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Preface

We hope that this solutions manual will be a useful adjunct to Understanding NMR Spectroscopy
(Wiley, 2005), and will encourage readers to work through the exercises. The old adage that
‘practice makes perfect’ certainly applies when it comes to getting to grips with the theory of
NMR.

We would be grateful if users of this manual would let us know (by EMAIL to jhk10@cam. ac.uk)
of any errors they come across. A list of corrections will be maintained on the spectroscopyNOW
website

http://www.spectroscopynow.com/nmr (follow the link ‘education’)

Cambridge, August 2005
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Chapter 2

Setting the scene

2.1

We need Eq. 2.1 on p. 6:
S(ppm) = 106 x Z_ref.
Uref

For the first peak
500.135021 - 500.134 271

=10° =[1. .
8(ppm) = 10° x 500.134271 20 ppm
For the second peak the shift is|7.30 ppm/|.

Using Eq. 2.3 onp. 9

S(ppm) = 106 x L Zret
Urx

with vx = 500.135271 MHz gives the two shifts as | 1.50 ppm| and |7.3O ppm| i.e. identical values
to three significant figures. To all intents and purposes it is perfectly acceptable to use Eq. 2.3.

The separation of the two peaks can be converted to Hz using Eq. 2.2 on p. 7:
frequency separation in Hz = (6] — 02) X ver(in MHz).

So the separation is

(7.30 — 1.50) x 400.130000 = [2321 Hz|.

The conversion to rad s~! is made using Eq. 2.4 on p. 18

w=2nxXv=21x2321 =|14583 rad s”'|.

2.2

For Jag = 10 Hz & Jac = 2 Hz, the line positions are —6, —4, +4, +6 Hz. For Jag = 10 Hz &
Jac = 12 Hz, the line positions are —11, —1, +1, +11 Hz; note that compared to the first multiplet
the two central lines swap positions. For Jag = 10 Hz & Jac = 10 Hz, the line positions are —10,
0, 0, +10 Hz; in this case, the line associated with the spin states of spins B and C being @ and S,
and the line in which the spin states are 8 and a, lie of top of one another giving a 1:2:1 triplet.
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Introducing a third coupling gives a doublet of doublet of doublets. The line positions are +1.5,
+3.5, £6.5, £8.5 Hz. For clarity, only the spin state of the fourth spin, D, are shown by the
grey-headed arrows on the last line of the tree.
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2.3

The frequency, in Hz, is 1/period:

L or 400 MHz.

Y725 x 109

Converting to rad s~ ! gives:

w=2mv =251 x 10° rad s,

(a) 90° is one quarter of a rotation so will take  x 2.5 x 107 =6.25 x 107'%5s|

(b) As 2r radians is a complete rotation, the fraction of a rotation represented by 37/2 is
(37/2)/(27) = 3/4, so the time is 0.75 X 2.5 x 107 =|1.875 x 107 s|

(c) 720° is two complete rotations, so the time is 2 X 2.5 X 1072 =15.0 x 1077 s|.
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To convert from angular frequency to Hz we need Eq. 2.4 on p. 18

w 785 x 10*

V= =T = 12494 Hz|.
T T

The period is 1/frequency:

1 1
T=-=——=1[8.00 x 107 s|

24

AN Ny

time

For ¢ = 0 or 2x radians, the x-component is a cosine wave, and the y-component is a sine wave.
For ¢ = 37/2, the y-component is minus a cosine wave, and the x-component is a sine wave.

25

We need the identity
sin (A + B) = sin A cos B + cos A sin B.

Using this we find:

sin(wt + ) = sin(wt)cosm + cos (wt)sin
= —sin(wt),
where to go to the second line we have used cosm = —1 and sinm = 0. So the y-component is

indeed —r sin (wi).



Chapter 3

Energy levels and NMR spectra

3.1

The expression for Hype spin 18 given by Eq. 3.2 on p. 31:
ﬁone spin = _YBOIAZ‘

We need to work out the effect that Hope spin has on yr_y,:

A

Honespinw—l/z = _')’Bo[izlﬁ_l/z]
= —730[—%h¢_%]
= 2hyBoyoy,

To go to the second line we have used Eq. 3.3 on p. 32 i.e. that ¢/_y, is an eigenfunction of I.. The
wavefunction has been regenerated, multiplied by a constant; ¢_y, is therefore an eigenfunction of
Hopne spin With eigenvalue %hyBo.

3.2

The Larmor frequency, in Hz, of a nucleus with zero chemical shift is defined by Eq. 3.8 on p. 35:

—yBo
2
—-6.7283 x 107 x 9.4
2

| —1.01 x 108 Hz| or —101 MHz.

vy =

To convert to rad s~!, we need to multiply the frequency in Hz by 27

wo = 2mvy =21 x —1.01 x 108 = -6.32 x 10% rad s7!.

In the case of a non-zero chemical shift, the Larmor frequency, in Hz, is:

—y(1 + 107%6)B,
2w
-6.7283 x 10" x (1 +77 x 107°%)x9.4
2
|-1.01 x 108 Hz|.

vy =
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This is an identical value to three significant figures. We need to go to considerably more figures
to see the difference between these two Larmor frequencies. To seven figures the frequencies are
1.00659 x 10% Hz and 1.00667 x 10® Hz.

3.3

We let ﬂone spin act on the wavefunction ¢y, :

A

Hone spinsy, = wofz¢+1/2
1
= 0L,

where the Hamiltonian has been expressed in angular frequency units. To go to the second line,
we have used the fact that ¢, is an eigenfunction of I. with eigenvalue +%.

In the same way,

A

1
Hone spinf_y, = —5wo¢/_1,.

Hence, iy, are eigenfunctions of Hype spin With eigenvalues i%a)o.

3.4

Following the approach in section 3.5 on p. 37, we let the Hamiltonian act on the product
wavefunction:

Hiwo spins, no coupl.wa,l %,2 = (UO,lllz + U0,212z) wa,l wa,2
= UO,lllzwa,ld/a,Z + UO,ZIZZ‘//Q,IWQ,Z
= Vo1 [Ilzwa,l] Va2 +vV02Wa1 [Izz%,z] .

To go to the third line, we have used the fact that I 1z acts only on ¥, 1 and not on ¥, ». Similarly,
Iy acts only on 5.

Using Eq. 3.11 on p. 37 i.e. that ¢, ; and ¢, 2 are eigenfunctions of I 1z and sz, the terms in the
square brackets can be rewritten:

vo,1 [Ilz‘//a,l] Va2 + V0% [IZZ‘//Q,Z]
1 1
= 00,1 1¥a2 + 3V02Y01¥a2

1 1
[§v0,1 + zvo,z]wa,lwaa.

H two spins, no coupl. w a,l‘/’a,Z

Hence, Y, 1¥4.2 is an eigenfunction of FItWO spins, no coupl. With eigenvalue %vo, 1+ %vo,z.
Letting the coupling term act on the product wavefunction:
J12 [Ilzlﬂa,l] [Izzlﬁa,z]

= Ji2 [%wa,l] [%W{t,Z]
= %lelﬁa,llﬁal-

J1211212z¢(t,1¢(t,2
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VYa.1¥e2 1s indeed an eigenfunction of the coupling term, with eigenvalue }1] 12: this corresponds
to the energy.
Hiwo spins, no coupl. and the coupling term share the same eigenfunctions (a result of the fact that the
two terms commute). Since the Hamiltonian for two coupled spins can be represented as the sum
of these two terms,

[:Itwo spins = I:Itwo spins, no coupl. t 2r JIZiIZiZZ,

it follows that it must also have the same eigenfunctions. Hence, ¥, 1%, 2 is an eigenfunction of
Hiwo spins With energy eigenvalue %UO,l + %vo,z + A%J 12, 1.e. the sum of the individual eigenvalues
of Hiwo spins, no coupl. and Jio 111,

3.5

Reproducing Table 3.2 on p. 40 for vy = —100 Hz, vp, = =200 Hz and Jj» = 5 Hz:

number m; mp spinstates eigenfunction eigenvalue/Hz
1 % +% aq Ya1Wa2 +%U0’1 + %Uo,z + %le = —148.75
2 +% —% af Ya,1¥p2 +%U0’1 - %Uo’z - %le =48.75
3 —% +% Ba Yp1¥a2 _%UO,I + %Uo,z - %le =-51.25
4 -3 -3 BB Vg 1¥g2 —dvo1 = Yvoa + 1712 = 151.25

The set of allowed transitions is:

transition  spin states frequency/Hz
1-2 aa > af E,—E; =197.50
354 Ba — BB E4— E3z =202.50
1-3 aa - Ba  Ez;—E; =97.50
24 aff — BB E4— E, =102.50
spin1  flips spin1 o B
spin2 o B spin2 flips
13 24 12 34
80 100 120 140 160 180 200 220

—_—
frequency / Hz
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If J1» = =5 Hz, the table of energies becomes:

number m; mp spinstates eigenfunction eigenvalue/Hz
1 1 1 1 1
1 +5 +3 aa Ya1Wa2 +5v0,1 + 3V02 + ZJIZ = —151.25
1 1 1 1 1
2 +3 —3 afp Ya1¥p2 +3v0,1 — 3v02 — 7J12 = 51.25
1 1 1 1 1
3 -3 *3 Ba U RUZ%) —3v0.1 + 3002 — 7J12 = —48.75
1 1 1 1 1
4 -3 —3 BB p1Wp —5V0,1 — 3v02 + 7J12 = 148.75
spin1  flips spin1 B o
spin2 B o spin2 flips
24 13 34 12
80 100 120 140 160 180 200 220

—_—
frequency / Hz

The spectrum in unchanged in appearance. However, the labels of the lines have changed; the spin
state of the passive spin for each line of the doublet has swapped over.

3.6

The allowed transitions in which spin two flips are 1-2, 3—4, 5-6 and 7-8. Their frequencies are:

transition  state of spin one state of spin three frequency/Hz
12 a a —vp2 — %112 - %J23 =193
34 B a ~vgo + 12 — 103 =203
5-6 a B ~vgp — 212 + a3 =197
7-8 B B ~vgo + 212 + 103 = 207

The multiplet is a doublet of doublets centred on minus the Larmor frequency of spin two.

There are two lines associated with spin three being in the « state, and two with this spin being in
the S state. Changing the sign of J>3 swaps the labels associated with spin three, but leaves those
associated with spin one unaffected.
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o o spinlt B B
o B spin3 o B
12 56 34 78
Vo2
¥
190 195 200 205 210
<t J12 =
<1—J23—|>

Jip=10Hz J,3=4Hz

o o spinlt B B
B o spin3 B o
56 12 78 34
Vo2
¥
190 195 200 205 210

—_—
frequency / Hz

Jip,=10Hz J,3=-4 Hz

3.7

The six zero-quantum transitions have the following frequencies:

transition initial state final state frequency
2-3 afa Paa —vo,1 + V0,2 — %J13 + %J23
1 1
6-7 app Bap —vo,1 +vo2 + 513 — 523
1 1
3-5 Paa aaf vo,1 —vo3 + 53J12 — 5J23
1 1
4-6 Bpa af3B Vo1 —vo3 — 312+ 3723
1 1
2-5 afa aaf vo2 —vo3 + 3J12 — 3J13
1 1
4-7 BBa Bap vo2 —vo3 — 312+ 3J13
I —
K Yo 7
Ppo 2 OBB 6 *ere..uens' OB
R . "y .
W oo B wp
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The six transitions can be divided up into three pairs:
e 2-3 and 6-7 in which spins one and two flip, and spin three is passive,
e 3-5 and 4-6 in which spins one and three flip, and spin two is passive,
e 2-5 and 4-7 in which spins two and three flip, and spin one is passive.

Each pair of transitions is centred at the difference in the Larmor frequencies of the two spins
which flip, and is split by the difference in the couplings between the two active spins and the
passive spin.
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The vector model

4.1

The offset of the peak is 5 ppm. This can be converted to Hz using Eq. 2.2 on p. 7:

Q
= 107 A5 vrer = 1070 x 5 x 600 x 10° = 5 x 600 = [3000 Hz| or 3 kHz.
JT

From the diagram,

w; 25 x 103 x27r 25
t 0:—:—:—=833,
M= T3 x 10 x2r 3

so 0 =[83°].

For a peak at the edge of the spectrum, the tilt angle is within 7° of that for an on-resonance pulse;
the B, field is therefore strong enough to give a reasonable approximation to a hard pulse over the
full shift range.

For a Larmor frequency of 900 MHz, the peak at the edge of the spectrum has an offset of 4.5 kHz,
so the tilt angle is |80 °|. The larger offset results in the same B field giving a poorer approximation
to a hard pulse.
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4.2

From Fig. 4.16 on p. 63, the y-component of the magnetization after a pulse of flip angle S is
M sin 8. The intensity of the signal will, therefore, vary as sin 8, which is a maximum for 8 = 90°.

(a) If B = 180°, the magnetization is rotated onto the —z-axis. As sin 180° = 0, the signal
intensity is zero.

(b) If B = 270°, the magnetization is rotated onto the y-axis. As sin270° = —1, the signal will
have negative intensity of the same magnitude as for 5 = 90°.

4.3

From Fig. 4.16 on p. 63, the intensity of the signal is proportional to sin 3, where the value of the
flip angle S is given by Eq. 4.5 on p. 62:

,8=a)1tp.

The pulse lengths of 5 and 10 us correspond to flip angles below 90°. Increasing 7, further causes
[ to increase past 90°, and so the value of sin 8 (and hence the signal intensity) decreases. The null
at 20.5 us corresponds to 8 = 180°.

From the expression for the flip angle, it follows that 7 = w#39. Therefore,

I _15x10°rads ! or[24 x 10° HZ)

Y= s 205 x 106

Another way to answer this question is to see that since a 180° pulse has a length of 20.5 us, a
complete rotation of 360° takes 41.0 us. The period of this rotation is thus 41.0 us, so the frequency

1S 1
=2.4 x 10* Hz|.

41.0 x 1076
This frequency is w;/2n, the RF field strength in Hz.

The length of the 90° pulse is simply half that of the 180° pulse:
top = 3 X 20.5 = 10.25 ps.

The further null occurs at a pulse length that is twice the value of #;g9. This corresponds to a flip
angle of 360°, for which the magnetization is rotated back onto the z-axis.
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4.4

X -y

-y
-y ‘. X 180" pulse &h
—_—
v, bouty Y
-y

X -y X

X X
starting resolved into x- and components after final
position y- components 180° pulse position

The vector has been reflected in the yz-plane, and has a final phase of 27 — ¢, measured anti-
clockwise from the —y-axis.

4.5

¢

- 3n/2

phase
3

/2

—0=Q1

time

The spin echo sequence 90°(x)—7—180°(x)—7— results in the magnetization appearing along the y-
axis. In contrast, the 90°(x)—7—180°(y)—7— sequence results in the magnetization appearing along
the —y-axis. Shifting the phase of the 180° pulse by 90° thus causes the phase of the magnetization

to shift by 180°.

A 180°(—x) pulse rotates the magnetization in the opposite sense to a 180°(x) pulse, but
the net effect is still to reflect the magnetization vectors in the xz-plane. The sequence
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90°(x) — 7 — 180°(—x) — 7— will, therefore, have the same effect as the 90°(x) — v — 180°(x) — 7—
sequence i.e. the vector appears on the y-axis at the end of the sequence.

4.6

From section 4.11 on p. 71, the criterion for the excitation of a peak to at least 90% of its theoretical
maximum is for the offset to be less than 1.6 times the RF field strength. The Larmor frequency
of 'Pat By = 9.4 Tis:

B 1.08 x 108 x9.4
vo = — 28 — _ = ~1.62 x 10® Hz or —162 MHz.
2r 2

If the transmitter frequency is placed at the centre of the spectrum, the maximum offset is approx-
imately 350 ppm. In Hz, this is an offset of

Q
= 350 x 162 = 5.66 x 10* Hz or 56.6 kHz.
JT

According to our criterion, the RF field strength must be at least 56.6/1.6 = 35.3 kHz, from which
the time for a 360° pulse is simply 1/(35.3 x 10%) = 28.28 us. Thus, the 90° pulse length is

1% 28.28 =[7.07 ps]

4.7

The flip angle of a pulse is given by Eq. 4.5 on p. 62:

ﬂ:wltp
So,
_B
w) = —.
Ip

For a 90° pulse, 5 = /2, so the B; field strength in Hz is:

w _ @/2) _ ! 2.5 x 10° Hz| or 25 kHz.

2t 21ty 4x10 x 106

The offset of '3C from 'H is 300 MHz, which is very much greater than the B, field strength. The
13C nuclei are therefore unaffected by the 'H pulses.
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4.8

From Eq. 4.4 on p. 61,

Weff = 1/w% + Q2.

Weff = a)%+/<2a)% =w; VI + &2 4.1)

If we let Q = kw1, weg can be written

If #, is the length of a 90° pulse, we have w1, = 7/2 and so

s
wesity = — V1 +Kk2 X1,

The null condition is when there is a complete rotation about the effective field i.e. wegt, = 27

2ﬂ:g\/1+1<2.

Rearranging this gives

4=V1+x2 e x=|VI5| or Q= V50,

which is in agreement with Fig. 4.28 on p. 73.
The next null appears at wef?, = 4 i.e. two complete rotations; this corresponds to k = V63|,

For large offsets, x > 1, so V1 +«% ~ k. The general null condition is wefty = 2nm, where

n=1, 2, 3, ... Combining these two conditions gives
2nm = g\/l + k2~ gK,

for which we find « = 4n.
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4.9

In section 4.11.3 on p. 75, it was demonstrated that, on applying a hard 180° pulse, the range of
offsets over which complete inversion is achieved is much more limited than the range over which
a 90° pulse gives significant excitation. Therefore, only peaks with small offsets will be inverted
completely. Peaks with large offsets will not exhibit a null on the application of the 180° pulse.

