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Preface
We hope that this solutions manual will be a useful adjunct to Understanding NMR Spectroscopy
(Wiley, 2005), and will encourage readers to work through the exercises. The old adage that
‘practice makes perfect’ certainly applies when it comes to getting to grips with the theory of
NMR.
We would be grateful if users of this manual would let us know (by EMAIL to jhk10@cam.ac.uk)
of any errors they come across. A list of corrections will be maintained on the spectroscopyNOW
website

http://www.spectroscopynow.com/nmr (follow the link ‘education’)

Cambridge, August 2005



Contents

2 Setting the scene 1

3 Energy levels and NMR spectra 4

4 The vector model 10

5 Fourier transformation and data processing 19

6 The quantum mechanics of one spin 26

7 Product operators 31

8 Two-dimensional NMR 44

9 Relaxation and the NOE 55

10 Advanced topics in two-dimensional NMR 69

11 Coherence selection: phase cycling and field gradient pulses 85

12 How the spectrometer works 97



Chapter 2

Setting the scene

2.1

We need Eq. 2.1 on p. 6:

δ(ppm) = 106 × υ − υref

υref
.

For the first peak

δ(ppm) = 106 × 500.135 021 − 500.134 271
500.134 271

= 1.50 ppm .

For the second peak the shift is 7.30 ppm .
Using Eq. 2.3 on p. 9

δ(ppm) = 106 × υ − υref

υrx
,

with υrx = 500.135 271 MHz gives the two shifts as 1.50 ppm and 7.30 ppm i.e. identical values
to three significant figures. To all intents and purposes it is perfectly acceptable to use Eq. 2.3.

The separation of the two peaks can be converted to Hz using Eq. 2.2 on p. 7:

frequency separation in Hz = (δ1 − δ2) × υref(in MHz).

So the separation is
(7.30 − 1.50) × 400.130 000 = 2321 Hz .

The conversion to rad s−1 is made using Eq. 2.4 on p. 18

ω = 2π × υ = 2π × 2321 = 14 583 rad s−1 .

2.2

For JAB = 10 Hz & JAC = 2 Hz, the line positions are −6, −4, +4, +6 Hz. For JAB = 10 Hz &
JAC = 12 Hz, the line positions are −11, −1, +1, +11 Hz; note that compared to the first multiplet
the two central lines swap positions. For JAB = 10 Hz & JAC = 10 Hz, the line positions are −10,
0, 0, +10 Hz; in this case, the line associated with the spin states of spins B and C being α and β,
and the line in which the spin states are β and α, lie of top of one another giving a 1:2:1 triplet.
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0 10-10 0 10-10 0 10-10

JAB JAB

JAC

JAB

JAC

JAC

JAB = 10 Hz   JAC = 2 Hz JAB = 10 Hz   JAC = 12 Hz JAB = 10 Hz   JAC = 10 Hz

Introducing a third coupling gives a doublet of doublet of doublets. The line positions are ±1.5,
±3.5, ±6.5, ±8.5 Hz. For clarity, only the spin state of the fourth spin, D, are shown by the
grey-headed arrows on the last line of the tree.

0 10-10

JAB

JAC

JAD

JAB = 10 Hz   JAC = 2 Hz  JAD = 5 Hz

2.3

The frequency, in Hz, is 1/period:

υ =
1

2.5 × 10−9
= 4 × 108 Hz or 400 MHz.

Converting to rad s−1gives:
ω = 2πυ = 2.51 × 109 rad s−1 .

(a) 90◦ is one quarter of a rotation so will take 1
4 × 2.5 × 10−9 = 6.25 × 10−10 s .

(b) As 2π radians is a complete rotation, the fraction of a rotation represented by 3π/2 is
(3π/2)/(2π) = 3/4, so the time is 0.75 × 2.5 × 10−9 = 1.875 × 10−9 s .

(c) 720◦ is two complete rotations, so the time is 2 × 2.5 × 10−9 = 5.0 × 10−9 s .
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To convert from angular frequency to Hz we need Eq. 2.4 on p. 18

υ =
ω

2π
=

7.85 × 104

2π
= 12 494 Hz .

The period is 1/frequency:

T =
1
υ
=

1
12 494

= 8.00 × 10−5 s .

2.4

time

x

y

x

y

x

y

φ = 3π/2
φ = 135˚

φ = 0 or 2π

(a) & (c) (b) (d)

y-comp.x-comp.

For φ = 0 or 2π radians, the x-component is a cosine wave, and the y-component is a sine wave.
For φ = 3π/2, the y-component is minus a cosine wave, and the x-component is a sine wave.

2.5

We need the identity
sin (A + B) ≡ sin A cos B + cos A sin B.

Using this we find:

sin (ωt + π) = sin (ωt) cos π + cos (ωt) sin π

= − sin (ωt),

where to go to the second line we have used cos π = −1 and sin π = 0. So the y-component is
indeed −r sin (ωt).
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Energy levels and NMR spectra

3.1

The expression for Ĥone spin is given by Eq. 3.2 on p. 31:

Ĥone spin = −γB0 Îz.

We need to work out the effect that Ĥone spin has on ψ−1/2 :

Ĥone spinψ−1/2 = −γB0

[
Îzψ−1/2

]
= −γB0

[
− 1

2�ψ−1/2

]
= 1

2�γB0ψ−1/2 .

To go to the second line we have used Eq. 3.3 on p. 32 i.e. that ψ−1/2 is an eigenfunction of Îz. The
wavefunction has been regenerated, multiplied by a constant; ψ−1/2 is therefore an eigenfunction of
Ĥone spin with eigenvalue 1

2�γB0.

3.2

The Larmor frequency, in Hz, of a nucleus with zero chemical shift is defined by Eq. 3.8 on p. 35:

υ0 =
−γB0

2π

=
−6.7283 × 107 × 9.4

2π

= −1.01 × 108 Hz or −101 MHz.

To convert to rad s−1, we need to multiply the frequency in Hz by 2π:

ω0 = 2πυ0 = 2π × −1.01 × 108 = −6.32 × 108 rad s−1.

In the case of a non-zero chemical shift, the Larmor frequency, in Hz, is:

υ0 =
−γ(1 + 10−6δ)B0

2π

=
−6.7283 × 107 × (1 + 77 × 10−6) × 9.4

2π

= −1.01 × 108 Hz .
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This is an identical value to three significant figures. We need to go to considerably more figures
to see the difference between these two Larmor frequencies. To seven figures the frequencies are
1.00659 × 108 Hz and 1.00667 × 108 Hz.

3.3

We let Ĥone spin act on the wavefunction ψ+1/2 :

Ĥone spinψ+1/2 = ω0 Îzψ+1/2

= 1
2ω0ψ+1/2 ,

where the Hamiltonian has been expressed in angular frequency units. To go to the second line,
we have used the fact that ψ+1/2 is an eigenfunction of Îz with eigenvalue + 1

2 .

In the same way,
Ĥone spinψ−1/2 = − 1

2ω0ψ−1/2 .

Hence, ψ±1/2 are eigenfunctions of Ĥone spin with eigenvalues ± 1
2ω0.

3.4

Following the approach in section 3.5 on p. 37, we let the Hamiltonian act on the product
wavefunction:

Ĥtwo spins, no coupl.ψα,1ψα,2 =
(
υ0,1 Î1z + υ0,2 Î2z

)
ψα,1ψα,2

= υ0,1 Î1zψα,1ψα,2 + υ0,2 Î2zψα,1ψα,2

= υ0,1

[
Î1zψα,1

]
ψα,2 + υ0,2ψα,1

[
Î2zψα,2

]
.

To go to the third line, we have used the fact that Î1z acts only on ψα,1 and not on ψα,2. Similarly,
Î2z acts only on ψα,2.
Using Eq. 3.11 on p. 37 i.e. that ψα,1 and ψα,2 are eigenfunctions of Î1z and Î2z, the terms in the
square brackets can be rewritten:

Ĥtwo spins, no coupl.ψα,1ψα,2 = υ0,1

[
Î1zψα,1

]
ψα,2 + υ0,2ψα,1

[
Î2zψα,2

]
= 1

2υ0,1ψα,1ψα,2 +
1
2υ0,2ψα,1ψα,2

=
[

1
2υ0,1 +

1
2υ0,2

]
ψα,1ψα,2.

Hence, ψα,1ψα,2 is an eigenfunction of Ĥtwo spins, no coupl. with eigenvalue 1
2υ0,1 +

1
2υ0,2.

Letting the coupling term act on the product wavefunction:

J12 Î1z Î2zψα,1ψα,2 = J12

[
Î1zψα,1

] [
Î2zψα,2

]
= J12

[
1
2ψα,1

] [
1
2ψα,2

]
= 1

4 J12ψα,1ψα,2.
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ψα,1ψα,2 is indeed an eigenfunction of the coupling term, with eigenvalue 1
4 J12: this corresponds

to the energy.
Ĥtwo spins, no coupl. and the coupling term share the same eigenfunctions (a result of the fact that the
two terms commute). Since the Hamiltonian for two coupled spins can be represented as the sum
of these two terms,

Ĥtwo spins = Ĥtwo spins, no coupl. + 2π J12 Î1z Î2z,

it follows that it must also have the same eigenfunctions. Hence, ψα,1ψα,2 is an eigenfunction of
Ĥtwo spins with energy eigenvalue 1

2υ0,1 +
1
2υ0,2 +

1
4 J12, i.e. the sum of the individual eigenvalues

of Ĥtwo spins, no coupl. and J12 Î1z Î2z.

3.5

Reproducing Table 3.2 on p. 40 for υ0,1 = −100 Hz, υ0,2 = −200 Hz and J12 = 5 Hz:

number m1 m2 spin states eigenfunction eigenvalue/Hz

1 + 1
2 + 1

2 αα ψα,1ψα,2 + 1
2υ0,1 +

1
2υ0,2 +

1
4 J12 = −148.75

2 + 1
2 − 1

2 αβ ψα,1ψβ,2 + 1
2υ0,1 − 1

2υ0,2 − 1
4 J12 = 48.75

3 − 1
2 + 1

2 βα ψβ,1ψα,2 − 1
2υ0,1 +

1
2υ0,2 − 1

4 J12 = −51.25

4 − 1
2 − 1

2 ββ ψβ,1ψβ,2 − 1
2υ0,1 − 1

2υ0,2 +
1
4 J12 = 151.25

The set of allowed transitions is:

transition spin states frequency/Hz

1→ 2 αα→ αβ E2 − E1 = 197.50

3→ 4 βα→ ββ E4 − E3 = 202.50

1→ 3 αα→ βα E3 − E1 = 97.50

2→ 4 αβ→ ββ E4 − E2 = 102.50

80 100 120 140 160 180 200 220

frequency / Hz

24 3413 12

spin 1 flips
flipsspin 2

spin 1
spin 2

α β
α β
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If J12 = −5 Hz, the table of energies becomes:

number m1 m2 spin states eigenfunction eigenvalue/Hz

1 + 1
2 + 1

2 αα ψα,1ψα,2 + 1
2υ0,1 +

1
2υ0,2 +

1
4 J12 = −151.25

2 + 1
2 − 1

2 αβ ψα,1ψβ,2 + 1
2υ0,1 − 1

2υ0,2 − 1
4 J12 = 51.25

3 − 1
2 + 1

2 βα ψβ,1ψα,2 − 1
2υ0,1 +

1
2υ0,2 − 1

4 J12 = −48.75

4 − 1
2 − 1

2 ββ ψβ,1ψβ,2 − 1
2υ0,1 − 1

2υ0,2 +
1
4 J12 = 148.75

80 100 120 140 160 180 200 220

frequency / Hz

13 1224 34

spin 1 flips
flipsspin 2

spin 1
spin 2

β α
β α

The spectrum in unchanged in appearance. However, the labels of the lines have changed; the spin
state of the passive spin for each line of the doublet has swapped over.

3.6

The allowed transitions in which spin two flips are 1–2, 3–4, 5–6 and 7–8. Their frequencies are:

transition state of spin one state of spin three frequency/Hz

1–2 α α −υ0,2 − 1
2 J12 − 1

2 J23 = 193

3–4 β α −υ0,2 +
1
2 J12 − 1

2 J23 = 203

5–6 α β −υ0,2 − 1
2 J12 +

1
2 J23 = 197

7–8 β β −υ0,2 +
1
2 J12 +

1
2 J23 = 207

The multiplet is a doublet of doublets centred on minus the Larmor frequency of spin two.

There are two lines associated with spin three being in the α state, and two with this spin being in
the β state. Changing the sign of J23 swaps the labels associated with spin three, but leaves those
associated with spin one unaffected.
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190 195 200 205 210 190 195 200 205 210

frequency / Hz

12 56 34 78

spin 1
spin 3α

α
β
α

α
β

β
β

56 12 78 34

spin 1
spin 3β

α
α
α

β
β

α
β

 −υ0,2  −υ0,2

J12

J12 = 10 Hz   J23 = 4 Hz J12 = 10 Hz   J23 = -4 Hz

J23

3.7

The six zero-quantum transitions have the following frequencies:

transition initial state final state frequency

2–3 αβα βαα −υ0,1 + υ0,2 − 1
2 J13 +

1
2 J23

6–7 αββ βαβ −υ0,1 + υ0,2 +
1
2 J13 − 1

2 J23

3–5 βαα ααβ υ0,1 − υ0,3 +
1
2 J12 − 1

2 J23

4–6 ββα αββ υ0,1 − υ0,3 − 1
2 J12 +

1
2 J23

2–5 αβα ααβ υ0,2 − υ0,3 +
1
2 J12 − 1

2 J13

4–7 ββα βαβ υ0,2 − υ0,3 − 1
2 J12 +

1
2 J13

ααα

αβα

ββα

βαα

1

2 3

4

ααβ

αββ

βββ

βαβ

5

6
7

8
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The six transitions can be divided up into three pairs:

• 2–3 and 6–7 in which spins one and two flip, and spin three is passive,

• 3–5 and 4–6 in which spins one and three flip, and spin two is passive,

• 2–5 and 4–7 in which spins two and three flip, and spin one is passive.

Each pair of transitions is centred at the difference in the Larmor frequencies of the two spins
which flip, and is split by the difference in the couplings between the two active spins and the
passive spin.
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The vector model

4.1

z

x

θ

ωeff

Ω

ω1

The offset of the peak is 5 ppm. This can be converted to Hz using Eq. 2.2 on p. 7:

Ω

2π
= 10−6∆δ υref = 10−6 × 5 × 600 × 106 = 5 × 600 = 3000 Hz or 3 kHz.

From the diagram,

tan θ =
ω1

Ω
=

25 × 103 × 2π

3 × 103 × 2π
=

25
3
= 8.33,

so θ = 83 ◦ .
For a peak at the edge of the spectrum, the tilt angle is within 7◦ of that for an on-resonance pulse;
the B1 field is therefore strong enough to give a reasonable approximation to a hard pulse over the
full shift range.

For a Larmor frequency of 900 MHz, the peak at the edge of the spectrum has an offset of 4.5 kHz,
so the tilt angle is 80 ◦ . The larger offset results in the same B1 field giving a poorer approximation
to a hard pulse.
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4.2

From Fig. 4.16 on p. 63, the y-component of the magnetization after a pulse of flip angle β is
M0 sin β. The intensity of the signal will, therefore, vary as sin β, which is a maximum for β = 90◦.

(a) If β = 180◦, the magnetization is rotated onto the −z-axis. As sin 180◦ = 0, the signal
intensity is zero.

(b) If β = 270◦, the magnetization is rotated onto the y-axis. As sin 270◦ = −1, the signal will
have negative intensity of the same magnitude as for β = 90◦.

4.3

From Fig. 4.16 on p. 63, the intensity of the signal is proportional to sin β, where the value of the
flip angle β is given by Eq. 4.5 on p. 62:

β = ω1tp.

The pulse lengths of 5 and 10 µs correspond to flip angles below 90◦. Increasing tp further causes
β to increase past 90◦, and so the value of sin β (and hence the signal intensity) decreases. The null
at 20.5 µs corresponds to β = 180◦.

From the expression for the flip angle, it follows that π = ω1t180. Therefore,

ω1 =
π

t180
=

π

20.5 × 10−6
= 1.5 × 105 rad s−1 or 2.4 × 104 Hz .

Another way to answer this question is to see that since a 180◦ pulse has a length of 20.5 µs, a
complete rotation of 360◦ takes 41.0 µs. The period of this rotation is thus 41.0 µs, so the frequency
is

1

41.0 × 10−6
= 2.4 × 104 Hz .

This frequency is ω1/2π, the RF field strength in Hz.

The length of the 90◦ pulse is simply half that of the 180◦ pulse:

t90 =
1
2 × 20.5 = 10.25 µs.

The further null occurs at a pulse length that is twice the value of t180. This corresponds to a flip
angle of 360◦, for which the magnetization is rotated back onto the z-axis.



Chapter 4: The vector model 12

4.4

x

-y

x

-yx

-y

x

-y

x

-y

x

-y

φ 2π − φ
180˚ pulse

about y

starting
position

final
position

resolved into x- and
y- components

components after
180˚ pulse

The vector has been reflected in the yz-plane, and has a final phase of 2π − φ, measured anti-
clockwise from the −y-axis.

4.5

x

-y

time

ph
as

e,
 φ

0

0

τ/2 τ τ

τ

3τ/2 2τ

2τ

18
0o (y

) 
pu

ls
e

π

2π

π/2

3π/2

Ωτ

φ = Ωτ

φ = 2π − Ωτ

2π−Ωτ

The spin echo sequence 90◦(x)−τ−180◦(x)−τ− results in the magnetization appearing along the y-
axis. In contrast, the 90◦(x)−τ−180◦(y)−τ− sequence results in the magnetization appearing along
the −y-axis. Shifting the phase of the 180◦ pulse by 90◦ thus causes the phase of the magnetization
to shift by 180◦.

A 180◦(−x) pulse rotates the magnetization in the opposite sense to a 180◦(x) pulse, but
the net effect is still to reflect the magnetization vectors in the xz-plane. The sequence
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90◦(x) − τ − 180◦(−x) − τ− will, therefore, have the same effect as the 90◦(x) − τ − 180◦(x) − τ−
sequence i.e. the vector appears on the y-axis at the end of the sequence.

4.6

From section 4.11 on p. 71, the criterion for the excitation of a peak to at least 90% of its theoretical
maximum is for the offset to be less than 1.6 times the RF field strength. The Larmor frequency
of 31P at B0 = 9.4 T is:

υ0 = −γB0

2π
= −1.08 × 108 × 9.4

2π
= −1.62 × 108 Hz or −162 MHz.

If the transmitter frequency is placed at the centre of the spectrum, the maximum offset is approx-
imately 350 ppm. In Hz, this is an offset of

Ω

2π
= 350 × 162 = 5.66 × 104 Hz or 56.6 kHz.

According to our criterion, the RF field strength must be at least 56.6/1.6 = 35.3 kHz, from which
the time for a 360◦ pulse is simply 1/(35.3 × 103) = 28.28 µs. Thus, the 90◦ pulse length is
1
4 × 28.28 = 7.07 µs .

4.7

The flip angle of a pulse is given by Eq. 4.5 on p. 62:

β = ω1tp

So,

ω1 =
β

tp
.

For a 90◦ pulse, β = π/2, so the B1 field strength in Hz is:

ω1

2π
=

(π/2)
2π tp

=
1

4 × 10 × 10−6
= 2.5 × 104 Hz or 25 kHz.

The offset of 13C from 1H is 300 MHz, which is very much greater than the B1 field strength. The
13C nuclei are therefore unaffected by the 1H pulses.
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4.8

From Eq. 4.4 on p. 61,

ωeff =

√
ω2

1 + Ω
2.

If we let Ω = κω1, ωeff can be written

ωeff =

√
ω2

1 + κ
2ω2

1 = ω1

√
1 + κ2. (4.1)

If tp is the length of a 90◦ pulse, we have ω1tp = π/2 and so

ω1 =
π

2tp
,

and hence substituting this into Eq. 4.1 gives

ωeff =
π

2tp

√
1 + κ2.

Therefore the angle of rotation about the effective field, ωefftp, is given by

ωefftp =
π

2tp

√
1 + κ2 × tp

=
π

2

√
1 + κ2.

The null condition is when there is a complete rotation about the effective field i.e. ωefftp = 2π:

2π =
π

2

√
1 + κ2.

Rearranging this gives

4 =
√

1 + κ2 i.e. κ =
√

15 or Ω =
√

15ω1,

which is in agreement with Fig. 4.28 on p. 73.

The next null appears at ωefftp = 4π i.e. two complete rotations; this corresponds to κ =
√

63 .

