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1 Introduction

The main purpose in the estimation of causal e¤ects of a treatment or intervention is to

estimate its total impact on a particular outcome. Commonly estimated parameters are the av-

erage treatment e¤ect, the average treatment e¤ect on the treated, and the marginal treatment

e¤ect.1 In addition, it is of interest to estimate causal mechanisms through which the treatment

or intervention works, and/or causal e¤ects of the treatment on the outcome net of these mech-

anisms. Knowledge of these causal parameters allows a better understanding of the treatment

and, as a result, can be used for policy purposes in the design, development, and evaluation

of interventions. This paper analyzes, within a heterogeneous e¤ect environment, identi�ca-

tion and estimation based on an unconfoundedness or selection-on-observables assumption of

the average causal mechanism through which a treatment a¤ects an outcome and the average

causal e¤ect of the treatment net of this mechanism. Using the potential outcomes framework,

we precisely de�ne our estimands of interest, consider di¤erent assumptions that can be em-

ployed in their identi�cation and estimation when only information on additional covariates is

available, and analyze other related parameters mentioned elsewhere in the literature.

To brie�y motivate the importance of understanding the mechanism through which a treat-

ment works, consider the following example that is later employed as empirical illustration

of the methods developed in the paper. When analyzing the causal e¤ect of smoking during

pregnancy on birth weight, it is of particular interest to determine what part of this causal

e¤ect works through a shorter gestation. If it were determined that the causal e¤ect of smoking

during pregnancy on birth weight works mainly through a shorter gestation time (as opposed

to working through a low intrauterine growth), then medical procedures that help delay birth

may be deemed helpful.

Several studies in economics are concerned with estimating mechanism e¤ects and e¤ects

net of one or more mechanisms, many of which are based on unconfoundedness-type assump-

tions. For example, the literature on the e¤ect of school quality on labor market outcomes

recognizes that part of this e¤ect may work through increasing years of schooling. To address

this, Dearden et al. (2002) present results of the e¤ect of school quality on wages with and

without controlling for schooling to measure the total impact of school quality on wages and

the e¤ect that works through higher educational attainment. Similarly, Black and Smith (2004)

use propensity score matching methods with and without including years of education in the

propensity score speci�cation. Another example is Simonsen and Skipper (2006), who estimate

the e¤ect of motherhood on wages in Denmark controlling for various mechanisms through

which motherhood may a¤ect wages.2 They use a propensity score matching approach and dis-

1See, for instance, Heckman, Lalonde and Smith (1999) for a detailed discussion of these parameters.
2For instance, they consider as a possible channel the sector of employment because, as they point out,

Denmark�s public sector is known to have higher bene�ts regarding maternity leave and more �exible working
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cuss assumptions needed to estimate the total e¤ect of motherhood on wages and the e¤ect of

motherhood on wages net of the mechanisms. As a �nal example, Ehrenberg et al. (2007) look

at the channels or mechanisms through which the Andrew W. Mellon Foundation�s Graduate

Education Initiative (GEI) a¤ected the attrition and graduation probabilities of PhD students

in various academic departments during the 1990s.3 In general, every time causal e¤ects of a

treatment are estimated, it is natural to ask about the relative importance of di¤erent potential

causal mechanisms through which the treatment works.4

A common problem in the existing literature attempting to estimate causal mechanisms of

a treatment is that the parameters are not clearly de�ned or are de�ned within the context of

the estimation procedure used (e.g., OLS, matching) and, most importantly, the assumptions

needed for a causal interpretation of the estimates are not always made explicit.5 To avoid this

problem, we use the potential outcomes framework (Neyman, 1923; Rubin, 1974) to clearly

de�ne our parameters of interest and decompose the average (total) treatment e¤ect into the

average causal mechanism and the average causal e¤ect net of that mechanism. In addition,

to give a causal interpretation to our parameters we use the concept of principal strati�cation

introduced in Frangakis and Rubin (2002) for estimating treatment e¤ects controlling for a

post-treatment variable (in our case the mechanism variable). The basic idea behind Frangakis

and Rubin (2002) is to compare treated and control individuals based on the potential values

of the post-treatment variable. As stressed in Rubin (2005), when drawing causal inferences it

is very important to keep the distinction between observed values of a variable (e.g., observed

gestation) and the potential values it represents (e.g., gestation if smoked during pregnancy or

not). In the previously mentioned papers this important distinction is missing.

The following ideal situation provides intuition for the de�nition of our parameters and the

challenges faced in their estimation. Suppose we are interested on the e¤ect of a randomly

assigned treatment T on an outcome Y , and want to learn what part of that e¤ect is through a

mechanism S. Ideally, we would perform a new experiment in which the new (counterfactual)

treatment is the same as the original one but blocks the e¤ect of T on S; or, in other words,

conditions than the private sector. Other channels they consider are working experience and occupation. They
consider the use of exclusion restrictions for estimation of net e¤ects, although for estimation of the total average
e¤ect they assume motherhood is unconfounded, i.e., random given a set of covariates.

3 In 1991 the Andrew W. Mellon Foundation launched the GEI to improve the structure and organization of
the PhD programs in the humanities and social sciences. Some of the channels considered by Ehrenberg et al.
(2006) are more �nancial support to graduate students, more course and seminar requirements, higher quality
advising, among others.

4Another situation in which it is relevant estimating causal mechanisms is in the evaluation of government
programs that are a combination of di¤erent services (e.g. they are �bundled treatments�), especially when
policymakers aim at reforming them. For example, see the discussions in Meyer (1995) and Currie and Neidell
(2007) in the context of unemployment insurance reforms and the Head Start program, both in the U.S. A related
study is Card and Hyslop (2005) on the di¤erent incentives provided by Canada�s Self Su¢ ciency Project.

5Simonsen and Skipper (2006) de�ne their parameter before discussing its estimation. However, as we discuss
later, they do not acknowledge explicitly the fact that the mechanism variable represents two di¤erent potential
variables, and the relationship of their parameter to the total average treatment e¤ect is not discussed.
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sets the value of the mechanism variable S at the level it would have been if this individual

were a control under the original treatment. We de�ne the net average treatment e¤ect as

the di¤erence in mean potential outcomes of this new experiment and the control treatment.

If this counterfactual experiment is available, estimation of the net average treatment e¤ect

is straightforward by comparing the average outcomes of the individuals that took this new

treatment and those in the control group. Therefore, intuitively, estimation of treatment e¤ects

net of a mechanism requires learning about a di¤erent treatment from the one we have at hand.

This motivates the di¢ culty in estimating this kind of treatment e¤ects since, unfortunately, the

commonly available data may provide limited information about this counterfactual experiment.

Given the usual trade-o¤s between data availability and assumptions, it is not surprising that

estimation of causal net treatment e¤ects requires stronger assumptions than estimation of total

average e¤ects.

In this paper we focus on identi�cation strategies for our parameters based on an un-

counfoundedness assumption. Methods for estimating (total) average treatment e¤ects based

on unconfoundedness or selection-on-observables assumptions are important in economics and

continue to receive considerable attention in the econometrics literature (e.g., Hahn, 1998; Heck-

man, Ichimura and Todd, 1998; Hirano, Imbens and Ridder, 2003; Abadie and Imbens, 2006).

This assumption states that assignment to treatment is independent of the potential outcomes

conditional on a set of covariates. For identi�cation of our parameters, our unconfoundedness

assumption states that the potential outcomes are independent of the potential values of the

mechanism variable conditional on covariates. Contrary to identi�cation of total average ef-

fects, this assumption alone does not yield identi�cation of our parameters. We present two

approaches for their estimation employing unconfoundedness. The �rst is based on a func-

tional form assumption relating the potential outcomes of interest; while the second is based

on estimation of the causal net average treatment e¤ect for a particular subpopulation: those

individuals for which the treatment does not a¤ect the mechanism variable. We present each of

these approaches for the case in which the treatment is randomly assigned and when selection

into the treatment is based on a set of observable covariates.

For comparison, we also discuss a set of assumptions under which the usual approach of

controlling for the observed value of the mechanism variable (e.g., Dearden et al., 2002; Black

and Smith, 2004) can be interpreted as a causal net average treatment e¤ect. We also illustrate

the practical relevance of the estimation approaches in this paper employing two empirical ap-

plications. The �rst analyzes the importance of the �lock-in�e¤ect of a major training program

on participant�s earnings using experimental data; while the second analyzes the importance

of gestation as a mechanism for the e¤ect of smoking during pregnancy on the incidence of

low birth weight, under the assumption that smoking is random conditional on a rich set of

covariates.
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In cases when the unconfoundedness assumption employed in this paper in not tenable, we

develop elsewhere results for nonparametric partial identi�cation for the case of a randomly

assigned treatment (Flores and Flores-Lagunes, 2009a), as well as for estimation employing

instrumental variables when an instrument for the mechanism variable is available (Flores and

Flores-Lagunes, 2009b). The paper is organized as follows. Section 2 reviews related literature.

Section 3 presents the general framework and de�nes our parameters of interest. Section 4

analyzes the identi�cation and estimation of our parameters. Section 5 presents the results from

the two empirical applications that illustrate the methods discussed in this paper. Concluding

remarks are provided in the last section.

2 Related Literature

Our goal is to analyze two related e¤ects: a causal mechanism through which a treatment

a¤ects an outcome, and the causal e¤ect of the treatment net of this mechanism. To achieve this

goal we employ the potential outcomes framework and, more speci�cally, build on literature

related to the estimation of causal e¤ects adjusting for covariates that are a¤ected by the

treatment. This literature relates to our goal since estimating the causal mechanism of a

treatment implies accounting for variables that are observed after the treatment and that are

a¤ected by it.6

Rosenbaum (1984) analyzes the consequences of adjusting for covariates that are a¤ected by

the treatment using the potential outcomes framework. He concludes that estimators adjusting

for these variables are generally biased, and speci�es su¢ cient conditions under which control-

ling for such variables yields the average treatment e¤ect (ATE).7 Trivially, these conditions

imply that the ATE can be identi�ed when the post-treatment variables are not a¤ected by the

treatment, in which case they can be regarded as pre-treatment variables. Rosenbaum (1984)

also de�nes the �net treatment di¤erence� (NTD), a parameter that is estimated by simply

adjusting for the observed value of the post-treatment variable and is argued to �provide insight

into the treatment mechanism�, even though it lacks causal interpretation.

More recently, Frangakis and Rubin (2002) introduced the concept of principal strati�cation

to de�ne causal e¤ects when controlling for post-treatment variables in a variety of settings.

Principal strati�cation, which will be further discussed in the following section, de�nes causal

e¤ects by comparing individuals with the same potential values of the post-treatment variable

6Note that to assess the importance of a potential mechanism through which a treatment works one needs
to have a measurement of it. In practice, the mechanisms considered may depend on the availability of a
variable measuring them. Since such variables are measured after the treatment, we indistinctly refer to them
as �post-treatment variables�or �mechanisms�.

7More recently, Imbens (2004) also warns about similar pitfalls when controlling for post-treatment variables
a¤ected by a treatment, while Lechner (2005) speci�es more explicit conditions to assess the endogeneity bias
introduced when controlling for variables in�uenced by the treatment. Both deal with situations in which interest
lies on identi�cation of the ATE.
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under each of the treatment arms. In this paper, we de�ne our estimands to have causal

interpretation based on principal strati�cation.

Some of the work closer to ours is in Mealli and Rubin (2003) and Rubin (2004). Both papers

motivate the use of principal strati�cation to clarify and analyze the discussion of �direct�versus

�indirect�causal e¤ects, which answer questions similar to the ones we consider here. A direct

e¤ect corresponds to a causal e¤ect of a treatment net of a post-treatment variable, while

an indirect e¤ect corresponds to the causal e¤ect of a treatment that is mediated by another

variable (i.e., a mechanism). The main goal in both papers is to illustrate that the use of

principal strati�cation clari�es the concepts of causality when controlling for post-treatment

variables, and that other methods that ignore potential values of variables in�uenced by the

treatment can potentially lead to misleading causal conclusions.