4.10

The initial 90°(x) pulse rotates the magnetization from the z-axis to the —y-axis; after this the
evolution in the transverse plane is as follows:

The x-, y- and z-components after each element of the pulse sequence are:

component  after first 90°(x) after T after second 90°(x)
X 0 My sin Q1 My sin Q1
y —M —Mcos Qr 0
z 0 0 —Mycos Q1

The final pulse is along the x-axis, and so leaves the x-component of the magnetization unchanged,
but rotates the y-component onto the —z-axis. The overall result of the sequence is M, = 0 and
M, = Mysin Qt.

A null occurs when M, = 0, i.e. when Qt = nm, wheren =0, 1, 2, ...
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4.11

The initial spin echo sequence refocuses the offset, and aligns the magnetization along the y-axis.

If the final pulse is about the y- or —y-axis, then it has no effect on the magnetization as the vector
is aligned along the same axis as the B; field. The magnetization remains along y.

If the final pulse is about the x-axis, then it rotates the magnetization from the y-axis to the z-axis.
Overall, the sequence returns the magnetization to its starting position.

If the final pulse is about the —x-axis, then the magnetization is rotated from the y-axis to the
—z-axis. Overall, the magnetization has been inverted.

412

The initial 90°(x) pulse rotates the magnetization from the z-axis to the —y-axis. For on-resonance
peaks, Q = 0, so the magnetization does not precess during the delay 7. The final 90°(—x) then
simply undoes the rotation caused by the first pulse. Overall, the magnetization is returned to its
starting position.

Qr = /2. During the delay, the magnetization rotates to the x-axis and is therefore not affected
by the final 90°(—x) pulse. The net result is that the magnetization appears along the x-axis.

Qr = 7. During the delay, the magnetization rotates onto the y-axis. The final pulse rotates
the magnetization onto the —z-axis. The equilibrium magnetization is inverted: no observable
transverse magnetization is produced.

0-0 / X\ _y delay / X\V y 0 / X\ iy
NI NI NI

o= 12 / X\ L, delayr / X\ 2 I / X\ i
NI NI NI

- / X\V o delay t . ? X\N o 90°(-x) > / X\ y
NI NI NI
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The overall effect of the sequence is to produce x-magnetization which varies as M sin(Qr).

To suppress a strong solvent peak, it is placed on-resonance. The delay 7 is then chosen so that
Q.7 = 1/2, where Q,, is the average value of the offset of the peaks we wish to excite.

413

The initial 90° pulse rotates the equilibrium magnetization to the —y-axis; from there the magneti-
zation precesses about the z-axis through an angle of Q7. The 90°(y) pulse rotates the x-component
of the magnetization onto the —z-axis.

N N

The y-component of the magnetization varies as —M cos Q7

MO ‘ /\
M I
y 0\_/(/2 T 3n72\2n
-M,

—_—
Q1

The nulls are located at Qr = 2n + 1)x/2, wheren =0, 1, 2, ...

To suppress the solvent peak, the transmitter frequency is placed in the middle of the peaks of
interest, and then 7 is chosen so that Qr = /2, where Q is the offset of the solvent. With such a
choice, the solvent will not be excited.
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414

Line A is on-resonance, so its magnetization does not precess during the delay 7. The pulse
sequence is, effectively, a 180°(x) pulse, and so the magnetization is inverted.

For line B, the x-, y- and z-components of the magnetization after each element of the sequence
are:

component  after first 90°(x) after T after second 90°(x)
X 0 My sin Qt My sin Qt
y —-M —Mjcos Qr 0
Z 0 0 —Mjcos Qt

The final pulse is along the x-axis, so leaves the x-component of the magnetization unchanged.
Substituting in the values of Q and T we find (note that the offset of 100 Hz has to be converted to
rad s ):

Mo sin(2r X 100 x5 x 107%) = Mysinz =0
—Mycos(rx 100 x5 x 1073) = =My cosm = M.

M,
M

The magnetization is therefore returned to the z-axis.

The 90° pulse rotates the equilibrium magnetization onto the —y-axis. During the delay 7, the
vector precesses about z to give the following x- and y-components:

M, = Mysin Q1 M, = —M cos Q.
For line A, offset 50 Hz:

M, = Mysinrx50x5 x 1073) = Mysin(x/2) = M,
M, = —Mycos(2mr x50x5 X 10_3) = —Mjycos(rn/2) = 0.

For line B, offset —50 Hz:

My sinr x =50 x5 x 1073) = My sin(-n/2) = —M,
—Mycos(2r X =50 x5 x 10_3) = —Mgycos(—n/2) = 0.

M,
M,V

The two magnetization vectors rotate at the same rate in the opposite sense. After a delay of
7 = 5 ms, they are both aligned along the x-axis, but pointing in opposite directions.
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Fourier transformation and data
processing

5.1

One desirable feature of the dispersion lineshape is that it crosses the frequency axis at the
frequency of the transition. This allows for a more accurate measurement of the chemical shift
than might be possible for the absorption lineshape, especially in the case of broad lines.

In a spectrum containing many peaks, the following features of the dispersion lineshape make it
undesirable:

e [t is broader than the absorption lineshape — the long ‘dispersive tails’ may interfere with
nearby, low intensity peaks.

o [t is half the height of the absorption lineshape — the SNR is therefore reduced by half.

e The positive part of one peak may be cancelled by the negative part of an adjacent one — in
a complex spectrum, the result can be very difficult to interpret.

5.2

Setting A(w) = So/2R, we obtain

2R R +w,

Cancelling the factor of S from both sides and inverting the quotient, we obtain

So SoR

R2+ 2
R=2"¢

Hence,

S
)
Il
N
=
)
|
=
)
=
)
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The width of the line is therefore inrads™!, or in Hz.

5.3

D(w) can be differentiated using the product rule:

dD(w) d —w
Cdw dw (R2 + wZ)

-1 20?
Rta? (R? + w?)?
—R? — w? +20°
TRro

w? — R?

At the turning points

SO,

The denominator is always non-zero, so the equation can be solved by setting the numerator to
Zero:

W-R =0
w = [xR|
Substituting these values into D(w):
D(xR) =F R _ 1
VTR T TR

These values are the maximum and minimum heights in the lineshape.

There are two values of w at which D(w) is half its maximum positive height. At these frequencies,
D(w) = 1/(4R). Hence,

-w 1
R2+w? 4R’
Inverting the quotients we obtain,
RZ + 2
Y _ 4R,
w

S0,
w* +4Rw + R* = 0.
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This is a quadratic equation in w that can be solved by applying the usual formula:

w= %(—4Ri— VI6R? —4R2) —[R(—2x V3)|

Similarly, D(w) = —1/(4R) has two solutions: w = |R(2 + \/5).

The width, Wy;p, is the distance between the outer two half-maximum points, as shown in the

diagram. Its value is
Waisp = R2 + V3) = R(=2 — V3) =22 + V3)R.

)
=
+
X
g
) 1/(2R) |
- Wdisp >
1/(4|1R) ‘ \ &
) &
T
"\IL
T ) frequency / rad s’
&
& c
5
o
c

For comparison, the width of the absorption mode is Wy,s = 2R. Therefore, the ratio Wisp/Waps =
2 + V3 ~ [3.7]. The dispersion lineshape is almost four times wider than the absorption lineshape.
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5.4
y
(a) o =3n/4 =372
X
S, Sy
y y
(c) o=2n (d) ¢ = 5m/2
X X
S, Sy
real A iﬂagJ\/___ % imag A
5.5

A 90°(x) pulse rotates the equilibrium magnetization onto the —y-axis. The resulting spectrum is

phased to absorption, so that magnetization along —y can be said to have a phase ¢ = 0.

A 90°(y) pulse rotates the equilibrium magnetization onto the x-axis. This corresponds to a phase

shift of ¢ = 7/2 with respect to the initial experiment.
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IS,

real A %

90°(x) y

x

y

90 (-x 270°(x)

real real

= =

(a) Applying the pulse about —x rotates the magnetization vector onto y. This corresponds to a
phase shift of ¢ = 7, therefore the spectrum will exhibit a negative absorption lineshape.

(b) A 270°(x) pulse is equivalent to a 90°(—x) pulse. The spectrum will be the same as in (a).

5.6

The Larmor frequency of 3'P at By = 9.4 T is:

B 1.08 x 108 x9.4
wo _ _yBo 108 X 107X94 | o o 10°Hz or —162 MHz.
2r 2r 2r

The phase correction needed at the edge of the spectrum is given by Qp,axfp, Where Qp,y is the
maximum offset. For 3! P the maximum offset is 350 ppm, therefore the phase correction is

27 % 162 x 350 X 20 x 107 =[7.1 radians].

This corresponds to [407°], a significant frequency-dependent phase error.



Chapter 5: Fourier transformation and data processing 24

5.7

The intensity of the noise in the spectrum depends on both the amplitude of the noise in the
time-domain, and the acquisition time. So, recording the time-domain signal long after the NMR
signal has decayed just continues to measure noise and no signal. The resulting spectrum will
consequently have a lower SNR than it would for a shorter acquisition time.

A full discussion on how line broadening can be used to improve the SNR is given in section 5.4.2
on p. 96; the matched filter is discussed in section 5.4.3 on p. 98.

5.8

Shortening the acquisition time discards the time-domain data that contains mostly noise and little
signal. Applying a line broadening weighting function does not discard this section of the time-
domain, but reduces its amplitude relative to the earlier part of the FID. Thus, both methods reduce
the intensity of the noise in the spectrum.

5.9

Enhancing the resolution of the spectrum by the use of a weighting function that combines a rising
exponential and a Gaussian is discussed in section 5.4.4 on p. 98.

Zero filling improves the ‘definition’ of the line in the spectrum by increasing the density of data
points in the frequency domain. However, it does not improve the fundamental linewidth as no
real data is added to the time-domain.

5.10

Plots of the sine bell weighting functions are given in Fig. 5.21 on p. 102.

A sine bell that is phase-shifted by 45° initially increases over time, therefore partly cancelling
the decay of the FID; the linewidth of the spectrum will therefore be decreased. The subsequent
decay of the sine bell attenuates the noise at the end of the time-domain. The overall effect will be
to enhance the resolution, assuming that the original FID has decayed close to zero by the end of
the acquisition time.

The sine bell with a phase shift of 90° is purely a decaying function, which will broaden the lines
in just the same way as a decaying exponential does.
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5.11

The peak due to TMS is likely to be a sharp line. Hence, the corresponding time-domain signal
decays slowly, and is therefore more likely to be truncated. The other lines in the spectrum will
usually be broader than TMS, so their time-domain signals decay more rapidly and are less likely
to be truncated.

Truncation artefacts (‘sinc wiggles’) can be suppressed by applying a decaying weighting function.
This will decrease the resolution, and may reduce the SNR.
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The quantum mechanics of one spin

6.1
Lyg=—-3yp Dirac notation: I |8) = - |8)
f Yiva dr Dirac notation:  (Ba)
f Yppdr Dirac notation:  {3|3)
f y* Oy dr Dirac notation:  (¥|O|y)
(@) {ale) =1

(b) (a|B) =0or (Bla)=0
© Ilay = o)
@ ) = c,la) + ¢, 1)

6.2

The expectation value of fy is given by:

Wilylv)
Wy

If [) is normalized, () = 1, so the expectation value is given by

(I = Wikl
Substituting in |y) = ¢, la) + Cg |8), we obtain

[eacal + 3Bl B [eql) + ¢4 18)]

*

= cheglalbla) + ey allyB) + i, (il + cies (BILIB)

= jicic,(alB) - dicheg(alay + Sicsc, BIB) — 5ich e, (Bla)

_ 1. % 1: *
= 31CgC, = 31C4Ch.

<Iy> =

(Iy)
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To go to the third line, we have used Eq. 6.11 on p. 115,
Ly =3By LB = —3ila),

and to go to the last line, we have used the fact that |a) and |8) are orthonormal (Eq. 6.5 and Eq. 6.6
on p. 112).

(I,) can be interpreted as the average value of the y-component of angular momentum when
measured for a large number of spins, each of which has the same wavefunction [).

6.3

The matrix representation of I, is
R AT <a|1}w>]
Bllla)  (BILIB)
_ (KB %<a|a>}
2BIBY  3(Blary

],

To go to the second line, we have used Eq. 6.10 on p. 115,

= O
O NI=

Lley =3By L(B) = 3la),

and to go to the last line we have used the fact that |a) and |8) are orthonormal (Eq. 6.5 and Eq. 6.6
on p. 112).

Similarly,
N <a|1}L8>]
C L@ @i
_ [ s —%i<a|a>]
BB —3i(Bla)
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6.4

Starting with the expression for (/,), and substituting in ¢, = r, exp(i ¢,) and g =78 exp(i ) we
find:

(Iy)

%icgca - %ic(’:cﬂ
= 41 [rarsexp(~igp) expli g) — rars exp(—i da) expli ¢p)|
= Jirarg|exp(~i(@p — ¢a)) — exp (i (d5 — ¢0))|
= Jrarg|exp (i (65 — ¢a)) — exp (~i (05 — ¢0))]

where to go to the last line we have multiplied top and bottom by 1i.

Applying the identity

exp(if) — exp(—if) = 2isin 6

to the above expression gives
<Iy> =Talp Sin(¢ﬂ - ¢(l)'

The bulk y-magnetization is then given by

KD + (1) + .
1) (1) . 1 1
= yry)ry sing’ - ¢,

er<1rﬂ SiIl((Pﬁ - ¢(1)-

M,

() (2) 2 2

)) +yry rg sin(q),6 - ¢§,)) +...

At equilibrium, the phases ¢ are randomly distributed, and so sin(¢g — ¢,) is randomly distributed
between +1. As a result, the equilibrium y-magnetization is zero.

6.5

Starting from Eq. 6.31 on p. 124 and premultiplying by (3|, we obtain:

de,, (1) de,@ L) o
Sl =B = 51 Qc (1) + 51 Qe (01B)
de, (1) deg (1) . :
BI——la) + B——1B) = (Bl|=5iQc, (]I} + (B[ 11 Qe (0] 1B)

The derivatives of ¢, and c,, and the quantities in square brackets, are numbers, so the above
expression can be rearranged to give

de, (1) deg (1) ’ i’
T<ﬂ|0>+ O BBy = —31Qc,(OBla) + 31Qcs (1)(BIB)

dcﬁ (1)
dr

= %chﬁ ().
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To go to the last line, we have used the orthonormality property of |a) and |B).

Substituting Eq. 6.58 into the left-hand side of Eq. 6.57 gives:

de, (f)

Cdﬁ—t - %[cﬂ(O)eXp(%iQt)]
= 1iQcy(0)exp (3i Q)
= 3iQcy(0).

Eq. 6.58 is indeed the solution.

6.6

The expectation value of IAy is
_ 1: x 1: %
I,y = Flcgc, — 7iccy.

Substituting in the expressions for how ¢, and cg vary under free evolution (Eq. 6.34 on p. 125)
gives:

)0y = Li[ch0)exp(=1iQr)|[c, (0)exp (-2iQu)| - Ji [} (0) exp (3 Q)| [cy 0 exp (2i)|
= 3icz(0)c, (0)exp (—i Q1) — 3icy(0)cy (0) exp (i Q1)
= Lic}(0)c, (0) [cos(€) — i sin(Qn)] - 3ick(0)c, (0) [cos(€) + i sin(€Q)]
= cos(Q) [3ics(0)c, (0) - 3ick(0)c, (0] + sin(Qn) [ 13 (0)ey (0) + 1ef (O)c, (0)]
= cos(Qt){1,)(0) + sin(Q1){1)(0).
To go to the third line, the identities

exp(if) = cos 6 +isind exp(—if) = cosd —isin @

were used, and to go to the last line, the expressions for (/,) and (/) in terms of ¢, and cg were
used (Eqgs 6.12 and 6.13 on p. 115).

This result is summarized in the diagram below. The grey arrow shows the initial position, and the
black arrow shows the position after time .

<l,>(0) /
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6.7

The matrix representation of the density operator is given by:

P11 P12

P21 P22
We can now calculate the p;; element (for clarity, the overbars indicating the ensemble averaging
have been omitted until the last line):

p:[<a|ﬁ|a> <alﬁ|ﬂ>]
By BPB)

pu = (alpla)
= (aly)yla)
= (al[cyla) + ¢z 1B [cx el + cf ¢Bl] ler)
= |eatela) + ¢yl | chiala) + ¢} Bl

= c,Ch.

To go to the second line, the definition of p was inserted, and on the third line [i/) was expressed
as a superposition of |a) and |53).
The other elements can be calculated in a similar way to give:

P12 =CoCy P21 =ChCh P =ChCy.

CaCy
p =

Hence,

*

mﬁ
o
IS
o o
= IS
hq* hq*
———
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Product operators

7.1

exp(—i 6] X)IAy exp(i 0] ,) represents a rotation of fy about x through angle 6. From Fig. 7.4 (a)
on p. 152, f) is transformed into /.. Hence,

~ 0l X A
I, — cos@1, +sin61,.

