obvious than
the validity of proof by induction. Nevertheless it is possible to debate
whether the principle is in the nature of a definition or a postulate or an act
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of faith. What seems at any rate plain is that the principle of induction is
essentially a statement of the rule by which we enumerate the natural num-
bers in order: having enumerated the numbers 1, 2, . . . , n − 1 we continue
the enumeration with the next number n. Thus the principle is in effect an
explanation of what is meant by the words ‘and so on’, which must occur
whenever we attempt to enumerate the natural numbers.

3. Prime numbers
Obviously any natural number a is divisible by 1 (the quotient being a)
and by a (the quotient being 1). A factor of a other than 1 or a is called
a proper factor. We all know that there are some numbers which have no
proper factors, and these are called prime numbers, or primes. The first few
primes are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . . .

Whether 1 should be counted as a prime or not is a matter of convention,
but it is simpler (as we shall see later) not to count 1 as a prime.

A number which is neither 1 nor a prime is said to be composite; such a
number is representable as the product of two numbers, each greater than 1.
It is well known that by continued factorization one can eventually express
any composite number as a product of primes, some of which may of course
be repeated. For example, if we take the number 666, this has the obvious
factor 2, and we get 666 = 2 × 333. Now 333 has the obvious factor 3, and
333 = 3 × 111. Again 111 has the factor 3, and 111 = 3 × 37. Hence

666 = 2 × 3 × 3 × 37,

and this is a representation of the composite number 666 as a product of
primes. The general proposition is that any composite number is repre-
sentable as a product of primes. Or, what comes to the same thing, any
number greater than 1 is either a prime or is expressible as a product of
primes.

To prove this general proposition, we use the method of induction. In
proving the statement for a number n, we are entitled to assume that it has
already been proved for any number less than n. If n is a prime, there is
nothing to prove. If n is composite, it can be represented as ab, where a
and b are both greater than 1 and less than n. We know that a and b are
either primes or are expressible as products of primes, and on substituting
for them we get n expressed as a product of primes. This proof is indeed so
simple that the reader may think it quite superfluous. But the next general
proposition on factorization into primes will not be so easily proved.
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The series 2, 3, 5, 7, . . . of primes has always exercised human curiosity,
and later we shall mention some of the results that are known about it. For
the moment, we content ourselves with proving, following Euclid (Book
IX, Prop. 20), that the series of primes never comes to an end. His proof is a
model of simplicity and elegance. Let 2, 3, 5, . . . , P be the series of primes
up to a particular prime P . Consider the number obtained by multiplying
all these primes together, and then adding 1, that is

N = 2 × 3 × 5 × · · · × P + 1.

This number cannot be divisible by 2, for then both the numbers N and
2 × 3 × 5 × · · · × P would be divisible by 2, and therefore their difference
would be divisible by 2. This difference is 1, and is not divisible by 2. In
the same way, we see that N cannot be divisible by 3 or by 5 or by any
of the primes up to and including P . On the other hand, N is divisible by
some prime (namely N itself if N is a prime, or any prime factor of N if
N is composite). Hence there exists a prime which is different from any of
the primes 2, 3, 5, . . . , P , and so is greater than P . Consequently the series
of primes never comes to an end.

4. The fundamental theorem of arithmetic
It was proved in the preceding section that any composite number is
expressible as a product of primes. As an illustration, we factorized 666
and obtained

666 = 2 × 3 × 3 × 37.

A question of fundamental importance now suggests itself. Is such a factor-
ization into primes possible in more than one way? (It is to be understood,
of course, that two representations which differ merely in the order of the
factors are to be considered as the same, e.g. the representation 3×2×37×3
is to be considered the same as that printed above.) Can we conceive that
666, for example, has some other representation as a product of primes?
The reader who has no knowledge of the theory of numbers will probably
have a strong feeling that no other representation is possible, but he will not
find it a very easy matter to construct a satisfactory general proof.

It is convenient to express the proposition in a form in which it applies
to all natural numbers, and not only to composite numbers. If a number is
itself a prime, we make the convention that it is to be regarded as a ‘prod-
uct’ of primes, where the ‘product’ has only one factor, namely the number
itself. We can go even a stage further, and regard the number 1 as an ‘empty’
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product of primes, making the convention that the value of an empty prod-
uct is deemed to be 1. This is a convention which is useful not only here but
throughout mathematics, since it permits the inclusion in general theorems
of special cases which would otherwise have to be excluded, or provided
for by a more complicated enunciation.

With these conventions, the general proposition is that any natural num-
ber can be represented in one and only one way as a product of primes.
This is the so-called fundamental theorem of arithmetic, and its history is
strangely obscure. It does not figure in Euclid’s Elements, though some of
the arithmetical propositions in Book VII of the Elements are almost equiv-
alent to it. Nor is it stated explicitly even in Legendre’s Essai sur la théorie
des nombres of 1798. The first clear statement and proof seem to have been
given by Gauss in his famous Disquisitiones Arithmeticae of 1801. Per-
haps the omission of the theorem from Euclid explains why it is passed
over without explanation in many schoolbooks. One of them (still in use)
describes it as a ‘law of thought’, which it certainly is not.

We now give a direct proof of the uniqueness of factorization into
primes. Later (in §7) we shall give another proof, which will be entirely
independent of the present one.

First there is a preliminary remark to be made. If the factorization of a
particular number m into primes is unique, each prime factor of m must
occur in that factorization. For if p is any prime which divides m, we have
m = pm′ where m′ is some other number, and if we now factorize m′ into
primes we obtain a factorization of m into primes by simply putting on the
additional factor p. Since there is supposed to be only one factorization of
m into primes, p must occur in it.

We prove the uniqueness of factorization by induction. This requires us
to prove it for any number n, on the assumption that it is already established
for all numbers less than n. If n is itself a prime, there is nothing to prove.
Suppose, then, that n is composite, and has two different representations as
products of primes, say

n = pqr . . . = p′q ′r ′ . . . ,

where p, q, r , . . . and p′, q ′, r ′, . . . are all primes. The same prime can-
not occur in both representations, for if it did we could cancel it and get
two different representations of a smaller number, which is contrary to the
inductive hypothesis.

We can suppose without loss of generality that p is the least of the primes
occurring in the first factorization. Since n is composite, there is at least
one prime besides p in the factorization, and therefore n � p2. Similarly
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n � p′2. Since p and p′ are not the same, one at least of these two inequal-
ities must be true with strict inequality, and it follows that pp′ < n. Now
consider the number n − pp′. This is a natural number less than n, and so
can be expressed as a product of primes in one and only one way. Since p
divides n it also divides n − pp′, and therefore by the preliminary remark it
must occur in the factorization of n − pp′. Similarly p′ must occur. Hence
the factorization of n − pp′ into primes must take the form

n − pp′ = pp′ Q R . . . ,

where Q, R, . . . are primes. This implies that the number pp′ is a factor
of n. But n = pqr . . . , so it follows on cancelling p that p′ is a factor of
qr . . . . This is impossible by the preliminary remark, because qr . . . is a
number less than n, and p′ is not one of the primes q, r , . . . occurring in
its factorization. This contradiction proves that n has only one factorization
into primes.

The reader will probably agree that the proof, although not very long
or difficult, has a certain subtlety. The same is true of other direct proofs
of the uniqueness of factorization, of which there are several, all based on
much the same ideas. It is important to observe that while the possibility of
factorization into primes follows at once from the definition of a prime, the
proof that the factorization is unique is not so immediate. The following
illustration, given by Hilbert, explains why these two propositions are on
such a different footing from one another.

The definitions of factors and primes involve solely the operation of mul-
tiplication, and have no reference to that of addition. Now consider what
happens when the same definitions are applied to a system of numbers
which can be multiplied together, but which cannot be added or subtracted
without going outside the system. Take the system of numbers

1, 5, 9, 13, 17, 21, 25, 29, . . . ,

comprising all numbers of the form 4x + 1. The product of any two such
numbers is again a number of the same kind. Let us define a ‘pseudo-prime’
to be a number in this system (other than 1) which is not properly factoriz-
able in this system. The numbers 5, 9, 13, 17, 21 are all pseudo-primes, and
the first number in the series which is not a pseudo-prime is 25. It is true that
every number in the system is either a pseudo-prime or can be factorized
into pseudo-primes, and this can be proved in just the same way as before.
But it is not true that the factorization is unique; for example, the number
693 can be factorized both as 9×77 and as 21×33, and the four numbers 9,
21, 33, 77 are all pseudo-primes. Of course, we know quite well that these
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numbers factorize further outside the system; but the point of the exam-
ple lies in the light which it throws on the logical structure of any proof
of the uniqueness of factorization. Such a proof cannot be based solely on
the definition of a prime and on multiplicative operations. It must make use
somewhere of addition or subtraction, for otherwise it would apply to this
system of numbers too. If we examine the proof of the fundamental theo-
rem given above we see that one operation of subtraction was used, namely
in forming the number n − pp′.

The fundamental theorem of arithmetic exhibits the structure of the nat-
ural numbers in relation to the operation of multiplication. It shows us that
the primes are the elements out of which all the natural numbers can be
built up by multiplication in every possible way; moreover, when we carry
out all these possible multiplications, the same number never arises in two
different forms. It now becomes clear why it would have been inconvenient
to classify the number 1 as a prime. Had we done so, we should have had to
make an exception of it when stating that factorization into primes is pos-
sible in only one way; for obviously additional factors 1 can be introduced
into any product without altering its value.

5. Consequences of the fundamental theorem
The fundamental theorem of arithmetic, which was proved in the last sec-
tion, states that any natural number can be expressed as a product of primes
in one and only one way, provided we admit products of one factor only
to represent the primes themselves, and an empty product to represent the
number 1.

If the factorization of a number into primes is known, then various ques-
tions concerning that number can be answered at once. In the first place,
one can enumerate all the divisors of the number. Let us first see how this
is done in a particular case. We take the same numerical example as before:

666 = 2 × 3 × 3 × 37.

A divisor of this number is a number d such that

666 = dd ′,

where d ′ is another natural number. By the fundamental theorem of arith-
metic, the factorizations of d and d ′ into primes must be such that when
they are multiplied together the result is the product 2 × 3 × 3 × 37. So
d must be the product of some of the primes 2, 3, 3, 37, and d ′ must be
the product of the others. (The convention that we made earlier, concerning
an empty product having the value 1, continues to be of service, since it
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permits the inclusion, under the same form of words, of the extreme cases
when d or d ′ is 1.) On carrying out the choice of primes in every possible
way, we get all the divisors of 666, namely

1, 2, 3, 37, 2 × 3, 2 × 37, 3 × 3, 3 × 37, 2 × 3 × 3,

2 × 3 × 37, 3 × 3 × 37, 2 × 3 × 3 × 37.

The situation is perfectly general, and all that is needed is an appropriate
notation in which to give a simple description of it. Let n be any natural
number greater than 1, and let the distinct primes in its factorization be
p, q, r, . . . . Suppose the prime p occurs a times in the factorization of n,
the prime q occurs b times, and so on. Then

n = paqb . . . . (1)

The divisors of n consist of all the products

pαqβ . . . ,

where the exponent α has the possible values 0, 1, . . . , a; the exponent β has
the values 0, 1, . . . , b; and so on.∗ This is proved in exactly the same way as
in the preceding example and again the proof depends on the fundamental
theorem of arithmetic. In the example with n = 666, there are three distinct
prime factors, namely 2, 3, 37, and their exponents are 1, 2, 1 respectively.
So all the divisors of 666 are given by the formula

2α3β37γ ,

where α is 0 or 1, β is 0 or 1 or 2, and γ is 0 or 1. When written out, one at
a time, these are the divisors enumerated above.

We can count how many divisors a number n has by counting how many
choices there are for the exponents α, β, γ, . . . . In the general case, when
n has the representation (1), the exponent α can be any one of 0, 1, . . . ,
a, and so the number of different possibilities for α is a + 1. Similarly the
number of possibilities for β is b + 1, and so on. The choices of the various
exponents α, β, . . . are independent of one another, and all the choices give
different divisors of n, by the uniqueness of prime factorization. Hence the
total number of divisors is

(a + 1)(b + 1) . . . .

It is usual to denote the number of divisors of a number n (including 1 and
n, as we have done above) by d(n). With this notation, we have proved that
if n = paqb . . . , where p, q, . . . are distinct primes, then

∗ It is to be understood, as usual, that any number raised to the power zero means 1.
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d(n) = (a + 1)(b + 1) . . . .

In the above example, the exponents are 1, 2, 1 and the number of divisors
is 2 × 3 × 2 = 12.

One may also consider the sum of the divisors of n, again including 1
and n. This is usually denoted by σ(n). If the factorization of n into primes
is as written in (1), then σ(n) is given by

σ(n) = {1 + p + p2 + · · · + pa}{1 + q + q2 + · · · + qb} . . . .

For this expression, when multiplied out, is the sum of all possible products
of the form pαqβ . . . , where α takes each of the values 0, 1, . . . , a, and so
on. These possible products constitute all the divisors of n. To use again the
same numerical illustration, we have

σ(666) = (1 + 2)(1 + 3 + 32)(1 + 37) = 3 × 13 × 38 = 1482,

as one may check by working out all the divisors and adding them. The
arithmetical functions d(n) and σ(n), and another function φ(n) which we
shall meet later, are tabulated up to n = 10, 000 in Number-divisor Tables
(vol. VIII of the British Ass. Math. Tables, Cambridge, 1940).

The ancient Greeks attached some importance to perfect numbers, which
they defined as numbers n with the property that the sum of the divisors of
n, including 1 but excluding n, is equal to n itself. The simplest example is
6, where 1 + 2 + 3 = 6. An alternative way of expressing the definition is
to say that σ(n) = 2n, since σ(n) is the sum of all the divisors, including
n itself. It was proved by Euclid (Book IX, Prop. 36) that if p is any prime
for which p + 1 is a power of 2, say p + 1 = 2k , then the number 2k−1 p is
perfect. In fact, we see from the above formula for σ(n) that

σ(2k−1 p) = {1 + 2 + 22 + · · · + 2k−1}{1 + p}.
Now

1 + 2 + 22 + · · · + 2k−1 = 2k − 1 = p, and 1 + p = 2k ,

whence σ(n) = 2n when n = 2k−1 p. Euler, in a posthumous paper, sup-
plemented Euclid’s result by proving that every even perfect number is
necessarily of Euclid’s form. It is not known whether there are any odd per-
fect numbers, nor is it known whether the series of even perfect numbers
continues indefinitely. The first five even perfect numbers are

6, 28, 496, 8,128, 33,550,336.



Factorization and the Primes 15

So far we have been considering the divisors of one number. We can also
investigate the common divisors of two or more numbers. Any common
divisor of two numbers m and n must be composed entirely of primes which
occur in both m and n. If there are no such primes, then m and n have
no common divisor apart from 1, and are said to be relatively prime, or
co-prime. For example, the numbers

2829 = 3 × 23 × 41 and 6850 = 2 × 52 × 137

are relatively prime.
If m and n have common prime factors, we obtain the greatest com-

mon divisor or highest common factor (H.C.F.) of m and n by multiplying
together the various common prime factors of m and n, each of these being
taken to the highest power to which it divides both m and n. For example,
if the two numbers are

3132 = 22 × 33 × 29 and 7200 = 25 × 32 × 52,

the H.C.F. is 22 × 32, or 36. It will be seen that the exponent of each prime
in the H.C.F. is the lesser of the two exponents to which this prime occurs
in the numbers m and n.

It is also obvious that the common divisors of m and n consist precisely
of all divisors of their H.C.F. In making all these statements we are, of
course, relying throughout upon the fundamental theorem of arithmetic.

A similar situation arises with the common multiples of two given num-
bers. There is a least common multiple, obtained by multiplying together
all the primes which occur in either m or n, each of these being taken to the
highest power to which it occurs in either number. Thus, for the two num-
bers written above, the L.C.M. is 25 ×33 ×52 ×29. The common multiples
of two given numbers consist precisely of all multiples of their L.C.M.

These considerations extend easily to more than two numbers. But then
it is important to note the two kinds of relative primality that are possible.
Several numbers are said to be relatively prime if there is no number greater
than 1 which divides all of them; they are said to be relatively prime in pairs
if no two of them have a common factor greater than 1. The condition for
the former is that there shall be no one prime occurring in all the numbers,
and for the latter it is that there shall be no prime that occurs in any two of
the numbers.

There are several simple theorems on divisibility which one is inclined
to think of as obvious, but which are in fact only obvious in the light of the
uniqueness of factorization into primes. For example, if a number divides
the product of two numbers and is relatively prime to one of them it must
divide the other. If a divides bc and is relatively prime to b, the prime
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factorization of a is contained in that of bc but has nothing in common with
that of b, and is therefore contained in that of c.

6. Euclid’s algorithm
In Prop. 2 of Book VII, Euclid gave a systematic process, or algorithm, for
finding the highest common factor of two given numbers. This algorithm
provides a different approach to questions of divisibility from that adopted
in the last two sections, and we therefore begin again without assuming
anything except the mere definition of divisibility.

Let a and b be two given natural numbers, and suppose that a > b. We
propose to investigate the common divisors of a and b. If a is divisible by
b, then the common divisors of a and b consist simply of all divisors of b,
and there is no more to be said. If a is not divisible by b, we can express a
as a multiple of b together with a remainder less than b, that is

a = qb + c, where c < b. (2)

This is the process of ‘division with a remainder’, and expresses the fact
that a, not being a multiple of b, must occur somewhere between two
consecutive multiples of b. If a comes between qb and (q + 1)b, then

a = qb + c, where 0 < c < b.

It follows from the equation (2) that any common divisor of b and c is
also a divisor of a. Moreover, any common divisor of a and b is also a
divisor of c, since c = a −qb. It follows that the common divisors of a and
b, whatever they may be, are the same as the common divisors of b and c.
The problem of finding the common divisors of a and b is reduced to the
same problem for the numbers b and c, which are respectively less than a
and b.

The essence of the algorithm lies in the repetition of this argument. If b
is divisible by c, the common divisors of b and c consist of all divisors of
c. If not, we express b as

b = rc + d, where d < c. (3)

Again, the common divisors of b and c are the same as those of c and d.
The process goes on until it terminates, and this can only happen when

exact divisibility occurs, that is, when we come to a number in the sequence
a, b, c, . . . , which is a divisor of the preceding number. It is plain that the
process must terminate, for the decreasing sequence a, b, c, . . . of natural
numbers cannot go on for ever.
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Let us suppose, for the sake of definiteness, that the process terminates
when we reach the number h, which is a divisor of the preceding number
g. Then the last two equations of the series (2), (3), . . . are

f = vg + h, (4)

g = wh. (5)

The common divisors of a and b are the same as those of b and c, or of c
and d, and so on until we reach g and h. Since h divides g, the common
divisors of g and h consist simply of all divisors of h. The number h can
be identified as being the last remainder in Euclid’s algorithm before exact
divisibility occurs, i.e. the last non-zero remainder.

We have therefore proved that the common divisors of two given natural
numbers a and b consist of all divisors of a certain number h (the H.C.F.
of a and b), and this number is the last non-zero remainder when Euclid’s
algorithm is applied to a and b.

As a numerical illustration, take the numbers 3132 and 7200 which were
used in §5. The algorithm runs as follows:

7200 = 2 × 3132 + 936,

3132 = 3 × 936 + 324,

936 = 2 × 324 + 288,

324 = 1 × 288 + 36,

288 = 8 × 36;
and the H.C.F. is 36, the last remainder. It is often possible to shorten the
working a little by using a negative remainder whenever this is numerically
less than the corresponding positive remainder. In the above example, the
last three steps could be replaced by

936 = 3 × 324 − 36,

324 = 9 × 36.

The reason why it is permissible to use negative remainders is that the argu-
ment that was applied to the equation (2) would be equally valid if that
equation were a = qb − c instead of a = qb + c.

Two numbers are said to be relatively prime∗ if they have no common
divisor except 1, or in other words if their H.C.F. is 1. This will be the case
if and only if the last remainder, when Euclid’s algorithm is applied to the
two numbers, is 1.

∗ This is, of course, the same definition as in §5, but is repeated here because the present
treatment is independent of that given previously.
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7. Another proof of the fundamental theorem
We shall now use Euclid’s algorithm to give another proof of the funda-
mental theorem of arithmetic, independent of that given in §4.

We begin with a very simple remark, which may be thought to be too
obvious to be worth making. Let a, b, n be any natural numbers. The high-
est common factor of na and nb is n times the highest common factor of a
and b. However obvious this may seem, the reader will find that it is not
easy to give a proof of it without using either Euclid’s algorithm or the
fundamental theorem of arithmetic.

In fact the result follows at once from Euclid’s algorithm. We can sup-
pose a > b. If we divide na by nb, the quotient is the same as before
(namely q) and the remainder is nc instead of c. The equation (2) is
replaced by

na = q.nb + nc.

The same applies to the later equations; they are all simply multiplied
throughout by n. Finally, the last remainder, giving the H.C.F. of na and
nb, is nh, where h is the H.C.F. of a and b.

We apply this simple fact to prove the following theorem, often called
Euclid’s theorem, since it occurs as Prop. 30 of Book VII. If a prime divides
the product of two numbers, it must divide one of the numbers (or possibly
both of them). Suppose the prime p divides the product na of two numbers,
and does not divide a. The only factors of p are 1 and p, and therefore the
only common factor of p and a is 1. Hence, by the theorem just proved, the
H.C.F. of np and na is n. Now p divides np obviously, and divides na by
hypothesis. Hence p is a common factor of np and na, and so is a factor of
n, since we know that every common factor of two numbers is necessarily
a factor of their H.C.F. We have therefore proved that if p divides na, and
does not divide a, it must divide n; and this is Euclid’s theorem.

The uniqueness of factorization into primes now follows. For suppose a
number n has two factorizations, say

n = pqr . . . = p′q ′r ′ . . . ,

where all the numbers p, q, r, . . . , p′, q ′, r ′, . . . are primes. Since p divides
the product p′(q ′r ′ . . .) it must divide either p′ or q ′r ′ . . . . If p divides p′
then p = p′ since both numbers are primes. If p divides q ′r ′ . . . we repeat
the argument, and ultimately reach the conclusion that p must equal one of
the primes p′, q ′, r ′, . . . . We can cancel the common prime p from the two
representations, and start again with one of those left, say q. Eventually it
follows that all the primes on the left are the same as those on the right, and
the two representations are the same.
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This is the alternative proof of the uniqueness of factorization into
primes, which was referred to in §4. It has the merit of resting on a general
theory (that of Euclid’s algorithm) rather than on a special device such as
that used in §4. On the other hand, it is longer and less direct.

8. A property of the H.C.F
From Euclid’s algorithm one can deduce a remarkable property of the
H.C.F., which is not at all apparent from the original construction for the
H.C.F. by factorization into primes (§5). The property is that the highest
common factor h of two natural numbers a and b is representable as the
difference between a multiple of a and a multiple of b, that is

h = ax − by

where x and y are natural numbers.
Since a and b are both multiples of h, any number of the form ax − by

is necessarily a multiple of h; and what the result asserts is that there are
some values of x and y for which ax − by is actually equal to h.

Before giving the proof, it is convenient to note some properties of num-
bers representable as ax − by. In the first place, a number so representable
can also be represented as by′ − ax ′, where x ′ and y′ are natural numbers.
For the two expressions will be equal if

a(x + x ′) = b(y + y′);
and this can be ensured by taking any number m and defining x ′ and y′ by

x + x ′ = mb, y + y′ = ma.

These numbers x ′ and y′ will be natural numbers provided m is sufficiently
large, so that mb > x and ma > y. If x ′ and y′ are defined in this way, then
ax − by = by′ − ax ′.

We say that a number is linearly dependent on a and b if it is repre-
sentable as ax − by. The result just proved shows that linear dependence
on a and b is not affected by interchanging a and b.

There are two further simple facts about linear dependence. If a number
is linearly dependent on a and b, then so is any multiple of that number, for

k(ax − by) = a.kx − b.ky.

Also the sum of two numbers that are each linearly dependent on a and b
is itself linearly dependent on a and b, since

(ax1 − by1) + (ax2 − by2) = a(x1 + x2) − b(y1 + y2).
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The same applies to the difference of two numbers: to see this, write the
second number as by2

′−ax2
′, in accordance with the earlier remark, before

subtracting it. Then we get

(ax1 − by1) − (by2
′ − ax2

′) = a(x1 + x2
′) − b(y1 + y2

′).

So the property of linear dependence on a and b is preserved by addition
and subtraction, and by multiplication by any number.

We now examine the steps in Euclid’s algorithm, in the light of this con-
cept. The numbers a and b themselves are certainly linearly dependent on
a and b, since

a = a(b + 1) − b(a), b = a(b) − b(a − 1).

The first equation of the algorithm was

a = qb + c.

Since b is linearly dependent on a and b, so is qb, and since a is also linearly
dependent on a and b, so is a − qb, that is c. Now the next equation of the
algorithm allows us to deduce in the same way that d is linearly dependent
on a and b, and so on until we come to the last remainder, which is h. This
proves that h is linearly dependent on a and b, as asserted.

As an illustration, take the same example as was used in §6, namely a =
7200 and b = 3132. We work through the equations one at a time, using
them to express each remainder in terms of a and b. The first equation was

7200 = 2 × 3132 + 936,

which tells us that

936 = a − 2b.

The second equation was 3132 = 3 × 936 + 324, which gives

324 = b − 3(a − 2b) = 7b − 3a.

The third equation was

936 = 2 × 324 + 288,

which gives

288 = (a − 2b) − 2(7b − 3a) = 7a − 16b.

The fourth equation was

324 = 1 × 288 + 36,
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which gives

36 = (7b − 3a) − (7a − 16b) = 23b − 10a.

This expresses the highest common factor, 36, as the difference of two mul-
tiples of the numbers a and b. If one prefers an expression in which the
multiple of a comes first, this can be obtained by arguing that

23b − 10a = (M − 10)a − (N − 23)b,

provided that Ma = Nb. Since a and b have the common factor 36, this
factor can be removed from both of them, and the condition on M and N
becomes 200M = 87N . The simplest choice for M and N is M = 87, N =
200, which on substitution gives

36 = 77a − 177b.

Returning to the general theory, we can express the result in another
form. Suppose a, b, n are given natural numbers, and it is desired to find
natural numbers x and y such that

ax − by = n. (6)

Such an equation is called an indeterminate equation since it does not deter-
mine x and y completely, or a Diophantine equation after Diophantus of
Alexandria (third century A.D.), who wrote a famous treatise on arithmetic.
The equation (6) cannot be soluble unless n is a multiple of the highest com-
mon factor h of a and b; for this highest common factor divides ax − by,
whatever values x and y may have. Now suppose that n is a multiple of h,
say, n = mh. Then we can solve the equation; for all we have to do is first
solve the equation

ax1 − by1 = h,

as we have seen how to do above, and then multiply throughout by m,
getting the solution x = mx1, y = my1 for the equation (6). Hence the
linear indeterminate equation (6) is soluble in natural numbers x, y if and
only if n is a multiple of h. In particular, if a and b are relatively prime, so
that h = 1, the equation is soluble whatever value n may have.

As regards the linear indeterminate equation

ax + by = n,

we have found the condition for it to be soluble, not in natural numbers, but
in integers of opposite signs: one positive and one negative. The question of
when this equation is soluble in natural numbers is a more difficult one, and
one that cannot well be completely answered in any simple way. Certainly
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n must be a multiple of h, but also n must not be too small in relation to a
and b. It can be proved quite easily that the equation is soluble in natural
numbers if n is a multiple of h and n > ab.

9. Factorizing a number
The obvious way of factorizing a number is to test whether it is divisible
by 2 or by 3 or by 5, and so on, using the series of primes. If a number N
is not divisible by any prime up to

√
N , it must be itself a prime; for any

composite number has at least two prime factors, and they cannot both be
greater than

√
N .

The process is a very laborious one if the number is at all large, and
for this reason factor tables have been computed. The most extensive one
which is generally accessible is that of D. N. Lehmer (Carnegie Institute,
Washington, Pub. No. 105. 1909; reprinted by Hafner Press, New York,
1956), which gives the least prime factor of each number up to 10,000,000.
When the least prime factor of a particular number is known, this can be
divided out, and repetition of the process gives eventually the complete
factorization of the number into primes.

Several mathematicians, among them Fermat and Gauss, have invented
methods for reducing the amount of trial that is necessary to factorize a
large number. Most of these involve more knowledge of number-theory
than we can postulate at this stage; but there is one method of Fermat
which is in principle extremely simple and can be explained in a few
words.

Let N be the given number, and let m be the least number for which
m2 > N . Form the numbers

m2 − N , (m + 1)2 − N , (m + 2)2 − N , . . . . (7)

When one of these is reached which is a perfect square, we get x2 − N =
y2, and consequently N = x2 − y2 = (x − y)(x + y). The calculation
of the numbers (7) is facilitated by noting that their successive differences
increase at a constant rate. The identification of one of them as a perfect
square is most easily made by using Barlow’s Table of Squares. The method
is particularly successful if the number N has a factorization in which the
two factors are of about the same magnitude, since then y is small. If N is
itself a prime, the process goes on until we reach the solution provided by
x + y = N , x − y = 1.

As an illustration, take N = 9271. This comes between 962 and 972, so
that m = 97. The first number in the series (7) is 972 − 9271 = 138. The
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subsequent ones are obtained by adding successively 2m + 1, then 2m + 3,
and so on, that is, 195, 197, and so on. This gives the series

138, 333, 530, 729, 930, . . . .

The fourth of these is a perfect square, namely 272, and we get

9271 = 1002 − 272 = 127 × 73.

An interesting algorithm for factorization has been discovered recently
by Captain N. A. Draim, U.S.N. In this, the result of each trial division is
used to modify the number in preparation for the next division. There are
several forms of the algorithm, but perhaps the simplest is that in which
the successive divisors are the odd numbers 3, 5, 7, 9, . . . , whether prime
or not. To explain the rules, we work a numerical example, say N = 4511.
The first step is to divide by 3, the quotient being 1503 and the remainder 2:

4511 = 3 × 1503 + 2.

The next step is to subtract twice the quotient from the given number, and
then add the remainder:

4511 − 2 × 1503 = 1505, 1505 + 2 = 1507.

The last number is the one which is to be divided by the next odd number, 5:

1507 = 5 × 301 + 2.

The next step is to subtract twice the quotient from the first derived number
on the previous line (1505 in this case), and then add the remainder from
the last line:

1505 − 2 × 301 = 903, 903 + 2 = 905.

This is the number which is to be divided by the next odd number, 7. Now
we can continue in exactly the same way, and no further explanation will
be needed:

905 = 7 × 129 + 2,

903 − 2 × 129 = 645, 645 + 2 = 647,

647 = 9 × 71 + 8,

645 − 2 × 71 = 503, 503 + 8 = 511,

511 = 11 × 46 + 5,

503 − 2 × 46 = 411, 411 + 5 = 416,

416 = 13 × 32 + 0.
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We have reached a zero remainder, and the algorithm tells us that 13 is a
factor of the given number 4511. The complementary factor is found by
carrying out the first half of the next step:

411 − 2 × 32 = 347.

In fact 4511 = 13×347, and as 347 is a prime the factorization is complete.
To justify the algorithm generally is a matter of elementary algebra. Let

N1 be the given number; the first step was to express N1 as

N1 = 3q1 + r1.

The next step was to form the numbers

M2 = N1 − 2q1, N2 = M2 + r1.

The number N2 was divided by 5:

N2 = 5q2 + r2,

and the next step was to form the numbers

M3 = M2 − 2q2, N3 = M3 + r2,

and so the process was continued. It can be deduced from these
equations that

N2 = 2N1 − 5q1,

N3 = 3N1 − 7q1 − 7q2,

N4 = 4N1 − 9q1 − 9q2 − 9q3,

and so on. Hence N2 is divisible by 5 if and only if 2N1 is divisible by 5, or
N1 divisible by 5. Again, N3 is divisible by 7 if and only if 3N1 is divisible
by 7, or N1 divisible by 7, and so on. When we reach as divisor the least
prime factor of N1, exact divisibility occurs and there is a zero remainder.

The general equation analogous to those given above is

Nn = nN1 − (2n + 1)(q1 + q2 + · · · + qn−1). (8)

The general equation for Mn is found to be

Mn = N1 − 2(q1 + q2 + · · · + qn−1). (9)

If 2n + 1 is a factor of the given number N1, then Nn is exactly divisible by
2n + 1, and

Nn = (2n + 1)qn,

whence

nN1 = (2n + 1)(q1 + q2 + · · · + qn),
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by (8). Under these circumstances, we have, by (9),

Mn+1 = N1 − 2(q1 + q2 + · · · + qn)

= N1 − 2

(
n

2n + 1

)
N1 = N1

2n + 1
.

Thus the complementary factor to the factor 2n + 1 is Mn+1, as stated in
the example.

In the numerical example worked out above, the numbers N1, N2, . . .

decrease steadily. This is always the case at the beginning of the algorithm,
but may not be so later. However, it appears that the later numbers are
always considerably less than the original number.

10. The series of primes
Although the notion of a prime is a very natural and obvious one, questions
concerning the primes are often very difficult, and many such questions
are quite unanswerable in the present state of mathematical knowledge. We
conclude this chapter by mentioning briefly some results and conjectures
about the primes.

In §3 we gave Euclid’s proof that there are infinitely many primes. The
same argument will also serve to prove that there are infinitely many primes
of certain specified forms. Since every prime after 2 is odd, each of them
falls into one of the two progressions

(a) 1, 5, 9, 13, 17, 21, 25, . . . ,

(b) 3, 7, 11, 15, 19, 23, 27, . . .;

the progression (a) consisting of all numbers of the form 4x + 1, and the
progression (b) of all numbers of the form 4x − 1 (or 4x + 3, which comes
to the same thing). We first prove that there are infinitely many primes in
the progression (b). Let the primes in (b) be enumerated as q1, q2, . . . ,

beginning with q1 = 3. Consider the number N defined by

N = 4(q1q2 . . . qn) − 1.

This is itself a number of the form 4x − 1. Not every prime factor of N can
be of the form 4x + 1, because any product of numbers which are all of the
form 4x + 1 is itself of that form, e.g.

(4x + 1)(4y + 1) = 4(4xy + x + y) + 1.

Hence the number N has some prime factor of the form 4x −1. This cannot
be any of the primes q1, q2, . . . , qn , since N leaves the remainder −1 when
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divided by any of them. Thus there exists a prime in the series (b) which is
different from any of q1, q2, . . . , qn ; and this proves the proposition.

The same argument cannot be used to prove that there are infinitely many
primes in the series (a), because if we construct a number of the form 4x+1
it does not follow that this number will necessarily have a prime factor
of that form. However, another argument can be used. Let the primes in
the series (a) be enumerated as r1, r2, . . . , and consider the number M
defined by

M = (r1r2 . . . rn)2 + 1.

We shall see later (III.3) that any number of the form a2 + 1 has a prime
factor of the form 4x + 1, and is indeed entirely composed of such primes,
together possibly with the prime 2. Since M is obviously not divisible by
any of the primes r1, r2, . . . , rn , it follows as before that there are infinitely
many primes in the progression (a).

A similar situation arises with the two progressions 6x + 1 and 6x − 1.
These progressions exhaust all numbers that are not divisible by 2 or 3, and
therefore every prime after 3 falls in one of these two progressions. One can
prove by methods similar to those used above that there are infinitely many
primes in each of them. But such methods cannot cope with the general
arithmetical progression. Such a progression consists of all numbers ax+b,
where a and b are fixed and x = 0, 1, 2, . . . , that is, the numbers

b, b + a, b + 2a, . . . .

If a and b have a common factor, every number of the progression has
this factor, and so is not a prime (apart from possibly the first number b).
We must therefore suppose that a and b are relatively prime. It then seems
plausible that the progression will contain infinitely many primes, i.e. that
if a and b are relatively prime, there are infinitely many primes of the form
ax + b.

Legendre seems to have been the first to realize the importance of this
proposition. At one time he thought he had a proof, but this turned out
to be fallacious. The first proof was given by Dirichlet in an important
memoir which appeared in 1837. This proof used analytical methods (func-
tions of a continuous variable, limits, and infinite series), and was the first
really important application of such methods to the theory of numbers.
It opened up completely new lines of development; the ideas underlying
Dirichlet’s argument are of a very general character and have been funda-
mental for much subsequent work applying analytical methods to the theory
of numbers.
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Not much is known about other forms which represent infinitely many
primes. It is conjectured, for instance, that there are infinitely many primes
of the form x2 + 1, the first few being

2, 5, 17, 37, 101, 197, 257, . . . .

But not the slightest progress has been made towards proving this, and
the question seems hopelessly difficult. Dirichlet did succeed, however, in
proving that any quadratic form in two variables, that is, any form ax2 +
bxy + cy2, in which a, b, c are relatively prime, represents infinitely many
primes.

A question which has been deeply investigated in modern times is that
of the frequency of occurrence of the primes, in other words the question
of how many primes there are among the numbers 1, 2, . . . , X when X is
large. This number, which depends of course on X , is usually denoted by
π(X). The first conjecture about the magnitude of π(X) as a function of
X seems to have been made independently by Legendre and Gauss about
1800. It was that π(X) is approximately X

log X . Here log X denotes the
natural (so-called Napierian) logarithm of X , that is, the logarithm of X to
the base e. The conjecture seems to have been based on numerical evidence.
For example, when X is 1,000,000 it is found that π(1,000,000) = 78,498,
whereas the value of X/ log X (to the nearest integer) is 72,382, the ratio
being 1.084 . . . . Numerical evidence of this kind may, of course, be quite
misleading. But here the result suggested is true, in the sense that the ratio
of π(X) to X/ log X tends to the limit 1 as X tends to infinity. This is the
famous Prime Number Theorem, first proved by Hadamard and de la Vallée
Poussin independently in 1896, by the use of new and powerful analytical
methods.

It is impossible to give an account here of the many other results
which have been proved concerning the distribution of the primes. Those
proved in the nineteenth century were mostly in the nature of imperfect
approaches towards the Prime Number Theorem; those of the twentieth
century included various refinements of that theorem. There is one recent
event to which, however, reference should be made. We have already said
that the proof of Dirichlet’s Theorem on primes in arithmetical progres-
sions and the proof of the Prime Number Theorem were analytical, and
made use of methods which cannot be said to belong properly to the the-
ory of numbers. The propositions themselves relate entirely to the natural
numbers, and it seems reasonable that they should be provable without
the intervention of such foreign ideas. The search for ‘elementary’ proofs
of these two theorems was unsuccessful until fairly recently. In 1948 A.
Selberg found the first elementary proof of Dirichlet’s Theorem, and with
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the help of P. Erdős he found the first elementary proof of the Prime Num-
ber Theorem. An ‘elementary’ proof, in this connection, means a proof
which operates only with natural numbers. Such a proof is not necessarily
simple, and indeed both the proofs in question are distinctly difficult.

Finally, we may mention the famous problem concerning primes which
was propounded by Goldbach in a letter to Euler in 1742. Goldbach sug-
gested (in a slightly different wording) that every even number from 6
onwards is representable as the sum of two primes other than 2, e.g.

6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7 = 5 + 5, 12 = 5 + 7, . . . .

Any problem like this which relates to additive properties of primes is nec-
essarily difficult, since the definition of a prime and the natural properties
of primes are all expressed in terms of multiplication. An important contri-
bution to the subject was made by Hardy and Littlewood in 1923, but it was
not until 1930 that anything was rigorously proved that could be consid-
ered as even a remote approach towards a solution of Goldbach’s problem.
In that year the Russian mathematician Schnirelmann proved that there is
some number N such that every number from some point onwards is rep-
resentable as the sum of at most N primes. A much nearer approach was
made by Vinogradov in 1937. He proved, by analytical methods of extreme
subtlety, that every odd number from some point onwards is representable
as the sum of three primes. This was the starting point of much new work
on the additive theory of primes, in the course of which many problems
have been solved which would have been quite beyond the scope of any
pre-Vinogradov methods. A recent result in connection with Goldbach’s
problem is that every sufficiently large even number is representable as the
sum of two numbers, one of which is a prime and the other of which has at
most two prime factors.

Notes
Where material is changing more rapidly than print cycles permit, we
have chosen to place some of the material on the book’s website:
www.cambridge.org/davenport. Symbols such as ♠I:0 are used
to indicate where there is such additional material.

§1. The main difficulty in giving any account of the laws of arithmetic,
such as that given here, lies in deciding which of the various concepts
should come first. There are several possible arrangements, and it seems to
be a matter of taste which one prefers.

It is no part of our purpose to analyse further the concepts and laws of
arithmetic. We take the commonsense (or naı̈ve) view that we all ‘know’
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the natural numbers, and are satisfied of the validity of the laws of arith-
metic and of the principle of induction. The reader who is interested in the
foundations of mathematics may consult Bertrand Russell, Introduction to
Mathematical Philosophy (Allen and Unwin, London), or M. Black, The
Nature of Mathematics (Harcourt, Brace, New York).

Russell defines the natural numbers by selecting them from numbers of
a more general kind. These more general numbers are the (finite or infinite)
cardinal numbers, which are defined by means of the more general notions
of ‘class’ and ‘one-to-one correspondence’. The selection is made by defin-
ing the natural numbers as those which possess all the inductive properties.
(Russell, loc. cit., p. 27). But whether it is reasonable to base the theory of
the natural numbers on such a vague and unsatisfactory concept as that of
a class is a matter of opinion. ‘Dolus latet in universalibus’ as Dr Johnson
remarked.

§2. The objection to using the principle of induction as a definition of
the natural numbers is that it involves references to ‘any proposition about
a natural number n’. It seems plain the that ‘propositions’ envisaged here
must be statements which are significant when made about natural num-
bers. It is not clear how this significance can be tested or appreciated except
by one who already knows the natural numbers.

§4. I am not aware of having seen this proof of the uniqueness of prime
factorization elsewhere, but it is unlikely that it is new. For other direct
proofs, see Mathews, p. 2, or Hardy and Wright, p. 21.∗

§5. It has been shown by (intelligent!) computer searches that there is no
odd perfect number less than 10300. If an odd perfect number exists, it has
at least eight distinct prime factors, of which the largest exceeds 108. For
references and other information on perfect or ‘nearly perfect’ numbers,
see Guy, sections A.3, B.1 and B.2. ♠I:1

§6. A critical reader may notice that in two places in this section I have
used principles that were not explicitly stated in §§1 and 2. In each place, a
proof by induction could have been given, but to have done so would have
distracted the reader’s attention from the main issues.

The question of the length of Euclid’s algorithm is discussed in Uspensky
and Heaslet, ch. 3, and D. E. Knuth’s The Art of Computer Programming
vol. II: Seminumerical Algorithms (Addison Wesley, Reading, Mass., 3rd.
ed., 1998) section 4.5.3.

§9. For an account of early methods of factoring, see Dickson’s His-
tory Vol. I, ch. 14. For a discussion of the subject as it appeared in

∗ Particulars of books referred to by their authors’ names will be found in the
Bibliography.
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the 1970s see the article by Richard K. Guy, ‘How to factor a num-
ber’, Congressus Numerantium XVI Proc. 5th Manitoba Conf. Numer.
Math., Winnipeg, 1975, 49–89, and at the turn of the millennium see
Richard P. Brent, ‘Recent progress and prospects for integer factorisation
algorithms’, Springer Lecture Notes in Computer Science 1858 Proc. Com-
puting and Combinatorics, 2000, 3–22. The subject is discussed further in
Chapter VIII.

It is doubtful whether D. N. Lehmer’s tables will ever be extended, since
with them and a pocket calculator one can easily check whether a 12-digit
number is a prime. Primality testing is discussed in VIII.2 and VIII.9. For
Draim’s algorithm, see Mathematics Magazine, 25 (1952) 191–4.

§10. An excellent account of the distribution of primes is given by
A. E. Ingham, The Distribution of Prime Numbers (Cambridge Tracts, no.
30, 1932; reprinted by Hafner Press, New York, 1971). For a more recent
and extensive account see H. Davenport, Multiplicative Number Theory,
3rd. ed. (Springer, 2000). H. Iwaniec (Inventiones Math. 47 (1978) 171–88)
has shown that for infinitely many n the number n2 + 1 is either prime
or the product of at most two primes, and indeed the same is true for any
irreducible an2 + bn + c with c odd.

Dirichlet’s proof of his theorem (with a modification due to Mertens)
is given as an appendix to Dickson’s Modern Elementary Theory of Num-
bers. An elementary proof of the Prime Number Theorem is given in ch. 22
of Hardy and Wright. An elementary proof of the asymptotic formula for
the number of primes in an arithmetic progression is given in Gelfond and
Linnik, ch. 3.

For a survey of early work on Goldbach’s problem, see James, Bull.
American Math. Soc., 55 (1949) 246–60. It has been verified that every
even number from 6 to 4 × 1014 is the sum of two primes, see Richstein,
Math. Comp., 70 (2001) 1745–9. For a proof of Chen’s theorem that every
sufficiently large even integer can be represented as p + P2, where p
is a prime, and P2 is either a prime or the product of two primes, see
ch. 11 of Sieve Methods by H. Halberstam and H. E. Richert (Academic
Press, London, 1974). For a proof of Vinogradov’s result, see T. Estermann,
Introduction to Modern Prime Number Theory (Cambridge Tracts, no. 41,
1952) or H. Davenport, Multiplicative Number Theory, 3rd. ed. (Springer,
2000). ‘Sufficiently large’ in Vinogradov’s result has now been quantified
as ‘greater than 2 × 101346’, see M.-C. Liu and T. Wang, Acta Arith., 105
(2002) 133–175. Conversely, we know that it is true up to 1.13256 × 1022

(Ramaré and Saouter in J. Number Theory 98 (2003) 10–33).
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C O N G R U E N C E S

1. The congruence notation
It often happens that for the purposes of a particular calculation, two num-
bers which differ by a multiple of some fixed number are equivalent, in the
sense that they produce the same result. For example, the value of (−1)n

depends only on whether n is odd or even, so that two values of n which
differ by a multiple of 2 give the same result. Or again, if we are concerned
only with the last digit of a number, then for that purpose two numbers
which differ by a multiple of 10 are effectively the same.

The congruence notation, introduced by Gauss, serves to express in a
convenient form the fact that two integers a and b differ by a multiple of a
fixed natural number m. We say that a is congruent to b with respect to the
modulus m, or, in symbols,

a ≡ b (mod m).

The meaning of this, then, is simply that a − b is divisible by m. The nota-
tion facilitates calculations in which numbers differing by a multiple of m
are effectively the same, by stressing the analogy between congruence and
equality. Congruence, in fact, means ‘equality except for the addition of
some multiple of m’.

A few examples of valid congruences are:

63 ≡ 0 (mod 3), 7 ≡ −1 (mod 8), 52 ≡ −1 (mod 13).

A congruence to the modulus 1 is always valid, whatever the two numbers
may be, since every number is a multiple of 1. Two numbers are congruent
with respect to the modulus 2 if they are of the same parity, that is, both
even or both odd.

31
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Two congruences can be added, subtracted, or multiplied together, in just
the same way as two equations, provided all the congruences have the same
modulus. If

a ≡ α (mod m) and b ≡ β (mod m)

then

a + b ≡ α + β (mod m),

a − b ≡ α − β (mod m),

ab ≡ αβ (mod m).

The first two of these statements are immediate; for example (a +b)−(α+
β) is a multiple of m because a − α and b − β are both multiples of m.
The third is not quite so immediate and is best proved in two steps. First
ab ≡ αb because ab − αb = (a − α)b, and a − α is a multiple of m. Next,
αb ≡ αβ, for a similar reason. Hence ab ≡ αβ (mod m).

A congruence can always be multiplied throughout by any integer: if
a ≡ α (mod m) then ka ≡ kα (mod m). Indeed this is a special case of the
third result above, where b and β are both k. But it is not always legitimate
to cancel a factor from a congruence. For example

42 ≡ 12 (mod 10),

but it is not permissible to cancel the factor 6 from the numbers 42 and
12, since this would give the false result 7 ≡ 2 (mod 10). The reason is
obvious: the first congruence states that 42 − 12 is a multiple of 10, but
this does not imply that 1

6 (42 − 12) is a multiple of 10. The cancellation of
a factor from a congruence is legitimate if the factor is relatively prime to
the modulus. For let the given congruence be ax ≡ ay (mod m), where a
is the factor to be cancelled, and we suppose that a is relatively prime to m.
The congruence states that a(x − y) is divisible by m, and it follows from
the last proposition in I.5 that x − y is divisible by m.

An illustration of the use of congruences is provided by the well-known
rules for the divisibility of a number by 3 or 9 or 11. The usual representa-
tion of a number n by digits in the scale of 10 is really a representation of
n in the form

n = a + 10b + 100c + · · · ,

where a, b, c, . . . are the digits of the number, read from right to left, so
that a is the number of units, b the number of tens, and so on. Since 10 ≡
1 (mod 9), we have also 102 ≡ 1 (mod 9), 103 ≡ 1 (mod 9), and so on.
Hence it follows from the above representation of n that

n ≡ a + b + c + · · · (mod 9).
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In other words, any number n differs from the sum of its digits by a multiple
of 9, and in particular n is divisible by 9 if and only if the sum of its digits
is divisible by 9. The same applies with 3 in place of 9 throughout.

The rule for 11 is based on the fact that 10 ≡ −1 (mod 11), so that
102 ≡ +1 (mod 11), 103 ≡ −1 (mod 11), and so on. Hence

n ≡ a − b + c − · · · (mod 11).

It follows that n is divisible by 11 if and only if a−b+c−· · · is divisible by
11. For example, to test the divisibility of 9581 by 11 we form 1−8+5−9,
or −11. Since this is divisible by 11, so is 9581.

2. Linear congruences
It is obvious that every integer is congruent (mod m) to exactly one of the
numbers

0, 1, 2, . . . , m − 1. (1)

For we can express the integer in the form qm + r , where 0 � r < m,
and then it is congruent to r (mod m). Obviously there are other sets of
numbers, besides the set (1), which have the same property, e.g. any integer
is congruent (mod 5) to exactly one of the numbers 0, 1,−1, 2, −2. Any
such set of numbers is said to constitute a complete set of residues to the
modulus m. Another way of expressing the definition is to say that a com-
plete set of residues (mod m) is any set of m numbers, no two of which are
congruent to one another.

A linear congruence, by analogy with a linear equation in elementary
algebra, means a congruence of the form

ax ≡ b (mod m). (2)

It is an important fact that any such congruence is soluble for x , pro-
vided that a is relatively prime to m. The simplest way of proving this
is to observe that if x runs through the numbers of a complete set of
residues, then the corresponding values of ax also constitute a complete set
of residues. For there are m of these numbers, and no two of them are con-
gruent, since ax1 ≡ ax2 (mod m) would involve x1 ≡ x2 (mod m), by the
cancellation of the factor a (permissible since a is relatively prime to m).
Since the numbers ax form a complete set of residues, there will be exactly
one of them congruent to the given number b.

As an example, consider the congruence

3x ≡ 5 (mod 11).
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If we give x the values 0, 1, 2, . . . , 10 (a complete set of residues to the
modulus 11), 3x takes the values 0, 3, 6, . . . , 30. These form another com-
plete set of residues (mod 11), and in fact they are congruent respectively to

0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8.

The value 5 occurs when x = 9, and so x = 9 is a solution of the congru-
ence. Naturally any number congruent to 9 (mod 11) will also satisfy the
congruence; but nevertheless we say that the congruence has one solution,
meaning that there is one solution in any complete set of residues. In other
words, all solutions are mutually congruent. The same applies to the gen-
eral congruence (2); such a congruence (provided a is relatively prime to
m) is precisely equivalent to the congruence x ≡ x0 (mod m), where x0 is
one particular solution.

There is another way of looking at the linear congruence (2). It is equiv-
alent to the equation ax = b + my, or ax − my = b. We proved in I.8 that
such a linear Diophantine equation is soluble for x and y if a and m are
relatively prime, and that fact provides another proof of the solubility of the
linear congruence. But the proof given above is simpler, and illustrates the
advantages gained by using the congruence notation.

The fact that the congruence (2) has a unique solution, in the sense
explained above, suggests that one may use this solution as an interpretation
for the fraction b

a to the modulus m. When we do this, we obtain an arith-
metic (mod m) in which addition, subtraction and multiplication are always
possible, and division is also possible provided that the divisor is relatively
prime to m. In this arithmetic there are only a finite number of essentially
distinct numbers, namely m of them, since two numbers which are mutu-
ally congruent (mod m) are treated as the same. If we take the modulus m
to be 11, as an illustration, a few examples of ‘arithmetic mod 11’ are:

5 + 7 ≡ 1, 5 × 6 ≡ 8,
5

3
≡ 9 ≡ −2.

Any relation connecting integers or fractions in the ordinary sense remains
true when interpreted in this arithmetic. For example, the relation

1

2
+ 2

3
= 7

6

becomes (mod 11)

6 + 8 ≡ 3,

because the solution of 2x ≡ 1 is x ≡ 6, that of 3x ≡ 2 is x ≡ 8, and that
of 6x ≡ 7 is x ≡ 3. Naturally the interpretation given to a fraction depends
on the modulus, for instance 2

3 ≡ 8 (mod 11), but 2
3 ≡ 3 (mod 7). The
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only limitation on such calculations is that just mentioned, namely that the
denominator of any fraction must be relatively prime to the modulus. If the
modulus is a prime (as in the above examples with 11), the limitation takes
the very simple form that the denominator must not be congruent to 0 (mod
m), and this is exactly analogous to the limitation in ordinary arithmetic
that the denominator must not be equal to 0. We shall return to this point
later (§7).

3. Fermat’s theorem
The fact that there are only a finite number of essentially different numbers
in arithmetic to a modulus m means that there are algebraic relations which
are satisfied by every number in that arithmetic. There is nothing analogous
to these relations in ordinary arithmetic.

Suppose we take any number x and consider its powers x, x2, x3, . . . .

Since there are only a finite number of possibilities for these to the modulus
m, we must eventually come to one which we have met before, say xh ≡ xk

(mod m), where k < h. If x is relatively prime to m, the factor xk can be
cancelled, and it follows that xl ≡ 1 (mod m), where l ≡ h − k. Hence
every number x which is relatively prime to m satisfies some congruence of
this form. The least exponent l for which xl ≡ 1 (mod m) will be called the
order of x to the modulus m. If x is 1, its order is obviously 1. To illustrate
the definition, let us calculate the orders of a few numbers to the modulus
11. The powers of 2, taken to the modulus 11, are

2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4, . . . .

Each one is twice the preceding one, with 11 or a multiple of 11 subtracted
where necessary to make the result less than 11. The first power of 2 which
is ≡ 1 is 210, and so the order of 2 (mod 11) is 10. As another example,
take the powers of 3:

3, 9, 5, 4, 1, 3, 9, . . . .

The first power of 3 which is ≡ 1 is 35, so the order of 3 (mod 11) is 5. It
will be found that the order of 4 is again 5, and so also is that of 5.

It will be seen that the successive powers of x are periodic; when we
have reached the first number l for which xl ≡ 1, then xl+1 ≡ x and the
previous cycle is repeated. It is plain that xn ≡ 1 (mod m) if and only
if n is a multiple of the order of x. In the last example, 3n ≡ 1 (mod
11) if and only if n is a multiple of 5. This remains valid if n is 0 (since
30 = 1), and it remains valid also for negative exponents, provided 3−n ,
or 1/3n , is interpreted as a fraction (mod 11) in the way explained in §2.
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In fact, the negative powers of 3 (mod 11) are obtained by prolonging
the series backwards, and the table of powers of 3 to the modulus 11 is
n = . . . −3 −2 −1 0 1 2 3 4 5 6 . . .
3n ≡ . . . 9 5 4 1 3 9 5 4 1 3 . . . .

