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Solutions to Exercises

Problem Set 1.1, page 8
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The combinations give (a) alinein R?® (b) aplanein R® (c) all of R3.
v+ w = (2,3) and v — w = (6, —1) will be the diagonals of the parallelogram with

v and w as two sides going out from (0, 0).

This problem gives the diagonals v + w and v — w of the parallelogram and asks for
the sides: The opposite of Problem 2. In this example v = (3, 3) and w = (2, —2).
3v+w = (7,5)and cv + dw = (2c + d, c + 2d).

u+v=(-2,3,1)andu+v+w = (0,0,0) and 2u+2v+w = ( add first answers) =
(—2,3,1). The vectors u,v,w are in the same plane because a combination gives

(0,0,0). Stated another way: © = —v — w is in the plane of v and w.

The components of every cv + dw add to zero because the components of v and of w
add to zero. ¢ = 3and d = 9 give (3, 3, —6). There is no solution to cv+dw = (3, 3, 6)

because 3 + 3 + 6 is not zero.

The nine combinations ¢(2, 1) + d(0,1) with ¢ = 0,1,2 and d = (0, 1,2) will lie on a

lattice. If we took all whole numbers ¢ and d, the lattice would lie over the whole plane.

The other diagonal is v — w (or else w — v). Adding diagonals gives 2v (or 2w).

The fourth corner can be (4, 4) or (4,0) or (—2,2). Three possible parallelograms!

©—j = (1,1,0) is in the base (z-y plane). ¢ + 7 + k = (1,1, 1) is the opposite corner

from (0, 0,0). Points in the cube have 0 <2 < 1,0 <y <1,0< 2z < 1.

Four more corners (1,1,0),(1,0,1),(0,1,1),(1,1,1). The center point is (3, 3, 3).
£ D0 E D 0 (10,5, (G 1)

The combinations of ¢ = (1,0,0) and ¢ + 5 = (1,1, 0) fill the zy plane in xyz space.

Centers of faces are (3, 3,0), (3, 3,1) and (0

Sum = zero vector. Sum = —2:00 vector = 8:00 vector. 2:00 is 30° from horizontal
= (cos §,sin §) = (v3/2,1/2).
Moving the origin to 6:00 adds 7 = (0, 1) to every vector. So the sum of twelve vectors

changes from 0 to 125 = (0,12).
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3 1
The point Z'u + Zw is three-fourths of the way to v starting from w. The vector

1 1 1
Z’U + Zw is halfway to u = §v + §w. The vector v + w is 2w (the far corner of the

parallelogram).

All combinations with ¢ + d = 1 are on the line that passes through v and w.

The point V' = —v + 2w is on that line but it is beyond w.

All vectors cv + cw are on the line passing through (0,0) and u = %'u + %w. That
line continues out beyond v + w and back beyond (0, 0). With ¢ > 0, half of this line

is removed, leaving a ray that starts at (0, 0).

The combinations cv + dw with 0 < ¢ < 1and 0 < d < 1 fill the parallelogram with
sides v and w. For example, if v = (1,0) and w = (0, 1) then cv + dw fills the unit
square. But when v = (,0) and w = (b, 0) these combinations only fill a segment of

a line.

With ¢ > 0 and d > 0 we get the infinite “cone” or “wedge” between v and w. For
example, if v = (1,0) and w = (0, 1), then the cone is the whole quadrant z > 0, y >
0. Question: What if w = —wv? The cone opens to a half-space. But the combinations
of v = (1,0) and w = (—1,0) only fill a line.

(a) %u + %'u + %w is the center of the triangle between u, v and w; %u + %'w lies

between u and w (b) To fill the triangle keep ¢>0,d>0,e>0,and c+d+e = 1.

The sum is (v —u) + (w —v) + (u —w) = zero vector. Those three sides of a triangle

are in the same plane!

The vector 1 (u + v + w) is outside the pyramid because c + d+e =4 + 7 + 1 > 1.

23 All vectors are combinations of u, v, w as drawn (not in the same plane). Start by

24

25

seeing that cu + dw fills a plane, then adding ew fills all of R3.

The combinations of w and v fill one plane. The combinations of v and w fill another

plane. Those planes meet in a line: only the vectors cv are in both planes.

(a) For a line, choose u = v = w = any nonzero vector (b) For a plane, choose

u and v in different directions. A combination like w = u + v is in the same plane.
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Solutions to Exercises

Two equations come from the two components: ¢ + 3d = 14 and 2c + d = 8. The

solution is ¢ = 2 and d = 4. Then 2(1,2) + 4(3,1) = (14, 8).

A four-dimensional cube has 2* = 16 corners and 2 - 4 = 8 three-dimensional faces

and 24 two-dimensional faces and 32 edges in Worked Example 2.4 A.

There are 6 unknown numbers vy, v, v3, w1, Wwa, ws. The six equations come from the
components of v + w = (4,5,6) and v — w = (2,5, 8). Add to find 2v = (6, 10, 14)
sov =(3,5,7) andw = (1,0, —1).

Fact: For any three vectors u, v, w in the plane, some combination cu + dv + ew is
the zero vector (beyond the obvious ¢ = d = e = 0). So if there is one combination
Cu+ Dv+ Fw that produces b, there will be many more—just add ¢, d, e or 2¢, 2d, 2e

to the particular solution C, D, F.

The example has 3u — 2v + w = 3(1,3) — 2(2,7) + 1(1,5) = (0,0). It also has
—2u + lv 4+ 0w = b = (0,1). Adding gives u — v + w = (0, 1). In this case ¢, d, e
equal 3,—2,1and C, D, EF = —2,1,0.

Could another example have u, v, w that could NOT combine to produce b? Yes. The
vectors (1, 1), (2,2), (3, 3) are on a line and no combination produces b. We can easily

solve cu + dv + ew = 0 but not Cu + Dv + Fw = b.

The combinations of v and w fill the plane unless v and w lie on the same line through
(0,0). Four vectors whose combinations fill 4-dimensional space: one example is the

“standard basis” (1,0, 0,0), (0, 1,0,0), (0,0,1,0), and (0,0,0, 1).
The equations cu + dv + ew = b are
2¢c —d =1 Sod=2e c=3/4

—c+2d —e=0 then ¢ = 3e d=2/4
—d+2e=0 then 4e = 1 e=1/4
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Problem Set 1.2, page 18

1u-v=-24424=0u-w=—-6+16=1Lu-v+w)=u-v+u-w=
O+l,w-v=44+6=10=v - w.

2 ||u||=1and ||v|| =5 and ||w| = v/5. Then lu-v]=0<(1)(5)and |v-w| =10 <

5v/5, confirming the Schwarz inequality.

3 Unit vectors v/[[v]| = (£,2) = (0.8,0.6). The vectors w, (2, —1), and —w make
0°,90°,180° angles with w and w/||w]|| = (1/+/5,2/+/5). The cosine of 6 is 75

ol
w o _

4 (a) v-(—v)=-1 b v+w) (v-—w)=v-vtwv—VvV-W—W W=
1+( )—( )—1=0s06=90° (notice v-w = w-v) ) (v—2w)-(v+2w) =

vev—4dw-w=1—-4=-3.

5 u; =v/||v|]| = (1,3)/v10 and us = w/|w| = (2,1,2)/3. U; = (3,—-1)/+/10 is
perpendicular to u; (and so is (—3,1)/1/10). U, could be (1, —2,0)/+/5: There is a
whole plane of vectors perpendicular to us, and a whole circle of unit vectors in that

plane.

6 All vectors w = (c, 2¢) are perpendicular to v. They lie on a line. All vectors (z, y, )
with z 4+ y + z = 0 lie on a plane. All vectors perpendicular to (1,1,1) and (1,2, 3)

lie on a line in 3-dimensional space.

7 (a) cosf = v - w/|v||w| = 1/(2)(1) so § = 60° or /3 radians  (b) cosf =
0so# = 90° or m/2 radians (c) cosf = 2/(2)(2) = 1/2s0 6 = 60° or 7/3
(d) cosf = —1/+/2 5060 = 135° or 37 /4.

8 (a) False: v and w are any vectors in the plane perpendicular to v (b) True: w -
(+2w)=u-v+2u-w=0 (c) True, |[u—v|]? = (u—v)- (u— v) splits into

u-ut+v-v=2whenu-v=v-u=0.
9 If vows/vyw; = —1then vawy = —vyw; Or Viwi +vawe = v-w = 0: perpendicular!

The vectors (1,4) and (1, —1) are perpendicular.
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Slopes 2/1 and —1/2 multiply to give —1: then v - w = 0 and the vectors (the direc-

tions) are perpendicular.

v - w < 0 means angle > 90°; these w’s fill half of 3-dimensional space.

(1,1) perpendicular to (1,5) — ¢(1,1)if (1,1)-(1,5) —¢(1,1)-(1,1) =6—2c=0or
c=3;v:-(w—cv)=0if c=v-w/v - v. Subtracting cv is the key to constructing
a perpendicular vector.

The plane perpendicular to (1,0, 1) contains all vectors (¢, d, —c). In that plane, v =
(1,0,—1) and w = (0, 1, 0) are perpendicular.

One possibility among many: u = (1,—1,0,0),v = (0,0,1,—1),w = (1,1,—-1,-1)
and (1,1,1,1) are perpendicular to each other. “We can rotate those u, v, w in their
3D hyperplane and they will stay perpendicular.”

L(xz+y)=(2+8)/2=5and5 > 4; cos§ = 2/16/1/10V10 = 8/10.
[v|?=1+1+---+1=9s0|lv|]| =3;u=v/3=(3,...,3%)is aunit vector in 9D;
w = (1,—1,0,...,0)/+/2 is a unit vector in the 8D hyperplane perpendicular to v.
cosa = 1/\/5, cos8 = 0, cosy = —1/\/5. For any vector v = (v1,v2,v3) the
cosines with (1,0, 0) and (0, 0, 1) are cos? a+cos? 4cos? v = (vi+v3+v3)/||v]?*= 1.
|v||* = 4% + 22 = 20 and ||w||?> = (—1)? + 22 = 5. Pythagoras is ||(3,4)[|? = 25 =
20 + 5 for the length of the hypotenuse v + w = (3,4).

Start from the rules (1), (2),(3) forv-w =w-vand u - (v + w) and (cv) - w. Use
rule (2) for (v +w) - (v +w) = (v+ w) - v+ (v + w) - w. By rule (1) this is
v (v+w)+w- (v+ w). Rule (2) again givesv - v +v-w+tw-v+w- -w =
v-v+ 20w+ w-w. Notice v - w = w - v! The main point is to feel free to open

up parentheses.

We know that (v —w) + (v —w) = v-v—2v-w+ w - w. The Law of Cosines writes
||v||||w|| cos @ for v - w. Here 6 is the angle between v and w. When 6 < 90° this

v - w is positive, so in this case v - v + w - w is larger than ||v — w||?.

Pythagoras changes from equality a®+b? = ¢? to inequality when § < 90° or 6 > 90°.
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21 2v-w < 2|vf|||w| leads to ||[v +w]||* = v-v+2v-w+w-w < ||v|]* +2|v]||||w| +
|w]|?. This is (]|v|| + ||w]|)?. Taking square roots gives ||v + w| < ||v| + ||w]|.

22 viw? 4 2v1wivews + v3wi < viwd + viw3 + viw? 4+ viws is true (cancel 4 terms)
because the difference is viw3 + v3w? — 2v1w; vawe Which is (viwy — vawy)? > 0.

23 cos 8 = wy/||lwl|| and sin 8 = wy/||w]|. Then cos(8—a) = cos B cos a+sin Bsina =
viwy /||v]l[|w| + vews/||v]|[Jw] = v - w/||v]||||w]||. This is cos 6 because 5 — a = 6.

24 Example 6 gives |u1||Us| < 3(uf + UP) and |us||Uz| < £ (u3 + UZ). The whole line
becomes .96 < (.6)(.8) + (.8)(.6) < (.62 +.8%) + 1(.8% +.6%) = 1. True: .96 < 1.

25 The cosine of 0 is x/ \/aﬁy2 , near side over hypotenuse. Then | cos §|? is not greater
than 1: 2% /(2% + y?) < 1.

26-27 (with apologies for that typo !) These two lines add to 2||v||? + 2||w||?:

lv+w|*=@w+w) vtw)=v-v+v wtw -v+w- w
v —w|P=@w-w) - v-—w)=v-v-—v - wW-—w -v+w-w

28 The vectors w = (z,y) with (1,2) - w = x + 2y = 5 lie on a line in the zy plane. The
shortest w on that line is (1,2). (The Schwarz inequality ||w|| > v - w/||v|| = V5 is
an equality when cos# = 0 and w = (1,2) and ||w|| = V/5.)

29 The length ||v — w| is between 2 and 8 (triangle inequality when ||v|| = 5 and ||w| =
3). The dot product v - w is between —15 and 15 by the Schwarz inequality.

30 Three vectors in the plane could make angles greater than 90° with each other: for
example (1,0), (—1,4), (—1, —4). Four vectors could not do this (360° total angle).
How many can do this in R3 or R”? Ben Harris and Greg Marks showed me that the
answer is n + 1. The vectors from the center of a regular simplex in R™ to its n 4 1
vertices all have negative dot products. If n+2 vectors in R™ had negative dot products,
project them onto the plane orthogonal to the last one. Now you have n + 1 vectors in
R"~! with negative dot products. Keep going to 4 vectors in R?: no way!

31 For a specific example, pick v = (1,2, —3) and then w = (—3, 1,2). In this example
cos = v - w/|v||w| = ~7/v/14/14 = —1/2 and § = 120° . This always

happens when x +y + 2z = 0:



8 Solutions to Exercises

1 1
v-w:mz+xy+yz:§(m+y+z)2—§(:p2+y2+z2)

1
This is the sameasv-w =0 — 5 |v||||w||. Then cosé = 5

32 Wikipedia gives this proof of geometric mean G = ¥zyz < arithmetic mean
A = (z + y + z)/3. First there is equality in case z = y = z. Otherwise A is

somewhere between the three positive numbers, say for example z < A < y.

Use the known inequality g < a for the two positive numbers x and y + z — A. Their
mean a = 3(z +y+ 2z — A)is (34 — A) = same as Al So a > g says that
A3 >g?PA=z2(y+2—-A)A But (y+2—A)A = (y— A)(A - 2) +yz > yz.

Substitute to find A% > xyz = G as we wanted to prove. Not easy!

There are many proofs of G = (2122 2,)"/" < A= (z1 + 23+ -+ ,)/n. In
calculus you are maximizing G on the plane 1 + 2 + - - - + x,, = n. The maximum

occurs when all z’s are equal.

33 The columns of the 4 by 4 “Hadamard matrix” (times %) are perpendicular unit

vectors:

1
201 1 -1 -1

1 -1 -1 1

34 The commands V' = randn (3,30); D = sqrt (diag (V' xV)); U = V\D; will give
30 random unit vectors in the columns of U. Then u’ * U is a row matrix of 30 dot

products whose average absolute value should be close to 2/7.

Problem Set 1.3, page 29

1 381 + 482 + 583 = (3,7, 12). The same vector b comes from S times = (3,4, 5):
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1 0 0f (3 (row 1) - @ 3
1 1 0f{4]=(@tow2)-x|=1|T7
1 1 1| |5 (row 2) « @ 12

2 The solutions are y; = 1, yo = 0, y3 = 0 (right side = column 1) and y; = 1, yo = 3,

y3 = 5. That second example illustrates that the first n odd numbers add to n?.

n = By y1 = DB 1 0 0 B,

3y +u = By, gives gy, = —B; +DBy =1-1 1 0| |Bs

Y1 +y2 +y3 = Bs Y3 = —By +DBy 0 —1 1| |Bs
100 1 0 O

Theinverseof S=|1 1 0| isA=|-1 1 0 |:independentcolumnsin A and S'!
111 0-1 1

4 The combination Ow; + Ows + Ows always gives the zero vector, but this problem
looks for other zero combinations (then the vectors are dependent, they lie in a plane):

ws = (w1 + w3)/2 so one combination that gives zero is w; — 2wy + w3 = 0.

5 The rows of the 3 by 3 matrix in Problem 4 must also be dependent: ro = %(rl +73).
The column and row combinations that produce O are the same: this is unusual. Two

solutions to y171 + yora + ysrs = 0 are (Y1,Ys,Y3) = (1,-2, 1) and (2, —4, 2).

1 1 0
6 c=3 3 2 1| hascolumn 3 = column 1 — column 2
|7 4 3]
(1 0—1]
c=-—1 1 1 0] hascolumn3 = — column 1 + column 2
0 1 1

0
c=0 2 1 5| hascolumn3 = 3 (column 1) — column 2
6
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Solutions to Exercises

7 All three rows are perpendicular to the solution x (the three equations r; - * = 0 and

ro+-x = 0and r3-x = 0 tell us this). Then the whole plane of the rows is perpendicular

to x (the plane is also perpendicular to all multiples cx).

.Tl—O

T2 — 21
8

Tr3 — T2

Tg — T3

b1
bo
b3
by

T

T2

zs3

Tq

b1

b1 + b2

b1 + by + b3
b1+ by + b3 + by

1
1
1

E

0
1
1
1

o o O

b1
bo
b3
by

=A"1b

9 The cyclic difference matrix C' has a line of solutions (in 4 dimensions) to Cx = 0:

22—
10 23 — 2

0—23

Differences of the nth power are (¢ +1)" —

b
ba
bs

0 -1
0 0
1 0
-1 1

€1

o o o O

— by

when x =

any constant vector.

b
ba
bs

=A"1b

The forward differences of the squares are (t +1)? —t? =12+ 2t + 1 —t* = 2t + 1.
t" =" —t" 4+ nt" "1 4 ... The leading

term is the derivative nt"~!. The binomial theorem gives all the terms of (¢ + 1)".

11
12

o

1

0

0

1
0
-1
0

0 o]

10
0 1
-1 0

T

T2

zs3

Ty

b
ba
bs

ba |

First
solve
To — bl

—T3 = b4

T

T2

zs3

Ty

Centered difference matrices of even size seem to be invertible. Look at eqns. 1 and 4:

__b2 _54_
b1

by
by + b3_

13 Odd size: The five centered difference equations lead to by + b3 + b5 = 0.
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T :bl
1'3—:E1:b2
$4—$2:b3
1'5—:E3:b4

—:E4:b5

11

Add equations 1, 3,5
The left side of the sum is zero
The right side is by + b3 + b5

There cannot be a solution unless by + b3 + bs = 0.

14 An example is (a,b) = (3,6) and (¢, d) = (1,2). We are given that the ratios a/c and

b/d are equal. Then ad = be. Then (when you divide by bd) the ratios a/b and ¢/d

must also be equal!



12 Solutions to Exercises
Problem Set 2.1, page 41

1 The row picture for A = I has 3 perpendicular planes z = 2 and y = 3 and z = 4.
Those are perpendicular to the = and y and z axes: z = 4 is a horizontal plane at

height 4.

The column vectors are ¢ = (1,0,0) and j = (0,1,0) and k = (0,0,1). Then b =
(2,3,4) is the linear combination 2¢ + 335 + 4k.

2 The planes in a row picture are the same: 2z = 4isz = 2,3y = 9isy = 3, and
4z = 16 is z = 4. The solution is the same point X = x. The three column vectors

are changed; but the same combination (coefficients z, produces b = 34), (4,9, 16).

3 The solution is not changed! The second plane and row 2 of the matrix and all columns
of the matrix (vectors in the column picture) are changed.

4 If 2 =2thenz +y = 0and x — y = 2 give the point (z,y,z) = (1,—-1,2). If 2 =0
then  + y = 6 and z — y = 4 produce (5, 1,0). Halfway between those is (3,0, 1).

5 If x,y, z satisfy the first two equations they also satisfy the third equation = sum of
the first two. The line L of solutions contains v = (1,1,0) and w = (3,1, ) and
u = %v + %'w and all combinations cv 4+ dw with ¢+ d = 1. (Notice that requirement

¢+ d = 1. If you allow all c and d, you get a plane.)

6 Equation 1 4+ equation 2 — equation 3 is now 0 = —4. The intersection line L of planes

1 and 2 misses plane 3 : no solution.

7 Column 3 = Column 1 makes the matrix singular. For b = (2, 3, 5) the solutions are
(z,y,2) = (1,1,0) or (0,1, 1) and you can add any multiple of (—1,0,1). b = (4,6, ¢)
needs ¢ = 10 for solvability (then b lies in the plane of the columns and the three
equations add to 0 = 0).

8 Four planes in 4-dimensional space normally meet at a point. The solution to Ax =
(3,3,3,2) is « = (0,0,1,2) if A has columns (1,0,0,0),(1,1,0,0),(1,1,1,0),
(1,1,1,1). The equationsare t + y+z+t =3,y + 2+t = 3,2+t = 3,t = 2. Solve

them in reverse order !
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(a) Az = (18,5,0)and (b) Ax = (3,4,5,5).

Multiplying as linear combinations of the columns gives the same Ax = (18,5,0) and
(3,4,5,5). By rows or by columns: 9 separate multiplications when A is 3 by 3.

Az equals (14, 22) and (0,0) and (9, 7).

Az equals (z,y,x) and (0,0,0) and (3, 3, 6).

(a) x has n components and Ax has m components (b) Planes from each equation

in Az = b are in n-dimensional space. The columns of A are in m-dimensional space.

2x+3y+z+5t = 8is Ax = bwiththe I by 4 matrix A=[2 3 1 5]: one row. The

solutions (z,y, z, t) fill a 3D “plane” in 4 dimensions. It could be called a hyperplane.

0 1
(@ I = = “identity” (b) P = = “permutation”
0 1 1 0
-1 0
90° rotation from R = , 180° rotation from R? = =1
-1 0 0 —1
0 1 0 Y 0 0 1 T

P =10 0 1| produces |»| and @ = |1 0 0| recovers |y |. @Q is the

1 0 0 T 0 1 0 z
inverse of P. Later we write QP = I and Q = P~ .

- 1 0 O
1 0
FE = and F= [—1 1 0| subtract the first component from the second.
-1 1
- 0 0 1
1 0 0 1 0 0 3 3
E=1|0 1 olandE*=| 0 1 0|,Ev= |4| and E-*Evrecovers | 4 |.
1 0 1 -1 0 1 8 5
1 0
P = projects onto the x-axis and P, = projects onto the y-axis.
0 1
5 5
The vector v = projects to Pyv = and P, Piv =

0
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Solutions to Exercises

1|vV2 —V2

= rotates all vectors by 45° . The columns of R are the results
2lva V2
from rotating (1,0) and (0, 1)!
x
The dot product Az = [1 4 5] |y | = (1by3)(3 by 1) is zero for points (z,y, 2)

z

on a plane in three dimensions. The 3 columns of A are one-dimensional vectors.
A=1[123; 3 4lande =[5 —2]" or[5 ; —2]andb =1 7] or[1 ; 7].

T = b — Ax x prints as two zeros.

Axv=1[3 4 5}/ and v’ x v = 50. But v * A gives an error message from 3 by 1
times 3 by 3.
ones(4,4) x ones(4,1) = column vector [4 4 4 4]"; Bxw =[10 10 10 10]’.

The row picture has two lines meeting at the solution (4, 2). The column picture will
have 4(1,1) 4+ 2(—2, 1) = 4(column 1) + 2(column 2) = right side (0, 6).
The row picture shows 2 planes in 3-dimensional space. The column picture is in

2-dimensional space. The solutions normally fill a line in 3-dimensional space.

The row picture shows four lines in the 2D plane. The column picture is in four-

dimensional space. No solution unless the right side is a combination of the two columns.

.65 The components add to 1. They are always positive.

us = | | andus = .
3 .35 | Their components still add to 1.
8 . .6
u7 and v7 have components adding to 1; they are close to s = (.6, .4). =
2 7 4
.6 o 8 .3
= steady state s. No change when multiplied by
4 2.7
8 3 4 5+u S5—u+4+v SH—-v
M=|15 9|=|5—-u—-v 5 5+wu+wv|; Ms(1,1,1) = (15,15,15);
6 7 2 S5+v S+u—v SH—u

M;(1,1,1,1) = (34,34,34,34) because 1 + 2 + - - - + 16 = 136 which is 4(34).
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32

33

34

35

A is singular when its third column w is a combination cu + dv of the first columns.
A typical column picture has b outside the plane of u, v, w. A typical row picture has

the intersection line of two planes parallel to the third plane. Then no solution.

w = (5,7) is bu + Tv. Then Aw equals 5 times Aw plus 7 times Av. Linearity

means: When w is a combination of w and v, then Aw is the same combination of Au

and Av.
2 -1 0 o] [w] 1] (| [4]
—1 2 —1 0 ZTo 2 . To 7
= has the solution = .
0 -1 2 -1 T3 3 T3 8
L 0 0 -1 2_ _1‘4_ _4_ _1‘4_ _6_
x=(1,...,1)gives Sz = sum of eachrow = 1+---+9 = 45 for Sudoku matrices.

6 row orders (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2, 1) are in Section 2.7.
The same 6 permutations of blocks of rows produce Sudoku matrices, so 6* = 1296

orders of the 9 rows all stay Sudoku. (And also 1296 permutations of the 9 columns.)

Problem Set 2.2, page 53

1

Multiply equation 1 by ¢ = 12—0 = 5 and subtract from equation 2 to find 2z + 3y = 1

(unchanged) and —6y = 6. The pivots to circle are 2 and —6.

—6y = 6 givesy = —1. Then 2z + 3y = 1 gives x = 2. Multiplying the right side
(1,11) by 4 will multiply the solution by 4 to give the new solution (z,y) = (8, —4).

Subtract —% (or add %) times equation 1. The new second equation is 3y =3. Then

y=1and x=5. If the right side changes sign, so does the solution: (x,y)= (-5, —1).

Subtract £ = ¢ times equation 1 from equation 2. The new second pivot multiplying y
isd — (cb/a) or (ad —bc)/a. Theny = (ag — cf)/(ad — bc). Notice the “determinant

of A” = ad — bc. It must be nonzero for this division.
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5 6x + 4y is 2 times 3z + 2y. There is no solution unless the right side is 2 - 10 = 20.
Then all the points on the line 3z 4 2y = 10 are solutions, including (0, 5) and (4, —1).

The two lines in the row picture are the same line, containing all solutions.

6 Singular system if b = 4, because 4x + 8y is 2 times 2z + 4y. Then g = 32 makes the
lines 2z + 4y = 16 and 4x 4 8y = 32 become the same: infinitely many solutions like
(8,0) and (0,4).

7 If a = 2 elimination must fail (two parallel lines in the row picture). The equations
have no solution. With a = 0, elimination will stop for a row exchange. Then 3y = —3
gives y = —1 and 4z 4 6y = 6 gives x = 3.

8 If £ = 3 elimination must fail: no solution. If £ = —3, elimination gives 0 = 0 in

equation 2: infinitely many solutions. If £ = 0 a row exchange is needed: one solution.

9 On the left side, 6 — 4y is 2 times (32 — 2y). Therefore we need by = 2b; on the right
side. Then there will be infinitely many solutions (two parallel lines become one single
line in the row picture). The column picture has both columns along the same line.

10 The equation y = 1 comes from elimination (subtract x + y = 5 from x 4 2y = 6).
Then z = 4 and 5z — 4y = 20 — 4 = ¢ = 16.

11 (a) Another solution is %(az +X,y+Y,z+ 7). (b) If25 planes meet at two points,
they meet along the whole line through those two points.

12 Elimination leads to this upper triangular system; then comes back substitution.

20 +3y+ z=8 =2
y+3z=4 gives y=1 Ifazerois at the start of row 2 or row 3,

8z =28 z =1 that avoids a row operation.

13 2z —3y =3 20 —3y=3 20 — 3y =3 x=3
dr —dy+ z=T7 gives y+ 2z=1 and y+ z=1 and y=1

20— y—32=35 2y+32=2 —5z=0 z2=10
Here are steps 1,2, 3: Subtract 2 x row 1 from row 2, subtract 1 x row 1 from row 3,

subtract 2 x row 2 from row 3



Solutions to Exercises 17

14

15

16

17

18

19

20

21

22

Subtract 2 times row 1 from row 2 to reach (d—10)y—z = 2. Equation (3)isy—z = 3.

If d = 10 exchange rows 2 and 3. If d = 11 the system becomes singular.

The second pivot position will contain —2 — b. If b = —2 we exchange with row 3.
If b = —1 (singular case) the second equation is —y — z = 0. But equation (3) is the

same so there is a line of solutions (x,y,z) = (1,1, —1).

Oz + 0y +2z=4 Exchange Oz + 3y +4z=4
Example of
T+2y+22=5 but then T+2y+22=5
(@) 2 exchanges (b)
Oz +3y+42=6 breakdown Oz + 3y + 4z =06
(exchange 1 and 2, then 2 and 3) (rows 1 and 3 are not consistent)

If row 1 = row 2, then row 2 is zero after the first step; exchange the zero row with row

3 and row 3 has no pivot. If column 2 = column 1, then column 2 has no pivot.

Example x + 2y + 3z = 0, 4x 4+ 8y + 12z = 0, bz 4+ 10y + 15z = 0 has 9 different
coefficients but rows 2 and 3 become 0 = 0: infinitely many solutions to Az = 0 but

almost surely no solution to Az = b for a random b.

Row 2 becomes 3y — 4z = 5, then row 3 becomes (¢ +4)z = t — 5. If ¢ = —4 the
system is singular—no third pivot. Then if £ = 5 the third equation is 0 = 0 which
allows infinitely many solutions. Choosing z = 1 the equation 3y —4z = 5 gives y = 3

and equation 1 gives z = —9.

Singular if row 3 is a combination of rows 1 and 2. From the end view, the three planes
form a triangle. This happens if rows 1+2=row 3 on the left side but not the right side:
c+y+z=0,r—2y—z=1, 2o —y =4. No parallel planes but still no solution. The

three planes in the row picture form a triangular tunnel.

(a) Pivots 2, %, %,% in the equations 2z + y = 0, %y + 2z =0, %z +t=0, %t =5

after elimination. Back substitution gives t = 4,z = -3,y = 2,z = —1. (b) If
the off-diagonal entries change from +1 to —1, the pivots are the same. The solution is
(1,2,3,4) instead of (—1,2,—3,4).

The fifth pivot is % for both matrices (1’s or —1’s off the diagonal). The nth pivot is

n+1
-
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26
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29

30

31
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Solutions to Exercises

If ordinary elimination leads to x + y = 1 and 2y = 3, the original second equation
could be 2y + ¢(x +y) = 3+ £ for any £. Then ¢ will be the multiplier to reach 2y = 3,
by subtracting ¢ times equation 1 from equation 2.

a 2
Elimination fails on if a = 2 or a = 0. (You could notice that the determinant
a a

a? — 2ais zero fora =2 and a = 0.)
a = 2 (equal columns), a = 4 (equal rows), a = 0 (zero column).

Solvable for s = 10 (add the two pairs of equations to get a + b+ c+ d on the left sides,

12 and 2 + s on the right sides). So 12 must agree with 2 + s, which makes s = 10.

1 3 0 4
The four equations for a, b, ¢, d are singular! Two solutions are and ,
17 2 6
(11 0 0] 11 0 0]
1 01 0 0 -1 1 0
A= and U =
0 0 1 1 0 0 1 1
01 0 1] |0 0 0 0

Elimination leaves the diagonal matrix diag(3,2,1) in 3z = 3,2y = 2,z = 2. Then
r=1Ly=12=2.
A(2,:) = A(2,:) — 3% A(1,:) subtracts 3 times row 1 from row 2.

The average pivots for rand(3) without row exchanges were %, 9,10 in one experiment—
but pivots 2 and 3 can be arbitrarily large. Their averages are actually infinite ! With
row exchanges in MATLAB’s lu code, the averages .75 and .50 and .365 are much
more stable (and should be predictable, also for randn with normal instead of uniform

probability distribution for the numbers in A).
If A(5,5)is 7 not 11, then the last pivot will be 0 not 4.

Row j of U is a combination of rows 1, . .., j of A (when there are no row exchanges).
If Az = 0 then Uz = 0 (not true if b replaces 0). U just keeps the diagonal of A when

A is lower triangular.

The question deals with 100 equations Az = 0 when A is singular.
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(a) Some linear combination of the 100 rows is the row of 100 zeros.
(b) Some linear combination of the 100 columns is the column of zeros.

(¢) A very singular matrix has all ones: A = ones (100). A better example has 99
random rows (or the numbers 17, ..., 100° in those rows). The 100th row could
be the sum of the first 99 rows (or any other combination of those rows with no

Zeros).

(d) The row picture has 100 planes meeting along a common line through 0. The

column picture has 100 vectors all in the same 99-dimensional hyperplane.

Problem Set 2.3, page 66
100 100 100|010 010
1 En=|-510|,FE2=(010|,P=]001|[100{=1]001
001 071 010[[001 100

2 E39FE9b = (1,-5,—-35) but Eq1 F32b = (1,—5,0). When E3y comes first, row 3

feels no effect from row 1.

1 00 1 00 1 0 0 1 0 0
3 |-4 1 0,0 1 0[]0 1 0| M=FEspFE3Ey =|-4 1 0
0 01 2 01 0 -2 1 10 =2 1
Those E’s are in the right order to give M A = U.
1 1 1 1
4 Elimination on column 4: b = |0 Eil —4 E—SSI —4 E—SSQ —4|. The
0 0 2 10

original Az = b has become Uz = ¢ = (1,—4,10). Then back substitution gives
z=-by= %,x = % This solves Az = (1,0, 0).

5 Changing ass from 7 to 11 will change the third pivot from 5 to 9. Changing a3 from

7 to 2 will change the pivot from 5 to no pivot.
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Solutions to Exercises

2 3 7 1 4
Example: |2 3 7 3| = | 4. If all columns are multiples of column 1, there
2 3 7 -1 4

is no second pivot.

To reverse F31, add 7 times row 1 to row 3. The inverse of the elimination matrix

1 0 0 1 0 0
E= 0 1 o|isE~'= |0 1 o0]}.Multiplication confirms EE~! = I.
-7 0 1 7 0 1
a b a b
M = and M* = . det M* = a(d — 0b) — b(c — fa)
c d c—Yfa d—10b

reduces to ad — bc! Subtracting row 1 from row 2 doesn’t change det M.

100
M=1] 0 0 1]|.Afterthe exchange, we need E3; (not Es;) to act on the new row 3.
-1 10
1 0 1 1 0 1 2 0 1

FEis=10 1 0];/0 1 0|;E31E13=1]0 1 0] . Teston the identity matrix!

0 0 1 1 0 1 1 0 1
1 2 2
An example with two negative pivotsis A = |1 1 2. The diagonal entries can
1 21

change sign during elimination.

9 8 7| rowsand 1 2 3

The first productis |6 5 4| alsocolumns The second productis | ( 1 —21.

3 2 1 reversed. 0 2 -3
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13 (a) FE times the third column of B is the third column of £'B. A column that starts
at zero will stay at zero. (b) E could add row 2 to row 3 to change a zero row to a

nonzero row.

14 FE5; has —Vo1 = %, FE35 has —{30= %, FE,3 has —{43= %. Otherwise the E’s match 1.

-1 -4 -7 -1 -4 -7
15 a;; = 2i —3j: A= 1 -2 —5| — 0 —6 —12/|. The zero became —12,
3 0 -3 0 —-12 —-24
1 0 0
an example of fill-in. To remove that —12, choose EF35 = | 0 1 0
0 -2 1

Every 3 by 3 matrix with entries a;; = ci + dj is singular !
16 (a) Theagesof X andY arexandy: v —2y =0andx +y =33;z =22and y = 11
(b) Theliney = mx +ccontainsz =2,y =5andz =3,y =7when2m +c =15

and 3m + ¢ = 7. Then m = 2 is the slope.
at+ b+ c= 4

17 The parabola y = a+ bx + cx? goes through the 3 given points when ¢+ 2+ 4¢c = 8 .
a+ 3b+9c=14
Thena = 2,b = 1, and ¢ = 1. This matrix with columns (1, 1,1), (1,2, 3), (1,4,9) is

a “Vandermonde matrix.”

1 0 0 1 0 0 1 0 0 1 0 0
8 EF=|a 1 0|, FE=| a 1 0|,E*=|2a 1 0|, F*={0 1 0
b ¢ 1 b+ac ¢ 1 26 0 1 0 3¢ 1
0 1 0 0 0 1
19 PQ= |0 0 1]|.Intheoppositeorder, tworow exchangesgive@P = |1 0 0/,
1 0 0 01 0
P2 = I. If M exchanges rows 2 and 3 then M2 = I (also (—M)* = I). There are
a b
many square roots of I: Any matrix M = has M? = I'if a® + bc = 1.

c —a
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1
(a) Each column of B is E times a column of B (b)
1 1 1
. All rows of E'B are multiplesof |1 2 4_ .
1 1
and F' = give FF = but FE =
1 0 1 1 2 1

1
2 4 8
No. £ =
1
(@) > as;r;

E(EA) subtracts 4 times row 1 from row 2 (EEA does the row operation twice).

(b) a1 —any

(¢) a1 — 2a11

1
1

(d) (EAQT)l = (A:E)l = Zaljxj.

AF subtracts 2 times column 2 of A from column 1 (multiplication by E on the right

side acts on columns instead of rows).

2 3 1 2 3 ) .
{A b} = — . The triangular system is
4 1 17 0 -5 15
Back substitution gives 1 = 5 and 5 = —3.

The last equation becomes 0 = 3. If the original 6 is 3, then row 1 + row 2 = row 3.

21‘1 + 3{E2

Then the last equation is 0 = 0 and the system has infinitely many solutions.

(a) Add two columns b and b* to get [A b b*]. The example has

1 4 10

2 7 01

(a) No solution if d=0 and ¢#0 (b) Many solutions if d=0=c. No effect from a, b.

1

—

0

4 1 0 -7
—Sx= and * =

-1 -2 1 2 -1

A=Al = A(BC) = (AB)C = IC = C. That middle equation is crucial.

E=

1

-1

0
0

0
1
-1
0

0 0]

0 0
1 0
-1 1

subtracts each row from the next row. The result

1
0
0
0

0
1
1
1

0
0
1
2

—5ZE2 =15

o o o

still has multipliers = 1 in a 3 by 3 Pascal matrix. The product M of all elimination
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1 0 00
-1 1 00
matrices is . This “alternating sign Pascal matrix” is on page 91.
1 -2 1 0
-1 3 -3 1
1 0
30 ) E=A4"1= will reduce row 2 of EM to [2 3].

-1 1

(b) Then F = B~ ! = will reduce row 1 of FEM to [1 1].

0 1
(c) Then E = A~! twice will reduce row 2 of EEFEM to [0 1]

(d) Now FEEFEM = B. Move E’s and F’s to get M = ABAAB. This question
focuses on positive integer matrices M with ad — bc = 1. The same steps make the

entries smaller and smaller until M is a product of A’s and B’s.

B - B - _
a 1 0
31 By = , E3o , By ,
0 0 1 0 b 1 0 0 1
00 0 1| (000 1) 100 ¢ 1
e -
a 1
Ey3 B39 Epy =
ab b 1
_abc bc ¢ 1_
Problem Set 2.4, page 77

1 If all entries of A, B,C, D are 1, then BA = 3 ones(5) is 5 by 5; AB = 5 ones(3) is
3by 3; ABD = 15 ones(3,1) is 3 by 1. DC and A(B + C) are not defined.

2 (a) A (column 2 of B) (b) (Row 1of A) B

(d) (Row 1 of C')D(column 1 of F).

(¢) (Row 3 of A)(column 5 of B)

(Part (¢) assumed 5 columns in B)
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3 8
AB + AC'is the same as A(B + C) = . (Distributive law).