This is consistent with the identity on line one of Table 7.1 on p. 146.

exp(—i (G?SAVV)SAZ exp(i Hﬁy). From (b) of Fig. 7.4 on p. 152, §, is transformed into S, by a
rotation about y:

4 65, A .4
S, — cosfS; +sin6S,.

exp(—i oI x)f v exp(i or,). Rotating I, about the x-axis has no effect:

~ 0,
I, — I,

exp(—i 91})(—1}) exp(i6l,). Fig. 7.4 (c) shows the effect of a rotation about z on —fy: the
result is a transformation to /.. Hence,

~ 6l o A
-1, — —cosOI, +sinf1,.

exp(—i(6/ 2)fy)f v exp(i(8/ 2)1}). This represents the rotation of I « about y through angle 6/2.
From Fig. 7.4 (b), I, is transformed to —fz. Hence,

. O/ A . A
I, — cos(8/2) I, —sin(6/2) 1.

exp(i 0,)(~1,) exp(~iOI,). Careful inspection of the arguments of the exponentials reveals
that this represents a z-rotation through angle —#6 i.e. the rotation is in a clockwise sense. In
this case, it does not matter as —/; is unaffected by a rotation about the z-axis:
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7.2

The 90°(x) pulse rotates the equilibrium magnetization (represented by I.) onto the —y-axis:

o (@/2), A . 2
[, —— cos(r/2) I, — sin(r/2) I
'y

This transverse term evolves under the offset during the delay 7 to give

~ Q‘rIAZ A . A
—I, —> —co0s(Q7) I, + sin(Q7) I,

where (c) of Fig. 7.4 on p. 152 has been used.
The 180°(y) pulse does not affect the f) term, but inverts the /, term:

~ ~ i\' ~ ~ A
— cos(QT) fy + sin(Q1) [y, —> — cos(Qr) I, + cos wsin(Qr) Iy — sin 7 sin(Q7) £
= —cos(Q7) f) - sin(Q7) 1.

Now we consider the evolution during the second delay. Taking each term separately, we obtain

—cos(Qr) I, ol cos(Q7) cos(Qr) I, + sin(Q7) cos(Q7) Iy,
—sin(Q7) I v Qi> —cos(Q7) sin(Q7) I « — sin(Q71) sin(Q7) fy.
Combining these terms gives the final result as
— [cos*(@r) + sin*(@D)] £, = -1,

where the terms in [, cancel, and the identity cos” § + sin” 6 = 1 has been used. At the end of the
sequence, the magnetization has been refocused onto the —y-axis, irrespective of the offset.

7.3

In all three cases, the pulse is applied about the same axis along which the magnetization is aligned,
therefore the magnetization is unaffected.
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In the following cases, we refer to Fig. 7.4 on p. 152 to determine how the operator is transformed
by the rotation.

A . iv A A
I L cos(—m)l, — sin(—m)l,

= 1.

In this case the magnetization is simply inverted.
The difference between the next two examples is the sense of the 90° rotation.

. @/l A .
I, — cos(m/2) I, + sin(rr/2) I

a

= Iy.

L =@/, N . o
I, — cos(—n/2) I, + sin(—n/2) I

=—1,.
The next two are simply inversions:
A 7Sy R A
S, — cosmS; +sinn S,
=-S..
~ _ﬂ'iy ~ . ~
I, — cos(—n) I, + sin(—m) I
=—I,.

7.4

The 90°(x) pulse rotates the equilibrium magnetization I, to —fy. Free evolution is a rotation about
Z, so the state of the system after the delay 7 is

—cos(Qr) I, + sin(Qr) I
The 90°(y) pulse does not affect the IAy term, but rotates I, to —I,. The final result is
—cos(Q7) fy — sin(Q7) fz.

The pulse sequence has therefore produced transverse magnetization along y, whose amplitude
varies as — cos(€27). This becomes zero if cos(Q27) = 0. Hence, there is a null at Qr = /2, which
corresponds to an offset of Q = 7/(27) in rad s™!, or 1/(47) in Hz.

There is a maximum in the excitation when cos(Q27) = +1. This occurs at offsets satisfying
Qtr =nxwheren=0,1,2,...1.e. Q= (nr)/7 or n/(27) in Hz.
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7.5

Figure 7.6 (b) on p. 156 shows that, as a result of evolution of the scalar coupling, the in-phase
term —/ y is partly transformed into the anti-phase term 21, I>.; the angle of rotation is 71.J;>7. This
is represented as:

N ZHJIQTiIZfQZ
ly

—cos(nJ1o7) Iy + sin(wJ1o7) 201, Do,
Using the same figure, we see that —2/1 />, is partly transformed to —fly:

A A 27‘(]12‘1'1AIZIA2Z A A . a
_211x121 _— —COS(?TleT) 211x121 - 51n(7rJ127') Ily-

Similarly,

A~ 2nJis(t/2)I.S. A . N
Sy ————— cos(nJys7/2) Sy + sin(mJisT/2) 2L S,.

N 27r112‘1'IA111A2Z ~ . A A
2y T COS(JTJQT) 12y - Sln(ﬂ'leT) 211112)5-

A A 2ﬂJ12Ti1zi21 A A . A~
211112y _— COS(7Z'J12T) 211112y - sm(7rJ127') sz.

N 27r112‘1'IA111A2Z A~
2 T 12z

In the last example we see that z-magnetization is not affected by evolution under coupling simply
because the Hamiltonian for coupling only contains /. operators.

7.6

The evolution is determined by the Hamiltonian given in Eq. 7.14 on p. 154:
[:Itwo spins = Qli\lz + QZiZZ + 27TJ12ilzi21-

‘We will now work out the effect in turn of the three terms in the Hamiltonian. The first is a rotation
about z:

N Qltilz N . N
1y — cos(Q1) I, — sin(Qq1) [.

The second term, Q, /5., does not need to be considered as spin-two operators have no effect on

spin-one operators. Finally, we consider the effect of evolution under scalar coupling:

A . ~ Zﬂflztilzizz
cos(Qn) Iy —sin(Q1) [{, ———

cos(mJot) cos(Q1) fly —sin(mrJ 1) cos(£ 1) 2f1xfzz

y-magnetization

— cos(nJ12t) sin(Q 1) I — sin(nJ121) sin(Q 1) 211, I,

X-magnetization
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The NMR signal is given by:

S(1)

M, +iM,

= —cos(mJipt) sin( 1) + 1 cos(mJot) cos(L; 1)

= icos(nmJyat) [cos(Qq1) +1sin(Q7)]

= icos(nJipt)exp(i Q1)

= Li[exp(inJiat) + exp(—imJiat)] exp(i Q1)

= Jiexp([Q + m/12]0) + Fiexp ([Q) — nJ12]0).

To go to the fourth line, we have used the identity cosé + isinf = exp(i6), and to go to the
fifth line, we have used cos 6 = %[exp(i 0) + exp(—i6)]. Finally, to go to the sixth line we have
multiplied out the square brackets. Fourier transformation of this signal gives a positive line at
Q) + nJyo, and a second positive line at Q; — 7/, i.e. an in-phase doublet on spin one. The
factor of i corresponds to a phase shift of 90°, so the imaginary part of the spectrum contains the
absorption mode lineshape.

— 2 -—

imaginary !

real

Q-ndip
Q1+;'CJ12
A similar line of argument gives the observable signal arising from 2/ 1yIA2Z as
S = Yiexp (i[Q) + nJp2]0) — Jiexp (([Q) — nJp2]0).

The corresponding spectrum is an anti-phase doublet on spin one. Again, the factor of i means
that the absorption mode lines will appear in the imaginary part of the spectrum.

— 275J1 2 —

imaginary

real
¢ — 00—
Q1 —TEJ12
Q1 +TEJ12
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7.7

I y represents in-phase magnetization on spin one, aligned along the y-axis. The resulting spectrum
will be an in-phase doublet centred on the offset of spin one, both peaks of which are in the
absorption mode.

I», represents in-phase magnetization on spin two. However, it is aligned along the x-axis, so has
a phase of 37/2 relative to the y-axis. The spectrum therefore comprises an in-phase doublet that
is centred on the offset of spin two, with both peaks in the dispersion mode.

2f 1ny2 represents magnetization on spin one that is anti-phase with respect to spin two, and aligned
along y. The spectrum is therefore an anti-phase doublet in the absorption mode.

21,15, represents anti-phase magnetization on spin two. It is aligned along x, so the lineshape
will be dispersive. Therefore, the spectrum is an anti-phase spin-two doublet with the dispersion
lineshape.

21y, Y

2112’2)( ﬂﬁ?

7.8

In-phase magnetization [}, is rotated in the xz-plane towards —I|, by the application of the y-pulse
of duration z,.

~ wltpily N . N
I1, — cos(wity) 1 — sin(wy1p) Iy,

A 180° pulse about y applied only to spin two changes the sign of the anti-phase magnetization on
spin one.

N N — iv A A A A
20 b, =2 cos(—m) 20 b, + sin(=m) 20y b,
= _2i1xi21
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In-phase magnetization on spin one is allowed to evolve under coupling for time 7, thus generating
anti-phase magnetization on the same spin.

A Zﬂflztilzizz N . A A
—l1y ——— —cos(nJi2t) [1 — sin(zJ120) 211y 1,
Letting each term act sequentially, we obtain

n . @Dy n . (@D A
2l I, —— 20, —— =21y I,

Note that the spin-one operators do not act on spin-two operators and vice versa. The net result is
that the non-selective 90°(y) pulse has caused a coherence transfer from spin one to spin two.

Transverse, in-phase magnetization on the S spin evolves under offset for time ¢. The offset term
for the / spin has no effect on the §,.

A Q]Iiz ~ Qg t§z A . A

Sy — Sy —— cos(Qg1) Sy +sin(Qg1) Sy

Anti-phase magnetization on spin two evolves under coupling to generate in-phase magnetization
on the same spin.

A A ZHJIQIiIZiQZ PPN . ~
_211212)/ ——— —cos(nJ21) 211212y + sin(mwJ21) Ipy

7.9

The Hamiltonian for free evolution is given by Eq. 7.14 on p. 154:
Huwo spins = Qb1 + Qobo, + 21J 1011 ..

The spin echo refocuses the evolution due to offset, so we only need to consider the evolution of
2111>; under coupling, which gives

A A 271]121'?11?21 A A . N
21y ———— cos(nJ127) 211 Lo, + sin(nJ127) [y

The 7 pulse about the x-axis acts on both spins, leaving I}, unaffected, but inverting />, and [ Iy:

”(i1x+i2x)

cos(nJ127) 211 Io; + sin(wJ127) Iy —cos(nJ1o7) 2611 o, — sin(xJ127) Iy

Finally, evolution under coupling during the second delay gives

A A . ~ 27‘L]12‘l’i12i2z
—cos(nJ127) 2111 I, — sin(nJ127) [}y ——

— cos*(mJ127) 1.1, — sin(mJ127) cos(nJ1a7) Iy — cos(nda7) sin(rd1a7) Iy + sin®(wJ127) 201 I,
— |cos*(J127) = sin® (1] 127) | 2h1c: — [2 cos(mioT) sin(ripT)] iy

—cos2nJ127) 211 I, — sin2rJ 27) 1.



Chapter 7: Product operators 38

To go to the last line, we have used the identities cos? 6 — sin> 6 = cos 26 and 2 cos @'sin 6 = sin 26.

By a similar method we can show:

201, h. —5 cosadiat) 2614k, — sin@rd i) .

The effect of the 7 — 7, — 7 spin echo on spin-one and spin-two terms is shown in the table below:

final state

initial state X cos 2nJ127) X sin (2nJ27)

I, —I —21,b,
Iy Iiy —2I I
201>, 20,1, Iy
21, b. —21,b, Iix
Iy ~by _ZilziZy
b, by —211. I,
20y 21,5, b,
21,1y, 21D, by

The results for the in- and anti-phase operators on spin two can be obtained from those for spin
one simply by swapping the labels 1 and 2.

Likewise for the T — 7, — 7 spin echo:

final state

initial state X cos 2nJ127) X sin (2nJ27)

b, b, Iy:I,

b, ~Iyy 21y, b,
20 Iy, —21.I>, ~by,
201y, 21\.hy, —b,

7.10

A spin echo in a homonuclear two-spin system is equivalent to:
(a) evolution of the coupling for time 27,

(b) a 180°(x) pulse.
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Applying this to the first example, we obtain

T—TTx—T

by —— —cos(2nJ127) by + sinnJ127) 211, Iy

For complete transformation to 2f1zf2x, we need sin(2nJi,7) = 1 and cos(2nJ1,7) = 0. These
occur when 2nJp7t = n/2,i.e. T = 1/(4J12).

hie =255 cos@adinm)hy + sin@a o120, b

Setting 2nJ1o7 = /4 gives cos(2nJ27T) = sin(nJpT) = 1/ V2. The required delay is therefore
T= 1/(8]12). R
To achieve conversion to —/;, we need cos(2nJ1,7) = —1 and sin(2nJ1,7) = 01ie. 7 = 1/(2J12).

T—TTx—T

20y —— —cosndip7)2l by — sinQad127) Dy

Setting the delay to T = 1/(4J12) gives complete conversion to in-phase magnetization.

711

The pulse sequence is given in Fig. 7.14 on p. 168:

S

The 180°(x) pulse is applied to only the S spin, so the evolution of the offset of the S spin will be
refocused. We need to consider the evolution of the coupling. Starting with $,, the state of the
system after the first delay is

cos(nJ127) S + sin(rJ127) 21,8,

The 180°(x) pulse is applied only to the S spin, and so does not affect I, or S,. However, the term
in S’y changes sign to give:
cos(nJ127) Sy — sin(rJ127) 21,8,

Evolution of the coupling during the second delay gives
[cos®(I127) + sin® (] 127)| 8, + [sin(r]127) cos(r]127) — cos(rlio7) sin()121)] 218, = 8.,

where the anti-phase terms cancel, and the identity cos” @ + sin? @ = 1 has been used. The evolu-
tion of the coupling has therefore been refocused.

Repeating the calculation for the anti-phase term, we see that 21,5, is unaffected by the spin echo
sequence. Again, the coupling is refocused.
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Both operators are unchanged, which is the same effect that a 180°(x) pulse to the S spin would
have:

(o
(*N

AR
X X
A

>

218, — 2I.8,.

Likewise, the operators I, and 2/,S. will have their evolution under coupling refocused. However,
as the 180°(x) pulse is not applied to the / spin, the offset will not be refocused, but will evolve for
the duration of the spin echo (time 27).

712

The pulse sequence for the INEPT experiment is reproduced below from Fig. 7.15 on p. 172:

11'11Irg'1:2
1
II H ‘_>-

At the end of period A it was shown in section 7.10.2 on p. 172 that the state of the spin system is

k[ COS(ZJTJ[STl) iy - k[ Sin(ZJTJ[ST]) foAZ.

The purpose of the two 90° pulses in period B is to transfer the anti-phase magnetization (the
second term) from the / spin to the S spin. This requires the pulse acting on the / spin to cause the
transformation /, — [, which requires a rotation about the y-axis.

If the initial 90° pulse is about the —x-axis, it rotates the equilibrium k;7, to k,fy. At the end of the
spin echo in period A, the system is in the following state:

—k; COS(ZJTJ[STl) iy +ky sin(27rJIS7'1) ZiXS'Z.

As before, the fy term is not affected by the 90°(y) pulse on the / spin, and can be discarded. The
two pulses affect the ant-phase term as follows:

. n o (/DI . oA (1/2)S, . . A
k[ SlIl(27TJ13T1) ZIXSZ E— —k[ SlIl(27TJ[5T1) ZIZSZ E— k[ Sln(27TJIST1) ZIZSy.

This term evolves under coupling during the spin echo in C to give:
k[ COS(27TJ15 T2) sin(27rJIS 7'1) ZIAZS'), - k] sin(27rJIS 7'2) sin(27rJIS T1 ) SAx,

the observable term of which is the one in S -
The 90°(x) pulse acting on the S spin during B also rotates equilibrium kgS, to —kIS'y, which
evolves during the spin echo in C to give:

—ks COS(27TJ15 ) SAy + kg sin(27rJIS ) ZIAZSX.
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This also has an observable term in §y. Hence, the two observable terms are combined to give:

—kg COS(27TJ15 T2) §y - k[ sin(27rJ13 T2) sin(27TJ15 T]) Sx.

The first term is unaffected by changing the phase of the I spin 90° pulse from x to —x, whereas
the second term changes sign.

713

By definition, I, has coherence order +1.
I is unaffected by a z-rotation, so has coherence order zero.
I_ has coherence order —1, again by definition.

Using the definitions of /. and I;_ (Eq. 7.28 on p. 178) as applied to spin one:

IAIX +ii1y

~ ~

—> =
o+
1

Il)C _illy’

we can write [, as:
s (s N
le =5 (11+ + 11_).

Therefore, [, is an equal mixture of coherence orders +1 and —1.
Similarly, fzy can be written as
hy= L (e —h).
Hence, 21 lszy can be written as
2iby = 2x L (B - B),

which is an equal mixture of coherence orders +1 and —1, found by summing the coherence
orders of spins one and two (spin one has coherence order zero).

Since both /i, and /5, have coherence order zero, so does 2/,/5;.

211, 1>_ has coherence order zero since the coherence order of spin one is +1 and that of
spin two is —1.

21 1 xfzy can be written as:
Zilxizy = 2X % (i1+ + il_) X % (i2+ — iz_)
% (f1+f2+ N -1 b+ fl—f2+)-

2111y, is therefore an equal mixture of coherence orders +2 and -2, double-quantum
coherence, and coherence order 0, zero-quantum coherence.
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714

Using the definitions of /j, given by Eq. 7.28 on p. 178, we can write 2/, xfzy as:

Zilxizy 2 X %(il_'. +i1_)>< %(iz_'. —iz_)
% (f1+f2+ - il—iZ—) + % (il—i2+ - f1+i2—)-

double-quantum part zero-quantum part

The other relationships in the table can be verified in the same way.

