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Solution Using
Separation of Variables

�
�

�
�25.3

Introduction
The main topic of this Section is the solution of PDEs using the method of separation of variables.
In this method a PDE involving n independent variables is converted into n ordinary differential
equations. (In this introductory account n will always be 2.)

You should be aware that other analytical methods and also numerical methods are available for
solving PDEs. However, the separation of variables technique does give some useful solutions to
important PDEs.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• be able to solve first and second order
constant coefficient ordinary differential
equations'

&

$

%
Learning Outcomes

On completion you should be able to . . .

• apply the separation of variables method to
obtain solutions of the heat conduction
equation, the wave equation and the 2-D
Laplace equation for specified boundary or
initial conditions
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1. Solution of important PDEs
We shall just consider two analytic solution techniques for PDEs:

(a) Direct integration

(b) Separation of variables

The method of direct integration is a straightforward extension of solving very simple ODEs by
integration, and will be considered first. The method of separation of variables is more important
and we will study it in detail shortly.

You should note that many practical problems involving PDEs have to be solved by numerical
methods but that is another story (introduced in 32 and 33).

Task

Solve the ODE

d2y

dx2
= x2 + 2

given that y = 1 when x = 0 and
dy

dx
= 2 when x = 0.

First find
dy

dx
by integrating once, not forgetting the arbitrary constant of integration:

Your solution

Answer
dy

dx
=

x3

3
+ 2x + A

Now find y by integrating again, not forgetting to include another arbitrary constant:

Your solution

Answer

y =
x4

12
+ x2 + Ax + B

Now find A and B by inserting the two given initial conditions and so find the solution:

Your solution

Answer
y(0) = 1 gives B = 1 y′(0) = 2 gives A = 2

so the required solution is

y =
x4

12
+ x2 + 2x + 1

20 HELM (2008):
Workbook 25: Partial Differential Equations



®

Consider now a similar type of PDE i.e. one that can also be solved by direct integration.
Suppose we require the general solution of

∂2u

∂x2
= 2xet

where u is a function of x and t.
Integrating with respect to x gives us

∂u

∂x
= x2et + f(t)

where the arbitrary function f(t) replaces the normal “arbitrary constant” of ordinary integration.
This function of t only is needed because we are integrating “partially” with respect to x i.e. we are
reversing a partial differentiation with respect to x at constant t.
Integrating again with respect to x gives the general solution:

u =
x3

3
et + x f(t) + g(t)

where g(t) is a second arbitrary function. We have now obtained the general solution of the given
PDE but to find the arbitrary function we must know two initial conditions.
Suppose, for the sake of example, that these conditions are

u(0, t) = t ,
∂u

∂x
(0, t) = et

Inserting the first of these conditions into the general solution gives g(t) = t.

Inserting the second condition into the general solution gives f(t) = et.

So the final solution is u =
x3

3
et + xet + t.

Task

Solve the PDE

∂2u

∂x∂y
= sin x cos y

subject to the conditions

∂u

∂x
= 2x at y =

π

2
, u = 2 sin y at x = π.

First integrate the PDE with respect to y: (it is equally valid to integrate first with respect to x).
Don’t forget the appropriate arbitrary function.

Your solution
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Answer

Recall that
∂2u

∂x∂y
=

∂

∂y

(
∂u

∂x

)
Hence integration with respect to y gives

∂u

∂x
= sin x sin y + f(x)

Since one of the given conditions is on
∂u

∂x
, impose this condition to determine the arbitrary function

f(x):

Your solution

Answer
At y = π/2 the condition gives sin x sin π/2 + f(x) = 2x i.e. f(x) = 2x− sin x

So
∂u

∂x
= sin x sin y + 2x− sin x

Now integrate again to determine u:

Your solution

Answer
Integrating now with respect to x gives u = − cos x sin y + x2 + cos x + g(y)

Next, obtain the arbitrary function g(y):

Your solution

Answer
The condition u(π, y) = 2 sin y gives − cos π sin y + π2 + cos π + g(y) = 2 sin y