For large offsets, κ � 1, so
√

1 + κ2 ≈ κ. The general null condition is ωefftp = 2nπ, where
n = 1, 2, 3, . . . Combining these two conditions gives

2nπ =
π

2

√
1 + κ2 ≈ π

2
κ,

for which we find κ = 4n.
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4.9

In section 4.11.3 on p. 75, it was demonstrated that, on applying a hard 180◦ pulse, the range of
offsets over which complete inversion is achieved is much more limited than the range over which
a 90◦ pulse gives significant excitation. Therefore, only peaks with small offsets will be inverted
completely. Peaks with large offsets will not exhibit a null on the application of the 180◦ pulse.

4.10

The initial 90◦(x) pulse rotates the magnetization from the z-axis to the −y-axis; after this the
evolution in the transverse plane is as follows:

x

-y

x

-y
Ωτ 90˚(+x)delay τ

x

-y

The x-, y- and z-components after each element of the pulse sequence are:

component after first 90◦(x) after τ after second 90◦(x)

x 0 M0 sinΩτ M0 sinΩτ

y −M0 −M0 cosΩτ 0

z 0 0 −M0 cosΩτ

The final pulse is along the x-axis, and so leaves the x-component of the magnetization unchanged,
but rotates the y-component onto the −z-axis. The overall result of the sequence is My = 0 and
Mx = M0 sinΩτ.

0 π/2 π 3π/2 2π

-M0

M0

Mx

Ωτ

A null occurs when Mx = 0, i.e. when Ωτ = nπ, where n = 0, 1, 2, . . .
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4.11

The initial spin echo sequence refocuses the offset, and aligns the magnetization along the y-axis.

If the final pulse is about the y- or −y-axis, then it has no effect on the magnetization as the vector
is aligned along the same axis as the B1 field. The magnetization remains along y.

If the final pulse is about the x-axis, then it rotates the magnetization from the y-axis to the z-axis.
Overall, the sequence returns the magnetization to its starting position.

If the final pulse is about the −x-axis, then the magnetization is rotated from the y-axis to the
−z-axis. Overall, the magnetization has been inverted.

4.12

The initial 90◦(x) pulse rotates the magnetization from the z-axis to the −y-axis. For on-resonance
peaks, Ω = 0, so the magnetization does not precess during the delay τ. The final 90◦(−x) then
simply undoes the rotation caused by the first pulse. Overall, the magnetization is returned to its
starting position.

Ωτ = π/2. During the delay, the magnetization rotates to the x-axis and is therefore not affected
by the final 90◦(−x) pulse. The net result is that the magnetization appears along the x-axis.

Ωτ = π. During the delay, the magnetization rotates onto the y-axis. The final pulse rotates
the magnetization onto the −z-axis. The equilibrium magnetization is inverted: no observable
transverse magnetization is produced.

x

-y

x

-y
90˚(-x)

90˚(-x)

90˚(-x)

delay τ

x

-y

x

-y

x

-y
delay τ

x

-y

x

-y

x

-y
delay τ

x

-y

Ω = 0

Ωτ = π/2

Ωτ = π

π/2

π
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The overall effect of the sequence is to produce x-magnetization which varies as M0 sin(Ωτ).

0 π/2 π 3π/2 2π

-M0

M0

Mx

Ωτ

To suppress a strong solvent peak, it is placed on-resonance. The delay τ is then chosen so that
Ωavτ = π/2, where Ωav is the average value of the offset of the peaks we wish to excite.

4.13

The initial 90◦ pulse rotates the equilibrium magnetization to the −y-axis; from there the magneti-
zation precesses about the z-axis through an angle ofΩτ. The 90◦(y) pulse rotates the x-component
of the magnetization onto the −z-axis.

x

-y

x

-y
Ωτ 90˚(y)delay τ

x

-y

The y-component of the magnetization varies as −M0 cosΩτ:

0 π/2 π 3π/2 2π

-M0

M0

My

Ωτ

The nulls are located at Ωτ = (2n + 1)π/2, where n = 0, 1, 2, . . .

To suppress the solvent peak, the transmitter frequency is placed in the middle of the peaks of
interest, and then τ is chosen so that Ωτ = π/2, where Ω is the offset of the solvent. With such a
choice, the solvent will not be excited.
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4.14

Line A is on-resonance, so its magnetization does not precess during the delay τ. The pulse
sequence is, effectively, a 180◦(x) pulse, and so the magnetization is inverted.
For line B, the x-, y- and z-components of the magnetization after each element of the sequence
are:

component after first 90◦(x) after τ after second 90◦(x)

x 0 M0 sinΩτ M0 sinΩτ

y −M0 −M0 cosΩτ 0

z 0 0 −M0 cosΩτ

The final pulse is along the x-axis, so leaves the x-component of the magnetization unchanged.
Substituting in the values of Ω and τ we find (note that the offset of 100 Hz has to be converted to
rad s−1):

Mx = M0 sin(2π × 100 × 5 × 10−3) = M0 sin π = 0

Mz = −M0 cos(2π × 100 × 5 × 10−3) = −M0 cos π = M0.

The magnetization is therefore returned to the z-axis.

The 90◦ pulse rotates the equilibrium magnetization onto the −y-axis. During the delay τ, the
vector precesses about z to give the following x- and y-components:

Mx = M0 sinΩτ My = −M0 cosΩτ.

For line A, offset 50 Hz:

Mx = M0 sin(2π × 50 × 5 × 10−3) = M0 sin(π/2) = M0

My = −M0 cos(2π × 50 × 5 × 10−3) = −M0 cos(π/2) = 0.

For line B, offset −50 Hz:

Mx = M0 sin(2π × −50 × 5 × 10−3) = M0 sin(−π/2) = −M0

My = −M0 cos(2π × −50 × 5 × 10−3) = −M0 cos(−π/2) = 0.

The two magnetization vectors rotate at the same rate in the opposite sense. After a delay of
τ = 5 ms, they are both aligned along the x-axis, but pointing in opposite directions.



Chapter 5

Fourier transformation and data
processing

5.1

One desirable feature of the dispersion lineshape is that it crosses the frequency axis at the
frequency of the transition. This allows for a more accurate measurement of the chemical shift
than might be possible for the absorption lineshape, especially in the case of broad lines.

In a spectrum containing many peaks, the following features of the dispersion lineshape make it
undesirable:

• It is broader than the absorption lineshape – the long ‘dispersive tails’ may interfere with
nearby, low intensity peaks.

• It is half the height of the absorption lineshape – the SNR is therefore reduced by half.

• The positive part of one peak may be cancelled by the negative part of an adjacent one – in
a complex spectrum, the result can be very difficult to interpret.

5.2

Setting A(ω) = S 0/2R, we obtain
S 0

2R
=

S 0R

R2 + ω2
.

Cancelling the factor of S 0 from both sides and inverting the quotient, we obtain

2R =
R2 + ω2

R
.

Hence,

ω2 = 2R2 − R2 = R2

ω = ±R .
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The width of the line is therefore 2R in rad s−1, or R/π in Hz.

5.3

D(ω) can be differentiated using the product rule:

dD(ω)
dω

=
d

dω

( −ω
R2 + ω2

)

=
−1

R2 + ω2
+

2ω2

(R2 + ω2)2

=
−R2 − ω2 + 2ω2

(R2 + ω2)2

=
ω2 − R2

(R2 + ω2)2
.

At the turning points
dD(ω)

dω
= 0,

so,
ω2 − R2

(R2 + ω2)2
= 0.

The denominator is always non-zero, so the equation can be solved by setting the numerator to
zero:

ω2 − R2 = 0

ω = ±R .

Substituting these values into D(ω):

D(±R) = ∓ R

2R2
= ∓ 1

2R
.

These values are the maximum and minimum heights in the lineshape.

There are two values ofω at which D(ω) is half its maximum positive height. At these frequencies,
D(ω) = 1/(4R). Hence,

−ω
R2 + ω2

=
1

4R
.

Inverting the quotients we obtain,
R2 + ω2

ω
= −4R,

so,
ω2 + 4Rω + R2 = 0.
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This is a quadratic equation in ω that can be solved by applying the usual formula:

ω = 1
2

(
−4R ±

√
16R2 − 4R2

)
= R(−2 ± √3) .

Similarly, D(ω) = −1/(4R) has two solutions: ω = R(2 ± √3) .

The width, Wdisp, is the distance between the outer two half-maximum points, as shown in the
diagram. Its value is

Wdisp = R(2 +
√

3) − R(−2 − √3) = 2(2 +
√

3)R.

frequency / rad s-1

1/(2R)

1/(4R)
Wdisp

R

R
(2

+
√3

)

R
(2

-√
3)

R
(-

2-
√3

)

R
( -

2+
√3

)
-R

For comparison, the width of the absorption mode is Wabs = 2R. Therefore, the ratio Wdisp/Wabs =

2 +
√

3 ≈ 3.7 . The dispersion lineshape is almost four times wider than the absorption lineshape.
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5.4

Sx Sy

Sx SySx Sy

real imag

real imagreal imag

y

x

y

x

y

x

φ = 3π/4

φ = 2π

φ = 3π/2

(c)

(a) (b)

Sx Sy

real imag

y

x
φ = 5π/2

(d)

5.5

A 90◦(x) pulse rotates the equilibrium magnetization onto the −y-axis. The resulting spectrum is
phased to absorption, so that magnetization along −y can be said to have a phase φ = 0.
A 90◦(y) pulse rotates the equilibrium magnetization onto the x-axis. This corresponds to a phase
shift of φ = π/2 with respect to the initial experiment.
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realreal

y

x

90˚(x)

real

y

x

90˚(-x)

real

y

x

270˚(x)

y

x

90˚(y)

(a) (b)

(a) Applying the pulse about −x rotates the magnetization vector onto y. This corresponds to a
phase shift of φ = π, therefore the spectrum will exhibit a negative absorption lineshape.

(b) A 270◦(x) pulse is equivalent to a 90◦(−x) pulse. The spectrum will be the same as in (a).

5.6

The Larmor frequency of 31P at B0 = 9.4 T is:

ω0

2π
= −γB0

2π
= −1.08 × 108 × 9.4

2π
= −1.62 × 108 Hz or −162 MHz.

The phase correction needed at the edge of the spectrum is given by Ωmaxtp, where Ωmax is the
maximum offset. For 31P the maximum offset is 350 ppm, therefore the phase correction is

2π × 162 × 350 × 20 × 10−6 = 7.1 radians .

This corresponds to 407◦ , a significant frequency-dependent phase error.
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5.7

The intensity of the noise in the spectrum depends on both the amplitude of the noise in the
time-domain, and the acquisition time. So, recording the time-domain signal long after the NMR
signal has decayed just continues to measure noise and no signal. The resulting spectrum will
consequently have a lower SNR than it would for a shorter acquisition time.

A full discussion on how line broadening can be used to improve the SNR is given in section 5.4.2
on p. 96; the matched filter is discussed in section 5.4.3 on p. 98.

5.8

Shortening the acquisition time discards the time-domain data that contains mostly noise and little
signal. Applying a line broadening weighting function does not discard this section of the time-
domain, but reduces its amplitude relative to the earlier part of the FID. Thus, both methods reduce
the intensity of the noise in the spectrum.

5.9

Enhancing the resolution of the spectrum by the use of a weighting function that combines a rising
exponential and a Gaussian is discussed in section 5.4.4 on p. 98.

Zero filling improves the ‘definition’ of the line in the spectrum by increasing the density of data
points in the frequency domain. However, it does not improve the fundamental linewidth as no
real data is added to the time-domain.

5.10

Plots of the sine bell weighting functions are given in Fig. 5.21 on p. 102.
A sine bell that is phase-shifted by 45◦ initially increases over time, therefore partly cancelling
the decay of the FID; the linewidth of the spectrum will therefore be decreased. The subsequent
decay of the sine bell attenuates the noise at the end of the time-domain. The overall effect will be
to enhance the resolution, assuming that the original FID has decayed close to zero by the end of
the acquisition time.
The sine bell with a phase shift of 90◦ is purely a decaying function, which will broaden the lines
in just the same way as a decaying exponential does.
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5.11

The peak due to TMS is likely to be a sharp line. Hence, the corresponding time-domain signal
decays slowly, and is therefore more likely to be truncated. The other lines in the spectrum will
usually be broader than TMS, so their time-domain signals decay more rapidly and are less likely
to be truncated.
Truncation artefacts (‘sinc wiggles’) can be suppressed by applying a decaying weighting function.
This will decrease the resolution, and may reduce the SNR.
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The quantum mechanics of one spin

6.1

Îzψβ = − 1
2ψβ Dirac notation: Îz |β〉 = − 1

2 |β〉∫
ψ
β ψα dτ Dirac notation: 〈β|α〉∫
ψ
β ψβ dτ Dirac notation: 〈β|β〉∫
ψ
Q̂ψ dτ Dirac notation: 〈ψ|Q̂|ψ〉

(a) 〈α|α〉 = 1

(b) 〈α|β〉 = 0 or 〈β|α〉 = 0

(c) Îz |α〉 = 1
2 |α〉

(d) |ψ〉 = c
α |α〉 + c
β |β〉.

6.2

The expectation value of Îy is given by:

〈Iy〉 =
〈ψ|Îy|ψ〉
〈ψ|ψ〉 .

If |ψ〉 is normalized, 〈ψ|ψ〉 = 1, so the expectation value is given by

〈Iy〉 = 〈ψ|Îy|ψ〉.
Substituting in |ψ〉 = c
α |α〉 + c
β |β〉, we obtain

〈Iy〉 =
[
c
α〈α| + c
β 〈β|

]
Îy

[
c
α |α〉 + c
β |β〉

]
= c
αc
α〈α|Îy|α〉 + c
αc
β 〈α|Îy|β〉 + c
β c
α〈β|Îy|α〉 + c
β c
β 〈β|Îy|β〉
= 1

2 i c
αc
α〈α|β〉 − 1
2 i c
αc
β 〈α|α〉 + 1

2 i c
β c
α〈β|β〉 − 1
2 i c
β c
β 〈β|α〉

= 1
2 i c
β c
α − 1

2 i c
αc
β .
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To go to the third line, we have used Eq. 6.11 on p. 115,

Îy |α〉 = 1
2 i |β〉 Îy |β〉 = − 1

2 i |α〉,
and to go to the last line, we have used the fact that |α〉 and |β〉 are orthonormal (Eq. 6.5 and Eq. 6.6
on p. 112).

〈Iy〉 can be interpreted as the average value of the y-component of angular momentum when
measured for a large number of spins, each of which has the same wavefunction |ψ〉.

6.3

The matrix representation of Îx is

Ix =

⎛⎜⎜⎜⎜⎜⎜⎜⎝ 〈α|Îx|α〉 〈α|Îx|β〉
〈β|Îx |α〉 〈β|Îx |β〉

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1
2〈α|β〉 1

2〈α|α〉
1
2〈β|β〉 1

2〈β|α〉

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝ 0 1
2

1
2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
To go to the second line, we have used Eq. 6.10 on p. 115,

Îx |α〉 = 1
2 |β〉 Îx|β〉 = 1

2 |α〉,
and to go to the last line we have used the fact that |α〉 and |β〉 are orthonormal (Eq. 6.5 and Eq. 6.6
on p. 112).

Similarly,

Iy =

⎛⎜⎜⎜⎜⎜⎜⎜⎝ 〈α|Îy |α〉 〈α|Îy|β〉
〈β|Îy |α〉 〈β|Îy|β〉

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1
2 i 〈α|β〉 − 1

2 i 〈α|α〉
1
2 i 〈β|β〉 − 1

2 i 〈β|α〉

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝ 0 − 1
2 i

1
2 i 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
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6.4

Starting with the expression for 〈Iy〉, and substituting in c
α = rα exp(iφα) and c
β = rβ exp(iφβ) we
find:

〈Iy〉 = 1
2 i c
β c
α − 1

2 i c
αc
β

= 1
2 i

[
rαrβ exp(−iφβ) exp(iφα) − rαrβ exp(−iφα) exp(iφβ)

]
= 1

2 i rαrβ
[
exp

(
−i (φβ − φα)

)
− exp

(
i (φβ − φα)

)]
= 1

2i rαrβ
[
exp

(
i (φβ − φα)

)
− exp

(
−i (φβ − φα)

)]
,

where to go to the last line we have multiplied top and bottom by i.

Applying the identity
exp(iθ) − exp(−iθ) ≡ 2i sin θ

to the above expression gives
〈Iy〉 = rαrβ sin(φβ − φα).

The bulk y-magnetization is then given by

My = γ〈Ix〉(1) + γ〈Ix〉(2) + . . .

= γr(1)
α r(1)

β sin(φ(1)
β − φ(1)

α ) + γr(2)
α r(2)

β sin(φ(2)
β − φ(2)

α ) + . . .

= γNrαrβ sin(φβ − φα).

At equilibrium, the phases φ are randomly distributed, and so sin(φβ − φα) is randomly distributed
between ±1. As a result, the equilibrium y-magnetization is zero.

6.5

Starting from Eq. 6.31 on p. 124 and premultiplying by 〈β|, we obtain:

dc
α (t)

dt
|α〉 +

dc
β (t)

dt
|β〉 = − 1

2 iΩc
α (t)|α〉 + 1
2 iΩc
β (t)|β〉

〈β|dc
α (t)

dt
|α〉 + 〈β|

dc
β (t)

dt
|β〉 = 〈β|

[
− 1

2 iΩc
α (t)
]
|α〉 + 〈β|

[
1
2 iΩc
β (t)

]
|β〉.

The derivatives of c
α and c
β , and the quantities in square brackets, are numbers, so the above
expression can be rearranged to give

dc
α (t)

dt
〈β|α〉 +

dc
β (t)

dt
〈β|β〉 = − 1

2 iΩc
α (t)〈β|α〉 + 1
2 iΩc
β (t)〈β|β〉

dc
β (t)

dt
= 1

2 iΩc
β (t).
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To go to the last line, we have used the orthonormality property of |α〉 and |β〉.

Substituting Eq. 6.58 into the left-hand side of Eq. 6.57 gives:

dc
β (t)

dt
=

d
dt

[
c
β (0) exp

(
1
2 iΩt

)]
= 1

2 iΩc
β (0) exp
(

1
2 iΩt

)
= 1

2 iΩc
β (t).

Eq. 6.58 is indeed the solution.

6.6

The expectation value of Îy is
〈Iy〉 = 1

2 i c
β c
α − 1
2 i c
αc
β .

Substituting in the expressions for how c
α and c
β vary under free evolution (Eq. 6.34 on p. 125)
gives:

〈Iy〉(t) = 1
2 i

[
c
β (0) exp

(
− 1

2 iΩt
)] [

c
α (0) exp
(
− 1

2 iΩt
)]
− 1

2 i
[
c
α (0) exp

(
1
2 iΩt

)] [
c
β (0) exp

(
1
2 iΩt

)]
= 1

2 i c
β (0)c
α (0) exp (−iΩt) − 1
2 i c
α (0)c
β (0) exp (iΩt)

= 1
2 i c
β (0)c
α (0) [cos(Ωt) − i sin(Ωt)] − 1

2 i c
α (0)c
β (0) [cos(Ωt) + i sin(Ωt)]

= cos(Ωt)
[

1
2 i c
β (0)c
α (0) − 1

2 i c
α (0)c
β (0)
]
+ sin(Ωt)

[
1
2c
α (0)c
β (0) + 1

2c
β (0)c
α (0)
]

= cos(Ωt)〈Iy〉(0) + sin(Ωt)〈Ix〉(0).

To go to the third line, the identities

exp(iθ) ≡ cos θ + i sin θ exp(−iθ) ≡ cos θ − i sin θ

were used, and to go to the last line, the expressions for 〈Ix〉 and 〈Iy〉 in terms of c
α and c
β were
used (Eqs 6.12 and 6.13 on p. 115).

This result is summarized in the diagram below. The grey arrow shows the initial position, and the
black arrow shows the position after time t.

<Ix 
>

<Ix 
>(0)

<Iy 
>(0)

<Iy 
>

Ωt



Chapter 6: The quantum mechanics of one spin 30

6.7

The matrix representation of the density operator is given by:

ρ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝ 〈α|ρ̂|α〉 〈α|ρ̂|β〉〈β|ρ̂|α〉 〈β|ρ̂|β〉

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ≡
⎛⎜⎜⎜⎜⎜⎜⎜⎝ ρ11 ρ12

ρ21 ρ22

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
We can now calculate the ρ11 element (for clarity, the overbars indicating the ensemble averaging
have been omitted until the last line):

ρ11 = 〈α|ρ̂|α〉
= 〈α|ψ〉〈ψ|α〉
= 〈α|

[
c
α |α〉 + c
β |β〉

] [
c
α〈α| + c
β 〈β|

]
|α〉

=
[
c
α〈α|α〉 + c
β 〈α|β〉

] [
c
α 〈α|α〉 + c
β 〈β|α〉

]
= c
αc
α.

