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Abstract In this paper we estimate the gravity model allowing for the pervasive issues of 

heteroscedasticity and zero bilateral trade flows identified in an influential recent paper 

by Santos Silva and Tenreyro. We use Monte Carlo simulations with data generated using 

a heteroscedastic, limited-dependent-variable process to investigate the extent to which 

different estimators can deal with the resulting parameter biases. While the Poisson 

Pseudo-Maximum Likelihood estimator recommended by Santos Silva and Tenreyro 

solves the heteroscedasticity-bias problem when this is the only problem, it appears to 

yield severely biased estimates when zero trade values are frequent. Standard threshold-

Tobit estimators perform better as long as the heteroscedasticity problem is satisfactorily 

dealt with. The Heckman Maximum Likelihood estimators appear to perform well if true 

identifying restrictions are available.   
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 I. Introduction 
 

The gravity model is now enormously popular for analysis of a wide range of trade 

questions. This popularity is due partly to its apparently good performance in 

representing trade flows and partly to the strong theoretical foundations provided in 

papers such as Anderson (1979) and Anderson and van Wincoop (2003). In an influential 

recent paper, Santos Silva and Tenreyro (2006) focused on econometric problems 

resulting from heteroscedastic residuals and the prevalence of zero bilateral trade flows. 

Using Monte Carlo simulations, they showed that traditional estimators are likely to yield 

severely-biased parameter estimates and identified a preferred estimator that appeared to 

overcome these problems. Applying this estimator to real-world data, they obtained 

results that raised serious questions about one of the key theoretical predictions of 

Anderson and van Wincoop (2003)—a unit coefficient on GDP—and about previous 

empirical estimates of distance effects. Given the widespread use the gravity model in 

modern empirical trade analysis, the questions raised by Santos Silva and Tenreyro have 

justly received a great deal of attention. 

The first concern raised by Santos Silva and Tenreyro (2006) was a fundamental 

one—the fact that, by Jensen’s inequality, a log linear model cannot be expected to 

provide unbiased estimates of mean effects when the errors are heteroscedastic. The 

existence of the problem is non-controversial. What was striking was the magnitude of 

the apparent bias, with popular estimators frequently yielding estimates biased by 35 

percent or more (positively or negatively) in large samples. 

The second concern emphasized by Santos Silva and Tenreyro (2006) arises from 

the prevalence of zero values of the dependent variables, which are undefined when 

converted into logarithms for estimation using the popular log-linear specification. Santos 
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Silva and Tenreyro pointed out that these values are very common—almost half of the 

observations in their empirical application were zero. Hurd (1979) has shown that 

heteroscedasticity can lead to large biases in samples truncated by exclusion of zero 

values—as has been the case in most estimates of the gravity model—although 

Arabmazar and Schmidt (1981) found these problems to be less serious in the censored 

regression case where the zero values are retained. 

The tractable and apparently robust alternative approach to estimation 

recommended by Santos Silva and Tenreyro—the Poisson Pseudo-Maximum-Likelihood 

(PPML) estimator—has already been widely adopted in estimation of gravity equations 

(see, for example, Westerlund and Wilhelmsson (2007); Xuepeng Liu (2007); Hebble, 

Shepherd and Wilson (2007)).  Santos Silva and Tenreyro show why the normal 

equations used to solve for the PPML estimator should make it more robust, and show 

using Monte Carlo simulations that its coefficient estimates are much less subject to bias 

resulting from heteroscedasticity. Their case for the Poisson estimator seems extremely 

strong for analysis of nonlinear relationships in models where zero values of the 

dependent variable are infrequent.1 

Given the firm theoretical underpinnings for zero trade provided in recent papers 

such as Baldwin and Harrigan (2007); Hallak (2006); and Helpman, Melitz and 

Rubinstein (2007), it seems important to follow Santos Silva and Tenreyro’s suggestions 

(2006, p642) to examine the performance of limited-dependent variable estimators that 

                                                 
1 Heteroscedasticity in nonlinear models with relatively few zero observations is likely to 

arise in many empirical studies in economics, including estimation of consumer demand 

systems, firm cost and profit functions, and consumption, investment and money demand 

functions. 
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are robust to distributional assumptions and to examine whether their endorsement of the 

PPML estimator holds under data generating process that generate substantial numbers of 

true zero observations. This re-examination seems particularly important because, for 

their Monte-Carlo analyses, Santos Silva and Tenreyro used a data-generating-process 

that generates no zero values. They did create some zero values for sensitivity analyses 

by rounding observations but—as they note—this is a different data generating process 

from that underlying the zero values in modern theoretical models where firms choose 

whether to trade and, if so, how much to trade (see Helpman, Melitz, and Rubinstein 

(2007)). 

If the PPML estimator does not prove robust to the joint problems of 

heteroscedasticity and limited-dependent variables, then a key challenge is to identify an 

approach that can deal with these problems. To address this challenge, we outline a 

strategy for choosing estimators in the limited-dependent variable case, and then provide 

evidence on the performance of different estimators. 

The next section of the paper considers the potential estimation problems 

associated with samples containing zero values of the dependent variable, particularly 

when heteroscedasticity is present. After considering the strategy for selecting estimators, 

and outlining a range of potential estimators, we use Monte Carlo analysis to assess 

which approaches come closest to reliably recovering the true parameter values. Finally, 

we investigate the implications of the choice of estimator for the parameter estimates 

obtained in a real-world application of the gravity model.  

II. Econometric Problems Associated with Zero Trade Flows  

In recent years, it has become widely recognized that the level of trade—even in the 

aggregate—between any two countries is frequently zero. Around half the observations 
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on total bilateral trade in the data sets used by Santos Silva and Tenreyro (2006) and by 

Helpman, Melitz, and Rubinstein (2007) were of zero trade flows—and the share in 

datasets involving disaggregated trade flows is frequently much higher. Baldwin and 

Harrigan (2007) find that 92.6 percent of potential import flows to the USA at the finest 

(10-digit) level of disaggregation are zero. Some of the reports of zero trade reflect non-

reporting or errors and omissions and a few may reflect rounding error associated with 

very small trade flows. However, it appears that most of the zero trade flows between 

country pairs in carefully-prepared datasets reflect a true absence of trade, rather than 

rounding errors. Hallak (2006), Helpman, Melitz, and Rubinstein (2007) and Baldwin 

and Harrigan (2007) attribute these zeros to failure to meet the fixed costs associated with 

establishing trade flows.  

Since Tobin’s famous (1958) paper, it has been known that zero values of the 

dependent variable can create potentially large biases in parameter estimates, even in 

linear models, if the estimator used does not allow for this feature of the data generating 

process. Heckman (1979) generalized Tobin’s approach to estimation in the presence of 

this problem, casting it in the context of estimation in samples with non-random sample 

selection. A nonlinear version of Heckman’s formulation of the problem is presented in a 

two equation context: 

(1)    y*
1i  =  f(x1i,β1) + u1i  

(2)    y*
2i  =  f(x2i,β2)  + u2i  

where xji is a vector of exogenous regressors, βi  is a Kj*1 vector of parameters, and  

E(uji) = 0,   

E(uji uj´i´´)  =  σjj if    i = i´´    

     =     0  if     i ≠ i´´  
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In Heckman’s formulation, equation (1) is a behavioral equation of interest and equation 

(2) is a sample selection rule that determines whether observations have a non-zero value, 

and results in:   

(3)   y1i =  y*
1i    if        y*

2i > 0  or 

(4)   y1i  = 0       if   y*
2i ≤ 0   

A key problem for estimation of equation (1) in the presence of sample selection is that 

its residuals no longer have the properties assumed in standard regression theory, 

particularly a zero mean. In this situation, standard regression procedures result in biased 

estimates of the coefficient vector βi   suffer from omitted variable bias because they omit 

relevant explanatory variables.  

The Tobit model is a special case of the Heckman model with the right hand sides 

of (1) and (2) identical (Heckman 1979). In this case, we must distinguish between a 

latent variable, y*, and the actual realized value of y. which equals zero when y*≤ 0. In 

this situation, a simple diagram based on Tobin’s Figure 1 provides important insights 

into the key problems arising in applying standard approaches to estimation. Our version 

of the figure includes the nonlinearity and heteroscedasticity of the gravity equation 

emphasized by Santos Silva and Tenreyro (2006) as well as a limited-dependent variable.  
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Figure 1. The nature of the limited-dependent variable bias 
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Figure 1 shows the relationship between a latent variable, y*, and an explanatory variable, 

x, with the nonlinear non-stochastic relationship represented by the solid curve, and 

individual data points by the bullets. Observations corresponding to any value of y* less 

than zero (white bullets) are observed as zero realizations of y. In this censored regression 

case, the residuals associated with low values of the latent variable are likely to be 

replaced by the positive residuals that lead to a zero value of the dependent variable, a 

change represented by the dashed arrows in the diagram. With this model, using standard 

estimation procedures on a sample containing the zero values is likely to bias downward 

the slope of the relationship between x and y* at all points, resulting in an estimate 

something like the dashed curve (Greene 1981). The diagram makes clear that a 

demonstration of the quality of an estimator based on its performance with non-censored 

data may provide little or no indication of its performance when the data generating 

process is characterized by a limited-dependent variable relationship. 
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Another insight from careful examination of Figure 1 is the difference between 

the case of censoring shown in the diagram and the case of truncation where all of the 

observations at the limit (zero in this case) are discarded from the sample. In the 

censoring case, the error terms on all of the limit observations are transformed from their 

initial values to zero. In the case of truncation, only those values of the error terms that 

lead to positive y* values are retained. In the diagram, this leads to exclusion of the 

rightmost white bullet, and hence to a situation where E(u)>0. Intuitively, the 

transformation of the error terms associated with the censored sample seems likely to be 

greater than that associated with the truncated sample. This suggests that moving from a 

truncated estimation procedure to one which retains the zero values without changing the 

estimation procedure, may result in worse estimates. 