6 9
0 0
A(BC) = (AB)C by the associative law. In this example both answers are .
0 0
Column 1 of AB and row 2 of C are zero (then multiply columns times rows).
1 2b 1 nb 4 4 2n 2n
(a) A% = and A" = . (b)) A% = and A" =
0 1 0 1 0 0 0 0
10 4 16 2
(A+B)? = = A+ AB+ BA+ B% But A> + 2AB + B* = .
6 6 30

(a) True  (b) False (c) True (d) False: usually (AB)? = ABAB # A?B2.
The rows of DA are 3 (row 1 of A) and 5 (row 2 of A). Both rows of E A are row 2 of A.
The columns of AD are 3 (column 1 of A) and 5 (column 2 of A). The first column of
AF is zero, the second is column 1 of A 4 column 2 of A.

a a-+b
AF = and E(AF) equals (FA)F because matrix multiplication is

c c+d

associative.

a+c b+d a+c b+d
FA = and then E(FA) = . E(FA) is not

& d a+2c b+2d
the same as F'(E'A) because multiplication is not commutative: EF # FE.
Suppose E A does the row operation and then (FA)F does the column operation (be-
cause F is multiplying from the right). The associative law says that (EA)F = E(AF)

so the column operation can be done first !
0 0 1

(@ B=4I (b) B=0 (¢c)B=1]0 1 0 (d) Every row of B is 1,0, 0.
1 0 0
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a 0 a b
13 AB = = BA = gives b = ¢ = 0. Then AC = CA gives
c 0 0 0

a = d. The only matrices that commute with B and C' (and all other matrices) are

multiplesof I: A = al.
14 (A—B)2 = (B—A)? = A(A— B)— B(A—B) = A> — AB— BA+ B® Tna
typical case (when AB # BA) the matrix A2 — 2AB + B? is different from (A — B)2.
15 (a) True (A? is only defined when A is square).
(b) False (if A is m by n and B is n by m, then AB is m by m and BA is n by n).
(c) True by part (b).
(d) False (take B = 0).
16 (a) mn (use every entry of A) (b) mnp = pxpart (a) (c) n® (n? dot products).

17 (a) Use only column?2 of B (b) Use only row 2 of A (c)—(d) Use row 2 of first A.

Column2of AB = 0 ROWZOfABZ[l 0 0] R0w20fA2:{0 1}
0

Row 2 of 43 = { 3 _2}

1 1 1 1 -1 1
18 A=| 1 2 2 |hasa;; =min(i,j). A=| -1 1 —1 |hasa; = (-1)" =
1 2 3 1 -1 1
1/1 1/2 1/3
“alternating sign matrix”. A = 2/1 2/2 2/3 has a;; = i/j. This will be an
3/1 3/2 3/3
1T
example of a rank one matrix : 1column[ 1 2 3 multiplieslrow{ 1 % % }

19 Diagonal matrix, lower triangular, symmetric, all rows equal. Zero matrix fits all four.

20 (a) a1 (b) l31 = asi/ai (c) azz — <@> a2 (d) az2 — (%) aia.

a11 a1
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(0040 | (00038 |
0004 0000
21 A% = , A3 = , A* = zero matrix for strictly triangular A.
0000 0000
| 0000 | | 0000 |
T | [ 2y | [ 4z | [ 8t |
Y 2z 41 0
Then Av = A = , A%v = , Ay = , Alv =0
z 2t 0 0
t ] L 0 | | 0 | | 0 |
-1] 11 1 0 0
22 A= has A> = —I; BC = = ;
-1 0 1 —1f(]1 1 0 0
0 1 0 1 -1 0
DE = = = —FD. You can find more examples.
1 0 ([-1 0 0 1
0 1
23 A = has A2 = 0. Note: Any matrix A = column times row = uv™ will
0 0

have A2 = wvTuvT = 0ifvTu=0. A= | 0 0 1 | has A2 =

0 1 0

o o
o o
o —

o

o

o
o
o
o

but A3 = 0; strictly triangular as in Problem 21.

27L
0

24 (A))" =

a b ¢
25 1d e f

g h 1

2n —1 1 1 a® a" b

, (A2)n — 2n71 , (AS)n —
1 1 1 0 0

100a[100]d[010}c[001}
01 0[|=|d +le +|f
00 1| |g h i
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1 0 3 30 0 0 O
Columns of A

2 [3 3 0]—1— 4 [1 2 1] =16 6 0|+|4 8 4| =
times rows of B

2 1 6 6 0 1 2 1

3 30
10 14 4| = AB.
7 8 1
27 (a) (row 3 of A)- (column 1 or 2 of B) and (row 3 of A) - (column 2 of B) are all zero.

T 0 = «x T 0 0 =z

) |2z|[0 2 z]={0 2 z|and |2|[0 0 z]=|0 0 =z |:bothupper.

0 0 0 O T 0 0 =
A times B
e AL — 1= | — L] —
with cuts
4 cols 2 rows 2 rows — 4 cols 3 cols — 3 rows
1 00 1 00
29 5y =11 1 0] and B3 = 0 1 0| produce zeros inthe 2,1 and 3, 1 entries.
0 0 1 -4 0 1
10 0] 2 1 0
Multiply E’s to get £ = E31FEy = 1 1 0|. Then EA = |0 1 1/ isthe
—4 0 1 0 1 3

result of both E’s since (FE31 E21)A = FE51(E91 A).

-2 0 1 11
30 In29, c= , D= , D—cb/a= in the lower corner of E' A.
8 5 3 1 3
31 A —-Bl| |z Ax — By | real part Complex matrix times complex vector
B Al ly Bx + Ay | imaginary part. needs 4 real times real multiplications.

32 Atimes X = [x; @2 x3] will be the identity matrix [ = [Ax; Axs Axzs].
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3 3 1 00
b= |5 givese =3z +5x2+8x3 = | 8|; A= |-1 1 0| will have
8 16 0 -1 1

those z; = (1,1,1), 25 = (0,1,1), 23 = (0,0, 1) as columns of its “inverse” A~L.

a+b a+b a+c b+b| whenb=c
34 Ax ones = agrees with ones xA =
c+d c+d at+c b+d| anda=d
a b 1 1
Then A = . These are the matrices that commute with
b a 1 1
(01 0 1] (29 0 2 0| abaada cba,cda These show
1 01 0 0 2 0 2 bab, bcb dab,dcb 16 2-step
35 S = 5 52 = )
01 0 1 2 0 2 0 abc,adc  cbe,cede  paths in
|11 0 1 0] |0 2 0 2| bad,bed dad,ded the graph

36 Multiplying AB =(m by n)(n by p) needs mnp multiplications. Then (AB)C' needs
mpq more. Multiply BC' = (n by p)(p by ¢) needs npq and then A(BC') needs mnyq.

(@) If m,n,p,q are 2,4,7,10 we compare (2)(4)(7) + (2)(7)(10) = 196 with the
larger number (2)(4)(10) + (4)(7)(10) = 360. So AB first is better, we want to
multiply that 7 by 10 matrix by as few rows as possible.

(b) If w,v,w are N by 1, then (u™v)w™ needs 2N multiplications but u™ (vw™)

needs N2 to find vw™ and N2 more to multiply by the row vector u™. Apologies

to use the transpose symbol so early.

(c) We are comparing mnp + mpq with mng + npq. Divide all terms by mnpq:
Now we are comparing ¢~ ' + n~! with p~! 4+ m~!. This yields a simple im-
portant rule. If matrices A and B are multiplying v for A Bv, don’t multiply the

matrices first. Better to multiply Bv and then A(Bwv).
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37 The proof of (AB)c = A(Bc) used the column rule for matrix multiplication.
“The same is true for all other columns of C.”

Even for nonlinear transformations, A(B(c)) would be the “composition” of A with

B (applying B then A). This composition A o B is just written as AB for matrices.

One of many uses for the associative law: The left-inverse B = the right-inverse C
because B = B(AC) = (BA)C' =C.
38 (a) Multiply the columns a, ..., a,, by the rows a,...,a} and add the resulting

matrices.

(b) ATCA = cia1af + - -+ + cpapmal,. Diagonal C makes it neat.

Problem Set 2.5, page 92
[0 1 1 7 4
1 A1 = “land B1=| 2 and C~1 =
3 0 -1 3 -5 3

2 For the first, a simple row exchange has P2 = [ so P! = P. For the second,

0 0 1
P1=11 0 0. Always P~! =*“transpose” of P, coming in Section 2.7.

0 1 0
z 5 ¢ 2 1] 5 —2 _ _
3 = and = so A7t = — . This question
y —2 2 1 101 9 1

solved AA~1 = I column by column, the main idea of Gauss-Jordan elimination. For
1

a different matrix A = , you could find a first column for A~1 but not a
0 0

second column—so A would be singular (no inverse).

4 The equations are x + 2y = 1 and 3= + 6y = 0. No solution because 3 times equation

1 gives 3z 4 6y = 3.
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1
5 An upper triangular U with U? = T is U = for any a. And also —U.

0 -1
6 (a) Multiply AB = AC by A~ to find B = C (since A is invertible) (b) As long as

1
Y ,we have AB = AC for A =

—y 1 1

B — C has the form
—z
7 (a) In Az = (1,0,0), equation 1 + equation 2 — equation 3 is 0 = 1 (b) Right

sides must satisfy by 4+ by = b3 (c) Row 3 becomes a row of zeros—no third pivot.

8 (a) The vector x = (1,1, —1) solves Ax = 0 (b) After elimination, columns 1

and 2 end in zeros. Then so does column 3 = column 1 + 2: no third pivot.

9 Yes, B is invertible (A was just multiplied by a permutation matrix P). If you exchange
rows 1 and 2 of A to reach B, you exchange columns 1 and 2 of A~ to reach B~!. In

matrix notation, B = PAhas B~ = A~1P~1 = A—1P for this P.

0 0 0 1/5 3 =2 0 0
0 0 1/4 0 —4 3 0 0] (inverteach
10 A1 = and B! =
0 1/3 0 0 0 0 6 —5| blockofB)
_1/2 0 0 0 | | 0 0 -7 6]
11 (a) If B = — A then certainly A + B = zero matrix is not invertible.

(b) A= and B = are both singular but A + B = I is invertible.
0 0 0 1
12 Multiply C' = AB on the left by A~! and on the right by C~!. Then A= = BC~!.
13 M~!' = C~'B~'A~! so multiply on the left by C and the right by A : B~! =
CM~1A.
-1
1 0 1 0
14 B~ 1 =A""1 =A"1 : subtract column 2 of A~ from column 1.
1 1 -1 1
15 If A has a column of zeros, so does BA. Then BA = I is impossible. There is no A~*.
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16 a b d —b ad — bc 0 The inverse of each matrix is
¢ d||-¢ a 0  ad—be| theother divided by ad — be
1 1 1 1
17 Esp iz B = 1 1 -1 1 =|-1 1 =E
-1 1| |-1 1 1 0 -1 1
1
Reverse the order and change —1 to +1 to getinverses Ey' B3 Eyy = |1 1 =
1 11

L = E~'. Notice that the 1’s are unchanged by multiplying inverses in this order.

18 A2B = I can also be written as A(AB) = I. Therefore A~! is AB.

19 The (1, 1) entry requires 4a — 3b = 1; the (1, 2) entry requires 2b —a = 0. Then b = é
anda:%.FortheSbyScaseE)a—ﬁlb:1and2b:agiveb:%anda:%.
20 A xones(4,1) = A (column of 1’s) is the zero vector so A cannot be invertible.
21 Six of the sixteen 0 — 1 matrices are invertible: I and P and all four with three 1’s.
1 3 10 1 3 1 0 1 0 7 =3
22 - - =[I A7'];
2 7 01 0o 1 -2 1 o 1 -2 1
1 410 1 4 1 0 1 0 -3 4/3
- - =[I A7].
39 01 0 -3 -3 1 o 1 1 -1/3
2 1 01 0 0 2 10| 10 0]
23[AT=1|1 2 1|0 1 0|—=|0 3/2 1|-1/2 1 0|~
01 2/0 0 1 0 1 2 0 0 1
2 1 0 1 0 0 2 1 0 1 0 0
0 3/2 1] -1/2 1 0f—=|0 3/2 0-3/4 3/2 -3/4| —

0 0 4/3| 1/3 —2/3 1 0 0 4/3| 1/3 —2/3 1
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2> 0 0| 32 -1 1/2 10 0| 3/4 —1/2 1/4

0 3/2 0|-3/4 3/2 —3/4| =0 1 0]-1/2 1 —1/2] =

0 0 4/3| 1/3 —2/3 1 00 1| 1/4 —1/2 3/4

1A'

(1 a b 100 1 a010 b [1 001 -a ac—b
24 (0 1 ¢ 01 0/=[010071--|—l0100 1 —c.

oo1001] [0oo1o00 1] [0010 0 1

] 1

2 1 1 3 -1 -1 1 2 —1 —1|[1 0
25121=£—1 3 —1|; Bl1|l=1]-1 2 —1||1]=1]0

11 2 1 -1 3 1 1 -1 2| |1 0

so B~ does not exist.

1 0 1 2 1 2 1 -1 1 0 1
26 E21A: = . E12E21A: A=
-2 1 2 6 0 2 0 1 -2 1 0
1 0
Multiply by D = to reach DFE19FE91 A = I. Then A~! = DE5F =
0 1/2
2 1
1 0 0 2 -1 0
27 A~'=|_2 1 —3| (notice the sign changes); A~' = |-1 2 —1
0 0 1 0 —1 1
0 2 1 0 2 2 0 1 2 0 -1 1 1 0 -1/2 1/2
28 — — -
2 2 01 0 2 1 0 0 2 1 0 0 1 1/2 0

This is { I A*l} : row exchanges are certainly allowed in Gauss-Jordan.



Solutions to Exercises 33

29

30

31

32

33

34

35
36

37
38

(a) True (If A has a row of zeros, then every AB has too, and AB = I is impossible).
(b) False (the matrix of all ones is singular even with diagonal 1’s.

(c) True (the inverse of A~!is A and the inverse of A2 is (A71)2).

a 0-b

1
Elimination produces the pivots @ and a —band a —b. A~ = m —a a 0
0—a a

The matrix C is not invertible if c =0 orc = 7 orc = 2.

11 0 0] 1] [2]
01 1 0 1 2 .
A7l = andz = A~! = . When the triangular A alternates
0 0 1 1 1 2
_0 0 0 1_ _1_ _1_

1 and —1 on its diagonals, A~ has 1’s on the diagonal and first superdiagonal.
xz=(1,1,...,1) hasx = Px = Qx so (P — Q)x = 0. Permutations do not change
this all-ones vector.
I 0 A1 0 -D I
and and .
-C 1 -D-'cA-t D! I 0
A can be invertible with diagonal zeros (example to find). B is singular because each

row adds to zero. The all-ones vector & has Bx = 0.
The equation LDLD = I says that LD = pascal (4, 1) is its own inverse.

hilb(6) is not the exact Hilbert matrix because fractions are rounded off. So inv(hilb(6))

is not the exact inverse either.
The three Pascal matrices have P = LU = LL" and then inv(P) = inv(LT)xinv(L).

Az = b has many solutions when A = ones (4,4) = singular and b = ones (4,1).
A\b in MATLAB will pick the shortest solution & = (1,1,1,1)/4. This is the only
solution that is a combination of the rows of A (later it comes from the “pseudoinverse”
AT = pinv(A) which replaces A~! when A is singular). Any vector that solves Az = 0

could be added to this particular solution x.
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1 —a 0 0 1 a ab abc
0 1 -b 0 01 b b
The inverse of A = is A~ = . (This would
0 0 1 —c 0 0 1 c
0 0 o0 1] 00 0 1|

be a good example for the cofactor formula A~ = CT/ det A in Section 5.3)

1 111 111 | K ]
a 1 0 1 1 a 1

b0 1 0 d 1 TR I P

¢ 00 1] (0 e 0 1]]| fo1] lc e [ 1)

In this order the multipliers a, b, ¢, d, e, f are unchanged in the product (important for

A = LU in Section 2.6).

4 by 4 still with T, = 1 has pivots 1,1, 1, 1; reversing to 7" = U L makes T, = 1.

[ 1 -1 0 o] (4 3 2 1]
102 -1 0 33 2 1

T = and T 1=
0 -1 2 -1 2 2 2 1
0 0 -1 2] 1111

Add the equations Cx = b to find 0 = by + bs + b3 + by. So C is singular. Same for
Fx =0b.

The block pivots are A and S = D — CA~'B (and d—cb/a is the correct

second pivot of an ordinary 2 by 2 matrix). The example problem has
10 411 —-5 —6

Schur complement S' = — - { 3 3 } =
01 4| 2

—6 —5

Inverting the identity A(I + BA) = (I + AB)A gives (I + BA)71A™1 = A=Y(I +
AB)~!. So I+ BA and I+ AB are both invertible or both singular when A is invertible.
(This remains true also when A is singular : Chapter 6 will show that AB and B A have

the same nonzero eigenvalues, and we are looking here at the eigenvalue —1.)
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Problem Set 2.6, page 104

10 1 0| |z 5
1 /57 = 1 multiplied row 1; L = times Ux = = = cis
11 1 1] |y 2
1 1] |z 5
Ar =b= = . In letters, L multiplies Ux = c to give Ax = b.
1 2] |y 7
|11 0f | 5 5 o
2 Lc=bis = , solved by ¢ = as elimination goes forward.
1 1 Co 7 2
1 1) | 5 31 . o
Ux =cis = ,solved by = = in back substitution.
0 1] |y 2

3 /31 = 1 and ¢35 = 2 (and ¢33 = 1): reverse steps to get Au = b from Uz = c:

1times (z+y+2z = 5)+2times (y+2z = 2)+ 1 times (z = 2) gives x+3y+6z = 11.

1 5 5 1 1 1 5 5
4 Le=|1 1 21 =17l Uzx= 1 2| x| =|2];:x=[-2
1 2 1 2 11 1 2 2
1 2 1 0 2 1 0
5 FEFA=1|0 1 0 4 2|=10 4 2|=U.
-3 0 1|]|6 3 5 005
1 2 1 0 2 1 0
WithElasL, A=LU= |0 1 0 4 21=10 4 2
301 0 0 5 6 3 5
1 1 1 1 1 1 0 O
6 |0 1 -2 1 A= 10 2 3| =U.ThenA= |2 1 0| Uis
0-2 1 00 1 0 0-6 0 2 1

the same as E2_11 E3_21U = LU. The multipliers 57 = ¢35 = 2 fall into place in L.
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1 1 1 1 0 0]
7 B3B3 Ep A = 1 1 -2 1 2 2 2/|. Thisis
-2 1 -3 1 1 _3 4 5_
101 (1 0 0]
0 2 0| =U.Putthose multipliers2,3,2into L.ThenA= |2 1 0| U= LU.
0 0 2 _3 2 1_
1 1
8 E=FE3F3Fy=| —q 1 ismixedbut Lis By ' E' By = a1
ac—b —c 1 b ¢ 1
110 1 de g| d=1e=1,thenl =1
9 2by2:d =0notallowed; |1 1 2| =1{¢ 1 f h| f=0isnotallowed
121 mn 1 7 | no pivot in row 2

10 ¢ = 2 leads to zero in the second pivot position: exchange rows and not singular.

¢ = 1 leads to zero in the third pivot position. In this case the matrix is singular.

2 4 8 2
11 A= |0 3 9| has L = I (A is already upper triangular) and D = 3 ;
0 0 7 7
(12 4
A=LUhasU=A; A=LDUhasU = D"*A= |0 1 3| with I’s on the diagonal.
0 0 1
12 A 2 4 _ 1 0|2 4 _ 10 _2 0] |1 2 _LDU:Uis LT
4 11 2 1|10 3 2 1] 10 3]]0 1
1 1 4 0 1 1 1 4 0

4 1 0 —4 =14 1 —4 0 1 —1|=LDL".

4
0 -1 1,0 0 4 0 -1 1 4110 0 1
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37

aaaa 1 a a a a a # 0 All of the
abbbd 11 b—a b—a b—a b # a multipliers
13 = . Need
abecec 111 c—=b c—b c#barel;; =1
labcd| |1111]]| d—c| d # c for this A
_a ror r— —1 ] _a r r r ] a#0
a b s s 1 1 b—r s—r s—r b#r
14 = . Need
a b c t 1 1 1 c—s t—s c#s
la b ¢ d] 111 1] d—t] d#t
1 0 2 2 -5
15 c= gives ¢ = . Then T = gives x =
4 1 11 3 0 1 3 3
2 4 2 4 2
Axr=b is LUx = T = . Eliminate to xr = =c.
8 17 11 0 1 3
1 0 0 4 4 1 1 4 3
16 |1 1 0|c=|5|givesc=|1|.Then |0 1 1|x=|1]| givesz= |0]-
1 11 6 1 0 0 1 1 1
1 1 1 4
Those are forward elimination and back substitutionfor |1 2 2|x = |5].
1 2 3 6

17 (a) L goestoI (b) I goesto L~*

(c) LU goes to U. Elimination multiplies by L !

18 (a) Multiply LDU = L, D,U; by inverses to get Ll_lLD = DU U~L. The left side

is lower triangular, the right side is upper triangular = both sides are diagonal.

(b) L,U, Ly,U; have diagonal 1’s so D = D;. Then Ll_lL and U; U1 are both I.

1 1 10
19 |1 1 1 1 =
0 1 1 1

a a 0
LIU; |a a+b b =
0 b b+ c

A tridiagonal matrix A has bidiagonal factors L and U.
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22
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24
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26
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A tridiagonal 7" has 2 nonzeros in the pivot row and only one nonzero below the pivot
(one operation to find ¢ and then one for the new pivot!). Only 2n operations for

elimination on a tridiagonal matrix. 7'=bidiagonal L times bidiagonal U.

For the first matrix A, L keeps the 3 zeros at the start of rows. But U may not have the
upper zero where Aoy = 0. For the second matrix B, L keeps the bottom left zero at
the start of row 4. U keeps the upper right zero at the start of column 4. One zero in A

and two zeros in B are filled in.

5 3 1 4 2 0 2 0 0
Eliminating upwards, |3 3 1| — |2 2 0| — |2 2 0| = L. Wereach

1 11 1 11 1 11
a lower triangular L, and the multipliers are in an upper triangular U. A = U L with
1 11
U=10 11
0 0 1

The 2 by 2 upper submatrix A, has the first two pivots 5, 9. Reason: Elimination on A

starts in the upper left corner with elimination on As.

The upper left blocks all factor at the same time as A: Ay is LyUi. So A = LU is

possible only if all those blocks Ay, are invertible.

The i, j entry of L=1 is j/i fori > j. And L;;_1 is (1 — 4)/i below the diagonal

(K1) =j(n—i+1)/(n+1)fori > j (and symmetric): Multiply K ~! by n + 1

(the determinant of K) to see all whole numbers.
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Problem Set 2.7, page 117

10 19 10
14 = has AT — AT = J(ATHT = (AT)! =
9 3 0 3 3 1/3
1 -3
0 1/3
1 0
A=| ‘| hasAT=Aandat =1 I =T
c 0 “le -1

1 2
2 (AB)T = = BTAT. This answer is different from AT BT (except when
3 7

AB = BA and transposing gives BT AT = ATBT),
3@ (AB)™HT = (B1AHT = (A-HT (BT, This is also (AT)=1(BT)~%.
(b) If U is upper triangular, so is U~': then (U~1)T is lower triangular.

0 1
4 A= has A? = 0. But the diagonal of AT A has dot products of columns of A
0 0

with themselves. If AT A = 0, zero dot products = zero columns = A = zero matrix.

0
1 2 3
5 (a) :cTAyz[o 1} ) ) 1|=5
5
0

(b) This is the row T A = {4 5 6] times y.

2
(c) This is also the row T times Ay =
5
AT CT
6 MT = : MT = M needs AT = A and BT = C and DT = D.
BT DT

0 A
7 (a) False: is symmetric only if A = AT,
A 0

(b) False: The transpose of AB is BT AT = BA. So (AB)T = AB needs BA = AB.
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(c) True: Invertible symmetric matrices have symmetric inverses! Easiest proof is to

transpose AA~! = 1I.
(d) True: (ABC)T is CT BT AT (= CBA for symmetric matrices A, B, and O).

The 1 in row 1 has n choices; then the 1 in row 2 has n — 1 choices ...(n! overall).

01 0|1 0 O 0 01 010
PP, = 10 0 1|0 0 1| = [0 1 0f buu PP = |1 0 0]-
1 0 00 1 O 1 0 0 0 01

If P; and P, exchange different pairs of rows, P; P, = P, P; = both exchanges.

(3,1,2,4) and (2, 3,1, 4) keep 4 in place; 6 more even P’s keep 1 or 2 or 3 in place;
(2,1,4,3) and (3,4,1,2) and (4, 3,2, 1) exchange 2 pairs. (1,2, 3,4) makes 12.

0 1 0[]0 O 6 1 2 3
PA= 1|0 0 1 1 2 3| =10 4 5| is upper triangular. Multiplying A
1 0 0|0 4 5 0 0 6

on the right by a permutation matrix P5 exchanges the columns of A. To make this A

lower triangular, we also need P; to exchange rows 2 and 3:

1 1 6 0 0
PAP, = 114 1 =15 4 0]
1 1 3 2 1

(Pz)Y (Py) =2 PTPy=x"Ty since P* P=1. In general Pz-y=x-PTy # x-Py:

0 1 0 1 1 1 0 1 0 1
Non-equality where P # PT: [0 0 1| |2 11 #(2]-]10 0 1] |1
1 0 0 3 2 3 1 0 0 2

010
Acyclic P= |0 0 1| oritstranspose will have P? =T : (1,2,3) — (2,3,1) —
100

~ 0 ~ ~
(3,1,2) — (1,2, 3). The permutation P = for the same P has P* = P # I.

0 P
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14 The “reverse identity” P takes (1,...,n)into (n,...,1). When rows and also columns
are reversed, the 1,1 and n, n entries of A change places in PAP. So do the 1,n and

n, 1 entries. In general (PAP);; is (A)n—it1,n—j+1-

0
15 (a) If P sends row 1 to row 4, then PT sendsrow 4torow 1 (b) P = =
0 F
1
PT with E = moves all rows: 1 and 2 are exchanged, 3 and 4 are exchanged.

10

16 A% — B? and also ABA are symmetric if A and B are symmetric. But (A+ B)(A— B)

and ABADB are generally not symmetric.

1 0 1
17 (a) S = = ST is not invertible (b) S = needs row exchange
11 11
11 ) 1
() §= has pivots D = : no real square root.
0 -1

18 (a) 5+ 4+ 342+ 1 = 15 independent entries if S = ST (b) L has 10 and D has 5;
total 15in LDLT (c) Zero diagonal if AT = — A, leaving 4+ 3 +2+1 = 10 choices.

19 (a) The transpose of ATSAis ATSTATT = ATSA = n by n when ST = S (any m
by n matrix A) (b) (ATA) j = (column j of A)- (column j of A) = (length squared

of column 5) > 0.

0 |t 3 1 oll1 ol|1 3 1 b 1 oll1 o 1 b
3 9 3 1010 =7l o 1| |b ¢ b 1] ]o c—u2] |0 1
2 -1 0 1 2 1—%0
1 1 3 21 T
12 -1 = (-1 1 3 1 -2|=LDL
2 4
0 -1 2 0 -2 1 4 1

21 Elimination on a symmetric 3 by 3 matrix leaves a symmetric lower right 2 by 2 matrix.

2 48 16 ¢
-5 =7 d—b> e—bc )
4 3 9|and |p d e| leadto and : symmetric!
-7 —-32 e—bc f—c?

890 ce f



42

23

24

25

26

27

Solutions to Exercises

1 1 1 0 1 1 1 1 2 0

1 A=10 1 1 1]; 11A=1]1 1 -1 1
1 2 31 -1 1 2 01 1
0 0 0 1]

A 1 0 0 O e pandl—U~—1 Elimination on this A = P exchanges
01 00 rows 1-2 then rows 2-3 then rows 3-4.
00 1 0]

1110 1 2 1 2 1 1
PA = LU is 1 0 3 8/ =10 1 3 8. If we
1 2 11 0 1/3 1 —2/3
1 1 2 1 1
wait to exchange and a2 isthe pivot, A = L1 AUy = |3 1 1 o1 2.
1] |1 0 0 2
One way to decide even vs. odd is to count all pairs that P has in the wrong order. Then

P is even or odd when that count is even or odd. Hard step: Show that an exchange
always switches that count! Then 3 or 5 exchanges will leave that count odd.

1 10 0
@ Exn=1|-3 1 puts Oin the 2, 1 entry of F9; A. Then Eo1 AEL, = |0 2 4

1 0 4 9
1
is still symmetric, with zero also in its 1, 2 entry.  (b) Now use F35 = 1
-2 1

to make the 3, 2 entry zero and E32E21AE2T1 E3T2 = D also has zero in its 2, 3 entry.

Key point: Elimination from both sides (rows + columns) gives the symmetric LDLT.

01 2 3
1 2 30
A= = AT has 0,1,2,3 in every row. I don’t know any rules for a
2 3 01
3 01 2

symmetric construction like this “Hankel matrix™ with constant antidiagonals.
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28

29

30

31

32

33

34

35

36

37

Reordering the rows and/or the columns of [i‘ 3] will move the entry a. So the result

cannot be the transpose (which doesn’t move a).

1 0 1 YyBC Yypc + YBs
(a) Total currents are ATy = |—1 1 0| |yes | = |—vysc+yes
0 -1 —-1{ |yBs —Ycs — YBS

(b) Either way (Az)Ty = 2T (ATy) = 2pysc + TBYBS — TcyYpo + Toyos —

TsYcs — TSYBsS- Six terms.

1 50 700

1 T 1 40 2 6820 1 truck
40 1000 =Axz; Aty = 3 | =

To 50 1000 50 188000 | 1 plane
2 50 3000

Ax -y is the cost of inputs while z - ATy is the value of outputs.

P3 = T so three rotations for 360°; P rotates every v around the (1, 1, 1) line by 120°.

1 2 1 0 1 2 o )
= = EH = (elementary matrix) times (Symmetric ma-
4 9 2 1 2 5
trix).

L(UT)~1 is lower triangular times lower triangular, so lower triangular. The transpose
of UTDU isUTDTUT T = UT DU again, so UT DU is symmetric. The factorization

multiplies lower triangular by symmetric to get LDU which is A.

These are groups: Lower triangular with diagonal 1’s, diagonal invertible D, permuta-

tions P, orthogonal matrices with QT = Q1.

. . . , . -1
Certainly BT is northwest. B? is a full matrix! B~ is southeast: [1 8] =[] _1].

The rows of B are in reverse order from a lower triangular L, so B = PL. Then

B~! = L='P~1 has the columns in reverse order from L~'. So B~! is southeast.

Northwest B = PL times southeast PU is (PLP)U = upper triangular.

There are n! permutation matrices of order n. Eventually two powers of P must be

the same permutation. And if P" = P then P" ~— % = I. Certainly r — s < n/!
01 0
P,

0 1
P= is 5 by 5 with P, = and Ps;=1|0 0 1| and PS=1.
Ps 10
1 0 O
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38 To split the matrix M into (symmetric S) + (anti-symmetric A), the only choice is
S=%2(M+M")and A= (M - M").
ai 10
39 Start from QTQ = I, as in a g | =
qs 0 1

(a) The diagonal entries give g1 q; = 1 and g4 q5 = 1: unit vectors
(b) The off-diagonal entry is g} g, = 0 (and in general ;" q; = 0)

) . . . |cosf® —sind
(c) The leading example for () is the rotation matrix

sin @ cosf
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Problem Set 3.1, page 131

Note An interesting “max-plus” vector space comes from the real numbers R combined
with —oo. Change addition to give  + y = max(x,y) and change multiplication to
xy = usual  + y. Which y is the zero vector that gives z +0 = max(z, 0) = z for every

x?

1lz+ty#y+tzandax+ (y+2)# (x+y)+zand (1 + c2)x # 1@ + co.
2 When c(z1,22) = (cz1,0), the only broken rule is 1 times x equals x. Rules (1)-(4)

for addition x + y still hold since addition is not changed.

3 (a) cx may not be in our set: not closed under multiplication. Also no 0 and no —x
(b) c(x + y) is the usual (zy)°, while cz + cy is the usual (2°)(y¢). Those are equal.
With ¢ = 3,2 = 2,y = 1 this is 3(2 + 1) = 8. The zero vector is the number 1.

4 The zero vector in matrix space M is ;5 A= b and —A = w22

0 0 1 -1 -2 2
The smallest subspace of M containing the matrix A consists of all matrices cA.

5 (a) One possibility: The matrices cA form a subspace not containing B (b) Yes: the
subspace must contain A — B =1 (¢) Matrices whose main diagonal is all zero.

6 When f(r) = 22 and g(z) = 5x, the combination 3f — 4g in function space is
h(z) = 3f(z) — 4g(x) = 32?2 — 20z.

7 Rule 8 is broken: If cf(z) is defined to be the usual f(cx) then (c; + co)f =
F((c1 + c2)x) is not generally the same as ¢ f + cof = f(c1z) + f(cax).

8 If (f + g)(x) is the usual f(g(x)) then (g + f)x is g(f(x)) which is different. In
Rule 2 both sides are f(g(h(z))). Rule 4 is broken because there might be no inverse
function £ *(z) such that f(f'(x)) = z. If the inverse function exists it will be the

vector — f.

9 (a) The vectors with integer components allow addition, but not multiplication by %
(b) Remove the z axis from the zy plane (but leave the origin). Multiplication by any

c is allowed but not all vector additions: (1,1) + (—1,1) = (0, 2) is removed.
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The only subspaces are (a) the plane with by = by (d) the linear combinations of v
andw (e) the plane with by 4+ by + b3 = 0.

a b a a
(a) All matrices (b) All matrices (c) All diagonal matri-

0 0 0 0
ces.

For the plane x 4+ y — 2z = 4, the sum of (4,0, 0) and (0, 4, 0) is not on the plane. (The
key is that this plane does not go through (0, 0, 0).)

The parallel plane Py has the equation z + y — 2z = 0. Pick two points, for example
(2,0,1) and (0,2, 1), and their sum (2,2,2) is in Py.

(a) The subspaces of R? are R? itself, lines through (0,0), and (0, 0) by itself (b) The
subspaces of D are D itself, the zero matrix by itself, and all the “one-dimensional”

subspaces that contain all multiples of one fixed matrix :

dy
c for all c.

0 do
(a) Two planes through (0, 0, 0) probably intersect in a line through (0, 0,0)
(b) The plane and line probably intersect in the point (0, 0,0). Could be a line !

(c) If x and y are in both S and T, « + y and cx are in both subspaces.

The smallest subspace containing a plane P and a line L is either P (when the line L

is in the plane P) or R? (when L is not in P).

(a) The invertible matrices do not include the zero matrix, so they are not a subspace
) ) 1 0 0 0f. .
(b) The sum of singular matrices + is not singular: not a subspace.
0 0 0 1

(a) True: The symmetric matrices do form a subspace (b) True: The matrices with
AT = —A do form a subspace (c) False: The sum of two unsymmetric matrices

could be symmetric.
The column space of A is the z-axis = all vectors (x,0,0) : a line. The column space

of B is the zy plane = all vectors (z, y, 0). The column space of C'is the line of vectors

(x,2x,0).
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(a) Elimination leads to 0 = by — 2b; and 0 = b; + b3 in equations 2 and 3:
Solution only if b = 2b; and bg = —b; (b) Elimination leads to 0 = by + b3

in equation 3: Solution only if bg = —b;.
A combination of the columns of C is also a combination of the columns of A. Then

2
C = and A = have the same column space. B = has a
2 6 2 4 3 6

different column space. The key word is “space”.
(a) Solution for every b (b) Solvable only if b3 =0 (c) Solvable only if b3 = bo.

The extra column b enlarges the column space unless b is already in the column space.

(A b]— 1 0 1| (larger column space) 1 0 1| (bisincolumn space)

0 0 1| (nosolutionto Az =5b) [0 1 1| (Ax = b has a solution)
The column space of AB is contained in (possibly equal to) the column space of A.
The example B = zero matrix and A # 0 is a case when AB = zero matrix has a

smaller column space (it is just the zero space Z) than A.
The solutionto Az =b+b"isz=ax +y. Ifband b" arein C(A) sois b+ b".

The column space of any invertible 5 by 5 matrix is R®. The equation Az = b is
always solvable (by £ = A~1b) so every b is in the column space of that invertible

matrix.

(a) False: Vectors that are not in a column space don’t form a subspace.
(b) True: Only the zero matrix has C(A) = {0}. (c) True: C(A) = C(24).

10
(d) False: C(A—1)# C(A)whenA=1Tor A= (or other examples).
0 0

1 1 0 1 1 2 1 1 2 0
A=11 0 o|and |1 0 1| donothave [1| inC(A). A= |2 4 0] has

0O 1 O 0 1 1 1 3 6 0
C(A) =line in R®.

When Ax = b is solvable for all b, every b is in the column space of A. So that space

is C(A) = RY.
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30 (a) If wand v are bothin S + T, thenu = s;1 +t; andv = 89+ 5. Sou+v =
(s1+ 82)+(t1 +tz)isalsoin S+T. Andsois cu = csy+cty : S+ T = subspace.

(b) If S and T are different lines, then S U T is just the two lines (not a subspace) but

S + T is the whole plane that they span.
31 If S =C(A) and T = C(B) then § + T is the column space of M = [A B].

32 The columns of AB are combinations of the columns of A. So all columnsof [A AB]

0 1 0 0
are already in C'(A). But A = has a larger column space than A? =

0 0 0 0|
For square matrices, the column space is R™ exactly when A is invertible.

Problem Set 3.2, page 142

1 2 2 4 6 2 4 2
Free variables x5, x4, x5 Free z3
1@U=|0 01 2 3 b)) U=|0 4 4
Pivot variables x1, x3 Pivot x4, x5
0 0 00O 0 0 O

2 (a) Free variables x4, x4, x5 and solutions (-2, 1,0, 0, 0), (0,0, —2,1,0), (0,0, —3,0,1)
(b) Free variable x3: solution (1, —1, 1). Special solution for each free variable.
12 0 00 1 0 -1
3 R=1|0 01 2 3|,R=10 1 1|, R has the same nullspace as U and A.
0 00 00 0 0 O
4 (a) Special solutions (3,1,0) and (5,0,1) (b) (3,1,0). Total of pivot and free is 7.

5 (a) False: Any singular square matrix would have free variables (b) True: An in-
vertible square matrix has no free variables. (c) True (only n columns to hold pivots)

(d) True (only m rows to hold pivots)

0011111 1][t111111][ooo0o111 1]
slo0o oot afjooo0 01
000011 1/l0o00oo0011|lo00o0000 0
0 000000/[0000001[[000000 0
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12

13

14

15

11011100 01100 111
001 11100 0001 0 1 11
, . Notice the identity
000 OO O T1TO 0000 1 111
0 00 OO OO0 1 00 0O 0O O0O0O

matrix in the pivot columns of these reduced row echelon forms R.

If column 4 of a 3 by 5 matrix is all zero then x4 is a free variable. Its special solution

isxz = (0,0,0,1,0), because 1 will multiply that zero column to give Az = 0.
If column 1 = column 5 then x5 is a free variable. Its special solution is (—1,0,0,0, 1).

If a matrix has n columns and r pivots, there are n — r special solutions. The nullspace
contains only * = 0 when » = m. The column space is all of R™ when r = m. All

those statements are important!

The nullspace contains only & = 0 when A has 5 pivots. Also the column space is R?,

because we can solve Az = b and every b is in the column space.

A=1[1 —3 —1] gives the plane x — 3y — z = 0; y and z are free variables. The
special solutions are (3,1,0) and (1,0, 1).

Fill in 12 then 3 then 1 to get the complete solution in R® to x — 3y —z = 12:
x 12 3 1

y|=10]+y|1|+2]|0]| = one particular solution + all nullspace solutions.

z 0 0 1

Column 5 is sure to have no pivot since it is a combination of earlier columns. With
4 pivots in the other columns, the special solution is s = (1,0, 1,0,1). The nullspace

contains all multiples of this vector s (this nullspace is a line in R?).

To produce special solutions (2,2,1,0) and (3,1,0,1) with free variables x3,x4:

1 0 -2 -3
R = and A can be any invertible 2 by 2 matrix times this R.
01 -2 -1
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4
1 0 0 —4

3

The nullspaceof A= |0 1 0 —3/| is the line through the special solution

2
00 1 -2

_1_

1 0-1/2 1 0 1

A=|1 3 —2|has|1|and |3|inC(A)and |1 | in N(A). Which other A’s?
5 1 =3 5 1 2

This construction is impossible for 3 by 3! 2 pivot columns and 2 free variables.