To go to the second line, the definition of ρ̂ was inserted, and on the third line |ψ〉 was expressed
as a superposition of |α〉 and |β〉.
The other elements can be calculated in a similar way to give:

ρ12 = c
αc
β ρ21 = c
β c
α ρ22 = c
β c
β .

Hence,

ρ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝ c
αc
α c
αc
β

c
β c
α c
β c
β

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
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Product operators

7.1

• exp(−i θÎx)Îy exp(i θÎx) represents a rotation of Îy about x through angle θ. From Fig. 7.4 (a)
on p. 152, Îy is transformed into Îz. Hence,

Îy
θÎx−−→ cos θ Îy + sin θ Îz.

This is consistent with the identity on line one of Table 7.1 on p. 146.

• exp(−i θŜy)Ŝz exp(i θŜy). From (b) of Fig. 7.4 on p. 152, Ŝz is transformed into Ŝx by a
rotation about y:

Ŝz
θŜy−−→ cos θ Ŝz + sin θ Ŝx.

• exp(−i θÎx)Îx exp(i θÎx). Rotating Îx about the x-axis has no effect:

Îx
θÎx−−→ Îx.

• exp(−i θÎz)(−Îy) exp(i θÎz). Fig. 7.4 (c) shows the effect of a rotation about z on −Îy: the
result is a transformation to Îx. Hence,

−Îy
θÎz−−→ − cos θ Îy + sin θ Îx.

• exp(−i (θ/2)Îy)Îx exp(i (θ/2)Îy). This represents the rotation of Îx about y through angle θ/2.
From Fig. 7.4 (b), Îx is transformed to −Îz. Hence,

Îx
(θ/2)Îy−−−−−→ cos(θ/2) Îx − sin(θ/2) Îz.

• exp(i θÎz)(−Îz) exp(−i θÎz). Careful inspection of the arguments of the exponentials reveals
that this represents a z-rotation through angle −θ i.e. the rotation is in a clockwise sense. In
this case, it does not matter as −Îz is unaffected by a rotation about the z-axis:

−Îz
−θÎz−−−→ −Îz.
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7.2

The 90◦(x) pulse rotates the equilibrium magnetization (represented by Îz) onto the −y-axis:

Îz
(π/2)Îx−−−−−→ cos(π/2) Îz − sin(π/2) Îy

= −Îy.

This transverse term evolves under the offset during the delay τ to give

−Îy
ΩτÎz−−−→ − cos(Ωτ) Îy + sin(Ωτ) Îx,

where (c) of Fig. 7.4 on p. 152 has been used.
The 180◦(y) pulse does not affect the Îy term, but inverts the Îx term:

− cos(Ωτ) Îy + sin(Ωτ) Îx
πÎy−−→ − cos(Ωτ) Îy + cos π sin(Ωτ) Îx − sin π sin(Ωτ) Îz

= − cos(Ωτ) Îy − sin(Ωτ) Îx.

Now we consider the evolution during the second delay. Taking each term separately, we obtain

− cos(Ωτ) Îy
ΩτÎz−−−→ − cos(Ωτ) cos(Ωτ) Îy + sin(Ωτ) cos(Ωτ) Îx,

− sin(Ωτ) Îx
ΩτÎz−−−→ − cos(Ωτ) sin(Ωτ) Îx − sin(Ωτ) sin(Ωτ) Îy.

Combining these terms gives the final result as

−
[
cos2(Ωτ) + sin2(Ωτ)

]
Îy = −Îy,

where the terms in Îx cancel, and the identity cos2 θ + sin2 θ ≡ 1 has been used. At the end of the
sequence, the magnetization has been refocused onto the −y-axis, irrespective of the offset.

7.3

Îy
(π/2)Îy−−−−−→ Îy

Îy
−(π/2)Îy−−−−−−→ Îy

Ŝy
πŜy−−→ Ŝy.

In all three cases, the pulse is applied about the same axis along which the magnetization is aligned,
therefore the magnetization is unaffected.
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In the following cases, we refer to Fig. 7.4 on p. 152 to determine how the operator is transformed
by the rotation.

Îx
−πÎy−−−→ cos(−π)Îx − sin(−π)Îz

= −Îx.

In this case the magnetization is simply inverted.
The difference between the next two examples is the sense of the 90◦ rotation.

Îz
(π/2)Îy−−−−−→ cos(π/2) Îz + sin(π/2) Îx

= Îx.

Îz
−(π/2)Îy−−−−−−→ cos(−π/2) Îz + sin(−π/2) Îx

= −Îx.

The next two are simply inversions:

Ŝz
πŜy−−→ cos π Ŝz + sin π Ŝx

= −Ŝz.

Îz
−πÎy−−−→ cos(−π) Îz + sin(−π) Îx

= −Îz.

7.4

The 90◦(x) pulse rotates the equilibrium magnetization Îz to −Îy. Free evolution is a rotation about
z, so the state of the system after the delay τ is

− cos(Ωτ) Îy + sin(Ωτ) Îx.

The 90◦(y) pulse does not affect the Îy term, but rotates Îx to −Îz. The final result is

− cos(Ωτ) Îy − sin(Ωτ) Îz.

The pulse sequence has therefore produced transverse magnetization along y, whose amplitude
varies as − cos(Ωτ). This becomes zero if cos(Ωτ) = 0. Hence, there is a null at Ωτ = π/2, which
corresponds to an offset of Ω = π/(2τ) in rad s−1, or 1/(4τ) in Hz.
There is a maximum in the excitation when cos(Ωτ) = ±1. This occurs at offsets satisfying
Ωτ = nπ where n = 0, 1, 2, . . . i.e. Ω = (nπ)/τ or n/(2τ) in Hz.
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7.5

Figure 7.6 (b) on p. 156 shows that, as a result of evolution of the scalar coupling, the in-phase
term −Î1y is partly transformed into the anti-phase term 2Î1x Î2z; the angle of rotation is πJ12τ. This
is represented as:

−Î1y
2πJ12τÎ1z Î2z−−−−−−−−−→ − cos(πJ12τ) Î1y + sin(πJ12τ) 2Î1x Î2z.

Using the same figure, we see that −2Î1x Î2z is partly transformed to −Î1y:

−2Î1x Î2z
2πJ12τÎ1z Î2z−−−−−−−−−→ − cos(πJ12τ) 2Î1x Î2z − sin(πJ12τ) Î1y.

Similarly,

Ŝx
2πJIS (τ/2)Îz Ŝz−−−−−−−−−−−→ cos(πJIS τ/2) Ŝx + sin(πJIS τ/2) 2ÎzŜy.

Î2y
2πJ12τÎ1z Î2z−−−−−−−−−→ cos(πJ12τ) Î2y − sin(πJ12τ) 2Î1z Î2x.

2Î1z Î2y
2πJ12τÎ1z Î2z−−−−−−−−−→ cos(πJ12τ) 2Î1z Î2y − sin(πJ12τ) Î2x.

Î2z
2πJ12τÎ1z Î2z−−−−−−−−−→ Î2z.

In the last example we see that z-magnetization is not affected by evolution under coupling simply
because the Hamiltonian for coupling only contains Îz operators.

7.6

The evolution is determined by the Hamiltonian given in Eq. 7.14 on p. 154:

Ĥtwo spins = Ω1 Î1z + Ω2 Î2z + 2πJ12 Î1z Î2z.

We will now work out the effect in turn of the three terms in the Hamiltonian. The first is a rotation
about z:

Î1y
Ω1tÎ1z−−−−→ cos(Ω1t) Î1y − sin(Ω1t) Î1x.

The second term, Ω2 Î2z, does not need to be considered as spin-two operators have no effect on
spin-one operators. Finally, we consider the effect of evolution under scalar coupling:

cos(Ω1t) Î1y − sin(Ω1t) Î1x
2πJ12tÎ1z Î2z−−−−−−−−→

cos(πJ12t) cos(Ω1t) Î1y︸�����������������������︷︷�����������������������︸
y-magnetization

− sin(πJ12t) cos(Ω1t) 2Î1x Î2z

− cos(πJ12t) sin(Ω1t) Î1x︸�������������������������︷︷�������������������������︸
x-magnetization

− sin(πJ12t) sin(Ω1t) 2Î1y Î2z.



Chapter 7: Product operators 35

The NMR signal is given by:

S (t) = Mx + iMy

= − cos(πJ12t) sin(Ω1t) + i cos(πJ12t) cos(Ω1t)

= i cos(πJ12t) [cos(Ω1t) + i sin(Ω1t)]

= i cos(πJ12t) exp(iΩ1t)

= 1
2 i

[
exp(i πJ12t) + exp(−i πJ12t)

]
exp(iΩ1t)

= 1
2 i exp (i[Ω1 + πJ12]t) + 1

2 i exp (i[Ω1 − πJ12]t) .

To go to the fourth line, we have used the identity cos θ + i sin θ ≡ exp(i θ), and to go to the
fifth line, we have used cos θ ≡ 1

2 [exp(i θ) + exp(−i θ)]. Finally, to go to the sixth line we have
multiplied out the square brackets. Fourier transformation of this signal gives a positive line at
Ω1 + πJ12, and a second positive line at Ω1 − πJ12 i.e. an in-phase doublet on spin one. The
factor of i corresponds to a phase shift of 90◦, so the imaginary part of the spectrum contains the
absorption mode lineshape.

ω
real

imaginary

Ω1-πJ12

2πJ12

Ω1+πJ12

A similar line of argument gives the observable signal arising from 2Î1yÎ2z as

S (t) = 1
2 i exp (i[Ω1 + πJ12]t) − 1

2 i exp (i[Ω1 − πJ12]t) .

The corresponding spectrum is an anti-phase doublet on spin one. Again, the factor of i means
that the absorption mode lines will appear in the imaginary part of the spectrum.

ω
real

imaginary

Ω1-πJ12

2πJ12

Ω1+πJ12
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7.7

Î1y represents in-phase magnetization on spin one, aligned along the y-axis. The resulting spectrum
will be an in-phase doublet centred on the offset of spin one, both peaks of which are in the
absorption mode.

Î2x represents in-phase magnetization on spin two. However, it is aligned along the x-axis, so has
a phase of 3π/2 relative to the y-axis. The spectrum therefore comprises an in-phase doublet that
is centred on the offset of spin two, with both peaks in the dispersion mode.

2Î1y Î2z represents magnetization on spin one that is anti-phase with respect to spin two, and aligned
along y. The spectrum is therefore an anti-phase doublet in the absorption mode.

2Î1z Î2x represents anti-phase magnetization on spin two. It is aligned along x, so the lineshape
will be dispersive. Therefore, the spectrum is an anti-phase spin-two doublet with the dispersion
lineshape.

Ω1

I1y

2I1yI2z

ω

Ω2

I2x

2I1zI2x

7.8

In-phase magnetization Î1x is rotated in the xz-plane towards −Î1z by the application of the y-pulse
of duration tp.

Î1x
ω1tp Î1y−−−−−→ cos(ω1tp) Î1x − sin(ω1tp) Î1z

A 180◦ pulse about y applied only to spin two changes the sign of the anti-phase magnetization on
spin one.

2Î1x Î2z
−πÎ2y−−−−→ cos(−π) 2Î1x Î2z + sin(−π) 2Î1x Î2x

= −2Î1x Î2z
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In-phase magnetization on spin one is allowed to evolve under coupling for time t, thus generating
anti-phase magnetization on the same spin.

−Î1x
2πJ12tÎ1z Î2z−−−−−−−−→ − cos(πJ12t) Î1x − sin(πJ12t) 2Î1y Î2z

Letting each term act sequentially, we obtain

2Î1x Î2z
(π/2)Î1y−−−−−−→ −2Î1z Î2z

(π/2)Î2y−−−−−−→ −2Î1z Î2x.

Note that the spin-one operators do not act on spin-two operators and vice versa. The net result is
that the non-selective 90◦(y) pulse has caused a coherence transfer from spin one to spin two.

Transverse, in-phase magnetization on the S spin evolves under offset for time t. The offset term
for the I spin has no effect on the Ŝx.

Ŝx
ΩI tÎz−−−−→ Ŝx

ΩS tŜz−−−−→ cos(ΩS t) Ŝx + sin(ΩS t) Ŝy

Anti-phase magnetization on spin two evolves under coupling to generate in-phase magnetization
on the same spin.

−2Î1z Î2y
2πJ12tÎ1z Î2z−−−−−−−−→ − cos(πJ12t) 2Î1z Î2y + sin(πJ12t) Î2x

7.9

The Hamiltonian for free evolution is given by Eq. 7.14 on p. 154:

Ĥtwo spins = Ω1 Î1z + Ω2 Î2z + 2πJ12 Î1z Î2z.

The spin echo refocuses the evolution due to offset, so we only need to consider the evolution of
2Î1x Î2z under coupling, which gives

2Î1x Î2z
2πJ12τÎ1z Î2z−−−−−−−−−→ cos(πJ12τ) 2Î1x Î2z + sin(πJ12τ) Î1y.

The π pulse about the x-axis acts on both spins, leaving Î1x unaffected, but inverting Î2z and Î1y:

cos(πJ12τ) 2Î1x Î2z + sin(πJ12τ) Î1y
π(Î1x+Î2x)−−−−−−−→ − cos(πJ12τ) 2Î1x Î2z − sin(πJ12τ) Î1y.

Finally, evolution under coupling during the second delay gives

− cos(πJ12τ) 2Î1x Î2z − sin(πJ12τ) Î1y
2πJ12τÎ1z Î2z−−−−−−−−−→

− cos2(πJ12τ) Î1x Î2z − sin(πJ12τ) cos(πJ12τ) Î1y − cos(πJ12τ) sin(πJ12τ) Î1y + sin2(πJ12τ) 2Î1x Î2z

= −
[
cos2(πJ12τ) − sin2(πJ12τ)

]
2Î1x Î2z − [2 cos(πJ12τ) sin(πJ12τ)] Î1y

= − cos(2πJ12τ) 2Î1x Î2z − sin(2πJ12τ) Î1y.
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To go to the last line, we have used the identities cos2 θ − sin2 θ ≡ cos 2θ and 2 cos θ sin θ ≡ sin 2θ.

By a similar method we can show:

2Î1y Î2z
τ−πx−τ−−−−−→ cos(2πJ12τ) 2Î1y Î2z − sin(2πJ12τ) Î1x.

The effect of the τ − πy − τ spin echo on spin-one and spin-two terms is shown in the table below:

final state

initial state × cos (2πJ12τ) × sin (2πJ12τ)

Î1x −Î1x −2Î1y Î2z

Î1y Î1y −2Î1x Î2z

2Î1x Î2z 2Î1x Î2z Î1y

2Î1y Î2z −2Î1y Î2z Î1x

Î2x −Î2x −2Î1z Î2y

Î2y Î2y −2Î1z Î2x

2Î1z Î2x 2Î1z Î2x Î2y

2Î1z Î2y −2Î1z Î2y Î2x

The results for the in- and anti-phase operators on spin two can be obtained from those for spin
one simply by swapping the labels 1 and 2.

Likewise for the τ − πx − τ spin echo:

final state

initial state × cos (2πJ12τ) × sin (2πJ12τ)

Î2x Î2x Î1z Î2y

Î2y −Î2y 2Î1z Î2x

2Î1z Î2x −2Î1z Î2x −Î2y

2Î1z Î2y 2Î1z Î2y −Î2x

7.10

A spin echo in a homonuclear two-spin system is equivalent to:

(a) evolution of the coupling for time 2τ,

(b) a 180◦(x) pulse.
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Applying this to the first example, we obtain

Î2y
τ−πx−τ−−−−−→ − cos(2πJ12τ) Î2y + sin(2πJ12τ) 2Î1z Î2x.

For complete transformation to 2Î1z Î2x, we need sin(2πJ12τ) = 1 and cos(2πJ12τ) = 0. These
occur when 2πJ12τ = π/2, i.e. τ = 1/(4J12).

Î1x
τ−πx−τ−−−−−→ cos(2πJ12τ)Î1x + sin(2πJ12τ)2Î1y Î2z.

Setting 2πJ12τ = π/4 gives cos(2πJ12τ) = sin(2πJ12τ) = 1/
√

2. The required delay is therefore
τ = 1/(8J12).
To achieve conversion to −Î1x, we need cos(2πJ12τ) = −1 and sin(2πJ12τ) = 0 i.e. τ = 1/(2J12).

2Î1z Î2x
τ−πx−τ−−−−−→ − cos(2πJ12τ)2Î1z Î2x − sin(2πJ12τ)Î2y.

Setting the delay to τ = 1/(4J12) gives complete conversion to in-phase magnetization.

7.11

The pulse sequence is given in Fig. 7.14 on p. 168:

I

S

ττ

The 180◦(x) pulse is applied to only the S spin, so the evolution of the offset of the S spin will be
refocused. We need to consider the evolution of the coupling. Starting with Ŝx, the state of the
system after the first delay is

cos(πJ12τ) Ŝx + sin(πJ12τ) 2ÎzŜy.

The 180◦(x) pulse is applied only to the S spin, and so does not affect Îz or Ŝx. However, the term
in Ŝy changes sign to give:

cos(πJ12τ) Ŝx − sin(πJ12τ) 2ÎzŜy.

Evolution of the coupling during the second delay gives[
cos2(πJ12τ) + sin2(πJ12τ)

]
Ŝx + [sin(πJ12τ) cos(πJ12τ) − cos(πJ12τ) sin(πJ12τ)] 2ÎzŜy = Ŝx,

where the anti-phase terms cancel, and the identity cos2 θ + sin2 θ ≡ 1 has been used. The evolu-
tion of the coupling has therefore been refocused.

Repeating the calculation for the anti-phase term, we see that 2ÎzŜx is unaffected by the spin echo
sequence. Again, the coupling is refocused.
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Both operators are unchanged, which is the same effect that a 180◦(x) pulse to the S spin would
have:

Ŝx
πŜx−−−→ Ŝx

2ÎzŜx
πŜx−−−→ 2ÎzŜx.

Likewise, the operators Îx and 2ÎxŜz will have their evolution under coupling refocused. However,
as the 180◦(x) pulse is not applied to the I spin, the offset will not be refocused, but will evolve for
the duration of the spin echo (time 2τ).

7.12

The pulse sequence for the INEPT experiment is reproduced below from Fig. 7.15 on p. 172:

τ1 τ1 τ2 τ2

y

A C
B

I

S

At the end of period A it was shown in section 7.10.2 on p. 172 that the state of the spin system is

kI cos(2πJIS τ1) Îy − kI sin(2πJIS τ1) ÎxŜz.

The purpose of the two 90◦ pulses in period B is to transfer the anti-phase magnetization (the
second term) from the I spin to the S spin. This requires the pulse acting on the I spin to cause the
transformation Îx → Îz, which requires a rotation about the y-axis.

If the initial 90◦ pulse is about the −x-axis, it rotates the equilibrium kI Îz to kI Îy. At the end of the
spin echo in period A, the system is in the following state:

−kI cos(2πJIS τ1) Îy + kI sin(2πJIS τ1) 2ÎxŜz.

As before, the Îy term is not affected by the 90◦(y) pulse on the I spin, and can be discarded. The
two pulses affect the ant-phase term as follows:

kI sin(2πJIS τ1) 2ÎxŜz
(π/2)Îy−−−−−→ −kI sin(2πJIS τ1) 2ÎzŜz

(π/2)Ŝx−−−−−→ kI sin(2πJIS τ1) 2ÎzŜy.

This term evolves under coupling during the spin echo in C to give:

kI cos(2πJIS τ2) sin(2πJIS τ1) 2ÎzŜy − kI sin(2πJIS τ2) sin(2πJIS τ1) Ŝx,

the observable term of which is the one in Ŝx.
The 90◦(x) pulse acting on the S spin during B also rotates equilibrium kS Ŝz to −kIŜy, which
evolves during the spin echo in C to give:

−kS cos(2πJIS τ2) Ŝy + kS sin(2πJIS τ2) 2ÎzŜx.
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This also has an observable term in Ŝy. Hence, the two observable terms are combined to give:

−kS cos(2πJIS τ2) Ŝy − kI sin(2πJIS τ2) sin(2πJIS τ1) Ŝx.

The first term is unaffected by changing the phase of the I spin 90◦ pulse from x to −x, whereas
the second term changes sign.

7.13

• By definition, Î+ has coherence order +1.

• Îz is unaffected by a z-rotation, so has coherence order zero.

• Î− has coherence order −1, again by definition.

• Using the definitions of Î1+ and Î1− (Eq. 7.28 on p. 178) as applied to spin one:

Î1+ ≡ Î1x + i Î1y

Î1− ≡ Î1x − i Î1y,

we can write Î1x as:
Î1x ≡ 1

2

(
Î1+ + Î1−

)
.

Therefore, Î1x is an equal mixture of coherence orders +1 and −1.