The diagram shows another feature of the residuals from application of a 

regression estimator designed for non-censored problems. Such estimators are likely to 

find residuals that are both large and serially dependent at both ends of the regression 

line—note the consistently positive apparent residuals relative to the dashed line in 

Figure 1 for observations on observations near zero and near the largest observations in 

the sample. The estimated regression line is likely to be strongly influenced by such 

extreme observations, particularly when using ordinary least squares (Beggs 1988). 

However, the implications of this are likely to vary considerably between estimators, 

given the different weighting implied by the normal equations for the different estimators 

(Santos Silva and Tenreyro 2006).  

With a little more imagination, Figure 1 can also help visualize a different 

problem associated with heteroscedasticity even in the absence of the nonlinearity 

problem identified by Santos Silva and Tenreyro. Observations at the zero limit reflect 
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the probability mass associated with all outcomes below zero, meaning that their 

likelihood is characterized by the distribution function, rather than a density function. If 

the variance of the error term for these observations is incorrectly specified—as it would 

be with a model assuming homoscedasticity applied to the data points represented in the 

diagram—this will clearly bias the realized values of the distribution function, potentially 

creating bias in any coefficients estimated from this sample. If the underlying data 

generating process involves heteroscedastic errors, this introduces a link between 

heteroscedasticity and bias in coefficient estimates that is quite different from the 

Jensen’s inequality problem. 

III. Potential Approaches to Estimating Gravity Models with Zeros 

In estimating the gravity model when there are many zero observations, some key 

questions must be confronted: 

i. Which functional form to use for the explanatory variables? 

ii. Whether to truncate or censor the zero observations? and 

iii. What estimator to use? 

There seems to be universal agreement that the gravity model involves 

relationships between variables that are nonlinear in levels, with the functional form for 

the underlying relationship between the explanatory variables in the levels being that 

used by Santos Silva and Tenreyro (2006, p644): 

(5) yi   =   exp(xiβ) + εi 

where yi represents bilateral trade; xi is a vector of explanatory variables (some of which 

may be linear, some in logarithms and some dummy variables) for observation i, β is a 

vector of coefficients, and εi is an error term whose variance, unlike those of equations 

(1) and (2), need not be constant across observations. As noted by Santos Silva and 
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Tenreyro, the gravity model has traditionally been estimated after taking logarithms, 

which allows estimation using linear regression techniques. However, econometric 

problems are likely unless εi = exp(xiβ).vi where vi is distributed independently of xi with 

a zero mean and constant variance.  

The use of the logarithmic transformation for the dependent variable creates an 

immediate difficulty when trade is zero, since the log of zero is undefined. The most 

common response to this problem is to truncate the sample by deleting the observations 

with zero trade. This is, in principle, inefficient, since it ignores the information in the 

limit observations. Many studies have replaced the value of imports by the value of 

imports plus one, allowing the log of the zero values to take a zero value. Others have 

estimated in levels, which automatically allows the zero values to be retained. However, 

as we have seen from Figure 1, retaining the zero observations without using an estimator 

that accounts for the special features of the resulting model may lead to more bias than 

simply truncating the sample. What seems to be needed is an approach to estimation that 

systematically takes into account the information in the limit observations. 

Once the decision to include the limit observations is taken, a number of other 

decisions must be confronted. We find it useful to lay out the choices with the following 

decision tree: 
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Figure 2. Choosing an estimator for the gravity model with limited-dependent trade 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At the first stage of the decision tree, analysts must decide between parametric 

models and semi-parametric models. Semi-parametric models (Chay and Powell 2001) 

avoid specifying a distribution for the residuals, sometimes at the expense of 

computational efficiency, and estimate parameters using methods such as Powell’s 

(1984) Censored Least Absolute Deviations (CLAD) model. While such models have 

been extended to deal with nonlinear models (Berg 1998), it appears that such 

applications have been infrequent to date. Certainly, most of the focus in estimation of 

gravity models has been on the parametric branch of the decision tree. 

If the parametric approach is taken, the first decision required is whether to adopt 

a Tobit/Heckman model (Amemiya 1984), or a Two-Part model (Jones 2000). The Two-

Parametric Semi-Parametric 

Tobit/Heckman Two-Part 

Normal 
Residuals Other 

Normal 
Residuals Other 

2-Step MLE 2-Step MLE 
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Part model has the desirable feature of allowing the sample selection and the behavioral 

equations to be estimated independently (Duan et al. 1983). However, this simplification 

comes at the expense of assuming that these decisions are taken independently, 

something that seems implausible in a world where decisions on whether to trade and 

how much to trade are taken by individual firms based on the profitability of trade in their 

products. In most cases, it seems to us that the variable of interest is the latent variable for 

the desired level of trade, y*, for which the Tobit/Heckman approach seems the most 

suited. If predictions of actual trade levels conditional on positive trade are required, they 

can still be generated using the Tobit/Heckman approach.  

A key argument for the Two-Part model has been a belief that the performance of 

the sample-selection models is irretrievably compromised by statistical problems, and 

particularly multicollinearity. Leung and Yu (1996) show that these problems may be less 

of a problem for practical implementation than was thought based on earlier studies such 

as Manning, Duan and Rogers (1987), since earlier studies included insufficient variation 

in the exogenous variables to mitigate the multicollinearity between these variables and 

the additional variables in the Heckman (1979) sample selection model.2 Based on a 

detailed review of the literature on the Heckman correction for sample selection bias, 

Puhani (2000) found that the full information maximum likelihood estimator of 

Heckman’s model generally gives better results than either the two-step Heckman 

estimator or the Two-Part model, although the Two-Part model is more robust to 

                                                 
2 Leung and Yu (1996, p201) show that problems with Heckman’s two-step estimator are 

more likely when there are few exclusion restrictions; a high degree of censoring; limited 

variability among the exogenous regressors; or a large error variance in the choice 

equation. 
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multicollinearity problems than the other standard estimators. Clearly, these results 

suggest that the consistency of the data with the assumptions of the Heckman/Tobit 

models should be examined carefully. 

Whichever parametric estimator is chosen, an assumption about the distribution of 

the residuals must be made. The most common approach is to assume that the residuals 

are distributed normally. However, alternative assumptions are sometimes used, 

including the Poisson distribution highlighted by Santos Silva and Tenreyro (2006) or the 

Gamma distribution that they also examined. The decision about which distribution to 

use need not be based solely on judgments about the actual distribution of the residuals. 

The essence of Santos Silva and Tenreyro’s recommendation of the PPML estimator was 

that it is more robust to heteroscedasticity than one based on the normal distribution even 

when the residuals are actually normally distributed. 

The first part of the Two-Part approach is the use of a qualitative-dependent 

model such as Probit to determine whether a particular bilateral trade flow will be zero or 

positive. The second part is to estimate the relationship between trade values and 

explanatory variables using only the truncated sample of observations with positive trade 

(Leung and Yu 1996, p198). Potential estimators for this stage include the standard 

approach of OLS in logarithms; the nonlinear least squares (NLS) model used by Frankel 

and Wei (1993); and the PPML and Gamma Pseudo-Maximum Likelihood (GPML) 

estimators discussed by Santos Silva and Tenreyro. 

Under the Tobit/Heckman limited-dependent branches of the decision tree, a 

decision must be made about whether to estimate using two-step estimators of the type 

proposed by Heckman (1979) or a maximum likelihood approach (see Tobin (1958), 

Puhani (2000) and Jones (2000)). The ingenious Heckman two-step estimator involves 
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adding a variable that adjusts for the probability of sample selection, and hence 

overcomes the omitted variable bias to which the model is subject without this addition. 

One concern is that this additional variable3 may be close to a linear function of the other 

explanatory variables, resulting in multicollinearity problems (Puhani 2000). A second 

concern is that this approach introduces heteroscedasticity into the residuals. An 

alternative, nonlinear, approach to estimating Heckman’s second-step equation is 

provided by Wales and Woodland (1980, p461). We do not consider this estimator 

because it performed poorly in their simulations. 

The performance of Heckman/Tobit models appears to depend heavily on whether 

both equations (1) and (2) are active, and whether there are at least some variables 

included in equation (1) but excluded from equation (2). Leung and Yu (1996) found this 

estimator with some excluded variables in the behavioral equation outperformed other 

estimators for limited-dependent variables. 

IV. Monte Carlo Simulations 

In this section of the paper, we extend the procedures used by Santos Silva and Tenreyro 

(2006) for the case without limited-dependent variables to cases where zero observations 

of the dependent variable occur with frequencies similar to those observed in real-world 

data. We also follow the approach to dealing with heteroscedasticity taken by Santos 

Silva and Tenreyro and by Westerlund and Wilhelmsson that is, we posit a range of 

different types of heteroscedasticity, and test these implications of these for the 

performance of different estimators.  