Even though the concepts of direct and indirect e¤ects in the previous papers are similar to

the causal mechanism and causal net e¤ects we de�ne and analyze here, there are important

di¤erences between those papers and ours. First, the relationship of the concepts of direct

and indirect e¤ects to the (total) ATE is not discussed in those papers, while the parameters

to be presented here intuitively decompose the ATE into two e¤ects (a mechanism and a net

e¤ect). Second, as we explain later, the concept of direct e¤ect as de�ned in those papers is a

special case of our causal net average treatment e¤ect for a speci�c subpopulation. Third, we

formally discuss identi�cation and estimation under di¤erent assumptions and present empirical

applications, which none of the other papers do.

Another strand of literature related to our work is that of Robins and Greenland (1992)

and Petersen, Sinisi and van der Laan (2006) in the �eld of epidemiology (see also references

therein), and Pearl (2001) in arti�cial intelligence. Robins and Greenland (1992) make a similar

distinction of direct and indirect e¤ects and present conditions under which they can be esti-

mated. Pearl (2001) introduces the concepts of �controlled�and �natural�direct e¤ects8 and

discusses their estimation, whereas Petersen, Sinisi and van der Laan (2006) provide conditions

for estimation of the natural direct e¤ect. The present paper di¤ers from this literature in im-

portant ways. Most notably, those papers do not employ the concept of principal strati�cation

we employ here and do not distinguish the potential values of the post-treatment variable in

their assumptions for identi�cation. In our view, this obscures the assessment of the plausibility

of the assumptions and, as discussed in Rubin (2005), may lead to invalid causal conclusions.9

8These two concepts are discussed later in section 3.3.
9Robins and Greenland (1992) is actually an application of a more general literature on the estimation of

dynamic causal e¤ects (e.g. Robins (1986) in epidemiology and more recently Lechner and Miquel (2005) in
economics). In this literature, the identi�cation of causal e¤ects from sequences of interventions is analyzed.
Accounting for the possibility of a dynamic selection process implies making assumptions about the dependence
of both the sequence of treatments and the �nal outcome of interest on intermediate outcomes. We abstract from
modeling dynamics explicitly, so we concentrate on a static model of causal e¤ects as in Robins and Greenland
(1992).
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Finally, two recent papers in economics�Lee (2009) and Zhang, Rubin and Mealli (2006)�

focus on the problem of estimating the e¤ect of a randomly assigned training program on wages

taking into consideration the fact that wages are only observed for those individuals who are

employed, which leads to a sample selection problem because employment status may also be

a¤ected by the training program. This problem is related to ours since employment status

may be regarded as a mechanism through which training a¤ects wages. Zhang, Rubin and

Mealli (2006) use a principal strati�cation approach to analyze this problem and argue that the

relevant average treatment e¤ect of training on wages is for the subpopulation of individuals who

would be employed whether they received training or not. They derive bounds for this e¤ect

and propose a Bayesian approach for its estimation. Similarly, Lee (2009) proposes a trimming

procedure that yields sharp bounds for the average treatment e¤ect for those individuals who

would be employed whether trained or not.

An important distinction of our work with those two papers is that they keep the focus

on estimation of the average treatment e¤ect of training on wages controlling for employment

status (an intermediate variable), while we focus on the more general problem of decompos-

ing the part of the e¤ect of a treatment on an outcome that works through a mechanism or

intermediate variable. Naturally, in some cases these two objectives will coincide. In fact, as

will be discussed later in section 4.3, the average treatment e¤ect for those who would be em-

ployed whether trained or not equals our de�nition of the causal net average treatment e¤ect

for this subpopulation. Other di¤erences are that our framework allows the mechanism variable

to be polychotomous or continuous (in their case, employment status is binary) and that in

the problem analyzed by Lee (2009) and Zhang, Rubin and Mealli (2006) the observability of

the outcome (wages) depends on an intermediate variable (employment status), while in our

framework the outcome is always observed. Lastly, while those papers focus mainly on partial

identi�cation (especially Lee, 2009), the focus in this paper is on point identi�cation of our

parameters. Partial identi�cation results for the parameters discussed in the present paper can

be found in Flores and Flores-Lagunes (2009a).

Finally, note that most of the work described in this section considers the case when the

treatment is randomly assigned. In this paper, our framework starts under that same assump-

tion but is then extended to the case when selection into the treatment is based on observable

variables. Flores and Flores-Lagunes (2009b) considers the use of exclusion restrictions in the

form of instrumental variables to identify the parameters de�ned in the next section.
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3 The Estimands of Interest

3.1 De�nition of Estimands

We employ the potential outcomes framework (Neyman, 1923; Rubin, 1974). Assume we

have a random sample of size N from a large population. For each unit i in the sample, let

Ti 2 f0; 1g indicate whether the unit received the treatment of interest (Ti = 1) or the control
treatment (Ti = 0). We are interested on the e¤ect of the treatment T on an outcome Y .

Let Yi (1) denote the potential outcome for individual i under treatment and Yi (0) denote the

potential outcome under the control treatment. The (population) average treatment e¤ect is

hence given by ATE = E[Y (1) � Y (0)].10 We are interested on analyzing the part of the

ATE that works through a mechanism variable S, and the causal e¤ect of T on Y net of the

e¤ect through S. Since S is a¤ected by the treatment, we must consider its potential values,

denoted by Si(1) and Si(0). Hence, Si (1) represents the value of the post-treatment variable

individual i would get if exposed to the treatment, and Si(0) represents the value she would get

if exposed to the control treatment.11 For each unit i, we observe the vector
�
Ti; Y

obs
i ; Sobsi

�
,

where Y obsi = TiYi (1) + (1� Ti)Yi (0) and Sobsi = TiSi (1) + (1� Ti)Si (0). It is important to
stress the fact that Sobs represents two di¤erent potential variables: S (1) for treated units and

S (0) for controls.12

In our case, it is convenient to let the potential outcomes be a function of the mechanism

variable S. For each individual i, de�ne the �composite� potential outcomes Yi(� ; �), where

the �rst argument refers to one of the treatment arms (� 2 f0; 1g) and the second argument
represents one of the potential values of the post-treatment variable S (� 2 fSi(0); Si(1)g).
Using this notation, we can consider the following composite potential outcomes for any given

individual:

1. Yi(1; Si(1)): this is the potential outcome the individual would obtain if she received

treatment and post-treatment variable level Si (1). It includes the total e¤ect of receiving

treatment on Y (i.e., through S or not). This is exactly the potential outcome Yi (1)

under the treatment.

2. Yi(0; Si (0)): this is the potential outcome when no treatment is received and the post-

treatment variable value is Si (0). It is the outcome an individual would obtain if the

10Another treatment e¤ect usually analyzed in the literature is the average treatment e¤ect on the treated,
which is given by ATT = E[Y (1)� Y (0)jT = 1]. For ease of exposition we focus on decomposing the ATE, but
the discussion and results can easily be extended to the ATT and other parameters, as is the case in section 5.1.
11Note that S is not restricted to be binary.
12We also adopt the stable unit treatment value assumption (SUTVA) following Rubin (1980). This assumption

is common throughout the literature, and it implies that the treatment e¤ects at the individual level are not
a¤ected either by the mechanism used to assign the treatment or by the treatment received by other units. In
practice, this assumption rules out general equilibrium e¤ects of the treatment that may impact individuals.
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treatment is not given to her and if the value of her post-treatment variable is not altered

either. This is exactly the potential outcome Yi (0) under the control treatment.

3. Yi(1; Si (0)): this is the potential outcome the individual would receive if she were exposed

to the treatment but kept the level of S she would obtain had not been treated. In other

words, it is the outcome the individual would get if we were to give her the treatment but

held the value of her post-treatment variable at Si (0). As a result, this potential outcome

includes the e¤ect of T on Y that is not through S. This is the key potential outcome we

use to de�ne net and mechanism e¤ects below.13

Based on these composite potential outcomes, the following three individual-level compar-

isons are of interest for our purposes:

(a) Yi(1; Si (1)) � Yi(0; Si (0)): this represents the usual individual total treatment e¤ect
(ITTE). For example, the total e¤ect of smoking during pregnancy on birth weight.

(b) Yi(1; Si (1)) � Yi(1; Si (0)): this di¤erence gives the e¤ect of a change in S, which is due
to T , on the outcome Y . Here we hold constant all other ways in which T may a¤ect

Y , since Yi(1; Si (0)) already considers the e¤ect of T on Y through other channels. For

example, this di¤erence shows the e¤ect of a change in gestation time due to smoking on

birth weight, holding all other e¤ects of smoking during pregnancy �xed. We call this the

individual causal mechanism e¤ect.

(c) Yi(1; Si (0))�Yi(0; Si (0)): this di¤erence gives the e¤ect of T on Y when the value of the
post-treatment variable is held constant at Si (0). Hence, it is the part of the e¤ect of T

on Y that is not due to a change in S caused by the treatment. For example, the e¤ect of

smoking during pregnancy on birth weight that is not due to a change in gestation time

caused by smoking. We call this the individual causal net e¤ect.

Given these comparisons, we can decompose the individual total treatment e¤ect in (a) into

the part of the e¤ect due to a change in S because of a change in T (mechanism e¤ect) and the

part of the e¤ect holding S �xed at S (0) (net e¤ect):

ITTE = [Yi(1; Si (1))� Yi(1; Si (0))] + [Yi(1; Si (0))� Yi(0; Si (0))]: (1)

The population (total) average treatment e¤ect (ATE) can be decomposed in a similar way

as:

ATE = E[Y (1; S (1))� Y (1; S (0))] + E[Y (1; S (0))� Y (0; S (0))]: (2)

13For completeness, note that Yi(0; Si (1)) is the potential outcome the individual would obtain when the
treatment is not given to her but she receives a value of the post-treatment variable equal to Si (1).

8



As in (1), the �rst term re�ects the part of the average treatment e¤ect that is due only

to a change in S because of a change in T , and the second term shows the part of the average

e¤ect holding S �xed at S (0).14 A decomposition similar to (2) appears in Pearl (2001) based

on what he calls the Natural Direct E¤ect, discussed in Section 3.3.

It is clear from the decomposition in (2) that we need to make treatment comparisons

adjusting for the post-treatment variable S that is a¤ected by the treatment. In order to

causally interpret our parameters of interest, we employ the concept of principal strati�cation

developed in Frangakis and Rubin (2002) (hereafter FR). The idea is to de�ne the set of

�comparable individuals� based on the potential values of the post-treatment variable.15 In

FR terminology, the basic principal strati�cation with respect to post-treatment variable S

is a partition of individuals into groups such that within each group all individuals have the

same vector fS (0) = s0; S (1) = s1g, where s0 and s1 are generic values of S (0) and S (1),
respectively. A principal e¤ect with respect to a principal strata is de�ned as a comparison

of potential outcomes within that strata. Since principal strata are not a¤ected by treatment

assignment, individuals in that group are indeed comparable and thus principal e¤ects are

causal e¤ects.16

Based on FR, we condition on the principal strata fS (0) = s0; S (1) = s1g in order to give
a causal interpretation to our parameters. Write the ATE controlling for S (0) and S (1) as

ATE = E fE[Y (1; S(1))� Y (0; S(0))jS(0) = s0; S(1) = s1]g = E[� (s0; s1)]; (3)

where the outer expectation is taken over S(0) and S(1) and we let � (s0; s1) = E[Y (1; S(1))�
Y (0; S(0))jS(0) = s0; S(1) = s1]. Then, using the same decomposition as in (2) we have:

ATE = E fE[Y (1; S(1))� Y (1; S(0))jS(0) = s0; S(1) = s1]g (4)

+E fE[Y (1; S(0))� Y (0; S(0))jS(0) = s0; S(1) = s1]g :

We de�ne the (causal) net average treatment e¤ect or NATE as:

NATE = E fE[Y (1; S(0))� Y (0; S(0))jS(0) = s0; S(1) = s1]g (5)

and the (causal) mechanism average treatment e¤ect or MATE as:17

MATE = E fE[Y (1; S(1))� Y (1; S(0))jS(0) = s0; S(1) = s1]g : (6)

14While we consider a decomposition of the total e¤ect based on one mechanism of interest, it is possible to
extend the decomposition to accommodate more than one mechanism. See Flores and Flores-Lagunes (2009a).
15 In the potential outcomes framework a causal e¤ect must be a comparison of potential outcomes for the

same group of individuals under treatment and control.
16FR�s idea of principal strati�cation is closely related to the local average treatment e¤ect interpretation of

instrumental variables in Imbens and Angrist (1994). For example, in their terminology, the group of �compli-
ers� is the set of individuals that always comply with their treatment assignment regardless of whether their
assignment is to treatment (T = 1) or control group (T = 0). Therefore, for this group fS (0) = 0; S (1) = 1g,
where S is an indicator of actual treatment reception.
17Although we could have used the terms �direct e¤ect� and �indiret e¤ect� to de�ne our parameters, we
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3.2 Discussion of Estimands

An intuitive way to think about our estimands is to consider Y (1; S(0)) as the potential

outcome of an alternative counterfactual experiment in which the treatment is the same as the

original one but blocks the e¤ect of T on S by holding S �xed at Si (0) for each individual i.

