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Abstract. We introduce a directionally sensitive time-frequency decomposition
and representation of functions. The coefficients of this representation allow us to
measure the “amount” of frequency a function (signal, image) contains in a certain
time interval, and also in a certain direction. This has been previously achieved
using a version of wavelets called ridgelets [2, 3] but in this work we discuss an
approach based on time-frequency or Gabor elements. For such elements, a Parse-
val formula and a continous frame-type representation together with boundedness
properties of a semi-discrete frame operator are obtained. Spaces of functions tai-
lored to measure quantitative properties of the time-frequency-direction analysis
coefficients are introduced and some of their basic properties are discussed. Appli-
cations to image processing and medical imaging are presented.

1. Introduction

In this work we discuss certain topics of time-frequency analysis with the additional
element of direction. A fundamental tool in time-frequency analysis, as developed in
the classical references [1, 6, 7, 13, 14, 19, 22, 23] is the short-time Fourier transform
which contains localized time and frequency information of a function. The short-
time Fourier transform of a function f on Rn with respect to a window function g is
defined as

(1) Vg(f)(t,m) =

∫

Rn

f(x)g(x− t)e−2πim·xdx,

for m, t ∈ Rn. Here, the window function g is usually a nice bump and is used
for spacial localization. Square integrable functions f can be retrieved from their
short-time Fourier transform in the following way:

(2) f =
1

〈ψ, g〉

∫

Rn

∫

Rn

Vg(f)(t,m)ψm,t dmdt,

where g, ψ ∈ L2(Rn) and 〈ψ, g〉 6= 0. Throughout this paper we will consistently use

the complex inner product notation 〈h, k〉 =
∫
h(x) k(x) dx for functions h, k defined

on Rn.
We want to extend these concepts to allow for localization in direction. To achieve

this, we utilize the directionally-sensitive Radon transform defined for functions f in
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the Schwartz class S(Rn) as follows:

(3) R(f)(u, s) = Ru(f)(s) =

∫

u·x=s

f(x)dx,

where u ∈ Sn−1 and s ∈ R. This transform can be easily extended to a continuous
operator that maps L1(Rn) to L1(R) uniformly in u ∈ Sn−1. The Radon transform is
an even operator, i.e. R−u(f)(−s) = Ru(f)(s), a fact that will be useful to us later.

We introduce an operator R∗ associated with the Radon transform R, as follows:

R∗(g)(x) =

∫

Sn−1

g(u, u · x)du,

for fuctions g(u, s) defined on the cylinder Sn−1 × R. This operation is the adjoint
operator to the Radon transform, in some sense, and when applied to the Radon
transform of a function f ∈ S(Rn), yields the back-projection:

B(f)(x) = R∗(R(f))(x) = |Sn−2|
∫

Rn

|x− y|−1f(y)dy = |Sn−2|
(
|x|−1 ∗ f

)
.

For an introduction to the Radon transform and some of its properties the reader
may consult [8, 9, 20, 25, 26, 27]. The inversion formula

(4) f =
1

2
(2π)1−nR∗

{
Hn−1

[dn−1R(f)

dsn−1

]}
,

holds for suitable functions f , where H is the one-dimensional Hilbert transform (in
the variable s). We also recall the Fourier slice theorem saying that the n-dimensional
Fourier transform of an integrable function f is related to the 1-dimensional Fourier
transform of its Radon transform Ru(f) in the following way:

R̂u(f)(σ) = f̂(σu).

Here σ ∈ R and u ∈ Sn−1 and in this article we use the notation

ĥ(ξ) =

∫

Rn

h(x)e−2πix·ξdx

for the Fourier transform of an integrable function h and h∨(ξ) = ĥ(−ξ) for its

inverse Fourier transform. If both ĥ and h are integrable we have (ĥ)∨ = (h∨)̂ = h.
Throughout this paper we will be working on Rn for some n ≥ 2.

2. Gabor Ridge Functions

In this section, we introduce the Gabor ridge functions which can be viewed as
time-frequency analysis elements in the Radon domain. We build upon them to
develop a directionally-sensitive time-frequency analysis. This is related to work of
Walnut [30], where the idea was presented to study combinations of wavelet theory
and time-frequency analysis using directional sensitvity.

Definition 1 (Gabor Ridge Function). Let g ∈ S(R) be a real-valued (non-zero)
window function. We construct a Gabor element on R associated with g as follows:

gm,t(s) = e2πim(s−t)g(s− t), for s, t,m ∈ R.
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We call the following function a Gabor ridge function

(5) gm,t,u(x) = gm,t(u · x), for x ∈ R
n,

where u ∈ Sn−1 and m, t ∈ R.

These functions are constant along the hyperplanes perpendicular to u and mod-
ulate like one-dimensional Gabor wavelets in the direction of u. One may wonder
what sort of information we are actually collecting when we calculate the coefficients
〈f, gm,t,u〉 and also how can we use this information to reconstruct the given signal f .

When we pair f and gm,t,u we pick up time-frequency information of f in the
direction of u because of the directional modulations of gm,t,u while the parameters
m and t measure the modulations and translations as in the classical time-frequency
theory. It is important to note that the function gm,t,u is not in L2(Rn), so we need
to be careful when we form its inner product with f .

It is natural to wonder whether the function f coincides with the representation

(6)

∫

Sn−1

∫

R

∫

R

〈f, gm,t,u〉ψm,t,u dmdt du

for a suitable choice of window functions g, ψ ∈ S(Rn). This is actually not the case,
although this representation yields an object close to the original function. This
object is a multiple of the back-projection B(f) = R∗(R(f)).

Theorem 1. Let f ∈ L1(Rn) and suppose f̂ ∈ Lp(Rn) for some 1 < p < n. For
given functions g, ψ ∈ S(R) with 〈g, ψ〉 6= 0, we have the following identity:

(7) B(f) = R∗(R(f)) =
1

〈g, ψ〉

∫

Sn−1

∫

R

∫

R

〈f, gm,t,u〉ψm,t,u dmdt du.

A lemma is needed that surfaces a relationship with the Radon transform.

