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ABSTRACT Deep learning is currently an extremely active research area in machine learning and pattern
recognition society. It has gained huge successes in a broad area of applications such as speech recognition,
computer vision, and natural language processing. With the sheer size of data available today, big data
brings big opportunities and transformative potential for various sectors; on the other hand, it also presents
unprecedented challenges to harnessing data and information. As the data keeps getting bigger, deep learning
is coming to play a key role in providing big data predictive analytics solutions. In this paper, we provide a
brief overview of deep learning, and highlight current research efforts and the challenges to big data, as well
as the future trends.

INDEX TERMS Classifier design and evaluation, feature representation, machine learning, neural nets
models, parallel processing.

I. INTRODUCTION
Deep learning and Big Data are two hottest trends in the
rapidly growing digital world. While Big Data has been
defined in different ways, herein it is referred to the expo-
nential growth and wide availability of digital data that are
difficult or even impossible to bemanaged and analyzed using
conventional software tools and technologies. Digital data, in
all shapes and sizes, is growing at astonishing rates. For exam-
ple, according to the National Security Agency, the Internet
is processing 1,826 Petabytes of data per day [1]. In 2011,
digital information has grown nine times in volume in just five
years [2] and by 2020, its amount in the world will reach 35
trillion gigabytes [3]. This explosion of digital data brings big
opportunities and transformative potential for various sectors
such as enterprises, healthcare industry manufacturing, and
educational services [4]. It also leads to a dramatic paradigm
shift in our scientific research towards data-driven discovery.

While Big Data offers the great potential for revolutioniz-
ing all aspects of our society, harvesting of valuable knowl-
edge from Big Data is not an ordinary task. The large and
rapidly growing body of information hidden in the unprece-
dented volumes of non-traditional data requires both the
development of advanced technologies and interdisciplinary
teams working in close collaboration. Today, machine learn-
ing techniques, together with advances in available compu-
tational power, have come to play a vital role in Big Data
analytics and knowledge discovery (see [5]–[8]). They are
employed widely to leverage the predictive power of Big

Data in fields like search engines, medicine, and astronomy.
As an extremely active subfield of machine learning, deep
learning is considered, together with Big Data, as the ‘‘big
deals and the bases for an American innovation and economic
revolution’’ [9].
In contrast to most conventional learning methods, which

are considered using shallow-structured learning architec-
tures, deep learning refers to machine learning techniques
that use supervised and/or unsupervised strategies to automat-
ically learn hierarchical representations in deep architectures
for classification [10], [11]. Inspired by biological observa-
tions on human brain mechanisms for processing of natural
signals, deep learning has attracted much attention from the
academic community in recent years due to its state-of-the-art
performance in many research domains such as speech recog-
nition [12], [13], collaborative fultering [14], and computer
vision [15], [16]. Deep learning has also been successfully
applied in industry products that take advantage of the large
volume of digital data. Companies like Google, Apple, and
Facebook, who collect and analyze massive amounts of data
on a daily basis, have been aggressively pushing forward
deep learning related projects. For example, Apple’s Siri, the
virtual personal assistant in iPhones, offers a wide variety of
services including weather reports, sport news, answers to
user’s questions, and reminders etc. by utilizing deep learning
and more and more data collected by Apple services [17].
Google applies deep learning algorithms tomassive chunks of
messy data obtained from the Internet for Google’s translator,
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Android’s voice recognition, Google’s street view, and image
search engine [18]. Other industry giants are not far behind
either. For example, Microsoft’s real-time language transla-
tion in Bing voice search [19] and IBM’s brain-like computer
[18], [20] use techniques like deep learning to leverage Big
Data for competitive advantage.

As the data keeps getting bigger, deep learning is coming
to play a key role in providing big data predictive analytics
solutions, particularly with the increased processing power
and the advances in graphics processors. In this paper, our
goal is not to present a comprehensive survey of all the
related work in deep learning, but mainly to discuss the most
important issues related to learning from massive amounts of
data, highlight current research efforts and the challenges to
big data, as well as the future trends. The rest of the paper is
organized as follows. Section 2 presents a brief review of two
commonly used deep learning architectures. Section 3 dis-
cusses the strategies of deep learning from massive amounts
of data. Finally, we discuss the challenges and perspectives of
deep learning for Big Data in Section 4.

II. OVERVIEW OF DEEP LEARNING
Deep learning refers to a set of machine learning techniques
that learn multiple levels of representations in deep archi-
tectures. In this section, we will present a brief overview
of two well-established deep architectures: deep belief net-
works (DBNs) [21]–[23] and convolutional neural networks
(CNNs) [24]–[26].

A. DEEP BELIEF NETWORKS
Conventional neural networks are prone to get trapped in
local optima of a non-convex objective function, which often
leads to poor performance [27]. Furthermore, they cannot take
advantage of unlabeled data, which are often abundant and
cheap to collect in Big Data. To alleviate these problems,
a deep belief network (DBN) uses a deep architecture that
is capable of learning feature representations from both the
labeled and unlabeled data presented to it [21]. It incorporates
both unsupervised pre-training and supervised fine-tuning
strategies to construct the models: unsupervised stages intend
to learn data distributions without using label information and
supervised stages perform local search for fine tuning.