7.15

The first 90°(x) pulse rotates the equilibrium 7}, to —/; y. During the spin echo sequence, the offset
is refocused, but the coupling evolves throughout. The state of the spin system at the end of the
spin echo is

cos(2nJ1o7) Ity — sin(2nJ1p7) 201 b,

The final pulse acts to give
COS(27TJ12T) ilz + sin(277]12‘r) 2i1xi2y.

Using the definitions of DAQy and ZQ), given in the last table of section 7.12.1 on p. 178, we see
that we can rewrite the second term as

1 sin(@rJ1,7) (DQ, - Z2Q,)

which is a mixture of double- and zero-quantum coherence.

The amplitude of this multiple quantum term is a maximum when sin(2zxJ,7) = 1, which occurs
when 7 = 1/(4J;7).

Starting with equilibrium magnetization on spin two, />, the terms present after the final pulse are
cos(2nJ127) Iy, + sinQrJ127) 211y Loy

we have taken the terms from the previous calculation and swapped the labels 1 and 2. Again, from
the definitions of DAQy and ZAQy in section 7.12.1 on p. 178, we can write the multiple quantum
term as

1 sin(@rJ157) (DQ, + ZQ, ).

Therefore, adding this term to the one originating from /., we obtain;
Lsin@2rJ157) (DQ, — ZQ, ) + 4 sin(2n/1,7) (DQ, + ZQ, ) = sin(2J1,7) DQ,,

which is pure double-quantum coherence. It is a rather unusual feature of this sequence that, in a
two-spin system, it generates pure double-quantum coherence.
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7.16

From the table on p. 180, ZQX is equal to (2f1 XIAZX + 2f1yf2y). Zero-quantum coherence between
spins one and two does not evolve under the coupling between these two spins, so we need only
consider the evolution under offset. Considering first the 2/}, /5, term:

A A Qltilz+tai2Z
2y —

2 [cos(Que) Iy + sin(Qu1) iy | [cos(Qat) Ty + sin(Qa1) oy | .
We will now look at the 27, ),fz), term;

A A Qll‘IAlz+talA2Z N . N N . N
261y Fyy ————=5 2|cos(Qu1) T1y — sin(Q0)]1| [cos(Qar) by — sin(Qa) |

Collecting these terms together, we obtain:

[cos(Q11) cos(Qat) + sin(Q 1) sin(Qat)] (211, Loy + 211, 1ay)
+ [sin(Q 1) cos(Qat) — cos(Q 1) sin(Qo)] 211y by — 2111 Lay).

Using the identities:

cos(A—B) = cosAcosB+sinAsinB
sin(A — B)

sin A cos B — cos A sin B,
and the definitions of ZQX and Zby:
ZAQx = (Zilxibc + 2i1yi2y) ZAQy = (2i1yi2x - 2i1xi2y),

we obtain
cos ([Q) — Q10 ZQ, + sin ([Q; — Q11 ZQ,.
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Two-dimensional NMR

8.1

In each example, the preparation period is highlighted with a grey box, and the mixing period with
a grey box with a dashed border.
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8.2

e

—1‘1—> — Op—»

1, 2 and 3 are cross-sections of the damped cosine wave, whose amplitude provides the modulation
in ;. The period is the same for each wave, and the amplitude increases as we approach the centre
of the peak in w;.

4, 5 and 6 are cross-sections through the w, dimension. The amplitude and sign of the peak is
modulated by a damped cosine wave in ¢;.

8.3

The COSY pulse sequence is given in Fig. 8.8 on p. 195.

t1 — _t2_>

Starting with equilibrium magnetization on spin two, the state of the system at z, = 0 can be
determined from terms [1]-[4] on p. 195 by swapping the spin labels 1 and 2. The result is:

—cos () cos (i) b, [1]

—sin (mJ1211) cos (Qaty) 201y I [2]

+ COS (ﬂJ]ztl)Sin (tal)izx [3]

—sin (mJ1a11) sin (Qot1) 201, ;. [4]
The observable terms are [3] and [4]. The operator in term [3] is fzx, which will give rise to a

doublet on spin two in the w, dimension. It is modulated in #; by sin(€2,¢;) i.e. at the offset of spin
two. Thus, [3] produces a diagonal-peak multiplet.
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The operator in term [4] is 21 1yfzz; this gives rise to an anti-phase doublet centred at the offset of
spin one in the w, dimension. It is also modulated in #; by sin(€2,#;). Therefore, it produces a
cross-peak multiplet.

It was shown in section 7.5.2 on p. 158 that the evolution of 27 1nyZ during #, gives rise to the
following time domain signal:

Tiexp([Q + mJ12]t) — Siexp(IQ) — nJ12]t).

Imposing an exponential decay on this signal and Fourier transforming, we obtain the following
spectrum

T [A2(Q) + T12) +iD2(Q) + mJ12)] — 31 [A2(Q) — 7] 12) +iD2(Q) — m1)] .

To ensure that the absorption mode lineshape appears in the real part of the spectrum, we mul-
tiply the expression above by a —90° phase correction factor i.e. by exp(—in/2). Noting that
exp(—in/2) = —i, we obtain:

TIA(Q) + mJ12) +iDo(Q) + J12)] — 2 [Ax(Q) — nJ12) +1D2(Q) — mJ12)].

Clearly this is an anti-phase doublet on spin one.
The #; modulation of term [4] has the form — sin (7J2#1) sin (Q,¢1). Applying the identity

sinA sin B = % [cos(A — B) — cos(A + B)],

gives
% [cos(Qy + mJi2)t; — cos(Qy — wJ12)t ] .

Imposing an exponential decay and taking the cosine Fourier transform yields the spectrum
FANQ; + 112) — A€ — 1))

This is clearly an anti-phase doublet on spin two.
Multiplying the w; and w, spectra together, and taking the real part, gives the following four lines
which form the cross-peak multiplet. Note that they form an anti-phase square array.

+ 1A1(Q + 12)A2 Q) + 1) — FA1(Q + 1T12)ANQ) — 1 12)
— JA1(Q — T12)A2Q) + 1T 12) + JA1Q — 1T 12)ANQ — 7).

The operator in the diagonal peak term [3] is />,. Evolution of this operator during #, gives the
following time domain signal:

% exp(i[Q + wJ12]0) + % exp(i[Q; — wJ12]0).
Imposing an exponential decay to this, and Fourier transforming gives the spectrum
3 [A2(Q2 + 1J12) +1D2(Qa + 712)] + 5 [A2(Q2 = 1 12) +1D2(Q2 = 7J12)]

This is an in-phase doublet on spin two.
The #; modulation is:

cos(mJiat)) sin(Qot1) = 3 [sin(Q + wJ12)ty + sin(@Q — w1l 1,
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where we have used the identity
sinAsin B = 1 [sin(A + B) + sin(A - B)].
Assuming an exponential decay and applying a sine Fourier transform gives the spectrum:
TIANQ, + 112) + Ay (Q — 1))

This is an in-phase doublet on spin two.
Multiplying together the w; and w, parts of the spectrum and taking the real part yields the
following four components of the diagonal-peak multiplet. Note that they all have the same sign.

+ 3A1(Q; + TT12)Ar(Q + 7T12) + $AIQ + T 12)A2(Q) — T 12)
+ JA1Q — 112)A2(Q + 1) + JAIQ — TJ12)AN(Q) — 7 12).

8.4

The DQF COSY pulse sequence is given in Fig. 8.15 on p. 205.

t1 —_— _t2_>

Starting with equilibrium magnetization on spin two, I, the state of the spin system after the
second pulse is exactly the same as for the COSY experiment at #, = 0 as calculated in Exercise
8.3. Of the four terms present, the only one that contains double-quantum coherence is [2]:

—sin (mJi2t1) cos (tal) 2i1);i2x.

In section 7.12.1 on p. 178, it was shown that 2f1yf2x is a mixture of double- and zero-quantum
coherence. The double-quantum operator DQ,, and the zero-quantum operator ZQ,, are defined
as:

DAQy = Zilxizy + Zilyizx ZAQJV = Zilyizx - Zilxizy.

Hence,
26y by = 1(DQ, +ZQ,).
The double-quantum part that is retained is therefore:
4 sin (1J1211) cos (Qa11) DQ, = —4 sin (w/1211) cos (1) (2f1cLoy + 211y By
The third 90° pulse acts to give:
=4 sin (/1) cos (Qot) (201D + 202Dy

21,0y, and 2I;.I,, represent anti-phase magnetization on spins one and two, respectively. Both
are modulated in #; at Q,, so the first term therefore gives the cross-peak multiplet, and the second
the diagonal-peak multiplet.
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Expanding the #; modulation, we obtain
—1sin (nJiot1) cos (o)) = =1 [sin(Qy + wJ12)ty — sin(Qs — nJ12)1],

which is an anti-phase doublet on spin two. Hence, both the cross- and diagonal-peak multiplets
are anti-phase in both dimensions. Furthermore, both terms have the same #; modulation, and both
appear along the x-axis at the start of acquisition, so the spectrum can be phased so that all the
peaks appear in the double absorption mode.

8.5

The pulse sequence is given in Fig. 8.19 on p. 209.

lr M = Ft1 I_tg_.

The first 90° pulse rotates equilibrium . to 1 1y» Which then evolves under coupling during the
spin echo (the offset is refocused) to give

cos2nJ127) Ity — sin(2nJ127) 211 b,
This is rotated by the second 90° pulse to give
COS(27TJ12T) ilz + sin(277]12‘r) 2i1xi2y.

We select just zero-quantum coherence at this point. From the table on p. 180, the zero-quantum
part of 2/,1>y is —%ZQy, so at the start of 1| we have:

—1sin(2nJ17) ZQ,.
This evolves during #; according to the rules in section 7.12.3 on p. 180:

1 .- A Qi1 ilz"'Qle i2z 1 . S
-3 sin(2nJ127) ZQ, — 5 cos ([ — Qp]7) sin(2nJ127) ZQ,
+ 1sin ([Q) — Q1) sin(27J127) ZQ,,

where
ZQX =20,y + 211y12y ZQy = leylzx - lexlzy.

Note that the zero-quantum coherence between spins one and two does not evolve due to the
coupling between these two spins.
The final pulse rotates the zero-quantum terms to give

— sin@J157) cos (1Q — Q1) (211D — 201 1)

+ L sin@rJ 1) sin (1Q1 — Q1) (2h oy + 211 12),
the observable terms of which are:

1 sin@rJio7) cos ([Q — Qalty) (2140 - 211.y).

The spectrum has the same form as the double-quantum spectrum shown in Fig. 8.20 on p. 210
with the following differences:
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e In w, the anti-phase doublet on spin two, which arises from the 2/,./>, term, appears with
the opposite sign.

e The frequency of the peaks in wj is (2] — ) i.e. the zero-quantum frequency.

The information that can be gained from this spectrum is the same as for the double-quantum
spectrum.

8.6

From section 8.8 on p. 214, the terms present after the first spin echo are
COS(27TJ15 T1 )iy - sin(27rJ13 T1 )ZIAXS'Z.

The subsequent 90° pulses are required to transfer the anti-phase magnetization (the second term)
to the S spin, so that it can evolve under the offset of the S spin during #;. This requires the / spin
pulse to rotate I, to I, which is only possible if the pulse is about y.

Applying the [ spin pulse about —y gives:

: s s /D . fa @28 s a
—sinQ2nJis71) 208, —— —sinnJis71) 21,5, —— sin(QnJis71) 21,S,.

The 2fZ§y term, present at the start of #;, simply changes sign when the / spin pulse is changed in
phase from +y to —y.

8.7

The pulse sequence is given in Fig. 8.23(a).

Ir1'r1
I H

< <

: A i c

D

w

The state of the spin system after the spin echo (A) is, from section 8.8 on p. 214:
cosQnJist1) Iy — sin@nJis 1) 21,8,
The pulses during period B have the following effect on the anti-phase term:

. o @4 Sy) P
—sin2nJis711)21,.S, ——— sinRnJ;s71) 21,8,



Chapter 8: Two-dimensional NMR 50

Period C is a spin echo, during which the coupling is refocused, but the offset of the S spin evolves
for time #;. At the end of this period, the terms are:

—cos(Qsty) sinnJis 1) 2.8, — sin(Qsty) sinnJis 1) 21,8,
The final two pulses (period D) produce the following state at #, = 0:
cos(Qst1) sin2rJ;s71) 21,8 + sin(Qs 11) sinnd s 71) 21, ..

The observable signal is due to the 2fy§ . term, and is now modulated in #; according to sin(Qg?1).
So, shifting the phase of the first 90° pulse to the § spin from x to y does indeed alter the modulation
in #; from cosine to sine.

8.8

The pulse sequence is given in Fig. 8.25 (a) on p. 218. We will now modify it so that the first 90°
S spin pulse is about —x.

< F >
i ; —t,—
[ e N | I e TV
I _’X ; évvvvvvﬁ;\
t l :
§—i l ! _ i

As argued in section 8.9 on p. 217, the offset of the / spin is refocused over the whole of period F.
The first pulse creates —fy, which evolves during period A under coupling to give

—cos(nJis7) Iy + sin(mJs 1) 21,8,

Taking just the second term (the first does not produce any useful peaks), and applying to it the
first S spin pulse (with phase —x) gives:

sin(Jys7) 21,8,

which is of opposite sign to the corresponding term in section 8.9 on p. 217. This sign change
propagates throughout the rest of the calculation so that the observable term

sin?(J;s7) cos(Qg 1)1,

also has the opposite sign. The same result is produced on changing the phase of the second 90° S
spin pulse to —x.

I spins that are not coupled to S spins do not give rise to anti-phase magnetization, and so are
not affected by the S spin pulses. This / spin magnetization is therefore unaffected by altering the
phase of the first S spin pulse. So, recording two spectra, the first with the first S spin pulse about
x, and the second with it about —x, and then subtracting one from the other will retain the wanted
signal and eliminate the unwanted signal.
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8.9

It was shown in section 8.9 on p. 217 that the observable term at the start of acquisition is
—sin*(nJis7) cos(Qs 1) I,

The amplitude of the signal is given by sin?(zJ;s ), which has a maximum value of 1. This occurs
when the argument of the sine is an odd multiple of 7/2 i.e. when nJ;s7 = nn/2, n =1, 3, 5,...
Hence, 7 =n/2Jis), n=1, 3, 5,...

sin?(nJ;s7) = 0 when nJysT = nr/2, n = 0, 2, 4,...1i.e. is an even multiple of /2. Hence the
amplitude will be zero when 7 = n/(2J;s), n =0, 2, 4,...

8.10

The HSQC pulse sequence, without decoupling during acquisition, is shown in Fig. 8.23 (b) on

p. 215.
J T M v i |'| fo—
1 v - P ¥ :%: AA

At the start of acquisition, the observable terms are:

— cos(2nJis T2) sin(2r s 71) cos(Qs 1) 21, S,

+ sin(2Jys ) sinRaJs 1) cos(Qs 1) Iy

The modifications for detecting long-range correlation are essentially the same as those discussed
for the HMQC experiment in section 8.9 on p. 217. They are:

o Increase the length of the delay 7, so that sin(2xJ;s 71) is significant for typical values of the
long-range coupling constants.

e Acquire immediately after the final transfer pulses D, thus avoiding loss of signal due to
relaxation during the final spin echo E, as in sequence (b) of Fig. 8.23.

e Acquire without broadband decoupling, as the wanted term is anti-phase with respect to J;g.
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8.11

The diagonal peak is
A cos(mdisty) COS(Qltl)ib;.

It was shown in section 7.5.1 on p. 157 that evolution of [ 1y during 1, gives the following time-
domain signal:
Tiexp([Q + mJ12]t) + 3iexp(IQ) — nJ12]t2).

Imposing an exponential decay and Fourier transforming yields the following spectrum:
3 [A2(Q) + T12) +iD2(Q) + I 12)] + 31 [A2(Q) — T 12) +iD2(Q) — mJ12)].

Applying a —90° phase correction and taking the real part, we obtain an in-phase doublet on spin
one:
1AX(Q) + 1) + 3A2(Q — 1)

The modulation with respect to #; is Aj_,| cos(nJyst1) cos(€2t1), which can be expanded using the
identity
cosAcos B = % [cos(A + B) + cos(A — B)],

to give
%Al_q [COS(Q] +nrJis)t) + COS(Q] —nJis)t].

Imposing an exponential decay, and then taking the cosine Fourier transform gives:
3A151 [AL(Q) + 1) + Al(Q) — T 12)],

which is an in-phase doublet in w;.
Multiplying the spectra in the w; and w; dimensions together gives the following four peaks for
the diagonal-peak multiplet:

+ TAIS1A1(Q) + 1T12)A2(Q) + 1T12) + $AIS1A1(Q) + 1T12)Ax(Q) — 1T12)

+ 3AIS1ANQ) — 1 12)A2(Q + 1) + FA1S1AI(Q) — m12)Ax(Q) — 7).

All the peaks are positive and in the absorption mode.

The cross peak term
Ao cos(nsty) cos(Q 1) Dy

has the same modulation in #; as the diagonal peak, and in #, the operator is fzy, rather than [ y> SO
in w; the doublet appears at 2>. We can simply write down the four peaks which contribute to the
cross-peak multiplet as:

+ 3A12A1(Q) + T 12)Ar(Q) + T 1) + FA152A Q) + 1T 12)A2(Q — T 12)
+ TA152A1(Q) — 1T12)A2(Q + T12) + $A152A1(Q — mT12)A2(Q — 7T12).