The NATE for individual i is the di¤erence between the outcome of this alternative treatment,

Yi (1; Si(0)), and Yi (0; Si(0)) from the original control treatment. Similarly, herMATE is given

by the di¤erence in the potential outcomes of the original treatment and the alternative one.

An important property of NATE in (5) is that it includes not only the part of the ATE

that is totally unrelated to the mechanism variable S, but also the part of the ATE that results

from a change in the way S a¤ects Y . That is, even though the level of S is held �xed at S (0),

the treatment may still a¤ect the way in which S a¤ects the outcome, and this is counted as

part of NATE. To illustrate this point, consider one of our empirical applications in which

we analyze the lock-in e¤ect as a causal mechanism of a job training program, i.e. the labor

market experience lost due to participation in the program. If participants lose substantial

labor market experience due to the program, and this negatively a¤ects their future earnings,

a policy maker may want to change the program to be as the original one but without a¤ecting

labor market experience (i.e., holding experience �xed at S (0)). In this case the policy maker

would like to know the average e¤ect of this alternative training program on future earnings.

This e¤ect would include not only the part of the e¤ect of the program on earnings that is

totally unrelated to experience, but it would also include the e¤ect of the program on how

experience a¤ects wages, i.e., the program�s e¤ect on the returns to experience. NATE takes

this into account, correctly measuring what the e¤ect of this alternative treatment (training

program) would be.

We argue that including the e¤ect of T on how S a¤ects Y (i.e., returns to S) in NATE is

more relevant from a policy perspective, compared to a di¤erent parameter that holds constant

the way S a¤ects Y . The reason is that a policy maker typically has some degree of control

over S, while very rarely over how S a¤ects Y . In the previous example, the administrators

of a training program have some degree of control over the level of labor market experience

that might be lost due to the time spent in training (e.g. by o¤ering training while on the job

or shortening the time to completion of the program), but it seems unlikely that they could

in�uence the (potentially) di¤erent returns to experience that the market awards to trained

versus non-trained individuals.18 Our argument is consistent with the notion of a �treatment�

prefer our names for two reasons. First, they di¤er in important ways from direct e¤ects as de�ned in Mealli
and Rubin (2003) and Rubin (2004), as discussed later in section 3.3. Second, our names make clear that these
e¤ects are considered with respect to a particular mechanism S. Strictly speaking, a �pure�direct e¤ect would
have to net out all possible mechanisms through which the treatment may a¤ect the outcome.
18One potentially interesting case where the policymaker might have some degree of in�uence on how S a¤ects

Y is when general equilibrium e¤ects due to the treatment are present.
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being an intervention that can be potentially applied to each individual (e.g., Holland, 1986).

As a �nal remark about NATE and MATE, we note that their de�nitions conform to

intuition in the following two extreme cases. First, consider the situation in which all the e¤ect

of T on Y works exclusively through S for the entire population. In this case Y (1; S(0)) =

Y (0; S(0)) and, as expected, NATE = 0 and MATE = ATE from equations (5) and (6),

respectively. Second, consider the situation in which none of the e¤ect of T on Y is through S,

in which case NATE should equal ATE andMATE should be zero. This can arise due to two

reasons: either S does not a¤ect Y (even though S may be a¤ected by T ) and thus fS(1); S(0)g
is independent of fY (1); Y (0)g; or T simply does not a¤ect S and thus S(1) = S(0). Regardless
of the reason, the consequence is that Y (1; S(1)) = Y (1; S(0)) and thus (5) and (6) imply

NATE = ATE and MATE = 0, respectively. This desirable property is not shared by some

of the parameters available in the literature.

3.3 Relation of the Estimands to Other Parameters in the Literature

As discussed in section 2, Rosenbaum (1984) de�nes theNTD. This parameter is character-

ized by conditioning on the observed post-treatment variable and, without further assumptions,

has no causal interpretation when the post-treatment variable is a¤ected by the treatment. It

can be written as NTD = EfE[Y (1)� Y (0) jSobs]g. The reason for NTD�s lack of causal
interpretation is that it compares individuals with the same values of Sobs. Since Sobs repre-

sents two di¤erent potential variables, S (1) and S (0), units with the same value of Sobs are

generally not comparable. This point is further discussed and illustrated in Mealli and Rubin

(2003), Rubin (2004), and Rubin (2005).19 In contrast, by conditioning on principal strata,

NATE explicitly accounts for the possibility that the post-treatment variable is a¤ected by the

treatment. Furthermore, our parameters e¤ectively decompose the ATE into causal mechanism

and net e¤ects (see (4)).

Although both our estimands and the concepts of direct and indirect e¤ects in Mealli and

Rubin (2003) and Rubin (2004) rely on the idea of principal strati�cation and thus can be

interpreted as causal e¤ects, they di¤er in other aspects. Mealli and Rubin (2003) de�ne a direct

e¤ect as a comparison of Y (1) and Y (0) within the stratum for which S (0) = S (1) = s, which

implies Y (1; S(1)) = Y (1; S(0)). Using our notation in (3), we can write their direct e¤ect as

DE (s) = � (s; s), which corresponds toNATE in (5) de�ned for this particular subpopulation or

strata. More generally, we can de�ne the direct average e¤ect asDAE = E [� (s; s)], which is the

average of the direct e¤ects over the possible values s of S. Note that, unless NATE is constant

in the population, DAE will di¤er from NATE. Moreover, DAE does not decompose the

19Another way to see the problem of conditioning by Sobs is to note that when estimating the NTD based on
the observed data we are implicitly assuming that the treatment is �randomly assigned�conditional on Sobs so
that we can write E[Y (1) jSobs] = E

�
Y obsjT = 1; Sobs

�
. However, in general, we can infer something about the

treatment assignment T based on Sobs and hence the assumption fails. See Rubin (2005) for further discussion.
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ATE in the way NATE does because DAE ignores all the individuals for which Si (1) 6= Si (0).
Finally, note that the de�nition of the direct e¤ect e¤ectively rules out a mechanism e¤ect, since

it is only de�ned for subpopulations for which there is no mechanism e¤ect. For these reasons,

NATE and MATE are more general and, in our view, more relevant for policy purposes.

There are other parameters related to NATE that have been used in the epidemiology lit-

erature: the controlled direct e¤ect (CDE) and the natural direct e¤ect (NDE).20 The CDE

at a speci�c value s of S can be written as CDE = E [Y (1; S(1) = s)� Y (0; S(0) = s)]. The
CDE gives the average di¤erence between the counterfactual outcome under the two treatment

arms controlling for the value of the mechanism variable at s. While this parameter may be

informative in some applications, in our view has some undesirable features for the estimation

of net e¤ects. First, it does not decompose the ATE into a net and a mechanism e¤ect in the

way NATE and MATE do.21 Second, since neither of the two potential outcomes used in the

de�nition of CDE necessarily correspond to the observed outcome (Y obs) for any particular

individual, its estimation requires stronger assumptions than the ones used for estimation of

NATE, where at least one of the potential outcomes (Y (0; S (0))) is observed for some individ-

uals.22 Lastly, using the CDE to estimate net e¤ects has the undesirable property that, even if

in fact the treatment does not a¤ect the mechanism variable S, the ATE may be di¤erent from

the CDE if there is heterogeneity in the e¤ect of T on Y along the values of S. Conversely, as

previously discussed for our parameters, NATE = ATE and MATE = 0 in this case.

The NDE used in epidemiology can be written as E[Y (1; S (0))� Y (0; S (0))]. Hence, this
parameter is similar to NATE in (5) with the subtle but important di¤erence that NATE

conditions on principal strata in order to retain causal interpretation. This distinction becomes

crucial when stating and evaluating the assumptions needed for estimation.23

4 Identi�cation and Estimation of the Parameters of Interest

In this section we discuss identi�cation and estimation of the parameters NATE and

MATE de�ned in section 3.1. We focus our attention on NATE since, by de�nition, we can

obtainMATE = ATE�NATE. We start by discussing in section 4.1 the type of assumptions
needed to interpret the standard approach of directly controlling for Sobs as an estimate of

NATE. Unfortunately, these assumptions are too strong to be useful in practice. Next, we

20See, for instance, Pearl (2000) and Petersen, Sinisi and van der Laan (2006).
21For example, we could write the ATE as: ATE = E [Y (1; S(1))� Y (1; S(1) = s)] + CDE +

E [Y (0; S(0) = s)� Y (0; S(0))]. The �rst term gives the average e¤ect of giving the treatment to the indi-
viduals and moving the value of the post-treatment variable from s to S (1). The third term represents the
average e¤ect of giving the control treatment to the individuals and moving the value of the post-treatment
variable from S (0) to s. These two e¤ects are hard to interpret as mechanism e¤ects of T on Y through S.
22See following section for details.
23For further discussion on the importance of conditioning on principal strata see Rubin (2004, 2005) and

Mealli and Rubin (2003).
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present two di¤erent estimation strategies based on an unconfoundedness assumption for each of

two treatment-assignment mechanisms. We �rst consider the situation in which the treatment

is randomly assigned. This case is important in its own right given the existence of social

experiments in economics, such as the one used in our �rst empirical application. We then

discuss the case in which the treatment is assumed to be random given a set of observed

covariates.

Regardless of the mechanism used to assign the treatment, identi�cation and estimation of

NATE faces two challenges. First, we have to take into account that for each unit under study

only one of the potential values of the post-treatment variable is observed: Sobs represents S (1)

for treated units and S (0) for control units. This implies that the principal strata fS (0) =
s0; S (1) = s1g, which is necessary for a causal interpretation of NATE, is unobserved. Note
that S can be regarded as an outcome, and thus the distribution of the principal strata equals the

joint distribution of the potential outcomes fS (1) ; S (0)g, which is not easily identi�able (e.g.,
Heckman, Smith and Clements, 1997). The second challenge is that a key potential outcome

needed for estimation of NATE, Yi (1; Si (0)), is generally not observed�this is in contrast to

the case of estimation of the ATE, where only one of the relevant potential outcomes is missing

for every unit. In an ideal situation in which we could perform the alternative counterfactual

experiment and observe Y (1; Si (0)) for some units, none of these two challenges would arise

and estimation of NATE would be straightforward.24 Despite the missing data challenges that

result from the unavailability of the alternative counterfactual experiment, we can still impose

assumptions under which NATE can be identi�ed from the available data. We present in

sections 4.2 and 4.3 two strategies for its estimation.

4.1 Assumptions under which controlling directly for Sobs yields NATE

It is important to state conditions under which the standard approach of controlling for the

observed value of the post-treatment variable (Sobs), and possibly a set of covariates X, yields

NATE. Examples of the use of this approach are Dearden et al. (2002) and Black and Smith

(2004). It turns out that the kind of assumptions needed are very strong�certainly stronger

than those we present in the following sections to identify our parameters.

Consider the following parameter that is representative of the standard approach, where the

second line uses the fact that Sobs represents S(0) or S(1) depending on the treatment received:


 = EfE[Y obsjT = 1; Sobs = s;X = x]� E[Y obsjT = 0; Sobs = s;X = x]g

= EfE[Y obsjT = 1; S (1) = s;X = x]� E[Y obsjT = 0; S (0) = s;X = x]g: (7)

24Under this alternative counterfactual treatment we have that S (1) = S (0) for all units (by construction of
the counterfactual treatment), and the potential outcome Y (1; S (0)) would be observed for those who received
this alternative treatment.
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A set of su¢ cient conditions under which 
 = ATE are (Rosenbaum, 1984): (i) S (1) = S (0)

for all subjects in the population (�una¤ected post-treatment variable�), and (ii) the treatment

assignment is ignorable in the sense that fY (1); Y (0)g ? T jX and 0 < Pr (T = 1jX) < 1 for all
X.25 Intuitively, the issue when estimating the ATE based on (7) is that the outer expectation

should be taken with respect to the distribution Pr (S (1) jX) for the �rst term and with respect
to Pr (S (0) jX) for the second. As a result, if S is a¤ected by T , bias will arise from averaging

both terms over Pr
�
SobsjX

�
instead. In other words, looking at units with the same values of

Sobs in fact compares treated units with S (1) = s to control units with S (0) = s, which are in

general not comparable.26 Condition (i) implies that Sobs = S (1) = S (0), ensuring that the

averaging is over the correct distribution; nonetheless, this condition is too strong since it rules

out an e¤ect of T on S.

