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Abstract . We discuss di�erentiable stacks and their cohomology. We try to give all
necessary de�nitions, avoiding technical machinery as far as possible. In the last section we
focus on the example of S1-gerbes and explain the relation to projective (Hilbert-)bundles.

Introduction
These are notes of two lectures given at the Forschungsseminar Bunke-Schick

during the Spring term 2004. My task was to explain the notions of stacks and
twists. Since this should serve as introduction to the subject I tried to avoid
most of the algebraic language, hoping to make the concept of stacks more
understandable. These notes do not claim much originality, all concepts from
the theory of algebraic stacks are explained in the book of Laumon and Moret-
Bailly [LMB00]. I tried to translate the di�erentiable setting which is used in
[LTX] and [FHT] into this language.

November 2004.
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The plan of the text is as follows. We start with the example of the stack
classifying G−bundles, to motivate the abstract de�nition of stacks. This def-
inition, given in the �rst section does not look very geometric, therefore we
introduce the notion of charts (sometimes called presentations) in the second
section. This allows us to de�ne topological and di�erentiable stacks. In the
algebraic setting, this concept was introduced by Deligne and Mumford in their
famous article on the irreducibility of the moduli space of curves. Their de�ni-
tion allowed to introduce a lot of geometric notions for stacks and it provided
a way of thinking about a di�erentiable stack as a manifold in which points
are allowed to have automorphisms. In the third section we then compare
this approach with the groupoid�approach which seems to be better known
in topological contexts. The fourth section then de�nes sheaves, bundles and
their cohomology on di�erentiable stacks. We also provide some easy examples
to give an idea of how to do calculations in this setup.

In the last two sections we then give a de�nition of twists or S1−gerbes
and we show that they are classi�ed by elements in H2( , S1). To compare
this with the approach via projective bundles, we then introduce the notion of
a local quotient stack, which is used in [FHT] to give a de�nition of twisted
K-theory. For S1-gerbes on a local quotient stack we give a construction of a
PU-bundle on the stack which de�nes the gerbe.

1. Motivation and the �rst de�nition of stacks
The simplest example of a stack is the classifying stack of G−bundles: Let

G be a topological group. In topology one de�nes a classifying space BG
characterized by the property that for any good space (e.g., CW-Complex):
Map(X,BG)/homotopy = {Isom. classes of locally trivial G− bundles on X}
This de�nes BG uniquely up to homotopy. For �nite groups G this space has
the additional property, that the homotopy classes of homotopies between two
classifying maps are identi�ed with isomorphisms between the corresponding
G−bundles.

Such a de�nition of BG is not well suited for algebraic categories, because
there a good notion of homotopy is not easy to de�ne. Moreover even in analytic
categories the spaces BG usually are in�nite dimensional and therefore more
di�cult to handle.

Regarding the �rst problem, one could ask the naive question: Why don't
we look for a space BG for which Map(X,BG) is the set of isomorphism classes
of G−bundles on X? Of course such a space cannot exist because locally every
bundle is trivial, thus the corresponding map should be locally constant, thus
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constant on connected components of X. But not every bundle is globally
trivial.

On the other hand, this argument is somewhat bizarre, because usually
G−bundles are de�ned by local data. The problem only arises because we
passed to isomorphism classes of bundles.

Thus the �rst de�nition of the stack BG will be as the (2-)functor assigning
to any space X the category of G−bundles on X. The axioms for such a functor
to be a stack will be modeled on the properties of this particular example.
Namely the axioms assure that we can glue bundles given on an open covering.
This basic example should be held in mind for the following de�nition of a
stack.

Further, to compare this de�nition with usual spaces one has to keep in
mind the Yoneda lemma: Any space/manifold M is uniquely determined by
the functor Map( ,M) : Manifolds → Sets. This holds in any category (see
Lemma 1.3 below).

Therefore, instead of describing the space, we will �rst consider the corre-
sponding functor and try to �nd a geometric description afterwards.
De�nition 1.1. A stack M is a (2−)functor

M : Manifolds→ Groupoids ⊂ Cat,
i.e.:

� for any manifold X we get a category M (X) in which all morphisms are
isomorphisms, and

� for any morphism f : Y → X we get a functor
f∗ : M (X)→M (Y )

(id∗ has to be the identity),
� for any Z g−→ Y

f−→ X a natural transformation Φf,g : g∗f∗ ∼= (g ◦ f)∗,
which is associative whenever we have 3 composable morphisms.

For a stack M we require the 2-functor to have glueing-properties (to make
these more readable(1), we write |U instead of j∗, whenever U j

↪→ X is an open
embedding):

1. We can glue objects: Given an open covering Ui of X, objects Pi ∈M (Ui)
and isomorphisms ϕij : Pi|Ui∩Uj → Pj |Ui∩Uj which satisfy the cocycle
condition on threefold intersections ϕjk ◦ ϕij = ϕik|Ui∩Uj∩Uk

there is an
object P ∈M (X) together with isomorphisms ϕi : P |Ui → Pi such that
ϕij = ϕj ◦ ϕ−1

i .

(1)cf. �rst remark below
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2. We can glue morphisms: Given objects P, P ′ ∈M (X), an open covering
Ui of X and isomorphisms ϕi : P |Ui

→ P ′|Ui
such that ϕi|Ui∩Uj

=
ϕj |Ui∩Uj , then there is a unique ϕ : P → P ′ such that ϕi = ϕ|Ui .

Remarks 1.2.
1. Formally the glueing conditions make use of the natural transformations

for the inclusions Ui ∩ Uj ↪→ Ui ↪→ X, this is not visible above, because
of our notation |Ui∩Uj

. For example write Uijk = Ui ∩ Uj ∩ Uk, denote
jijk,ij : Uijk → Uij , jij,i : Uij → Ui, jijk,i : Uijk → Ui the inclusions.
Then we have natural transformations

Φijk,ij,i : j∗ijk,ijj
∗
ij,i → j∗ijk,i.

In the condition to glue objects
ϕjk|Uijk

◦ ϕij |Uijk
= ϕik|Uijk

we would formally have to replace ϕij |Uijk
by the composition:

j∗ijk,iPi
Φijk,ij,i−→ j∗ijk,ijj

∗
ij,iPi

j∗ijk,ijϕij−→ j∗ijk,ijj
∗
ij,jPj

Φ−1
ijk,ij,j−→ j∗ijk,jPj

and similarly for the other maps, but this makes the condition hard to
read.

2. Our functor BG, assigning to any manifold the category of G−bundles is
a stack.

3. We could replace manifolds by topological spaces in the above de�nition.
This is usually phrased as giving a stack over manifolds and a stack over
topological spaces respectively.

4. Stacks form a 2−category: Morphisms F : M → N of stacks are given
by a collection of functors F ∗X : N (X)→M (X) and, for any f : X → Y ,
a natural transformation Ff : f∗F ∗X

∼=−→ F ∗Y f
∗. Thus morphisms of stacks

form a category, morphisms between morphisms of stacks (i.e., natural
transformations ϕX : FX → GX satisfying Gf ◦ϕX = ϕY ◦Ff ) are written
as M 44⇓

**
N . Note that all 2-morphisms are invertible, since all maps

in the categories M (X) and N (X) are invertible.
5. The inclusion Sets → Groupoids (associating to each set the category

whose objects are elements of the set and the only morphisms are iden-
tities) is a full embedding. By the Yoneda lemma we know that the
functor Top → Functors is a full embedding, thus we get a full embed-
ding Top → Stacks. This embedding assigns to a space X the stack X
de�ned as X(Y ) = Map(Y,X), this is a stack, since maps can be glued,
pull-back functors are given by the composition of maps.
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6. Grothendieck topology of maps with local sections: Bundles, (in fact any
stack), satisfy a better glueing condition, namely we do not need that the
j : Ui ↪→ X are injective. Whenever we have a map ∪Ui

p−→ X such that
p has local sections (i.e., for all points x ∈ X there is a neighborhood Ux

and a section s : Ux → ∪Ui of p, in particular p is surjective). Then the
glueing condition also holds, if we replace Ui ∩Uj by the �bered product
Ui×X Uj . We say that the stack is a stack for the local-section-topology.
This point of view will be important to de�ne charts for stacks.

(If we wanted to stay in the category of manifolds instead of topological
spaces, we should require the map p to be a submersion, in order to have
�bered products.)