Fig. 1 shows a typical DBN architecture, which is com-
posed of a stack of Restricted Boltzmann Machines (RBMs)
and/or one or more additional layers for discrimination tasks.
RBMs are probabilistic generative models that learn a joint
probability distribution of observed (training) data without
using data labels [28]. They can effectively utilize large
amounts of unlabeled data for exploiting complex data struc-
tures. Once the structure of a DBN is determined, the goal
for training is to learn the weights (and biases) between
layers. This is conducted firstly by an unsupervised learning
of RBMs. A typical RBM consists of two layers: nodes in one
layer are fully connected to nodes in the other layer and there
is no connection for nodes in the same layer (see Fig.1, for
example, the input layer and the first hidden layer H1 form a

RBM) [28]. Consequently, each node is independent of other
nodes in the same layer given all nodes in the other layer. This
characteristic allows us to train the generative weights W of
each RBMs using Gibbs sampling [29], [30].

FIGURE 1. Illustration of a deep belief network architecture. This
particular DBN consists of three hidden layers, each with three neurons;
one input later with five neurons and one output layer also with five
neurons. Any two adjacent layers can form a RBM trained with unlabeled
data. The outputs of current RBM (e.g., h(1)

i in the first RBM marked in

red) are the inputs of the next RBM (e.g., h(2)
i in the second RBM marked

in green). The weights W can then be fine-tuned with labeled data after
pre-training.

Before fine-tuning, a layer-by-layer pre-training of RBMs
is performed: the outputs of a RBM are fed as inputs to the
next RBM and the process repeats until all the RBMs are pre-
trained. This layer-by-layer unsupervised learning is critical
in DBN training as practically it helps avoid local optima
and alleviates the over-fitting problem that is observed when
millions of parameters are used. Furthermore, the algorithm is
very efficient in terms of its time complexity, which is linear
to the number and size of RBMs [21]. Features at different
layers contain different information about data structures with
higher-level features constructed from lower-level features.
Note that the number of stacked RBMs is a parameter pre-
determined by users and pre-training requires only unlabeled
data (for good generalization).
For a simple RBM with Bernoulli distribution for both the

visible and hidden layers, the sampling probabilities are as
follows [21]:

p
(
hj = 1 | v;W

)
= σ

(
I∑
i=1

wijvi + aj

)
(1)

and

p (vi = 1 |h;W ) = σ

 J∑
j=1

wijhj + bi

 (2)

where v and h represents a I × 1 visible unit vector and a
J × 1 hidden unit vector, respectively; W is the matrix of
weights (wij) connecting the visible and hidden layers; aj and
bi are bias terms; and σ (•) is a sigmoid function. For the case
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of real-valued visible units, the conditional probability distri-
butions are slightly different: typically, a Gaussian-Bernoulli
distribution is assumed and p (vi |h;W ) is Gaussian [30].
Weights wij are updated based on an approximate method

called contrastive divergence (CD) approximation [31]. For
example, the (t + 1)-th weight for wij can be updated as
follows:

1wij (t + 1) = c1wij (t)+ α
(
〈vihj〉data − 〈vihj〉model

)
(3)

where α is the learning rate and c is the momentum factor;
〈·〉data and 〈·〉model are the expectations under the distributions
defined by the data and the model, respectively. While the
expectations may be calculated by running Gibbs sampling
infinitely many times, in practice, one-step CD is often used
because it performs well [31]. Other model parameters (e.g.,
the biases) can be updated similarly.

As a generative mode, the RBM training includes a Gibbs
sampler to sample hidden units based on the visible units and
vice versa (Eqs. (1) and (2)). The weights between these two
layers are then updated using the CD rule (Eq. 3). This process
will repeat until convergence. An RBMmodels data distribu-
tion using hidden units without employing label information.
This is a very useful feature in Big Data analysis as DBN can
potentially leverage much more data (without knowing their
labels) for improved performance.

After pre-training, information about the input data is
stored in the weights between every adjacent layers. The
DBN then adds a final layer representing the desired outputs
and the overall network is fine tuned using labeled data and
back propagation strategies for better discrimination (in some
implementations, on top of the stackedRBMs, there is another
layer called associative memory determined by supervised
learning methods).

There are other variations for pre-training: instead of using
RBMs, for example, stacked denoising auto-encoders [32],
[33] and stacked predictive sparse coding [34] are also pro-
posed for unsupervised feature learning. Furthermore, recent
results show that when a large number of training data is avail-
able, a fully supervised training using random initial weights
instead of the pre-trained weights (i.e., without using RBMs
or auto-encoders) will practically work well [13], [35]. For
example, a discriminative model starts with a network with
one single hidden layer (i.e., a shallow neural network), which
is trained by back propagation method. Upon convergence, a
new hidden layer is inserted into this shallow NN (between
the first hidden layer and the desired output layer) and the
full network is discriminatively trained again. This process
is continued until a predetermined criterion is met (e.g., the
number of hidden neurons).

In summary, DBNs use a greedy and efficient layer-by-
layer approach to learn the latent variables (weights) in
each hidden layer and a back propagation method for fine-
tuning. This hybrid training strategy thus improves both the
generative performance and the discriminative power of the
network.