Fermat discovered that if the modulus is a prime, say p, then every
integer x not congruent to 0 satisfies

x p−1 ≡ 1 (mod p). (3)

In view of what we have seen above, this is equivalent to saying that the
order of any number is a divisor of p − 1. The result (3) was mentioned
by Fermat in a letter to Frénicle de Bessy of 18 October 1640, in which he
also stated that he had a proof. But as with most of Fermat’s discoveries,
the proof was not published or preserved. The first known proof seems to
have been given by Leibniz (1646–1716). He proved that x p ≡ x (mod
p), which is equivalent to (3), by writing x as a sum 1 + 1 + · · · + 1 of
x units (assuming x positive), and then expanding (1 + 1 + · · · + 1)p by
the multinomial theorem. The terms 1p + 1p + · · · + 1p give x , and the
coefficients of all the other terms are easily proved to be divisible by p.

Quite a different proof was given by Ivory in 1806. If x �≡ 0 (mod p),
the integers

x, 2x, 3x, . . . , (p − 1)x

are congruent (in some order) to the numbers

1, 2, 3, . . . , p − 1.

In fact, each of these sets constitutes a complete set of residues except that 0
has been omitted from each. Since the two sets are congruent, their products
are congruent, and so

(x)(2x)(3x) . . . ((p − 1)x) ≡ (1)(2)(3) . . . (p − 1)(mod p).

Cancelling the factors 2, 3, . . . , p − 1, as is permissible, we obtain (3).
One merit of this proof is that it can be extended so as to apply to the

more general case when the modulus is no longer a prime. The generaliza-
tion of the result (3) to any modulus was first given by Euler in 1760. To
formulate it, we must begin by considering how many numbers in the set
0, 1, 2, . . . , m − 1 are relatively prime to m. Denote this number by φ(m).
When m is a prime, all the numbers in the set except 0 are relatively prime
to m, so that φ(p) = p − 1 for any prime p. Euler’s generalization of
Fermat’s theorem is that for any modulus m,

xφ(m) ≡ 1 (mod m), (4)

provided only that x is relatively prime to m.
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To prove this, it is only necessary to modify Ivory’s method by omitting
from the numbers 0, 1, . . . , m − 1 not only the number 0, but all numbers
which are not relatively prime to m. There remain φ(m) numbers, say

a1, a2, . . . , aμ, where μ = φ(m).

Then the numbers

a1x, a2x, . . . , aμx

are congruent, in some order, to the previous numbers, and on multiplying
and cancelling a1, a2, . . . , aμ (as is permissible) we obtain xμ ≡ 1 (mod
m), which is (4).

To illustrate this proof, take m = 20. The numbers less than 20 and
relatively prime to 20 are

1, 3, 7, 9, 11, 13, 17, 19,

so that φ(20) = 8. If we multiply these by any number x which is relatively
prime to 20, the new numbers are congruent to the original numbers in
some other order. For example, if x is 3, the new numbers are congruent
respectively to

3, 9, 1, 7, 13, 19, 11, 17 (mod 20);
and the argument proves that 38 ≡ 1 (mod 20). In fact, 38 = 6561.

4. Euler’s function φ(m)

As we have just seen, this is the number of numbers up to m that are rel-
atively prime to m. It is natural to ask what relation φ(m) bears to m. We
saw that φ(p) = p − 1 for any prime p. It is also easy to evaluate φ(pa)

for any prime power pa . The only numbers in the set 0, 1, 2, . . . , pa − 1
which are not relatively prime to p are those that are divisible by p. These
are the numbers pt, where t = 0, 1, . . . , pa−1 − 1. The number of them is
pa−1, and when we subtract this from the total number pa , we obtain

φ(pa) = pa − pa−1 = pa−1(p − 1). (5)

The determination of φ(m) for general values of m is effected by proving
that this function is multiplicative. By this is meant that if a and b are any
two relatively prime numbers, then

φ(ab) = φ(a)φ(b). (6)
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To prove this, we begin by observing a general principle: if a and b are
relatively prime, then two simultaneous congruences of the form

x ≡ α (mod a), x ≡ β (mod b) (7)

are precisely equivalent to one congruence to the modulus ab. For the first
congruence means that x = α + at where t is an integer. This satisfies the
second congruence if and only if

α + at ≡ β (mod b), or at ≡ β − α (mod b).

This, being a linear congruence for t , is soluble. Hence the two congruences
(7) are simultaneously soluble. If x and x ′ are two solutions, we have x ≡
x ′ (mod a) and x ≡ x ′ (mod b), and therefore x ≡ x ′ (mod ab). Thus there
is exactly one solution to the modulus ab. This principle, which extends at
once to several congruences, provided that the moduli are relatively prime
in pairs, is sometimes called ‘the Chinese remainder theorem’. It assures us
of the existence of numbers which leave prescribed remainders on division
by the moduli in question.

Let us represent the solution of the two congruences (7) by

x ≡ [α, β] (mod ab),

so that [α, β] is a certain number depending on α and β (and also on a and b
of course) which is uniquely determined to the modulus ab. Different pairs
of values of α and β give rise to different values for [α, β]. If we give α the
values 0, 1, . . . , a − 1 (forming a complete set of residues to the modulus
a) and similarly give β the values 0, 1, . . . , b − 1, the resulting values of
[α, β] constitute a complete set of residues to the modulus ab.

It is obvious that if α has a factor in common with a, then x in (7) will
also have that factor in common with a, in other words, [α, β] will have
that factor in common with a. Thus [α, β] will only be relatively prime to
ab if α is relatively prime to a and β is relatively prime to b, and conversely
these conditions will ensure that [α, β] is relatively prime to ab. It follows
that if we give α the φ(a) possible values that are less than a and prime
to a, and give β the φ(b) values that are less than b and prime to b, there
result φ(a)φ(b) values of [α, β], and these comprise all the numbers that
are less than ab and relatively prime to ab. Hence φ(ab) = φ(a)φ(b), as
asserted in (6).

To illustrate the situation arising in the above proof, we tabulate below
the values of [α, β] when a = 5 and b = 8. The possible values for α are
0, 1, 2, 3, 4, and the possible values for β are 0, 1, 2, 3, 4, 5, 6, 7. Of these
there are four values of α which are relatively prime to a, corresponding to
the fact that φ(5) = 4, and four values of β that are relatively prime to b,
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corresponding to the fact that φ(8) = 4, in accordance with the formula (5).
These values are italicized, as also are the corresponding values of [α, β].
The latter constitute the sixteen numbers that are relatively prime to 40 and
less than 40, thus verifying that φ(40) = φ(5)φ(8) = 4 × 4 = 16.

α \ β 0 1 2 3 4 5 6 7

0 0 25 10 35 20 5 30 15
1 16 1 26 11 36 21 6 31
2 32 17 2 27 12 37 22 7
3 8 33 18 3 28 13 38 23
4 24 9 34 19 4 29 14 39

We now return to the original question, that of evaluating φ(m) for any
number m. Suppose the factorization of m into prime powers is

m = paqb . . . .

Then it follows from (5) and (6) that

φ(m) = (pa − pa−1)(qb − qb−1) . . . ,

or, more elegantly,

φ(m) = m
(

1 − 1
p

) (
1 − 1

q

)
. . . . (8)

For example,

φ(40) = 40
(

1 − 1
2

) (
1 − 1

5

)
= 16,

and

φ(60) = 60
(

1 − 1
2

) (
1 − 1

3

) (
1 − 1

5

)
= 16.

The function φ(m) has a remarkable property, first given by Gauss in his
Disquisitiones. It is that the sum of the numbers φ(d), extended over all the
divisors d of a number m, is equal to m itself. For example, if m = 12, the
divisors are 1, 2, 3, 4, 6, 12, and we have

φ(1) + φ(2) + φ(3) + φ(4) + φ(6) + φ(12)

= 1 + 1 + 2 + 2 + 2 + 4 = 12.

A general proof can be based either on (8), or directly on the definition of
the function.
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We have already referred (I.5) to a table of the values of φ(m) for m �
10, 000. The same volume contains a table giving those numbers m for
which φ(m) assumes a given value up to 2,500. This table shows that, up to
that point at least, every value assumed by φ(m) is assumed at least twice.
It seems reasonable to conjecture that this is true generally, in other words
that for any number m there is another number m′ such that φ(m′) = φ(m).
This has never been proved, and any attempt at a general proof seems to
meet with formidable difficulties. For some special types of numbers the
result is easy, e.g. if m is odd, then φ(m) = φ(2m); or again if m is not
divisible by 2 or 3 we have φ(3m) = φ(4m) = φ(6m).

5. Wilson’s theorem
This theorem was first published by Waring in his Meditationes Alge-
braicae of 1770, and was ascribed by him to Sir John Wilson (1741–93), a
lawyer who had studied mathematics at Cambridge. It asserts that

(p − 1)! ≡ −1 (mod p) (9)

for any prime p.
The following simple proof was given by Gauss. It is based on associ-

ating each of the numbers 1, 2, . . . , p − 1 with its reciprocal (mod p), in
the sense defined in §2. The reciprocal of a means the number a′ for which
aa′ ≡ 1 (mod p). Each number in the set 1, 2, . . . , p − 1 has exactly one
reciprocal in the set. The reciprocal of a may be the same as a itself, but
this only happens if a2 ≡ 1 (mod p), that is, if a ≡ ±1 (mod p), which
requires a = 1 or p − 1. Apart from these two numbers, the remaining
numbers 2, 3, . . . , p − 2 can be paired off so that the product of those in
any pair is ≡ 1 (mod p). It follows that

2 × 3 × 4 × · · · × (p − 2) ≡ 1 (mod p).

Multiplying by p − 1, which is ≡ −1 (mod p), we obtain the result (9).
The proof just given fails if p is 2 or 3, but it is immediately verified that
the result is still true.

Wilson’s theorem is one of a series of theorems which relate to the sym-
metrical functions of the numbers 1, 2, . . . , p−1. It asserts that the product
of these numbers is congruent to −1 (mod p). Many results are also known
concerning other symmetrical functions. As an illustration, consider the
sum of the kth powers of these numbers:

Sk = 1k + 2k + · · · + (p − 1)k ,
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where p is a prime greater than 2. It can be proved that Sk ≡ 0 (mod p)
except when k is a multiple of p − 1. In the latter case, each term in the
sum is ≡ 1 by Fermat’s theorem, and there are p − 1 terms, so that the sum
is ≡ p − 1 ≡ −1 (mod p).

6. Algebraic congruences
The analogy between congruences and equations suggests the considera-
tion of algebraic congruences, that is, congruences of the form

an xn + an−1xn−1 + · · · + a1x1 + a0 ≡ 0 (mod m), (10)

where an, an−1, . . . , a0 are given integers, and x is an unknown. It is nat-
urally an interesting question how far the theory of algebraic equations
applies to algebraic congruences, and in fact the study of algebraic con-
gruences constitutes (in various forms) an important part of the theory of
numbers.

If n, the degree of the congruence, is 1, (10) reduces to a1x + a0 ≡
0 (mod m), which is a linear congruence of the kind considered in §2.

If a number x0 satisfies an algebraic congruence to the modulus m, then
so does any number x which is congruent to x0 (mod m). Hence two con-
gruent solutions can be considered as the same, and in counting the number
of solutions of a congruence, we count the number in some complete set of
residues (mod m), for example in the set 0, 1, . . . , m − 1. The congruence
x3 ≡ 8 (mod 13) is satisfied when x ≡ 2 or 5 or 6 (mod 13), and not
otherwise, and therefore has three solutions.

We begin by establishing an important principle concerning algebraic
congruences. This is that in order to determine the number of solutions of
such a congruence, it suffices to treat the case when the modulus is a power
of a prime.

To see why this is so, let us suppose that the modulus m can be factorized
as m1m2, where m1 and m2 are relatively prime. An algebraic congruence

f (x) ≡ 0 (mod m) (11)

is satisfied by a number x if and only if both the congruences

f (x) ≡ 0 (mod m1) and f (x) ≡ 0 (mod m2) (12)

are satisfied. If either of these is insoluble, then the given congruence is
insoluble. If both these are soluble, denote the solutions of the former by

x ≡ ξ1, x ≡ ξ2, . . . (mod m1)
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and those of the latter by

x ≡ η1, x ≡ η2, . . . (mod m2).

Each solution of (11) corresponds to some one of the ξ ’s and some one of
the η’s. Conversely, if we select one of the ξ ’s, say ξi , and one of the η’s,
say η j , the simultaneous congruences

x ≡ ξi (mod m1) and x ≡ η j (mod m2)

are equivalent, as we saw in the last section, to exactly one congruence
to the modulus m. It follows that if N (m) denotes the number of solu-
tions of the congruence (11), and N (m1) and N (m2) denote the numbers
of solutions of the two congruences (12), then

N (m) = N (m1)N (m2).

In other words, N (m) is a multiplicative function of m. If m is factorized
into prime powers in the usual form, then

N (m) = N (pa)N (qb) . . . . (13)

That is, if we know the number of solutions of an algebraic congruence
for every prime power modulus we can deduce the number of solutions
for a general modulus by multiplication. In particular, if one of the num-
bers N (pa) is zero for one of the prime powers composing m, then the
congruence is insoluble, as is of course obvious.

A similar result holds for algebraic congruences in more than one
unknown. The number of solutions of a congruence

f (x, y) ≡ 0 (mod m)

in two unknowns (and similarly in any number of unknowns) is again a
multiplicative function of the modulus.

7. Congruences to a prime modulus
There are two reasons why the theory of congruences is largely concerned
with congruences to prime moduli. As we have just seen, it suffices in
determining the number of solutions of a congruence to consider the case
when the modulus is a prime power. It so happens that the behaviour of
a congruence to a prime power modulus pa is often deducible from its
behaviour in the case when the modulus is simply p. Consequently a theory
of congruences to a prime modulus is the first essential.

The second reason lies in the specially simple nature of arithmetic to a
prime modulus, which was already pointed out in §2. In this arithmetic we
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have p elements, represented by the numbers 0, 1, 2, . . . , p − 1, which can
be combined by all the four operations of addition, multiplication, subtrac-
tion and division, apart from division by zero. The first three operations
are carried out as usual, except that the resulting number is brought back
into the set by adding or subtracting the appropriate multiple of p; the last
operation, that of division, is carried out by solving a linear congruence.

A set of elements (of what nature is immaterial) which can be combined
by operations analogous to the four operations of arithmetic and satisfying
the same laws, and such that all four operations can always be carried out
within the system, except for the operation of division by the zero element,
is called a field. The most familiar example of a field is provided by the
system of rational numbers. But the numbers 0, 1, . . . , p − 1, when com-
bined as explained above, also form a field, and though this is a less familiar
example it is simpler in that the field comprises only a finite number of
elements. The simplest case of all occurs when p = 2. We then have an
arithmetic with two elements. If we call them O and I (corresponding to 0
and 1), the rules of calculation are:

O + O = O, O + I = I, I + O = I, I + I = O;
O × O = O, O × I = O, I × O = O, I × I = I.

One way of describing this arithmetic is to say that it is the degenerate form
of ordinary arithmetic in which every even number has been replaced by O
and every odd number by I .

There are some theorems of elementary algebra which are valid when
the symbols represent elements of any field. One of these is the theorem
that an algebraic equation of degree n has at most n solutions. In particular,
this theorem is valid in the mod p field, where it takes the form that a
congruence of degree n, say

an xn + an−1xn−1 + · · · + a1x + a0 ≡ 0 (mod p), (14)

cannot have more than n solutions. It is to be understood that the highest
coefficient an is not congruent to 0 (mod p) since if it were the term would
be omitted.

This result was first stated and proved by Lagrange in 1768. The proof
is the same as that of the corresponding result for equations. The essential
point is that if x1 is any solution of the congruence, the polynomial on the
left-hand side of the congruence factorizes, one of the factors being the
linear polynomial x − x1. For if x1 satisfies the congruence, we have

an x1
n + an−1x1

n−1 + · · · + a1x1 + a0 ≡ 0 (mod p).
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If we subtract this from (14), each difference of corresponding terms is of
the form ak

(
xk − x1

k
)
, where k is one of the numbers 0, 1, . . . , n. Each

such difference contains the linear polynomial x − x1 as a factor. Thus the
congruence (14) can be written in the form

(x − x1)(bn−1xn−1 + bn−2xn−2 + · · · + b0) ≡ 0 (mod p),

where bn−1, . . . , b0 are certain integers depending on an, . . . a0 and on x1.
Any other solution, say x2, of the congruence (14) must (since p is a prime)
satisfy

bn−1xn−1 + bn−2xn−2 + · · · + b0 ≡ 0 (mod p),

and must give rise to a factor x − x2 of the polynomial here, so that we
then have two linear factors for the original polynomial. This goes on until
either the left-hand side of (14) is completely factorized, or we come to a
congruence which is insoluble. In the former case, the congruence (14) has
exactly n solutions, in the latter case it has fewer than n solutions.

It is essential for Lagrange’s theorem that the modulus should be a prime.
For example, the congruence x2 − 1 ≡ 0 (mod 8), though of degree 2, has
the four solutions x ≡ 1, 3, 5, 7 (mod 8), being in fact satisfied by every
odd number.

We have seen that each solution of an algebraic congruence corresponds
to a linear factor of the polynomial in the congruence. One can consider
more generally the question of factorizing a polynomial, whose coefficients
are integers taken to the modulus p, into other polynomials. It is readily
seen that any polynomial f (x) can be factorized into irreducible polynomi-
als, that is, polynomials which cannot be further factorized. In other words,
there exist irreducible polynomials f1(x), f2(x), . . . , fr (x) such that

f (x) ≡ f1(x) f2(x) . . . fr (x) (mod p)

identically in x . It will, of course, be appreciated that the irreducibility in
question here is one which is relative to the prime p. Any linear poly-
nomials that may occur in the factorization will correspond to solutions
of the congruence f (x) ≡ 0 (mod p), and if there are no linear factors
the congruence is insoluble. Two examples of factorization into irreducible
polynomials are:

x4 + 3x2 + 3 ≡ (x − 1)(x + 1)(x2 − 3) (mod 7),

x4 + 2x3 − x2 − 2x + 2 ≡ (x2 + x + 1)(x2 + x + 2) (mod 5).

The question arises whether such a factorization is unique. There is the
obvious possibility of introducing numerical factors into the polynomials
f1(x), . . . , fr (x); provided their product is ≡ 1 (mod p) they will have no
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effect. It can be proved that apart from this possibility, the factorization is
unique. The theory is very similar to that of the factorization of the nat-
ural numbers into primes. An important part is again played by Euclid’s
algorithm, which is now based on the process for dividing one polynomial
by another with a remainder whose degree is less than the degree of the
divisor. Lack of space precludes us from giving any further account of this
theory.

8. Congruences in several unknowns
A very simple and general theorem, due to Chevalley, establishes the
solubility of a wide class of congruences in several unknowns. Suppose
f (x1, x2, . . . , xn) is any polynomial in n variables, not necessarily homo-
geneous, whose degree is less than n, and in which the constant term is zero.
By the degree is to be understood the highest degree of any individual term,
where the degree of a term such as x1x2

3x3
4 is taken to be 1 + 3 + 4 = 8.

Chevalley’s theorem is that the congruence

f (x1, x2, . . . , xn) ≡ 0 (mod p) (15)

is necessarily soluble, with not all the unknowns congruent to zero.
Before giving the proof, there is one preliminary remark which is

relevant. Under what circumstances can a congruence, say

ϕ(x1, x2, . . . , xn) ≡ 0 (mod p),

hold for all integers x1, x2, . . . , xn? By Fermat’s theorem (§3) we have
x p ≡ x (mod p) for all x . Therefore in any congruence each exponent in
each term can be reduced to one of the values 1, 2, . . . , p−1, by subtracting
a multiple of p − 1, without affecting the significance of the congruence.
After this has been done, the resulting congruence can only hold for all inte-
gers x1, x2, . . . , xn if it reduces to an identity, that is, if all the coefficients
in the new congruence are congruent to zero. For Lagrange’s theorem tells
us that such a congruence, of degree at most p − 1 in x1, can have at most
p − 1 solutions for x1, unless all its coefficients (when it is regarded as a
polynomial in x1) are congruent to zero. These coefficients are polynomials
in x2, . . . , xn of degree at most p − 1 in each unknown, and we can apply
the same argument to these polynomials. The general proposition follows,
on repetition of the argument.

Chevalley’s theorem is proved by deriving from the congruence (15),
which is supposed not to be satisfied except when the unknowns are all
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zero, another congruence which is satisfied for all values of the unknowns.
This is the congruence

1− [ f (x1, . . . , xn)]p−1 ≡
(

1 − x1
p−1

)
. . .

(
1 − xn

p−1
)

(mod p). (16)

If x1, . . . , xn are all congruent to zero, both sides are congruent to 1. If any
one of x1, . . . , xn is not congruent to zero, the left-hand side is congruent to
zero by Fermat’s theorem, and so also is the right-hand side. Hence, on the
hypothesis which is to be disproved, (16) holds for all integers x1, . . . , xn .
By what we have seen above, the relation must reduce to an identity if,
after writing out all the terms, we reduce each exponent of each variable
to one of the values 1, 2, . . . , p − 1 by subtracting a suitable multiple of
p − 1. On the right, no such reduction is possible, since each individual
exponent is already at most p − 1. On the left, reduction may be possible.
But the total degree of each term on the left is less than (p−1)n by hypoth-
esis, and reduction of exponents can only diminish this degree. It now
becomes plain that the relation cannot reduce to an identity, since no term
on the left will be of as high a degree as the term x1

p−1x2
p−1 . . . xn

p−1 on
the right. This proves the theorem. As a simple illustration, we may take the
congruence

x2 + y2 + z2 ≡ 0 (mod p).

The left-hand side is of degree 2 in the 3 variables x, y, z, and has no con-
stant term, so the hypotheses are satisfied. It follows that the congruence
is soluble, with x, y, z not all congruent to zero. This particular result is
useful in connection with the representation of a number as a sum of four
squares (V.4), though when needed for that purpose it can also be easily
proved directly.

9. Congruences covering all numbers
A curious problem is that of finding sets of congruences, to distinct moduli,
such that every number satisfies one at least of the congruences. Such a set
of congruences may be called a covering set. Naturally the modulus 1 must
be excluded. The congruences

x ≡ 0 (mod 2), 0 (mod 3), 1 (mod 4), 1 (mod 6), 11 (mod 12)

constitute a covering set. For the first two cover all numbers except those
congruent to 1 or 5 or 7 or 11 (mod 12). Of these, 1 and 5 are covered by
x ≡ 1 (mod 4), 7 is covered by x ≡ 1 (mod 6), and 11 is covered by the
last congruence.
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Erdős has proposed the problem: given any number N , does a set of cov-
ering congruences exist which uses only moduli greater than N? Probably
this is true, but it is not easy to see how to give a proof. Erdős himself has
given a set which does not use the modulus 2, the moduli being various
factors of 120. Churchhouse has given a set for which the least modulus
is 9; here the moduli are various factors of 604,800. Choi has shown that
there is a set with least modulus 20, and Gibson one with least modulus 25.
The question whether or not there is a set with every modulus odd is still
open.

Notes
§3. The usual phrase is that ‘x belongs to the exponent l with respect to
the modulus m’, but this seems unnecessarily cumbrous.

§4. The number [α, β], introduced to represent the solution of the
simultaneous congruences (7), can be expressed by a formula as follows.
Determine a′ and b′ so that aa′ ≡ 1 (mod b) and bb′ ≡ 1 (mod a); then
[α, β] ≡ aa′β + bb′α (mod ab).

§5. Wilson’s theorem can be generalized to the case of a composite
modulus; see Hardy and Wright, §8.8, or Ore, p. 266.

The usual proof that Sk ≡ 0 (mod p) employs a primitive root, as
in Hardy and Wright, §7.10, but more direct proofs can also be given.
For the extensive literature on the symmetrical functions of the numbers
1, 2, . . . , p − 1, see Dickson’s History, vol. 1, ch. 3.

§7. The complete determination of all types of field consisting of a finite
number of elements was made by the American mathematician E. H. Moore
in 1893. The number of elements is necessarily a prime power pn , and the
field is either the mod p field (when n = 1) or is an algebraic extension
of it. For accounts of the theory, see Dickson, Linear Groups (Teubner),
ch. 1, or MacDuffee, Introduction to Abstract Algebra (Wiley), pp. 174–80,
or Birkhoff and MacLane, Survey of Modern Algebra (Macmillan, New
York), pp. 428–31. For some tables of irreducible polynomials for the
first four prime moduli, see R. Church, Annals of Math., 36 (1935),
198–209.

§8. For Chevalley’s theorem, see Abhandlungen Math. Seminar
Hamburg 11 (1936), 73–5. Chevalley proved more generally that several
simultaneous congruences, which are satisfied when all the variables are 0,
will have another solution provided the sum of their degrees is less than the
number of variables. In the paper which follows Chevalley’s, E. Warning
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proved that under the same conditions the total number of solutions is
divisible by p.

§9. For further work on the subject of covering congruences, see Guy,
section F.13. Choi’s construction is in Math. Comput., 25 (1971), 885–95,
and Gibson’s is in his Ph.D. thesis (U. Illinois at Urbana-Champaign,
2006). For uses of Choi’s construction, see ♠II:1.
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Q U A D R A T I C R E S I D U E S

1. Primitive roots
In this chapter we shall investigate algebraic congruences to a prime mod-
ulus, which contain two terms only, that is, one term besides the constant
term. Such a binomial congruence can be written in the form

axk ≡ b (mod p)

where k, the degree of the congruence, is a positive integer. If a′ denotes the
reciprocal of a to the modulus p, so that aa′ ≡ 1 (mod p), and we multiply
the above congruence throughout by a′, we obtain

xk ≡ a′b (mod p).

We can therefore reduce any binomial congruence to one of the simpler
form

xk ≡ c (mod p). (1)

A number c for which the congruence (1) is soluble is called a kth power
residue to the modulus p, and similarly if the congruence is insoluble c
is said to be a kth power non-residue. (It is convenient, however, not to
classify numbers c that are congruent to 0 (mod p) as kth power residues,
even though the congruence is then soluble.) If k is 2 we have quadratic
residues and non-residues, and as the theory can be carried further in this
case than in the general case we shall later in the chapter consider mainly
this possibility.

49
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To illustrate the definition, take p to be 13 and k to be 2 or 3. The values
of x2 and x3 to the modulus 13 are given below:

x : 1 2 3 4 5 6 7 8 9 10 11 12
x2: 1 4 9 3 12 10 10 12 3 9 4 1
x3: 1 8 1 12 8 8 5 5 1 12 5 12.

Thus, to the modulus 13, the numbers 1, 3, 4, 9, 10, 12 are quadratic
residues and the remaining numbers, 2, 5, 6, 7, 8, 11, are quadratic non-
residues. The numbers 1, 5, 8, 12 are cubic residues, and the remaining
numbers, 2, 3, 4, 6, 7, 9, 10, 11, are cubic non-residues.

The theory of kth power residues and non-residues is bound up with the
concept of the order of a number to the modulus p, which was defined in
II.3. The order of any number a, supposed not to be congruent to 0, is the
least natural number l for which al ≡ 1 (mod p). We proved that l is always
a factor of p − 1, and in an example with p = 11 we found that the order
of the number 2 was actually equal to p − 1. Euler was the first to state that
for any prime p there is some number whose order is equal to p −1, and he
called such a number a primitive root for the prime p. But his proof of the
existence of a primitive root was defective, and the first satisfactory proof
was that of Legendre. This proof we now proceed to give.

The first step in the proof is to establish a general principle concerning
the order of the product of two numbers. If a number a has the order l, and
a number b has the order k, then the number ab has the order lk, provided
that l and k are relatively prime. Certainly the number ab, when raised to
the power lk, gives 1 (mod p), because

(ab)lk ≡ (al)k(bk)l ≡ 1(mod p),

since al ≡1 and bk ≡1. This fact does not depend on l and k being relatively
prime, but it shows only that the order of ab is a divisor of lk. There is still
the possibility that it might be a proper divisor of lk, and this we have to
exclude. Suppose the order of ab is l1k1, where l1 is a divisor of l and k1 is
a divisor of k. Then

al1k1 bl1k1 ≡ 1(mod p).

Raise both sides of this congruence to the power l2, where l1l2 = l. Since
al ≡ 1, we obtain blk1 ≡ 1. This implies that lk1 is a multiple of the order of
b, which is k. Since l is relatively prime to k it follows that k1 is a multiple
of k, and being also a divisor of k it must equal k. Similarly l1 = l, and so
the order of ab is exactly lk.
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The above principle allows one to construct a primitive root step by step.
Let p − 1 be factorized into prime powers, say as

p − 1 = q1
a1 q2

a2 . . . . (2)

If we can find a number x1 whose order is q1
a1 , and a number x2 whose

order is q2
a2 , and so on, then by repeated application of the principle the

product of all these numbers will have the order p − 1, and will be a prim-
itive root. Hence it remains only to prove that if qa is one of the prime
powers composing p − 1, then there is some number whose order (mod p)
is exactly qa .

A number whose order is qa must satisfy the congruence

xqa ≡ 1(mod p). (3)

But a number which satisfies this congruence need not have the order qa ;
its order may be any factor of qa , that is, it may be 1 or q or q2, and so on
up to qa−1. However, if the order is not qa , it will be a factor of qa−1, and
the number will satisfy the congruence

xqa−1 ≡ 1(mod p). (4)

Therefore we need a number which satisfies the congruence (3) but does
not satisfy the congruence (4).

We can prove that there is such a number by finding out how many
solutions these congruences have. Certainly, by Lagrange’s theorem, the
congruence (3) has at most qa solutions, and the congruence (4) has at most
qa−1 solutions. This in itself would not help us, but fortunately we can
prove that these congruences have exactly qa and qa−1 solutions. It will
follow that there are qa − qa−1 numbers which satisfy (3) and not (4), and
since qa > qa−1 this will give what we want, and will complete the proof.

We consider, more generally, the congruence

xd − 1 ≡ 0(mod p),

where d is any factor of p − 1. By Lagrange’s theorem, this congruence
has at most d solutions, and we shall prove that it has exactly d solutions.
The proof depends on the fact that the polynomial xd − 1 is a factor of the
polynomial x p−1 − 1. If we write, for the moment, y in place of xd , and
put p − 1 = de, then

x p−1 − 1 = ye − 1 = (y − 1)(ye−1 + ye−2 + · · · + 1).

Since y − 1 = xd − 1, this gives an identity of the form

x p−1 − 1 = (xd − 1) f (x),



52 The Higher Arithmetic

where f (x) is a certain polynomial in x of degree p − 1 − d. Now the
congruence

x p−1 − 1 ≡ 0(mod p)

has p − 1 solutions, being satisfied by all x not congruent to 0 (II.3). All
the p − 1 solutions must satisfy

either xd − 1 ≡ 0(mod p) or f (x) ≡ 0(mod p).

The latter of these has at most p − 1 − d solutions, by Lagrange’s theorem,
hence the former must have at least d solutions, and therefore has exactly
d solutions. Taking d to be qa or qa−1, we obtain what was required in the
previous proof.

We illustrate the proof by taking p = 19. Here p − 1 = 2 × 32. We
require first a number x1 of order 2, that is a number which satisfies x2 ≡
1, x �≡ 1. Obviously x1 must be −1, or (what is the same) 18. We require
secondly a number x2 of order 9, that is a number which satisfies x9 ≡ 1
and x3 �≡ 1. It will be found that the solutions of x9 ≡ 1 (mod 19) are 1,
4, 5, 6, 7, 9, 11, 16, 17. Of these, the numbers 1, 7, 11 must be ruled out
because they satisfy x3 ≡ 1. This leaves six choices for x2, corresponding
to qa − qa−1 choices in the general case. Multiplying by x1 we obtain the
primitive roots −4,−5,−6, −9,−16,−17, or, what is the same, 2, 3, 10,
13, 14, 15. To verify that 2 is a primitive root, we note that the successive
powers of 2 to the modulus 19 are 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3,
6, 12, 5, 10, 1, and the first of these which is 1 is the eighteenth. The above
method is not a very practical one for finding a primitive root; it is much
easier to proceed by trying the numbers 2, 3, . . . in succession. But that, of
course, would not lead to any general proof of the existence of a primitive
root.

It will be seen that the construction in the general proof gives possibly

(q1
a1 − q1

a1−1)(q2
a2 − q2

a2−1) . . .

primitive roots, by multiplying together all possible values for x1, x2, . . . .

The primitive roots found in this way are in fact all different, and constitute
all the primitive roots, but we shall not stop to prove this.∗ The number of
primitive roots is given by the above product, whose value is φ(p − 1), by
(8) of Chapter II. When p =19, for instance, there are φ(18)=6 primitive
roots.

∗ See exercise 3.10.
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2. Indices
The existence of a primitive root is not only of theoretical interest, but pro-
vides one with a new tool for use in calculations to a prime modulus p. This
tool is very similar to that provided by logarithms in ordinary arithmetic.

Let g be a primitive root mod p. Then the numbers

g, g2, g3, . . . , g p−1 (≡ 1) (5)

are all incongruent, since g p−1 is the first power of g which is congruent
to 1. Also none of these numbers is ≡ 0. Hence they must be congruent to
the numbers 1, 2, . . . , p − 1 in some order. The example in the last section
illustrates this; the powers of 2 from 2 itself up to 218(≡ 1) are congruent
to 1, 2, . . . , 18 to the modulus 19, in another order.

Any number not congruent to 0 (mod p) is therefore congruent to one
of the numbers in the series (5). If a ≡ gα (mod p), we say that α is the
index of a (relative to the primitive root g). When a is given, this defines
α uniquely as one of the numbers 1, 2, . . . , p − 1. But there is no need to
restrict α to these values. If α′ is any other number for which a ≡ gα′

, we
can reduce α′ to one of the set just mentioned by adding or subtracting a
multiple of p − 1, and this does not alter gα′

since g p−1 ≡ 1. The reduced
value of α′ must be α, and therefore

α′ ≡ α(mod p − 1).

If p = 19 and g = 2, the indices of the numbers 1, . . . , 18 are:

number: 1 2 3 4 5 6 7 8 9
index: 18 1 13 2 16 14 6 3 8

number: 10 11 12 13 14 15 16 17 18
index: 17 12 15 5 7 11 4 10 9

To construct such a table, we place the index 1 under the primitive root itself
(2 here), then the index 2 under the square of the primitive root (4 here)
and so on, calculating the powers of the primitive root to the modulus p
(19 here). A table of indices for all primes less than 1,000 was published
by Jacobi in 1839, under the title Canon Arithmeticus.

By the use of indices one can reduce the operation of multiplication
(mod p) to the operation of addition, just as by the use of logarithms one
can reduce ordinary multiplication (provided only positive numbers are
involved) to addition. If a and b are two given numbers, and α and β are
their indices, then a ≡ gα and b ≡ gβ , whence ab ≡ gα+β , all these con-
gruences being to the modulus p. It follows that the index of the product
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ab is either equal to α + β or differs from it by a multiple of p − 1. Thus
to multiply two numbers together, one looks up their indices in the table,
adds them, then brings the result to lie in the range 1, 2, . . . , p − 1 by sub-
tracting a multiple of p − 1 if necessary; then looks up the number having
this index. For example, to find the value of 10 × 12 (mod 19), we see that
the indices of these numbers in the above table are 17 and 15 respectively;
the sum is 32, which is equivalent to 14 on subtracting 18 (= p − 1); the
number whose index is 14 is 6, and therefore this is the answer. One can
carry out division (mod p) in the same way as multiplication, except that
one subtracts the indices instead of adding them.

The use of indices enables us to investigate the structure of the kth
power residues and non-residues (mod p). We wish to decide whether the
congruence

xk ≡ a(mod p) (6)

is soluble or insoluble. If the index of x is ξ , the index of xk is kξ , or
differs from this by a multiple of p − 1. Hence the above congruence is
equivalent to

kξ ≡ α(mod p − 1), (7)

where α is the index of a. This is a linear congruence for the unknown ξ to
the modulus p − 1.

If k is relatively prime to p − 1 the position is very simple: the linear
congruence (7) has a unique solution for ξ , and the congruence (6) there-
fore has a unique solution for x . Every number is a kth power residue, and
in exactly one way. In other words, if k is relatively prime to p − 1, the
numbers

1k , 2k , 3k , . . . , (p − 1)k

are congruent to the numbers 1, 2, . . . , p − 1, in some other order. For
example, if p is 19 and k is 5, the numbers 15, 25, . . . , 185 are congruent
(mod 19) to

1, 13, 15, 17, 9, 5, 11, 12, 16, 3, 7, 8, 14, 10, 2, 4, 6, 18.

The position is quite different if k has a factor in common with p − 1.
Let us first look at a particular case, say p = 19 and k = 3. The congruence
(7) is now

3ξ ≡ α(mod 18).

This congruence is obviously insoluble unless α is divisible by 3. If α is
divisible by 3, say α = 3β, the last congruence becomes ξ ≡ β (mod 6).
This gives one value for ξ to the modulus 6, but three values to the modulus
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18, which is the appropriate modulus for ξ , namely β, β + 6, β + 12 if β

is one solution. Thus, if α is divisible by 3, the number a is congruent to
three distinct cubes. Looking at the table of indices to the modulus 19, we
see that the numbers whose indices are divisible by 3 are 1, 7, 8, 11, 12, 18.
If a is one of these numbers, the congruence x3 ≡ a (mod p) has exactly
three solutions. These numbers are the cubic residues (mod 19), and the
remaining 12 numbers are cubic non-residues.

The general situation can be investigated in the same way. Let K denote
the highest common factor of k and p − 1. The congruence (7) is insol-
uble for ξ if α is not a multiple of K , since k and the modulus are both
divisible by K . On the other hand, if α is a multiple of K the congru-
ence (7) is soluble for ξ , and has exactly K solutions. Thus the kth power
residues (mod p) consist of just those numbers whose indices are divis-
ible by K , the highest common factor of k and p − 1. If a is a kth
power residue, the congruence (6) has exactly K solutions. The number
of kth power residues is p−1

K , since the possible indices are the num-
bers 1, 2, . . . , p − 1, and a proportion 1

K of these numbers are divisible
by K .

The simplest case is k = 2, when we are concerned with quadratic
residues and non-residues. If we suppose that p > 2 then p − 1 is even,
and the highest common factor of 2 and p − 1 is itself 2. The conclu-
sion in this case is that the quadratic residues are the numbers with even
indices and the quadratic non-residues are the numbers with odd indices.
There are equal numbers of them, namely 1

2 (p − 1) of each. If a is any
quadratic residue, the theory tells us that the congruence x2 ≡ a (mod p)
has exactly two solutions. It is plain that if x ≡ x1 is one solution, the other
is x ≡ −x1.

If p = 19, the quadratic residues are

1, 4, 5, 6, 7, 9, 11, 16, 17

and the quadratic non-residues are

2, 3, 8, 10, 12, 13, 14, 15, 18.

3. Quadratic residues
For the rest of this chapter, we shall restrict ourselves to the theory of
quadratic residues and non-residues, a theory which can be carried con-
siderably further than the general theory of kth power residues. We shall
suppose throughout that p is a prime other than 2.
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As we have just seen, half the numbers 1, 2, . . . , p − 1 are quadratic
residues and the other half are quadratic non-residues. The quadratic
residues are congruent to the numbers

12, 22, . . . ,

[
1

2
(p − 1)

]2

;

for the remaining numbers, from 1
2 (p + 1) to p − 1, give the same results

on squaring, since (p − x)2 ≡ x2 (mod p).
The quadratic residues and non-residues have a simple multiplicative

property; the product of two residues or of two non-residues is a residue,
whereas the product of a residue and a non-residue is a non-residue. This
follows at once from the fact that the residues have even indices and the
non-residues have odd indices: the sum of two even indices or of two odd
indices is even, whereas the sum of an even and an odd index is odd. Thus,
for example, in the lists of quadratic residues and non-residues for the prime
19, at the end of §2, the product of any two numbers taken from the same
list is congruent to a number in the first list, and the product of any two
numbers taken from different lists is congruent to one in the second list.

It was doubtless this multiplicative property which suggested to
Legendre the introduction of a symbol by which to express the quadratic
character of a number a with respect to a prime p. Legendre’s symbol is
defined as follows:(

a

p

)
=

{
1 if a is a quadratic residue (mod p),

−1 if a is a quadratic non-residue (mod p).

For convenience of printing we shall also use the form (a|p). Another way
of expressing the definition is that (a|p) = (−1)α , where α is the index of
a. The multiplicative property takes the form(

ab

p

)
=

(
a

p

) (
b

p

)
.

Every number a (not congruent to 0) satisfies Fermat’s congruence
a p−1 −1 ≡ 0 (mod p). Since p −1 is even, this congruence factorizes, and
if we put p − 1 = 2P we can say that every number satisfies

either a P ≡ 1 or a P ≡ −1(mod p).

Euler was apparently the first to prove that the distinction between these
two possibilities corresponds exactly to the distinction between a being a
quadratic residue or non-residue. From our present point of view, the proof
is immediate. If α is the index of a, then a P ≡ gαP (mod p). If α is even,
αP is a multiple of p − 1, and gαP ≡ 1. If α is odd, αP = 1

2α(p − 1)
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is not a multiple of p − 1, and gαP cannot be congruent to 1, and so must
be congruent to −1. The result is called Euler’s criterion for the quadratic
character of a. In terms of Legendre’s symbol, it takes the form(

a

p

)
≡ a P (mod p), where P = 1

2
(p − 1). (8)

Euler’s criterion is not in itself of great use in investigating the properties
of quadratic residues and non-residues, but it does give at once the rule
for the quadratic character of the number −1. The value of (−1)P will be
1 or −1 according as P is even or odd, that is, according as p is of the form
4k + 1 or 4k + 3. Hence −1 is a quadratic residue for primes of the form
4k + 1, and a quadratic non-residue for primes of the form 4k + 3. This
means that for a prime of the form 4k + 1, the lists of quadratic residues
and non-residues are both symmetrical, that is, the character of p − a is the
same as that of a. For p − a ≡ −a, and (−a|p) = (−1|p)(a|p) = (a|p).
On the other hand, if p is of the form 4k + 3, the character of p − a is
opposite to that of a, as may be seen in the case p = 19 (at the end of §2).

The fact that the congruence x2 + 1 ≡ 0(mod p) is soluble for primes
of the form 4k + 1 and insoluble for primes of the form 4k + 3 was known
to Fermat. It seems to have been first proved by Euler, after repeated fail-
ures, in about 1749, whereas he did not discover his criterion until 1755.
Lagrange, in 1773, pointed out that there is a very simple way of giving
explicitly the solutions of the congruence when it is soluble. If p = 4k + 1,
Wilson’s theorem (II.5) states that

1 × 2 × 3 × · · · × 4k ≡ −1(mod p).

Now 4k ≡ −1, 4k−1 ≡ −2, and so on, down to 2k+1 ≡ −2k. Substituting
these values, we get

(1 × 2 × 3 × · · · × 2k)2 ≡ −1(mod p),

since the number of negative signs introduced is 2k, and is even. Hence
the solutions of the congruence x2 ≡ −1(mod p) are x ≡ ±(2k)!, where
p = 4k + 1. For example, if p = 13, so that k = 3, the solutions are

x ≡ ±6! ≡ ±720 ≡ ±5(mod 13).

Naturally the construction is not a useful one for numerical work, but it
is always interesting to have an explicit construction to supplement an
existence proof.
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4. Gauss’s lemma
The deeper properties of quadratic residues and non-residues, especially
those associated with the law of reciprocity (§5), were discovered empiri-
cally, and the first proofs were by very complicated and indirect methods. It
was not until 1808 (seven years after the publication of his Disquisitiones)
that Gauss discovered a simple lemma, which provides the key to a simple
and elementary proof of the law of reciprocity.

Gauss’s lemma gives a rule for the quadratic character of a number a (not
congruent to 0) with respect to a prime p. As always, we suppose p > 2,
and put P = 1

2 (p − 1). The rule is to form the numbers

a, 2a, 3a, . . . , Pa, (9)

and reduce each of these to lie between − 1
2 p and 1

2 p, by subtracting the
appropriate multiple of p from each one. Let v be the number of negative
numbers in the resulting set of numbers. Then (a|p) = (−1)v , that is, a is a
quadratic residue if v is even, and a quadratic non-residue if v is odd. The
proof is quite simple. The rule requires us to express each of the numbers
in the set (9) as congruent to one of the numbers ±1,±2, . . . ,±P , as we
obviously can. When we do this, no number in the set 1, 2, . . . , P occurs
more than once, either with positive or with negative sign. For if the same
number occurred twice with the same sign, it would mean that two of the
numbers in the set (9) were congruent to one another (mod p), which is not
the case. If the same number occurred twice with opposite signs, it would
mean that the sum of two numbers in the set (9) was congruent to zero
(mod p), which is also not the case. So the resulting set consists of the
numbers ±1, ±2, . . . , ±P , with a certain definite sign prefixed to each of
them. Multiplying the two sets, we get

(a)(2a)(3a) . . . (Pa) ≡ (±1)(±2)(±3) . . . (±P)(mod p).

On cancelling 2, 3, . . . , P it follows that

a P ≡ (±1)(±1) . . . (±1) = (−1)v

where v is the number of negative signs. This proves the result, by Euler’s
criterion (§3).

To illustrate Gauss’s lemma numerically, take p = 19 and a = 5. Here
P = 9, and we have to reduce the numbers 5, 10, 15, . . . , 45 so that they
lie between −9 and 9 inclusive. The resulting numbers are

5, −9,−4, 1, 6,−8,−3, 2, 7.

As in the general theory, these consist of the numbers from 1 to 9, each
with a particular sign. The number of negative signs is 4, and since this is
even, 5 is a quadratic residue (mod 19), or symbolically: (5|19) = 1.
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Gauss’s lemma enables one to give a simple rule for the quadratic
character of 2. When a = 2, the series of numbers in (9) is

2, 4, 6, . . . , 2P,

and 2P = p − 1. We have to determine how many of the numbers in this
set, when reduced to lie between − 1

2 p and 1
2 p, become negative. Since all

the numbers are between 0 and p, those which become negative are those
greater than 1

2 p. So we have merely to find how many numbers of the form
2x satisfy 1

2 p < 2x < p; in other words, how many integers x there are
which satisfy 1

4 p < x < 1
2 p. Put p = 8k + r , where r is 1 or 3 or 5 or 7.

The condition is

2k + 1

4
r < x < 4k + 1

2
r,

and we wish to know whether the number of integers x satisfying this con-
dition is even or odd. Now the parity of the number will not be changed if
we remove the even numbers 2k and 4k from the two sides of the inequal-
ity. Hence it is sufficient to consider the inequality 1

4r < x < 1
2r . This

inequality has no solution if r is 1, one solution if r is 3 or 5, two solutions
if r is 7. Hence 2 is a quadratic residue in the first and last cases, and a non-
residue in the two middle cases. So the rule is that 2 is a quadratic residue
for primes of the form 8k ± 1, and a quadratic non-residue for primes of
the form 8k ± 3. This fact was known to Fermat, but was first proved, after
great difficulty and in a very complicated way, by Euler and Lagrange.

It will be instructive to work out another rule of a similar kind by Gauss’s
lemma, as the same method will be used in the next section to prove the
law of reciprocity. Let us find for what primes 3 is a residue or non-residue.
The numbers 3, 6, 9, . . . , 3P are all less than 3

2 p, and consequently the
only ones which become negative, when reduced to lie between − 1

2 p and
1
2 p, are those between 1

2 p and p. We require the number of numbers x for
which 1

2 p < 3x < p, that is 1
6 p < x < 1

3 p. Put p = 12k + r , where r is 1
or 5 or 7 or 11. (These are the only possibilities for a prime, except when p
is 2 or 3, which is excluded.) Then the inequality is 2k+ 1

6r < x < 4k+ 1
3r .

Again we can ignore the even numbers 2k and 4k, and we are left with
1
6r < x < 1

3r . This has no solution if r is 1, one solution if r is 5 or 7, two
solutions if r is 11. Hence 3 is a quadratic residue for primes of the form
12k ± 1, and a quadratic non-residue for primes of the form 12k ± 5.

5. The law of reciprocity
We have just proved that the quadratic character of 2 (mod p) depends only
on the remainder r when p is expressed in the form 8k + r , and that the
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quadratic character of 3 (mod p) depends only on the remainder r ′ when p
is expressed in the form 12k + r ′. Moreover, in the former case the result
is the same for r and for 8 − r , and in the latter case it is the same for r ′
and 12 − r ′.

On the basis of extensive numerical evidence, Euler came to the conclu-
sion that a similar state of affairs holds generally, though he was unable to
prove it. Let a be any natural number, and express p as 4ak + r , where 0 <

r < 4a. Then Euler conjectured that the quadratic character of a (mod p)

is the same for all primes p for which r has the same value, and moreover is
the same for r and for 4a−r . This result is equivalent to the law of quadratic
reciprocity, which we shall formulate later in this section. Legendre gave
an incomplete proof, and the first complete proof (a very difficult one) was
that of Gauss, who discovered the law for himself at the age of nineteen.

It is possible to prove Euler’s conjecture by using Gauss’s lemma and
following the same line of argument as we used before when a was 2 or 3.
We have to consider how many of the numbers

a, 2a, 3a, . . . , Pa, where P = 1

2
(p − 1),

lie between 1
2 p and p, or between 3

2 p and 2p, and so on. Since Pa is the
largest multiple of a that is less than 1

2 pa, the last interval in the series
which we have to consider is the interval from (b − 1

2 )p to bp, where b

is 1
2 a or 1

2 (a − 1), whichever is an integer. Thus we have to consider how
many multiples of a lie in the intervals(

1

2
p, p

)
,

(
3

2
p, 2p

)
, . . . ,

((
b − 1

2

)
p, bp

)
.

None of the numbers occurring here is itself a multiple of a, and so no
question arises as to whether any of the endpoints of the intervals is to be
counted or not.

Dividing throughout by a, we see that the number in question is the total
number of integers in all the intervals( p

2a
,

p

a

)
,

(
3p

2a
,

2p

a

)
, . . . ,

(
(2b − 1)p

2a
,

bp

a

)
.

Now write p = 4ak + r . Since the denominators are all a or 2a, we can
see without any calculation that the effect of replacing p by 4ak + r is
the same as that of replacing p by r , except that certain even numbers are
added to the endpoints of the various intervals. As before, we can ignore
these even numbers. It follows that if v is the total number of integers in all
the intervals
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2a
,

r

a

)
,

(
3r

2a
,

2r

a

)
, . . . ,

(
(2b − 1)r

2a
,

br

a

)
(10)

then a is a quadratic residue or non-residue (mod p) according as v is even
or odd. The number v depends only on r , and not on the particular prime p
which leaves the remainder r when divided by 4a.

This proves the main part of Euler’s conjecture. Now consider the effect
of changing r into 4a − r . This changes the series of intervals (10) into the
series (

2 − r

2a
, 4 − r

a

)
,

(
6 − 3r

2a
, 8 − 2r

a

)
, . . . (11)(

4b − 2 − (2b − 1)r

2a
, 4b − br

a

)
.

If v′ denotes the total number of integers in these intervals, we have to prove
that v and v′ are of the same parity. In fact, a little consideration shows that
the interval

(
2 − r

2a , 4 − r
a

)
is equivalent to the interval

( r
2a , r

a

)
, as far as

the parity of the number of integers in it is concerned. For if we subtract
both numbers from 4, the former interval becomes

( r
a , 2 + r

2a

)
. Together

with the latter interval
( r

2a , r
a

)
, this just makes up an interval of length 2,

and such an interval contains exactly 2 integers. A similar consideration
applies to the other intervals in the two series (10) and (11), and it follows
that v + v′ is even, which proves the result.

The law of quadratic reciprocity was first clearly formulated by Legendre
in 1785. It relates to two different primes p and q, and gives a rule for
the quadratic character of p (mod q) in terms of the quadratic character
of q (mod p). The rule is that the characters are the same unless p and q
are both of the form 4k + 3, in which case they are opposite. This can be
expressed symbolically by the formula(

p

q

) (
q

p

)
= (−1)

p−1
2 · q−1

2 . (12)

The exponent of −1 on the right is even unless p and q are both of the form
4k + 3, in which case it is odd. We shall deduce the law of reciprocity from
the results just proved about the quadratic character of a fixed number a to
various prime moduli.

Suppose first that p ≡ q (mod 4). We can suppose without loss of gen-
erality that p > q , and we write p − q = 4a. Then, since p = 4a + q, we
have (

p

q

)
=

(
4a + q

q

)
=

(
4a

q

)
=

(
a

q

)
.
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Similarly (
q

p

)
=

(
p − 4a

p

)
=

(−4a

p

)
=

(−1

p

) (
a

p

)
.

Now ( a
p ) and ( a

q ) are the same, because p and q leave the same remainder
on division by 4a. Hence (

p

q

) (
q

p

)
=

(−1

p

)
,

and this is 1 if p and q are both of the form 4k + 1, and −1 if they are both
of the form 4k + 3.

Suppose next that p �≡ q (mod 4); in this case p ≡ −q (mod 4). Put
p + q = 4a. Then, in the same way as before, we obtain(

p

q

)
=

(
4a − q

q

)
=

(
4a

q

)
=

(
a

q

)
,

and similarly
(

q
p

)
=

(
a
p

)
. Again

(
a
p

)
and

(
a
q

)
are the same, since p and

q leave opposite remainders on division by 4a. This completes the proof of
the law of reciprocity.

The law of quadratic reciprocity is one of the most famous theorems in
the whole of the theory of numbers. It reveals a simple and striking relation-
ship between the solubility of the congruences x2 ≡ q (mod p) and x2 ≡ p
(mod q), a relationship which is by no means obvious. The desire to find
what lies behind the law has been an important factor in the work of many
mathematicians, and has led to far-reaching discoveries. The first rigorous
proof, given by Gauss in his Disquisitiones, was by induction on the two
primes p and q, and such a proof is necessarily both difficult and unsatisfy-
ing. Gauss himself gave altogether seven proofs, based on widely different
methods and exhibiting the connection between the law of reciprocity and
various other arithmetical theories.

The law of reciprocity enables one to calculate the value of (a|p), in
any numerical case, without referring to the solubility of congruences. As
an example, we calculate (34|97). The first step is to factorize 34 as 2 ×
17. Since 97 is a prime of the form 8k + 1, we have (2|97) = 1, and so
(34|97) = (17|97). Since 17 and 97 are primes, not both of the form 4k +3,
the law of reciprocity tells us that (17|97) = (97|17), or (12|17) since
97 ≡ 12 (mod 17). Now (12|17) = (3|17) = (17|3), on applying the law
of quadratic reciprocity again. Since 17 ≡ −1 (mod 3), the value of the
symbol is (−1|3), or −1.
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There is no such simple law as that of quadratic reciprocity for cubic
or higher power residues. But we may mention briefly one result of Gauss
concerning fourth power residues. First we must recall that, by the results
of §1, the theory of fourth power residues is significant only for primes of
the form 4n + 1. For if p is of the form 4n + 3, the highest common factor
of 4 and p − 1 is 2, that is K = 2 in the notation of §1, and therefore in this
case the fourth power residues are just the same as the quadratic residues.
But if p is of the form 4n + 1, half the quadratic residues are fourth power
residues (namely those whose indices are divisible by 4), and the other half
together with all the quadratic non-residues are fourth power non-residues.
The result of Gauss is that the number 2 is a fourth power residue (mod p)
if and only if the prime p is representable as x2 +64y2. It may be remarked
that the prime p, being of the form 4n + 1, is necessarily representable as
a2 + b2 (as we shall prove in Chapter V), and obviously one of a and b
must be odd and the other even. So Gauss’s condition is that the even one
of a and b must be divisible by 8. For example, 2 is a fourth power residue
(mod 73), since 73 = 32 + 64.