The following lemma shows, that with the above de�nition of BG we really
get a classifying object for G−bundles:
Lemma 1.3 (Yoneda lemma for stacks). Let M be a stack (de�ned for
manifolds or topological spaces). For any space X denote by X the associated
stack (i.e., X(Y ) = Map(Y,X)). Then there is a canonical equivalence of
categories: M (X) ∼= MorStacks(X,M ).

Proof. Given P ∈M (X) we de�ne a morphism FP : X →M by

X(Y ) 3 (Y
f−→ X) 7→ f∗P ∈M (Y ).

For any isomorphism ϕ : P → P ′ in M (X) we de�ne a natural transformation
Aϕ : FP → FP ′ by f∗ϕ : f∗P → f∗P ′. Conversely, given a morphism F :
X →M we get an object PF := F (idX) ∈M (X), any automorphism F → F
de�nes an isomorphism of PF .

One checks that the composition of these constructions is equivalent to the
identity functor.

Remark 1.4. Will often write X instead of X.

Example 1.5 (Quotient stacks). Let G be a Lie group acting on a manifold
X via act : G × X → X. We de�ne the quotient stack [X/G, act] (or simply
[X/G]) as

[X/G, act](Y ) := 〈(P p−→ Y, P
f−→ X) |P → Y a G-bundle,f G-equivariant〉.

Morphisms of objects are G−equivariant isomorphisms.

Remarks 1.6.
1. For G acting trivially on X = pt the quotient [pt/G] is the stack BG

classifying G-bundles.
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2. If G acts properly and freely, i.e. X → X/G is a G−bundle, then [X/G] ∼=
X/G, because any f : P → X de�nes a map on the quotient P/G = Y →
X/G and the canonical morphism P → Y ×X/GX is then an isomorphism
of G−bundles.

2. Geometry I: Charts
To translate geometric concepts to the (2-)category of stacks, Deligne and

Mumford introduced a notion of charts for stacks.
In our example BG the Yoneda-lemma 1.3 shows that the trivial bundle on

a point pt de�nes a map pt → BG. By the same lemma any X
fP−→ BG is

given by a bundle P → X. Therefore, if we take a covering Ui → X on which
the bundle is trivial, then fP |Ui factors through pt → BG. In particular, this
trivial map is in some sense surjective (see De�nition 2.3 for a precise de�nition,
we will say that this map has local sections)!

Even more is true: First note that the (2-)category of stacks has �bered
products:

De�nition 2.1. Given a diagram of morphisms of stacks:

M

F

²²
M ′ F ′ // N

we de�ne the �bered product M ×N M ′ to be the stack given by:

M ×N M ′(X) := 〈(f, f ′, ϕ)|f : X →M , f ′ : X →M ′, ϕ : F ◦ f ⇒ F ′ ◦ f ′〉.
Morphisms (f, f ′, ϕ)→ (g, g′, ψ) are pairs of morphisms

(ϕf,g : f → g, ϕf ′,g′ : f ′ → g′)

such that
ψ ◦ F (ϕf,g) = F ′(ϕf ′,g′) ◦ ϕ.

(We will use brackets 〈 〉 as above to denote groupoids instead of sets { })

Remark 2.2. This de�nes a stack, because objects of M ,N glue and mor-
phisms of N ,M ,M ′ glue.
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We calculate the �bered product in our example above: Given
X

fP

²²
pt // BG

the �bered product pt×BG X as the stack given by:

pt×BG X(Y ) =

〈
Y

²²

g // X

²²
ϕ

y¢ {{
{{

{{
{

{{
{{

{{
{

pt // BG

〉

= 〈(g, ϕ)|g : Y → X and ϕ : g∗P
∼=−→ G× Y 〉

∼= {(g, s)|g : Y → X and s : Y → g∗P a section}
∼= {g̃ : Y → P} = P (Y )

The �rst ∼= notes that to give a trivialization of g∗P is the same as to give a
section of g∗P , in particular the category de�ned above is equivalent to a set.
The second ∼= assigns to g̃ the composition of g̃ with the projection P → X
and the section induced by g̃.

By the last description, we get an equivalence pt×BGX ∼= P , i.e., pt→ BG
is the universal bundle over BG.
De�nition 2.3. A stack M is called a topological stack (resp. di�erentiable
stack) if there is a space (resp. manifold) X and a morphism p : X →M such
that:

1. For all Y →M the stack X ×M Y is a space (resp. manifold).
2. p has local sections (resp. is a submersion), i.e., for all Y → M the

projection Y ×M X → Y has local sections (resp. is a submersion).
The map X → M is then called a covering or an atlas of M (in the local-
section-topology).

The �rst property is very important, it therefore gets an extra name:
De�nition 2.4. A morphism of stacks F : M → N is called representable if
for any Y → N the �bered product M ×N Y is a stack which is equivalent to
a topological space.

This de�nition is the requirement that the �bres of a morphism should be
topological spaces and not just stacks. We will see later, that for topological
stacks this condition is equivalent to the condition that the morphism F is
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injective on automorphism groups of objects. The easiest example of such a
map is the map pt → BG we have seen above. The easiest example of a map
which is not representable is the map BG → pt forgetting everything (take
Y = pt).

Example 2.5 (Quotient-stacks). The example of quotients by group ac-
tions [X/G] are topological stacks (resp. di�erentiable, if X,G are smooth).
An atlas is given by the quotient map X → [X/G], de�ned by the trivial
G−bundle G×X → X, the action map G×X act−→ X is G−equivariant.

Just as in the case of G−bundles one shows that for any Y → [X/G] given
by a G−bundle P → Y there is a canonical isomorphism Y ×[X/G]X ∼= P (the
argument is given a second time in Lemma 3.1 below).

Some easy properties of representable morphisms are:

Lemma 2.6.
1. (Composition) If F : K →M and G : M → N are representable, then
F ◦G is representable.

2. (Pull-back) If F : M → N is representable, and G : M ′ → N is
arbitrary then the projection M ′ ×N M →M ′ is representable.

3. (Locality) A morphism F : M → N of topological stacks is representable
if and only if for one atlas Y → N the product M ×N Y →M is again
an atlas.

4. If M is a topological stack, then for any two morphisms fi : Yi →M the
�bered product Y1 ×M Y2 is again a topological space.

Proof. For the �rst claim note that Y ×N K ∼= (Y ×N M )×M K , the latter
is a space by assumption.

The second is similar: Y ×M ′ (M ′ ×N M ) ∼= Y ×N M .
If M → N is representable, then Y ×N M is a topological space and for

any T →M we have T ×M (Y ×N M ) = T ×N Y → Y has local sections.
On the other hand, if Y ×N M → M is an atlas, then for all T → N

which factor through T → Y → N the pull back T ×N M is again a space.
For an arbitrary T → N the projection Y ×N T → T has local sections by
assumption. This shows, that the �bered product T ×N M is a stack which is
equivalent to a functor, and that there is a covering Ui of T , such that Ui×N M
is a space. Now functoriality of �bered products assures, that these spaces can
be glued, thus T ×N M is a space.

For the last statement, note that Y1 ×M Y2
∼= (Y1 × Y2) ×M×M M where

the map ∆ : M →M ×M is the diagonal map. Thus the assumption may be
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rephrased as �the diagonal ∆ : M → M ×M is representable� and then the
claim follows from (3).

Remark 2.7. In the last statement of the lemma, there is a natural map
Y1×M Y2 → Y1×Y2, but in general this is not an embedding, thus the diagonal
M →M ×M is not an embedding in general.

One should also note that the �bered product Y1 ×M Y2 represents the
functor of maps T → Y1 × Y2 together with an isomorphism of the two pull
backs of the objects p∗i (Yi →M ), therefore it is sometimes denoted

Isom(Y1
f1−→M , Y2

f2−→M )

or simply Isom(f1, f2). In particular one sees that the automorphisms of a map
f : Y →M are given by sections of the map Aut(f) := (Y ×MY )×Y×Y Y → Y ,
because a map from a space T to Aut(f) is the same as a map s : T → Y
together with an isomorphism ϕ : f ◦ s⇒ f ◦ s.