Unfortunately, the same conditions are needed to have 
 = NATE. Even if we were to

assume that people in di¤erent strata are comparable conditional on X,27 we still need to

assume that Si (1) = Si (0) = s for all units in order to have Yi (1; Si (0)) = Yi (1; Si (1))

and thus deal with the problem that Yi (1; Si (0)) is unobserved. Only then could we have


 = NATE. In a linear regression context, the fact that Yi (1; Si (0)) is generally unobserved

implies that even if all explanatory variables in the regression Y obs = a+ bT + cSobs + d0X + u

are uncorrelated to the error term u (e.g., if T and S are randomly assigned), b equals NATE

only if Si (1) = Si (0) = s for all units. However, this condition rules out the role of S as a

mechanism by assumption. In the following sub-sections we present weaker assumptions that

allow us to estimate NATE and MATE.

4.2 Identi�cation and Estimation based on Y (1; S (1))

We �rst consider the case in which individuals are randomly assigned to the treatment.

We keep the following assumption until our discussion of non-random treatment assignment in

section 4.4.

Assumption 1 Y (1; S (1)) ; Y (0; S (0)) ; Y (1; S (0)); S (1) ; S (0)?T

Under this assumption, the treatment received by each individual is independent of her

potential outcomes and potential values of the post-treatment variable. Note that Assumption

1 implies Y (1; S (1)) ; Y (0; S (0)) ; Y (1; S (0)) ? T jfS (1) ; S (0)g, so that potential outcomes
are independent of the treatment given the principal strata.28

25As in Dawid (1979), we write X ? Y to denote independence of X and Y .
26Yet another way to see the problem of estimating ATE controlling for Sobs is to regard Sobs as an endogenous

control variable since it is a¤ected by the treatment. See Lechner (2005).
27 In which case the groups with fT = 1; S (1) = s;X = xg and fT = 0; S (0) = s;X = xg would be comparable.
28See, for instance, Lemma 4 in Dawid (1979).
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Let us start by considering the challenge that the principal strata fS (0) = s0; S (1) = s1g
is not observed. Note that identi�cation of the principal strata is di¢ cult since it entails

determining the e¤ect of the treatment T on the intermediate outcome S for every individual

using only the marginal distributions of S (1) and S (0) for treated and controls, respectively.

In this paper we follow an approach analogous to the commonly-used selection on observables

framework in program evaluation (e.g., Imbens, 2004) and assume that the principal strata is

independent of the potential outcomes given a rich set of covariates X (unconfounded principal

strata).

Assumption 2 Y (1; S(1)) ; Y (0; S(0)); Y (1; S(0))?fS (1) ; S (0)gjX

Assumption 2 implies that individuals in di¤erent strata are comparable once we condition

on a set of covariates X, ruling out the existence of variables not included in X that simul-

taneously a¤ect the principal strata an individual belongs to and her potential outcomes (i.e.,

confounders). Assumption 2 further implies that by conditioning on X we rule out confounders

of the relationship between (i) each of the potential values of S (S (1) and S (0)) and the

potential outcomes, and (ii) any function of S (1) and S (0) and the potential outcomes. Fi-

nally, Assumptions 1 and 2 imply that Y (1; S(1)) ; Y (0; S(0)) ; Y (1; S(0))?fT; S (1) ; S (0)gjX,
so that control and treated units in di¤erent strata, but with the same values of covariates, are

comparable.29

The other challenge in the estimation of NATE is making inferences about a potential

outcome that is usually not observed, Y (1; S (0)). One approach is to use the information in

Y (1; S (1)), and possibly Y (0; S (0)), to learn about Y (1; S (0)). This can be done in many

di¤erent ways, with the speci�c assumption to be made depending on what is judged plausi-

ble in the particular application at hand. We present here one assumption to illustrate the

approach. Suppose that the conditional expectations of the potential outcomes Y (1; S(0))

and Y (1; S(1)) have the same functional form in terms of fX;S (0)g and fX;S (1)g, respec-
tively, but the former sets S (1) = S (0). As a simple example, let E [Y (1; S(1))] be of

the form E [Y (1; S(1)) jS (1) ; X] = a1 + b1S (1) + c1X. Then, this assumption implies that

E [Y (1; S(0)) jS (0) ; X] = a1 + b1S (0) + c1X. We can state this assumption more generally as
follows:

Assumption 3 Suppose we can write E[Y (1; S(1))jS(1) = s1; X = x] = f1 (S (1) ; X). Then,

assume

E [Y (1; S(0)) jS(0) = s0; X = x] = f1 (S (0) ; X) :

29Note the importance of stating the assumptions used in terms of principal strata as opposed to using simply
S, as commonly done in the literature (e.g., Petersen, Sinisi and van der Laan, 2006; Simonsen and Skipper,
2006). Principal strata is not a¤ected by T , and it acknowledges the fact that S represents two potential variables:
S (1) and S (0). If we were to use S instead of the principal strata in Assumption 2, its interpretation (which is
needed to gauge its plausibility in practice) would be obscured by the fact that S is a¤ected by the treatment.
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We o¤er a few comments on this assumption. First, Assumption 3 directly acknowledges

that we are trying to learn about a counterfactual treatment based on the information available

on the original treatment. Second, we clarify that regarding Y (1; S(0)) as the outcome of the

counterfactual treatment does not imply Assumption 3. The de�nition of Yi (1; Si(0)) implies

that Yi (1; Si(0)) = Yi (1; Si(1)) for those units with Si (1) = Si (0); however, for those with

Si (1) 6= Si (0) it is not necessarily the case that Yi (1; Si(0)) has the same functional form

as Yi (1; Si(1)) but setting Si (1) = Si (0). Finally, note that Assumption 3 implies that the

covariates X and the mechanism variable S a¤ect the outcome in the same way in both the

original and counterfactual treatments.

Under Assumptions 1-3 we can identify NATE by writing it as a function of observed

variables as:

NATE = E fE[Y (1; S (0))� Y (0; S (0))jS(0) = s0; S(1) = s1; X = x]g

= E fE[Y (1; S (0))jS(0) = s0; S(1) = s1; X = x]g

�E fE[Y (0; S (0))jS(0) = s0; S(1) = s1; X = x]g

= E fE[Y (1; S (0))jS(0) = s0; X = x]g � E fE[Y (0; S (0))jS(0) = s0; X = x]g

= E ff1 (S (0) ; X)g � E
n
E
h
Y obsjT = 0; Sobs = s0; X = x

io
(8)

where we have used Assumption 2 in the third equality, Assumptions 1 and 3 in the last

equality, and we have that E[Y (1; S (1))jS(1) = s1; X = x] = f1 (S (1) ; X) = E[Y obsjT =

1; Sobs = s1; X = x].

In practice, this identi�cation strategy can be implemented as follows: (i) estimate a model

for E[Y obsjT = 1; Sobs = s1; X = x] = f1(S (1) ; X); (ii) compute E[Y (1; S (0)) jS(0) = s0; X =

x] = f1(S (0) ; X) based on the model in (i); (iii) estimate NATE based on (8) and MATE =

ATE �NATE. For steps (i) and (ii) a simple way to proceed is to run a linear regression of
Y obs on S (1) and X for treated units and evaluate this estimated model on S (1) = bE[Si (0)].
One may allow this function to be more �exible by employing a polynomial series expansion of

S (1) and interactions with the covariates, for instance.

4.3 Estimation of NATE Based on a Speci�c Subpopulation

In this section we present the second approach to estimate NATE by focusing on a particu-

lar subpopulation or principal strata: those for which T does not a¤ect S, so that Si(1) = Si(0).

For them we have that Yi (1; Si (0)) = Yi (1; Si (1)) and hence Yi (1; Si (0)) is in fact observed

for those receiving treatment. Therefore, any non-zero causal e¤ect Yi(1; Si (1)) � Yi(0; Si (0))
in this subpopulation is due to factors di¤erent from the change in S caused by T . For this

particular subpopulation with Si(1) = Si(0), we de�ne its local NATE (hereafter LNATE) as:

LNATE = E fE[Y (1; S (0))� Y (0; S (0))jS(0) = s; S(1) = s]g = E f�(s)g (9)

16



where �(s) = E[Y (1; S (0))�Y (0; S (0))jS(0) = s; S(1) = s] is the local NATE in the stratum
S (1) = S (0) = s.30 The key to regard LNATE as a causal e¤ect is to note that it is de�ned

within a principal strata, and thus has a causal interpretation (Frangakis and Rubin, 2002).

LNATE is similar to the �direct e¤ect�discussed in Mealli and Rubin (2003) and Rubin (2004).

More precisely, LNATE equals the direct average e¤ect (DAE) discussed in section 3.3, which

is simply the average of the direct e¤ects for all the stratum for which S (1) = S (0) = s. Hence,

the direct e¤ect is a local NATE since it is de�ned for a speci�c subpopulation.

The LNATE equals the local average treatment e¤ect for the subpopulation for which the

treatment does not a¤ect the mechanism variable (LATEsub), since Yi (1; Si (0)) = Yi (1; Si (1))

and there is no mechanism e¤ect by de�nition. There is precedent in the literature on the

estimation and practical importance of local average treatment e¤ects. In particular, Imbens

and Angrist (1994) interpret instrumental variables (IV ) estimators as estimators of a local

average treatment e¤ect (LATE). The importance of LATE in economics is discussed, for

instance, in Imbens (2009). In addition, note that the parameter of interest in Lee (2009)

and Zhang, Rubin and Mealli (2006) is a special case of LNATE. They focus on the (local)

average treatment e¤ect of training on wages for those individuals who would be employed

whether trained or not. This is a subset of the subpopulation for which training does not a¤ect

employment status, since there may be unemployed individuals for which training does not

a¤ect their employment status. Hence, the local average treatment e¤ect considered in those

papers equals the LNATE for those individuals employed whether trained or not. We can

write this parameter as LNATES=1 = E [Y (1)� Y (0) jS (0) = 1; S (1) = 1], where S stands
for employment status.31

In practice, knowledge about a subpopulation with Si(1) = Si(0) may or may not be avail-

able. In some situations, the nature of the treatment and post-treatment variables conveys

knowledge about a subpopulation for which T does not a¤ect S. An illustration of this is

when a law or regulation (i.e., a �natural experiment�) restricts the e¤ect of the treatment on

the post-treatment variable and results on S (1) being equal to S (0) for a known group. For

example, suppose interest lies on estimating the importance of trans-fat consumption (S) as a

mechanism through which consuming fast-food (T ) a¤ects overweight incidence (Y ). The sub-

population of interest for estimation of LNATE is that for which T does not a¤ect S. Given

that the city of New York banned the use of trans fats in restaurant cooking in 2006, individuals

in New York city represent a group that can be employed to estimate LNATE.32 In such cases,

one can restrict attention to the subpopulation with Si(1) = Si(0) for estimation of LNATE.

30Note that the outer expectation in LNATE is taken over all strata with S (1) = S (0) = s. For instance, in
the context of a binary post-treatment variable, LNATE would be the average of the net e¤ects for the stratum
with S (0) = S (1) = 0 and S (0) = S (1) = 1.
31Recall that, due to the nature of the problem analyzed in those papers, they do not observe wages for those

individuals who would be unemployed whether trained or not, as discussed in section 2.
32We thank Jinyong Hahn for suggesting this example.
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Under Assumption 1, and since in this subpopulation LNATE = LATEsub, we can identify

LNATE in this natutal-experiment setting as the simple di¤erence in mean outcomes between

treated and controls:

LNATE = LATEsub = E[Y obsjT = 1; S(0) = S(1)]� E[Y obsjT = 0; S(0) = S(1)] (10)

It is important to note that in this natural-experiment setting only Assumption 1 (or Assump-

tion 5 below if T is not randomly assigned) is needed. Indeed, in this setting we can estimate

LNATE under the weakest assumptions since the subpopulation with Si(1) = Si(0)�the only

one for which Yi (1; Si (0)) is observed in the data�is known.33 Finally, note that in this case a

variable measuring S is not even necessary to estimate LNATE.

