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2 Solutions to Exercises

Problem Set 1.1, page 8

1 The combinations give (a) a line in R3 (b) a plane in R3 (c) all of R3.

2 v +w = (2, 3) and v −w = (6,−1) will be the diagonals of the parallelogram with

v and w as two sides going out from (0, 0).

3 This problem gives the diagonals v +w and v −w of the parallelogram and asks for

the sides: The opposite of Problem 2. In this example v = (3, 3) and w = (2,−2).

4 3v +w = (7, 5) and cv + dw = (2c+ d, c+ 2d).

5 u+v = (−2, 3, 1) and u+v+w = (0, 0, 0) and 2u+2v+w = ( add first answers) =

(−2, 3, 1). The vectors u,v,w are in the same plane because a combination gives

(0, 0, 0). Stated another way: u = −v −w is in the plane of v and w.

6 The components of every cv + dw add to zero because the components of v and of w

add to zero. c = 3 and d = 9 give (3, 3,−6). There is no solution to cv+dw = (3, 3, 6)

because 3 + 3 + 6 is not zero.

7 The nine combinations c(2, 1) + d(0, 1) with c = 0, 1, 2 and d = (0, 1, 2) will lie on a

lattice. If we took all whole numbers c and d, the lattice would lie over the whole plane.

8 The other diagonal is v −w (or else w − v). Adding diagonals gives 2v (or 2w).

9 The fourth corner can be (4, 4) or (4, 0) or (−2, 2). Three possible parallelograms!

10 i− j = (1, 1, 0) is in the base (x-y plane). i+ j + k = (1, 1, 1) is the opposite corner

from (0, 0, 0). Points in the cube have 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

11 Four more corners (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1). The center point is (12 ,
1
2 ,

1
2).

Centers of faces are (1
2
, 1
2
, 0), (1

2
, 1
2
, 1) and (0, 1

2
, 1
2
), (1, 1

2
, 1
2
) and (1

2
, 0, 1

2
), (1

2
, 1, 1

2
).

12 The combinations of i = (1, 0, 0) and i+ j = (1, 1, 0) fill the xy plane in xyz space.

13 Sum = zero vector. Sum = −2:00 vector = 8:00 vector. 2:00 is 30◦ from horizontal

= (cos π
6
, sin π

6
) = (

√
3/2, 1/2).

14 Moving the origin to 6:00 adds j = (0, 1) to every vector. So the sum of twelve vectors

changes from 0 to 12j = (0, 12).
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15 The point
3

4
v +

1

4
w is three-fourths of the way to v starting from w. The vector

1

4
v +

1

4
w is halfway to u =

1

2
v +

1

2
w. The vector v +w is 2u (the far corner of the

parallelogram).

16 All combinations with c + d = 1 are on the line that passes through v and w.

The point V = −v + 2w is on that line but it is beyond w.

17 All vectors cv + cw are on the line passing through (0, 0) and u = 1
2v + 1

2w. That

line continues out beyond v +w and back beyond (0, 0). With c ≥ 0, half of this line

is removed, leaving a ray that starts at (0, 0).

18 The combinations cv + dw with 0 ≤ c ≤ 1 and 0 ≤ d ≤ 1 fill the parallelogram with

sides v and w. For example, if v = (1, 0) and w = (0, 1) then cv + dw fills the unit

square. But when v = (a, 0) and w = (b, 0) these combinations only fill a segment of

a line.

19 With c ≥ 0 and d ≥ 0 we get the infinite “cone” or “wedge” between v and w. For

example, if v = (1, 0) and w = (0, 1), then the cone is the whole quadrant x ≥ 0, y ≥
0. Question: What if w = −v? The cone opens to a half-space. But the combinations

of v = (1, 0) and w = (−1, 0) only fill a line.

20 (a) 1
3u + 1

3v + 1
3w is the center of the triangle between u,v and w; 1

2u + 1
2w lies

between u and w (b) To fill the triangle keep c≥0, d≥0, e≥0, and c+d+e = 1.