• Similarly, Î2y can be written as
Î2y ≡ 1

2i

(
Î2+ − Î2−

)
.

Hence, 2Î1z Î2y can be written as

2Î1z Î2y ≡ 2 × 1
2i Î1z

(
Î2+ − Î2−

)
,

which is an equal mixture of coherence orders +1 and −1, found by summing the coherence
orders of spins one and two (spin one has coherence order zero).

• Since both Î1z and Î2z have coherence order zero, so does 2Î1z Î2z.

• 2Î1+ Î2− has coherence order zero since the coherence order of spin one is +1 and that of
spin two is −1.

• 2Î1x Î2y can be written as:

2Î1x Î2y ≡ 2 × 1
2

(
Î1+ + Î1−

)
× 1

2i

(
Î2+ − Î2−

)
≡ 1

2i

(
Î1+ Î2+ − Î1− Î2− − Î1+ Î2− + Î1− Î2+

)
.

2Î1x Î2y is therefore an equal mixture of coherence orders +2 and −2, double-quantum
coherence, and coherence order 0, zero-quantum coherence.
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7.14

Using the definitions of Îi± given by Eq. 7.28 on p. 178, we can write 2Î1x Î2y as:

2Î1x Î2y ≡ 2 × 1
2

(
Î1+ + Î1−

)
× 1

2i

(
Î2+ − Î2−

)
≡ 1

2i

(
Î1+ Î2+ − Î1− Î2−

)
︸������������������︷︷������������������︸

double-quantum part

+ 1
2i

(
Î1− Î2+ − Î1+ Î2−

)
︸������������������︷︷������������������︸

zero-quantum part

.

The other relationships in the table can be verified in the same way.

7.15

The first 90◦(x) pulse rotates the equilibrium Î1z to −Î1y. During the spin echo sequence, the offset
is refocused, but the coupling evolves throughout. The state of the spin system at the end of the
spin echo is

cos(2πJ12τ) Î1y − sin(2πJ12τ) 2Î1x Î2z.

The final pulse acts to give

cos(2πJ12τ) Î1z + sin(2πJ12τ) 2Î1x Î2y.

Using the definitions of D̂Qy and ẐQy given in the last table of section 7.12.1 on p. 178, we see
that we can rewrite the second term as

1
2 sin(2πJ12τ)

(
D̂Qy − ẐQy

)
,

which is a mixture of double- and zero-quantum coherence.

The amplitude of this multiple quantum term is a maximum when sin(2πJ12τ) = 1, which occurs
when τ = 1/(4J12).

Starting with equilibrium magnetization on spin two, Î2z, the terms present after the final pulse are

cos(2πJ12τ) Î2z + sin(2πJ12τ) 2Î1y Î2x;

we have taken the terms from the previous calculation and swapped the labels 1 and 2. Again, from
the definitions of D̂Qy and ẐQy in section 7.12.1 on p. 178, we can write the multiple quantum
term as

1
2 sin(2πJ12τ)

(
D̂Qy + ẐQy

)
.

Therefore, adding this term to the one originating from Î1z, we obtain;

1
2 sin(2πJ12τ)

(
D̂Qy − ẐQy

)
+ 1

2 sin(2πJ12τ)
(
D̂Qy + ẐQy

)
= sin(2πJ12τ) D̂Qy,

which is pure double-quantum coherence. It is a rather unusual feature of this sequence that, in a
two-spin system, it generates pure double-quantum coherence.
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7.16

From the table on p. 180, ẐQx is equal to
(
2Î1x Î2x + 2Î1y Î2y

)
. Zero-quantum coherence between

spins one and two does not evolve under the coupling between these two spins, so we need only
consider the evolution under offset. Considering first the 2Î1x Î2x term:

2Î1x Î2x
Ω1tÎ1z+Ω2tÎ2z−−−−−−−−−−→ 2

[
cos(Ω1t) Î1x + sin(Ω1t) Î1y

] [
cos(Ω2t) Î2x + sin(Ω2t) Î2y

]
.

We will now look at the 2Î1y Î2y term;

2Î1yÎ2y
Ω1t Î1z+Ω2t Î2z−−−−−−−−−−−→ 2

[
cos(Ω1t) Î1y − sin(Ω1t)Î1x

] [
cos(Ω2t) Î2y − sin(Ω2t) Î2x

]
.

Collecting these terms together, we obtain:

[cos(Ω1t) cos(Ω2t) + sin(Ω1t) sin(Ω2t)] (2Î1x Î2x + 2Î1y Î2y)

+ [sin(Ω1t) cos(Ω2t) − cos(Ω1t) sin(Ω2t)] (2Î1y Î2x − 2Î1x Î2y).

Using the identities:

cos(A − B) = cos A cos B + sin A sin B

sin(A − B) = sin A cos B − cos A sin B,

and the definitions of ẐQx and ẐQy:

ẐQx ≡ (2Î1x Î2x + 2Î1y Î2y) ẐQy ≡ (2Î1y Î2x − 2Î1x Î2y),

we obtain
cos ([Ω1 −Ω2]t) ẐQx + sin ([Ω1 −Ω2]t) ẐQy.
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Two-dimensional NMR

8.1

In each example, the preparation period is highlighted with a grey box, and the mixing period with
a grey box with a dashed border.

t2t1 t2t1

t2t1
τ τ

τ1 τ1

y
τ2 τ2 t2

t1

I

S

τ τ
t2

t1

I

S

τ
t2

t1

I

S

t2t1
τmix

τ1 τ1 τ2 τ2

t2

t1
I

S

COSY

HSQC

HMQC HMBC

HETCOR

DQF COSY

DQ spectroscopy TOCSY
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8.2

ω2

1

2

3

4

5

6

t1

ω2

t1 4

5

61
2 3

1, 2 and 3 are cross-sections of the damped cosine wave, whose amplitude provides the modulation
in t1. The period is the same for each wave, and the amplitude increases as we approach the centre
of the peak in ω2.
4, 5 and 6 are cross-sections through the ω2 dimension. The amplitude and sign of the peak is
modulated by a damped cosine wave in t1.

8.3

The COSY pulse sequence is given in Fig. 8.8 on p. 195.

t2t1

Starting with equilibrium magnetization on spin two, the state of the system at t2 = 0 can be
determined from terms [1]–[4] on p. 195 by swapping the spin labels 1 and 2. The result is:

− cos (πJ12t1) cos (Ω2t1) Î2z [1]

− sin (πJ12t1) cos (Ω2t1) 2Î1y Î2x [2]

+ cos (πJ12t1) sin (Ω2t1) Î2x [3]

− sin (πJ12t1) sin (Ω2t1) 2Î1y Î2z. [4]

The observable terms are [3] and [4]. The operator in term [3] is Î2x, which will give rise to a
doublet on spin two in the ω2 dimension. It is modulated in t1 by sin(Ω2t1) i.e. at the offset of spin
two. Thus, [3] produces a diagonal-peak multiplet.
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The operator in term [4] is 2Î1y Î2z; this gives rise to an anti-phase doublet centred at the offset of
spin one in the ω2 dimension. It is also modulated in t1 by sin(Ω2t1). Therefore, it produces a
cross-peak multiplet.

It was shown in section 7.5.2 on p. 158 that the evolution of 2Î1yÎ2z during t2 gives rise to the
following time domain signal:

1
2 i exp(i[Ω1 + πJ12]t2) − 1

2 i exp(i[Ω1 − πJ12]t2).

Imposing an exponential decay on this signal and Fourier transforming, we obtain the following
spectrum

1
2 i [A2(Ω1 + πJ12) + iD2(Ω1 + πJ12)] − 1

2 i [A2(Ω1 − πJ12) + iD2(Ω1 − πJ12)] .

To ensure that the absorption mode lineshape appears in the real part of the spectrum, we mul-
tiply the expression above by a −90◦ phase correction factor i.e. by exp(−i π/2). Noting that
exp(−i π/2) ≡ −i, we obtain:

1
2 [A2(Ω1 + πJ12) + iD2(Ω1 + πJ12)] − 1

2 [A2(Ω1 − πJ12) + iD2(Ω1 − πJ12)] .

Clearly this is an anti-phase doublet on spin one.
The t1 modulation of term [4] has the form − sin (πJ12t1) sin (Ω2t1). Applying the identity

sin A sin B ≡ 1
2 [cos(A − B) − cos(A + B)] ,

gives
1
2 [cos(Ω2 + πJ12)t1 − cos(Ω2 − πJ12)t1] .

Imposing an exponential decay and taking the cosine Fourier transform yields the spectrum

1
2 [A1(Ω2 + πJ12) − A1(Ω2 − πJ12)] .

This is clearly an anti-phase doublet on spin two.
Multiplying the ω1 and ω2 spectra together, and taking the real part, gives the following four lines
which form the cross-peak multiplet. Note that they form an anti-phase square array.

+ 1
4 A1(Ω2 + πJ12)A2(Ω1 + πJ12) − 1

4 A1(Ω2 + πJ12)A2(Ω1 − πJ12)

− 1
4 A1(Ω2 − πJ12)A2(Ω1 + πJ12) + 1

4 A1(Ω2 − πJ12)A2(Ω1 − πJ12).

The operator in the diagonal peak term [3] is Î2x. Evolution of this operator during t2 gives the
following time domain signal:

1
2 exp(i[Ω2 + πJ12]t2) + 1

2 exp(i[Ω2 − πJ12]t2).

Imposing an exponential decay to this, and Fourier transforming gives the spectrum

1
2 [A2(Ω2 + πJ12) + iD2(Ω2 + πJ12)] + 1

2 [A2(Ω2 − πJ12) + iD2(Ω2 − πJ12)] .

This is an in-phase doublet on spin two.
The t1 modulation is:

cos(πJ12t1) sin(Ω2t1) ≡ 1
2 [sin(Ω2 + πJ12)t1 + sin(Ω2 − πJ12)t1] ,
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where we have used the identity

sin A sin B ≡ 1
2 [sin(A + B) + sin(A − B)] .

Assuming an exponential decay and applying a sine Fourier transform gives the spectrum:

1
2 [A1(Ω2 + πJ12) + A1(Ω2 − πJ12)] .

This is an in-phase doublet on spin two.
Multiplying together the ω1 and ω2 parts of the spectrum and taking the real part yields the
following four components of the diagonal-peak multiplet. Note that they all have the same sign.

+ 1
4 A1(Ω2 + πJ12)A2(Ω2 + πJ12) + 1

4 A1(Ω2 + πJ12)A2(Ω2 − πJ12)

+ 1
4 A1(Ω2 − πJ12)A2(Ω2 + πJ12) + 1

4 A1(Ω2 − πJ12)A2(Ω2 − πJ12).

8.4

The DQF COSY pulse sequence is given in Fig. 8.15 on p. 205.

t2t1

Starting with equilibrium magnetization on spin two, Î2z, the state of the spin system after the
second pulse is exactly the same as for the COSY experiment at t2 = 0 as calculated in Exercise
8.3. Of the four terms present, the only one that contains double-quantum coherence is [2]:

− sin (πJ12t1) cos (Ω2t1) 2Î1y Î2x.

In section 7.12.1 on p. 178, it was shown that 2Î1y Î2x is a mixture of double- and zero-quantum
coherence. The double-quantum operator D̂Qy, and the zero-quantum operator ẐQy, are defined
as:

D̂Qy ≡ 2Î1x Î2y + 2Î1y Î2x ẐQy ≡ 2Î1y Î2x − 2Î1x Î2y.

Hence,
2Î1yÎ2x =

1
2

(
D̂Qy + ẐQy

)
.

The double-quantum part that is retained is therefore:

− 1
2 sin (πJ12t1) cos (Ω2t1) D̂Qy = − 1

2 sin (πJ12t1) cos (Ω2t1)
(
2Î1x Î2y + 2Î1y Î2x

)
.

The third 90◦ pulse acts to give:

− 1
2 sin (πJ12t1) cos (Ω2t1)

(
2Î1x Î2z + 2Î1z Î2x

)
.

2Î1x Î2z and 2Î1z Î2x represent anti-phase magnetization on spins one and two, respectively. Both
are modulated in t1 at Ω2, so the first term therefore gives the cross-peak multiplet, and the second
the diagonal-peak multiplet.
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Expanding the t1 modulation, we obtain

− 1
2 sin (πJ12t1) cos (Ω2t1) ≡ − 1

4 [sin(Ω2 + πJ12)t1 − sin(Ω2 − πJ12)t1] ,

which is an anti-phase doublet on spin two. Hence, both the cross- and diagonal-peak multiplets
are anti-phase in both dimensions. Furthermore, both terms have the same t1 modulation, and both
appear along the x-axis at the start of acquisition, so the spectrum can be phased so that all the
peaks appear in the double absorption mode.

8.5

The pulse sequence is given in Fig. 8.19 on p. 209.

t2t1
τ τ

The first 90◦ pulse rotates equilibrium Î1z to −Î1y, which then evolves under coupling during the
spin echo (the offset is refocused) to give

cos(2πJ12τ) Î1y − sin(2πJ12τ) 2Î1x Î2z.

This is rotated by the second 90◦ pulse to give

cos(2πJ12τ) Î1z + sin(2πJ12τ) 2Î1x Î2y.

We select just zero-quantum coherence at this point. From the table on p. 180, the zero-quantum
part of 2Î1x Î2y is − 1

2 ẐQy, so at the start of t1 we have:

− 1
2 sin(2πJ12τ) ẐQy.

This evolves during t1 according to the rules in section 7.12.3 on p. 180:

− 1
2 sin(2πJ12τ) ẐQy

Ω1t1 Î1z+Ω2t1 Î2z−−−−−−−−−−−−→ − 1
2 cos ([Ω1 −Ω2]t1) sin(2πJ12τ) ẐQy

+ 1
2 sin ([Ω1 −Ω2]t1) sin(2πJ12τ) ẐQx,

where
ẐQx ≡ 2Î1x Î2x + 2Î1y Î2y ẐQy ≡ 2Î1y Î2x − 2Î1x Î2y.

Note that the zero-quantum coherence between spins one and two does not evolve due to the
coupling between these two spins.
The final pulse rotates the zero-quantum terms to give

− 1
2 sin(2πJ12τ) cos ([Ω1 −Ω2]t1)

(
2Î1z Î2x − 2Î1x Î2z

)
+ 1

2 sin(2πJ12τ) sin ([Ω1 −Ω2]t1)
(
2Î1x Î2x + 2Î1z Î2z

)
,

the observable terms of which are:

1
2 sin(2πJ12τ) cos ([Ω1 −Ω2]t1)

(
2Î1x Î2z − 2Î1z Î2x

)
.

The spectrum has the same form as the double-quantum spectrum shown in Fig. 8.20 on p. 210
with the following differences:
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• In ω2 the anti-phase doublet on spin two, which arises from the 2Î1z Î2x term, appears with
the opposite sign.

• The frequency of the peaks in ω1 is (Ω1 −Ω2) i.e. the zero-quantum frequency.

The information that can be gained from this spectrum is the same as for the double-quantum
spectrum.

8.6

From section 8.8 on p. 214, the terms present after the first spin echo are

cos(2πJIS τ1)Îy − sin(2πJIS τ1)2ÎxŜz.

The subsequent 90◦ pulses are required to transfer the anti-phase magnetization (the second term)
to the S spin, so that it can evolve under the offset of the S spin during t1. This requires the I spin
pulse to rotate Îx to Îz, which is only possible if the pulse is about y.

Applying the I spin pulse about −y gives:

− sin(2πJIS τ1) 2ÎxŜz
(−π/2)Îy−−−−−−→ − sin(2πJIS τ1) 2ÎzŜz

(π/2)Ŝx−−−−−→ sin(2πJIS τ1) 2ÎzŜy.

The 2ÎzŜy term, present at the start of t1, simply changes sign when the I spin pulse is changed in
phase from +y to −y.

8.7

The pulse sequence is given in Fig. 8.23(a).

τ1 τ1

y

y

A CB D

t2

t1

I

S

The state of the spin system after the spin echo (A) is, from section 8.8 on p. 214:

cos(2πJIS τ1) Îy − sin(2πJIS τ1) 2ÎxŜz.

The pulses during period B have the following effect on the anti-phase term:

− sin(2πJIS τ1)2ÎxŜz
(π/2)(Îy+Ŝy)−−−−−−−−−→ sin(2πJIS τ1) 2ÎzŜx.
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Period C is a spin echo, during which the coupling is refocused, but the offset of the S spin evolves
for time t1. At the end of this period, the terms are:

− cos(ΩS t1) sin(2πJIS τ1) 2ÎzŜx − sin(ΩS t1) sin(2πJIS τ1) 2ÎzŜy.

The final two pulses (period D) produce the following state at t2 = 0:

cos(ΩS t1) sin(2πJIS τ1) 2ÎyŜx + sin(ΩS t1) sin(2πJIS τ1) 2ÎyŜz.

The observable signal is due to the 2ÎyŜz term, and is now modulated in t1 according to sin(ΩS t1).
So, shifting the phase of the first 90◦ pulse to the S spin from x to y does indeed alter the modulation
in t1 from cosine to sine.

8.8

The pulse sequence is given in Fig. 8.25 (a) on p. 218. We will now modify it so that the first 90◦
S spin pulse is about −x.

τ

A

τ

EC

F

B D

t2

t1

I

S

-x

As argued in section 8.9 on p. 217, the offset of the I spin is refocused over the whole of period F.
The first pulse creates −Îy, which evolves during period A under coupling to give

− cos(πJIS τ) Îy + sin(πJIS τ) 2ÎxŜz.

Taking just the second term (the first does not produce any useful peaks), and applying to it the
first S spin pulse (with phase −x) gives:

sin(πJIS τ) 2ÎxŜy,

which is of opposite sign to the corresponding term in section 8.9 on p. 217. This sign change
propagates throughout the rest of the calculation so that the observable term

sin2(πJIS τ) cos(ΩS t1)Îy,

also has the opposite sign. The same result is produced on changing the phase of the second 90◦ S
spin pulse to −x.

I spins that are not coupled to S spins do not give rise to anti-phase magnetization, and so are
not affected by the S spin pulses. This I spin magnetization is therefore unaffected by altering the
phase of the first S spin pulse. So, recording two spectra, the first with the first S spin pulse about
x, and the second with it about −x, and then subtracting one from the other will retain the wanted
signal and eliminate the unwanted signal.
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8.9

It was shown in section 8.9 on p. 217 that the observable term at the start of acquisition is

− sin2(πJIS τ) cos(ΩS t1) Îy.

The amplitude of the signal is given by sin2(πJIS τ), which has a maximum value of 1. This occurs
when the argument of the sine is an odd multiple of π/2 i.e. when πJIS τ = nπ/2, n = 1, 3, 5, . . .
Hence, τ = n/(2JIS ), n = 1, 3, 5, . . .

sin2(πJIS τ) = 0 when πJIS τ = nπ/2, n = 0, 2, 4, . . . i.e. is an even multiple of π/2. Hence the
amplitude will be zero when τ = n/(2JIS ), n = 0, 2, 4, . . .

8.10

The HSQC pulse sequence, without decoupling during acquisition, is shown in Fig. 8.23 (b) on
p. 215.

τ1 τ1

y

A C
B D

t2

t1

I

S

At the start of acquisition, the observable terms are:

− cos(2πJIS τ2) sin(2πJIS τ1) cos(ΩS t1) 2ÎyŜz

+ sin(2πJIS τ2) sin(2πJIS τ1) cos(ΩS t1) Îx.

The modifications for detecting long-range correlation are essentially the same as those discussed
for the HMQC experiment in section 8.9 on p. 217. They are:

• Increase the length of the delay τ1 so that sin(2πJIS τ1) is significant for typical values of the
long-range coupling constants.

• Acquire immediately after the final transfer pulses D, thus avoiding loss of signal due to
relaxation during the final spin echo E, as in sequence (b) of Fig. 8.23.

• Acquire without broadband decoupling, as the wanted term is anti-phase with respect to JIS .
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8.11

The diagonal peak is
A1→1 cos(πJIS t1) cos(Ω1t1)Î1y.

It was shown in section 7.5.1 on p. 157 that evolution of Î1y during t2 gives the following time-
domain signal:

1
2 i exp(i[Ω1 + πJ12]t2) + 1

2 i exp(i[Ω1 − πJ12]t2).

Imposing an exponential decay and Fourier transforming yields the following spectrum:

1
2 i [A2(Ω1 + πJ12) + iD2(Ω1 + πJ12)] + 1

2 i [A2(Ω1 − πJ12) + iD2(Ω1 − πJ12)] .

Applying a −90◦ phase correction and taking the real part, we obtain an in-phase doublet on spin
one:

1
2 A2(Ω1 + πJ12) + 1

2 A2(Ω1 − πJ12).

The modulation with respect to t1 is A1→1 cos(πJIS t1) cos(Ω1t1), which can be expanded using the
identity

cos A cos B ≡ 1
2 [cos(A + B) + cos(A − B)] ,

to give
1
2 A1→1 [cos(Ω1 + πJIS )t2 + cos(Ω1 − πJIS )t2] .