Lemma 1. For f ∈ L1(Rn) and g ∈ S(R), we have the following equality:

〈f, gm,t,u〉 = 〈Ru(f), gm,t〉.
Proof. First fix a direction u ∈ Sn−1. Then

〈f, gm,t,u〉 =

∫

Rn

f(x)e−2πim(u·x−t)g(u · x− t) dx

=

∫

R

(∫

u·x=s

f(x)e−2πim(u·x−t)g(u · x− t) dx

)
ds

=

∫

R

e−2πim(s−t)g(s− t)

(∫

u·x=s

f(x)dx

)
ds

=

∫

R

Ru(f)(s)gm,t(s) ds

= 〈Ru(f), gm,t〉.
which is well-defined as Ru(f) ∈ L1(R) and gm,t ∈ S(R). �

This lemma shows that the Radon transform arises naturally in this setting, be-
cause of the dependence of the Gabor ridge functions on the direction u ∈ Sn−1. Now
Theorem 1 may be proved.
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Proof. Since 〈Ru(f), gm,t〉 = 〈f, gm,t,u〉, by Lemma 1 we have
∫

Sn−1

∫

R

∫

R

〈f, gm,t,u〉ψm,t,u dmdt du

=

∫

Sn−1

∫

R

∫

R

〈Ru(f), gm,t〉ψm,t,u dmdt du

=

∫

Sn−1

∫

R

∫

R

(∫

R

R̂u(f)(σ)ĝm,t(σ)dσ

)
e2πim(u·x−t)ψ(u · x− t) dmdt du

=

∫

Sn−1

∫

R

∫

R

∫

R

R̂u(f)(σ)ĝ(σ −m)e2πiσte2πim(u·x−t)ψ(u · x− t) dσ dmdt du,

where we used that ĝm,t(σ) = ĝ(σ−m)e−2πiσt. Via the change of variables σ−m → m

we rewrite the previous expression as∫

Sn−1

∫

R

∫

R

∫

R

R̂u(f)(σ)ĝ(m)e2πiσte2πi(σ−m)(u·x−t)ψ(u · x− t) dσ dmdt du.

Combining the exponentials yields∫

Sn−1

∫

R

∫

R

∫

R

R̂u(f)(σ)ĝ(m)e2πiσu·xe−2πimu·xe2πimtψ(u · x− t) dσ dmdt du.

Next we integrate over m, noting that

∫
ĝ(m)e2πim(t−u·x)dm = g(u · x− t).

∫

R

∫

Sn−1

∫

R

R̂u(f)(σ)g(u · x− t)e2πiσu·xψ(u · x− t) dσ du dt.

Finally, we integrate over the translation variable t and recognize the inverse Fourier
transform of the Radon transform at the point u · x to obtain

〈ψ, g〉
∫

Sn−1

∫

R

R̂u(f)(σ)e2πiσu·x dσ du

= 〈ψ, g〉
∫

Sn−1

Ru(f)(u · x) du

= 〈ψ, g〉 B(f)(x).

The Fourier inversion can be justified since
∫

Sn−1 R̂u(f) du ∈ L1(R). Indeed, by the

Fourier slice theorem we have R̂u(f)(σ) = f̂(σu) and
∫

R

∫

Sn−1

|R̂u(f)(σ)| du dσ

= 2

∫

Sn−1

∫ 1

0

|f̂(σu)| dσ du+ 2

∫

Sn−1

∫ ∞

1

|f̂(σu)|σn−1 dσ

σn−1
du

≤ 2 |Sn−1| ‖f‖L1 + 2

∫

|ξ|>1

|f̂(ξ)| dξ

|ξ|n−1

≤ Cn(‖f‖L1 + ‖f̂ ‖Lp) <∞,

in view of Hölder’s inequality and the fact that p′(n− 1) > n. �
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Thus we have a reconstruction formula for the back-projection B(f) of f which, as
we saw, is f convolved with a certain weight. Note that when n > 2, the condition

f̂ ∈ Lp(Rn) of Theorem 1 can be replaced by the slightly stronger, but more natural,
condition that f ∈ L2(Rn).

2.1. Weighted Gabor Ridge Functions. We have seen that to obtain exact re-
production of a signal using the Gabor ridge functions, the straightforward represen-
tation in (6) does not suffice. A similar phenomenon appears in the related actual
inversion of the Radon transform, which requires a filtered form of back-projection,
as was originally shown by Radon [27]. We will therefore need to modify our class of
Gabor ridge functions to adapt them to the presence of the weight that appears in
the back-projection.

In what follows we will use the differential operator Dα acting on functions on the
line for α > 0, defined by

Dα(h) = (ĥ(ξ)|ξ|α)∨.

Definition 2 (Weighted Gabor Ridge Functions). Let g ∈ S(R) be some real-valued
(non-zero) window function. Recall the functions gm,t and gm,t,u introduced in Defi-
nition 1. For m, t ∈ R we define weighted functions

(8) Gm,t(s) = Dn−1

2

(gm,t)(s) =
(
ĝm,t(σ)|σ|n−1

2

)∨
(s), for s ∈ R,

and for u ∈ Sn−1 we introduce the weighted Gabor ridge functions

(9) Gm,t,u(x) = Gm,t(u · x), for x ∈ R
n.

We will denote weighted Gabor ridge functions with the upper case letter cor-
responding to the letter of window. For instance, Ψm,t,u will denote the weighted
Gabor ridge function associated with a window ψ. To understand the behavior of
the Gm,t,u’s, it will be useful to compute and analyze their Fourier transform.

Theorem 2. The Fourier transform of Gm,t,u on Rn is the following tempered dis-
tribution

(10) Ĝm,t,u(ξ) = ĝ(u · ξ −m)e−2πi(u·ξ)t|u · ξ|n−1

2 δ(ξ − (u · ξ)u),
where δ(ξ − (u · ξ)u) denotes the Dirac distribution along the line through the origin
that contains the vector u.

Proof. We first prove that for any integrable function h on R, the Fourier transform
of the n-dimensional function H(x) = h(u · x) is the distribution

Ĥ(ξ) = ĥ(u · ξ)δ(ξ − (u · ξ)u).
Indeed, let Lu be the line through the origin that contains the unit vector u. Intro-
ducing coordinates

x = (u · x)u+ x′, x′ ∈ u⊥,

ξ = (u · ξ)u+ ξ′, ξ′ ∈ u⊥ ,
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for a test function φ on Rn we have

〈Ĥ, φ〉 = 〈H, φ̂ 〉 =

∫

Rn

h(u · x)φ̂(x) dx =

∫

u⊥

∫

Lu

h(λ)φ̂(λu+ x′) dλ dx′.