Again, these are in the absorption mode, and are all positive.
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8.12

The phase-twist lineshape is

S(wr, w2) = [A1(Q4)A2(Qp) — D1(Q4)D2(Qp)] +1[A1(Q4)D2(Qp) + D1(24)A2(Qp)] .

real imaginary

The plot shows the imaginary part.

8.13

The observable signal, acquired with broadband decoupling, is
sin(2Jys o) cos(Qs 1) sin(2nJ s 1) Iy

(a) Applying the SHR method to the HSQC sequence requires the acquisition of two time-
domain signals: one with cos(€2s#;) modulation in 7, the second with sin(€2s#;) modulation
in #;. It was shown in section 8.13.1 on p. 232 that the modulation can be changed from
cosine to sine by shifting the phase of the first 90° § spin pulse by 90°.

(b) For TPPI, each time ¢, is incremented, the phase of the first 90° pulse on the S spin must be
incremented by 90°.
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8.14

In order to obtain a sine modulated data set from
CcoS ([Ql + Qz]l‘l + 2¢),

we need to set 2¢ = —m/2 i.e. ¢ = —m/4. To show this explicitly, we expand the argument of the
cosine using the identity

cos(A — B) =cosAcos B+ sinAsinB,

hence

cos ([ + Dty —7/2) cos ([Qq + Q]t1) cos (/2) + sin ([ + Qp]t1) sin (71/2)

sin ([ + Q5]11),

where we have used cos (r/2) = 0 and sin(x/2) = 1. So, shifting the phase by —x/4 alters the
modulation from cosine to sine. Thus, to implement TPPI, each time we increment #; the phases
of the pulses preceding ¢; are incremented by —45°.
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Relaxation and the NOE

9.1

The equilibrium populations of the o and S levels are given by Eq. 9.6 on p. 264:
ny = sNexp(=Eo/ksT)  ny = 5N exp(=Ep/ksT),

where

Evaluating the energies yields:

E, —-1%1.055 x 107 x2.675 x 10°x9.4=-1.326 x 107217,
Eg = +1326 x 1072 7.

Hence, at 298 K, the populations are:

ng = 3x10" xexp(1.326 x 107/(1.381 x 107> x 298))
= [5.00016 x 10",
ng = 3x107 xexp(-1.326 x 107°/(1.381 x 107 x 298))

14.99984 x 10'?].

On account of the very small energy gap, these populations are very similar, although as expected

0 0
Ny > Ng.

B
The energy of the system is given by
E = noE, +ngkp
= %hyBo (n,g - n(,) .
Initially, n, = ng, s0 Ejsiar = 0. At equilibrium,

Eequ. = 1.326 x 107 x (4.99984 x 10'* -5.00016 x 10'%)
-4.243 x 1077 1.

The total change in energy is therefore

AE = Eequ. = Einitial = |-4.243 x 10717 ]].
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The thermal energy of N molecules is of the order

NkgT = 10" x 1.381 x 10723 x 298 = [4.115 x 1078 ]

’

which is nine orders of magnitude greater than the value of AE calculated above. This reinforces
the point that the energy of interaction between the spins and the magnetic field is minuscule
compared to the thermal energy.

9.2

The reduced spectral density function is given by Eq. 9.4 on p. 262

27,

(W) = ———.
J@) 1 + w?r?

For a fixed frequency w, the maximum value of j(w) occurs at a value of 7. given by

djw) _

0.
dr.
Using the product rule, we obtain:
d . 2 4?72
G J@) = 22 —
dr. 1+ wt¢ (1+w27.g)

2+ 2(1)27'% - 4a)27'%
(l + wzrg)z
2 (1 — szg)

(l + wZTE)Z '

The denominator is always non-zero, so the above expression can be solved by setting the numer-
ator to zero:

2 (1 - a)zrg)

0
1
w

T, =

Since the rate constant for longitudinal relaxation depends on j(wy), the above result indicates that
this rate constant has its maximum value when 7. = 1/wy.
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9.3

At equilibrium, the lower state (@) must have a greater population than the upper state (), as pre-
dicted by the Boltzmann distribution (assuming that the gyromagnetic ratio is positive). Suppose
we start with equal populations of the @ and f states. The only way in which the population of
the « state can increase relative to that of the f state is for the rate of transitions from S to «a to
exceed the rate from a to 8. As the populations are equal, this implies that the rate constant for
the transition from S to @ must be greater than that for the transition from « to .

9.4

In the inversion—recovery experiment, the peak height S (7) is given by
§(r) = §(0) [2exp(—R.7) - 1],
where S (0) is the peak height at time zero. Rearranging this, we get:

S@+5O))
IH(T@)_ RZT,

from which we can see that a plot of In[(S (1) + S(0))/(2S(0))] against 7 will be a straight line of
gradient —R, = —1/T}.

/s 0.0 0.1 0.5 0.9 1.3 1.7 2.1 2.9
S (1) ~129.7 -934 7.6 62.6 934 1095 1189 1264
In[(S(7) + S(0)/(2S(O)] | 0.000 —0.151 -0.754 —-1.353 -1.968 -2.554 -3.179 -4.370

t/s
0.0 0.5 1.0 1.5 2.0 2.5 3.0

In[(S(t) + S(0))/25(0)]

The gradient is —1.508 s™!, so R, = 1.508 s~ and 7 =[0.663 s].
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9.5

In section 9.5.2 on p. 271, it was shown that an estimate for 7' is given by 71/ In2. The values
of T are therefore:

05 06 038
0.72 0.87 1.15

Thull / S
T] /S

The fact that the solvent was still inverted after a delay of 1.5 s shows that it has a T} value that is
greater than 1.5/In2 = 2.16 s i.e. the solvent relaxes at a slower rate than the other spins.

9.6

The z-magnetization relaxes according to Eq. 9.15 on p. 269:
M(1) = (M(0) - M?) exp(~R1) + M.
Setting M,(0) = 0 and ¢ = 7, we obtain
M (1) = M?[1 — exp(-R.7)].

—_

M (t)/Mp ——~

o

The peak height S (1) is proportional to the z-magnetization present just before the 90° pulse. Thus,
S (1) can be written as
S(1) =c[1 —exp(-R;7)].
Letting T — o0, S = ¢; this will be the height of the peak in a simple 90°—acquire experiment.
Substituting this into the above equation gives
S(1) =S« [l —exp(-R,;7)].

Rearranging this yields:

S(t) = S|l —exp(—R;7)]

S(7)

R = 1 —-exp(—R;7)
22 50 = ep-Ra)

Soo_S(T)
IH(T) = -R.7,
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where we have taken the natural logarithm to go to the last line. Hence, a plot of
In[(S  — S(1))/S ] against 7 gives a straight line of gradient —R,.

9.7

Assuming that the rate is proportional to the deviation from the equilibrium population, we can
write the rate of change of the population of level 1 (using the labelling in Fig. 9.17 on p. 273) as

dditl = —Wile) (n1 - I’l(l)) - Wil,a) (n1 - I’l(l)) - Ws (n1 — n(l))

loss from level 1

AW (= )+ W (1 = ) + W (me — ).

gain from level 2 gain from level 3 gain from level 4

Similarly, the rates of change of the populations of the other levels are:

dn 2.) 0 0y _ w1 0
O =-W, (nz - n2) - Wy (n2 - ”2) - W, (n2 - ”2)
loss from level 2
2, 0 0 (1,8) 0
+W§ o (m - ”1) +Wo (n3 - n3) +W, s (n4 — n4) )
gain from level 1 gain from level 3 gain from level 4
dns (L) 0 0 28 0
E:_Wl (n3—n3)—W0(n3—n)—W1 (n3—n3)
loss from level 3
(L) 0 0 28 0
+W1 (m —n1)+WO (nz —n2) +W1 (n4 —n4).
gain from level 1 gain from level 2 gain from level 4
%__W ( _ 0)_W(1,/3)( B 0)_W<2,ﬁ>( 3 0)
7 2\ng —ny ) nyg —ny h ng —ny

loss from level 4

+W, (m - n?) +W§1"6) (nz - ng) +W§2’ﬁ) (n3 - ng) .

gain from level 1 gain from level 2 gain from level 3

9.8

(a) The expression for b is (from section 9.6.3 on p. 277)

b_umﬁh_4nx1U”xaﬁm><m%2xL%5x10“
C dnrd 47 x (1.8 x 10-10)3

=1.294 x 10° s7!.

Hence, b* = |1.675 x 1010 s‘2|.
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(b) The expressions for the transition rate constants are given in section 9.6.3 on p. 277:
1 . 2 .
Wil = &b o) WP = b j(woo)
Wy = 367 j(wo,1 + wo ) Wo = 3507 j(wo,1 — wo,0).

In the fast motion limit, j(w) = 27, for all frequencies w, so the rate constants have the
following numerical values:

Wi =32 = 3 x 1675 x 10'°x20 x 1072 =[0.0503 571,
WP =S = 35 x1.675 x 101°x20 x 10712 =0.0503 57!,
Wy =2b1. = 2x1.675 x 10°x20 x 1072 =]0.201 s7'],
Wo = b%1e = 5 x1.675 x 1019x20 x 10712 =]0.0335 s7!].

From Eq. 9.19 on p. 277:

R = 2w+ Wa + Wy = (2% 0.0503) +0.201 +0.0335 = [0.335 571,
R = 2w+ Ws + Wy = (2 X 0.0503) +0.201 +0.0335 = [0.335 571,

o = Wy—Wy=0.201 -0.0335 =|0.168 s~'|.

(c) Substituting j(w) = 27, for all values of w in Eq. 9.20 on p. 278, we obtain:

R = 1 [2%]'(0)0,1) + 35 j(wo + wop) + 35 j(wo, — wo,z)]
= b1,
= 1675 x 10"°%x20 x 1072

= [0335571.
Similarly, R =[0.335 s°1], and oy =[0.168 7]

(d) The value of R%,) can be calculated from the expression in section 9.8.3 on p. 295:

RY = »? [%j(O) + 35 j(@0.2) + 75j(wo,1) + 35 j(wo.1 + wo2) + 5.j(wo.1 — wo,z)]
= b1,
1.675 x 10'°%x 20 x 10712

0.335 571].

To go to the second line, we set j(w) = 27.. Similarly, R%V) =10.335s7.

(e) As expected in the fast motion limit, the rate constants for the self-relaxation of both
longitudinal and transverse magnetization have the same value. The rate constant for the
cross-relaxation of longitudinal magnetization has half the value of the self-relaxation rate
constant and is positive, again as expected.

(f) The Larmor frequency is:

wo =27 %500 x 10°=3.140 x 10° rad s~ .
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From the expression for the reduced spectral density,

27,

(w) = 2T
J@) 1 + w272

we can calculate the values of j(wy), j(2wp) and j(0):

2 2 10712
Te  _ X300 x 10 =288 x 107105,
T+w22  1+(3.140 x 10°x500 x 10-12)2

jQwy) = 9.20 x 107!,
j(0) = 1.00 x 107 s.

J(wo)

The values of R;l), R;Z) and o1 can be calculated by substituting wg; = wp2 = wp into
Eq. 9.20 on p. 278, giving R = R =2.025 57|, and o7, = |=0.375 s™!|. Similarly, from
section 9.8.3 on p. 295, Rg(ly) = Rg,) = .

(g) As wgt. = 1.6, we are now outside the fast motion limit, and beyond the zero-crossing point
where o1, = 0. As a result, o> is negative and the rate constant for transverse relaxation
exceeds that for longitudinal relaxation. We are not very far beyond w7, = 1, so the rate of
longitudinal relaxation is significantly faster than for 7. = 20 ps.

9.9

For a '3C—"H pair, the value of b is:

b= woycyuh 4 x 1077 x6.728 x 107 x2.675 x 108 x 1.055 x 10734
C 4an3 4 x (1.1 x 10-10)3
1.427 x 10° s7L.

Hence, b*> = 2.035 x 10'0 572,

In the fast motion limit (7. = 20 ps), the values of the rate constants can be calculated from those
in the previous question by multiplying by the ratio of the b? values. Note that we can only do this
because j(w) is independent of 7. in this limit. So,

(bé_—H)R(n (1H_1H)
biw) ”

2.035 x 1010
= Ters x 100 <0

= [0.40757'].
Similarly, R? =[0.407 s°1], 015 = [0.204 5], and R}) = R®) = [0.407 s"]. All these values

are greater than for the '"H—'H pair due to the smaller separation between the '3C and 'H. yc is
a quarter the value of yy, so for the same distance we would expect the relaxation to be sixteen
times slower. However, the rate constant goes as 1/r%, which changes by a factor of 19.2 on going
fromr=1.8Ator=1.1A.

Rgl) (13C_1 H)
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9.10

The necessary equations are given in section 9.10.2 on p. 304. At By = 4.7 T, ¢? is given by:
¢ = [yBo(oy-oo))

[6.728 x 107 x4.7% 100 x 10|

[1.00 x 10° 572

>

where we have used the gyromagnetic ratio of '3C. In the fast motion limit, j(w) = 27, for all
values of w, so the rate constants are:

R, = 35 jwo)
= CZ%TC
= 100 x 10° x & x20 x 1072

= [0.00267 571,

Ry = |50+ 55j(wo)]
= c247—57'c
= 1.00 x 10° x £ x20 x 10712

= [0.00311 571,

At By = 11.74 T, the rate constants are greater by a factor of (11.74/4, 7)2:

11.742
A= —x1.00 x 10° =[6.24 x 10° 572,
4.72
11.74? -
R, = ViR % 0.00267 = 0.0167 s7!|,
11.742

Ry = — =3 x 000311 =[0.0194 s,

The values of the CSA relaxation rate constants at By = 11.74 T are an order of magnitude smaller
than those for dipolar relaxation of '3C due to an attached 'H. However, as the CSA contribution
goes as BS it will become more significant at higher fields.

9.11

The formulae are as for the previous question. For By = 4.7 T,

= [yBy(oy—a))

3 -6]%
= [2.675 x 108 x 4.7 %10 x 10 ]
[1.581 x 108 s72].




Chapter 9: Relaxation and the NOE 63

Hence,

R = 45 j(wp)
= c212—5‘rc
= 1.581 x 10°x £ %20 x 10712

= [0.00042 57,

Ry = c|#i0)+ 55i(wo)]

_ 21
C45TC

= 1581 x 10°x £ x20 x 10712

= [0.00049571].

At By = 11.74 T, the values are greater by a factor of (11.74/4.7)%*: ¢* = |9.864 x 108 57!

R, =[0.00263 s~!|, and R,, =(0.00307 s~!|.
AtBy=23.5T,c*=[3.953 x 10°s~'], R, =[0.01054 57|, and R,, = [0.01230 s~'].

Even at a field of By = 23.5 T, the rate constants are still an order of magnitude smaller than the
dipolar relaxation rate constants at By = 11.74 T.

’

9.12

We are going to apply the initial rate limit, in which we assume that, on the right hand side of
Eq. 9.21 on p. 279,

dfi, (1) 0 0

L I e A1)

11, and I, have their initial values:

(%) = RV (1,0 - 10.) - 012 (1:(0) - 19
init

= —R;l) ([?Z - I?z) - 012 (0 - Igz)

= 0’1218Z.

Integrating this, we obtain:

f dIy.(f) f ool dt

L.() = opl5t+ const.

We know that at time ¢ = 0, 1,,(0) = I?Z, so the constant of integration is I?Z. Attr=r1:

Ii,(1) = 0'121ng + I(l)z'
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Now we will look at the z-magnetization on spin two in the initial rate limit. Starting from

dh 2
d_tz = —R; ) (I2z - Igz) — 012 (I]Z - I?Z) .
we obtain:
dhe) L g (R:(0) = 18.) = 12 (11:(0) — 1Y)
dr | z 2z 2z 1211z 1z
it

2 0 0 0
—RP(0-19) - op (17, - 1Y.)
2);0
= RPD.
Integrating this, and noting that 75,(0) = 0, we get, att = 7:
2
D) =RPL .
The height of the peak due to spin one is proportional to /i, and the height of that due to spin two

is proportional to I».. Furthermore, both spins are of the same type, so I°. = I . The peak heights
prop z p yp 12 = 1o, p g
for the irradiated, reference and difference spectra are:

spectrum S1(7) Sa(7)
irradiated: (a) clopt+1) RP't
reference: (b) c c

NOE difference: (a) — (b) COoT c ( R;Z)T _ 1)

Note that 5|7 < 1 and R?7 < 1 in the initial rate limit.

Q, Q,
| |

o N\
b )\ J\

(¢)=(a) - (b)

~

The NOE enhancement is given by:

peak height in irradiated spectrum — peak height in reference spectrum

peak height in reference spectrum
clopt+1)-c
c

g 12T.
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9.13

The NOE difference spectrum is convenient as it only shows the target resonance, and the reso-
nances which are receiving an NOE enhancement.

9.14

(a) The observation that the NOE enhancement depends only upon the cross-relaxation rate
constant is a property of the initial rate limit i.e. the assumption that the target peak is still
fully inverted after the delay 7. We are effectively ignoring self relaxation during this delay.

(b) At longer times, the inverted spin begins to relax back to equilibrium. This reduces the
z-magnetization on that spin and so slows the growth of the NOE: hence the dependence
on the self-relaxation rate constant of that spin. The spin receiving the enhancement can
also relax, resulting in the NOE enhancement being lost: hence the dependence on its self
relaxation rate constant.