We adopted the Santos Silva and Tenreyro (2006, p647) specification in equations 

(14) and (15) of their paper.  

                                                 
3 Which is the inverse Mills ratio for the particular observation (Heckman 1979). 
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(6) yi =  exp(β0 + β1x1i + β2x2i).ηi  

where x1i is a standard normal variable designed to mimic the behavior of continuous 

explanatory variables such as distance or income levels; x2i  is a binary dummy designed 

to mimic variables such as border dummies that equals 1 with probability 0.4 and the data 

are randomly generated using β0=0, β1= β2 =1. Following Santos Silva and Tenreyro, we 

assumed that ηi is log-normally distributed with mean 1 and variance σi
2.  

To assess the sensitivity of the different estimators to different patterns of 

heteroskedasticity, we used Santos Silva and Tenreyro’s four cases:  

Case 1: σi
2. = (exp(xiβ))-2 ;    V(yi׀x) = 1 

Case 2: σi
2. = (exp(xiβ))-1 ;    V(yi׀x) = exp(xiβ) 

Case 3: σi
2. =  1 ;     V(yi׀x) = (exp(xiβ))2 

Case 4:  σi
2. = (exp(xiβ))-1 +exp(x2i) ; V(yi׀x) = exp(xiβ)  + exp(x2i).(exp(xiβ))2

 

where Case 1 involves an error term that is homoscedastic when the equation is estimated 

in the levels; Case 3 is homoscedastic for estimation in logarithms; Case 2 is an 

intermediate case; and Case 4 represents a situation in which the variance of the residual 

is related to the level of a subset of the explanatory variables, as well as to the expected 

value of the dependent variable. 

To incorporate the true zero estimates, we ensured that a significant number of 

observations would have zero values by adding a negative intercept term, -k, in the levels 

version of the data-generating equation, and then transforming all realizations of the 

latent variable with a value below zero into zero values. This approach is the data-

generating process underlying the Eaton and Tamura (1994) estimator and has the 

interpretation of introducing a threshold level of potential trade that must be exceeded 

before trade actually occurs. It differs fundamentally from the rounding approach used by 
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Santos Silva and Tenreyro and the approaches of setting observations to zero randomly or 

for particular groups used by Martinez-Zarzoso, Nowak-Lehmann and Vollmer (2007). It 

also differs from the data generating process for a model with different explanatory 

variables in the selection and behavioral models—a model that we investigate later in the 

paper. Our data generating process for these initial simulations was: 

(7)   yi
0 = exp(xiβ) - k = exp(β0 + β1x1i + β2x2i).ηi   - k 

where yi = yi
0   if   yi

0  ≥   0;  yi =  0 if yi
0  <   0 

Within our sample, we found that a value for k of 1 provides numbers of zero trade values 

consistent with the 40-50 percent of zero values frequently observed in analyses of total 

bilateral trade. A k value of 1.5 generated higher shares of zeros and a substantial 

increase in the mean trade level although the share of zero trade levels still falls 

somewhat below the 70 percent observed by Brenton (personal communication) in an 

analysis of bilateral trade at the 5-digit level of the SITC. Table 1 shows two measures of 

the extent of censoring in the sample generated using equation (4). The analysis was 

performed in Stata 9.2, using double precision to minimize numerical errors and we 

followed Santos Silva and Tenreyro in using samples of 1000 observations, replicated 

10,000 times. . 

Our first estimation task was to replicate the simulations of Santos Silva and 

Tenreyro to ensure that our approach gave the right results for a sample without 

censoring. The results of this replication are presented in Appendix Table 1. While our 

results are not exactly the same as Santos Silva and Tenreyro’s because of the stochastic 

nature of the analysis, they are completely consistent.  

With this validation accomplished, we began with a semi-parametric approach, 

the LAD model. We then turned to the traditional single-equation models that do not 
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explicitly allow for estimation of the limited-dependent nature of the data-generating 

process. Next, we considered single-equation models designed for situations with 

censored data. Finally, we examined sample-selection models where the selection 

equation includes variables that are excluded from the equation determining trade 

volumes. 

Semi-Parametric Estimators 

Given the pervasive uncertainty about the distribution of the errors, and the relatively 

poor results obtained using standard limited-dependent variable estimators, it seemed 

important to investigate the performance of the semi-parametric, Least-Absolute-

Deviations (LAD) approach proposed by Powell (1984). Although this model has not, to 

our knowledge, been applied to the estimation of gravity models, Paarsch (1984) found 

the censored version of this model to give satisfactory results in large samples with 

censored data. Because the version of this estimator in Stata requires the model to be 

linear, we examined the model in logarithms to make an initial assessment of its 

suitability. We considered first the truncated LAD estimator based only on the positive 

observations, and then turned to Powell’s (1984) censored LAD estimator. The results are 

presented in Table 2. 

From the results in Table 2, it appears that the Truncated LAD estimator has quite 

small bias in Case (3), when the heteroscedasticity is consistent with the functional form 

adopted for estimation. However, it appears to be very vulnerable to heteroscedasticity. 

In cases (1), (2) and (4), the bias of the Truncated LAD was typically 20 to 30 percent 

even in samples of 1000. The Censored LAD estimator performed extremely badly in 

cases (1) to (3), with bias typically in the order of 70 percent. Given this poor 
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performance, even with a censored data-generating-process, we did not pursue this 

estimator further.  

Standard Single-Equation Estimators 

In this section, we considered: (i) the traditional truncated OLS in logs regression, (ii) its 

censored counterpart with 0.1 added to the log of output, (iii) Truncated NLS in levels, 

(iv) Censored NLS, (v) a Gaussian Pseudo-Maximum Likelihood estimator, (vi) a 

Poisson Pseudo-Maximum Likelihood estimator, and (vii) Truncated Pseudo-Maximum 

Likelihood estimator. Results for k=1 and k=1.5 are presented in Tables 3 and 4 

respectively.  

An important feature of the results for the truncated OLS-in-logarithms model is 

its apparently strong sensitivity to the heteroscedasticity problems emphasized by Santos 

Silva and Tenreyro. In Case 3, where the error distribution is consistent with the log-

linear model, this model produces estimates with very small bias for k = 1.5. Where k = 

1.0, the bias is around 5 percent for both coefficients. However, when we move to cases, 

involving heteroscedastic errors in the log-linear equation, the bias changes markedly. 

Where k = 1, the estimated bias rises to around 20 percent in cases 1 and 2, and -20 

percent in case 4. The response of the bias to changes in the heteroscedasticity reflects 

one of Santos Silva and Tenreyo’s key findings. For this estimator, unlike many others, 

the biases in the coefficients are generally similar for the normally distributed 

explanatory variable, x1, and the dummy variable, x2.  

The censored OLS model estimated in logarithms (with 0.1 added to overcome 

the log-of-zero problem) produces results that are almost always inferior to those 

obtained from the truncated OLS estimator discussed above. Except in Case 4, the biases 

were larger in absolute value, although the estimated standard errors were somewhat 
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smaller. The biases were also less consistent between x1 and x2 than was the case with the 

truncated OLS. This result confirms our prediction from Figure 1 that results obtained 

from a censored model would likely be inferior to those from a truncated model. 

Truncated NLS is the levels counterpart to the traditional estimator—truncated 

OLS in logs. The NLS estimator has lower bias than its logarithmic counterpart only in 

case 1, and is distinctly inferior in all other cases. In Case 3, the bias of the NLS 

estimator for k=1 is 40 percent for β1, nearly eight times the bias of truncated OLS. 

Perhaps the best thing that can be said for the truncated NLS estimator is that it is 

consistently less biased than the censored NLS regression model. In most cases, the bias 

of the censored regression is between 25 and 30 percent higher than for the corresponding 

truncated model. The superiority of the truncated OLS and NLS models over their 

censored regression counterparts suggests that just solving the “zero problem” and adding 

the zero valued observations to the sample is quite an unhelpful strategy.  

The PPML estimator in levels yielded estimates that were strongly biased in all 

cases. Because this equation was estimated with the dependent variable in levels, the 

underlying error structure is consistent with the estimator in case 1. In this case, the bias 

in the estimate of β1 was 0.25 for k = 1 and 0.36 for k = 1.5. For β2 the corresponding 

biases were 0.28 and 0.4. In most other cases, the same pattern prevailed, with biases that 

were large, and higher with a greater degree of censoring. Consistent with Santos Silva 

and Tenreyro’s findings, the bias with this estimator appears to be much less affected by 

heteroscedasticity than other estimators. Our results, however, suggest this advantage 

needs to be weighed in the gravity model context against its apparently greater 

vulnerability to the sample selection bias associated with limited-dependent variables. 
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A feature of our results for the standard estimators—and one which recurs 

throughout our findings and is consistent with the findings of Santos Silva and Tenreyro 

(2006)— is the wide variation in the size and direction of the bias in parameter estimates. 

In contrast with the findings of Greene (2001) for a linear model, the bias in the estimate 

of the slope coefficient resulting from use of the truncated or censored estimators is not 

consistently negative, and nor does it appear to be consistently related to the sample 

proportion of non-limit observations. Clearly, these results mean that much more caution 

is needed in interpreting results than is the case with linear models. 

Single Equation Limited-Dependent Variable Estimators 

Next, we turned to some of the single-equation models designed specifically for 

estimation with limited-dependent variables. First, we estimated the Eaton-Tamura model 

with the dependent variable in levels. Next, we turned to this model estimated with the 

dependent variable in logarithms, as originally proposed by Eaton and Tamura (1994). 