1 -1 0 0
A=11 0 -1 0] has(1,1,1)in C(A) and only the line (¢, ¢, ¢, c) in N (A).
1 0 0 -1

0 1 1 0
A= has N (A) = C(A). Notice that rref(AT) = isnot AT,
0 0 0 0

If nullspace = column space (with 7 pivots) thenn — r = r. If n = 3 then 3 = 2r is

impossible.

If A times every column of B is zero, the column space of B is contained in the nullspace

11 1 1
of A. An exampleis A = and B = . Here C(B) equals N (A).
11 -1 -1

For B = 0, C(B) is smaller than IN (A).

For A = random 3 by 3 matrix, R is almost sure to be I. For 4 by 3, R is most likely

to be I with a fourth row of zeros. What is R for a random 3 by 4 matrix?

0 1 1 0
A= shows that (a)(b)(c) are all false. Notice rref(AT) = .
0 0 0 0
If N(A) = line through « = (2,1,0, 1), A has three pivots (4 columns and 1 special
1 0 0 -2
solution). Its reduced echelon formcanbe R= [0 1 (0 —1 | (add any zero rows).
0 0 1 0
1 00
R=[1 -2 -3], R= , R =I. Any zero rows come after those rows.

0 1 0
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1 0 1 0 1 1 0 1 0 0
(a) , , , , (b) All 8 matrices are R’s !
0 0

0 1 0 0 0 0 0 0

2

~

28 One reason that R is the same for A and —A: They have the same nullspace. (They
also have the same row space. They also have the same column space, but that is not

required for two matrices to share the same R. R tells us the nullspace and row space.)

29 The nullspace of B = [ A A] contains all vectors & = Y for y in R™.
-y

30 If Cx = 0then Az = 0 and Bx = 0. So N(C) = N(A) N N(B) = intersection.

1 1 1 1 1 0 -1 -2
31 (a) R = 0 0 0 0| rank 1 (b) R = 0o 1 2 3 | rank 2
00 0O 0 0 0 0
1 -1 1 -1

©R=[0 o0 0 | rank 1

o

2 ATy =0:y1—ys+y=—y+y2++ys=—Yo+ys+ys = —ys—ys — Yo = 0.
These equations add to 0 = 0. Free variables y3, ys5, ys: watch for flows around loops.
The solutions to ATy = 0 are combinations of (—1,0,0,1,—1,0) and (0,0, —1,—1,0, 1)

and (0,—1,0,0,1, —1). Those are flows around the 3 small loops.

33 (a) and (c) are correct; (b) is completely false; (d) is false because R might have 1’s

in nonpivot columns.

1 20
Ry O Zero rows go
34 Ra=1{0 0 1| Rg=[Ra Ra] Rc— —
0 Ra to the bottom
0 00

0 I
35 If all pivot variables come last then R = . The nullspace matrix is N =
0 0 0

36 Ithink Ry = Ay, Ry = As is true. But Ry — Ry may have —1°s in some pivots.
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A and A" have the same rank r = number of pivots. But pivcol (the column number)
010

is 2 for this matrix Aand 1 for AT: A= {0 0 0].
0 0 O
Special solutionsin N =[—-2 —4 1 0; -3 —5 0 1]and [1 0 0;0 —2 1].

1 2 4 3 9 —-45
The new entries keep rank 1: A = (2 4 8|, B = |1 3 —-15],
4 8 16 2 6 -3
a b
M = .
¢ be/a
If A has rank 1, the column space is a line in R™. The nullspace is a plane in R"

(given by one equation). The nullspace matrix N is n by n — 1 (with n — 1 special

solutions in its columns). The column space of AT is a line in R".

36 6 3[122}

2 2 6 4 2[1132]
1 2 2/=]1 and =

1 -1 -3 -2 ~1
4 8 8 4

With rank 1, the second row of R is a zero row.
Invertible r by r submatrices 1 3 1 0

S = and S =[1]and S =
Use pivot rows and columns 1 4 0 1

P has rank r (the same as A) because elimination produces the same pivot columns.

The rank of R™ is also 7. The example matrix A has rank 2 with invertible S:

1 3
1 2 2 1 2 1 3
P=192 ¢ PT = ST = S =
3 6 7 3 7 2 7
2 7

The product of rank one matrices has rank one or zero. These particular matrices have
rank(AB) = 1; rank(AC) = 1 except AC = 0if c = —1/2.

T

u(vTw)2zT has rank one unless the inner product is v

(uo™) (w=") = w=0.
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53

48 (a) By matrix multiplication, each column of AB is A times the corresponding column

of B. So if column j of B is a combination of earlier columns, then column j of AB

is the same combination of earlier columns of AB. Then rank (AB) < rank (B). No

new pivot columns!

(b) The rank of B is » = 1. Multiplying by A cannot increase

this rank. The rank of AB stays the same for A; = I and B = [1 }]. It drops to zero

for Ay = [_} 1

]

49 If we know that rank(BT AT) < rank(A™), then since rank stays the same for trans-

poses, (apologies that this fact is not yet proved), we have rank(AB) < rank(A).

50 We are given AB = I which has rank n. Then rank(AB) < rank(A) forces rank(A) =

n. This means that A is invertible. The right-inverse B is also a left-inverse: BA = I

and B= A"1.

51 Certainly A and B have at most rank 2. Then their product AB has at most rank 2.

Since BA is 3 by 3, it cannot be [ even if AB = 1.

52 (a) A and B will both have the same nullspace and row space as the R they share.

(b) A equals an invertible matrix times B, when they share the same R. A key fact!

1 0
53 A = (pivot columns)(nonzerorows of R) = |1 4
1 8
0 00
2 2 0 columns
0 0 4. B=
3 1 times rows
0 0 8
1 1 2 2
54 Ifc=1,R= 1|0 0 0 0] has zo,x3,24 free. If ¢ # 1,R =

has x3, x4 free. Special solutions in N =

0 00O

-1 -2
10
0 1

00

1 10
0 0 1

1 10
1 1 0|+
1 10

1 0 2 2
01 0 0
0 0 0 O

(for¢c = 1) and N =
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-2 =2

0 0 0 1 . -2

(forc#1).Ifc=1,R= and z; free;ifc =2, R =

1 0 0 0 0 0

- 0 1_
1
and x5 free; R = I if ¢ # 1,2. Special solutions in N = (c=1) o N =
0

2

(¢ =2) or N = 2 by 0 empty matrix.
1

I
A:[I ]}hasN: i B = hasthesameN;C:{[ I ]}has
—1I 0 0
-1 -1
N = I 0
0o I

1 1 1 1 1
1 1 1 1| = (pivotcolumn) (first row) = |1 [1 1 1 1]
1 1 1 1 1

The m by n matrix Z has 7 ones to start its main diagonal. Otherwise Z is all zeros.

I F rbyr rbyn—r 10
R= - y Y ;rref(RY) = ; rref(RT R) =same
00 m—rbyr m—rbyn—r 00
1 2 0 1 2 0
1 2 0
R= hasRTR= |9 4 0| andthis matrixrowreducesto |0 0 1| =
0 0 1
0 0 1 0 0 O
R

. Always RT R has the same nullspace as R, so its row reduced form must
ZEro oW

be R with n — m extra zero rows. R is determined by its nullspace and shape !

The row-column reduced echelon form is always ; [isT by r.
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Problem Set 3.3, page 158

2 4 6 4 by 2 4 6 4 by 2 4 6 4 by
112 5 7 6 by|—=|0 1 1 2 ba—by|[—|0 1 1 2 by—by

2 3 5 2 bs 0-1-1-2 bs—Db; 0 0 0 0 bg+by—2b;
Ax = b has a solution when b3 4 b2 — 2b; = 0; the column space contains all combi-

nations of (2,2, 2) and (4, 5, 3). This is the plane b3 + b2 — 2b; = 0 (!). The nullspace
contains all combinations of s; = (—1,—1,1,0) and s2 = (2, —2,0,1); Zcomplete =

T, + C181 + C282;

1 01 -2 4
[R d]: 0 1 1 2 —1| givesthe particular solution z,, = (4,—1,0,0).

000 0 O

2 1 3 by 2 1 3 b 1 1/2 3/2 5
216 3 9 by|—>|0 0 0 by—3by| Then[R d]=]0 0 0 0
4 2 6 bs 0 0 0 bz—2b 00 0 O
Az = b has a solution when by — 3b; = 0 and b3 — 2b; = 0; C(A) = line through
(2,6,4) which is the intersection of the planes bo — 3b; = 0 and b3 — 2b; = 0;
the nullspace contains all combinations of s; = (—1/2,1,0) and s3 = (—3/2,0,1);

particular solution x,, = d = (5,0, 0) and complete solution &, + 151 + c252.

-2 -3
mcomplete = 0| + 22| 1|. The matrix is singular but the equations are
1 0

still solvable; b is in the column space. Our particular solution has free variable y = 0.

= mp + x, = (%707 %70) + *732(_37 17070) + ‘7:4(0707 _27 1)

xcomplete
1 2 -2 b 1 2 -2 b
512 5 —4 by|—|[0 1 0 by —2by solvable if bs — 2b; — ba = 0.

4 9 -8 by 0 0 0 by—2b —bo
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Back-substitution gives the particular solution to Az = b and the special solution to
5b1 — 2bs 2
Ax =0z = | by —2b; | + 23 |0].

0 1
5b1 — 2b3
6 (a) Solvable if b = 2by and 3b; — 3b3 + by = 0. Then x = =T,
bz — 2by
5b1 — 2b3 -1

(b) Solvable if by = 2b; and 3b; — 3bs + by = 0. & = | by — 2y | + 23 |—1
0 1

1 3 1 b 1 3 1 b One more step gives [0 0 0 0] =
713 8 2 by|—™|0 —1 —1 by—3b;| row3—2(row?2)+ 4(row 1)

2 4 0 b3 0 —2 —2 bg—2b;y| provided bs—2by+4b;=0.
8 (a) Every bisin C(A): independent rows, only the zero combination gives 0.

(b) We need bs = 2by, because (row 3) — 2(row 2) = 0.
1 0 0 1 2 3 5 b 1 2 3 5 b
9L{U 0}22 1 0 0 0 2 2 by—2b =2 4 8 12 by
3 -1 1 0 0 0 0 bs+bx—5b 3 6 7 13 b3
= [,4 b];particular a, = (~9,0,3,0) means —9(1,2,3) + 3(3,8,7) = (0,6, —6).
Thisis Az, = b.
10 (1) (1) _1 T = 421 has x, = (2,4,0) and x,,;); = (¢, ¢, c). Many possible A'!

11 A 1 by 3 system has at least two free variables. But x,,;;j; in Problem 10 only has one.
12 (a) If Axy = b and Axo = bthen x; — x5 and also = 0 solve Ax =0
(b) A(2m1 - 2$2) = 0,A(2$1 - wg) =b

13 (a) The particular solution %, is always multiplied by 1  (b) Any solution can be x,

3 3| |z 6 1] . 2
(©) = . Then is shorter (length v/2) than (length 2)
3 3| |y 6 1 0

(d) The only “homogeneous” solution in the nullspace is x,, = 0 when A is invertible.
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14 If column 5 has no pivot, x5 is a free variable. The zero vector is not the only solution

to Az = 0. If this system Ax = b has a solution, it has infinitely many solutions.

15 If row 3 of U has no pivot, that is a zero row. Ux = c is only solvable provided
cs = 0. Ax = b might not be solvable, because U may have other zero rows needing

more ¢; = 0.

16 The largest rank is 3. Then there is a pivot in every row. The solution always exists.

The column space is R®. An exampleis A = [I F'] for any 3 by 2 matrix F.

17 The largest rank of a 6 by 4 matrix is 4. Then there is a pivot in every column. The
solution is unique (if there is a solution). The nullspace contains only the zero vector.

I (4by4)

0 (2by4)

Then R = rref(A) =

18 Rank = 2; rank = 3 unless ¢ = 2 (then rank = 2). Transpose has the same rank!

19 Both matrices A have rank 2. Always AT A and AAT have the same rank as A.

100/t 0o 1 o
1 0olls 41 0

20 A=LU = s A=LU= |2 1 0| |0 2 -2 3
2 110 =3 0 1
0 3 1[0 0 11 =5

T 4 -1 -1 T 4 -1
21 (@) |y| =1|0| +y 1| +=2 0 ® (y|=1]0] += 0| . The second
z 0 0 1 z 0 1

equation in part (b) removed one special solution from the nullspace.

22 If Az; = band also Axo = b then A(x; — x2) = 0 and we can add x; — x> to any
solution of Ax = B: the solution x is not unique. But there will be no solution to

Ax = B if B is not in the column space.
23 For A, g = 3 gives rank 1, every other ¢ gives rank 2. For B, ¢ = 6 gives rank 1, every
other q gives rank 2. These matrices cannot have rank 3.

1 b1 . . { 1 1 ] I
24 (a) [z] = has 0 or 1 solutions, depending on b (b) =
1 bo Z2

[b] has infinitely many solutions for every b  (c) There are 0 or oo solutions when A
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has rank » < m and r < n: the simplest example is a zero matrix.

for all b when A is square and invertible (like A = TI).

(d) one solution

(@ r<m,alwaysr<n ®d) r=m,r<n) r<m,r=n() r=m=n.

2 4 4

0 3

1 0 -2

2 4 4

6|l > R=10 1 2/and [0 3 6| = R=1.

0 0 0

R = I when A is square and invertible—so for a triangular matrix, all diagonal entries

must be nonzero.

0 0 O

0 0 5

-2
1230 1200 1235 120 -1
0040 0010 0048 001 2
0
Free xo = 0 gives ¢, = (—1, 0, 2) because the pivot columns contain /.
10 00O 0 10 0 -1
[Rd] = |0 0 1 0f leads to @, = |1|; [Rd] = |0 0 1 2
0 00O 0 0 00 5
this has no solution because of the 3rd equation
; 4] 2]
1023 2 102 3 2 1020 —4
3 0
1320 5{—|030-33]—(0100 3| yTp = T3
0 1
2049 10 000 36 0001 2
. | 2] | 0]
11 1
0
ForA= |0 2], theonlysolutionto Ax = [2| isx = . B cannot exist since
1
0 3 3
2 equations in 3 unknowns cannot have a unique solution.
13 1] 1 171 31
1 2 3 11 0 -1 2
A= factors into LU = and the rank is
2 46 2 21 0 00
|1 1 5] 12 0 1][0 0 0]
r = 2. The special solution to Az = 0 and Ux = 0is s = (—7,2,1). Since



Solutions to Exercises 59

33

34

35

36

37

b = (1,3,6,5) is also the last column of A, a particular solution to Az = b is
(0,0, 1) and the complete solution is = (0,0, 1) + c¢s. (Or use the particular solution

x, = (7,—2,0) with free variable x3 = 0.)

For b = (1,0,0,0) elimination leads to Uz = (1,—1,0, 1) and the fourth equa-

tion is 0 = 1. No solution for this b.

1 1 0 10
If the complete solution to Ax = isx = + then A =
3 0 c 3 0
(a) If s = (2,3, 1,0) is the only special solution to Az = 0, the complete solution is

x = cs (a line of solutions). The rank of A mustbe 4 — 1 = 3.

1 0 -2 0
(b) The fourth variable x4 is not free in s,and Rmustbe |0 1 -3 0.

00 01

(¢) Ax = b can be solved for all b, because A and R have full row rank r = 3.

For the —1,2, —1 matrix K(9 by 9) and constant right side b = (10,---,10), the
solution x = Kb = (45,80, 105,120, 125,120, 105, 80, 45) rises and falls along

the parabola x; = 50i — 5i2. (A formula for K~ is later in the text.)

If Az = b and Cx = b have the same solutions, A and C' have the same shape and
the same nullspace (take b = 0). If b = column 1 of A, = (1,0,...,0) solves

Ax=bsoitsolves Cx=>. Then A and C share column 1. Other columns too: A=C'!

The column space of R (m by n with rank r) spanned by its r pivot columns (the first

r columns of an m by m identity matrix).
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Problem Set 3.4, page 175

1 1 1 c1
110 1 1 co| = 0givescs = co = ¢; = 0. So those 3 column vectors are
0 0 1 c3
1 11 2 0
independent. But |0 1 1 3| [¢| = |0] issolved by ¢ = (1,1,—4,1). Then
0 01 4 0

v1 + vg — 4v3 + v4 = 0 (dependent).

2 vy,v5,v3 are independent (the —1’s are in different positions). All six vectors in R*

are on the plane (1,1,1,1) - v = 0 so no four of these six vectors can be independent.

3 If ¢ = 0 then column 1 = 0; if d = 0 then b(column 1) — a(column 2) = 0; if f =0

then all columns end in zero (they are all in the zy plane, they must be dependent).

a b c T 0
4Ux = |0 d e y| = |0]| gives 2 = O theny = 0 then z = 0 (by back
0 0 f z 0

substitution). A square triangular matrix has independent columns (invertible matrix)

when its diagonal has no zeros.

1 2 3 1 2 3 1 2 3
: invertible = independent
5@ |3 1 2|—|0 =5 =7|—|0 =5 -7
columns.
2 3 1 0 -1 -5 0 0 —18/5
1 2 -3 1 2 -3 1 2 -3 1 0
columns
® |-3 1 2|—=f0 7 —7|—=]0 7 —7|:A|1|=1]0
add to O.
2 -3 1 0 -7 7 0 0 0 1 0

6 Columns 1, 2, 4 are independent. Also 1, 3, 4 and 2, 3, 4 and others (but not 1, 2, 3).
Same column numbers (not same columns!) for A. This is because EA = U for the
matrix E that subtracts 2 times row 1 from row 4. So A and U have the same nullspace

(same dependencies of columns).
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The sum v — vo +v3 = 0 because (wg —w3) — (w1 —ws) + (w1 —ws) = 0. So the
0 1 1
differences are dependent and the difference matrix is singular: A = 1 0 -1
-1 -1 0

If C1 (’UJQ + ’LU3) + CQ(’LUl +’UJ3) + Cg(’LUl +’UJ2) = 0 then (CQ + 03)'w1 + (Cl + Cg)’lU2 +
(c1 + c2)ws = 0. Since the w’s are independent, c2 + ¢35 = ¢; +¢3 = ¢1 + o = 0.

The only solution is ¢; = co = ¢3 = 0. Only this combination of v, v2, v3 gives 0.
(changing —1’s to 1’s for the matrix A in solution 7 above makes A invertible.)

(a) The four vectors in R? are the columns of a 3 by 4 matrix A. There is a nonzero
solution to Az = 0 because there is at least one free variable (b) Two vectors are
dependent if [v; w2 ] has rank 0 or 1. (OK to say “they are on the same line” or “one
is a multiple of the other” but not “vs is a multiple of v;” —since v; might be 0.)

(c) A nontrivial combination of v; and 0 gives 0: 0v; + 3(0,0,0) = 0.

The plane is the nullspace of A = [1 2 —3 —1]. Three free variables give three inde-
pendent solutions (z,y,z,t) = (2,—1,0,0) and (3,0,1,0) and (1,0,0,1).

Combinations of those special solutions give more solutions (all solutions).
(a) LineinR®  (b) PlaneinR®>  (c) Allof R®  (d) Allof R®.

b is in the column space when Ax = b has a solution; ¢ is in the row space when

ATy = chas a solution. False. The zero vector is always in the row space.

The column space and row space of A and U all have the same dimension = 2. The row
spaces of A and U are the same, because the rows of U are combinations of the rows

of A (and vice versa!).

v=1(v+w)+ (v —w)andw = (v +w) — (v — w). The two pairs span the

same space. They are a basis when v and w are independent.

The n independent vectors span a space of dimension n. They are a basis for that space.

If they are the columns of A then m is not less than n (m > n). Invertible if m = n.
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These bases are not unique! (a) (1,1,1,1) for the space of all constant vectors
(c,c,c,0) () (1,-1,0,0),(1,0,—1,0),(1,0,0,—1) for the space of vectors with
sum of components = 0 (©) (1,-1,-1,0),(1,—1,0,—1) for the space perpendic-
ular to (1,1,0,0) and (1,0,1,1) (d) The columns of [ are a basis for its column

space, the empty set is a basis (by convention) for N (I) = Z = {zero vector}.

1 01 01
The column space of U = is R? so take any bases for R?; (row 1

01 010
and row 2) or (row 1 and row 1 + row 2) or (row 1 and — row 2) are bases for the row

space of U.

(a) The 6 vectors might not span R* (b) The 6 vectors are not independent

(c) Any four might be a basis.

n independent columns = rank n. Columns span R™ = rank m. Columns are basis

for R™ = rank = m = n. The rank counts the number of independent columns.

One basis is (2,1,0), (—=3,0,1). A basis for the intersection with the xy plane is

(2,1,0). The normal vector (1, —2, 3) is a basis for the line perpendicular to the plane.

(a) The only solution to Az = 0 is * = 0 because the columns are independent
(b) Az = b is solvable because the columns span R°. Key point: A basis gives

exactly one solution for every b.
(a) True (b) False because the basis vectors for R® might not be in S.

Columns 1 and 2 are bases for the (different) column spaces of A and U; rows 1 and

2 are bases for the (equal) row spaces of A and U; (1, —1,1) is a basis for the (equal)

nullspaces.

(a) False A =1 1] has dependent columns, independent row (b) False Column
space # row space for A = - (¢) True: Both dimensions = 2 if A is
invertible, dimensions = 0if A = 0, otherwise dimensions = 1 (d) False, columns

may be dependent, in that case not a basis for C(A).
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c d
25 Ahasrank 2if c =0andd = 2; B = has rank 2 except when ¢ = d or
d c

c= —d.

—_

26 (a) Basis for all diagonal matrices: [0 0 0

0 0 0 0 0 0 0 0
» 10 1 0], |0 0 O
0

0 0 0 0 0 0 0 0 1
o1 0] [oo 1] oo
(b) Add |1 0 0|, |0 O 0|,|0 0 1| = basisfor symmetric matrices.
0 0 0 1 00 0 1 0
01 0 o o 1] [o o o
¢ |-1 0 0|/,]0 00,0 0 1
0 0 O -1 0 0 _0 -1 0

These are simple bases (among many others) for (a) diagonal matrices (b) symmetric

matrices (c) skew-symmetric matrices. The dimensions are 3, 6, 3.

1 0 0 1 00 1 10 1 01 1 00
271,10 1 0f,|0 2 0|-]0 1 0f-|0 1 Of,|0 1 1]
0 0 2 0 0 1 0 0 1 0 0 1 0 0 1
echelon matrices do not form a subspace; they span the upper triangular matrices (not

every U is an echelon matrix).

1 0 0 0 1 0 0o 0 1 1 -1 0 1 0 -1

28 s s ; and
-1 0 0 0 -1 0 0 0 —1 -1 1 0 -1 0 1
29 (a) The invertible matrices span the space of all 3 by 3 matrices (b) The rank one
matrices also span the space of all 3 by 3 matrices (c) I by itself spans the space of

all multiples cI.
-1 2 0 -1 0 2 0 0 O 0 0 O
30 R s s . Dimension = 4.
0 0 O 0 0 O -1 2 0 -1 0 2

31 (a) y(z)= constant C' (b) y(z)=3z. (¢) y(z)=3z+ C=y,+y, solvesy’ = 3.

32 y(0) = 0 requires A + B + C' = 0. One basis is cos x — cos 2z and cos x — cos 3.
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27 is a basis for all solutions to ' = 2y (b) y = x is a basis for all

@ y(r) = e
solutions to dy/dx = y/x (First-order linear equation = 1 basis function in solution

space).

y1(z), y2(x), y3(z) can be x, 2z, 3z (dim 1) or z, 2x, 22 (diim2) or x, 22, 23 (dim 3).

2

Basis 1, z, 22, 23, for cubic polynomials; basis  — 1, 22 — 1, 23 — 1 for the subspace

with p(1) = 0.

Basis for S: (1,0, —1,0),(0,1,0,0), (1,0,0,—1); basis for T: (1,—1,0,0) and (0,0, 2, 1);

S N'T = multiples of (3, —3,2,1)= nullspace for 3 equations in R* has dimension 1.

The subspace of matrices that have AS = SA has dimension three. The 3 numbers

a, b, c can be chosen independently in A.

(a) No, 2 vectors don’t span R3 (b) No, 4 vectors in R? are dependent (c) Yes, a

basis (d) No, these three vectors are dependent

If the 5 by 5 matrix [ A b] is invertible, b is not a combination of the columns of A :
no solution to Ax = b. If [A b] is singular, and the 4 columns of A are independent

(rank 4), b is a combination of those columns. In this case Az = b has a solution.

(a) The functions y = sinz, y = cosx, y = €%, y = e~ are a basis for solutions to
d*y/dz* = y().

(b) A particular solution to d*y/dx* = y(2)+1isy(x) = —1. The complete solution
isy(z) = =1+ ¢y sinz + ¢y cosz + cze” + cqe™ (or use another basis for the
nullspace of the 4th derivative).

1 1 1 1 1
The six P’s
I=11 - 1|+ 1 + 1] — |1 .
are dependent
1 1 1 1 1

Those five are independent: The 4th has P;; = 1 and cannot be a combination of the
others. Then the 2nd cannot be (from P32 = 1) and also 5th (P32 = 1). Continuing,
a nonzero combination of all five could not be zero. Further challenge: How many

independent 4 by 4 permutation matrices?
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The dimension of S spanned by all rearrangements of  is (a) zero when x = 0
(b) one when z = (1,1,1,1) (c) three when © = (1,1, —1, —1) because all rear-
rangements of this  are perpendicular to (1,1,1,1) (d) four when the x’s are not
equal and don’t add to zero. No x gives dim S = 2. I owe this nice problem to Mike

Artin—the answers are the same in higher dimensions: 0, 1,7 — 1, n.

The problem is to show that the w’s, v’s, w’s together are independent. We know the
u’s and v’s together are a basis for V', and the w’s and w’s together are a basis for W.

Suppose a combination of u’s, v’s, w’s gives 0. To be proved: All coefficients = zero.

Key idea: In that combination giving 0, the part  from the «’s and v’s is in V. So the
part from the w’s is —x. This part is now in V' and also in W. Butif —zisin VW
it is a combination of «’s only. Now the combination giving O uses only u’s and v’s
(independent in V'!) so all coefficients of u’s and v’s must be zero. Then = 0 and

the coefficients of the w’s are also zero.

The inputs to multiplication by an m by n matrix fill R™: dimension n. The outputs
(column space!) have dimension r. The nullspace has n — r special solutions. The

formula becomes r + (n — r) = n.

If the left side of dim(V) + dim(W) = dim(V N W) + dim(V + W) is greater than

n, then dim(V N 'W) must be greater than zero. So V. N'W contains nonzero vectors.

Oh here is a more basic approach: Put a basis for V and then a basis for W in the
columns of a matrix A. Then A has more columns than rows and there is a nonzero
solution to Ax = 0. That x gives a combination of the V columns = a combination of

the W columns.

If A? = zero matrix, this says that each column of A is in the nullspace of A. If the
column space has dimension r, the nullspace has dimension 10 — r. So we must have

7 < 10 — r and this leads to < 5.
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Problem Set 3.5, page 190

1 (a) Row and column space dimensions = 5, nullspace dimension = 4, dim(IN (AT))

=2 sumbH+5+4+2=16=m+n
(b) Column space is R3; left nullspace contains only 0.

2 A: Row space basis = row 1 = (1, 2,4); nullspace (—2,1,0) and (—4,0, 1); column
space basis = column 1 = (1,2); left nullspace (—2,1). B: Row space basis =
both rows = (1,2,4) and (2,5, 8); column space basis = two columns = (1,2) and
(2,5); nullspace (—4,0,1); left nullspace basis is empty because the space contains

only y = 0: the rows of B are independent.

3 Row space basis = first two rows of U; column space basis = pivot columns (of A not U)
= (1,1,0) and (3,4, 1); nullspace basis (1,0,0,0,0), (0,2,-1,0,0), (0,2,0,—2,1);
left nullspace (1, —1,1) = last row of E~! = L.

1 0
4 () (1 0 (b) Impossible: r+(n—r) mustbe3  (c) [1 1] (d)

3 -1
0 1

(e) Impossible Row space = column space requires m = n. Then m —r = n —
r; nullspaces have the same dimension. Section 4.1 will prove N (A) and N (A7)

orthogonal to the row and column spaces respectively—here those are the same space.

1 11
5 A= has those rows spanning its row space. B = [1 -2 1] has the

210

same rows spanning its nullspace and ABT = 0.

6 A: dim 2,2,2,1: Rows (0,3,3,3) and (0,1,0,1); columns (3,0,1) and (3,0,0);
nullspace (1,0,0,0) and (0,—1,0,1); N(AT) (0,1,0). B: dim 1,1,0,2 Row space
(1), column space (1,4, 5), nullspace: empty basis, N (AY) (—=4,1,0) and (—5,0,1).

7 Invertible 3 by 3 matrix A: row space basis = column space basis = (1,0, 0), (0, 1,0),

(0,0, 1); nullspace basis and left nullspace basis are empty. Matrix B = { A A} I TOW
space basis (1,0,0,1,0,0), (0,1,0,0,1,0) and (0,0,1,0,0,1); column space basis
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(1,0,0), (0,1,0), (0,0, 1); nullspace basis (—1,0,0,1,0,0) and (0, —1,0,0,1,0) and
(0,0,—1,0,0,1); left nullspace basis is empty.

{] 0] and {] I: 0 0] and [0} = 3 by 2 have row space dimensions = 3,3,0 =
column space dimensions; nullspace dimensions 2, 3, 2; left nullspace dimensions 0, 2, 3.
(a) Same row space and nullspace. So rank (dimension of row space) is the same
(b) Same column space and left nullspace. Same rank (dimension of column space).
For rand (3), almost surely rank= 3, nullspace and left nullspace contain only (0, 0, 0).

For rand (3, 5) the rank is almost surely 3 and the dimension of the nullspace is 2.

(a) No solution means that 7 < m. Always r < n. Can’t compare m and n here.

(b) Since m — r > 0, the left nullspace must contain a nonzero vector.

1 1 2 2 1
1 0 1
A neat choiceis | 2 =12 4 0|; v+ (n—r)=mn = 3does
1 2 0
1 0 1 0 1

not match 2 + 2 = 4. Only v = 0 is in both IN(A) and C'(AT).
(a) False: Usually row space # column space (they do not have the same dimension!)
(b) True: A and — A have the same four subspaces

(¢) False (choose A and B same size and invertible: then they have the same four
subspaces)

Row space basis can be the nonzero rows of U: (1,2,3,4), (0,1,2,3), (0,0,1,2);
nullspace basis (0,1, —2,1) as for U; column space basis (1,0,0), (0,1,0), (0,0,1)
(happen to have C(A) = C(U) = R3); left nullspace has empty basis.

After a row exchange, the row space and nullspace stay the same; (2,1, 3,4) is in the

new left nullspace after the row exchange.
If A°v=0andvisarowof Athenv:-v =0.Sov =0.

Row space = yz plane; column space = xy plane; nullspace = x axis; left nullspace
= z axis. For I + A: Row space = column space = R?, both nullspaces contain only

the zero vector.
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Row 3 —2row 2+ row 1 = zero row so the vectors ¢(1, —2, 1) are in the left nullspace.
The same vectors happen to be in the nullspace (an accident for this matrix).

(a) Elimination on Az = 0 leads to 0 = b3 — by — by so (—1,—1,1) is in the left
nullspace. (b) 4 by 3: Elimination leads to b3 — 2b; = 0 and by + by — 4b; = 0, so
(—=2,0,1,0) and (—4,1,0,1) are in the left nullspace. Why? Those vectors multiply
the matrix to give zero rows in vA. Section 4.1 will show another approach: Az = b
is solvable (b is in C(A)) exactly when b is orthogonal to the left nullspace.

(a) Special solutions (—1,2,0,0) and (— 1,0, —3, 1) are perpendicular to the rows of
R (and rows of ER).  (b) ATy = 0 has 1 independent solution = last row of £~

(E~'A = R has a zero row, which is just the transpose of ATy = 0).

(a) wand w (b) vand z (c) rank < 2 if u and w are dependent or if v and z

are dependent (d) The rank of uv™ + wzT is 2.

1 2 3 2
v 1 0 u, w span column space;
A=lu w =12 2 =14 2
2T 1 1 vV, Z span row space
4 1 5 1

As in Problem 22: Row space basis (3,0, 3), (1,1,2); column space basis (1,4, 2),
(2,5,7); the rank of (3 by 2) times (2 by 3) cannot be larger than the rank of either
factor, so rank < 2 and the 3 by 3 product is not invertible.

ATy = d puts d in the row space of A; unique solution if the left nullspace (nullspace
of AT) contains only y = 0.

(a) True (A and AT have the same rank) (b) False A=[1 0]and AT have very
different left nullspaces (¢) False (A can be invertible and unsymmetric even if
C(A) =C(AT)) (d) True (The subspaces for A and —A are always the same. If
AT = Aor AT = — A they are also the same for AT)

Choose d = bc/a to make |2 B] arank-1 matrix. Then the row space has basis (a, b)
and the nullspace has basis (—b, a). Those two vectors are perpendicular !

B and C (checkers and chess) both have rank 2 if p # 0. Row 1 and 2 are a basis for the

row space of C, BTy = 0 has 6 special solutions with —1 and 1 separated by a zero;
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N(C7T) has (—-1,0,0,0,0,0,0,1) and (0,—1,0,0,0,0,1,0) and columns 3,4, 5,6 of
I; N(C) is a challenge : one vector in N (C) is (1,0,...,0,—1).

28 ai; = l,a12 = 0,413 = 1,020 = 0,a32 = 1,a31 = 0,a23 = 1,a33 = 0,a21 = 1.
(Need to specify the five moves).

T J_).

29 The subspaces for A = uvT are pairs of orthogonal lines (v and v+, u and u

If B has those same four subspaces then B = cA with ¢ # 0.

30 (a) AX = 0 if each column of X is a multiple of (1,1, 1); dim(nullspace) = 3.
(b) If AX = B then all columns of B add to zero; dimension of the B’s = 6
(¢) 346 = dim(M3*3) = 9 entries in a 3 by 3 matrix.

31 The key is equal row spaces. First row of A = combination of the rows of B: only

possible combination (notice ) is 1 (row 1 of B). Same for each row so F' = G.
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Problem Set 4.1, page 202

1 Both nullspace vectors will be orthogonal to the row space vector in R3. The column

space of A and the nullspace of AT are perpendicular lines in R? because rank = 1.

2 The nullspace of a 3 by 2 matrix with rank 2 is Z (only the zero vector because the 2
columns are independent). So x,, = 0, and row space = R?. Column space = plane

perpendicular to left nullspace = line in R? (because the rank is 2).

1 2 -3
3 (a) One way is to use these two columns directly: A = 2 -3 1
-3 5 =2

1

Impossible because N (A) and C(AT) )
b) —3| is not orthogonal to | 1

are orthogonal subspaces :
5 1

1 1
(©) |1 and | 0| in C(A) and N (A7) is impossible: not perpendicular
1 0
(d) Rows orthogonal to columns makes A times A = zero matrix p. An exampleis A =
[121]
(e) (1,1,1) in the nullspace (columns add to the zero vector) and also (1,1,1) is in

the row space: no such matrix.

4 If AB = 0, the columns of B are in the nulispace of A and the rows of A are in the left
nullspace of B. If rank = 2, all those four subspaces have dimension at least 2 which

is impossible for 3 by 3.

5 (a) If Az = b has a solution and ATy = 0, then y is perpendicular to b. b’y =
(Az)Ty = xT(ATy) = 0. This says again that C(A) is orthogonal to N(AT).
(b) If ATy = (1,1, 1) has a solution, (1,1, 1) is a combination of the rows of A. It is

in the row space and is orthogonal to every x in the nullspace.
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Multiply the equations by y1,y2,y3 = 1,1, —1. Now the equations add to 0 = 1 so
there is no solution. In subspace language, y = (1,1, —1) is in the left nullspace.

Az = bwould need 0 = (yTA)x = yTb = 1 but here yT'b = 1.

Multiply the 3 equations by y = (1,1, —1). Then z; — x2 = 1 plus xo — x3 = 1 minus
x1 — 23 = 1is 0 = 1. Key point: This y in IN(AT) is not orthogonal to b = (1,1, 1)

so b is not in the column space and Ax = b has no solution.

Figure 4.3 has * = x,. + x,,, where x,. is in the row space and x,, is in the nullspace.
Then Az, = 0 and Ax = Az, + Az, = Ax,. The example has x = (1,0) and row
space = line through (1, 1) so the splitting is € = x, + x,, = (%, %) + (%, —%) All
Az are in C(A).

Ax is always in the column space of A. If AT Ax = 0 then Az is also in the nullspace
of AT. Those subspaces are perpendicular. So Az is perpendicular to itself. Conclu-

sion: Az =0if ATAz = 0.

(a) With AT = A, the column and row spaces are the same. The nullspace is always
perpendicular to the row space. (b) « is in the nullspace and z is in the column

space = row space: so these “eigenvectors” x and z have 72z = 0.

11 For A: The nullspace is spanned by (—2,1), the row space is spanned by (1,2). The

12

13

14

column space is the line through (1,3) and N (A7) is the perpendicular line through
(3, —1). For B: The nullspace of B is spanned by (0, 1), the row space is spanned by

(1,0). The column space and left nullspace are the same as for A.
x = (2,0) splits into x,. + x,, = (1,—1) + (1,1). Notice N (AT) is the y — z plane.

VTW = zero matrix makes each column of V' orthogonal to each column of W. This
means: each basis vector for V' is orthogonal to each basis vector for W. Then every

v in V' (combinations of the basis vectors) is orthogonal to every w in W.

T
Axz = BT means that [A B] = 0. Three homogeneous equations (zero right
-z

hand sides) in four unknowns always have a nonzero solution. Here = (3,1) and
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z = (1,0) and Az = Bz = (5,6,5) is in both column spaces. Two planes in R must

share a line.

A p-dimensional and a g-dimensional subspace of R share atleastalineif p + g > n.
(The p + q basis vectors of V' and W cannot be independent, so same combination of

the basis vectors of V' is also a combination of the basis vectors of W.)
ATy = 0leads to (Ax)Ty = 2T ATy = 0. Theny L. Az and N(AT) L C(A).
If S is the subspace of R? containing only the zero vector, then S is all of R3.

If S is spanned by (1,1, 1), then S is the plane spanned by (1, —1,0) and (1,0, —1).
If S is spanned by (1,1,1) and (1,1, —1), then S is the line spanned by (1, —1,0).

S+ contains all vectors perpendicular to those two given vectors. So S Listhe nullspace

of A= . Therefore S is a subspace even if S is not.
2 2 2

L™ is the 2-dimensional subspace (a plane) in R? perpendicular to L. Then (L) is

a 1-dimensional subspace (a line) perpendicular to L. In fact (L*)L is L.

If V is the whole space R?, then V' contains only the zero vector. Then (V)L =

all vectors perpendicular to the zero vector = R* = V.

1 2 2 3
For example (—5,0,1,1) and (0, 1, —1, 0) span S+ =nullspace of A=
1 3 3 2

(1,1,1,1) is a basis for the line Pt orthogonal to P. A = [1 1 1 1] has P as its

nullspace and P+ asits row space.

xzinV»%is perpendicular to every vector in V. Since V' contains all the vectors in .S,

x is perpendicular to every vector in S. So every x in V=+isalsoin St

AA~Y = I: Column 1 of A~ is orthogonal to rows 2, 3,...,n and therefore to the

space spanned by those rows.

If the columns of A are unit vectors, all mutually perpendicular, then AT A = I. Simple

but important ! We write () for such a matrix.
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2 2 —1]| Thisexample shows a matrix with perpendicular columns.
26 A= |-1 2 2|, ATA=09Iisdiagonal: (ATA);; = (column i of A) - (column j of A).
2 —1 2| When the columns are unit vectors, then ATA = I.
27 The lines 3z + y = by and 6z + 2y = by are parallel. They are the same line if
by = 2b;. In that case (by, by) is perpendicular to (—2, 1). The nullspace of the 2 by 2

matrix is the line 3z + y = 0. One particular vector in the nullspace is (—1, 3).