Denoting by Fξ′ the Fourier transform in ξ′ we write

φ̂(λu+x′) =

∫

u⊥

∫

Lu

φ(µu+ ξ′)e−2πi (λµ+x′·ξ′)dµdξ′ =

∫

Lu

Fξ′(φ(µu+ ξ′))(x′)e−2πiλµdµ

and using the Fubini-Tonelli theorem justified from the fact that
∫

u⊥

∫

Lu

∫

Lu

|h(λ) |Fξ′(φ(µu+ ξ′))(x′)| dλ dµ dx′ <∞ ,

we obtain that

〈Ĥ, φ〉 =

∫

u⊥

∫

Lu

∫

Lu

h(λ)Fξ′(φ(µu+ ξ′))(x′)e−2πiλµ dλ dx′ dµ

=

∫

u⊥

∫

Lu

ĥ(µ)Fξ′(φ(µu+ ξ′))(x′) dµ dx′

=

∫

Lu

ĥ(µu)φ(µu)du =
〈
ĥ(u · ξ)δ(ξ − (u · ξ)u), φ(ξ)

〉
.

This leads to the identity

Ĥ(ξ) = ĥ(u · ξ)δ(ξ′) = ĥ(u · ξ)δ(ξ − (u · ξ)u) ,

where δ is the Dirac delta distribution. Now set h(s) = Gm,t(s) to obtain (10). �

This calculation shows that the Fourier transforms of the weighted Gabor ridge
function Gm,t,u is supported on the line Lu = {λu : λ ∈ R} and when u · ξ = λ we

have Ĝm,t,u(ξ) = ĝ(λ −m)e−2πiλt|λ|n−1

2 . This reflects the one-dimensional nature of
the Gabor ridge functions.

The presence of the weight in the weighted Gabor ridge functions leads to the
exact reconstruction of a signal. The next theorem is the backbone of this theory as
it shows how it is possible to obtain reconstruction from directional Gabor elements.
We will later discuss some discrete versions that are more suitable for applications.

Theorem 3 (Continuous Representation). Let Gm,t,u,Ψm,t,u be weighted Gabor ridge
functions, as defined in (9), associated with two window functions g and ψ satisfying

〈g, ψ〉 6= 0. Given a function f ∈ L1(Rn) such that f̂ ∈ L1(Rn) we have

(11) f =
1

2〈ψ, g〉

∫

Sn−1

∫

R

∫

R

〈f,Gm,t,u〉Ψm,t,u dmdt du.

Proof. Starting with the right-hand side of (11) and using Lemma 1, we have
∫

Sn−1

∫

R

∫

R

〈f,Gm,t,u〉Ψm,t,u dmdt du =

∫

Sn−1

∫

R

∫

R

〈Ru(f), Gm,t〉Ψm,t,u dmdt du
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where the inner product is well-defined since Ru(f) ∈ L1(R) and Gm,t ∈ L∞(R). So,
we may use Plancherel’s theorem to arrive at

∫

Sn−1

∫

R

∫

R

〈R̂u(f), Ĝm,t〉Ψm,t,u dmdt du

=

∫

Sn−1

∫

R

∫

R

(∫

R

R̂u(f)(σ)ĝm,t(σ)|σ|n−1

2 dσ

)
Ψm,t(u · x) dmdt du.

Noting that ĝm,t(σ) = e2πitσ ĝ(σ −m), we are left with
∫

Sn−1

∫

R

∫

R

∫

R

R̂u(f)(σ)e2πitσ ĝ(σ −m)|σ|n−1

2 (ψ̂m,t(s)|s|n−1

2 )∨(u · x)dσ dmdt du.

We expand out the inverse Fourier transform, which yields
∫

Sn−1

∫

R

∫

R

∫

R

R̂u(f)(σ)ĝ(σ −m)|σ|n−1

2 e2πitσ

{∫

R

e2πi(u·x)ηψ̂(η −m)e−2πiηt|η|n−1

2 dη

}
dσ dmdt du.

The expression inside the curly brackets above is the Fourier transform of the function

η → e2πi(u·x)ηψ̂(η −m)|η|n−1

2 at the point t ∈ R, so the t-integral of the expression

inside the curly brackets multiplied by e2πitσ is equal to e2πi(u·x)σψ̂(σ −m)|σ|n−1

2 by
Fourier inversion. Thus the previously displayed expression is equal to

∫

Sn−1

∫

R

∫

R

R̂u(f)(σ)ĝ(σ −m)|σ|n−1

2 e2πi(u·x)σ ψ̂(σ −m)|σ|n−1

2 dσ dmdu

=

∫

Sn−1

∫

R

∫

R

R̂u(f)(σ)|σ|n−1e2πi(u·x)σ ĝ(σ −m)ψ̂(σ −m) dσ dmdu.

Integrating over m yields

〈ψ, g〉
∫

Sn−1

∫

R

R̂u(f)(σ)|σ|n−1e2πi(u·x)σdσdu

which is equal to

〈ψ, g〉
∫

Sn−1

∫ +∞

−∞

f̂(σu)|σ|n−1e2πi(u·x)σ dσ du

by the Fourier slice theorem. We divide the integral over (−∞,+∞) into the integrals
over (−∞, 0) and over [0,+∞) and we make a double change of variables in the second
integral (σ → −σ, u → −u). We obtain that the previously displayed expression is

2〈ψ, g〉
∫

Sn−1

∫ ∞

0

f̂(σ)|σ|n−1e2πi(u·x)σdσdu

By a change of variables (k = σu), we arrive at

2〈ψ, g〉
∫

Rn

f̂(k)e2πix·kdk = 2〈ψ, g〉f(x).

�
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Figure 1. Left: original image. Middle: reconstructed image using
Gabor ridge functions. Right: reconstructed image using weighted
Gabor ridge functions.

The example presented in Figure 1 shows that the back-projection yields a blurry
reconstruction of the original image while the “correct reconstruction” is that ob-
tained using the weighted Gabor ridge functions [15, 16, 21, 30, 31, 32, 33].

2.2. A Parseval Formula. As one may expect, there is a Parseval-type formula
that accompanies the reconstruction (11) of Theorem 3. We will prove that

‖f‖2
L2(Rn) = Cg

∫

Sn−1

∫

R

∫

R

|〈f,Gm,t,u〉|2 dmdt du

where Gm,t,u is associated with a nonzero g ∈ S(R) and Cg is a constant. This can be
viewed as an energy conservation identity for the weighted Gabor ridge functions. The
following lemma tells us for what sort of functions the expressions Dn−1

2

(Ru(f)) and

〈f,Gm,t,u〉 are defined. As before, the Gm,t,u’s are constructed from a fixed Schwartz
function g.

Lemma 2. Given a function f ∈ L1(Rn) ∩ L2(Rn), we have that

Dn−1

2

(Ru(f)) ∈ L2(R)

for almost every u ∈ Sn−1. Moreover |〈f,Gm,t,u〉| is finite for all m, t ∈ R and
u ∈ Sn−1.