Then, we turned to the logical counterpart to the Poisson model advocated by Santos 

Silva and Tenreyro, a Tobit-type pseudo-maximum likelihood estimator with the 

residuals specified to be distributed Poisson. This is essentially the Tobit-Poisson model 

of Terza (1985). To program the likelihood function in Stata, we needed to replace the 

factorial function with exp(lngamma(y+1)) to allow evaluation with non-integer values of 

the dependent variable.   

The last two estimators in Tables 4 and 6 are the Heckman (1979) estimators—in 

both two-stage and maximum likelihood versions (see Amemiya (1984) for the derivation 

of the likelihood function). While—in contrast with two-stage least squares for 

simultaneous models—exclusion of a first stage regression variable from the second 

stage is not necessary for identification, the presence of such a variable may help mitigate 



 

 20 

the frequently serious problems of multicollinearity in the second-stage equation. Our 

initial examination of the Heckman estimators assesses their performance in the specific 

Tobit case where the regressors and the error terms in the behavioral and sample selection 

equations are the same and exclusion of a first-stage variable would be inappropriate.  

Key results for cases with k = 1 and k = 1.5 are presented in Tables 5 and 6. Since 

the broad pattern of results is similar, we discuss them together, except where there are 

important differences. 

The Eaton-Tamura Tobit estimator with the dependent variable in levels has quite 

low bias—around three or four percent—relative to other estimators in Case 1. The same 

model estimated in logarithms produces quite good estimates—around six percent bias 

for β1 with k=1 and 1.3 percent for k=1.5—in Case 3, when the underlying error structure 

is consistent with its assumptions. Importantly, however, the bias of this estimator 

increases sharply as the residuals become heteroscedastic relative to the assumed 

functional form. In Case 1 the results from the log-linear model are biased downwards by 

25 percent for both coefficients, at both depths of censoring. The E-T Tobit in levels had 

larger bias than its counterpart Truncated NLS except in case (1). This result parallels 

Manning, Duan and Rogers’ (1987) finding that truncated OLS (Part 2 of the Two-Part 

model) can outperform sample-selection models even when the data are generated using a 

sample-selection process. 

The Poisson-Tobit estimator in levels had very substantial bias in almost every 

case. Even in Case 1, where the error structure is consistent with the levels specification, 

the bias was around 25 percent for both β1 and β2 with k=1 and 35 and 40 percent with 

k=1.5. Consistent with Santos Silva and Tenreyro’s findings, the extent of the bias does 

not appear to be sensitive to the properties of the error term. In Case 3, the extent of the 
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bias with this estimator is in the same size range for both k=1 and 1.5. Comparing the 

Poisson-Tobit result with the PPML, we find very little difference in the bias of the 

corresponding pairs of coefficient estimates. Simply moving to a limited dependent 

variable formulation provides little benefit in this case. 

The two Heckman estimators are presented only in logarithms, since only the log-

linear version can be estimated in standard statistical packages, such as Stata.  We 

attempted to estimate the linear-in-levels version by maximum likelihood, but the 

estimator failed to converge—a common problem with this type of estimator (Nawata 

1994). The two-step estimator performed extremely badly in almost all cases, with biases 

of 70 to 80 percent in numerous cases. The performance of these estimators was better in 

case (3), where heteroscedasticity should not have been a problem, than in most other 

cases. But even in this case, both of the Heckman-type estimators were outperformed by 

the E-T Tobit in logarithms. 

All of the limited-dependent variable estimators in Tables 5 and 6 are attempting 

a difficult challenge—to identify the sample selection using only information on the 

distribution of residuals, and to estimate the other parameters. One feature of the Monte 

Carlo simulations presented above that makes the challenge greater is an unused 

restriction. While we know that the β0 in the data generating process (equation (6)) was 

set to zero, this restriction has not been imposed in estimation because we are unlikely to 

have this information in practical applications. However, it remains of interest to know 

whether this information makes a difference to the results. Appendix Table 2 reports the 

results from Table 5 re-estimated with this restriction imposed. 

This restriction noticeably reduced the bias of the estimates associated with the 

two NLS estimators, PPML, the E-T Tobit estimators and the Poisson-Tobit. It did not 



 

 22 

lead to consistently lower bias, and frequently led to higher bias, with the OLS estimates, 

the GPML and the Heckman estimators. The PPML and Poisson-Tobit results were very 

similar and generally, although not always, inferior to the NLS and E-T Tobit results. In 

many cases, the GPML estimator performed much worse than in the absence of the 

restriction. The overall performance of the NLS and E-T Tobit estimators was very 

similar, although one or other was quite biased in some specific cases, such as case 4, 

where the E-T Tobit in levels had a bias of 0.33. The similarity between the results for 

the E-T Tobit estimator and the NLS estimators is surprising given that the E-T Tobit 

estimator is based on precisely the model used to generate the data. For these estimators, 

these results echo the finding by Manning, Duan and Rogers (1987) of superior 

performance by a standard estimator over one designed to deal with sample selection 

even when the sample selection model was the true model. 

One potential approach to improving the performance of the E-T Tobit model 

might be to adjust for heteroscedasticity. We did this using the adjustments proposed by 

Maddala (1985), in which the error variance is specified by the process 

22 ))(( βδγσ ii x+=  for the log-linear model, and γ and δ are parameters estimated 

together with the behavioral parameters of interest using nonlinear least squares.  For the 

linear-in-levels model, the specified error process is 22 ))(exp( βδγσ ii x+= . The results 

from this estimation process are presented in Table 7.  

The E-T Tobit model in logarithms performs much better in Cases 1 to 3 than the 

E-T Tobit model without correction for heteroscedasticity. However, in Case 4, where the 

form of heteroscedasticity considered is not nested within the error specification, the 

performance is not worse than in Table 5. A disturbing feature of these results, even in 

cases (1) to (3), is the very high standard errors associated with the use of this estimator. 
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These standard errors do decline with sample size. Using a sample of 10,000, which is 

more consistent with contemporary cross-sectional analyses, these errors generally fall by 

approximately 30%. However, they suggest a need for caution in using this estimator 

unless the sample is very large.  

The estimates obtained using the linear-in-levels model are generally much less 

satisfactory than those for the model in logs. Only in case (1) is the bias of this estimator 

reasonably small. In cases (2) through (4) both the bias and the standard error of these 

estimates are large. An indication of the problem with this estimator is provided by the 

estimates of β0. These show very large bias relative to the true value of zero for this 

parameter. The performance of this estimator improves enormously if β0 is restricted to its 

true value of zero. In all cases except the estimate on the dummy variable in case (4), the 

bias is relatively small. Unfortunately, it seems unlikely that the information needed to 

impose this restriction with confidence would be available in real-world applications. 

Clearly, the formulations used to deal with the heteroscedasticity problem in this 

section are completely consistent with the data-generating process in cases (1) to (3), but 

do not fully represent this process in Case (4). Case (4) could be captured relatively easily 

in the log-linear case using a more general representation of heteroscedasticity, such as 

2
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2 )( xx ii δδγσ ++= . This would involve estimation of only one additional parameter 

in this simulation, while reducing the nonlinearity of the problem. However, it would 

likely involve many more additional parameters in actual empirical studies, which 

frequently include 10 or more explanatory variables. In the linear-in-variables case, it is 

less obvious how this approach might be generalized.  

Sample Selection Models with Exclusion Restrictions 
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In light of the poor performance of all of the single equation models, we examined  

sample selection models based on Heckman (1979) such as those used by Francois and 

Manchin (2007); Lederman and Ozden (2007) and Helpman, Melitz and Rubeinstein 

(2007). In contrast with the single-equation version of the Heckman model presented in 

Tables 5 and 6, we assume in this section that the selection equation contains at least one 

variable that is excluded from the behavioral equation. To generate the data for this test, 

we use equation (6) for the behavioral equation, but add a sample selection equation: 

(9) y2i=α0+ α1 x1i+ α2 x2i+ α3 x3i+u2i 

which determines whether or not y1i is included in the sample for estimation. Variables 

x1and x2i are included in both equation (9) and (6) with coefficient values of unity, but 

their interpretation is, of course, different since equation (9) is linear. The error term in 

(9) is u2i~N(0,1) while the covariance between u2i and η1i is 0.5  In addition, we include an 

additional, independently-distributed variable x3i which is a dummy variable 4  with 

probability 0.5 of being equal to one. If the realization of equation (9) exceeds its 

threshold value, that observation takes a nonzero value in equation (6). Otherwise y1i is 

zero. The thresholds are set at the 30th and 50th percentiles of the distribution of y2i, so 

that roughly 30% and 50% of trade outcomes are zero. 

Using datasets of 1000 observations, we apply the Heckman estimation procedure 

in logarithms 10,000 times to assess its performance. The results of this estimation for the 

behavioral equation are presented in Table 8. A striking feature of the results of this 

analysis is the dramatic improvement in the results relative to earlier simulations, both 

when estimated in logs and in levels. Even for the two-step estimator in logs, the degree 

                                                 
4 The dummy variable is used as the excluded variable since the excluded variable is 

typically a dummy variable (see Helpman, Melitz and Rubinstein 2007). 
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of bias is an order of magnitude lower than in the earlier experiments. For the maximum 

likelihood estimator in logs, the reduction in bias is extraordinarily large, going from the 

highest amongst the standard estimators in the single equation case to the lowest by far in 

this experiment. The Heckman ML estimator produces estimates with very little bias in 

seven out of eight cases, with the exception being the estimate of β2 in case (4).  