28 (a) (1,—1,0) is in both planes. Normal vectors are perpendicular, but planes still in-
tersect! Two planes in R3 can’t be orthogonal. (b) Need three orthogonal vectors to
span the whole orthogonal complement in R®. (c) Lines in R?® can meet at the zero
vector without being orthogonal.

1 2 3 1 1 —1| Ahasv=(1,2,3)inrow and column spaces
29A=1|2 1 0|, B=|2 —1 0] Bhaswv inits column space and nullspace.
3 01 3 0 —1]| wvcannotbe in the nullspace and row space,
or in the left nullspace and column space. These spaces are orthogonal and v™v # 0.

30 When AB = 0, every column of B is multiplied by A to give zero. So the column
space of B is contained in the nullspace of A. Therefore the dimension of C(B) <
dimension of N (A). This means rank(B) < 4 — rank(A).

31 null(N') produces a basis for the row space of A (perpendicular to N(A)).

32 We need #Tn = 0 and ¢'2 = 0. All possible examples have the form acr™ with
a # 0.

33 Both r’s must be orthogonal to both n’s, both ¢’s must be orthogonal to both £’s, each
pair (r’s, n’s, ¢’s, and £’s) must be independent. Fact: All A’s with these subspaces

have the form [¢; co]M|[ry 72)T for a 2 by 2 invertible M.

You must take [c;, co] times [r, 7] .

Problem Set 4.2, page 214

1 (a) a'b/aTa=5/3;p=5a/3=(5/3,5/3,5/3);e = (—2,1,1)/3
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() a'b/aTa=—1;p=—a;e=0.

(a) The projection of b = (cosf,sinf) onto a = (1,0) is p = (cos6,0)
(b) The projection of b = (1,1) onto @ = (1, —1) is p = (0, 0) since aTb = 0.

The picture for part (a) has the vector b at an angle 6 with the horizontal a. The picture

for part (b) has vectors a and b at a 90° angle.

1 1 1 5 1 31 1
1 1 1
Plzg 1 1 1 andPlb:§ 5 PQZﬁ 3 9 3|and b= |3
1 1 1 5 1 31 1
P projects onto (1, 0), P, projects onto (1,—1)
10 act 1| 1 —
P = Pr= === . Py P, # 0 and P; + P; is not a projection matrix.
0 0 a”a 2 _ 1
(P + P»)? is different from P + Ps.
1 -2 -2 4 4 =2
P = 1 2 4 4 and P = L 4 4 =2
1=5 1~ 2=y -
-2 4 4 -2 =2 1
Py and P, are the projection matrices onto the lines through a; = (—1,2,2) and

as = (2,2,—1). P1 P, = zero matrix because a1 L as.

Dy :(%a _%: _%) andpzi(é %7 _%) and p3 = (%a _%: ). Sop, +py+p3 =b.
1 -2 -2 4 4 =2 4 -2 4
P1+P2+P3=% -2 4 4 +% 4 4 =2 +% -2 1 =2| =1L
-2 4 4 -2 -2 1 4 -2 4
We can add projections onto orthogonal vectors to get the projection matrix onto the

larger space. This is important.

The projections of (1,1) onto (1,0) and (1, 2) are p; = (1,0) and p, = 2(1,2). Then
P, + py # b. The sum of projections is not a projection onto the space spanned by
(1,0) and (1, 2) because those vectors are not orthogonal.

Since A is invertible, P = A(ATA)~1 AT separates into AA~1(AT)=1AT = . And

I is the projection matrix onto all of R?.
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10

11

12

13

14

15

16

17

T 0.2 04 0.2 T
Py = aé% = s Pray = P = alTa1 = s PrPay =
a; az 0.4 0.8 0.4 a; a 0

0.2| Thisisnota; = (1,0)
0 ' NO, P]_Pz 75 (P1P2)2,

(a) p=A(ATA)"1ATb=(2,3,0),e=(0,0,4), ATe=0

(b) p = (4,4,6) and e=0 because b is in the column space of A.

1 00
Pr= |0 1 0| = projection matrix onto the column space of A (the zy plane)
0 00
(05 05 0
Projection matrix A(AT A)~1 AT onto the second column space.
P,=105 05 0=
Certainly (P)? = P». A true projection matrix.
0 0 1
(1 0 0] (10 0 0] 1] [1]
0 1 0 ) 01 0 0 2 2
A= , P = square matrix = ,p=2P =
0 01 0 01 0 3 3
10 0 0] [0 0 0 0] [ 4] 10]
The projection of this b onto the column space of A is b itself because b is in that

column space. But P is not necessarily /. Here b = 2(column 1 of A):

0 1 5 8 —4 0

1
A=11 2 givesP:ﬁ 8§ 17 2| andb=Pb=p= |2
2 0 -4 2 20 4

2 A has the same column space as A. Then P is the same for A and 2A, but Z for 2A

is half of @ for A.
%(17 2,-1)+ %(1, 0,1) = (2,1,1). So b is in the plane. Projection shows Pb = b.

If P2=Pthen(I — P)2=(—P)I—-P)=1-PI—IP+P?=1— P.When

P projects onto the column space, I — P projects onto the left nullspace.
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18

20

21

22

23

24

25

26

27

28

29

30

Solutions to Exercises

(a) I — P is the projection matrix onto (1, —1) in the perpendicular direction to (1,1)
(b) I — P projects onto the plane = + y + z = 0 perpendicular to (1,1, 1).
5/6  1/6 1/3
1/6 5/6 —1/3].
1/3 -1/3 1/3

For any basis vectors in the plane z — y — 2z = 0,

say (1,1,0) and (2,0, 1), the matrix P = A(ATA)~1AT is

1 1/6 —1/6 —1/3 5/6 1/6  1/3
e=|-1].Q=2=1|-1/6 1/6 1/3|.1-Q=|1/6 5/6 —1/3].
2 “1/3 1/3 2/3 1/3 ~1/3 1/3

(A(ATILI)_lAT)2 = A(ATA)7L(ATA)(ATA)71AT = A(ATA)~1AT. So P? = P.
Pb is in the column space (where P projects). Then its projection P(Pb) is also Pb.
PT = (A(ATA)71AT)T = A(ATA) " HTAT = A(ATA)"1AT = P. (AT A is sym-
metric!)

If A is invertible then its column space is all of R™. So P = I and e = 0.

The nullspace of A™ is orthogonal to the column space C(A). So if ATb = 0, the pro-
jection of b onto C(A) should be p = 0. Check Pb = A(ATA)"1ATb = A(ATA)~ 0.
The column space of P is the space that P projects onto. The column space of A
always contains all outputs Az and here the outputs P fill the subspace S. Then rank

of P = dimension of S = n.

A~ exists since the rank is r = m. Multiply A> = Aby A~ toget A = I.

If ATAxz = 0 then Az is in the nullspace of AT. But Az is always in the column
space of A. To be in both of those perpendicular spaces, Az must be zero. So A and
A" A have the same nullspace: AT Ax = 0 exactly when Az = 0.

P? = P = P7T give PTP = P. Then the (2,2) entry of P equals the (2,2) entry of
PTP . Butthe (2,2) entry of PP is the length squared of column 2.

A = BT has independent columns, so AT A (which is BB™T) must be invertible.

T 119 12
(a) The column space is the line through a = so Po = % = — .
4 ata 25|17 16
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The formula P = A(ATA)~! AT needs independent columns—this A has dependent

columns. The update formula is correct.

(b) The row space is the line through v = (1,2,2) and Pr = vvT /vTv. Always

PcA = A (columns of A project to themselves) and APr = A. Then Pc APr = A.
31 Test: The error e = b — p must be perpendicular to all the a’s.

32 Since P1b is in C(A) and P, projects onto that column space, P(P1b) equals P;b.
So PP, = P, = aa™ /aTa where a = (1,2,0).

33 Each b, to bgg is multiplied by ﬁ — ﬁ(ﬁ) = %ﬁ = Tlo()' The last pages of
the book discuss least squares and the Kalman filter.
Problem Set 4.3, page 229
(1 0] [0 ]
11 81| . 4 8 36
1 A= and b = give ATA = and ATb =
1 3 8 8 26 112
|1 4] 20 |
- X - __1_
T A~ Ty o~ 1 R 5 3
A Az = A bgivesT = and p = AZ = ande=b—p=
4 13 -5
(1 0] [ 0] 1]
11 C 8| This Az = bisunsolvable | 5
2 = . ; When p replaces b,
1 3| |D 8| Projectbtop = Pb= 13
|1 4] | 20 | |17 ]
|1 .
r= exactly solves AZ = p.
4

3 InProblem 2, p = A(ATA)"1ATb = (1,5,13,17)ande = b — p = (—1,3,-5,3).
This e is perpendicular to both columns of A. This shortest distance | e]| is v/44.
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10

11

Solutions to Exercises

E = (C+0D)*>+ (C+1D —8)?+ (C + 3D — 8)* + (C + 4D — 20)?. Then
OE/0C = 2C +2(C + D — 8) + 2(C + 3D — 8) + 2(C' + 4D — 20) = 0 and
OE/OD = 1-2(C +D —8) +3-2(C +3D —8) +4-2(C + 4D — 20) = 0.
These two normal equations are again ‘o8 ¢ = 50 .

8 26| |D 112
E=(C—-0)2+(C—-8)?4+(C—8)2+(C—-20)%2. AT=[1 1 1 1]and ATA = [4].
ATb = [36] and (ATA)"'ATb = 9 = best height C for the horizontal line.
Errorse = b —p = (—9,—1,—1, 11) still add to zero.

a = (1,1,1,1) and b = (0,8,8,20) give T = a*b/aTa = 9 and the projection is
Ta=p=(9,9,9,9). Thenea = (-9,—1,—1,11)(1,1,1,1) = 0 and the shortest
distance from b to the line through a is ||e|| = v/204.

Now the 4 by 1 matrix in Az = bis A = [0 1 3 4]". Then ATA = [26] and
ATb = [112]. Best D = 112/26 = 56/13.

z = a'b/aa = 56/13 and p = (56/13)(0,1,3,4). (C,D) = (9,56/13) don’t
match (C, D) = (1,4) from Problems 1-4. Columns of A were not perpendicular so

we can’t project separately to find C' and D.

1 0 0 0

Parabola C 4 8 26 C 36
11 1 81 1 s

Project b D|= JATAZ=| 8 26 92| |D|=|112
1 3 9 8

4D to 3D E 26 92 338| | E 400
1 4 16 20

Figure 4.9 (a) is fitting 4 points and 4.9 (b) is a projection in R*: same problem !

10 0 0|C 0 C 0| Exactcubicsop =0>b,e=0.
1 1 1 1| D 8 D 1 47 | This Vandermonde matrix
= . Then == .
1 3 9 27| |FE 8 E| 3|-28 gives exact interpolation
|1 4 16 64] _F_ 120 | _F_ | 5] by acubicat0,1, 3,4

(a) The best line x = 1 4 4¢ gives the center point b = 9 at center time, £ = 2.
(b) The first equation Cm + D> t; = Y b; divided by m gives C' + Dt = b. This

shows : The best line goes through b at time 7.
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12

13

14

15

16

17

18

19

20

(@ a=(1,...,1) hasaTa = m, a¥™b = by + --- + b,,. Therefore T = a™b/m is

the mean of the b’s (their average value)

(b) e = b—Za and |le|?> = (bhy — mean)? + --- + (b,, — mean )?> = variance
(denoted by o?).
111
() p=(3,3,3)and e = (—2,—1,3) pTe = 0. Projection matrix P = % 111
111
(ATA)"1AT(b — Az) = Z — x. This tells us: When the components of Az — b add

to zero, so do the components of Z — & : Unbiased.

The matrix (Z — x)(Z — x)T is (ATA)"1AT(b — Az)(b — Az)TA(ATA)~1. When
the average of (b — Axz)(b— Ax)T is 021, the average of (Z — x)(Z — )T will be the
output covariance matrix (AT A) 71 ATo? A(AT A)~! which simplifies to 02(AT A) 1.
That gives the average of the squared output errors  — .

When A has 1 column of 4 ones, Problem 14 gives the expected error (7 — z)? as

2

02(ATA)~! = ¢2%/4. By taking m measurements, the variance drops from o2 to

o2 /m. This leads to the Monte Carlo method in Section 12.1.

1 9 _ 1 PR . .
Eblo + El‘g = 1—0(b1 + -+ 4 b1g). Knowing Zg avoids adding all ten b’s.
1 -1 7
¢ o 9 3 2| |c
1 1 = 7|. The solution £ = comes from =
D 4 2 6 D
1 2 21
35
42

p = Az = (5,13,17) gives the heights of the closest line. The vertical errors are
b—p=(2,-6,4). This error e has Pe = Pb— Pp=p —p =0.
If b = error e then b is perpendicular to the column space of A. Projection p = 0.

The matrix A has columns 1,1,1and —1,1,2. Ifb = Az = (5,13,17) then Z = (9,4)

and e = 0 since b = 9 (column 1) + 4 (column 2) is in the column space of A.
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21 eisin N(AT); pisin C(A); Zisin C(AT); N(A) = {0} = zero vector only.

22 The least squares equation is

5

0

0 10
The best line is b = 1 — ¢. Symmetric t’s = diagonal AT A = easy solution.

C
D

Solutions to Exercises

. Solution: C' =1, D = —1.

—10

23 e is orthogonal to p in R™; then ||e[|> = ¢T(b—p) = eTb=b"b — b'p.

24 The derivatives of || Az — b||2 = T AT Ax — 2b™ Az + b™ b (this last term is constant)

are zero when 2AT Az = 2ATb, orz = (ATA)"1ATb.

25 3 points on a linewill give equal slopes (b — b1)/(ta — t1) = (bs — b2)/(t3 — t2).

Linear algebra: Orthogonal to the columns (1,1, 1) and (¢1, t2,t3) isy = (t2 —t3,t3 —

t1,t; — t2) in the left nullspace of A. b is in the column space ! Then yTb = 0is the

same equal slopes condition written as (by — b1)(t3 — t2) = (b — ba)(ta — t1).

The unsolvable

equations for
26

C+ Dx+ FEy=(0,1,3,4)

at the 4 corners are

8
and ATb = | _9
-3

C
and | D

E

1

2

@ O Q

0

.Then ATA =

4 0 0
0 2 0
0 0 2

—1|. Atx,y = 0,0 the best plane 2 — z — %y

~3/2

has height C' = 2 = average of 0, 1, 3, 4.

27 The shortest link connecting two lines in space is perpendicular to those lines.

28 If A has dependent columns, then AT A is not invertable and the usual formula P =

A(AT A)~L AT will fail. Replace A in that formula by the matrix B that keeps only the

pivot columns of A.

29 Only 1 plane contains 0, a1, as unless a1, as are dependent. Same test fora, . . .

y An—1.

If they are dependent, there is a vector v perpendicular to all the a’s. Then they all lie

on the plane vTx = 0 going through = = (0,0, ...,0).
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30 When A has orthogonal columns (1,...,1) and (T%,...,T},), the matrix ATA is
diagonal with entries m and T? + - - - + T2. Also ATb has entries by + - - - + b,,, and

Tiby + -+ -+ Tpby,. The solution with that diagonal AT A is just the given Z = (C, D).

Problem Set 4.4, page 242

1 (a) Independent (b) Independent and orthogonal (c) Independent and orthonormal.
For orthonormal vectors, (a) becomes (1,0), (0,1) and (b) is (.6, .8), (.8, —.6).

5/9 2/9 —4/9
Divide by length 3 to get T 1 0 T
2 RQ= butQQ" = 1| 2/9 8/9 2/9].
—(2.2 _1 — (=122 0 1
ql (3333 3)-q2 ( 37333)'
-4/9 2/9 5/9

3 (a) ATA willbe 161 (b) AT A will be diagonal with entries 12,22, 3% = 1,4, 9.

1 0 1 0 0
4@ Q=10 1/.QQ" =10 1 0| #1. Any Q withn < m has QQT # I.
0 0 0O 0 O

(b) (1,0) and (0, 0) are orthogonal, not independent. Nonzero orthogonal vectors are
independent. (c) From q, = (1,1,1)/+/3 my favorite is g, = (1,—1,0)/v/2 and
qs = (1,1,-2)/6.

5 Orthogonal vectors are (1,—1,0) and (1,1, —1). Orthonormal after dividing by their
lengths : (%,—%,0) and <%, %,—%),

6 (Q1Q2 is orthogonal because (Q1Q2)"Q1Q2 = Q3 QTQ1Q2 = Q3 Q2 = I.

7 When Gram-Schmidt gives () with orthonormal columns, QTQZ = QTb becomes

Z = QTb. No cost to solve the normal equations !

8 If ¢, and q, are orthonormal vectors in R® then p = (g7 b)q, +(q3 b)q, is closest to b.
The error e = b — p is orthogonal to q; and g,.
8 —.6 1 0 0
9@ Q=1].6 .8|hasP=QQT = |0 1 0| = projection on the zy plane.
0 0 0 0 O
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b) (QERN(QQT) =QQTQ)QT =QQ™.
10 (a) If q;. g5, g5 are orthonormal then the dot product of g, with c¢1q; +c2qy+c3q; =

0 gives ¢c; = 0. Similarly co = ¢35 = 0. This proves : Independent q’s

(b) Qx = 0leads to QT Qx = 0 which says x = 0.
11 (a) Two orthonormal vectors are q; = 11—0(1,3,4,5,7) and g, = %(—7,3,4, =5,1)

(b) Closest projection in the plane = projection QQ*(1,0,0,0,0) = (0.5, —0.18, —0.24,0.4,0).
12 (a) Orthonormal a’s: alb = af (v1a; + v2as + v3a3) = 71(ala;) = x;

(b) Orthogonal a’s: alb = af(ria; + v2as + x3a3) = x1(ala;). Therefore

1 =aib/alay

(c) x is the first component of A~! times b (A is 3 by 3 and invertible).

4 1
13 The multiple to subtract is g;g. Then B = b — ?;ga = -2 =
0 1
2
-2

14 :[ql qQ] lall afo] _[1ve 1ve| [ve vz

14 = =
1 0

0 |Bl V2 —1/v2] | 0 2v2
15 (a) Gram-Schmidt chooses q; = a/||a|| = %(1,2,—2) and g, = 1(2,1,2). Then

qs = 3(2,-2,-1).

(b) The nullspace of AT contains qs
(©) & = (ATA)"LAT(1,2,7) = (1,2).

16 p = (aTb/a"a)a = 14a/49 = 2a/7 is the projection of b onto a. q; = a/|la| =
a/7is (4,5,2,2)/7. B=b—p = (—1,4,—4,—4)/Thas | B|| = 1s0 q, = B.

17 p = (aTb/aTa)a = (3,3,3) and e = (—2,0,2). Then Gram-Schmidt will choose
q, = (1,1,1)/v/3and g, = (—1,0,1)/v/2.

18 A=a=(1,-1,0,0;B=b-p= (35,5 -1,0;,C =c—py—pp = (5, 3,
Notice the pattern in those orthogonal A, B,C. InR®, D would be (%, 1, 1, 1, —1).

Gram-Schmidt would go on to normalize g, = A/||Al|,q, = B/||Bl|,q5 = C/||C]|.
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19

20

21

22

23

24

25

If A= QRthen ATA = RTQTQR = RT R = lower triangular times upper triangular

(this Cholesky factorization of AT A uses the same R as Gram-Schmidt!). The example

-1 1 -1 2
1 3 3
has A = 2 1| = 3 2 1 = @R and the same R appears in
0 3
2 4 2 2
9 9 3 0 3 3
ATA = = =R"R
9 18 3 3 0 3

(a) True because QTQ = I'leadsto (Q1) (Q~ 1) = I.

(b) True. Qx = x1q; + 129, ||Qz|*> = 2% + 23 because q, - g, = 0. Also
|Qz|]? = 2TQTQz = " x.

The orthonormal vectors are q; = (1,1,1,1)/2 and g, = (-5, —1,1,5)/v/52. Then
b = (—4,-3,3,0) projects to p = (g1 b)q, + (g3b)g, = (—7,-3,-1,3)/2. And
b—p=(-1,-3,7,—3)/2 s orthogonal to both g, and g.

A=(1,1,2), B=(1,-1,0), C = (—1,—1,1). These are not yet unit vectors. As in
Problem 18, Gram-Schmidt will divide by || A|| and || B|| and ||C]||.

1 0 0 1 00 1 2 4
Youcanseewhyq; = |0|.gs=|0]|.g35=|1].- A= |0 0 1 0 3 6| =

0 1 0 01 0[]0 O 5
QR. This @ is just a permutation matrix—certainly orthogonal.

(a) One basis for the subspace S of solutions to x1 + 22 + x3 — x4 = 0 is the 3 special

solutions v; = (—1,1,0,0), vy = (-1,0,1,0), v3 = (1,0,0,1)
(b) Since S contains solutions to (1,1,1, —1)Tx = 0, a basis for S* is (1,1,1, —1)

11 1
1330 —3) and

=

(c) Split (1,1,1,1) into by 4 by by projection on S~ and S: by = (

bl = (%7 %7 %? %)

This question shows 2 by 2 formulas for Q R; breakdown Rgs = 0 for singular A.
2 1 1 12 —1 1 |5 3

Nonsingular example =

1 1] Y51 2| V5o 1



84

26

27

28

29

30

31

32

33

34
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Solutions to Exercises

Sineul i 11 1 |1 -1 1 2 2
ingular  example = — - —
11 V21 1 V2 |0 o

The Gram-Schmidt process breaks down when ad — be = 0.

T
(g¥C*)qy, = BBTEB because q, = % and the extra g, in C”™ is orthogonal to g5.

When a and b are not orthogonal, the projections onto these lines do not add to the pro-

jection onto the plane of @ and b. We must use the orthogonal A and B (or orthonormal

g, and g,) to be allowed to add projections on those lines.

There are 1m?n multiplications to find the numbers ry,; and the same for v;;.

q; = %(2723 _1)’ qs; = %(23 _1a 2)7 qs = %(13 _23 _2)

The columns of the wavelet matrix W are orthonormal. Then W= =WT. This is a

useful orthonormal basis with many zeros.

(@) c= % normalizes all the orthogonal columns to have unit length (b) The pro-

jection (aTb/aTa)a of b = (1,1,1,1) onto the first column is p; = =(—1,1,1,1).

1
2

(Check e = 0.) To project onto the plane, add p, = %(17 —1,1,1) to get (0,0, 1, 1).

1 0 0
1 0
Q= reflects across x axis, Q2 = | 0 0 —1| acrossplaney+ z = 0.
0 -1
0 -1 0

Orthogonal and lower triangular = £1 on the main diagonal and zeros elsewhere.

@ Qu = (I —2uut)u = u — 2uuTu. This is —u, provided that uu equals 1

b)) Qv = (I —2uut)v = u — 2uuTv = u, provided that u™v = 0.

Starting from A = (1,—1,0,0), the orthogonal (not orthonormal) vectors B =
(1,1,-2,0)and C=(1,1,1,—-3)and D= (1,1, 1, 1) are in the directions of g5, q5, q,4.
The 4 by 4 and 5 by 5 matrices with integer orthogonal columns (not orthogonal rows,

since not orthonormal (Q!) are
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36

37

- - 1 1 1 11
1 1 1 1
-1 1 1 1 1
-1 1 1 1
A B C D|~= and | 0 -2 1 1 1
0 -2 1 1
0 0 -3 11
0 0 -3 1
- - 0 0 0 —4 1

[Q, R] = gr(A) produces from A (m by n of rank n) a “full-size” square Q=[Q1 Q2]

and . The columns of (), are the orthonormal basis from Gram-Schmidt of the
0

column space of A. The m — n columns of () are an orthonormal basis for the left
nullspace of A. Together the columns of @ = [Q; Q2] are an orthonormal basis

for R™.

This question describes the next q,,,; in Gram-Schmidt using the matrix () with the
columns g, ..., q,, (instead of using those g’s separately). Start from a, subtract its
projection p = QT a onto the earlier g’s, divide by the length of e = a — QT a to get

@1 = €/|le].
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Problem Set 5.1, page 254

1

2

10

11

12

det(24)= 2" det A = 8; det(—A) = (—1)*det A = 1; det(A?) = 1; det(A~1)=2.
det(3A) = (3)%det A = —1 and det(—A4) = (=1)3det A = 1; det(4?) = 1;
det(A71) = —1.

(a) False: det(I + I)isnot1+ 1 (except whenn = 1) (b) True: The product rule
extends to ABC (use it twice) (c) False: det(4A)is 4™ det A

00 0 1 0 -1 . . .
(d) False: A = , B = JAB — BA = is invertible.
01 10 1 0
Exchange rows 1 and 3 to show |J3| = —1. Exchange rows 1 and 4, then rows 2 and 3
to show |Jy4| = 1.
|J5| = 1 by exchanging row 1 with 5 and row 2 with 4. |Jg| = —1, |J;| = —1.

Determinants 1, 1, —1, —1 repeat in cycles of length 4 so the determinant of J1¢; is +1.

To prove Rule 6, multiply the zero row by ¢ = 2. The determinant is multiplied by 2

(Rule 3) but the matrix is the same. So 2det(A) = det(A) and det(A) = 0.
det(Q) = 1 for rotation and det(Q) = 1 — 2sin® § — 2 cos? § = —1 for reflection.

QRT™Q =1 = 1Q71Q| = |Q]> =1 = |Q| = £1; Q™ stays orthogonal so its

determinant can’t blow up as n — oco.

det A = 1 from two row exchanges . det B = 2 (subtract rows 1 and 2 from row 3, then

columns 1 and 2 from column 3). det C' = 0 (equal rows) even though C' = A + B!

If the entries in every row add to zero, then (1,1,...,1) is in the nullspace: singular
A has det = 0. (The columns add to the zero column so they are linearly dependent.)

If every row adds to one, then rows of A — I add to zero (not necessarily det A = 1).

CD = —DC = detCD = (—1)"det DC and not just — det DC. If n is even then
det CD = det DC and we can have an invertible C'D.

det(A~1) divides twice by ad — bc (once for each row). This gives det A=1 =
ad — bc 1

(ad —bc)2  ad — bc’
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21

22

Pivots 1,1, 1 give determinant = 1; pivots 1, —2, —3/2 give determinant = 3.
det(A) = 36 and the 4 by 4 second difference matrix has det = 5.
The first determinant is 0, the second is 1 — 2t2 4+ t* = (1 — %)%

A singular rank one matrix has determinant = 0. The skew-symmetric K also has

det K = 0 (see #17): a skew-symmetric matrix K of odd order 3.

Any 3 by 3 skew-symmetric K has det(K") = det(—K) = (—1)3det(K). This is
—det(K). But always det(K ') = det(K). So we must have det(K) = 0 for 3 by 3.

1 a a? 1 a a®
b—a b*—a®
1 b V¥ | =10 b—a b2—0a?]| = (to reach 2 by 2,
c—a c?—a?
1 ¢ ¢ 0 c—a c*—a?
eliminate @ and a? in row 1 by column operations)—subtract a and a? times

column 1 from columns 2 and 3. Factor out b — a and ¢ — a from the 2 by 2:
1 b+a
(b—a)(c—a) =(b—a)(c—a)(c—0).
1 ¢c+a
For triangular matrices, just multiply the diagonal entries: det(U) = 6, det(U ) = %,
and det(U?%) = 36. 2 by 2 matrix: det(U) = ad,det(U?) = a%d?. If ad # 0 then
det(U™1) = 1/ad.
a—Lc b—Ld ] )
det reduces to (ad — be)(1 — L{). The determinant changes if you
c—Vla d—10b
do two row operations at once.
We can exchange rows using the three elimination steps in the problem, followed by

multiplying row 1 by —1. So Rules 5 and 3 give Rule 2. (Since Rules 4 and 3 give 5,
they also give Rule 2.)

det(A) = 3,det(A7!) = %,det(A — AI) = A? — 4\ + 3. The numbers A = 1 and
A = 3 give det(A — AI) = 0. The (singular !) matrices are
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Solutions to Exercises

Note to instructor: You could explain that this is the reason determinants come before

eigenvalues. Identify A = 1 and A\ = 3 as the eigenvalues of A.

4 1 18 7
A= has det(4) = 10, A% = , det(4%) = 100, A~! =
2 3 14 11
3 -1
= has det 15. det(A — AI) = A? — 7TA + 10 = 0 when A = 2 or 5; those
-2 4
are eigenvalues.
Here A = LU with det(L) = 1 and det(U) = —6 = product of pivots, so also

det(A) = —6. det(U L) = -2 = 1/det(A) and det(U~ L=t A) isdet I = 1.

5
When the i, j entry is ij, row 2 = 2 times row 1 so det A = 0.

When the ij entry is i + j, row 3 — row 2 = row2 — row 1 so A is singular: det A = 0.
det A = abc, det B = —abced, det C' = a(b — a)(c — b) by doing elimination.

(a) True: det(AB) = det(A)det(B) =0 (b) False: A row exchange gives — det =
product of pivots. (c¢) False: A =21 and B = [ have A— B = I but the determinants
have 2" — 1 # 1 (d) True: det(AB) = det(A) det(B) = det(BA).

A is rectangular so det (AT A) # (det AT)(det A): these determinants are not defined.
In fact if A is tall and thin (m > n), then det(AT A) adds up | det B|? where the B’s

are all the n by n submatrices of A.
Derivatives of f = In(ad — bc):
d —b
9f/9a  8f/9c _|ad—bc ad—bc| _ 1 d —b

af/ob af/od —¢ a ad—be | .
1/ f/ ad —bc ad— be

The Hilbert determinants are 1, 8 x 1072, 4.6 x 10~%, 1.6 x 1077, 3.7 x 10712,
5.4 % 10718, 4.8 x 10725,2.7 x 10733, 9.7 x 10~3, 2.2 x 10~%3. Pivots are ratios of
determinants so the 10th pivot is near 10~ 1, The Hilbert matrix is numerically difficult

(ill-conditioned). Please see the Figure 7.1 and Section 8.3.
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32

33

Typical determinants of rand(n) are 10, 10%°,107%, 10?8 for n = 50, 100, 200, 400.
randn(n) with normal distribution gives 103!,1078, 1085, Inf which means > 21024,

MATLAB allows 1.999999999999999 x 21023 ~ 1.8 x 1038 but one more 9 gives Inf!

I now know that maximizing the determinant for 1, —1 matrices is Hadamard’s prob-
lem (1893): see Brenner in American Math. Monthly volume 79 (1972) 626-630. Neil
Sloane’s wonderful On-Line Encyclopedia of Integer Sequences (research.att.com/~
njas) includes the solution for small n (and more references) when the problem is
changed to 0,1 matrices. That sequence A003432 starts from n = 0 with 1, 1, 1, 2,
3, 5, 9. Then the 1, —1 maximum for size n is 271 times the 0, 1 maximum for size

n — 1 (so (32)(5) = 160 for n = 6 in sequence A003433).

To reduce the 1, —1 problem from 6 by 6 to the 0, 1 problem for 5 by 5, multiply the
six rows by £1 to put +1 in column 1. Then subtract row 1 from rows 2 to 6 to geta 5

by 5 submatrix S with entries —2 and 0. Then divide S by —2.

Here is an advanced MATLAB code that finds a 1, —1 matrix with largest det A = 48

forn = 5:

n=>5p=(n—1)"2; A0 =ones(n); maxdet= 0;

fork=0:2"p—1

Asub = rem(floor(k. *2."(—p+1:0)),2); A= A0; A(2:n,2:n) =1— 2%
reshape(Asub, n — 1,n — 1);

if abs(det(A)) > maxdet, maxdet = abs(det(A)); maxA = A;

end

end

Output: maxA = 1 1 1 -1 -—1 maxdet = 48.
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34 Reduce B by row operations to [row 3; row 2; row 1]. Then det B = —6 (odd per-

mutation from the order of the rows in A).

Problem Set 5.2, page 266

1detA = 1418412 -9 -4 -6 = 12, the rows of A are independent;

det B = 0, row1 4+ row2 = row 3 so the rows of B are linearly dependent;
det C' = —1, so C has independent rows (det C' has one term, an odd permutation).
2 det A = —2, independent; det B = 0, dependent; det C' = —1, independent but

det D = 0 because its submatrix B has dependent rows.

3 The problem suggests 3 ways to see that det A = 0: All cofactors of row 1 are zero.
A has rank < 2. Each of the 6 terms in det A is zero. Notice also that column 2 has no
pivot.

4 ajia23a32a44 gives —1, because the terms aszass have columns 2 and 3 in reverse
order. ajsas3azaays; which has 2 row exchanges gives +1,det A = 1 — 1 = 0. Using
the same entries but now taken from B, det B = 2-4-4.-2—1-4-4.1 = 64— 16 = 48.

5 Four zeros in the same row guarantee det = 0 (and also four zeros in the same column).
A = I has 12 zeros (this is the maximum with det # 0).

6 (a) If a11 = ago = aszz = 0 then 4 terms will be zeros  (b) 15 terms must be zero.
Effectively we are counting the permutations that make everyone move; 2, 3,1 and
3,1,2 for n = 3 mean that the other 4 permutations take a term from the diagonal of
A; so those terms are 0 when the diagonal is all zeros.

7 5!/2 = 60 permutation matrices (half of 5! = 120 permutations) have det = +1.
Move row 5 of I to the top; then starting from (5, 1,2, 3,4) elimination will do four
row exchanges on P.

8 If det A # 0, then certainly some term a;,a23 - - - Gp, in the big formula is not zero!
Move rows 1, 2, . . ., ninto rows «, 3, . . ., w. Then all these nonzero a’s will be on the

main diagonal.
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9 The big formula has six terms all +1: say ¢ are —1 and 6 — g are 1. Then det A =

10

11

12

13

14

15

16

—q+ 6 — g =even (so det A = 5 is impossible). Also det A = 6 is impossible. All 3
even permutations like a11a22a33 would have to give +1 (so an even number of —1’s
in the matrix). But all 3 odd permutations like a1 a23a32 would have to give —1 (so an
odd number of —1’s in the matrix). We can’t have it both ways, so det A = 4 is best
possible and not hard to arrange : put —1’s on the main diagonal.

The 4!/2 = 12 even permutations are (1,2, 3,4),(2,1,4,3),(3,1,4,2), (4,3,2,1),and
8 P’s with one number in place and even permutation of the other three numbers :

examples are 1,3,4,2 and 1,4, 2, 3.

det(I + Peven) is always 16 or 4 or 0 (16 comes from I + I).
r 0 42 -35 det B = 1(0) 4+ 2(42) + 3(—35) = —21.

C = d b D=1 0 —-21 14|. Puzzle: det D = 441 = (—21)2. Why s
¢ ¢ 3 6 -3 det(cofactor matrix) = (det matrix)? =1 ?
3 2 1 400

C=1{2 4 2|andACT = |0 4 0. Therefore A" = 10T = O/ det A.
_1 2 3 0 0 4

(@ Ci=0,C=-1,C3=0,Cy =1 (b) C,, = —C,,_5 by cofactors of row
1 then cofactors of column 1. Therefore C1g = —Cs = Cg = —Cy = Cy = —1.

For the matrices in Problem 13 to produce nonzeros in the big formula, we must choose
1’s from column 2 then column 1, column 4 then column 3,and so on. Therefore n
must be even to have det # 0. The number of row exchanges is n/2 so the overall

determinant is C,, = (—1)"/2.

The 1, 1 cofactor of the n by n matrix is F,,_1. The 1,2 cofactor has a single 1 in its
first column, with cofactor F,,_: sign gives —F,,_5. So E,, = FE,_1 — E,_o. Then

Fqito Egis 1,0, —1, —1, 0, 1 and this cycle of six will repeat: F1o9 = Fy = —1.

The 1,1 cofactor of the n by n matrix is F,,_1. The 1,2 cofactor has a 1 in column
1, with cofactor F},_,. Multiply by (—1)'*2 and also (—1) from the 1, 2 entry to find

F,, = F,,_1 + F,,_2. So these determinants are Fibonacci numbers.
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Use cofactors along row 4 instead of row 1 (last row instead of first).

I -1 1 -1
|By|=2det | -1 2 —1|+det|—-1 2 = 2|B;| — det -
-1 2

-1 2 -1 -1

So [By| = 2[Bs| — | Ba|.

Rule 3 (linearity in row 1) gives |B,| = |An| — |An—1|=(n+1) —n=1.

Since x, 22, 2 are all in the same row, they never multiply each other in det V.
The determinant is zero at z = a or b or ¢ because of equal rows! So detV has
factors (x — a)(xz — b)(z — ¢). Multiply by the cofactor V5. The Vandermonde matrix
Vij = (z;)?~! is for fitting a polynomial p(x) = b at the points z;. It has detV =
product of all xy, — x,, for k > m.

Gy =-1,G3=2,G4 = —3,and G,, = (—1)""1(n — 1). One way to reach that G,,
is to multiply the n eigenvalues —1, —1,..., —1,n — 1 of the matrix. Is there a good

choice of row operations to produce this determinant G, ?

S1 = 3,59 = 8,535 = 21. The rule looks like every second number in Fibonacci’s
sequence . ..3,5,8,13,21,34,55, ... so the guess is Sy = 55. Following the solution
to Problem 30 with 3’s instead of 2’s on the diagonal confirms Sy = 814+1-9—-9—-9 =

55. Problem 32 directly proves S,, = Fbp10.

Changing 3 to 2 in the corner reduces the determinant F5,, o by 1 times the cofactor
of that corner entry. This cofactor is the determinant of S,, 1 (one size smaller) which
is Fy,,. Therefore changing 3 to 2 changes the determinant to Fy,, o — F5, which is

Fibonacci’s Foy4 1.

(a) If we choose an entry from B we must choose an entry from the zero block; re-

sult zero. This leaves entries from A times entries from D leading to (det A)(det D)

10 00 0 1 00
(b) and (c) Take A = , B = ,C = , D= . See
00 1 0 0 0 0 1

#25.

(a) All the lower triangular blocks L have 1’s on the diagonal and det = 1. Then use

Ay, = LUy to find det Uy, =det Ak:2,6, —6fork=1,2,3
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(b) Equation (3) in this section gives the kth pivot as det A/ det Ai_1. So det A, =
5,6, 7 gives pivot d, = 5/1,6/5,7/6.

. I 0 A B .
Problem 23 gives det = 1 and det = |A| times |D —
-CA™Y T C D

CA~!B|. By the product rule this is |AD — ACA™!B|. If AC = C A thisis |AD —
CAA~'B| =det(AD — CB).

If Ais arow and B is a column then det M = det AB = dot product of A and B. If
Ais a column and B is a row then AB has rank 1 and det M = det AB = 0 (unless
m = n = 1). This block matrix M is invertible when AB is invertible which certainly

requires m < n.
(a) det A = a11C11 + - - - + a1,C1n. Derivative with respect to a;; = cofactor C;.
Row 1 — 2 row 2 + row 3 = 0 so this matrix is singular and det A is zero.

There are five nonzero products, all 1’s with a plus or minus sign. Here are the (row,
column) numbers and the signs: + (1,1)(2,2)(3,3)(4,4) + (1,2)(2,1)(3,4)(4,3) —
(1,2)(2,1)(3,3)(4,4) — (1,1)(2,2)(3,4)(4,3) — (1,1)(2,3)(3,2)(4,4). Total —1.

The 5 products in solution 29 change to 16 + 1 — 4 — 4 — 4 since A has 2’s and —1’s:

2)2)(2)(2) + (=D(=D(=D(=1) = (=D (=D(2)(2) = 2) ) (=) (-1)—
@)=DEDE)=5=n+1.

det P = —1 because the cofactor of P4 = 1 in row one has sign (—1)!*%. The
big formula for det P has only one term (1 -1 -1 - 1) with minus sign because three

exchanges take 4,1,2, 3 into 1,2, 3, 4; det(P?) = (det P)(det P) = +1 so
0 I
det = det is not right.

The problem is to show that F5,, o = 3F5,, — F5,_o. Keep using Fibonacci’s rule:

Fopyo="Fopi1+ Fop=Fop+ Fop_1+ Fop =2F5, + (Fop, — Fop_2) =3F5, — Fo,, .
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33 The difference from 20 to 19 multiplies its 3 by 3 cofactor = 1: then det drops by 1.

34 (a) The last three rows must be dependent because only 2 columns are nonzero

(b) Ineach of the 120 terms: Choices from the last 3 rows must use 3 different columns;

at least one of those choices will be zero.