6. The distribution of the quadratic residues
We now return to questions connected with the quadratic residues and non-
residues to a single prime modulus p. We know that half of the numbers

1, 2, . . . , p − 1

are quadratic residues, and the other half non-residues. A few trials will
soon suggest that if p is a large prime, the residues and non-residues have
a distribution which is fairly random. It is, of course, subject to the laws
we know; for example the multiplicative law and the fact that any perfect
square is always a quadratic residue.

There are various questions which may be proposed to test the random
character of the distribution. We may ask, for example, how the residues
and non-residues are distributed in a sub-interval of the interval from 0 to
p. Suppose that α and β are two fixed proper fractions; is it true when
p is large that about half the numbers between αp and βp are quadratic
residues? If so, we may express this by saying that the quadratic residues
are equally distributed. This proposition is in fact true, but there does not
seem to be any very elementary proof of it.

An easier question, which was answered by Gauss, concerns the charac-
ters of consecutive numbers. If n and n + 1 are two consecutive numbers
in the series 1, 2, . . . , p − 1, how often does it happen that they have
prescribed characters? The possible characters for a pair of numbers are
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R R, RN , N R, N N . If we think that the quadratic residues and non-
residues are distributed randomly, we may expect that each of the four types
will occur about equally often. This is in fact the case, as is not difficult
to prove. Let us denote by (R R), and so on, the number of pairs, n, n + 1
with prescribed characters. Plainly (R R)+ (RN ) is the number of pairs for
which n is a quadratic residue. Here n takes the values 1, 2, . . . , p − 2. The
total number of quadratic residues among 1, 2, . . . , p − 1 is 1

2 (p − 1), and

the character of the number p − 1, or −1, is (−1)
1
2 (p − 1). Hence

(R R) + (RN ) = 1

2
(p − 2 − ε), (13)

where ε = (−1)
1
2 (p − 1). Similarly we find that

(N R) + (N N ) =1

2
(p − 2 + ε), (14)

(R R) + (N R) =1

2
(p − 1) − 1, (15)

(RN ) + (N N ) =1

2
(p − 1). (16)

These are four relations for the four unknowns, but they are not indepen-
dent, because on adding the first two we get the same result as on adding
the last two. So we need another relation in order to determine the four
unknowns.

Consider the product of the Legendre symbols (n|p) and (n + 1|p). This
is +1 in the cases R R and N N , and −1 in the cases RN and N R. Hence

(R R) + (N N ) − (RN ) − (N R)

is equal to the sum of all the Legendre symbols(
n(n + 1)

p

)
,

where n takes the values 1, 2, . . . , p − 2. Any integer n in this set has a
reciprocal (mod p), which we shall denote by m. Now n(n+1) ≡ n2(1+m)

(mod p), hence (
n(n + 1)

p

)
=

(
1 + m

p

)
.

As n takes the values 1, 2, . . . , p − 2, i.e. all the values from 1 to p − 1
except p − 1, its reciprocal m also takes all values from 1 to p − 1 except
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p−1. Hence 1+m takes all values from 2 to p−1. The sum of the Legendre
symbols of these numbers is(

2

p

)
+

(
3

p

)
+ · · · +

(
p − 1

p

)
.

Now (
1

p

)
+

(
2

p

)
+

(
3

p

)
+ · · · +

(
p − 1

p

)
= 0,

since there are as many residues as non-residues. Hence the sum we are
interested in has the value −(1|p), or −1. Thus

(R R) + (N N ) − (RN ) − (N R) = −1. (17)

This relation, combined by addition and subtraction with the earlier rela-
tions, gives us the values of (R R), etc. If we add (17) to (13) and (14), we
obtain

(R R) + (N N ) = 1

2
(p − 3).

On the other hand, subtracting (14) from (15) gives

(R R) − (N N ) = −1

2
(1 + ε).

Hence

(R R) = 1

2
(p − 4 − ε),

and similarly we get the other three numbers. From the results we find that
the value of each of the four numbers (R R), etc., is between 1

4 (p − 5) and
1
4 (p + 1). So the assertion that they are all about 1

4 p for large p is amply
justified.

The important step in the proof was the evaluation of the sum of the

Legendre symbols
(

n(n+1)
p

)
. If we make the convention that (0|p) = 0, we

can allow n to take a complete set of values 0, 1, . . . , p − 1 instead of only
the values 1, 2, . . . , p − 2, without altering the sum. Hence the result can
be expressed in the form

Σ

(
n(n + 1)

p

)
= −1, (18)

where the symbol Σ denotes summation for n over a complete set of
residues (mod p). This result can be shown to hold more generally for any
sum
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Σ

(
n2 + bn + c

p

)
,

formed with a quadratic polynomial with highest coefficient 1; though not
by the method used above. There is an obvious exception, of course, if
the polynomial is a perfect square. Similar questions for polynomials of
higher degree have been deeply investigated during the last fifty years or
so. Hasse showed in 1934, by very difficult and advanced methods, that any
cubic sum

Σ

(
an3 + bn2 + cn + d

p

)
(19)

has a value between −2
√

p and 2
√

p. This result was later generalized,
with far-reaching consequences, by A. Weil—see VII.5.

Notes
§1. There is another proof of the existence of a primitive root, due to Gauss.
But I have preferred Legendre’s proof as being of a more constructive
nature.

In accordance with the theorem of Fermat and Euler (II.3), a number
is considered to be a primitive root to a general modulus m if its order
is exactly φ(m). It was proved by Gauss that primitive roots exist for the
moduli 2, 4, pn, 2pn , where p is any prime greater than 2 and n is any
natural number, but for no other moduli.

§2. There is a table of indices for primes up to 97 in Uspensky and
Heaslet.

§3. One can prove the multiplicative property and Euler’s criterion
directly from the definition of a quadratic residue, without using indices,
but the proofs are less illuminating.

§4. In §3 we gave Lagrange’s explicit construction for the solution of
x2 ≡ −1 (mod p) when p is a prime of the form 4k + 1. There is the
similar problem of giving an explicit construction for the solution of x2 ≡ 2
(mod p) when p is a prime of the form 8k + 1 or 8k − 1. In the second of
these two cases there is a simple answer, namely x = 22k , since 24k−1 =
2

1
2 (p − 1) ≡ 1 (mod p) by Euler’s criterion. No simple answer has been

given in the case p = 8k + 1.
§5. In adopting this approach to the law of reciprocity, I am following

Scholz in his Einführung in die Zahlentheorie.
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§6. The fact that the quadratic residues and non-residues are equally dis-
tributed follows from an important inequality discovered by Pólya in 1917
and independently by Vinogradov in 1918. It is that the sum of the Legen-
dre symbols (n|p) over any range of consecutive integers n is in absolute

value less than Cp
1
2 log p, where C is a certain constant. Since p

1
2 log p is

small compared with p when p is large, it follows that there are almost as
many residues as non-residues in an interval from αp to βp, where α and
β are fixed and p is large. For further and deeper results on the distribution
of quadratic residues and non-residues, see D. A. Burgess, Mathematika, 4
(1957), 106–112, or Gelfond and Linnik, ch. 9. For more, see ♠III:1. For
an elementary exposition of Hasse’s proof, due to Manin, see Gelfond and
Linnik, ch. 10.



I V

C O N T I N U E D F R A C T I O N S

1. Introduction
In I.6 we discussed Euclid’s algorithm for finding the highest common
factor of two given natural numbers. There is another way of expressing
the algorithm, the effect of which is to represent the quotient of the two
numbers as a continued fraction. The method will become clear from a
numerical example.

Let us apply Euclid’s algorithm to the numbers 67 and 24. The successive
steps are:

67 = 2 × 24 + 19,

24 = 1 × 19 + 5,

19 = 3 × 5 + 4,

5 = 1 × 4 + 1.

The last remainder is 1, as we know must be the case because the num-
bers 67 and 24 are relatively prime. We now write each of the equations in
fractional form:

67

24
= 2 + 19

24
,

24

19
= 1 + 5

19
,

19

5
= 3 + 4

5
,

5

4
= 1 + 1

4
.

68
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The last fraction in each of these equations is the reciprocal of the first
fraction in the following equation. We can therefore eliminate all the
intermediate fractions, and express the original fraction 67

24 in the form

2 + 1

1 + 1

3 + 1

1 + 1

4
Such an expression is called a continued fraction. For convenience of
writing and printing, one adopts the form

2 + 1

1+
1

3+
1

1+
1

4
.

The numbers 2, 1, 3, 1, 4 here are called the terms of the continued fraction,
or the partial quotients, since they are the partial quotients in the successive
steps of Euclid’s algorithm applied to the numerator and denominator of
the original fraction. The complete quotients are the numbers 67

24 , 24
19 , 19

5 , 5
4

themselves. Each of these has a continued fraction which is derived from
that above by starting at a later term, e.g.

24

19
= 1 + 1

3+
1

1+
1

4
,

19

5
= 3 + 1

1+
1

4
.

It is plain from the above example, and from what we know about
Euclid’s algorithm, that each rational number a

b greater than 1 can be
represented by a continued fraction:

a

b
= q + 1

r+
1

s+ · · · 1

w
,

whose terms q, r, s, . . . , w are natural numbers. The last term, w above,
must be greater than 1, because it is the last quotient in Euclid’s algorithm.

It is very easy to prove that there is only one representation of a given
rational number as a continued fraction. For suppose that

a

b
= q + 1

r+
1

s+ · · · = q ′ + 1

r ′+
1

s′+ · · · ,

where q ′, r ′, s′, . . . are also natural numbers, the last of which is greater
than 1. The amount added to q on the left is less than 1, and so is the amount
added to q ′ on the right. So q and q ′ are both equal to the integral part of the
rational number a

b , and are the same. Cancelling q against q ′ and inverting,
we get

r + 1

s+ · · · = r ′ + 1

s′+ · · · .
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The same argument proves that r = r ′, and so on generally.
Before going further, the reader who is unacquainted with contin-

ued fractions should practise developing a few simple rational numbers.
Examples are:

17

11
= 1 + 1

1+
1

1+
1

5
,

11

31
= 1

2+
1

1+
1

4+
1

2
.

Where the rational number is less than 1, as in the second example, the first
partial quotient is 0 and is omitted.

2. The general continued fraction
Continued fractions are of great service in the theory of numbers; by using
them one can often give an explicit construction for the solution of a
problem, where other methods would prove only that a solution exists.

We write the general continued fraction in the form

q0 + 1

q1+
1

q2+ · · · 1

qn
. (1)

Before we can usefully investigate the arithmetical properties of contin-
ued fractions we need some purely algebraic relations. These relations
are identities, whose validity does not depend on the nature of the terms
q0, q1, . . . , qn . For the time being, therefore, we treat the terms as variables,
not necessarily natural numbers.

If we work out the continued fraction (1) in stages, we shall obvi-
ously end with an expression for it as the quotient of two sums, each sum
comprising various products formed with q0, q1, . . . , qn . If n is 1, we have

q0 + 1

q1
= q0q1 + 1

q1
.

If n is 2, we have

q0 + 1

q1+
1

q2
= q0 + q2

q1q2 + 1
= q0q1q2 + q0 + q2

q1q2 + 1
,

where in the intermediate step we have quoted the value of q1 + 1
q2

from
the previous calculation, putting q1 and q2 in place of q0 and q1. Similarly,
when n is 3, we have
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q0 + 1

q1+
1

q2+
1

q3
= q0 + q2q3 + 1

q1q2q3 + q1 + q3

= q0q1q2q3 + q0q1 + q0q3 + q2q3 + 1

q1q2q3 + q1 + q3
. (2)

Here again we have used the result of the previous step.
It is plain that we can build up the general continued fraction by going

on in this way. We shall denote the numerator of the continued fraction (1),
when evaluated in this way, by

[q0, q1, . . . , qn].

Thus

[q0] = q0, [q0, q1] = q0q1 + 1,

[q0, q1, q2] = q0q1q2 + q0 + q2,

[q0, q1, q2, q3] = q0q1q2q3 + q0q1 + q0q3 + q2q3 + 1,

and so on. It will be seen that in the cases worked out above, the
denominator of the expression obtained for the continued fraction is

[q1, q2, . . . , qn].

This is true generally. For if we look at the third stage (which is quite typi-
cal) in (2) above, the denominator of the answer comes from the numerator
of q1 + 1

q2+
1
q3

, and so has the value

[q1, q2, q3].

The general continued fraction therefore has the value

q0 + 1

q1+ . . .
1

qn
= [q0, q1, . . . , qn]

[q1, q2, . . . , qn]
. (3)

It is plain from the calculation in (2) how the function [q0, q1, q2, q3]
is built up out of [q1, q2, q3] and [q2, q3]. That calculation shows,
namely, that

[q0, q1, q2, q3] = q0[q1, q2, q3] + [q2, q3].

This is obviously typical of the general case, and we have the rule

[q0, q1, . . . , qn] = q0[q1, q2, . . . , qn] + [q2, q3 . . . , qn]. (4)

This is a recurrence relation, which defines the square-bracket function
step by step. As it stands, the formula applies from n = 2 onwards. It still
applies when n is 1, if we give the interpretation 1 to the second square
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bracket on the right, which in itself is meaningless in this case. With this
interpretation, the formula becomes

[q0, q1] = q0[q1] + 1 = q0q1 + 1,

which is correct.
As an illustration, we can apply the rule to the last example mentioned

at the end of §1. We have

[4, 2] = 4 × 2 + 1 = 9,

[1, 4, 2] = 1 × [4, 2] + [2] = 9 + 2 = 11,

[2, 1, 4, 2] = 2[1, 4, 2] + [4, 2] = 2 × 11 + 9 = 31.

Thus

2 + 1

1+
1

4+
1

2
= [2, 1, 4, 2]

[1, 4, 2]
= 31

11
.

One word of caution is necessary. We have seen that we can express the
general continued fraction in the form (3), where the two square brackets
are certain sums of products of the variables q0, q1, . . . , qn . We have not
proved that nothing can be cancelled from the numerator and denomina-
tor in this representation. This is actually true, and it is true in two senses,
one algebraical and one arithmetical. In the former sense, the numerator
and denominator are polynomials in the variables q0, q1, . . . , qn , and it can
be proved that these polynomials are irreducible, that is they cannot be
factorized into other polynomials. In the latter sense, if q0, q1, . . . , qn are
integers, the numerator and denominator are integers and are always rela-
tively prime. This second fact will be proved in §4. The first fact is even
more easily proved, but is of no interest from the point of view of the theory
of numbers.

3. Euler’s rule
We have seen that [q0, . . . , qn] is the sum of certain products formed out of
the terms q0, q1, . . . , qn . Which products are these? The answer was given
by Euler, who was the first to give a general account of continued fractions.
First take the product of all the terms. Then take every product that can be
obtained by omitting any pair of consecutive terms. Then take every product
that can be obtained by omitting any two separate pairs of consecutive
terms, and so on. The sum of all such products gives the value of

[q0, q1, . . . , qn].
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It is to be understood that if n + 1 is even, we end by including the empty
product which is got by omitting all the terms, giving this the conventional
value 1. An example of Euler’s rule is:

[q0, q1, q2, q3] = q0q1q2q3 + q2q3 + q0q3 + q0q1 + 1.

Here we have taken first the product of all the terms, then the product with
the pair q0, q1 omitted, then with the pair q1, q2 omitted, then with the pair
q2, q3 omitted, and finally the empty product with both the pairs q0, q1 and
q2, q3 omitted. Another example, with one more term, is:

[q0, q1, q2, q3, q4] = q0q1q2q3q4

+ q2q3q4 + q0q3q4 + q0q1q4 + q0q1q2

+ q4 + q2 + q0.

In the second line we have written all the products with one pair of consec-
utive terms omitted, and on the last line the results of omitting two separate
pairs, e.g. omitting q0, q1 and q2, q3 gives q4.

Having verified that the rule is correct for the first few of the square-
bracket functions, we can prove it generally by induction, using the
recurrence relation (4). Assuming the rule holds for the two square-bracket
functions on the right of (4), we have to prove that it holds for the one on
the left. The expression [q2, . . . , qn] represents the sum of all those prod-
ucts formed from q0, q1, . . . , qn in which the pair q0, q1 is omitted. Now
q0[q1, . . . , qn] represents precisely the sum of all those products formed
from q0, q1, . . . , qn in which the pair q0, q1 is not one of those omitted;
for all such products must contain q0, and when this factor is removed we
are left with the sum of all products of q1, . . . , qn from which any separate
pairs of consecutive terms are omitted. Together, we get the appropriate
sum of products of q0, q1, . . . , qn , and so the rule holds for the function
[q0, q1, . . . , qn]. This proves the rule generally, by induction on the number
of variables.

One immediate deduction from Euler’s rule is that the value of
[q0, q1, . . . , qn] is unchanged if the terms are written in the opposite order:

[q0, q1, . . . , qn] = [qn, qn−1, . . . , q0].

For example,

[2, 4, 1, 2] = [2, 1, 4, 2] = 31.

It follows from this fact that besides the recurrence relation (4) there is
a similar relation which expresses [q0, q1, . . . , qn] in terms of the similar
functions with the last term or last two terms omitted. This relation is

[q0, q1, . . . , qn] = qn[q0, q1, . . . , qn−1] + [q0, q1, . . . , qn−2]. (5)
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This is equivalent to (4), because if we write the terms in the opposite order
it becomes

[qn, qn−1, . . . , q0] = qn[qn−1, . . . , q0] + [qn−2, . . . , q0],

and this is merely a restatement of (4) with different symbols.
The recurrence relation (5) is more convenient than (4) for most pur-

poses. We are more commonly concerned with adding terms at the end of a
continued fraction than with adding terms at the beginning, and (5) enables
us to investigate what happens when this is done.

4. The convergents to a continued fraction
Let

q0 + 1

q1+ · · · 1

qn
(6)

be any continued fraction. We shall suppose throughout this section that the
terms q0, q1, . . . , qn are natural numbers. The various continued fractions

q0, q0 + 1

q1
, q0 + 1

q1+
1

q2
, . . . ,

obtained by stopping at an earlier term than qn , are called the convergents
to the continued fraction. The reason why this name is appropriate will
become clear later.

The value of the general convergent, obtained by stopping at qm , say, is

q0 + 1

q1+ · · · 1

qm
= [q0, . . . , qm]

[q1, . . . , qm]
.

In order to have a simpler notation, we put

Am = [q0, . . . , qm], Bm = [q1, . . . , qm], (7)

so that the above convergent is Am
Bm

. The first convergent is A0
B0

= q0
1 . The

last is An
Bn

, which is the value of the continued fraction itself. The numbers
A0, B0, A1, B1, . . . are all natural numbers, being sums of products formed
out of the q’s in accordance with Euler’s rule.

The recurrence relation (5) now takes the simple form

Am = qm Am−1 + Am−2. (8)
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The same recurrence relation, with q0 omitted, tells us that

Bm = qm Bm−1 + Bm−2. (9)

Thus the numerators and denominators of the convergents are formed by
the same general rules. These rules are very convenient for purposes of
numerical calculation; we can write down the first two convergents by
inspection, and the subsequent ones by applying the rule. For example, the
continued fraction for 42

31 is

1 + 1

2+
1

1+
1

4+
1

2
.

The first two convergents are obviously 1
1 and 3

2 . Since the next partial
quotient is 1, the next convergent is 3+1

2+1 = 4
3 . The next partial quotient is

4, so the next convergent is

4 × 4 + 3

4 × 3 + 2
= 19

14
.

The final partial quotient is 2, and the final convergent is

2 × 19 + 4

2 × 14 + 3
= 42

31
,

which is, of course, the original number.
There is a simple relation satisfied by any two consecutive convergents,

which is of the greatest importance. It is that

Am Bm−1 − Bm Am−1 = (−1)m−1. (10)

For example, if m is 1, we have

A0 = q0, B0 = 1, A1 = q0q1 + 1, B1 = q1,

and so

A1 B0 − B1 A0 = (q0q1 + 1) − q0q1 = 1. (11)

To prove (10) generally, we substitute for Am and Bm from the recurrence
relations (8) and (9). This gives

Am Bm−1 − Bm Am−1

= (qm Am−1 + Am−2)Bm−1 − (qm Bm−1 + Bm−2)Am−1

= −(Am−1 Bm−2 − Bm−1 Am−2).
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Consequently the expression on the left of (10), say Δm , has the property
that Δm = −Δm−1. Hence

Δm = −Δm−1 = +Δm−2 = · · · = ±Δ1,

and the sign at the end is +1 if m is odd and −1 if m is even, so that it can
be represented by (−1)m−1. Since Δ1 = 1 by (11), the general result (10)
follows.

One immediate consequence of (10) is that Am and Bm are always rel-
atively prime, for any common factor would have to be a factor of 1. Thus
the fraction Am

Bm
, representing the general convergent, is in its lowest terms.

In particular, taking m to be n, this is true of the earlier formula (3) for
the value of a general continued fraction. Thus we have now proved the
statement made at the end of §2.

If we develop a rational number a
b into a continued fraction, the conver-

gents to that continued fraction constitute a sequence of rational numbers,
the last of which is a

b itself. What relations of magnitude are there between
these numbers and a

b itself? It is quite easy to prove that the convergents
are alternately less than, and greater than, the final value a

b . To see this,
write the relation (10) in the form

Am

Bm
− Am−1

Bm−1
= (−1)m−1

Bm−1 Bm
. (12)

This shows that the difference on the left is positive if m is odd and negative
if m is even. Also, since the numbers B0, B1, B2, . . . increase steadily, the
difference in (12) decreases steadily as m increases. Thus A1

B1
is greater than

A0
B0

, and A2
B2

is less than A1
B1

but greater than A0
B0

, and A3
B3

is greater than A2
B2

but

less than A1
B1

, and so on. Since we end with An
Bn

= a
b , it follows that all the

even convergents A0
B0

,
A2
B2

, . . . are less than a
b , and all the odd convergents

are greater than a
b .

It can be proved that each convergent is nearer to the final value a
b

than the preceding convergent. The proof is not difficult, but we omit it
here. Another interesting fact is that the convergents are the ‘best possible’
approximations to a

b by fractions with specified complexity. We measure
the complexity of a fraction by the size of its denominator. Thus any frac-
tion which is nearer to a

b than a particular convergent Am
Bm

must have a
denominator which is greater than Bm .
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To illustrate these properties of the convergents, take the continued frac-
tion for 42

31 , mentioned earlier in this section. The successive convergents

are 1
1 , 3

2 , 4
3 , 19

14 , 42
31 . When expressed as decimals, these numbers are

1, 1.5, 1.333 . . . , 1.3571 . . . , 1.3548 . . . ,

and we see that they are alternately less than and greater than the final
number, and are successively nearer to it.

5. The equation ax − by = 1
It was proved in I.8 that if a and b are any two relatively prime natural
numbers, then it is possible to find natural numbers x and y to satisfy the
equation ax − by = 1. The process for converting a

b into a continued frac-
tion provides an explicit construction for two such numbers. Suppose the
continued fraction is

a

b
= q0 + 1

q1+ · · · 1

qn
.

The last convergent An
Bn

is a
b itself. The preceding convergent An−1

Bn−1
satisfies

An Bn−1 − Bn An−1 = (−1)n−1, or aBn−1 − bAn−1 = (−1)n−1,

by (10) of the preceding section. Hence, if we take x = Bn−1 and y =
An−1, we have a solution in natural numbers of the equation ax − by =
(−1)n−1. If n is odd, this is the equation proposed. If n is even, so that
(−1)n−1 = −1, we can still solve the equation with +1, by either of two
methods (which are in fact the same). One method is to take x = b − Bn−1
and y = a − An−1; then

ax − by = a(b − Bn−1) − b(a − An−1) = −aBn−1 + bAn−1 = 1.

The other method is to modify the continued fraction by replacing the last
term qn by (qn − 1) + 1

1 . The new continued fraction has one more term
than the old, and so its penultimate convergent provides a solution of the
equation with +1 on the right. In fact, this will give the same solution as
the other method.

To take a simple numerical example, suppose we wish to find natural
numbers x and y which satisfy

61x − 48y = 1.
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The continued fraction for 61
48 is

61

48
= 1 + 1

3+
1

1+
1

2+
1

4
.

The convergents to it are

1

1
,

4

3
,

5

4
,

14

11
,

61

48
.

Since n is 4 in this case, the numbers x = 11 and y = 14 satisfy the
equation 61x − 48y = −1. To solve the equation proposed, we take x =
48−11 = 37, y = 61−14 = 47. Or, alternatively, we modify the continued
fraction to

1 + 1

3+
1

1+
1

2+
1

3+
1

1
.

The convergents are now

1

1
,

4

3
,

5

4
,

14

11
,

47

37
,

61

48
,

and the penultimate convergent, 47
37 , provides the solution.

It may be noted that this construction provides the least solution of the
equation, namely that for which x is less than b and y is less than a. If this
solution is denoted by x0, y0 then the general solution is given by

x = x0 + bt, y = y0 + at

where t is any integer, positive or zero. Unless t is zero, x is greater than b
and y is greater than a.

6. Infinite continued fractions
So far, we have been considering the expression of a rational number as a
continued fraction. It is also possible to represent an irrational number by
a continued fraction, but in this case the expansion goes on for ever instead
of coming to an end.

Let α be any irrational number. Let q0 be the integral part of α, that is,
the greatest integer which is less than α. Then α = q0 + α′, where α′ is the
fractional part of α, and satisfies 0 < α′ < 1. Put α′ = 1

α1
; then

α = q0 + 1

α1
, where α1 > 1.
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Plainly α1 is again irrational, for if it were rational then α would itself be
rational. Now repeat the operation on α1, expressing it as

α1 = q1 + 1

α2
, where α2 > 1.

We can continue this process indefinitely. Having reached αn , itself an
irrational number greater than 1, we can express it as

αn = qn + 1

αn+1
, where αn+1 > 1,

and qn is a natural number. If we combine all the equations up to this one,
we obtain for α the expression

α = q0 + 1

q1+ · · · 1

qn+
1

αn+1
. (13)

All the numbers q1, . . . , qn are natural numbers, and q0 is an integer which
may be positive, negative, or zero. If α > 1, then q0 is positive, and all the
terms are natural numbers. The numbers q0, q1, . . . are called, as before,
the terms, or partial quotients, of the continued fraction, and the complete
quotient corresponding to qn is αn , or, what is the same thing, qn + 1

αn+1
.

The process can never come to an end, because each complete quotient
α1, α2, . . . is an irrational number.

The convergents to the continued fraction are

A0

B0
= q0,

A1

B1
= q0 + 1

q1
,

A2

B2
= q0 + 1

q1+
1

q2
, · · · ,

and they constitute now an infinite sequence of rational numbers. Again
they satisfy the recurrence relations (8) and (9), for they are also con-
vergents to the finite continued fraction (13) and all the results proved
earlier are applicable. Incidentally, we see now the advantage of not having
restricted ourselves, in the initial stages, to continued fractions whose terms
are all natural numbers. Had we done so, we should have been precluded
from applying our results to the continued fraction (13), as this contains the
irrational number αn+1.

The equation (13) allows us to express α in terms of the complete quo-
tient αn+1 and the two convergents An

Bn
and An−1

Bn−1
. In fact, using our original

notation, (13) means that

α = [q0, q1, . . . , qn, αn+1]

[q1, q2, . . . , qn, αn+1]
.
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Now, by (5),

[q0, q1, . . . , qn, αn+1] = αn+1[q0, q1, . . . , qn] + [q0, q1, . . . , qn−1]

= αn+1 An + An−1.

Similarly the denominator is αn+1 Bn + Bn−1. Hence

α = αn+1 An + An−1

αn+1 Bn + Bn−1
. (14)

This will be a most serviceable formula throughout the remainder of the
chapter.

After realizing that (13) is valid for every n, however large, one is
tempted to write simply

α = q0 + 1

q1+
1

q2+ · · · . (15)

But before yielding to this very natural temptation, it is advisable to reflect
for a moment on the meaning of such a statement. On the face of it, the
implication is that we can somehow carry out the infinite number of oper-
ations of addition and division which are indicated on the right-hand side,
and thereby arrive at a certain number, which is asserted to be α. Now the
only way in which one can attach a meaning to the result of carrying out
an infinite number of operations is by using the notion of a limit. If we can
prove that the sequence of convergents

A0

B0
,

A1

B1
,

A2

B2
, · · · ,

where
An

Bn
= q0 + 1

q1+ · · · 1

qn
,

has a certain limit as n increases indefinitely, then we can interpret the right-
hand side of (15) as meaning the value of this limit. If the limit is in fact α,
then (15) will be justified.

It is not difficult to prove that An
Bn

tends to the limit α as n increases
indefinitely. The equation (14) gives

α − An

Bn
= αn+1 An + An−1

αn+1 Bn + Bn−1
− An

Bn
= An−1 Bn − Bn−1 An

Bn(αn+1 Bn + Bn−1)

= ±1

Bn(αn+1 Bn + Bn−1)
,
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on using (10). Since αn+1 > qn+1, we have∣∣∣∣α − An

Bn

∣∣∣∣ <
1

Bn Bn+1
. (16)

The numbers B0, B1, B2, . . . are strictly increasing natural numbers; hence
Bn increases indefinitely with n, and (16) proves that An

Bn
has the limit α as

n increases indefinitely. This is the property which makes the word ‘con-
vergent’ appropriate; An

Bn
converges to the value of the original number α as

n increases indefinitely.
The representation of an irrational number by an infinite continued frac-

tion suggests another question. In what precedes, the partial quotients
q0, q1, q2, . . . were determined by the number α from which we started.
Now suppose we select any infinite sequence of numbers q0, q1, q2, . . . ,

all of which are natural numbers except possibly the first, which may be
any integer. Can we attach a meaning to the infinite continued fraction

q0 + 1

q1+
1

q2+ . . .?

If we can, will the resulting number be irrational, and will this continued
fraction coincide with the one obtained by applying our former process to
the number in question? Until we have settled these points, our theory is a
very incomplete one.

In fact, the answers to these questions are as simple as one could wish.
If one forms a continued fraction from any infinite sequence of natural
numbers q1, q2, . . . , preceded by any integer q0, then the corresponding
sequence of convergents has a limit. Perhaps the easiest proof is to con-
sider the sequence formed by the even convergents A0

B0
,

A2
B2

, . . . . This is
an increasing sequence, and is bounded above, since all these are less
than A1

B1
(for example). Hence, by the most fundamental of all proposi-

tions concerning limits, the sequence has a limit. Similarly the sequence
formed by the odd convergents has a limit. Also the two limits are equal,
since by (12) the difference between two consecutive convergents has the
limit zero. Thus we can attach a meaning to any infinite continued frac-
tion. If we denote the limit by α, then the continued fraction is in fact
that which would arise from developing α in the way we considered origi-
nally at the beginning of this section. For the value of the infinite continued
fraction

1

q1+
1

q2+ . . .

is between 0 and 1; hence q0 must be the integral part of α. If we
write α = q0 + 1

α1
, we find that q1 must be the integral part of α1,
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and so on. In other words, the continued fraction is unique. In par-
ticular, the number defined by any infinite continued fraction must be
irrational, for the continued fraction development of a rational number
always terminates.

It now appears that infinite continued fractions provide not only rep-
resentations for given irrational numbers, but a means of constructing
irrational numbers. One way of describing the position is to say that the
continued fraction process sets up a one-to-one correspondence between
(i) all irrational numbers greater than 1, and (ii) all infinite sequences
q0, q1, q2, . . . of natural numbers.

7. Diophantine approximation
The continued fraction process provides us with an infinite sequence of
rational approximations to a given irrational number α, namely the conver-
gents. Some information as to how rapidly they approach α is provided by
the inequality (16). This implies, in particular, that if x

y is any one of the
convergents to α, then ∣∣∣∣α − x

y

∣∣∣∣ <
1

y2
. (17)

We have here a simple result on Diophantine approximation: the branch of
mathematics which is concerned with approximation to irrational numbers
by means of rational numbers.

It is possible to prove, by rather more detailed arguments, that there are
slightly better inequalities which are still satisfied by an infinity of ratio-
nal approximations. In the first place, one can prove that of every two
successive convergents, one at least satisfies∣∣∣∣α − x

y

∣∣∣∣ <
1

2y2
.

Hence this inequality also is satisfied by an infinity of rational approxima-
tions. An inequality which is a little better still is satisfied by at least one
out of every three successive convergents, namely∣∣∣∣α − x

y

∣∣∣∣ <
1√
5y2

. (18)

So any irrational number α has an infinity of rational approximations which
satisfy (18), a result first proved by Hurwitz in 1891. Further than this
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one cannot go. There are irrational numbers for which any more precise
inequality, say ∣∣∣∣α − x

y

∣∣∣∣ <
1

ky2
, where k >

√
5, (19)

has only a finite number of solutions in integers x and y. The simplest
example of such a number is the one given by the special continued fraction

θ = 1 + 1

1+
1

1+
1

1+ . . . .

This number has the property that any inequality of the form (19), with θ

in place of α, has only a finite number of solutions. The actual value of θ is
easily found from the fact that

θ = 1 + 1

θ
, or θ2 − θ − 1 = 0.

Solving this quadratic equation, we obtain θ = 1
2 (1 + √

5), since the
negative root is to be rejected.

The proofs of the various results which have just been mentioned are not
especially difficult, but for them we must refer the reader to the literature
cited in the Notes.

8. Quadratic irrationals
The simplest and most familiar irrational numbers are the quadratic irra-
tionals, that is, the numbers which arise as the solutions of quadratic
equations with integral coefficients. In particular, the square root of any
natural number N , not a perfect square, is a quadratic irrational, since it is a
solution of the equation x2 − N = 0. The continued fractions for quadratic
irrationals have remarkable properties, which we shall now investigate.

Let us begin with a few numerical examples. Take first
√

2, as a very sim-
ple one. Since the integral part of

√
2 is 1, the first term q0 of the continued

fraction is 1, and the first step in the development consists in writing

√
2 = 1 + 1

α1
.

Here

α1 = 1√
2 − 1

= √
2 + 1.
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The integral part of α1 is 2, and so the next step is to write

α1 = 2 + 1

α2
.

Here

α2 = 1

α1 − 2
= 1√

2 − 1
= √

2 + 1.

Since α2 has turned out to be the same as α1, there is no need of further
calculation, for the subsequent steps will all be the same as the last step.
All the subsequent terms of the continued fraction will be 2, and we have

√
2 = 1 + 1

2+
1

2+
1

2+ . . . .

A few more examples are:

√
3 = 1 + 1

1+
1

2+
1

1+
1

2+ . . . ,

√
5 = 2 + 1

4+
1

4+
1

4+ . . . ,

√
6 = 2 + 1

2+
1

4+
1

2+
1

4+ . . . .

To take a slightly more complicated example, consider the number

α = 24 − √
15

17
.

Since
√

15 lies between 3 and 4, the integral part of α is 1. The first step is
to write

α = 1 + 1

α1
.

Here

α1 = 1

α − 1
= 17

7 − √
15

= 7 + √
15

2
.

The integral part of α1 is 5, so

α1 = 5 + 1

α2
,

where

α2 = 1

α1 − 5
= 2√

15 − 3
=

√
15 + 3

3
.
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The integral part of α2 is 2, so

α2 = 2 + 1

α3
,

where

α3 = 1

α2 − 2
= 3√

15 − 3
=

√
15 + 3

2
.

The integral part of α3 is 3, so

α3 = 3 + 1

α4
,

where

α4 = 1

α3 − 3
= 2√

15 − 3
=

√
15 + 3

3
.

Since α4 = α2, the last two steps will be repeated over and over again, and
the continued fraction is

24 − √
15

17
= 1 + 1

5+
1

2+
1

3+
1

2+
1

3+ . . . .

We can abbreviate this to

1, 5, 2, 3,

where the bar indicates the period, which is repeated indefinitely. With this
short notation, the previous examples take the form:

√
2 = 1, 2; √

3 = 1, 1, 2; √
5 = 2, 4; √

6 = 2, 2, 4.

In each of these cases, it is found that a complete quotient αn is reached
which is the same as some previous complete quotient αm . From that point
onwards, the continued fraction is periodic. The terms consist of the num-
bers from qm to qn−1, repeated over and over again. The general theorem
that any quadratic irrational number has a continued fraction which is peri-
odic after a certain stage was first proved by Lagrange in 1770, though the
fact was known to earlier mathematicians. We shall prove this theorem in
§10, after first considering purely periodic continued fractions in §9.

A table of the continued fractions for
√

N , for N = 2, 3, . . . , 50 (exclud-
ing perfect squares) is given on p. 97. For simplicity the bar is omitted from
the period, which consists of all the numbers after the first term. It will be
seen that all these continued fractions have certain features in common, and
the reason for this will become plain in the course of the next section.

For purposes of numerical calculation, the process which we used in
the above examples can be simplified by restricting one’s attention to the
integers involved, and arranging the work in a more concise form.
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9. Purely periodic continued fractions
It so happens that in each of the numerical examples considered above,
the continued fraction is not periodic from the beginning, but only after a
certain stage. But we can easily give examples of purely periodic continued
fractions; for example, if we add 1 to the continued fraction for

√
2, we

obtain
√

2 + 1 = 2 + 1

2+
1

2+ . . . ,

which is purely periodic. Similarly

√
6 + 2 = 4 + 1

2+
1

4+
1

2+ . . . .

The numbers represented by purely periodic continued fractions are a par-
ticular kind of quadratic irrational, and we shall now investigate how these
numbers can be characterized.

Let us begin with a particular example. Consider some purely periodic
continued fraction, say

α = 4 + 1

1+
1

3+
1

4+
1

1+
1

3+ . . . .

This definition of α can also be written in the form

α = 4 + 1

1+
1

3+
1

α
. (20)

We have here an equation for α, which, when worked out, will in fact be a
quadratic equation. To see what this equation is, compare the above relation
with (13), of which it is a special case, with αn+1 = α. It follows from the
general formula (14) that

α = 19α + 5

4α + 1
, (21)

because 19
4 and 5

1 are the two convergents preceding the term 1
α

in (20).
Thus the quadratic equation satisfied by α is

4α2 − 18α − 5 = 0. (22)

It will be instructive to consider, at the same time as α, the number β

defined in the same way but with the period reversed, that is

β = 3 + 1

1+
1

4+
1

3+
1

1+
1

4+ . . . .
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The relation analogous to (20) is

β = 3 + 1

1+
1

4+
1

β
.

When we apply the general formula (14), we obtain

β = 19β + 4

5β + 1
, (23)

since the two convergents are now 19
5 and 4

1 . Hence the quadratic equation
satisfied by the number β is

5β2 − 18β − 4 = 0. (24)

This is obviously closely related to the previous equation (22) satisfied by
α. Indeed, if we put − 1

β
= α, the equation (24) is transformed into the

equation (22). Hence the number − 1
β

is one of the two roots of the quadratic
equation (22). It cannot be the number α itself, because α and β are positive,
and − 1

β
is negative. Hence − 1

β
is the second root of the equation (22). This

second root is called the algebraic conjugate of α, or simply the conjugate
of α. Denoting the conjugate of α by α′, we have α′ = − 1

β
.

The above argument is really quite general. In the case of any purely
periodic continued fraction, say

α = q0 + 1

q1+ · · · 1

qn+
1

α
,

the equation corresponding to (21) is

α = Anα + An−1

Bnα + Bn−1
.

If the number β is then defined by reversing the period, the equation
corresponding to (23) is

β = Anβ + Bn

An−1β + Bn−1
,

this being a consequence of the fact that the value of [q0, . . . , qn] is
unchanged if the terms are taken in the opposite order (§3). The two
quadratic equations for α and β are related in just the same way as above,
and − 1

β
is the conjugate of α. Since β is greater than 1, the number − 1

β
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lies between −1 and 0. Hence any purely periodic continued fraction rep-
resents a quadratic irrational number α which is greater than 1, and whose
conjugate lies between −1 and 0. This conjugate is − 1

β
, where β is defined

by the continued fraction with the reversed period.
It is a remarkable fact that this simple property completely characterizes

the numbers represented by purely periodic continued fractions; as we shall
now prove, any quadratic irrational number which satisfies the condition
does have a purely periodic continued fraction. This seems to have first
been proved explicitly by Galois in 1828, though the result was implicit in
the earlier work of Lagrange.

We shall call a quadratic irrational number α reduced if α > 1 and if
the conjugate of α, denoted by α′, satisfies −1 < α′ < 0. Our object is
to prove that the continued fraction for α is purely periodic. Naturally the
proof is more difficult than that of the result proved above, where we began
with the continued fraction; moreover, the proof is not of such a nature that
it can be adequately illustrated by an example.

We begin by investigating the form of a reduced quadratic irrational
number. We know that α satisfies some quadratic equation

aα2 + bα + c = 0,

where a, b, c are integers. Solving this equation, we can express α in the
form

α = −b ± √
b2 − 4ac

2a
= P ± √

D

Q
,

where P and Q are integers, and D is a positive integer which is not a
perfect square. We can suppose that the + sign is attached to

√
D, for if it

were the − sign, we could change it to the + sign by changing the signs of
both the numbers P and Q. So

α = P + √
D

Q
, (25)

and the conjugate α′ of α, being the other root of the quadratic equation, is
given by

α′ = P − √
D

Q
.
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We note that

P2 − D

Q
= b2 − (b2 − 4ac)

2a
= 2c,

so that P2 − D is a multiple of Q.
Since α is supposed to be reduced, we have α > 1 and −1 < α′ < 0.

This implies that

(i) α − α′ > 0, that is
√

D
Q > 0, whence Q > 0;

(ii) α + α′ > 0, that is P
Q > 0, whence P > 0;

(iii) α′ < 0, that is P <
√

D;
(iv) α > 1, that is Q < P + √

D < 2
√

D.

Thus a reduced quadratic irrational number α is of the form (25), where P
and Q are natural numbers satisfying∗

P <
√

D, Q < 2
√

D, (26)

and also satisfying the condition that P2 − D is a multiple of Q.
Now let α be developed into a continued fraction. The first step in the

process of development is to express α in the form

α = q0 + 1

α1
, (27)

where q0 is the integral part of α, and α1 > 1. It is easy to see that α1 is
again a reduced quadratic irrational, for the equation (27) implies that the
conjugates of α and α1 are connected by the similar relation

α′ = q0 + 1

α1
′ .

So

α1
′ = − 1

q0 − α′ ,

and since α′ is negative, and q0 is a natural number, we have q0 − α′ >

1, and therefore α1
′ lies between −1 and 0. Similarly, all the subsequent

complete quotients α2, α3, . . . in the development are reduced quadratic
irrationals.

∗ It must not be supposed that every number α satisfying these conditions is reduced, for
these conditions do not necessarily ensure that α′ > −1.
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As regards the form of α1 we have

1

α1
= α − q0 = P + √

D

Q
− q0 = P − Qq0 + √

D

Q
.

Let P1 = −P + Qq0. Then

α1 = Q

−P1 + √
D

= P1 + √
D

Q1
,

where Q1 is defined by

D − P1
2 = Q Q1. (28)

Note that Q1 is an integer, since P2 − D is a multiple of Q and P1 ≡ −P
(mod Q). We have

α1 = P1 + √
D

Q1
, (29)

and since α1 is reduced, the integers P1 and Q1 are positive, and satisfy the
conditions (26). Moreover, P1

2 − D is a multiple of Q1, by (28).
We are now in a position to see how the continued fraction process goes

on. At the next step we start from α1 instead of from α, but the process is
just the same. Generally, each complete quotient has the form

αn = Pn + √
D

Qn
,

where Pn and Qn are natural numbers which satisfy (26), and have the
property that Pn

2 − D is a multiple of Qn . There are only a finite number
of possibilities for Pn and Qn by (26), and eventually we must come to
some pair of values which has occurred before. That is, we must come to
some complete quotient which is the same as some earlier one, and from
this point onwards the continued fraction is periodic.

We have still to prove that the continued fraction is purely periodic, that
is, periodic from the beginning. To prove this, we shall show that if αn =
αm , then αn−1 = αm−1, and in this way we shall be able to work backwards
to the beginning of the continued fraction. The proof depends on the fact
that it is possible to relate the partial quotients qn not only to the complete
quotients αn but also, in a somewhat similar way, to their conjugates. The
relation between any complete quotient and the next is

αn = qn + 1

αn+1
.
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The same relation must connect their conjugates, so that

αn
′ = qn + 1

αn+1
′ .

Since each conjugate lies between −1 and 0, let us introduce the symbol βn

for − 1
αn

′ . Then each of the numbers βn is greater than 1. The last relation
takes the form

− 1

βn
= qn − βn+1, or βn+1 = qn + 1

βn
.

It now follows from the last relation that qn , in addition to being the integral
part of αn , can also be interpreted as being the integral part of βn+1.

Now suppose that αn and αm are two equal complete quotients, where
m < n. Then their conjugates αn

′ and αm
′ are also equal, and therefore

βn = βm . By the result just proved, qn−1 is the integral part of βn , and
qm−1 is the integral part of βm . Hence qn−1 = qm−1. But

αn−1 = qn−1 + 1

αn
, αm−1 = qm−1 + 1

αm
.

Hence αn−1 = αm−1. Repeating the argument, we obtain αn−2 = αm−2,
and so on until we reach the fact that αn−m is the same as α itself. Putting
n − m = r , we have

α = q0 + 1

q1+ · · · 1

qr−1+
1

α
,

and this shows that the continued fraction for α is purely periodic. We
have proved the result which is the main object of this section, namely
that the purely periodic continued fractions represent precisely the reduced
quadratic irrationals.

It is now possible to see why the continued fractions for
√

N , where N
is a natural number, not a perfect square, are all of the special type which
we see in the table. The continued fraction for

√
N certainly cannot be

purely periodic, because the conjugate of
√

N is −√
N , and this does not

lie between −1 and 0. But consider the number
√

N + q0, where q0 is the
integral part of

√
N . The conjugate of this number is −√

N + q0, which
does lie between −1 and 0. Hence the continued fraction for

√
N + q0 is

purely periodic, and since it obviously begins with 2q0, it is of the form

√
N + q0 = 2q0 + 1

q1+ · · · 1

qn+
1

2q0+ · · · . (30)
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According to the result proved earlier in this section, the continued
fraction formed with the period reversed, that is

qn + 1

qn−1+ · · · 1

q1+
1

2q0+
1

qn+ · · · ,

must represent − 1

α′ , where α = √
N + q0. Now α′ = −√

N + q0, hence

− 1

α′ = 1√
N − q0

= q1 + 1

q2+ · · · 1

qn+
1

2q0+ · · · ,

by (30). Comparing the last two continued fractions (and recalling the fact
that the development of a number is unique), we see that

qn = q1, qn−1 = q2, . . . .

Hence the continued fraction for
√

N is necessarily of the form

q0, q1, q2, . . . , q2, q1, 2q0.

The period begins immediately after the first term q0, and it consists of
a symmetrical part q1, q2, . . . , q2, q1, followed by the number 2q0. The
symmetrical part may or may not have a central term; for example, in

√
54 = 7, 2, 1, 6, 1, 2, 14

there is a central term, whereas in
√

53 = 7, 3, 1, 1, 3, 14

there is none. The symmetrical part of the period may of course be absent,
in which case the period reduces to the single number 2q0, as in

√
2 = 1, 2.

10. Lagrange’s theorem
We can now prove the general theorem of Lagrange that any quadratic irra-
tional has a continued fraction which is periodic from some point onwards.
It will be enough to prove that when any quadratic irrational α is developed
into a continued fraction, we reach sooner or later a complete quotient αn
which is a reduced quadratic irrational; for then the continued fraction will
be periodic from that point onwards.

The relation between α itself and one of the complete quotients is given
by the familiar formula (14):

α = αn+1 An + An−1

αn+1 Bn + Bn−1
.
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Since α and αn+1 are quadratic irrationals, and An , Bn , An−1, Bn−1 are
integers (indeed, natural numbers), the same relation must hold between α′
and αn+1

′. Solving it to express αn+1
′ in terms of α′, we obtain

αn+1
′ = − Bn−1α

′ − An−1

Bnα′ − An
= − Bn−1

Bn

(
α′ − An−1/Bn−1

α′ − An/Bn

)
.

What does this tell us about the magnitude of αn+1
′ when n is large? Both

An
Bn

and An−1
Bn−1

tend to the limit α as n increases indefinitely, and consequently
the fraction in brackets has the limit 1. Also Bn−1 and Bn are positive, and
so αn+1

′ is ultimately negative. Further, the numbers An
Bn

are alternately less
than α and greater than α (§4), and therefore the fraction in brackets is
alternately slightly less than 1 and slightly greater than 1. If we select a
value of n for which it is slightly less than 1, and note also that Bn−1 < Bn ,
we see that αn+1

′ lies between −1 and 0. For this value of n, the number
αn+1 is a reduced quadratic irrational. Consequently the continued fraction
will be purely periodic from that stage onwards (or possibly from some
earlier stage). This establishes Lagrange’s theorem.

There are not many irrational numbers, other than quadratic irrationals,
whose continued fractions are known to have any features of regularity.
One such number is e−1

e+1 , where e is the basis of the natural logarithms:
e = 2·718 28 . . . . The continued fraction is

e − 1

e + 1
= 1

2+
1

6+
1

10+
1

14+ . . . ,

the terms forming an arithmetical progression. More generally, if k is any
positive integer,

e2/k − 1

e2/k + 1
= 1

k+
1

3k+
1

5k+
1

7k+ . . . .

These results were found by Euler in 1737. The continued fraction for e
itself is a little more complicated:

e = 2 + 1

1+
1

2+
1

1+
1

1+
1

4+
1

1+
1

1+
1

6+ . . . ,

where the numbers 2, 4, 6, . . . are separated by two 1’s each time. This also
was found by Euler.

Very little is known about the continued fractions for algebraic numbers,
apart from quadratic irrationals. We do not know, for example, whether the
terms in the continued fraction for 3

√
2, which begins
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3
√

2 = 1 + 1

3+
1

1+
1

5+
1

1+
1

1+
1

4+
1

1+ . . . ,

are bounded or not; and there seems to be no method by which such
a problem can be attacked. Some results are known about Diophantine
approximation to algebraic numbers (see VII.8), and these imply that the
terms of the continued fractions for such numbers cannot increase with
more than a certain degree of rapidity. But the results found in this way are
probably far from the real truth.

11. Pell’s equation
This is the equation

x2 − N y2 = 1, or x2 = N y2 + 1, (31)

where N is a natural number which is not a perfect square. (The equation is
of no interest when N is a perfect square, since the difference of two perfect
squares can never be 1, except in the case 12 − 02.) It is a remarkable fact
that Pell’s equation always has a solution in natural numbers x and y, and
indeed has infinitely many such solutions.

References to individual cases of Pell’s equation occur scattered through-
out the history of mathematics. The most curious of these occurrences is
in the so-called Cattle Problem of Archimedes, published by Lessing in
1773 from a manuscript in the library of Wolfenbüttel. The problem is
stated to have been propounded by Archimedes to Eratosthenes, and most
of the experts who have investigated the matter have reached the conclu-
sion that the problem was in fact invented by Archimedes. It contains eight
unknowns (numbers of cattle of various kinds) which satisfy seven linear
equations, together with two conditions which assert that certain numbers
are perfect squares. After some elementary algebra, the problem reduces to
that of solving the equation

t2 − 4,729,494u2 = 1,

the least solution of which (given by Amthor in 1880) is a number u of
forty-one digits. The least solution of the original problem, deduced from
this, consists of numbers with hundreds of thousands of digits. There is no
evidence that the ancients could solve the problem, but the mere fact that
they propounded it suggests that they may well have had some knowledge
about Pell’s equation which has not survived.
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In modern times, the first systematic method for solving Pell’s equation
was given by Lord Brouncker∗ in 1657. It is essentially that of developing√

N into a continued fraction, as explained below. About the same time,
Frénicle de Bessy (in a work which has not survived) tabulated solutions of
(31) for all values of N up to 150, and challenged Brouncker to solve the
equation x2 − 313y2 = 1. Brouncker, in reply, gave a solution (in which
x has sixteen digits), which he said he had found by his method within
an hour or two. Both Wallis, when expounding Brouncker’s method, and
Fermat, in commenting on Wallis’s work, claimed to have proved that the
equation is always soluble. Fermat seems to have been the first to state
categorically that there are infinitely many solutions. The first published
proof was that of Lagrange, which appeared in about 1766. The name of
Pell was attached to the equation by Euler under a misapprehension; he
thought that the method of solution given by Wallis was due to John Pell,
another English mathematician of the same period.

A solution of Pell’s equation is easily obtained in terms of the continued
fraction for

√
N . We saw in §9 that this is of the form

√
N = q0 + 1

q1+ · · · 1

qn+
1

2q0+
1

q1+ · · · .

(We saw also that qn = q1, etc., but this is of no importance at the moment.)
Now let An−1

Bn−1
and An

Bn
be the two convergents coming immediately before

the term 2q0, that is

An−1

Bn−1
= q0 + 1

q1+ · · · 1

qn−1
,

An

Bn
= q0 + 1

q1+ · · · 1

qn
.

By the formula (14), we have

√
N = αn+1 An + An−1

αn+1 Bn + Bn−1
,

where αn+1 is the complete quotient after qn , that is,

αn+1 = 2q0 + 1

q1+ · · · = √
N + q0.

Substituting this value for αn+1, and multiplying up, we obtain
√

N (
√

N + q0)Bn + √
N Bn−1 = (

√
N + q0)An + An−1.

∗ William Brouncker (1620?–84) succeeded his father as second Viscount Brouncker, of
Castle Lyons in Ireland, in 1667. Readers of the Diary will recall that Pepys had a low opinion
of his moral character. But his mathematical achievements are very creditable.
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Since
√

N is irrational, and all the other numbers are integers, this equation
implies the two equations

N Bn = q0 An + An−1,

q0 Bn + Bn−1 = An .

These may be regarded as expressing An−1 and Bn−1 in terms of An
and Bn :

An−1 = N Bn − q0 An, Bn−1 = An − q0 Bn .

Now substitute in (10). We obtain

An(An − q0 Bn) − Bn(N Bn − q0 An) = (−1)n−1,

or

An
2 − N Bn

2 = (−1)n−1. (32)

Hence x = An and y = Bn provides a solution of the equation

x2 − N y2 = (−1)n−1.

If n is odd, we have a solution of Pell’s equation. If not, we observe that
the same argument would apply to the two convergents at the end of the
next period. Since the term qn , where it occurs for the second time, would
be q2n+1 if the terms were numbered consecutively, we have to change n in
(32) into 2n + 1, giving

A2n+1
2 − N B2

2n+1 = (−1)2n = 1.

So in any case the equation (31) is soluble in natural numbers x and y.
We illustrate the theory by two numerical examples, one for which n is

odd and one for which n is even. Take first N = 21. The continued fraction
(see Table I, p. 97) is

√
21 = 4, 1, 1, 2, 1, 1, 8,

and n = 5. The convergents are

4

1
,

5

1
,

9

2
,

23

5
,

32

7
,

55

12
, . . . ,

and x = 55, y = 12 gives a solution of

x2 − 21y2 = 1.