(c) Spin one is held saturated throughout the experiment, so its relaxation is of no importance.
Cross relaxation gives the rate of transfer of magnetization from spin one to spin two, while
self relaxation of spin two leads to a loss of this transferred magnetization. Therefore, there
is competition between these two processes, which is reflected in the observation that the
enhancement depends upon the ratio of the rate constants for cross and self relaxation.

9.15

In the initial rate limit, the enhancement in a transient NOE experiment depends only upon the
cross-relaxation rate constant for the transfer of magnetization between the inverted spin and the
spin receiving the enhancement. In this example, oap and ogc will be approximately equal, so
when Hp is inverted, the enhancement of Hs and He will be the same.

On inverting Hy, the enhancement at Hp still depends only on o ap, so will be the same as for Hp
and Hc when Hg is irradiated. Hc is too far from Ha to receive an enhancement.

In a steady state experiment, the enhancement depends upon the ratio of the cross-relaxation rate
constant to the self-relaxation rate constant of the spin receiving the enhancement. RZA and RZC are
equal to each other, so saturation of Hg will give equal enhancements on Hx and Hc.

Irradiation of Hp gives a smaller enhancement on Hp as the self relaxation of this spin is faster
than for Hy or Hc. This is because Hg has two nearby protons which relax it, whereas Hy and H¢
only have one nearby proton.
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9.16

The NOESY pulse sequence is given in Fig. 9.24 on p. 287.

| SIS MO v

We will start with equilibrium magnetization on spin one, and assume that spins one and two are
not coupled. If the phase of the first 90° pulse is —x, it rotates equilibrium /;; to /;,. This evolves
under the offset during #; to give:

N Q1t1i11+Q2t1i23 N . N
Ily _— COS(Qltl)Ily —sin(Qq11) 1 4.

The second 90° pulse acts on the above terms to give:

R , o @2(li+hy) . ) .
COS(Qﬂ])Ily - sm(Qltl)le _— COS(Q]Z])I]Z - SlH(Q]Z])I]x.

There are also similar terms due to spin two. We select only longitudinal terms after this pulse, so
at 7 = 0, the z-magnetization on each spin is:

I, = cos(Qltl)I?Z and I, = cos(tal)Igz.

The Solomon equations are (from Eq. 9.26 on p. 287):

% = R () - 1)~ o (L) - 1Y)
dlzzt(f) = —o (Ilz(t) - Ig) - R, (Izz(t) - ]g),

where we have assumed that I?Z =/

5, =1 V. Using the initial rate approximation with the following
. ., . ., . Z Z
initial conditions:

11(0) = cos(Qi11) I and I»,(0) = cos(Qaty) I,

we obtain:
1
(d ;Zt(z)) = =R, [cos(Qi1) = 1110 — o [cos(Qty) — 1] 17
init
db.(t
( iizt( )) = —o[cos(Qt)) — 1]1? — R [cos(Qyt) — 1]]?,
init

Integrating these, and using the initial conditions to determine the values of the constants of
integration, we obtain:

1
lng) = cos(Qif1) (1 = R.7) —cos(Qo11)oT + (R, + 0) 7,
N e’
z diagonal peak cross peak axial peak
I
2ZE)T) = cos(Qaf1) (1 = R.7) —cos(Qir)or+ (R +0) 7.
IZ N e’

diagonal peak cross peak axial peak
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Comparing these with Eq. 9.28 and Eq. 9.29 on p. 288, we see that the terms which give the
diagonal and cross peaks have changed sign, while the axial peak terms have not. The axial peaks
can therefore be suppressed by difference spectroscopy: we record two spectra with the phase of
the first pulse set to +x and —x in turn, then we subtract one spectrum from the other. The cross
and diagonal peaks reinforce, and the axial peaks cancel.

9.17

The Larmor frequency in rad s™! is
wo =21 x 500 x 10°=3.142 x 10° rads™".

The value of wgt, is 0.03, which is much less than 1. Therefore, we are working in the fast motion
limit, where j(w) = 27, for all frequencies. The rate constant for longitudinal relaxation is given
by Eq. 9.31 on p. 293:

R. = ¥*Bj j(wo),
where R, = 1/T;. Substituting in this, and using the fast motion limit expression for j(wp), we
obtain:

T_1 = 2szCBIZOC
2 - 1
loc 2T1)/2Tc
B 1
o2x1x (2.675 x 108)2x 10 x 1012
= 1699 x 10712,

This corresponds to a root mean square field of 8.4 x 107 T, which is 10~* times smaller than
By. The local fields are indeed very weak.

9.18

Any effects of inhomogeneous broadening are refocused by the spin echo, so the amplitude of the
transverse magnetization present at the start of acquisition depends only upon R,y and the time 27.
The peak height is therefore given by:

S(7)
5@
So

Soexp(—=2Ry7)

= exp(=2Ry1).



Chapter 9: Relaxation and the NOE

68

Taking logarithms of both sides gives us

S(7)
ln(S_()) = —2nyT,

so a plot of In(S(7)/S) against 7 is a straight line of gradient —2R,,.

T/S 0
S(7) 65
In(S(7)/So) | O

0.0

0.1
394
—-0.501

0.1

0.2 0.3 0.4 0.5
23.9 14.5 8.8 5.34
-1.001 -1.500 -2.000 -2.499

t/s
0.2 0.3 0.4 0.5 0.6

0.6
3.24
-2.999

0.7

-0.5 [~
-1.0 [~
1.5
20

In[S(t)/S(0)]

25
-3.0 [~

The gradient is —5.00 s~L giving Ry, = , orTr, =04s.

0.7
1.96
-3.501
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Advanced topics in two-dimensional

NMR

10.1

(a) Jip=2Hz Jy3=6Hz

spin3 o o B B
spin1 o B a B

—>J12<—

Q,/21

(b) Jip=6Hz Jy3=6Hz
spin3 o /B i
spin1 o Brot B

-~ J23—> -~ J12—>

JMJLJL

A
! A
—
_ Y A
-10 -5 0 5 10 Hz

t

Q,/21

(a) Assuming that the offset of spin two is 0 Hz, the line positions are —4, —2, 2 and 4 Hz.

(b) Assuming that the offset of spin two is O Hz, the line positions are —6, 0, 0 and 6 Hz; we
have a doublet of doublets, with the central two lines falling on top of one another, giving a

triplet.
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10.2

We do not need to consider the 1-3 coupling as this does not affect the evolution of a spin-two
operator. First, let us consider the evolution due to the 1-2 coupling:

N 2ﬂJ121i1zizz A~ . A A
Izy —— > cos (nJq21) Izy —sin(nJy2t) 211,15y

We will now consider the effect of the 2-3 coupling separately on each of the terms on the right.
For the term in fzy the evolution is straightforward:

~ 2mipth.Is. n . PN
cos (] 1t) by ———5 cos (mJy3t) cos (Tot) Doy — sin (Ja3t) cos (T 15t) 2h, fs..

For the — sin (J121) 21, zi2x term, the factor — sin (7J127) 21 . 1s unaffected by the evolution of the
2-3 coupling: writing this factor as A we have

N 2”]23ti21i3z ~ . A A
ALy ——— A cos (nJp3t) I + A sin (1J31) 215, 13;.

Reinserting the factor A gives
—cos (mJp3t) sin (mJ12) 211, Io, — sin (wJast) sin (wJ1at) 411 Doy I,

The overall result of the evolution of fzy under coupling is summarized in the table:

dependence dependence

term on Jis on Js description

fzy cos (mJipt)  cos (mJrst) y in-phase

-2f IZIAZX sin (nJy2t) cos(mJy3t) —x  anti-phase with respect to J1»
—2f2xf3z cos (mJypt) sin(mJrst) —x  anti-phase with respect to Jy3

doubly anti-phase with

—4l by, sin(xJiat)  sin(mhast) -y respect t0 J» and s

As expected, going anti-phase with respect to the coupling between spins i and j introduces a factor
sin (7J;;t), whereas remaining in-phase with respect to this coupling introduces a factor cos (nJ;;1).
The in-phase term is along y, singly anti-phase terms are along —x, and the doubly anti-phase term
is along —y i.e. they follow around in the usual sequence x = y — —x — —y.

The corresponding tree diagram is

/2y '211 z/2x
Jog Jog

I2y '212x132 '211 z/2x '411 zIZylsz



Chapter 10: Advanced topics in two-dimensional NMR 71

10.3

The trick to getting the signs right is just to think about the usual way in which y evolves into —x
and then into —y:

2l s,
Jo3
2I2y’32 _I2X
J1 2 J1 2
2I2yl3z '4I1zl2x/32 '/2x '2I1zIZy

The term 41, zi2xi3z arises from splitting first to the left, giving the coefficient cos (7J,3¢), and sec-
ond to the right, giving the coefficient sin (/;2¢). Note also that there is a minus sign introduced.
So the overall factor multiplying 4], Zizxi3z 1s — cos (7 Jo3t) sin (wJ71).

10.4

Term [1] is
cos (rJy3t1) cos (Jyot1) sin (Q]l])ilx.

First, let us consider the modulation in #;. We use the identity
sinAcos B = 5 [sin(A + B) + sin (A — B)]
to combine the terms cos (mJ21) sin (1) to give
3 cos (mJy3ty) [sin (11 + wlyoty) + sin Q1 — wp21)] -
Next we multiply out the square brace:
1 cos (mJy3ty) sin (Q 1y + wJoty) + 5 cos (wy311) sin (Qqty — 7wl yoty). (10.1)

Now we combine the two terms cos (mJ3¢1) sin (Q1#; + wJ1t1) to give

Isin(Quty + nJioty + wi3th) + 5 sin(Quty + ndity — wdi3h).
Doing the same for the two terms cos (J;3t) sin (Q 1] — wJ1211) gives

Tsin(Quty — ndioty + wi3th) + 5 sin(Quty — ndioty — wdi3h).
So overall Eq. 10.1 expands to four terms

%[sin(ﬂltl + ity + wdi3ty) + sin (Qq 1y + wJpty — wJi3t)

+sin (Qt — nJpty + wJi3ty) +sin (Qi1y — w121y —7TJ13t1)].
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Therefore, what we have in w, is a completely in-phase doublet of doublets on spin one.

In w, the operator is ., which also gives rise to an in-phase doublet of doublets on spin one.
‘Multiplying’ these two multiplets together in the manner of Fig. 10.6 on p. 325 gives rise to a
two-dimensional multiplet consisting of sixteen lines, all with the same sign; this is in contrast to
the cross-peak multiplet, which consists of four anti-phase square arrays.

Note, too, that the magnetization which gives rise to the diagonal peak is along x in #, and is sine
modulated in #;. This is the complete opposite of the cross peak, which is along y in #, and cosine
modulated. Thus, as in the COSY of the two-spin system, the diagonal and cross peaks are 90°
out of phase with one another in both dimensions.

The reason why the splittings due to Jj» and Ji3 are in-phase in the w; dimension is that the
modulation with respect to these couplings takes the form of a cosine: cos (nJ;;t1).
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For (f) there are only two anti-phase square arrays.




Chapter 10: Advanced topics in two-dimensional NMR 74

@ °
0
! @®
(c) (d)
r
o
|

In each case, the region plotted is £10 Hz from the centre of the cross-peak multiplet; for clarity,
only one anti-phase square array is shown. The linewidth is 0.5 Hz in each dimension.
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10.6
(a) (b) (©)
. ® ® ® ® ®
© ® ® ® ® °
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(d) (e) ®
®
o o ¢ ° ® * ® o e ®
® ® é
? . . ® *e ® L ®
1
— y—

In each case + 10 Hz is plotted from the centre of the cross-peak multiplet. Note that in (c), where
J12 = Jo3, the column of peaks down the centre of the cross peak no longer cancel one another
out, as four of the peaks are missing from the reduced multiplet.

In the series (a) to (c), Jo3 is increasing, thus increasing the w, separation of the two anti-phase
square arrays. In the series (d) to (f), Jy3 is decreasing, thus decreasing the w; separation of the
two anti-phase square arrays.

10.7

It is not usually possible to measure a value for the active coupling constant since this appears
as an anti-phase splitting. If the positive and negative peaks overlap significantly, the separation
between the maxima and minima of the anti-phase peaks is no longer equal to the value of the
active coupling constant.

See section 10.3.3 on p. 332 for a description of how, under some circumstances, the values of
passive couplings may be determined from reduced multiplets.
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10.8

Iof>_I34: observable magnetization corresponding to the line of the spin-two multiplet which is
associated with spin one and spin three both being in the « state.

I IQIAZ_IAg_: double-quantum coherence, with p = —2, between spins two and three. More specif-
ically, this operator is associated with one of the lines of the double-quantum ‘doublet’ — see
section 3.7.3 on p. 44. This term is not observable.

I lﬁizﬁigﬁi the population of the 858 energy level. This term is not observable.

IAMI}[;IA3+: single-quantum coherence, with p = +1, corresponding to the line of the spin-three
multiplet which is associated with spin one being in the « state and spin two being in the £ state.
Although it is single quantum, this term is not observable as only coherence order —1 is observable.

As described in section 10.4.2 on p. 336, free evolution simply gives a phase factor, with the
frequency depending on the offset of the spin in question and on the spin states of the passive
spins. If the passive spin is in the « state, a term —nJ is contributed to the frequency, whereas if
it is in the B state, a term +nJ is contributed. The overall sense of the phase factor depends on
whether the operator is 7, or _.

Lioh-L, — exp (i[Qa — nJ12 — nI31t) Toha- B3

Lahplys — exp (=i[Q3 — nJi3 + mhoslty) Do Doplas

10.9

During 7, the term I 1+f2ﬁf3(, acquires a phase factor:
exp (=i[Q + 12 — nJi3lt) T Doplsg.

The small flip angle pulse causes the following transfers to observable operators on spin two (the
coefficients come from Eq. 10.7 on p. 338)

T+ Dophye — ( +1i 9) (+%19) (D) l1ohr-T30

Iy Iphse — (~3i6) (+3i0) (1) Tiphy-Taq

i1+i2ﬁi3a (+ 19) (+%19) ( )Ilalz_lgﬁ
f1+f2ﬁi3a (——19) (+%19) ( 6 )flﬁfz_fgﬁ.

For a small flip angle, we discard the third and fourth terms as these go as #*. This leaves

f1+f2ﬁfga — —%92 ilaiz_i3a fhjzﬁfga — +%92f1ﬁi2_f30. (10.2)

These two transfers can be found in the table on p. 340.
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Next we consider the behaviour of the term IAl_IAzﬁI}Q. For this term the sense of the phase
modulation is opposite to that of I 1+IA2,31A3Q:

exp (+1[Qq + nJ12 — J13]t) il_izﬁi3a.

For this term, the transfer ;- —> I}, has associated with it a factor of (— %i@), which is the opposite
sign to that for the transfer /1, — Ij,. So, the cross-peak components arising from /1, /53/3, and
I 1_IA2/31A3Q have opposite signs.

10.10

Starting with /. 1+f2ﬁf3(1 the first small flip angle pulse creates four possible population terms, which
are the ones of interest in ZCOSY, in which spin one is in the « state:

I hglz, — (+%i9) (D (1) L1obophza
hiihplie — (+%i¢9) (%92) () hohrol3a

I hplsg — (+5i0) (1) (367) Tiadoplsg

I hgli, — (+%i(9) (%92) (%92) Tohool3p.

Of these four terms, only the first will be significant for the case of a small flip angle.
There are four additional transfers from [ 1+IA2,31A3Q to operators in which spin one is in the 3 state,
but as before only one of these is significant in the small flip angle case:

I gl — (-4i0) (1) (1) Tighpls,
So, we have just two population terms at this stage:
(+%i9) ilaizﬁi3a and (—%i@) ilﬁizﬁi3a.

From all that we have done so far we can see that, for small flip angles, the significant contributions
that these terms will make to the 1-2 cross peak arise from the transfer fzﬁ —> [,_, with both of
the other operators remaining the same:

(+%19) il(ti2ﬂi3a — (+%19) (+%19) il(tiz_i&,
(—%i@) ilﬁizﬁiga e (+%i9) (—%i@) ilﬁfz_i3a.
So the overall transfers from I 1+IA2,31A3Q caused by the two small flip angles pulses are
i1+i2ﬂi3<1 - _%92i1<1i2—i3a
IA1+IA2ﬁIA3a e +%92f1ﬁi2_i3a.

These are exactly the same as found for small flip angle COSY in the previous exercise (see
Eq. 10.2 on the previous page).
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10.11

From section 10.8.1 on p. 352, we found that at the end of the constant time 7 the following
operators are present:

cos (Qq1y) cos (mJ 1 T) fly —sin (Q 1) cos (nJ12T) flx
—cos (Qqt1) sin (mJ12T) 211 Lo, — sin (Qi1) sin (712T) 21y ..

The third of these is rotated by the second 90° pulse to a mixture of double- and zero-quantum
coherence:

i P /2) (15t Doy
—cos (Qqt1) sin (7J 2 T) 211 1>, (/2)(1x+ )

+cos (Qq11) sin (7J12T) 2f1xf2y.
Following section 7.12.1 on p. 178, the pure double quantum part of 21 1 xfzy is %(ZIA 1 xfzy +21 lyIAZX),
so the double quantum term between the final two pulses is

% cos (Qq1y) sin (nJ1,T) (ZilxiZy + 2i1yi2x).

The final 90° pulse makes this observable:

1 . A A A A (ﬂ/z)(il,r+i2x)
5 €08 Q1) sin (nJ12T) 2l Loy + 211y [o) ———

% cos (Qq11) sin(wJ 1, T) (Zilxi2z + 2i12i2x).