Imposing an exponential decay, and then taking the cosine Fourier transform gives:

1
2 A1→1 [A1(Ω1 + πJ12) + A1(Ω1 − πJ12)] ,

which is an in-phase doublet in ω1.
Multiplying the spectra in the ω1 and ω2 dimensions together gives the following four peaks for
the diagonal-peak multiplet:

+ 1
4 A1→1A1(Ω1 + πJ12)A2(Ω1 + πJ12) + 1

4 A1→1A1(Ω1 + πJ12)A2(Ω1 − πJ12)

+ 1
4 A1→1A1(Ω1 − πJ12)A2(Ω1 + πJ12) + 1

4 A1→1A1(Ω1 − πJ12)A2(Ω1 − πJ12).

All the peaks are positive and in the absorption mode.

The cross peak term
A1→2 cos(πJIS t1) cos(Ω1t1)Î2y

has the same modulation in t1 as the diagonal peak, and in t2 the operator is Î2y, rather than Î1y, so
in ω2 the doublet appears at Ω2. We can simply write down the four peaks which contribute to the
cross-peak multiplet as:

+ 1
4 A1→2A1(Ω1 + πJ12)A2(Ω2 + πJ12) + 1

4 A1→2A1(Ω1 + πJ12)A2(Ω2 − πJ12)

+ 1
4 A1→2A1(Ω1 − πJ12)A2(Ω2 + πJ12) + 1

4 A1→2A1(Ω1 − πJ12)A2(Ω2 − πJ12).

Again, these are in the absorption mode, and are all positive.
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8.12

The phase-twist lineshape is

S (ω1, ω2) = [A1(ΩA)A2(ΩB) − D1(ΩA)D2(ΩB)]︸����������������������������������������︷︷����������������������������������������︸
real

+i [A1(ΩA)D2(ΩB) + D1(ΩA)A2(ΩB)]︸����������������������������������������︷︷����������������������������������������︸
imaginary

.

The plot shows the imaginary part.

8.13

The observable signal, acquired with broadband decoupling, is

sin(2πJIS τ2) cos(ΩS t1) sin(2πJIS τ1) Îx.

(a) Applying the SHR method to the HSQC sequence requires the acquisition of two time-
domain signals: one with cos(ΩS t1) modulation in t1, the second with sin(ΩS t1) modulation
in t1. It was shown in section 8.13.1 on p. 232 that the modulation can be changed from
cosine to sine by shifting the phase of the first 90◦ S spin pulse by 90◦.

(b) For TPPI, each time t1 is incremented, the phase of the first 90◦ pulse on the S spin must be
incremented by 90◦.



Chapter 8: Two-dimensional NMR 54

8.14

In order to obtain a sine modulated data set from

cos ([Ω1 + Ω2]t1 + 2φ),

we need to set 2φ = −π/2 i.e. φ = −π/4. To show this explicitly, we expand the argument of the
cosine using the identity

cos (A − B) ≡ cos A cos B + sin A sin B,

hence

cos ([Ω1 + Ω2]t1 − π/2) ≡ cos ([Ω1 + Ω2]t1) cos (π/2) + sin ([Ω1 + Ω2]t1) sin (π/2)

≡ sin ([Ω1 + Ω2]t1),

where we have used cos (π/2) = 0 and sin (π/2) = 1. So, shifting the phase by −π/4 alters the
modulation from cosine to sine. Thus, to implement TPPI, each time we increment t1 the phases
of the pulses preceding t1 are incremented by −45◦.
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Relaxation and the NOE

9.1

The equilibrium populations of the α and β levels are given by Eq. 9.6 on p. 264:

n0
α =

1
2 N exp(−Eα/kBT ) n0

β =
1
2 N exp(−Eβ/kBT ),

where
Eα = − 1

2�γB0 Eβ = +
1
2�γB0.

Evaluating the energies yields:

Eα = − 1
2 × 1.055 × 10−34 × 2.675 × 108 × 9.4 = −1.326 × 10−25 J,

Eβ = +1.326 × 10−25 J.

Hence, at 298 K, the populations are:

n0
α = 1

2 × 1013 × exp(1.326 × 10−25/(1.381 × 10−23 × 298))

= 5.00016 × 1012 ,

n0
β =

1
2 × 1013 × exp(−1.326 × 10−25/(1.381 × 10−23 × 298))

= 4.99984 × 1012 .

On account of the very small energy gap, these populations are very similar, although as expected
n0
α > n0

β.

The energy of the system is given by

E = nαEα + nβEβ

= 1
2�γB0

(
nβ − nα

)
.

Initially, nα = nβ, so Einitial = 0. At equilibrium,

Eequ. = 1.326 × 10−25 × (4.99984 × 1012 − 5.00016 × 1012)

= −4.243 × 10−17 J.

The total change in energy is therefore

∆E = Eequ. − Einitial = −4.243 × 10−17 J .
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The thermal energy of N molecules is of the order

NkBT = 1013 × 1.381 × 10−23 × 298 = 4.115 × 10−8 J ,

which is nine orders of magnitude greater than the value of ∆E calculated above. This reinforces
the point that the energy of interaction between the spins and the magnetic field is minuscule
compared to the thermal energy.

9.2

The reduced spectral density function is given by Eq. 9.4 on p. 262

j(ω) =
2τc

1 + ω2τ2
c
.

For a fixed frequency ω, the maximum value of j(ω) occurs at a value of τc given by

d j(ω)
dτc

= 0.

Using the product rule, we obtain:

d
dτc

j(ω) =
2

1 + ω2τ2
c
− 4ω2τ2

c(
1 + ω2τ2

c

)2

=
2 + 2ω2τ2

c − 4ω2τ2
c(

1 + ω2τ2
c

)2

=
2
(
1 − ω2τ2

c

)
(
1 + ω2τ2

c

)2
.

The denominator is always non-zero, so the above expression can be solved by setting the numer-
ator to zero:

2
(
1 − ω2τ2

c

)
= 0

τc =
1
ω

Since the rate constant for longitudinal relaxation depends on j(ω0), the above result indicates that
this rate constant has its maximum value when τc = 1/ω0.
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9.3

At equilibrium, the lower state (α) must have a greater population than the upper state (β), as pre-
dicted by the Boltzmann distribution (assuming that the gyromagnetic ratio is positive). Suppose
we start with equal populations of the α and β states. The only way in which the population of
the α state can increase relative to that of the β state is for the rate of transitions from β to α to
exceed the rate from α to β. As the populations are equal, this implies that the rate constant for
the transition from β to α must be greater than that for the transition from α to β.

9.4

In the inversion–recovery experiment, the peak height S (τ) is given by

S (τ) = S (0)
[
2 exp(−Rzτ) − 1

]
,

where S (0) is the peak height at time zero. Rearranging this, we get:

ln

(
S (τ) + S (0)

2S (0)

)
= −Rzτ,

from which we can see that a plot of ln[(S (τ) + S (0))/(2S (0))] against τ will be a straight line of
gradient −Rz = −1/T1.

τ / s 0.0 0.1 0.5 0.9 1.3 1.7 2.1 2.9

S (τ) −129.7 −93.4 7.6 62.6 93.4 109.5 118.9 126.4

ln[(S (τ) + S (0))/(2S (0))] 0.000 −0.151 −0.754 −1.353 −1.968 −2.554 −3.179 −4.370

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-5

-4

-3

-2

-1

0

τ / s

ln
[(

S
(τ

) 
+

 S
(0

))
/2

S
(0

)]

The gradient is −1.508 s−1, so Rz = 1.508 s−1 and T1 = 0.663 s .
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9.5

In section 9.5.2 on p. 271, it was shown that an estimate for T1 is given by τnull/ ln 2. The values
of T1 are therefore:

τnull / s 0.5 0.6 0.8

T1 / s 0.72 0.87 1.15

The fact that the solvent was still inverted after a delay of 1.5 s shows that it has a T1 value that is
greater than 1.5/ ln 2 = 2.16 s i.e. the solvent relaxes at a slower rate than the other spins.

9.6

The z-magnetization relaxes according to Eq. 9.15 on p. 269:

Mz(t) =
(
Mz(0) − M0

z

)
exp(−Rzt) + M0

z .

Setting Mz(0) = 0 and t = τ, we obtain

Mz(τ) = M0
z
[
1 − exp(−Rzτ)

]
.

0
0

1

τ

M
z(

τ)
/M

z0

The peak height S (τ) is proportional to the z-magnetization present just before the 90◦ pulse. Thus,
S (τ) can be written as

S (τ) = c
[
1 − exp(−Rzτ)

]
.

Letting τ → ∞, S∞ = c; this will be the height of the peak in a simple 90◦–acquire experiment.
Substituting this into the above equation gives

S (τ) = S∞
[
1 − exp(−Rzτ)

]
.

Rearranging this yields:

S (τ) = S∞
[
1 − exp(−Rzτ)

]
S (τ)
S∞

= 1 − exp(−Rzτ)

S∞ − S (τ)
S∞

= exp(−Rzτ)

ln

(
S∞ − S (τ)

S∞

)
= −Rzτ,
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where we have taken the natural logarithm to go to the last line. Hence, a plot of
ln[(S∞ − S (τ))/S∞] against τ gives a straight line of gradient −Rz.

9.7

Assuming that the rate is proportional to the deviation from the equilibrium population, we can
write the rate of change of the population of level 1 (using the labelling in Fig. 9.17 on p. 273) as

dn1

dt
=−W (2,α)

1

(
n1 − n0

1

)
−W (1,α)

1

(
n1 − n0

1

)
−W2

(
n1 − n0

1

)
︸��������������������������������������������������������������︷︷��������������������������������������������������������������︸

loss from level 1

+W (2,α)
1

(
n2 − n0

2

)
︸���������������︷︷���������������︸

gain from level 2

+W (1,α)
1

(
n3 − n0

3

)
︸���������������︷︷���������������︸

gain from level 3

+W2

(
n4 − n0

4

)
︸�����������︷︷�����������︸
gain from level 4

.

Similarly, the rates of change of the populations of the other levels are:

dn2

dt
=−W (2,α)

1

(
n2 − n0

2

)
−W0

(
n2 − n0

2

)
−W (1,β)

1

(
n2 − n0

2

)
︸�������������������������������������������������������������︷︷�������������������������������������������������������������︸

loss from level 2

+W (2,α)
1

(
n1 − n0

1

)
︸���������������︷︷���������������︸

gain from level 1

+W0

(
n3 − n0

3

)
︸�����������︷︷�����������︸
gain from level 3

+W (1,β)
1

(
n4 − n0

4

)
︸���������������︷︷���������������︸

gain from level 4

.

dn3

dt
=−W (1,α)

1

(
n3 − n0

3

)
−W0

(
n3 − n0

3

)
−W (2,β)

1

(
n3 − n0

3

)
︸�������������������������������������������������������������︷︷�������������������������������������������������������������︸

loss from level 3

+W (1,α)
1

(
n1 − n0

1

)
︸���������������︷︷���������������︸

gain from level 1

+W0

(
n2 − n0

2

)
︸�����������︷︷�����������︸
gain from level 2

+W (2,β)
1

(
n4 − n0

4

)
︸���������������︷︷���������������︸

gain from level 4

.

dn4

dt
=−W2

(
n4 − n0

4

)
−W (1,β)

1

(
n4 − n0

4

)
−W (2,β)

1

(
n4 − n0

4

)
︸�������������������������������������������������������������︷︷�������������������������������������������������������������︸

loss from level 4

+W2

(
n1 − n0

1

)
︸�����������︷︷�����������︸
gain from level 1

+W (1,β)
1

(
n2 − n0

2

)
︸���������������︷︷���������������︸

gain from level 2

+W (2,β)
1

(
n3 − n0

3

)
︸���������������︷︷���������������︸

gain from level 3

.

9.8

(a) The expression for b is (from section 9.6.3 on p. 277)

b =
µ0γ

2
H�

4πr3
=

4π × 10−7 × (2.675 × 108)2 × 1.055 × 10−34

4π × (1.8 × 10−10)3
= 1.294 × 105 s−1.

Hence, b2 = 1.675 × 1010 s−2 .
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(b) The expressions for the transition rate constants are given in section 9.6.3 on p. 277:

W (1)
1 =

3
40b2 j(ω0,1) W (2)

1 =
3

40 b2 j(ω0,2)

W2 =
3
10b2 j(ω0,1 + ω0,2) W0 =

1
20b2 j(ω0,1 − ω0,2).

In the fast motion limit, j(ω) = 2τc for all frequencies ω, so the rate constants have the
following numerical values:

W (1)
1 =

3
20 b2τc =

3
20 × 1.675 × 1010 × 20 × 10−12 = 0.0503 s−1 ,

W (2)
1 =

3
20 b2τc =

3
20 × 1.675 × 1010 × 20 × 10−12 = 0.0503 s−1 ,

W2 =
3
5 b2τc =

3
5 × 1.675 × 1010 × 20 × 10−12 = 0.201 s−1 ,

W0 =
1

10 b2τc =
1

10 × 1.675 × 1010 × 20 × 10−12 = 0.0335 s−1 .

From Eq. 9.19 on p. 277:

R(1)
z = 2W (1)

1 +W2 +W0 = (2 × 0.0503) + 0.201 + 0.0335 = 0.335 s−1 ,

R(2)
z = 2W (2)

1 +W2 +W0 = (2 × 0.0503) + 0.201 + 0.0335 = 0.335 s−1 ,

σ12 = W2 −W0 = 0.201 − 0.0335 = 0.168 s−1 .

(c) Substituting j(ω) = 2τc for all values of ω in Eq. 9.20 on p. 278, we obtain:

R(1)
z = b2

[
3

20 j(ω0,1) + 3
10 j(ω0,1 + ω0,2) + 1

20 j(ω0,1 − ω0,2)
]

= b2τc

= 1.675 × 1010 × 20 × 10−12

= 0.335 s−1 .

Similarly, R(2)
z = 0.335 s−1 , and σ12 = 0.168 s−1 .

(d) The value of R(1)
xy can be calculated from the expression in section 9.8.3 on p. 295:

R(1)
xy = b2

[
1
10 j(0) + 3

20 j(ω0,2) + 3
40 j(ω0,1) + 3

20 j(ω0,1 + ω0,2) + 1
40 j(ω0,1 − ω0,2)

]
= b2τc

= 1.675 × 1010 × 20 × 10−12

= 0.335 s−1 .

To go to the second line, we set j(ω) = 2τc. Similarly, R(2)
xy = 0.335 s−1 .

(e) As expected in the fast motion limit, the rate constants for the self-relaxation of both
longitudinal and transverse magnetization have the same value. The rate constant for the
cross-relaxation of longitudinal magnetization has half the value of the self-relaxation rate
constant and is positive, again as expected.

(f) The Larmor frequency is:

ω0 = 2π × 500 × 106 = 3.140 × 109 rad s−1.



Chapter 9: Relaxation and the NOE 61

From the expression for the reduced spectral density,

j(ω) =
2τc

1 + ω2τ2
c
,

we can calculate the values of j(ω0), j(2ω0) and j(0):

j(ω0) =
2τc

1 + ω2
0τ

2
c
=

2 × 500 × 10−12

1 + (3.140 × 109 × 500 × 10−12)2
= 2.88 × 10−10 s,

j(2ω0) = 9.20 × 10−11 s,

j(0) = 1.00 × 10−9 s.

The values of R(1)
z , R(2)

z and σ12 can be calculated by substituting ω0,1 = ω0,2 = ω0 into
Eq. 9.20 on p. 278, giving R(1)

z = R(2)
z = 2.025 s−1 , and σ12 = −0.375 s−1 . Similarly, from

section 9.8.3 on p. 295, R(1)
xy = R(2)

xy = 3.41 s−1 .

(g) As ω0τc = 1.6, we are now outside the fast motion limit, and beyond the zero-crossing point
where σ12 = 0. As a result, σ12 is negative and the rate constant for transverse relaxation
exceeds that for longitudinal relaxation. We are not very far beyond ω0τc = 1, so the rate of
longitudinal relaxation is significantly faster than for τc = 20 ps.

9.9

For a 13C–1H pair, the value of b is:

b =
µ0γCγH�

4πr3
=

4π × 10−7 × 6.728 × 107 × 2.675 × 108 × 1.055 × 10−34

4π × (1.1 × 10−10)3

= 1.427 × 105 s−1.

Hence, b2 = 2.035 × 1010 s−2.
In the fast motion limit (τc = 20 ps), the values of the rate constants can be calculated from those
in the previous question by multiplying by the ratio of the b2 values. Note that we can only do this
because j(ω) is independent of τc in this limit. So,

R(1)
z

(
13C–1H

)
=

⎛⎜⎜⎜⎜⎜⎝b2
C–H

b2
H–H

⎞⎟⎟⎟⎟⎟⎠ R(1)
z

(
1H–1H

)

=
2.035 × 1010

1.675 × 1010
× 0.335

= 0.407 s−1 .

Similarly, R(2)
z = 0.407 s−1 , σ12 = 0.204 s−1 , and R(1)

xy = R(2)
xy = 0.407 s−1 . All these values

are greater than for the 1H–1H pair due to the smaller separation between the 13C and 1H. γC is
a quarter the value of γH, so for the same distance we would expect the relaxation to be sixteen
times slower. However, the rate constant goes as 1/r6, which changes by a factor of 19.2 on going
from r = 1.8 Å to r = 1.1 Å.
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9.10

The necessary equations are given in section 9.10.2 on p. 304. At B0 = 4.7 T, c2 is given by:

c2 =
[
γB0

(
σ‖ − σ⊥)]2

=
[
6.728 × 107 × 4.7 × 100 × 10−6

]2

= 1.00 × 109 s−2 ,

where we have used the gyromagnetic ratio of 13C. In the fast motion limit, j(ω) = 2τc for all
values of ω, so the rate constants are:

Rz = c2 1
15 j(ω0)

= c2 2
15τc

= 1.00 × 109 × 2
15 × 20 × 10−12

= 0.00267 s−1 ,

Rxy = c2
[

2
45 j(0) + 1

30 j(ω0)
]

= c2 7
45τc

= 1.00 × 109 × 7
45 × 20 × 10−12

= 0.00311 s−1 .

At B0 = 11.74 T, the rate constants are greater by a factor of (11.74/4, 7)2:

c2 =
11.742

4.72
× 1.00 × 109 = 6.24 × 109 s−2 ,

Rz =
11.742

4.72
× 0.00267 = 0.0167 s−1 ,

Rxy =
11.742

4.72
× 0.00311 = 0.0194 s−1 .

The values of the CSA relaxation rate constants at B0 = 11.74 T are an order of magnitude smaller
than those for dipolar relaxation of 13C due to an attached 1H. However, as the CSA contribution
goes as B2

0 it will become more significant at higher fields.

9.11

The formulae are as for the previous question. For B0 = 4.7 T,

c2 =
[
γB0

(
σ‖ − σ⊥)]2

=
[
2.675 × 108 × 4.7 × 10 × 10−6

]2

= 1.581 × 108 s−2 .
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Hence,

Rz = c2 1
15 j(ω0)

= c2 2
15τc

= 1.581 × 108 × 2
15 × 20 × 10−12

= 0.00042 s−1 ,

Rxy = c2
[

2
45 j(0) + 1

30 j(ω0)
]

= c2 7
45τc

= 1.581 × 108 × 7
45 × 20 × 10−12

= 0.00049 s−1 .

At B0 = 11.74 T, the values are greater by a factor of (11.74/4.7)2: c2 = 9.864 × 108 s−1 ,
Rz = 0.00263 s−1 , and Rxy = 0.00307 s−1 .

At B0 = 23.5 T, c2 = 3.953 × 109 s−1 , Rz = 0.01054 s−1 , and Rxy = 0.01230 s−1 .
Even at a field of B0 = 23.5 T, the rate constants are still an order of magnitude smaller than the
dipolar relaxation rate constants at B0 = 11.74 T.

9.12

We are going to apply the initial rate limit, in which we assume that, on the right hand side of
Eq. 9.21 on p. 279,

dI1z

dt
= −R(1)

z

(
I1z − I0

1z

)
− σ12

(
I2z − I0

2z

)
,

I1z and I2z have their initial values:
(
dI1z

dt

)
init
= −R(1)

z

(
I1z(0) − I0

1z

)
− σ12

(
I2z(0) − I0

2z

)
= −R(1)

z

(
I0
1z − I0

1z

)
− σ12

(
0 − I0

2z

)
= σ12I0

2z.

Integrating this, we obtain: ∫
dI1z(t) =

∫
σ12I0

2z dt

I1z(t) = σ12I0
2zt + const.