Proof. Since f ∈ L1(Rn) we have that Ru(f) is well-defined. We begin with

∞ > ‖f‖2
L2(Rn) =

∫

Rn

|f̂(ξ)|2 dξ

=

∫

Sn−1

∫ ∞

0

|R̂u(f)(σ)|σ|n−1

2 |2 dσ du

=
1

2

∫

Sn−1

∫

R

|Dn−1

2

(Ru(f))(s)|2 ds du,

where we have used the fact that Ru(f) is even. It follows that for almost every
u ∈ Sn−1, Dn−1

2

(Ru(f)) ∈ L2(R).
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For the other conclusion of the lemma we observe that

〈f̂ , Ĝm,t,u〉 =

∫

Rn

f̂(ξ)ĝ(u · ξ −m)e2πi(u·ξ)t|u · ξ|n−1

2 δ(ξ − (u · ξ)u)dξ

=

∫

R

f̂(λu)ĝ(λ−m)e2πiλt|λ|n−1

2 dλ,

which is finite since |f̂(λu)| ≤ ‖f‖1 and ĝ(λ−m) decays rapidly at infinity. �

We introduce the reflection g̃ of g by setting g̃(x) = g(−x). We have another
lemma.

Lemma 3. Given f ∈ L1(Rn)∩L2(Rn) and g ∈ S(R) we have the following identity:

〈f,Gm,t,u〉 = (Ru(f) ∗Dn−1

2

((g̃)m,0))(t)

= (Dn−1

2

(Ru(f)) ∗ (g̃)m,0)(t)

= Dn−1

2

(Ru(f) ∗ (g̃)m,0)(t).

Proof. We have

〈Ru(f), Gm,t〉 =

∫

R

Ru(f)(s)(Dn−1

2

(gm,t))(s)ds

=

∫

R

Ru(f)(s)

{∫

R

e2πisyĝ(y −m)e−2πiyt|y|n−1

2 dy

}
ds

=

∫

R

R̂u(f)(y)ĝ(y −m)e2πiyt|y|n−1

2 dy

= Ru(f) ∗Dn−1

2

((g̃)m,0))(t).

�

The following result on orthogonality shows that the Gabor ridge transform pos-
sesses properties similar to those of the ordinary Fourier transform and the short-time
Fourier transform.

Theorem 4 (Orthogonality Relation). Given two functions f, h ∈ L1(Rn) ∩ L2(Rn)
and a window function g ∈ S(R), we have

(12) 2 ‖g‖2
L2(R) 〈f, h〉 =

∫

Sn−1

∫

R

∫

R

〈f,Gm,t,u〉〈h,Gm,t,u〉 dmdt du.

Proof. By Lemma 3 we have,
∫

Sn−1

∫

R

∫

R

〈f,Gm,t,u〉〈h,Gm,t,u〉 dmdt du

=

∫

Sn−1

∫

R

∫

R

〈Dn−1

2

(Ru(f)) ∗ (g̃)m,0, Dn−1

2

(Ru(h)) ∗ (g̃)m,0〉 dt dmdu

=

∫

Sn−1

∫

R

∫

R

f̂(ξu)ĥ(ξu)|ξ|n−1|(̂g̃)(ξ +m)|2 dξ dmdu.
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Integrating over m yields

‖g‖2
L2(R)

∫

Sn−1

∫

R

f̂(ξu)ĥ(ξu)|ξ|n−1du dξ = 2‖g‖2
L2(R)〈f, h〉.

�

Corollary 1 (A Parseval Formula). For f ∈ L1(Rn) ∩ L2(Rn) and g nonzero in
S(Rn) we have the following identity:

(13) ‖f‖2
L2(Rn) = (2‖g‖2

L2(R))
−1

∫

Sn−1

∫

R

∫

R

|〈f,Gm,t,u〉|2 dmdt du.

2.3. Remark. It is interesting to note the similarities and differences of Gabor based
time-frequency-direction analysis presented here with that of standard time-frequency
analysis. Although in this paper the underlying dimension n is at least 2, it is worth
observing that these notions coincide when n = 1 in which case S0 is the set {−1, 1}.
The previous analysis gives

∫

S0

∫

R

∫

R

〈f,Gm,t,u〉Ψm,t,u dmdt du = 2

∫

R

∫

R

〈f, gm,t〉ψm,t dmdt =
2

〈ψ, g〉f.

This is because the integral over S0 is just a sum of two integrals corresponding to x
and −x and the differential operator Dn−1

2

is now just D0 = I.

3. A Semi-Discrete Reproduction Formula

We will now show how the continuous reproduction formula can be turned into
a semi-discrete one, which in our setting, means discrete in the modulation and
translation variables and continuous in spherical variable u. In applications, even the
spherical integral in (11) is replaced by a finite sum over “enough” directions u but
we will not pursue such a discretization here. We will utilize classical time-frequency
analysis and frame theory [4, 5] tools to obtain the semi-discrete discretization of the
reproduction formula.

Theorem 5 (Semi-discrete Reproduction). There exist g, ψ ∈ S(R) and α, β > 0
such that for all f ∈ L1 ∩ L2(Rn) we have

A‖f‖2
L2(Rn) ≤

∫

Sn−1

∑

m∈Z

∑

t∈Z

|〈f,Gαm,βt,u〉|2du ≤ B‖f‖2
L2(Rn)

with A,B depending on g, α, and β. (It is possible that A = B.) Also for this choice
of g and ψ we have,

f =
1

2

∫

Sn−1

∑

m∈Z

∑

t∈Z

〈f,Gαm,βt,u〉Ψαm,βt,udu.

Proof. First note that we may move the weight from the Gabor element to the Radon
transform of f :

(14) 〈f,Gm,t,u〉 = 〈Ru(f), Gm,t〉 = 〈Dn−1

2

(Ru(f)), gm,t〉.
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Now this just becomes a standard pairing of an element of L2(R) (Lemma 2) with
a Gabor element and there is a general theory to work with this. First of all, let us
recall the definition of the Wiener class: A function g belongs to the Wiener class
W (L1) if

‖g‖W (L1) =
∑

n∈Z

ess sup
x∈[0,1]

|g(x+ n)| <∞.