The term cos (Q¢1) sin (7J127T) 210 foZ gives rise to a diagonal peak centred at {Q,Q;}, as it is
modulated in #; at Q1 and appears on spin one in #,. There is a single modulating frequency of Q;
in wy i.e. no splitting due to couplings, as expected. In w; the multiplet is in anti-phase.

The term cos (1) sin (7J12T) 2flzf2x gives rise to a cross peak centred at {1}, Q5}, as it is
modulated in #; at ©Q; and appears on spin two in #,. Like the diagonal peak, it is in anti-phase in
wy. Furthermore, note that the terms which give rise to both the diagonal and cross peak appear
along x, so they will have the same lineshape in w,: this contrasts with the simple constant time
COSY experiment.

The intensity of both the diagonal and cross peaks goes as sin (7J,7): again, this contrasts with
the simple constant time COSY, where the two kinds of peaks have a different dependence on 7.
The advantage of double-quantum filtration is that it results in both diagonal and cross peaks
having the same lineshape in w;, as well as in w;.
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10.12

Following the same kind of analysis as in section 10.8.1 on p. 352, we first let —/ 1y evolve under
the coupling for time 7" a ‘tree’ is perhaps useful here:

-1y,
Ji2

'I1y 2I1xl22

P NN

'I1y 2I1x/32 2I1XI22 4I1y/22132
Using this, we can simply read off the four terms which arise as a result of the evolution of the
coupling

—cos (nJ13T) cos (mJ 1, T) fly + sin (7J13T) cos (mJ12T) 2f1xf3z
+c0s (mJ13T) sin (nJ12T) 211 o, + sin (nJ13T) sin (w12 T) 411y Do, I3,

The 180° pulse in the constant time period simply flips the sign of any y or z operators:

+cos (1J13T) cos (12 T) Ity — sin (J13T) cos (nJ12T) 211, 15,
—cos (rJ13T) sin (nJ12T) 211 . o, — sin (nJ13T) sin (w12 T) 411y o, I3

Now we have to let each of these terms evolve under the offset of spin one for time #;. The result
will be all of the above terms, multiplied by cos (Q1):

cos (Qltl)[ + cos (mJ13T) cos (nJ 1, T) fly —sin (7J13T) cos (mJ 1, T) 2i1xigz
—cos (w13 T) sin (w12 T) 2l Jo: = sin (w13 T) sin ()12 T) 411y Dol |,
and a related set of terms multiplied by sin (€;#;):
sin (Q11)] = cos (w/13T) cos (wJ12T) i = sin (x13T) cos (w2 T) 2y I
—cos (w137 sin (w12 T) 21y by, + sin (xy3T) sin (w12 T) 46 I, I |
After the final 90° pulse the first set of terms become
cos (Qltl)[ + cos (mJ13T) cos (nJ 1, T) flz + sin (7J13T) cos (mJ 1, T) 2f1xf3y
+cos (wJ13T) sin (w12 T) 2y Doy = sin ()3 T) sin ()12 T) 411 Doy Iy |

none of which are observable.
The second set of terms, those multiplied by sin (2#), become

sin (Q11)] - cos (w137) cos ()1 T) hy + sin (x13T) cos (w)yoT) 201 Iy,
+cos (n13T) sin (w12 T) 21, by, + sin (113 T) sin (212 T) 4i1xi2yi3y].
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The term in [}, is the diagonal peak: in ws it will appear as the in-phase doublet of doublets of
spin one, and as the #; modulation is simply sin (€217;), there will be a single frequency in w; i.e.
no splitting due to couplings, as expected.

The term in 2] lziZy is the 1-2 cross peak: in w, it will appear as the doublet of doublets of spin
two, anti-phase with respect to the 1-2 coupling, but in-phase with respect to the 2-3 coupling. In
wi there is a single modulating frequency of Q, just as for the diagonal peak.

The cross- and diagonal-peak terms have the same modulation in ¢, and so will have the same
lineshape is this dimension. However, in #, the magnetization which gives rise to the diagonal
peak appears along x, whereas that which gives rise to the cross peak appears along y. So, as for
the two-spin case, in w; the cross and diagonal peaks will have different lineshapes.

The intensities of the two type of peaks show a different dependence on the couplings:

spin-one diagonal peak : cos (nJ13T) cos (mJ2T) 1-2 cross peak : cos (nJ137T) sin (nJ12T).

As for the two-spin case, the cross-peak goes as sin (mJyciive T'), Whereas the diagonal peak goes as
c0s (mJactive T'): here the active coupling is J1». The two kinds of peaks have a common dependence
on the passive coupling Jy3, going as the cosine: cos (nJ;37). In words, to give rise to the 1-2
cross peak, the magnetization needs to be anti-phase with respect to the 1-2 coupling, and in-phase
with respect to the 1-3 coupling, hence the sine dependence on J, and the cosine dependence on
Ji3.

For the cross peak to have a maximum intensity 7J1,7 must be an odd multiple of /2, whereas
nJ13T must be an even multiple of 7r/2. It might be difficult to satisfy this requirement exactly.
This analysis reveals the main problem with constant time experiments, which is the complex
dependence of the cross-peak intensity on the couplings in the system, and the value of the fixed
delay T.

10.13

Following section 8.8 on p. 214, we found for a two-spin system the following S spin operator
after the first S spin 90° pulse:
—sin 2nJis71) 21,5,

We need to adapt this for the more complex spin system we are dealing with here. Firstly, the §
spin has to become the spin S, and the coupling becomes that between / and S, Jzs,:

—sin 215, 71) 2181,

If 71 = 1/(4Js5,), then the sine term goes to 1 and so we just have —2/.$ 1y at the start of 7.
Just as before, we now allow the homonuclear coupling, which in this case is between S| and S,
to evolve for the whole time 7, giving

—cos (nJ12T) 21,81y + sin (712 T) 41,81,52,,

where J; is the coupling between the two § spins. Note the generation of anti-phase magnetization
with respect to this coupling. We also need to take account of the S spin 180° pulse which inverts
the operators § 1y and S1. to give

+cos (nJ12T) 21,81y — sin (7J12T) 41,8155
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We now allow the S spin offset terms to act for time ¢;; only the offset of §; has an effect, giving

cos (Qs,11) cos (712 T) 21,81, — cos (Qs, 1) sin (nJ12T) 41,5155,
—sin (Qs, 1) cos (7J12T) 21,81, — sin (Qs, 11) sin (1J12T) 41,81,

Finally, we need to take account of the / spin 180° pulse, which inverts all of the terms, as they all
contain 7,:

—cos (Qg, 1) cos (mJ12T) ZIAzS'ly + cos (Qg, 1) sin (mJ12T) 4IAZ§1x§2Z
+sin (Qs, 1) cos (mJ12T) 21,81 + sin (Qs, 1) sin (7J12T) 41,581,585,

Note that we do not need to worry about the evolution of the heteronuclear coupling as this is
refocused by the 180° pulses in periods A and B.

Next comes the 90° pulses to the / and S spins: these have the following effect on the operators
(the trigonometric terms have been left out):

2IAZS\'ly B _2IAySAIZ 4iz§1x§2z — 4iy*§'1x§2y 2iz§1x B _2IAySA1x 4iz§1y§21 — 4iy*§'1z§2y-

Of these terms, only the first becomes observable on the 7 spin. We can see that the feature of this
term is that it has remained in-phase with respect to the S;—S, coupling, and is cosine modulated
in fy.

After these two 90° pulses the observable term on the / spin is

cos (Qg, 1) cos (nJ12T) ZIAySAlz.

After the following spin echo, assuming 7; = 1/(4Jys,), this term simply becomes in-phase along
—X:
—cos (Qg, 1) cos (mJ12T) I..

We then observe this term with broadband S spin decoupling, giving a single peak at {Qg,, Q/}.
As a result of using the constant time procedure, there is no splitting in w; due to the coupling
between the S spins.

The intensity of the peak depends on cos (rJ2T); for a maximum, 7J1>7 must be a multiple of 7,
ie.nJpT =nmor T =n/J1; n =1, 2, .... This condition corresponds to the magnetization
being in-phase with respect to the coupling between the S spins at the end of the constant time 7.
In the case that the S spins are 'C in a globally labelled sample, the couplings we need to worry
about are the one-bond '*C-'3C couplings, simply because these are the largest. Such couplings
do not vary very much with structure, so it should be possible to find a value of 7 which is a
reasonable compromise for all the carbons in the system.

If there are further S spins coupled to S, then we can see that the intensity of the cross peak will
go as cos (mJ1pT)cos (mJ13T) . ... Again, if the couplings do not cover too wide a range, we can
find a value of T which will give reasonable intensity for all cross peaks.
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10.14

We just use the idea that the selective 180° pulse ‘drags’ the curly line (the coherence) from the
energy level shared by the pulse and the coherence, to the energy level at the ‘other end’ of the
180° pulse.

— 40 il — 40
3Ba 3Ba 3Ba
s/
100 100 100
180° to 1-3 180" to 1-2
— 40 40 4pB
3Bo. } 3B j__ 3Bo
ZQBTJ 20 20p
100 1 00, e 1 0L, e
180° to 1-3 180" to 3-4 result

The same idea is used below. Note that the selective 180° pulse and the coherence must share an
energy level for anything to happen.

— 4pp 4pp _Eéﬁi
3Ba

3Ba 3Ba
1o0 1 OLOL e 1 010! e

(@)

180" to 1-2 180° to 2-4
(b)
—RLLBB 4pp — 4P
3Ba —_— 3P0 — 3P0
2 Ol me— -§. 203 ZQBTL
100 100 100
180° to 3-4 180" to 2-4 result

Transfer (a) can also be achieved by pulses to 3—4 and then 1-3; similarly, transfer (b) can also be
achieved by pulses to 1-2 and 1-3.
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10.15

After the 90°(y) pulse to the I spin and the first 90° pulse to the S spin, and assuming that
T = 1/(4J1s), we have already worked out that the state of the system is —2f2§y (see section 8.8 on
p.- 214). It is then just a question of following the evolution of this term under the influence of the
S spin offset and the /-S coupling.

The final stage is to use the trigonometric identities (given in the appendix). For example, the term
S, is multiplied by the trigonometric term cos (Qgt;) sin (J;s;). Applying the identity

cosAsin B = § [sin (A + B) — sin (A — B)]

gives
cos (Qqty)sin (nJygty) = %[Sin(Qgtl +nrJisty) —sin (Qgt; — ndisty)].

This is indeed %(s+ — s_), as stated. R

We now follow through the fate of the term S, for the rest of the sequence (Fig. 10.33 on p. 362).
The 7 spin 90° pulse at the start of period A has no effect, and there then follows a spin echo
of total duration 1/(2J;s) during which the in-phase term is completely transferred to anti-phase,
giving 2.8 y. We need to take account of the two 180° pulses which invert both I.and § v, leaving
the term overall unaffected. The 90°(y) pulse to the / spin transforms this term to 2fx§y; this brings
us to the end of period A.

The 90° pulse to the S spin which starts period B rotates the operator to 2/,.S., and this anti-phase
term evolves completely into in-phase during the subsequent spin echo, giving fy. We need to take
account of the two 180° pulses in the spin echo, which invert this term to give —f) This term is
unaffected by the final 90° pulse to the S spin, so the observable term arising from S, is

—%(SJr —s5_) fy.

This term can be found on the first line of the table on p. 363.

10.16

The combinations S 3 and S 4 are:

Sy=3l@+ @]  Ss=1Il@-@],

where (a) and (d) are given in the table on p. 363:

observable operator at , = 0

A

eXpt ¢I ¢S ix iy 2isz 2inAZ

(a) y ¥y (ex—c) (=si+s5) (cy—c)  (sp+5s2)
®d® -y y (ccy—c) (sy—s5) (-cy+c) (sp+52)
© vy -y (cx—c) (=sy+s5) (mcy+c) (=54-52)

(d) -y -y (e —c) (54— 52) (cy —c)  (=s4—52)
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Forming these combinations we have

Sz = 3l@+ (@]
= (—cy —c ) I+ (ch — )28,
E F
Ss = 3l@-(d]
= (=54 +5) Iy + (55 + 52) 21,8,

G H

As before, we have a clean separation of x- and y-magnetization. If the two combinations are
processed separately, and a 90° phase correction applied to one combination in both dimensions,
we will have two spectra in which all peaks are in the absorption mode.

Term E is in-phase in w; and also in-phase in wj, so all four peaks of the multiplet have the same
sign, which is this case is negative. The multiplet is the same as from term A given in Eq. 10.12 on
p- 363. Term F is anti-phase in each dimension, so gives rise to an anti-phase square array. Note,
however, that the overall sign is opposite to that of term B given in Eq. 10.12.

Term G is in-phase in w, and anti-phase in wj, and is again opposite in overall sign to term C in
Eq. 10.13 on p. 363. Finally, term H is anti-phase in w,, but in-phase in wj: it is identical to term
D in Eq. 10.13.

The multiplets from the four terms, along with the way they combine to give S3 and S 4, are shown
in the diagram below, which should be compared to Fig. 10.34 on p. 364.

E F S3 S3+ S,
ool , [oe] _ Jo 0
O O ® O O

G H S, S3-5,
ool , [oe| _ Jo
| N ON | L O

We see from the digram that by combining the spectra Sz and S 4, either as (S3 + S4) or (S3 —S4),
we are left with just one line of the multiplet, either top left, or bottom right.

10.17

Aside from the extra complication of the pulse sequence and data processing, probably the only
significant difficulty is that the peak does not appear at {Qg, €2;}, but offset from this by %J[S in
each dimension. Account needs to be take of this when comparing TROSY type spectra with other
spectra.
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Coherence selection: phase cycling
and field gradient pulses

11.1

N ~ a ii: ~ . 3 . 2 . 2
Ii = Iix — il ¢—> cos @ lix +sing Iy, — 1 [cos ¢y — smq&]ix]
=cos¢ [flx - ifi),] + isinq&[fix - ifiy]
= (cos ¢ + isin ¢) [fix - ifiy]

= exp (i¢) fi-.
Assigning coherence orders
hib-: pi=1 pp=-1 p=pi+p=[0
26D I pr=1 pp=1 p3=0 p=pi+ps+p3=[2]

fle%(f1++i1—)1 p=

iZyE%(i2+—f2—)i P=
2ilzi2y52><%ilz(i2+_i2—): p1=0 py==x1 p=[£]]
(2i1xi2x + 2i1yi2y) = 2%% (i1+ + il_) (i2+ + iz_) + 2%% (i1+ - il_) (i2+ - iz_)

= % [f1+f2+ + f1+i2— + il—i2+ + il—i2— - f1+f2+ + f1+f2— + il—i2+ - i]—iZ—]

= f1+f2— +f1—f2+

hence py=1 pr=-1 or pj=-1 py=1 p =[0]
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Heteronuclear spin system
fo=t(+1):  p=[=0
S‘yz%(&r—ﬁ_): ps =[xl
248, =2x (i +1)S . p=FED ps=[0
28, =244 (1 +1)($.-8):  p=ED ps =D
Following section 11.1.2 on p. 372, free evolution results in these operators acquiring a phase
exp (—i Q(p1+p2+.‘.)t)’
where QP1#+P2+-) = P11 + p2Qs + ... The table gives this phase term for each operator:
operator pj orp; p,orps  p3 QPi+r2+) phase term
Iy +1 Q exp (=i Q1)
I -1 - exp (i Qy1)
hhib, +1 +1 Q +Q exp (—i [Q) + Q11
I.S_ +1 -1 Q- Qg exp (—i [Q; — Qs 11)
il_iz_i3_ -1 -1 -1 Q1 +Qy+ Q3 exp 1 [Q + Qs + Q3]1).
11.2
(a) TQF COSY (b) zero-quantum spectroscopy (c) ZCOSYe o
t2—>

— 1.
[ 1 il K111 S
+2

3
+ 1
1\ LR S — o< PN
-1 > 2
-2
3
y (d) HSQC
I T[] I |'| I Tt b
I mnnm..,.
- B | LA
s I h I |

B

1 + 1
Lok
N
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Note that in HSQC, sequence (d), we have pg = =1 and p; = 0 during #; i.e. S spin single-quantum
coherence, and that during #, we have p; = —1 and ps = 0, as these are the coherence orders for
observable signals on the 7 spin.

]

o -l =m
o\
PI_1

+1
Ps (1)

(a) Asdescribed in section 11.3 on p. 377, the P-type spectrum has the same sign of p in #; and
t: this is the solid line in the CTP. The resulting spectrum will be phase modulated in 1,
and so is frequency discriminated.

(b) The N-type spectrum has the opposite sign of p in #; and #,: this is the dashed line in the
CTP; like the P-type spectrum, the N-type spectrum is frequency discriminated.

(c) To be able to give absorption mode lineshapes we need to retain symmetrical pathways in #;
i.e. ps = =1. Thus we need to select both the solid and dashed CTP. The resulting spectrum
is not frequency discriminated, but discrimination can be achieved using the SHR or TPPI
methods (section 8.13 on p. 231).