Take next N = 29. The continued fraction is
√

29 = 5, 2, 1, 1, 2, 10,
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Table I

N Continued fraction for
√

N x y x2 − N y2

2 1; 2 1 1 −1
3 1; 1, 2 2 1 +1
5 2; 4 2 1 −1
6 2; 2, 4 5 2 +1
7 2; 1, 1, 1, 4 8 3 +1
8 2; 1, 4 3 1 +1

10 3; 6 3 1 −1
11 3; 3, 6 10 3 +1
12 3; 2, 6 7 2 +1
13 3; 1, 1, 1, 1, 6 18 5 −1
14 3; 1, 2, 1, 6 15 4 +1
15 3; 1, 6 4 1 +1
17 4; 8 4 1 −1
18 4; 4, 8 17 4 +1
19 4; 2, 1, 3, 1, 2, 8 170 39 +1
20 4; 2, 8 9 2 +1
21 4; 1, 1, 2, 1, 1, 8 55 12 +1
22 4; 1, 2, 4, 2, 1, 8 197 42 +1
23 4; 1, 3, 1, 8 24 5 +1
24 4; 1, 8 5 1 +1
26 5; 10 5 1 −1
27 5; 5, 10 26 5 +1
28 5; 3, 2, 3, 10 127 24 +1
29 5; 2, 1, 1, 2, 10 70 13 −1
30 5; 2, 10 11 2 +1
31 5; 1, 1, 3, 5, 3, 1, 1, 10 1520 273 +1
32 5; 1, 1, 1, 10 17 3 +1
33 5; 1, 2, 1, 10 23 4 +1
34 5; 1, 4, 1, 10 35 6 +1
35 5; 1, 10 6 1 +1
37 6; 12 6 1 −1
38 6; 6, 12 37 6 +1
39 6; 4, 12 25 4 +1
40 6; 3, 12 19 3 +1
41 6; 2, 2, 12 32 5 −1
42 6; 2, 12 13 2 +1
43 6; 1, 1, 3, 1, 5, 1, 3, 1, 1, 12 3482 531 +1
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Table I (Cont.)

N Continued fraction for
√

N x y x2 − N y2

44 6; 1, 1, 1, 2, 1, 1, 1, 12 199 30 +1
45 6; 1, 2, 2, 2, 1, 12 161 24 +1
46 6; 1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 12 24335 3588 +1
47 6; 1, 5, 1, 12 48 7 +1
48 6; 1, 12 7 1 +1
50 7; 14 7 1 −1

and n = 4. The convergents are

5

1
,

11

2
,

16

3
,

27

5
,

70

13
, · · · ,

and x = 70, y = 13 gives a solution of

x2 − 29y2 = −1.

To obtain a solution of the equation with 1, and not −1, we continue the
series of convergents until we reach A9

B9
(since 2n + 1 = 9). Now A4

B4
= 70

13 ,
and the next few convergents are

727

135
,

1524

283
,

2251

418
,

3775

701
,

9801

1820
.

Hence x = 9801, y = 1820 gives a solution of

x2 − 29y2 = 1.

It can be proved that the process which has been explained above always
gives the smallest solution of Pell’s equation. The smallest solutions of x2−
N y2 = ±1 are given in Table I up to N = 50.

There are several other facts about Pell’s equation which can be proved
by the methods we have used in this section. The first is that the equation
has infinitely many solutions, and that these are given by all the convergents
which correspond to the terms qn at the end of each period. If n is odd, that
is, if the continued fraction has a central term (as in the example with

√
21)

all these are solutions of the equation with +1. If n is even, that is if there is
no central term (as in the example with

√
29), the convergents just specified

give alternately solutions with −1 and +1.
The later solutions can also be obtained from the first solution by direct

calculation, without developing further the continued fraction. If x0, y0 is
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the smallest solution of x2 − N y2 = ±1, given by the convergent An
Bn

, then
the general solution x, y is given by

x + y
√

N = (x0 + y0
√

N )r ,

where r = 1, 2, 3, . . . . Thus, in the example with
√

29 it will be found that

9801 + 1820
√

29 = (70 + 13
√

29)2.

The distinction between the cases when n is odd or even raises problems
to which no complete answer is known. No way of completely character-
izing the numbers N for which n is even has been found. If the equation
x2 − N y2 = −1 is soluble, the congruence

x2 + 1 ≡ 0(mod N )

is soluble. It follows that N cannot be divisible by 4 and also cannot be
divisible by any prime of the form 4k+3 (III.3). In fact, as we shall see later
(VI.5), N is representable as u2 + v2, where u and v are relatively prime.
This, then, is a necessary condition for the solubility of x2−N y2 = −1, but
it is not sufficient; for example the number N = 34 satisfies the condition,
but the equation x2 − 34y2 = −1 is insoluble.

The solutions of the more general equation

x2 − N y2 = ±M,

where M is a positive integer less than
√

N , are also closely related to
the continued fraction for

√
N . It can be proved that every solution of

every such equation comes from some convergent in the continued fraction
for

√
N .

12. A geometrical interpretation of continued fractions
A striking geometrical interpretation of the continued fraction for an irra-
tional number was given by Klein in 1895. Suppose α is an irrational
number, which we suppose for simplicity to be positive. Consider all points
in the plane whose coordinates are positive integers, and imagine that pegs
are inserted in the plane at all such points. The line y = αx does not pass
through any of them. Imagine a string drawn along the line, with one end
fixed at an infinitely remote point on the line. If the other end of the string,
at the origin, is pulled away from the line on one side, the string will catch
on certain pegs: if it is pulled away from the line on the other side, the string
will catch on certain other pegs. One set of pegs (those below the line) con-
sists of the points with co-ordinates (B0, A0), (B2, A2), . . . , corresponding
to the convergents which are less than α. The other set of pegs (those above
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the line) consists of the points with coordinates (B1, A1), (B3, A3), . . . ,

corresponding to the convergents which are greater than α. Each of the two
positions of the string forms a polygonal line, approaching the line y = α x .

Figure 3 illustrates the case

α = √
3 = 1 + 1

1+
1

2+
1

1+
1

2+ · · · .

y

(4,7)

(3,5)

(1,2)

(1,1)

O
X

y 
= 

X
√3

Fig. 3
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Here the convergents are

1

1
,

2

1
,

5

3
,

7

4
,

19

11
,

26

15
, · · · .

The pegs below the line are at the points

(1, 1), (3, 5), (11, 19), · · · ,

and the pegs above the line are at the points

(1, 2), (4, 7), (15, 26), . . . .

Most of the elementary theorems about continued fractions have simple
geometrical interpretations. If Pn denotes generally the point (Bn, An), the
recurrence relations (8) and (9) state that the vector from Pn−2 to Pn (two
consecutive vertices on one of the polygonal lines) is an integral multiple of
the vector from the origin O to Pn−1. The relation (10) can be interpreted
as stating that the area of the triangle O Pn−1 Pn is always 1

2 . This can be
deduced directly from the above construction with a string; for it is obvi-
ous that there cannot be any point with integral coordinates in the triangle
O Pn−1 Pn other than the vertices themselves, and it is easy to prove that
any triangle with this property has area 1

2 .

Notes
The best account of continued fractions available in English is that in
Chrystal’s Algebra, vol. II, chs. 32–4. The standard work on the subject is
Perron’s Die Lehre von den Kettenbrüchen (Teubner, 1929). Proofs of the
various results which are stated without proof in this chapter will be found
in either Chrystal or Perron. On Diophantine approximation, the reader may
consult Perron’s Irrationalzahlen (Göschens Lehrbücherei, vol. 1, 1947)
or Niven’s Irrational Numbers (Carus Math. Monographs no. 11, 1956)
or Cassels’s Introduction to Diophantine Approximation (Cambridge Math.
Tracts no. 45, 1957).

§§1–6. Practically the whole of this theory is due to Euler.
§7. See Hardy and Wright, ch. 11, or Perron, §14.
§8. References to tables will be found in Perron, p. 100, or Dickson’s

History, vol. II, ch. 12. For abbreviated methods of calculating the con-
tinued fractions of quadratic irrationals, see Dickson’s History, vol. II,
p. 372.

§10. For proofs of the continued fractions for e, etc., see Perron §§31
and 64, or a note by C. S. Davis in J. London Math. Soc., 20 (1945), 194–8.
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§11. For the cattle problem, see Sir Thomas Heath, Diophantus of
Alexandria (Cambridge, 1910), pp. 121–4, and Dickson’s History, vol. II,
pp. 342–5.

§12. See Klein’s Ausgewählte Kapitel der Zahlentheorie (Teubner, 1907)
pp. 17–25. The idea seems to be due to H. J. S. Smith (see his Collected
Math. Papers, vol. 2, 146–7).



V

S U M S O F S Q U A R E S

1. Numbers representable by two squares
The question as to what numbers are representable as the sum of two
squares is a very old one; there are some statements bearing on it in the
Arithmetic of Diophantus (about 250 A.D.), but their precise meaning is not
clear. The true answer to the question was first given by the Dutch math-
ematician Albert Girard in 1625, and again by Fermat a little later. It is
probable that Fermat had proofs of his results, but the first proofs we know
of are those published by Euler in 1749.

It is an easy matter to rule out certain numbers as incapable of being
represented as the sum of two squares. In the first place, the square of any
even number is congruent to 0 (mod 4), and the square of any odd number
is congruent to 1 (mod 4). Hence the sum of any two squares must be con-
gruent either to 0 + 0 or 0 + 1 or 1 + 1 (mod 4), that is either to 0 or 1 or 2
(mod 4). Thus any number which is of the form 4k + 3 cannot be the sum
of two squares.

But we can go further than this. If a number N has a prime factor q which
is of the form 4k+3, the equation x2+y2 = N would imply the congruence
x2 ≡ −y2 (mod q), and since −1 is a quadratic non-residue to the modulus
q, this congruence holds only when x ≡ 0 and y ≡ 0 (mod q). Hence x and
y are divisible by q, and N is divisible by q2, and the equation x2 + y2 = N
can be divided throughout by q2. If N = q2 N1 and N1 is still divisible by
q then by the same argument it must be divisible by q2, and so on, until
eventually we find that the exact power of q which divides N must be even.
Thus a number which is expressible as the sum of two squares must, when
factorized into powers of primes, contain only even powers of primes of the
form 4k +3. This condition includes and supersedes the previous condition
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that N must not itself be of the form 4k +3, for a number of the form 4k +3
must contain some prime factor of that form to an odd power.

If we rule out the numbers which because of the condition just found
cannot be sums of two squares, the remaining numbers begin:

1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, . . . ,

and the reader will find on trial that each of these is representable as the
sum of two integral squares. This is true generally, and the criterion for
representability of a number is that any prime factor of N which is of the
form 4k + 3 must divide N to an even power exactly.

Our object now is to prove this result. An important part in the proof is
played by an identity which exhibits the product of two sums of two squares
as itself the sum of two squares. The identity is

(a2 + b2)(c2 + d2) = (ac + bd)2 + (ad − bc)2, (1)

and it is generally attributed to Leonardo of Pisa (also called Fibonacci),
who gave it in his Liber Abaci of 1202.

Every number which satisfies the conditions given above can be built
up as a product of factors, each of which is either 2, or a prime of the
form 4k + 1, or the square of a prime of the form 4k + 3. If we can prove
that each such factor is representable as the sum of two squares, it will
follow by repeated application of the identity (1) that the number itself is
representable. Now 2 is obviously representable as 12 + 12, and if q is a
prime of the form 4k + 3 then q2 is representable as q2 + 02. It remains to
be proved that any prime of the form 4k + 1 is representable as x2 + y2,
and this result will be proved in the next section. Once we have this, we
have the necessary and sufficient condition for a number to be the sum of
two squares, as stated above.

It must not be overlooked that in the present theory we are admitting
representations by x2 + y2 in which x and y may have a factor in common
(e.g. q2 = q2 + 02). If it is required that x and y shall be relatively prime,
the result is slightly different. It will be found in VI.5, where the question
is considered as a special case of a more general theory.

2. Primes of the form 4k + 1
We now give the classical proof, which is due essentially to Euler, that any
prime p of the form 4k + 1 is representable as the sum of two squares. This
proof falls into two stages. The first stage is the proof that some multiple
of p is representable as z2 + 1, and the second stage is the deduction from
this that p itself is representable as x2 + y2.
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The first stage is equivalent to proving that the congruence

z2 + 1 ≡ 0(mod p)

is soluble for any prime p of the form 4k + 1. This we already know from
III.3, where the result was deduced from Euler’s criterion for a number to
be a quadratic residue (mod p).

The second stage of the proof starts from the fact just stated, which
implies that

mp = z2 + 1

for some natural number m. We can suppose that z lies between − 1
2 p and

1
2 p, since this can be ensured by subtracting from z a suitable multiple of
p. We have then

m = 1

p
(z2 + 1) <

1

p
( 1

4 p2 + 1) < p.

In order to have the argument in a form which can be applied later in more
general circumstances, we shall suppose only that

mp = x2 + y2 (2)

for some integers x and y, where m is a natural number less than p. The
idea of the proof is to show that if m > 1, there is some natural number m′,
less than m, which has the same property. By repetition of the argument, it
will eventually follow that the number 1 has the property, in other words
that p = x2 + y2.

The argument proceeds as follows. We determine two integers u and v

which lie between − 1
2 m and 1

2 m (inclusive, if m is even) and which are
respectively congruent to x and y to the modulus m:

u ≡ x, v ≡ y(mod m). (3)

Then

u2 + v2 ≡ x2 + y2 ≡ 0(mod m),

so that

mr = u2 + v2 (4)

for some integer r . We observe that r cannot be zero, for then u and v would
be zero, so that x and y would be multiples of m, which is contrary to (2),
since it would imply that the prime p was a multiple of m. As regards the
magnitude of r , we have

r = 1

m
(u2 + v2) � 1

m
( 1

4 m2 + 1
4 m2) < m.
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Multiply together the two equations (2) and (4), and apply the identity
(1). This gives

m2r p = (x2 + y2)(u2 + v2) = (xu + yv)2 + (xv − yu)2. (5)

The important point to be observed now is that both the numbers xu + yu
and xv − yu are multiples of m. For, by (3),

xu + yv ≡ x2 + y2 ≡ 0(mod m),

and

xv − yu ≡ xy − yx ≡ 0(mod m).

Hence the equation (5) can be divided throughout by m2, giving

r p = X2 + Y 2

for some integers X and Y . We have therefore proved that there is some
natural number r , less than m, for which r p is representable as the sum of
two squares. As explained earlier, this is enough to prove that p itself is
representable.

It may be of interest to illustrate the proof by working through it in a
numerical case. Take p = 277, this being a prime of the form 4k + 1. We
know that the congruence z2 +1 ≡ 0 (mod 277) is soluble, and the solution
can be found either by trial or by using a table of indices. In fact z = 60
provides a solution, since

602 + 1 = 3601 = 277 × 13.

Thus the starting point of the proof, analogous to (2), is

13 × 277 = 602 + 12.

Following the plan of the proof, we reduce the numbers 60 and 1 to the
modulus 13, obtaining the numbers −5 and 1. The equation analogous
to (4) is

13 × 2 = (−5)2 + 12.

The next step is to multiply together the two equations, and apply the
identity (1). We obtain

132 × 2 × 277 = (602 + 12)((−5)2 + 12)

= (60 × (−5) + 1 × 1)2 + (60 × 1 − 1 × (−5))2

= (−299)2 + 652.

The numbers on the right are divisible by 13, as they must be, and we obtain

2 × 277 = (−23)2 + 52.
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Now we repeat the process. Reducing −23 and 5 to the modulus 2, they
become 1, and the corresponding equation is

2 × 1 = 12 + 12.

Multiplying this by the preceding equation, and applying the identity (1),
we obtain

22 × 277 = (−23 + 5)2 + (−23 − 5)2

= (−18)2 + (−28)2.

Hence, finally,

277 = 92 + 142.

In connection with the general theorem, there is a further remark to be
made, namely that the representation of p as x2 + y2 is unique, apart
from the obvious possibility of interchanging x and y, and changing their
signs. Fermat laid stress on this fact, and called it ‘the fundamental theorem
on right-angled triangles’, since it shows that there is exactly one right-
angled triangle whose hypotenuse is

√
p and whose other sides are natural

numbers.
The proof of the uniqueness is not difficult. Suppose that

p = x2 + y2 = X2 + Y 2. (6)

We know that the congruence z2+1 ≡ 0 (mod p) has exactly two solutions,
which are of the form z ≡ ±h (mod p). Hence

x ≡ ±hy and X ≡ ±hY (mod p).

Since the signs of x, y, X, Y are immaterial, we can suppose that

x ≡ hy, X ≡ hY (mod p). (7)

Multiply together the two equations (6), and apply the identity (1). We
obtain

p2 = (x2 + y2)(X2 + Y 2) = (x X + yY )2 + (xY − y X)2.

Now xY − y X ≡ 0 (mod p) by (7). Hence both numbers on the right are
multiples of p, and the equation can be divided by p2 throughout. It will
then reduce to an equation which expresses 1 as the sum of two integral
squares, and the only possibility is (±1)2 + 02. Thus, in the previous equa-
tion, one of the two numbers x X + yY, xY − y X must be 0. If xY − y X = 0
it follows, since x, y and X, Y are relatively prime, that either x = X and
y = Y or x = −X and y = −Y . Similarly if x X + yY = 0 it follows that
either x = Y and y = −X or x = −Y and y = X . In any case, the two
representations in (6) are essentially the same.
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3. Constructions for x and y
Once it was known that any prime p of the form 4k + 1 is representable
uniquely as x2 + y2, it is natural that mathematicians should have tried
to find constructions for the numbers x and y in terms of p. A construc-
tion often gives greater mental satisfaction than a mere proof of existence,
though the distinction between the two is not always a clear-cut one. Four
constructions for x and y are known, due to Legendre (1808), Gauss (1825),
Serret (1848) and Jacobsthal (1906), and we proceed to give them with-
out entering into the details of the proofs. Part of the interest of these
constructions lies in the variety of the methods which they use.

Legendre’s construction is based on the continued fraction for
√

p. This
is of the form (IV.9)

√
p = q0 + 1

q1+
1

q2+ · · · 1

q2+
1

q1+
1

2q0+ · · · ,

the period consisting of a symmetrical part q1, q2, . . . , q2, q1 followed by
2q0. So far, this does not depend on p being a prime of the form 4k +1, and
applies to any number which is not a perfect square. We recall also (IV.11)
that if there is no central term in the symmetrical part of the period, then the
equation x2 − py2 = −1 is soluble. The converse is also true, although it
was not proved in IV.11. Legendre proved, in quite an elementary way, that
if p is a prime of the form 4k + 1, the equation x2 − py2 = −1 is soluble.
Consequently, by the converse theorem just stated, there is no central term,
and the period has the form

q1, q2, . . . , qm, qm, . . . , q2, q1, 2q0.

Now let α be the particular complete quotient which begins at the middle
of the period, that is

α = αm = qm + 1

qm−1+ . . .
1

q1+
1

2q0+
1

q1+ . . . .

This is a purely periodic continued fraction, whose period consists of
qm, . . . , q1, 2q0, q1, . . . , qm . Since this period is symmetrical, we have,
as in IV.9, α′ = − 1

α
, where α′ denotes the conjugate of α. Now α is

expressible in the form

α = P + √
p

Q
,

where P and Q are integers. The equation αα′ = −1 gives

P + √
p

Q
· P − √

p

Q
= −1,
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or

p = P2 + Q2.

This is Legendre’s construction.
As an illustration, take p = 29. The process for developing

√
29 in a

continued fraction is

√
29 = 5 + 1

α1
,

α1 = 1

4
(5 + √

29) = 2 + 1

α2
,

α2 = 1

5
(3 + √

29) = 1 + 1

α3
,

α3 = 1

5
(2 + √

29) = 1 + 1

α4
,

α4 = 1

4
(3 + √

29) = 2 + 1

α5
,

α5 = 5 + √
29.

The continued fraction is 5, 2, 1, 1, 2, 10. The appropriate complete quo-
tient to take is α = α3, giving P = 2 and Q = 5, corresponding to 29 =
22 + 52.

The second construction is that of Gauss, and this is the most elementary
of all to state, though not to prove. If p = 4k + 1, take

x ≡ (2k)!

2(k!)2
(mod p), y ≡ (2k)!x(mod p),

with x and y numerically less than 1
2 p. Then p = x2 + y2. A proof was

given by Cauchy, and another by Jacobsthal, but neither of these is very
simple. To illustrate the construction, take again p = 29. Then

x ≡ 14!

2(7!)2
= 1716 ≡ 5(mod 29),

y ≡ 14!x ≡ (14!) × 5 ≡ 2(mod 29).

The construction is obviously not a very convenient one for purposes of
numerical calculation, in spite of its elementary nature.

The third construction is that of Serret. This, like Legendre’s con-
struction, uses a continued fraction, but now the number developed is a
rational number. We expand p

h into a continued fraction, where h satisfies
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h2 + 1 ≡ 0 (mod p) and 0 < h < 1
2 p. It can be proved that the continued

fraction is of the form

p

h
= q0 + 1

q1+ · · · 1

qm+
1

qm+ · · · 1

q0
, (8)

that is, the terms are symmetrical and there is no central term. With the
notation of Chapter IV, let

x = [q0, q1, . . . , qm], y = [q0, q1, . . . , qm−1].

Then

p = x2 + y2.

For example, if p = 29, we find that h = 12, since

122 + 1 = 145 = 5 × 29.

The continued fraction is

29

12
= 2 + 1

2+
1

2+
1

2
.

Hence

x = [2, 2] = 5, y = [2] = 2.

This construction was given again in a slightly different form by H. J. S.
Smith in 1855. His object was to give a simple and direct proof that any
prime of the form 4k + 1 is representable as the sum of two squares. He
avoided any consideration of congruences by proving directly that there is
some number h with 0 < h < 1

2 p for which the continued fraction for p
h

has the form given in (8). Defining x and y as above, he proved like Serret
that p = x2 + y2.

Finally, we come to Jacobsthal’s construction. This is based on con-
siderations similar to those that occurred in III.6 in connection with
the distribution of quadratic residues. We consider the following sum of
Legendre symbols:

S(a) =
∑

n

(
n(n2 − a)

p

)
,

where a is any number not congruent to 0 (mod p), and the summa-
tion is extended over a complete set of residues, for example over n =
0, 1, 2, . . . , p − 1. It can easily be proved that |S(a)| has only two possible
values, one when a is a quadratic residue, the other when a is a quadratic
non-residue. Moreover, each of these values is an even integer, for the term
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n = 0 contributes 0 to the sum, and two terms n and −n contribute the
same amount, since (−1|p) = 1. Put

x = 1
2 |S(R)|, y = 1

2 |S(N )|,
where R is any quadratic residue and N any quadratic non-residue. Then

p = x2 + y2.

The proof is not very difficult, depending mainly on a skilful use of the
relation (18) of Chapter III.

As an illustration, take p = 29 again. For R we take 1, and for N we
take 2, since this is a non-residue. The values of n(n2 −1) (mod 29) consist
of 0, and the numbers

0, 6, −5, 2, 4, 7,−12, 11,−5, 4, −14, 5, 9, 4

each twice. The sum of the Legendre symbols of the above numbers is 5,
hence x = 5. The values of n(n2−2) (mod 29) consist of 0 and the numbers

−1, 4, −8,−2,−1, 1, 10, 3, −14,−6, 4, −7,−4,−10

each twice. The sum of the Legendre symbols of these numbers is 2, hence
y = 2.

4. Representation by four squares
It was stated by Girard and by Fermat that every natural number is repre-
sentable as the sum of four squares of integers. Another way of expressing
the result (allowing for the possibility that some of the integers may be
zero) is to say that every natural number is representable as the sum of at
most four squares of natural numbers. Some historians have argued that
the fact was known already to Diophantus of Alexandria, because he made
no mention of any condition to be satisfied by a number for it to be repre-
sentable as a sum of four squares, whereas he was aware that only certain
kinds of numbers could be represented by two or three squares.

Euler made many attempts to prove the result, but did not succeed. His
failure may have been due to the fact that he tried to represent the given
number as the sum of two numbers, each of which satisfies the conditions
for representation by two squares. Such an approach to the question does
not easily lead to a proof. The first proof was given in 1770 by Lagrange,
who acknowledged his great indebtedness to the work of Euler.

Lagrange’s proof is very similar to that given in §§1 and 2 for the result
concerning two squares, apart from one slight complication. Again there
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is an identity which expresses the product of two sums of four squares as
itself the sum of four squares. This identity (due to Euler) is as follows:⎧⎨

⎩
(a2 + b2 + c2 + d2)(A2 + B2 + C2 + D2)

= (a A + bB + cC + d D)2 + (aB − bA − cD + dC)2

+(aC + bD − cA − d B)2 + (aD − bC + cB − d A)2.

(9)

In view of this identity, it suffices to prove that every prime is representable
as the sum of four squares, for then the representability of composite num-
bers will follow by repeated application of the identity. Since we already
know that the prime 2 and all primes of the form 4k + 1 are representable
by two squares, it remains only to prove that any prime of the form 4k + 3
is representable as the sum of four squares.

The proof falls into two stages, like that in §2. The first stage is the proof
that some multiple mp of p, where 0 < m < p, is representable as the sum
of four squares. The second stage is the deduction from this that p itself is
representable.

For the first stage it is enough to prove that the congruence

x2 + y2 + 1 ≡ 0(mod p) (10)

is soluble. For then we can choose a solution with x and y each numerically
less than 1

2 p, and we have

mp = x2 + y2 + 12 + 02,

with

m <
1

p
( 1

4 p2 + 1
4 p2 + 1) < p.

Euler gave a simple argument which establishes the solubility of the
congruence (10) without any calculation. We write the congruence as

x2 + 1 ≡ −y2(mod p).

Any quadratic non-residue (mod p) is representable as congruent to some
number of the form −y2, since −1 is a quadratic non-residue for any prime
of the form 4k + 3 (III.3). Thus, to satisfy the above congruence, it suffices
to find a quadratic residue R and a quadratic non-residue N such that R +
1 = N . If we take N to be the first quadratic non-residue in the series
1, 2, 3, . . . , this condition is obviously satisfied, and the solubility of the
congruence follows.

We may observe in passing that the solubility of the congruence (10)
is a special case of Chevalley’s theorem (II.8). We saw there that the
congruence

x2 + y2 + z2 ≡ 0(mod p)
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is soluble, with not all of x, y, z congruent to 0. If we suppose z �≡ 0, and
determine X and Y so that x ≡ Xz, y ≡ Y z, we then have X2+Y 2+1 ≡ 0.

We now come to the second stage of the proof, which starts from the fact
that mp is representable as

mp = a2 + b2 + c2 + d2, (11)

for some number m with 0 < m < p. We shall prove, in almost the same
way as in §2, that if m > 1 there is some number r with 0 < r < m which
has the same property as m. It follows, by repetition of the argument, that
the number 1 has the property, and therefore that p itself is representable
as the sum of four squares.

We begin by reducing a, b, c, d with respect to the modulus m, that
is, we determine numbers A, B, C, D which are respectively congruent to
a, b, c, d to the modulus m, and which satisfy − 1

2 m < A � 1
2 m, and so on

for B, C, D. We now have

mr = A2 + B2 + C2 + D2 (12)

for some integer r . This number r cannot be zero, for then A, B, C, D
would all be zero, and a, b, c, d would all be multiples of m. From (11) we
would have mp divisible by m2, or p divisible by m, which is impossible
since p is a prime and m is greater than 1 but less than p.

As regards the magnitude of r , we have

r = 1

m
(A2 + B2 + C2 + D2) � 1

m

(
1

4
m2 + 1

4
m2 + 1

4
m2 + 1

4
m2

)
= m.

This is not good enough as it stands; we need to know that r is strictly less
than m. The possibility that r = m will only arise if A, B, C, D are all
equal to 1

2 m. In this case m is even, and A, B, C, D are all congruent to 1
2 m

to the modulus m. But then a2 ≡ 1
4 m2 (mod m2), and similarly for b, c, d.

Now (11) gives mp ≡ 0 (mod m2) and, as we have already seen, this is
impossible. It follows that the number r in (12) satisfies 0 < r < m.

We continue the proof by multiplying together the equations (11) and
(12), and applying the identity (9). This gives

m2r p = x2 + y2 + z2 + w2, (13)

where x, y, z, w are the four expressions on the right-hand side of (9). All
these expressions represent numbers which are divisible by m. For

x = a A + bB + cC + d D ≡ a2 + b2 + c2 + d2 ≡ 0(mod m),

and

y = aB − bA − cD + dC ≡ ab − ba − cd + dc ≡ 0(mod m),
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with similar results for z and w. We can cancel m2 from both sides of the
equation (13), and obtain a representation for r p as the sum of four squares.
This proves the desired result.

The above proof of Lagrange’s four-square theorem is a little simpler
than the proof he originally gave, and is essentially that given later by Euler.
Although the details of the proof can be varied somewhat, I do not know
of any other simple and elementary proof which is fundamentally different
from this one.

5. Representation by three squares
This is a much more difficult question. One reason for the difficulty lies
in the fact that there is no such identity as (1) or (9). Indeed, it is very
easy to see that the product of two numbers, each a sum of three squares,
need not itself be a sum of three squares. For example, 3 = 12 + 12 + 12

and 5 = 22 + 12 + 02, but 15 is not representable as the sum of three
squares.

As in §1, we can rule out some numbers as incapable of being repre-
sented as a sum of three squares. Any square is congruent to 0 or 1 or
4 to the modulus 8. Hence the sum of three squares cannot be congru-
ent to 7 (mod 8), since it is impossible to build up 7 from three terms,
each of which is 0 or 1 or 4. Hence a number of the form 8k + 7 is not
representable.

Further, a multiple of 4, say 4m, can only be representable if m itself
is representable. For any square is congruent to 0 or 1 (mod 4), and the
sum of three squares can only be divisible by 4 if all the numbers are even.
Hence numbers of the form 4(8k + 7) are not representable, and numbers
of the form 16(8k + 7) are not representable and so on. In general, we can
say that a number of the form 4l(8k + 7) is not representable as a sum of
three squares.

It is a fact that every number which is not of this form is representable.
The first proof was attempted by Legendre, but in the course of it he
assumed that any arithmetical progression a, a + b, a + 2b, . . . (in which
a and b are relatively prime) must contain infinitely many primes. This
was first proved by Dirichlet in 1837, forty years after Legendre’s work.
Gauss, in his Disquisitiones Arithmeticae, gave a complete proof, but it was
one which depended on the more difficult results in his extensive theory of
quadratic forms. Other proofs have since been given, but none of them can
be described as both elementary and simple.
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Notes
§1. The reader who is familiar with complex numbers will recognize the
identity (1) as equivalent to |αβ|2 = |α|2|β|2, where α = a + ib and β =
c + id. The numbers of the form a + ib, where a and b are integers, are the
so-called Gaussian integers, and to represent n as the sum of two squares
is the same thing as to find Gaussian integers a + ib whose norm a2 + b2

is n. The theory takes on a more elegant appearance when it is expressed in
terms of Gaussian integers.

§3. For references, see Dickson’s History, vol. II, ch. 6 and vol. III, ch.
2. The various constructions do not generally give positive values for x and
y, though they happen to do so when p is 29.

§4. The identity (9) bears the same relation to quaternions as the iden-
tity (1) bears to complex numbers (see note to §1 above). Hurwitz gave a
treatment of representation by four squares by means of quaternions; for an
account see Hardy and Wright, ch. 20.

§5. A proof of the three squares theorem, based on Dirichlet’s theorem
on primes in arithmetical progressions, is given in Landau’s Vorlesungen
über Zahlentheorie, vol. I, pp. 114–21.

Rational squares. It follows from the condition (§1) for a number to be
a sum of two squares that if an integer is expressible as the sum of two
rational squares then it is expressible as the sum of two integral squares.
Similarly for three squares, in view of the condition given in §5.

Number of representations. Lack of space precludes us from giving an
account of the formulae that are known for the number of representations
of a number n as the sum of two squares, or four squares. In these for-
mulae, the representations are supposed to be by integers, which may be
positive, negative or zero, and two representations are counted as distinct
unless they are identical. For two squares the rule (due to Legendre) is as
follows. Count the number of divisors of n of the form 4x + 1 and the
number of those of the form 4x +3. If these numbers are D1 and D3 respec-
tively, then the number of representations is 4(D1 − D3). For four squares,
the rule was found by Jacobi, who deduced it from an identity connecting
two infinite series. If n is odd, the number of representations of n as the
sum of four squares is 8σ(n). If n is even, put n = 2r n′ where n′ is odd;
then the number of representations of n is 24σ(n′). Here σ(n) denotes the
sum of the divisors of n, as in I.5. For proofs of these results see, for exam-
ple, Hardy and Wright, chs. 16, 20. The number of representations by three
squares is a much more recondite function, but can be expressed in terms
of certain class-numbers of quadratic forms (VI.9).
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Q U A D R A T I C F O R M S

1. Introduction
In Chapter V we found the necessary and sufficient condition for a num-
ber to be representable as the sum of two squares, the condition being one
that related to the prime factors of the number. Euler and other mathemati-
cians of the eighteenth century were also successful in finding the necessary
and sufficient conditions for a number to be representable as x2 + 2y2 or
x2 + 3y2, and again these related to the prime factors of the number. It was
natural that they should then try to find similar results for general quadratic
forms. A quadratic form, in this connection, means an expression

ax2 + bxy + cy2

which is homogeneous and of the second degree in the variables, and has
integral coefficients a, b, c. We shall limit ourselves to forms in two vari-
ables, or binary forms, though there is also a theory of quadratic forms in
three variables (ternary forms), or in any number of variables.

The theory of quadratic forms was first developed by Lagrange in 1773,
and many of the fundamental ideas are due to him. His theory was simpli-
fied and extended by Legendre, and further progress was made by Gauss,
who introduced many new concepts and used them to prove deep and
difficult results which had eluded Lagrange and Legendre.

The classical problem of the subject is the problem of representation:
given a particular quadratic form, what are the numbers represented by it?
A simple answer can be given for some special forms, such as x2 + y2 or
x2 + 2y2 or x2 + 3y2; but there is no such simple answer in the general
case. What the theory does lead to is a simple answer to a rather different
problem: that of representation not by one form but by one or other of a
certain set of forms.

116
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The general ideas of the theory, which all arise out of the notion of equiv-
alence (§2), are of importance in other more difficult and more advanced
theories. The study of quadratic forms provides a natural introduction to
them, and allows one to become familiar with them in a context where they
are readily appreciated.

2. Equivalent forms
A fundamental notion in connection with quadratic forms (and other forms,
too) is that of equivalence. We recognize at once that two forms such as
2x2 + 3y2 and 3x2 + 2y2 are really the same, one being obtained from the
other by merely interchanging the variables. It is not quite so obvious that
the form 2x2 + 4xy + 5y2 is essentially the same as either of the two forms
just mentioned. However, this form can be written as

2(x + y)2 + 3y2,

and when the variables x and y take all integral values, so do the vari-
ables x + y and y, and conversely. It is clear that any property of a general
nature possessed by the form 2x2 + 3y2 will also be possessed by the form
2(x + y)2 + 3y2, and conversely. Certainly this is true of properties relat-
ing to the representation of numbers: if we know the representations of a
number by one of the forms then we can immediately deduce what are the
representations by the other. The two forms are connected by a very simple
substitution: if we put x = X + Y and y = Y , then

2x2 + 3y2 = 2X2 + 4XY + 5Y 2.

This substitution has the property that as x and y take all integral values, so
also do X and Y , and conversely.

We ask ourselves the general question: what substitutions of the form

x = pX + qY, y = r X + sY (1)

have this property, that is, establish a one-to-one correspondence between
all integer pairs x, y and all integer pairs X, Y ? We do not impose a priori
any restriction on the nature of the coefficients p, q, r, s, though in fact
it is obvious that they must all be integers, for the values x = p, y = r
correspond to the values X = 1, Y = 0, and the values x = q, y = s
correspond to the values X = 0, Y = 1. If all four coefficients are integers,
then whatever integral values we give to X and Y , the resulting values of x
and y will be integers.
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We want the converse to be true also. The obvious way to investigate this
is to express X and Y in terms of x and y. If we multiply the first equation
by s and the second by q and subtract, we obtain

sx − qy = (ps − qr)X,

and in a similar way we get

−r x + py = (ps − qr)Y.

The number ps −qr cannot be zero, for then sx −qy and −r x + py would
always be zero, and the variables x and y would not be independent. Putting
Δ = ps − qr , and dividing by Δ, the equations expressing X and Y in
terms of x and y are

X = s

Δ
x − q

Δ
y, Y = − r

Δ
x + p

Δ
y. (2)

The four coefficients here must also be integers. This is certainly true if
Δ = ±1. It will not be true otherwise; for if the four coefficients are
integers, then so also is

p

Δ

s

Δ
− q

Δ

r

Δ
,

and the value of this is
1

Δ
, which is only an integer if Δ = ±1. Hence the

coefficients p, q, r, s of the substitution must all be integers, and ps−qr must
be ±1. Then, and only then, will the substitution have the desired property
of making all integer pairs x, y correspond to all integer pairs X, Y , and
vice versa.

The expression ps − qr is called the determinant of the substitution. In
order to avoid complications in the later theory, it is customary to restrict
oneself to the use of substitutions of determinant 1, and to make no use
of those of determinant −1. A substitution of the form (1) with integral
coefficients and determinant 1 will be called a unimodular substitution.

Two forms which are related by a unimodular substitution are said to
be equivalent. For example, as we saw above, the form 2x2 + 3y2 can be
transformed into the form 2X2 + 4XY + 5Y 2 by the substitution

x = X + Y, y = Y,

which is a unimodular substitution, and so the two forms are equivalent.
To avoid specifying particular letters for the variables, and changing them
at each substitution, it is convenient to denote the quadratic form ax2 +
bxy + cy2 by (a, b, c), and to express the equivalence of two forms by the
symbolism

(2, 0, 3) ∼ (2, 4, 5).
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The original example was

(2, 0, 3) ∼ (3, 0, 2),

but here one comment must be made. The substitution which interchanges
the variables, that is, the substitution x = Y, y = X , is not a unimodu-
lar substitution according to our present definition, because its determinant
is −1. Instead, however, we can use the substitution x = Y, y = −X , which
is unimodular, and transforms (2, 0, 3) into (3, 0, 2). Applied to a general
form, this substitution shows that

(a, b, c) ∼ (c, −b, a). (3)

In using the term ‘equivalence’, we have been tacitly assuming that this
relationship between two forms has certain simple properties; if this were
not so, the use of the word would be misleading. The properties are: (i)
any form is equivalent to itself, (ii) if one form is equivalent to another,
then the second form is equivalent to the first, (iii) two forms which are
equivalent to the same form are equivalent to one another. In fact, all these
properties follow at once from the definition. First, any form is equivalent to
itself by the identical substitution x = X, y = Y . Secondly, if one form is
transformed into another by the substitution (1), then the second form will
be transformed back into the first by the inverse substitution (2), where now
Δ = 1. Finally, the third result follows from the fact that two unimodular
substitutions applied in succession can be replaced by a single unimodular
substitution

x = pX + qY, y = r X + sY

is followed by the substitution

X = Pξ + Qη, Y = Rξ + Sη,

the final effect is the same as that of the substitution

x = p(Pξ + Qη) + q(Rξ + Sη),

y = r(Pξ + Qη) + s(Rξ + Sη).

This resultant substitution has integral coefficients, and its determinant is

(pP + q R)(r Q + sS) − (pQ + q S)(r P + s R) = (ps − qr)(P S − Q R),

and so is 1.
It is obvious (as we have already remarked in a particular case) that the

problem of representation is the same for two equivalent forms. A similar
remark applies to a modified form of the problem: that of proper represen-
tation. A number n is said to be properly representable by a form (a, b, c)
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if n = ax2 +bxy +cy2, where x and y are relatively prime integers. A uni-
modular substitution transforms relatively prime pairs x, y into relatively
prime pairs X, Y , and conversely; for if X and Y had a common factor in
(1), then x and y would have the same common factor. It follows that if two
forms are equivalent, the proper representations of a number by the two
forms correspond to one another by the unimodular substitution.

3. The discriminant
The discriminant of a quadratic form (a, b, c) is defined to be the num-
ber b2 − 4ac. Thus the discriminant of the form (2, 0, 3) is −24, and the
discriminant of the form (2, 4, 5) is 42 − 4 × 2 × 5 = −24 also.

It is an important fact that equivalent forms have the same discriminant.
The shortest proof is by direct verification. If we apply the substitution (1)
to the form ax2 + bxy + cy2 we get the form AX2 + B XY + CY 2, where⎧⎨

⎩
A = ap2 + bpr + cr2,

B = 2apq + b(ps + qr) + 2crs,
C = aq2 + bqs + cs2.

(4)

It can be verified that

B2 − 4AC = (b2 − 4ac)(ps − qr)2. (5)

Since ps − qr = 1, the two forms (a, b, c) and (A, B, C) have the same
discriminant. Naturally, the identity (5) does not depend on the nature of
the coefficients p, q, r , s in the substitution. It is a purely algebraical rela-
tion, and we have here a particular instance of a very general situation. A
function of the coefficients of an algebraic form, such as b2 − 4ac in the
present case, which is unaltered when a linear substitution of determinant
1 is applied to the form, is said to be an algebraic invariant of the form.
The discriminant of a binary quadratic form is a simple example of such an
invariant.

Although equivalent forms have the same discriminant, it is by no means
true that forms of the same discriminant are necessarily equivalent. For
example, the forms (1, 0, 6) and (2, 0, 3) both have the discriminant −24,
but they are not equivalent. To see this, we need only observe that the form
x2 + 6y2 represents the number 1, namely when x = 1 and y = 0, whereas
the form 2x2 + 3y2 can obviously never take the value 1.

The discriminant d of a quadratic form is an integer, which may be pos-
itive, negative or zero. Not every integer can figure as the discriminant of a
form. For b2 − 4ac ≡ b2 (mod 4), and any square is congruent to 0 or 1
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(mod 4). Hence d must be congruent to 0 or 1 (mod 4), and the possible
discriminants are

. . . , −11,−8,−7,−4,−3, 0, 1, 4, 5, 8, 9, . . . .

Moreover, each such number is the discriminant of at least one form. For if
d is any given number which is congruent to 0 or 1 (mod 4), we can satisfy
the equation b2 − 4ac = d by taking a to be 1, and taking b to be 0 or 1
according as d ≡ 0 or 1 (mod 4). Then c is − 1

4 d or − 1
4 (d − 1), as the case

may be. This gives a particular form of discriminant d, namely(
1, 0, −1

4
d

)
or

(
1, 1,−1

4
(d − 1)

)
according as d ≡ 0 or 1 (mod 4). This is called the principal form of
discriminant d . Thus the principal form of discriminant −4 is (1, 0, 1),
or x2 + y2, and the principal form of discriminant 5 is (1, 1, −1), or
x2 + xy − y2.

There is an important distinction to be made between forms of positive
discriminant and forms of negative discriminant. (We shall not consider
forms of zero discriminant, since such a form is simply the square of a
certain linear form.) Let us first consider forms of negative discriminant.
We multiply the form by 4a and carry out the process of ‘completing the
square’, as follows:

4a(ax2 + bxy + cy2) = 4a2x2 + 4abxy + 4acy2

= (2ax + by)2 + (4ac − b2)y2.

Here 4ac − b2 is positive. Hence the last expression is always positive,
whatever values x and y may have, except that it is zero when x and y
are both zero. It follows that all the numbers represented by the form have
the same sign: they are all positive if a is positive, or all negative if a is
negative. Such a form is said to be definite, and to be positive definite or
negative definite as the case may be. We can always change a negative
definite form into a positive definite form by merely changing the signs of
all the coefficients, and therefore in treating definite forms it is enough to
consider positive definite forms. Examples of positive definite forms are
(1, 3, 7), of discriminant −19, or (5, −7, 5), of discriminant −51.

Consider next forms of positive discriminant. The expression obtained
above is still valid, but since 4ac − b2 = −d, and d is now positive, we can
factorize it. We obtain

4a(ax2 + bxy + cy2) = (2ax + by + √
dy)(2ax + by − √

dy)

= 4a2(x − θy)(x − φy),
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where θ and φ are given by

−b ± √
d

2a
.

Here we assume, for the moment, that a is not zero. The numbers θ and φ

are real, but not generally rational. The sign of the product (x −θy)(x −φy)

depends on whether the fraction x
y falls between the two numbers θ and φ,

or outside them. Since there are fractions of both kinds, the form assumes
both positive and negative values. It is said to be indefinite. The case when a
is zero is still simpler; here the form factorizes as y(bx +cy), and obviously
takes both positive and negative values. Examples of indefinite forms are
(3, 1, −1), of discriminant 13, or (1, 4, 1), of discriminant 12. Note that,
as in the last example, the fact that the coefficients are all positive does not
prevent the form from being indefinite.

We have now seen that forms of negative discriminant are definite, and
forms of positive discriminant are indefinite. The first stage of the theory
now to be expounded, in which the problem of representation is reduced to
the problem of equivalence, applies equally to definite and indefinite forms.
The later theory takes quite different shapes for the two types of form, and
owing to limitations of space we shall then have to restrict ourselves almost
entirely to definite forms.

4. The representation of a number by a form
In discussing what numbers are represented by a given form (a, b, c) it is
enough to consider proper representation. When we know what numbers
are properly representable, we can deduce what numbers are improperly
representable by multiplying throughout by any square.

Suppose a number n is properly representable by a form (a, b, c). For a
reason which will appear in a moment, we denote by p and r the integers
for which the representation takes place, so that

n = ap2 + bpr + cr2, (6)

and p, r are relatively prime. If the form is definite, say positive definite,
we suppose n to be positive, but if the form is indefinite n may be positive
or negative. But we shall suppose that n is not zero, as that possibility is
best dealt with separately (and is of little interest).

Since p and r are relatively prime, we can find integers q and s for which
ps − qr = 1. Now consider the effect of applying the unimodular substi-
tution (1), with these particular coefficients p, q, r , s, to the form (a, b, c).
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On comparing (6) with the first formula in (4), we see that the first coeffi-
cient of the transformed form is n. So we get a form, say (n, h, l), which is
equivalent to the form (a, b, c), and has n as its first coefficient. Conversely,
if there exists such a form, then n is properly represented by it (namely
when X = 1 and Y = 0), and is therefore properly representable by the
form (a, b, c). The conclusion is that the numbers that are properly rep-
resentable by a form (a, b, c) are precisely those numbers which figure as
first coefficients of forms equivalent to (a, b, c).

At first sight it may seem that this method of attacking the problem is not
likely to get one very far; nevertheless it is the basis on which the whole
theory rests. The problem of representation is now reduced to the problem
of equivalence, in the sense that we now wish to be able to decide whether
any form with the given first coefficient n is equivalent to the given form
(a, b, c).

There is a simple but important deduction to be made from the general
principle enunciated above. A form (n, h, l) cannot be equivalent to the
given form (a, b, c) unless the two have the same discriminant, that is,

h2 − 4nl = d, (7)

where d = b2 − 4ac is the discriminant of the given form. In other words,
there must exist a number h for which h2 − d is a multiple of 4n. That is,
the congruence

h2 ≡ d (mod 4n′), where n′ = |n|, (8)

must be soluble. (We have to take 4n′ as the modulus of the congruence
rather than 4n, since n may be negative.) The converse is only true to a
limited extent. If the congruence (8) is soluble, there is some form (n, h, l)
which has the discriminant d, but this form need not be equivalent to the
given form (a, b, c). The conclusion therefore is that if n is properly rep-
resentable by any form of discriminant d, the congruence (8) is soluble.
Conversely, if the congruence is soluble then n is properly representable by
some form of discriminant d.

In several simple cases it happens that all forms of discriminant d are
mutually equivalent. In such a case, the solubility of the congruence is the
necessary and sufficient condition for n to be properly representable by
the given form. In the next section we apply the above principle in three
such cases.

But before going on to this, there is one further remark we should make.
The general principle stated above requires us to solve the congruence (8),
and then to decide whether or not the resulting form (n, h, l), where l is
found from h2 − 4nl = d , is equivalent to the given form (a, b, c). As it
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stands, this might involve an infinity of trials, one for each number h which
satisfies (8). In fact, however, it is enough to consider values of h which
satisfy

0 � h < 2n′. (9)

For if h is any solution of the congruence, and (n, h, l) the corresponding
form, we can apply to this form the special substitution

x = X + uY, y = Y,

where u is any integer. This gives the form

n(X + uY )2 + h(X + uY )Y + lY 2.

The first coefficient is still n, and the middle coefficient, instead of being
h, is now h + 2un. Consequently two forms with first coefficient n and
with middle coefficients which differ by a multiple of 2n are necessarily
equivalent. So it is enough to consider those forms for which h satisfies the
inequality (9) as well as the congruence (8).

5. Three examples
Consider first the form x2 + y2, of discriminant −4. It will be proved
in §7 that all forms of discriminant −4 are mutually equivalent. Assum-
ing this, the general principle tells us that a positive integer n is properly
representable by x2 + y2 if and only if the congruence

h2 ≡ −4(mod 4n)

is soluble. Since h must be even to satisfy such a congruence, we can divide
by 4, and consider instead the congruence

h2 ≡ −1(mod n). (10)

The question of the solubility of such a congruence is obviously bound
up with the theory of quadratic residues. In the first place, by the general
principle governing congruences to a composite modulus (II.6), it suffices
to decide whether the congruence

h2 ≡ −1(mod pr ) (11)

is soluble, for each prime power pr occurring in the factorization of n.
The congruence (11) cannot be soluble if p is of the form 4k+3, since −1

is a quadratic non-residue to such a modulus (III.3). If p is a prime of the
form 4k +1, the congruence is known to be soluble when r is 1, since −1 is
a quadratic residue to such a modulus. It is easy to prove by induction that it
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is then soluble for any exponent r . For example, if r is 2, we take a number
h1 which satisfies h2

1 ≡ −1 (mod p), and then try to satisfy h2 ≡ −1 (mod
p2) by taking h to be h1 + tp, where t is an unknown. With this value of h,

h2 + 1 = h2
1 + 1 + 2th1 p + t2 p2.

This will be divisible by p2 if

1

p
(h2

1 + 1) + 2th1 ≡ 0(mod p),

where the first term is an integer by hypothesis. This is a linear congruence
for t , and is soluble because 2h1 is not congruent to 0 (mod p). The same
argument continues to apply for higher exponents; to solve the congruence
when r is 3 we take a number h2 which satisfies h2

2 ≡ −1 (mod p2) and
put h = h2 + tp2, getting again a linear congruence for t to the modulus p.

This settles the question of the solubility of the congruence (11) for
primes of the form 4k + 1 and 4k + 3. There remains the prime 2. Here the
congruence when r = 1 is obviously soluble (a solution being h = 1). But
it is not soluble when r � 2, for any square is congruent to 0 or 1 (mod 4),
and so cannot be congruent to −1 (mod 2r ) if r � 2.

The conclusion therefore is that the congruence (10) is soluble if and
only if n has no prime factor of the form 4k + 3 and is also not divisible by
4. This, then, is the necessary and sufficient condition for n to be properly
representable as x2 + y2. If we allow for multiplication by any square, we
obtain again the condition already found in Chapter V for a number to be
representable as the sum of two squares, whether properly or improperly.

As a second example, take the form x2 + xy + 2y2, of discriminant −7,
again a positive definite form. It will be proved in §7 that all forms of dis-
criminant −7 are mutually equivalent. Assuming this, we have to decide
for what numbers n the congruence

h2 ≡ −7(mod 4n) (12)

is soluble. For simplicity we shall suppose that n is odd, so that 4 and n are
relatively prime. The congruence h2 ≡ −7 (mod 4) is certainly soluble, e.g.
by h = 1. The congruence h2 ≡ −7 (mod p) is soluble for a prime p if −7
is a quadratic residue (mod p). The law of quadratic reciprocity (III.5) tells
us which primes have this property. Provided p is not 7, we have(−7

p

)
=

(−1

p

)(
7

p

)
=

(−1

p

)
(−1)

1
2 (p − 1)

( p

7

)
=

( p

7

)
,

and this is +1 if p is of the form 7k + 1 or 7k + 2 or 7k + 4 and −1 if p
is of the form 7k + 3 or 7k + 5 or 7k + 6. Exactly as before, one can prove
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that if the congruence is soluble for a prime modulus it is soluble for every
power of that prime. There remains the case p = 7. Here the congruence
h2 ≡ −7 (mod 7) is obviously soluble (h = 0), but the congruence h2 ≡
−7(mod 72) is not soluble. The conclusion is that the congruence (12) is
soluble if and only if n has no prime factor of the form 7k + 3 or 7k + 5
or 7k + 6 and also is not divisible by 49. This, then, is the necessary and
sufficient condition for an odd number n to be properly representable as
x2 + xy + 2y2.

As a final illustration, we take the indefinite form x2 − 2y2, of dis-
criminant 8. Again it is true that all forms of discriminant 8 are mutu-
ally equivalent, though we shall not prove this. The congruence to be
considered is

h2 ≡ 8(mod 4n′), where n′ = |n|,
which can equally well be replaced by

h2 ≡ 2(mod n′).

We find that the congruence h2 ≡ 2 (mod pr ) is soluble if p is a prime
of the form 8k + 1 or 8k − 1, but not if p is a prime of the form 8k + 3
or 8k − 3. If p is 2, the congruence is soluble if r = 1 but not if r � 2.
The conclusion is that for a number n (positive or negative) to be properly
representable by x2 − 2y2, the criterion is that |n| must not have any prime
factor of the form 8k + 3 or 8k − 3 and must not be divisible by 4.

Of course, it will not always happen that the condition for representation
by an indefinite form is one that involves only |n|, and so is the same for
n and −n. The reason why it happens here is that the form x2 − 2y2 is
equivalent to the form −x2 + 2y2, and this is implicit in the fact that all
forms of discriminant 8 are mutually equivalent.

6. The reduction of positive definite forms
All the infinitely many forms of a given discriminant d can be distributed
into classes by placing any two equivalent forms in the same class. If this
is done, two forms of discriminant d will be equivalent if and only if they
belong to the same class. As we shall see later, there are only a finite number
of these classes.

Given any form, it is obviously desirable to find, among the forms equiv-
alent to it, one which is as simple as possible, using the word ‘simple’ as
a vague term to be made precise later. This aim is achieved by the theory
of reduction. As the theory takes different shapes according as it relates
to definite or indefinite forms, we shall now restrict ourselves to definite



Quadratic Forms 127

forms. The theory of the reduction of indefinite forms is more difficult, and
considerations of space will preclude us from giving any account of it.

The theory of the reduction of positive definite forms is due to Lagrange.
We observe first that a and c are positive for such a form, whereas b may be
positive or negative. We concentrate our attention on a and |b|, and consider
two operations of equivalence by which it may be possible to diminish one
of these without altering the other. These operations are:

(i) if c < a, replace (a, b, c) by the equivalent form (c,−b, a);
(ii) if |b| > a, replace (a, b, c) by the equivalent form (a, b1, c1), where

b1 = b + 2ua, and the integer u is so chosen that |b1| � a, and c1 is
then found from the fact that b1

2 − 4ac1 = d.

The equivalence in (i) is by the substitution x = Y, y = −X , and the
equivalence in (ii) is by the substitution x = X + uY, y = Y , used at the
end of §4.

In operation (i), we diminish a without changing the value of |b|, and
in operation (ii) we diminish |b| without changing the value of a. Given
any form, we can apply these operations alternately until we reach a form
which does not satisfy either of the hypotheses for the two operations, and
obviously such a form must be reached in a finite number of steps. For such
a form, we have

c � a and |b| � a. (13)

We have therefore proved that any positive definite form is equivalent to
one whose coefficients satisfy the conditions (13).

As an illustration, we apply the process to the form (10, 34, 29) of dis-
criminant −4. Since b > a, we use operation (ii) to reduce b to lie in the
interval from −10 to 10 by subtracting the appropriate multiple of 20, in
this case 40. This gives the form (10, −6, ?), and the missing coefficient
is found from the discriminant. If c1 is the new third coefficient, we have
(−6)2 − 40c1 = −4, whence c1 = 1. The new form is (10, −6, 1), and
to this we apply operation (i), getting the form (1, 6, 10). Now apply (ii),
which in this case allows us to reduce the middle coefficient to zero. This
gives the form (1, 0, ?), and the missing third coefficient is found from
the discriminant to be 1. Finally, we have proved that the given form is
equivalent to (1, 0, 1).