Any property of maps which can be checked on submersions can now be
de�ned for representable morphisms of di�erentiable stacks, simply requiring
that the property holds for one atlas:

De�nition 2.8. A representable morphism M → N is an open embedding,
(resp. closed embedding, submersion, proper, ...) if for one (equivalently any)
atlas Y → N the map M ×N Y → Y is an open embedding (resp. closed
embedding, submersion, proper, ...).

Note that if M and N are spaces then every map is representable and we
get the usual notion of open embedding, etc.

In particular, this de�nition gives us a notion of open and closed substacks.

Example 2.9. For quotient-stacks [X/G] open and closed substacks are given
by open and closed G−equivariant subspaces Y ↪→ X, which de�ne embeddings
[Y/G] ↪→ [X/G].

Properties that can be checked on coverings of the source of a map (i.e., to
have local sections, or in the di�erentiable category to be smooth or submersive)
can even be de�ned for any morphism of stacks:

De�nition 2.10. An arbitrary morphism M → N of di�erentiable (resp.
topological) stacks is smooth (or a submersion) (resp. has local sections), if for
one (equivalently any) atlas X → M the composition X → N is smooth (or
a submersion) (resp. has local sections), i.e., for one (equivalently any) atlas
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Y → N the �bered product X ×N Y → Y is smooth (or a submersion) (resp.
has local sections).

The equivalence of the condition to be satis�ed for one or for any atlas is
proved as in Lemma 2.6.

Note that we can glue morphisms of stacks, i.e., given an atlas X → M
and a morphism M → N of topological or di�erentiable stacks we get an
induced morphism X → N together with an isomorphism of the two induced
morphisms X ×M X //// N , which satis�es the cocycle condition on X×M

X ×M X.
Conversely, given f : X → N together with an isomorphism p1 ◦ f ⇒ p2 ◦ f

of the two induced maps X×M X → N , which satis�es p∗23ϕ◦p∗12ϕ = p∗13ϕ on
X×

3
M we get a morphism M → N as follows: For any T →M we get a map

with local sections X ×M T → T and a map X ×M T → N together with a
glueing data on X×M X×M T = (X×M T )×T (X×M T ), and by the glueing
condition for stacks this canonically de�nes an element in N (T ).

In particular, a morphism M → BG is the same as a G-bundle on an atlas
X together with a glueing datum on X ×M X satisfying the cocycle condition
on X×M X×M X. If M = [X/H] is a quotient stack then X×M X ∼= H×X,
thus this is the same as an H−equivariant bundle on X.

More generally, for any class of objects which satisfy descent, i.e., which can
be de�ned locally by glueing data, we can de�ne the corresponding objects over
stacks to be given as a glueing-data on one atlas. For example vector bundles,
Hilbert-bundles, smooth �brations.

De�nition 2.11. A G−bundle over a stack M is given by a G−bundle PX

over an atlas X → P together with an isomorphism of the two pull-backs of
p∗1PX → p∗2PX onX×MX satisfying the cocycle condition onX×MX×MX.

The same de�nition applies to vector bundles, Hilbert bundles, locally trivial
�brations with �ber F .

Remark 2.12. Note that for any f : T →M (in particular for any atlas) this
datum de�nes a G−bundle PT,f → T , because by de�nition X ×M T → T has
local sections, and we can pull-back the glueing datum to (X ×M X ×M T ) ∼=
(X ×M T )×T (X ×M T ).

Therefore this automatically de�nes a di�erentiable/topological stack P
p−→

M (and p is representable) via:

P(T ) = 〈(f : T →M , s : T → PT,f a section)〉.
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An atlas of this stack is given by (PX , s : PX
diag−→ PX ×X PX). The mul-

tiplication map glues, therefore this stack also carries a natural morphism
G×P →P.

Remark 2.13. This shows that universal bundles on stacks classifyingG−bundles
or other geometric objects exist automatically. Further, since we can glue mor-
phisms of stacks the classifying stack will also classify G−bundles on stacks.

Remark 2.14. Note further, that given a G−bundle P on a stack M and a
map f : T →M the glueing datum for the two pull backs of PT,f to T ×M T
de�nes an action of Aut(s) on f∗P = PT,f .

The notion of a G−bundle could be de�ned directly in the language of
stacks. These de�nitions tend to get clumsy, because one has to take care of
automorphisms:

Let G be a Lie group, a locally trivial G-bundle over an analytic stack M

is a stack P together with a representable morphism P
p−→ M , an action

G×P
act−→P together with an isomorphism ϕ : p ◦ act ∼=−→ p, such that act is

simply transitive on the �bers of p, an isomorphism ϕ2 making the diagram

G×G×P

m,idP

²²

idG,act// P

act

²²
G×P

act // P

commute, such that in the induced isomorphisms in the associativity dia-
gram coincide. Further, there has to be a two morphism making the diagram

P
e,id //

id

##HH
HHH

HH
HH

G×P

act

²²
P

commute, compatible with multiplication. Finally to make a

bundle locally trivial there should exist an atlas X →M such that the induced
bundle P ×M X → X is trivial.

Claim. The two notions of G-bundles coincide. (We will never use this.)

Example 2.15. Once more, note that pt→ [pt/G] is a G−bundle over pt. The
action map G× pt→ pt is trivial. And we note that pt→ [pt/G] corresponds
to the trivial bundle, thus a trivialization of this bundle induces canonical
isomorphisms ϕ.
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3. Topological stacks as topological groupoids
We can generalize the example of quotients by group actions as follows:

Given an atlas X →M , the two projections X ×M X //// X de�ne the source
an target morphisms of a groupoid, the diagonal is the identity, interchanging
the factors the inverse and the composition is given by the projection to the
�rst and third factor of

X ×M X ×M X ∼= (X ×M X)×X (X ×M X)→ X ×M X.

We will denote this groupoid by X•.
Conversely, any groupoid Γ1 //// Γ0 de�nes a topological stack:

[Γ0/Γ1](Y ) := 〈(P p−→ Y, P
f−→ Γ0) a locally trivial Γ− bundle 〉

Recall that a locally trivial Γ-bundle is a diagram

P
f //

p

²²

Γ0

Y

together with an action Γ1 ×Γ0 P → Γ0 which is equivariant with respect to
composition of morphisms in Γ1, such that there is a covering U → Y and
maps fi : U → Γ0 such that P |U ∼= f∗i Γ•. Note that such a trivialization is the
same as a section U → P (obtained from the identity section of Γ).

Since we can glue Γ-bundles this is a stack. As in the case of quotients we
have:

Lemma 3.1. The trivial Γ-bundle Γ1 → Γ0 induces a map Γ0
π−→ [Γ0/Γ1]

which is an atlas for [Γ0/Γ1], the map π is the universal Γ-bundle over [Γ0/Γ1].
The groupoids Γ and Γ0,• are canonically isomorphic.

Proof. We only need to show, that for any Y fP−→ [Γ0/Γ1] given by a bundle P ,
there is a canonical isomorphism P

∼=−→ Γ0 ×[Γ0/Γ1] Y . This is seen as before:

(Γ0 ×[Γ0/Γ1] Y )(T ) ∼= 〈(T f−→ Y, T
g−→ Γ0, ϕ : fP ◦ f → π ◦ g〉

∼= 〈(f, g, ϕ : f∗P ∼= g∗Γ1)〉
∼= {(f, f̃ : T → P )|prY ◦ f̃ = f}
∼= {f̃ : T → P} = P (T ).



NOTES ON STACKS 13

Next one wants to know, whether two groupoids Γ•,Γ′• de�ne isomorphic
stacks. From the point of view of atlases this is easy: Given two atlases

X
p−→M , X ′

p′−→M

we get another atlas re�ning both, namely

X ×M ×X ′ → X →M

is again an atlas (since both maps are representable and have local sections,
the same is true for the composition).

Furthermore X ×M X ′ → X is a locally trivial X ′• bundle. This shows:

Lemma 3.2. Two groupoids Γ•,Γ′• de�ne isomorphic stacks if and only if
there is a groupoid Γ′′• which is a left Γ• bundle over Γ′0 and a right Γ′• bundle
over Γ0 such that both actions commute.

Example 3.3. If we have a subgroup H ⊂ G acting on a space X, then
[X/H] ∼= [X ×H G/G], since the maps X ← X × G → X ×H G de�ne a
G-bundle over X and an H-bundle over X ×H G.