Estimation of the Heckman model in levels by the two-step procedure is 

straightforward, except that a degree of ambiguity is introduced by the linear functional 

form of equation (9) required to allow its estimation using standard Probit estimators. 

Estimation of this model by maximum likelihood in Stata presented challenges. The 

maximum likelihood estimator was solved eventually with the derivatives provided 

analytically, although we are concerned about whether the results represent a global 

maximum. Interestingly, when estimating in levels, the two-step estimator had smaller 

bias than the maximum likelihood estimator in almost all cases, and generally much 

lower standard errors.  

The apparent success of the Heckman Maximum Likelihood estimators in logs is 

particularly striking given that they make no explicit adjustment for the heteroscedasticity 

problem. The fact that they are estimated in logs means that they are subject to the 

Jensen’s inequality problem emphasized by Santos Silva and Tenreyro. Further, there is 

some degree of bias due to the replacement of zero values of trade by unitary ones that 

yield a log of zero. However, our result is consistent with the findings by Manning, Duan 

and Rogers (1987) and by Leung and Yu (1996) that the sample selection model performs 

better than the two-part model (in this case the comparator is the truncated logarithmic 

OLS estimator) when there are exclusion restrictions. 
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Clearly, these results have potentially important implications for applied work. A 

key question is whether we have data on truly independent variables that belong in the 

selection equation but not in the trade value equation. Given the derivation of such 

models by Helpman, Melitz and Rubinstein (2007) or Baldwin and Harrigan (2007), 

variables associated with the fixed costs of establishing trade flows would appear to 

qualify. Variables such as the common-religion dummy used by Helpman, Melitz and 

Rubinstein (2007); common-language dummies; or the “Doing Business” indicators on 

the costs of starting a business seem plausible as indicators of fixed, rather than variable, 

costs of exporting. The exclusion of each country’s GDP from the trade flow equation in 

Hallak (2006) seems less appealing from this perspective.  

V. Empirical Implementation 

To investigate the performance of our preferred estimators relative to alternatives such as 

the traditional truncated OLS model, and the E-T Tobit estimator, and PPML we used the 

Santos Silva and Tenreyro (2006, p649) dataset kindly provided by the authors—a cross-

sectional dataset of 18360 observations for 136 exporters and 135 importers . We 

considered both traditional (including GDP’s as explanatory variables) and the Anderson-

van Wincoop (using country fixed effects) specifications. The results for this single 

analysis are presented in Tables 9 and 10. 

The results in Table 9 are very informative for the insights they provide into the 

coefficients on GDP and the log of distance. Our preferred estimators, the Heckman ML 

and the E-T Tobit with correction for autocorrelation, suggest that the coefficient on 

exporter GDP is close to unity. This finding seems to be generally robust to the choice of 

exogenous variables to exclude in the second stage. Even though the Heckman-ML 

estimator has a smaller coefficient than the E-T Tobit, the difference between the 
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Heckman-ML coefficient and unity (0.02) is economically unimportant. By contrast, the 

PPML estimate is 0.711, substantially below one. For all estimators, the variable for 

importer’s GDP has a smaller coefficient (between 0.8 and 0.9 with our preferred 

specifications) than the unitary coefficient suggested by Anderson and van Wincoop 

(2003). The results also point to a substantial difference in the estimated effects of 

distance between the PPML estimator and our preferred estimator, with our preferred 

estimators yielding estimates around 1.2 while the PPML estimator is 0.76. If we accept 

these results as indicating the possibility that the PPML estimator is biased, then one 

surprising feature is that the PPML estimates are biased down relative to the other 

estimators, even though our Monte Carlo analysis found upward bias in the estimates on 

both continuous and dummy variables in all of the four cases we considered.  

A key feature of Table 10 is that the Anderson-van Wincoop (2003) formulation 

yields a similar, but larger, difference between the estimated impacts of distance in the 

PPML estimator and other estimators. In this case, our preferred estimators yield 

estimates of -1.38 or -1.29 while the PPML estimator yields an estimate of -0.75. Again, 

the surprising feature of the PPML estimate is that it appears to be biased downwards.  

VI. Conclusions 

The purpose of this paper is to follow up on the challenge laid down by Santos Silva and 

Tenreyro—to consider estimation of the gravity model in situations where zero trade 

flows are prevalent, particularly when trade is considered at a disaggregate level. In doing 

this, we build on Santos Silva and Tenreyro (2006) heteroscedasticity is a potentially 

major source of bias in traditional log-dependent estimating models of the gravity 

equation.  
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Acknowledging recent theoretical developments that suggest the reason for many 

cases of zero trade is failure to meet the fixed costs of establishing such trade, we devise 

a strategy for choosing an estimator. With this as background, we identify a number of 

potential estimators and investigate whether they lead to unbiased parameter estimates in 

the presence of these econometric problems. We use Monte Carlo simulations based on 

the design of Santos Silva and Tenreyro, modified to include a threshold level of trade 

that must be surmounted before positive trade levels are observed. The threshold was set 

to generate frequencies of zero trade similar to that observed in studies of aggregate trade 

flows. 

The Monte-Carlo simulations confirm the importance of heteroscedasticity as a 

source of bias with a number of estimators, and the lesser susceptibility of the Poisson 

pseudo maximum likelihood (PPML) estimator to this problem. However, their 

recommended PPML estimator is found to be strongly susceptible to limited-dependent 

variable bias when a substantial fraction of the observations are censored. This problem 

does not appear to be solved with a Tobit-type censoring regression based on the Poisson 

distribution. The bias in the resulting estimator is generally similar to that of the PPML 

estimator, and frequently around 25 percent. While the resulting bias with this estimator 

is apparently not greatly influenced by the pattern of heteroscedasticity, it remains large 

across all of the forms of heteroscedasticity considered. 

The smallest biases amongst the single-equation models were found with Eaton-

Tamura Tobit estimators, but only when the functional form is consistent with the form 

of heteroscedasticity, or an appropriate correction is made to deal with heteroscedasticity. 

With errors consistent with estimation in levels, the bias of the Eaton-Tamura model was 

around 3 or 4 percent, irrespective of the fraction of the sample censored. With errors 
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consistent with log-linear estimation, the E-T model in logarithms also had the lowest 

bias. These estimators were, however, very vulnerable to deviations from the assumed 

distribution of the residuals. The E-T Tobit in logs, for instance, was biased downwards 

by about 25 percent when the underlying data were consistent with estimation in levels. 

Both the truncated and the censored Least Absolute Deviation estimators gave 

very poor results, with very large bias, suggesting that semi-parametric estimation may 

not provide a solution to the combined problems of heteroscedasticity and sample 

selection plaguing estimation of the gravity model. The censored model generally 

produced much worse results than the truncated model, even though the data were 

generated using a censoring process. 

The Heckman sample-selection estimators—whether in two-step or maximum 

likelihood—gave very poor results when estimated for a single equation with the same 

variables in the selection and estimation equations. However, when the data-generating 

process for the Monte Carlo simulations was modified to include an additional variable in 

the determination of bilateral flows with positive trade, the performance of these 

estimators improved dramatically, and yielded a combination of small bias and small 

standard errors in seven out of eight cases even without directly addressing the 

heteroscedasticity problem. Fortunately, the new trade theories that attempt to explain 

zero trade flows through firm heterogeneity suggest that there are some variables—those 

related to the fixed costs of establishing trade flows—that are appropriately excluded 

from the equation for the level of trade. The maximum likelihood estimator substantially 

outperformed the traditionally-favored two-step instrumental variable estimator, 

suggesting that a move to this approach to estimation would be desirable.  
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Finally, our empirical application to the Santos Silva and Tenreyro dataset found 

that the PPML estimator reconfirmed their assessment that the PPML estimator yielded 

smaller estimates of GDP and distance effects than other estimators. Our preferred 

estimators yielded estimates much closer to findings from traditional models such as 

truncated OLS than those of the PPML estimator. Given the difficulties encountered by 

the PPML estimator in dealing with data generated from datasets with zero trade levels, 

this difference would seem more likely due to the vulnerability of the PPML estimator 

than of received theory and empirical evidence. 
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Table 1. Indicators of the degree of censoring for different intercept values 
Percentage of Zero Trade Values 

 k = 1.0 k= 1.5 
  % % 

Case 1 41 51 
Case 2 44 54 
Case 3 49 60 
Case 4 55 64 

Percentage change in Mean  
Case 1 15 38 
Case 2 15 40 
Case 3 16 43 
Case 4 19 50 
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Table 2. Monte Carlo results from Least-Absolute-Deviations Estimators 

  Dependent   β1    β2 

Estimator 
Variable 

Form Bias Std Error.   Bias Std Error.  