At the start of this process, it may happen that the given form satisfies
the conditions for applying both the operations (i) and (ii). For example, if
the given form is (15, 17, 10) we can begin either by applying (i), obtaining
(10, −17, 15), or by applying (ii), obtaining (15, −13, 8).
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Returning to the inequalities (13), we observe that there are two cases in
which, even though these inequalities hold, we may be able to apply one of
the operations to some useful effect. First, if b = −a we can apply opera-
tion (ii) and change b into +a. Secondly, if c = a we can apply operation (i)
and change the sign of b, thus ensuring that b is positive or zero. When we
take these two possibilities into account, it follows that any positive definite
form is equivalent to one whose coefficients satisfy{

ei ther c > a and −a < b � a,

or c = a and 0 � b � a.
(14)

Such a form is called a reduced form.
It is a remarkable and important theorem that there is one and only one

reduced form equivalent to a given form. The proof, though not very dif-
ficult, depends on arguments rather more elaborate than those used above.
The essential idea of the proof is that of finding invariant interpretations
for the coefficients of a reduced form, that is, interpretations which show
that the reduced form equivalent to a given form is unique. For example,
it can be proved that the first coefficient a of a reduced form is the least
number which is properly represented by the form. But as the proof would
take some space to set out in detail, we shall not give it here.

In view of this theorem, the question whether two given forms are equiv-
alent or not can be answered, in any particular case, by reducing each of
the forms. If the two reduced forms are the same then the two given forms
are equivalent, otherwise not.

7. The reduced forms
It is easy to deduce from the inequalities (14) that there are only a finite
number of reduced forms of a given negative discriminant d. Put d = −D,
so that D is positive and

4ac − b2 = D. (15)

Since b2 � a2 � ac by (14), we have 3ac � D. There are only a finite
number of positive integers a and c satisfying this condition, and for each
choice of a and c there are at most two possibilities for b, from (15). Hence
the result. The number of reduced forms is of course the same as the number
of classes of equivalent forms, since there is just one reduced form in each
class. This number is called the class-number of the discriminant d.

To enumerate the reduced forms for a given discriminant, perhaps the
quickest way is to start from the fact that

b2 � ac � 1

3
D
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and that 4ac = D + b2. Also b must be even if D ≡ 0 (mod 4) and odd if
D ≡ 3 (mod 4), corresponding to d ≡ 1 (mod 4). One gives b all values

of the appropriate parity (positive and negative) up to
√

1
3 D, and factorizes

1
4 (D+b2) into ac in every possible way, and then one rejects any set a, b, c
which does not satisfy (14).

For example, if d = −4, so that D = 4, we must have |b| � √ 4
3 and

b even, whence b = 0. Now 4ac = 4, so a = c = 1. There is only one
reduced form, namely (1, 0, 1). This was the first example used in §5.

To take another case, suppose d = −7, so that D = 7. Then |b| � √ 7
3 ,

and b is odd, whence b = 1 or −1. Now 4ac = 1 + 7 = 8, whence a = 1,
c = 2. The possibility that b = −1 must be rejected, as it does not comply
with (14), and we are left with the single reduced form (1, 1, 2). This was
the second example used in §5.

Proceeding in this way, one can easily construct a table of reduced forms.
The accompanying Table II covers forms with discriminants from −3 to
−83. The forms marked ∗ are the so-called imprimitive forms, that is, forms
for which a, b, c have a common factor greater than 1. Such a form is
merely a multiple of a primitive form of a previous discriminant.

The reduced forms of a given discriminant constitute a representative
set of forms of that discriminant, comprising as they do one form out of
each class of mutually equivalent forms. The theory of §4 gives the nec-
essary and sufficient condition for a number to be properly representable
by one or other of the reduced forms, and this is the result referred to in
§1. Where there is only one reduced form, the problem of representation
is completely solved. The single reduced form is then the principal form,
since the principal form satisfies the conditions for reduction given in (14).

Even where there is more than one reduced form it may be possible to
solve the problem of representation. Consider the first such case in the table
(excluding imprimitive forms), namely the case d = −15. Here there are
two reduced forms, (1, 1, 4) and (2, 1, 2). Suppose a number n is represented
by the first form; then

4n = (2x + y)2 + 15y2 ≡ (2x + y)2(mod 15).

Provided n is not divisible by 15, we can easily deduce that n is congruent to
one of 1, 4, 6, 9, 10 (mod 15). Similarly, if n is representable by the second
form, we find that n is congruent to one of 2, 3, 5, 8, 12 (mod 15). Hence we
can distinguish between numbers represented by the one form and numbers
represented by the other, except possibly for numbers divisible by 15. The
notion of genus was introduced by Gauss to express this kind of distinction,
and the two forms just considered are said to belong to different genera.
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Table II Reduced Positive Definite forms of Discriminant −D

D a, b, c D a, b, c D a, b, c

3 1, 1, 1 43 1, 1, 11 64 1, 0, 16
4 1, 0, 1 44 1, 0, 11 2, 0, 8∗
7 1, 1, 2 2, 2, 6∗ 4, 0, 4∗
8 1, 0, 2 3, 2, 4 4, 4, 5

11 1, 1, 3 3, −2, 4 67 1, 1, 17
12 1, 0, 3 47 1, 1, 12 68 1, 0, 17

2, 2, 2∗ 2, 1, 6 2, 2, 9
15 1, 1, 4 2, −1, 6 3, 2, 6

2, 1, 2 3, 1, 4 3, −2, 6
16 1, 0, 4 3, −1, 4 71 1, 1, 18

2, 0, 2∗ 48 1, 0, 12 2, 1, 9
19 1, 1, 5 2, 0, 6∗ 2, −1, 9
20 1, 0, 5 3, 0, 4 3, 1, 6

2, 2, 3 4, 4, 4∗ 3, −1, 6
23 1, 1, 6 51 1, 1, 13 4, 3, 5

2, 1, 3 3, 3, 5 4, −3, 5
2, −1, 3 52 1, 0, 13 72 1, 0, 18

24 1, 0, 6 2, 2, 7 2, 0, 9
2, 0, 3 55 1, 1, 14 3, 0, 6∗

27 1, 1, 7 2, 1, 7 75 1, 1, 19
3, 3, 3∗ 2, −1, 7 3, 3, 7

28 1, 0, 7 4, 3, 4 5, 5, 5∗
2, 2, 4∗ 56 1, 0, 14 76 1, 0, 19

31 1, 1, 8 2, 0, 7 2, 2, 10∗
2, 1, 4 3, 2, 5 4, 2, 5
2, −1, 4 3, −2, 5 4, −2, 5

32 1, 0, 8 59 1, 1, 15 79 1, 1, 20
2, 0, 4∗ 3, 1, 5 2, 1, 10
3, 2, 3 3, −1, 5 2, −1, 10

35 1, 1, 9 60 1, 0, 15 4, 1, 5
3, 1, 3 3, 0, 5 4, −1, 5

36 1, 0, 9 2, 2, 8∗ 80 1, 0, 20
2, 2, 5 4, 2, 4∗ 2, 0, 10∗
3, 0, 3∗ 63 1, 1, 16 3, 2, 7

39 1, 1, 10 2, 1, 8 3, −2, 7
2, 1, 5 2, −1, 8 4, 0, 5
2, −1, 5 4, 1, 4 4, 4, 6∗
3, 3, 4 3, 3, 6∗ 83 1, 1, 21

40 1, 0, 10 3, 1, 7
2, 0, 5 3, −1, 7
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But the theory of genera is too extensive and complicated to be developed
here, and we must be content with this brief indication.

The possibility we have just discussed, of distinguishing between repre-
sentation by two different reduced forms, depends on the existence of some
modulus (15 in the above example) such that the numbers represented by
the two forms satisfy different congruences to that modulus. Where there is
no such modulus (and this is indeed the more general case), the problem of
representation by an individual form is still essentially unsolved. For exam-
ple, we can find the condition for a number to be representable by one or
other of the forms x2 + 55y2 and 5x2 + 11y2, but no simple general rule is
known for deciding by which of the forms the representation is effected.

8. The number of representations
The theory of §4 gave the necessary and sufficient condition for a number
to be properly representable by one or other of the reduced forms of dis-
criminant d; the condition being the solubility of the congruence (8). This
theory can be carried a stage further, so as to lead to a determination of
the total number of proper representations of n by all the reduced forms of
discriminant d . We denote this total number by R(n). Where there is only
one reduced form of discriminant d (as for instance x2 + y2 when d = −4),
the result gives the number of representations by that particular form.

We now outline the theory by which R(n) is determined, but we shall
have to pass over the details without proof. For simplicity we shall assume
that n is relatively prime to d. This implies, in particular, that any form of
discriminant d which represents n is primitive, for if a, b, c had a common
factor, this factor would divide both n and d.

The starting point is the same as in §4. We saw there that to each proper
representation of n by (a, b, c), say

n = ap2 + bpr + cr2, (16)

there corresponds a substitution which transforms (a, b, c) into an equiva-
lent form (n, h, l) whose first coefficient is n and whose second coefficient
satisfies the congruence

h2 ≡ d(mod 4n) (17)

and the inequality

0 � h < 2n. (18)

To count the total number R(n) of representations, we have to count
how many numbers h satisfy (17) and (18), and then count how many
representations such as (16) correspond to the same number h.
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Let us begin by considering the latter point. The same number h can-
not come from two different reduced forms, for then these forms would
both be equivalent to the same form (n, h, l), which is impossible. If two
representations of n by (a, b, c) lead to the same number h, then the corre-
sponding substitutions can be combined (by applying first one and then the
inverse of the other) so as to give a substitution which transforms (a, b, c)
into itself. In fact, it is easily seen that the number of representations of n
which give rise to the same number h is equal to the number of unimodular
substitutions which transform (a, b, c) into itself.

This brings us to a question not so far considered. A unimodular sub-
stitution which transforms a form into itself is called an automorphic
substitution, or automorph, of the form. There are always two obvious auto-
morphs, namely the identical substitution x = X, y = Y and the negative
identical substitution x = −X, y = −Y . In general these are all, but there
are two exceptions. The form x2 + y2 has the two additional automorphs
x = Y, y = −X and x = −Y, y = X , making four altogether. The form
x2 + xy + y2 has the four additional automorphs

(i) x = X + Y, y = −X,

(ii) x = −X − Y, y = X,

(iii) x = Y, y = −X − Y,

(iv) x = −Y, y = X + Y,

making six altogether. It can be proved that this list of possible automorphs
is in fact complete, and the number of automorphs, say w, is therefore 6 if
d = −3, 4 if d = −4, and 2 otherwise. This refers only to primitive forms;
the imprimitive form 2x2 + 2y2 has, of course, the same automorphs as
x2 + y2.

The result is that the total number R(n) of proper representations of n by
all the reduced forms of discriminant d is w times the number of values of
h which satisfy the congruence (17) and the inequality (18).

There remains the problem of finding the number of solutions of the
congruence (17), and we content overselves here with considering the case
d = −4. Our previous assumption that n is relatively prime to d means now
that n is odd. Cancelling a factor 4 from the congruence (17) and a factor 2
from the inequality (18), we require the number of solutions of

h2 ≡ −1(mod n) (19)

with

0 � h < n. (20)
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By a general principle (II.6), this is the product of the numbers of solutions
of the congruences

h2 ≡ −1(mod pr ) (21)

for the various prime powers pr composing n.
The congruence (21) is insoluble if p is of the form 4k + 3, and has two

solutions if p is of the form 4k + 1 and r is 1. By the method used in §5,
one can easily prove that in the latter case it still has two solutions if r > 1.
Hence the number of solutions of (19) is 0 if n has any prime factor of the
form 4k + 3, and is 2s if n has s distinct prime factors of the form 4k + 1
and none of the form 4k + 3.

Since w = 4 for the form x2 + y2, it follows that the number of proper
representations of an odd number n by the form x2 + y2 is 4 × 2s if n has s
distinct prime factors of the form 4k +1 and none of the form 4k +3. There
are no proper representations if n has any prime factor of the form 4k + 3.

The representations fall into groups of 8, obtained from one another by
changing the signs of x and y and interchanging x and y. So the number
of essentially different representations, instead of being 4 × 2s as above, is
2s−1. This is 1 if n is itself a prime of the form 4k + 1 (as proved in V.2),
or if n is a power of such a prime.

9. The class-number
We denote by C(d) the number of classes of forms of discriminant d,
that is, the number of reduced forms of discriminant d. For simplicity we
shall restrict ourselves to discriminants for which every form is primitive;
such discriminants are said to be fundamental. A few examples taken from
Table II are:

C(−3) = 1, C(−4) = 1, C(−51) = 2, C(−71) = 7.

We can, of course, interpret C(d) as being the number of sets of integers
a, b, c which satisfy b2 − 4ac = d and also satisfy the inequalities (14)
of §6.

A remarkable formula exists for C(d), which makes it possible to deter-
mine this number by quite different considerations from any that relate to
quadratic forms. The formula is simplest when d = −p, where p is a
prime, which is necessarily of the form 4k + 3, since d ≡ 0 or 1 (mod 4).
The case p = 3 is, however, exceptional, and we exclude it. We form the
sum, say A, of all the quadratic residues (mod p), and the sum B of all the
quadratic non-residues. Then
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C(−p) = B − A

p
. (22)

For example, if p = 23, the quadratic residues are

1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18, with sum 92,

and the quadratic non-residues are

5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22, with sum 161.

The formula gives

C(−23) = 161 − 92

23
= 3,

which is correct, as one sees from the table.
The honour of having discovered this remarkable formula seems to rest

with Jacobi, though the discovery may also have been made indepen-
dently by Gauss. Jacobi proved that the number B−A

p has a certain property
in common with the class-number C(−p), and then by examining many
numerical instances he came to the conclusion that the two were no doubt
always equal. This he announced in 1832, but confessed himself unable
to give a proof. The first published proof was that given by Dirichlet in
1838, and the formula is generally called Dirichlet’s class-number formula.
Dirichlet’s proof used infinite series, and was intimately connected with his
proof of the existence of primes in arithmetical progressions. Ever since
Dirichlet’s proof, mathematicians have sought an elementary proof of the
class number formula, i.e. a proof that does not involve a limit process.
Finally, in 1978, H. L. S. Orde gave such a proof for the case of negative
discriminants.

The fact that B − A is a multiple of p, and indeed that A and B are both
multiples of p, is quite elementary. The quadratic residues are congruent to
12, 22, . . . , ( 1

2 (p − 1))2, and it is easy to evaluate this sum and see that it is
a multiple of p. So A is a multiple of p, and since A + B = 1 + 2 + · · · +
(p − 1) = 1

2 (p − 1)p, it follows that B is also a multiple of p.
There are several other formulae for C(−p) which are equivalent to

(22), and some of them are more convenient for numerical work. We have
selected this particular one because it is easy to formulate, and does not
require any division into cases, as some of the others do. The various for-
mulae can all be extended to the case when d is not necessarily of the
form −p.

As regards the magnitude of the class-number, Gauss conjectured from
extensive numerical evidence that C(d) tends to infinity as d tends to −∞.
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This conjecture was first proved by Heilbronn in 1934, and his proof
represented an important step forward in analytic number-theory.

It has long been known that C(d) = 1 when −d has the nine values:

3, 4, 7, 8, 11, 19, 43, 67 and 163.

Heilbronn and Linfoot proved in 1934 that there is at most one more neg-
ative discriminant with this property. Numerical evidence suggested that in
fact there was no such ‘tenth discriminant’, but the question was not set-
tled to everyone’s satisfaction until 1966, when a complete proof was given
by H. Stark. Another method of proof was found at about the same time
by A. Baker. Proofs were also found by Deuring and Siegel. Some time
later, a proof given by K. Heegner in 1952, the validity of which had been
questioned, was accepted as indeed being a valid proof.

Notes
1. There are two notations in common use for the general quadratic form.
One is that which we have adopted: ax2 + bxy + cy2. The other is ax2 +
2bxy + cy2, which presupposes that the middle coefficient is even. The
latter notation excludes such a form as x2 + xy + y2, though of course its
properties can be deduced from those of 2x2+2xy+2y2, which is admitted.
The notation without the factor 2 was used by Lagrange, Kronecker and
Dedekind, that with the factor 2 was used by Legendre, Gauss and Dirichlet.
As one might expect from seeing these great names on both sides, neither
notation has a decisive superiority over the other. The position is that some
results take a simpler form when the first notation is used and others take a
simpler form when the second is used.

The most accessible accounts of the theory available in English are those
given in Mathews’s Theory of Numbers and in Dickson’s Introduction to
the Theory of Numbers or Modern Elementary Theory of Numbers. Dickson
uses the Lagrange notation, as we have done, and Mathews uses the Gauss
notation. We must refer the reader to Dickson’s Introduction for proofs of
the various results which are stated without proof in the present chapter.
For an account of the general theory of quadratic forms (not only binary
forms), see B. W. Jones, The Arithmetic Theory of Quadratic Forms (Carus
Monograph no. 10, 1950), G. L. Watson, Integral Quadratic Forms (Cam-
bridge Tracts, no. 51, 1960) or O. T. O’Meara, Introduction to Quadratic
Forms (Springer, 1963). For an interesting account of the theory of gen-
eral quadratic forms over the rational field, see J. W. S. Cassels, Rational
Quadratic Forms (Academic Press, London, 1978).
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§2. Forms which are related by a substitution of determinant −1 are
said to be improperly equivalent. The use of substitutions of determinant
−1 complicates the theory of automorphs, both for definite and indefinite
forms.

§8. From the number of proper representations of a number as the sum of
two squares, found in this section, one can deduce the formula 4(D1 − D3),
mentioned in the Notes on Chapter V, for the total number of representa-
tions (proper and improper), and in this formula it is not necessary that n
should be odd.

§9. For Jacobi’s investigation, see Bachmann, Die Lehre von der Kreis-
teilung (Teubner, 1927), p. 292. For a proof of Dirichlet’s class-number
formula, see Landau’s Vorlesungen, vol. I, pp. 127–80, or Mathews, ch. 8.
The latter exposition uses the Gauss notation, and therefore the formula is
a little different.

Orde’s elementary proof can be found in J. London Math. Soc., (2) 18
(1978), 409–20.

For the work of Heilbronn, and of Heilbronn and Linfoot, see Quart.
J. of Math., 5 (1934), 150–60 and 293–301. Stark’s paper is in Michi-
gan Math. J., 14 (1967), 1–27. For Baker’s method see Mathematika, 13
(1966), 204–16 (205). For Deuring’s proof see Inventiones Math., 5 (1968),
169–79. For Siegel’s proof see ibid., 180–91. For Heegner’s proof see
Mathematische Zeitschrift, 56 (1952), 227–53 and J. Number Theory, 1
(1969), 16–27.
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S O M E D I O P H A N T I N E E Q U A T I O N S

1. Introduction

A Diophantine equation, or indeterminate equation, is one which is to be
solved with integral values for the unknowns. We have already met some
classical Diophantine equations, for example the equation x2 + y2 = n in
Chapters V and VI, and the equation x2 − N y2 = 1 in Chapter IV.

There is probably no branch of the theory of numbers which presents
greater difficulties than the theory (if it can be called a theory) of Diophan-
tine equations. A glance at the extensive literature gives one an impression
of a mass of unrelated results on miscellaneous special equations, discov-
ered by highly ingenious devices, which do not seem to fit together into
any general theory. After an equation has been solved by some special
device, a theory has sometimes been constructed round the solution, which
exhibits it in a more reasonable light and enables one to see how far it can
be generalized. But the intrinsic difficulties of the subject are so great that
the scope of any such theory is usually very limited. Where an extensive
theory has developed out of Diophantine equations of a particular type, as
with the theory of quadratic forms, it has soon been regarded as having
attained an independent status.

In this chapter we shall discuss some Diophantine equations which admit
of elementary treatment, and shall mention where possible any general
theories which may be associated with them.

137
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2. The equation x2 + y2 = z2

Numerical solutions of this equation, such as 32 + 42 = 52, have been
known from an early period in man’s history. A Babylonian tablet has sur-
vived, dating from about 1700 B.C., which contains what is in effect an
extensive list of solutions, some of the numbers being quite large. The equa-
tion was naturally of great interest to the Greek mathematicians, because of
its connection with the theorem of Pythagoras, and the general solution is
given in Euclid (Book X, Lemma 1 to Prop. 29).

If we divide the equation throughout by z2, and put x
z = X,

y
z = Y , it

becomes

X2 + Y 2 = 1, (1)

and the problem is reduced to that of finding the solutions of this equa-
tion in rational numbers X , Y . The appropriate treatment of the equation is
suggested by writing it as

Y 2 = 1 − X2 = (1 − X)(1 + X).

We cannot express X rationally in terms of (1 − X)(1 + X), but we can
express it rationally in terms of (1 − X)/(1 + X). We therefore divide
throughout by (1 + X)2, getting(

Y

1 + X

)2

= 1 − X

1 + X
.

If we put t = Y/(1 + X), then both X and Y are expressible as rational
functions of t ; we have

1 − X

1 + X
= t2,

whence

X = 1 − t2

1 + t2
, Y = 2t

1 + t2
. (2)

For every rational number t , these formulae give rational numbers X , Y
which satisfy (1). Conversely, every rational solution of (1) is obtained
in this way, apart from the special solution X = −1, Y = 0, which is
approached if t is taken arbitrarily large but is not itself representable in the
form (2).

The preceding argument can also be looked at from a geometrical point
of view. The equation X2 + Y 2 = 1 represents a circle, with centre at the
origin of coordinates and radius 1. Take a particular point on the circle, say
the point X = 1, Y = 0. A variable line drawn through this point will
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meet the circle in one other point (except when it happens to be a tangent),
and the coordinates of this other point can be found from the equations
of the circle and the straight line by rational operations. A variable line
through the point (−1, 0) has an equation of the form Y = t (X + 1),
and the formulae (2) express the coordinates of the point of intersection
in terms of t . A similar method can be used to find the rational points on
a conic, provided that the equation to the conic has rational coefficients,
and provided that we can find some one rational point on the curve. This,
however, may not be possible; for example there is no rational point on the
circle X2 + Y 2 = 3. Or, even if there are rational points on a conic, it may
not be an easy matter to find one.

The formulae (2), where t is any rational number, give the general solu-
tion of the equation X2 + Y 2 = 1 in rational numbers, and therefore in
principle they give the general solution of the equation

x2 + y2 = z2 (3)

in integers. But the transition from the rational solutions of (1) to the inte-
gral solutions of (3) raises a question which calls for consideration, and
sometimes in other problems presents serious difficulties. Put t = q

p , where
p and q are relatively prime integers. Then, by (2),

x

z
= p2 − q2

p2 + q2
,

y

z
= 2pq

p2 + q2
. (4)

It is certainly possible to take x , y, z to be p2 − q2, 2pq , p2 + q2, or to be
any common multiple of these numbers, and we shall then have a solution
in integers of the equation (3). But it is not certain that x , y, z must be
common multiples of these numbers. If the three numbers p2 − q2, 2pq,

p2 + q2 have a common factor greater than 1, we can divide them by this
common factor and still get a solution of (3) in integers.

We consider two possibilities for the relatively prime integers p and q.
First suppose that one of them is even and the other odd. Then the three
numbers p2 − q2, 2pq , p2 + q2 have no common factor greater than 1, for
such a factor would have to be odd (since p2 − q2 is odd) and would have
to divide (p2 − q2)+ (p2 + q2) = 2p2, and similarly would have to divide
2q2, and this is impossible since p and q are relatively prime. Hence, in
this case, it follows from (4) that

x = m(p2 − q2), y = 2mpq, z = m(p2 + q2), (5)

where m is an integer.
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Next consider the possibility that p and q are both odd. In this case, if
we put p + q = 2P and p − q = 2Q, the numbers P and Q are relatively
prime integers. One of them is even and one odd, since P + Q = p is odd.
Substituting for p and q in terms of P and Q in (4), we obtain

x

z
= 2P Q

P2 + Q2
,

y

z
= P2 − Q2

P2 + Q2
,

after cancelling a factor 2. The position is therefore the same as before,
except that x and y are interchanged, and P and Q take the place of p
and q.

It follows that all solutions of x2 + y2 = z2 in integers are given by
the formulae (5), where m, p, q are integers, and p and q are relatively
prime, and one of them is even and the other odd, apart from the possibility
of interchanging x and y. These are the formulae of Euclid. The simplest
solution (apart from trivial solutions with one of the unknowns zero) is
x = 3, y = 4, z = 5, which arises by putting m = 1, p = 2, q = 1. The
first few primitive solutions (that is, solutions with x , y, z relatively prime,
and therefore m = 1) are (3, 4, 5), (5, 12, 13), (8, 15, 17), (7, 24, 25), (21,
20, 29), (9, 40, 41).

Since the formula for z (taking m to be 1) is z = p2 + q2, we can make
z a perfect square by choosing p and q suitably, and so obtain a parametric
solution for x2 + y2 = z4. Repetition of the process enables one to give
solutions for x2 + y2 = zk , where k is any power of 2. Alternatively, the
formulae for such an equation could be deduced from the formulae for
x2 + y2 = z2 by employing the identity (1) of Chapter V.

3. The equation ax2 + by2 = z2

The method used above for the equation x2 + y2 = z2 would also apply
to the equation ax2 + y2 = z2, and would again lead to formulae for the
general solution. As before, there are infinitely many primitive solutions.
But the method will not apply to the more general equation

ax2 + by2 = z2, (6)

where a and b are natural numbers, neither of which is a perfect square.
Indeed, a moment’s consideration shows that such an equation may not

be soluble (apart from the solution x = y = z = 0, which we shall exclude
throughout). For example, the equation

2x2 + 3y2 = z2
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is insoluble. For we can suppose that x , y, z have no common factor greater
than 1, whence it follows in particular that neither x nor z is divisible by
3. But then the congruence 2x2 ≡ z2 (mod 3) is impossible, since 2 is a
quadratic non-residue to the modulus 3.

Similar considerations apply to the general equation (6), and give con-
gruence conditions which must be satisfied if the equation is to be soluble.
We can suppose that a and b are both square free, that is, not divisible by
any square greater than 1; for the introduction of square factors into the
coefficients a and b does not affect the solubility of the equation.

If the equation (6) is soluble, we can divide out any common factor of x ,
y, z and so obtain a solution in which x , y, z have no common factor greater
than 1. The equation implies the congruence ax2 ≡ z2 (mod b). Now x
and b must be relatively prime; for if they had a prime factor in common,
this prime would divide x and z, and therefore its square would divide by2,
and since b is square free this would require the prime to divide y, which is
impossible. Multiplying the congruence throughout by x ′2, where xx ′ ≡ 1
(mod b), we obtain a congruence of the form

a ≡ α2(mod b), (7)

where α = x ′z. Similarly

b ≡ β2(mod a) (8)

for some integer β. That is, a must be a quadratic residue (mod b), and b
must be a quadratic residue (mod a). Here we are using the term quadratic
residue in a more general sense than in Chapter III, since themoduli a and
b are now not necessarily primes.

If a and b have H.C.F. h > 1, there is another congruence besides (7) and
(8) which must be soluble if the equation (6) is to be soluble. Put a = ha1
and b = hb1, so that a1, b1, h are relatively prime in pairs. In any solution
of (6), z must be divisible by h, so that a1x2 + b1 y2 must be divisible by h.
Multiplying throughout by b1x ′2, we obtain a congruence of the form

a1b1 ≡ −γ 2(mod h). (9)

The fact that the congruences (7), (8), (9) must be soluble imposes
restrictions on a and b which are necessary for the solubility of the equa-
tion (6). It is by no means obvious that if the congruences are soluble then
the equation is soluble. We shall now prove, following Legendre, that this
is in fact the case, and so shall establish that the equation (6), where a and
b are square free natural numbers, is soluble if and only if the congruences
(7), (8), (9) are all soluble.
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If either a or b is 1, the equation is obviously soluble. If a = b, the
congruence conditions (7) and (8) are trivially satisfied, and (9) reduces to
1 ≡ −γ 2 (mod a). By VI.5, this implies that a is representable as p2 + q2,
and the equation is satisfied by x = p, y = q , z = p2 + q2.

We can now suppose that a > b > 1. The plan of the proof is to derive
from (6) a similar equation with the same b but with a replaced by A, where
0 < A < a, and A, b satisfy the same three congruence conditions as a,
b. Repetition of the process must lead eventually to an equation in which
either one coefficient is 1 or the two coefficients are equal. As we have seen,
such an equation is soluble.

By hypothesis, the congruence (8) is soluble. We choose a solution β

which satisfies |β| � 1
2 a. Since β2 − b is a multiple of a, we can put

β2 − b = a Ak2, (10)

where k and A are integers and A is square free (all the square factors being
absorbed in k2). We note that k is relatively prime to b, since b is square
free. We observe that A is positive, since

a Ak2 = β2 − b > −b > −a,

whence Ak2 � 0, and therefore > 0 since b is not a perfect square.
If we substitute for y and z in terms of new variables Y and Z from∗

z = bY + βZ , y = βY + Z , (11)

we find that

z2 − by2 = (β2 − b)(Z2 − bY 2).

In view of (10), the equation (6) becomes

ax2 = a Ak2(Z2 − bY 2).

Putting x = k AX , the new equation becomes

AX2 + bY 2 = Z2.

If this equation is soluble, so is (6); for the substitution (11) and the
equation x = k AX give integral values, not all zero, for x , y, z in terms of
X , Y , Z .

∗ The form of the substitution (11) is suggested by writing

z − y
√

b = (β −
√

b)(Z − Y
√

b).
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The new coefficient A is positive and square free, and satisfies

A = 1

ak2
(β2 − b) <

β2

ak2
� β2

a
� 1

4
a,

and therefore A is less than a. It remains to be proved that A and b satisfy
the congruence conditions analogous to (7), (8), (9). The analogue of (8) is
obvious, since b ≡ β2 (mod A) by (10).

To prove the analogue of (7), we observe that (10) can be divided
throughout by h, giving

hβ1
2 − b1 = a1 Ak2.

Also (7) is equivalent to a1 ≡ hα1
2 (mod b1). Hence

hβ1
2 ≡ h A(α1k)2(mod b1),

and since h, k, a1 are all relatively prime to b1 it follows that A is congruent
to a square (mod b1). Also −a1 Ak2 ≡ b1 (mod h), and in view of (9)
and the fact that k, a1, b1 are all relatively prime to h it follows that A
is congruent to a square (mod h), and therefore also (mod b), giving the
analogue of (7).

To prove the analogue of (9) with A in place of a, let H denote the
highest common factor of A and b, and put A = H A2, b = Hb2. The
equation (10) can be divided by H , giving

Hβ2
2 − b2 = a A2k2.

Hence

−A2b2 ≡ a(A2k)2(mod H).

Since a ≡ α2 (mod H ) by (7), it follows that −A2b2 is congruent to a
square (mod H ), which is the analogue of (9).

We have now shown that the coefficients A and b satisfy similar con-
gruence conditions to those imposed on a and b. The method of proof
already explained therefore applies, and establishes the solubility of the
equation (6).

To illustrate the above proof, we apply the process to the equation

41x2 + 31y2 = z2. (12)

Since the coefficients are relatively prime, there are only the two congru-
ence conditions

41 ≡ α2 (mod 31) and 31 ≡ β2 (mod 41).
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These are both soluble, namely with α ≡ ±14 (mod 31), and β ≡
±20 (mod 41). Indeed, in this particular case, the solubility of one con-
gruence implies that of the other by the law of quadratic reciprocity (III.5),
since 31 and 41 are primes and are not both of the form 4k + 3.

To follow the method, we must choose a value for β and then define A
and k by (10). In the theory, we supposed |β| <= 1

2 a so we take β = 20, and
have β2 − b = 400 − 31 = 9 × 41, hence k = 3 and A = 1. (The fact that
A = 1 means that no further repetition of the process will be necessary.)
The new equation derived from (12) is X2 + 31Y 2 = Z2, and we take the
obvious solution X = 1, Y = 0, Z = 1. The relations between x, y, z and
X, Y, Z with the coefficients now in use are

z = 31Y + 20Z , y = 20Y + Z , x = 3X.

These give the solution x = 3, y = 1, z = 20 for the original equation (12).
We now return to the general theory. We have proved that the solubility of

the congruences (7), (8), (9) is necessary and sufficient for the solubility of
the equation (6), on the supposition that a and b are square free. Legendre
easily deduced from this result a necessary and sufficient condition for the
solubility of the equation

ax2 + by2 = cz2,

where a, b, c are natural numbers. On the supposition that a, b, c are
square free and relatively prime in pairs (which are not serious restrictions
here), the condition is that the three congruences

bc = α2 (mod a), ca = β2 (mod b), ab = γ 2 (mod c)

must all be soluble.
We conclude this section with some remarks on the general question

of congruence conditions for the solubility of Diophantine equations. Any
Diophantine equation gives rise to a congruence to any modulus we care
to select, and every such congruence must be soluble if the equation is
to be soluble. Usually there are only a finite number of moduli for which
the solubility of the congruence imposes any conditions on the coefficients
of the equation. The resulting conditions are necessary conditions for the
equation to be soluble. They are not always sufficient, and the elucidation
of the relation between the solubility of congruences and of equations raises
deep and delicate questions. As we have said, the congruence conditions
are both necessary and sufficient for the solubility of Legendre’s equation
ax2 + by2 = cz2. If we allow a, b and c to be positive or negative, then
we must rule out the case a, b > 0 but c < 0 (and vice versa), which can
be done by insisting that the equation be soluble in real numbers as well.
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It was proved by Hasse in 1923 that a similar result holds for homogeneous
quadratic equations in any number of variables: such a result is now known
as a Hasse principle.

We have already met various instances in which an equation is proved
to be insoluble by congruence considerations. It is sometimes possible to
prove the insolubility of an equation by using a congruence to a modulus
which depends on the unknowns in the equation. This is the underlying idea
of the proof, given by V. A. Lebesgue in 1869, that the equation

y2 = x3 + 7

is insoluble in integers. First, x must be odd since a number of the form
8k + 7 cannot be a square. Now write the equation as

y2 + 1 = x3 + 8 = (x + 2)(x2 − 2x + 4).

The number x2 − 2x + 4 = (x − 1)2 + 3 is of the form 4k + 3. Hence it
has some prime factor q of that form, and since the congruence y2 + 1 ≡
0 (mod q) is insoluble, the proposed equation is insoluble.

4. Elliptic equations and curves
The equation y2 = x3 + 7 considered above is an example of a more
general class of equations known as elliptic equations (there is a connection
with the standard geometric definition of an ellipse, but to explain it would
take us too far out of our way). The theory of elliptic equations has greatly
advanced since the first edition was written, and, like the theory of quadratic
forms mentioned at the beginning of the chapter, it could be said to form
a separate, though still linked, theory. The most general equation is the
Weierstrass equation, traditionally written as

y2 + a1xy + a3 y = x3 + a2x2 + a4x + a6. (13)

However, it is possible to simplify this equation. Firstly, if we replace y by
1
2 (y−a1x −a3), and then multiply by 4 to clear denominators, the equation
reduces to

y2 = 4x3 + (a2
1 + 4a2)x2 + 2(2a4 + a1a3)x + (a2

3 + 4a6). (14)

If we replace x by (x − 3(a2
1 + 4a2))/36 and y by y/108, then multiply

by 1082 = 363/4 to clear denominators, we reduce the equation to one of
the form
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y2 = x3 − Ax − B. (15)

If the ai are integers, then A and B will also be integers. The only possible
simplification is if, for some number n, n4 divides A and n6 divides B,
in which case we can replace y by n3 y, x by n2x , and divide all through
by n6.

We should note, however, that the transformations which took (13) to
(15) do not necessarily take integral solutions to integral solutions, since
factors of 2 and 3 may have been introduced in the denominators of x and
y. However, it turns out that the systematic theory is largely (but see the
discussion of integral solutions at the end of this chapter) that of rational
solutions to (13) or (15), rather than integral solutions. As in the argument
leading to (1), there is a close connection between rational solutions of
(15) and integral solutions (in which no common factor can be cancelled
between X , Y and Z , which must not all be zero) of

Y 2 Z = X3 − AX Z2 − B Z3. (16)

If we have a rational solution x = nx/dx and y = ny/dy of (15), with
nx , etc. being integers, then we can substitute these values into (15) and
multiply by d3

x d3
y to clear denominators, obtaining

n2
yd3

x dy = n3
x d3

y − Anx d2
x d3

y − Bd3
x d3

y .

If we write X = nx dy , Y = nydx and Z = dx dy , we get (16), and X , Y and
Z are all integers. However, they will have a common factor, which can be
shown to be d3

y , so in fact d3
x is sufficient to clear denominators.

Conversely, given a solution of (16), if we divide through by Z3 and
apply the same substitutions in the other sense, i.e. replacing X by nx yd ,
etc., then we get (15). Of course, this does not work when Z = 0, and
indeed the solution X = 0, Y = 1, Z = 0, which does not correspond to
a rational solution of (15), is known, for reasons which will soon become
clear, as ‘the solution at infinity’.

We saw in VI.3, when discussing quadratic forms, that the discrimi-
nant d = b2 − 4ac was an important quantity. There is a similar quantity,
again called the discriminant, for elliptic equations, except that here the
discriminant is traditionally denoted by Δ and defined as 16(4A3 − 27B2).
Equations with Δ = 0 are a special case, since then the right-hand side of
(15) factors as (x −2α)(x +α)2 (where α is the square root of A/3, which,
since Δ = 0, is also the cube root of B/2). If we write y′ = y/(x + α), we
are then looking for solutions of y′2 = x − 2α, and there is an x (and hence
a y) for every value of y′. The case Δ = 0, A �= 0 is known as a node,
since the curve crosses itself, while the case Δ = A = 0 (and therefore
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B = 0) is known as a cusp, since that is the shape of the curve at the origin.
Henceforth we assume that Δ is non-zero, in other words that the equation
is non-singular.

There is a striking geometric interpretation of elliptic equations, known
as elliptic curves, which is fundamental for much of the theory, including
many of the results we quote without proof. If we draw the graph of (15),
we get one of the two shapes shown in Fig. 4, depending on the sign of Δ.
It is clear geometrically that every straight line (except a strictly vertical
one—we shall return to this case later) which intersects the curve in two
points P and Q must also intersect the curve in a third point (not necessarily
different—see below) R. What is far more interesting from our point of
view is that, if P and Q have rational coordinates, then R must have. If P
and Q have rational coordinates, then the equation of the line joining them
must have rational coefficients, say y = lx + m. Substituting this into (15)
gives us a rational cubic equation for x . But we know that this equation
has two rational solutions (coming from P and Q), and therefore it must
have a third, since the product of the three solutions is the negative of the
coefficient of x0. So R has a rational x-coordinate, and therefore, since
the equation of the line is rational, a rational y-coordinate. This therefore
gives us a way of making new rational solutions out of old, which we must
explore.

We first need two geometric remarks. We earlier excluded the case of
a strictly vertical line, since that does not appear to meet the curve in a
third point, though in the same way that ‘parallel lines meet at infinity’, we

y2 = x3 + x + 1 y2 = x3 – 2x + 1 

Δ < 0 Δ > 0 

Fig. 4 Two elliptic curves
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could say that the line also meets the curve at infinity. In terms of equation
(16), rather than equation (15), this point would be the ‘solution at infinity’,
X = 0, Y = 1, Z = 0. It is normally called the point O. We also see that,
for a line to be strictly vertical, P and Q must have the same x-coordinate,
and therefore the squares of their y-coordinates are the same, so one must
be the negative of the other.

The second geometric remark concerns the various special cases such
as P = Q. In this case, the correct geometric meaning of ‘the line joining
P and Q’ is ‘the tangent to the curve at P’. With this interpretation, the
arguments above still hold, that the third point also has rational coordinates.

We now define an operation, which we shall call + for reasons which will
become clear later, on points on a given elliptic curve. If R is the third point
on the line through P and Q, and R′ is the point with the same x-coordinate
as R, but whose y-coordinate is negated, then we define

P + Q = R′. (17)

Arithmetically, if we assume that P = (x1, y1), Q = (x2, y2) and R′ =
(x3, y3), and that the curve is given in form (15), then some coordinate
geometry gives us that⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x3 =

(
y2 − y1

x2 − x1

)2

− x1 − x2,

y3 = − y2 − y1

x2 − x1
x3 − y1x2 − y2x1

x2 − x1

(17′)

when x1 differs from x2, and⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x3 =
(

3x2
1 − A

2y1

)2

− x1 − x2,

y3 = 3x2
1 − A

2y1
(x1 − x3) − y1

(17′′)

when P = Q. Of course, if P = Q′ the answer is O.
It follows from this definition that R + R′ = O, and, if we regard, as

we shall, O as the equivalent of 0 for ordinary addition, it therefore makes
sense to write −R instead of R′. It is clear from the geometric definition
(17) (and can be checked from the formulae (17′) and (17′′)) that P + Q =
Q + P, i.e. that + in this sense is commutative (I.1). It is also true that + is
associative, i.e. that (P+Q)+R = P+ (Q+R), but the only proofs of this
are laborious verification via (17′) and (17′′) or require far more machinery
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than we can deploy. So + has all the usual algebraic properties, and we
shall write 2P instead of P + P, etc.

It does not follow that all the arithmetic properties of + carry over to this
new setting. For example, it is possible for P to be different from O, but for
2P to be equal to O. One example of this is the curve y2 = x3 −63x −162,
which has three such points P, i.e. (−6, 0), (−3, 0) and (9, 0). It is clear
geometrically that the only such points on a curve in form (15) are those
with y = 0, and therefore the x-coordinates must be the (rational) roots
of the cubic on the right-hand side, and there are therefore 0, 1 or 3 of
them. This result is therefore true for any elliptic curve, since they can all
be transformed into form (15).

However, points on elliptic curves need not be torsion points, i.e. have
multiples that are O. For example, on the curve y2 = x3 − 2, there is an
obvious point P = (3, 5), since 52 = 33 − 2. We can then compute that

2P =
(

129

100
,
−383

1000

)
,

3P =
(

164323

29241
,
−66234835

5000211

)
,

4P =
(

2340922881

58675600
,

113259286337279

449455096000

)
and it can be proved that the sequence continues for ever without repetition.

If we consider the curve

y2 = x3 − 11, (18)

then there are two obvious points P = (3, 4) and Q = (15, 58). The first
few multiples of P are(

345

64
,
−6179

512

)
,

(
861139

23409
,

799027820

3581577

)
and

(
22125642465

9774090496
, . . .

)
,

whereas the first two multiples of Q are(
51945

13456
,

10647157

1560896

)
and

(
50491376191

22468511025
,

1987488229342114

3367917460092375

)
.

In fact, it can be shown that all multiples of P are distinct from all multiples
of Q, so that we have a two-dimensional set of rational points on the curve:
aP + bQ for any integers a and b, with a = b = 0 giving us the point at
infinity (in the next section we shall show that there are no torsion points,
and it can be shown that there are no other independent points, so this is
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a complete description of the rational solutions of this equation). More is
possible, and Mestre has shown that

y2 − 246xy + 36599029y = x3 − 19339780x − 36239244

has at least 12 independent points on it. His work has been extended by
Nagao and by Fermigier: the latter has found a curve with at least 22 inde-
pendent points on it. In this example A has 33 digits and B has 50. It is
widely conjectured that, for any n, one can find a curve with at least n inde-
pendent rational points on it. However, there are always only finitely many
independent points, a result first proved by Mordell, and later generalized
by Weil. There is no known algorithm for finding out exactly how many
independent points there are. It can be shown that the curves with a large
number of independent points are, in a sense that can be made precise,
‘rare’.

The above examples may have given the reader the impression that it
is easy to find points, at least on ‘simple’ elliptic curves: nothing could
be further from the truth. For example, Bremner and Cassels showed that
the simplest point on y2 = x3 + 877x (other than the point (0, 0), which
doubles to give O) is( 375494528127162193105504069942092792346201

6215987776871505425463220780697238044100
,

256256267988926809388776834045513089648669153204356603464786949

490078023219787588959802933995928925096061616470779979261000

)
.

We have seen that there are two essentially different kinds of rational
points on an elliptic curve: those for which some multiple is O, and those
for which no multiple (other than by 0) is O. Points of the first kind are
called torsion points. By a theorem of Mazur, the number t of torsion points
(including O) is one of the numbers {1, 2, . . . , 10, 12, 16}, for an elliptic
curve over the rational numbers. Furthermore, for a curve in form (15) with
integral A and B, a torsion point (x, y) must have integral coordinates,
and, unless y = 0 (in which case 2(x, y) = O), y2 has to divide Δ (a
result known as the Lutz–Nagell theorem). This makes the search for tor-
sion points comparatively straight-forward, but we shall also see further
techniques in the next section for proving statements about possible torsion
points. As in II.3, we define the order of a torsion point P to be the least
positive m such that mP = O, and the detailed statement of Mazur’s theo-
rem implies that the order of any particular torsion point is at most 12 over
the rationals.

We saw in Chapter II that the order of any element (relatively prime to n)
divided φ(n). A similar result is true here, that the order of any torsion point
divides t . The result is clearly true when the point is O, whose order is 1,
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so let P be some torsion point other than O, of order m. Consider the set S
of points P, 2P, . . . , mP. These are clearly all distinct, for if hP = kP with
h < k, adding −hP to both sides would give (k − h)P = O, contradicting
the minimality of m. If S is the set of all torsion points we have finished.
Otherwise choose a torsion point Q not in S. Then Q+P, Q+2P, . . . , Q+
mP are all distinct from each other, since if Q + hP = Q + kP with h < k,
then adding −Q − hP to both sides would again contradict the minimality
of m. Also, these elements are all distinct from the elements of S, since
if Q + hP = kP then Q = (k − h)P, contradicting the fact that Q was
not a multiple of P. Now add these points to S, getting a set of size 2m.
If there are any more torsion points, we proceed similarly, getting sets of
size 3m, . . .. Eventually we must exhaust the torsion points, so t has to be
a multiple of m.

For the non-torsion points, it is clear that, if there are any at all, there
are infinitely many. The interesting question is now how many independent
ones there are: more precisely to determine an integer r , called the rank of
the curve, and r rational points on the curve, such that the r points are inde-
pendent and every rational point is a sum of some multiples of these points
(and possibly of the torsion points). An algorithm of Birch and Swinnerton-
Dyer can compute an upper bound for r , which is very often exact, but, as
we saw in the example of Bremner and Cassels, it can be very hard to find
the corresponding points.

5. Elliptic equations modulo primes
It would be nice to hope for a Hasse principle to hold for elliptic curves, i.e.
that solutions modulo all primes (and possibly powers of primes) and in real
numbers were necessary and sufficient conditions for rational solutions.
This is unfortunately not always true, but nevertheless a great deal can still
be learnt about rational solutions by studying solutions modulo primes.

Although the geometric point of view we had before is no longer appli-
cable as a diagram (though the abstract theory of algebraic geometry is still
very relevant), we can still perform all the same algebra modulo a prime p,
except that the primes 2 and 3 will cause problems, since the transforma-
tions from (13) to (15) are not valid modulo these primes. In this section,
we therefore assume that p is a prime other than 2 and 3. However, we
should note that the remark after (15), viz. that we get the same elliptic
curve if we divide A by n4 and B by n6, is now very relevant, since such a
division can be performed for any n (relatively prime to p). We can think
of two such curves, e.g. y2 ≡ x3 + x + 1 (mod 5) and y2 ≡ x3 + x + 4
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(mod 5) (where n can be either 2 or 3) as being equivalent in a similar sense
to the equivalence of quadratic forms (Chapter VI).

We are therefore looking for solutions to y2 ≡ x3 − Ax − B (mod p).
For example, the solutions to y2 ≡ x3 + x + 2 (mod 11) are

(1,±2), (2,±1), (4, ±2), (5, 0), (6,±2), (7, 0), (10, 0),

making 12 in all, counting the point at infinity. Of course, since the number
of possible points is finite, all points are torsion points. The proof in the
previous section that the order of any torsion point divides the total number
of torsion points (including O) is still valid in these circumstances.

How many such points would we expect there to be? There are p differ-
ent values of x , which will therefore give rise to at most p different values
of x3 − Ax − B, and indeed at least p/3 values, since (II.6) an equation
of degree three can have at most three solutions. In general, we find nearly
p such different values of x3 − Ax − B. If these values were random, we
would expect (p. 55) half of them to be quadratic residues, giving two pos-
sible values of y, and half of them to be non-residues, giving no values of
y. In fact, Hasse proved that the number of points (including the point at
infinity) differs from p + 1, the expected number, by an integer less than
2
√

p in magnitude—see the discussion around equation (III.19).
In a remarkable connection between this theory and the theory of

quadratic forms in the previous chapter, the number of different equiva-
lence classes (subject to special rules for counting elliptic curves that are
transformed into themselves by a non-trivial division of A by n4 and B by
n6) of non-singular curves with p + 1 + t points modulo p is equal to the
Kronecker class-number H of 4p − t2 (the class-number was defined on
p. 128: the Kronecker class-number differs in the way of counting quadratic
forms that can be transformed into themselves by a non-trivial transforma-
tion of the form (VI.1)). Roughly speaking, H(4p − t2) is greater when
|t | is smaller, but this general rule conceals a great deal of irregularity: the
details of the distribution have been investigated by McKee.

We have already learnt a great deal about equations by considering them
as congruences modulo a suitable prime, and it would be reasonable to
expect the same to happen here, and indeed it does. It is clear that any
integral solution of (15) becomes a modular solution of the corresponding
congruence

y2 ≡ x3 − Ax − B (mod p). (19)

Similarly, since every number relatively prime to p has an inverse modulo
p, a pair of rational x and y whose denominators are relatively prime to
p also becomes such a modular solution of (19). What happens if either
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(and therefore also the other) denominator is not relatively prime to p? This
is best seen by looking at the elliptic curve in form (16), where Z then
becomes the denominator, and so reduces to 0 modulo p, i.e. the rational
solution to (15) becomes the modular point at infinity on (19).

However, there is one word of warning. To have an elliptic curve over
the integers, we know that Δ �= 0. However, it would still be possible
that Δ ≡ 0 (mod p), in which case the curve modulo p would not be a
genuine elliptic curve. This will happen precisely when p divides Δ, and in
particular therefore for only a finite number of primes. The case of a node
(Δ ≡ 0, A �≡ 0) is termed semi-stable reduction, whereas the case of a
cusp (Δ ≡ A ≡ 0) is termed unstable reduction. The case Δ �≡ 0, i.e. a
proper elliptic curve modulo p, is termed good, or stable, reduction and
we assume this henceforth. A curve defined over the rationals, which has
stable or semi-stable reduction for all primes, is called a semi-stable curve.

It is clear that every point over the rationals reduces to a torsion point,
possibly O, since there is no other possibility. Furthermore, a torsion point
P of order m must reduce to a torsion point of order dividing m, since if
mP = O over the integers, then mP ≡ O (mod p). If m is relatively prime
to p, much more is true: the reduction of P must have order precisely m.
This hard result is a key step in Mordell’s proof of the finiteness of the rank
of an elliptic curve.

We can use this to prove what we asserted shortly after (18), that
y2 = x3 − 11 has no torsion points over the rationals. Modulo 7, the
corresponding congruence has 13 solutions, viz. O and the following
finite ones:

(1, ±2), (2, ±2), (3,±3), (4, ±2), (5,±3) and (6,±3).

Hence any torsion point of order relatively prime to 7 must have order
dividing 13, i.e. be 1 or 13. 11 is a prime of bad reduction (in fact the curve
becomes y2 ≡ x3 (mod 11)), but we can try reduction modulo 13. Here
there are 19 solutions, O and the following finite ones: (1, ±4), (2,±6),
(3,±4), (4, ±1), (5, ±6), (6,±6), (9, ±4), (10,±1) and (12, ±1). Hence
any point of order relatively prime to 13 must have order dividing 19. So
any torsion point whose order is relatively prime to both 7 and 19 has order
dividing both 13 and 19, which must therefore be 1. Any point whose order
is relatively prime to 19, but not 7, has order dividing 19, a contradiction.
The only remaining possibility is a point of order 13, which is not cov-
ered by the second calculation, and is legitimate by the first. This can in
fact be ruled out, either by Mazur’s theorem from the previous section,
or by observing that modulo 5 there are at most 11 points, so order 13 is
impossible.
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One key question about elliptic curves E over the rationals is whether
they are modular. This is a somewhat technical concept, unrelated to the
idea of modular solutions to equations. It can be looked at in two ways: one
asks whether one can find this curve as the image of some highly symmetric
curve (a modular curve); the other is whether the number of points on E
(mod p) depends ‘nicely’ on p: for example on y2 = x3 − x , the number
of points modulo p is precisely p if p ≡ 1 (mod 4). This particular result
is comparatively easy to prove (easier in fact than proving that the curve
is modular), but knowing that a curve, or a class of curves, is modular is
very important. The Taniyama–Shimura–Weil conjecture (see the end of
the next section) states that all rational elliptic curves are modular.

6. Fermat’s Last Theorem
Much of our knowledge of Fermat’s discoveries is derived from the com-
ments which he wrote on the margin of his copy of the Arithmetic of
Diophantus. Opposite the account of the equation x2+y2 = z2 in Diophan-
tus, Fermat wrote: ‘However, it is impossible to write a cube as the sum of
two cubes, a fourth power as the sum of two fourth powers, and in general
any power beyond the second as the sum of two similar powers. For this I
have discovered a truly wonderful proof, but the margin is too small to con-
tain it.’ This is the famous conjecture of Fermat, generally called Fermat’s
Last Theorem, namely that the equation

xn + yn = zn (20)

has no solution in natural numbers x, y, z, if n is an integer greater than 2.
Despite the efforts of many of the greatest mathematicians of the last 300
years, it remained unproved as a general proposition until Wiles announced
a proof in 1993. Most probably Fermat was mistaken in thinking that he
had a proof.

The attraction of the problem lies partly in the tantalizing simplicity of
its formulation. For this reason it has obsessed many amateurs whose self-
confidence has been greater than their mathematical ability, and it certainly
has the distinction of being the arithmetical problem for which the greatest
number of incorrect ‘proofs’ has been put forward.

It has always seemed likely that any new method devised for the proof
of Fermat’s conjecture would lead to important new developments in the
theory of numbers generally. This was indeed amply realized in the case
of the work of Kummer (1810–93). Kummer believed at first that he had
proved Fermat’s conjecture. The fallacy in his arguments was pointed out
to him by Dirichlet, and Kummer’s efforts to repair the mistake led him to
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create a new and extensive theory, that of ideals in algebraic number-fields.
Wiles’s proof of Fermat’s Last Theorem is actually a major step forward in
the theory of elliptic curves—see later in this section.

In an elementary account such as this, we must content ourselves with
proving the truth of Fermat’s conjecture for some particular value of n. The
simplest case to treat is n = 4, where the insolubility of the equation was
proved by Fermat himself.

Fermat proved, more generally, that the equation

x4 + y4 = z2 (21)

has no solution in natural numbers, and his proof is an outstanding example
of his technique of ‘infinite descent’, which is simply another form of the
principle of proof by induction. From any one hypothetical solution of the
equation in natural numbers, Fermat derived another with a smaller value
of z. Repetition of this process leads eventually to a contradiction, since a
decreasing sequence of natural numbers cannot continue indefinitely. The
principle is the same as that underlying Legendre’s method, described in
§3, except that here it is used to prove insolubility, whereas there it was
used to prove solubility.

Suppose x, y, z are natural numbers which satisfy (21). We can suppose
that x and y have no common factor greater than 1, for the fourth power
of such a common factor can be cancelled from the equation. The numbers
x2, y2, z constitute a primitive solution of X2 +Y 2 = Z2, and therefore, by
the result proved in §2, they are expressible (possibly after interchanging x
and y) as

x2 = p2 − q2, y2 = 2pq, z = p2 + q2,

where p and q are relatively prime natural numbers, one of which is even
and the other odd. Looking at the first equation, and recalling that any
square must be congruent to 0 or 1 (mod 4), we see that p must be odd and
q even. Putting q = 2r, we have

x2 = p2 − (2r)2, ( 1
2 y)2 = pr.