We know that at time t = 0, I1z(0) = I0
1z, so the constant of integration is I0

1z. At t = τ:

I1z(τ) = σ12I0
2zτ + I0

1z.
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Now we will look at the z-magnetization on spin two in the initial rate limit. Starting from

dI2z

dt
= −R(2)

z

(
I2z − I0

2z

)
− σ12

(
I1z − I0

1z

)
,

we obtain: (
dI2z

dt

)
init
= −R(2)

z

(
I2z(0) − I0

2z

)
− σ12

(
I1z(0) − I0

1z

)
= −R(2)

z

(
0 − I0

2z

)
− σ12

(
I0
1z − I0

1z

)
= R(2)

z I0
2z.

Integrating this, and noting that I2z(0) = 0, we get, at t = τ:

I0
2z(τ) = R(2)

z I0
2zτ.

The height of the peak due to spin one is proportional to I1z, and the height of that due to spin two
is proportional to I2z. Furthermore, both spins are of the same type, so I0

1z = I0
2z. The peak heights

for the irradiated, reference and difference spectra are:

spectrum S 1(τ) S 2(τ)

irradiated: (a) c (σ12τ + 1) cR(2)
z τ

reference: (b) c c

NOE difference: (a) − (b) cσ12τ c
(
R(2)

z τ − 1
)

Note that |σ12| τ� 1 and R(2)
z τ� 1 in the initial rate limit.

Ω1 Ω2

(a)

(b)

(c) = (a) - (b)

The NOE enhancement is given by:

η =
peak height in irradiated spectrum − peak height in reference spectrum

peak height in reference spectrum

=
c (σ12τ + 1) − c

c
= σ12τ.
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9.13

The NOE difference spectrum is convenient as it only shows the target resonance, and the reso-
nances which are receiving an NOE enhancement.

9.14

(a) The observation that the NOE enhancement depends only upon the cross-relaxation rate
constant is a property of the initial rate limit i.e. the assumption that the target peak is still
fully inverted after the delay τ. We are effectively ignoring self relaxation during this delay.

(b) At longer times, the inverted spin begins to relax back to equilibrium. This reduces the
z-magnetization on that spin and so slows the growth of the NOE: hence the dependence
on the self-relaxation rate constant of that spin. The spin receiving the enhancement can
also relax, resulting in the NOE enhancement being lost: hence the dependence on its self
relaxation rate constant.

(c) Spin one is held saturated throughout the experiment, so its relaxation is of no importance.
Cross relaxation gives the rate of transfer of magnetization from spin one to spin two, while
self relaxation of spin two leads to a loss of this transferred magnetization. Therefore, there
is competition between these two processes, which is reflected in the observation that the
enhancement depends upon the ratio of the rate constants for cross and self relaxation.

9.15

In the initial rate limit, the enhancement in a transient NOE experiment depends only upon the
cross-relaxation rate constant for the transfer of magnetization between the inverted spin and the
spin receiving the enhancement. In this example, σAB and σBC will be approximately equal, so
when HB is inverted, the enhancement of HA and HC will be the same.
On inverting HA, the enhancement at HB still depends only on σAB, so will be the same as for HA

and HC when HB is irradiated. HC is too far from HA to receive an enhancement.

In a steady state experiment, the enhancement depends upon the ratio of the cross-relaxation rate
constant to the self-relaxation rate constant of the spin receiving the enhancement. RA

z and RC
z are

equal to each other, so saturation of HB will give equal enhancements on HA and HC.
Irradiation of HA gives a smaller enhancement on HB as the self relaxation of this spin is faster
than for HA or HC. This is because HB has two nearby protons which relax it, whereas HA and HC

only have one nearby proton.
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9.16

The NOESY pulse sequence is given in Fig. 9.24 on p. 287.

t2t1 τ

We will start with equilibrium magnetization on spin one, and assume that spins one and two are
not coupled. If the phase of the first 90◦ pulse is −x, it rotates equilibrium Î1z to Î1y. This evolves
under the offset during t1 to give:

Î1y
Ω1t1 Î1z+Ω2t1 Î2z−−−−−−−−−−−−→ cos(Ω1t1)Î1y − sin(Ω1t1)Î1x.

The second 90◦ pulse acts on the above terms to give:

cos(Ω1t1)Î1y − sin(Ω1t1)Î1x
(π/2)(Î1x+Î2x)−−−−−−−−−−−→ cos(Ω1t1)Î1z − sin(Ω1t1)Î1x.

There are also similar terms due to spin two. We select only longitudinal terms after this pulse, so
at τ = 0, the z-magnetization on each spin is:

I1z = cos(Ω1t1) I0
1z and I2z = cos(Ω2t1) I0

2z.

The Solomon equations are (from Eq. 9.26 on p. 287):

dI1z(t)
dt

= −Rz

(
I1z(t) − I0

z

)
− σ

(
I2z(t) − I0

z

)
dI2z(t)

dt
= −σ

(
I1z(t) − I0

z

)
− Rz

(
I2z(t) − I0

z

)
,

where we have assumed that I0
1z = I0

2z = I0
z . Using the initial rate approximation with the following

initial conditions:
I1z(0) = cos(Ω1t1) I0

z and I2z(0) = cos(Ω2t1) I0
z ,

we obtain: (
dI1z(t)

dt

)
init
= −Rz [cos(Ω1t1) − 1] I0

z − σ [cos(Ω2t1) − 1] I0
z(

dI2z(t)
dt

)
init
= −σ [cos(Ω1t1) − 1] I0

z − Rz [cos(Ω2t1) − 1] I0
z .

Integrating these, and using the initial conditions to determine the values of the constants of
integration, we obtain:

I1z(τ)

I0
z

= cos(Ω1t1) (1 − Rzτ)︸������������������︷︷������������������︸
diagonal peak

− cos(Ω2t1)στ︸���������︷︷���������︸
cross peak

+ (Rz + σ) τ︸������︷︷������︸
axial peak

,

I2z(τ)

I0
z

= cos(Ω2t1) (1 − Rzτ)︸������������������︷︷������������������︸
diagonal peak

− cos(Ω1t1)στ︸���������︷︷���������︸
cross peak

+ (Rz + σ) τ︸������︷︷������︸
axial peak

.
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Comparing these with Eq. 9.28 and Eq. 9.29 on p. 288, we see that the terms which give the
diagonal and cross peaks have changed sign, while the axial peak terms have not. The axial peaks
can therefore be suppressed by difference spectroscopy: we record two spectra with the phase of
the first pulse set to +x and −x in turn, then we subtract one spectrum from the other. The cross
and diagonal peaks reinforce, and the axial peaks cancel.

9.17

The Larmor frequency in rad s−1 is

ω0 = 2π × 500 × 106 = 3.142 × 109 rad s−1.

The value of ω0τc is 0.03, which is much less than 1. Therefore, we are working in the fast motion
limit, where j(ω) = 2τc for all frequencies. The rate constant for longitudinal relaxation is given
by Eq. 9.31 on p. 293:

Rz = γ
2B2

loc j(ω0),

where Rz = 1/T1. Substituting in this, and using the fast motion limit expression for j(ω0), we
obtain:

1
T1

= 2γ2τcB2
loc

B2
loc =

1

2T1γ2τc

=
1

2 × 1 × (2.675 × 108)2 × 10 × 10−12

= 6.99 × 10−7 T2 .

This corresponds to a root mean square field of 8.4 × 10−4 T, which is 10−4 times smaller than
B0. The local fields are indeed very weak.

9.18

τ τ

Any effects of inhomogeneous broadening are refocused by the spin echo, so the amplitude of the
transverse magnetization present at the start of acquisition depends only upon Rxy and the time 2τ.
The peak height is therefore given by:

S (τ) = S 0 exp(−2Rxyτ)
S (τ)
S 0

= exp(−2Rxyτ).
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Taking logarithms of both sides gives us

ln

(
S (τ)
S 0

)
= −2Rxyτ,

so a plot of ln(S (τ)/S 0) against τ is a straight line of gradient −2Rxy.

τ / s 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

S (τ) 65 39.4 23.9 14.5 8.8 5.34 3.24 1.96

ln(S (τ)/S 0) 0 −0.501 −1.001 −1.500 −2.000 −2.499 −2.999 −3.501

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

τ / s

ln
[S

(τ
)/

S
(0

)]

The gradient is −5.00 s−1, giving Rxy = 2.50 s−1 , or T2 = 0.4 s.
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Advanced topics in two-dimensional
NMR

10.1

-10 -5 0 5 10 -10 -5 0 5 10

J23
J12

J12 = 2 Hz    J23 = 6 Hz J12 = 6 Hz    J23 = 6 Hz

α αβ β
α α β βspin 3

spin 1
J23 J12

α β/α β
α α/β βspin 3

spin 1

I2y

2I1zI2y

4I1zI2yI3z

2I2yI3z

Hz

Ω2/2π Ω2/2π

(a) (b)

(a) Assuming that the offset of spin two is 0 Hz, the line positions are −4, −2, 2 and 4 Hz.

(b) Assuming that the offset of spin two is 0 Hz, the line positions are −6, 0, 0 and 6 Hz; we
have a doublet of doublets, with the central two lines falling on top of one another, giving a
triplet.
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10.2

We do not need to consider the 1–3 coupling as this does not affect the evolution of a spin-two
operator. First, let us consider the evolution due to the 1–2 coupling:

Î2y
2πJ12tÎ1z Î2z−−−−−−−−−→ cos (πJ12t) Î2y − sin (πJ12t) 2Î1z Î2x.

We will now consider the effect of the 2–3 coupling separately on each of the terms on the right.
For the term in Î2y the evolution is straightforward:

cos (πJ12t) Î2y
2πJ23tÎ2z Î3z−−−−−−−−−→ cos (πJ23t) cos (πJ12t) Î2y − sin (πJ23t) cos (πJ12t) 2Î2x Î3z.

For the − sin (πJ12t) 2Î1z Î2x term, the factor − sin (πJ12t) 2Î1z is unaffected by the evolution of the
2–3 coupling: writing this factor as A we have

A Î2x
2πJ23tÎ2z Î3z−−−−−−−−−→ A cos (πJ23t) Î2x + A sin (πJ23t) 2Î2y Î3z.

Reinserting the factor A gives

− cos (πJ23t) sin (πJ12) 2Î1z Î2x − sin (πJ23t) sin (πJ12t) 4Î1z Î2y Î3z.

The overall result of the evolution of Î2y under coupling is summarized in the table:

term
dependence

on J12

dependence
on J23

axis description

Î2y cos (πJ12t) cos (πJ23t) y in-phase

−2Î1z Î2x sin (πJ12t) cos (πJ23t) −x anti-phase with respect to J12

−2Î2x Î3z cos (πJ12t) sin (πJ23t) −x anti-phase with respect to J23

−4Î1z Î2yÎ3z sin (πJ12t) sin (πJ23t) −y
doubly anti-phase with
respect to J12 and J23

As expected, going anti-phase with respect to the coupling between spins i and j introduces a factor
sin (πJi jt), whereas remaining in-phase with respect to this coupling introduces a factor cos (πJi jt).
The in-phase term is along y, singly anti-phase terms are along −x, and the doubly anti-phase term
is along −y i.e. they follow around in the usual sequence x→ y→ −x→ −y.
The corresponding tree diagram is

I2y

I2y

I2y

-2I1zI2x

-2I1zI2x -4I1zI2yI3z-2I2xI3z

J12

J23 J23
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10.3

The trick to getting the signs right is just to think about the usual way in which y evolves into −x
and then into −y:

-I2x

-I2x -2I1zI2y-4I1zI2xI3z

2I2yI3z

2I2yI3z

2I2yI3z

J23

J12 J12

The term 4Î1z Î2x Î3z arises from splitting first to the left, giving the coefficient cos (πJ23t), and sec-
ond to the right, giving the coefficient sin (πJ12t). Note also that there is a minus sign introduced.
So the overall factor multiplying 4Î1z Î2x Î3z is − cos (πJ23t) sin (πJ12t).

10.4

Term [1] is
cos (πJ13t1) cos (πJ12t1) sin (Ω1t1) Î1x.

First, let us consider the modulation in t1. We use the identity

sin A cos B ≡ 1
2 [sin (A + B) + sin (A − B)]

to combine the terms cos (πJ12t1) sin (Ω1t1) to give

1
2 cos (πJ13t1) [sin (Ω1t1 + πJ12t1) + sin (Ω1t1 − πJ12t1)] .

Next we multiply out the square brace:

1
2 cos (πJ13t1) sin (Ω1t1 + πJ12t1) + 1

2 cos (πJ13t1) sin (Ω1t1 − πJ12t1). (10.1)

Now we combine the two terms cos (πJ13t1) sin (Ω1t1 + πJ12t1) to give

1
2 sin (Ω1t1 + πJ12t1 + πJ13t1) + 1

2 sin (Ω1t1 + πJ12t1 − πJ13t1).

Doing the same for the two terms cos (πJ13t1) sin (Ω1t1 − πJ12t1) gives

1
2 sin (Ω1t1 − πJ12t1 + πJ13t1) + 1

2 sin (Ω1t1 − πJ12t1 − πJ13t1).

So overall Eq. 10.1 expands to four terms

1
4

[
sin (Ω1t1 + πJ12t1 + πJ13t1) + sin (Ω1t1 + πJ12t1 − πJ13t1)

+ sin (Ω1t1 − πJ12t1 + πJ13t1) + sin (Ω1t1 − πJ12t1 − πJ13t1)
]
.



Chapter 10: Advanced topics in two-dimensional NMR 72

Therefore, what we have in ω1 is a completely in-phase doublet of doublets on spin one.
In ω2 the operator is Î1x, which also gives rise to an in-phase doublet of doublets on spin one.
‘Multiplying’ these two multiplets together in the manner of Fig. 10.6 on p. 325 gives rise to a
two-dimensional multiplet consisting of sixteen lines, all with the same sign; this is in contrast to
the cross-peak multiplet, which consists of four anti-phase square arrays.
Note, too, that the magnetization which gives rise to the diagonal peak is along x in t2 and is sine
modulated in t1. This is the complete opposite of the cross peak, which is along y in t2 and cosine
modulated. Thus, as in the COSY of the two-spin system, the diagonal and cross peaks are 90◦
out of phase with one another in both dimensions.
The reason why the splittings due to J12 and J13 are in-phase in the ω1 dimension is that the
modulation with respect to these couplings takes the form of a cosine: cos (πJi jt1).
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10.5

(a)

(b)

(c)

(d)

(e)

(f)

For (f) there are only two anti-phase square arrays.
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(a) (b)

(c) (d)

ω1

ω2

Ω1

Ω2

In each case, the region plotted is ±10 Hz from the centre of the cross-peak multiplet; for clarity,
only one anti-phase square array is shown. The linewidth is 0.5 Hz in each dimension.
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10.6

ω1

ω2

(a) (b) (c)

(d) (e) (f)

In each case ± 10 Hz is plotted from the centre of the cross-peak multiplet. Note that in (c), where
J12 = J23, the column of peaks down the centre of the cross peak no longer cancel one another
out, as four of the peaks are missing from the reduced multiplet.
In the series (a) to (c), J23 is increasing, thus increasing the ω2 separation of the two anti-phase
square arrays. In the series (d) to (f), J13 is decreasing, thus decreasing the ω1 separation of the
two anti-phase square arrays.

10.7

It is not usually possible to measure a value for the active coupling constant since this appears
as an anti-phase splitting. If the positive and negative peaks overlap significantly, the separation
between the maxima and minima of the anti-phase peaks is no longer equal to the value of the
active coupling constant.
See section 10.3.3 on p. 332 for a description of how, under some circumstances, the values of
passive couplings may be determined from reduced multiplets.
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10.8

Î1α Î2− Î3α: observable magnetization corresponding to the line of the spin-two multiplet which is
associated with spin one and spin three both being in the α state.

Î1α Î2− Î3−: double-quantum coherence, with p = −2, between spins two and three. More specif-
ically, this operator is associated with one of the lines of the double-quantum ‘doublet’ – see
section 3.7.3 on p. 44. This term is not observable.

Î1β Î2β Î3β: the population of the βββ energy level. This term is not observable.

Î1α Î2β Î3+: single-quantum coherence, with p = +1, corresponding to the line of the spin-three
multiplet which is associated with spin one being in the α state and spin two being in the β state.
Although it is single quantum, this term is not observable as only coherence order −1 is observable.

As described in section 10.4.2 on p. 336, free evolution simply gives a phase factor, with the
frequency depending on the offset of the spin in question and on the spin states of the passive
spins. If the passive spin is in the α state, a term −πJ is contributed to the frequency, whereas if
it is in the β state, a term +πJ is contributed. The overall sense of the phase factor depends on
whether the operator is Î+ or Î−.

Î1α Î2− Î3α −→ exp (i[Ω2 − πJ12 − πJ23]t1) Î1α Î2− Î3α

Î1α Î2β Î3+ −→ exp (−i[Ω3 − πJ13 + πJ23]t1) Î1α Î2β Î3+

10.9

During t1 the term Î1+ Î2β Î3α acquires a phase factor:

exp (−i[Ω1 + πJ12 − πJ13]t1) Î1+ Î2β Î3α.

The small flip angle pulse causes the following transfers to observable operators on spin two (the
coefficients come from Eq. 10.7 on p. 338)

Î1+ Î2β Î3α −→
(
+ 1

2 iθ
) (
+ 1

2 iθ
)

(1) Î1α Î2− Î3α

Î1+ Î2β Î3α −→
(
− 1

2 iθ
) (
+ 1

2 iθ
)

(1) Î1β Î2− Î3α

Î1+ Î2β Î3α −→
(
+ 1

2 iθ
) (
+ 1

2 iθ
) (

1
4θ

2
)

Î1α Î2− Î3β

Î1+ Î2β Î3α −→
(
− 1

2 iθ
) (
+ 1

2 iθ
) (

1
4θ

2
)

Î1β Î2− Î3β.

For a small flip angle, we discard the third and fourth terms as these go as θ4. This leaves

Î1+ Î2β Î3α −→ − 1
4θ

2 Î1α Î2− Î3α Î1+ Î2β Î3α −→ + 1
4θ

2 Î1β Î2− Î3α. (10.2)

These two transfers can be found in the table on p. 340.
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Next we consider the behaviour of the term Î1− Î2β Î3α. For this term the sense of the phase
modulation is opposite to that of Î1+ Î2β Î3α:

exp (+i[Ω1 + πJ12 − πJ13]t1) Î1− Î2β Î3α.

For this term, the transfer Î1− −→ Î1α has associated with it a factor of (− 1
2 iθ), which is the opposite

sign to that for the transfer Î1+ −→ Î1α. So, the cross-peak components arising from Î1+ Î2β Î3α and
Î1− Î2β Î3α have opposite signs.

10.10

Starting with Î1+ Î2β Î3α the first small flip angle pulse creates four possible population terms, which
are the ones of interest in ZCOSY, in which spin one is in the α state:

Î1+ Î2β Î3α −→
(
+ 1

2 iθ
)

(1) (1) Î1α Î2β Î3α

Î1+ Î2β Î3α −→
(
+ 1

2 iθ
) (

1
4θ

2
)

(1) Î1α Î2α Î3α

Î1+ Î2β Î3α −→
(
+ 1

2 iθ
)

(1)
(

1
4θ

2
)

Î1α Î2β Î3β

Î1+ Î2β Î3α −→
(
+ 1

2 iθ
) (

1
4θ

2
) (

1
4θ

2
)

Î1α Î2α Î3β.

Of these four terms, only the first will be significant for the case of a small flip angle.
There are four additional transfers from Î1+ Î2β Î3α to operators in which spin one is in the β state,
but as before only one of these is significant in the small flip angle case:

Î1+ Î2β Î3α −→
(
− 1

2 iθ
)

(1) (1) Î1β Î2β Î3α

So, we have just two population terms at this stage:(
+ 1

2 iθ
)

Î1α Î2β Î3α and
(
− 1

2 iθ
)

Î1β Î2β Î3α.

From all that we have done so far we can see that, for small flip angles, the significant contributions
that these terms will make to the 1–2 cross peak arise from the transfer Î2β −→ Î2−, with both of
the other operators remaining the same:

(
+ 1

2 iθ
)

Î1α Î2β Î3α −→
(
+ 1

2 iθ
) (
+ 1

2 iθ
)

Î1α Î2− Î3α(
− 1

2 iθ
)

Î1β Î2β Î3α −→
(
+ 1

2 iθ
) (
− 1

2 iθ
)

Î1β Î2− Î3α.

So the overall transfers from Î1+ Î2β Î3α caused by the two small flip angles pulses are

Î1+ Î2β Î3α −→ − 1
4θ

2 Î1α Î2− Î3α

Î1+ Î2β Î3α −→ + 1
4θ

2 Î1β Î2− Î3α.