It is already known [19] that if α and β are “small enough”, and g ∈ W (L1), we have
a Gabor frame for L2(R). As a consequence, if g is some Gaussian function in L2(R),
there exist α, β > 0, such that the following holds for almost every u ∈ Sn−1:

A‖Dn−1

2

(Ru(f))‖2
L2(R) ≤

∑

m∈Z

∑

t∈Z

|〈Dn−1

2

(Ru(f)), gαm,βt〉|2 ≤ B‖Dn−1

2

(Ru(f))‖2
L2(R)

where A and B depend on g, α, and β.
Recall that

‖Dn−1

2

(Ru(f))‖2
L2(R) =

∫

R

|R̂u(f)(ξ)|ξ|n−1

2 |2dξ =

∫

R

|f̂(ξu)|2|ξ|n−1dξ ,

so integrating the entire identity over the sphere Sn−1 gives 2‖f‖2
L2(Rn). Using (14)

we therefore obtain

2A‖f‖2
L2(Rn) ≤

∫

Sn−1

∑

m∈Z

∑

t∈Z

|〈f,Gαm,βt,u〉|2du ≤ 2B‖f‖2
L2(Rn).

Appealing to standard properties of Gabor (or Weyl-Heisenberg) frames (see [19])
we deduce the following reproduction formula for almost every u ∈ Sn−1:

Dn−1

2

(Ru(f)) =
∑

m∈Z

∑

t∈Z

〈Dn−1

2

(Ru(f)), gαm,βt〉ψαm,βt

where ψ is the dual function of g. Applying our differential operator to both sides of
the equation gives

Dn−1(Ru(f)) = Dn−1

2

Dn−1

2

(Ru(f)) =
∑

m∈Z

∑

t∈Z

〈Dn−1

2

(Ru(f)), gαm,βt〉Dn−1

2

(ψαm,βt).

We know that if we evaluate the left hand side of the equation at the point u · x
and integrate over the sphere we recover the function f , since this is the filtered
back-projection inversion for the Radon transform.

f =
1

2

∫

Sn−1

∑

m∈Z

∑

t∈Z

〈Dn−1

2

(Ru(f)), gαm,βt〉Dn−1

2

(ψαm,βt)(u · x)du.

We finally conclude that

f =
1

2

∫

Sn−1

∑

m∈Z

∑

t∈Z

〈f,Gαm,βt,u〉Ψαm,βt,u

for a pair of dual functions g, ψ. �
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3.1. Analysis Operator. We will begin with some general aspects of frame theory
and see how our weighted Gabor frames relate. First, we will define the analysis and
reconstruction operators associated with a fixed window function g on R.

Definition 3. The analysis (or coefficient) operator is given by

(15) Cg(f) = {〈f,Gm,t,u〉 : m ∈ Z, t ∈ Z, u ∈ S
n−1}.

for functions f ∈ L1(Rn).

The analysis operator acts on integrable functions and produces a semi-discrete
sequence.

Definition 4. The synthesis operator is given by

(16) Dg({cm,t,u}) =

∫

Sn−1

∑

m∈Z

∑

t∈Z

cm,t,uGm,t,u du.

The synthesis operator acts on a semi-discrete sequence {cm,t,u} and produces a
function defined on Rn.

Proposition 1. The operators Cg and Dg are adjoint to each other.

Proof. Indeed, we have

〈C∗
g ({cm,t,u}), f〉 = 〈{cm,t,u}, Cg(f)〉

=

∫

Sn−1

∑

m∈Z

∑

t∈Z

cm,t,u〈f,Gm,t,u〉du

=

〈∫

Sn−1

∑

m∈Z

∑

t∈Z

cm,t,uGm,t,u, f

〉

= 〈Dg({cm,t,u}), f〉.
�

These operators are the building blocks of what we call the Gabor ridge frame
operator which is defined in the following way.

Definition 5 (Gabor ridge frame operator). Given window functions g, ψ ∈ S(R),
we call the linear operator acting on functions f ∈ L1(Rn),

Sg,ψ(f) = Dψ(Cg(f)) =

∫

Sn−1

∑

t∈Z

∑

m∈Z

〈f,Gm,t,u〉Ψm,t,u du ,

the semi-discrete Gabor ridge frame operator.

3.2. Representation Formula and Half-filtered Operators. In the general Ga-
bor theory there is a nice representation formula due to Walnut [31] which brings
a different perspective to the problem. We will seek an analogous formula for our
semi-discrete frame. Before we undertake this task we need to define the notion of
half-filtered operators.
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Definition 6 (Half-filtered Radon Transform). We define the half-filtered Radon
transform as an operator taking functions on L1(Rn) to functions on the cylinder
Sn−1 × R in the following way:

(17) R(f)(u, t) = Dn−1

2

(Ru(f))(t) = Dn−1

2

(R(f))(u, t)

where the differentiation operator Dn−1

2

is taken with respect to the affine parameter

t of the Radon transform.

Definition 7 (Half-filtered Back-projection Operator). The half-filtered back-projection
operator takes functions on Sn−1 × R to functions on Rn and is defined as follows:

(18) R∗(F )(x) =

∫

Sn−1

Dn−1

2

(F (u, ·))(u · x) du.

We have the following concerning the semi-discrete Gabor ridge frame operator.

Theorem 6 (Representation Formula). Let f be in L1(Rn) ∩ L2(Rn). Then the
semi-discrete Gabor ridge frame operator

(19) Sg,ψ(f) =

∫

Sn−1

∑

m∈Z

∑

t∈Z

〈f,Gm,t,u〉Ψm,t,u du

can be written as

(20) Sg,ψ(f) = R∗Q(f),

where

(21) Q(f)(u, s) =
∑

r∈Z

Gr(s)R(f)(u, s− r)

and

(22) Gr(s) =
∑

t∈Z

ψ(s− t)g(s− r − t)

is the standard correlation function of Gabor theory.

Proof. The proof of this theorem will be a consequence of the identity

(23) Q(f)(u, s) =
∑

m∈Z

∑

t∈Z

〈f,Gm,t,u〉ψm,t(s) .

If (23) is true, then

R∗(Q(f)) =

∫

Sn−1

∑

m∈Z

∑

t∈Z

〈f,Gm,t,u〉Ψm,t,u du ,

which yields the required conclusion.
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So, to prove (23), we start with the left hand side,
∑

r∈Z

Gr(s)R(f)(u, s− r)

=
∑

r∈Z

∑

t∈Z

ψ(s− t)g(s− r − t)

∫

R

e2πi(s−r)σR̂u(f)(σ)|σ|n−1

2 dσ

=
∑

r∈Z

∑

t∈Z

ψ(s− t)g(s− r − t)

∫

R

e2πisσe−2πirσR̂u(f)(σ)|σ|n−1

2 dσ

=
∑

m∈Z

∑

t∈Z

ψ(s− t)ĝ(σ −m)e−2πi(s−t)(σ−m)

∫

R

e2πisσR̂u(f)(σ)|σ|n−1

2 dσ ,

where we are using the following simple consequence of the Poisson summation for-
mula [18] ∑

r∈Z

g(s− r − t)e−2πirσ =
∑

m∈Z

ĝ(σ −m)e−2πi(s−t)(σ−m) .