21 The sum is (v−u)+(w−v)+(u−w) = zero vector. Those three sides of a triangle

are in the same plane!

22 The vector 1
2
(u+ v +w) is outside the pyramid because c+ d+ e = 1

2
+ 1

2
+ 1

2
> 1.

23 All vectors are combinations of u,v,w as drawn (not in the same plane). Start by

seeing that cu+ dv fills a plane, then adding ew fills all of R3.

24 The combinations of u and v fill one plane. The combinations of v and w fill another

plane. Those planes meet in a line: only the vectors cv are in both planes.

25 (a) For a line, choose u = v = w = any nonzero vector (b) For a plane, choose

u and v in different directions. A combination like w = u+ v is in the same plane.
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26 Two equations come from the two components: c + 3d = 14 and 2c + d = 8. The

solution is c = 2 and d = 4. Then 2(1, 2) + 4(3, 1) = (14, 8).

27 A four-dimensional cube has 24 = 16 corners and 2 · 4 = 8 three-dimensional faces

and 24 two-dimensional faces and 32 edges in Worked Example 2.4 A.

28 There are 6 unknown numbers v1, v2, v3, w1, w2, w3. The six equations come from the

components of v +w = (4, 5, 6) and v −w = (2, 5, 8). Add to find 2v = (6, 10, 14)

so v = (3, 5, 7) and w = (1, 0,−1).

29 Fact : For any three vectors u,v,w in the plane, some combination cu + dv + ew is

the zero vector (beyond the obvious c = d = e = 0). So if there is one combination

Cu+Dv+Ew that produces b, there will be many more—just add c, d, e or 2c, 2d, 2e

to the particular solution C,D,E.

The example has 3u − 2v + w = 3(1, 3) − 2(2, 7) + 1(1, 5) = (0, 0). It also has

−2u+ 1v + 0w = b = (0, 1). Adding gives u− v +w = (0, 1). In this case c, d, e

equal 3,−2, 1 and C,D,E = −2, 1, 0.

Could another example have u,v,w that could NOT combine to produce b ? Yes. The

vectors (1, 1), (2, 2), (3, 3) are on a line and no combination produces b. We can easily

solve cu+ dv + ew = 0 but not Cu+Dv +Ew = b.

30 The combinations of v and w fill the plane unless v and w lie on the same line through

(0, 0). Four vectors whose combinations fill 4-dimensional space: one example is the

“standard basis” (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1).

31 The equations cu+ dv + ew = b are

2c −d = 1

−c +2d −e = 0

−d +2e = 0

So d = 2e

then c = 3e

then 4e = 1

c = 3/4

d = 2/4

e = 1/4
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Problem Set 1.2, page 18

1 u · v = −2.4 + 2.4 = 0, u · w = −.6 + 1.6 = 1, u · (v + w) = u · v + u ·w =

0 + 1,w · v = 4 + 6 = 10 = v ·w.

2 ‖u‖ = 1 and ‖v‖ = 5 and ‖w‖ =
√
5. Then |u · v| = 0 < (1)(5) and |v ·w| = 10 <

5
√
5, confirming the Schwarz inequality.

3 Unit vectors v/‖v‖ = (4
5
, 3
5
) = (0.8, 0.6). The vectors w, (2,−1), and −w make

0 ◦, 90 ◦, 180 ◦ angles with w and w/‖w‖ = (1/
√
5, 2/

√
5). The cosine of θ is v

‖v‖ ·
w

‖w‖ = 10/5
√
5.

4 (a) v · (−v) = −1 (b) (v +w) · (v −w) = v · v +w · v − v ·w −w ·w =

1+( )−( )−1 = 0 so θ = 90◦ (notice v·w = w·v) (c) (v−2w)·(v+2w) =

v · v − 4w ·w = 1− 4 = −3.