35 Subtracting 1 from the n, n entry subtracts its cofactor C,,,, from the determinant. That

cofactor is C},,, = 1 (smaller Pascal matrix). Subtracting 1 from 1 leaves 0.

Problem Set 5.3, page 283

2 5 1 5 2 1
1 () |4 = =3, |Bi| = =6, |By| = =3soz; =
1 4 2 4 1 2

6/3 = —2andas = 3/3 =1 (b) |A] = 4,|Bi| = 3,|Ba| = 2,|Bs| = 1.
Therefore 1 = 3/4 and x5 = —1/2 and z3 = 1/4.

2 (@) y = g(l)]/ gg‘ —¢/(ad —be) () y = det Bo/det A = (fg — id)/D.
That is because B with (1,0,0) in column 2 has det By = fg — id.

3 (a) 1 = 3/0and x5 = —2/0: no solution (b) x1 = 29 = 0/0: undetermined.
4 (a) 21 =det([b as a3])/detA,ifdet A # 0. This is |By|/|Al.

(b) The determinant is linear in its first column so |z1a1 + z2a2 + T3a30203| splits
into z1|a; as az| + x2las as az| + x3|laz as as|. The last two determinants are zero

because of repeated columns, leaving z1|a; as az| which is z; det A.

5 If the first column in A is also the right side b then det A = det B;. Both B and B3 are

singular since a column is repeated. Therefore z1 = |B;|/|A| = 1 and 25 = x3 = 0.

1 -2 0 3.2 1
1 An invertible symmetric matrix
6@ |0 1 0 b) 712 4 2
has a symmetric inverse.
0 -% 1 12 3



Solutions to Exercises 95

7 If all cofactors = 0 then A~! would be the zero matrix if it existed; cannot exist. (And

1
also, the cofactor formula gives det A = 0.) A = has no zero cofactors but it
11
is not invertible.
6 -3 0 3 0 0| Thisis(detA)I anddet A= 3.
8C=| 3 1 —1|andACT=|0 3 0. Thel,3 cofactor of A is 0.
-6 2 1 0 0 3 Then C's; = 4 or 100: no change.

9 If we know the cofactors and det A = 1, then CT = A~! and also det A~ = 1.

Now A is the inverse of CT, so A can be found from the cofactor matrix for C.

10 Take the determinant of ACT = (det A)I. The left side gives det ACT = (det A)(det C)
while the right side gives (det A)™. Divide by det A to reach det C' = (det A)"~1.

11 The cofactors of A are integers. Division by det A = +1 gives integer entries in A~*.

12 Both det A and det A~! are integers since the matrices contain only integers. But

det A=' = 1/det A so det A must be 1 or —1.

0 1 3 -1 2 1
1
13 A= |1 0 1| hascofactormatrixC=| 3 —¢ 2|andA™'= gCT-
2 10 1 3 -1

14 (a) Lower triangular L has cofactors Co; = C31 = C32 = 0 (b) Cio = Coy,
C31 = Ci3,035 = (Cy3 make S~ symmetric. (c) Orthogonal ) has cofactor

matrix C' = (det Q)(Q~1)" = £Q also orthogonal. Note det Q = 1 or —1.

15 For n = 5, C contains 25 cofactors and each 4 by 4 cofactor has 24 terms. Each term

needs 3 multiplications: total 1800 multiplications vs.125 for Gauss-Jordan.

16 (a) Area ’ 32 ’ =10 (b) and (c) Area 10/2 = b, these triangles are half of the

parallelogram in (a).

Area of faces = i —21— 25 + 8k
17 Volume=|3131 :;{If: J
113 length of cross product 131 length=6+/2
18 (a) Arealgzlii =5 (b) 5 + new triangle area 1 581 =54+7=12
2051 g 2101 '

19 |2 1| =4 =2 2| because the transpose has the same determinant. See #22.
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The edges of the hypercube have length v/1+1+1+1 = 2. The volume det H
is 2¢ = 16. (H/2 has orthonormal columns. Then det(H/2) = 1 leads again to
det H = 16 in 4 dimensions.)

The maximum volume L Lo L3gL, is reached when the edges are orthogonal in R*.
With entries 1 and —1 all lengths are V4 = 2. The maximum determinant is 2 = 16,
achieved in Problem 20. For a 3 by 3 matrix, det A = (1/3)3 can’t be achieved by +1.
p?sin¢dpde db.

This question is still waiting for a solution! An 18.06 student showed me how to trans-
form the parallelogram for A to the parallelogram for AT, without changing its area.

(Edges slide along themselves, so no change in baselength or height or area.)

aT aTa 0 AT ,
det = alll|bl|lle
A= |57 |[a b el=| 0 % o |nas (lal o0 el
T T det A = Zllall[[b]l]l]
c 0 0 c'c

1 00
The box has height 4 and volume =det |0 1 0| =4.ixj=kand (k-w)=4.

2 3 4

The n-dimensional cube has 2" corners, n2"~! edges and 2n (n — 1)-dimensional
faces. Coefficients from (2 + )™ in Worked Example 2.4A. Cube from 21 has volume
2™,

The pyramid has volume &. The 4-dimensional pyramid has volume 3 (and -; in R")

x = rcosf,y = rsinf give J = r. This is the r in polar area r dr df. The columns

are orthogonal and their lengths are 1 and r.

singcosf pcospsind —psin¢gsind
J=| singsind pcosgsing psingcos | = p?sing. This Jacobian is needed

cos ¢ —psin ¢ 0
for triple integrals inside spheres. Those integrals have p? sin ¢ dp d¢ d6.
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37

or/dx  Or/dy x/r  y/r cos @ sin 6
From x,y to r, 6: = =
00/0x  00/0y —y/r? x/r? (—sin®)/r (cosf)/r
1 1
— = —————— . The surprise was that fil—’" and fil—x are both Z.
r  Jacobianin 27 & r T

The triangle with corners (0,0), (6,0), (1,4) has area (6)(4)/2 = 12. Rotated by

0 = 60° the area is unchanged. The determinant of the rotation matrix is

cosf —sind /2 —/3/2
sin @ cos \/5/2 1/2

Base area ||u x v|| = 10, height ||w|| cos § = 2, volume (10)(2) = 20.

2 4 0
The volume of the box isdet | —1 3 (| = 20, agreeing with Problem 31.

1 2 2
Uy U2 U3
V2 U3 V1 U3 U1 V2 L.
v Uy U3 | = U1 —Us +us . Thisis u- (v x w).
w2 W3 w; w3 w1 w2

wp W2 W3
(wxu) v=(vxw) -u=(uxXwv)-w: Even permutation of (u, v, w) keeps the
same determinant. Odd permutations like (u x v) - v will reverse the sign.
S = (2,1,—1), area |PQ x PS| = [[(-2,-2,-1)|| = V22 + 22+ 12 = 3. The
other four corners of the box can be (0,0, 0), (0,0,2), (1,2,2), (1,1,0). The volume
of the tilted box with edges along P, @), and R is |det | = 1.

Ty
If (1,1,0), (1,2,1), (z,y, 2) are in a plane the volume isdet {110 | =2z—y+2z=0.
The “box” with those edges is flattened to zero height. 121

Ty z

det |2 3 1| = T7z—>5y+ 2z will be zero when (z, y, z) is a combination of (2,3, 1)

1 2 3
and (1,2, 3). The plane containing those two vectors has equation 7z — 5y + z = 0.

Volume = zero because the 3 box edges out from (0, 0, 0) lie in a plane.
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Doubling each row multiplies the volume by 2™. Then 2 det A=det(2A) only if n=1.
ACT = (det A)I gives (det A)(det C') = (det A)™. Then det A = (detC)'/? with
n = 4. With det A=! = 1/ det A, construct A~* using the cofactors. Invert to find A.
The cofactor formula adds 1 by 1 determinants (which are just entries) times their co-
factors of size n— 1. Jacobi discovered that this formula can be generalized. Forn = 5,
Jacobi multiplied each 2 by 2 determinant from rows 1-2 (with columns a < b) times a
3 by 3 determinant from rows 3-5 (using the remaining columns ¢ < d < e).

The key question is + or — sign (as for cofactors). The product is given a +
sign when a, b, c, d, e is an even permutation of 1, 2, 3, 4, 5. This gives the correct
determinant +1 for that permutation matrix. More than that, all other P that permute a,
b and separately c, d, e will come out with the correct sign when the 2 by 2 determinant
for columns a, b multiplies the 3 by 3 determinant for columns ¢, d, e.

The Cauchy-Binet formula gives the determinant of a square matrix AB (and AA™ in
particular) when the factors A, B are rectangular. For (2 by 3) times (3 by 2) there are

3 products of 2 by 2 determinants from A and B (printed in boldface):

g J g J 119 7
a b ¢ a b c a b ¢
k h k k
d e f d e f d e f
i /L £ -l
1 1 8
1 2 3 14 30
Check A = B=12 4 AB =
1 4 7 30 66
3 7 -
Cauchy-Binet: (4 —2)(4—-2)4+(7-3)(7T—3)+ (14 -12)(14—-12) =24
det of AB : (14)(66) — (30)(30) = 24

A 5 by 5 tridiagonal matrix has cofactor C1; = 4 by 4 tridiagonal matrix. Cofactor
(2 has only one nonzero at the top of column 1. That nonzero multiplies its 3 by 3
cofactor which is tridiagonal. So det A = a11C11 +a12C1o = tridiagonal determinants
of sizes 4 and 3. The number F;, of nonzero terms in det A follows Fibonacci’s rule

Fn =In-1+ Fn—2-
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Problem Set 6.1, page 298

1 The eigenvalues are 1 and 0.5 for A, 1 and 0.25 for A2, 1 and 0 for A>°. Exchanging
the rows of A changes the eigenvalues to 1 and —0.5 (the trace is now 0.2 4+ 0.3).

Singular matrices stay singular during elimination, so A = 0 does not change.

2 Ahas \; = —1 and \y = 5 with eigenvectors 1 = (—2,1) and zo = (1,1). The
matrix A 4 I has the same eigenvectors, with eigenvalues increased by 1 to 0 and 6.

That zero eigenvalue correctly indicates that A + [ is singular.

3 Ahas \; = 2 and Ay = —1 (check trace and determinant) with ; = (1,1) and

x3 = (2, —1). A~! has the same eigenvectors, with eigenvalues 1/\ = % and —1.

4 det(A—X)=XA2+X—6=(A+3)(A—2). Then Ahas \; = —3 and Ay = 2 (check
trace = —1 and determinant = —6) with £; = (3,—2) and ¢ = (1,1). A? has the

same eigenvectors as A, with eigenvalues A3 = 9 and \3 = 4.

5 A and B have eigenvalues 1 and 3 (their diagonal entries : triangular matrices). A + B
has A2 + 8\ 4+ 15 = 0 and \; = 3, Ay = 5. Eigenvalues of A + B are not equal to

eigenvalues of A plus eigenvalues of B.

6 Aand Bhave \; = 1and Ay = 1. AB and BA have A2 — 4\ + 1 and the quadratic
formula gives A = 2 - /3. Eigenvalues of AB are not equal to eigenvalues of A times
eigenvalues of B. Eigenvalues of AB and B A are equal (this is proved at the end of

Section 6.2).

7 The eigenvalues of U (on its diagonal) are the pivots of A. The eigenvalues of L (on its
diagonal) are all 1’s. The eigenvalues of A are not the same as the pivots.
8 (a) Multiply Ax to see A& which reveals A (b) Solve (A — AI)x = 0to find x.
9 (a) Multiply by A: A(Azx) = A(\x) = M\Ax gives A%z = Nz
(b) Multiplyby A™l:x = A1 Ax = A=\ = AA 'z gives A~ lx = i:c
© AddIx=x: (A+DNx=A+1)x.



100 Solutions to Exercises

10 det(A — M) = d? — 1.4\ + 0.4s0 Ahas \; = 1 and \y = 0.4 with z; = (1,2) and
2 = (1,—1). A has A\; = 1 and Ay = 0 (same eigenvectors). A% has A\; = 1 and
Ay = (0.4)°0 which is near zero. So A% is very near A*°: same eigenvectors and
close eigenvalues.

11 Columns of A— A, are in the nullspace of A— \o1 because M = (A—XoI)(A— A1)
is the zero matrix [this is the Cayley-Hamilton Theorem in Problem 6.2.30].
Notice that M has zero eigenvalues (A1 —X2)(A1—A1) = 0and (Aa—A2)(Aa—A1) = 0.
So those columns solve (A — Ay) & = 0, they are eigenvectors.

12 The projection matrix P has A = 1,0, 1 with eigenvectors (1, 2,0), (2, —1,0), (0,0, 1).
Add the first and last vectors: (1,2,1) also has A = 1. The whole column space of P
contains eigenvectors with A = 1! Note P2 = P leadsto A\> = Aso A = O or 1.

13 (a) Pu= (vuM)u =u(uTu) =usol =1 b) Pv = (vu)v =u(uv)=0
(©) 1 =(-1,1,0,0), 2 = (-3,0,1,0), 3 = (—5,0,0,1) all have Px = 0x =0

14 det(Q — M) = A2 —2\cosf+1 = 0when \ = cosf £ isinf = ¢*? and e=*’. Check
that A1 Ao = 1 and A\; + Ao = 2cosf. Two eigenvectors of this rotation matrix are
x1 = (1,4) and x5 = (1, —i) (more generally cx; and dxo with cd # 0).

15 The other two eigenvalues are A = %(—1 + i/3). The three eigenvalues are 1,1, —1.

16 Set A =0indet(A—A)=(A —N)...(Ap —A) tofinddet A = (A1)(A2) -+ (\p).

17 Ay = 3(a+d++/(a—d)?>+4bc) and Ay = S(a +d—V )add to a+ d.

If Ahas \y =3 and Ay =4 thendet(A — X)) = (A —3)(A—4) =\ = TA+12.
4 0 3 2
18 These 3 matrices have A = 4 and 5, trace 9, det 20: , ,
0 5 -1 6 -3 7
19 (a) rank = 2 (b) det(BTB) =0 (d) eigenvalues of (B2 + 1) 'are 1,3 B %
0 1
20 A= has trace 11 and determinant 28, so A = 4 and 7. Moving to a 3 by
—28 11

3 companion matrix, for eigenvalues 1,2, 3 we want det(C' — A\) = (1 — X\)(2 — )
(3 — ). Multiply out to get —A3 + 6A? — 11\ + 6. To get those numbers 6, —11,6

from a companion matrix you just put them into the last row:
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21

22

23

24

25

26

27

28

29

0 1 0
C=10 0 1| Notice the trace 6 = 1 + 2 + 3 and determinant 6 = (1)(2)(3).

6 —11 6

(A — XI) has the same determinant as (A — AI)T because every square matrix has
det M = det MT. Pick M = A — \I.

1 0 1 1| have different
and

1 0 0 0| -eigenvectors.

The eigenvalues must be A = 1 (because the matrix is Markov), O (for singular), —%
(so sum of eigenvalues = trace = %)

0 0 0 1 -1 1 Always A2 is the zero matrix if A = 0 and 0,

10 ’ 0 0 7 -1 1 . by the Cayley-Hamilton Theorem in Problem 6.2.30.

A = 0,0, 6 (notice rank 1 and trace 6). Two eigenvectors of uvT are perpendicular to

v and the third eigenvectoris u: €1 =(0,—-2,1), z2 =(1,—-2,0), z3=(1,2,1).

When A and B have the same n A’s and «’s, look at any combination v = cjx; +
<o+ 4 cpx,. Multiply by A and B: Av = ey \ixy + -+ + e\, equals By =

A\ xy + -+ cp A\, for all vectors v. So A = B.

The block matrix has A = 1, 2 from B and A\ = 5, 7 from D. All entries of C' are
multiplied by zeros in det(A — AT), so C has no effect on the eigenvalues of the block

matrix.

A has rank 1 with eigenvalues 0, 0, 0, 4 (the 4 comes from the trace of A). C has rank
2 (ensuring two zero eigenvalues) and (1,1, 1, 1) is an eigenvector with A = 2. With

trace 4, the other eigenvalue is also A = 2, and its eigenvectoris (1, —1,1, —1).

Subtract from 0,0,0,4 in Problem 27. B = A — [ has A = —1, —1, —1, 3 and
C=1-Ahas\=1,1,1,—3. Both have det = —3.

A'is triangular: A\(A) = 1,4, 6; A\(B) = 2, /3, —v/3; C has rank one: \(C) = 0,0, 6.
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a b 1 a+b 1
30 = = (a+ D) ; A2 = d — b to produce the correct trace

c d 1 c+d 1
(a+b)+(d—b)=a+d.

31 Eigenvector (1,3,4) for A with A = 11 and eigenvector (3,1,4) for PAPT with
A = 11. Eigenvectors with A # 0 must be in the column space since Ax is always

in the column space, and © = Az /\.

32 (a) w is a basis for the nullspace (we know Au = Ow); v and w give a basis for the
column space (we know Av and Aw are in the column space).
(b) A(v/3 +w/5) = 3v/3 +5w/5 = v+ w. Sox = v/3 + w/5 is a particular
solution to Ax = v + w. Add any cu from the nullspace

(¢) If Az = w had a solution, u would be in the column space: wrong dimension 3.

33 Always (uvl)u = u(vtu) so u is an eigenvector of uv™ with A = vTu. (watch

T

numbers v u, vectors u, matrices uv™!!) If vTu = 0 then A? = u(vTu)v? is the

zero matrix and A2 = 0,0 and A\ = 0,0 and trace (A) = 0. This zero trace also comes

from adding the diagonal entries of A = uv:

(751 U101 ULV
A= [Ul ’Ug} = has trace ujvy 4+ ugvy = viu=0
u2 U2V1  UQV9

34 det(P — M\I) = 0 gives the equation \* = 1. This reflects the fact that P* = I.
The solutions of \* = 1 are A\ = 1,4, —1, —i. The real eigenvector x; = (1,1,1,1)
is not changed by the permutation P. Three more eigenvectors are (1,4,i2,i%) and
(1,—-1,1,—-1) and (1, —i, (—i)2, (—i)3).

35 The six 3 by 3 permutation matrices include P = I and three single row exchange
matrices Pjo, Py3, Py3 and two double exchange matrices like Pyo P;3. Since PTP = I
gives (det P)? = 1, the determinant of P is 1 or —1. The pivots are always 1 (but there
may be row exchanges). The trace of P can be 3 (for P = I) or 1 (for row exchange)

27i/3

or O (for double exchange). The possible eigenvalues are 1 and —1 and e and

6—271'1/3_
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36 AB — BA = I can happen only for infinite matrices. If AT = A and BT = — B then

xTx =2V (AB - BA)x = a2 (A"B + BT A)x < ||Az||||Bx|| + || Bz|| || Az|.
Therefore || Az|| || Bx|| > 3||z||* and ([Az|/[|[]) (||Bz]l/|zl]) > 5.

37 A1 = e®™/3 and Ny = e 27/3 give det \{A\y = 1 and trace \; + Ay = —1.

cosf —sinf o
A= with 6 = 3 has this trace and det. So does every M 1AM

sin 6 cosf

38 (a) Since the columns of A add to 1, one eigenvalue is A = 1 and the other is ¢ — 0.6

(to give the correct trace ¢ 4 0.4).

(b) If ¢ = 1.6 then both eigenvalues are 1, and all solutions to (A — I) ¢ = 0 are

multiples of & = (1, —1). In this case A has rank 1.

(c) If ¢ = 0.8, the eigenvectors for A = 1 are multiples of (1, 3). Since all powers A"

1 (1
also have column sums = 1, A™ will approach 1 = rank-1 matrix A*° with

3
eigenvalues 1, 0 and correct eigenvectors. (1,3) and (1, —1).

Problem Set 6.2, page 314

1 2 1 1|1 0|1 -1
1 Eigenvectorsin X and eigenvaluesin A. Then A = XAX ~!is =
0 3 0 1|10 3]0 1
The second matrix has A = 0 (rank 1) and A\ = 4 (trace = 4). Then A = XAX 'is
11 1 1|]o ofl |2 -3
3 3 -1 3(1]0 4|1 1L
1 1
Put the eigenvectors in X 1 1(]2 0 1 -1 2 3
and eigenvalues 2, 5 in A. 0 1{]0 5] 10 1 0 5

3 If A = XAX ! then the eigenvalue matrix for A + 21 is A + 27 and the eigenvector
matrix is still X. So A +21 = S(A +21) X1 = XAX '+ X(2[) X1 = A +2I.
4 (a) False: We are not given the \’s  (b) True (c) True (d) False: For this we

would need the eigenvectors of X.
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11

12

13

14

Solutions to Exercises

With X = I, A = XAX ! = A is a diagonal matrix. If X is triangular, then X ~! is
triangular, so X AX ~! is also triangular.

The columns of S are nonzero multiples of (2,1) and (0,1): either order. The same

eigenvector matrices diagonalize A and A~*.

11 [a 11 Mo A - A
A= XAX"! = ! o= |THTTEOTE TR
1 -1 Xo| [1 -1 Al — A2 A+ A
a b
These are the matrices , their eigenvectors are (1,1) and (1, —1).
b a
1 1 AA A1 0 1 =
A= XAX-L = _ 1 A2 1 2
1o MM 1|0 xn|[-1 A
YARX-1 — 1 A1l g )\If 0 1 —X 1

AM=X o1 Lo A -1 M| o

The second component is Fy, = (\F — A\5) /(A1 — Ao).

G G b5 5
(a) The equations are AR A i with A = . This matrix
Gr+1 Gy 1 0
has )\1 = 1, /\2 = —% with r] = (1, 1), o = (1, —2)
1 1 1n 0 2 1 2 1
(b) A" = XA"X ! = R P L
_ _5)n 1 1 2 1
1 2 0 (-.5) 113 -3 z 1

The rule Fj, 1o = Fj41 + F} produces the pattern: even, odd, odd, even, odd, odd, . ..

(a) True (no zero eigenvalues) (b) False (repeated A = 2 may have only one line of

eigenvectors) (c) False (repeated A may have a full set of eigenvectors)
(a) False: don’t know if A = 0O or not.
(b) True: an eigenvector is missing, which can only happen for a repeated eigenvalue.

(c) True: We know there is only one line of eigenvectors.
8 3 9 4 10 5 only eigenvectors
A= (or other), A = , A= ;
-3 2 —4 1 =5 0| arex=(c,—c).
The rank of A — 37 is r = 1. Changing any entry except a;> = 1 makes A

diagonalizable (the new A will have two different eigenvalues)
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15 A% = X A* X ! approaches zero if and only if every |A| < 1; A; is a Markov matrix
S0 Amax = 1 and A% — A3°, As has A = .6 £ .3 s0 A5 — 0.

. . 1 0 11 10
16 A;is XAX T with A = and X = (AF—
0 .2 1 -1 0 0
11
Then A1k = XA*X~1 — i i : steady state.
2 2
. . 9 0 3 —3 3 3
17 Ayis XAX 1 with A = and X = ; ALO = (.9)10
0 .3 1 1 1 1
3 3 6 3 3
AL° = (.3)10 . Then AL° = (.9)1° + (.3)10 because
-1 -1 0 1 -1
3
is the sum of +
0 1 —1
2 — 1 -1 1 0 1 1
18 =XAX"1== and
-1 2 201 1] ]o 3| |-1 1
11 -1 1 0 1 1
Ak = XARX = 2
211 1] ]o 3¢ |-1 1

143k 13k

1
Multiply those last three matrices to get A*¥ = =
211-3F 143k

1 1|15 0 1 1 5k 5k _ 4k
19 BF = XAFX ! = _
0 —1| (0 4 0 —1 0 4k

20 det A = (det X)(det A)(det X 1) = det A = Ay ---\,. This proof (det = product

of \’s) works when A is diagonalizable. The formula is always true.

21 trace XY = (aq + bs) + (cr + dt) is equal to (qa + r¢) + (sb + td) = trace Y X.
Diagonalizable case: the trace of X AX ~! = trace of (AX 1) X = A: sum of the \’s.
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AB — BA = I is impossible since trace AB — trace BA = zero # trace I.

1 0
AB — BA = C is possible when trace (C) = 0. For example E = has
1 1
-1 0
EET - ETE = = C with trace zero.
0 1
A 0 X 0 A O X! 0
If A= XAX !then B = = . So
0 24 0 X 0 2A 0 X!

B has the original A\’s from A and the additional eigenvalues 21, ..., 2\, from 2A.

The A’s form a subspace since cA and A; + A, all have the same X. When X = [
the A’s with those eigenvectors give the subspace of diagonal matrices. The dimension

of that matrix space is 4 since the matrices are 4 by 4.

If A has columns x4, . .., Z,, then column by column, A2 = A means every Ax; = x;.
All vectors in the column space (combinations of those columns ;) are eigenvectors
with A = 1. Always the nullspace has A = 0 (A might have dependent columns,
so there could be less than n eigenvectors with A = 1). Dimensions of those spaces
C (A) and N (A) add to n by the Fundamental Theorem, so A is diagonalizable (n

independent eigenvectors altogether).

Two problems: The nullspace and column space can overlap, so  could be in both.

There may not be r independent eigenvectors in the column space.

1 1|13 11 2 1
R=XVAX"'= /2= has R?=A.
1 -1 1|1 -1 1 2

VB needs \ = V9 and /—1, trace (their sum) is not real so /B cannot be real. Note

0 o ,
that has fwo imaginary eigenvalues v/—1 = ¢ and —j, real trace 0, real
0 -1

0 1
square root
-1 0
The factorizations of A and B into XAX ! are the same. So A = B. (This is

the same as Problem 6.1.25, expressed in matrix form.)
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29

30

31

A= XA X"'and B = XA, X~'. Diagonal matrices always give AjAy = AyA;.
Then AB = BA from

XA X T XA X = XAJA9X = XAgA1 X1 = XA X XA X! = BA.

a b b a—d b
(a) A= has A = aand A = d: (A—al)(A—dI) =
0 d 0 d—a 0 0
0 0 1 1 2 1
= . (b)) A= has A% = and A2 — A — I = 0 is true,
0 0 1 0 1 1

matching \> — A — 1 = 0 as the Cayley-Hamilton Theorem predicts.
When A = XAX ! is diagonalizable, the matrix A — \;1 = X (A — N\, 1) X~ will
have 0 in the j, j diagonal entry of A — \; 1. The product p(A) becomes

plA) = (A= MI)- (A= N\I) = X(A = MI)--- (A= N\ )X L.
That product is the zero matrix because the factors produce a zero in each
diagonal position. Then p(A) = zero matrix, which is the Cayley-Hamilton Theorem.
(If A is not diagonalizable, one proof is to take a sequence of diagonalizable matrices
approaching A.)
Comment 1 have also seen the following Cayley-Hamilton proof but I am not con-

vinced:

Apply the formula ACT = (det A)I from Section 5.3 to A — \I with variable \. Its

cofactor matrix C' will be a polynomial in A, since cofactors are determinants:
(A= ACT = det(A — AT = p(\)I.

“For fixed A, this is an identity between two matrix polynomials.” Set A = A to find
the zero matrix on the left, so p(A) = zero matrix on the right—which is the Cayley-

Hamilton Theorem.

I am not certain about the key step of substituting a matrix for A. If other matrices B
are substituted for A, does the identity remain true? If AB # BA, even the order of

multiplication seems unclear . . .
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32 If AB = BA, then B has the same eigenvectors (1,0) and (0,1) as A. So B is

also diagonal b = ¢ = 0. The nullspace for the following equation is 2-dimensional:

1 0| la b a bl |1 0 0 —b 0 0
AB — BA = _ _ _
0 2| |c d c d| o 2 c 0 0 0

Those 4 equations 0 = 0, —b = 0,c¢ = 0,0 = 0 have a 4 by 4 coefficient matrix with

rank 4 — 2 = 2.

33 Bhas A =iand —i, so B*has \* = 1 and 1 and B!92* = J.

C has A = (1 4 /3i)/2. This \ is exp(£7i/3) so A> = —1 and —1. Then C3 = —T
which leads to C10?4 = (—1)34C = —C.

) cosf —sinf , ,
34 The eigenvalues of A = are A\ = €% and e~ (trace 2 cos 6 and

sinf  cosd
determinant = 1). Their eigenvectors are (1, —i) and (1,14):

1 1] |em? U
An = XAX 1 = 4 /2
—i 1 e~ ind ) 1
(eme + 6—i7z9)/2 oo cosnfd —sinnd
(e — e=in0)/2f ... sinnf  cosnb

Geometrically, n rotations by 6 give one rotation by nf.

35 Columns of X times rows of AX ~! gives a sum of 7 rank-1 matrices (r = rank of A).

36 Multiply ones(n) * ones(n) = n x ones(n). This leadsto C' = —1/(n + 1).

AA~L = (eye(n) + ones(n)) * (eye(n) + C * ones(n))

=eye(n) + (1 4+ C + Cn) xones(n) = eye(n).
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Problem Set 6.3, page 332

1
1 Eigenvalues 4 and 1 with eigenvectors (1, 0) and (1, —1) give solutions u; = e*!
0
1 ) 1 1
and uy = €' I w(0) = =3 +2 , then
-1 -2 0 -1
1 1
u(t) = 3e*t + 2¢!
0 -1

2 2(t) = 2¢! solves dx/dt = z with 2(0) = 2. Then dy/dt = 4y — 6e! with y(0) = 5
gives y(t) = 3e*" + 2¢! as in Problem 1.

3 (a) If every column of A adds to zero, this means that the rows add to the zero row.

So the rows are dependent, and A is singular, and A = 0 is an eigenvalue.

—2
(b) The eigenvalues of A = are A\ = 0 with eigenvector ; = (3,2) and
2 -3
A2 = —5 (to give trace = —5)_with @2 = (1, —1). Then the usual 3 steps:
4 3 1
1. Write u(0) = as + = x; + x> = combination of eigenvectors
1 2 -1

0 t

2. The solutions follow those eigenvectors: e’z and e~ %'x,

3. The solution u(t) = x1 + e~ 'z, has steady state 1 = (3,2) since e > — 0.

4 dlv+ w)/dt = (w—v)+ (v —w) = 0, so the total v + w is constant.
11 A =0 1 1
A= has with 1 = , Loy =
1 -1 Ao = —2 1 1
v(0) 30 1 1 v(1) =20+ 10e72  wv(oo) =20
= =20 +10 leads to
w(0) 10 1 -1 w(l) =20 —10e™2  w(oo) = 20
d | v 1 -1
5 — = has A\ = 0 and A = +2: v(t) = 20 + 10e** — —oc as
dt | 4 -1 1
t — oo.
a 1
6 A= has real eigenvalues a+1 and a — 1. These are both negativeifa < —1.
1 a

In this case the solutions of u’ = Aw approach zero.
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b —1
B = has complex eigenvalues b+ ¢ and b — ¢. These have negative real parts
1 b

if b < 0. In this case and all solutions of v' = Bwv approach zero.

7 A projection matrix has eigenvalues A = 1 and A = 0. Eigenvectors Px = « fill the

subspace that P projects onto: here « = (1,1). Eigenvectors with Px = 0 fill the

perpendicular subspace: here = (1, —1). For the solution to ' = — Pu,

3 2 1 .12 or |1 1
u(0) = = + u(t) =e” +e approaches

1 2| |-1 2 -1 -1

6 —2 2 1 _
8 has \; =5, &1 = LA =2, Ty = ; rabbits () = 20e5! +10e?,
2 1 1 2

w(t) = 10e® +20e?!. The ratio of rabbits to wolves approaches 20/10; €3 dominates.

4 1 1 |1 ) 1 4cost
9 (a) —2 | |42 . (b) Thenu(t) = 2¢it | | +2e~it -
0 1 —1 1 —1 4sint
d ! 0 1
102V =Y | = Y . This correctly gives y’ =y’ and y”" = 4y+5y’.
dt y/_ _y// 4 5 Y
0 1 . o .
A= has det(A — AI) = A2 — 5\ — 4 = 0. Directly substituting y = e*! into
4 5
y' =5y + Zly also gives A\? = 5\ + 4 and the same two values of \. Those values are
%(5 =+ +/41) by the quadratic formula.
0 1 1 ¢
11 The series for e is et = T 4 ¢ + zeros =
0 0 0 1
t 1t 0 0) +%'(0)t
Then v(t) = y(0) | |40 +v(0) . This y(t) = y(0) + y'(0)¢
y'(t) 0 1] |y'(0) y'(0)

solves the equation—the factor ¢ tells us that A had only one eigenvector: not diago-

nalizable.
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1
A = has trace 6, det 9, A = 3 and 3 with one independent eigenvector
-9 6

(1,3). Substitute y = te3! to show that this gives the needed second solution (y = e3¢

is the first solution).

(a) y(t) = cos 3t and sin 3¢ solve " = —9y. It is 3 cos 3¢ that starts with y(0) = 3 and

0 1
y'(0) = 0. (b) A= has det = 9: A = 3i and —3i with eigenvectors
-9 0
1 1 1 _ 1 3cos 3t
= and . Thenu(t) = %e?’“ —l—%e_?’“ =
31 -3t 31 -3t —9sin 3t
When A is skew-symmetric, the derivative of ||u(t)||? is zero. Then ||u(t)|| = ||e**wu(0)]|

stays at ||u(0)]|. So e is matrix orthogonal.

u, = 4and u(t) = ce’+4. For the matrix equation, the particular solution u, = A~'b
4 1 0 4

is and u(t) = ciet + coet + .
2 t 1 2

Substituting u = v gives ce“v = Ae“v — e“‘bor (A—cl)v =borv = (A —

cI)~1'b = particular solution. If ¢ is an eigenvalue then A — cI is not invertible.

1 0 1 1
(a) (b) (©) . These show the unstable cases
0 -1 0 1 -1 1
(@ M1 <0and Ay >0 (b) \y >0and Ay >0 (¢) A=axibwitha >0
Aty _ 20 L4342 ) 1 44,3 _ 14242 1 43,3
d/di(e?) = A+ A%t + 5 AP 4 AP 4 = AT+ At + 5 A% + AP+ ).
This is exactly Ae“t, the derivative we expect.
) ] 1 —4t o 0 -4
eBt = I + Bt (short series with B% = 0) = . Derivative = =
0 1 0 0
B.
The solution at time ¢ 4 T is eA(**7)44(0). Thus eA? times e4” equals eA(¢+7),

1 4 1 4 1 0
= diagonalizes A = XAX 1.
0 0 0 -1 0 0

1
Then et = XeMX 1 = : —
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) et 4det —4
A% = Agives e = [+ At+ A2+ AP+ =T+ (e' —1)A = .
0 1
o |e e 14 A
e’ = from 21 and e? = from 19. By direct multiplication
0 1 0 1
e 0
edeB £ eBeA £ eATB =
0 1
11 1 1| |1 of |1 -3 et L —¢f
A= = >|. Then et = 3 )
0 3 0 2/(0 3|0 1 0 et
Att =0,e4 = I and Aet = A.
2 -
) 1 3 1 3
The matrix has A? = = = A. Then all A» = A. So e/t =
0 0 0 0
et 3(et —1) )
T+ (t+t2/20+- )A=T+ (et —1)A = as in Problem 22.
0 0
(a) The inverse of e* is e~ 4t (b) If Ax = \x then eMa = e Ma and e # 0.

To see eMa, write (I + At + A2 + - Yo = (1 + M+ 1N + -z = M.

(r,y) = (e*,e %) is a growing solution. The correct matrix for the exchanged
yl. | 2 2 , . .
u = is . It does have the same eigenvalues as the original matrix.
T -4 0
1 0|1 At 1 At
Invert toproduce U, = U, =
At 1 At 1| (0 1 —At 11— (At)?

1 1 ) .
At At = 1, has A = ¢™/3 and e~*"/3. Both eigenvalues have \® = 1 so
-1 0

AS = I. Therefore Ug = AU comes exactly back to U.

First A has A = 44 and A* = I. 1—-2n  —2n )
Ar = (=) Linear growth.
Second A has A = —1,—1 and 2n 2n + 1

1 1—a? 2a

With a = At/2 the t idal step is U -
1th a /2 the trapezoidal step is U, 41 a2 o

U,.

1—a?

That matrix has orthonormal columns = orthogonal matrix = || U 41| = ||U||

U,.
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31 (a) If Az = Ax then the infinite cosine series gives (cos A)x = (cos \)x
(b) A(A) = 27 and 0 so cos A = 1 and 1 which means that cos A = |
(c) u(t) = 3(cos27t)(1,1)+1(cos0t)(1,—1) [u’ = Au has exp, u”’ = Au has cos]

32 For proof 2, square the start of the series to see (I + A + 3 A% + $A%)2 = 1 4+ 24 +
%(2/1)2 + % (24)% + - --. The diagonalizing proof is easiest when it works (needing

diagonalizable A).

Problem Set 6.4, page 345

Note A way to complete the proof at the end of page 334, (perturbing the matrix to pro-
duce distinct eigenvalues) is now on the course website: “Proofs of the Spectral Theorem.”

math.mit.edu/linearalgebra.

1 The first is ASA™: symmetric but eigenvalues are different from 1 and —1 for S.
The second is ASA~!: same eigenvalues as S but not symmetric.
The third is ASAT = ASA~': symmetric with the same eigenvalues as S.
This needed B = AT = A~! to be an orthogonal matrix.

2 (a) ASB stays symmetric like S when B = AT
(b) ASB is similarto S when B = A~!

To have both (a) and (b) we need B = AT = A~ to be an orthogonal matrix

1 3 6 0 -1 =2
=1(A+AT)+(A- AT)
3A=1(3 3 3|+|1 o0 -3

= symmetric + skew-symmetric.

6 3 5 2 3 0
4 (ATCA)T = ATCT(AT)T = ATCA. When A is 6 by 3, C will be 6 by 6 and the
triple product ATC A is 3 by 3.

5 \ = 0,4, —2; unit vectors +(0, 1, —1)/v/2 and +(2,1,1)//6 and (1, -1, —1)/+/3.
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6 A=10and —5in A = , T = and have to be normalized to

unit vectors in QQ =

Sl
ot

Lo

|

—_

2 1 2
1 The columns of () are unit eigenvectors of .S
7Q= 3 2 -2 -1
Each unit eigenvector could be multiplied by —1
-1 -2 2
9 12
8 S5 = has A = 0 and 25 so the columns of () are the two eigenvectors:
12 16
.8 .6 .
Q= or we can exchange columns or reverse the signs of any column.
-6 .8

1 2
9 (a) has A\ = —1and 3 (b) The pivots 1, 1 — b? have the same signs as the \’s
2 1

(c) The trace is A1 + Ao = 2, so S can’t have two negative eigenvalues.

0 1
10 If A3 = Othenall A3 = 0soall A\ = 0asin A = . If A is symmetric then
0 0

A3 = QA?QT = 0 requires A = 0. The only symmetric A is Q 0 QT = zero matrix.

11 If )\ is complex then ) is also an eigenvalue (AZ = \Z). Always \ + X is real. The

trace is real so the third eigenvalue of a 3 by 3 real matrix must be real.

12 If x isnotreal then \=xT Az /x T x is not always real. Can’t assume real eigenvectors!

31 3 —3 ;3 9 12 64 —.48 36 .48
13 =2 +4 ; =0 +25
1 3 _1 1 L1 12 16 —.48 .36 A48 .64
L 2 2 2 2
I x
14 | 1 T2 | isan Q matrixso P} + Py = &1z} + xpxd = | T1 T2 =1
T
L T3

also Py Py = x1 (] T2)x3 = zero matrix.

Second proof: Py P, = P;(I — Py) = P, — P, = O since P? = P;.
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15

16

17

18

19

20

21

A 0 0 A
A= has A = ¢b and —ib. The block matrices and are
-b 0 0 A A 0
also skew-symmetric with A = ¢b (twice) and A = —ib (twice).

M is skew-symmetric and orthogonal; \’s must be 4, 7, —i, —i to have trace zero.

i 1
A= has A = 0,0 and only one independent eigenvector x = (i,1). The
1 —i
good property for complex matrices is not AT = A (symmetric) but A= 4 (Her-
mitian with real eigenvalues and orthogonal eigenvectors: see Problem 22 and Sec-

tion 9.2).