Similarly, if H ⊂ G is a normal subgroup, acting freely on X, such that
X → X/H is a principal H−bundle, then [X/G] ∼= [(X/H)/(G/H)], because
G×H X is a G/H-bundle over X and a G-bundle over X/H.

Finally we can identify morphisms of stacks in terms of groupoids, if the
morphism is a submersion, then in [LTX] these are called generalized homo-
morphisms.

Given a morphism M
f−→ N of topological stacks, and atlases X →

M , Y → N we can form the �bered product X ×N Y → X. Since N → Y
is a locally trivial Y• bundle, this is a (right) Y• bundle as well. Furthermore,
since the map X → N factors through M we also get a X• (left) action on
X ×N Y . Note that (by de�nition) the map X ×N Y → Y is a submersion if
and only if M → N is a submersion.

Conversely, suppose we are given X ← P → Y , together with commuting
actions of X• and Y• on P , such that P is a locally trivial Y• bundle over X.
Then the X• action on P is a descent datum for the Y•-bundle, which de�nes
a Y• bundle over M , thus a morphism M → N .

Of course, the simplest case of this is the most useful, namely a morphism
of groupoids X• → Y• induces a morphism of the associated quotient stacks,
(P as above is then obtained by pulling back Y• to X = X0).
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4. Geometry II: Sheaves, cohomology, tangent spaces, dimension,
normal bundles

Given a representable submersion M → N we de�ne the dimension of the
�bers rel.dim(M /N ) as the dimension of the �bers of M ×N Y → Y for any
Y → N . This is well de�ned, because the relative dimension does not change
under pull-backs.

Given an analytic stack M de�ne its dimension by choosing an atlasX →M
and de�ning dim M := dim(X) − rel.dim(X/M ). This is independent of the
atlas (check this for a submersion X ′ → X →M ).

De�nition 4.1. A sheaf F on a stack is a collection of sheaves FX→M for
any X →M , together with, for any triangle

X
f //

h
⇒
½½6

66
Y

g¥¥ªª
ª

M

with an isomorphism ϕ : g ◦ f → h, a morphism of sheaves Φf,ϕ : f∗FY→M →
FX→M , compatible for X → Y → Z (we often write Φf instead of Φf,ϕ). Such
that Φf is an isomorphism, whenever f is an open covering.

The sheaf F is called cartesian if all Φf,ϕ are isomorphisms.

Remarks 4.2.
1. Instead of giving sheaves FX→M for all X →M , we could as well only

give the global sections FX→M (X), together with restriction maps for
U → X. Thus a reader not afraid of sites, will prefer to say that F is a
sheaf on the big site of spaces over M (with the standard open topology).

2. A cartesian sheaf F is the same as a sheaf FX→M =: FX on some
atlas X → M together with a descent datum, i.e., an isomorphism Φ :
pr∗1FX → pr∗2FX on X ×M X which satis�es the cocycle condition on
X×

3
M :
Given such a sheaf this de�nes a sheaf on every T →M , because we

get an induced descent datum on X×M T → T , this de�nes a sheaf on T .
Of course, this is compatible with morphisms, since for S f−→ T → M
the pull back commutes with descent.

Conversely, given a cartesian sheaf F and an atlas X → M we get
an isomorphism Φ := Φ−1

pr2
◦ Φpr1

: pr∗1FX → pr∗2FX on X ×M X.
This satis�es the cocycle condition, since on X×3

M we have pr∗12(Φpr1
) =

Φ−1
pr12
◦ Φpr1

and therefore pr∗12Φ = Φ−1
pr2
◦ Φpr1 .
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3. One might prefer to think only of cartesian sheaves on a stack, unfortu-
nately this category does usually not contain enough injectives. But the
subcategory of cartesian sheaves is a thick subcategory of all sheaves, i.e.
a full category closed under kernels, quotients and extensions.

We can de�ne global sections of a sheaf on M . For cartesian sheaves we can
simply choose an atlas X →M and de�ne
(1) Γ(M ,F ) := Ker( Γ(X,F ) //// Γ(X ×M X) ).

Lemma 4.3. For a cartesian sheaf F on M the group Γ(M ,F ) does not
depend on the choice of the atlas.
Proof. First note that the lemma holds if X is replaced by an open covering
X ′ = ∪Ui → X →M , because FX→M is a sheaf.

Secondly we only need to check the lemma for re�nements, i.e. an atlas
X ′ → M which factors X ′ f−→ X → M such that f has local sections. But
then by assumption any global section de�ned via X ′ induces one on X.

Similarly to the above construction, one can � as for G−bundles � give a
simplicial description of cartesian sheaves on a stack as follows: Choose an
atlas X →M . Then a sheaf on M de�nes a sheaf on the simplicial space X•,
i.e. a sheaf Fn on all Xn, together with isomorphisms for all simplicial maps
f : [m]→ [n] from f∗Fn → Fm.

Again we call a sheaf on a simplicial space cartesian, is all f∗ are isomor-
phisms.

Conversely for any map T →M a cartesian sheaf on X• de�nes a sheaf on
the covering X×M T → T , via the formula 1. This formula only de�nes global
sections, but we can do the same for any open subset U ⊂ T .
Remark 4.4. Note that the functor Shv(M ) → Shv(X•) de�ned above is
exact.
Example 4.5. A cartesian sheaf on a quotient stack [X/G] is the same as a
G−equivariant sheaf on X.

The category of sheaves of abelian groups on a stack M has enough injec-
tives, so we want to de�ne the cohomology of H∗(M ,F ) as the derived functor
of the global section functor. By the last example, for quotients [X/G] this will
be the same as equivariant cohomology on X.

As noted before, to de�ne cohomological functors we have to consider arbi-
trary sheaves on M resp. on X•. We de�ne global sections as:

Γ(M ,F ) := lim
←

Γ(X,FX→M )
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Where the limit is taken over all atlases X →M , the transition functions for
a commutative triangle X ′

f //

h
⇒
¾¾7

77
X

g¥¥ªª
ª

M

are given by the restriction maps Φf,ϕ.

Lemma 4.6. For a cartesian sheaf F on a stack M the two notions of global
sections coincide.
Proof. For any atlas X → M the maps X ×M X → M are atlases as well.
Thus we get a map

lim
←

Γ(X ′,FX′→M )→ Ker( Γ(X,F ) // // Γ(X ×M X) ).

Conversely we have seen in lemma 4.3 that we can de�ne a map in the
other direction as well. And it is not di�cult to check that these are mutually
inverse.

One tool to compute the cohomology of a sheaf on M is the spectral sequence
given by the simplicial description above:
Proposition 4.7. Let F be a cartesian sheaf of abelian groups on a stack M .
Let X →M be an atlas and F• the induced sheaf on the simplicial space X•
then there is an E1 spectral sequence:

Ep,q
1 = Hq(Xp,Fp)⇒ Hp+q(M ,F ).

The spectral sequence is functorial with respect to morphisms X
²²

// Y
²²x¡ xx

xxxx

M // N

, for

atlases X,Y of M and N .
Proof. (e.g., [Del74],[Fri82]) For a cartesian sheaf F on M we denote by F•
the induced sheaf on X•. We �rst show that H∗(M ,F ) is the same as the
cohomology of the simplicial space X• with values in F•.

Recall that global sections of a sheaf F• on X• are de�ned as
Γ(X•,F•) := Ker( Γ(X,F ) //// Γ(X ×M X),F ).

Thus for any cartesian sheaf F on M we have H0(X•,F•) = H0(M ,F ).
We can factor the the cohomology functor on X• as follows: First Rπ•,∗

from the derived category of sheaves on X• to the derived category of simplicial
sheaves on M , then the exact functor tot taking the total complex of a simplicial
complex and �nally take the cohomology over M .

Now for any U →M we can calculate (Rπ•,∗F•)|U as the direct image of the
simplicial space X•×M U

πU−→ U over U . But for any sheaf FU on U we know
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that tot(RπU,•,∗π∗UFU ) ∼= F , because πU has local sections: Indeed, since the
claim is local on U we may assume that πU has a section s : U → X ×M U .
But if we denote XU := X ×M U then Xn ×M U = XU ×U · · · ×U XU and
therefore the section s induces sections Xn → Xn+1 which induce a homotopy
on tot(RπU,•,∗π∗F ) proving that this complex is isomorphic to F .