∴ sin y + π2 − 1 + g(y) = 2 sin y

∴ g(y) = sin y + 1− π2

Now write down the final answer for u(x, y):

Your solution

Answer

u(x, y) = x2 + cos x(1− sin y) + sin y + 1− π2
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2. Method of separation of variables - general approach
In Section 25.2 we showed that

(a) u(x, y) = sin x cosh y

is a solution of the two-dimensional Laplace equation

(b) u(x, t) = e−2π2t sin πx

is a solution of the one-dimensional heat conduction equation

(c) u(x, t) = u0 sin
(πx

`

)
cos

(
πct

`

)
is a solution of the one-dimensional wave equation.

All three solutions here have a specific form: in (a) u(x, y) is a product of a function of x alone,
sin x, and a function of y alone, cosh y. Similarly, in both (b) and (c), u(x, t) is a product of a
function of x alone and a function of t alone.

The method of separation of variables involves finding solutions of PDEs which are of this product
form. In the method we assume that a solution to a PDE has the form.

u(x, t) = X(x)T (t) (or u(x, y) = X(x)Y (y))

where X(x) is a function of x only, T (t) is a function of t only and Y (y) is a function y only.

You should note that not all solutions to PDEs are of this type; for example, it is easy to verify that

u(x, y) = x2 − y2

(which is not of the form u(x, y) = X(x)Y (y)) is a solution of the Laplace equation.

However, many interesting and useful solutions of PDEs are obtainable which are of the product
form. We shall firstly consider the types of solution obtainable for our three basic PDEs using trial
solutions of the product form.

Heat conduction equation

∂2u

∂x2
=

1

k

∂u

∂t
k > 0 (1)

Assuming that

u = X(x)T (t)

= XT for short

(2)

then

∂u

∂x
=

dX

dx
T = X ′T for short

∂2u

∂x2
=

d2X

dx2
T = X ′′T for short

∂u

∂t
= X

dT

dt
= XT ′ for short
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Substituting into the original PDE (1)

X ′′T =
1

k
XT ′

which can be re-arranged as

X ′′

X
=

1

k

T ′

T
(3)

Now the left-hand side of (3) involves functions of x only and the right-hand side expression contain
functions of t only. Thus altering the value of t cannot change the left-hand side of (3) i.e. it stays
constant. Hence so must the right-hand side be constant. We conclude that T (t) is a function such
that

1

k

T ′

T
= K (4)

where K is a constant whose sign is yet to be determined.

By a similar argument, altering the value of x cannot change the right-hand side of (3) and conse-
quently the left-hand side must be a constant, i.e.

X ′′

X
= K (5)

We see that the effect of assuming a product trial solution of the form (2) converts the PDE (1)
into the two ODEs (4) and (5).

Both these ODEs are types whose solution we revised at the beginning of this Workbook but we shall
not attempt to solve them yet. In particular the solution of (5) depends on whether the constant K
is positive or negative.

Wave equation

∂2u

∂x2
=

1

c2

∂2u

∂t2
(6)

Task

By following a similar procedure to the above, assume a product solution

u(x, t) = X(x)T (t)

for the wave equation and find the two ODEs satisfied by X(x) and T (t).

First obtain
∂2u

∂x2
and

∂2u

∂t2
:

Your solution

Answer

u = X(x)T (t) gives
∂2u

∂x2
= X ′′T and

∂2u

∂t2
= XT ′′
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Now substitute these results into (6) and transpose so the variables are separated i.e. all functions
of x are on the left-hand side, all funtions of t on the right-hand side:

Your solution

Answer

We get X ′′T =
1

c2
XT ′′ and, transposing,

X ′′

X
=

1

c2

T ′′

T

Finally, write down the required ordinary differential equations:

Your solution

Answer
Equating both sides to the same constant K gives

X ′′

X
= K or

d2X

dx2
−KX = 0 (7)

and

1

c2

T ′′

T
= K or

d2T

dt2
−Kc2T = 0 (8)

The solution of the ODEs (7) and (8) has been obtained earlier, and will depend on the sign of K.