Since p and r are relatively prime and their product is a perfect square,
each of them must be a perfect square. If we put p = v2 and r = w2, the
first equation becomes

x2 + (2w2)2 = v4.

This equation is somewhat similar to (21) in its general form. When sim-
ilar reasoning is applied again to the new equation, we obtain one exactly
like (21). The last equation implies that

x = P2 − Q2, 2w2 = 2P Q, v2 = P2 + Q2,
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where P and Q are relatively prime integers, one of which is even and the
other odd. Since P Q = w2, each of P and Q must be a perfect square.
Putting P = X2, Q = Y 2, the third equation becomes

X4 + Y 4 = v2,

which is of the same form as (21). In this equation X, Y, v are natural
numbers and

v2 = p <
√

z,

whence v < z. In view of what was said earlier, this is enough to prove the
insolubility of the equation (21).

Until the 1980s, researches on Fermat’s problem had almost all been
based on the work of Kummer. They resulted in proofs that if n satisfies any
one of a series of conditions then the equation (20) is insoluble. It is enough
to consider prime values of n greater than 2, because any number greater
than 2 is either divisible by some prime greater than 2, or else divisible by
4; and if the equation is insoluble for one value of n it is a fortiori insol-
uble for any multiple of that value. So far, whenever a number n has been
reached which did not satisfy any of the existing criteria, it has generally
been possible to find another criterion which would cope with the number.

We have seen (§2) that the quadratic X2 + Y 2 = 1 has infinitely many
rational solutions, and that, if we can find one rational soluton on a conic,
we can find infinitely many (p. 139). The same is true of some elliptic
curves, e.g. (18): more precisely, if we can find one non-torsion rational
point, we can find infinitely many. Mordell conjectured that any genuinely
more complicated curve could only have finitely many solutions. This was
finally proved by Faltings in 1983, which shows that, for n > 3, Xn +Y n =
1 has only finitely many rational solutions, i.e. that for fixed n, (20) has only
finitely many different (without common factors) solutions.

Frey suggested, in 1985, that the existence of a non-trivial solution to
u p + v p = w p would imply the existence of a non-modular elliptic curve,
viz. y2 = x(x +u p)(x −v p), now known as the Frey curve. This suggestion
was proved by Ribet in 1986. This curve is semi-stable (see the previ-
ous section), and in 1993 Wiles announced a proof (subsequently found
to need another key ingredient, furnished by Wiles and Taylor) that every
semi-stable elliptic curve is modular, the semi-stable case of the Taniyama–
Shimura–Weil conjecture. Hence no non-trivial solutions to u p + v p = w p

can exist.
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7. The equation x3 + y3 = z3 + w3

Although the equation x3 + y3 = z3 (a special case of Fermat’s equation) is
insoluble, the equation x3 + y3 = z3 + w3 has infinitely many solutions in
integers, other than the obvious solutions with x = z or x = w or x = −y.
Formulae giving solutions were found by Vieta in 1591, but the formulae
discovered by Euler in 1756–60 are more general. These were simplified
by Binet in 1841.

To treat the equation

x3 + y3 = z3 + w3, (22)

we put x + y = X, x − y = Y, z + w = Z , z − w = W. The equation
becomes

X (X2 + 3Y 2) = Z(Z2 + 3W 2). (23)

There is an identity, similar to (1) of Chapter V, which expresses the
product of two numbers of the form X2 +3Y 2 as itself of that form, namely

(X2 + 3Y 2)(Z2 + 3W 2) = (X Z + 3Y W )2 + 3(Y Z − X W )2.

If we multiply (23) throughout by X2 + 3Y 2, and divide by Z , the identity
gives

X

Z
(X2 + 3Y 2)2 = (X Z + 3Y W )2 + 3(Y Z − X W )2.

This shows that the rational number X
Z is of the form p2 + 3q2, where p

and q are the rational numbers given by

p = X Z + 3Y W

X2 + 3Y 2
, q = Y Z − X W

X2 + 3Y 2
. (24)

To simplify the algebra, we put Z = 1 and consider X, Y, W as rational
numbers. By (24), with Z = 1, we have

pX + 3qY = 1, pY − q X = W.

These formulae allow one to express Y and W in terms of p, q and X,

where X = p2 + 3q2. They give

3qY = 1 − pX, 3qW = p − X2.

If we go back to the original x, y, z, w and remove the obvious
denominator, we obtain
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{
x = 1 − (p − 3q)(p2 + 3q2),

z = p + 3q − (p2 + 3q2)2,

{
y = −1 + (p + 3q)(p2 + 3q2),

w = −(p − 3q) + (p2 + 3q2)2.

(25)
These are the formulae of Euler and Binet. For any rational numbers p

and q, they give rational numbers x, y, z, w which satisfy the equation
(22), and the proof shows that conversely every rational solution of (22) is
proportional to a solution provided by these formulae.

If in particular we give p and q integral values, we obtain integral solu-
tions of (22), but there is no reason to expect that every integral solution
will be obtainable in this way. One particular solution, obtained by putting
p = 1, q = 1 is x = 9, y = 15, z = −12, w = 18, corresponding to the
curious fact that 33 +43 +53 = 63. The values p = 4, q = 1 correspond to

33 + 603 = 223 + 593.

The simplest solution of (22) with x, y, z, w all positive is

13 + 123 = 93 + 103(= 1729).

The number 1729 is in fact the smallest number which is expressible as the
sum of two positive integral cubes in two different ways.∗

An interesting identity, to which Mahler drew attention in 1936, is
obtained by putting p = 3q . This gives x = 1, y = −1 + 72q3, z =
6q − 144q4, w = 144q4. Writing 2q = t, we obtain the identity

(1 − 9t3)3 + (3t − 9t4)3 + (9t4)3 = 1.

The interest of this lies in the fact that it shows that the number 1 can be
represented in an infinity of ways as the sum of three integral cubes. There
is a similar identity for the number 2. I do not know of any identity which
exhibits the number 3 as a sum of three integral cubes in infinitely many
ways, and indeed the only known ways are 13+13+13 and 43+43+(−5)3.

It may be appropriate to mention at this point another unsolved problem.
Not every number can be represented as the sum of three integral cubes;
indeed, no number congruent to 4 or 5 (mod 9) can be so represented. For it
is easy to verify that any cube is congruent to 0 or −1 or 1 to the modulus 9,
and consequently the sum of any three integral cubes must be congruent to 0
or ±1 or ±2 or ±3 (mod 9), and can never be congruent to ±4. The problem

∗ When Hardy visited Ramanujan, who was lying ill at Putney, he mentioned that he had
come in taxi no. 1729, and that the number seemed to him rather a dull one, whereupon
Ramanujan immediately recalled this special property of the number.
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is: is every number representable as the sum of four integral cubes? Despite
many attempts, this is still unsolved.

There is a very simple way of expressing any number as the sum of five
integral cubes. We have

(x + 1)3 + (x − 1)3 + (−x)3 + (−x)3 = 6x .

Hence any multiple of 6 is representable by four integral cubes. Now any
number can be reduced to a multiple of 6 by subtracting a suitable cube.
Indeed, it is easily seen that n − n3 is always a multiple of 6. This gives the
result, which seems to have been first proved by Oltramere in 1894.

8. Further developments
Many modern researches on Diophantine equations are based on a method
originated by the Norwegian mathematician Axel Thue in 1908. This
method depends on consideration of the rational approximations to an
algebraic number, and a few words of explanation are therefore necessary.

Suppose f (x, y) is any homogeneous form in x and y of degree n, say

f (x, y) = a0xn + a1xn−1 y + · · · + an yn,

where a0, a1, . . . , an are integers, and n is at least 3. We suppose that the
form is irreducible, that is, cannot be expressed as the product of two other
forms with rational coefficients.∗ By the so-called fundamental theorem of
algebra, the form can be factorized as

a0(x − θ1 y)(x − θ2 y) . . . (x − θn y),

where θ1, θ2, . . . , θn are irrational numbers, real or complex. These
numbers are the roots of the irreducible algebraic equation

a0θ
n + a1θ

n−1 + · · · + an = 0

and are said to be algebraic numbers of degree n.

Whatever integral values we give to x and y, the value of f (x, y) is an
integer. Hence, if x and y are not both zero, we have

|a0(x − θ1 y)(x − θ2 y) . . . (x − θn y)| ≥ 1.

∗ Whether we say rational coefficients or integral coefficients makes no difference, as it
can be proved that a factorization into forms with rational coefficients implies a factorization
into forms with integral coefficients.
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Now suppose that x
y is a rational approximation to θ1, with y a large positive

integer. Then all the factors x−θ2 y, . . . are less than some constant multiple
of y, and it follows on division by yn that∣∣∣∣ x

y
− θ1

∣∣∣∣ >
K

yn
, (26)

where K is a positive constant, depending on the particular form f. Thus an
algebraic number of degree n cannot have a sequence of rational approxi-
mations which approach it too rapidly. The result was found by Liouville in
1844, and was used by him to construct numbers which are not algebraic.

Thue proved, by a long and difficult train of reasoning, that a substan-
tially better inequality is true, namely that∣∣∣∣ x

y
− θ1

∣∣∣∣ >
1

yν
(27)

for all but a finite number of rational approximations to θ1, where ν is
any number greater than 1

2 n + 1. The number 1
2 n + 1 was substantially

reduced by Siegel in 1921 to a little less than 2
√

n and further by Dyson
and independently by Gelfond to

√
(2n) in 1947.

In 1955 Roth proved the remarkable theorem that if ν is any number
greater than 2, the inequality (27) holds for all but a finite number of rational
approximations to θ1. This is the best possible result of its kind, for as we
have seen in IV.7, the inequality

∣∣∣∣ x

y
− θ1

∣∣∣∣ <
1

y2

always has infinitely many solutions, whether θ1 is an algebraic number or
not, provided that it is irrational. The proof of Roth’s theorem is naturally
very difficult.

The inequality (27) leads to a lower bound for the form f (x, y). If x, y
are any large integers for which | f (x, y)| is small compared with |y|n ,
then x

y must be a rational approximation to one of the roots θ1, . . . , θn .

Supposing, as we may without loss of generality, that x
y is an approximation

to θ1, it follows from (27) that

| f (x, y)| > K1 yn−ν,

where K1 is some positive constant. We can take ν to be any number greater
than 2, by Roth’s result. Hence any Diophantine equation which implies
that | f (x, y)| is less than a certain power of |y| can have only a finite
number of solutions. In particular, an equation of the form
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f (x, y) = g(x, y),

where g(x, y) is any polynomial, homogeneous or not, in which every term
is of degree less than n − 2, can have only a finite number of solutions. As
a special case, this holds if g(x, y) is a constant. It is essential, of course,
that n should be at least 3. As we know, Pell’s equation x2 − N y2 = 1, of
degree 2, has infinitely many solutions.

As an illustration, we may consider any equation of the form

ax4 + bx3 y + cx2 y2 + dxy3 + ey4 = kx + ly + m.

This has only a finite number of solutions, provided that the form on the
left is irreducible. For the right-hand side is of degree 1, and 1 < n − 2
when n = 4.

The Thue–Siegel–Roth method has one peculiar feature. Although it
proves that various types of equation in two variables x and y have only
a finite number of solutions, it does not seem to give any limits for x and
y beyond which there is no solution. The reason for this failure is that the
method is based on the consideration of two or more hypothetical approx-
imations to an algebraic number. A contradiction is obtained if all of them
are ‘too good’. Hence it is generally possible, in any particular case, to
deduce limits for x and y beyond which the equation has at most one solu-
tion, or at most a specified number of solutions, but not limits beyond which
the equation has no solution.

This is a serious limitation on the value of the Thue–Siegel–Roth the-
orem, from the point of view of finding all the solutions of a particular
Diophantine equation. We can get an estimate for their number (for the
types of equation discussed above), but unless by extreme good fortune we
actually find this number of solutions, we cannot be sure, however far we
go in searching for a solution, that there are no more.

Recent work by A. Baker has added greatly to our knowledge in this
respect. He has found limits for all the solutions of Diophantine equations
of certain classes; these classes, though less extensive than those to which
the Thue–Siegel–Roth theorem applies, include all equations of the type

f (x, y) = m,

where f is an irreducible form of degree 3 or more. An explicit bound is
established for |x | and |y| in terms of m and the coefficients of f . Thus it
becomes possible to find all the solutions of any particular equation of this
type by a limited number of trials (though the number may be large). The
same applies to equations of the type y2 = x3 + k, or any elliptic curve.



162 The Higher Arithmetic

For an elliptic curve Y 2 = AX3 + B X2 + C X + D with all coefficients
bounded by H , and any integral point P = (x, y), we have

|x |, |y| ≤ exp((106 H)106
). (28)

This work represents a remarkable discovery, long sought for in vain. The
work is naturally too difficult and intricate to be discussed here, but it may
be of interest to mention that the approach to the Diophantine equation is
different from that based on the Thue–Siegel–Roth theorem, outlined ear-
lier. Instead of the Diophantine approximation properties of one algebraic
number, one has to use the Diophantine approximation properties of the
logarithms of several algebraic numbers.

Notes
A good introduction to Diophantine equations is L. J. Mordell, Diophantine
Equations (Academic Press, London, 1969). For more about Diophantine
equations, see Nagell, or the more advanced monograph by Th. Skolem,
Diophantische Gleichungen (Springer, 1937; reprinted by Chelsea Publ.
Co., New York, 1950) and by Z. I. Borevich and I. R. Shafarevich, Number
Theory (Acadaemic Press, London, 1966).

The most remarkable general result hitherto proved is one that is due to
Siegel; this gives a necessary and sufficient condition for an equation of the
form f (x, y) = 0, where f is an irreducible polynomial, to have infinitely
many solutions in integers x, y. See Skolem, ch. 6, §8.

§3. For the equation ax2 + by2 = cz2, see also L. J. Mordell,
Monatshefte für Math., 55 (1951), 323–7.

There is a theorem of Dickson which states that if the equation ax2 +
by2 = cz2 is soluble, where a, b, c are square free and relatively prime in
pairs, then every integer is representable in the form ax2 + by2 − cz2. Thus
from the example in the text it follows that every integer is representable in
the form 41x2 + 31y2 − z2.

For an interesting account of the various methods which have been
devised for equations of the form y2 = x3 + k, see L. J. Mordell, A Chap-
ter in the Theory of Numbers (Cambridge,1947). These equations are often
referred to as Mordell equations (or curves). ♠VII:1

§4. A good general reference on elliptic curves, though it requires a
substantial knowledge of modern algebraic geometry, is J.H. Silverman,
The Arithmetic of Elliptic Curves (Springer, 1986). A book aimed more
at undergraduates is J.H. Silverman and J. Tate, Rational Points on Ellip-
tic Curves (Springer, 1992). For alternative forms of elliptic curves, see
♠VII:2.
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For Mordell’s theorem, see Proc. Cam. Phil Soc. 21 (1922) 179–192, and
for Weil’s work, see Bull. Sci. Math. 54 (1930) 182–191.

Mestre’s work appears in C.R. Acad. Sci. Paris Sér. I, 295 (1982)
643–644; Nagao’s work in Proc. Japan Acad. Ser. A 69 (1993) 291–293.
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Math. 177 (1937) 238–247 and Wid. Akad. Strifter Oslo 1 (1935) No. 1. For
Birch and Swinnerton-Dyer’s algorithm, see J. für reine und angew. Math.,
212 (1963) 7–23. A modern description of these algorithms is to be found
in Cremona Algorithms for Modular Elliptic Curves (2nd ed., Cambridge,
1997).

§5. McKee’s work, closely connected to the elliptic curve factoring
algorithm described in VIII.5, appears in his Ph.D. thesis (Cambridge,
1993), and in J. London Math. Soc. (2) 59 (1999) 448–460.

§6. For an account of Fermat’s Last Theorem see L. J. Mordell, Three
Lectures on Fermat’s Last Theorem (Cambridge, 1921). H. M. Edwards,
Fermat’s Last Theorem: a Genetic Approach to Algebraic Number Theory
(Springer, 1977) and P. Ribenboim, 13 Lectures on Fermat’s Last Theo-
rem (Springer, 1979). For numerical evidence see S. S. Wagstaff, Jr, Math.
Comp., 32 (1978), 583–91. See also Guy, section D.2 and the references
there.

For ‘genuinely more complicated’, see ♠VII:4. Falting’s paper is in
Inventiones Math. 73 (1983) 349–66. Frey’s paper is in Ann. Univ. Sar-
aviensis 1 (1986) 1–40. Ribet’s paper is in Inventiones Math. 100 (1990)
431–76. Wiles’s proof is in Annals of Math. 141 (1995) 443–551, with a key
ingredient, by R. Taylor and A. Wiles on pages 553–72. A non-technical
account of the history of Fermat’s Last Theorem is given by S. Singh, Fer-
mat’s Last Theorem (Fourth Estate, London, 1997), and a more technical
one by P. Ribenboim, Fermat’s Last Theorem for Amateurs (Springer-
Verlag, New York, 1999). An account of the foundational mathematics is in
I. N. Stewart and D. O. Tall’s Algebraic Number Theory and Fermat’s Last
Theorem (third edition, A K Peters Ltd., Natick, MA, 2002).

§7. See Dickson’s History, vol. II, ch. 21, and K. Mahler, J. Lon-
don Math. Soc., 11 (1936), 136–8. For the anecdote about Ramanujan,
see Hardy’s memoir in Collected Papers of S. Ramanujan (Cambridge,
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1927), or Proc. London Math. Soc. (2), 19 (1921), xl–lviii. ♠VII:5 For the
four-cube problem, see H. W. Richmond, Messenger of Math., 51 (1922),
177–86, and L. J. Mordell, J. London Math. Soc., 11 (1936), 208–218. For
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in K. Mahler’s Lectures on Diophantine Approximations (Univ. of Notre
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C O M P U T E R S A N D N U M B E R T H E O R Y

In this chapter, we shall assume some basic familiarity with computing, but
not with any particular language or machine. We have included brief argu-
ments describing the running time of the various algorithms—the reader not
familiar with the complexity theory of algorithms can skip these, whereas
the reader more familar can see the notes.

1. Introduction
The rapid development of electronic computers has meant that number-
theoretic calculations which were until recently impossible or extremely
difficult can now be performed routinely on quite modest computers, even
on home computers or programmable calculators. Gauss’s childhood feat
of computing 1 + 2 + · · · + 100 in his head can now be done in fractions
of a milli-second. The comparison is not completely straightforward, as it
is believed that Gauss actually achieved this feat by inventing the formula
for the sum of the first n numbers, as n(n + 1)/2, and just substituted
n = 100 in this—a feat which computers find more difficult, though far
from impossible.

Computer designers typically provide computers capable of manipula-
ting whole numbers up to a certain limit, often 2147483647 = 2 31 −1. For
major computations, such as the recently computed factorizations

2 484 + 1 = 49947976805055875702105555676690660891977570282

63953841374651135400594782111624992192489764901

58715385572308979425059663271676108686125649006

42817

165
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= 17 × 353 × 209089 × 33186913 × 1251287137 × 2931542417×
38608979869428210686559330362638245355335498797441×
846944091977057400576969390843473250622587399423608

5602665729,

10 142 + 1 = 101 × 569 × 7669 × 380623849488714809×
7716926518833508778689508504941×
93611382287513950329431625811490669×
82519882659061966708762483486719446639288430446081,

2 463 + 1 = 3 × 2356759188941953 × p23 × p35 × p66,

(where pn means a prime of n decimal digits)

2512 + 1 = 2424833 × p49 × p99

or

3349 − 1 = 2 × p80 × p87

where the final computations involved the factorization of a 111-digit prod-
uct of two primes, a 116-digit product of three primes, a 101-digit product
of two primes, a 148-digit product of two primes and a 167-digit product of
two primes respectively, it is quite clear that the ideas set out in Chapter I,
and the use of the computer manufacturers’ limited range of integers, will
not suffice.

Just as we can handle numbers greater than 9 in the decimal system by
the use of multi-digit numbers (such as 12 or 561) and of techniques such
as ‘long multiplication’ and ‘long division’, we can do the same on a com-
puter, and, if the maximum number provided by the computer manufacturer
is 2147483647, we can divide our large integers up into ‘digits’ base 10000,
say, and handle these in ways similar to long multiplication and long divi-
sion. We need to use a base B such that (B − 1) 2 is representable on our
computer, since the product of two ‘digits’ can be as large as (B −1) 2. This
tends to make the ‘digits’ be smaller than we would like, and hence the
numbers have more ‘digits’ than might seem necessary. Fortunately, many
computer manufacturers actually provide instructions which multiply two
numbers and produce a double-length result, and instructions which divide
double-length numbers by single-length numbers, but, unfortunately, high-
level computer languages tend not to provide access to these facilities, and
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it is often necessary to resort to machine code programming. Whilst sub-
stantial ingenuity is required to get the details right and the programs as
fast as possible, the methods are fundamentally as we have outlined them.

There are other methods, and a flourishing branch of computer science
explores questions such as ‘what is the fastest way of multiplying two large
integers’. However, the definition of ‘large’ in that context would probably
not stoop to include the numbers we have written above, which com-
puter scientists would regard as ‘medium-sized’, if not ‘small’. Karatsuba
invented an ingenious algorithm for multiplying integers, based on repeated
applications of the identity

(aB + b)(cB + d) = (ac)B2 + [(a + b)(c + d) − ac − bd] B + (bd),

which only requires three distinct multiplications, rather than the four
needed for conventional long multiplication, and this is sometimes used
for numbers of the length we have been discussing. If we are multiply-
ing numbers of d ‘digits’, conventional long multiplication would take d2

multiplications of digits, while Karatsuba’s method would take a number
proportional to d log2 3 ≈ d1.585 of multiplications. There are faster methods
for even larger numbers, taking time roughly proportional to d—referred to
as ‘fast’ multiplication hereafter, even though they may only be faster for
very large numbers indeed.

The development of computers has done more than provide tools for
number-theory. It has also provided applications for number-theory, to
the point where a working knowledge of elementary number-theory is
considered essential for a computer scientist. There are many of these appli-
cations. As a trivial one, we mention that 355/113 is a perfect floating-point
approximation to π on most 32-bit computers because it is obtained by
truncating

π = 3 + 1

7+
1

15+
1

1+
1

292+ · · ·

before the 292 term, so that the error is less than 1/(115 2 × 292) =
1/3861700—see IV.5 and IV.7. A less trivial application is to be found in
the design of so-called random number generators, which is outlined in §3.
Congruences are fundamental to the design of hash tables, which are one
of the most efficient ways of storing information for rapid retrieval.

But the most important applications of number-theory to computing are
in the area of public-key cryptography, which enables two people to share
a secret, or one of them to verify that the other person really is who he
claims to be, without pre-arranged codebooks (see §7 and §8). As the use
of computers spreads further, from the banks to electronic transfer at the
supermarket or shop, techniques such as this will be needed to combat the
possibilities of fraud. These techniques are outlined in §7 and §8.
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2. Testing for primality
Many of the subjects that we shall discuss later require the use of large
primes, often large ‘random’ primes: random in the sense that they have no
particular structure, and are not easy to guess, or to find in standard tables
of large primes. The problem of primality is also of great intrinsic interest:
Gauss wrote ‘The problem of distinguishing prime numbers from compos-
ite numbers, and of resolving the latter into their prime factors is known to
be one of the most important and useful in arithmetic’. For example, it is
comparatively easy to tell if a large Mersenne number (one of the form 2 n−
1) is prime or not: n has to be prime, and then there are the Lucas–Lehmer
tests which will prove whether or not 2 n −1 is prime. Most of the very large
(often with millions of decimal digits) primes which are known today are
of this form. Regrettably, the special properties which make it easy to show
that they are prime also make it easy to attack many of the codes based on
such large primes: mathematics rarely gives us something for nothing.

How can we tell if a large random number is prime? Fermat’s theorem
(II.3), that

x p−1 ≡ 1 (mod p)

for all integers x not congruent to 0, can often show that a number is not
prime. For example, we can show in this way that 10 is not prime, by
observing that

3 9 ≡ 3 4 × 3 4 × 3 ≡ 81 × 81 × 3 ≡ 3 (mod 10),

and hence the pair x = 3, p = 10 would be a counter-example to Fermat’s
theorem if 10 were prime. Since the theorem is true, 10 cannot be prime.

This method can be used easily, and takes only a small amount of com-
puter time to show that numbers with hundreds of digits are not primes.
To do this, we need to be able to compute x p−1 (mod p) rapidly. A pre-
liminary remark is in order here: we must not first compute the integer
x p−1, and then reduce it to the modulus p, for this number would be totally
outside the range of computability; rather we must work to the modu-
lus p throughout the computation of x p−1. For the computation of x p−1

(mod p), or more generally any x k (mod p), we observe that, if k is even,
then x k = (x2)k/2, while if k is odd, say k = 2l + 1, then xk = x(x2)l .
At the expense of one or two multiplications, we have reduced the problem
of computing x k (mod p) to a similar problem with a value of k which is
half of what it was. Hence the number of multiplications required by this
method of repeated squaring is somewhere between log 2 k and 2 log 2 k.

However, can we use this method to show that a number is prime? In
general, the answer is ‘no’, but in important limited cases we can—see the
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notes. However, we can get a ‘strong hint’ that a number is prime. We recall
the definition of φ(n) from Chapter II—it is the number of numbers less
than or equal to n and relatively prime to n. Euler’s theorem (II.3) states
that xφ(n) ≡ 1 (mod n) if x is relatively prime to n. In II.4, we showed that
φ is a multiplicative function, and that

φ(qa1
1 qa2

2 . . .) = φ(qa1
1 )φ(qa2

2 ) . . . = qa1−1
1 (q1 − 1)qa2−1

2 (q2 − 1) . . . .

Define φ̂(qa1
1 qa2

2 . . .) to be the least common multiple, rather than the pro-

duct, of φ(qa1
1 ) = qa1−1

1 (q1 − 1), φ(qa2
2 ) = qa2−1

2 (q2 − 1), . . . . Then,
for each of the factors qai

i of n and for x relatively prime to n, we deduce

that x φ(q
ai
i ) ≡ 1 (mod qai

i ), and so x φ̂(n) ≡ 1 (mod qai
i ). It then follows

that x φ̂(n) ≡ 1 (mod n). φ̂ is sometimes called the Carmichael function, as
distinct from the Euler function φ.

If we were unlucky enough to have a non-prime number n such that φ̂(n)

divides n − 1, then every x relatively prime to n would have the property
that xn−1 ≡ 1 (mod n), and, unless we were lucky enough to choose an x
which had a factor in common with n, we would not be able to use the Fer-
mat test to detect that n is not prime. Such numbers, though rare, actually
do exist, and there are infinitely many of them—they are called pseudo-
primes or Carmichael numbers. The smallest such is 561 = 3 × 11 × 17.
So φ̂(561) = L.C.M.(3 − 1, 11 − 1, 17 − 1) = L.C.M.(2, 10, 16) = 80,
which does divide 560. φ(561) = 2×10×16 = 320, which does not divide
560, which shows why φ̂ is the key concept here. To illustrate the problem
that these numbers can cause, let us try to show that 561 is not prime by
looking at 2 560 (mod 561). We get the following table of powers of 2 to
the modulus 561, using the method of repeated squaring outlined above:

2 35 ≡ 263

2 70 ≡ 166

2 140 ≡ 67

2 280 ≡ 1

2 560 ≡ 1.

However, although Fermat’s theorem does not prove that 561 is not prime,
we can prove that it is not prime by using Lagrange’s theorem, that a poly-
nomial of degree n has at most n solutions to a prime modulus (II.7).
Consider the polynomial x 2 − 1. This certainly has solutions x ≡ 1 and
x ≡ −1, but, to the modulus 561, it also has the solution x ≡ 2 140 ≡ 67
from the table above. Since it is a polynomial of degree two with three
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solutions, Lagrange’s theorem would be contradicted if 561 were a prime,
and so we can conclude that 561 is definitely not a prime. In fact, we can
also determine a partial factorization: H.C.F.(67 − 1, 561) = 33 = 3 × 11,
whilst H.C.F.(67 + 1, 561) = 17. This technique works because, to any
modulus which is a prime factor of 561, 67 is a square root of 1, so must be
congruent to 1 or −1 to that prime modulus.

Rabin made use of this idea, that we often see a contradiction either
of Fermat’s theorem or of Lagrange’s theorem applied to the polynomial
x 2 −1, to produce a procedure which, when given a prime, will always say
‘probably prime’, and, when given a non-prime, will say ‘probably prime’
with probability at most 1

4 , the rest of the time it will prove that the number
is composite. Let us now explore Rabin’s method, assuming that n is a
number whose primality we wish to investigate. If n is prime, then x n−1 ≡
1 (mod n) for all non-zero x . Choose such a non-zero x (in practice one
also avoids x ≡ ±1): this choice provides the random element implicit in
the statements about probability made at the beginning of this paragraph.
We intend to compute x n−1 (mod n) by repeated squaring, but we have
to do this in a particular order. Write n − 1 as 2 lm, where m is odd, and

compute xn−1 as (xm)2l
, i.e. first compute xm , then square it l times, thus

computing x2m, x4m, . . . , x2l m , all to the modulus n.

(a) If xm ≡ 1 (mod n), then we terminate, saying ‘n is probably prime’,
since neither Fermat’s theorem nor Lagrange’s theorem is violated.

(b) If any of xm , x2m , x4m , . . . , x2l−1m ≡ −1, then again we terminate,
saying ‘n is probably prime’, for the same reason as before.

(c) If any of x2m , x4m , . . . , x2l m ≡ 1, say x2k m ≡ 1, then we terminate,
saying ‘n is definitely not prime’. We now have a counter-example to
Lagrange’s theorem, since x 2k−1m is a square root of unity, and it is not
1 (otherwise we would have detected this in clause (a), or in this clause
for a smaller value of k) or −1, which would be detected by clause (b).
In this case, as in the example of 561 earlier, we can factorize n by
looking at H.C.F.(x 2k−1m ± 1, n).

(d) If we get to the computation of x 2l m without terminating, we can
say that ‘n is definitely not prime’, since x 2l m ≡ 1 would have been
detected in previous steps, and x 2l m �≡ 1 contradicts Fermat’s theorem.
However, we have no information about the potential factors of n.

In practice, this algorithm can be run on numbers of a thousand decimal
digits quite quickly. It can be argued, though, that whilst the answer ‘n is
definitely not prime’ is certainly correct (even though no factor of n has



Computers and Number Theory 171

been exhibited) and can be rapidly checked if we also quote x as a ‘wit-
ness’ to the non-primality of n, the answer ‘n is probably prime’ is not
certain enough. Perhaps we could get ‘n is probably prime’ 10 times for 10
different choices of x , even for a non-prime number.

The reply to this argument is provided by the following theorem of
Rabin: for any non-prime n, at most 25% of the possible values of x will
reply ‘n is probably prime’. For n = 9, the x-values 1 and −1 both say ‘9
is probably prime’, but none of the six other possible values (remembering
that x ≡ 0 is excluded) does, so that it is possible for 25% of the x to give
the wrong response. This means that, if we try ten different random values
of x , and get the reply ‘n is probably prime’ for all of them, then either n
really is prime, or we have observed a one-in-a-million (more accurately,
one-in 1,048,576) freak event of getting an unlucky number every time. If
even this level of certainty does not suffice, then we note that 20 differ-
ent values of x will give us a one-in-a-billion (1 in 1012) chance of being
wrong, and so on. It should be noted that, for the vast majority of composite
numbers n, very few of the possible values of x will reply ‘n is probably
prime’. Indeed, for 180-digit numbers chosen at random, the probability
that a composite number passes even one iteration of this test is less than
one in 1022. Methods like this are known as probabilistic, though computer
scientists these days distinguish two kinds of probabilistic methods: Monte
Carlo, where an answer (in this case ‘probably prime’) might be wrong; Las
Vegas, where the answer is correct, but the running time might be longer
than expected. In both cases, we expect to know (upper bounds on) the bad
probabilities, e.g. the 1/4 for Rabin’s method: a Monte Carlo method.

Whilst we do not intend to analyse the running times of these algorithms
in detail, we note that a single application of Rabin’s algorithm will require
at most 2 log 2 n multiplications, all of numbers less than n, which are to be
carried out to the modulus n. The time taken to perform such a calculation,
by ordinary ‘long multiplication’ methods, is proportional to the square
of the number of digits, since every digit of the multiplier is multiplied
by every digit of the multiplicand. Since the number of (binary) digits is
log 2 n, the total cost is proportional to log 2

3n. Karatsuba’s multiplication
method would give us log 2

2.585n instead. While faster methods of multi-
plication are known, with times roughly proportional to log2 n, they are not
generally used for numbers of the size common in cryptographic uses of
prime numbers.

How would we actually prove that a number n is prime? The sim-
plest way is to exhibit a number x such that x n−1 ≡ 1 (mod n), but that
x (n−1)/d �≡ 1 (mod n) for all prime divisors d of n − 1, in other words a
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primitive root to the modulus n (III.1). This would imply that all the num-
bers x , x2, . . . , xn−1 are distinct to the modulus n, and, since they are all
relatively prime to n, it follows that every number between 1 and n − 1 is
relatively prime to n, i.e. that n has no proper factors. Such a number x ,
together with a factorization of n −1, could be regarded as a certificate that
n is prime, since the associated proof can easily be checked. Of course the
factorization of n − 1 would have to be accompanied by certificates that all
the factors there are primes, and so on. The difficulty of producing such a
certificate is not, generally speaking, the labour of finding x , for there are
many such x (in fact, φ(n − 1) of them—see III.1), but rather the difficulty
of factoring n − 1. If we take the number

p = 7716926518833508778689508504941

quoted in the factorizations at the start of the chapter, we see that

p −1 = 22 ×3×5×7×71×8837×2345533×10457969×1193831333

(Pollard’s rho algorithm, see §4, was used to compute this factorization in
less than a second). Again, in less than a second, we can verify that 2p−1 ≡
1 (mod p), but 2(p−1)/ f �≡ 1 (mod p) for each of these prime factors f of
p − 1, so that 2 and the factorization quoted above are a certificate of the
primality of p provided:

(a) we believe the factorization above (which is easy to check by multiply-
ing out);

(b) we believe that the numbers appearing in that factorization genuinely
are primes, which we have to prove by the same method. Take the last
such number,

p2 = 1193831333 where p2 − 1 = 22 × 192 × 826753

and again we can easily verify that 2p2−1 ≡ 1 (mod p2) and
2(p2−1)/ f �≡ 1 (mod p2) for each of these prime factors f of p2 − 1,
so p2 is definitely prime.

However, if we try to apply this method to

p = 38608979869428210686559330362638245355335498797441

we soon find the small factors of p − 1 are 27 × 5 × 112, but we are
then left with a hard-to-factor residue. However, if such a certificate can
be produced, it can be verified in time proportional to log4 n, or, using fast
multiplication methods, time roughly proportional to log3 n.

One family of numbers which is relatively common, but which it is easy
to prove prime, is the family N = h2n + 1, with h odd, and less than 2n .
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If we can find an a such that a(N−1)/2 = ah2n−1 ≡ −1 (mod N ) then N is
prime—a result known as Proth’s Theorem. From our present perspective,
the proof is fairly simple. Let b = ah , so that b2n−1 ≡ −1. Then b has
order precisely 2n modulo N , and therefore modulo any factors p of N .
Therefore 2n divides p−1 (II.3), i.e. p = g2n +1 for some integer g. Since
p is assumed to divide N , p divides N − p = (h − g)2n , and therefore
divides h − g. But 2n < p ≤ h − g < h < 2n , a contradiction unless
h = g, i.e. p is N . Hence a is a certificate for the primality of N , which
can be checked in time proportional to log3 n—less if faster multiplication
methods are used.

We return to the topic of certificates of primality at the end of §5, and to
primality testing in §9.

3. ‘Random’ number generators
There are many uses in computing for ‘random’ numbers of some kind.
We have seen one in the previous section, where we wished to take var-
ious values of x ‘at random’ to see whether n is or is not prime. Many
kinds of computer simulation rely on random numbers, just as games rely
on the toss of a coin or the roll of dice. For some applications, such as
the determination of prizes in Premium Bonds or lotteries, it is necessary
for the numbers to be truly unpredictable, and resort must be had to some
unpredictable physical process, rather than to arithmetic. Such methods can
be expensive or slow, and it is common to use an unpredictable starting
point for a process of generating ‘new from old’ such as we describe in this
section.

For such purposes, complete unpredictability is not so important, pro-
vided that the sequence of random numbers is ‘not too regular’. What is
more important is computational efficiency. This leads to the study of so-
called pseudo-random numbers, where each number actually depends on
the previous one, but in a manner that does not destroy the useful properties
of the sequence. It is common to regard such a sequence as consisting of
numbers to the modulus n, just as the numbers on a die can be viewed as
being to the modulus 6. In practice, n is often chosen to be related to the
properties, especially word-size, of the actual computer being used. Surely
it should be easy to design a method which, given some number x 1 to the
modulus n, scrambled it to produce x 2, then scrambled that to produce x 3,
and so on.

One of the first such methods suggested was the mid-square method.
This relies on squaring the numbers, and then taking the middle half of the
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square as the next number. If n were 10000 (probably too small in practice,
but large enough to illustrate the point), so that the ‘middle half’ of the
square of a number is obtained by deleting the first two and last two of the
eight digits, and x1 were 4321, we would see

x2
1 = 43212 = 18671041, so x2 = 6710;

x2
2 = 67102 = 45024100, so x3 = 241;

x2
3 = 2412 = 58081, so x4 = 580;

x2
4 = 5802 = 336400, so x5 = 3364;

x2
5 = 33642 = 11316496, so x6 = 3164;

x2
6 = 31642 = 10010896, so x7 = 108;

x2
7 = 1082 = 11664, so x8 = 116;

x2
8 = 1162 = 13456, so x9 = 134;

x2
9 = 1342 = 17956, so x10 = 179;

x2
10 = 1792 = 32041, so x11 = 320;

x2
11 = 3202 = 102400, so x12 = 1024;

x2
12 = 10242 = 1048576, so x13 = 485.

There is clearly a strong tendency for one small number to be followed by
another. It is also possible for the system to get stuck at 0, or at the short
loop 6100, 2100, 4100, 8100, 6100, . . . , as indeed this system does, with
x68 = 6100. In fact, this is not so surprising, since methods chosen ‘at
random’ turn out not to be random enough, as the next example illustrates.

There is a well-known ‘paradox’ (actually an illustration that the laws
of probability do not behave as we naı̈vely expect) that, if we have 23 or
more people together in a room, it is more likely than not that two of them
have the same birthday. The proof of this is easy if we ignore the exis-
tence of leap years, as we shall do, and a little more complex if we take
them into account. If no two of the people have the same birthday, then
the first person to enter the room could have been born on any day (proba-
bility 365/365), the second can have any birthday except the first person’s
(probability 364/365), the third can have any birthday except either of those
of the first two people (probability 363/365), and so on, which gives us a
cumulative probability for 23 people in the room of

365

365
× 364

365
× 363

365
× · · · × 365 − 22

365

which works out to be

36997978566217959340182499134166757044383351847256064

75091883268515350125426207425223147563269805908203125
,
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the numeric value of which is about 0.4927. Hence the probability that
two do have the same birthday is about 0.5073, greater than one-half. The
same general phenomenon occurs whatever the number of days in a year
(or of other objects from which we are selecting). In fact, probability the-
ory tells us that, if we are selecting from N possible objects, we expect a
repetition after about

√
π N/2 selections, which for N = 365 gives 23·94:

an excellent agreement with the calculation above. For N = 10000, as in
the example of mid-square random number generation, we would expect a
repetition within 125 elements, so finding it at x72 = x68 = 6100 is not too
surprising.

Hence we need to think about our choice of method, rather than just
choose one at random. What requirements do we wish our random sequence
to have?

• We want a long period between repetitions. Ideally, if our sequence is of
the form xi+1 = f (xi ) (mod n), we would want xi to take all possible
values to the modulus n before repeating.

• We want our sequence to ‘look random’. The repeated occurrence of
small numbers in the mid-square method certainly does not look random.
The sequence xi+1 = 1+xi (mod n) satisfies the criterion of trying every
value, but few people would claim that this is random.

The first criterion is amenable to, indeed it requires, arithmetic methods
for its satisfaction, whereas the second one needs statistical methods for
its precise formulation, and certainly for its satisfaction. We shall concen-
trate on the first, but the reader must bear in mind that whilst satisfying
the first criterion is definitely necessary to produce a good random num-
ber generator, it certainly is not sufficient. At the end of this section we
shall give a few possible methods which are widely believed to satisfy both
criteria.

One of the most popular methods of generating such pseudo-random
numbers is the so-called linear congruential method:

xi+1 = (axi + c) (mod n) (1)

where xi+1 satisfies a linear congruence (in the sense of Chapter II) in terms
of xi . We shall always use a and c in this sense for the rest of this section,
and often use b to stand for a − 1. If we substitute equation (1) into the
analogous equation giving x i+2 in terms of xi+1 we get

xi+2 ≡ (axi+1 + c) (mod n)

≡ (a(axi + c) + c) = a2xi + (a + 1)c (mod n).
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This process can clearly be continued, expressing x i+3 in terms of x i and
so on. If we use the algebraic identity

a j−1 + a j−2 + · · · + a + 1 = (a j − 1)

a − 1
= (a j − 1)

b

we get the concise expression

xi+ j ≡ (a j xi + (a j − 1)c/b) (mod n). (2)

This has the same form as (1), with a replaced by a j and c replaced by
(a j −1)c/b. Hence the view held by some programmers, that they can make
a sequence which is ‘twice as random’ by taking every alternate element of
the sequence, is fallacious: the same sequence can be obtained by choosing
different values of a and c. As we shall see later, it is generally not helpful
to perform this transformation.

Let us now study the fundamental arithmetic question of choosing good
linear congruential random number generators:

what values of x1, a, c and n give the maximum period of the gen-
erator, i.e. cause every value to the modulus n to be taken before the
sequence repeats?

It turns out that x1 is not particularly important in this. Consider a similar
sequence, but starting from 0 and with c = 1:

y1 = 0 and yi+1 ≡ (ayi + 1) (mod n). (3)

Then, as in (2) above, yk ≡ (ak−1 − 1)/b (mod n), whereas

xk ≡ ak−1x1 + c(ak−1 − 1)/b (mod n)

≡ (byk + 1)x1 + cyk (mod n)

≡ (x1b + c)yk + x1 (mod n).

So if x1b + c is relatively prime to n, the sequence of xi has precisely the
same period as that of the yi . If x1b +c is not relatively prime to n, then the
sequence of xi will have a shorter period: the same as that of the y i taken
to the modulus n/ H.C.F.(n, x1b + c).

We now need a technical result, which can be viewed as a generalization
of Fermat’s theorem (II.3). Let p be a prime and e be a natural number
such that pe > 2 (i.e. we are ruling out just one case: p = 2 and e = 1).
Suppose that

x ≡ 1 (mod pe) and x �≡ 1 (mod pe+1). (4)

Then

x p ≡ 1 (mod pe+1) and x p �≡ 1 (mod pe+2). (5)
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We note that the case p e = 2 and x = 3 shows that p e = 2 has to be
excluded. The proof is similar to Leibniz’s proof (II.3) of Fermat’s theo-
rem. We can write x ≡ 1 + qpe (mod pe+1) where q �≡ 0 (mod p). Now
expand (1 + qpe)p by the binomial theorem, to obtain

1p + p1p−1qpe + p(p − 1)

2
1p−2(qpe)2+

p(p − 1)(p − 2)

6
1p−3(qpe)3 + · · ·︸ ︷︷ ︸

divisible by pe+2

.

Unless p = 2, we see that p(p−1)
2 1p−2(qpe)2 is divisible by pe+2: a con-

tribution of p from the binomial factor p(p−1)
2 and a contribution of at

least p e+1 from the p 2e. If p = 2, we know that e > 1, so the p 2e term
contributes at least p e+2. In either case, therefore, all terms are divisible
by p e+2 except for the first two. Hence x p ≡ 1 + qpe+1 (mod pe+2),
which proves (5).

Now let us consider the special case of a generator with n = p e. The case
n = 2 is trivial, for the sequence of maximal length is 0, 1, 0, 1, . . . . This
illustrates the folly of thinking that ‘random coin tossing’ can be obtained
by calculation to the modulus 2: we should use a much larger modulus n,
the largest we can, for the random number generator, and later reduce the
answers to the modulus 2. However, it is not a good idea to compute the
answers to the modulus 2 by taking the remainder of the sequence (mod n)
on division by 2, since, if n is odd, we shall have a slight bias in favour of
0, whilst if n is even, we shall effectively have a sequence to the modulus
2, and the period will be at most 2. The correct solution for even n is to
divide the sequence (mod n) by n/2, and consider the quotient. With luck,
though this has to be checked, the sequence thus obtained will have period
the same as the original sequence. For odd n, we divide by (n − 1)/2 and
take the quotient if it is 0 or 1, if it is 2 we take the next member of the
sequence and divide it by (n − 1)/2.

We shall prove that the sequence has maximal period length if, and only
if, the following three conditions are satisfied:

(i) p divides b;
(ii) if p = 2, then 4 divides b;
(iii) p does not divide c.

If the xi are to have maximal period length, then the y i must have maximal
period length. Since yk+1 = (ak −1)/b, we must prove that this first attains
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the value 0 (to the modulus n) when k = n. If a �≡ 1 (mod p), then aφ(n) ≡
1 (mod n), and so (aφ(n) − 1)/b ≡ 0 (mod n); thus the sequence attains
0 too soon. This argument will not work when a ≡ 1 (mod p), for then we
cannot simply divide by b, since b ≡ 0 (mod p). So we have proved that
condition (i) must hold. If condition (ii) does not hold, then p is two and
a ≡ 3 (mod 4). But then a2 ≡ 1 (mod 8) and, by a repeated application
of (4) and (5) above, a22 ≡ 1 (mod 24) and so on; thus a2e−1 − 1 ≡ 0
(mod 2e+1). Since 2 divides a − 1 but 4 does not, we can divide this con-
gruence by a − 1 at the cost of writing it to the modulus 2e, and obtain
(a2e−1 −1)/b ≡ 0 (mod 2e), which shows that the sequence repeats at 2 e−1

rather than at 2 e. We have shown that conditions (i) and (ii) are necessary
if the sequence of y i is to have maximal length.

We now have to show that, if (i) and (ii) are satisfied, then the sequence
of yi does actually have maximal length. If a ≡ 1 (mod p e) the sequence
certainly does have maximal length, since it is the sequence 0,1,2,3, . . . . So
suppose that a ≡ 1 (mod p f ), but that a �≡ 1 (mod p f +1), for some value
of f less than e. Then by repeated application of (4) and (5), we see that
a pe ≡ 1 (mod p f +e), but a pe �≡ 1 (mod p f +e+1). Hence the sequence
repeats (not necessarily for the first time!) after p e steps, since a pe −1 ≡ 0
(mod p f +e), and dividing this congruence by a − 1, which is divisible
by p f , means writing it to the modulus p e rather than p f +e. Hence the
actual period length must be a factor of p e, since otherwise the remainder
on dividing p e by the actual period length would also be a period length.
Therefore the actual period length is p g for some g. This g has to be equal
to e, since for all smaller values of g, we do not have p f +e dividing a pg −1.

Thus conditions (i) and (ii) are both necessary and sufficient for the yi
to have maximal period length. What about the xi ? We observed just after
equation (iii) that if, and only if, x1b + c is relatively prime to n, the
sequence of xi has precisely the same period as that of the y i . Since n = pe

and p divides b, this condition is the same as requiring p not to divide c,
i.e. condition (iii).

We must now consider the case of general n, rather than the special case
n = pe. We shall show that the sequence has maximal period length if, and
only if, the following three conditions are satisfied:

(i′) p divides b, for all p dividing n;
(ii′) if 2 divides n, then 4 divides b;
(iii′) n and c are relatively prime.

If the sequence is to have maximal period length to the modulus n, then, by
the Chinese remainder theorem (II.4), it must have maximal period length
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to the modulus pe for each pe dividing n, since the period to the modulus n
will be the least common multiple of the periods to the moduli p e. But (i′),
(ii′) and (iii′) are equivalent to requiring (i), (ii) and (iii) for each such p e.

In practice, some conditions slightly stronger than (i′), ii′) and (iii′) are
necessary to ensure that the sequence does not have bad statistical prop-
erties. If a random number generator is going to be used extensively, then
proper statistical tests should be performed on the sequences generated.

• The modulus n should be as large as practicable: generally the com-
puter’s word-size is the most suitable choice.

• In addition to (i′), (ii′) and (iii′), if 2 divides n, then we should choose
a ≡ 5 (mod 8), and if 10 divides n, then we should choose a ≡ 21
(mod 200).

• a should be chosen between n/10 and 9n/10 and, subject to the previ-
ous congruence conditions, should not have a simple pattern of binary
or decimal digits. For the common case of modulus 4294967296 = 2 32,
a set of parameters which have good statistical as well as arithmetic
properties is a = 2147001325, c = 715136305.

4. Pollard’s factoring methods
Pollard used the observation of the last section, that ‘random’ methods are
not random enough, to produce an ingenious factoring algorithm, where
the average running time (it is a Las Vegas algorithm—see §2) for factor-
ing n is proportional to n1/4 log2 n, whereas the algorithms sketched in I.9
take, in general, time proportional to n1/2 or worse. It is worth noting that
this method should only be applied to numbers which are known not to be
prime—fortunately Rabin’s algorithm of §2 supplies us with an efficient
method for deciding this.

Let us suppose that we have some procedure f to the modulus n, which,
given a number xi , returns another number xi+1 = f (xi ). A method which
works well in practice is to take xi+1 = x2

i + 1 (mod n). If this method
is ‘sufficiently random’, then the probability theory quoted in the previous
section says that it will repeat, on average, after

√
(πn/2) different values

of i . In fact, the particular formula mentioned above will repeat somewhat
sooner: since x2

i has to be a quadratic residue (III.3) to the modulus n, not
all values to the modulus n will be used. If n were prime, only (n + 1)/2
different values of x2

i +1 (mod n) would be possible (corresponding to the
(n − 1)/2 proper quadratic residues and the special case of xi = 0).

If p is a factor of n, we then expect a repetition to the modulus p
after about

√
(πp/4) selections. However, the first difficulty is that p is
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unknown: the aim of factoring n is to discover p. This problem can be cir-
cumvented by observing that a repetition to the modulus p, say xi ≡ x j

(mod p), means that H.C.F.(n, xi − x j ) will be non-trivial. The second
difficulty is that comparison of each xi with each x j (where comparison
means the computation of H.C.F.(n, xi −x j )) would take about πp/32 such
computations, and this would probably not be faster than the trial division
methods of I.9. We need some way to detect repetitions more rapidly.

This is provided by what is called Pollard’s ‘rho’ method, based on
observing that a repeating sequence looks like the Greek letter rho, or ρ,
in that there is an irregular part at the front of the sequence, corresponding
to the tail of the ρ, followed by a circle which repeats indefinitely. This
follows from our definition of the xi : if xi = x j , then xi+1 = f (xi ) =
f (x j ) = x j+1. Pollard’s method relies on comparing:

x1 with x2;
x2 with x3 and x4;
x4 with x5, . . . , x8;
x8 with x9, . . . , x16

and so on. Suppose the first repetition to the modulus p occurs when xi
is equal to some earlier x j . In terms of the ‘rho’ picture, this means that
x1, . . . , x j−1 lie on the tail, x j is where the tail joins the main body, and
x j+1, . . . , xi−1 lie round the circle. Suppose t is the first power of 2 larger
than (or equal to) i . Then, as x j = xi , we have x j+1 = xi+1 and so on,
until we obtain xt = xt+i− j . Since t is at least as large as i , t + i − j must
lie between t and 2t , and so our method of comparison ensures that we
shall compare xt with xt+i− j . This comparison involves the computation
of H.C.F.(n, xt − xt+i− j ), which will be divisible by p because xt+i− j is
a repetition of xt . The only thing that can go wrong is that xt+i− j could
conceivably also be a repetition of xt for the other factors as well, i.e. it
could actually be a repetition to the modulus n, and then the H.C.F. would
just be n, and we would have learnt nothing about the factorization of n. In
practice this is extremely rare: should it happen, we can restart the method
at a different value of x 1, or, preferably, with a different choice of f .

A couple of practical remarks are called for. The first is that the repetition
may well be detected earlier: if the power of 2 before i , say t ′, is larger than
both j and i− j , then the repetition will be discovered on comparing xt ′+i− j
with xt ′ . Another practical point is that the key computations consist of
H.C.F.(xt −xi , n). Since H.C.F. is a comparatively expensive computation,
it may make sense to aggregate a few of these computations, so that we
compute, say, H.C.F.((xt −xi )(xt −xi+1), n), then H.C.F.((xt −xi+2)(xt −
xi+3), n), and so on, thus doing only half as many H.C.F. computations.
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Of course, there is a slightly greater risk that the H.C.F. will be n, but we
could then try each H.C.F. separately if this were to happen.

At the beginning of this section, we stated that the average running time
of Pollard’s rho algorithm was proportional to n1/4 log2 n, but in fact we
have proved something rather better: it is proportional to p1/2 log2 n, where
p is the factor it finds, and the log2 n term comes from the manipulation
of numbers to the modulus n. This means that it is an excellent supple-
ment to the ‘trial division’ methods of Chapter I for finding rather small,
but not very small, factors of large numbers. In the case of the factorization
of 2 484 + 1 given at the beginning of this chapter, the factors 17, 353, and
possibly even 209089 could be found by trial division (say by all the primes
up to a million); however, the next three factors would be extremely expen-
sive to find by trial division, but were found reasonably easily by Pollard’s
algorithm, since 100,000 iterations of Pollard’s algorithm ought to find fac-
tors less than about 10 10. However, it would require something like 10 27

(a thousand million million million million) iterations to find the remaining
factors, so it is clearly not a solution to all our factoring problems.

Pollard invented another method, also Las Vegas, known as the p − 1
method, which might appear somewhat specialized, but which does have
practical uses, and whose generalization, to be described in the next section,
is very powerful. This method takes a given number N and tries to find
prime factors p of N such that:

(a) p < P , for some allocated bound P;
(b) all prime factors of p − 1 are less than some allocated bound B—such

numbers are generally called B-smooth.

The method relies on Fermat’s theorem: assuming that p does not divide
x , x p−1 ≡ 1 (mod p), so p divides (and generally will be equal to)
H.C.F.(n, x p−1 − 1), where the second term could be computed modulo n
if only we knew p − 1, which is the point of the whole exercise. However,
any multiple of p − 1 will do, and that is the novelty of this method, which
we shall first illustrate by an example.

Take P = 100, B = 6. Then the largest power of 2 which can divide
p − 1 is 26, since we know p − 1 < p < 100. Similarly, the largest
powers of 3 and 5 are 34 and 52 respectively. So any p − 1 satisfying
the conditions above must divide 263452 = 129600, so we should compute
H.C.F.(n, x129600 − 1). In practice, one would normally take x , square it
six times, then cube it four times, then take the fifth power twice, checking
the highest common factor every step, or every few steps. For example, if
n = 1007, and we choose x = 2, then our six squarings give (modulo 1007),
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the results 4, 16, 256, 81, 519 and 492. The first cubing gives 619, and the
second 970. At this point, we see that H.C.F.(970 − 1, 1007)= 19, which
is indeed a factor of the appropriate form.