These are exactly the same as found for small flip angle COSY in the previous exercise (see
Eq. 10.2 on the previous page).
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10.11

From section 10.8.1 on p. 352, we found that at the end of the constant time T the following
operators are present:

cos (Ω1t1) cos (πJ12T ) Î1y − sin (Ω1t1) cos (πJ12T ) Î1x

− cos (Ω1t1) sin (πJ12T ) 2Î1x Î2z − sin (Ω1t1) sin (πJ12T ) 2Î1y Î2z.

The third of these is rotated by the second 90◦ pulse to a mixture of double- and zero-quantum
coherence:

− cos (Ω1t1) sin (πJ12T ) 2Î1x Î2z
(π/2)(Î1x+Î2x)−−−−−−−−−−→ + cos (Ω1t1) sin (πJ12T ) 2Î1x Î2y.

Following section 7.12.1 on p. 178, the pure double quantum part of 2Î1x Î2y is 1
2 (2Î1x Î2y +2Î1y Î2x),

so the double quantum term between the final two pulses is

1
2 cos (Ω1t1) sin (πJ12T ) (2Î1x Î2y + 2Î1y Î2x).

The final 90◦ pulse makes this observable:

1
2 cos (Ω1t1) sin (πJ12T ) (2Î1x Î2y + 2Î1y Î2x)

(π/2)(Î1x+Î2x)−−−−−−−−−−→
1
2 cos (Ω1t1) sin (πJ12T ) (2Î1x Î2z + 2Î1z Î2x).

The term cos (Ω1t1) sin (πJ12T ) 2Î1x Î2z gives rise to a diagonal peak centred at {Ω1,Ω1}, as it is
modulated in t1 at Ω1 and appears on spin one in t2. There is a single modulating frequency of Ω1

in ω1 i.e. no splitting due to couplings, as expected. In ω2 the multiplet is in anti-phase.
The term cos (Ω1t1) sin (πJ12T ) 2Î1z Î2x gives rise to a cross peak centred at {Ω1,Ω2}, as it is
modulated in t1 at Ω1 and appears on spin two in t2. Like the diagonal peak, it is in anti-phase in
ω2. Furthermore, note that the terms which give rise to both the diagonal and cross peak appear
along x, so they will have the same lineshape in ω2: this contrasts with the simple constant time
COSY experiment.
The intensity of both the diagonal and cross peaks goes as sin (πJ12T ): again, this contrasts with
the simple constant time COSY, where the two kinds of peaks have a different dependence on T.
The advantage of double-quantum filtration is that it results in both diagonal and cross peaks
having the same lineshape in ω2, as well as in ω1.
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10.12

Following the same kind of analysis as in section 10.8.1 on p. 352, we first let −Î1y evolve under
the coupling for time T: a ‘tree’ is perhaps useful here:

-I1y

-I1y

-I1y

2I1xI2z

2I1xI2z 4I1yI2zI3z2I1xI3z

J12

J13 J13

Using this, we can simply read off the four terms which arise as a result of the evolution of the
coupling

− cos (πJ13T ) cos (πJ12T ) Î1y + sin (πJ13T ) cos (πJ12T ) 2Î1x Î3z

+ cos (πJ13T ) sin (πJ12T ) 2Î1x Î2z + sin (πJ13T ) sin (πJ12T ) 4Î1y Î2z Î3z.

The 180◦ pulse in the constant time period simply flips the sign of any y or z operators:

+ cos (πJ13T ) cos (πJ12T ) Î1y − sin (πJ13T ) cos (πJ12T ) 2Î1x Î3z

− cos (πJ13T ) sin (πJ12T ) 2Î1x Î2z − sin (πJ13T ) sin (πJ12T ) 4Î1y Î2z Î3z.

Now we have to let each of these terms evolve under the offset of spin one for time t1. The result
will be all of the above terms, multiplied by cos (Ω1t1):

cos (Ω1t1)
[
+ cos (πJ13T ) cos (πJ12T ) Î1y − sin (πJ13T ) cos (πJ12T ) 2Î1x Î3z

− cos (πJ13T ) sin (πJ12T ) 2Î1x Î2z − sin (πJ13T ) sin (πJ12T ) 4Î1y Î2z Î3z

]
,

and a related set of terms multiplied by sin (Ω1t1):

sin (Ω1t1)
[
− cos (πJ13T ) cos (πJ12T ) Î1x − sin (πJ13T ) cos (πJ12T ) 2Î1y Î3z

− cos (πJ13T ) sin (πJ12T ) 2Î1y Î2z + sin (πJ13T ) sin (πJ12T ) 4Î1x Î2z Î3z

]
.

After the final 90◦ pulse the first set of terms become

cos (Ω1t1)
[
+ cos (πJ13T ) cos (πJ12T ) Î1z + sin (πJ13T ) cos (πJ12T ) 2Î1x Î3y

+ cos (πJ13T ) sin (πJ12T ) 2Î1x Î2y − sin (πJ13T ) sin (πJ12T ) 4Î1z Î2yÎ3y

]
,

none of which are observable.
The second set of terms, those multiplied by sin (Ω1t1), become

sin (Ω1t1)
[
− cos (πJ13T ) cos (πJ12T ) Î1x + sin (πJ13T ) cos (πJ12T ) 2Î1z Î3y

+ cos (πJ13T ) sin (πJ12T ) 2Î1z Î2y + sin (πJ13T ) sin (πJ12T ) 4Î1x Î2yÎ3y

]
.
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The term in Î1x is the diagonal peak: in ω2 it will appear as the in-phase doublet of doublets of
spin one, and as the t1 modulation is simply sin (Ω1t1), there will be a single frequency in ω1 i.e.
no splitting due to couplings, as expected.
The term in 2Î1z Î2y is the 1–2 cross peak: in ω2 it will appear as the doublet of doublets of spin
two, anti-phase with respect to the 1–2 coupling, but in-phase with respect to the 2–3 coupling. In
ω1 there is a single modulating frequency of Ω1, just as for the diagonal peak.
The cross- and diagonal-peak terms have the same modulation in t1, and so will have the same
lineshape is this dimension. However, in t2 the magnetization which gives rise to the diagonal
peak appears along x, whereas that which gives rise to the cross peak appears along y. So, as for
the two-spin case, in ω2 the cross and diagonal peaks will have different lineshapes.
The intensities of the two type of peaks show a different dependence on the couplings:

spin-one diagonal peak : cos (πJ13T ) cos (πJ12T ) 1–2 cross peak : cos (πJ13T ) sin (πJ12T ).

As for the two-spin case, the cross-peak goes as sin (πJactiveT ), whereas the diagonal peak goes as
cos (πJactiveT ): here the active coupling is J12. The two kinds of peaks have a common dependence
on the passive coupling J13, going as the cosine: cos (πJ13T ). In words, to give rise to the 1–2
cross peak, the magnetization needs to be anti-phase with respect to the 1–2 coupling, and in-phase
with respect to the 1–3 coupling, hence the sine dependence on J12 and the cosine dependence on
J13.
For the cross peak to have a maximum intensity πJ12T must be an odd multiple of π/2, whereas
πJ13T must be an even multiple of π/2. It might be difficult to satisfy this requirement exactly.
This analysis reveals the main problem with constant time experiments, which is the complex
dependence of the cross-peak intensity on the couplings in the system, and the value of the fixed
delay T.

10.13

Following section 8.8 on p. 214, we found for a two-spin system the following S spin operator
after the first S spin 90◦ pulse:

− sin (2πJIS τ1) 2ÎzŜy.

We need to adapt this for the more complex spin system we are dealing with here. Firstly, the S
spin has to become the spin S1, and the coupling becomes that between I and S1, JIS1 :

− sin (2πJIS1τ1) 2ÎzŜ1y.

If τ1 = 1/(4JIS1 ), then the sine term goes to 1 and so we just have −2ÎzŜ1y at the start of t1.
Just as before, we now allow the homonuclear coupling, which in this case is between S1 and S 2,
to evolve for the whole time T, giving

− cos (πJ12T ) 2ÎzŜ1y + sin (πJ12T ) 4ÎzŜ1xŜ2z,

where J12 is the coupling between the two S spins. Note the generation of anti-phase magnetization
with respect to this coupling. We also need to take account of the S spin 180◦ pulse which inverts
the operators Ŝ1y and Ŝ1z to give

+ cos (πJ12T ) 2ÎzŜ1y − sin (πJ12T ) 4ÎzŜ1xŜ2z.
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We now allow the S spin offset terms to act for time t1; only the offset of S1 has an effect, giving

cos (ΩS1 t1) cos (πJ12T ) 2ÎzŜ1y − cos (ΩS1 t1) sin (πJ12T ) 4ÎzŜ1xŜ2z

− sin (ΩS1 t1) cos (πJ12T ) 2ÎzŜ1x − sin (ΩS1 t1) sin (πJ12T ) 4ÎzŜ1yŜ2z.

Finally, we need to take account of the I spin 180◦ pulse, which inverts all of the terms, as they all
contain Îz:

− cos (ΩS1 t1) cos (πJ12T ) 2ÎzŜ1y + cos (ΩS1 t1) sin (πJ12T ) 4ÎzŜ1xŜ2z

+ sin (ΩS1 t1) cos (πJ12T ) 2ÎzŜ1x + sin (ΩS1 t1) sin (πJ12T ) 4ÎzŜ1yŜ2z.

Note that we do not need to worry about the evolution of the heteronuclear coupling as this is
refocused by the 180◦ pulses in periods A and B.
Next comes the 90◦ pulses to the I and S spins: these have the following effect on the operators
(the trigonometric terms have been left out):

2ÎzŜ1y −→ −2ÎyŜ1z 4ÎzŜ1xŜ2z −→ 4ÎyŜ1xŜ2y 2ÎzŜ1x −→ −2ÎyŜ1x 4ÎzŜ1yŜ2z −→ 4ÎyŜ1zŜ2y.

Of these terms, only the first becomes observable on the I spin. We can see that the feature of this
term is that it has remained in-phase with respect to the S1–S 2 coupling, and is cosine modulated
in t1.
After these two 90◦ pulses the observable term on the I spin is

cos (ΩS1 t1) cos (πJ12T ) 2ÎyŜ1z.

After the following spin echo, assuming τ1 = 1/(4JIS1 ), this term simply becomes in-phase along
−x:

− cos (ΩS1 t1) cos (πJ12T ) Îx.

We then observe this term with broadband S spin decoupling, giving a single peak at {ΩS1 ,ΩI}.
As a result of using the constant time procedure, there is no splitting in ω1 due to the coupling
between the S spins.
The intensity of the peak depends on cos (πJ12T ); for a maximum, πJ12T must be a multiple of π,
i.e. πJ12T = nπ or T = n/J12 n = 1, 2, . . .. This condition corresponds to the magnetization
being in-phase with respect to the coupling between the S spins at the end of the constant time T.
In the case that the S spins are 13C in a globally labelled sample, the couplings we need to worry
about are the one-bond 13C–13C couplings, simply because these are the largest. Such couplings
do not vary very much with structure, so it should be possible to find a value of T which is a
reasonable compromise for all the carbons in the system.
If there are further S spins coupled to S1, then we can see that the intensity of the cross peak will
go as cos (πJ12T ) cos (πJ13T ) . . .. Again, if the couplings do not cover too wide a range, we can
find a value of T which will give reasonable intensity for all cross peaks.
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10.14

We just use the idea that the selective 180◦ pulse ‘drags’ the curly line (the coherence) from the
energy level shared by the pulse and the coherence, to the energy level at the ‘other end’ of the
180◦ pulse.

1 αα

2 αβ

4 ββ

3 βα

1 αα

2 αβ

4 ββ

3 βα

1 αα

2 αβ

4 ββ

3 βα

1 αα

2 αβ

4 ββ

3 βα

1 αα

2 αβ

4 ββ

3 βα

1 αα

2 αβ

4 ββ

3 βα

180˚ to 1-3 180˚ to 3-4

180˚ to 1-3 180˚ to 1-2

result

The same idea is used below. Note that the selective 180◦ pulse and the coherence must share an
energy level for anything to happen.

1 αα

2 αβ

4 ββ

3 βα

1 αα

2 αβ

4 ββ

3 βα

1 αα

2 αβ

4 ββ

3 βα

1 αα

2 αβ

4 ββ

3 βα

1 αα

2 αβ

4 ββ

3 βα

1 αα

2 αβ

4 ββ

3 βα

180˚ to 3-4 180˚ to 2-4

180˚ to 2-4180˚ to 1-2

result

(a)

(b)

Transfer (a) can also be achieved by pulses to 3–4 and then 1–3; similarly, transfer (b) can also be
achieved by pulses to 1–2 and 1–3.
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10.15

After the 90◦(y) pulse to the I spin and the first 90◦ pulse to the S spin, and assuming that
τ = 1/(4JIS ), we have already worked out that the state of the system is −2ÎzŜy (see section 8.8 on
p. 214). It is then just a question of following the evolution of this term under the influence of the
S spin offset and the I–S coupling.
The final stage is to use the trigonometric identities (given in the appendix). For example, the term
Ŝx is multiplied by the trigonometric term cos (ΩS t1) sin (πJIS t1). Applying the identity

cos A sin B ≡ 1
2 [sin (A + B) − sin (A − B)]

gives
cos (ΩS t1) sin (πJIS t1) ≡ 1

2 [sin (ΩS t1 + πJIS t1) − sin (ΩS t1 − πJIS t1)] .

This is indeed 1
2(s+ − s−), as stated.

We now follow through the fate of the term Ŝx for the rest of the sequence (Fig. 10.33 on p. 362).
The I spin 90◦ pulse at the start of period A has no effect, and there then follows a spin echo
of total duration 1/(2JIS ) during which the in-phase term is completely transferred to anti-phase,
giving 2ÎzŜy. We need to take account of the two 180◦ pulses which invert both Îz and Ŝy, leaving
the term overall unaffected. The 90◦(y) pulse to the I spin transforms this term to 2ÎxŜy; this brings
us to the end of period A.
The 90◦ pulse to the S spin which starts period B rotates the operator to 2ÎxŜz, and this anti-phase
term evolves completely into in-phase during the subsequent spin echo, giving Îy. We need to take
account of the two 180◦ pulses in the spin echo, which invert this term to give −Îy. This term is
unaffected by the final 90◦ pulse to the S spin, so the observable term arising from Ŝx is

− 1
2 (s+ − s−) Îy.

This term can be found on the first line of the table on p. 363.

10.16

The combinations S 3 and S 4 are:

S 3 =
1
2 [(a) + (d)] S 4 =

1
2 [(a) − (d)] ,

where (a) and (d) are given in the table on p. 363:

observable operator at t2 = 0

expt φI φS Îx Îy 2ÎxŜz 2ÎyŜz

(a) y y (−c+ − c−) (−s+ + s−) (c+ − c−) (s+ + s−)

(b) −y y (−c+ − c−) (s+ − s−) (−c+ + c−) (s+ + s−)

(c) y −y (−c+ − c−) (−s+ + s−) (−c+ + c−) (−s+ − s−)

(d) −y −y (−c+ − c−) (s+ − s−) (c+ − c−) (−s+ − s−)
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Forming these combinations we have

S 3 = 1
2 [(a) + (d)]

= (−c+ − c−) Îx︸����������︷︷����������︸
E

+ (c+ − c−) 2ÎxŜz︸������������︷︷������������︸
F

S 4 = 1
2 [(a) − (d)]

= (−s+ + s−) Îy︸����������︷︷����������︸
G

+ (s+ + s−) 2ÎyŜz.︸�������������︷︷�������������︸
H

As before, we have a clean separation of x- and y-magnetization. If the two combinations are
processed separately, and a 90◦ phase correction applied to one combination in both dimensions,
we will have two spectra in which all peaks are in the absorption mode.
Term E is in-phase in ω2 and also in-phase in ω1, so all four peaks of the multiplet have the same
sign, which is this case is negative. The multiplet is the same as from term A given in Eq. 10.12 on
p. 363. Term F is anti-phase in each dimension, so gives rise to an anti-phase square array. Note,
however, that the overall sign is opposite to that of term B given in Eq. 10.12.
Term G is in-phase in ω2 and anti-phase in ω1, and is again opposite in overall sign to term C in
Eq. 10.13 on p. 363. Finally, term H is anti-phase in ω2, but in-phase in ω1: it is identical to term
D in Eq. 10.13.
The multiplets from the four terms, along with the way they combine to give S 3 and S 4, are shown
in the diagram below, which should be compared to Fig. 10.34 on p. 364.

E F S3 S3 + S4

S3 - S4G H S4

+ =

=+

We see from the digram that by combining the spectra S 3 and S 4, either as (S 3 + S 4) or (S 3 − S 4),
we are left with just one line of the multiplet, either top left, or bottom right.

10.17

Aside from the extra complication of the pulse sequence and data processing, probably the only
significant difficulty is that the peak does not appear at {ΩS ,ΩI}, but offset from this by 1

2 JIS in
each dimension. Account needs to be take of this when comparing TROSY type spectra with other
spectra.
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11.1

Îi− ≡ Îix − iÎiy
φÎiz−−−→ cos φ Îix + sin φ Îiy − i

[
cos φ Îiy − sin φ Îix

]
= cos φ

[
Îix − i Îiy

]
+ i sin φ

[
Îix − i Îiy

]
= (cos φ + i sin φ)

[
Îix − i Îiy

]
= exp (iφ) Îi−.

Assigning coherence orders

Î1+ Î2− : p1 = 1 p2 = −1 p = p1 + p2 = 0

2Î1+ Î2+ Î3z : p1 = 1 p2 = 1 p3 = 0 p = p1 + p2 + p3 = 2

Î1x ≡ 1
2

(
Î1+ + Î1−

)
: p = ±1

Î2y ≡ 1
2i

(
Î2+ − Î2−

)
: p = ±1

2Î1z Î2y ≡ 2 × 1
2i Î1z

(
Î2+ − Î2−

)
: p1 = 0 p2 = ±1 p = ±1

(
2Î1x Î2x + 2Î1y Î2y

)
≡ 21

2
1
2

(
Î1+ + Î1−

) (
Î2+ + Î2−

)
+ 2 1

2i
1
2i

(
Î1+ − Î1−

) (
Î2+ − Î2−

)
≡ 1

2

[
Î1+ Î2+ + Î1+ Î2− + Î1− Î2+ + Î1− Î2− − Î1+ Î2+ + Î1+ Î2− + Î1− Î2+ − Î1− Î2−

]
≡ Î1+ Î2− + Î1− Î2+

hence p1 = 1 p2 = −1 or p1 = −1 p2 = 1 p = 0
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Heteronuclear spin system

Îx ≡ 1
2

(
Î+ + Î−

)
: pI = ±1

Ŝy ≡ 1
2i

(
Ŝ + − Ŝ −

)
: pS = ±1

2ÎxŜz ≡ 2 × 1
2

(
Î+ + Î−

)
Ŝz : pI = ±1 pS = 0

2ÎxŜy ≡ 21
2

1
2i

(
Î+ + Î−

) (
Ŝ + − Ŝ −

)
: pI = ±1 pS = ±1

Following section 11.1.2 on p. 372, free evolution results in these operators acquiring a phase

exp
(
−i Ω(p1+p2+...)t

)
,

where Ω(p1+p2+...) = p1Ω1 + p2Ω2 + . . .. The table gives this phase term for each operator:

operator p1 or pI p2 or pS p3 Ω(p1+p2+...) phase term

Î1+ +1 Ω1 exp (−i Ω1t)

Î2− −1 −Ω2 exp (i Ω2t)

Î1+ Î2+ +1 +1 Ω1 + Ω2 exp (−i [Ω1 + Ω2]t)

Î+Ŝ − +1 −1 ΩI −ΩS exp (−i [ΩI −ΩS ]t)

Î1− Î2− Î3− −1 −1 −1 Ω1 + Ω2 + Ω3 exp (i [Ω1 + Ω2 + Ω3]t).

11.2

t1
t2

+1

-1

+2
+3

-2
-3

0

(a) TQF COSY (c) ZCOSY

(d) HSQC

(b) zero-quantum spectroscopy

t1
t2τ τ

+1

-1

+2

-2

0
+1

-1

+2

-2

0

t2t1

θ           θ

I

S

+1

-1
0

+1

-1
0

pI

pS

τ τ τ τ
y

t2

t1
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Note that in HSQC, sequence (d), we have pS = ±1 and pI = 0 during t1 i.e. S spin single-quantum
coherence, and that during t2 we have pI = −1 and pS = 0, as these are the coherence orders for
observable signals on the I spin.

τ τ
I

S

t2

t1

+1

-1
0

+1

-1
0

pI

pS

HMQC

(a) As described in section 11.3 on p. 377, the P-type spectrum has the same sign of p in t1 and
t2: this is the solid line in the CTP. The resulting spectrum will be phase modulated in t1,
and so is frequency discriminated.