B. CONVOLUTIONAL NEURAL NETWORKS
A typical CNN is composed of many layers of hierarchy
with some layers for feature representations (or feature maps)
and others as a type of conventional neural networks for
classification [24]. It often starts with two altering types of
layers called convolutional and subsampling layers: convo-
lutional layers perform convolution operations with several
filter maps of equal size, while subsampling layers reduce the
sizes of proceeding layers by averaging pixels within a small
neighborhood (or by max-pooling [36], [37]).
Fig. 2 shows a typical architecture of CNNs. The input is

first convoluted with a set of filters (C layers in Fig. 2). These
2D filtered data are called feature maps. After a nonlinear
transformation, a subsampling is further performed to reduce
the dimensionality (S layers in Fig. 2). The sequence of
convolution/subsampling can be repeated many times (pre-
determined by users).

FIGURE 2. Illustration of a typical convolutional neural network
architecture. The input is a 2D image, which convolves with four different
filters (i.e., h(1)

i , i = 1 to 4), followed by a nonlinear activation, to form the
four feature maps in the second layer (C1). These feature maps are
down-sampled by a factor of 2 to create the feature maps in layer S1. The
sequence of convolution/nonlinear activation/subsampling can be
repeated many times. In this example, to form the feature maps in layer
C2, we use eight different filters (i.e., h(2)

i , i = 1 to 8): the first, third,
fourth, and sixth feature maps in layer C2 are defined by one
corresponding feature map in layer S1, each convoluting with a different
filter; and the second and fifth maps in layer C2 are formed by two maps
in S1 convoluting with two different filters. The last layer is an output
layer to form a fully connected 1D neural network, i.e., the 2D outputs
from the last subsampling later (S2) will be concatenated into one long
input vector with each neuron fully connected with all the neurons in. the
next layer (a hidden layer in this figure).

As illustrated in Fig. 2, the lowest level of this architecture
is the input layer with 2D N × N images as our inputs.
With local receptive fields, upper layer neurons extract some
elementary and complex visual features. Each convolutional
layer (labeled Cx in Fig. 2) is composed of multiple feature
maps, which are constructed by convolving inputs with dif-
ferent filters (weight vectors). In other words, the value of
each unit in a feature map is the result depending on a local
receptive field in the previous layer and the filter. This is
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followed by a nonlinear activation:

y(l)j = f

(∑
i

Kij
⊗

x(l−1)i + bj

)
(4)

where y(l)j is the j-th output for the l-th convolution layer
Cl ; f (·) is a nonlinear function (most recent implementations
use a scaled hyperbolic tangent function as the nonlinear
activation function [38]: f (x) = 1.7159 · tanh(2x/3)). Kij
is a trainable filter (or kernel) in the filter bank that convolves
with the feature map x(l−1)i from the previous layer to produce
a new feature map in the current layer. The symbol

⊗
repre-

sents a discrete convolution operator and bj is a bias. Note that
each filter Kij can connect to all or a portion of feature maps
in the previous layer (in Fig. 2, we show a partially connected
feature maps between S1 and C2). The sub-sampling layer
(labeled Sx in Fig. 2) reduces the spatial resolution of the fea-
ture map (thus providing some level of distortion invariance).
In general, each unit in the sub-sampling layer is constructed
by averaging a 2× 2 area in the featuremap or bymax pooling
over a small region.

The key parameters to be decided are weights between
layers, which are normally trained by standard backpropaga-
tion procedures and a gradient descent algorithm with mean
squared-error as the loss function. Alternatively, training deep
CNN architectures can be unsupervised. Herein we review a
particular method for unsupervised training of CNNs: predic-
tive sparse decomposition (PSD) [39]. The idea is to approx-
imate inputs Xwith a linear combination of some basic and
sparse functions.

Z∗ = arg ‖X −WZ‖22 + λ |Z |1 + α ‖Z − D • tanh (KX)‖
2
2

(5)

where W is a matrix with a linear basis set, Z is a sparse
coefficient matrix, D is a diagonal gain matrix and K is the
filter bank with predictor parameters. The goal is to find
the optimal basis function sets W and the filter bank K that
minimize the reconstruction error (the first term in Eq. 5)
with a sparse representation (the second term), and the code
prediction error simultaneously (the third term in Eq. 5, mea-
suring the difference between the predicted code and actual
code, preserves invariance for certain distortions). PSD can
be trained with a feed-forward encoder to learn the filter bank
and also the pooling together [39].

In summary, inspired by biological processes [40], CNN
algorithms learn a hierarchical feature representation by uti-
lizing strategies like local receptive fields (the size of each
filter is normally small), shared weights (using the same
weights to construct all the feature maps at the same level
significantly reduces the number of parameters), and subsam-
pling (to further reduce the dimensionality). Each filter bank
can be trained with either supervised or unsupervised meth-
ods. A CNN is capable of learning good feature hierarchies
automatically and providing some degree of translational and
distortional invariances.