If knowledge about a subpopulation with Si(1) = Si(0) is not available, one possibility is

to use the covariates X to �nd a subpopulation for which there is no e¤ect of T on S�or for

which such e¤ect is close to zero�and then estimate the corresponding local NATE for this

subpopulation. To �nd such subpopulation one can rely on predicted values of the potential

values of the post-treatment variable based on the covariates X. Let bS (1) and bS (0) be the
estimators of the potential values of S based on X and Sobs.34 Then, in this case the focus is

on estimation of the local NATE for the subpopulation with bSi (1) = bSi (0):
LNATEbS = EfE[Y (1; S (0))� Y (0; S (0))jS(0) = S(1); bS (1) = bS (0)]g (11)

The conditioning on principal strata in the de�nition of LNATEbS is necessary in order to
interpret it as a causal e¤ect. Estimating (11) as the di¤erence in mean outcomes between

treated and control units with bSi (1) = bSi (0) as in (10) introduces two sources of bias. First,
since both bSi (1) and bSi (0) are functions of Sobs, conditioning on them brakes the independence
between T and the potential outcomes Y (1) and Y (0)�i.e., it is not true that Y (1) ; Y (0) ?
T jfbS (1) ; bS (0)g. Hence, the di¤erence E[Y obsjT = 1; bS(0) = bS(1)]�E[Y obsjT = 0; bS(0) = bS(1)]
is not equal to the local average treatment e¤ect for the subpopulation with bSi (1) = bSi (0),
say, LATEsubbS . Second, unless bSi (1) and bSi (0) are perfect predictors, the subpopulation for
which bSi (1) = bSi (0) will likely have units for which Si (1) 6= Si (0), in which case LNATEbS 6=
LATEsubbS . Therefore, in analogy to equation (10), the two biases imply: E[Y obsjT = 1; bSi (1) =bSi (0)]� E[Y obsjT = 0; bSi (1) = bSi (0)] 6= LATEsubbS 6= LNATEbS .
33Flores and Flores-Lagunes (2009a) impose monotonicity assumptions on the e¤ect of T on S to identify

subpopulations with Si(1) = Si(0). They use these subpopulations to create nonparametric bounds and point
identify NATE for various subpopulations, including the overall population.
34One can construct estimators bS (1) and bS (0) in di¤erent ways. For example, we could use a single matching

approach and let bSi (0) = Sobs and bSi (1) = Sobsk if unit i is a control, and bSi (1) = Sobs and bSi (0) = Sobsk if unit
i is treated, where Sobsk is the observed value of S for the closest unit to i in terms of a given distance measure
jjXi �Xj jj, with Ti 6= Tj . Alternatively, we could use a regression function approach to predict S (1) and S (0).
Let �t (x) = E [S (t) jX = x] for t = f0; 1g be the regression functions of the post-treatment potential values on
X. Then, given the estimators b�t (x) of these regression functions, we would de�ne bS (1) and bS (0) for each unit
i as b�1 (x) and b�0 (x), respectively.
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Adding Assumption 2 (unconfounded strata) allows estimation of LATEsubbS without bias.

Together, assumption 1 and 2 imply: Y (1) ; Y (0)?T jfX; ; bS (1) ; bS (0)g.35 Hence, LATEsubbS is

identi�ed as

LATEsubbS
= E[Y (1)� Y (0)jbS(0) = bS(1)] = EfE[Y (1)� Y (0)jX; bS(0) = bS(1)]jbS(0) = bS(1)g
= EfE[Y (1)jT = 1; X; bS(0) = bS(1)]� E[Y (0)jT = 0; X; bS(0) = bS(1)]jbS(0) = bS(1)g
= EfE[Y obsjT = 1; X; bS(0) = bS(1)]� E[Y obsjT = 0; X; bS(0) = bS(1)]jbS(0) = bS(1)g

(12)

where the fact that Y (1) ; Y (0)?T jfX; ; bS (1) ; bS (0)g is used in the third equality. Based on
(12), LATEsubbS can be estimated by identifying those units with bS(0) = bS(1) and then employing
on this subsample any of the available methods for estimating the ATE of T on Y under an

unconfounded treatment.36 The role the covariates play in (12) is to control for any bias arising

from comparing treated and control outcomes in the subpopulation with bS(0) = bS(1).
Removing the second source of bias is more di¢ cult since LATEsubbS = LNATEbS only if

S(0) = S(1) for all units with bS(0) = bS(1). However, it is possible to derive an expression
for this bias by noting that the bias associated with estimating the local NATE for any given

subpopulation using an unbiased estimator of its local ATE equals the di¤erence between

ATE and the NATE (i.e., MATE) for that subpopulation. Therefore, the bias from using an

estimator based on (12), call it \LATEsubbS , to estimate LNATEbS equals the �local MATE�for
the subpopulation with bSi (1) = bSi (0). More precisely, letting Zi = 1 if indeed Si (1) = Si (0)
and zero otherwise, the bias associated with estimating LNATEbS using the unbiased estimator
\LATEsubbS can be written as:37

Bias( \LATEsubbS ) = LATEsubbS � LNATEbS
= E

h
Y (1; S (1))� Y (1; S (0)) jbS (1) = bS (0)i

= E
n
E
h
Y (1; S (1))� Y (1; S (0)) jZ = z; bS (1) = bS (0)i jbS (1) = bS (0)o

= Pr(Z = 0jbS (1) = bS (0))E[Y (1; S (1))� Y (1; S (0)) jZ = 0; bS (1) = bS (0)]
(13)

The �rst term states that the closer Pr(S (1) 6= S (0) jbS (1) = bS (0)) is to zero, the smaller the
bias associated with the estimation of LNATEbS . Consequently, the better we predict S (1) and
35By Assumption 1 we have that Y (1) ; Y (0)?T jfX; ; S (1) ; S (0)g, which along with Assumption 2 implies

(Lemma 4.3 in Dawid, 1979): Y (1) ; Y (0)?fT; ; S (1) ; S (0)gjX. Since both bS (1) and bS (0) are functions of
S (1) ; S (0) ; X and T we have: Y (1) ; Y (0)?fT; bS (1) ; bS (0)gjX. The result then follows by employing again
Lemma 4.3 in Dawid (1979).
36See, for instance, Heckman, LaLonde and Smith (1999), Imbens (2004) or Imbens and Wooldridge (2009)

for reviews on methods for estimation of average e¤ects based on unconfoundedness.
37To simplify notation we omit the conditioning on the principal strata in the expression below.
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S (0), the smaller the bias will be. In the limit, if we perfectly predict S (1) and S (0), LNATEbS
is estimated without bias. The second term equals the local average mechanism e¤ect for those

units with S (0) 6= S (1) and bS (1) = bS (0). In principle, one would expect this term to be small

to the extent that S (0) � S (1) for this subpopulation with bS (1) = bS (0). Importantly, note
that the sign of the bias is given by the second term in (13). This is useful in determining the

direction of the bias if information is available about the sign of the mechanism e¤ect for this

subpopulation, or if an assumption about its sign is tenable. In this case, \LATEsubbS provides

either an upper or a lower bound for LNATEbS.
In practice, one can perform some checks on the subpopulation with bSi (1) = bSi (0) to gauge

the extent to which it satis�es that T does not a¤ect S. One check is to employ a Fisher

randomization test (Fisher, 1935) for the sharp null hypothesis that the treatment e¤ect of

T on S is zero for all units in the subpopulation of interest. While failure to reject this null

hypothesis does not necessarily mean that the treatment e¤ect is zero for all units, rejecting it

is a clear indication that the subpopulation characterized by bSi (1) = bSi (0) is not appropriate
to estimate LNATEbS . To describe a second check, note that under the ideal situation in which
all the individuals in the subpopulations with bSi (1) = bSi (0) have Si (1) = Si (0), an estimator
based on (12) will be unbiased for LNATEbS whether it includes Sobs in the conditioning set
or not (since Si (1) = Si (0) = Sobsi ). Therefore, the extent to which Si (1) 6= Si (0) for those

with bSi (1) = bSi (0) can be gauged comparing \LATEsubbS with and without controlling for Sobs.

A statistically signi�cant di¤erence between the two can be regarded as evidence that the

corresponding subpopulation is not appropriate to estimate LNATEbS .
So far we have discussed estimation of LNATE or LNATEbS . The following assumption can

be employed, when considered plausible, to interpret this estimator as an estimator of NATE

as well.

Assumption 4 NATE is constant over the population.

Under this assumption, NATE = LNATEbS = LNATE. In addition, the part of the ATE
that is due to the mechanism S is given by MATE = ATE � LNATEbS .

A few observations about Assumption 4 are in order. First, note that this assumption is

analogous to the necessary assumption of a constant average treatment e¤ect when estimating

ATE using instrumental variables. In that case we can only identify LATE for the group of

individuals who change treatment status in response to a change in the instrumental variable.

However, under the assumption of a constant ATE we have that LATE = ATE. Second, we

point out that Assumption 4 is weaker than assuming a constant ATE, which is a relatively

common assumption in the literature (see, e.g., Heckman, LaLonde and Smith, 1999). As-

sumption 4 allows for heterogeneous e¤ects of the treatment on the outcome variable, but such

heterogeneity is restricted to work through the mechanism or post-treatment variable S (i.e.
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through MATE). The plausibility of this assumption can be gauged in light of this observa-

tion. Third, note that the standard approach of controlling directly for Sobs implicitly assumes

a stronger condition than Assumption 4, since it imposes a zero mechanism e¤ect (MATE) for

the population. Finally, when Assumption 4 is judged to be untenable in a particular appli-

cation, LNATE or LNATEbS can still be an informative parameter for policymakers, just as
LATE commonly is (e.g., Imbens, 2009). We exemplify this last point in section 5.2.

For the case of a randomly assigned treatment, one way to implement this estimation

strategy�in the absence of a natural experiment�is as follows: (i) specify a model (based on X)

to estimate S(1) and S(0); (ii) identify the subpopulation for which bS(1) = bS(0);38 ;39 (iii) For
that subpopulation, estimate LATEsubbS based on (12); (iv) if Assumption 4 is tenable, estimate

MATE = ATE � LNATEbS .
In sum, if there is knowledge of a subpopulation for which T does not a¤ect S, one can esti-

mate LNATE based on (12) under Assumption 1 only. If �nding that subpopulation requires

prediction of the potential values of S, Assumption 2 needs to be added to estimate LNATEbS
based on (12). This estimator will be biased in general to the extent that S (1) 6= S (0) in

the subpopulation with bS(1) = bS(0), and one can learn about the sign of this bias based on
(13). Although these parameters (LNATE and LNATEbS) are informative on their own right,
Assumption 4 can be used (when tenable) to estimate NATE. Finally, note that under the

approach discussed in this section the functional-form assumption (Assumption 3) is not needed.

4.4 Identi�cation and Estimation under Non-random Assignment

In the previous sections we analyzed the problem of estimating NATE and MATE when

the treatment T is randomly assigned. In the absence of an experiment, a common approach

in the literature is to assume that selection into treatment is based on a set of observed co-

variates (X) and on unobserved components not correlated with the potential outcomes (i.e.,

unconfounded treatment). We extend the framework discussed in sections 4.2 and 4.3 to the

case when T is not randomly assigned using the following unconfoundedness assumption:

Assumption 5 Y (1; S (1)) ; Y (0; S (0)) ; Y (1; S (0)); S (1) ; S (0)?T jX.

Assumption 5 implies that the treatment received by each individual is independent of her

potential outcomes and potential values of the post-treatment variable given the set of covariates

38 If the post-treatment variable under consideration is continuous or if the procedure used to estimate S (1)
and S (0) yields a continuous variable (and hence the probability of �nding someone with bS(1) = bS(0) is zero),
one could consider a window within which values of bS(1) and bS(0) are considered to be equal. As usual, such
window will tend to zero as the sample size grows to in�nity. Alternatively, one could use a kernel function to
give higher weight to observations for which bS(1) is closer to bS(0).
39At this point, one can use a test like the Fisher randomization test to gauge whether the subpopulation

meets the minimum requirements for the estimation of LNATEbS .
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X. Hence, the covariates will now have the additional role of controlling for selection into the

treatment.40

We also add the following overlap assumption:

Assumption 6 0 < Pr (T = 1jX = x) < 1, for all x.