Laplace’s equation

∂2u

∂x2
+

∂2u

∂y2
= 0 (9)

Task

Separating the variables for Laplace’s equation follows similar lines to the previous
Task. Obtain the ODEs satisfied by X(x) and Y (y).

Your solution
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Answer

Assuming u(x, y) = X(x)Y (y) leads to:
∂2u

∂x2
= X ′′Y

∂2u

∂y2
= XY ′′ so

X ′′Y + XY ′′ = 0 or
X ′′

X
= −Y ′′

Y

Equating each side to a constant K

X ′′

X
= K or

d2X

dx2
−KX = 0 (10a)

Y ′′

Y
= −K or

d2Y

dy2
+ KY = 0 (10b)

(Note carefully the different signs in the two ODEs. Yet again the sign of the “separation constant”
K will determine the solutions.)

3. Method of separation of variables - specific solutions
We shall now study some specific problems which can be fully solved by the separation of variables
method.

Example 3
Solve the heat conduction equation

∂2u

∂x2
=

1

2

∂u

∂t

over 0 < x < 3, t > 0 for the boundary conditions

u(0, t) = u(3, t) = 0

and the initial condition

u(x, 0) = 5 sin 4πx.

Solution

Assuming u(x, t) = X(x)T (t) gives rise to the differential equations (4) and (5) with the parameter
k = 2:

dT

dt
= 2KT

d2X

dx2
= KX
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The T equation has general solution

T = Ae2Kt

which will increase exponentially with increasing t if K is positive and decrease with t if K is negative.
In any physical problem the latter is the meaningful situation. To emphasise that K is being taken
as negative we put

K = −λ2

so

T = Ae−2λ2t.

The X equation then becomes

d2X

dx2
= −λ2X

which has solution

X(x) = B cos λx + C sin λx.

Hence

u(x, t) = X(x)T (t) = (D cos λx + E sin λx)e−2λ2t (11)

where D = AB and E = AC.

(You should always try to keep the number of arbitrary constants down to an absolute minimum by
multiplying them together in this way.)

We now insert the initial and boundary conditions to obtain the constant D andE and also the
separation constant λ.
The initial condition u(0, t) = 0 gives

(D cos 0 + E sin 0)e−2λ2t = 0 for all t.

Since sin 0 = 0 and cos 0 = 1 this must imply that D = 0.
The other initial condition u(3, t) = 0 then gives

E sin(3λ)e−2λ2t = 0 for all t.

We cannot deduce that the constant E has to be zero because then the solution (11) would be the
trivial solution u ≡ 0. The only sensible deduction is that

sin 3λ = 0 i.e. 3λ = nπ (where n is some integer).
Hence solutions of the form (11) satisfying the 2 boundary conditions have the form

u(x, t) = En sin
(nπx

3

)
e−

2n2π2t
9

where we have written En for E to allow for the possibility of a different value for the constant for
each different value of n.

We obtain the value of n by using the initial condition u(x, 0) = 5 sin 4πx and forcing this solution
to agree with it. That is,

u(x, 0) = En sin
(nπx

3

)
= 5 sin 4πx
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so we must choose n = 12 with E12 = 5.
Hence, finally,

u(x, t) = 5 sin

(
12πx

3

)
e−

2
9
(12)2π2t = 5 sin(4πx) e−32π2t.

Task

Solve the 1-dimensional wave equation
∂2u

∂x2
=

1

16

∂2u

∂t2
for 0 < x < 2, t > 0

The boundary conditions are

u(0, t) = u(2, t) = 0

The initial conditions are

(i) u(x, 0) = 6 sin πx− 3 sin 4πx (ii)
∂u

∂t
(x, 0) = 0

Firstly, either using (7) and (8) or by working from first principles assuming the product solution

u(x, t) = X(x)T (t),

write down the ODEs satisfied by X(x) and T (t):

Your solution

Answer
X ′′

X
= K

T ′′

16T
= K

Now decide on the appropriate sign for K and then write down the solution to these equations:

Your solution

Answer
Choosing K as negative (say K = −λ2) will produce Sinusoidal solutions for X and T which are
appropriate in the context of the wave equation where oscillatory solutions can be expected.

