
Testing: Principles and Practice
STEPHEN R. SCHACH

Department of Computer Science, Vanderbilt University, Nashville, TN ^srs@vuse.vanderbilt.edu&

Testing is the process of determining
whether a task has been correctly car-
ried out. Testing should be performed
throughout the software life cycle; it
should not be restricted to verification
(testing whether a phase has been car-
ried out correctly) and validation (test-
ing whether the completed product sat-
isfies its specifications). The correction
of a fault exposed by testing is termed
debugging.
The goal of testing is to reveal faults.

There are two types of testing: execu-
tion-based testing and nonexecution-
based testing. It is impossible to execute
a specification document; instead, it has
to be reviewed carefully. Once execut-
able code has been written it is possible
to run test cases, that is, perform execu-
tion-based testing. Nevertheless, the ex-
istence of code does not preclude nonex-
ecution-based testing because carefully
reviewing code will uncover at least as
many faults as running test cases. In
this survey, the principles and practice
of both execution-based and nonexecu-
tion-based testing are described.

NONEXECUTION-BASED TESTING

The principle underlying nonexecution-
based testing techniques such as walk-
throughs and inspections is that a re-
view by a team of experts with a broad
range of expertise increases the chance
of finding a fault.
Nonexecution-based testing is re-

markably effective. At the Jet Propul-
sion Laboratory (JPL), on average each
two-hour inspection exposed four major
and fourteen minor faults [Bush 1990],
resulting in a saving of approximately

$25,000 per inspection. Another JPL
study [Kelly et al. 1992] shows that the
number of faults detected decreases ex-
ponentially by phase. In other words,
inspections result in faults being de-
tected early in the software process,
thereby saving both time and money.
The Cleanroom software development

approach incorporates a number of dif-
ferent techniques, including an incre-
mental life-cycle model, formal tech-
niques for specification and design,
and nonexecution-based module-testing
techniques such as code reading and
code inspections [Dyer 1992]. A critical
aspect of the technique is that a module
is not compiled until it has passed an
inspection. As reported in Linger [1994],
seventeen products totaling nearly one
million lines of code were developed us-
ing Cleanroom. These included the
350,000-line Ericsson Telecom OS32 op-
erating system. Overall, the weighted
average testing fault rate was only 2.3
faults per KLOC.
An alternative nonexecution-based

technique is correctness proving. This
consists of using a mathematical proof
to show that a product is correct, that
is, satisfies its specifications. Dijkstra
[1972] has stated that “the only effec-
tive way to raise the confidence level of
a program significantly is to give a
convincing proof of its correctness.”
However, even if a product is proved
correct, it must nevertheless be sub-
jected to thorough execution-based test-
ing [Schach 1996, Section 5.5.2].
Despite some problems with correct-

ness proving, proofs are appropriate
where indicated by risk or cost-benefit

Copyright © 1996, CRC Press.

ACM Computing Surveys, Vol. 28, No. 1, March 1996

analysis, and when human lives are at
stake. Even when a full formal proof is
not justified, the quality of software can
be markedly improved through the use
of informal proofs and by inserting as-
sertions into the code.

EXECUTION-BASED TESTING

We need to test a number of different
aspects of a software product, including
its utility, reliability, robustness, per-
formance, and correctness. There are
two basic ways of systematically con-
structing test data to test the correct-
ness of a module. The first is testing to
specifications (or black-box testing). In
this approach, the code is ignored; the
only information used in drawing up
test cases is the specification document.
The other extreme is testing to code (or
glass-box testing) where the test cases
are based solely on the code. Neither
approach is feasible because of the com-
binatorial explosion; there are simply
too many test cases to consider.
The goal of execution-based testing is

therefore to highlight as many faults as
possible while accepting that there is no
way to guarantee that all faults have
been detected [Myers 1979; Beizer
1990]. A reasonable way to proceed is
first to use black-box test cases (testing
to specifications) and then to develop
additional test cases using glass-box
techniques (testing to code).
The art of black-box testing is to use

the specifications to devise a small,
manageable set of test cases to maxi-
mize the chances of detecting a previ-
ously undetected fault while minimizing
the chances of wasting a test case by
having the same fault detected by more
than one test case. The favored tech-
nique for achieving this is equivalence
testing combined with boundary-value
analysis [Schach 1996, Section 12.15.1].
There are a number of different forms

of glass-box testing, including state-
ment, branch, and path coverage. The
most powerful form of structural testing
is path coverage, that is, testing all pos-
sible paths. However, in a product with

loops the number of paths can be huge.
In practice, therefore, techniques are
used that reduce the number of paths to
be examined while still being able to
uncover more faults than would be pos-
sible using less comprehensive struc-
tural testing methods. One example is
all-definition-use-path coverage. In this
technique, each occurrence of a variable
in the source code is labeled either as a
definition of the variable or as a use of
the variable. Next, all paths between
the definition of a variable and the use
of that definition are identified, nowa-
days by means of a CASE tool. Finally,
a test case is set up for each such path.
All-definition-use-path coverage is fa-
vored because large numbers of faults
can frequently be detected using rela-
tively few test cases [Schach 1996, Sec-
tion 12.16.1].

FUTURE PROSPECTS

Software is tested in order to detect
faults. However, instead of using better
techniques for detecting faults, it is
more effective to employ software-devel-
opment approaches (such as Cleanroom)
that reduce the number of faults in the
software. Thus, the future role of test-
ing will be to prevent faults rather than
to detect them.

ACKNOWLEDGMENT

This survey was based on material taken from
Stephen R. Schach, Classical and Object-Oriented
Software Engineering, Third Edition, Richard D.
Irwin Inc., 1996, pages 109–133 and 405–420.

REFERENCES

BEIZER, B. 1990. Software Testing Techniques,
2nd ed. Van Nostrand Reinhold, New York.

BUSH, M. 1990. Improving software quality:
The use of formal inspections at the Jet Pro-
pulsion Laboratory. In Proceedings of the 12th
International Conference on Software Engi-
neering. (Nice, France), 196–199.

DIJKSTRA, E. W. 1972. The humble program-
mer. Commun. ACM 15, 10 (Oct.), 859–866.

278 • Stephen R. Schach

ACM Computing Surveys, Vol. 28, No. 1, March 1996

DYER, M. 1992. The Cleanroom Approach to
Quality Software Development. Wiley, New
York.

KELLY, J. C., SHERIF, J. S., AND HOPS, J. 1992.
An analysis of defect densities found during
software inspections. J. Syst. Softw. 17, 1
(Jan.), 111–117.

LINGER, R. C. 1994. Cleanroom process model.
IEEE Software 11, 3 (Mar.), 50–58.

MYERS, G. 1979. The Art of Software Testing.
Wiley, New York.

SCHACH, S. R. 1996. Classical and Object-Ori-
ented Software Engineering, 3rd ed. Richard
D. Irwin, Inc., Chicago, IL.

Testing: Principles and Practice • 279

ACM Computing Surveys, Vol. 28, No. 1, March 1996