III. DEEP LEARNING FOR MASSIVE AMOUNTS OF DATA
While deep learning has shown impressive results in many
applications, its training is not a trivial task for Big Data
learning due to the fact that iterative computations inherent in
most deep learning algorithms are often extremely difficult
to be parallelized. Thus, with the unprecedented growth of
commercial and academic data sets in recent years, there is a
surge in interest in effective and scalable parallel algorithms
for training deep models [12], [13], [15], [41]–[44].
In contrast to shallow architectures where few parameters

are preferable to avoid overfitting problems, deep learning
algorithms enjoy their success with a large number of hid-
den neurons, often resulting in millions of free parameters.
Thus, large-scale deep learning often involves both large vol-
umes of data and large models. Some algorithmic approaches
have been explored for large-scale learning: for example,
locally connected networks [24], [39], improved optimizers
[42], and new structures that can be implemented in parallel
[44]. Recently, Deng et al. [44] proposed a modified deep
architecture called Deep Stacking Network (DSN), which
can be effectively parallelized. A DSN consists of several
specialized neural networks (called modules) with a single
hidden layer. Stacked modules with inputs composed of raw
data vector and the out puts from previous module form a
DSN. Most recently, a new deep architecture called Tensor
Deep Stacking Network (T-DSN), which is based on the
DSN, is implemented using CPU clusters for scalable parallel
computing [45].
The use of great computing power to speed up the training

process has shown significant potential in Big Data deep
learning. For example, one way to scale up DBNs is to use
multiple CPU cores, with each core dealing with a subset of
training data (data-parallel schemes). Vanhoucke et al. [46]
discussed some aspects of technical details, including care-
fully designing data layout, batching of the computation,
using SSE2 instructions, and leveraging SSE3 and SSE4
instructions for fixed-point implementation. These imple-
mentations can enhance the performance of modern CPUs
more for deep learning.
Another recent work aims to parallelize Gibbs sampling

of hidden and visible units by splitting hidden units and
visible units into n machines, each responsible for 1/n of the
units [47]. In order to make it work, data transfer between
machines is required (i.e., when sampling the hidden units,
each machine will have the data for all the visible units and
vice verse). This method is efficient if both the hidden and
visible units are binary and also if the sample size is modest.
The communication cost, however, can rise up quickly if
large-scale data sets are used. Other methods for large-scale
deep learning also explore FPGA-based implementation [48]
with a custom architecture: a control unit implemented in a
CPU, a grid of multiple full-custom processing tiles, and a
fast memory.
In this survey, we will focus on some recently developed

deep learning frameworks that take advantage of great com-
puting power available today. Take Graphics Processors Units
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(GPUs) as an example: as of August 2013, NVIDIA single
precision GPUs exceeded 4.5 TeraFLOP/s with a memory
bandwidth of near 300 GB/s [49]. They are particularly
suited for massively parallel computing with more transistors
devoted for data proceeding needs. These newly developed
deep learning frameworks have shown significant advances
in making large-scale deep learning practical.

Fig. 3 shows a schematic for a typical CUDA-capable
GPU with four multi-processors. Each multi-processor (MP)
consists of several streaming multiprocessors (SMs) to form a
building block (Fig. 3 shows two SMs for each block). Each
SM has multiple stream processors (SPs) that share control
logic and low-latency memory. Furthermore, each GPU has
a global memory with very high bandwidth and high latency
when accessed by the CPU (host). This architecture allows
for two levels of parallelism: instruction (memory) level (i.e.,
MPs) and thread level (SPs). This SIMT (Single Instruction,
Multiple Threads) architecture allows for thousands or tens
of thousands of threads to be run concurrently, which is
best suited for operations with large number of arithmetic
operations and small access times to memory. Such levels
of parallelism can also be effectively utilized with special
attention on the data flow when developing GPU parallel
computing applications. One consideration, for example, is
to reduce the data transfer between RAM and the GPU’s
global memory [50] by transferring data with large chunks.
This is achieved by uploading as large sets of unlabeled
data as possible and by storing free parameters as well as
intermediate computations, all in global memory. In addition,
data parallelism and learning updates can be implemented by
leveraging the two levels of parallelism: input examples can
be assigned acrossMPs, while individual nodes can be treated
in each thread (i.e., SPs).

A. LARGE-SCALE DEEP BELIEF NETWORKS
Raina et al. [41] proposed a GPU-based framework for mas-
sively parallelizing unsupervised learning models including
DBNs (in this paper, they refer the algorithms to stacked
RBMs) and sparse coding [21]. While previous models tend
to use one to four million free parameters (e.g., Hinton
& Salakhutdinov [21] used 3.8 million parameters for free
images and Ranzato and Szummer used threemillion parame-
ters for text processing [51]), the proposed approach can train
on more than 100 million free parameters with millions of
unlabeled training data [41].

Because transferring data between host and GPU global
memory is time consuming, one needs to minimize host-
device transfers and take advantage of shared memory. To
achieve this, one strategy is to store all parameters and a
large chunk of training examples in global memory during
training [41]. This will reduce the data transfer times between
host and globa memory and also allow for parameter updates
to be carried out fully inside GPUs. In addition, to utilize the
MP/SP levels of parallelism, a few of the unlabeled training
data in global memory will be selected each time to com-
pute the updates concurrently across blocks (data parallelism)

FIGURE 3. An illustrative architecture of a CUDA-capable GPU with highly
threaded streaming processors (SPs). In this example, the GPU has 64
stream processors (SPs) organized into four multiprocessors (MPs), each
with two stream multiprocessors (SMs). Each SM has eight SPs that share
control unit and instruction cache. The four MPs (building blocks) also
share a global memory (e.g., graphics double data rate DRAM) that often
functions as very-high-bandwidth, off-chip memory (memory bandwidth
is the data exchange rate). Global memory typically has high latency and
is accessible to the CPU (host). A typical processing flow includes: input
data are first copied from host memory to GPU memory, followed by
loading and executing GPU program; results are then sent back from GPU
memory to host memory. Practically, one needs to pay careful
consideration to data transfer between host and GPU memory, which may
take considerable amount of time.