Assumption 6 ensures that in in�nite samples we are able to compare treated and control

units for all values of X. When Assumptions 5 and 6 hold, the treatment assignment is said to

be strongly ignorable (Rosenbaum and Rubin, 1983).

We start by discussing the identi�cation strategy in section 4.2. In this case, as before, we

need Assumptions 2 and 3. Assumptions 2 and 5 imply that Y (1; 1) ; Y (0; 0) ; Y (1; 0)?fT; S (1) ;
S (0)gjX. Thus, the covariates correct for selection not only into the treatment, but also into the
principal strata.41 Finally, Assumption 3 allows using Y (1; S (1)) to learn about Y (1; S (0)).

Then, under Assumptions 2, 3, 5, and 6 we identify NATE as in (8). This estimator can be

implemented using the same approach outlined in section 4.2.

Now consider estimating NATE with a strongly ignorable treatment assignment by focusing

on the subpopulation for which T does not a¤ect S. The main di¤erence from the random

assignment case is that now focus is on the subpopulation for which S (1) = S (0) = s and that

also has the same values of X. Therefore, LNATE can be de�ned as in (9) including X in

the conditioning set. If there is knowledge about a subpopulation for which T does not a¤ect

S, LNATE can be estimated as in the previous section (with the additional conditioning on

X). If we do not have knowledge of such subpopulation, we could follow the same approach as

in section 4.3 and focus on the subpopulation for which bSi(1) = bSi(0). Speci�cally, estimation
focuses on:

LNATEbS = EfE[Y (1; S (0))� Y (0; S (0))jS(0) = s0; S(1) = s1; bS (1) = bS (0) ; X = x]g (14)

where the term inside the outer expectation is the local NATE for the strata with S(0) =

s0; S(1) = s1; bS (1) = bS (0) and X = x. As before, (14) is a causal e¤ect because is an average

over e¤ects de�ned within a principal stratum.

When the treatment is not randomly assigned we need to add an overlap assumption in order

to ensure that, for su¢ ciently large samples, there will be both treated and control individuals

at each value of X, S (0), and S (1), for those units with bS (1) = bS (0). Speci�cally:
Assumption 7 0 < Pr(T = 1jS(0) = s0; S(1) = s1; X = x; bS (1) = bS (0)) < 1, for all s0; s1

and x.
40Similar to Assumption 1, this assumption implies Y (1; S (1)) ; Y (0; S (0)) ; Y (1; S (0)) ? T j (X;S (1) ; S (0)).
41Assumptions 2 and 5 also imply (again using Lemma 4 in Dawid, 1979) that Y (1; 1) ; Y (0; 0) ; Y (1; 0)?fS (1) ;

S (0)gj fT;Xg, so that individuals in di¤erent strata but with the same values of the treatment and covariates
are comparable.
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Assumption 7 is similar to the common overlap condition in Assumption 6, except that it

includes S (1) and S (0) as additional covariates and only has to hold for the subpopulation of

interest.42 Finally, under Assumption 4, NATE = LNATEbS andMATE = ATE�LNATEbS .
The implementation of this approach follows closely the one outlined when T is randomly

assigned.

5 Empirical Applications

In this section, we present two empirical applications that illustrate the implementation

of our strategies to estimate NATE. The �rst application illustrates the case of a randomly

assigned treatment using data from the social experiment undertaken in the National Job

Corps Study (NJCS), while the second implements our estimators to observational data from

the Natality Data Sets of Pennsylvania (1989-1991).

5.1 Random Assignment

Our data comes from the National Job Corps Study (NJCS), a randomized experiment to

evaluate the e¤ectiveness and social value of the Job Corps (JC) training program. JC provides

low-skilled young people (ages 16-24) with marketable skills to enhance their labor market

outcomes by o¤ering academic, vocational, and social skills training at JC centers throughout

the United States, where most students reside during their enrollment period.43

An important �nding of the NJCS was that, 16 quarters after randomization, individuals

in the treatment group earned a statistically signi�cant 12% more per week ($25.2) than in-

dividuals in the control group (Burghardt et al., 2001). However, upon looking at di¤erent

race and ethnic groups, it was found that Hispanics in the treatment group earned 10% less

(a statistically insigni�cant -$15.1) than those in the control group during the same period of

time. In contrast, black and white treatment-group members experienced a statistically sig-

ni�cant earnings increase of 14% ($22.8) and 24% ($46.2) over their control group members,

respectively (Schochet, Burghardt and Glazerman, 2001).44

The bold di¤erential impact on Hispanics was labeled the most prominent �failure�of JC and

it could not be explained by individual and institutional variables (Burghardt et al., 2001). In

a recent paper, Flores-Lagunes, Gonzalez and Neumann (2009) (hereafter FGN) document that

Hispanics in the control group earned a signi�cant amount of labor market experience during

42 In practice, since we expect Si(0) � Si(1) within the subpopulation with bSi (1) = bSi (0), one way to check
the overlap condition is to look at the overlap in the distribution of the propensity scores for treated and control
units within this subpopulation, where the propensity score includes Sobs as an additional covariate.
43For more information on Job Corps and the NJCS see Burghardt et al. (2001).
44These estimated e¤ects reported by the NJCS were computed using di¤erences-in-means estimates adjusted

for non-compliance, identifying a LATE on those who comply with their treatment assignment (Imbens and
Angrist, 1994). The proportion of those in the treatment group who enrolled in Job Corps was 73%, and the
proportion of those in the control group that managed to enroll in Job Corps was 1.4%.
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the study compared to treated Hispanics and also to control-group blacks and whites. Thus,

if accumulated experience resulted in an earnings advantage that treated Hispanics were not

able to overcome by the end of the study, this post-treatment variable (experience) potentially

accounts for part of the lack of earnings gains for Hispanics in JC. This setup illustrates the

policy relevance of our parameters: if lost labor market experience (i.e., the lock-in e¤ect) is a

relevant causal mechanism through which JC fails to increase the earnings of Hispanics, policies

that reduce the lock-in e¤ect of JC on Hispanics can be judged bene�cial. At the same time,

by focusing on subgroups that seem to di¤er in terms of their lock-in e¤ect, this application

provides an interesting setting in which our parameters should result in distinct inferences for

these groups.

Table 1 presents estimates of di¤erent parameters of interest using a subsample from the

NJCS that includes individuals with information on pre-treatment covariates plus the post-

treatment variable �average hours worked per week during the study�, and that report being

Hispanic, white or black.45 We pool the samples of blacks and whites for simplicity, since for

both of these groups it is found that post-treatment experience is not a relevant mechanism

(we present further evidence of this below), making unnecessary to present a separate analysis

for them.46

Rows 1 through 4 in Table 1 report estimates of the average intention-to-treat (ITT ) para-

meter.47 Row 1 presents unadjusted di¤erences in means between treatment- and control-group

individuals. These estimates are qualitatively similar to the originally reported NJCS estimates:

for the full sample and white/black samples the estimates are positive and statistically signi�-

cant ($15.6 and $23.8, respectively), while for Hispanics the e¤ects show a loss of $19.7 that is

marginally statistically signi�cant.

Next, we present ITT estimates that control for pre-treatment variables through weighting

by the estimated propensity score (pscore) in order to improve precision. In particular, in this

paper we employ the estimator due to Robins and Rotnitzky (1995) that combines weighting

by the pscore and regression (i.e., the "double-robust" estimator), as described in Imbens

(2004) and Imbens and Wooldridge (2009). Its implementation amounts to applying weighted

least squares (WLS) to a regression of the outcome on the treatment indicator and additional

covariates or functions of them (e.g., the pscore), with weights given by �i =
q

Ti
p(Xi)

+ 1�Ti
1�p(Xi)

45The pre-treatment variables include: indicators for a high school diploma or GED, speaks English as a
native language, married or cohabitating, household head, one or more children, gender, vocational degree, ever
been convicted, employed, unemployed, not in the labor force, resides in a PMSA, MSA, pre-treatment weekly
earnings, age, and indicators for race and ethnicity.
46We have estimated all parameters for the black and white samples separately as well, corroborating that this

is indeed the case.
47Given the presence of non-compliance in the sample, we estimate the intention-to-treat (ITT ) parameter.

This parameter is commonly estimated in the program evaluation literature and allows relying on the random
assignment as much as possible. Consequently, in this application, our parameters decompose the ITT and not
the ATE.

24



where p(Xi) is the estimated pscore.48 Rows 2, 3, and 4 di¤er in the way the WLS regression

is speci�ed: using no additional covariates, the pscore, and up to a cubic pscore as additional

regressors, respectively.

The estimates in rows 2-4 are fairly comparable to the unadjusted estimates in row 1, except

for Hispanics. This might be due to the smaller sample size of this group and the fact that the

group shows some pre-treatment imbalances in the covariates.49 For this reason the remaining

estimates adjust for covariates. These estimates are in line with the conclusions in the NJCS

although the negative e¤ects on Hispanics are less dramatic once covariates are controlled for.

These �total e¤ect� estimates will be the benchmark to compare our estimated e¤ects net of

the lock-in mechanism e¤ect.

The next set of estimates in Table 1 are of Rosenbaum�s (1984) NTD parameter. All of

them are obtained controlling for the observed value of post-treatment labor market experience

employing the WLS approach described above with a pscore that includes a �exible speci�cation

of experience (Sobs) in its estimation.50 This way of controlling for a post-treatment variable

by including it in the estimation of the propensity score is followed by Black and Smith (2004),

although they use a matching approach to control for the estimated pscore, as opposed to

weighting.

Recall that the NTD estimates typically lack causal interpretation as estimates of the total

e¤ect, and correspond to NATE under very stringent conditions (see section 4.1). We report

them for comparison to our estimates below. The NTD estimates for the full sample are less

than 20% larger compared to the ITT estimates, while for whites/blacks they are less than

10% larger. For Hispanics, the two sets of estimates are starkly di¤erent: more than 150%

larger. In sum, despite the fact that all these e¤ects are statistically insigni�cant for Hispanics

and the lack of causal interpretation of NTD, the point estimates are suggestive of a relevant

lock-in e¤ect for Hispanics (contrary to whites/blacks) that would seem to explain an important

portion of the lack of e¤ects of JC on them.

Two sets of estimates of NATE appear in rows 8-9, obtained using the estimation strategy

outlined in section 4.2. To implement it, we model (under Assumption 3) the �rst term in (8)

as a linear function of S(1) and all available pre-treatment covariates. The second term in (8) is

similarly predicted, but using S(0) instead. The two NATE estimates di¤er on the speci�cation

of the experience variable and the covariates included: row 8 includes experience up to a cubic

term and all covariates, while row 9 adds interactions between the experience variable and the

covariates to this speci�cation. The NATE estimates for whites/blacks and for the full sample

48The propensity score (pscore) is estimated using all pre-treatment variables, their squares, and interactions
in a logit model.
49The misalignment of pre-treatment variables for Hispanics is documented and discussed in FGN (2009).
50 In particular, we use the same speci�cation of the pscore as in ITT , but include experience up to a cubic

term, and interactions of this variable with the pre-treatment covariates.
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are closer to the ITT estimates than the NTD estimates, which is consistent with a non-existent

lock-in e¤ect for them. Among the two NATE estimates, the richer speci�cation (row 9) is

closer to the ITT estimates. For Hispanics, however, the NATE estimates are very di¤erent

from the ITT estimates (as was the case with NTD), strengthening the notion of a relevant

lock-in e¤ect for them. Unfortunately, as before, the estimates are imprecisely estimated.

In the last panel of Table 1, we present estimates of LNATEbS that di¤er in the way they
are implemented. In all of them, the potential values of post-treatment labor market experi-

ence (S(0) and S(1)) are estimated based on covariates X employing the matching approach

described in footnote 34, using a single match on the estimated pscore that does not include

experience.51 Given that S is a fairly continuous variable�average number of hours worked per

week during the study�, it is di¢ cult to �nd individuals for which bS (1) = bS (0). We approach
this feature by de�ning a window around bS (1)� bS (0) = 0 using a Silverman-type bandwidth
to characterize the subpopulation with fbS (1) = bS (0)g.52 The proportional size of the resulting
LNATEbS subpopulation is similar across the three samples.