Thus we have shown that H∗(M ,F ) = H∗(X•,F•).
The spectral sequence is de�ned via the same construction, factoringH∗ into

RΓ•(K) := (RΓ(Kn))n, which takes values in the derived category of simplicial
complexes and the (exact) functor taking the associated total complex tot.

The spectral sequence is the spectral sequence of the double complex corre-
sponding to the simplicial complex.

This spectral sequence gives one way to transport the properties of the co-
homology of manifolds to stacks:

Proposition 4.8.
1. (Künneth Isomorphism) There is a natural isomorphism

H∗(M ×N ,Q) ∼= H∗(M ,Q)⊗H∗(N ,Q).

2. (Gysin sequence) For smooth embeddings Z ↪→M of codimension c there
is a long exact sequence:

→ Hk−c(Z ,Q)→ Hk(M ,Q)→ Hk(M −Z ,Q)→
In particular, the restriction Hk(M ,Q)→ Hk(M −Z ,Q) is an isomor-
phism for k < c− 1.

This helps to do some well known cohomology computations in the language
of stacks:

Example 4.9. Let G be a group acting trivially on a space X. To give a
G−equivariant morphism from a G−bundle on a space T to X is the same as
to give a map T → X, thus [X/G] ∼= X × [pt/G]. And thus

H∗([X/G],Q) ∼= H∗(X,Q)⊗H∗([pt/G],Q).

Let T ∼= (S1)n be a torus. Then BT ∼= (BS1)n, because any T -bundle
is canonically the product of S1-bundles, once an isomorphism T ∼= (S1)n is
chosen. Thus H∗(BT,Q) ∼= H∗(BS1,Q)⊗n.

Finally we want to calculate H∗([pt/S1],Q) ∼= Q[c1] a polynomial ring with
one generator of degree 2. One way to do this is as follows: By the spectral
sequence 4.7 we see that the morphisms [C/C∗] → [pt/C∗] ← [pt/S1] induce
isomorphisms in cohomology, where the action of C∗ on C is the standard
action. This is because H∗(C × (C∗)n,Q) ∼= H∗((S1)n,Q). The same is true
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for [CN/C∗]→ [pt/C]. But here we can use the Gysin sequence: The inclusion
0 → CN induces a closed embedding [pt/C∗] → [CN/C∗] of codimension N .
The open complement [CN − 0/C∗] ∼= CPN−1, because the C∗ action is free
outside the origin. This proves the claim.

For the de�nition of f! maps in K−theory we need to de�ne normal bundles,
at least for nice representable morphisms:
Lemma/De�nition 4.10. Let f : M → N be a representable morphism of
di�erentiable stacks satisfying one of the following conditions:

1. f is a smooth submersion.
2. f is a smooth embedding.

Let Y p−→ N be any smooth atlas of N . Then normal bundle TM×N Y→Y

descends to a vector bundle TM→N on M . This does not depend on the choice
of Y and is called the normal bundle to f .
Proof. We only need to note that formation of the normal bundle commutes
with pull-back:

Therefore the two pull backs of the normal-bundle of M×N → Y to (M×N

Y ) ×M (M ×N Y ) are both canonically isomorphic to the normal bundle to
(M ×N (Y ×N Y )→ (Y ×N Y ). Therefore the bundle descends to a bundle
on M .

Since for manifolds formation of the normal bundle commutes with pull-
backs, the same holds for stacks:
Corollary 4.11. If M → N is a morphism as in the above lemma and g :
N ′ → N is an arbitrary morphism, then TM×N N ′→N ′ ∼= g∗TM→N .

Similarly one gets short exact sequences for the normal bundle of a compo-
sition, because the corresponding sequences for an atlas descend.

Tangent spaces to di�erentiable stacks will only be stack-versions of vector
bundles. Nevertheless de�ne:
Lemma/De�nition 4.12 (Tangent stacks). Let M be a di�erentiable stack
and X → M be a smooth atlas. Then we can take the tangent spaces to the
groupoid X•:

T (X ×M X ×M X) ////// T (X×MX) // // TX

by functoriality this is again a groupoid, the quotient [TX/T (X ×M X)] is
independent of the choice of X and is called TM , the tangent stack to M .
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The �bers of the projection TM → M are isomorphic to [V/W ], where
V,W are �nite dimensional vector spaces, and W acts on V by some linear
map W → V , which is not injective in general.

5. S1-Gerbes or twists
Informally a gerbe(2) over some space X is a stack X → X which has the

same points as X, i.e. the points of X are isomorphism classes of objects in
X (pt). An S1-gerbe is a gerbe such that the automorphism groups of all points
pt→X are isomorphic to S1 in a continuous way.

The easiest example of such an object is [pt/S1]→ pt. More generally these
objects occur naturally in many moduli-problems, e.g. every U(n)-bundle with
�at connection on a compact Riemann surface has an automorphism group S1,
in good situations the stack of such objects is a S1-gerbe over the coarse moduli
space. This gerbe gives the obstruction to the existence of a Poincaré bundle
on the coarse moduli-space. Finally these objects seem to appear naturally in
K-theoretic constructions, since the choices of Spinc-structures on an oriented
bundle form a S1-gerbe (locally there is only one such choice, but the trivial
Spinc-bundle has more automorphisms).

De�nition 5.1. Let X be a space. A stack X
π−→ X is called a gerbe over

X if
1. π has local sections, i.e., there is an open covering ∪Ui = X and sections
si : Ui →X of π|Ui .

2. Locally over X all objects of X are isomorphic, i.e., for any two objects
t1, t2 ∈X (T ) there is a covering ∪Ui = T such that t1|Ui

∼= t2|Ui .
A gerbe X → X is called a (continuous) S1-gerbe if for any T → X, together
with a section s : T →X there is an isomorphism Aut(s) := (T ×X T )×T×T

T ∼= S1 × T as family of groups over T , which is compatible with composition
of morphisms T ′ s′−→ T

s−→X .
Remarks 5.2.

1. As one might expect, the condition that the automorphism group of any
object is S1 implies that for any section s : T →X the map T ×X T →
T ×X T is an S1-bundle. Since the �bres of this map are given by two
points together with a morphism between the images in X the �bres are
S1−torsors. To see that the map is indeed a locally trivial bundle one

(2)Gerbe is the french word for sheaf, to avoid another wrong translation (cf. faisceaux,
champ etc.) there seems to be an agreement to keep the french word - or at least its spelling.
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can replace T by T ×X T in the above de�nition to get an isomorphism
(T ×X T ) ×(T×XT ) (T ×X T ) ∼= S1 × (T ×X T ) (one only has to write
down, the functor represented by the left hand side).

2. An S1-gerbe over a topological/di�erentiable space X is always a topo-
logical/di�erentiable stack, an atlas is given by the sections si. By the
previous remark we know that Ui×X Ui is a space and the two projections
are S1-bundles, in particular smooth.

This also shows that we might replace the condition that the automor-
phism groups are isomorphic to S1 for all objects, by the same condition
for sections of one atlas of X. Representability of arbitrary �bered prod-
ucts T1×X T2 then follows, since locally over X we can glue S1-bundles.
(This de�nition will be explained more carefully below.)

3. As in the case of bundles, one there is also a notion of discrete S1-gerbe,
simply by choosing the discrete topology for S1 in the above de�nition.

4. Any S1-gerbe on a contractible space is trivial, i.e. isomorphic to X ×
[pt/S1]→ X.

Perhaps this is obvious. If not, one might reason as follows: Choose a
covering Ui of X with sections si : Ui → X, such that all Ui, Ui ∩ Uj are
contractible. Then Ui ×X Uj → Ui ∩ Uj is a locally trivial S1 bundle,
thus trivial. Therefore the obstruction to glue the sections si gives an
element in H2(X,S1) = 0 (the classi�cation of gerbes will show that this
H2 classi�es S1-gerbes).

5. A gerbe with a section is called neutral. Gerbes which are isomorphic to
X × [pt/G]→ X for some group G are called trivial gerbes over X.

We will need a generalization of the above, to include gerbes over topological
stacks M instead of spaces X. Again we only have to replace coverings by
representable morphisms with local sections:

De�nition 5.3. Let M be a topological stack. A stack M τ π−→M is called
a gerbe over M if

1. π has local sections, i.e. there is an atlas X →M and a section s : X →
M τ of π|X .