Simplifying the last line of the previous calculation leads to

∑

m∈Z

∑

t∈Z

∫

R

ψ(s− t)ĝ(σ −m)e2πisme2πitσe−2πitmR̂u(f)(σ)|σ|n−1

2 dσ

=
∑

m∈Z

∑

t∈Z

(∫

R

R̂u(f)(σ)ĝ(σ −m)e2πitσ|σ|n−1

2 dσ

)
ψ(s− t)e2πim(s−t)

=
∑

m∈Z

∑

t∈Z

〈f,Gm,t,u〉ψm,t.

�

The operator R forms an isometry between L2(Sn−1 × R) and L2(Rn). Indeed,
let [ , ] denote inner product on the cylinder Sn−1 × R. Then for functions f, h in
L1(Rn) ∩ L2(Rn) we have

[R(f),R(h)] = [Dn−1

2

(Ru(f)), Dn−1

2

(Ru(h))]

= [Ru(f), Dn−1(Ru(h))]

= 〈f, R∗(Dn−1(Ru(h)))〉
= cn〈f, h〉 ,

where cn is a constant depending on the constant that appears in the inversion formula
for the Radon transform in (4), as we have that Hn−1◦ dn−1

dsn−1 coincides with a constant
multiple of Dn−1.

3.3. Some spaces of functions. We will now look at some new functional spaces
that measure the quantitative properties of the Gabor ridge coefficients and classify
functions (signals) according to the size of their associated coefficients.

We are motivated to introduce such functional spaces where everything is well-
behaved by the fact that functions even in very nice spaces do not always act well
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under the Radon transform. For example, consider the following function in L2(Rn):

ψ(x) = (2 + |x|)−n

2 (log(2 + |x|))−1.

The Radon transform of ψ is infinity everywhere (for all u ∈ Sn−1 and all s ∈ R).
There has been some recent work on what spaces f should be in so that the Radon

transform is well-defined. A result of Madych [24] says that the Radon transform of
f ∈ Lp(R2) functions for 4

3
< p < 2 exists almost everywhere and the Radon inversion

formula holds almost everywhere in this case.

Definition 8. For a measurable function F on R2 consider the sequence

a(j, k) = ess sup
x,ξ∈[0,1]

|F (x+ j, ξ + k)|.

We say that the function F belongs to W (Lq(Lp)) with norm

‖F‖W (Lq(Lp)) = ‖a‖ℓq(ℓp) =


∑

k∈Z

(∑

j∈Z

|a(j, k)|p
)q/p




1/q

if the previous expression is finite.

Note that by Lq(Lp) we denote the space of all functions of two variables h(x, y)

for which the expression ‖h‖Lq(Lp) =
( ∫ ( ∫

|h(x, y)|p dy
)q/p

dx
)1/q

<∞.
We recall the definition of modulation spaces on the real line.

Definition 9 (Modulation Spaces Mp,q). Fix a non-zero Schwartz window function
g ∈ S(R) and 1 ≤ p, q ≤ ∞. The modulation space Mp,q is the space of all tempered
distributions h ∈ S ′(R) such that the short-time Fourier transform Vg(h) lies in
Lq(Lp). The Mp,q norm of f is defined as

‖h‖Mp,q = ‖Vg(h)‖Lq(Lp) =

(∫

R

(∫

R

|〈h, gm,t〉|pdm
)q/p

dt

)1/q

.

When p = q we set Mp = Mp,p.

This norm measures the time and frequency components of functions. Also M2

coincides with L2. We now look at some important properties of modulation spaces
which we will later use. For a proof of the next result we refer to [19] (Theorem
12.2.1).

Theorem A. Let g ∈M1 and h ∈Mp,q for some 1 ≤ p, q ≤ ∞. Then we have

(24) ‖Vg(h)‖W (Lq(Lp)) ≤ C‖Vg(g)‖W (L1)‖h‖Mp,q .

We also mention the following fact which can be easily proved using the relevant
definitions. If F ∈ W (Lq(Lp)) is continuous, then F |Z×Z (the restriction of F to the
grid Z × Z) is in ℓq(ℓp), and

(25) ‖F |Z×Z‖ℓq(ℓp) ≤ C ‖F‖W (Lq(Lp)).
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3.4. Definition of the Functional Spaces Ωp,q,r. Until the end of this paper we
will denote by w a tempered distribution on the line whose Fourier transform is the
following function

ŵ(ξ) = |ξ|n−1

2 .

Definition 10 (The Functional Space Ωp,q,r). For a given function f ∈ L1(Rn), we
say that f ∈ Ωp,q,r if the following norm is finite:

‖f‖Ωp,q,r =

(∫

Sn−1

‖(R̂u(f) ŵ)∨‖rMp,q du

)1/r

,

We also define a semi-discrete version of this space which we denote by ωp,q,r.

Definition 11. We say that a semi-discrete sequence {cm,t,u}m,t,u indexed by the set
Sn−1 × Z × Z belongs to ωp,q,r if the following norm is finite:

‖{cm,t,u}‖ωp,q,r =

(∫

Sn−1

‖{cm,t,u}‖rℓq(ℓp) du

)1/r

.

In the mixed norm space ℓq(ℓp) the ℓp is taken in the t variable (taken first) followed
by the ℓq norm is in the m variable.

These functional spaces are specifically tuned to the weighted Gabor ridge func-
tions as they measure the “size” of their coefficients in a way analogous to that in
which modulation spaces measure the “size” of time-frequency coefficients. Based on
properties of the modulation spaces, one sees that different windows g give rise to
comparable norms in Ωp,q,r.

3.5. Boundedness of the Frame Operator on the Spaces Ωp,q,r. An interesting
property of the functional spaces Ωp,q,r is that the semi-discrete frame operator Sg,ψ
is bounded on them.

Theorem 7 (Boundedness of Cg). If g ∈ M1, then Cg is bounded from Ωp,q,r into
ωp,q,r for 1 ≤ p, q, r ≤ ∞ and we have

‖Cg‖op ≤ C‖Vg(g)‖W (L1)

independently of p and q.