However, the method is not always as straight-forward as this. For exam-
ple, if we take n = 31 × 41 = 1271, then x = 2 gives us 0 as the first
non-trivial greatest common divisor (after the last cubing), thus telling us
nothing about the factorization. But x = 3 gives us a factor of 41 after the
third cubing, and x = 5 gives us the factor of 31 after the first cubing.
However, what is more typical of a case like this is x = 375, which, being
congruent to 3 modulo 31 and 6 modulo 41, is a primitive root modulo
both primes. So the first time xk ≡ 1 (mod 31) is after the first raising to
the fifth power, since this is the first time the exponent is a multiple of 30,
but unfortunately it is also the first time the exponent is a multiple of 40,
so at the same time xk ≡ 1 (mod 41) for the first time, and the greatest
common divisor is 1271, thus giving us no information. A similar problem
would arise with 31 × 61, or 41 × 61. However, in this case we know that
5 is a critical exponent for all prime factors, so we can take fifth powers
first, and also this occurrence becomes rarer and rarer as larger numbers are
considered.

This example also shows us that there is no guarantee that a fac-
tor found by this method is necessarily prime. If we used x = 375
to factor 135997 = 107 × 1271, then we would get, after the first
raising to the fifth power, that 909895 ≡ 64822 (mod 135997), and
H.C.F.(64821, 135997)= 1271, which is certainly a factor, but not a prime
one. This will need to be refactorized as before.

In general, looking for primes p at most P with p − 1 B-smooth, we
raise a random x to the power

2e2 3e3 . . . qeq , (6)

where 2e2 is the largest power of 2 less than P , and so on, and q is the
largest prime less than B.

It should be noted that this method can be ‘lucky’, in finding factors
which are outside the remit of (a) and (b) above, in two ways.

(i) We may find a factor such that p − 1 is not actually B-smooth. For
example, if we apply the method above, with the same P and B, to
find a factor of 7313, using 14 as a starting point, we find that, after the
first raising to the fifth power, we obtain a greatest common divisor of
71, which is indeed a factor of 7313. However, 71 − 1 is not 6-smooth,
so what has happened? The answer is that 14 happens to be a perfect
seventh power modulo 71, so its order modulo 71 is 10, rather than 70,
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and 10 is in fact 6-smooth. This is a perfectly general phenomenon: it
is merely the order of x that has to be B-smooth, but as B increases it
is less likely that x is a perfect kth power for k > B.

(ii) We may also find a factor p larger than P , as long as p − 1 divides
the smoothness number defined in (6). For example, if we use the
above parameters to find a factor of 62893, with x = 5, we find, after
the second cubing, a greatest common divisor of 577, and indeed
62893 = 577 × 109. 576 is, of course, 2632, and therefore divides the
smoothness number, even though it is greater than P . Incidentally, this
example shows that this method does not necessarily find the least
factor first.

Indeed, both phenomena can happen at once, see exercise 8.9.
How long does this method take? The relevant power we need of a prime

q is logq P , and the number of multiplications to raise a number to the
power q is roughly log2 q (and indeed certainly between that and 2 log2 q).
So the number of multiplications for one prime q in the range 1, . . . , B is
log2 q logq P = log2 P . The Prime Number Theorem (p. 27) tells us that
the number of primes in this range tends to B/ log B, so the total cost is
roughly

log2 P

(
B

log B

)
log2

2 n, (7)

where the last factor comes from the cost of multiplying two numbers
modulo n.

In practice, this algorithm is rarely used as it was described above, but
rather in its ‘large prime’ variant. This consists of replacing condition (b)
above by

(b′) all prime factors of p−1 are less than some allocated bound B1 except
possibly for one between B1 and some larger bound B2—such numbers
are generally called (B1, B2)-smooth.

Let us now consider the example of looking for prime factors of n which
are less than 1000 and are (6, 100)-smooth. The first stage of the algorithm
proceeds much as before: the largest power of 2 less than 1000 is 29 = 512,
so we first square our chosen x nine times, then cube it six times, and then
raise it to the power 5 four times, each time taking the greatest common
divisor of xk −1 and n. We have now computed y = x293654

and, if we have
not found a factor, we have eliminated the possibility of a factor which is
6-smooth.



184 The Higher Arithmetic

We now have to consider the possibility that there may be a simple prime
between 6 and 100 in the factorization of p − 1. If that prime were 7, we
could find it by computing y7, and so on. However, there is an efficient

way of doing this. We compute y7 by first computing y2, then y4 = (
y2

)2
,

y6 = y4 y2 and finally y7 = y6 y—a total of four multiplications. When we
compute y11, we do it via y11 = y7 y4, which only requires one additional
multiplication. Similarly, we compute y13 = y11 y2, and so on. The first
time we need a fresh computation is y97 = y89 y8, which we compute as

y8 = (
y4

)2
.

What is the running time of this algorithm? The first part has been
analysed in (7). For the second part, we shall ignore any extra multi-
plications such as that needed to compute y8 above. We need roughly
log2 B1 multiplications to compute yq , where q is the first prime greater
than B1, and one for each additional prime, of which there are, by
the Prime Number Theorem, B2/ log B2 − B1/ log B1. Hence the total
cost is

(
log2 P

(
B1

log B1

)
+ log2 B1 + B2

log B2
− B1

log B1

)
log2

2 n. (7′)

While a substantial amount is now known about the average number of B-
smooth and (B1, B2)-smooth numbers, the results are sufficiently technical
to excuse us from discussing them any further, except to point out that the
asymptotic results that are known are often quite bad for ‘small’ n, say
n < 1020.

In the case we discussed earlier, of P = 1000 and searching for (6, 100)-
smooth p − 1, we can comment that in the relevant range (0 <

p−1
2 <

500, since we know that p − 1 is even), there are 67 6-smooth numbers,
and a further 240 (6, 100)-smooth numbers. 33 multiplications are needed
to check for 6-smooth numbers, and a further 26 to check for (6, 100)-
smooth numbers. If we change the parameters from (6, 100) to (8, 100)
thus needing to raise x to the seventh power three times, there are now 104
8-smooth numbers, and a further 247 (8, 100)-smooth numbers: the reason
for the apparently small change in the latter figure is that 27 numbers which
were (6, 100) smooth but not 6-smooth become 8-smooth, so in fact 34 new
numbers became (8, 100)-smooth that were not (6, 100)-smooth. It takes 44
multiplications to check for 8-smooth numbers, but the extra cost, to check
for (8,100)-smooth numbers, is unchanged.
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5. Factoring and primality via elliptic curves
One of the major advances of the 1980s in computational number theory
was the realization that elliptic curves (VII.4 and VII.5) could be used to
solve a variety of problems that might not, at first sight, seem amenable to
the use of elliptic curves. The first such approach was H.W. Lenstra, Jr.’s
method of factoring integers via elliptic curves.

The inspiration for this method can be seen in Pollard’s p − 1 method.
This method is good at finding factors which are, or are products of, primes
p such that p − 1 is B-smooth (or (B1, B2)-smooth in the case of the large
prime variant). The problem is, of course, that none of the prime factors
may have p − 1 of the appropriate form. However, we know from Hasse
(VII.5) that an elliptic curve E modulo p has between p + 1 − 2

√
p and

P = p + 1 + 2
√

p points (including the point at infinity). Call this number
nE . If nE is B-smooth, then for any point P on E , 2e2 3e3 . . . qeq P = O
where the notation is as in (6).

Of course, the whole point of factoring is to discover p, given n to factor.
However, if we only know n, then we know that calculations performed
modulo n, if then reduced modulo p, will give the same result as calculat-
ing modulo p as long as we are dealing with finite points. What happens
if 2e2 3e3 . . . qeq P ≡ O (mod p) but not modulo other primes dividing n?
Then we are applying (17′) or (17′′) from VII.4 in cases where they are not
appropriate modulo p, since modulo p either we are applying (17′) when
one point is minus the other modulo p, in which case x1 − x2 is a multiple
of p, or we are doubling a point via (17′′) whose y-coordinate is zero mod-
ulo p. In either case, the denominators occurring in these equations will not
be invertible modulo n (II.2), and applying Euclid’s algorithm to find the
inverse will instead give a non-trivial greatest common divisor with n, i.e.
a factor of n.

As a relatively small example, consider trying to find small (i.e. at most
11) factors of 497. 11 + 1 + 2

√
11 = 18, as an integer, so we take this

as P . Let B be 4, so the only relevant primes are 2 and 3. Equation (6)
then implies that we have to consider 2432P, where P is a suitable point
on an elliptic curve modulo 497. Let us take the curve y2 = x3 + 3x +
3, and the point P = (4, 24). To compute 2P, equation (VII.17′′) first
requires us to invert 2y1 = 48. An application of the extended Euclidean
algorithm (see pp. 19–21) shows that its inverse, modulo 497, is −176,
so that (3x2

1 − A)/2y1 ≡ 467 (mod 497). From this, we can deduce that
2P = (395, 275). Similarly, 4P = (122, 187), 8P = (374, 23) and Q =
16P = (108, 12). This exhausts the powers of 2 in (6), and we now have
to compute 3Q and 9Q. We can compute 2Q by (VII.17′′) again, getting
(360, 72). When we try to compute 3Q = 2Q + Q by (VII.17′), we have
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to invert x1 − x2 = 108 − 360 = −252. But, when we apply the extended
Euclidean algorithm to 497 and −252, we find a common factor of 7.
So −252 is not invertible, but we have found the factor 7 of 497. In fact,
modulo 7 this curve has six points, (1, 0), (3,±2), (4, ±3) and O, and our
original P is congruent to (4, 3), which has order 6, certainly a 4-smooth
number.

At first sight one might ask what are the advantages of this algorithm,
since it seems to have two major disadvantages over Pollard’s p−1 method:

(i) we have replaced modular multiplication (or squaring) by elliptic curve
addition (or doubling), which is a more expensive operation, notably
involving a modular inversion as a key step;

(ii) we can no longer trivially guarantee that the B-smooth number we
are looking for is even. This second point matters: when we con-
sidered Pollard’s algorithm, just after equation (7′), we stated that
there were 67 6-smooth even numbers up to 1000, whereas there are
only 84 6-smooth numbers in all in this range, so the odds of find-
ing a 6-smooth number drop from 13.4% if we know that it is even
to 8.4% if we do not. Fortunately, this advantage decreases as B
increases.

There is a corresponding advantage: there are many such elliptic curves.
One preliminary remark is in order: it is easy to choose A and B (and
therefore a curve), and on average only a few attempts are needed to find
an x such that x3 − Ax − B is a quadratic residue, but unfortunately it is
computationally difficult to find y given y2 (mod n). We therefore proceed
differently: we choose x , y and A randomly, then define B as x3 − Ax −
y2, i.e. forcing the curve to fit the point, not the point to lie on the curve.
Of course, we have to check that H.C.F.(Δ, n) �= 0, otherwise the theory
is inapplicable, but this is unlikely in practice, and a non-trivial highest
common factor also gives us a factor of n.

The precise analysis of the algorithm is too complex to go into, but we
shall state the major result. First, we need a piece of notation that will be
necesssary for much of the rest of this chapter. Let L(x) be a function such
that log L(x) = √

log x log log x , which means that L(x) has the property
that, as x increases, L(x) increases more slowly than x , or

√
x , or x1/3, or

x1/n for any value of n. On the other hand, L(x) increases more quickly
than log x , or log2 x , or logn x for any value of n. It therefore provides an
intermediate measure of growth: slower than any root of x , but faster than
any power of log x .

It is known from the theory of B-smooth numbers that the probability
that a random number bounded by x is L(x)k-smooth is roughly L(x)−1/2k .
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If we assume, a likely assumption but one which is beyond the current
capability of multiplicative number-theory to prove, that the same is true of
random numbers in the Hasse range x + 1 − 2

√
x, . . . , x + 1 + 2

√
x , then

we should take B = L(x)1/
√

2 and try roughly log x different curves, to get
a factoring algorithm which is likely (probability 1 − 1/e ≈ 0.63) to find a
factor less than x of n—if this fails, we can always repeat the process with
different random points and curves. The total expected running time of this
Las Vegas algorithm is therefore

L(x)
√

2 log x log2 n = e
√

2 log x log log x log x log2 n, (8)

where the last factor comes from the cost of adding and doubling points on
a curve modulo n, which for n sufficiently large is essentially the cost of
the modular inverse. If we set x to be

√
n, so that we are looking for all

prime factors of n, then (8) becomes

e
√

2 log(
√

n) log log(
√

n) log3 n ≈ L(n) log3 n.

However, Lenstra’s algorithm has the great merit that, like Pollard’s rho
method, it finds smaller factors more quickly. It will, however, find larger
factors than one could expect Pollard’s algorithm to find. For example,
to find a 30-digit factor would require something like 10 15 iterations of
Pollard’s algorithm, but more like 10 11 iterations of the elliptic curve
algorithm—a factor of ten thousand less. This method was used to find the
factor 380623849488714809 of 10 142 + 1.

In practice, it is common to use Lenstra’s algorithm in a ‘large prime’
variant, which works exactly as in Pollard’s p − 1 method of the previous
section. This algorithm is, like Pollard’s, a Las Vegas algorithm, but in addi-
tion even this is conditional on the assumption above about B-smoothness
of numbers in the Hasse range.

At the end of §2, we pointed out that, if p − 1 was easy to factor, and we
could produce an element of order precisely p − 1, then we had a ‘certifi-
cate’ that p really was prime. It is possible to replace p−1 by the number of
points on an elliptic curve modulo p, and hope that this is easy to factor—
we would generally use Pollard’s rho method for this. If this number does
not factor readily, we just pick a different elliptic curve. The details are too
complicated to give here, but in 1991 this method was used to prove (and
certify) that a number n of 1065 digits was prime, whereas the factorization
of n − 1 was well beyond current computers. In this method, the certifi-
cate of the primality of P consists of an elliptic curve E , a proof that it has
N points modulo p, and a factorization of N (accompanied by certificates
of primality of the factors, and so on). The elliptic curve and point will
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take space proportional to log n, so including the certificates of primality of
factors, etc. will take space at most proportional to log2 n.

Pomerance produced a variant on this. We suppose that n > 34 is a
number whose primality we wish to demonstrate, and let a, b be at most n
with H.C.F.(6b(a2 + 4b), n) = 1, and k be such that 2

√
n < 2k < 4

√
n.

Pomerance proved the following results.

(i) Let P0 = (x0, y0) be a point on the elliptic curve defined by a and b
(modulo n)—in practice we choose a, x0 and y0 first, and then com-
pute b. Let Pi = (xi , yi ) = 2Pi−1, and suppose that Pk is the point
at infinity, while Pk−1 is not, and the computation of Pk from Pk−1
does not find any factors of n. Then n is prime, with (a, b, P0) the
certificate—called a Type I certificate.

(ii) Let P0 = (x0, y0) and Q0 = (u0, v0) be points on the elliptic curve
defined by a and b (modulo n), and Pi = (xi , yi ) = 2Pi−1, Qi =
(ui , vi ) = 2Qi−1. Suppose Pk1 = Qk2 are both the point at infinity,
with their computation not finding any factors of n, and k1 + k2 = k.
Then n is prime, with (a, b, P0, Q0, k1) the certificate—called a Type
II certificate.

(iii) If n > 34 is prime, then it has either a Type I or Type II certificate.

These certificates are of length proportional to log n, and can be verified in
time proportional to log3 n (less with Karatsuba or fast multiplication), but
may not be easy to produce.

6. Factoring large numbers
How should we factor a large number N? The first step is to look for small
factors, typically by trying every divisor up to some bound such as 100,000.
We could save some time by having a table of all the primes up to the bound,
but this would take up space. A common compromise is to divide by 2, 3
and then numbers congruent to 1 or 5 (mod 6). Once we have eliminated all
the small factors, we can then see whether the number is prime: the method
of §2 is well-suited to this.

If the number is not prime, the method of §2 will probably not have found
any factors, and we shall be left in the tantalizing, but common, position of
knowing that N is not prime, but not knowing its factors. We can then try
some more advanced methods: for example 50,000 iterations of Pollard’s
rho method will probably find any factors less than 10,000,000,000. After
each such factor is found, we have to test the remaining number for pri-
mality. If Pollard’s rho method finds a factor larger than the square of the
bound used for trial division, we should also test that this factor is actually
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prime, since there is a remote chance that it will not be. After that, one
would use Lenstra’s elliptic curve algorithm to search for larger factors, say
up to about 30 digits.

In practice, though, even the elliptic curve algorithm is not the most effi-
cient one known. Following Fermat, we observed in I.9 that, if we know x
and y such that x2 − N = y2, then N = (x + y)(x − y). Searching for
such x and y directly is only suitable if y is very small, i.e. if the two fac-
tors of N are very close together. Nevertheless, developments of this idea
form the basis of the most advanced factoring algorithms known. First, we
note that it is not necessary for N to be equal to x2 − y2: it is enough that
x2 − y2 ≡ 0 (mod N ) and that neither x − y nor x + y ≡ 0 (mod N ). So
we should look for non-trivial solutions of x2 ≡ y2 (mod N ). Looking at
random is unlikely to find such solutions: we need a way of constructing
such solutions.

The basic method adopted is to find several numbers xi such that x2
i

is congruent to a relatively small number, to factorize these numbers, and
to use these factorizations to find a combination of the xi such that the
square of their product, when reduced to the modulus N , is also a square.
Consider as an example the number N = 197209. We can observe that
159316 2 ≡ 720 = 2 43 25 (mod 197209) and that 133218 2 ≡ 405 = 3 45
(mod 197209). Neither 720 nor 405, regarded as a natural number, is a
square, since each of them has an isolated factor of 5. But their product

will be a square, since it is 2 43 65 2 = (
2 23 35

)2 = 540 2. So we have
shown that (159316 × 133218) 2 ≡ 540 2 (mod 197209), which reduces to
126308 2 ≡ 540 2 (mod 197209). Since H.C.F.(126308 − 540, 197209) =
199 and H.C.F.(126308+540, 197209) = 991, we deduce the factorization
197209 = 199 × 991.

How could we have deduced that the numbers 159316 and 133218
had squares which were congruent to particularly small numbers? The
continued fraction expansion of

√
197209 gives us a clue:

√
197209 = 444 + 1

12+
1

6+
1

23+
1

1+
1

5+
1

3+
1

1+
1

26+
1

6+
1

2+
1

36+ . . . .

Let qn denote the nth term in this continued fraction expansion, and let
An/Bn denote the nth convergent to

√
197209. By the theory of IV.6,

the error
∣∣∣√197209 − An

Bn

∣∣∣ is less than 1/Bn Bn+1, which in turn is less

than 1/qn+1 B2
n . So the convergents immediately preceding a large term are

particularly good approximations, but all convergents are good approxima-
tions. If we write An/Bn = √

197209 + e, where we have shown that e
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is less than 1/B2
n , we can write (An/Bn)2 = 197209 + 2e

√
197209 + e2,

which means that A2
n = 197209B2

n + 2e
√

197209B2
n + e2 B2

n . If we write
E = 2e

√
197209B2

n + e2 B2
n , the previous equation becomes the congru-

ence A2
n ≡ E (mod 197209), and E has to be less than 2

√
197209. A good

convergent is

444 + 1

12+
1

6
= 32418

73
,

when E = 37, small but unfortunately not a product of very small primes.
The next convergent is

444 + 1

12+
1

6+
1

23
= 750943

1691
,

and here the value of E is 720. So 750943 2 ≡ 720 (mod 197209), which
is equivalent to the congruence 159316 2 ≡ 720 (mod 197209) (one of the
earlier observations). The convergent

444 + 1

12+
1

6+
1

23+
1

1+
1

5+
1

3+
1

1+
1

26+
1

6
= 3143053051

7077638

gives rise to the congruence

31430530512 ≡ 31430530512 − 197209 × 70776382 ≡ 405,

which reduces to 133218 2 ≡ 405 (mod 197209).
There is nothing special about 197209, and the method can be applied

to any integer known not to be prime. One possible drawback is that the
continued fraction for

√
N may repeat very rapidly (thus not giving enough

different values of E): in this case we replace N by k N for some small
k, and look at the continued fraction expansion of

√
k N . The choice of k

can also affect the probability that a prime will divide E . Let us consider
whether 5 divides E . Since A 2

n = k N B2
n+E , we can write A 2

n ≡ k N B2
n+E

(mod 5). We showed in IV.4 that An and Bn are always relatively prime,
so there are 24 possible values for A n and Bn modulo 5—all combinations
except (0, 0). If k N ≡ 0 (mod 5), then only the four combinations with
An ≡ 0 (mod 5) will make E ≡ 0 (mod 5), and then E ≡ 0 (mod 25) if,
and only if, k N ≡ 0 (mod 25). If k N ≡ ±1 (mod 5) (i.e. is a quadratic
residue) then the eight combinations with A2

n ≡ ±B2
n —two values for An

for every non-zero value of Bn—will make E ≡ 0 (mod 5). Conversely, if
k N ≡ ±2 (mod 5) (i.e. is a quadratic non-residue) then the multiplicative
property of quadratic residues (III.3) means that E �≡ 0 (mod 5).

Another important practical point is that we do not need to compute the
convergents and then reduce the numerator and denominator modulo N :
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rather we can compute the numerator and denominator using the recurrence
relations Am = qm Am−1 + Am−2 and Bm = qm Bm−1 + Bm−2 (IV.4), but
interpreting these to the modulus N , since we are only interested in the
values of Am and Bm to the modulus N . The production of the congruences
A2

m ≡ E (mod N ) can be made sufficiently fast that almost all the time
is consumed in factoring the E . The obvious strategy is to select a set of
primes (generally the first n primes p1, . . . , pn) and to see which E can be
expressed as a product of powers of these primes and of the number −1
(which we treat as if it were a prime for this process, and call p 0)—in the
terminology of §4, we are seeing if ±E is pn-smooth. A carefully written
trial division process is then used to perform the factorization.

Once we have sufficiently many congruences of the form

A2
j ≡ p

e j0
0 p

e j1
1 · · · p

e jn
n (mod N ),

we can start looking for a combination of the A j such that the product of
their squares is also congruent to a different square. This means that the
exponent of every p i in the product must be even. If we write a j = 1 to
indicate that A2

j will occur in the product, and a j = 0 to indicate that A2
j

will not occur in the product, then the exponent of p i in the product is the
sum a1e1i + · · · + akeki . The requirement that all these sums be even is
equivalent to finding a non-trivial solution to a system of linear equations
to the modulus 2:

a1e10 + · · · + akek0 ≡ 0 (mod 2),

a1e11 + · · · + akek1 ≡ 0 (mod 2),

. . . . . .

a1e1n + · · · + akekn ≡ 0 (mod 2).

There is one addition that can usefully be made to this scheme: the ‘large
prime variant’, analogous to ones that we have already seen. In this scheme,
rather than insist that A 2

j ≡ p
e j0
0 p

e j1
1 · · · p

e jn
n (mod N ), in other words that

E has been factored completely, we allow one additional, larger, prime,
so that A 2

j ≡ p
e j0
0 p

e j1
1 · · · p

e jn
n Q j (mod N ) is also permissible, with Q j

a large prime. The obvious definition of ‘large’ in this context is ‘larger
than p n but smaller than pn pn+1’, since any number in this range left
after trial division by p1, . . . , pn has to be prime. In the terminology of
§4, we want E to be (pn, pn pn+1)-smooth. Potentially, this generates con-
gruences faster than the simpler method of the previous paragraph, but the
corresponding system of linear equations might appear to be much larger,
since we have almost squared the number of primes available. However, at
most one ‘large’ prime occurs in each equation—a specialist in linear equa-
tions would say that these equations are very sparse. We can make use of
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this sparsity in the following way: as the congruences are generated, they
are stored according to the value of Q j occurring in them, if any. If we
discover two congruences with the same large prime in them, say A2

j ≡
p

e j0
0 p

e j1
1 · · · p

e jn
n Q j (mod N ) and A2

i ≡ pei0
0 pei1

1 · · · pein
n Qi (mod N )

with Q j = Qi , we can construct an equation without a large prime, viz.(
Ai A j

Qi

)2

≡ p
ei0+e j0
0 p

ei1+e j1
1 · · · p

ein+e jn
n (mod N ),

where the division is to be interpreted as taking place to the modulus N in
the sense of II.2—if this division were to fail, we would obtain a factor of
N . When we have accumulated enough equations involving only the p i ,
obtained either via the technique just outlined or directly because E fac-
tored completely, we solve the linear equations to the modulus 2 as before.

The time taken by this algorithm is rather hard to analyse, since it
depends on the choice of k, and of n, the number of primes in the factor
base, as well as on the details of the algorithm implemented. Too small a
value for n will mean that very few congruences will give rise to equations,
whilst too large a value for n will increase the time taken to factorize a
given E , and the time required for the solution of the linear equations to
the modulus 2. In practice, the solution of the equations, and the computer
memory required to store the equations, is often the limiting factor. If n
is chosen such that log n = 1

2

√
log N log log N , which seems to be the

best value from the point of view of theoretical analysis, then it can be
shown that the running time of the basic algorithm is at most proportional
to L(N ) 2. In practice, and with the large prime variant, it seems to be
proportional to L(N ).

There is another way of generating these congruences, known as the
quadratic sieve method, which does not rely so heavily on trial division:
instead we construct congruences A2 ≡ B (mod N ) where we know, not
only that B is small, but that it has many small prime factors. We may
assume that N , the number we wish to factor, has no small prime factors.
Let M be a whole number as close as possible to

√
N , and let Q(x) be the

function (M + x)2 − N . When x is a small integer, this is of size about
2x

√
N , and therefore is relatively likely to factor into small integers. The

ingenious feature of the quadratic sieve is that we can state which primes
will divide the various values of Q(x). 2 clearly divides the even ones, i.e.
exactly half of them.

How many of them does 3 divide? If the quadratic residue symbol (N |3)

(§ III.3) is −1, then N ≡ (M + x)2 (mod 3) is impossible. Conversely,
if (N |3) = 1, then N has two square roots to the modulus 3, and 3 will
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divide every (M + x)2 − N such that M + x ≡ ± 1 (mod 3), i.e. two-
thirds of the possibilities rather than the one-third one might expect. The
argument works for any prime p: if (N |p) = − 1 then p divides no values
of (M + x) 2 − N , whilst if (N |p) = 1, then N has two square roots to the
modulus p, say ±a, and p divides those values of (M + x) 2 − N for which
M + x ≡ ± a. So the values of x for which (M + x) 2 − N is divisible by
p form two arithmetic progressions, and a technique similar to the sieve of
Eratosthenes will state which members of each progression are divisible by
which primes p.

For this factoring algorithm, our factor base will consist of the prime 2,
and small odd primes p such that (N |p) = 1. We can create a table which,
for each index x , contains the value of (M + x) 2 − N , and then we can
divide all the even elements (every other element is even, so once we know
where to start, we merely consider alternate elements) by 2. For each of
the odd primes p, we just divide the elements of the appropriate arithmetic
progressions by p. Of course, it is possible that the values of (M + x) 2 − N
are divisible by powers of p, and it would not be particularly expensive
to perform trial division, since we need only consider those p which we
know divide (M +x) 2−N . Alternatively, we can consider for which values
of x the congruence (M + x) 2 ≡ N (mod p 2) is soluble, and deduce
additional arithmetic progressions in which we know that every value of
(M+x) 2−N is divisble by p 2, and so on. This method can also be adapted
for computers where division is a slow operation: rather than storing (M +
x) 2 − N and dividing it by p, we can store log((M + x) 2 − N ) and subtract
log p from it. This is particularly appropriate when factoring large numbers,
as a sufficiently accurate approximation to log((M+x) 2−N ) can be stored
in a single computer word even when (M + x) 2 − N requires several words
to store it.

There are several important variations on this algorithm. There is a ‘large
prime variant’ analogous to the large prime variant we described for the
continued fraction algorithm. Another variant, the ‘multiple polynomial
quadratic sieve’, uses several different polynomials instead of the one Q(x),
since these can be chosen to have more small values than Q(x) has. Both
variants can be employed together, and were so used in finishing the first
three factorizations announced at the beginning of §1. The best versions of
this algorithm have running time proportional to L(N ).

A far-reaching generalization of quadratic sieving is the so-called ‘Num-
ber Field Sieve’, responsible for the last two factorizations announced at the
beginning of §1. Rather than the function L(x) introduced earlier, the run-
ning time of this depends on an an even more slowly growing function. Let
M(x) be a function such that log M(x) = (log x)1/3(log log x)2/3 (unlike
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the previous definition: log L(x) = (log x)1/2(log log x)1/2), then the run-
ning time of this algorithm is proportional to M(n)c, where c depends on
the form (not just size) of the number n to be factored—numbers of the
form ab ± c, such as the numbers mentioned in the introduction, being
among the easiest.

7. The Diffie–Hellman cryptographic method
The growth of computing, and particularly the World-Wide Web, has led to
there being a large number of online transactions. Initially, it was envisaged
that there would be very few providers (at least for any given individual),
so traditional passwords would suffice. But in fact many more transac-
tions take place over the Web: banking, travel bookings, grocery purchases,
bookstores such as Amazon, sites like eBay—the list is endless. Clearly a
separate password for each would be unmanageable for the human beings
involved, not to mention the difficulty of arranging such passwords, or pri-
vate keys as cryptologists refer to them. What we would ideally like is a
mechanism for secure communication (say, of credit card numbers), with
the keys to this security being public.

This poses the question: how can two parties exchange information
secretly, but with no pre-arranged private key? This may seem impossible,
but the following analogy explains how it can be done. Suppose that A
wishes to send B a large sum of money. He knows that the carriers always
deliver parcels, but that they have the unfortunate habit of opening them
first and taking money, or copying any keys they find in them. He could
send a locked box to B, which would be delivered, but then he has the prob-
lem of sending B the key. He could send the key in a locked box, but then
he has the problem of sending the key to the box containing the key . . . .
What he can do is send B a box secured with a padlock, the key to which
he retains. B cannot open this box, but he can place his own padlock on it,
and send the box back to A. A can then remove his padlock, and return the
box to B, who can unlock the box and recover the money. The method is
perfectly secure, since the box is locked whenever it is in transit.

How do we convert this idea into a useful computer-oriented encryption
scheme? First, we represent the message to be transferred as a sequence of
integers to the modulus N , where N is a publicly agreed large integer. Then
our problem is to transfer these integers, and if we can transfer one such
integer, we can transfer several by repeating the procedure.

One possible method for conveying the message x is the following. A and
B each think of a random number, say a and b, which have to be relatively
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Aí’s action Message  B’s action 

Lock with padlock ‘A’ 

Lock with padlock ‘B’ 

Unlock padlock ‘A’ 

Unlock padlock ‘B’ 

Fig. 5 Transferring a secret
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prime to N . Then the sequence of exchanges between A and B can be
summarized as

A’s action Message B’s action
x

multiply x by a
xa
↘

multiply message by b
xba = xab

↙
divide message by a

xb
↘

divide message by b
x (9)

where all multiplications and divisions take place to the modulus N , which
is why we needed a and b to be relatively prime to N . The numbers a and
b correspond to the two padlocks in the analogy given above, and the fact
that multiplication is commutative, so that it does not matter in which order
we multiply and divide by a and b, corresponds to the fact that the two
padlocks can be added or removed in any order.

However, there is a serious flaw in this method, which has no analogy
in the physical world. Consider the cryptanalyst who succeeds in obtaining
all three messages. In isolation they tell him nothing, but if he has all three,
he can compute

x ≡ xa × xb

xab
(mod N ).

Strictly speaking, this will only work if x is relatively prime to N , since
otherwise he will only obtain x to the modulus N/ H.C.F.(N , x). But the
chance of x having a large factor in common with N is very small, and he
will obtain ‘nearly all’ the message. He could compute a or b as xab/xa
or xab/xb, and then try all possibilities for a (mod N ) (or b (mod N )),
knowing a (mod N/ H.C.F.(N , x)) (or b (mod N/ H.C.F.(N , x))), to see
which gave sensible values for x . In practice this is not a difficulty, and the
cryptanalyst can decipher these messages easily.

Hence we need a less vulnerable protocol for exchanging these digits:
the one we shall give is the one Diffie and Hellman originally proposed.
Instead of relying on multiplication and division, we shall rely on expo-
nentiation and the extraction of roots. We shall consider this to a prime
modulus P , rather than a general modulus N , though other choices are pos-
sible. We recall from III.2 that, if k is relatively prime to P − 1, then every
number has a unique kth root to the modulus P . This can be computed by
finding a number l such that kl ≡ 1 (mod P − 1), and then the calculation
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of lth powers is equivalent to the calculation of kth roots. So now let A and
B choose numbers a and b relatively prime to P − 1, and engage in the
following dialogue:

A’s action Message B’s action
x

raise x to power a
xa

↘
raise message to power b

(xb)a = (xa)b

↙
take ath root of message

xb

↘
take bth root of message

x
(10)

where all calculations take place to the modulus P . a and b can be chosen
to be large, in view of the efficient methods of raising to powers described
in §2.

Now what does the cryptanalyst do? The wise cryptanalyst re-reads the
theory of III.2, where the concept of an index was introduced (except that
cryptanalysts tend to use the term discrete logarithm rather than index). Let
ρ be any primitive root to the modulus P , then the index of any (non-zero)
element x is that number ξ such that ρξ = x . The index of xa is then aξ

(mod P −1). The exchange above, when viewed as an exchange of indices,
looks like

A’s action Index of B’s action
message

x = ρξ

raise x to power a
aξ
↘

raise message to power b
abξ = baξ

↙
take ath root of message

bξ
↘

take bth root of message
x = ρξ

(11)
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and our cryptanalyst is back on familiar territory. Unless ξ has a fac-
tor in common with P − 1, he can determine ξ , and hence x , exactly.
If there is such a common factor, he can still determine a to the mod-
ulus (P − 1)/ H.C.F.(P − 1, ξ) and then try all consistent values of a
(mod P − 1) to find one that gives plausible values of x . The only trou-
ble is that the cryptanalyst has to compute two or three indices, and the
methods of III.2 are not efficient for large values of P . The most effi-
cient methods currently known for finding indices to the modulus P have
a running time proportional to some power of L(P), which depends on
P in the same way as the factoring algorithms described in the previous
sections.

In practice, the Diffie–Hellman scheme is not often used as a direct
means of exchanging messages, rather as a means of agreeing on a shared
(between A and B) secret key which can then be used to encrypt and
decrypt messages sent via other, more efficient, methods. In this case,
both the number P and the starting point x are published. A and B
each choose random numbers a and b, and engage in the following
dialogue

A’s action Message B’s action
raise x to power a raise x to power b

xa

↘
xb

↙
↙ ↘

raise message to power a raise message to power b
(12)

where all calculations take place to the modulus P . A and B are now in pos-
session of xab, which they can both use as the shared secret. This method
requires two messages, rather than the three used previously, but also these
two message exchanges can take place simultaneously, thus cutting the
elapsed time (assuming that communication is the bottleneck) to as little
as one-third of that for the previous system. Again, the cryptographer can
break this if he can compute indices: knowing x (as he must be assumed to
do, since publishing x is part of the scheme) and observing xa lets him com-
pute a, and then observing xb will let him compute xab. Equally, he could
proceed the other way round, so the protocol is as strong as the weaker of
breaking xa and xb.

There is also an elliptic curve variant of the Diffie–Hellman key
exchange protocol. We fix a prime P , an elliptic curve E modulo P , and a
starting point X = (x, y) on E , and publish these (in practice, as in §5, we
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would choose X first and select E afterwards). As before A and B choose
numbers a and b and engage in the following dialogue:

A’s action Message B’s action
multiply X by a multiply X by b

aX
↘

bX
↙

↙ ↘
multiply message by a multiply message by b (13)

where all calculations take place to the modulus P on the curve E . A and
B are now in possession of (ab)X, which they can both use as the shared
secret. This method might be thought to be more cumbersome, replac-
ing exponentiation by elliptic curve multiplication, and exchanging (x, y)

rather than just x , but it is generally thought that it is possible to choose a
much smaller P , which more than compensates.

How does the cryptanalyst now proceed? He is assumed to have X (since
it is published), aX and bX (from observation of the messages exchanged).
What he has to do is solve what is often (though slightly misleadingly)
called the discrete logarithm problem for elliptic curves, viz. the problem
of finding a, given X and aX. This is generally believed to be much harder
than the ordinary discrete logarithm problem, which is why it is thought
possible to choose a smaller P .

8. The RSA cryptographic method
The basic purpose of this method, which is named after its inventors Rivest,
Shamir and Adleman, is to provide a one-way method of secure communi-
cation. This is not as restrictive as it might seem, since a two-way secure
method can be constructed trivially from two one-way secure methods, one
in each direction. Also, a one-way method can be used to send a key for
a more efficient cryptosystem for two-way communication. Let us suppose
that person A wishes to enable other people to send him secure messages,
which cannot be deciphered by those who manage to read them. A selects
two distinct prime numbers P and Q, which must be sufficiently large and
sufficiently ‘random’ (which rules out, e.g., Mersenne primes) to ensure
that no adversary could factor N = P Q except by luck. This means that
P and Q have to have over 100 digits each, probably more, and certainly
means that P and Q should not be too close together, otherwise Fermat’s
method (I.9) may be used to factor N . A then chooses a number x relatively
prime to φ(N ) = (P −1)(Q −1) and publishes (one can think of a message
in the personal columns of a newspaper, though in practice the publication
will probably be electronic) the values of N and x .
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Anyone wishing to send a message to A then divides it up into digits
to the base N (taking care to avoid extremely small digits) and transmits
each digit a by sending ax (mod N ) (which is computed by the repeated
squaring method of §2). A has to decode this message by computing the
x th roots of the digits received—these are unique since x is relatively prime
to φ(N ). By applying Euclid’s algorithm to x and φ(N ), A can compute
an x ′ such that xx ′ ≡ 1 (mod φ(N )), as in the previous section. Raising to
the x ′th power is then the same as taking x th roots. In practice, A computes
x ′ as soon as x has been chosen, and then forgets about P and Q.

Obviously, anyone who can factorize N can repeat A’s calculation of
x ′, and hence crack the code. So cracking this code is no harder than
factorizing N . Suppose now that someone knows x ′ such that xx ′ ≡ 1
(mod φ(N )), so that he can crack the code. Then that person can compute
xx ′ − 1 = Mφ(N ) for some apparently unknown M . But φ(N ) is a num-
ber slightly smaller than N , so M is slightly larger than (xx ′ − 1)/N , and
computing this quotient and rounding it up will determine M . Once M is
known, φ(N ) is known, and N +1−φ(N ) is P + Q. If we call R the value
of P + Q, then the code-breaker knows N = P Q = (R − Q)Q, and Q is
one of the roots of the quadratic equation Q 2 − RQ + N = 0, and P is the
other root.

We have shown that a knowledge of the original x ′ computed so that
xx ′ ≡ 1 (mod φ(N )) leads to a factorization of N . However, the code-
maker does not necessarily have to produce this x ′, and on the other hand
the code-breaker does not have to use this x ′. Any x ′′ such that xx ′′ ≡ 1
(mod φ̂(N )) will do. If gcd(P − 1, Q − 1) is small, then the techniques
of the previous paragraph can be adapted to find the factorization of N . If
gcd(P − 1, Q − 1) is very large, then we may be able to use other methods
to factor N . Only very recently, though, has it been shown that knowing
any such x ′′ is essentially equivalent to factoring N .

Though no such way is currently known in general, there might be a
method for taking x-th roots that did not rely on exponentiation at all. There
is such a method for finding small x-th roots, due to Coppersmith, and this
has been used to attack certain weak applications of the RSA method.

9. Primality testing revisited
So far we have seen Rabin’s method, which can return an answer ‘N is
probably prime’ in time proportional to log3 N , and where the probability
can be made as close to certainty as we wish, and the elliptic curve method,
which returns a certificate of the primality of N , which can be quickly
checked, and which on average takes time proportional to a polynomial
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in log N . What we would like is a method that returns a conclusive ‘N is
prime’ in time deterministically proportional to a polynomial in log N . In
the language of complexity theory, we are asking whether PRIMES (the
problem of determining whether a number is prime) belongs to the class P
(the class of all problems soluble in time proportional to a polynomial in the
size of the input). This would be today’s formulation of Gauss’ challenge
set out at the start of §2.

This problem was unsolved for many years, but a (positive) solution was
announced by Agrawal, Kayal and Saxena in 1999, and is known as the
AKS algorithm. A key part is played by a polynomial version of Fermat’s
little theorem. We claim that n is a prime if, and only if, (x + 1)n ≡ xn + 1
(mod n). If n is prime, the conclusion follows as in Liebniz’ proof of the
original Fermat theorem (II.3): if we expand (x +1)n by the binomial theo-
rem, every binomial coefficient is divisible by n except for the coefficients
of xn and 1, which are both 1. Conversely, if n is not prime, let p be a
prime dividing n, and suppose that pk divides n, but pk+1 does not. Then
the coefficient of x p in the expanded form of (x + 1)n is(

n

p

)
= n(n − 1) . . . (n − (p − 1))

p(p − 1) . . . 1
.

The only factors divisible by p are n and p, so pk−1, but not pk , divides
the whole expression. Hence n does not divide it, so this coefficient is
non-zero, and hence the congruence of polynomials is not valid. While
intellectually satisfying, this test is not practical because of the cost of
computing (x + 1)n .

AKS developed this to the following theorem, which supposes there is
a positive r such that the least positive k with nk ≡ 1 (mod r) has k >

log2 n. Then n is prime if, and only if

(i) n is not a perfect power;
(ii) n does not have any prime factor ≤ r ;

(iii) (x + a)n ≡ xn + a (mod n, xr − 1) for each a, 1 ≤ a ≤ √
r log n.

Note that r > k, so r > log2 n.
The preliminary remark from §2 is still relevant here: to compute (x+a)n

(mod n, xr − 1), we must not first compute (x + a)n and then reduce it,
rather we must work modulo n and modulo xr − 1 throughout, and use
the ‘exponentiation via repeated squaring’ method described there. That n
being prime implies the three points above follows from the polynomial
version of Fermat’s theorem: the converse is not deep, but beyond the scope
of this book.
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The key questions are ‘does r exist’ (else the theorem is useless) and
‘how small can r be’ (which affects the running time, which is roughly
proportional to r3/2 log3 n). It is relatively easy to show that r is at
most proportional to log5 n. Much deeper results of Fouvry show that
r is at most proportional to log3 n, which gives a running time roughly

proportional to log7 1
2 n.

If q is a prime such that 2q + 1 is also prime, we say that q is a
Sophie Germain prime. It is a widely-believed conjecture that the number
of Sophie Germain primes less than x is proportional to x/ log2 x . If true,
this would imply that r is proportional to log2 n, and the running time of
AKS would be roughly proportional to log6 n. Lenstra and Pomerance have
produced a significant modification of the AKS algorithm whose time is,
independent of any conjectures but assuming fast multiplication, roughly
proportional to log6 n. The certificates produced, essentially r , are very
short, but almost as costly to verify as to produce: time proportional to
log8 n, or roughly proportional to log5 n if fast multiplication is used.

Notes
We remind the reader that we have chosen to place some of the mate-
rial, particularly in this chapter where references are often electronic, on
the book’s website: www.cambridge.org/davenport. The symbol
♠VIII:0 is used to indicate where there is such additional material.

We talk about the running time of a computation, but this is not very
interesting: what takes one hour now will take 30 minutes on a similarly-
priced computer in 18 months time (an observation known as Moore’s
Law), and in any case will depend on details of the software used. What
is more interesting is how the time taken depends on the size of the num-
ber(s) involved. The number of digits in n is proportional to log n, so if we
double the number of digits in n, we double log n. We will often say that
the time t (n) is proportional to some function f (n) if there is a constant
c such that t (n) ≤ c f (n) for all n. A complexity theorist would say that
t (n) = O( f (n)), or simply t = O( f ). This is generally known as Landau’s
notation, though the O notation was in fact introduced by Bachmann in Die
analytische Zahlentheorie (Teubner, Liepzig, 1894). Strictly speaking, we
should say that ‘t (n) is at most proportional to f (n)’, since t (n) could also
be proportional to some smaller function. For example, n is proportional to
n2 (with constant 1) in our definition, but it is also proportional to n. Simi-
larly, we will say that t is ‘roughly proportional’ to f if there are constants
c and k such that t (n) ≤ c f (n) logk f (n): in complexity theory this is writ-
ten t = Õ( f ). The constant k is generally computable—c may or may not
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be, as discussed in Granville’s paper quoted in the notes to §9. We say ‘is
equivalent to’ to mean that there is a polynomial-time equivalence: where
this equivalence is fairly inefficient we say ‘is essentially equivalent to’.

Some of the earliest uses of electronic computers were in the search
for large prime numbers: J.C.P. Miller and D.J. Wheeler found the prime
p = 180(2127 − 1)2 + 1, whose expanded form has 79 digits, in 1951 (see
Nature 168 838). They proved that it was prime by exhibiting an x such
that x p−1 ≡ 1 (mod p) and x (p−1)/d �≡ 1 (mod p) for all prime divisors
d of p −1, viz. d = 2, 3, 5, 2127 −1—a certificate of primality in the sense
of §2. This is a good illustration of the method of making certified large
primes out of known smaller ones, while Euclid’s proof of the infinity of
primes (I.3) only shows that larger primes must exist. Such methods are
also used in computational verifications of Vinogradov’s three-prime result,
see Ramaré and Saouter (p. 30).

A good general reference on computational number theory is the text by
H. Cohen, A Course in Computational Algebraic Number Theory (Springer
Graduate Texts in Mathematics 138, 1993).

§1. The first two factorizations mentioned here were announced jointly
by Mark Manasse of the Digital Equipment Corporation’s Systems
Research Center and Arjen Lenstra of Bell Communications Research,
on 26th April 1990 and 4th January 1991 respectively. The method used
is known as ‘ppmpqs’: the double-prime multiple-polynomial quadratic
sieve, a development of the methods explained in §6. For the factorization
of the 116-digit factor of 10142 + 1, it is estimated that some 600 com-
puters throughout the world, contributing the equivalent of a one million
instructions per second computer working for 400 years, worked on gen-
erating a set of 142,000 linear equations, which, using a very advanced
method, were then solved on a parallel computer system. The factor
380623849488714809 of 10142 + 1 had been found in 1986 by Harvey
Dubner, using the elliptic curve algorithm (see §5). The third factoriza-
tion was announced by Herman te Riele of the Centrum voor Wiskunde
en Informatica in Amsterdam on the 11th February 1991. The 101-digit
product of the last two factors held, at the moment of writing of the sixth
edition (October 1991), the record of most difficult number factored on
a single computer. It probably still holds this record, since most modern
developments in factoring use many computers simultaneously. The siev-
ing process took 475 hours, and the linear equation solving about half an
hour, on a Cray Y-MP4/464.

Since then, the factorization of 2512 +1 was announced by A.K. Lenstra,
H.W. Lenstra, Jr, M.S. Manasse and J.M. Pollard (see ‘The factorization
of the ninth Fermat number’, in Math. Comp. 61 (1993) 319–349, which
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describes the Number Field Sieve). The factorization of (3349 − 1)/2 was
announced on 10th February 1997. However, it must be noted that these two
numbers are of forms particularly suited to the Number Field Sieve, and
R.D. Silverman estimates that the last factorization (of a 167-digit number)
is equivalent to a factorization of a 120-digit general number by the same
technique.

The definitive reference for the best way of implementing long divi-
sion, etc. is Knuth’s encyclopaedic The Art of Computer Programming
II: Seminumerical Algorithms (Addison-Wesley, 1998). This also contains
descriptions of the various faster algorithms of computer science, a lengthy
treatise on random numbers, which treats the statistical as well as the
arithmetical properties of these sequences, and descriptions of Pollard’s
and Rabin’s algorithms. A. Schönhage, A.F.W. Grotefeld and E. Vetter,
Fast Algorithms: A Multitape Turing Machine Implementation (BI Wis-
senschaftsverlag, 1994), has a detailed analysis, showing that in their model
Karatsuba’s multiplication method can be more efficient for numbers larger
than B16. This is borne out in practice: most systems start using Karatsuba
at B8, B16 or B32.

A simple application of congruences to hash tables can be found in a
paper by F.R.A. Hopgood and J.H. Davenport called ‘The Quadratic Hash
Method when the table size is a power of 2’ Computer Journal 15 (1973)
314–315.

§2. Gauss’ words are from article 329 of Disquisitiones Arithmeticæ
(1801). D.H. Lehmer’s proofs of the Lucas–Lehmer tests appeared in
Annals of Mathematics (2) 31 (1930) 419–448 and J. London Math. Soc. 10
(1935) 162–165. To test whether N = 2p − 1 is prime, we first check that
p is prime, then construct the sequence r1 = 4, r2 = 14, . . . , ri+1 ≡ r2

i
(mod N ) and check that rp−1 ≡ 0 (mod N ).

It follows from the paper ‘The pseudoprimes to 25 · 109’ by Pomerance,
Selfridge and Wagstaff, Math. Comp. 35 (1980) 1003–1026, that any num-
ber n less than 25 · 109 which has xn−1 ≡ 1 (mod n) for x in 2, 3, 5, 7 and
11 has to be prime. In fact the first such non-prime is 1,152,302,898,747.
We can test all the numbers up to 1012 for primality by using x in 2, 13,
23, 1662803. We can test all the integers representable in 32 bits using x
in 2, 7 and 61. These results come from Jaeschke, Math. Comp. 61 (1993)
915–926.

Carmichael’s original paper ‘On composite numbers P which satisfy the
Fermat congruence a P−1 ≡ 1 (mod P)’ appeared in Amer. Math. Monthly
19 (1912) 22–27. The proof that there are infinitely many such is by
W.R. Alford, A. Granville, and C. Pomerance ‘There are infinitely many
Carmichael numbers’ in Ann. of Math. 140 (1994) 703–722. Carmichael
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numbers have been intensively investigated: see the paper by Pomerance,
Selfridge and Wagstaff cited above, showing that there are 2163 Carmichael
numbers less than 25 × 109. Pinch (‘The Carmichael numbers up to
1015’, in Math. Comp. 61 (1993) 381–391) extended this range, finding
105212 Carmichael numbers, and observed that Carmichael numbers with
ever-increasing numbers of factors were being found: his record being

349407515342287435050603204719587201

= 11 × 13 × 17 × 19 × 29 × 31 × 37 × 41 × 43 × 61 × 71 × 73

× 97 × 101 × 109 × 113 × 151 × 181 × 193 × 641

with twenty factors. For this number φ̂ is only 604800, whereas φ has
the same length as the original number. Furthermore, Carmichael numbers
‘on average’ have more factors than typical numbers of the same size N :
typically log N rather than log log N . ♠VIII:1

Rabin’s original paper, called ‘Probabilistic algorithm for testing primal-
ity’, appeared in J. Number Theory 12 (1980) 128–138. The estimates for
the average probability of declaring a composite number ‘probably prime’
are taken from I. Damgård, P. Landrock and C. Pomerance, ‘Average error
estimates for the strong primality test’, Math. Comp. 61 (1993) 177–194.
It is important that the x in Rabin’s algorithm be genuinely random, or at
least unpredictable: if one knows which x are going to be tested, one can
produce composite numbers that satisfy any given applications of Rabin’s
algorithm: see J.H. Davenport, ‘Primality testing revisited’, Proc. ISSAC
’92 (ACM, New York, 1992) 123–129, and also exercise 8.5.

§3. J. von Neumann, one of the very early pioneers of digital comput-
ing, seems to have suggested the mid-square method about 1946. The linear
congruential method was introduced by D.H. Lehmer in 1949. Knuth’s
book is the best source of criteria for random number generators: our arith-
metical criteria are identical with his. The serious user of such sequences
should use the various statistical tests described by Knuth. The values for
n = 232 were supplied by N.M. Maclaren of the University of Cambridge
Computing Service.

§4. Pollard’s original description of the rho method, called ‘A Monte
Carlo method for factorization’, is in B.I.T. 15 (1975) 331–334. There
have since been many minor improvements to it, but the outline given
in the present book conveys the general principles. Some improvements
are described by Montgomery in ‘Speeding the Pollard and elliptic curve
methods of factorization’, Math. Comp. 48 (1987) 243–264. Pollard’s ‘p −
1’ method appeared in ‘Theorems on factorization and primality testing’,
Proc. Cam. Phil. Soc. 76 (1974) 521–528. A recent survey on B-smooth
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numbers is given by Hildebrand and Tenenbaum in ‘Integers without
large prime factors’, J. Th. Nombres Bordeaux (1993) 411–484. The prob-
lems with using the asymptotic formulae for (B1, B2)-smooth numbers are
described by McKee, in his Cambridge Ph.D. thesis (1993) and in J. London
Math. Soc. (2) 59 (1999) 448–460.

The remark at the very end, that 11 more multiplications are required
to raise x to the seventh power three times, i.e. compute x343, is based on

writing x343 = (
x49

)7 = (
x32x16x

)7
, and observing that x32 takes five

squarings, and computes x16 on the way, and raising to the power 7 takes
four multiplications. This gives us 11 rather than the 12 we would need

via x343 =
((

x7
)7

)7
. This in itself improves on the 13 needed by straight-

forward repeated squaring: x343 = x256x64x16x4x2x . The question of the
minimal number of operations necessary to compute xn is discussed by
Knuth, under the title of ‘addition chains’. It might be argued that, in raising
directly to the power 49, we might miss a factor, but we shall know when
this happens, since the greatest common divisor will increase suddenly. In

this rare case, we can go back and recompute via
(
x7

)7
.

§5. The elliptic curve factoring method is described by H.W. Lenstra,
Jr, in ‘Factoring integers with elliptic curves’, Ann. of Math. (2nd Ser.) 126
(1987) 649–673. We said that it is not easy to guarantee that the number
of points is even, but in fact it can be forced to be a multiple of 16: see
A.O.L. Atkin and F. Morain’s article ‘Finding curves for the elliptic curve
method’, in Math. Comp. 60 (1993) 399–405. The time of log2 n for the
cost of the Euclidean algorithm is due to Knuth—see his Exercise 4.5.2.30.

The subject of alternative certificates of primality is an active research
area: one early paper is by S. Goldwasser and J. Kilian ‘Almost all primes
can be quickly certified’, Proceedings of the 1986 Symposium on the The-
ory of Computing. Using the Elliptic Curve Primality Proving method due
to A.O.L. Atkin, F. Morain proved in 1991 the primality of the 1065-digit
number (23539 + 1)/3 using a month and a half of (Sun 3/60) computer
time—see Atkin and Morain ‘Elliptic curves and primality proving’ in
Math. Comp. 61 (1993) 29–68. We note that a single application of Rabin’s
method took about two hours on a similar machine, so we have to pay
dearly for the certainty of a certificate. The current (2006) record is a
15071-digit number.

Pomerance’s paper, ‘Very short primality proofs’ appeared in Math.
Comp. 48 (1987) 315–322.

§6. The use of multiple congruences of the form ‘A2 ≡ product of small
primes’ to factor numbers seems to be due to Kraitchik, who published
it in his Recherches sur la théorie des nombres, tome II: factorisation,
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Gauthier-Villars, Paris, 1929. The use of continued fractions to generate the
congruences is due to Lehmer and Powers’ paper ‘On factoring large num-
bers’, Bull. American Math. Soc. 37 (1931) 770–776. Knuth gives a very
elegant formulation of the continued fraction algorithm on pp. 381–2, and
applies it to 197209, as we have done.

