١

University of Minnesota

Cooperative Group Problem Solving in Physics*

Patricia Heller
Department of Curriculum and Instruction

Kenneth Heller School of Physics and Astronomy

* Supported in part by the National Science Foundation (NSF), the Department of Education, Fund for Improving Post-Secondary Education (FIPSE), and by the University of Minnesota.

Table of Contents

	J	Page
1.		1
	Flow Chart of Minnesota Model	. 3
	Description of Minnesota Model	. 4
2.	Teaching Problem Solving	17
	A Logical Problem-solving Strategy	19
	Flow-charts of the Problem-solving Strategy	26
	Blank Problem-solving Format Sheets	32
	Grading Feedback	34
3.	Cooperative Group Problem Solving in Discussion Sections	37
	Why Cooperative Group Problem Solving?	39
	Frequently Asked Questions (FAQ) about Cooperative Groups	40
	General Plan for Teaching a Discussion Section	43
	Chart of Group Roles	48
	Group Functioning Evaluation	49
	Typical Objections to Cooperative Groups	50
4.	Context-rich Written Problems	53
	What Are Context Rich Problems?	55
	What Are the Characteristics of a Good Group Problem?	55
	Twenty-one Characteristics That Can Make a Problem Difficult	55
	How to Create Context-rich Problems	57
	How to Judge If a Problem is a Good Group Problem	58
	Context-rich Problems in This Booklet	60
5.	Problem-solving Laboratories	117
	Frequently Asked Questions (FAQ) about our Problem-solving Labs	119
	Comparisons of Different Types of Labs	125
	General Plan for Teaching a Laboratory Section	126
	Table of Contents for Calculus-Based Introductory Labs	132
	Laboratory Manual's Introduction to Problem-solving Labs	137
	Example of Adapting a Textbook Problem:	
	Laboratory Manual's Introduction to Forces Lab	147
	Enhanced Version of Problem #2: Forces in Equilibrium	148
	Instructor's Guide to Forces Labs	153
	Example of Exploratory Problem: Magnets and Moving Charge	160
	Example of Importance of Predictions: Gravitational Force on the Electron	163
6.		169
	Cooperative Group Problem Solving at the University of Minnesota	171
	A Short Bibliography of Articles and Books About Cooperative Grouping	172

Acknowledgments

The authors would like to thank the many people who have contributed to the development of the problem-solving strategy, context-rich problems, the lab problems, and the appendices, especially

Jennifer Blue	Andrew Kuntz	Konrad Mauersberger
Dave Demuth	Charles Henderson	Laura McCullough
James Flatten	Mark Hollabaugh	Bruce Palmquist
Andrew Ferstl	Ron Keith†	Julia Stephen
Tom Foster	Dan Lottis	Jaena Streets

And the physics faculty and graduate students who helped write the laboratory and contextrich problems and helped refine these techniques.

> Patricia Heller Kenneth Heller

Also, Visit our WWW Page:

http://www.physics.umn.edu/groups/physed

- © University of Minnesota, 1999
- † University of Kansas