2. Locally over M all objects of M τ are isomorphic, i.e. for any two objects
t1, t2 ∈M (T ) and lifts s1, s2 ∈M τ (T ) with π(si) ∼= ti, there is a covering
∪Ui = T such that s1|Ui

∼= s2|Ui .
A gerbe M τ →M is called a (continuous) S1-gerbe if there is an atlas X p−→
M of M , a section (s : X → M τ , ϕ : π ◦ s ⇒ p) such that there is an
isomorphism Φ : Aut(s/p) := (X ×Mτ X) ×X×MX X ∼= S1 × X as family of
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groups over X, such that on X ×M X the diagram

Aut(s ◦ pr1/p ◦ pr1)
pr∗1Φ

))SSSSSSSSSSSSSS

∼= // Aut(s ◦ pr2/p ◦ pr2)
pr∗2Φ

uukkkkkkkkkkkkkk

X ×M X × S1

,

where the horizontal map is the isomorphism given by the universal property
of the �bered product, commutes (i.e. the automorphism groups of objects of
M̃ are central extensions of those of M by S1).

Example 5.4.
1. The easiest example of a S1-gerbe on a quotient stack [X/G] is given

by a central extension S1 → G̃
pr−→ G, then G̃ also acts on X and pr

induces a map [X/G̃] π−→ [X/G], which de�nes a gerbe over [X/G]: The
atlas X → [X/G] lifts to [X/G̃], this shows (1). And (2) follows, because
locally any map T → G can be lifted to G̃.

Finally the map S1 → G̃ induces a morphism [X/S1]→ [X/G̃] which
induces an isomorphism X× [pt/S1] ∼= [X/S1]

∼=−→ X×[X/G] [X/G̃]. This
shows the last condition of the de�nition.

2. This generalizes to groupoids: An extensions of a groupoid Γ1 // // Γ0

by S1 is a groupoid Γ̃1 //// Γ0 with a morphism: Γ̃1 ////

p

²²

Γ0

id

²²
Γ1 //// Γ0

such

that p is an S1-bundle and the S1-action commutes with the source and
target morphisms.

As before this de�nes a S1-gerbe [Γ0/Γ̃1]→ [Γ0/Γ1].

Remarks 5.5.
1. As before a S1-gerbe is always a di�erentiable stack, the section s : X →

M τ of the particular atlas X →M is an atlas for M τ :
The map s is representable, because by base-change (Lemma 2.6)

X×M M τ →M τ is representable and the canonical mapX → X×M M τ

induced by s is surjective by de�nition and representable sinceX×X×M Mτ

X ∼= Aut(s/p) ∼= S1 ×X.
Thus the free action of Aut(s/p) induces a structure of an S1 bundle

on X ×Mτ X → X ×M X. As in remark 5.2(1) one can prove that this
map is a locally trivial S1-bundle.
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Furthermore, the last condition of the de�nition ensures, that this
de�nes an S1�extension of groupoids. Thus every S1 gerbe can be con-
structed as in the example given above.

2. Since we just saw that for any T s−→M τ π−→M the group Aut(s/s ◦ π)
is representable, locally canonically isomorphic to S1 we get a canonical
isomorphism Aut(s/s ◦ π) ∼= S1 × T . Thus again we could have used this
as a de�nition of S1-gerbes.

3. Thus we can pull-back gerbes: For any N → M and any S1−gerbe
M τ →M the stack N τ := M τ ×M N is a S1-gerbe over N , since for
any T → N τ we have T ×N N τ = T ×N (N ×M M τ )T = T ×M M τ .

4. A morphism of S1-gerbes is a morphism of the corresponding stacks over-
the base stack, which induces the identity on the central S1 automor-
phisms of the objects.

As before we call a gerbe neutral if it has a section. To state this in a di�erent
way recall that for any bundle P on M̃ and any s : T → M̃ we get an action
of Aut(s) on s∗P. In particular for a line bundle L the pull back carries an
S1-action. Thus S1 acts on every �bre by a character χ = ()n : S1 → S1, where
n is some integer, constant on connected components of T resp. M̃ . A line
bundle on M̃ is called of weight n if n is constant on all connected components.

Lemma 5.6. For a S1-gerbe π : M̃ →M the following are equivalent:
1. M̃ →M has a section s.
2. M̃ ∼= [pt/S1]×M as stacks over M .
3. There is a unitary line bundle of weight 1 on M̃ .

Proof: Of course 2. ⇒ 1.. Furthermore, the universal bundle pt → [pt/S1]
is of weight 1, thus 2.⇒ 3..

Given a unitary line bundle of weight 1 we get a morphism M̃ →M ×BS1.
This map induces an isomorphism on automorphism groups of objects, because
the kernel of the map AutM̃ → AutM is S1 and this kernel is mapped isomor-
phically to the automorphisms of S1 bundles, since we started from a bundle
of weight 1. The map is also locally essentially surjective on objects, because
locally every object of M can be lifted to an object of M̃ and locally every
S1-bundle is trivial. And �nally the map is a gerbe, since locally all objects in
the �bre are isomorphic. This implies that the map is an isomorphism.

This also shows, that the total space of the S1-bundle is isomorphic to M ,
thus any line bundle of weight 1 induces a section.



NOTES ON STACKS 23

Finally, given a section M → M̃ we get an isomorphism S1×M ∼= M ×M̃
M ×M×M M M = M ×M̃ M . The compatibility condition shows, that this
makes M into an S1-bundle over M . ¤

Remark 5.7. The descriptions 2. and 3. of the lemma show that line bundles
on M act on trivializations of a S1-gerbe. In description 2. this is because a
morphism to [pt/S1 is the same as a unitary line bundle on M and in descrip-
tion 3. one sees, that two line bundles of weight 1 di�er by a line bundle on
M .

There is a description of isomorphism classes of gerbes in terms of cocycles,
see for example [Bre94] and [Cra]. We write S 1 for the sheaf of continuous
sections of the trivial bundle S1 ×M →M :

Proposition 5.8.
1. Let M be a topological stack. Then there is a natural bijection

{Isom. classes of S1-gerbes over M } ∼= H2(M ,S 1).

The same holds if S1 is replaced by any abelian, topological group.
2. If M is a di�erentiable stack such that the diagonal ∆ : M →M ×M

is proper, then the boundary map of the exponential sequence induces an
isomorphism H2(M ,S 1)

∼=−→ H3(M ,Z).

Indication of the proof: The two parts of the theorem are of very di�erent
nature, they are only put in one statement, because the cocycles in (2), called
Dixmier-Douady classes, are often used to characterize gerbes.

For the �rst part we will �rst describe how to associate a cohomology class
to a gerbe M τ .

Choose an atlas X →M which is the disjoint union of contractible spaces,
e. g., take any atlas Y and then chose a covering of Y by contractible spaces.
We use the spectral sequence Hp(X×

q+1
M ,S 1) ⇒ Hp+q(M ,S 1) to calculate

H2(M ,S 1). By the choice of X this is:
H2(X, S 1) = 0 . .

H1(X, S 1) = 0 H1(X ×M X, S 1)
d1 //

d2

++WWWWWWWWWWWW H1(X
×3

M , S 1)
.

H0(X, S 1) // H0(X ×M X, S 1)
d1 //

H0(X
×3

M , S 1)
d1 //

H0(X
×4

M , S 1)
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Where the di�erentials d1 are given by the alternating sum over the pull-
backs (since the spectral sequence is constructed from a simplicial object by
taking alternating sums of the simplicial maps).

As explained before the choice of a trivialization of the pull-back X
s−→

Xτ = X ×M M τ of M τ to X induces a map p̃ : X →M τ and an S1-bundle

P := X ×Mτ X = Isom(p̃ ◦ p1, p̃ ◦ p2)→ Isom(p ◦ p1, p ◦ p2) = X ×M X

thus a class in H1(X ×M X,S 1).
This actually lies in the kernel of d1, because on X×

3
M the composition

induces an isomorphism

Φ123 : Isom(p̃ ◦ p1, p̃ ◦ p2)⊗ Isom(p̃ ◦ p2, p̃ ◦ p3)
∼=−→ Isom(p̃ ◦ p1, p̃ ◦ p3).