Proof. Since (R̂u(f) ŵ)∨ ∈Mp,q, Theorem A gives that Vg((R̂u(f) ŵ)∨) ∈W (Lq(Lp))

for g ∈ M1. Now Vg((R̂u(f) ŵ)∨) is continuous and its restriction on the integer
lattice Z × Z coincides with the function Cg(f)(·, ·, u), thus we have

Cg(f)(m, t, u) = Vg((R̂u(f) ŵ)∨)(m, t)
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for all m, t ∈ Z. In view of Theorem A, (25), and (24) we deduce

‖Cg(f)‖rωp,q,r =

∫

Sn−1

‖Cg(f)‖rℓq(ℓp) du

=

∫

Sn−1

‖Vg((R̂u(f) ŵ)∨)|Z×Z‖rℓq(ℓp) du

≤ Cr

∫

Sn−1

‖Vg((R̂u(f) ŵ)∨)‖rW (Lq(Lp)) du

≤ Cr‖Vg(g)‖rW (L1)

∫

Sn−1

‖(R̂u(f) ŵ)∨‖rMp,q du

= Cr‖Vg(g)‖rW (L1)‖f‖rΩp,q,r .

�

We now obtain a similar boundedness property for Dψ. To achieve this, we will
need the following result that can be found in [19] (Theorem 12.2.4).

Theorem B. Let 1 ≤ p, q ≤ ∞. For fixed g ∈M1 we have the estimate

‖Dg({cm,t})‖Mp,q = ‖Vg (Dg({cm,t}))‖Lq(Lp) ≤ C‖Vg(g)‖W (L1)‖{cm,t}‖ℓq(ℓp).

We now have the following result.

Theorem 8 (Boundedness of Dψ). If ψ ∈ M1, then Dψ is bounded from ωp,q,r to
Ωp,q,r for 1 ≤ p, q, r ≤ ∞ with the following norm estimate

‖Dψ‖op ≤ ‖Vψ(ψ)‖W (L1).

Proof. Consider a semi-discrete sequence ~c = {cm,t,u}. Then we have

‖Dψ(~c )‖rΩp,q,r =

∫

Sn−1

‖((Ru(Dψ(~c )))̂ ŵ)∨ ‖rMp,q du .

Now, we need to understand what Ru(Dψ(~c )) actually is. Let us expand the synthesis
operator as follows

Dψ(~c ) =

∫

Sn−1

∑

m∈Z

∑

t∈Z

cm,t,uΨm,t,u du

=

∫

Sn−1

∑

m∈Z

∑

t∈Z

cm,t,uDn−1

2

(ψm,t)(u · x) du

=

∫

Sn−1

∑

m∈Z

∑

t∈Z

cm,t,uDn−1

2

(ψm,t) ∗ w ∗ w∗(u · x) du,

where w∗ is chosen such that w ∗ w∗ ≡ δ. This can be achieved by choosing w∗

satisfying ŵ∗(σ) = |σ| 1−n

2 . Then, we can write

Dψ(~c ) = B
(∑

m∈Z

∑

t∈Z

cm,t,uψ
m,t ∗ w∗

)
,
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where this expression can be viewed as a convolution since w∗(s) = c |s|n−3

2 , for some
constant c, which is integrable over any interval containing zero (since n ≥ 2) and
hence locally integrable. Next, we have

Dn−1

2

(Ru(Dψ(~c ))) = Dn−1

2

(
RuB

(∑

m∈Z

∑

t∈Z

cm,t,uψ
m,t ∗ w∗

))

=
∑

m∈Z

∑

t∈Z

cm,t,uDn−1

2

(ψm,t) ∗ w∗

=
∑

m∈Z

∑

t∈Z

cm,t,uψ
m,t.

Finally, by Theorem B we obtain

‖Dψ(~c )‖rΩp,q,r =

∫

Sn−1

‖Dn−1

2

(Ru(Dψ(~c )))‖rMp,q du

=

∫

Sn−1

∥∥∥∥∥
∑

m∈Z

∑

t∈Z

ψm,t

∥∥∥∥∥

r

Mp,q

du

=

∫

Sn−1

∥∥∥∥∥Vψ
(∑

m∈Z

∑

t∈Z

cm,t,uψ
m,t

)∥∥∥∥∥

r

Lq(Lp)

du

≤ ‖Vψ(ψ)‖rW (L1)

∫

Sn−1

‖{cm,t,u}‖rℓq(ℓp) du

= ‖Vψ(ψ)‖rW (L1)‖~c ‖rωp,q,r .

�

The following is a simple corollary of the results obtained.

Corollary 2 (Boundedness of Sg,ψ = DψCg). If g, ψ ∈M1 such that Vg((R̂u(f) ŵ)∨)
lies in Mp,q, then the semi-discrete frame operator Sg,ψ is bounded on Ωp,q,r for all
1 ≤ p, q, r ≤ ∞ and the following norm estimate holds:

‖Sg,ψ‖op ≤ C‖Vg(g)‖W (L1)‖Vψ(ψ)‖W (L1),

with constants independent of p, q, and r.

3.6. Characterization of Ωp,q,r. There is another corollary which extends the con-
cept of frames from L1∩L2 to Ωp,q,r, by characterizing these spaces using the weighted
Gabor ridge coefficients. This characterization is in the spirit of the work in [17].

Corollary 3. Assume g, ψ ∈ M1 are such that Sg,ψ = I on L1(Rn) ∩ L2(Rn). Then
the following representation holds

f =

∫

Sn−1

∑

m∈Z

∑

t∈Z

〈f,Gm,t,u〉Ψm,t,u du =

∫

Sn−1

∑

m∈Z

∑

t∈Z

〈f,Ψm,t,u〉Gm,t,u du .
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Also, there are constants A,B > 0 such that for all f ∈ Ωp,q,r we have

A‖f‖Ωp,q,r ≤



∫

Sn−1


∑

m∈Z

(∑

t∈Z

|〈f,Gm,t,u〉|p
)q/p



r/q

du




1/r

≤ B‖f‖Ωp,q,r .

Proof. We have seen that both the coefficient and synthesis operators are bounded
on Ωp,q,r and ωp,q,r and we know that f = DψCg(f) holds for all f ∈ Ωp,q,r. The norm
equivalence is all just a consequence of the norm estimates for Cg and Dψ.

‖f‖Ωp,q,r = ‖DψCg(f)‖Ωp,q,r ≤ ‖Dψ‖op‖Cg‖ωp,q,r

≤ ‖Dψ‖op‖Cg‖op‖f‖Ωp,q,r .

Note: we can choose A = ‖Dψ‖−1
op and B = ‖Cg‖−1

op . �

3.7. Remark. The results of this section are based on the classical theory of Gabor
frames. If the time-frequency-directional transform introduced in this paper can be
realized as the coordinate transform of an integrable irreducible representation of
a suitable group, then one may be able to explore a connection with the powerful
coorbit theory of Feichtinger and Gröchenig [10], [11], [12] to obtain fully discrete
frames and deduce deeper properties of the functional spaces Ωp,q,r. This connection
will be investigated in future work.