The quadratic sieve method of generating these congruences is due
to Pomerance, and described in his paper ‘The quadratic sieve factoring
algorithm’, Proc. EUROCRYPT ’84 (Springer Lecture Notes in Computer
Science 209, ed. T. Beth, N. Cot and I. Ingemarsson, Springer-Verlag,
Berlin, 1985) 169–182. A survey of these methods is given by Wagstaff
and Smith’s paper ‘Methods of factoring large integers’ in Number The-
ory New York 1984–85 (Springer Lecture Notes in Mathematics 1240,
ed. D.V. Chudnovsky, G.V. Chudnovsky, H. Cohn and M.B. Nathanson,
Springer-Verlag, Berlin, 1987) 281–303. The ‘multiple polynomial’ varia-
tion is described by Silverman in ‘The Multiple Polynomial Quadratic
Sieve’, Math. Comp. 48 (1987) 329–339. The double-prime version men-
tioned in the text allows two large primes as well as the primes in the factor
base. Clearly linear equations are generated more rapidly, but the equa-
tions are now slightly less sparse, though the elimination of the equations
containing two large primes is done by a generalization of the technique
mentioned in the text. Pollard’s rho method is often used to find the two
primes dividing the residue.

For references to the Number Field Sieve, see the notes to §1 and
The Development of the Number Field Sieve (Springer Lecture Notes in
Mathematics 1554, Springer-Verlag, Berlin, 1993).

§7. The original Diffie–Hellman paper, ‘New directions in cryptogra-
phy’, appeared in IEEE Trans. Inform. Theory IT–22 (1976) 644–654, and
the method is also described in U.S. patent number 4,200,770. The use of
Diffie–Hellman, essentially in the form of (12), in the https protocol used
for secure web sites, and the physical analogy of figure 5, explains why
many web browsers display padlocks when connecting ‘securely’. ♠VIII:2

There has been much work recently on advanced methods for comput-
ing indices. A good description of several of these methods is given in the
article by Coppersmith, Odlyzko and Schroeppel ‘Discrete logarithms in
G F(p)’, Algorithmica 1 (1986) 1–15. If p does not have any particularly
helpful properties (in particular if p − 1 has a very large prime factor) then
the running time of the best algorithm they mention is roughly proportional
to L(p). ♠VIII:3

For the ellipic curve variants, see Koblitz’s paper ‘Elliptic curve cryp-
tosystems’, Math. Comp. 48 (1987) 203–9.
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§8. The original Rivest, Shamir and Adleman paper, ‘A method for
obtaining digital signatures and public key cryptosystems’ appeared in
Comm. ACM 21 (1978) 120–126. This is also described in U.S. patent
number 4,405,829.

The ‘may be able to use’ was described in the original RSA paper. For
‘essentially equivalent to factoring’, see ♠VIII:4.

Coppersmith’s method is in ‘Small solutions to polynomial equations,
and low exponent RSA vulnerabilities’ J. Cryptology 10 (1997) 233–260.
For applications of Coppersmith, see ♠VIII:5.

§9. The AKS algorithm was published as ‘Primes is in P’ in Ann. Math.
(2nd. series) 160 (2004) 781–793. However, it was published on the Web in
1999, and rapidly became one of the most referenced sites in mathematics.
A very good introduction to the subject is given by Granville, in ‘It is easy
to determine whether a given integer is prime’ Bull. A.M.S. 42 (2005) 3–38.
Fouvry’s paper, ‘Théorème de Brun–Titchmarsh : application au théorème
de Fermat’, appeared in Invent. Math. 79 (1985) 383–407.

[Marie-]Sophie Germain (1776–1831) was a distinguished number the-
orist and pupil of Lagrange. She made several contributions, in fields as
diverse as Fermat’s Last Theorem (♠VIII:6) and elasticity theory. As of
January 2007, the largest known Sophie Germain prime is 48047305725 ×
2172403 −1. Lenstra and Pomerance’s work is unpublished, but is described
in AKS and Granville’s papers.



E X E R C I S E S

The marks [H] and [A] affixed to questions indicate that the questions are
provided with hints and answers respectively. If both are provided [H] [A],
try the hint first. The mark [M] affixed to a question indicates that it requires
a little more mathematical knowledge than was assumed in the body of the
book, e.g. elementary complex numbers or trigonometry. Although such
matters are hard to judge, the mark [+] has been used to indicate questions,
or parts of questions, that are thought to be somewhat harder than average.

The first digit of a question number indicates which chapter it refers to.
Some of the questions for chapter eight are easier to answer with a pro-
grammable calculator, computer algebra system, or a spreadsheet equipped
with a ‘greatest common divisor’ function∗. Care must be taken with opera-
tions like raising to a power to ensure that the maximum size of integer is
not exceeded—none of the questions need more than 12 digits, and most
need fewer.

1.1 Prove, by induction or otherwise, that:

(a) The sum of the first n numbers is n(n + 1)/2 [This result is commonly
said to have been discovered by Gauss at a very early age: see, e.g.,
E.T. Bell, Men of Mathematics, Simon & Schuster, New York, 1937
(reprinted Penguin, 1965)];

(b) The sum of their squares is n(n + 1)(2n + 1)/6;
(c) The sum of their cubes is n2(n + 1)2/4.

∗ Microsoft Excel has one, but it may not be automatically available. On some versions,
it can be found in the data analysis package, which has to be made available.
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1.2 Define the Fibonacci numbers, Fn , by F1 = F2 = 1, and Fn = Fn−1 +
Fn−2 for n > 2. Prove, by induction or otherwise, that:

(a) Fn < τ n , where τ is the golden ratio, (1 + √
5)/2;

(b) Fn = (τ n − σ n)/
√

5, where σ = −1/τ = (1 − √
5)/2.

1.3 Express each of the following numbers as the product of prime
factors: 999, 1001, 1729, 11111[+], 65536, 6469693230. [A]

1.4 Find five consecutive composite numbers. Find 13 such numbers.
Find 99 such numbers. [A]

1.5 Evaluate n2+n+41 for n = 0, 1, 2, . . . . Does this formula (attributed
to Euler) always give prime numbers? [41 is, in fact, the largest
number that can be placed in Euler’s formula: this is closely con-
nected with the fact that 163 = 4 × 41 − 1 is the largest number
with C(−d) = 1 (see VI.7 or Shanks, Proc. Symp. Pure Math. 20
(American Mathematical Society, 1971) 415–440).] [A]

1.6 Factorial n, written n!, is the product 1 × 2 × 3 · · · n of the first n
numbers. Express 22! as the product of prime factors. [H][A]

1.7 [M] Show that, if 2a is the highest power of 2 which divides n!, then
a lies between n − 1 and n − �log2(n + 1)�, where log2 is the con-
ventional logarithm to the base 2, and �x� is Knuth’s floor symbol for
the greatest integer not greater than x (also called the integer part of
x), so that �log2(n + 1)� is the exponent of the greatest power of 2
not greater than n + 1. [H]

1.8 If p ≥ 5 is prime, show that the sum of the products in pairs of the
numbers 1, 2, . . . , p − 1 is divisble by p. We do not count 1 × 1, and
1 × 2 precludes 2 × 1. [H]

1.9 [M] Consider ‘integers’ of the form a+bξ , where a and b are ordinary
integers, and ξ is undetermined, except that, when two integers are
multiplied, ξ2 is replaced by −5:

(a1 + b1ξ)(a2 + b2ξ) = (a1a2 − 5b1b2) + (a1b2 + a2b1)ξ.

Show that the only units (divisors of 1) of the form a + bξ are a = 1,
b = 0 and a = −1, b = 0, and define prime number in this system.
Show that 2, 3, 1 + ξ , and 1 − ξ are all primes, although 2 × 3 =
(1 + ξ)(1 − ξ).
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Show also that it is not possible to find ‘integers’ x, y of this kind
which satisfy the equation 3x −(1+ξ)y = 1, even though 3 and 1+ξ

are primes, and therefore their greatest common divisor is 1. [H]

1.10 [M+] Show that the Gaussian integers, numbers of the form a + bi ,
where a and b are ordinary integers and i2 = −1, have unique
factorization. [H]

1.11 If 2n − 1 is prime, show that n is prime. Is the converse true? [A]

1.12 [+] If 2n + 1 is prime, show that n is a power of two. Is the converse
true? [A]

1.13 If P1, P2 are even perfect numbers with 6 < P1 < P2, show that
P2 > 16P1.

1.14 If p, q are odd primes, show that paqb cannot be perfect.

1.15 Show that, if c is any common factor of a and b, then (a/c, b/c) =
(a, b)/c, where we use (a, b) to denote the highest common factor of
a and b.
Show also that, if a and b both divide n, and are coprime (i.e. (a, b) =
1), then ab divides n.

1.16 How many divisors of 720 are there? What is their sum? [A]

1.17 Show that 120 is a multiply perfect number, that is that σ(n) = kn for
some k > 2. Can you find an example with k > 3? [A]

1.18 [+] We define a balanced number to be one whose average size of
divisor, σ(n)/d(n), is equal to n/2. Show that 6 is the only balanced
number. [H]

1.19 Use the Euclidean algorithm to find the highest common factor of
18564 and 30030. Check your answer by writing each number as the
product of prime powers. What is the least common multiple of these
numbers? [A]

1.20 Find a formula for all pairs of integers x and y such that 113x −
355y = 1. [A]

1.21 Factor 2501 by Fermat’s difference of squares method. [A]

1.22 Use Captain Draim’s algorithm to factor 1037. [A]

1.23 Show that the binomial coefficient p!/r !(p − r)! is divisible by p if
p is prime and 1 ≤ r < p.

1.24 Prove that there are infinitely many primes of the form 6k − 1.
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1.25 [M] Given the result stated on p. 30, that every even number up to
4 × 1014 is the sum of two primes, roughly how many primes would
you need to find in order to show the other result stated, that every
odd number up to 1022 is the sum of three primes? Why does this
make efficient primality testing important?

2.1 Show that, if a ≡ b (mod 2n), then a2 ≡ b2 (mod 4n). More gener-
ally, show that, if a ≡ b (mod kn), then ak ≡ bk (mod k2n).

2.2 Which numbers leave remainders 2, 3, 4, 5 respectively when divided
by 3, 4, 5, 6. [A]

2.3 What is the smallest positive integer which leaves remainders
1, 2, . . . , 9 respectively when divided by 2, 3, . . . , 10. [A]

2.4 Solve the congruence 97x ≡ 13 (mod 105). [A]

2.5 Find the remainder when (10273 + 55)37 is divided by 111. [H][A]

2.6 Show that, if a p−1 ≡ 1 (mod p) for all a(1 ≤ a < p), then p is
prime.
Show that 2p−1 ≡ 1 (mod p) is possible without p being prime.
[+] Show that a p−1 ≡ 1 (mod p) for all a(1 ≤ a < p, (a, p) = 1)

does not imply that p is prime.Show that a p−1 ≡ 1 (mod p) and
ad �≡ 1 (mod p) for any proper divisor d of p − 1 does prove that p
is prime. [A]

2.7 For what values of n is φ(n) odd? [A]

2.8 Find all values of n (less than 50, say) for which φ(n) = 2a . [These
are the numbers of sides of regular polygons that can be constructed
using only a straight-edge and compasses.] [A]

2.9 Define a(n) as the number of solutions of φ(x) = n. Make a table
of a(n) (for 1 ≤ n ≤ 10, say). [Carmichael’s conjecture, that a(n) is
never 1, has been verified for n ≤ 101010

. For more, see ♠E:1.]

2.10 For what values of n is φ(n)= n/3? Find a value of n such that
φ(n) < n/5. [A]

2.11 Show that n is prime if, and only if,

σ(n) + φ(n) = nd(n).

2.12 Prove that, if p is an odd prime, then (p−2)! ≡ 1 (mod p), and that,
if p is a prime greater than three, (p − 3)! ≡ (p − 1)/2 (mod p).
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2.13 If p is an odd prime, and a + b = p − 1, show that a!b! + (−1)a ≡ 0
(mod p).

2.14 Solve the congruence x2 ≡ − 1 (a) (mod 5), (b) (mod 25), (c)
(mod 125). [H][A]

2.15 Solve the congruence x2 ≡ 17 (mod 128). [A]

2.16 Solve, or prove insoluble, each of the congruences x3 ≡ 3, x3 ≡ 7,
x3 ≡ 11, each to the modulus 19.

2.17 Show that, if (2a, m) = 1, solving the congruence ax2 + bx + c ≡ 0
(mod m) can be reduced to solving a congruence of the form x2 ≡ q
(mod m).

2.18 Verify the following divisibility tests. Separate the decimal digits of a
number n into blocks of three:

n = bk(1000)k + · · · · · · + b2(1000)2 + b1(1000) + b0.

Sum alternate blocks, so that E = b0 + b2 + b4 + · · · and D =
b1 + b3 + · · · . Then 3a divides n if, and only if, it divides E + D
(a = 1, 2, 3); 37 divides n if, and only if, it divides E + D; each of 7,
11 and 13 divides n if, and only if, it divides E − D.

2.19 Show that every fourth Fibonacci number (see exercise 1.2) is divis-
ible by three, that every fifth is divisible by 5, every sixth by 8 and
every seventh by 13.

2.20 If d = (a, b), show that φ(d)φ(ab) = dφ(a)φ(b).

2.21 Show that if d divides n, φ(d) divides φ(n).

2.22 Show that every prime except 2 and 5 divides infinitely many numbers
of the form 11, 111, 1111, 11111, . . .

2.23 Solve the simultaneous congruences x ≡ 3 (mod 9), x ≡ 5
(mod 10), x ≡ 7 (mod 11). [A]

2.24 Solve the simultaneous congruences 9y ≡ 3 (mod 15), 5y ≡ 7
(mod 21), 7y ≡ 4 (mod 13). [A]

2.25 Solve the simultaneous congruences z ≡ 2 (mod 15), z ≡ 7
(mod 10), z ≡ 5 (mod 6). [A]

3.1 Find the quadratic, cubic and fifth power residues, mod 7. [A]

3.2 Find the quadratic, cubic and fifth power residues, mod 11. [A]
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3.3 Find the quadratic, fourth power, eighth power and sixteenth power
residues, mod 17. [A]

3.4 Find the primitive roots mod each of the primes 3, 5, 7, 11, 13, 17 and
19. [A]

3.5 Show that 10 and 2 are solutions of x8 ≡ 1 and x9 ≡ 1 (mod 73)

respectively, and hence that 20 is a primitive root to the modulus 73.

3.6 Show that 2k has no primitive roots if k > 2.

3.7 Find all the primitive roots mod 27. [A]

3.8 Find all the primitive roots mod 125. [A]

3.9 Show that any primitive root to the modulus p is, in the notation of
equation (2) of III.1, the product of numbers xi of order qai

i . [H]

3.10 Show that there are always φ(p−1) primitive roots to the modulus p,
where p is prime. Hence prove the remark on p. 52 that the numbers
constructed there are all different.

3.11 Show that the product of the primitive roots mod a prime p > 3 is
congruent to 1 (mod p). [H]

3.12 If p = 4k + 1 is a prime and g is a primitive root to the modulus p,
show that p − g is also a primitive root to the modulus p.

3.13 Show that, if p = 4k − 1 and g is a primitive root to the modulus p,
then p − g is not a primitive root to the modulus p.

3.14 If g is a primitive root to the modulus p2, prove that it is also a
primitive root to the modulus p. Is the converse true? [A]

3.15 If p and 4p + 1 are both primes, show that 2 is a primitive root to the
modulus 4p + 1. [A]

3.16 If 4k + 1 and 8k + 3 are both primes, show that 2 is a primitive root
to the modulus 8k + 3.

3.17 If 4k + 3 and 8k + 7 are both primes, show that −2 is a primitive root
to the modulus 8k + 7.

3.18 Construct a table of indices for the prime 41, using the primitive root
6. Check that, for each a, the indices for ±a differ by 20. [A]

3.19 Show that a square is congruent to 0, 1 or 4 (mod 8), and that a fourth
power is congruent to 0 or 1 (mod 16).

3.20 Make a list of quadratic residues for each prime p, 3 ≤ p ≤ 19. [A]
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3.21 Find all sets of two decimal digits which can occur as the last two
digits of a perfect square. [A]

3.22 Use Gauss’s lemma to show that −2 is a quadratic residue of primes
of the form 8k + 1 and 8k + 3, and a non-residue of primes of the
form 8k + 5 and 8k + 7.

3.23 Use Gauss’s lemma to show that 5 is a quadratic residue of primes of
the form 10k ± 1, and a non-residue of those of the form 10k ± 3.

3.24 Which primes have −3 as a quadratic residue? [A]

3.25 Calculate the Legendre symbols (−26|73), (19|73) and (33|73). [A]

3.26 Which of the following congruences are soluble: [A]

(a) x2 ≡ 125 (mod 1016);
(b) x2 ≡ 129 (mod 1016);
(c) x2 ≡ 41 (mod 79);
(d) 41x2 ≡ 43 (mod 79);
(e) 43x2 ≡ 47 (mod 79);
(f) x2 ≡ 151 (mod 840).

4.1 Express 105/143, 112/153, 89/144 and 169/239 as continued frac-
tions. [A]

4.2 Calculate [3,1,4,1,6] and [6,1,4,1,3]. [A]

4.3 Write down the convergents to each of the following continued
fractions:

1 + 1

1+
1

1+
1

1+
1

1+
1

1+
1

1
;

2 + 1

2+
1

2+
1

2+
1

2+
1

2+
1

2
;

2 + 1

4+
1

4+
1

4+
1

4
;

1 + 1

1+
1

2+
1

1+
1

2+
1

1+
1

2
. [A]

4.4 Express each of the convergents from the previous exercise as a
decimal fraction. [A]

4.5 Find the general solution in integers for each of the equations 355x −
113y = 1 and 355x + 113y = 1. [A]
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4.6 Find the periodic continued fractions for
√

51 and
√

52. Find pairs
(x, y) with x2 − 51y2 = ±1 and x2 − 52y2 = ±1. [A]

4.7 Show that the continued fraction for
√

n2 + 1 is n, 2n.

4.8 Show that the continued fraction for
√

n(n + 1) is n, 2, 2n.

4.9 Choose a convergent to each of the continued fractions of exercise 4.3
(continuing the patterns if necessary) with a sufficiently large denomi-
nator to give approximations, correct to four decimal places, to (1 +√

5)/2, 1 + √
2,

√
5 and

√
3. [A]

4.10 Show that the quadratic irrational number (4 + √
37)/7 is reduced,

and find its purely periodic continued fraction. [A]

4.11 Find the first few partial quotients in the continued fraction for 31/3.
Give the corresponding convergents, and express them as decimal
fractions. [A]

4.12 Write down the first few convergents to the continued fraction for e:

2 + 1

1+
1

2+
1

1+
1

1+
1

4+
1

1+
1

1+
1

6+
1

1+
1

1+
1

8+ · · ·

Which is the earliest continued fraction to approximate e to six
decimal places? [e ≈ 2.718281828459045 . . .] [A]

4.13 Use alternate convergents to the continued fraction for
√

2 to give
solutions of the Pell equations x2−2y2 = 1 and x2−2y2 = −1. Show
that the numerators and denominators each satisfy the recurrence
relation un+1 = 6un − un−1.

4.14 In a similar way, relate the convergents to
√

3 with solutions to x2 −
3y2 = 1 and x2 − 3y2 = −2, and the recurrence relation un+1 =
4un − un−1.

4.15 In a similar way, relate the convergents to
√

5 with solutions to x2 −
5y2 = 1 and x2 − 5y2 = −1, and the recurrence relation un+1 =
18un − un−1.

4.16 N is said to be square if N = m2, and N is said to be triangular
if N = n(n + 1)/2. Find those numbers that are both square and
triangular. [H][A]

4.17 The continued fraction expansion of π begins

3 + 1

7+
1

15+
1

1+
1

292+
1

1+
1

1+ · · · .
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Compute the first few convergents. Which of them are particularly
good approximations to π? [A]

5.1 Which of the following numbers can be expressed as the sum of two
squares: 97, 221, 300, 490, 729, 1001? [A]

5.2 Verify that (a2 + b2)(c2 + d2) = (ac + bd)2 + (ad − bc)2 = (ac −
bd)2 + (ad + bc)2, and hence that, in general, such a product is
expressible as the sum of two squares in at least two different ways.
What is meant by ‘in general’ here? [A]

5.3 Use the above formula to show that a prime which is the sum of two
squares can only be expressed in one way. [H][A]

5.4 Illustrate the proof that primes of the form 4k +1 are representable as
the sum of two squares with the prime 449 and the solution z = 67 of
the congruence z2 + 1 ≡ 0 (mod 449).

5.5 Illustrate Legendre’s construction by showing that the appropriate
complete quotient in the continued fraction for

√
449 is (20 +√

449)/7. [H]

5.6 Illustrate Serret’s construction by expanding 449/67 as a continued
fraction. [H]

5.7 Verify Euler’s identity for (a2 + b2 + c2 + d2)(A2 + B2 + C2 + D2).

5.8 Express 103 as the sum of four squares in several different ways. [A]

5.9 Find solutions to x2 ≡ 2 and y2 ≡ −3 (mod 103), put x2 + y2 +1 =
103m and deduce a representation of 103 as the sum of four squares.

5.10 Which of the following numbers can be expressed as the sum of three
squares: 607, 307, 284, 568, 1136? [A]

5.11 Show that the number of numbers less than 22k+1 which are not
expressible as the sum of three squares is (22k − 1)/3.

6.1 Show that 13x2 + 36xy + 25y2 and 58x2 + 82xy + 29y2 are each
equivalent to the form x2 + y2.

6.2 Prove that the forms ax2 ± bxy + cy2 (−a < b < a < c) are not
(properly) equivalent if b �= 0.

6.3 Verify that, if ax2 + bxy + cy2 = AX2 + B XY + CY 2, where x =
pX +qY and y = r X +sY , then B2 −4AC = (b2 −4ac)(ps −qr)2.
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6.4 Use operations (i) and (ii) on p. 127 to reduce the forms (13, 36,
25) and (58, 82, 29) of exercise 6.1 to the equivalent reduced form
(1, 0, 1).

6.5 What are the discriminants of the forms 199x2 − 162xy + 33y2 and
35x2 − 96xy + 66y2? Are these forms equivalent? [A]

6.6 Show that a prime p can be represented by the form x2 + 2y2 if, and
only if, p = 2 or p ≡ 1 or 3 (mod 8). [H][A]

6.7 Show that a prime p can be represented by the form x2 + 3y2 if, and
only if, p = 3 or p ≡ 1 (mod 6). [H]

6.8 Show that 23 has −5 as a quadratic residue, but that 23 is not repre-
sentable by the form x2 + 5y2. Is 46 so representable? Show that the
following conditions are necessary (but not sufficient!) for x2 + 5y2

to be prime: (x, y) = 1, x �≡ y (mod 2), xy ≡ 0 (mod 3). [A]

6.9 Use Dirichlet’s class number formula to calculate the class number
of the discriminant −p for some of the primes given in Table II, and
check that this agrees with the number of forms listed.

6.10 [+] If ρ is the number of quadratic residues in (1 ≤ r ≤ (p − 1)/2),
and ν is the number of non-residues, show that C(−p) = (ρ − ν)/3
for p ≡ 3 (mod 8). [A]

6.11 [+] With the same notation as the previous question, show that
C(−p) = ρ − ν, for p ≡ 7 (mod 8).

6.12 Verify that C(−163) = 1.

7.1 Find all integer right-angled triangles with one side of length 25. [A]

7.2 Show that it is impossible to draw an equilateral triangle with each of
its vertices at lattice points (with integer coordinates). [H]

7.3 Find all solutions in integers of x2 = y2 + 3z2. [A]

7.4 Find all solutions in integers of x2 + y2 = 2z2. [H][A]

7.5 Find all solutions in integers of x2 + 2y2 = 3z2. [A]

7.6 [M] Find all triangles ABC with integer sides and angle A twice angle
B. [H][A]

7.7 [M+] Find all integer triangles with one angle of 60◦. [A]

7.8 Show that the equations 2x2 + 5y2 = z2 and 3x2 + 5y2 = z2 have no
solutions in integers other than (0,0,0).
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7.9 Find an infinite set of essentially different solutions to equation
(12). [A]

7.10 Show that (3, 8) is a torsion point of order 7 on y2 = x3 − 43x +
166. [A]

7.11 How many elliptic curves are there modulo 5? How many of these
are non-singular? Of the non-singular curves, how many inequivalent
ones are there? [A]

7.12 How many elliptic curves are there modulo 7? How many of these
are non-singular? Of the non-singular curves, how many inequivalent
ones are there? [A]

7.13 How many elliptic curves are there modulo 11? How many of these
are non-singular? Of the non-singular curves, how many inequivalent
ones are there? [A]

7.14 Show that (1, 2) really is of order 13 on y2 ≡ x3 − 11 (mod 7). [A]

7.15 The elliptic curves in fig. 4 (p. 153) were generated with the Maple
commands

plots[implicitplot](yˆ2=xˆ3+x+1,x=-2..2,y=-3..3);

and

plots[implicitplot](yˆ2=xˆ3-2*x+1,x=-2..2,y=-3..3);

Using a suitable graphics package, explore what happens with other
curves. Generate nodes and cusps. What happens if we use the more
general Weierstrass form (equation 13)?

7.16 [M] Show that y2 = x(x + 1)(x + 2)(x − 1) is ‘really’ an elliptic
curve. [H][A]

7.17 [M] What happens if we have y2= quartic with an integral root other
than zero? [A]

7.18 [M] What happens if there is a rational root, but not an integral one?

8.1 Show that a Carmichael number cannot have any repeated prime
factors.

8.2 Show that a Carmichael number has to have at least three prime
factors.
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8.3 Show that, if 6m + 1, 12m + 1 and 18m + 1 are all prime, then
their product is a Carmichael number. Use this formula to generate
several Carmichael numbers—you may need a computer after the
first few. How many Carmichael numbers of this form are there less
than 25 × 109? [A]

8.4 Can you generate other formulae which always yield Carmichael
numbers under suitable primality assumptions? [H][A]

8.5 [+] Find a non-prime that passes Rabin’s test for the ‘random’ x-value
2. [H][A]

8.6 Produce a good linear congruential method for simulating throws of
a die.

8.7 Produce a good linear congruential method for simulating throws of
two dice. [H]

8.8 Pollard’s rho method requires the computation of a greatest common
divisor at every step. Can the cost of this be reduced? [A]

8.9 Can you find an example that exhibits both of the phenomena men-
tioned on pp. 182–3, i.e. an example where Pollard’s p − 1 method
finds a factor p such that p − 1 is not B-smooth and p > P? [H][A]

8.10 What happens when one tries the Pollard p − 1 method, with B =
6, P = 100 and x = 6, on the number 32639, but performing a
greatest common divisor check after every squaring or multiplica-
tion. Can you explain this? Would you recommend implementing this
modification? [A]

8.11 Give an example of exchanging a message via the method shown in
(9), and show how it can easily be broken, even if N is quite large—
three digits should be feasible by hand, six digits on a programmable
calculator.

8.12 Give an example of exchanging a message via the method shown in
(10), and show how it can be broken by the method of (11). Unless
you have access to a table of indices, it is probably best to take P
fairly small, say between 10 and 20.

8.13 Give an example of computing a shared key via the method shown in
(12), and show how it can be broken by the method of indices. Unless
you have access to a table of indices, it is probably best to take P
fairly small, say between 10 and 20.
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8.14 Give an example of computing a shared key via the method shown
in (13), and show how it might be broken by the method of ‘dis-
crete logarithms’ for elliptic curves. You should probably take p fairly
small, say 7 or 11.

8.15 Show that, if C is a Carmichael number with three prime factors, all
≡ 3 (mod 4), then the probability of C passing Rabin’s test for an x
relatively prime to C is exactly 1/4. [A]
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1.6 It is certainly not necessary to compute 22!, and it suffices to know
the primes less than 22.

1.7 Consider the forms of n for which the difference n − a is maximal,
and those for which it is minimal.

1.8 Start with the sum of all possible products, and subtract the terms we
do not want.

1.9 To show that 1 + ξ is a prime, we first define the Norm of an integer
a + bξ to be a2 + 5b2. Then Norm(xy) = Norm(x) Norm(y), for
integers x, y of this form. Norm(1 + ξ) = 6, so any factors of 1 + ξ

must have Norms dividing 6. But the elements of Norm 1 are the
units, those of Norm 6 are 1+ξ and −1−ξ , and there are no elements
of Norm 2 or 3.

1.10 Define the Norm of a + bi to be a2 + b2. If we have two Gaussian
integers a + bi and c + di , then their quotient is a complex number,
and the closest Gaussian integer to it is at most

√
2/2 away, i.e. there

is a Gaussian integer e + f i such that

Norm(e + f i − (a + bi)/(c + di)) ≤
√

2/2 < 1.

Hence

Norm((e + f i)(c + di) − (a + bi)) < Norm(c + di).

This equation is analogous to (2), and lets us define Euclid’s algorithm
for Gaussian integers. The proof of unique factorization then follows
as for the ordinary integers.

1.18 If n is the product of primes pi , then σ(n) < n
∏

pi/(pi − 1).

222
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2.5 Work mod 3 and 37, and then combine the results.

2.14 If we have found a solution x0 to x2 ≡ −1 (mod 5), then we can
write x = x0 + 5x1, and find x1 so that x2 ≡ −1 (mod 25), and
then we write x = x0 + 5x1 + 25x2. This process of finding solutions
modulo a high power of a prime by ‘lifting’ a solution from a lower
power is termed Hensel’s Lemma.

3.9 Let ni = (p − 1)/qai
i . Then, if g is our primitive root, gni has order

qai
i . Since the ni have no factor in common, there exist integers li

such that the sum of the li ni is 1. Then take gli ni .

3.11 If g is a primitive root, so is 1/g.

4.16 If m2 = n(n + 1)/2, then 8m2 = (2n + 1)2 − 1. Now use exercise
4.13.

5.3 If p = P2 + Q2 = R2 + S2, where we can choose P and R to
be even and Q and S to be odd (excluding the case p = 2), then
(Q + S)(Q − S) = (R + P)(R − P).

5.5
√

449 = 21, 5, 3, 1, 1, 1, 7, 1, 5, 5, 1, 7, 1, 1, 1, 3, 5, 42. We there-
fore want the complete quotient after 21,5,3,1,1,1,7,1,5.

5.6
449

67
= 6 + 1

1+
1

2+
1

1+
1

6
. Hence x = [6,1,2] and y = [6,1].

6.6 Congruences mod 8 show that only these primes can be represented.
If p ≡ 1 or 3 (mod 8), then −2 is a quadratic residue, so the equation
α2 = −2 + βp is soluble.

6.7 −3 is a quadratic residue of primes of the form 6k + 1.

7.2 We may assume that one of the vertices is the origin, and that at least
one of the other coordinates is odd (otherwise we consider the triangle
whose coordinates are half the size). Now take congruences to the
modulus 4.

7.4 For a primitive solution, x and y are both odd, so write x = p + q,
y = p − q.

7.6 Use the sine rule.
7.16 What happens if we substitute x = 1/X and clear denominators?

8.4 The ‘reason’ that the example in exercise 8.3 worked is that all the
coefficients of the expansion of (6m + 1)(12m + 1)(18m + 1), except
for the trailing 1, were multiples of 36, and 36 = 6 × (1 + 2 + 3). In
other words, 6 is a perfect number.

8.5 If k is such that k+1 and 3k+1 are both prime, let n be (k+1)(3k+1),
so n − 1 = k(3k + 4). φ(n) = 3k2, φ̂(n) = 3k and k certainly
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divides n −1. So if 2 is a perfect cube to the modulus n (in fact, to the
modulus 3k + 1 suffices) then 2k ≡ 1 (mod n). The only question
then is whether Rabin’s test is more rigorous than Fermat’s, which
depends on the quadratic character of 2 to the moduli k+1 and 3k+1.

8.7 Note that the two dice should be genuinely independent, i.e. no con-
nection between the two throws. Hence it is (almost?) impossible to
do this with a single generator: we need two of coprime period.

8.9 There is not much point in looking for an example: it has to be con-
structed. First choose a prime of the right form to be found, then find
an x with the right properties, and then build the appropriate n, and
check that nothing goes wrong.
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1.3 33 × 37, 7 × 11 × 13, 7 × 13 × 19, 41 × 271, 216, 2 × 3 × 5 × 7 ×
11 × 13 × 17 × 19 × 23 × 29.

1.4

24, 25, . . . , 28;
114, 115, . . . , 126;

100! + x for 2 ≤ x ≤ 100

(though in the last case a range with smaller numbers almost certainly
exists).

1.5 No: n = 40 gives 412, n = 41 gives 41 × 43.

1.6 219 × 39 × 54 × 73 × 112 × 13 × 17 × 19.
This can be worked out very neatly: there are 11 even numbers, half
of which (5) are multiples of 4, half of which (2) are multiples of 8,
and half of which (1) is a multiple of 16: hence the exponent of 2 is
11 + 5 + 2 + 1 = 19. Similarly, thre are 7 multiples of 3, one third of
which (2) are multiples of 9, so the exponent of 3 is 7 + 2 = 9, and so
on.

1.11 If n = ab, then

2n − 1 = (2a − 1)(1 + 2b + 22b + · · · + 2(a−1)b).

The converse is not true: 211 − 1 = 23 × 89.

1.12 If p is an odd prime factor of n, so that n = mp, then

2n + 1 = (2m + 1)(1 − 2m + 22m − · · · + 2(p−1)m).

225
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Fermat thought that the converse was true, i.e. every Fermat number
22n + 1 is prime, but Euler discovered that 232 + 1 = 641 × 6700417.

1.16 30. 2418.

1.17 σ(30240) = 4×30240 (due to Descartes). Examples have been found
with k = 8 (see Guy, B.2) ♠E:2.

1.19 546. 18564 = 22 ×3×7×13×17; 30030 = 2×3×5×7×11×13.
1021020 = 22 × 3 × 5 × 7 × 11 × 13 × 17.

1.20 x = 22 + 355t, y = 7 + 113t , where t is any integer.

1.21 41 × 61.

1.22 17 × 61.

2.2 60k + 59, where k is any integer.

2.3 2519 = lcm(2, 3, . . . , 10) − 1.

2.4 x ≡ 64 (mod 105).

2.5 46

2.6 If a p−1 ≡ 1 (mod p), then a p−1 and p are coprime, and therefore
a and p are coprime. If this is true for all a(1 ≤ a < p) then p is
prime.
2340 ≡ 1 (mod 341).
a560 ≡ 1 (mod 561) for all a coprime to 561, since a2 ≡ 1 (mod 3),
a10 ≡ 1 (mod 11) and a16 ≡ 1 (mod 17). See also VIII.2.
If ad �≡ 1 (mod p) for any proper divisor d of p − 1, it follows that
the values a, a2, . . . , a p−1 are all distinct (mod p), and therefore
that they take all values between 1 and p − 1 in some order. But ak is
coprime to p, and therefore all the numbers between 1 and p − 1 are
coprime to p, so p is prime.

2.7 φ(1) = φ(2) = 1; otherwise φ(n) is even.

2.8 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, . . . .

2.10 n = 2a3b, with a > 0, b > 0. 30030.

2.14 x ≡ ±2 (mod 5), x ≡ ±7 (mod 25), x ≡ ±57 (mod 125).

2.15 x ≡ ±23 or ±41 (mod 128).

2.23 x ≡ − 15 (mod 990).

2.24 y ≡ − 343 (mod 1365).

2.25 z ≡ −13 (mod 30).

3.1 {1, 2, 4}, {±1}, {all}.
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3.2 {1,−2, 3, 4, 5}, {all}, {±1}.
3.3 {±1,±2,±4, ±8}, {±1,±4}, {±1}, {1}.
3.4 {2}, {±2}, {−2, 3}, {2,−3, −4,−5}, {±2,±6}, {±3,±5,±6,±7}g,

{2, 3,−4, −5,−6,−9}.
3.7 2 and 5 (mod 9).

3.8 ±2,±3,±8, ±12 (mod 25).

3.14 No: 7 is a primitive root to the modulus 5, but not to the modulus 25.

3.15 p �= 2, therefore p is odd and 4p + 1 = 8k + 5 for some k. Therefore
2 is not a quadratic residue to the modulus p. Now, if 2 is not a prim-
itive root to the modulus 4p + 1, then either 24 ≡ 1 (mod 4p + 1) or
22p ≡ 1 (mod 4p+1). The first is clearly impossible, and the second
implies that 2 is a square.

3.18 a 1 2 3 4 5 6 7 8 9 10
ind 40 26 15 12 22 1 39 38 30 8
-a 40 39 38 37 36 35 34 33 32 31

ind 20 6 35 32 2 21 19 18 10 28
a 11 12 13 14 15 16 17 18 19 20

ind 3 27 31 25 37 24 33 16 9 34
-a 30 29 28 27 26 25 24 23 22 21

ind 23 7 11 5 17 4 13 36 39 14

3.20 3: {1}. 5: {±1}. 7: {1, 2,−3}. 11: {1,−2, 3, 4, 5}. 13: {±1,±3,±4}.
17: {±1,±2,±4,±8}. 19: {1,−2,−3, 4, 5, 6, 7, −8, 9}.

3.21 00, 25, e1, e4, e9 (where e is any even digit), d6 (where d is any odd
digit).

3.24 p = 6k + 1.

3.25 −1, 1, −1.

3.26 (b), (d), (e).

4.1
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[is it a coincidence that 89 and 144 are consecutive Fibonacci
numbers?]

1

1+
1

2+
1

2+
1

2+
1

2+
1

2+
1

2
.

4.2 157 (for both).

4.3
1

1
,

2

1
,

3

2
,

5

3
,

8

5
,

13

8
,

21

13
;

2

1
,

5

2
,

12

5
,

29

12
,

70

29
,

169

70
,

408

169
;

2

1
,

9

4
,

38

17
,

161

72
,

682

305
;

1

1
,

2

1
,

5

3
,

7

4
,

19

11
,

26

15
,

71

41
.

4.4

1.0, 2.0, 1.5, 1.666 . . . , 1.6, 1.625, 1.614 . . . ;
2.0, 2.5, 2.4, 2.416 . . . , 2.4137 . . . , 2.41428 . . . , 2.414201 . . . ;

2.0, 2.25, 2.235 . . . , 2.23611 . . . , 2.23606 . . . ;
1.0, 2.0, 1.666 . . . , 1.75, 1.727 . . . , 1.7333, 1.7317 . . . .

4.5 x = −7+113t , y = −22+355t and x = −7+113t , y = 22−355t .

4.6 7, 7, 14 and 7, 4, 1, 2, 1, 4, 14. 502−51 × 72 = 1; 6492−52 × 902 =
1.

4.9

(a) 144 > 100, so 233/144 (≈ 1.61806) is accurate to four deci-
mal places. In fact 144/89 (≈ 1.61798) is also accurate to four
decimal places. The true answer ≈ 1.61803.

(b) 169 > 100, so 408/169 (≈ 2.41420) is accurate to four deci-
mal places. In fact 169/70 (≈ 2.41429) is also accurate to four
decimal places. The true answer ≈ 2.41421.

(c) 305 > 100, so 682/305 (≈ 2.23607) is accurate to four deci-
mal places. In fact 161/72 (≈ 2.23611) is also accurate to four
decimal places. The true answer ≈ 2.23607.
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(d) 153 > 100, so 265/153 (≈ 1.73203) is accurate to four decimal
places. In fact 79/56 (≈ 1.73214) is also accurate to four decimal
places. The true answer ≈ 1.73205.

4.10 1, 2, 3.

4.11 1, 2, 3, 1, 4, 1, . . . . 1/1 = 1.0, 3/2 = 1.5, 10/7 = 1.428 . . . , 13/9 =
1.444 . . . , 62/43 = 1.4418 . . . , 75/52 = 1.4423 . . . .

4.12 2/1, 3/1, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71, 1264/465, 1457/536,
2721/1001 = 2.7̇18281̇.

4.16 Convergents 3/2, 17/12, 99/70, . . . yield (m, n) = (1, 1), (6, 8), (35,

49), . . . and the numbers 1, 36, 1225, . . . .

4.17 After 3 itself, the next one is 3 1
7 = 22

7 , the biblical approximation. This
is quite a good approximation (3.1428 . . . against the true 3.1416 . . .),
since we are truncating before the partial quotient of 15. The next
one is 15×22+3

15×7+1 = 333
106 . The subsequent one is 1×333+22

1×106+7 = 355
113 .

This is a very good approximation (since we are truncating before
the partial quotient of 292), being 3.141592920 . . . against the true
3.141592654 . . .. In the early days of computing, it was often used as
a short-cut for π .

5.1 97 = 92 + 42, 490 = 212 + 72, 729 = 272 + 02, 221 = 102 + 112 or
142 + 52.

5.2 a �= 0, b �= 0, c �= 0, d �= 0, a2 �= b2, c2 �= d2, {a2, b2} �= {c2, d2}.
5.3 By unique factorization, we can write R + P = 2ac, R − P = 2bd ,

Q + S = 2ad , Q − S = 2bc. Then P = ac − bd , Q = ad + bc,
R = ac + bd , S = ad − bc, and p = (a2 + b2)(c2 + d2).

5.8 102+12+12+12, 92+32+32+22, 72+72+22+12, 72+62+32+32,
72 + 52 + 52 + 22.

5.10 307 = 172 + 32 + 32 = 152 + 92 + 12, 568 = 182 + 122 + 102.

6.5 −24. No: the reduced forms are x2 + 6y2 and 2x2 + 3y2 respectively.

6.6 Then the form px2 + 2αxy + βy2 has discriminant −8, and so has
to be equivalent to x2 + 2y2. But it also represents p, by choosing
x = 1, y = 0.

6.8 Congruences mod 5 show that 23 �= x2 + 5y2. 46 = 12 + 5 × 32.

6.10 Let A be the sum of all the quadratic residues, and B the sum of
all the non-residues. 2 is a non-residue, so if x is a residue, 2x is a
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non-residue. There are ν residues greater than p/2, so 2A = B + νp.
A + B = p(p − 1)/2 = (ν + ρ)p. Solving these equations shows
that (B − A)/p = (ρ − ν)/3.

7.1 (15,20,25), (25,60,65), (7,24,25), (25,312,313).

7.3 x = ±(r2 + 3s2)t , y = ±(r2 − 3s2)t , z = ±(r2 + s2)t , where
r and s are coprime positive integers and t is a positive integer (or
half-integer if r and s are both odd).

7.4 x = ±(r2 + 2rs − s2)t, y = ±(s2 + 2rs − r2)t , z = ±(r2 + s2)t ,
where r and s are coprime positive integers and t is a positive integer.

7.5 x == ±(r2 + 6rs + 3s2)t, y = ±(r2 − 3s2)t , z = (r2 + 2rs + 3s2)t ,
where r and s are coprime positive integers and t is a positive integer
(or half-integer if r and s are both odd).

7.6 The sides a, b, c are opposite the angles θ , 2θ and 180 − 3θ

respectively. Then, by the sine rule,

a

sin θ
= b

sin 2θ
= c

sin(180 − 3θ)
= c

sin 3θ
.

Now sin 2θ = 2 sin θ cos θ and sin 3θ = sin θ(4 cos2 θ − 1), so
cos θ = b/2a, and b2 − a2 = ca. Let a = p2q, where q is square-
free. Then we can write b = pqr , and we deduce a = p2q, b = pqr
and c = q(r2 − p2). We can make this representation unique by
demanding that p and r have no common factor.

7.7 a = (r2 − rs + s2)t, b = (2r − s)st, c = r(2s − r)t, c1 = (r2 − s2t),
where 0 < s ≤ r < 2s and t > 0.

7.9 An infinite set of solutions to X2+31Y 2 = Z2 is Z = p2+31q2, Y =
2pq, X = p2−31q2, where one of p, q is even and the other odd, and
they have no common factors. So we can take x = 3(p2 −31q2), y =
40pq + (p2 + 31q2), z = 62pq + 20(p2 + 31q2).

7.10 If P = (3, 8), then 2P = (−5,−16), 4P = (11, 32) and 8P = (3, 8).
So P = 8P, i.e. 7P = O.

7.11 There are 25 choices for the pair (A, B), and therefore 25 curves.
Clearly the curve A = B = 0 is singular, and the only possibil-

ity with A ≡ 0. Otherwise, for the curve to be singular, we require
4A3 + 27B2 ≡ 0 (mod 5), i.e. 2B2 ≡ A3 (mod 5). But B2 ≡ 1
or 4, so A3 ≡ 2 or 3, i.e. A ≡ 3 or 2 (since 3 is relatively prime to
5 − 1—see II.2). Each choice of A gives two possible values for B,
viz. 4 in all. Hence there are 20 non-singular curves.
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Two curves are equivalent if we get from one to the other by divid-
ing A and B by n4 and n6 respectively (n �≡ 0 (mod 5)). But n4 ≡ 1
(mod 5), and n6 ≡ n2 ≡ ±1 (mod 5). So the only non-trivial equiva-
lence is between yx = x3 + Ax + B and yx = x3 + Ax − B, and
so the 20 non-singular curves fall into 10 equivalence classes of two
curves each.

7.12 There are clearly 49 curves, and it is not hard to show that 42 are non-
singular. This time n6 ≡ 1 (mod 7), so B is unchanged. Hence all six
curves with A = 0 are inequivalent to any other curve. For A �≡ 0, we
have that n4 takes three distinct values (1,2,4), so every such curve
is equivalent to itself and two other curves. So the 36 non-singular
curves with A �≡ 0 fall into twelve equivalence classes with three
curves in each. In all, therefore, there are 18 inequivalent curves.

7.13 121; 110; 22.

7.14 If P = (1, 2), then, by (17′′),

2P =
((

3

4

)2

− 1 − 1 ≡ 34,

(
3

4

)
(1 − 6) − 2 ≡ −32

)
= (6, 3)

(3/4 = 6/8 ≡ 6/1 = 6 (mod 7)). So,

4P =
((

3

6

)2

− 6 − 6 ≡ −3,

(
3

6

)
(6 − 4) − 3 ≡ −9

)
= (4, 5).

Therefore,

8P =
((

6

3

)2

− 4 − 4 ≡ −4,

(
6

3

)
(4 − 3) − 5 ≡ −3

)
= (3, 4).

Adding the last two, via (17′), we obtain

12P =
((

6

6

)2

− 3 − 4 ≡ −6,−
(

6

6

)
× −1 − 15 − 16

−1

)
= (1, 5).

Since this is −P, we see that 13P = O. Since 1 is the only other factor
of 13, and P �= O, we conclude that the order of P is precisely 13.

7.16 We get y2 X4 = (1 + X)(1 + 2X)(11 = −X) or, writing Y = y X2,
Y 2 = −(X − 1)(2X + 1)(X + 1). This equation is almost in form
(13), and will be if we multiply through by −4 and replace 2X by X
and −2Y by Y . Then the usual transformations will take it into (15).
The same caveats about introducing factors of 2 (and 3) are relevant.
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7.17 If the integral root is a, then we can write X = 1/(x − a) as above.
However, the coefficient of X2 is no longer as easy to transform to 1,
and we may have problems at primes other than 2 and 3.

8.3 Let N be (6m + 1)(12m + 1)(18m + 1), with these three factors all
being prime. Then φ̂(N ) is the least common multiple of 6m, 12m
and 18m, viz. 36m. By direct expansion,

N − 1 = 1296m3 + 396m2 + 36m = 36m(36m2 + 11m + 1),

so φ̂(N ) does divide N − 1, the condition for N to be a Carmichael
number.

There are thirteen such Carmichael numbers up to 25 × 109,
viz. 1729, 294409, 56052361, 118901521, 172947529, 216821881,
228842209, 1299963601, 2301745249, 9624742921, 11346205609,
13079177569 and 21515221081, corresponding to m values of 1, 6,
35, 45, 51, 55, 56, 100, 121, 195, 206, 216 and 255. This should be
contrasted with the total of 2163 Carmichael numbers in this range,
as mentioned in the notes to VIII.2.

8.4 Applying the same reasoning to the next perfect number, 28, we get
the statement that if all of 28m + 1, 56m + 1, 112m + 1, 196m + 1
and 392m + 1 are prime, then their product is a Carmichael number.
The proof follows by direct calculation as in the previous case. There
are in fact some Carmichael numbers of this form—the first few are
599966117492747584686619009, 712957614962252263080515809
and 15087567121680724844895730849, corresponding to m values
of 2136, 2211 and 4071.

8.5 On the lines of the hint, let k = 10, so n = 341 = 11 × 31. 2 is a
perfect cube to the modulus 31 (2 ≡ 43 ≡ 73 ≡ 203). Unfortunately
285 ≡ 32, but 2170 ≡ 1, so this time 2 passes Fermat’s test, but not
Rabin’s.

The next useful case is k = 36, with n = 4033 = 37 × 109.
n − 1 = 28 × 63 and 263 ≡ 3521, while 2170 ≡ −1, so 4033 does
pass Rabin’s test for the value 2. See the notes to VIII.2 for further
references on this subject.

8.8 Yes, we can accumulate several values of the form xt − xt+i− j , mul-
tiply them together to the modulus n (in practice this is done as the
values are accumulated), and compute the greatest common divisor
of this product and n. We may miss a factorization this way, since the
product might be divisible by all the factors of n, but this is extremely
unlikely, and, if it does happen, we can go back and try each
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xt − xt+i− j in turn. Many implementers of this algorithm accumulate
10 such values at a time.

Furthermore, if we know that n has no prime factors smaller than
some B, which in practice we shall do, then we can abandon any com-
putation of a greatest common divisor as soon as one of the numbers
involved is less than B.

8.9 As a prime, we shall choose 337, since 336 = 24 ×3×7, which is not
quite 6-smooth. We therefore need an x whose order divides, not 336,
but 336/7 = 48. If we take x = 128 = 27, then we know that this is a
perfect 7-th power, so has order dividing 48, and a quick check shows
that x48 ≡ 1 (mod 337), and this is the first time we see 1 using the
Pollard sequence.

8.10 Nothing happens (i.e. the greatest common divisor is one) until the
algorithm comes to the first raising to the fifth power. If we write y =
x2634

, then this operation computes y5 as
(
y2

)2
y. The first squaring

yields nothing, but the second squaring (to give y4) gives a greatest
common divisor of 257, which is a factor of 32639.

This happens since y4 =
(

x2634
)4 =

(
x28

)34

, and since 256 =
257 − 1, any x �≡ 1 (mod 257) wiill have x256 ≡ 1 (mod 257),
which is what has happened. We could not make this point with x =
2, since clearly 28 = 256 ≡ −1 (mod 256), so 224 = 216 ≡ 1
(mod 257).

This modification is probably not worth incorporating, since it will
only catch a few extra factors, and those will all be greater than P .
If we want to catch such numbers, we would probably be better off
increasing P . However, there may be minor improvements possible
along this line—for example no prime less than P can require both 2e2

and 3 (or any larger prime) in p − 1, since 3 × 2e2 > 2e2+1 ≥ P . So,
rather than compute the powers 2e2−1, 2e2 , 3×2e2 = 2e2+1 ×2e2 , . . . ,
we can compute the powers 2e2−1, 2e2 , 3 × 2e2−1 = 2e2−1 × 2e2 , . . . ,
thus saving one squaring, and more savings can be made. (JHD owes
these remarks to Dr. N.A. Howgrave-Graham.)

8.15 Let C = p1 p2 p3. Then x pi −1 ≡ 1 (mod pi ), so xl ≡ 1 (mod C),
where l = lcm(pi −1) = φ̂(C), which divides C−1 by the hypothesis
that C is a Carmichael number. So we will end up at 1: the question
is whether we get there via −1, so we need to consider x (pi −1)/2

(mod pi ), which is ±1, depending on whether x is a quadratic residue
or nonresidue mod pi (and these probabilities of 1

2 are independent,
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since the pi are relatively prime). If all three are +1, then x (C−1)/2 ≡
1 (mod C). If all three are −1, then x (C−1)/2 ≡ 1 (mod C). In these
two cases, the Rabin test says ‘probably prime’. In the other six cases,
it says ‘definitely composite’. Since all eight cases are equally likely,
the answer is 2

8 = 1
4 .
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Divisibility, 5
Divisors, number of, 13

sum of, 14
Draim’s algorithm, 23

Elliptic curves, 147–154
factoring via, 185, 206
use in cryptography, 198

Elliptic equations, 145–154
Equivalence of elliptic curves, 152

of quadratic forms, 117
Euclid’s algorithm, 16

theorem on primes, 9
Euler’s criterion, 57

function, 37
identity, 112
rule for continued fractions, 72

Factorizing a number, 22, 29, 165,
179–194

Faltings proof of Mordell’s
conjecture, 156, 163

Fermat’s Last Theorem, 154–156,
163

congruence (Little Theorem), 36,
168

congruence (polynomial version),
201

numbers, 226
process for factorization, 22, 199

Finite fields, 43, 47
Four cube problem, 159, 164
Frey curve, 156, 163
Fundamental theorem of arithmetic,

9, 18

Gauss’s construction (two squares),
109

lemma, 58
Genus of quadratic forms, 129
Goldbach’s problem, 28, 30

Hasse principle for quadratic forms,
145

not for elliptic curves, 151
Heegner class–number proof, 135,

136
Heilbronn’s theorem, 135, 136
Hensel’s lemma, 223
Hurwitz’s theorem, 82

Indefinite forms, 122
Indices (discrete logarithms), 53, 197
Induction, 6
Iwaniec’s theorem on n2 + 1, 30

Jacobsthal’s construction (two
squares), 110

Karatsuba’s algorithm, 167
Kummer’s work on Fermat’s Last

Theorem, 154

Lagrange’s theorem on congruences,
43

continued fractions, 92
four squares, 111

Landau’s notation, 202
Large prime variant, 183, 187, 191,

193
Legendre’s construction (two

squares), 108
symbol, 56
theorem on ax2 + by2 = cz2, 144

Lenstra’s elliptic curve method,
185–187, 206

Linear congruences, 33
equations, 21, 34, 77

Lutz–Nagell theorem, 150, 163

Mazur’s theorem, 150, 163
Mestre elliptic curve, 150, 163
Modular elliptic curves, 153, 156
Mordell

conjecture, 156, 163
curves, equations, 162

Mordell–Weil theorem, 150, 153, 163
Multiplicative functions, 37, 42
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Number field sieve, 193
Number of representations by a

quadratic form, 131
by four squares, 115
by two squares, 115, 136

Order to a prime modulus, 35, 50
of a torsion point, 150

Pell’s equation, 94
Perfect numbers, 14, 29
Periodic continued fractions, 85
Pollard’s ρ method, 179–181

p − 1 method, 181–184
Pólya inequality, 67
Primality, certificates of, 172,

187–188
Prime Number Theorem, 27, 30
Primes, 8

distribution of, 27
in arithmetical progressions, 26,

30, 115, 134
infinity of, 9
testing for, 168–173, 200–202

Primitive roots, 50
number of, 52

Principal form, 121
Proper representation, 122
Proth’s theorem, 173

Quadratic reciprocity, 60, 61
Quadratic residues, 55

distribution of, 63
Quadratic sieve, 192–193,

203, 207

Rabin’s
algorithm, 170–171
theorem, 171

Random numbers, 173–179

Rank of an elliptic curve, 151
Reduced quadratic forms, 128, 130

quadratic irrationals, 88
Reduction of quadratic forms, 126
Relative primality, 15, 17
Representation by a quadratic form,

122, 132
by four squares, 111, 115
by three squares, 114, 115
by two squares, 103, 115

RSA Cryptography, 199–200
Runge’s theorem, 164

Serret’s construction (two squares),
109

Smooth numbers, 181, 206
(B1, B2)-smooth, 183, 206

Stark’s theorem on the class–number,
135, 136

Tables, 97, 130
Taniyama–Shimura–Weil conjecture,

154, 156
Thue–Siegel–Roth theorem,

160, 164
Torsion on elliptic curves, 149
triangles

right-angled, 107

Unimodular substitution, 118
Uniqueness of prime factorization, 9,

18

Vinogradov (sums of three primes),
28, 30

Weierstrass equation, 145
Wiles–Taylor proof of Fermat’s Last

Theorem, 156, 163
Wilson’s Theorem, 40, 57
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