(k=1.0) 

Case 1: V[yi|x]=1 
Truncated LAD Log 0.2189 0.0331  0.2284 0.0480 
Censored LAD Log 0.4906 0.0496  0.5069 0.0672 

Case 2: V[yi|x]=exp(xiβ) 
Truncated LAD Log 0.1898 0.0447  0.1946 0.0791 
Censored LAD Log 0.5307 0.0237  0.5606 0.0354 

Case 3: V[yi|x]=(exp(xiβ))2 
Truncated LAD Log 0.0291 0.0754  0.0277 0.1271 
Censored LAD Log 0.5145 0.0424  0.5311 0.0627 

Case 4: V[yi|x]=exp(xi β)+exp(x2i) (exp(xiβ))2 
Truncated LAD Log -0.1915 0.0917  -0.1836 0.1547 
Censored LAD Log  0.5749 0.1856   0.1249 0.2450 

(k=1.5) 

Case 1: V[yi|x]=1 
Truncated LAD Log 0.2825 0.0389  0.2906 0.0558 
Censored LAD Log 0.6703 0.0204  0.6899 0.0284 

Case 2: V[yi|x]=exp(xiβ) 
Truncated LAD Log 0.2106 0.0527  0.2106 0.0922 
Censored LAD Log 0.7111 0.0271  0.7343 0.0434 

Case 3: V[yi|x]=(exp(xiβ))2 
Truncated LAD Log -0.0169 0.0901  -0.0127 0.1505 
Censored LAD Log 0.7032 0.0529  0.7152 0.0855 

Case 4: V[yi|x]=exp(xi β)+exp(x2i) (exp(xiβ))2 
Truncated LAD Log -0.2501 0.1067  -0.1856 0.1773 
Censored LAD Log 0.0178 0.1783   0.0139 0.1389 
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Table 3. Monte Carlo results with standard estimators, (k=1.0) 

  Dependent   β1    β2 

Estimator 
Variable 

Form Bias Std Error.   Bias Std Error. 

Case 1: V[yi|x]=1 
Truncated OLS Log 0.2045 0.0589  0.2198 0.0845 
OLS (ln(y+0.1)) Log 0.2682 0.0287  0.3541 0.0576 
Truncated NLS Level 0.0980 0.0216  0.1101 0.0269 
Censored NLS Level 0.1382 0.0341  0.1693 0.0358 
GPML Level 0.4236 0.2064   0.4164 0.2356 
PPML Level 0.2505 0.0356  0.2800 0.0447 
Truncated PPML Level 0.0964 0.0282  0.0984 0.0409 

Case 2: V[yi|x]=exp(xiβ)   
Truncated OLS Log 0.1903 0.0578  0.1971 0.0929 
OLS (ln(y+0.1)) Log 0.2327 0.0302  0.3154 0.0641 
Truncated NLS Level 0.0888 0.0434  0.0985 0.0739 
Censored NLS Level 0.1202 0.0458  0.1434 0.0759 
GPML Level 0.5925 0.1857   0.5705 0.2154 
PPML Level 0.2580 0.0387  0.2883 0.0616 
Truncated PPML Level 0.0819 0.0304  0.0812 0.0565 

Case 3: V[yi|x]=(exp(xiβ))2   
Truncated OLS Log 0.0585 0.0669  0.0569 0.1147 
OLS (ln(y+0.1)) Log 0.0961 0.0362  0.1621 0.0772 
Truncated NLS Level 0.3958 20.4693  0.0906 2.8135 
Censored NLS Level 0.5032 24.2816  0.1895 2.1603 
GPML Level 0.9216 0.1563   0.8640 0.2055 
PPML Level 0.2550 0.0896  0.2899 0.1435 
Truncated PPML Level 0.0275 0.0282  0.0294 0.1457 

Case 4: V[yi|x]=exp(xi β)+exp(x2i) (exp(xiβ))2   
Truncated OLS Log -0.1885 0.0793  -0.1579 0.1366 
OLS (ln(y+0.1)) Log 0.0115 0.0412  0.1520 0.0895 
Truncated NLS Level 0.6677 25.2023  0.2360 7.1123 
Censored NLS Level 0.8191 24.4597  0.3241 6.364 
GPML Level 0.4991 0.1793   0.5581 0.2474 
PPML Level 0.1978 0.1219  0.2580 0.1886 
Truncated PPML Level -0.1265 0.1514  0.0318 0.1964 
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Table 4. Monte Carlo results with standard estimators, (k=1.5) 

  Dependent   β1    β2 

Estimator 
Variable 

Form Bias Std Error.   Bias Std Error. 

Case 1: V[yi|x]=1 
Truncated OLS Log 0.2274 0.0721  0.2365 0.1015 
OLS (ln(y+0.1)) Log 0.2300 0.0312  0.3294 0.0623 
Truncated NLS Level 0.1430 0.0311  0.1596 0.0350 
Censored NLS Level 0.2099 0.0523  0.2621 0.0529 
GPML Level 0.5317 0.2694   0.5210 0.3155 
PPML Level 0.3565 0.0489  0.4004 0.0557 
Truncated PPML Level 0.1513 0.0351  0.1527 0.0489 

Case 2: V[yi|x]=exp(xiβ)   
Truncated OLS Log 0.1875 0.0686  0.1877 0.1095 
OLS (ln(y+0.1)) Log 0.1859 0.0332  0.2784 0.0691 
Truncated NLS Level 0.1238 0.0497  0.1354 0.0829 
Censored NLS Level 0.1727 0.0554  0.2051 0.0874 
GPML Level 0.7811 0.2655   0.7487 0.2655 
PPML Level 0.2581 0.0386  0.2883 0.0616 
Truncated PPML Level 0.1108 0.0304  0.1070 0.0652 

Case 3: V[yi|x]=(exp(xiβ))2   
Truncated OLS Log 0.0150 0.0794  0.0078 0.1355 
OLS (ln(y+0.1)) Log 0.0261 0.0399  0.0975 0.0820 
Truncated NLS Level 0.4323 22.8808  0.0897 3.0700 
Censored NLS Level 0.5591 23.8062  0.2499 2.1946 
GPML Level 1.2545 0.2476   1.1793 0.3106 
PPML Level 0.3367 0.0999  0.3842 0.1643 
Truncated PPML Level 0.0092 0.1182  0.0087 0.1659 

Case 4: V[yi|x]=exp(xi β)+exp(x2i) (exp(xiβ))2   
Truncated OLS Log 0.2477 0.0908  -0.1608 0.1558 
OLS (ln(y+0.1)) Log 0.0907 0.0442  0.1892 0.0921 
Truncated NLS Level 0.6759 27.5164  0.2413 6.8576 
Censored NLS Level 0.9026 24.7490  0.3913 6.2925 
GPML Level 0.6443 0.2393   0.7508 0.3229 
PPML Level 0.2576 0.1319  0.3513 0.2083 
Truncated PPML Level -0.1692 0.1669  0.0344 0.2166 
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Table 5. Monte Carlo results with limited dependent variable estimators, (k=1.0) 

  Dependent   β1    β2 
Estimator Variable Form Bias Std Error.   Bias Std Error. 

Case 1: V[yi|x]=1 
ET-Tobit Level 0.0335 0.025  0.0339 0.0301 
ET-Tobit Log -0.2510 0.0375  -0.2517 0.0446 
Poisson-Tobit Level 0.2510 0.0344  0.2795 0.0441 
Heckman-ML Log 0.2840 0.0484  0.3016 0.0772 
Heckman-2SLS Log 0.5979 0.0734  0.6241 0.0981 

Case 2: V[yi|x]=exp(xiβ) 
ET-Tobit Level 0.1478 0.0762  0.1594 0.0846 
ET-Tobit Log -0.1509 0.0430  -0.1603 0.0554 
Poisson-Tobit Level 0.2584 0.0378  0.2876 0.0619 
Heckman-ML Log 0.2782 0.0478  0.2878 0.0869 
Heckman-2SLS Log 0.5778 0.0851  0.5963 0.1158 

Case 3: V[yi|x]=(exp(xiβ))2 
ET-Tobit Level 0.6566 0.1818  0.6683 0.1711 
ET-Tobit Log 0.0667 0.0624  0.0621 0.0888 
Poisson-Tobit Level 0.2415 0.0785  0.2811 0.1383 
Heckman-ML Log 0.1396 0.0742  0.1399 0.119 
Heckman-2SLS Log 0.2988 0.1450  0.3026 0.1751 

Case 4: V[yi|x]=exp(xi β)+exp(x2i) (exp(xiβ))2 
ET-Tobit Level 0.6846 0.0844  0.7269 0.3015 
ET-Tobit Log 0.0639 0.0753  0.0081 0.1142 
Poisson-Tobit Level 0.1629 0.0917  0.2031 0.1614 
Heckman-ML Log -0.0294 0.1080  -0.1419 0.1472 
Heckman-2SLS Log 0.3576 0.2619  0.2391 0.2312 
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Table 6. Monte Carlo results with limited dependent variable estimators, (k=1.5) 

  Dependent   β1    β2 
Estimator Variable Form Bias Std Error.   Bias Std Error. 