(@) If Az = Ay and ATy = Az then Bly; —z] =[-Az; ATy]=-\y; —=z].
So —\ is also an eigenvalue of B. (b) ATAz = AT(\y) = A\%2. (c) A = —1, —1,
1,1, @1 =(1,0,-1,0), @2 = (0,1,0,~1), &3 = (1,0,1,0), &4 = (0,1,0,1),

0 0 1
The eigenvaluesof S = [0 0 1| are0, V2,2 by Problem 16 with

1 1 0
1 1 1
= |—-1|,Z2= 1| 1 |,T3= 1

0 V2 —V?2

1. yisin the nullspace of S and  is in the column space (that is also row space because
S = ST). The nullspace and row space are perpendicular so yTx = 0.

2. If S = Ax and Sy = [y then shift S by 51 to have a zero eigenvalue that matches
Step 1.(S — fI)x = (A — B)x and (S — BI)y = 0 and again x is perpendicular to y.

1 10 1 0 1 Perpendicular for A
Shas X = |1 -1 0|;BhasX =0 1 0. Notperpendicular for S
0 0 1 0 0 2d since BT # B
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1 3+4i| T i
22 S = is a Hermitian matrix (S™ = S). Its eigenvalues 6 and —4 are
3—4 1

real. Adjust equations (1)—(2) in the text to prove that A is always real when 5= s:

Sx = Az leads to ST = A\Z. Transpose to TS = T '\ using ?T =5.

Then ' Sz = ZX Ax and also T' Sz = X A\x. So A = )\ is real.

1 2 b) True from AT = QAQT = A
23 (a) False. A = (b) True from @AQ (d) False!

0 1| (c) Truefrom S~!=QA1QT

0 1
24 A and AT have the same \’s but the order of the z’s can change. A = has

-1 0
A1 =i and A\ = —i with &1 = (1,4) first for A but &; = (1, —i) is first for AT,
25 A isinvertible, orthogonal, permutation, diagonalizable, Markov; B is projection, diag-

onalizable, Markov. A allows QR, XAX ' QAQT; B allows XAX ! and QAQ™.
26 Symmetry gives QAQT if b = 1; repeated A and no X if b = —1; singular if b = 0.

27 Orthogonal and symmetric requires |A| = 1 and A real, so A = &1. Then S = +1 or

S — OAQT cosf —sinf 1 0 cosf siné cos 260 sin 26

sin @ cos 6 0 -1 —sinf cosé sin20 — cos 26 .

28 Eigenvectors (1,0) and (1, 1) give a 45° angle even with AT very close to A.

29 The roots of A2 + bA + ¢ = 0 are %(—b + /b2 — 4ac). Then \; — Ao is v/b2 — 4c.
For det(A + tB — A\I) we have b = —3 — 8t and ¢ = 2 + 16t — t*. The minimum of
b?> —4cis1/17att = 2/17. Then Ay — A\, = 1/4/17: close but not equal !

4 241 —T ) )
30 S = = S has real eigenvalues A = 5 and —1 with trace = 4 and
2—4i 0
det = —5. The solution to 20 proves that A is real when ?T = S'is Hermitian.

31 (a) A = QAQ T times AT = QATQ T equals AT times A because Q = Q' and
AAT = ATA (diagonal!) (b) Step 2: The 1,1 entries of 7T T and TT T are |a|?
and |a|? + |b|?. Equally makes b = 0 and T = A.
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32

33

34

35

36

37

T
ar is [QH . Q1n} [/\1611 /\nam} < Amax (lg11]% + -+ + [q1n]*) = Amax-
(@) T (Azx) = (Ax)Tx = 2TATx = —xTAx. (b) ZT Az is pure imaginary, its
real part is zTAx + yTAy = 0+ 0 (c) detA = A;...\, > 0 : pairs of \’s
= b, —ib.

Since S is diagonalizable with eigenvalue matrix A = 21, the matrix S itself has to be

XAX~! = X(2I)X~! = 2I. (The unsymmetric matrix [2 1 ; 0 2] also has A = 2,2.)

(@ ST=Sand STS =TIleadto S? =1.

(b) The only possible eigenvalues of S are 1 and —1.

G
Q3

(ATSA)T = ATSTATT = ATSA. This matrix ATSA may have different eigen-

or=|t " SOS—lQl Qs — Q1QT - Q2Q7F with QT Qs — 0.

0 —I

values from .9, but the “inertia theorem” says that the two sets of eigenvalues have the
same signs. The inertia = number of (positive, zero, negative) eigenvalues is the same

for S and ATSA.

Substitute A = a to find det(S — al) = a® — a® — ca + ac — b*> = —b? (negative). The

parabola crosses at the eigenvalues A because they have det(S — AI) = 0.

Problem Set 6.5, page 358

1

2

Suppose a > 0 and ac > b? so that also ¢ > b*/a > 0.
(i) The eigenvalues have the same sign because A\; Ay = det = ac — b? > 0.

(i1) That sign is positive because A1 + Ao > 0 (it equals the trace a + ¢ > 0).

Only Sy = has two positive eigenvalues since 101 > 102
10 101

xS x = 522 + 127129 + T23 is negative for example when 1 = 4 and x5 = —3:

Aj is not positive definite as its determinant confirms; S, has trace cg; S35 has det = 0.
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10

11

12
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Positive definite 1 0 1 b 1 0 1 0 1 b

= =LDLT
for -3 <b<3 b 1|0 9—052 b 1](0 9-0%2||0 1
Positive definite 1 0 2 4 1 0 2 0 1 2

= =LDLT.
forc > 8 2 1 0 ¢c—8 2 1 0 ¢c—8|1(0 1
Positive definite 1 1 c 0

L= D= S=LDLT.

forc > b =b/c 0 0 c—b/c

flx,y) = 2% + dzy + 9y? = (z + 2y)? + 5y%; 2% + 62y + 9y = (z + 3y)>.
2% +4xy+3y? = (x+2y)% —y? = difference of squares is negativeat x = 2,y = —1,
where the first square is zero.

0 1 0 1 T
A= produces f(x,y) = |:x y] = 2xy. Ahas A = 1 and
10 1 0| |y

—1. Then A is an indefinite matrix and f(x,y) = 2xy has a saddle point.

2 3 3

1 2 6 5 o ] )
ATA = and ATA = are positive definite; ATA = [3 5 4] is
2 13 5 6
3 4 5

singular (and positive semidefinite). The first two A’s have independent columns. The

2 by 3 A cannot have full column rank 3, with only 2 rows; AT A is singular.

g 3 6 1 0113 0] (|1 2 Pivots 3, 4 outside squares, ¢;; inside.
6 16 2 1|0 4| |0 1| TSz =3(x+2y) +4y2
4 —4 8
has only one pivot = 4, rank S = 1,
S=1|-4 4 -8
eigenvalues are 24,0, 0,det S = 0.

8 —8 16
2 1 0] 2 —1 -1 1 0
has pivots o
S=1-1 2 -1 3 4 T=1|-1 2 —1|issingular;T |1| = 1|0
27_>_;
0 -1 2 23 1 -1 2 1 0

Corner determinants |S1| = 2, |S2| = 6, |S3| = 30. The pivots are 2/1,6/2,30/6.

S is positive definite for ¢ > 1; determinants ¢, c¢* — 1, and (¢ — 1)%(c + 2) > 0.

T is never positive definite (determinants d — 4 and —4d + 12 are never both positive).
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13

14

15

16

17

18

19

20

21

22

23

24

1 5
S = is an example with a + ¢ > 2b but ac < b?, so not positive definite.
5 10
The eigenvalues of S~! are positive because they are 1/\(.S). Also the entries of S—!

pass the determinant tests. And TS~ 1z = (S~1z)TS(S~1x) > 0 forall x # 0.

Since TSz > 0 and zTTx > 0 we have 27 (S + T)z = TSz + Tz > 0 for
all x # 0. Then S + T is a positive definite matrix. The second proof uses the test

S = AT A (independent columns in A): If S = ATA and T = BT B pass this test,

T|A
then S+ 71 = { A B] also passes, and must be positive definite.
B
x T Sx is zero when (21, 79, 73) = (0, 1,0) because of the zero on the diagonal. Actu-

ally T Sx goes negative for x = (1, —10,0) because the second pivot is negative.

If a;; were smaller than all \’s, S — a;;I would have all eigenvalues > 0 (positive

definite). But S — a;; 1 has a zero in the (j, j) position; impossible by Problem 16.

If Sz = \x thenx™ Sz = AzTx. If S is positive definite this leads to A = 7Sz /zTx >

0 (ratio of positive numbers). So positive energy = positive eigenvalues.

All cross terms are & ; = 0 because symmetric matrices have orthogonal eigenvec-

tors. So positive eigenvalues = positive energy.

(a) The determinant is positive; all A > 0  (b) All projection matrices except I are
singular  (c¢) The diagonal entries of D are its eigenvalues (d) S = —1I has det =

+1 when n is even.

S is positive definite when s > 8; T is positive definite when ¢ > 5 by determinants.
1 =1] 19 11

a1 \/I_11:21;A:Q40QT:31

V2 V2 1 2 0 2 1 3
22 /a% 4+ y?/b% is €T Sz when S = diag(1/a?,1/b%). Then \; = 1/a? and Ay = 1/b*

soa = 1/y/A1 and b = 1/y/Ay. The ellipse 922 + 16y> = 1 has axes with half-lengths

a =1 and b= . The points (3,0) and (0, 1) are at the ends of the axes.

The ellipse z2 + xy 4 3 = 1 has axes with half-lengths 1/v/X = v/2 and /2/3.
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25

26

27

28

29

30

31

32

33

Solutions to Exercises
9 3 4 8 1 0 4 0 1 2 4
S=CTC = ; = and C =
3 5 8 25 2 1 0 9 0 1 0 3
3 00 1 1 1

T
The Cholesky factors C' = (L\/ﬁ) =10 1 2|landC = |0 1 1 | have

00 2 00 V5
square roots of the pivots from D. Note again CTC = LDLT = S.

o TQp — 7T T o 2 2 _ b.\2 —b% 2
Writingoutx* Sx = x* LDL" x gives ax® +2bxy+cy® = a(x+ ;y)°+*>=y°. So
the LDLT from elimination is exactly the same as completing the square. The example

222 +8zy+10y? = 2(z+2y)?+2y? with pivots 2, 2 outside the squares and multiplier

2 inside.

det S = (1)(10)(1) = 10; A = 2 and 5; &1 = (cos,sinf), xo = (—sin b, cos §); the

A’s are positive. So S is positive definite.

6x2 22| ) )
S1 = is semidefinite; f; = (%xz +y)? = 0 on the curve %xQ +y=0;
2z 2
6x 1 0 . . . . .
Sy = = is indefinite at (0, 1) where first derivatives = 0. Then
1 0 1 0

x =0,y = 1is asaddle point of the function fa(x,y).

ax? + 2bxy + cy? has a saddle point if ac < b?. The matrix is indefinite (A < 0 and

A > 0) because the determinant ac — b? is negative.

If ¢ > 9 the graph of 2 is a bowl, if ¢ < 9 the graph has a saddle point. When ¢ = 9 the
graph of z = (2z + 3y)? is a “trough” staying at zero along the line 2z + 3y = 0.

Orthogonal matrices, exponentials e, matrices with det = 1 are groups. Examples
of subgroups are orthogonal matrices with det = 1, exponentials ™ for integer n.

Another subgroup: lower triangular elimination matrices F/ with diagonal 1’s.

A product ST of symmetric positive definite matrices comes into many applications.

The “generalized” eigenvalue problem Kx = AMx has ST = M ' K. (Often we use
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eig( K, M) without actually inverting M.) All eigenvalues A are positive:

STx = \x gives (Tx)" STx = (Tx) " \z. Then A = 2T STx /=™ Tx > 0.

34 The five eigenvalues of K are 2 — 2 cos &% = 2 — /3,2 -1,2,2+ 1,2+ V3.

The product of those eigenvalues is 6 = det K.

35 Put parentheses in T ATC Az = (Az)TC(Azx). Since C is assumed positive definite,
this energy can drop to zero only when Ax = 0. Sine A is assumed to have independent
columns, Az = 0 only happens when & = 0. Thus ATC A has positive energy and is

positive definite.

My textbooks Computational Science and Engineering and Introduction to Ap-
plied Mathematics start with many examples of ATC A in a wide range of applications.

I believe this is a unifying concept from linear algebra.

36 (a) The eigenvectors of A\ — S are Ay — A;, A1 — Ao, ..., A1 — A,. Those are > 0;

A1l — S is semidefinite.
(b) Semidefinite matrices have energy &* (A1 I — S) x5 > 0. Then \yzTz > T Sx.

(c) Part (b) says ¥ Sx/xTx < \; for all z. Equality at the eigenvector with S =

/\123.
37 Energy 7Sz = a (z1+x2+23)? +c(20—23)%2 > 0ifa > 0and ¢ > 0: semidefinite.

S has rank < 2 and determinant = 0; cannot be positive definite for any a and c.

Problem Set 6.6, page 360

1 B=GCG '=GF'AFG~1so M=FG~!. C similar to A and B = A similar to B.

1 0 3 0 0 1
2 A= is similar to B = = M~YAM with M =
0 3 0 1 1 0
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1 0 1 0 1 0 1 0
B = = = M~ 'AM;
0 0 1 1 1 0 1 1
- —1
1 -1 1 0 1 1 1 0
B = = ;
-1 1 0 -1 1 1 0 -1
- -1
4 3 0 1 1 2 0 1
B = =
2 1 1 0 3 4 1 0
A has no repeated ) so it can be diagonalized: S~'AS = A makes A similar to A.
1 1 0 0 1 0 0 1
s s s are similar (they all have eigenvalues 1 and 0).
0 0 1 1 1 0 0 1
1 0
is by itself and also is by itself with eigenvalues 1 and —1.
0 1 1 0
Eight families of similar matrices: six matrices have A = 0, 1 (one family); three

matrices have A = 1, 1 and three have A = 0, 0 (two families each!); onehas A = 1, —1;
one has A = 2, 0; two matrices have \ = %(1 + +/5) (they are in one family).
(@ (M'AM)(M~1z) = M~ '(Az) = M~'0 =0 (b) The nullspaces of A

and of M~ AM have the same dimension. Different vectors and different bases.

Same A 0 2| have the same line of eigenvectors
But A = and B =
Same S 0 0 0 0| and the same eigenvalues A = 0, 0.
1 2 1 k
A2 = , A3 = , every AF = LAY = and A~! =
01 01 01 01
1 -1
0 1
2 2 ko kTt -2
J? = and J* = ;J9=Tand J7! =
0 0 0 c !
5 v(0 d Al d
u(0) = = © . The equation g whas — = \v + w and
2 w(0) dt 0 A t
d
d_l; = Aw. Then w(t) = 2e* and v(t) must include 2te* (this comes from the
(

repeated \). To match v(0) = 5, the solution is v(t) = 2te* + 5ert.
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M1 Moy M3 My 0 miz myz O
) 0 0 0 0 0 mae maz 0
12 If M~ JM = K then JM= = MK=
M4l M4z M43 My 0 m32 m33 0
L 0 0 0 0 0 myo TMys 0_

That means mo; = Moy = Mag = Moy = 0. M is not invertible, J not similar to K.

13 The five 4 by 4 Jordan forms with A = 0,0, 0, 0 are J; = zero matrix and

010 0 010 0
000 0 00 1 0
Jy = Jy =
00 0 0 000 0
000 0 000 0
(0 1 0 o] [0 1 0 o]
000 0 00 1 0
Iy = Js =
00 0 1 00 0 1
00 0 0] 00 0 0]

Problem 12 showed that J3 and J4 are not similar, even with the same rank. Every
matrix with all A = 0 is “nilpotent” (its nth power is A™ = zero matrix). You see
J* = 0 for these matrices. How many possible Jordan forms for n = 5 and all A = 0?

14 (1) Choose M; = reverse diagonal matrix to get Mi_ljiM,- = MZT in each block
(2) My has those diagonal blocks M; to get My ' JMy = JT. (3) AT = (M~H)TJTMT
equals (M~Y)T My ' TMMT = (MMoM™)" Y A(MMyMT™), and A7 is similar to
A.

15 det(M 1AM — M) = det(M 1AM — M~*XIM). This is det(M (A — XI)M).

By the product rule, the determinants of M and M ~! cancel to leave det(A — \I).

a bl d c| (b al c . -
16 is similar to ; is similar to . So two pairs of similar
c d b «a d c a b
. L of. _ 0 1) :
matrices but is not similar to : different eigenvalues!

0 1 1 0
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18

19

20

21
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(a) False: Diagonalize a nonsymmetric A = SAS~!. Then A is symmetric and similar

1 0 -1
(b) True: A singular matrixhas A = 0. (c) False: and are simi-
-1 0 1 0

lar

(they have A = +1) (d) True: Adding I increases all eigenvalues by 1

AB = B7'(BA)B so AB is similar to BA. If ABx = \x then BA(Bz) = \(Bx).

Diagonal blocks 6 by 6, 4 by 4; AB has the same eigenvalues as BA plus 6 — 4 zeros.

(@ A=M'BM = A? = (M~ 'BM)(M~*BM) = M~1B2M. So A? is similar
to B2, (b) A? equals (—A)? but A may not be similar to B = —A (it could be!).

3 1 30

©) is diagonalizableto because\; # Ao, sothesematrices are similar.
0 4 0 4
3 1

(d) has only one eigenvector, so not diagonalizable (e) PAPT is similar
0 3

to A. i

J? has three 1’s down the second superdiagonal, and two independent eigenvectors for

0 1 0
Js3 1
A = 0. Its 5 by 5 Jordan form is withJs = |0 0 1| andJs =
Jo 0 0
0 0 0

Note to professors: An interesting question: Which matrices A have (complex) square
roots R?> = A? If A is invertible, no problem. But any Jordan blocks for A = 0 must
have sizes n; > ng > ... > ni > ni4+1 = 0 that come in pairs like 3 and 2 in this

example: ny = (ng or ng+1) and n3 = (n4 or ny+1) and so on.
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a 0 O a 1 0
A list of all 3 by 3 and 4 by 4 Jordan forms could be |0 & 0}, [0 a O],
0 0 c 0 0 b
- _a 1 |
a 1 0
(for any numbers a,b, c) a
0 a 1 )
with 3,2,1 eigenvectors; diag(a,b,c,d) and b
0 0 a
L i c|
_a 1 | _a 1 | _a 1 |
a a 1 a 1
R s with 4, 3, 2, 1 eigenvectors.
b 1 a a 1
i b_ i b_ i a|

22 If all roots are A = 0, this means that det(A — AI) must be just A". The Cayley-
Hamilton Theorem in Problem 6.2.32 immediately says that A™ = zero matrix. The
key example is a single n by n Jordan block (with n — 1 ones above the diagonal):

Check directly that J™ = zero matrix.

23 Certainly Q1 Ry is similar to R1Q; = Ql_l(QlRl)Ql. Then A; = Q1 R; — ¢s?I is

similar to Ay = R1Qq — cs?1.

24 A could have eigenvalues A = 2 and A\ = % (A could be diagonal). Then A~ has the

same two eigenvalues (and is similar to A).

Problem Set 6.7, page 371

o1
_ T_ — 13 -1 0 012 -1
1 A=UXV" = W, s v, vy| L0
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1 2
2 This A = is a 2 by 2 matrix of rank 1. Its row space has basis v, its nullspace
3 6

has basis v, its column space has basis w1, its left nullspace has basis ws:

R Lt Null L 2
ow space — ullspace —
V5 |9 VB |1
1|1 1 3
Column space —— , N(AT) —
P V10 |3 (4% V10 | 1

3 If A has rank 1 then so does AT A. The only nonzero eigenvalue of AT A is its trace,
which is the sum of all a;. (Each diagonal entry of AT A is the sum of a7; down one
column, so the trace is the sum down all columns.) Then o7 = square root of this sum,

and of = this sum of all a;.

2 1 34+5 3-+5 Butdis
4 ATA = AAT = has eigenvalues 07 = +2\/_, o3 = 2\/_.
1 1

indefinite
g1 = (1 + \/5)/2 = /\1(A), 09 = (\/g— 1)/2 = —/\Q(A); u; = v, but Uy = —V3.

5 A proof that eigshow finds the SVD. When V'; = (1,0), V3 = (0, 1) the demo finds
AV and AV 5 at some angle 6. A 90° turn by the mouse to V5, —V'; finds AV 5 and
— AV at the angle m — 6. Somewhere between, the constantly orthogonal v; and vo

must produce Av, and Avs at angle 7 /2. Those orthogonal directions give u; and us.

2 1 1/v/2 1/vV2

6 AAT = has 07 = 3 withu; = and 03 = 1 with up =

12 1/v2 V2|

11 0 1/v/6 e

ATA=|1 2 1|has o} =3withvy = [2/\6 |, 03 = Lwithvy = 0
011 1/v6 —1/v2

VB 110 V3 0 0 -

and vz = | —1/4/3 | . Then =[u; ug] [vi v2 w3] .

01 1 0 10
1/V3

>
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7

10

11

12

13

14

The matrix A in Problem 6 had o; = v/3 and 0o = 1 in ¥. The smallest change to

rank 1 is to make o5 = 0. In the factorization
A= UEVT = ’U,10'1’U? + ’U/QUQ’Ug

this change 02 — 0 will leave the closest rank—1 matrix as u; alfvlT. See Problem 14

for the general case of this problem.

The number 05 (A7) O max (A) is the same as oyax (A) /T min (A). This is certainly >
1. Itequals 1 if all o’s are equal, and A = UXV T is a multiple of an orthogonal matrix.

The ratio 0yax /0 min i the important condition number of A studied in Section 9.2.

A =UVTsince all 0; = 1, which means that ¥ = 1.

A rank-1 matrix with Av = 12u would have w in its column space, so A = uwT

for some vector w. I intended (but didn’t say) that w is a multiple of the unit vector

v =1(1,1,1,1) in the problem. Then A = 12uv™ to get Av = 12u when v"v = 1.

If A has orthogonal columns wy, ..., w, of lengths oy,...,0,, then ATA will be
diagonal with entries 0%,...,02. So the o’s are definitely the singular values of A

(as expected). The eigenvalues of that diagonal matrix AT A are the columns of I, so

V = I in the SVD. Then the u; are Av;/o; which is the unit vector w; /a;.

The SVD of this A with orthogonal columns is A = UXVT = (AXZ~1)(Z)(I).

Since AT = A we have 07 = A\ and 02 = M2, But )\, is negative, so o; = 3 and
oo = 2. The unit eigenvectors of A are the same u; = v, as for ATA = AA" and

ug = —v2 (notice the sign change because oy = — g, as in Problem 4).

Suppose the SVD of R is R = UXVT. Then multiply by @Q to get A = QR. So the
SVD of this A is (QU)XVT. (Orthogonal ) times orthogonal U = orthogonal QU.)

The smallest change in A is to set its smallest singular value o5 to zero. See # 7.



128 Solutions to Exercises

15 The singular values of A + I are not o; + 1. They come from eigenvalues of
(A+DT(A+1T).

16 This simulates the random walk used by Google on billions of sites to solve Ap = p.
It is like the power method of Section 9.3 except that it follows the links in one “walk”
where the vector p, = A¥p, averages over all walks.

17 A = USVT = [cosines including uy] diag(sqrt(2 — v/2,2,2 + /2)) [sine matrix]".

AV = UX says that differences of sines in V" are cosines in U times o’s.

The SVD of the derivative on [0, 7| with f(0) = 0 has w = sinnz, 0 = n, v = cosnz!
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Problem Set 7.1, page 370

1 A = uvT has rank 1 with u® = vT = [1 2 3 4]. Those vectors have ||ul|> =
||v]|? = 30 so the SVD has a division by v/30 to reach w1 and v;. Multiply by o1 = 30

to recover A.

u ’UT

30— —— =UXVT (1columnin U and V).
/30 V30 ( )

T
A= o1uU1v| =

B has rank r = 2. The first two columns of B are independent (the pivot columns).

Column 3 is a combination 2 (col 2) — (col 1). Column 4 is 3 (col 2) — 2 (col 1):

2 3 4 5 2 3 1 0 -1 -2
(col 1)(row 1)T
34 5 6 3 4 0 1 2 3
B = = +
4 5 6 7 4 5
(col 2)(row 2)T
5 6 7 8 5 6

Those pivot columns come from the first half of the book : not orthogonal ! They don’t
give the u’s and v’s of the SVD. For that we need eigenvalues and eigenvectors of

BTB and BBT.

2 All the singular values of I are & = 1. We cannot leave out any of the terms w;-v}
without making an error of size 1. And the matrix A = [ starts with size 1! None of

the SVD pieces can be left out.

Notice that the SVD is I = (U)(I)(UT) so that U = V. The natural choice for
the SVD is just USVT = IT1. But we could actually choose any orthogonal matrix
U. (The eigenvectors of I are very far from unique—many choices! Any orthogonal

matrix U holds orthonormal eigenvectors of 1.)

101 0 0
0 00 1 1
One possible rank 5 flag witha 3 by 3 crossof zerosis A= |1 0 1 1 1
1 41 11
LI EE Y
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1 2 1 1 1 0 1 2 11
2 2 2 2 =10 1| = 2 2 2 2
1 2 1 1 1 0
1 2 2 1 211 0 O pivot rows
1 3 3 1 3 01 1 columns of R
1 2 2 1 1 9 13
BBT= |1 3 3 2 3| = |13 19| . Trace 28, Determinant 2.
2 3
1 1 1 2 2 2 5 5
BTB= |92 3 1 3 3| =15 13 13|. Trace 28, Determinant 0.

2 3 5 13 13

With a small singular value o9 = \/%_4’ B is compressible. But we don’t just keep the
first row and column of B. The good row v, and column u; are eigenvectors of BT B
and BBT.

7 10 7
My hand calculation produced ATA = |10 16 10| and det(ATA — \I) =

7 10 7
=23 4+30A2 — 24\

This gives A = 0 as one eigenvalue of AT A (correct). The others are :
A —30A+24=0 gives A\=154++/152 - 24~ 15+ 14 =29 and 1.

So 01 &~ v/29 and 05 = 1. The svd (A) command in MATLAB will give accurate o’s
and U and V.

The matrix A has trace 4 and determinant 0. So its eigenvalues are 4 and 0—not used
in the SVD ! The matrix AT A has trace 25 and determinant 0, so A\; = 25 = O'% gives

0'1:5.

The eigenvectors v, vy of AT A (a symmetric matrix !) are orthogonal :
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20 10 2 2 20 10 1 1
=25 and =0

10 5| |1 1 10 5| -2 -2
Similarly AAT has orthogonal eigenvectors w1, u

5 10 1 1 5 10 2 2
=25 and =0

10 20| |2 2 10 20| | -1 -1

7 Multiply both sides of A = ULV by the matrix V to get AV = UX. Column by
column this says that Av; = o;u;. Notice that 3 goes on the right side of U when we

want to multiply every column of U by its singular value o;.

8 The text found A\; =07 =1 (3++/5) and then oy =1 (1++/5). Then 0y +1 equals o3.
Alsody =03 =2(3—-Vh)andor =% (V6—1)andoy —02 =3+ 3 =1
(Why don’t we choose o5 = 1 (1 —/5) ?).

9 The 20 by 40 random matrices are A = rand (20,40) and B = randn (20, 40). With
those random choices the 20 rows are independent with probability 1. Notice for these
continuous probabilities, this does not mean that the rows are always independent! A

random determinant might be 0 even when the probability of nonzero is 1.
MATLAB again gives the singular values of a random A and B.

By averaging 100 samples you would begin to see the expected distribution of o’s,

which is highly imortant in “random matrix theory”.

Problem Set 7.2, page 379

0 4

0
1 A= has eigenvalues 0 and 0; ATA = has eigenvalues A = 16 and
0 0 0 16
0. Then o1(A) = /16 = 4. The eigenvectors of AT A and AA™ are the columns of
0 1 10
V= and U =
10 0 1
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)
W
o

1 0 1
Then USVT = =

0

ja)

—

ja]

]
Il
=~

1
0 4 1
A= gives ATA = with \; = 16and Ao = 1. Same U and V.
1
0

0 0
1 0] (4 O 1
Then ULVT = = A.
0 1(]0 1 0
5 3 1 |1 -1
2 A= leads to ATA with eigenvectorsin V = —
11 35 V211 1
A 1 (4] 1 1
02 =8 wu = 20 — has unit vector u; = and o = 2v/2
o1 2 (o] o1 0
A 1 (0] 1 0
a% =2 ug = 22 — has unit vector uy = and oy = /2
g9 \/§ 2 g9 1
1 0| |2v2 11
The full SVDis A = UXVT = /V2.
0 1 V2|1 1
3 Problem 7.2.2 happens to have AA™ = diagonal matrix . So its eigenvectors

0 2
(1,0) and (0,1) goin U = I. Its eigenvalues are 02 = 8 and 02 = 2. The rows of A

are orthogonal but not orthonormal. So AT A is not diagonal and V is not 1.

2 1 1/V2 1/V2
4 AAT = has 03 = 3 withu; = / and 03 = 1 withuy = / )
1 2 1/v2 —1/V2
110 1/V6 1/V2
ATA= 11 2 1| has 0? =3withv; = 2/v6 |, 03 = 1withvy = 0
0 1 1 1/V6 —1/v2
1/V3
V300
and vz= | —1/4/3 | . Then V] Vo V3| = | U us =U%
011 0 10

1/V3
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1 I I IR S
5 () A= has v = — in its row space and u; = —— in its

3 3 V2 |1 V10 |3

column space. Those are unit vectors.

o

10 10
Since ATA = has A\; = 20 and Ay = 0, A itself has o1 = +/20 and has no

10 10
o2. (Remember that the r singular values have to be strictly positive!)

(b) If we want square matrices U and V, choose us and v5 orthogonal to w; and v :

1 3 1 |1 -1
and V =—

1
V10 |3 1 V21
6 If A = UXVT then AT = VXTUT and ATA = VETSVT. This is a diagonaliza-

tion VAVT with A = ¥TY (so each 0? = );). Similarly AAT = USXTUT is a

diagonalization of AAT. We see that the eigenvalues in ©X.T are the same o? = \;.

7 This small question is a key to everything. It is based on the associative law (AAT)A =

A(AT A). Here we are applying both sides to an eigenvector v of AT A:
(AATYAv = A(AT A)v = Adv = N Aw.
So Aw is an eigenvector of AAT with the same eigenvalue ).

T13«/50012

01
u; U3 V1 V2

0 V10 V5

1
9 This A = is a 2 by 2 matrix of rank 1. Its row space has basis v, its nullspace
3 6

has basis v, its column space has basis w1, its left nullspace has basis ws:

L ! Nullspace i
Vb |2 P 5

Row space

Column space , N(AT)

%‘»—l

(an)

ﬁ‘»—l |

< —
|

—_

3
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10

11

12

13

14

15

16

17

18

Solutions to Exercises

If A has rank 1 then so does A" A. The only nonzero eigenvalue of AT A is its trace,
which is the sum of all afj. (Each diagonal entry of AT A is the sum of a?j down one
column, so the trace is the sum down all columns.) Then o = square root of this sum,

and o7 = this sum of all a;.

3+v5 , 3-+5 Butdis

2
ATA = AAT = has eigenvalues 0% = 03 =

1 1 2 indefinite

o1 = (1—’-\/5)/2 = )\1(14), g2 — (\/5— 1)/2 = —Az(A), u; = v bllt Ug = —Va.
A proof that eigshow finds the SVD. When V'; = (1,0), V3 = (0, 1) the demo finds
AV and AV, at some angle #. A 90° turn by the mouse to V5, —V'; finds AV 5 and

— AV at the angle m — §. Somewhere between, the constantly orthogonal v; and vo

must produce Av; and Avs at angle 7 /2. Those orthogonal directions give u; and us.

The number oy (A7)0 max (A) is the same as oy (A) /Tmin (A). This is certainly >
1. Itequals 1 if all 0’s are equal, and A = ULV is a multiple of an orthogonal matrix.
The ratio 0max /O min is the important condition number of A studied in Section 9.2.

A =UVTsince all 0; = 1, which means that ¥ = 1.

A rank—1 matrix with Av = 12u would have w in its column space, so A = uw"

for some vector w. I intended (but didn’t say) that w is a multiple of the unit vector

v =1(1,1,1,1) in the problem. Then A = 12uv™ to get Av = 12u when v"v = 1.

If A has orthogonal columns wy,...,w, of lengths oy,...,0,, then AT A will be
diagonal with entries 0,...,02. So the o’s are definitely the singular values of A

(as expected). The eigenvalues of that diagonal matrix AT A are the columns of I, so
V = I in the SVD. Then the u; are Av;/o; which is the unit vector w; /a;.

The SVD of this A with orthogonal columns is A = UXVT = (AR ™1)(Z)(1).

Since AT = A we have 07 = A\ and 02 = M2, But )\, is negative, so o; = 3 and
o2 = 2. The unit eigenvectors of A are the same u; = v; as for ATA = AA" and

us = —vo (notice the sign change because oo = — o, as in Problem 11).

Suppose the SVD of R is R = UXVT. Then multiply by @Q to get A = QR. So the
SVD of this A is (QU)XVT. (Orthogonal ) times orthogonal U = orthogonal QU.)
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19

20

21

22

23

24

25

The smallest change in A is to set its smallest singular value o5 to zero.

1 100 1 0 10001 100
ATA = = has eigenvalues \(AT A) = 02(A).
0 1 100 1 100 1

1
A2 = 10002) + 1 = 0 gives A = 5001 & /(5001)2 — 1 ~ 5001 & <5001 - 10002)'

So A & 10002 and 1/10002 and o =~ 100.01 and 1/100.01. Check o105 ~ 1 = det A.

The singular values of A + I are not o; + 1. They come from eigenvalues of

1 0

(A+ I)T(A +I). Test the diagonal matrix A = .
0 3

Since Q; and U are orthogonal, so is Q1 U. (check: (Q:U)Y(Q1U) = UTQT Q.U =
UTU = 1.) So the SVD of the matrix Q; AQT isjust Q:UXVTQT = (Q:U)X(Q.V)*
and Y is the same as for A. The matrices A and Q1 AQ} and ¥ are all “isometric” =

sharing the same X..

The singular values of () are the eigenvalues of QT(Q) = I (therefore all 1°s).

3 1
(a) From T Sz = 327 + 27125 + 323 you can see that S = . Its eigenvalues
1 3

are 4 and 2. The maximum of TSz /x Tz is 4.

[|[Az|]? (21 +4x5)?
||| ]2 ot + 3

2

value is 07 (A). For this matrix A = {1 4] that singular value squared is o3 = 17.

(b) The 1 by 2 matrix A = [1 4} leads to . The maximum

1 4
This is because AAT = [17] and also ATA = has A = 17 and 0.
4 16

T

The minimum value of is the smallest eigenvalue of S. The eigenvector is the

zTx

minimizing . That eigenvector gives 7 Sz = T\,

|[Az|?  xTATAx
|zl aTa

(and not usually an eigenvector of A).

we see that the minimizing x is an eigenvector of AT A

Since
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0 cos
26 From AV = UX we know that = first column of V' goes to 2 = first
1 sin 6
—sinf
column of UX.. Similarly the second column goes to . The two outputs
0 cos

V3
1

are orthogonal and they are the axes of an ellipse. With 8 = 30° those axes are

1
going out from (0, 0) at 30° and 3 Y going out at 120°. Comparing to the picture
3
in Section 7.4, the first step would be a reflection (not a rotation), then a stretch by
factors 2 and 1, then a 30° rotation.

27 Start from A = UXV'T. The columns of U are a basis for the column space of A, and

so are the columns of C, so U = C'F for some invertible r by r matrix F'.

Similarly the columns of V' are a basis for the row space of A and so are the columns

of B, so V = BG for some invertible r by r matrix G.

Then A = USVT = C(FEGT)BY = CMBT and M = FXG" is r by r and

invertible.

Problem Set 7.3, page 391

1 The row averages of Ay are 3 and 0. Therefore

2 1 0 -1 -2 AAT 1110 O
A= and S = ==
-1 10 1 -1 4 410 4
. 10 4 : L
The eigenvalues of S are A\ = T and Ay = 1= 1. The top eigenvector of .S is
0
I think this means that a vertical line is closer to the five points (2, —1),...,(—2,—1)

in the columns of A than any other line through the origin (0, 0).
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2 Now the row averages of Ay are % and 2. Therefore

0

_1 T
2 and S = A4 = 1
-1 5 5

[ T
—_ M=
O Wlw

o Nl
O W=

-1 4
Again the rows of A are accidentally orthogonal (because of the special patterns of

0
those rows). This time the top eigenvector of .S is . So a horizontal line is closer

1
to the six points (1,—1),..., (=4, —1) from the columns of A than any other line
through the center point (0, 0).
1 2 3 -1
3 A = has row averages 2 and so A = . Then S =
5 2 2 2 -1 -1
1 11 2 -3
—AAT ==
2 213 6

Then trace (S) = 1 (8) and det(S) = (%)2 (3). The eigenvalues A(S) are § times the

roots of A2 — 8\ + 3 = 0. Those roots are 4 + /16 — 3. Then the ¢’s are v/\; and
V. 2 0 0

A
4 This matrix A with orthogonal rows has S = =

0 8 0
0 0 4
With \’s in descending order A; > Ao > s, the eigenvectors are (0, 1,0) and (0,0, 1)

1
n—1 3

and (1, 0,0). The first eigenvector shows the u; direction. Combined with the second

eigenvector us, the best plane is the yz plane.

These problems are examples where the sample correlation matrix (rescaling .S so all
its diagonal entries are 1) would be the identity matrix. If we think the original scaling
is not meaningful and the rows should have the same length, then there is no reason to

choose u; = (0,1, 0) from the 8 in row 2.

5 The correlation matrix DS D which has 1’s on the diagonal is

1 1 1
: 4 2 0|3 1 3 0
— 1 1 — |1 1
DSD = : 2 41 3 =3 1 2
1[0 1 1 1 0 3 1
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6 Working with letters instead of numbers, the correlation matrix C' = DSD is

1 ci2 cs

C12 1 C23 with Cl2 = 12 and c13 = 13 and Cog = 23 )
0102 0103 0203
c13 ca3 1
1/0'1
Then D = 1/09 gives DSD = C.
1/0'3

7 From each row of Ag, subtract the average of that row (the average grade for that
course) from the 10 grades in that row. This produces the centered matrix A. Then the
sample covariance matrix is S = %AAT. The leading eigenvector of the 5 by 5 matrix
S tells the weights on the 5 courses to produce the “eigencourse”. This is the course

whose grades have the most information (the greatest variance).

If a course gives everyone an A, the variance is zero and that course is not included in

the eigencourse. We are looking for most information not best grade.

Problem Set 7.4, page 398

1474 = |1 2 fas = 50 and 0 L1 L |2
= asA=>50and0, vi = — , Vg = ——
20 40 V5 |2 Vb |1

2 Orthonormal bases: v for row space, v, for nullspace, u; for column space, uy for

, 01 = \/50.

N(AT). All matrices with those four subspaces are multiples cA, since the subspaces
are just lines. Normally many more matrices share the same 4 subspaces. (For example,
all » by n invertible matrices share R™ as their column space.)

1 |7 -1 1 10 20

3A=0Q5S=— — . S is semidefinite because A is singular.
V50 |1 7| V50 |20 40
1/V/50 0 1|1 3 2 4 1
4 AT=V / Ut = — ; ATA= , AAT =

0 0 50 19 ¢ 4 8 39
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10

11

12

13

14

10 8 1 |1 1
ATA = has A = 18 and 2, v; = — Uy = — Lo = /18
8 10 V2 |1 V2|
and 03 = \/§
18 0 1 0
AAT = has u; = , Uy = . The same /18 and /2 go into ¥.
0 2 0 1
vt
_ T T ‘o T T
o1U] OaUsy =01U1V] +02U2v; . In general thisis oy u vi +- - -+o,u,v,. .
vy
1 1 1
A=UxVT splits into QK (polar): Q =UVT = — and K = VXVT =

S

1 -1
VIS 0
0 V2|

AT is A~1 because A is invertible. Pseudoinverse equals inverse when A~ exists!