We will see below, that the associativity of the composition exactly means
that this also lies in the kernel of d2. Furthermore we may view Φ123 as a sec-
tion of the bundle p∗12P⊗p∗23P⊗(p∗13P )−1. This shows that the choices of Φ123,
which de�ne an associative composition form a torsor for ker(H0(X×

3
M ,S 1)→

H0(X×
4
M ,S 1)). Two such choices de�ne isomorphic gerbes, whenever we

change Φ123 by an automorphism of P , i.e., an element of H0(X×
2
M ,S 1).

To see that this construction de�nes an element in H2(M ,S 1) we have to
check that the we found an element in the correct extension of the E11

2 by the
E0,2

2 term and that the di�erential d2 corresponds to associativity. Accepting
this for a moment, we see that the process can be reversed:

Cohomology classes as above can be used to glue a groupoid overX×MX →
X. The boundary maps in the spectral sequence assure the associativity of
the composition. (One should note that in the construction Φ123 also de�nes
isomorphisms P−1 ∼= tw∗P where tw = ()−1 : X ×M X → X ×M X is the
inverse map of the groupoid X×•M , and trivialization of the restriction of P to
the diagonal P |∆(X).)

To analyze the di�erentials of the spectral sequence we have to recall its
construction: We have to chose acyclic resolutions of S1 on X×

i
M . Thus we

choose a covering X2
α of X×M X such that all the intersections X2

α1
∩· · ·∩X2

α3

are acyclic (this condition could be avoided if we would allow for another index).
Then we chose a covering X3

β of X×3
M which has the same property, such that

all projections prij : X×
3
M → X×

2
M map X3

β to some X2
prij(β). We do the same

for X×4
M and get a covering X4

γ . Taking global sections of S1 over these spaces
we get a double complex from which the spectral sequence is induced, the
total complex calculates H∗(M ,S 1). Thus writing X2

αα′ for the intersection
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X2
α ∩X2

α′ we calculate H2(M ,S 1) as the cohomology of:
⊕

α

H0(X2
α) d1−→

⊕

α,α′
H0(X2

αα′ ,S
1)⊕

⊕

β

H0(X3
β ,S

1)

d2−→
⊕

αα′α′′
H0(X2

αα′α′′ ,S
1)⊕

⊕

β,β′
H0(X3

ββ′ ,S
1)⊕

⊕
γ

H(X4
γ ,S

1)

And the di�erentials are the sum of the simplicial and the covering di�erentials.
Thus the components of d2 are:

d2(sαα′ , sβ)α,α′,α′′ = sαα′s
−1
αα′′sα′α′′

d2(sαα′ , sβ)β,β′ = pr
∗
12spr12(β)pr12(β′)pr

∗
13s

−1
pr13(β)pr13(β′)pr

∗
23spr23(β)pr23(β′) − sβ + sβ′

d2(sαα′ , sβ)γ = pr
∗
123spr123(γ)pr

∗
124s

−1
pr124(γ)pr

∗
134spr134(γ)pr

∗
234s

−1
pr234(γ)

More precisely, the indices on the right hand side depend on the projections.
If the �rst component is zero sαα′ de�nes an S1-bundle P on X ×M X. The
vanishing of the second summand assures that sβ de�nes a section of pr∗12P ⊗
pr13 ∗ P−1 ⊗ pr∗23P . And �nally the third summand guarantees associativity
as claimed.

¤(1)

The second part of the proposition depends on the existence of a Haar-
measure on compact groupoids (i.e. groupoids de�ning stacks with proper
diagonal M →M ×M , in particular all automorphism groups of objects are
proper over the parameter space).

Using this Crainic [Cra] shows that a generalization of the Poincaré lemma
holds for such stacks, i.e. the sheaves of continuous R-valued functions are
acyclic. Therefore by the exponential sequence H2(M ,S 1) ∼= H3(M ,Z).

¤

Remark 5.9. As one might expect from the proof above, the group structure
of H2(X,S 1) can also be implemented as an operation on stacks: Given S1-
gerbes M τ , M τ ′ on M one can take the �bred product M τ ×M M τ ′ , which is
an S1×S1 and forget the anti-diagonal S1−automorphisms. To avoid technical
arguments we can simply choose an atlas X → M on which both gerbes are
trivial. Then we have already seen that X ×Mτ×MMτ′ X → X ×M X is an
S1 × S1-bundle and the multiplication S1 × S1 → S1 de�nes an associated
S1-bundle X1 → X ×M X and it is not di�cult to check, that this de�nes a
groupoid X1 // // X .

In the special case of quotient stacks and gerbes given by two group exten-
sions this is simply the Yoneda product of extensions.
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Another description of gerbes is via projective bundles. Given any (possibly
�nite dimensional) Hilbert space H. One gets an exact sequence of groups:

1→ S1 → U(H)→ PU(H)→ 1

By the �rst example of gerbes this de�nes an S1�gerbe BU→ BPU. In partic-
ular for any PU bundle P on a space X we can pull back this gerbe to X via the
classifying morphism X → BPU. The category of sections X ×BPU BU(T ) is
the category of U bundles on T together with an isomorphism of the associated
PU bundle and the pull back of P to T .

This shows that the gerbe obtained in this way corresponds to the image of
P under the boundary map δ : H1(X,PU)→ H2(X,S 1). In particular if H is
n-dimensional we may factorize this map via the sequence:

0→ Z/nZ→ SU(n)→ PU(n)→ 0,

i.e., the classes obtained in this way are n-torsion.
For the purpose of this Seminar it will be su�cient to note that the gerbes

that arise naturally in K−theory are always obtained by PU bundles, this will
be explained in the next section.

If X is a manifold (and not a stack), then the fact that BPU is a K(Z, 3)-
space (if H is an in�nite dimensional Hilbert space) shows, that δ is an isomor-
phism, thus any S1 gerbe arises in this way.

This is less clear for di�erentiable stacks, and Proposition 2.38 in [LTX]
gives the result. Unfortunately, since I am not an analyst, their proof is to
short for me. In section 6 we will prove that all S1-gerbes arise from projective
bundles, if the stack is a local quotient stack, a notion also de�ned in that
section.

In K-theory one can de�ne Thom-isomorphisms for Spinc-bundles and one
can do the same for bundles on stacks (although one has to be a bit careful
with the de�nition the Thom-space of a bundle). As remarked before the
choices of Spinc-structure de�ne a S1 gerbe, simply pulling back the universal
gerbe BSpinc → BSU(n). Thus every bundle P on a a space X de�nes a
gerbe Xτ → X such that the pull back of P to Xτ has a canonical Spinc-
structure. (We get a stack and not a space, because the sequence of groups
is S1 → Spinc → SO in contrast to orientation problems where the cokernel
imposes the obstruction).

If the bundle is not orientable one �rst has to chose some Z/2 covering on
which one chooses an orientation. And then one takes the above gerbe on the
orientation covering.
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Again one has to be careful de�ning a group structure on these objects, since
if we have two bundles which admit Spinc-structures on the orientation cover,
their tensor product does not necessarily admit a Spinc structure on the sum
of the orientation coverings.

The obstruction comes from the universal example on BZ/2 × BZ/2 and
this gives a geometric description of the cup product of two torsion-classes:

Lemma 5.10. Given �nite abelian groups A,B,C and a bilinear form <,>:
A×B → C, then:

1. <,> de�nes an abelian extension 0 → C → G → A × B → 0 by the
cocycle σ(a, b, a′, b′) =< a,−b′ > + < a′,−b >.

2. Given an A-bundle PA and a B-bundle PB on a space X corresponding
to classes c(PA) ∈ H1(X,A), c(PB) ∈ H1(X,B). De�ne a C gerbe on X,
given by the pull back of the gerbe BG → BA × BB de�ned in (1), via
the classifying map X → BA × BB. The Dixmier Douady class of this
gerbe is the cup product c(PA) ∪ c(PB).

Proof. Since the cup product commutes with pull-backs, we only may assume
X = BA×BB and take PA, PB the universal bundles.

In this case the standard atlas pt→ BA×BB is acyclic, as well as all �bered
products pt×B(A×B) · · · ×B(A×B) pt.

Thus the spectral sequence we used to calculate the Dixmier-Douady classes
is a complex. The class of the universal C-gerbe therefore is given by the cocycle
s(a, b, a′, b′) =< a,−b′ > + < a′,−b >. And the same cocycle represents the
cup-product.