As mentioned in section 4.3, we can assess the plausibility that the subpopulation found for

the estimation of LNATEbS satis�es the requirement that experience (S) is not a¤ected by the
treatment (or that this e¤ect is small). To do this, we implement several versions of the Fisher

randomization test. This test provides evidence on the sharp null hypothesis H0 : Si (1) = Si (0)

for every i. In its simplest form, the implementation consists of simulating the distribution under

H0 for the observed test statistic
�TiSi(1)
�Ti

� �(1�Ti)Si(0)
�(1�Ti) (or other quantity measuring the e¤ect

of T on S) by randomizing the treatment indicator to the units in the sample and computing

the test statistic in each repetition. Then, an approximate p-value is constructed by comparing

the observed test statistic with the simulated distribution. A rejection of the test indicates that

the post-treatment variableS is a¤ected by the treatment.

Panel A of Table 3 presents results of Fisher randomization tests for the three groups under

analysis. For each group, tests are applied to the population of the group (for comparison) and

to the subpopulation characterized by fbS (1) = bS (0)g. We present �ve versions of the test,
which turn out to yield the same conclusion. The �rst three tests are based on comparing the

coe¢ cient from an OLS regression of S on the treatment indicator (T ) in row 1, adding the

pscore in row 2, and further adding the square and cube of the pscore in row 3.53 The last two

rows are based on applying the simple form of the test described above to the residuals from

OLS regressions of S on the pscore and then adding the pscore square and cube, respectively.

The results of the tests are in line with expectations. Whites/blacks, the group that shows

51We estimated S (1) and S (0) based on X separately for the full sample, whites/blacks, and Hispanics.
52The Silverman-type bandwidth employed is equal to 0:79 � IQR �N^(�1=5), where IQR is the interquartile

range and N is the sample size. This bandiwdth has the advantage of being more robust to outliers than the
usual one based on the standard deviation (see, e.g., Pagan and Ullah, 1999).
53Given that in this case S is the outcome of interest, in all cases the pscore is the speci�cation that does not

include experience on it. We re-estimate the pscore within the corresponding subpopulation.
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the least amount of lock-in e¤ect, have p-values for their population that range from 0.31 to

0.5, not rejecting the null hypothesis of no e¤ect of the treatment on post-treatment experience.

For the full sample, the null hypothesis is rejected at the 10% level in all cases, and at the 5%

level in one. However, the subpopulation cannot reject the test with a p-value of 0.77 or higher.

Finally, as expected, Hispanics show the strongest rejections of the null hypothesis for their

population, consistent with the hypothesis of an important e¤ect of training on experience for

them. Importantly, the characterized subsample substantially decreases the strong relationship

between S and T , with p-values that range from 0.57 to 0.99. In sum, for the three groups under

analysis, the statistical evidence cannot reject the notion that the corresponding subpopulations

characterized by fbS (1) = bS (0)g have a zero e¤ect of T on S for all units.
We now discuss the LNATEbS estimates based on the subpopulations described above. We

start by estimating LNATEbS in rows 10-12 as the local average treatment e¤ect (LATEsubbS )

for this subpopulation based on (12). For each group, we estimate a propensity score without

including experience in this subpopulation and use WLS with similar speci�cations as those

used in the estimation of ITT and NTD. For the full sample, the LNATEbS estimates average
$29.9, substantially higher than ITT ($19.2), NTD ($23), and also NATE ($21.7). In contrast,

for whites/blacks the LNATEbS estimates are around $24, which is about the same magnitude
as ITT . Under Assumption 4, this result reinforces the observation that for whites/blacks

experience is not a mechanism through which JC a¤ects wages. For Hispanics, however, the

LNATEbS estimates (about $10.9 on average) are larger than the NTD and NATE, and

substantially larger than the ITT . Unfortunately, it is also estimated very imprecisely and

these di¤erences are not statistically signi�cant. Note that if we were to assume that the

average mechanism e¤ect is negative for all three subpopulations, then the estimates in rows

10-12 would be downward biased according to equation (13).

As a robustness check, and following our discussion in section 4.3, rows 13-15 present esti-

mates of LNATEbS further controlling for Sobs. These estimates di¤er from those in rows 10-12

in that they include experience in the speci�cation of the pscore.54 Overall, the estimates for

the full population are close to the ones presented in rows 10-12, which give us con�dence in our

LNATEbS results for the full sample. For whites and blacks the results are not as robust as for
the full sample; however, they remain below the NTD estimates in rows 5-7. Note that for this

group there is a considerable decrease in the precision of our estimates by introducing experience

as an additional control, since now the LNATEbS estimates in rows 13-15 are not statistically
di¤erent from zero. Something similar occurs for Hispanics, for which the LNATEbS estimates
fall when including experience in the pscore speci�cation, although none of their estimates are

statistically signi�cant.

54Given that we are within the subpopulation with bSi (1) = bSi (0), for which S (1) � S (0), we include Sobs in
the estimation of the propensity score as an additional pre-treatment variable.
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We gather the following conclusions from this empirical illustration. First, our estimates of

NATE and LNATEbS suggest that the lock-in e¤ect results in a negative causal mechanism
for the e¤ect of JC training on Hispanic�s earnings, although the estimates remain statistically

insigni�cant. Second, the full set of estimates corroborate the high degree of heterogeneity that

exists among whites/blacks and Hispanics, which results in very di¤erent inferences in terms of

their estimated total, net and mechanism e¤ects from JC training. Lastly, and unfortunately,

in this application many of the di¤erences in the estimates are not statistically signi�cant. This

may be due to the absence of di¤erences among the true parameters in this application, or the

need for larger sample sizes to increase precision.

5.2 Non-random Assignment

When the treatment is not randomly assigned we face the additional issue of controlling

for self-selection, for which we employ a selection on observables assumption and regard the

treatment as randomly assigned conditional on a rich set of observed covariates. For this

application, the data comes from Pennsylvania�s Natality Data Sets from 1989 to 1991, which

includes all births (although we focus on single births) and has been previously used and

documented by Chay, Flores and Torelli (2005). The availability of a wide range of observable

characteristics, including characteristics of both parents and previous birth history, makes the

assumption of selection on observables more plausible.

The focus is on evaluating the extent to which smoking during pregnancy (treatment) a¤ects

the incidence on low birth weight (outcome) through a shorter gestation time (a mechanism).

The outcome �low birth weight� (LBW) has the standard de�nition in the medical literature

of birth weight below 2,500 grams, and is widely associated with a myriad of health, behav-

ioral and socioeconomic problems in later stages of individual development (e.g. UNICEF and

WHO, 2004). For instance, LBW has been negatively associated to educational attainment,

self-reported health status, and employment (Currie and Hyson, 1999). The consensus in the

literature (e.g., Stein et al., 1983; Center for Disease Control and Prevention, 2001) is that

smoking during pregnancy causally reduces birth weight and thus increases the probability of

incidence on LBW, but the importance of speci�c mechanisms is not completely understood.

In general, there might be two ways in which smoking during pregnancy a¤ects birth weight: a

shorter gestation time and intrauterine growth retardation (IGR). The importance of determin-

ing the causal relative importance of a channel is that particular policies aimed at minimizing

the negative e¤ects of smoking during pregnancy may be considered. For instance, if gestation

time is an important causal mechanism, drugs that lengthen gestation time may be deemed

useful.

Table 2 presents the results for this application. Given the importance of satisfying the

support condition in observational studies using the selection-on-observables assumption (e.g.
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Heckman, Ichimura and Todd, 1997; Dehejia and Wahba, 1999), we concentrate on the sample

in the overlap region of the estimated pscore between the 1 percentile of the pscore values for

the treated and 99 percentile of the pscore values for controls.55 For reference, the average

LBW incidence in the sample employed is 58.3 per 1,000 births, and 20.8% of women smoked

during pregnancy. The incidence on LBW is 48.4 per 1,000 births for non-smokers (control)

and 95.7 per 1,000 births for smokers (treatment), yielding the unadjusted di¤erence of 47.3

shown in the �rst row of Table 2. Thus, mothers who smoked during pregnancy were about

twice as likely to deliver a LBW baby than those mothers who did not.

Rows 2 through 4 present estimates of the total e¤ect (ATE) of smoking on LBW incidence,

controlling for self-selection using an estimated pscore.56 Rows 2-4 employ the same WLS

approach and speci�cations as in the previous empirical application. The three estimates are

close to each other, re�ecting an e¤ect of smoking on the incidence on LBW of 33 per 1,000

births. The fact that this �gure is smaller than the unadjusted di¤erence in row 1 implies a

selection bias of about 14 in the unadjusted �gure. Still, the ATE estimate suggests a sizable

e¤ect of smoking during pregnancy on LBW incidence, as the probability increases 68%.

The second panel of Table 2 (rows 5-7) presents estimates of the NTD parameter that

control directly for gestation time in weeks (Sobs) using speci�cations similar to those used

in the previous application. For these estimates the pscore includes observed gestation (in a

�exible way) in its estimation. The NTD is precisely estimated at about 28. This suggests that

15.2% of the e¤ect of smoking during pregnancy on the incidence on LBW (5 of 33 per 1,000

births) can potentially be attributed to gestation time, although these estimates correspond to

NATE under very stringent conditions.

Rows 8 and 9 present estimates of NATE, implemented in the same way as in the previous

application. Both estimates are essentially identical to each other at 26.5 per 1,000 births,

and slightly smaller than NTD. Based on the NATE estimates and under the assumptions

discussed in section 4, about 20% of the e¤ect of smoking during pregnancy on the incidence

on LBW can be causally attributed to gestation time. We note that the di¤erence between the

NATE and the ATE estimates is statistically signi�cant, whereas the di¤erence between the

NATE and the NTD estimates is not.
55The sample consists of 496,212 individuals, of which 425,219 are contained within the overlap region.
56The propensity score is estimated with a logit model. The covariates used are mother�s age, education, race,

ethnicity, marital status, foreign-born status; father�s age, education, race and ethnicity; dummies for trimester
of �rst prenatal care visits, adequacy of care, number of prenatal visits, number of drinks per week, alcohol
use, live birth order, number of previous births were newborn died, parity indicator, interval since last birth,
indicators for previous birth over 4000 grams and previous birth preterm or small for gestational age; maternal
medical risk factors that are not believed to be a¤ected by smoking during pregnancy: anemia, cardiac disease,
lung disease, diabetes, genital herpes, hydramnios/oligohydramnios, hemoglobinopathy, chronic hypertension,
eclampsia, incompetent cervix, renal disease, Rh sensitization, uterine bleeding; indicators for: month of birth,
county of residence at birth, state of occurrence and residence di¤erent, each variable that is missing for some
mothers. The particular speci�cation used includes nonlinear functions and interactions, and is similar to the
one used in Chay, Flores and Torelli (2005) and Almond, Chay and Lee (2005).
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Finally, the last panel in Table 2 presents estimates of LNATEbS . The subpopulation

of interest is obtained, as in the previous application, by estimating the potential values of

gestation time using a single match on the estimated pscore and selecting those units with

fbS (1) = bS (0)g, resulting in a sample of about 15% of the one used for estimation of the

ATE.57 We test whether the individual treatment e¤ect of T on S is zero for all mothers in

this subpopulation using di¤erent versions of the Fisher randomization test. Panel B of Table 3

shows that for the population the null hypothesis of no e¤ect of T on S is soundly rejected, while

in the subpopulation it is not, with p-values ranging from 0.35 to 0.92. Rows 10-12 estimate

LNATEbS by estimating the ATE within the relevant subpopulation (LATEsubbS ) based on (12)

employing a pscore without gestation in its speci�cation; whereas rows 13-15 estimate LNATEbS
by including gestation in the pscore speci�cation for comparison. For this application, all six

LNATEbS estimates are essentially the same at about 22.8 per 1,000 births. This supports the
notion that within this subpopulation LNATEbS � LATEsubbS and thus the bias in (13) is close

to zero.