9 12 0 .6 .8 0
ATA =112 16 0| hasA=25,0,0andv, = | 8|, v2a=|—6|,v3=|0].
0 0 O 0 0 1
Here A = [3 4 0] hasrank 1 and AAT = [25] and o; = 5 is the only singular value
in¥=[500]
2 12 36 48 0
A=[1]][5 0 0]VTand A*=V | 0| =|.16|; ATA=| 48 64 0]|;AAT=[1]
0 0 0 0 0

The zero matrix has no pivots or singular values. Then ¥ = same 2 by 3 zero matrix

and the pseudoinverse is the 3 by 2 zero matrix.
If det A = 0 then rank(A) < n; thus rank(A™) < n and det AT = 0.
This problem explains why the matrix A transforms the circle of unit vectors ||x|| = 1
into an ellipse of vectors y = Ax. The reason is that x = A~y and the vectors with
||A~ty|| = 1 do lie on an ellipse :

A7yl =1 s gTATTAT Y =1 or gt (A4 Ty =1

That matrix (AAT) =1 is symmetric positive definite (A is assumed invertible).



140 Solutions to Exercises

2 1 5 4 1 5 —4
A= gives AAT = and (AAT)"' =2
12 45 91 4 5

So the ellipse ||A~! y||?> = 1 of outputs y = Az has equation 5y7 — 8y1y2 + 5y5 = 9.
The singular values of this positive definite A are its eigenvalues 3 and 1.

The ellipse ||A~! y|| = 1 has semi-axes of lengths 1/3 and 1/1.

15 (a) AT Aissingular (b) This ™ in the row space does give AT Az™ = ATb () If
(1, —1) in the nullspace of A is added to =+, we get another solution to ATAZ = ATb.
But this Z is longer than & because the added part is orthogonal to ™ in the row space

and ||Z||> = ||x™||* + ||added part from nullspace]|?.

16 =t in the row space of A is perpendicular to Z — ™ in the nullspace of ATA =
nullspace of A. The right triangle has ¢? = a? + b2
17 AATp=p, AATe=0, ATAx, = x,, AT Ax, =0.
.36 .48

18 AT =VETUTisi[.6 8] =[.12 .16]and AT A =[1]and AAT = =
48 .64

projection.

19 L is determined by ¢5;. Each eigenvector in X is determined by one number. The
counts are 1 4+ 3 for LU, 1+ 2+ 1 for LDU, 1+ 3 for QR (notice 1 rotation angle),
1+2+1forUSVT, 242+ 0for XAX L

20 LDLT and QAQT are determined by 1 + 2 + 0 numbers because A is symmetric.
Note Problem 20 should have referred to Problem 19 not 18.

21 Check the formula for A* A using A™ and A:
r vouT r r
At A= <Z #> (Z o—jujv;-f> = Z v;u] u;v; because u; u;=0wheni # j
o
1 1 1

T
Then every u} u; = 1 (unit vector) so ATA = Z 'u,-'uiT is correct.
1

r
1

r r T
Similarly AA™ = (Z i u; v}> <Z Ti%i
i
1

1
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Al |u Av u ul| ]
22 M = = =0 . Thus is an eigenvector.

AT 0 v ATy v v

The singular values of A are eigenvalues of this block matrix.
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Problem Set 8.1, page 407

10

11

12

13

With w = 0 linearity gives T'(v + 0) = T'(v) + T'(0). Thus 7'(0) = 0. Withc = —1
linearity gives T'(—0) = —T'(0). This is a second proof that T(0) = 0.

Combining T'(cv) = ¢T'(v) and T'(dw) = dT'(w) with addition gives T'(cv + dw) =
¢T'(v) + dT (w). Then one more addition gives c¢T'(v) + dT(w) + €T’ (u).

(d) is not linear.

@ S(T®)=v  (b) S(T(v1) + T(v:)) = S(T(v1)) + S(T(v2).

Choose v = (1,1) and w = (—1,0). Then T'(v) + T'(w) = (v + w) but T'(v + w) =
(0,0).

(a) T(v) = v/||v|| does not satisfy T'(v + w) = T'(v) + T'(w) or T'(cv) = T'(v)
(b) and (¢) are linear (d) satisfies T'(cv) = ¢T'(v).

@T(Iw)=v & TT)=v+22) © TT@)=-v @ T(T()=T)
(a) The range of T'(v1,v2) = (v1 — v2,0) is the line of vectors (¢, 0). The nullspace
is the line of vectors (c, ). (b) T(v1,ve,v3) = (v1,v9) has Range R?, kernel

{(0,0,v3)} (c) T(v) = 0has Range {0}, kernel R? (d) T(v1,v2) = (v1,v1)
has Range = multiples of (1, 1), kernel = multiples of (1, —1).

If T(v1,v2,v3) = (va,v3,v1) then T(T(v)) = (v3,v1,v2); T3(v) = v; T1O(v) =
T(v).
(@) T(1,0)=0 (b) (0,0,1) is not in the range (¢) T(0,1)=0.

For multiplication T'(v) = Av: V = R", W = R™; the outputs fill the column

space; v is in the kernel if Av = 0.

T(v) = (4,4);(2,2); (2,2); if v = (a,b) = b(1,1) + %52(2,0) then T(v) = b(2,2) +
(0,0).

The distributive law (page 69) gives A(My + M) = AM; + AM>. The distributive
law over ¢’s gives A(cM) = c(AM).
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14

15

16

17

18

19

20

21

22

23

24

This A is invertible. Multiply AM = 0 and AM = B by A~! to get M = 0 and

M = A~!'B. The kernel contains only the zero matrix M = 0.

2 2 0 0
This A is not invertible. AM = I is impossible. A = . The
-1 -1 0 0
range contains only matrices AM whose columns are multiples of (1, 3).
0 0 0 1
No matrix A gives A = . To professors: Linear transformations on
10 0 0

matrix space come from 4 by 4 matrices. Those in Problems 13—15 were special.
For T(M) = MT (a) T? = I is True (b) True (¢) True (d) False.
b a 0

0
T(I)=0but M = = T'(M); these Ms fill the range. Every M =
00 c d

is in the kernel. Notice that dim (range) + dim (kernel) = 3 + 1 = dim (input space
of 2by 2 M’s).

T(T-Y(M)) = M soT-(M) = A~'MB~".

(a) Horizontal lines stay horizontal, vertical lines stay vertical (b) House squashes
onto a line (c) Vertical lines stay vertical because T'(1,0) = (a1, 0).

2 0 ) ST )
D= doubles the width of the house. A = projects the house (since

0 1

A? = A from trace = 1 and A\ = 0, 1). The projection is onto the column space of A =
1 1
line through (.7,.3). U = will shear the house horizontally: The point at

0 1
(z,y) moves over to (z + y,y).

a 0
(a) A= with d > 0 leaves the house AH sitting straight up (b)y A=3I

0 d
cosf —sinf
expands the house by 3 (c) A= rotates the house.
sin cos 6
T'(v) = —v rotates the house by 180° around the origin. Then the affine transformation

T(v) = —v + (1, 0) shifts the rotated house one unit to the right.

A code to add a chimney will be gratefully received!



144 Solutions to Exercises

25 This code needs a correction: add spaces between —10 10 —10 10

1 0 b5 5
26 compresses vertical distances by 10 to 1. projects onto the 45° line.
0 .1 55
5 .
rotates by 45° clockwise and contracts by a factor of 1/2 (the columns have
-5

11
length 1/ V2). has determinant —1 so the house is “flipped and sheared.” One
1 0

way to see this is to factor the matrix as LDLT:

11
= = (shear) (flip left-right) (shear).
1 0 11 -1 10 1
27 Also 30 emphasizes that circles are transformed to ellipses (see figure in Section 6.7).

28 A code that adds two eyes and a smile will be included here with public credit given!

29 (a) ad —bc =0 (b) ad — bc > 0 (©) |ad — bc| = 1. If vectors to two

corners transform to themselves then by linearity 7" = I. (Fails if one corner is (0,0).)

30 Linear transformations keep straight lines straight! And two parallel edges of a square
(edges differing by a fixed v) go to two parallel edges (edges differing by T'(v)). So

the output is a parallelogram.

Problem Set 8.2, page 418

0 0 2 0
For Sv = d?v/dx?
, , 000 6
1 vy, v9, 03,04 =1, 2,22 2° The matrix for S'is B = .
0 0 0O
Sv1 = Svz2 = 0, Svz = 201, Sva = bv2;
000 0
2 Sv = d*v/dz?® = 0 for linear functions v(x) = a + bx. All (a,b,0,0) are in the

nullspace of the second derivative matrix 5.

3 (Matrix A)?> = B when (transformation T')> = S and output basis = input basis.
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10

11

12

13

The third derivative matrix has 6 in the (1,4) position; since the third derivative of z*
is 6. This matrix also comes from AB. The fourth derivative of a cubic is zero, and B?

is the zero matrix.
T (v, + vy + v3) = 2w; + wy + 2ws; A times (1,1, 1) gives (2,1, 2).
v = ¢(ve —w3) gives T'(v) = 0; nullspace is (0, ¢, —c); solutions (1,0,0) + (0, ¢, —c).

(1,0,0) is not in the column space of the matrix A, and w; is not in the range of
the linear transformation 7. Key point: Column space of matrix matches range of

transformation.

We don’t know T'(w) unless the w’s are the same as the v’s. In that case the matrix is
A2,
Rank of A = 2 = dimension of the range of T'. The outputs Av (column space) match

the outputs T'(v) (the range of T'). The “output space” W is like R™: it contains all

outputs but may not be filled up.

1 00 1 1
The matrix forTis A= |1 1 0/. Fortheoutput || chooseinputv = | —1 | =
1 11 0 0

A1 | 0|. This means: For the output w; choose the input v; — vs.

0
1 0 0
Al =1]_1 1 0| soT Y wy) =v; —ve, T Hwy) = vy — w3, T 1 (w3) =
0 -1 1

v3. The columns of A~! describe 7! from W back to V. The only solution to

T(v)=0isv =0.
(¢) T7H(T(w1)) = w; is wrong because w is not generally in the input space.

(@) T(v1) = vy, T(v2) = vy is its own inverse (b) T'(v1) = v1,T(v2) = 0 has

T? =T (c) If T? = I for part (a) and T? = T for part (b), then 7" must be I.



146

14

15

16

17

18 (

19

20 w

21

22

Solutions to Exercises

2 1 3 - ) 2
(a) (b) = inverse of (a) (c) A must be 24
5 3 -5 2 6 3
r s 1 0 r S
(a) M = transforms and to and ; this is the “easy”
t u 0 1 t U
- -1
a b
direction. (b) N = transforms in the inverse direction, back to the stan-
c d
dard basis vectors. (c) ad = bc will make the forward matrix singular and the inverse
impossible.
—1
1 0] 12 1 3 -1
MW = =
1 215 3 -7 3

Reordering basis vectors is done by a permutation matrix. Changing lengths is done by

a positive diagonal matrix.

(cos 0, —sin §). Minus sign from Q~! = Q7.

1
= first column of M ~! = coordinates of in basis
—4 0

ws(x) = %(xZ —x); y = 4w + dbws + 6ws.

1 0 1 11
w’s to v’s: | .5 0 —.5]|.wv’stow’s: inverse matrix = | ] 0 0f. The key
b1 5 1 -1 1
idea: The matrix multiplies the coordinates in the v basis to give the coordinates in the
w basis.
1 a a? A 4
The 3 equations to match 4,5,6 at x = a,b,care |1 b b2 B| = | 5. This
1 ¢ C 6

Vandermonde determinant equals (b — a)(c — a)(c — b). So a, b, c must be distinct to

have det # 0 and one solution A, B, C.
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23

24

25

26

27

28

29

30

31

32

33

34

The matrix M with these nine entries must be invertible.

Start from A = QR. Column 2 is a2 = r12q; + 7229,. This gives as as a combination

of the g’s. So the change of basis matrix is R.

Start from A = LU. Row 2 of A is £a1(row 1 of U) + €25 (row 2 of U). The change of

basis matrix is always invertible, because basis goes to basis.
The matrix for T'(v;) = A\;v; is A = diag(A1, A2, Az).
If T'is not invertible, T'(v1), . . . , T'(v,, ) is not a basis. We couldn’t choose w; = T'(v;).

0 3 1 0
(a) gives T'(v1) = 0 and T(vs) = 3v;. (b) gives T'(v1) = vy
0 0 0 0

and T'(vy + v3) = v1 (which combine into T'(vy) = 0 by linearity).

T(z,y) = (z,—y) is reflection across the x-axis. Then reflect across the y-axis to get

S(z,—y) = (—x,—y). Thus ST = —1I.

S takes (z,y) to (—z,y). S(T(v))=(-1,2). S(v)=(-2,1)and T (S(v))=(1, —2).
cos2(f —a) —sin2(0 — «)

Multiply the two reflections to get which is rotation
sin2(f —a)  cos2(0 — )

by 2(0 — «). In words: (1,0) is reflected to have angle 2, and that is reflected again
to angle 20 — 2a.

1 0 0 O
The matrix for T in thisbasisis A= [0 1 0 0

0O 0 0 O
a b 1 0 a 0
Multiplying by gives T(v1) = A = = awvy + cvs. Simi-
c d 0 0 c 0
larly T'(v2) = ava+ cvy and T'(v3) = bvy +dvs and T'(v4) = bvs + dvy. The matrix
a 0 b O
0 a 0 b
for 7" in this basis is
c 0 d 0
_0 c 0 d_

False: We will not know T'(v) for every v unless the n v’s are linearly independent.
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Problem Set 8.3, page 429

1 For this matrix J, the rank of J — 3] is 3 so the dimension of the nullspace is only
1. There is only 1 independent eigenvector even though A = 3 is a double root of

det(J — AI) = 0: arepeated eigenvalue.

_ ) -
2
J p—
3 1
- 3 -
0 1
2 J= is similar to all other 2 by 2 matrices A that have 2 zero eigenvalues but
0 0
only 1 independent eigenvector. Then J = B 1 A, B, is the same as B1J = A1 B; :
4 0 0 1 0 4 4 0
BJ = = = A B,
0 1 0 0 0 0 0 1
4 1 0 1 4 -8 4 1
ByJ = = = Ay By
2 0 0 0 2 —4 2 0

3 Every matrix is similar to its transpose (same eigenvalues, same multiplicity, more than

that the same Jordan form). In this example

1 2 10 20 0 1
BJ = 1 02 1]=]|120 1 =J'B.
1 00 2 01 2 1

4 Here J and K are different Jordan forms (block sizes 2, 2 versus block sizes 3, 1). Even
though J and K have the same \’s (all zero) and same rank, J and K are not similar.

If BK = JB then B is not invertible :

01 00] [0 by b 0]
00 1 0 0 by by O
BK:B _ 21 22
000 0 0 by by O
(000 0] |0 by bo 0]
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[ 01 00 ] [ bar  bay baz boy ]
0O 0 0 O 0 0 0 0
JB = B =
0 0 0 1 ba1 baz bas bag
0O 0 0 O 0 0 0 0

Those right hand sides_ agree only if égl = 0_7 byr = 0,boy = 0,b44_ = 0,by = 0,
bso = 0. But then also b1; = by = 0 and b3; = bss = 0. So the first column has
b11 = bo1 = b31 = by1 = 0 and B is not invertible.

5 If A3 is the zero matrix then every eigenvalue of A is A\ = 0 (because Az = Az leads
to @ = A3x = \3x). The Jordan form .J will also have J3 = 0 because J = B~'AB
has J3 = B~'A3B = 0. The blocks of .J must become zero blocks in .J3. So those

blocks of .J can be
(01 0 0]
0 10
0 1 0 010 third power
{ 0 } 0 0 1 but not
0 0 0 0 0 1 is not zero
0 0 0
1 00 0 0 |
2
The rank of J (and A) is largest if every block is 3 by 3 of rank 2. Then rank < 3"

If A™ = zero matrix then A is not invertible and rank (A4) < n.

6 This question substitutes u; = te and uy = e to show that uy, us solve the system

u' = Ju:
uf = Aug + ug e+ ther = A(teM) + (eM)
uy = A Aert = A(eM).
Certainly u; = 0 and up = 1 at t = 0, so we have the solution and it involves te** (the

factor ¢ appears because A is a double eigenvalue of .J).
7 The equation uyo — 2A\ugy1 + Auy is certainly solved by u;, = A*. But this is a
second order equation and there must be another solution. In analogy with te*! for the

differential equation in 8.3.6, that second solution is uy = kAF. Check:

(k4 2)A 2 —2X\(k + DA + X2 (B)AF = [k +2 — 2(k + 1) + k] A" = 0.
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8 A3 = 1 has 3roots A\ = 1 and €27/3 and e*™/3. Those are 1, A, A2 if we take

A\ = ¢2™/3_ The Fourier matrix is

1 1 1 1 1 1
F5; = 1 A 22 = 1 6271"&'/3 6471'1'/3
1 A2 )\ 1 e471"i/3 6871'1'/3

9 A 3 by 3 circulant matrix has the form on page 425:

Ch C1 C 1 1

C=1c¢ ¢ ¢ | WithC | 1 | =(coteiter)]| 1

Cc1 C2 (O 1 1
1 1 1 1
cl A = (Co+01/\+02)\2) A Cl N | = (Co+01/\2+02/\4) A2
A2 p: A %

Co

Those 3 eigenvalues of C' are exactly the 3 components of Fc=F | ¢ |,
C2
10 The Fourier cosine coefficient cj is in formula (7) with integrals from —7 to 7. Because

f drops to zero at = L, the integral stops at L :

[ f(x)cos3zdr 1 v=b 2sin3L

L
1
“ J(cos 3z)? dx W/_L( )(cos 3z) dx 3 {Sm xLZ_L 3

Note that we should have defined f(z) = 0 for L < |z| < 7 (not 27 !).
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Problem Set 9.1, page 436

1

2

3

10

11

12

13

14

15

(a)(b)(c) have sums 4, —2 + 2i, 2 cos # and products 5, —2i, 1. Note () (e=%?) = 1.

In polar form these are v/5¢', 5¢%, —-e™¥, /5.

E

=

The absolute values are » = 10, 100, =5, and 100. The angles are 6, 26, —6 and —26.

|z x w| =6, |z+w| <5, |z/w] =

[SV11\V]

, |z —w| <5.

1/z has absolute value 1/r and angle —6; (1/r)e~* times re'® equals 1.

a —b||c| [ac—bd| real part 1 -3 1 10| . ]
= is the matrix

b a||d| |bc+ad| imaginary part |3 11]-3 0

form of (1 4 3¢)(1 — 3¢) = 10.

A1 —AQ Iy b . . T
= gives complex matrix = vector multiplication (A; +

A2 A1 o bg
iAg)(acl + ng) = b1 + Zbg

240 240 (1+0) =1+36; e7/2 = —i; 7" = —1; {54 = —i; ()1 =i

z + Z is real; z — Z is pure imaginary; 27 is positive; z/Z has absolute value 1.

0
includes al (which just adds a to the eigenvalues and b . So the
b a -1 0
eigenvectors are ©1 = (1,4) and ¢5 = (1, —%). The eigenvalues are A\; = a + bi and

Xo = a — bi. We see Ty = @9 and \; = \y as expected for real matrices with complex
eigenvalues.

(@) When a = b = d = 1 the square root becomes Ve, N is complex if ¢ < 0
(b) A=0and A = a + d when ad = bc (c) the \’s can be real and different.
Complex \’s when (a+d)? < 4(ad — bc); write (a+d)? —4(ad — be) as (a —d)? +4be
which is positive when bc > 0.

The symmetric block matrix has real eigenvalues; so i\ is real and A is pure imaginary.
(@) 2e"™/3,4e™/3 (b) €2, M0 (c) 7€/, 49¢3™ (= —49)  (d) V/50e /4,
50e /2,
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16 r = 1, angle Z — 6; multiply by €' to get e'™/2 = i.

17 a+ib=1,i,~1, —i, £ 5 £ 7. Theroot W = w™' = e 2845 1//2 —i/V/2.

18 1, 2™/3, ¢47i/3 gre cube roots of 1. The cube roots of —1 are —1, e™/3, ¢~ 7i/3,

Altogether six roots of 26 = 1.
19 cos 30 =Re[(cos 0 +isin 6)®]=cos® § — 3 cos fsin? 6; sin 30 =3 cos? fsin § —sin® 6.

20 If the conjugate Z = 1/z then |z|? = 1 and z is any point €'’ on the unit circle.

21 ¢’ is at angle § = 1 on the unit circle; |i¢| = 1¢; Infinitely many ¢ = ¢*(7/2+27n)e,

22 (a) Unitcircle (b) Spiralintoe=2" (c) Circle continuing around to angle § = 272

Problem Set 9.2, page 443

1 |Jull = V9 =3, |v|| = V3, ullv = 3i + 2, vPu = —3i + 2 (this is the conjugate of
ulv).

2 0 1414

3 1
2 AUA = 0 2 14| and AAH = are Hermitian matrices. They
1 3
1—7 1—1 2
share the eigenvalues 4 and 2.

3 z=multiple of (1414, 1+1i, —2); Az=0 gives 2 A" = 0" 50 z (not 2!) is orthogonal

to all columns of AY (using complex inner product 2! times columns of A™).
4 The four fundamental subspaces are now C(A), N(A), C(A?), N(AY). A" and not A™.
5 (a) (AHA)H = AHAHH — A A aoqin (b) If A% Az = 0 then (211 AM)(Az) = 0.
This is || Az||> = 0 so Az = 0. The nullspaces of A and A™ A are always the same.

(a) False . .
6 A=Q = (b) True: —iis not an eigenvalue when S = S™.

(c) False -1 0

7 ¢S is still Hermitian for real c; (iS)! = —iS" = —i$ is skew-Hermitian.
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8

10

11

12

13

14

15

16

17

18

0 0 —1 —1
This P is invertible and unitary. P> = | -1 o 0|, P® = i -
0 -1 0 —1
—il. Then P9 = (—4)33P = —iP. The eigenvalues of P are the roots of \*> = —i,
which are i and i?>™"/3 and ie*™"/3.

One unit eigenvector is certainly ; = (1,1,1) with A\; = 4. The other eigenvectors

are €, = (1, w,w?) and &3 = (1,w?, w*) with w = e2™/3. The eigenvector matrix
is the Fourier matrix F5. The eigenvectors of any unitary matrix like P are orthogonal

(using the correct complex form a2y of the inner product).

(1,1,1), (1,e2™/3 e4i/3) (1, e*/3, ¢2™/3) are orthogonal (complex inner product!)
because P is an orthogonal matrix—and therefore its eigenvector matrix is unitary.

If QUQ = I then Q 1(QM)™! = Q7 Y(QHY = I so Q! is also unitary. Also
(QUHY(QU) = UMQHQU = URU = I so QU is unitary.

Determinant = product of the eigenvalues (all real). And A = A™ gives det A =det A.

(2" AM)(Az) = ||Az||? is positive unless Az = 0. When A has independent columns

this means z = 0; so A" A is positive definite.

g 1 1 -1+ 2 0 1 1 1—1
V3li4i 1 0 1| V3|-1-i 1
1 1 —1—1 21 0] 1 1 141
K =@GAT inProblem 14) = — — ;
V3li-i 1 0 —i| V3 |-1+i 1
A’s are imaginary.
U 1 1 —i cosf +isinf 0 1 |1 = has || = 1
= — — as == 1.
V2 —1 1 0 cosf —isinf V2 i 1

1+v3 =144l |1 0 1++3 —i
U= 1 1 with L2 = 6+2v/3.

Ll a4i 1430 =1L |-1-i 143
Unitary means |A| = 1. U = U gives real \. Then trace zero gives A = 1 and —1.

—_

The v’s are columns of a unitary matrix U, so UH is U7, Then z = UU%z =

(multiply by columns) = v (v}'2) + - - - + v, (vl 2): a typical orthonormal expansion.
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19 z = (1,4, —2) completes an orthogonal basis for C3. So does any '’ z.
20 S=A+iB=(A+iB)"! = AT —iBT; Ais symmetric but B is skew-symmetric.

21 C" has dimension n; the columns of any unitary matrix are a basis. For example use

the columns of 41: (4,0,...,0),...,(0,...,0,%)

_ a b+ic w ez | with |w]? 4|z =1
22 [1]and[—1]; any [ ]; ; _
b—1c d —z €W | and any angle ¢

23 The eigenvalues of A are complex conjugates of the eigenvalues of A: det(A—\I)=0
gives det(A" — \I) = 0.

24 (I —2uu™)! = I — 2uwut! and also (I — 2uu')? = I — 4uu! + du(ullu)ut! = 1.

The rank-1 matrix uu™ projects onto the line through .
25 Unitary URU = I means (AT —iB")(A+iB) = (ATA+B"B)+i(ATB-BTA)=1.
ATA + BTB = I and AT B — BT A = 0 which makes the block matrix orthogonal.

26 We are given A +iB = (A +iB)! = AT —iBT. Then A = AT and B = —B". So
—-B
that is symmetric.
B A

27 SS1 = I gives (S~1)HSH = [. Therefore (S~1)His (SH)~! = S~Land S~1is

Hermitian.

28 If U has (complex) orthonormal columns, then UMU = I and U is unitary. If those
columns are eigenvectors of A, then A = UAU ™! = UAU" is normal. The direct test
for a normal matrix (which is AAY = A" A because diagonals could be real!) and A"

surely commute:
AAR=(UAUN(UARUD=U(AANUR =U(ABAN) U = (UARUR(UAUT) =48 A.

An easy way to construct a normal matrix is 1 + ¢ times a symmetric matrix. Or take
A = S + 4T where the real symmetric S and T commute (Then AY = S — iT and
AAR = AH Q).
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Problem Set 9.3, page 450
1 Equation (3) (the FFT) is correct using i2 = —1 in the last two rows and three columns.
1 1 [1 1 1 |1 1
1|1 1 1 1
2 F-1 = - - = - FH,
1 2 1 1]2]1 ~1 4
i 1_ i 1 i2_ i —1
[ 171 1 1 [1 1]
1 132 1 1 _
3 F= permutation last.
1 1 1 1 -1
i 1L 1 i2_ i —1 i_
1 1 1
4 D= e27i/6 (note 6 not 3) and Fy | 1 e27/3 4mi/3
e47ri/6 1 647ri/3 eQTri/3
5 F~lw = v and F~!'v = w/4. Delta vector < all-ones vector.
(4 0 0 0]
0 0 4 )
6 (F,)? = and (F)* = 161. Four transforms recover the signal!
0 0 0
0 4 0
1] 1] 2] [2] o] Jo]l TJo| [ 2]
0 1 0 0 1 0 0 0
7 c= — — =Fc. Also C= — — =FC.
1 0 0 2 0 1 2 —2
0 0 0] [O] 1 1 0] [ 0

Addi_né c+C :gives (

—_

,1,1,1) to (4,0,0,0) = 4 (delta vector).

8 ¢ — (1,1,1,1,0,0,0,0) — (4,0,0,0,0,0,0,0) — (4,0,0,0,4,0,0,0) = Fyc.

C - (0,0,0,0,1,1,1,1) — (0,0,0,0,4,0,0,0) = (4,0,0,0,—4,0,0,0) = F5C.

9 If w% = 1 then w? is a 32nd root of 1 and y/w is a 128th root of 1: Key to FFT.
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For every integer n, the nth roots of 1 add to zero. For even n, they cancel in pairs. For
any n, use the geometric series formula 1 +w+ -+ +w" ! = (w" —1)/(w—1) = 0.
In particular for n = 3, 1 + (=1 +iv/3)/2 4+ (—1 —iv/3)/2 = 0.
The eigenvalues of P are 1,4,i> = —1, and i> = —i. Problem 11 displays the eigen-
vectors. And also det(P — \I) = \* — 1.

010
A = diag(1,i,i%,i3); P= |0 0 1| and PTleadto A3 —1=0.

100
e1 = cog+c1+ca+tesgand ey = cg+c1i+coi® +c3i°; E contains the four eigenvalues
of C = FEF~! because F contains the eigenvectors.
Eigenvaluese; =2 —1-1=0, ea=2—-i—i3 =2, e3=2—(—1)— (=1) =4,
ey =2 — 33 — 9 = 2. Just transform column 0 of C. Check trace 0 + 2+ 4 + 2 = 8.
Diagonal E needs n multiplications, Fourier matrix I’ and F~! need %n log, n multi-
plications each by the FFT. The total is much less than the ordinary n? for C times z.
2k

kaz’ wN72k

The row 1,@", w?*, ... in F is the same as the row 1, w ,...1n F because

wN—F — o@mi/N)Y(N=k) ig o2mip—(2mi/N)k

ise = 1 times W*. So F and F have the same
rows in reversed order (except for row 0 which is all ones).

0 000 reverses to 000 =0

1 001 reverses to 100 =4

2 010 reverses to 010 = 2 Now evens come before odds !

3 011 reversesto 110 =6

4 100 reversesto 001 =1

5 101 reversesto 101 =5

6 110 reversesto 011 =3

7 111 reversesto 111 =7
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Problem Set 10.1, page 459

-1 1 0 c 1
1A= |1 0 1 | ; nullspace contains | ¢ |; | Q| is not orthogonal to that nullspace.
0 —1 1 c 0

2 ATy =0fory = (1,—1,1); current along edge 1, edge 3, back on edge 2 (full loop).

-1 1 0 b -1 1 0 b
3[A b]=]|-1 0 1 by|leadsto[U c]= 0 -1 1 by—10
0 —1 1 b3 0 0 0 bg—by+b;

The nonzero rows of U come from edges 1 and 3 in a tree. The zero row comes from

the loop (all 3 edges).

4 For the matrix in Problem 3, Az = b is solvable for b = (1,1,0) and not solvable
for b = (1,0,0). For solvable b (in the column space), b must be orthogonal to y =
(1, —1,1); that combination of rows is the zero row, and by — by + b3 = 0 is the third

equation after elimination.

5 Kirchhoff’s Current Law ATy = f is solvable for f = (1, —1,0) and not solvable for
f = (1,0,0); f must be orthogonal to (1,1, 1) in the nullspace: f1 + fo + f3 = 0.

2 -1 -1 3 1 c
6 ATAx = |1 2 —1|x=|-3| = fproducesx = [—1| + | ¢|; potentials
-1 -1 2 0 0 c

x =1,—1,0 and currents —Ax = 2, 1, —1; f sends 3 units from node 2 into node 1.

1 3 -1 =2 1 5/4 c
7 AT 2 A=|-1 3 —2[: f=] o|yieldsec=| 1 |+ any [c|;
2 -2 =2 4 -1 7/8 c

N

potentials x = %, 1, % and currents —C'Ax = %, %,
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-1 1 00 - -1 0
-1 0 10 ! 1 0
A= 0 =1 1 0] leads to x = ! andy = | -1 and 1| solving
0 -1 01 ! 0 -1
0 0 -1 1 L 0 1
ATy =0, ] -
Elimination on Az = b always leads to y'b = 0 in the zero rows of U and R:

—by + by — b3 = 0 and by — by + bs = 0 (those y’s are from Problem 8 in the left

nullspace). This is Kirchhoff’s Voltage Law around the two loops.

(1 1 0 0]
The nonzero rows of U keep
0-1 1 0
] edges 1, 2, 4. Other spanning trees
The echelon form of Ais U = 0 0 -1 1
from edges, 1,2,5;1,3,4;1,3,5;
0 0 00
1,4,5;2,3,4;2,3,5;2,4,5.
| 0 0 0 0f
[ 2 -1 -1 0_ diagonal entry = number of edges into the node
—1 3 —1 —1| thetrace is 2 times the number of nodes
ATA =
—1 —1 3 —1| off-diagonal entry = —1 if nodes are connected
| 0 =1 -1 2| ATAis the graph Laplacian, ATC A is weighted by C
(a) The nullspace and rank of AT A and A are always the same (b) AT A is always

positive semidefinite because 2T AT Az = ||Az||?> > 0. Not positive definite because

rank is only 3 and (1, 1,1, 1) is in the nullspace (c) Real eigenvalues all > 0 because

positive semidefinite.

ATCAx =

4
-2
-2

0

-2

8
-3
-3

-2
-3

8
-3

0] 1]
gives four potentials z = (3, §, §,0)
-3 0
r = I grounded x4 = 0 and solved for «
-3 0
6 1 currentsy:—CAm:(%’%’07%’%)

ATCAx =0forx = c(1,1,1,1) = (¢, ¢, ¢, c). If ATC Az = f is solvable, then f in

the column space (= row space by symmetry) must be orthogonal to @ in the nullspace:

fit+fot+fz3+ fa=0.
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15 The number of loops in this connected graphisn —m +1 = 7 -7+ 1 = 1.

What answer if the graph has two separate components (no edges between)?

16 Start from (4 nodes) — (6 edges) + (3 loops) = 1. If a new node connects to 1 old
node, 5 — 7 4+ 3 = 1. If the new node connects to 2 old nodes, a new loop is formed:

5—8+4=1.

17 (a) 8 independent columns (b) f must be orthogonal to the nullspace so f’s add

tozero (c) Each edge goes into 2 nodes, 12 edges make diagonal entries sum to 24.

18 A complete graph has 5 +4 + 3 + 2 + 1 = 15 edges. With n nodes that count is
14+---+(n—1)=n(n—1)/2. Tree has 5 edges.

Problem Set 10.2, page 472

c1+ co —Co 0
1 Det AE)FCOAQ = —cy co + C3 —c3 is by direct calculation. Set ¢4 = 0 to
0 —C3 Cc3 + C4

find det ArlI‘ClAl = C1C2C3.

Lo of |t 111
2 (ATCiA)™ =111 0 et 01 1|=
111 ;10 0 1
cfl cfl cfl
CII CI1+651 CII—FCgl

ol elae?t ltegltet
3 The rows of the free-free matrix in equation (9) add to [0 0 0] so the right side needs
fl +f2 + fg =0. f = (—1,0, 1) giVCS CoUl — CUg = —1,63’&2 — C3U3 = —1,0 = 0.

Then wpariicylar = (—¢5 ' —¢3 ', —¢3 ', 0). Add any multiple of wpjigpace = (1,1, 1).

1
4 /—i <c(x)@> de=— [c(x)j—z] =0 (bdry cond) so we need /f(a:) dz=0.

0
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dy

o= f(x) gives y(x) = C — /Oxf(t)dt. Then y(1) = 0 gives C = /Olf(t)dt and

1
y(z) = / f(t)dt. If the load is f(z) = 1 then the displacement is y(z) =1 — x.
T

Multiply ATC;A; as columns of AT times c’s times rows of A;. The first 3 by 3

“element matrix” c; By = [1 0 0]"¢,[1 0 0] has ¢; in the top left corner.

For 5 springs and 4 masses, the 5 by 4 A has two nonzero diagonals: all a; = 1
and a;;1; = —1. With C = diag(ci, ca, c3,ca,c5) we get K = ATC A, symmetric
tridiagonal with diagonal entries K;; = ¢; + ¢;41 and off-diagonals K; 1 ; = —c¢;41.
With C' = T this K is the —1,2, —1 matrix and K(2,3,3,2) = (1,1,1,1) solves
Kwu =ones(4,1). (K~ will solve Ku = ones(4).)

The solution to —u” =1 with u(0) =u(1) =0is u(z) = 3(z — 2?). Atz =1, 2,3,

(S

this gives u=2, 3, 3, 2 (discrete solution in Problem 7) times (Az)?=1/25.

—u" = mg has complete solution u(z) = A + Bz — $mgz®. From u(0) = 0 we
get A = 0. From u/(1) = 0 we get B = mg. Then u(z) = img(2z — 2?) at

=z, %, % equals mg/6,4mg/9,mg/2. This u(x) is not proportional to the discrete

1
3
u = (3mg, 5mg, 6mg) at the meshpoints. This imperfection is because the discrete
problem uses a 1-sided difference, less accurate at the free end. Perfect accuracy is

recovered by a centered difference (discussed on page 21 of my CSE textbook).

(added in later printing, changing 10-11 below into 11-12). The solution in this fixed-

fixed case is (2.25,2.50, 1.75) so the second mass moves furthest.

The two graphs of 100 points are “discrete parabolas” starting at (0,0): symmetric

around 50 in the fixed-fixed case, ending with slope zero in the fixed-free case.

Forward/backward/centered for du/dx has a big effect because that term has the large
coefficient. MATLAB: E = diag(ones(6,1),1); K = 64 % (2% eye(7) — E — E');
D = 80 x (E— eye(7)); (K + D)\ones(7,1); % forward; (K — D’)\ones(7,1);
% backward; (K + D/2 — D’/2)\ones(7,1); % centered is usually the best: more

accurate
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Problem Set 10.3, page 480

10

11

12

13

Eigenvalues A = 1 and .75; (A — I)x = 0 gives the steady state = (.6, .4) with

Az = x.
6 —1]]1 1 1 6 —1(|1 O 1 1 .6 .6
4 1 5 [—4 .6 4 =110 0f (-4 .6 4 4
A=1and .8, =(1,0);1and —.8, « = (%, %); 1, i, and i, T = (%, %, %)
AT always has the eigenvector (1,1,...,1) for A = 1, because each row of AT adds

to 1. (Note again that many authors use row vectors multiplying Markov matrices.

So they transpose our form of A.)
The steady state eigenvector for A = 1 is (0,0, 1) = everyone is dead.

Add the components of Az = Az to find sum s = As. If A # 1 the sum must be s = 0.

. ) i 6+ .4a .6—.6a| . a<l1
(.5)" — 0 gives A" — A>; any A = with
4 —.4a 4+ 6a 4+ .6a>0

If P = cyclic permutation and ug = (1,0, 0,0) then u; = (0,0,1,0); u> = (0,1,0,0);
uz = (1,0,0,0); ug = ug. The eigenvalues 1,7, —1, —i are all on the unit circle. This

Markov matrix contains zeros; a positive matrix has one largest eigenvalue A = 1.

M? is still nonnegative; [1 --- 1]M = [1 --- 1] so multiply on the right by M
tofind[1 --- 1]M?=[1 --- 1] = columns of M? add to 1.
A =1landa+ d — 1 from the trace; steady state is a multiple of 1 = (b,1 — a).

Lastrow .2,.3,.5makes A = AT; rowsalsoaddto 1so(1,...,1)is also an eigenvector

of A.

Bhas A =0and —.5 withx; = (.3, .2) and ¢y = (—1,1); Ahas A = 1so A — [ has

0

A = 0. e~-5" approaches zero and the solution approaches c;e%'x; = c;x;.

x = (1,1,1) is an eigenvector when the row sums are equal; Az = (.9,.9,.9)



162 Solutions to Exercises

4 (I-A)(I+A+A%+--) = (I+A+ A%+ )—(A+A%+ A3+ - ) = I. This says that
5
I+A+ A%+ is(I—A)"!. When A = A2 =11 A3 =14 A" =11
1+5+- 3+3+- 1
and the series adds to 2 : = = -A)"!
I+3+- 1414 2
8
15 The first two A’s have A\ < 1;p = and has no inverse.
6

16 A = 1 (Markov), O (singular), .2 (from trace). Steady state (.3, .3, .4) and (30, 30, 40).

17 No, A has an eigenvalue A = 1 and (I — A)~! does not exist.
Fr—\ F, Fj
18 The Leslie matrix on page 435hasdet(A—AI) =det | P, A0 | =N+

0 P, =X
F1)\? + FoP )\ + F3P,P,. This is negative for large A. It is positive at A\ = 1

provided that | + Fo P + F3P; P, > 1. Under this key condition, det(A — AI)
must be zero at some A between 1 and co. That eigenvalue means that the population

grows (under this condition connecting F’s and P’s reproduction and survival rates).
19 A times X ~'AX has the same diagonal as X "' A X times A because A is diagonal.

20 If B>A>0and Ax= A (A)x >0 then Bx > A\pax(A)x and Apax(B) > Amax(4).

of C' = four components of F'c. Circulants are special!

Problem Set 10.4, page 489

1 Feasible set = line segment (6, 0) to (0, 3); minimum cost at (6, 0), maximum at (0, 3).
2 Feasible set has corners (0, 0), (6,0), (2, 2), (0, 6). Minimum cost 2z — y at (6,0).
3 Only two corners (4,0, 0) and (0,2, 0); let z; — —oc0, 3 =0, and x3 = 1 — 4.