(b) The N-type spectrum has the opposite sign of p in t1 and t2: this is the dashed line in the
CTP; like the P-type spectrum, the N-type spectrum is frequency discriminated.

(c) To be able to give absorption mode lineshapes we need to retain symmetrical pathways in t1
i.e. pS = ±1. Thus we need to select both the solid and dashed CTP. The resulting spectrum
is not frequency discriminated, but discrimination can be achieved using the SHR or TPPI
methods (section 8.13 on p. 231).

11.3

By inspecting Fig. 11.5 on p. 380 we can determine the form of the signal from detectors A and B
using simple trigonometry. For example in (b) it is clear that the component along A is − sin (Ωt)
whereas that along B is cos (Ωt). The table gives these components and the required combinations
for all four cases:

A B combination result

(a) cos (Ωt) sin (Ωt) A + i B cos (Ωt) + i sin (Ωt) = exp (iΩt)

(b) − sin (Ωt) cos (Ωt) B − i A cos (Ωt) − i [− sin (Ωt)] = exp (iΩt)

(c) − cos (Ωt) − sin (Ωt) −A − i B −[− cos (Ωt)] − i [− sin (Ωt)] = exp (iΩt)

(d) sin (Ωt) − cos (Ωt) −B + i A −[− cos (Ωt)] + i sin (Ωt) = exp (iΩt)

Each combination gives modulation of the form exp (iΩt), which will all give the same lineshape
on Fourier transformation.

Following the approach of Fig. 11.6 on p. 382, for the case where the pulse goes [x, y, −x, −y] and
the receiver phase goes [−180◦, −270◦, 0◦, −90◦] we have
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x x x x

y y y y

90˚(-y )90˚(x )

-180˚ -270˚ 0˚ -90˚

90˚(-x )90˚(y )

rx phase

A 90◦(x) pulse places the magnetization along −y and then precession through an angle Ωt rotates
the vector towards +x. Similarly, a 90◦(y) pulse places the magnetization along +x, and then
precession rotates the vector towards +y.
The receiver phase is measured clockwise from 3 o’clock, and is indicated by the bullet •. We
see that in each diagram there is a constant angle between the position of the magnetization and
the receiver phase. As a result, each combination of pulse and receiver phase will give the same
lineshape, and so all four spectra will add up.

11.4

For ∆p = −1 the phase shift experienced by the pathway when the pulse is shifted in phase by ∆φ
is −∆p × ∆φ = −(−1)∆φ = ∆φ. Similarly for ∆p = 0 the phase shift is −0 × ∆φ = 0, and for
∆p = 5 the phase shift is −5×∆φ = −5∆φ. The table gives the phase shifts for each of these three
pathways:

pulse phase ∆p = −1 ∆p = 0 ∆p = 5

step ∆φ ∆φ 0 −5∆φ equiv(−5∆φ)

1 0◦ 0◦ 0◦ 0◦ 0◦

2 90◦ 90◦ 0◦ −450◦ 270◦

3 180◦ 180◦ 0◦ −900◦ 180◦

4 270◦ 270◦ 0◦ −1350◦ 90◦

These phases can be represented in the manner of Fig. 11.8 on p. 386:
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(1) (3) (2) (4)

signal phases for ∆p = -1,  receiver phases to select ∆p = -3

(1) (3) (2) (4)

signal phases for ∆p = 0,  receiver phases to select ∆p = -3

For ∆p = −1, steps (1) and (3) have the signal and receiver in alignment, whereas in steps (2) and
(4) the signal and the receiver are opposed. As a result steps (1) and (3) will cancel steps (2) and
(4).

For ∆p = 0, steps (1) and (3) will cancel as the signal and the receiver are aligned in one and
opposed in the other. Similarly, steps (2) and (4) will cancel as in step (2) the signal is 90◦ ahead
of the receiver, whereas in step (4) it is 90◦ behind i.e. there is an overall shift of 180◦.
For ∆p = 5 the signal phase shifts are exactly the same as those for ∆p = −3, so both pathways
are selected. This is of course exactly what is expected for a four-step cycle since −3+ 2× 4 = +5
i.e. ∆p = −3 and ∆p = 5 are separated by a multiple of four.

11.5

The second pulse has ∆p = −2, so if the pulse phase goes [0◦, 90◦, 180◦, 270◦] the receiver
phase shifts must be [0◦, 180◦, 0◦, 180◦]. The first pulse has ∆p = +1, so if the pulse phase goes
[0◦, 90◦, 180◦, 270◦] the receiver phase shifts must be [0◦, 270◦, 180◦, 90◦].
In the first four steps, ∆φ2 therefore goes [0◦, 90◦, 180◦, 270◦], ∆φ1 remains fixed, and the receiver
goes [0◦, 180◦, 0◦, 180◦].
In the second group of four steps, ∆φ2 does the same, but ∆φ1 is now 90◦, and this results in
an extra 270◦ which must be added to the receiver phase shifts from the first group of four. The
required receiver phase shifts are therefore

[0◦+270◦, 180◦+270◦, 0◦+270◦, 180◦+270◦] ≡ [270◦, 90◦, 270◦, 90◦].

In the third group of four steps ∆φ1 is 180◦, and this results in an extra 180◦ which must be added
to the receiver phase shifts from the first group of four. Finally, for the fourth group of four steps
∆φ1 is 270◦, and 90◦ must be added to the receiver phase shifts. The complete sixteen-step cycle
is therefore
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step ∆φ1 ∆φ2 φrx

1 0◦ 0◦ 0◦

2 0◦ 90◦ 180◦

3 0◦ 180◦ 0◦

4 0◦ 270◦ 180◦

5 90◦ 0◦ 270◦

6 90◦ 90◦ 90◦

7 90◦ 180◦ 270◦

8 90◦ 270◦ 90◦

step ∆φ1 ∆φ3 φrx

9 180◦ 0◦ 180◦

10 180◦ 90◦ 0◦

11 180◦ 180◦ 180◦

12 180◦ 270◦ 0◦

13 270◦ 0◦ 90◦

14 270◦ 90◦ 270◦

15 270◦ 180◦ 90◦

16 270◦ 270◦ 270◦

Selection of ∆p = −1 and then ∆p = +3

The first pulse has ∆p = −1, so if the pulse phase goes [0◦, 90◦, 180◦, 270◦] the receiver phase
shifts must be [0◦, 90◦, 180◦, 270◦]. The second pulse has ∆p = +3, so if the pulse phase goes
[0◦, 90◦, 180◦, 270◦] the receiver phase shifts must be [0◦, 90◦, 180◦, 270◦]. For these four-step
cycles the receiver phases needed to select ∆p = −1 and +3 are, of course, the same.
The sixteen-step cycle is:

step ∆φ1 ∆φ2 φrx

1 0◦ 0◦ 0◦

2 90◦ 0◦ 90◦

3 180◦ 0◦ 180◦

4 270◦ 0◦ 270◦

5 0◦ 90◦ 90◦

6 90◦ 90◦ 180◦

7 180◦ 90◦ 270◦

8 270◦ 90◦ 0◦

step ∆φ1 ∆φ3 φrx

9 0◦ 180◦ 180◦

10 90◦ 180◦ 270◦

11 180◦ 180◦ 0◦

12 270◦ 180◦ 90◦

13 0◦ 270◦ 270◦

14 90◦ 270◦ 0◦

15 180◦ 270◦ 90◦

16 270◦ 270◦ 180◦

11.6

For ∆p = −2 the phase shift experienced by the pathway when the pulse is shifted in phase by ∆φ
is −∆p × ∆φ = −(−2)∆φ = 2∆φ. So, as the pulse goes [0◦, 120◦, 240◦] the pathway experiences
phase shifts of [0◦, 240◦, 480◦] which are equivalent to [0◦, 240◦, 120◦]. So, to select ∆p = −2,
we would use the cycle:

pulse: [0◦, 120◦, 240◦] receiver: [0◦, 240◦, 120◦].
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On modern spectrometers, the receiver phase can be shifted by arbitrary amounts, not just multi-
ples of 90◦.
The selectivity of this three-step sequence can be represented in the manner described on p. 386:

−5 (−4) (−3) −2 (−1) (0) 1 (2) (3) 4

Here the boldface numbers are the values of ∆p which are selected, and the numbers in brackets
are the values which are rejected; these selected values are separated by three, as we are dealing
with a three-step cycle.
The CTP for N-type COSY is:

+1

-1
0

t1
t2

The second pulse has ∆p = −2, so we can use the three-step cycle described above to select this.
As the first pulse can only generate p = ±1, this three step cycle is sufficient to select the overall
pathway we require. To be specific, p = −1 present during t1 would only lead to observable
coherence via the pathway ∆p = 0 on the second pulse, which is blocked by this three-step cycle.

For P-type COSY (Fig. 11.4 (b) on p. 378), ∆p = 0 on the second pulse. This is selected by the
following three-step cycle of the second pulse:

pulse: [0◦, 120◦, 240◦] receiver: [0◦, 0◦, 0◦].

Such a cycle would be sufficient to select the wanted pathway as it would reject the ∆p = −2
pathway on the second pulse.

11.7

t1
t2

+1

-1

+2
+3

-2
-3

0

φ1 φ2 φ3 φrx

Grouping together the first two pulses means that they are required to achieve the transformation
∆p = ±3. Concentrating for the moment on the pathways with ∆p = −3, shifting the phase of the
first two pulses by ∆φ will result in a phase shift of −∆p × ∆φ = −(−3)∆φ = 3∆φ.
If the pulse goes through the phases [0◦, 60◦, 120◦, 180◦, 240◦, 300◦] then the phase acquired by
the pathway with ∆p = −3 is [0◦, 180◦, 360◦, 540◦, 720◦, 900◦]. Reducing these to the range 0◦
to 360◦ gives [0◦, 180◦, 0◦, 180◦, 0◦, 180◦]. So the phase cycle needed is

φ1 and φ2: [0◦, 60◦, 120◦, 180◦, 240◦, 300◦] receiver: [0◦, 180◦, 0◦, 180◦, 0◦, 180◦].
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This six-step phase cycle also selects ∆p = +3.
Since p = ±3 has been selected prior to the last pulse, and as the first pulse can only generate
p = ±1, no further phase cycling is needed (with the possible exception of axial peak suppression,
see section 11.7 on p. 391).

Other pathways selected by this six-step cycle include ∆p = +3 + 6 = +9 and ∆p = −3 − 6 = −9.
These involve such high orders of coherence that we can safely ignore them.

The final pulse has ∆p = −4 and ∆p = +2; as these are separated by 6, they will both be selected
by a six-step cycle. The phase experienced by the pathway with ∆p = −4 will be 4∆φ so as
the pulse goes [0◦, 60◦, 120◦, 180◦, 240◦, 300◦] then the phase acquired by the pathway will be
[0◦, 240◦, 480◦, 720◦, 960◦, 1200◦]. Reducing these to the range 0◦ to 360◦ gives the following
cycle:

φ3: [0◦, 60◦, 120◦, 180◦, 240◦, 300◦] receiver: [0◦, 240◦, 120◦, 0◦, 240◦, 120◦].

11.8

+1

-1

+2

-2

0

φ2φ1 φ3 φrx
t2t1 τ

The first two pulses achieve the transformation ∆p = 0, so a four-step cycle will be:

φ1 and φ2: [0◦, 90◦, 180◦, 270◦] receiver: [0◦, 0◦, 0◦, 0◦].

Axial peak suppression (section 11.7 on p. 391) involves shifting the phase of the first pulse
[0◦, 180◦] and similarly for the receiver. Combining these two cycles gives eight steps:

step 1 2 3 4 5 6 7 8

φ1 0◦ 90◦ 180◦ 270◦ 180◦ 270◦ 0◦ 90◦

φ2 0◦ 90◦ 180◦ 270◦ 0◦ 90◦ 180◦ 270◦

φrx 0◦ 0◦ 0◦ 0◦ 180◦ 180◦ 180◦ 180◦

The CTP for N-type NOESY is

+1

-1

+2

-2

0

φ2φ1 φ3 φrx
t2t1 τ
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We need to select ∆p = −1 on the last pulse. A suitable four-step cycle is [0◦, 90◦, 180◦, 270◦] for
φ3 and [0◦, 90◦, 180◦, 270◦] for the receiver.
We also need to select ∆p = +1 on the first pulse. The four-step cycle [0◦, 90◦, 180◦, 270◦] for φ1

and [0◦, 270◦, 180◦, 90◦] for the receiver achieves this selection.
The complete sixteen-step cycle is

step ∆φ1 ∆φ3 φrx

1 0◦ 0◦ 0◦

2 90◦ 0◦ 270◦

3 180◦ 0◦ 180◦

4 270◦ 0◦ 90◦

5 0◦ 90◦ 90◦

6 90◦ 90◦ 0◦

7 180◦ 90◦ 270◦

8 270◦ 90◦ 180◦

step ∆φ1 ∆φ3 φrx

9 0◦ 180◦ 180◦

10 90◦ 180◦ 90◦

11 180◦ 180◦ 0◦

12 270◦ 180◦ 270◦

13 0◦ 270◦ 270◦

14 90◦ 270◦ 180◦

15 180◦ 270◦ 90◦

16 270◦ 270◦ 0◦

It is not necessary to add explicit axial peak suppression to this cycle as we are selecting ∆p = +1
on the first pulse, and so all of the peaks we see in the spectrum must derive from the first pulse.

11.9

RF

G τ1

G1
G2

τ2

+1
+2

0

The spatially dependent phase is given by Eq. 11.8 on p. 400:

φ(z) = −p × γG z t.

Hence the phases due to the two gradient pulses are

φ1 = −(1) × γG1zτ1 and φ2 = −(2) × γG2zτ2.

The refocusing condition is that the total phase, φ1 + φ2, is zero:

φ1 + φ2 = −γG1zτ1 − 2γG2zτ2 = 0.

The factors of z and γ cancel to give, after some rearrangement:

G2τ2

G1τ1
= −1

2
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(a) If the gradients have the same length, then G2/G1 = − 1
2 , i.e. the second gradient needs to

be half the strength of the first, and applied in the opposite sense.

(b) If the gradients have the same absolute strength, they still have to be applied in the opposite
sense i.e. G1 = −G2. Inserting this gives the refocusing condition as (G2τ2)/(−G2τ1) = − 1

2 ,

which means that τ2 =
1
2τ1 .

11.10

G
G1

G2

τ2τ1

I

S

+1

-1
0

+1

-1
0

pI

pS

In the heteronuclear case we use Eq. 11.9 on p. 402 to find the spatially dependent phase:

φ(z) = − (pIγI + pS γS ) G z t.

During the first gradient pI = 0 and pS = −1, whereas during the second pI = −1 and pS = 0. So
the spatially dependent phases are

φ1 = γS G1zτ1 and φ2 = γIG2zτ2.

The refocusing condition is φ1 + φ2 = 0, which in this case rearranges to

G1τ1

G2τ2
= − γI

γS
.

If I is 1H and S is 15N, then γI/γS = 10/(−1) so the refocusing condition becomes

G1τ1

G2τ2
= 10.

If the gradients have the same duration, τ1 = τ2 then G1 = 10G2 .

Note that ratio of the gyromagnetic ratios of 1H and 15N is in fact 9.86 : −1.
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11.11
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(a) P-type DQF COSY
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(c) N-type COSY

G
G1 G2 G3

τ1 τ2 τ3

t1
t2

+1

-1

+2
+3

-2
-3

0

(b) N-type TQF COSY

(d) double-quantum spectroscopy
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(e) N-type HSQC
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(a) P-type DQF COSY We have chosen p = 2 in the interval between the last two pulses, but
it would have been just as acceptable to choose p = −2. The pathway will give a P-type
spectrum as p = −1 is present during t1. The refocusing condition is

G1τ1 − 2 G2τ2 +G3τ3 = 0.

If the gradients are all the same length, then one choice is for the strengths to be in the ratio

G1 : G2 : G3 = 1 : 1 : 1.

(b) N-type TQF COSY We have chosen p = 3 in the interval between the last two pulses, but
it would have been just as acceptable to choose p = −3. The pathway will give an N-type
spectrum as p = +1 is present during t1. The refocusing condition is

−G1τ1 − 3 G2τ2 +G3τ3 = 0.

If the gradients are all the same length, then one choice is for the strengths to be in the ratio

G1 : G2 : G3 = 1 : 1 : 4.
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(c) N-type COSY The pathway will give a N-type spectrum as p = +1 is present during t1.
The refocusing condition is

−G1τ1 +G2τ2 = 0.

If the gradients are all the same length, then the strengths must be in the ratio

G1 : G2 = 1 : 1

(d) Double-quantum spectroscopy The two gradients G1 serve to ‘clean up’ the 180◦ pulse
in the spin echo (see section 11.12.3 on p. 406). Double-quantum coherence is dephased by
G2 and then rephased by G3; to control phase errors due to the underlying evolution of the
offsets, both gradients are placed within spin echoes (see section 11.12.5 on p. 407). We will
need to record separate P- and N-type spectra, and then recombine them in order to obtain
an absorption mode spectrum (see section 11.12.2 on p. 405); the N-type pathway is given
by the solid line, and the P-type by the dashed line.

The refocusing condition for the N-type pathway is

2 G2τ2 +G3τ3 = 0.

If the gradients are the same length, then the strengths must be in the ratio

G2 : G3 = 1 : −2.

The refocusing condition for the P-type pathway is

−2 G2τ2 +G3τ3 = 0.

If the gradients are the same length, then the strengths must be in the ratio

G2 : G3 = 1 : 2.

(e) N-type HSQC G1 is a ‘purge’ gradient (see section 11.12.6 on p. 408). S spin magneti-
zation is dephased by G2 and rephased after transfer to I by G3. The refocusing condition
is

−γS G2τ2 + γIG3τ3 = 0.

If the gradients are both the same length, then the strengths must be in the ratio

G2 : G3 = γI : γS .

For the case where the I spin is 1H and the S spin is 13C, γI : γS = 4, and so the refocusing
condition is

G2 : G3 = 4 : 1.
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How the spectrometer works

12.1

The magnetic field strength can be computed from the given Larmor frequency, f0, and gyromag-
netic ratio using 2π f0 = γB0. Hence

B0 =
2π f0
γ
=

2π × 180 × 106

1.08 × 108
= 10.47 T.

A homogeneity of one part in 108 means that the magnetic field varies by ∆B = 10−8 × 10.47 =
1.047 × 10−7 T. This translates to a variation in frequency, ∆ f , of

∆ f =
γ∆B
2π
=

1.08 × 108 × 1.047 × 10−7

2π
= 1.8 Hz.

This is significantly less than the expected linewidth of 25 Hz, so the magnet is useable.

The calculation is much simpler if we realise that a homogeneity of 1 part in 108 means that the
Larmor frequency will vary by 10−8 times its nominal value i.e.

∆ f = 10−8 × 180 × 106 = 1.8 Hz.

12.2

For a 180◦ (or π) pulse, π = ω1t180, so

ω1 =
π

t180
=

π

24.8 × 10−6
= 1.27 × 105 rad s−1.

Therefore ω1/(2π) = 20.2 kHz.
The same result can be found more simply by noting that a 360◦ pulse takes 2 × 24.8 = 49.6 µs;
this is the period of the rotation about the RF field, so the frequency is just the reciprocal of this:
ω1/(2π) = 1/(49.6 × 10−6) = 20.2 kHz.

Using Eq. 12.2 on p. 434 we have

attenuation = 20 log
2

20.2
= −20.1 dB .
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12.3

To go from a 90◦ pulse width of 20 µs to 7.5 µs, the RF field has to be increased by a factor of
20/7.5 = 2.67, since the pulse width is inversely proportional to the RF field strength. As the RF
field strength is proportional to the square root of the power, the power would need to increase by
a factor of (2.67)2 = 7.11, so the transmitter power would be 7.11 × 100 = 711 W .
This is a very large increase and, unless the probe is designed to take this much power, there would
be a significant risk of probe arcing.

12.4

The output of a two-bit ADC is two binary digits which are capable of representing the numbers
00, 01, 10 and 11 i.e. just four levels.

00

01

10

11

Note how the data points, because they are constrained to correspond to one of the four levels, are
not a particularly good representation of the smooth curve.

Having a larger number of bits means that there are more possible output levels, and hence the
digital representation of the signal will be more precise. As a result, the digitization sidebands are
reduced.

12.5

15 ppm at 800 MHz is 15×800 = 12 000 Hz. The range of frequencies, assuming that the receiver
reference frequency is placed in the middle, is thus −6 000 Hz to +6 000 Hz. From section 12.5.2
on p. 436, the sampling interval, ∆, is given by

∆ =
1

2 × fmax
=

1
2 × 6 000

= 83.3 µs .