(Fig. 3). Meanwhile, each component of the input example is
handled by SPs.
When implementing the DBN learning, Gibbs sampling

[52], [53] is repeated using Eqs. (1-2). This can be imple-
mented by first generating two sampling matrices P(h|x) and
P(x |h), with the (i, j)-th element P(hj|xi) (i.e., the probabil-
ity of j-th hidden node given the i-th input example) and
P(xj|hi), respectively [41]. The sampling matrices can then
be implemented in parallel for the GPU, where each block
takes an example and each thread works on an element of the
example. Similarly, the weight update operations (Eq. (3)) can
be performed in parallel using linear algebra packages for the
GPU after new examples are generated.

Experimental results show that with 45 million parameters
in a RBM and one million examples, the GPU-based imple-
mentation increases the speed of DBN learning by a factor
of up to 70, compared to a dual-core CPU implementation
(around 29 minutes for GPU-based implementation versus
more than one day for CPU-based implementation) [41].

B. LARGE-SCALE CONVOLUTIONAL NEURAL NETWORKS
CNN is a type of locally connected deep learning methods.
Large-scale CNN learning is often implemented on GPUs
with several hundred parallel processing cores. CNN train-
ing involves both forward and backward propagation. For
parallelizing forward propagation, one or more blocks are
assigned for each feature map depending on the size of maps
[36]. Each thread in a block is devoted to a single neuron
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in a map. Consequently, the computation of each neuron,
which includes convolution of shared weights (kernels) with
neurons from the previous layers, activation, and summation,
is performed in a SP. The outputs are then stored in the global
memory.

Weights are updated by back-propagation of errors δk .
The error signal δ(l−1)k of a neuron k in the previous layer
(l – 1) depends on the error signals δ(l)j of some neurons in
a local field of the current layer l. Parallelizing backward
propagation can be implemented either by pulling or pushing
[36]. Pulling error signals refers to the process of comput-
ing delta signals for each neuron in the previous layer by
pulling the error signals from the current layer. This is not
straightforward because of the subsampling and convolution
operations: for example, the neurons in the previous layermay
connect to different numbers of neurons in the previous layer
due to border effects [54]. For illustration, we plot a one-
dimensional convolution and subsampling in Fig. 4. As can be
seen, the first six units have different number of connections.
We need first to identify the list of neurons in the current
layer that contribute to the error signals of neurons in the
previous layer. On the contrary, all the units in the current
layer have exactly the same number of incoming connections.
Consequently, pushing the error signals from the current layer
to previous layer is more efficient, i.e., for each unit in the
current layer, we update the related units in the previous layer.

FIGURE 4. An illustration of the operations involved with 1D convolution
and subsampling. The convolution filter’s size is six. Consequently, each
unit in the convolution layer is defined by six input units. Subsampling
involves averaging two adjacent units in the convolution layer.

For implementing data parallelism, one needs to consider
the size of global memory and feature map size. Typically,
at any given stage, a limited number of training examples
can be processed in parallel. Furthermore, within each block
where comvolution operation is performed, only a portion of
a feature map can be maintained at any given time due to the
extremely limited amount of shared memory. For convolution
operations, Scherer et al. suggested the use of limited shared
memory as a circular buffer [37], which only holds a small
portion of each feature map loaded from global memory each
time. Convolution will be performed by threads in parallel
and results are written back to global memory. To further
overcome the GPU memory limitation, the authors imple-
mented a modified architecture with both the convolution

and subsampling operations being combined into one step
[37]. This modification allows for storing both the activities
and error values with reduced memory usage while running
backpropagation.
To further speedup, Krizhevsky et al. proposed the use of

two GPUs for training CNNs with five convolutional layers
and three fully connected classification layers. The CNN uses
Rectified Linear Units (ReLUs) as the nonlinear function
(f (x) = max(0, x)), which has been shown to run several
times faster than other commonly used functions [55]. For
some layers, about half of the network is computed in a single
GPU and the other portion is calculated in the other GPU; the
two GPUs communicated at some other layers. This archi-
tecture takes full advantage of cross-GPU parallelization that
allows two GPUs to communicate and transfer data without
using host memory.

C. COMBINATION OF DATA- AND MODEL-PARALLEL
SCHEMES
DistBelief is a software framework recently designed for dis-
tributed training and learning in deep networkswith very large
models (e.g., a few billion parameters) and large-scale data
sets. It leverages large-scale clusters of machines to manage
both data and model parallelism via multithreading, message
passing, synchronization as well as communication between
machines [56].
For large-scale data with high dimensionality, deep learn-

ing often involves many densely connected layers with a
large number of free parameters (i.e., large models). To deal
with large model learning, DistBelief first implements model
parallelism by allowing users to partition large network archi-
tectures into several smaller structures (called blocks), whose
nodes will be assigned to and calculated in several machines
(collectively we call it ‘‘a partitioned model’’). Each block
will be assigned to one machine (see Fig. 5). Boundary nodes
(nodes whose edges belong to more than one partitions)
require data transfer between machines. Apparently, fully-
connected networks have more boundary nodes and often
demand higher communication costs than locally-connected
structures, and thus less performance benefits. Nevertheless,
as many as 144 partitions have been reported for large models
in DistBelief [56], which leads to significant improvement of
training speed.
DistBelief also implements data parallelism and employs