Case 1: V[yi|x]=1 
ET-Tobit Level 0.0368 0.0303  0.0414 0.0348 
ET-Tobit Log -0.2401 0.0435  -0.2494 0.0507 
Poisson-Tobit Level 0.3570 0.0471  0.3998 0.0549 
Heckman-ML Log 0.3446 0.0568  0.3584 0.0906 
Heckman-2SLS Log 0.7749 0.096  0.8052 0.1242 

Case 2: V[yi|x]=exp(xiβ) 
ET-Tobit Level 0.1847 0.0836  0.1980 0.0889 
ET-Tobit Log -0.1884 0.0494  -0.1908 0.0613 
Poisson-Tobit Level 0.3562 0.0492  0.3983 0.0739 
Heckman-ML Log 0.3109 0.0548  0.3158 0.1012 
Heckman-2SLS Log 0.7081 0.1094  0.7274 0.1438 

Case 3: V[yi|x]=(exp(xiβ))2 
ET-Tobit Level 0.5731 0.3302  0.6209 0.2696 
ET-Tobit Log 0.0131 0.1628  0.0741 0.077 
Poisson-Tobit Level 0.3279 0.0881  0.3752 0.1591 
Heckman-ML Log 0.1255 0.1041  0.1211 0.1518 
Heckman-2SLS Log 0.3477 0.1999  0.3492 0.2336 

Case 4: V[yi|x]=exp(xi β)+exp(x2i) (exp(xiβ))2 
ET-Tobit Level 0.7267 0.0919  0.7688 0.0894 
ET-Tobit Log 0.0809 0.0915  0.0525 0.1304 
Poisson-Tobit Level 0.2047 0.0880  0.2271 0.1239 
Heckman-ML Log -0.0739 0.1779  -0.1264  0.1939 
Heckman-2SLS Log 0.4101 0.3653  0.3465 0.3172 
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Table 7: Monte Carlo Results: Eaton-Tamura Tobit Adjusted for Heteroscedasticity, (k=1) 

 β0 β1 β 2 
 Bias  Std. Error.  Bias Std. Error. Bias Std. Error. 
Logs       

Case 1 0.0218 0.3373 -0.0267 0.1627 -0.0567 0.2085 
Case 2 -0.0625 0.4037 -0.041 0.2378 -0.1221 0.3498 
Case 3 -0.3332 0.4974 -0.0082 0.2644 -0.0656 0.3593 
Case 4 -0.2574 0.4185 -0.1816 0.3898 -0.2748 0.3996 

Levels       
Case 1 0.0832 0.3797 -0.0187 0.1202 -0.0211 0.1201 
Case 2 0.5125 0.2509 -0.1656 0.1006 -0.1773 0.1198 
Case 3 0.7819 0.6879 -0.2625 0.2654 -0.2713 0.3105 
Case 4 1.3579 0.9614 -0.4723 0.317 -0.3661 0.487 

Levels, β0 =0       
Case 1 - - -0.0051 0.1589 -0.0383 0.6146 
Case 2 - - 0.0073 0.0145 0.0371 0.0323 
Case 3 - - 0.0365 0.0470 0.0584 0.0780 
Case 4 - - -0.0236 0.0648 0.3465 0.0836 
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Table 8: Monte Carlo Results: Heckman Model with exclusion restriction 

(Samples of 1000) 

Estimator Approximate %  β1      β 2 
  Zero Values  Bias  Std. Error.    Bias Std. Error. 
Heckman-2SLS-Log 
Case 1 30% 0.1281 0.0420  0.1344 0.0554 
 50% 0.0802 0.0121  0.0853 0.059 
Case 2 30% 0.1157 0.0433  0.1203 0.0597 
 50% 0.0855 0.0499  0.0892 0.0673 
Case 3 30% -0.00002 0.0107  -0.00009 0.0151 
 50% -0.000006 0.0136  -0.00006 0.0184 
Case 4 30% 0.0538 0.0122  -0.1963 0.0144 
 50% 0.0449 0.0139  -0.2082 0.0156 
Heckman-Maximum Likelihood-Log 
Case 1 30% 0.0345 0.0303  0.0408 0.0454 
 50% -0.0136 0.0319  -0.0102 0.0468 
Case 2 30% 0.0310 0.0297  0.0354 0.0495 
 50% 0.00057 0.0334  0.0027 0.0543 
Case 3 30% -0.00009 0.0107  -0.00016 0.0151 
 50% -0.00006 0.0137  -0.00012 0.0184 
Case 4 30% 0.0612 0.0104  -0.1889 0.0132 
 50% 0.0467 0.0132  -0.2061 0.0151 
Heckman-2SLS-Levels 
Case 1 30% -0.0045 0.0216  -0.0036 0.0274 
 50% -0.0065 0.0187  -0.0053 0.0252 
Case 2 30% -0.0001 0.0739  0.0013 0.0915 
 50% -0.0033 0.0732  -0.0011 0.0898 
Case 3 30% 0.0043 0.0799  0.0033 0.0868 
 50% 0.0046 0.0803  0.0035 0.0864 
Case 4 30% -0.0030 0.0731  -0.2842 0.0606 
 50% -0.0020 0.0732  -0.2831 0.0599 
Heckman-Maximum Likelihood-Levels 
Case 1 30% 0.0192 0.0600  0.0033 0.1207 
 50% 0.0237 0.0624  0.0086 0.0573 
Case 2 30% -0.0260 0.6658  0.0337 0.1470 
 50% 0.0746 0.2576  0.1300 0.6889 
Case 3 30% 0.0098 0.1621  -0.0252 0.1527 
 50% -0.0106 0.3015  0.0641 0.4603 
Case 4 30% 0.0272 0.1015  -0.3042 0.1462 
 50% -0.2533 2.6453   -0.1309 1.2949 
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Table 9: Traditional Gravity Equation 

 Truncated PPML Heckman Heckman Heckman Heckman Heckman Heckman ET-Tobit 
Independent Variables OLS  2SLS ML 2SLS ML 2SLS ML  
                    
Log exporter's GDP 0.938 ** 0.711 ** 1.023 ** 0.964 ** 1.030 ** 0.976 ** 1.044 ** 0.981 ** 1.076 ** 
 (0.012) (0.027) (0.017) (0.014) (0.020) (0.016) (0.020) (0.016) (0.011) 
Log importer's GDP 0.798 ** 0.720 ** 0.854 ** 0.813 ** 0.893 ** 0.856 ** 0.902 ** 0.859 ** 0.902 ** 
 (0.012) (0.025) (0.014) (0.012) (0.016) (0.014) (0.016) (0.014) (0.010) 
Log exporter's GDPC 0.200 ** 0.191 ** 0.224 ** 0.214 ** 0.208 ** 0.203 ** 0.209 ** 0.203 ** 0.212 ** 
 (0.017) (0.056) (0.017) (0.017) (0.019) (0.019) (0.019) (0.019) (0.016) 
Log importer's GDPC 0.099 ** 0.170 ** 0.128 ** 0.116 ** 0.081 ** 0.072 ** 0.083 ** 0.074 ** 0.139 ** 
 (0.018) (0.045) (0.017) (0.017) (0.019) (0.019) (0.019) (0.019) (0.015) 
Log distance -1.172 ** -0.756 ** -1.308 ** -1.255 ** -1.263 ** -1.232 ** -1.272 ** -1.235 ** -1.223 ** 
 (0034) (0.060) (0.036) (0.034) (0.038) (0.038) (0.038) (0.038) (0.031) 
Contiguity 0.317 * 0.170 0.191 0.272 * 0.171 0.217 0.158 0.213 -0.304 * 
 (0.127) (0.100) (0.146) (0.143) (0.155) (0.154) (0.156) (0.154) (0.115) 
Common language 0.670 ** 0.751 **   0.817 ** 0.770 ** 0.829 ** 0.774 ** 0.807 ** 
 (0.067) (0.129)   (0.071) (0.070) (0.071) (0.070) (0.061) 
Colonial tie 0.389 ** 0.013 0.902 ** 0.850 ** 0.363 ** 0.351 ** 0.365 ** 0.352 ** 0.391 ** 
 (0.070) (0.145) (0.056) (0.055) (0.076) (0.075) (0.076) (0.075) (0.064) 
Landlocked_exporter -0.063 -0.888 ** -0.049 -0.051 -0.062 -0.067 -0.063 -0.067 -0.271 ** 
 (0.062) (0.150) (0.065) (0.065) (0.068) (0.068) (0.068) (0.068) (0.057) 
Landlocked_importer -0.665 ** -0.721 ** -0.676 ** -0.667 ** -0.706 ** -0.695 ** -0.710 ** -0.695 ** -0.714 ** 
 (0.060) (0.133) (0.064) (0.064) (0.067) (0.066) (0.067) (0.067) (0.053) 
Exporter’s remoteness 0.482 ** 0.353 ** 0.653 ** 0.616 ** 0.552 ** 0.540 ** 0.556 ** 0.541 ** 0.444 ** 
 (6.08) (0.127) (0.078) (0.080) (0.084) (0.083) (0.084) (0.084) (0.070) 
Importer’s remoteness -0.189 * 0.249 ** -0.055 -0.069 -0.141 -0.135  -0.144 -0.136 -0.055 
 (0.085) (0.121) (0.081) (0.080) (0.087) (0.086) (0.088) (0.087) (0.076) 
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Table 9: Traditional Gravity Equation 

 Truncated PPML Heckman Heckman Heckman Heckman Heckman Heckman ET-Tobit 
Independent Variables OLS  2SLS ML 2SLS ML 2SLS ML  
                    
FTA 0.487 ** 0.120 0.412 ** 0.438 ** 0.442 ** 0.458 ** 0.438 ** 0.457 ** -0.189 * 
 (0.098) (0.086) (0.107) (0.106) (0.121) (0.120) (0.122) (0.120) (0.075) 
Openess -0.106 * -0.447 ** -0.031 -0.094 * -0.018 -0.068 -0.005 -0.064 0.089 * 
 (0.050) (0.083) (0.049) (0.048) (0.051) (0.050) (0.051) (0.050) (0.045) 
Number of observations 9613 18360 15500 15500 15500 15500 15500 15500 18360 
Excluded variable: No No        
  Common language   Yes Yes      
  Starting-business 
procedures     Yes Yes    
  Starting-business time       Yes Yes  
Heteroscedasticity 
correction No No No No No No No No Yes 