4. Applications

4.1. Image Processing. Gabor ridge functions lend themselves to directional fre-
quency information and are quite suitable for image processing applications such as
denoising, filtering, enhancement, etc. The added benefit is that they allow perform-
ing image processing in a directionally sensitive manner.

4.1.1. Image Enhancement. There are many ways to “enhance” an image. One of
the most common ways is to make sharper or more defined the edges or curvilinear
singularities of the image. This can be achieved using the general theory of this
article. The time-frequency-direction coefficients are largest when there is an edge
in our image. The larger the coefficient, the stronger the edge. A smaller coefficient
corresponds to a faint edge. In image enhancement the goal is to enhance the faint
edges and not disturb the stronger edges. We do this as in [29] by multiplying all the
coefficients cm,t,u by

(m
n

)p
if |c| ≤ cmin ,

(
m

|c|

)p
if cmin < |c| ≤ cmax , 1 if |c| > cmax,

where m, n, cmin, and cmax are suitably chosen constants that depend upon the
specific problem.

In Figure 2, we see our original image on the top left along with a display of
coefficients corresponding to 0 degrees (top right). We then enhance the coefficients
as indicated and reconstruct the function (bottom left) using new coefficients (bottom
right). In this reconstruction, the larger new coefficients are not affected as much,
while the smaller ones are altered producing an image with much more detail.
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Figure 2. Image Enhancement Example

Applying the same enhancement technique to the left picture of Figure 3 we obtain
the picture on the right which reveals certain hidden ridges of the planet Mars when
the fainter edges are emphasized.

Figure 3. Enhancement of a satellite image of Mars.

4.2. Medical Imaging. The Radon transform plays an integral role in current med-
ical imaging modalities. We explore certain perspectives in medical imaging where
time-frequency-direction analysis plays a role. One such application is in the area of
local tomography (or lambda tomography). The usual process of computerized to-
mography is global in nature. Local tomography [28], although slightly less accurate,
is local and therefore has some advantages over the global process. We are interested
to see how the weighted Gabor ridge functions can be used in reconstruction and
denoising of medical images.

4.2.1. Applications to Computerized Tomography. Computerized tomography (CT)
is achieved by acting the Radon transform on an object (x-rays) and inverting it
algorithmically to generate the density image. The weighted Gabor ridge system is
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well-tailored for medical imaging because of its inherent relationship with the Radon
transform.

As an example we reconstruct a standard phantom image. In Figure 4, we have
the original image (left) and the reconstructed image (right) using directions from 0
to 180 degrees. What is reconstructed in the algorithm is the following:

CT =
180∑

u=1

256∑

m=1

256∑

t=1

〈original, Gm,t,u〉Ψm,t,u .

Figure 4. CT Reconstruction

4.2.2. Denoising in Computerized Tomography. Denoising is possible by setting to
zero some of the coefficients which correspond to noise (small coefficients) versus those
which correspond to the actual image. As we have seen large coefficients correspond
to edges or curvilinear singularities of an image. Small coefficients correspond point
singularities such as noise. In Figure 5, we have an example of a denoised phantom
image.

Figure 5. Denoised phantom image

4.2.3. Applications to Local Tomography. In local tomography (also called lambda
tomography) one obtains reconstruction of a function related to the original f instead
of itself [28]. We usually reconstruct the function Lf = Λf+µΛ−1f , where Λ =

√
−∆

(square root of the positive Laplacian) and µ is some constant which may depend
upon f . This is a strictly local reconstruction and it has been shown that Lf produces
an image that still “looks like” f , i.e. certain important aspects of the function f are
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preserved. For instance, since Λf is an invertible elliptic operator, f and Λf have
precisely the same singularities. Λf is “cupped”, however, within regions of constant
density. The extra term µΛ−1f is an attempt to neutralize this cupping.

Figure 6. From left to right, top to bottom, we have the original head
phantom, Λf , Λ−1f , and the local reconstruction Lf = Λf + Λ−1f .

Both Λ and its inverse can be defined in terms of their Fourier transform by

(Λf)̂(ξ) = |ξ|f̂(ξ) (Λ−1f)̂(ξ) = |ξ|−1f̂(ξ).

Notice that Λ−1 is just the non-filtered back-projection (for n = 2) that we have
previously encountered. This is what produced the blurry image of Figure 1 instead
of a good reconstruction. It will now serve as a useful tool in local tomography. This
is a local operation as it only back-projects the lines that intersect a point x while one
needs the integrals over all lines to obtain a complete reconstruction of the original
function; and this explains why the images it produces are blurry.

We can implement a local tomographic reconstruction process using our weighted
Gabor ridge functions. The system, however, has to be altered to account for a
construction of Lf instead of a reconstruction of f .

Definition 12 (Gabor ridge functions with altered weights). We define new Lambda
Gabor ridge functions with a special weight in the following way:

GΛ
βm,αt,u =

(
Dn

2
(gβm,αt)

)
(u · x).

As an example we take n = 2 that corresponds to

GΛ
βm,αt,u =

(
D1(g

βm,αt)
)
(u · x).

This way we create a new representation which allows for analysis of time, fre-
quency, and direction for local tomography. A reconstruction for Lf is now simply
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given by:

Lf =

∫

Sn−1

∑

m∈Z

∑

t∈Z

〈f,GΛ
αm,βt,u〉ΨΛ

αm,βt,udu+ µ

∫

Sn−1

∑

m∈Z

∑

t∈Z

〈f, gβm,αt,u〉ψβm,αt,udu.

In Figure 6 we looked at an example of reconstruction using the method discussed
here. We took the original head phantom and constructed the image of Lf .

4.3. Denoising in Local Tomography. We can also apply our denoising algorithm
in a local tomographic setting. What one sees in Figure 7 is the local tomographic
reconstruction of Lf that has been denoised in the same way as in the CT example
(setting to zero coefficients below a certain threshold).

Figure 7. From left to right, top to bottom, we have the original head
phantom with gaussian noise, Λf , Λ−1f , and the local reconstruction
Lf = Λf + Λ−1f .
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[13] H. Feichtinger and K. Gröchenig, Gabor frames and time-frequency analysis of distributions, J.
Funct. Anal. 146 (1997), 464–495.

[14] H. Feichtinger and T. Strohmer (eds.), Gabor analysis and algorithms, Applied and Numerical
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