two separate distributed optimization procedures: Downpour
stochastic gradient descent (SGD) and Sandblaster [56],
which perform online and batch optimization, respectively.
Herein we will discuss Downpour in details and more infor-
mation about Sandblaster can be found in the reference [56].
First, multiple replicas of the partitioned model will be

created for training and inference. Like deep learning models,
large data sets will be partitioned into many subsets. DistBe-
lief will then run multiple replicas of the partitioned model
to compute gradient descent via Downpour SGD on different
subsets of training data. Specifically, DistBelief employs a
centralized parameter server storing and applying updates for
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FIGURE 5. DistBelief: models are partitioned into four blocks and
consequently assigned to four machines [56]. Information for nodes that
belong to two or more partitions is transferred between machines (e.g.,
the lines marked with yellow color). This model is more effective for less
densely connected networks.

all parameters of the models. Parameters are grouped into
server shards. At any given time, each machine in a parti-
tioned model needs only to communicate with the parameter
server shards that hold the relevant parameters. This com-
munication is asynchronous: each machine in a partitioned
model runs independently and each parameter server shard
acts independently as well. One advantage of using asyn-
chronous communication over standard synchronous SGD is
its fault tolerance: in the event of the failures of one machine
in a model copy, other model replicas will continue commu-
nicating with the central parameter server to process the data
and update the shared weights.

In practice, the Adagrad adaptive learning rate proce-
dure [57] is integrated into the Downpour SGD for bet-
ter performance. DistBelief is implemented in two deep
learning models: a fully connected network with 42 million
model parameters and 1.1 billion examples, and a locally-
connected convolutional neural network with 16 million
images of 100 by 100 pixels and 21,000 categories (as many
as 1.7 billion parameters). The experimental results show
that locally connected learning models will benefit more
from DistBelief: indeed, with 81 machines and 1.7 billion
parameters, the method is 12x faster than using a single
machine. As demonstrated in [56], a significant advantage
of DistBelief is its ability to scale up from single machine
to thousands of machines, which is the key to Big Data
analysis.

Most recently, the DistBelief framework was used to train a
deep architecture with a sparse deep autoencoder, local recep-
tive fields, pooling, and local contrast normalization [50]. The
deep learning architecture consists of three stacked layers,
each with sublayers of local filtering, local pooling, and local
contrast normalization. The filtering sublayers are not convo-
lutional, each filter with its own weights. The optimization
of this architecture involves an overall objective function that
is the summation of the objective functions for the three

layers, each aiming at minimizing a reconstruction error
while maintaining sparsity of connections between sublayers.
The DistBelief framework is able to scale up the dataset, the
model, and the resources all together. Themodel is partitioned
into 169 machines, each with 16 CPU cores. Multiple cores
allow for another level of parallelism where each subset of
cores can perform different tasks. Asynchronous SGD is
implemented with several replicas of the core model and
mini-batch of training examples. The framework was able to
train as many as 14 million images with a size of 200 by
200 pixels and more than 20 thousand categories for three
days over a cluster of 1,000 machines with 16,000 cores.
The model is capable of learning high-level features to detect
objects without using labeled data.

D. THE COTS HPC SYSTEMS
While DistBelief can learn with very large models (more
than one billion parameters), its training requires 16,000
CPU cores, which are not commonly available for most
researchers. Most recently, Coates et al. presented an alter-
native approach that trains comparable deep network mod-
els with more than 11 billion free parameters by using just
three machines [58]. The Commodity Off-The-Shelf High
Performance Computing (COTS HPC) system is comprised
of a cluster of 16 GPU servers with Infiniband adapter for
interconnects and MPI for data exchange in a cluster. Each
server is equipped with four NVIDIA GTX680 GPUs, each
having 4GB ofmemory.With well-balanced number of GPUs
and CPUs, COTS HPC is capable of running very large-scale
deep learning.
The implementation includes carefully designed CUDA

kernels for effective usage of memory and efficient compu-
tation. For example, to efficiently compute a matrix mul-
tiplication Y = WX (e.g., W is the filter matrix and X is
the input matrix), Coates et al. [58] fully take advantage of
matrix sparseness and local receptive field by extracting non-
zero columns in W for neurons that share identical receptive
fields, which are then multiplied by the corresponding rows
in X . This strategy successfully avoids the situation where the
requested memory is larger than the shared memory of the
GPU. In addition, matrix operations are performed by using a
highly optimized tool called MAGMA BLAS matrix-matrix
multiply kernels [59].
Furthermore, GPUs are being utilized to implement a

model parallel scheme: each GPU is only used for a different
part of the model optimization with the same input examples;
collectively, their communication occurs through the MVA-
PICH2 MPI. This very large scale deep learning system is
capable of training with more than 11 billion parameters,
which is the largest model reported by far, with much less
machines.
Table 1 summarizes the current progress in large-scale

deep learning. It has been observed in several groups (see
[41]) that single CPU is impractical for deep learning with
a large model. With multiple machines, the running time
may not be a big concern any more (see [56]). However,
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significant computational resources are needed to achieve
the goal. Consequently, major research efforts are towards
experiments with GPUs.