The estimated value of 22.9 for LATEsubbS implies that even for a subpopulation for which

smoking has a negligible e¤ect on gestation, smoking during pregnancy has a signi�cant and

large e¤ect on LBW incidence. Therefore, even if the e¤ect of smoking on gestation were elim-

inated, there would remain considerable negative e¤ects of smoking during pregnancy through

other mechanisms, at least for the individuals in this subpopulation (15% of the total popula-

tion), although this general result would likely apply to the entire population. This is the type

of conclusions that can be learned from LNATEbS (or LATEsubbS ) without the need of Assump-

tion 4 (constant NATE). Under Assumption 4 these estimates imply that 31% of the e¤ect

of smoking during pregnancy on the incidence on LBW can be causally attributed to gestation

time.58. Remarkably, the di¤erence between ATE and each of NTD, NATE and LNATEbS
is highly statistically signi�cant, speaking to the relevance of the mechanism. In addition, the

di¤erence between LNATEbS and NTD is statistically signi�cant at the 7% level, while the

di¤erence between LNATEbS and NATE is not.

In sum, the results of this empirical application are consistent with a causal role of gestation

time as a channel through which smoking during pregnancy increases the incidence on LBW.

While the total e¤ect is 33 per 1,000 births (or about 70% higher than non-smokers), our

results indicate that between 20 to 30 percent of this e¤ect works causally through a shorter

gestation time. Importantly, we also �nd that the NTD understates the importance of gestation

time as a causal mechanism by between 5 to 15 percentage points. Clearly, an advantage of

57Note that, contrary to the previous application, the post-treatment variable gestation time, measured in
weeks, is su¢ ciently discrete to allow identifying a population for which fbS (1) = bS (0)g exactly.
58 If we assume that the average mechanism e¤ect is positive for the subpopulation where LNATEbS is estimated,

then the estimates in rows 10-12 are upward biased accoring to equation (13) and thus the estimated mechanism
e¤ect of 31% is downward biased.
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this empirical application is that the sample sizes allow estimation of the parameters with

considerable precision.

Some patterns emerge in the implementation of our methods in the two empirical applica-

tions. First, our methods are feasible to implement in estimating the NATE and the MATE.

Second, the estimation of these parameters yields new insights about the treatment at hand;

although we remark that a careful evaluation of the plausibility of the assumptions made by

each estimation strategy in particular applications cannot be overstated. Finally, in both ap-

plications, the (non-causal) estimates for NTD, which is the parameter commonly used in the

literature to estimate net e¤ects, di¤er from our estimates (especially in the second empirical

application). This underscores the potentially misleading conclusions that can be reached by

directly controlling for the observed values of the post-treatment variable.

6 Conclusion

This paper analyzes identi�cation and estimation of an average causal mechanism through

which a treatment or intervention a¤ects an outcome, and the average causal e¤ect of the

treatment net of this mechanism. These causal e¤ects are of interest since they allow a better

understanding of the treatment and, as a result, can be used for policy purposes in the design,

development, and evaluation of interventions. Not surprisingly, it is common in the literature to

informally analyze potential mechanisms of a treatment as a natural step after estimating the

�total�e¤ect of the treatment. Unfortunately, the parameter of interest is usually not clearly

de�ned, and these analyses are typically based on a standard approach that directly controls

for observed values of a variable representing a mechanism, resulting in estimates that generally

lack causal interpretation.

We avoid this pitfall by using the concept of principal strati�cation (Frangakis and Rubin,

2002) to de�ne causal parameters of interest. These parameters intuitively decompose the total

e¤ect of a treatment into the part that is causally due to a particular mechanism (mechanism

average treatment e¤ect or MATE) and the part that is net of such mechanism (net average

treatment e¤ect or NATE). Estimation of these e¤ects is a di¢ cult task given the data typically

available to researchers. In addition, we show that to interpret the standard approach as NATE

we need to rely on assumptions that are typically too strong to be useful in practice.

We develop two strategies for estimation of our parameters under an unconfoundedness

assumption in the spirit of the familiar selection on observables approach (Rosenbaum and

Rubin, 1983; Imbens, 2004). The �rst strategy is based on a functional form assumption

relating the partially observable potential outcome Y (1; S (1)) to the unobserved Y (1; S (0))

that is necessary for the estimation of NATE. The second approach estimates NATE by

�rst estimating a local NATE for the subpopulation for which T does not a¤ect S, where
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the covariates can be used to �nd such population if it is not available through other means

(e.g., a natural experiment). We present each of these approaches for the case in which the

treatment is randomly assigned and when selection into the treatment is based on a set of

observable covariates. Finally, we present two di¤erent empirical applications that illustrate

the implementation of our methods.

Several natural extensions are of interest, such as: (i) an analysis of the way in which addi-

tional information can be used to estimate our parameters (e.g., the availability of instrumental

variables); (ii) the construction of bounds for our parameters in the spirit of Manski (1990);

(iii) the development of a set of alternative assumptions leading to identi�cation and estimation

strategies that allow for selection into the treatment to be based on unobservables. Work along

these lines is being pursued in Flores and Flores-Lagunes (2009a and 2009b).
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(N=9,105) t-stat N (N=7,412) t-stat N (N=1,693) t-stat N

1 Unadjusted Difference 15.6 (3.40) 23.8 (4.70) -19.7 (-1.79)
2 WLS using pscore in weights. No pscore in regression 19.2 (4.21) 24.8 (4.90) -7.6 (-0.69)
3 WLS using pscore in weights. Linear pscore as regressor 19.3 (4.24) 24.8 (4.90) -7.5 (-0.69)
4 WLS using pscore in weights. Up to cubic pscore as regressor 19.2 (4.23) 25.0 (4.96) -7.3 (-0.67)

5 WLS using pscore in weights. No pscore in regression 23.1 (5.14) 27.0 (5.42) 5.2 (0.47)
6 WLS using pscore in weights. Linear pscore as regressor 23.1 (5.21) 27.0 (5.43) 5.8 (0.55)
7 WLS using pscore in weights. Up to cubic pscore as regressor 22.7 (5.13) 27.0 (5.46) 4.5 (0.44)

8 OLS outcome on experience and its polynomials up to degree 3 
plus linear covariates 22.7 (6.33) 26.8 (6.68) 3.6 (0.71)

9 OLS outcome on experience and its polynomials up to degree 3, 
linear covariates, and interactions 20.7 (5.29) 23.6 (5.55) 6.7 (0.69)

10 WLS using pscore in weights. No pscore in regression 28.9 (2.45) 1273 23.9 (2.04) 1072 10.5 (0.36) 344
11 WLS using pscore in weights. Linear pscore as regressor 28.9 (2.49) 1273 24.0 (2.05) 1072 9.6 (0.34) 344
12 WLS using pscore in weights. Up to cubic pscore as regressor 31.9 (3.08) 1273 24.1 (2.07) 1072 12.7 (0.44) 344

13 WLS using pscore in weights. No pscore in regression 30.1 (2.48) 1273 18.2 (1.52) 1072 1.6 (0.05) 344
14 WLS using pscore in weights. Linear pscore as regressor 30.1 (2.52) 1273 18.2 (1.52) 1072 2.9 (0.09) 344
15 WLS using pscore in weights. Up to cubic pscore as regressor 34.4 (3.28) 1273 18.0 (1.49) 1072 3.6 (0.12) 344

Table 1. Random Assignment Application: Estimation of the effect of the Job Corps training program on weekly earnings during 
quarter 16 after randomization. Mechanism analyzed: post-treatment labor market experience1

Full Sample HispanicWhite and Black

Using pscore that includes experience in its estimation

Estimation of Intention to Treat Effects, ITT

Estimation of "Net Treatment Difference" controlling for observed post-treatment esperience, NTD 

Estimation of the local NATE for the subpopulation with (predicted) S(0)=S(1), where predicted S(0) and S(1) are based on matching on the pscore. 2

Estimation of NATE using E[Y(1,S(1)) | S(1), X] to predict E[Y(1,S(0)) | S(0), X]. E[Y(0,0) | S(0), X] is similarly predicted.

1 All estimates use a sample that contains those who completed both a 48-month and baseline interviews, and with non-missing information on the covariates employed by the estimators. The sample 
sizes are indicated at the top of each column, unless otherwise indicated for particular estimators. Standard errors do not take into account the estimation of the propensity score. 
2 Given that S is defined as the average number of hours worked during the study, the predicted values S(1) and S(0) are continuous. The subpopulation with predicted S(1)=S(0) is obtained employing 
a window around (predicted) S(1)-S(0)=0 using a Silverman-type bandwidth based on the inter-quantile range (IQR): h=0.79*IQR*N^(-1/5).

Using pscore that does not include experience in its estimation



Estimate t-statistic

1 Unadjusted Difference 47.3 (44.82)
2 WLS using pscore in weights. No pscore in regression 33.1 (26.85)
3 WLS using pscore in weights. Linear pscore as regressor 32.8 (26.57)
4 WLS using pscore in weights. Up to cubic pscore as regressor 32.8 (26.56)

5 WLS using pscore in weights. No pscore in regression 28.2 (23.56)
6 WLS using pscore in weights. Linear pscore as regressor 27.9 (23.29)
7 WLS using pscore in weights. Up to cubic pscore as regressor 27.9 (23.28)

8 OLS outcome on gestation and its polynomials up to degree 3 plus covariates 26.6 (23.46)
9 OLS outcome on gestation and its polynomials up to degree 3, covariates, and interactions 26.5 (23.36)

10 WLS using pscore in weights. No pscore in regression 22.9 (9.51)
11 WLS using pscore in weights. Linear pscore as regressor 22.9 (9.47)
12 WLS using pscore in weights. Up to cubic pscore as regressor 22.9 (9.52)

13 WLS using pscore in weights. No pscore in regression 22.8 (9.50)
14 WLS using pscore in weights. Linear pscore as regressor 22.7 (9.45)
15 WLS using pscore in weights. Up to cubic pscore as regressor 22.8 (9.49)

Estimation of NATE using E[Y(1,S(1)) | S(1), X] to predict E[Y(1,S(0)) | S(0), X]. E[Y(0,0) | S(0), X] is similarly predicted. Focus 
on subpopulation with overlap region of pscore between the 1 percentile of pscore for treated and 99 percentile of pscore for 

controls. (N=425,219)

Table 2. Non-Random Assignment Application: Estimation of the effect of smoking during pregnancy on the 
incidence of low birth weight (less than 2,500 grams) per 1,000 births. Mechanism analyzed: weeks of 

gestation (single births in Pennsylvania from 1989 to 1991)

Estimation of Average Treatment Effects, ATE. Focus on a population with overlap region of pscore between the 1 percentile of 
pscore for treated and 99 percentile of pscore for controls (N=425,219).

Estimation of "Net Treatment Difference" controlling for observed gestation, NTD. Focus on a population with  an overlap 
region of corresponding pscore (that includes gestation) between the 1 percentile of pscore for treated and 99 percentile of pscore 

for controls (N=424,677).

Estimation of the local NATE for the subpopulation with (predicted) S(0)=S(1) and overlap region of pscore between the 1 
percentile of pscore for treated and 99 percentile of pscore for controls. Predicted values of S(0) and S(1) are based on matching 

on the pscore.

Using pscore that does not include experience in its estimation.  N=63,666

Using pscore that includes experience in its estimation. N=63,748

Note: The standard errors do not take into account the estimation of the propensity score. For comparison, the corresponding sample averages of incidence 
of low birth weight are 58.3 for all mothers, 48.4 for those that do not smoke during pregnancy, and 95.7 for those that smoke during pregnancy.



Test based on: Population Subpopulation Population Subpopulation Population Subpopulation Population Subpopulation
1 OLS coefficient, no covariates 0.01 0.96 0.00 0.57 0.31 0.25 -- --
2 OLS coefficient, including pscore 0.06 0.78 0.00 0.99 0.38 0.90 0.00 0.35
3 OLS coefficient, including up to cubic pscore 0.06 0.77 0.01 0.94 0.39 0.91 0.00 0.45
4 OLS residuals, including pscore 0.06 0.79 0.01 0.99 0.50 0.84 0.00 0.77
5 OLS residuals, including up to pscore 0.06 0.79 0.01 0.95 0.39 0.91 0.00 0.92

Note: "Subpopulation" refers to that subpopulation for which (predicted) S(0)=S(1), which is used in the estimation of the local NATE.

Table 3. Simulated p-values for Fisher's Randomization Test for the presence of individual effects of T on the post-treatment variable S. Based on 10,000 
repetitions

PANEL   A PANEL   B

Non-Random Assignment 
Application: testing the 

effect of smoking on 
gestation

Random Assignment Application: testing the effect of Job Corps training on post-treatment 
experience

Full Sample Hispanics Whites and Blacks