    γ          2.538 ** 
         (0.041) 

   δ          -0.1027 ** 
                  (0.0042) 
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Table 10: The Anderson-van Wincoop Gravity Equation 

 Truncated PPML Heckman Heckman Heckman Heckman Heckman Heckman ET-Tobit 
Independent Variables OLS  2SLS ML 2SLS ML 2SLS ML  
Log distance -1.347 ** -0.750 ** -1.383** -1.382 ** -1.383 ** -1.383 ** -1.380 ** -1.380 ** -1.290 ** 
 (0.031 (0.041) (0.031) (0.030) (0.034) (0.034) (0.034) (0.034) (0.030) 
Contiguity 0.174 0.370 ** 0.184 0.185 0.151 0.152 0.155  0.155  -0.224 
 (0.129) (0.091) (0.125) (0.125) (0.135) (0.135) (0.134) (0.134) (0.126) 
Common language 0.406 ** 0.383 **   0.447 ** 0.447 ** 0.444 ** 0.444 ** 0.520 ** 
 (0.067) (0.093)   (0.070) (0.070) (0.070) (0.070) (0.059) 
Colonial tie 0.666 ** 0.079  0.917** 0.915 ** 0.615 ** 0.614 ** 0.613 ** 0.613 ** 0.656 ** 
 (0.70) (0.134) (0.055) (0.055) (0.074) (0.074) (0.073) (0.073) (0.060) 
FTA 0.310 ** 0.376 ** 0.289 ** 0.291 ** 0.283 ** 0.283 ** 0.288 ** 0.288 ** -0.344 ** 
  (0.098) (0.077) (0.099) (0.098) (0.112) (0.112) (0.111) (0.111) (0.095) 
Exporter fixed effect Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Importer fixed effect Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Number of observations 9613 18360 18360 18360 15500 15500 15500 15500 18360 
Excluded variable: No No        
  Common language   Yes Yes      
  Start-business procedure     Yes Yes    
  Start-business time       Yes Yes  
Heteroscedasticity corrn No No No No No No No No Yes 

     γ           1.973 ** 
            (0.049) 

    δ          -0.0684 ** 
                  (0.0053) 
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Appendix Table 1. Replicating Santos Silva and Tenreyro’s “Log of Gravity” Results 

   β1   β2 

Estimator 
Dependent Variable 

Form Bias Std Error.   Bias Std Error. 

Case 1: V[yi|x]=1 
PPML Level 0.00021 0.016  0.0006 0.027 
NLS Level -0.000063 0.008  0.00014 0.017 
GPML Level 0.01370 0.068  0.0086 0.083 
OLS Log 0.39001 0.390  0.35635 0.053 
OLS(y>0.5) Log -0.16340 0.027 -0.15428 0.038 
OLS(y+1) Log -0.40217 0.013  -0.37644 0.022 
       

Case 2: V[yi|x]=μ(xiβ) 
PPML Level -0.00006 0.019  0.00052 0.039 
NLS Level 0.00040 0.033  0.00122 0.057 
GPML Level 0.00440 0.043  0.0029 0.062 
OLS Log 0.21072 0.030  0.20032 0.048 
OLS(y>0.5) Log -0.17817 0.026 -0.17158 0.042 
OLS(y+1) Log -0.42357 0.014  -0.39894 0.025 
       

Case 3: V[yi|x]=μ(xiβ)2 
PPML Level -0.00378 0.071  -0.00089 0.101 
NLS Level 0.34889 22.873  0.04003 2.030 
GPML Level -0.00001 0.031  0.00036 0.064 
OLS Log -0.00002 0.026  0.00074 0.053 
OLS(y>0.5) Log -0.26688 0.033  -0.26648 0.055 
OLS(y+1) Log -0.49065 0.019  -0.47112 0.034 

Case 4: V[yi|x]=μ(xi β)+exp(x2i) μ(xiβ)2 
PPML Level -0.00751 0.102  -0.00582 0.146 
NLS Level 0.58673 23.663  0.10991 3.206 
GPML Level 0.00410 0.057  -0.0009 0.109 
OLS Log 0.13249 0.039  -0.12444 0.075 
OLS(y>0.5) Log -0.39215 0.042  -0.41328 0.072 
OLS(y+1) Log -0.51437 0.021  -0.58055 0.041 
              

 
 
 



 

 45 

 

Appendix Table 2. Monte Carlo results with standard estimators 
(β0=0 and k=1.0) 

 Dependent   β1   β2 
Estimator Variable Form Bias Std Error.   Bias Std Error. 

Case 1: V[yi|x]=1 
Truncated OLS Log -0.0975 0.0357  -0.4425 0.0540 
OLS (ln(y+0.1)) Log 0.2680 0.0276  -0.7498 0.0415 
Truncated NLS Level 0.0024 0.0114  -0.1923 0.0159 
Censored NLS Level 0.0079 0.0111  -0.1066 0.0164 
GPML Level 0.4107 0.1795  0.5727 0.0988 
PPML Level 0.0514 0.0110  -0.2906 0.0145 
Truncated PPML Level -0.0250 0.0162  -0.1475 0.0238 

Case 2: V[yi|x]=exp(xiβ) 
Truncated OLS Log -0.1217 0.0419  -0.4934 0.0635 
OLS (ln(y+0.1)) Log 0.2325 0.0299  -0.8597 0.0487 
Truncated NLS Level 0.0008 0.0254  -0.0870 0.0421 
Censored NLS Level 0.0074 0.0234  -0.1064 0.0407 
GPML Level 0.5348 0.1509  -0.5930 0.0898 
PPML Level 0.0337 0.0195  -0.2535 0.0359 
Truncated PPML  -0.0239 0.0224  -0.1330 0.0369 

Case 3: V[yi|x]=(exp(xiβ))2 
Truncated OLS Log -0.2441 0.0585  -0.6173 0.0810 
OLS (ln(y+0.1)) Log 0.0959 0.0392  -1.1442 0.0634 
Truncated NLS Level -0.0185 0.1291  -0.0579 0.1948 
Censored NLS Level -0.0051 0.1203  -0.1069 0.1802 
GPML Level 0.7518 0.1350  -0.6008 0.0977 
PPML Level 0.0318 0.0627  -0.2520 0.0853 
Truncated PPML Level -0.0262 0.0730  -0.0823 0.0919 

Case 4: V[yi|x]=exp(xi β)+exp(x2i) (exp(xiβ))2 
Truncated OLS Log -0.3693 0.0650  -0.5617 0.1017 
OLS (ln(y+0.1)) Log -0.0116 0.0440  -1.4787 0.0762 
Truncated NLS Level -0.0724 0.1786  0.0784 0.2739 
Censored NLS Level -0.0228 0.1513  -0.0945 0.2338 
GPML Level 0.4298 0.1580  0.5478 0.1463 
PPML Level 0.0109 0.0843  -0.2130 0.1278 
Truncated PPML Level -0.0859 0.1018  0.1198 0.1398 
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Appendix Table 3. Monte Carlo results with limited dependent variable estimators 
(β0=0 and k=1.0) 

  Dependent   β1    β2 
Estimator Variable Form Bias Std Error.   Bias Std Error. 

Case 1: V[yi|x]=1 
ET-Tobit Level -0.0012 0.0687  0.0057 0.0145 
ET-Tobit Log -0.0644 0.0057  -0.0318 0.0057 
Poisson-Tobit Level 0.0301 0.0145  -0.2513 0.0250 
Heckman-ML Log -0.1421 0.0358  -0.3689 0.0546 
Heckman-2SLS Log -0.1604 0.0355  -0.3326 0.0572 

Case 2: V[yi|x]=exp(xiβ) 
ET-Tobit Level -0.0027 0.0247  0.0375 0.0456 
ET-Tobit Log -0.0670 0.0070  -0.0519 0.0111 
Poisson-Tobit Level 0.0337 0.0195  -0.2528 0.0364 
Heckman-ML Log 0.3878 -0.1830  0.0439 -0.3691 
Heckman-2SLS Log -0.1947 0.0429  -0.3339 0.0682 

Case 3: V[yi|x]=(exp(xiβ))2 
ET-Tobit Level -0.0294 0.1352  0.1957 0.2420 
ET-Tobit Log -0.0998 0.0110  -0.1463 0.0166 
Poisson-Tobit Level 0.0212 0.0581  -0.2596 0.0826 
Heckman-ML Log -0.3109 0.0607  -0.3636 0.0893 
Heckman-2SLS Log -0.3038 0.0592  -0.3646 0.0900 

Case 4: V[yi|x]=exp(xi β)+exp(x2i) (exp(xiβ))2 
ET-Tobit Level -0.0450 0.1695  0.3359 0.3277 
ET-Tobit Log -0.1162 0.0132  -0.1150 0.0236 
Poisson-Tobit Level -0.0182 0.0646  -0.2301 0.1138 
Heckman-ML Log -0.4037 0.0660  -0.3398 0.1176 
Heckman-2SLS Log -0.4010 0.0654  -0.3462 0.1162 

 