TABLE 1. Summary of recent research progress in large-scale deep
learning.

IV. REMAINING CHALLENGES AND PERSPECTIVES: DEEP
LEARNING FOR BIG DATA
In recent years, Big Data has taken center stage in government
and society at large. In 2012, the Obama Administration
announced a ‘‘Big Data Research and Development Initia-
tive’’ to ‘‘help solve some of the Nation’s most pressing
challenges’’ [60]. Consequently, six Federal departments and
agencies (NSF, HHS/NIH, DOD, DOE, DARPA, and USGS)
committed more than $200 million to support projects that
can transform our ability to harness in novel ways from huge
volumes of digital data. In May of the same year, the state
of Massachusetts announced the Massachusetts Big Data
Initiative that funds a variety of research institutions [61].
In April, 2013, U.S. President Barack Obama announced
another federal project, a new brain mapping initiative called
the BRAIN (Brain Research Through Advancing Innovative
Neurotechnologies) [62] aiming to develop new tools to help
map human brain functions, understand the complex links
between function and behavior, and treat and cure brain dis-
orders. This initiative might test and extend the current limits
of technologies for Big Data collection and analysis, as NIH
director Francis Collins stated that collection, storage, and
processing of yottabytes (a billion petabytes) of data would
eventually be required for this initiative.

While the potential of Big Data is undoubtedly significant,
fully achieving this potential requires new ways of thinking

and novel algorithms to address many technical challenges.
For example, most traditional machine learning algorithms
were designed for data that would be completely loaded into
memory. With the arrival of Big Data age, however, this
assumption does not hold any more. Therefore, algorithms
that can learn from massive amounts of data are needed.
In spite of all the recent achievement in large-scale deep

learning as discussed in Section 3, this field is still in its
infancy. Much more needs to be done to address many sig-
nificant challenges posted by Big Data, often characterized
by the three V’s model: volume, variety, and velocity [63],
which refers to large scale of data, different types of data, and
the speed of streaming data, respectively.

A. DEEP LEARNING FROM HIGH VOLUMES OF DATA
First and foremost, high volumes of data present a great
challenging issue for deep learning. Big data often possesses
a large number of examples (inputs), large varieties of class
types (outputs), and very high dimensionality (attributes).
These properties directly lead to running-time complexity and
model complexity. The sheer volume of data makes it often
impossible to train a deep learning algorithm with a central
processor and storage. Instead, distributed frameworks with
parallelized machines are preferred. Recently, impressive
progresses have been made to mitigate the challenges related
to high volumes. The novel models utilize clusters of CPUs
or GPUs in increasing the training speed without scarifying
accuracy of deep learning algorithms. Strategies for data par-
allelism or model parallelism or both have been developed.
For example, data and models are divided into blocks that fit
with in-memory data; the forward and backward propagations
can be implemented effectively in parallel [56], [58], although
deep learning algorithms are not trivially parallel.
The most recent deep learning framework can handle a

significantly large number of samples and parameters. It is
also possible to scale up with more GPUs used. It is less
clear, however, how the deep learning systems can continue
scaling significantly beyond the current framework. While
we can expect the continuous growth in computer memory
and computational power (mainly through parallel or dis-
tributed computing environment), further research and effort
on addressing issues associated with computation and com-
munication management (e.g., copying data or parameters or
gradient values to different machines) are needed for scaling-
up to very large data sets. Ultimately, to build the future deep
learning system scalable to Big Data, one needs to develop
high performance computing infrastructure-based systems
together with theoretically sound parallel learning algorithms
or novel architectures.
Another challenge associated with high volumes is the

data incompleteness and noisy labels. Unlike most conven-
tional datasets used for machine learning, which were highly
curated and noise free, Big Data is often incomplete result-
ing from their disparate origins. To make things even more
complicated, majority of data may not be labeled, or if
labeled, there exist noisy labels. Take the 80 million tiny
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image database as an example, which has 80 million low-
resolution color images over 79,000 search terms [64]. This
image database was created by searching the Web with every
non-abstract English noun in the WordNet. Several search
engines such as Google and Flickr were used to collect the
data over the span of six months. Some manual curation was
conducted to remove duplicates and low-quality images. Still,
the image labels are extremely unreliable because of search
technologies.

One of the unique characteristics deep learning algorithms
possess is their ability to utility unlabeled data during train-
ing: learning data distribution without using label informa-
tion. Thus, the availability of large unlabeled data presents
ample opportunities for deep learning methods. While data
incompleteness and noisy labels are part of the Big Data
package, we believe that using vastly more data is preferable
to using smaller number of exact, clean, and carefully curated
data. Advanced deep learning methods are required to deal
with noisy data and to be able to tolerate some messiness.
For example, a more efficient cost function and novel training
strategy may be needed to alleviate the effect of noisy labels.
Strategies used in semi-supervised learning [65]–[68] may
also help alleviate problems related to noisy labels.