Then X ′′ = −λ2X gives

X = A cos λx + B sin λx

Similarly T ′′ = −16λ2T gives

T = C cos 4λt + D sin 4λt
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Now obtain the general solution u(x, t) by multiplying X(x) by T (t) and insert the two boundary
conditions to obtain information about two of the constants:

Your solution

Answer
u(x, t) = (A cos λx + B sin λx)(C cos 4λt + D sin 4λt)

u(0, t) = 0 for all t gives

A(C cos 4λt + D sin 4λt) = 0

which implies that A = 0.

u(2, t) = 0 for all t gives

B sin 2λ(C cos 4λt + D sin 4λt) = 0

so, for a non-trivial solution,

sin 2λ = 0 i.e. λ =
nπ

2
for some integer n.

At this stage we write the solution as

u(x, t) = sin
(nπx

2

)
(E cos 2nπt + F sin 2nπt)

where we have multiplied constants and put E = BC and F = BD.
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Now insert the initial condition

∂u

∂t
(x, 0) = 0 for all x 0 < x < 2.

and deduce the value of F :

Your solution

Answer
Differentiating partially with respect to t

∂u

∂t
= sin

(nπx

2

)
(−2nπE sin 2nπt + 2nπF cos 2nπt)

so at t = 0

∂u

∂t
(x, 0) = sin

(nπx

2

)
2nπF = 0

from which we must have that F = 0.

Finally using the other the initial condition u(x, 0) = 6 sin(πx) − 3 sin(4πx) deduce the form of
u(x, t):

Your solution
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Answer
At this stage the solution reads

u(x, t) = E sin
(nπx

2

)
cos(2nπt) (12)

We now have to insert the last condition i.e. the initial condition

u(x, 0) = 6 sin πx− 3 sin 4πx (13)

This seems strange because, putting t = 0 in our solution (12) suggests

u(x, 0) = E sin
(nπx

2

)
At this point we seem to have incompatability because no single value of n will enable us to satisfy
(13). However, in the solution (12), any positive integer value of n is acceptable and we can in
fact, superpose solutions of the form (12) and still have a valid solution to the PDE Hence we first
write, instead of (12)

u(x, t) =
∞∑

n=1

En sin
(nπx

2

)
cos(2nπt) (14)

from which

u(x, 0) =
∞∑

n=1

En sin
(nπx

2

)
(15)

(which looks very much like, and indeed is, a Fourier series.)

To make the solution (15) fit the initial condition (13) we do not require all the terms in the infinite
Fourier series. We need only the terms with n = 2 with coefficient E2 = 6 and the term for which
n = 8 with E8 = −3. All the other coefficients En have to be chosen as zero.

Using these results in (14) we obtain the solution

u(x, t) = 6 sin πx cos 4πt− 3 sin 4πx cos 16πt

The above solution perhaps seems rather involved but there is a definite sequence of logical steps
which can be readily applied to other similar problems.
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Engineering Example 1

Heat conduction through a furnace wall

Introduction

Conduction is a mode of heat transfer through molecular collision inside a material without any
motion of the material as a whole. If one end of a solid material is at a higher temperature, then
heat will be transferred towards the colder end because of the relative movement of the particles.
They will collide with the each other with a net transfer of energy.

Energy flows through heat conductive materials by a thermal process generally known as ’gradient
heat transport’. Gradient heat transport depends on three quantities: the heat conductivity of the
material, the cross-sectional area of the material which is available for heat transfer and the spatial
gradient of temperature (driving force for the process). The larger the conductivity, the gradient,
and the cross section, the faster the heat flows.