6. Local quotient stacks
Freed, Hopkins and Teleman de�ne K−functors only for local quotient

stacks, so we need to introduce this concept and we show that for these stacks
any gerbe arises from a projective Hilbert bundle, and the latter is almost
uniquely determined by the gerbe. References for this section are [FHT],[LTX]
and the preprint of Atiyah and Segal [AS].

De�nition 6.1. A di�erentiable stack M is called a local quotient stack if
there is a covering Ui of M by open substacks, such that each Ui

∼= [Ui/Gi],
where Gi is a compact Lie group acting on a manifold Ui.

Quite a lot of stacks have this property, a very general result was recently
given in [Zun]. Of course if a stack M is a local quotient stack, then the
diagonal M →M ×M is proper. We say that M has proper isotropy.
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By the standard slice theorems (e.g. [DK00] Chapter 2) to be a local
quotient stack is a local property as follows (note that we assumed the Lie
groups to be compact):

Lemma 6.2. (To be local quotient stack is a local property) Let M be a local
quotient stack, X →M an atlas. Given a point x ∈ X and x ∈ U ⊂ X open
there is an open substack U ⊂ M together with a presentation U ∼= [Y/G]
where G is a compact Lie group acting on a contractible manifold Y , and a
commuting diagram:

U // M

Y

f

OO

// [Y/G]

OO

and x ∈ Im(f).

Corollary 6.3. Any S1-gerbe on a local quotient stack is again a local quotient
stack.

Proof of Lemma 6.2. Shrinking M we may assume that M ∼= [X ′/G′] is a
global quotient stack. Further we may assume that X = X ′, because the
projections of the �bered product X ′ ← X ×M X ′ → X are submersions, thus
we may choose a preimage x̃ of x in the �bered product and a local section
X ′ ⊃ U → X ′ ×M X passing through x̃.

But now we can �nd a contractible slice of the group action, which gibes us
a local presentation as U = [D/StabG(x)] , where D is a ball and the action of
the stabilizer of x comes from the linear action on the tangent space at x.

Proof of Corollary 6.3. We may assume M = [X/G] is a global quotient. Since
gerbes on contractible spaces are trivial, we may apply the last lemma to get a
covering of M by open substacks of the form [Y/H] such that the given gerbe is
trivial on Y . Since Y is contractible, the gerbe is induced form a S1−extension
of H.

To end the section on local quotient stacks, we want to show that for these
stacks any S1-gerbe is de�ned by a projective bundle, which can be chosen in
an almost canonical way (up to non canonical isomorphism). To this end we
�rst need the concept of a universal Hilbert bundle, as de�ned in [FHT].
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De�nition 6.4 (Freed, Hopkins, Teleman [FHT])
A Hilbert bundle H on a di�erentiable stack M is called universal if any

other Hilbert bundle H ′ is a direct summand of H. A universal Hilbert bundle
is called local if its restriction to any open substack is universal.

Lemma 6.5 ([FHT] C.3). A universal bundle H on a stack M has the ab-
sorption property: For any Hilbert bundle H ′ on M there is an isomorphism
H ⊕H ′ ∼= H.

The basic proposition is:

Proposition 6.6 ([FHT] C.4). Let M be a local quotient stack. Then there
exists a universal Hilbert H bundle on M . This bundle is local, and its group
of unitary automorphisms is weakly contractible.

We sketch the argument of [FHT]: On manifolds all Hilbert bundles are
trivial, because the in�nite unitary group U is contractible. Now let M be a
global quotient stack [X/G] (G a compact Lie group). Let π : X → [X/G] be
the universal G bundle on [X/G]. Then for any Hilbert bundle H on [X/G]
the bundle π∗H is trivial, and there is a canonical injection H → π∗π∗H ,
where π∗ means the bundle of �ber wise L2 sections. Thus π∗ of the trivial
Hilbert bundle on X is a universal bundle which is local.

Now the global automorphisms of this Hilbert bundle areG-equivariant maps
from X → U(H ⊗ L2(G)), and the space of these maps is contractible ([AS]
Proposition A3.1). Thus for a local quotient stack one can glue the local bundles
and the result is unique up to isomorphism. Thus it gives a universal bundle
on M .

6.1. S1-gerbes on local quotient stacks. To see that any S1 gerbe arises
from a projective bundle one is tempted to use the cohomology sequence coming
from the short exact sequence 1 → S1 → U → PU → 1. Unfortunately there
is no nice de�nition of H2 for non-abelian groups, therefore we need some
preparations, to get canonical elements in H1(M ,PU).

First we need an absorption property for projective bundles, which I learned
from [AS].

Lemma 6.7. Let M be any topological stack.
1. The tensor product induces a map

⊗ : H1(M ,U)×H1(M ,PU)→ H1(M ,PU).
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2. The tensor product does not change the induced gerbe, i.e., denote by ∂
the boundary map ∂ : H1(M ,PU) → H2(M ,S 1), then for any Hilbert
bundle H and any projective bundle P on M we have ∂(H ⊗P ) = ∂(P ).

Proof. Any isomorphismH⊗H ∼= H induces a group homomorphism U×PU→
PU. This is well de�ned up to inner automorphisms of PU.

For the second part we only have to note that the choice of a Hilbert U
structure on P also induces one on H ⊗ P , and this is compatible with the
S1 action on U, thus the gerbes coming from the obstruction to such a lift are
isomorphic.

De�nition 6.8. (Atiyah-Segal(3) [AS]) A projective Hilbert bundle P (i.e. a
PU-Bundle) on a di�erentiable stack M has the absorption property if for any
Hilbert bundle H on M there is an isomorphism H ⊗ P ∼= P .

We denote the set of isomorphism classes of projective bundles having the
absorption property by H1(M ,PU)abs.

Remark 6.9. If Huniv is a universal Hilbert bundle on a stack M and P is
any projective bundle, then Huniv ⊗ P has the absorption property.

Lemma 6.10. Let M be any di�erentiable stack. Then the map
H1(M ,PU)abs → H2(M ,S 1)

is injective.

Proof. Let P be a projective bundle, having the absorption property and let
π : M̃ →M be the S1-gerbe of Hilbert bundle structures on P . Then π∗P ∼=
P(H) for some Hilbert bundle H on M̃ .

Aside on weights: Because S1 is canonically contained in the automorphism
group of any object of M̃ , it acts on the sections of any Hilbert bundle H on
M . Thus the canonical decomposition of the sheaf of sections of H induces
a decomposition o H = ⊕i∈ZHi, according to the characters of S1, called
weights. Bundles of weight 0 � i.e. bundles for which H = H0 � are pull-backs
of Hilbert bundles on M . Bundles of weight 1 � i.e. H = H1 � are exactly
the bundles, which induce projective bundles on M whose associated gerbe is
M̃ .

Thus in our situation H is a bundle of weight 1 and we want to show, that
it has the absorption property for Hilbert bundles of weight 1 on M̃ . Let H ′

be an irreducible Hilbert bundle of weight one on M̃ . Then H ⊗H ′,∗ has

(3)In their article [AS] this property is called regular, we keep the terminology of [FHT]
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weight 0, thus H ⊗H ′∗ ∼= π∗(HM ). Since P has the absorption property,
we know that H ∼= H ⊗ π∗(H ′′∗)⊗. Thus H ⊗H ′∗ has a non vanishing
section (even countably many linear independent sections), which proves the
absorption property.

By uniqueness of universal bundles this shows that H is determined by the
gerbe.

Remark 6.11. If there is a universal Hilbert bundle on M , which is local,
then the restriction to open substacks preserves the absorption property. And
conversely it is then enough to check this property locally.

Proposition 6.12. Every S1-gerbe on a local quotient stack M comes from a
projective bundle. Moreover, the natural map

H1(M ,PU)abs → H2(M ,S 1)

is an isomorphism.

Proof. Let M̃ be an S1-gerbe on M . By Lemma 6.3 this is again a local
quotient stack and therefore it has a universal Hilbert bundle H̃ . As in the
previous lemma, we denote the direct summand of weight 1 of H̃ by H̃1. This
bundle is non-trivial, since it is locally the gerbe is de�ned by a group extension,
thus locally the bundle is non trivial. Thus H̃1 de�nes a projective bundle on
M , which gives the gerbe.
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