4 From (0,0, 2) move to x = (0, 1, 1.5) with the constraint 21 + x + 2x3 = 4. The new
costis 3(1) + 8(1.5) = $15 so r = —1 is the reduced cost. The simplex method also
checks z = (1,0, 1.5) with cost 5(1) + 8(1.5) = $17; » = 1 means more expensive.
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5 Cost = 20 atstart (4,0, 0); keeping x1 +22+2x3 = 4 move to (3, 1,0) with cost 18 and
r = —2; or move to (2,0, 1) with cost 17 and » = —3. Choose 3 as entering variable

and move to (0, 0, 2) with cost 14. Another step will reach (0, 4, 0) with minimum cost

12.

6 If we reduce the Ph.D. cost to $1 or $2 (below the student cost of $3), the job will
go to the Ph.D. with cost vector ¢ = (2, 3, 8) the Ph.D. takes 4 hours (x1 + 23 + 2x3 =
4) and charges $8.

The teacher in the dual problem now has y < 2,y < 3,2y < 8 as constraints
ATy < c on the charge of y per problem. So the dual has maximum at y = 2. The

dual cost is also $8 for 4 problems and maximum = minimum.

7 x = (2,2,0)is acorner of the feasible set with 21 +x2+2x3 = 4 and the new constraint
221 + x5 + 3 = 6. The cost of this corneris c'x = (5,3,8) - (2,2,0) = 16. Is

this the minimum cost?

Compute the reduced cost r if x3 = 1 enters (x3 was previously zero). The two
constraint equations now require 7 = 3 and zo = —1. With @ = (3, —1, 1) the new
cost is 3.5 — 1.3 4+ 1.8 = 20. This is higher than 16, so the original = (2,2,0) was

optimal.

Note that 3 = 1 led to zo = —1 and a negative x5 is not allowed. If x3 reduced

the cost (it didn’t) we would not have used as much as z3 = 1.

8 yTb <yTAz = (ATy)Tx < cTx. The first inequality needed y > 0 and Ax—b > 0.

Problem Set 10.5, page 494

. . 27
1 f027r cos((j + k)x)dx = [Sm(%itfm]o = 0 and similarly f027r cos((j — k)x)dx =0

Notice j — k # 0 in the denominator. If 5 = k then f027r cos? jodr = .

2 Three integral tests show that 1,z, 2% — % are orthogonal on the interval [—1, 1]:

L@ de = 0,1, (1)@ - L) de = 0, (z)(@* — 1) dz = 0. Then



164 Solutions to Exercises

10

11

20% = 2(2® — §) + 0(2) + 2(1). Those coefficients 2,0, 2 can come from integrating
f(x) = 222 times the 3 basis functions and dividing by their lengths squared—in other
words using a™b/aT a for functions (where bis f(z) and a is 1 or x or 22 — —) exactly

as for vectors.

One example orthogonal to v = (1, %,...)isw = (2, —1,0,0,...) with |w| = /5.

CERE

f_ll(l)(a:3 —cx)dz = 0 and f_ll 3)(@® — cx) da = 0 for all ¢ (odd functions).
Choose ¢ so that f_ll z(x® —cx)de = [f2° — £t} = 2 —¢2 = 0. Thenc = 2.
The integrals lead to the Fourier coefficients a; = 0, by = 4/7, by = 0.

From eqn. (3) ap = 0 and by = 4/7k (odd k). The square wave has ||f||> = 27
Then eqn. (6) is 2r =7(16/7%)( + 35 + 52 + - - - ). That infinite series equals 72/8.

The —1,1 odd square wave is f(z) = x/|z| for 0 < |z| < 7. Its Fourier series in
equation (8) is 4/ times [sinz + (sin3x)/3 + (sin5z/5) 4+ ---]. The sum of the
first V terms has an interesting shape, close to the square wave except where the wave
jumps between —1 and 1. At those jumps, the Fourier sum spikes the wrong way to

+1.09 (the Gibbs phenomenon) before it takes the jump with the true f(z).

This happens for the Fourier sums of all functions with jumps. It makes shock

waves hard to compute. You can see it clearly in a graph of the sum of 10 terms.

[0l =145+ 3+5+ =250 flo] = V2 [lo]* = 1+a®+a'+--- = 1/(1-a?)
so v = 1/vV1—a% [77(1+2sine +sin®z) de = 27 + 0 + 7 so || f|| = v/37.

(@ f(z) = (1 + squarewave)/2 so the a’s are 3, 0, 0,... and the b’s are 2/, 0,
~2/37,0,2/5m, ... (b) ap = [ xdw/2r =, all other ay, = 0, by = —2/k.

The integral from —7 to 7 or from O to 27 (or from any a to a + 27) is over one
complete period of the function. If f(x) is periodic this changes fo% f(z)dz to
Jo f(@)dax + f f(z)dz. If f(z)is odd, those integrals cancel to give [f(z)dz =0

over one period.

cos?x = § + 3 cos2x; cos(z+ ) = coswcos F —sinzsin§ = %cosx—@smx
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1 0 0 0 00 O 1
cosx —sinx 0O 0-1 0 O cosx
d This shows the
12 ar sinz |=| cosz |=|0 1 0 0 Of]| sinz |-
z differentiation matrix.
cos 2x —2sin2x 0 0 0 0 —2(]|cos2x
sin2x 2cos 2z 0 0 0 2 O0]|sin2z

13 The square pulse with F'(z) = 1/h for —x < h/2 < z is an even function, so all sine

coefficients by, are zero. The average a( and the cosine coefficients ay, are

1 R 1
=_— 1/h)de = —
2 ,h/g( /h)dz 27

1 [h2 2 kh 1 kh
ar = — /_h/z(l/h) cos kxdr = ey (sin 7) which is = sinc <7)

(introducing the sinc function (sin x)/z). As h approaches zero, the number « = kh/2

ag

approaches zero, and (sin x)/x approaches 1. So all those a;, approach 1/.

The limiting “delta function” contains an equal amount of all cosines: a very ir-

regular function.

Problem Set 10.6, page 500

1 (z,y, z) has homogeneous coordinates (cz, cy, cz,c) for c = 1 and all ¢ # 0.

2 For an affine transformation we also need T (origin), because 7°(0) need not be 0 for
affine T. Including this translation by 7(0), (z,y, 2z, 1) is transformed to zT'(z) +
yT'(3) + 2T (k) + T(0).

1 1 1

3TT = = is translation along (1, 6, 8).
1 1 1

_1 4 3 1] _0 2 5 1] 11 6 8 1_

4 S =diag(c,c,c,1);rowdof ST and TS is 1,4,3,1 and ¢, 4c, 3¢, 1; use vT'S!
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1/8.5
55= 1/11 for a 1 by 1 square, starting from an 8.5 by 11 page.
1
! 12 [ 9 ]
1 2 2
6 [zyz1] = [zy=z1]
1 2 2
-1 -1 -2 1] 1 -2 -2 -4 1)

The first matrix translates by (—1_, -1,-2). The second matrix rescales by 2.

7 The three parts of () in equation (1) are (cos#)I and (1 — cosf)aa™ and —sinf(ax).

T

Then Qa = a because aa~ a = a(unit vector) and aX a = 0.

8 If a'b = 0 and those three parts of ) (Problem 7) multiply b, the results in Qb are

(cos )b and aa™b = 0 and (— sinf)a x b. The component along b is (cos 6)b.

5 —4 -2
221 e 1 .
9n_<§,§,§>hasP—I—nn =g |4 5 —2| Notice n] =1
-2 -2 8
(5 —4 -2 0]
) 11-4 5 =2 0
10 We can choose (0, 0, 3) on the plane and multiply T PT, = — .
912 —2 8 0
| 6 6 3 9

11 (3,3,3) projects to £ (—1,—1,4) and (3,3,3,1) projects to (1, £, 3, 1). Row vectors!

12 The projection of a square onto a plane is a parallelogram (or a line segment). The
sides of the square are perpendicular, but their projections may not be (z*y = 0 but

(Pz)*(Py) = T PT Py = 2T Py may be nonzero).

13 That projection of a cube onto a plane produces a hexagon.

1 -8 —4
111 11 11 1
14 (3,3,3)(1 - 2nn") = <§7§,§> -8 1 4| = <—?7—§7—§>.
-4 -4 7
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1.

16 Just subtracting vectors would give v = (x,¥, z,0) ending in 0 (not 1). In homoge-

15 (3,3,3,1) = (3,3,0,1) —» (- L,-2,-8,1) —» (- £, -1,

W=

neous coordinates, add a vector to a point.

17 Space is rescaled by 1/c because (z,y, 2, ¢) is the same point as (z/c,y/c, z/c, 1).

Problem Set 10.7, page 507

1 Multiplying n whole numbers gives an odd number only when all n numbers are odd.
This translates to multiplication (mod 2). Multiplying n 1’s or 0’s gives 1 only when

all n numbers are 1.

2 Adding n whole numbers gives an odd number only when the n numbers include an
odd number of odd numbers. For addition of 1’s and 0’s (mod 2), the answer is odd

when the number of 1’s is odd.

3 (a) We are given that y; — z1 and yo — zo are both divisible by p. Then their sum

Y1 + Y2 — x1 — X3 is divisible by p.

(b) 5 = 2 (mod 3) and 8 = 2 (mod 3) add to 13 = 4 (mod 3). The number 1 is smaller
than 4 and 13 = 1 (mod 3).

5 If y —x is divisible by p then x — y is also divisible by p. In other words, if y —x = mp
then x —y = (—m)p.

5 5
6 A= is an invertible matrix but (mod 5) A becomes the zero matrix.

5 10

1 0 1 1 1 0 0 1 0 1 1 1
7 are invertible :
0 1 0 1 1 1 1 0 1 1 1 0

6 out of 16 possible 0-1 matrices.

8 Yes, Ax = 0 (mod 11) says that every row of A is orthogonal to every « in the nullspace

(mod 11). But a basis for the usual N(A) could include vectors that are zero (mod 11).
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For simplicity, number the letters as they appear in the message :

THISWHOLEBOOKISINCODE = 123/452/678/966/(10)34/3(11)(12)/6(13)8.
Multiply each block by this L to obtain Hill’s cipher.
1 00
L=]1110 Cipher=136/4911/6 1321/91521/1013 17/3 14 26/6 19 27.
1 11
If the cipher is mod p then replace each number by the correct number from 0 to p — 1.

To decode, first multiply by L~!. Then what to do??

First you have to discover the block size (= matrix size) and also the matrix L itself.
Start with a guess for the block size. Then the plaintext and the coded cipher tell you a
series of matrix-vector products Lz = b. If the text is long enough (and the blocks are
not too long) this is enough information to find L—or to show that the block size must

be wrong, when there is no L that gets all correct blocks Lz = b.

The extra difficulty is to find the value of p.
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Problem Set 11.1, page 516

1 Without exchange, pivots .001 and 1000; with exchange, 1 and —1. When the pivot is

1 1 1
larger than the entries below it, all [¢;;| = |er.1try\ <1LA=]0 1 -1
|pivot|

-1 1 1

9 -—36 30
2 The exact inverse of hilb(3)is A~ = |-36 192 —180|.
30 —180 180
1 11/6 1.833 0 1.80

3 A|1|=1[13/12|=1.083| compareswith A | 6

1.10 | - || Ab|| < .04 but

1| |47/60] |0.783 —36| |0.78| |Az| > 6.
The difference (1,1,1) — (0,6, —3.6) is in a direction Az that has AAx near zero.

4 Thelargest ||| = ||A71b| is |A7|| = 1/Amin since AT = A; largest error 10716 /A,

5 Each row of U has at most w entries. Use w multiplications to substitute components

of « (already known from below) and divide by the pivot. Total for n rows < wn.

6 The triangular L=!, U~!, R~ need n? multiplications. () needs n? to multiply the
right side by Q! = Q™. So QRx = b takes 1.5 times longer than LUz = b.

7 UU~' = I: Back substitution needs % 5J 2 multiplications on column j, using the j by

j upper left block. Then 3 (12 + 2% + - - + n?) ~ $(:n®) = total to find U "
8 Lo — 22 — 22 = U with P = 01 and L = ! 0;
2 2 1 0 0 —1 1 0 D1
2 20 2 20 2 20 2 20
A= 110 =10 -1 1| = |0 2 0| = |0 2 0| =U with
0 2 0 2 0 0 -1 1 0 0 1
0O 1 0 0 0
=|0 0 1|andL = 10

1 0 0 b =51
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(11 0 0]
Ao 1 1 1 0] hascofactors Ci3 =C31 = Coy = Cyo =1 and
0 1 1 1| Ciy=0Cy =—-1. A 1isa full matrix!
00 1 1]
With 16-digit floating point arithmetic the errors || — Zcomputed|| for e = 1073, 1079,

1072,10712, 10~1° are of order 10~16, 10— 1%, 10~7, 104, 103,

1 31 -1 10 14
(a) cos® = 1//10, simGZ—3/\/10,R:\/L1_0 :\/Ll_o ]
-3 1|13 5 0 8
(b) A has eigenvalues 4 and 2. Put one of the unit eigenvectors in row 1 of Q: either
0 1 1 -1 4 QAQ-! 2 -4
= —= an = or
V2 111 0 4
0 1 1 -3 4QAQ-! 4 —4
= — an = .
V1013 1 0 2

When A is multiplied by a plane rotation @;;, this changes the 2n (not n?) entries in
rows i and j. Then multiplying on the right by (Q;;)™' = (Q;;)" changes the 2n

entries in columns ¢ and j.

;A uses 4n multiplications (2 for each entry in rows 7 and j). By factoring out cos 6,
the entries 1 and + tan 6 need only 2n multiplications, which leads to %ng for QR.
The (2,1) entry of Q214 is $(—sinf + 2cos#). This is zero if sinf = 2cos6 or
tanf = 2. Then the 2, 1, V5 right triangle has sin § = 2/\/3 and cos 6 = 1/\/5

Every 3 by 3 rotation with det ) = +1 is the product of 3 plane rotations.

This problem shows how elimination is more expensive (the nonzero multipliers in L
and LL are counted by nnz(L) and nnz(L L)) when we spoil the tridiagonal K by a

random permutation.

If on the other hand we start with a poorly ordered matrix K, an improved ordering

is found by the code symamd discussed in this section.
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16 The “red-black ordering” puts rows and columns 1 to 10 in the odd-even order 1, 3, 5, 7,
9,2,4,6,8,10. When K is the —1, 2, —1 tridiagonal matrix, odd points are connected

only to even points (and 2 stays on the diagonal, connecting every point to itself):

L ]
k|t 2 ad PEPT = | 2P| i
. .. DT 9or

L _1 2_

[ 1 1 1102

1 -1 3t02,4
D=| 0 -1 -1 5t04,6

-1 -1 7t06,8
I ~1 —1] 918,10

17 Jeff Stuart’s Shake a Stick activity has long sticks representing the graphs of two linear

equations in the x-y plane. The matrix is nearly singular and Section 9.2 shows how to

compute its condition number ¢ = || A||[|A™|| = umax/Tmin = 80, 000:
1 1.0001 1 10001 | [lA7H] ~ 20000
A= |A| ~2 A~!=10000
1 1.0000 1 -1 ¢ =~ 40000.

Problem Set 11.2, page 522

1Al =2 A7 =2.c=4 [J[A] =3, A7 =1 c=3 Al =2+V2 =
Amax for positive definite A, [|A~Y|| = 1/Amin. comd = (2 + v/2)/(2 — V/2) = 5.83.

2 ||A|| =2, ¢ = 1;||A|| =V/2, ¢ = oo (singular matrix); ATA = 21, ||A|| =v/2, ¢ = 1.

3 For the first inequality replace « by Bz in ||Ax|| < || A||||z|; the second inequality is

just||Bz| < [|B|||2|. Then [|AB|| = max(||ABz||/[lz[}) < [ A][||B]-

4 1=|[I]| = [AA7Y] < [JAIIATH] = e(A).
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5 If Apax = Amin = 1 thenall A; = 1 and A = SIS~ = I. The only matrices with
|Al| = [|[A™Y|| = 1 are orthogonal matrices.

6 All orthogonal matrices have norm 1, so [|A|| < [|Q]|||R]| = || R and in reverse ||R| <
Q" IIJA]l = ||All. Then ||A|| = ||R||. Inequality is usual in ||A|| < ||L||||U| when
AT A # AAT. Use norm on a random A.

7 The triangle inequality gives ||Axz + Bz| < ||Az|| + ||Bx||. Divide by ||| and take

the maximum over all nonzero vectors to find || A + BJ| < ||A] + || B]|-

8 If Az = Az then ||Az||/||x| = || for that particular vector . When we maximize

the ratio ||Az||/||z|| over all vectors we get || A|| > |)|.

01 00 01
9 A+B= + = has p(A) =0and p(B) =0but p(A+ B) = 1.
00 10 10
1 0
The triangle inequality ||A + B|| < ||A]| + || B|| fails for p(A). AB = has
0 0

p(AB) > p(A) p(B); thus p(A) = max |A(A)| = spectral radius is not a norm.

10 (a) The condition number of A~ is [|A7L]|||(A~1) 7| whichis ||A7Y]| Al = c(A).
(b) Since AT A and AAT have the same nonzero eigenvalues, A" has the same norm
as A.

11 Use the quadratic formula for Apax /Amin, Which is ¢ = o pax /O min since this A = AT

is positive definite:

c(A) = (1.00005 +/(1.00005)2 — .0001) / (1.00005 Y ) ~ 40, 000.

12 det(2A) is not 2det A;det(A + B) is not always less than det A + det B; taking
| det A| does not help. The only reasonable property is det AB = (det A)(det B). The

condition number should not change when A is multiplied by 10.

13 The residual b — Ay = (10~7,0) is much smaller than b — Az = (.0013,.0016). But
z is much closer to the solution than y.

659 —563
14 det A=10"%s0 A~1 =103 Al > 1, |A7Y| > 105, then ¢ > 10°.
13 780
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15 z = (Llalzlal) has HwH = \/ga ||m||1 =5 HwHoo =l xz= (.1,.77.3, 4,5) has
|z =1, ||z|l1 = 2 (sum), ||| = .7 (largest).
16 22+ - -+22 is not smaller than max(x?) and not larger than |z |+- - -+|x,[)2 = || z||3.
2

23+ 4 22 < n max(z?) so ||z| < v/nl/z]e. Choose y; = signz; = +1 to get
|zl = 2 - y < |a|[||ly]| = v/7l|z||. The vector @ = (1, ..., 1) has [|z[1 = v/7 ||z].

17 For the /*° norm, the largest component of & plus the largest component of y is not

less than ||x + y|| o = largest component of  + y.

For the /* norm, each component has |z; + ;| < |z;| + |y;]. Sumoni = 1 to n:

[+ ylly < [zl + [yl

18 |z1| + 2|z2| is a norm but min(|z1|, |z2|) is not a norm. ||z| + ||x|lo is a norm;
|| Az|| is a norm provided A is invertible (otherwise a nonzero vector has norm zero;

for rectangular A we require independent columns to avoid | Az| = 0).
19 zly = 21y + 2oy + -+ < (max |y])(Joa] + |22 + ) = [|2]]1 [|y]|o-

20 With \; = 2 —2cos(jm/n+1), the largest eigenvalue is \,, ~ 2+ 2 = 4. The smallest

2
isA\; =2—2cos(n/n+1) = ( ) , using 2 cos @ ~ 2 — 62. So the condition number

_m_
n+l

is ¢ = Anax/Amin ~ (4/7%) n?, growing with n.

Problem Set 11.3, page 531

1 The iteration ¢y = (I — A)xp +bhasS=TandT =1 — Aand ST =1 — A.

2 If Ax = Az then (/—A)x = (1—\)x. Real eigenvaluesof B = I —Ahave |1 - )| < 1
provided A is between O and 2.

1
3 This matrix Ahas [ — A = which has |A| = 2. The iteration diverges.
1 -1

4 Always ||AB]| < ||A]|||B]|. Choose A = B to find ||B?|| < ||B||?. Then choose A =
B? to find || B3| < ||B?||||B|| < ||B||. Continue (or use induction) to find || B¥|| <

| B||*. Since || B|| > max |\(B)] it is no surprise that || B|| < 1 gives convergence.
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5

10

11

12

13

Solutions to Exercises

Az = 0 gives (S — T)x = 0. Then Sz = Tz and S~'Tx = . Then A = 1 means
that the errors do not approach zero. We can’t expect convergence when A is singular

and Ax = b is unsolvable!

Jacobi has S~!T = % with |A|max = % Small problem, fast convergence.

o 1
Gauss-Seidel has S~17 = | with [Almax = ¢ which is (|A|max for Jacobi)?.
1
-1 _
0 —b 0 —b/a
Jacobihas S~1T = = / with || = |bc/ad|'/2.
d —c 0 —c/d
| o L
a 0 0 -b 0 —
Gauss-Seidel has S~!T = = with |\| = |be/ad].
c d 0 0 0 —bc/ad

So Gauss-Seidel is twice as fast to converge if |A\| < 1 (or to explode if |bc| > |ad)|).

Gauss-Seidel will converge for the —1,2, —1 matrix. |A|jpax = cos? (7111) is given

on page 527, together with the improvement from successive overrelaxation.

old

If the iteration gives all z}*¥ = 7 then the quantity in parentheses is zero, which

means Ax = b. For Jacobi change x"" on the right side to 2°'¢.

up /N =1z + oo (Mo /A1) + e (A /M)F — ey ifall ratios |\ /| <
0 1
1 0

1. The largest ratio controls the rate of convergence (when k is large). A =

has [A2] = |A1] and no convergence.

The eigenvectors of A and also A~ are ¢; = (.75,.25) and 5 = (1, —1). The inverse

power method converges to a multiple of @, since |1/Aa] > [1/A4].

1 in dT = 94in AT _ gip U=ZDT _ oy UADT
In the jth component of Az, A;sin 7o = 2singiy —osin ST A sin ~7—=—.
. . o . jﬂ— T _ . T
The last two terms combine into —2 sin - 1 COS 4T Then \; =2 — 2cos + e
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-1
14 A =

-1 2

This is converging to the eigenvector direction

produces ug

1
, UL =
0

|
|

Divide uy, by ||ug| to keep unit vectors.

1121
15 A=t == givesu; =
311 2
1 cos@sind
16 R=QTA=
0 —sin?6
17

175

with largest eigenvalue A = 3.

-1
112 115 1 |14 1/2
o s U2 = = , U3 = o _>'u’OO:
311 914 27 113 1/2
—COSG 1+ sin’6 —sin® 6
and A; = RQ = ( )
—sin® 0 — cos@sin’ 0

If A is orthogonal then Q = A and R = I. Therefore A; = R(Q) = A again, and the

“QR method” doesn’t move from A. But shift A slightly and the method goes quickly

to A.

18

If A—cl =QRthen A = RQ +cl = QY (QR + cI)Q = Q1 AQ. No change in

eigenvalues from the shift and shift back, because A; is similar to A.

19

Multiply Aq; = b;_1q;_, + a;q; + bjq,,, by ¢ to find q] Aq; = a; (because the

q’s are orthonormal). The matrix form (multiplying by columns) is AQ = QT where

T is tridiagonal. The entries down the diagonals of T" are the a’s and b’s.

20

Theoretically the g’s are orthonormal. In reality this important algorithm is not very

stable. We must stop every few steps to reorthogonalize—or find another more stable

way to orthogonalize the sequence q, Aq, A%q, . ..

21

If A is symmetric then 4; = Q 'AQ = QTAQ is also symmetric. A; = RQ =

R(QR)R™! = RAR ! has R and R~ upper triangular, so A; cannot have nonzeros

on a lower diagonal than A. If A is tridiagonal and symmetric then (by using symmetry

for the upper part of A1) the matrix A; = RAR™! is also tridiagonal.

22

From the last line of code, g, is in the direction of v = Aq, — h11q; = Aq, —

(gt Aq;)q;. The dot product with g, is zero. This is Gram-Schmidt with Aq; as the

second input vector; we subtract from Agq its projection onto the first vector q;.
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23

24

25

26

Note The three lines after the short “pseudocodes” describe two key properties of con-
jugate gradients—the residuals r, = b — Ay, are orthogonal and the search directions
are A-orthogonal (d;fAdk = 0). Then each new approximation a1 is the closest
vector to x among all combinations of b, Ab. .., A*b. Ordinary iteration Sz =

Txy, + b does not find this best possible combination @ 1.

The solution is straightforward and important. Since H = Q 'AQ = QTAQ is
symmetric if A = AT, and since H has only one lower diagonal by construction, then
H has only one upper diagonal: H is tridiagonal and all the recursions in Arnoldi’s

method have only 3 terms.

H = Q 'AQ is similar to A, so H has the same eigenvalues as A (at the end of
Arnoldi). When Arnoldi is stopped sooner because the matrix size is large, the eigen-
values of H}, (called Ritz values) are close to eigenvalues of A. This is an important

way to compute approximations to A for large matrices.

In principle the conjugate gradient method converges in 100 (or 99) steps to the exact
solution . But it is slower than elimination and its all-important property is to give
good approximations to & much sooner. (Stopping elimination part way leaves you
nothing.) The problem asks how close 1y and x2( are to x1¢g, which equals x except

for roundoff errors.

L 1 q .
A= has A™ = with ¢ = 1+1_1+...+(1.1)n71 —
0 1.1 0 (11)"
. _ 0 10
(11" —1)/(1.1 — 1) =~ 10 (1.1)™. So the growing part of A™ is (1.1)"
0 1

with || A™|| &~ /101 times 1.1™ for larger n.
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Problem Set 12.1, page 544

1 When 7 is added to every output, the mean increases by 7 and the variance does not

change (because new variance comes from (distance)? to the new mean).

New sample mean and new expected mean: Add 7. New variance : No change.

2 If we add % to % (fraction of integers divisible by 3 plus fraction divisible by 7) we

have double counted the integers divisible by both 3 and 7. This is a fraction % of all
integers (because these double counted numbers are multiples of 21). So the fraction

divisible by 3 or 7 or both is
1 1 1 7 3 1 9 3

— - — —t — — — = — = —

3T 7T 2w .

3 In the numbers from 1 to 1000, each group of ten numbers will contain each possible

ending x = 1,2,3,...,0. So those endings all have the same probability p;, = %.

Expected mean of that last digit « :
9

sz[x]:Zpixizl—l()Zizzll—g:4.5

The best way to find the variance 02 = 8.25 is in the last line below and in problem

12.1.7. The slower way to find o2 is
9 9

o? =E[(x —4.5)%] =) pi(a; —4.5)* = % > (i —4.5)

=0 =0

We can separate (i — 4.5)2 into (i* — 9i + (4.5)?) and add from i =0 to i = 9:

9 9 9
% (Z i’ =9 Z i+ Z (4.5)2> = % (285 — 9(45) + 10(4.5)?)
0 0 0

1 82.5 33
= —(285 —405+202.5) = — =8.25 = —.
10( + ) 10 4

Notice that 202.5 is half of 405—like Nm? and 2Nm? in equation (4), page 536.

I should have extended equation (4) to its best form :
0?2 =E[(x — m)?] = E[z?] — m?

285 _

20 — (4.5)? = 8.25 = same answer.

That quickly gives
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4 For numbers ending in 0,1,2,...,9 the squaresendinx = 0,1,4,9,6,5,6,9,4,1. So
the probabilities of 2 = 0 and 5 are p = 7; and the probabilities of z = 1,4,6,9 are

p= —. The mean is

) 1
m = Zp,x,f + — + = (1—|—4—|—6—|—9):4.5:sameasbefore.

10
The variance using the 1mpr0vement of equation (4) is
1 1
o2 =E[z}]-m *_02+E52+3(12+42+62+92)_m2
25 134
=—+— —20.25=9.05
10 + 5

5 For numbers from 1 to 1000, the first digit is z = 1 for 1000 and 100-199 and 10-19
and 1 (112 times). The first digit is x = 2 for 200-299 and 20-29 and 2 (111 times).

The other first digits x = 3 to 9 also happen (111 times). Total (1000 times) is correct.

The average first digit is the mean, close to §(1+2+ -+ +9) =5:

112 111 1124 111(44) 4996

= i L= — (1 243+ --4+9)= = =4.996 ~ 5.
m=) pia 1000 (VT 1000 2H3++9) 1000 1000
The variance is
112 111
2 2 2 2 2 2 | 2 2
=E — =E — = —1 2 -+ 9%) —
1124+ 111(284 1
= +—(8) 2 o @ — 52— 6.635.

—-m° =
1000 1000

6 The first digits of 1572,3122,6962, and 6022 are 2,9,4,3, The sample mean is

1(2+9+4+3) =18 = 4.5. The sample variance with N — 1 = 3 is

oo e aaf] 20

O-')|’—‘

7 This question is about the fast way to compute o2 using m?2. The mean m is probably
already computed :
0 =30 pi (v —m)? =3 pi (2] — 2ma; +m?)
= pixi = 2m Y pixi +m? Y p;
=Y pix? —2m?+m? =% p;x? — m? = E[z?] — m>.
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8

10

For N =24 samples all equal to z = 20,

Zml* 20 =20 and S2%= ;Z(a?i—,u)Q:O

For 12 samples of z = 20 and 12 samples of z = 21,

12(20) + 12(21) 1 1 1\* 6
=——"-—""2-205 and S%=—— i—n)P==24(z) =—.
H 24 o Nop 2w = g) =o3
This question asks you to set up a random 0-1 generator and run it a million times to

find the average A1000000-

One way is to use MATLAB’s rand command with a uniform distribution between 0

and 1. Add % to go between 0.5 and 1.5, then find the integer part (0 or 1). Using your

computed average Ay (its mean is m = % since 0 and 1 are equally likely for every

sample) find the normalized variable X :

Av — L1 Ay 1
X = N 3 _ N3 for N = one million.

2N 2000

The average number of heads in NV fair coin flips is m = N/2. This is obvious—but

how to derive it from probabilities pg to py of 0 to N heads? We have to compute

. b; 1 N!

A useful factis p; = pn—;. The probability of < heads equals the probability of < tails.

If we take just those two terms in m, they give
ipi + (N —i)pn—i = ip; + (N —i)p; = Np;
So we can compute m two ways and add :
m=0po +1p1 + -+ (N —1)pn—1 + Npn
m = Npo+ (N —1)p1 + -+ 1pn—1+ Opo
2m = Npo+ Np1 +---+ Npn_1+ Npn

=N(po+p1+-+pnv-1+pn)=N.
Then m = IN/2. The average number of heads is N/2.
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11 E[z?] =E|[(x —m)?+ 2zm — m?]
=E[(x —m)?] +2mE [z] — m?E[1]
=02 +2m? —m? = 0% + m?
12 The first step multiplies two independent 1-dimensional integrals (each one from —oo

to co) to produce a 2-dimensional integral over the whole plane :

27r/ p(x) dx/ p(y) dy=27r/ /p(x)p(y) da:dy:/ /6952/2692/2 dxdy.

The second step changes to polar coordinates (z = r cos 6,y = rsin 6, dxdy = r dr db,

2? +y? =r? with0 < 6 < 27 and 0 < r < 00). Notice —2?/2 — y?/2 = —r?/2:

27T oo
//er2/2rdrd9—/ /e’"z/QrdrdQ

plane 0=0 r=0

The r and 6 integrals give the answers 1 and 27 :

oo 2w
/ e_r2/2 rdr = [—e"ﬁ/ﬂ = =1 / 1d0 = 2.
r=0
r=0 6=0

The trick was to get e "2 dr (which is a perfect derivative of —e T/ 2) by combin-

ing e~ /2 dy and e¥’/2 dy (which can not be separately integrated from a to b).

Problem Set 12.2, page 554

1 (a) Mean m = E[z] = (0)(1 — p) + (1)(p) = p when the probability of heads is
p. Here o = 0 for tails and = = 1 for heads. Notice that 0> = 0 and 1> = 1 so
E[2?] = E[z] = p.

Variance 02 = E[z?] —m? = p — p?
(b) These are independent flips ! So the N by /N covariance matrix V is diagonal. The
diagonal entries are the variances 02 = p—p? for each flip. Then the rule (16—17—18)

gives the overall variance of the sum from N flips:
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overall variance =[1 1...1]V | | =No®>=N(p—p*)

L 1 -

This is just saying : Add the variances for the NV independent experiments. Here those

N experiments just repeat one experiment.

2 T am just imitating equation (2) in the text. Now the experiments are numbered 3 and
5. They have means m3 and ms. The covariance o35 adds up joint probabilities p;;
times (distance x; — m3) times (distance y; — ms). Here x; and y; are outputs from
experiments 3 and 5 :

oss =) Y pij (i —m3) (y; —ms).

all 4, j

3 The 3 by 3 covariance matrix V' will be a sum of rank one matrices Vi = U UT mul-

tiplied by the joint probability p;;; of outputs x;,y;, z;. I am copying equation (12):

output xr; — mean ©

V= ZZZP:‘ijUT U= | outputy; — meany

all 4, 7, k _
output z;, — mean z

These matrices UUT = column times row are positive semidefinite with rank 1 (unless

U = 0). The sum V is positive definite unless the 3 experiments are dependent.
Notice that the means =, Y,z = my, ms, ms have to be computed before the variances.

4 We are told that the 3 experiments are independent. Then the covariances are zero off
the main diagonal of V. This covariance matrix only shows “covariances with itself”
= “variances” o7, 03, 03 on the main diagonal.

a2 0 0
V= 0 o2 0
0 0 o3



182 Solutions to Exercises

5 The point is that some output X = x; must occur. So the possibilities are Y = y;
and X = zy,orY = y;and X = 29, 0rY = y; and X = x3 et cetera. The total
probability of Y = y; is the sum of the conditional probabilities that Y = y; when
X = €.

Here is another way to say this law of total probability. When B, Bs, . .. are separate

disjoint outcomes that together account for all possible outcomes, then for any A

Prob (A) = > Prob (AN B;) =) _ Prob (A|B;) Prob (B;).

6 Prob (A|B) = conditional probability of A given B satisfies this axiom:
Prob (A and B) = Prob (A|B) Prob (B).
Reason: If both A and B occur, then B must occur—and knowing that B occurs,
Prob (A|B) gives the probability that A also occurs.
This axiom is saying that p;; = Prob (A|B) p;
where B is the event © = x; which has Prob (B) = p;.

7 The joint probabilities p;; = Prob (x = x; and y = y;) are in the matrix P :

0.1 0.3
P= with entries adding to 1.

02 04

P12 0.3 3
Problem 6 says that Prob (Y = y3| X = = = = —.
Y = el X =) = e = 01+03 1

Problem 5 says that Prob (X = x1) = p11 + p12 = 0.1+ 0.3 = 0.4.
8 This product rule of conditional probability is the axiom in Solution 12.2.6 above :

Prob (A and B) = Prob (A given B) times Prob (B).
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9 This discussion of Bayes’ Theorem is much too compressed ! Let me reproduce three
equations from Wolfram MathWorld. Here A and B are possible “sets” = “outcomes
from an experiment” and the simple-looking identity (*) connects conditional and

unconditional probabilities.

We know from 8 that Prob (A and B) = Prob (A given B) times Prob (B)
Reversing A and B gives Prob (A and B) = Prob (B given A) times Prob (A4)
Prob (A given B) Prob (B)
Prob (A)
MathWorld gives this extension to non-overlapping sets A1, ..., A, whose unionis A:
Prob (A;) Prob (A given A;)
Z Prob (A;) Prob (A given A;)
J

(*) Therefore Prob (B given A) =

Prob (A; given A) =

Problem Set 12.3, page 560

1 The two equations from two measurements are
Xr = b1 1 b1
[« ]=

or
x = by 1 bo

or Ax =0b.

The covariance matrix V' is diagonal since the measurements are independent :

The weighted least squares equationis ATV~ Az = AT Vb,

1/02 0 1 1 1
s o] 1.2
0 1/03 1 o1 03
_10—2 0 __b_ b b
ATV =1 1] /o =5+
0 1/03 by o1 03

Then Z is the ratio of those numbers :
bi/o? +by/o3

YT o2+ 1/03
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The variance of that estimate Z should be written as in (13) :

E[(@-2)(@-2)7) = (Tt At = (4 i)

2 (a) In the limit o2 — O the ratio Z approaches by because :

~ . bioZ 4+ byo? boo?
(Multiply & above and below by a% ag) = 1022 * 251 — 2(;—1 = bs.
o5 + 07 o

The second equation z = by is 100% accurate if its variance is oo = 0.

bi/o}
1/o?

from the totally unreliable measurement z = bs.

(b) If 03 — oo then 1/05 — 0 and Z — = by. We are getting no information

3 The key fact of independence is in the equation p(z,y) = p(x) p(y). Then

// wydwdy—// dwdy—/p(w)dw/p(y)dy:(1)(1):1-
//(a:+y) (z,y)dz dy //a?p dardy+//yp y)dz dy
= /xp(w) dl’/p(y) dy+/p(l’) dw/yp(y) dy

= (mg) (1) + (1) (my) = my + my,.

4 Continue Problem 3 to find variances o2 and o and to see covariance o, = 0:

//(l’ —mg)? p(x,y) dedy = /(a? —my)? p(z) dx/p(y) dy = o2
[ J=ma) =)ty dady = [(e-moyperdo [t-m,)p0) dy=(0) (0)

-1

N L a b 1 d —b
5 We are inverting a 2 by 2 matrix using = d=b
c d aa —obe c a
-1
2 2
1 o1 012 1 05 —012 012
s AR, > | T = o
013 02 1957012 | gy o2 1e2
2 2
1 05 —012 1 1/o7 —p/oiog

2 32 =
of03(1—p?) —019 0 1—p? —p/oroy  1/a3
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6 The right hand side of Z;1 shows the gain factor 1/(k + 1):

R 1 R
Tpt———(brg1—71) = =+ A ]

bitodbe 1 (bt b bt b
E+1 k 1\ "t -

Check that each number by, b, . . . , by, bg41 is correctly divided by k& + 1:

11 1 1/ k+1 -1\ _ 1
E k+1k k E+1 k41

7 We are considering the case when all the measurements b1, b, . . ., bi+1 have the same

variance o2. We know that the correct variance of their average is Wy 11 = 02 /(k+1).
We want to see how this answer comes from equation (18) when we have the correct
Wy, = o2 /k from the previous step, and we update to W1 :

_ _ _ k k1 kE+1
(18) says that Wk:+11 = W'+ A Vk+11 Ap1 = ;Hl} [1/0][1] = St o=

02 o2 o

So Wiy1 = 02 /(k + 1) is correct at the new step (and forever by induction).

8 The three equations have variances 02, s, 02 and they have zero covariances. (This

makes the step-by-step Kalman filter possible.) We can divide the equations by o, s, o

to produce unit variances (which lead to ordinary unweighted least squares). We are

given F' = 1:
1/0' 0 bo/U
To
-1/s 1/s = 0 isour Ax = b.
Z
0 1/0' bl/U

The normal equation (now unweighted) is AT Az = AT b:

1 1 1 - bo
2te T2 e

1 11 | bk
2 etell®m o

1
The determinant of this AT A is det = — + 5 - The solution is
o

0?s

s L(b, b b R T
N gt \ot T 22 T 52 2 2T et \022 T 22 T )
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9 With A = I and uT = vT =[1 2 3] we can use the direct formula for M~ :

1
T
T—u) =142 7 { }
(I —uv") +1—’uTu +1_14 2 1 2 3
3
-5 & 2 2 2 1
o, . 5 Multinly b— B 16 1
= Z 1- 4 15 |-Muluplyb=]1]| togety= |1 13 2 =13
3 6 9
i3 3 1-13 4 4 3

Instead of this formula for (I = wvT)~?, try steps 1 and 2::

Step 1 with A = [ givesx = band z = u.

2 1
. vTu 16
Step 2 givesy = b — 3 u= |1\ — 3 2 | as before.
4 3

10 We are asked to check that My = b using the update formula. Start with

T
uv' x {—1 + - — ﬂ} _wer [—c—i— 1—oT z] = 0 from the formula for ¢
c

11 Multiply columns times rows to see that the new v changes AT A to

{AT v] AT = ATA 4 voT

v

So adding the new row to A (and of course the new column to AT) has increased AT A

by the rank one matrix vv ™.



Solutions to Exercises 187

The book is ending with matrix multiplication! We could allow changes of rank r :
When A changes to M = A — UW ~'V/, its inverse changes to

Mt=A"1'+ A UWwW —-vATT Ut vATL

This change has rank r when W,.,.,. and V,.«,, and U, . all have rank r.