The temperature profile within a body depends upon the rate of heat transfer to the atmosphere,
its capacity to store some of this heat, and its rate of thermal conduction to its boundaries (where
the heat is transferred to the surrounding environment). Mathematically this is stated by the heat
equation

∂

∂x

(
k
∂T

∂x

)
= ρc

∂T

∂x
(1)

The thermal diffusivity α is related to the thermal conductivity k, the specific heat c, and the density
of solid material ρ, by

α =
k

ρc

Problem in Words

The wall (thickness L) of a furnace, with inside temperature 800◦ C, is comprised of brick material
[thermal conductivity = 0.02 W m−1 K−1)]. Given that the wall thickness is 12 cm, the atmospheric
temperature is 0◦ C, the density and heat capacity of the brick material are 1.9 gm cm−3 and
6.0 J kg−1 K−1 respectively, estimate the temperature profile within the brick wall after 2 hours.

Mathematical statement of problem
Solve the partial differential equation

∂

∂x

(
k
∂T

∂x

)
= ρc

∂T

∂t
(2)

subject to the initial condition

T (x, 0) = 800 sin
πx

2L
(3)
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and boundary conditions at the inner (x = L) and outer (x = 0) walls of

T = 0 at x = 0 (4)

and

∂T

∂x
= 0 at x = L (4b)

Find the temperature profile at T = 7200 seconds = 2 hours.

Mathematical analysis

Using separation of variables

T (x, t) = X(x)× Y (t) (5)

so Equation (2) becomes

Y ′

Y
= α

X ′′

X
= K (6)

Using values of K which are zero or positive does not allow a solution which satisfies the initial and
boundary conditions. Thus, K is assumed to be negative i.e. K = −λ2. Equation (6) separates into
the two ordinary differential equations

dY

dt
= −λ2Y

d2X

dx2
= −λ2αX

with solutions

Y = Ce−λ2t

X = A∗ cos
λ√
α

x + B∗ sin
λ√
α

x

and

T = X × Y = e−λ2t

{
A cos

λ√
α

x + B sin
λ√
α

x

}
(8)

where A = A∗ × C and B = B∗ × C.

Setting T = 0 where x = 0 (Equation (4a)) gives A = 0 i.e.

T = Be−λ2t sin
λ√
α

x (9)

and hence

dT

dx
= B

λ√
α

e−λ2t cos
λ√
α

x (10)

Setting
dT

dx
= 0 where x = L (and for all t), Equation (4b) gives one of the conclusions,

B = 0

λ = 0

cos
λ√
α

L = 0
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The first two possibilities (B = 0 and λ = 0) can be discounted as they leave T = 0 for all x and t

and it is not possible to satisfy the initial condition (3). Hence cos
λ√
α

L = 0 so
λ√
α

L = (n + 1
2
)π

and we deduce that

λ =

√
α

L
(n +

1

2
)π (11)

and so the temperature T satisfies

T = Be
−

α

L2
(n+ 1

2
)2t

sin

{
(n +

1

2
)
πx

L

}
(12)

However, this must also satisfy Equation (2) i.e.

800 sin
πx

2L
= B sin

{
(n +

1

2
)
πx

L

}
(13)

Equating the arguments of the sine terms

πx

2L
= (n +

1

2
)
πx

L
so n = 0

Equating the coefficients of the sine terms

800 = B

So the temperature profile is

T = 800e−
αt

2L2 sin
πx

2L
(14)

where α =
k

ρc
=

0.02

1900× 6
= 1.764× 10−6m2s−1.

After two hours, t = 7200 so − αt

2L2
= −0.438 so

T = 800× e−0.438 sin
πx

2L
= 516 sin

πx

2L
(15)

so the inner wall of the furnace has cooled from 800◦C to 516◦C.

Interpretation

The boundary conditions (2) and (3) represent approximations to the true boundary conditions,
approximations made to enable solution by separation of variables. More realistic conditions would
be

−k
∂T (0, t)

∂x
= houtside {T∞ − T (0, t)}

−k
∂T (L, t)

∂x
= hinside {T (0, t)− Ts}
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