B. DEEP LEARNING FOR HIGH VARIETY OF DATA
The second dimension for Big Data is its variety, i.e., data
today comes in all types of formats from a variety sources,
probably with different distributions. For example, the rapidly
growing multimedia data coming from the Web and mobile
devices include a huge collection of still images, video and
audio streams, graphics and animations, and unstructured
text, each with different characteristics. A key to deal with
high variety is data integration. Clearly, one unique advantage
of deep learning is its ability for representation learning –with
either supervised or unsupervised methods or combination
of both, deep learning can be used to learn good feature
representations for classification. It is able to discover inter-
mediate or abstract representations, which is carried out using
unsupervised learning in a hierarchy fashion: one level at a
time and higher-level features defined by lower-level features.
Thus, a natural solution to address the data integration prob-
lem is to learn data representations from each individual data
sources using deep learningmethods, and then to integrate the
learned features at different levels.

Deep learning has been shown to be very effective in
integrating data from different sources. For example, Ngiam
et al. [69] developed a novel application of deep learning
algorithms to learn representations by integrating audio and
video data. They demonstrated that deep learning is gen-
erally effective in (1) learning single modality representa-
tions through multiple modalities with unlabeled data and
(2) learning shared representations capable of capturing cor-
relations across multiple modalities. Most recently, Srivas-
tava and Salakhutdinov [70] developed a multimodal Deep
BoltzmannMachine (DBM) that fuses two very different data
modalities, real-valued dense image data and text data with

sparse word frequencies, together to learn a unified repre-
sentation. DBM is a generative model without fine-tuning:
it first builds multiple stacked-RBMs for each modality; to
form amultimodal DBM, an additional layer of binary hidden
units is added on top of these RBMs for joint representation.
It learns a joint distribution in the multimodal input space,
which allows for learning even with missing modalities.
While current experiments have demonstrated that deep

learning is able to utilize heterogeneous sources for sig-
nificant gains in system performance, numerous questions
remain open. For example, given that different sources may
offer conflicting information, how can we resolve the con-
flicts and fuse the data from different sources effectively and
efficiently. While current deep learning methods are mainly
tested upon bi-modalities (i.e., data from two sources), will
the system performance benefits from significantly enlarged
modalities? Furthermore, at what levels in deep learning
architectures are appropriate for feature fusion with hetero-
geneous data? Deep learning seems well suited to the inte-
gration of heterogeneous data with multiple modalities due
to its capability of learning abstract representations and the
underlying factors of data variation.

C. DEEP LEARNING FOR HIGH VELOCITY OF DATA
Emerging challenges for Big Data learning also arose from
high velocity: data are generating at extremely high speed
and need to be processed in a timely manner. One solution
for learning from such high velocity data is online learning
approaches. Online learning learns one instance at a time
and the true label of each instance will soon be available,
which can be used for refining the model [71]–[76]. This
sequential learning strategy particularly works for Big Data
as current machines cannot hold the entire dataset in memory.
While conventional neural networks have been explored for
online learning [77]–[87], only limited progress on online
deep learning has been made in recent years. Interestingly,
deep learning is often trained with stochastic gradient descent
approach [88], [89], where one training example with the
known label is used at a time to update the model parameters.
This strategy may be adapted for online learning as well.
To speed up learning, instead of proceeding sequentially one
example at a time, the updates can be performed on a mini-
batch basis [37]. Practically, the examples in each mini-batch
are as independent as possible. Mini-batches provide a good
balance between computer memory and running time.
Another challenging problem associated with the high

velocity is that data are often non-stationary, i.e., data dis-
tribution is changing over time. Practically, non-stationary
data are normally separated into chunks with data from a
small time interval. The assumption is that data close in
time are piece-wise stationary and may be characterized by
a significant degree of correlation and, therefore, follow the
same distribution [90]–[97]. Thus, an important feature of a
deep learning algorithm for Big Data is the ability to learn the
data as a stream. One area that needs to be explored is deep
online learning – online learning often scales naturally and
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is memory bounded, readily parallelizable, and theoretically
guaranteed [98]. Algorithms capable of learning from non-
i.i.d. data are crucial for Big Data learning.

Deep learning can also leverage both high variety and
velocity of Big Data by transfer learning or domain adaption,
where training and test data may be sampled from different
distributions [99]–[107]. Recently, Glorot et al. implemented
a stacked denoising auto-encoder based deep architecture for
domain adaption, where one trains an unsupervised repre-
sentation on a large number of unlabeled data from a set of
domains, which is applied to train a classifier with few labeled
examples from only one domain [100]. Their empirical results
demonstrated that deep learning is able to extract a meaning-
ful and high-level representation that is shared across different
domains. The intermediate high-level abstraction is general
enough to uncover the underlying factors of domain varia-
tions, which is transferable across domains. Most recently,
Bengio also applied deep learning of multiple level repre-
sentations for transfer learning where training examples may
not well represent test data [99]. They showed that more
abstract features discovered by deep learning approaches are
most likely generic between training and test data. Thus, deep
learning is a top candidate for transfer learning because of its
ability to identify shared factors present in the input.

Although preliminary experiments have shown much
potential of deep learning in transfer learning, applying deep
learning to this field is relatively new and much more needs
to be done for improved performance. Of course, the big
question is whether we can benefit from Big Data with deep
architectures for transfer learning.

In conclusion, Big Data presents significant challenges
to deep learning, including large scale, heterogeneity, noisy
labels, and non-stationary distribution, among many others.
In order to realize the full potential of Big Data, we need to
address these technical challenges with new ways of thinking
and transformative solutions. We believe that these research
challenges posed by Big Data are not only timely, but will
also bring ample opportunities for deep learning. Together,
they will provide major advances in science, medicine, and
business.
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