11.3

By inspecting Fig. 11.5 on p. 380 we can determine the form of the signal from detectors A and B
using simple trigonometry. For example in (b) it is clear that the component along A is — sin (Qt)
whereas that along B is cos (€2f). The table gives these components and the required combinations
for all four cases:

A B combination result

(a) cos(Q1) sin (1) A+iB cos (Qf) +1 sin (Qr) = exp (1 Q1)

(b) —sin(Q)  cos (Qr) B-iA cos (Q1) —1i [—sin (Qr)] = exp (1 Q1)

(c) —cos(Qr) —sin(Q1) -A-1iB —[—cos (Qf)] —1i[—sin (Qr)] = exp 1€21)
(d) sin(Qr)  —cos(Q0) -B+1A —[—cos (Qf)] +1 sin (Qr) = exp (1 Q1)

Each combination gives modulation of the form exp (i Q2¢), which will all give the same lineshape
on Fourier transformation.

Following the approach of Fig. 11.6 on p. 382, for the case where the pulse goes [x, y, —x, —y] and
the receiver phase goes [-180°, —270°, 0°, —90°] we have
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90°(x) 90°(y) 90°(-x) 90°(-y)
°
y y y y
° X X Xe® X
rx phase  -180° -270° 0° -90°

A 90°(x) pulse places the magnetization along —y and then precession through an angle Qf rotates
the vector towards +x. Similarly, a 90°(y) pulse places the magnetization along +x, and then
precession rotates the vector towards +y.

The receiver phase is measured clockwise from 3 o’clock, and is indicated by the bullet o. We
see that in each diagram there is a constant angle between the position of the magnetization and
the receiver phase. As a result, each combination of pulse and receiver phase will give the same
lineshape, and so all four spectra will add up.

11.4

For Ap = —1 the phase shift experienced by the pathway when the pulse is shifted in phase by A¢
is —Ap X A¢p = —(=1)A¢ = A¢. Similarly for Ap = 0 the phase shift is -0 x A¢ = 0, and for
Ap =5 the phase shift is =5 X A¢ = —5A¢. The table gives the phase shifts for each of these three
pathways:

pulse phase Ap=-1 Ap=0 Ap=5
step Ag Ap 0 —5A¢ equiv(-=5A¢p)
1 0° 0° 0° 0° 0°
2 90° 90° 0° —-450° 270°
3 180° 180° 0° -900° 180°
4 270° 270° 0° —1350° 90°

These phases can be represented in the manner of Fig. 11.8 on p. 386:
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signal phases for Ap = -1, receiver phases to select Ap = -3

@) (©) (4)
°
° @ ° @ @
°

signal phases for Ap = 0, receiver phases to select Ap = -3

(1) @) @) 4)
[ ]
@. @ [ ] @ @
[ ]

For Ap = —1, steps (1) and (3) have the signal and receiver in alignment, whereas in steps (2) and
(4) the signal and the receiver are opposed. As a result steps (1) and (3) will cancel steps (2) and

).
For Ap = 0, steps (1) and (3) will cancel as the signal and the receiver are aligned in one and

opposed in the other. Similarly, steps (2) and (4) will cancel as in step (2) the signal is 90° ahead
of the receiver, whereas in step (4) it is 90° behind i.e. there is an overall shift of 180°.

For Ap = 5 the signal phase shifts are exactly the same as those for Ap = —3, so both pathways
are selected. This is of course exactly what is expected for a four-step cycle since =3 +2 x4 = +5
i.e. Ap = =3 and Ap =5 are separated by a multiple of four.

11.5

The second pulse has Ap = -2, so if the pulse phase goes [0°, 90°, 180°, 270°] the receiver
phase shifts must be [0°, 180°, 0°, 180°]. The first pulse has Ap = +1, so if the pulse phase goes
[0°, 90°, 180°, 270°] the receiver phase shifts must be [0°, 270°, 180°, 90°].

In the first four steps, A¢, therefore goes [0°, 90°, 180°, 270°], A¢; remains fixed, and the receiver
goes [0°, 180°, 0°, 180°].

In the second group of four steps, A¢, does the same, but A¢; is now 90°, and this results in
an extra 270° which must be added to the receiver phase shifts from the first group of four. The
required receiver phase shifts are therefore

[0°4+270°, 180°+270°, 0°+270°, 180°+270°] = [270°, 90°, 270°, 90°].

In the third group of four steps A¢; is 180°, and this results in an extra 180° which must be added
to the receiver phase shifts from the first group of four. Finally, for the fourth group of four steps
A¢y is 270°, and 90° must be added to the receiver phase shifts. The complete sixteen-step cycle
is therefore
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step Ad1  Ady i step  Agr  Ags P
1 0° 0° 0° 9 180° 0° 180°
2 0° 90°  180° 10 180° 90° 0°
3 0° 180° 0° 11 180° 180° 180°
4 0° 270° 180° 12 180° 270° 0°
5 90° 0°  270° 13 270°  0° 90°
6 90°  90°  90° 14 270° 90° 270°
7 90° 180° 270° 15 270° 180° 90°
8 90° 270° 90° 16 270° 270° 270°

Selection of Ap = —1 and then Ap = +3

The first pulse has Ap = —1, so if the pulse phase goes [0°, 90°, 180°, 270°] the receiver phase
shifts must be [0°, 90°, 180°, 270°]. The second pulse has Ap = +3, so if the pulse phase goes
[0°, 90°, 180°, 270°] the receiver phase shifts must be [0°, 90°, 180°, 270°]. For these four-step
cycles the receiver phases needed to select Ap = —1 and +3 are, of course, the same.

The sixteen-step cycle is:

step  Agr  Ady i step  Agr  Ags I
1 0° 0° 0° 9 0° 180° 180°
2 90° 0° 90° 10 90°  180° 270°
3 180°  0° 180° 11 180° 180°  0°
4 270° 0° 270° 12 270° 180° 90°
5 0° 90°  90° 13 0°  270° 270°
6 90°  90° 180° 14 90° 270° 0°
7 180°  90° 270° 15 180° 270° 90°
8 270° 90° 0° 16  270° 270° 180°

11.6

For Ap = -2 the phase shift experienced by the pathway when the pulse is shifted in phase by A¢
is —Ap X Ap = —(-2)A¢ = 2A¢. So, as the pulse goes [0°, 120°, 240°] the pathway experiences
phase shifts of [0°, 240°, 480°] which are equivalent to [0°, 240°, 120°]. So, to select Ap = -2,
we would use the cycle:

pulse: [0°, 120°, 240°] receiver: [0°, 240°, 120°].
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On modern spectrometers, the receiver phase can be shifted by arbitrary amounts, not just multi-
ples of 90°.
The selectivity of this three-step sequence can be represented in the manner described on p. 386:

-5 (4 3 2 D O 13 3 4

Here the boldface numbers are the values of Ap which are selected, and the numbers in brackets
are the values which are rejected; these selected values are separated by three, as we are dealing
with a three-step cycle.

The CTP for N-type COSY is:

J : % ty—»
| —

+(‘:l) _/
-1
The second pulse has Ap = =2, so we can use the three-step cycle described above to select this.
As the first pulse can only generate p = +1, this three step cycle is sufficient to select the overall
pathway we require. To be specific, p = —1 present during #; would only lead to observable
coherence via the pathway Ap = 0 on the second pulse, which is blocked by this three-step cycle.

For P-type COSY (Fig. 11.4 (b) on p. 378), Ap = 0 on the second pulse. This is selected by the
following three-step cycle of the second pulse:

pulse: [0°, 120°, 240°] receiver: [0°, 0°, 0°].

Such a cycle would be sufficient to select the wanted pathway as it would reject the Ap = -2
pathway on the second pulse.

11.7

¢1 ¢2 ¢3 q’rx

Grouping together the first two pulses means that they are required to achieve the transformation
Ap = £3. Concentrating for the moment on the pathways with Ap = =3, shifting the phase of the
first two pulses by A¢ will result in a phase shift of —Ap X A¢ = —(=3)A¢ = 3A¢.

If the pulse goes through the phases [0°, 60°, 120°, 180°, 240°, 300°] then the phase acquired by
the pathway with Ap = -3 is [0°, 180°, 360°, 540°, 720°, 900°]. Reducing these to the range 0°
to 360° gives [0°, 180°, 0°, 180°, 0°, 180°]. So the phase cycle needed is

¢1 and ¢;: [0°, 60°, 120°, 180°, 240°, 300°]  receiver: [0°, 180°, 0°, 180°, 0°, 180°].
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This six-step phase cycle also selects Ap = +3.

Since p = +3 has been selected prior to the last pulse, and as the first pulse can only generate
p = =1, no further phase cycling is needed (with the possible exception of axial peak suppression,
see section 11.7 on p. 391).

Other pathways selected by this six-step cycle include Ap = +3 +6 =+9and Ap = -3 -6 = -9.
These involve such high orders of coherence that we can safely ignore them.

The final pulse has Ap = —4 and Ap = +2; as these are separated by 6, they will both be selected
by a six-step cycle. The phase experienced by the pathway with Ap = —4 will be 4 A¢ so as
the pulse goes [0°, 60°, 120°, 180°, 240°, 300°] then the phase acquired by the pathway will be
[0°, 240°, 480°, 720°, 960°, 1200°]. Reducing these to the range 0° to 360° gives the following
cycle:

¢3: [0°, 60°, 120°, 180°, 240°, 300°]  receiver: [0°, 240°, 120°, 0°, 240°, 120°].

11.8

The first two pulses achieve the transformation Ap = 0, so a four-step cycle will be:
¢ and ¢,: [0°, 90°, 180°, 270°] receiver: [0°, 0°, 0°, 0°].

Axial peak suppression (section 11.7 on p. 391) involves shifting the phase of the first pulse
[0°, 180°] and similarly for the receiver. Combining these two cycles gives eight steps:

step 1 2 3 4 5 6 7 8

¢ 0° 90° 180° 270° 180° 270° 0° 90°
¢ 0° 90° 180° 270° 0° 90°  180° 270°
dx  0° 0° 0° 0° 180° 180° 180° 180°

The CTP for N-type NOESY is
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We need to select Ap = —1 on the last pulse. A suitable four-step cycle is [0°, 90°, 180°, 270°] for
¢3 and [0°, 90°, 180°, 270°] for the receiver.

We also need to select Ap = +1 on the first pulse. The four-step cycle [0°, 90°, 180°, 270°] for ¢
and [0°, 270°, 180°, 90°] for the receiver achieves this selection.

The complete sixteen-step cycle is

step  Agr  Ads i step  Agr  Ags I
1 0° 0° 0° 9 0° 180° 180°
2 90° 0°  270° 10 90° 180° 90°
3 180°  0°  180° 11 180° 180° 0°
4 270°  0° 90° 12 270° 180° 270°
5 0° 90°  90° 13 0° 270°  270°
6 90°  90° 0° 14 90°  270° 180°
7 180°  90° 270° 15  180° 270° 90°
8 270°  90° 180° 16 270° 270° 0°

It is not necessary to add explicit axial peak suppression to this cycle as we are selecting Ap = +1
on the first pulse, and so all of the peaks we see in the spectrum must derive from the first pulse.

11.9

The spatially dependent phase is given by Eq. 11.8 on p. 400:
$@) =-pxyGzt
Hence the phases due to the two gradient pulses are
91 = —(1) X yGz1) and ¢2 = —(2) X yGoz1s.
The refocusing condition is that the total phase, ¢; + ¢», is zero:
1+ ¢ = —yGizr) — 2yGozra = 0.
The factors of z and vy cancel to give, after some rearrangement:

Gsz _ 1

G17'1 2
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(a) If the gradients have the same length, then , i.e. the second gradient needs to

be half the strength of the first, and applied in the opposite sense.

(b) If the gradients have the same absolute strength, they still have to be applied in the opposite
sense i.e. G| = —Gy. Inserting this gives the refocusing condition as (G,73)/(—Ga11) = —%,

which means that .

11.10

, [
) [
- T

T T2

+1
o ———__

S —
In the heteronuclear case we use Eq. 11.9 on p. 402 to find the spatially dependent phase:

&) = —(pryr + psys) Gzt.

During the first gradient p; = 0 and ps = —1, whereas during the second p; = —1 and ps = 0. So
the spatially dependent phases are

¢1=ysGizty  and ¢y =y;GozTy.
The refocusing condition is ¢; + ¢» = 0, which in this case rearranges to

Giti _ n

Gty Ys

If 7is 'H and S is 19N, then v1/ys = 10/(=1) so the refocusing condition becomes

Gty
Gy

If the gradients have the same duration, 7; = 7; then |G| = 10G3|.

Note that ratio of the gyromagnetic ratios of 'H and "N is in fact 9.86 : —1.

=10.
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11.11

(a) P-type DQF COSY (b) N-type TQF COSY (c) N-type COSY

I I I —fy— fo— — -
t1 — 2 t1 —_— 2 f1 —_— 2
Ty To 13 T4 To T3 T4 To

a— ] G HEN 6 | 1 |
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(d) double-quantum spectroscopy (e) N-type HSQC
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(a) P-type DOQF COSY We have chosen p = 2 in the interval between the last two pulses, but
it would have been just as acceptable to choose p = —2. The pathway will give a P-type
spectrum as p = —1 is present during #;. The refocusing condition is

Gty — 2G2T2 + G3T3 =0.
If the gradients are all the same length, then one choice is for the strengths to be in the ratio
G :Gy:Gy=1:1:1.

(b) N-type TOQF COSY  We have chosen p = 3 in the interval between the last two pulses, but
it would have been just as acceptable to choose p = —3. The pathway will give an N-type
spectrum as p = +1 is present during #;. The refocusing condition is

—-Gi11 = 3Gy + G313 = 0.
If the gradients are all the same length, then one choice is for the strengths to be in the ratio

G :Gr:Gy=1:1:4.
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(c)

(d)

N-type COSY The pathway will give a N-type spectrum as p = +1 is present during ¢;.
The refocusing condition is
-G 111+ Gotp = 0.

If the gradients are all the same length, then the strengths must be in the ratio
G1 : G2 =1:1

Double-quantum spectroscopy — The two gradients G serve to ‘clean up’ the 180° pulse
in the spin echo (see section 11.12.3 on p. 406). Double-quantum coherence is dephased by
G, and then rephased by Gj3; to control phase errors due to the underlying evolution of the
offsets, both gradients are placed within spin echoes (see section 11.12.5 on p. 407). We will
need to record separate P- and N-type spectra, and then recombine them in order to obtain
an absorption mode spectrum (see section 11.12.2 on p. 405); the N-type pathway is given
by the solid line, and the P-type by the dashed line.

The refocusing condition for the N-type pathway is
2Gor1r + G313 = 0.
If the gradients are the same length, then the strengths must be in the ratio
Gy:G3=1:-2.
The refocusing condition for the P-type pathway is
-2Gh1y + G313 = 0.
If the gradients are the same length, then the strengths must be in the ratio

Gy:G3=1:2.

(e) N-type HSQC G; is a ‘purge’ gradient (see section 11.12.6 on p. 408). S spin magneti-

zation is dephased by G, and rephased after transfer to / by G3. The refocusing condition
is
—ysGata +y1G3t3 = 0.

If the gradients are both the same length, then the strengths must be in the ratio
Gr:G3=y1:s.

For the case where the I spin is 'H and the S spin is '3C, y; : y5 = 4, and so the refocusing
condition is
Gy:G3=4:1.
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How the spectrometer works

12.1

The magnetic field strength can be computed from the given Larmor frequency, fy, and gyromag-
netic ratio using 2r fo = yBy. Hence

_2nfy  2mx 180 x 10°

B
LY 1.08 x 108

=1047T.

A homogeneity of one part in 10® means that the magnetic field varies by AB = 1078 x 10.47 =
1.047 x 1077 T. This translates to a variation in frequency, Af, of

yAB  1.08 x 10%x1.047 x 107’
2 2r

This is significantly less than the expected linewidth of 25 Hz, so the magnet is useable.

The calculation is much simpler if we realise that a homogeneity of 1 part in 108 means that the
Larmor frequency will vary by 1078 times its nominal value i.e.

Af =108 %180 x 10° = 1.8 Hz.

12.2

For a 180° (or 7) pulse, 7 = wt1g0, SO

_ T _ T
T figo 24.8 x 1076

Therefore w;/(2r) = 20.2 kHz.

The same result can be found more simply by noting that a 360° pulse takes 2 X 24.8 = 49.6 us;
this is the period of the rotation about the RF field, so the frequency is just the reciprocal of this:
w1/(2m) = 1/(49.6 x 107%) = 20.2 kHz.

w1 =127 x 10’ rad s™".

Using Eq. 12.2 on p. 434 we have

2
attenuation = 20 log 200 - —20.1 dBJ.



Chapter 12: How the spectrometer works 98

12.3

To go from a 90° pulse width of 20 us to 7.5 us, the RF field has to be increased by a factor of
20/7.5 = 2.67, since the pulse width is inversely proportional to the RF field strength. As the RF
field strength is proportional to the square root of the power, the power would need to increase by
a factor of (2.67)> = 7.11, so the transmitter power would be 7.11 x 100 =[711 W].

This is a very large increase and, unless the probe is designed to take this much power, there would
be a significant risk of probe arcing.

124

The output of a two-bit ADC is two binary digits which are capable of representing the numbers
00, 01, 10 and 11 i.e. just four levels.

NN N/
NN N T
\VARRNY SRRV

00

Note how the data points, because they are constrained to correspond to one of the four levels, are
not a particularly good representation of the smooth curve.

Having a larger number of bits means that there are more possible output levels, and hence the
digital representation of the signal will be more precise. As a result, the digitization sidebands are
reduced.

12.5

15 ppm at 800 MHz is 15x 800 = 12000 Hz. The range of frequencies, assuming that the receiver
reference frequency is placed in the middle, is thus —6 000 Hz to +6 000 Hz. From section 12.5.2
on p. 436, the sampling interval, A, is given by

1 1

A = 7x6000 ~ 33345