5 u1 = v/‖v‖ = (1, 3)/
√
10 and u2 = w/‖w‖ = (2, 1, 2)/3. U 1 = (3,−1)/

√
10 is

perpendicular to u1 (and so is (−3, 1)/
√
10). U2 could be (1,−2, 0)/

√
5: There is a

whole plane of vectors perpendicular to u2, and a whole circle of unit vectors in that

plane.

6 All vectors w = (c, 2c) are perpendicular to v. They lie on a line. All vectors (x, y, z)

with x + y + z = 0 lie on a plane. All vectors perpendicular to (1, 1, 1) and (1, 2, 3)

lie on a line in 3-dimensional space.

7 (a) cos θ = v · w/‖v‖‖w‖ = 1/(2)(1) so θ = 60◦ or π/3 radians (b) cos θ =

0 so θ = 90◦ or π/2 radians (c) cos θ = 2/(2)(2) = 1/2 so θ = 60◦ or π/3

(d) cos θ = −1/
√
2 so θ = 135◦ or 3π/4.

8 (a) False: v and w are any vectors in the plane perpendicular to u (b) True: u ·
(v+2w) = u · v+2u ·w = 0 (c) True, ‖u− v‖2 = (u− v) · (u− v) splits into

u · u+ v · v = 2 when u · v = v · u = 0.

9 If v2w2/v1w1 = −1 then v2w2 = −v1w1 or v1w1+v2w2 = v ·w = 0: perpendicular!

The vectors (1, 4) and (1,− 1
4 ) are perpendicular.
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10 Slopes 2/1 and −1/2 multiply to give −1: then v ·w = 0 and the vectors (the direc-

tions) are perpendicular.

11 v ·w < 0 means angle > 90◦; these w’s fill half of 3-dimensional space.

12 (1, 1) perpendicular to (1, 5)− c(1, 1) if (1, 1) · (1, 5)− c(1, 1) · (1, 1) = 6− 2c = 0 or

c = 3; v · (w − cv) = 0 if c = v ·w/v · v. Subtracting cv is the key to constructing

a perpendicular vector.

13 The plane perpendicular to (1, 0, 1) contains all vectors (c, d,−c). In that plane, v =

(1, 0,−1) and w = (0, 1, 0) are perpendicular.

14 One possibility among many: u = (1,−1, 0, 0),v = (0, 0, 1,−1),w = (1, 1,−1,−1)

and (1, 1, 1, 1) are perpendicular to each other. “We can rotate those u,v,w in their

3D hyperplane and they will stay perpendicular.”

15
1
2(x+ y) = (2 + 8)/2 = 5 and 5 > 4; cos θ = 2

√
16/

√
10
√
10 = 8/10.

16 ‖v‖2 = 1+1+ · · ·+1 = 9 so ‖v‖ = 3;u = v/3 = (13 , . . . ,
1
3) is a unit vector in 9D;

w = (1,−1, 0, . . . , 0)/
√
2 is a unit vector in the 8D hyperplane perpendicular to v.

17 cosα = 1/
√
2, cosβ = 0, cos γ = −1/

√
2. For any vector v = (v1,v2,v3) the

cosines with (1, 0, 0) and (0, 0, 1) are cos2 α+cos2 β+cos2 γ=(v21+v22+v23)/‖v‖2= 1.

18 ‖v‖2 = 42 + 22 = 20 and ‖w‖2 = (−1)2 + 22 = 5. Pythagoras is ‖(3, 4)‖2 = 25 =

20 + 5 for the length of the hypotenuse v +w = (3, 4).

19 Start from the rules (1), (2), (3) for v ·w = w · v and u · (v +w) and (cv) ·w. Use

rule (2) for (v + w) · (v + w) = (v + w) · v + (v + w) · w. By rule (1) this is

v · (v +w) + w · (v + w). Rule (2) again gives v · v + v ·w +w · v +w ·w =

v · v + 2v ·w +w ·w. Notice v ·w = w · v! The main point is to feel free to open

up parentheses.

20 We know that (v−w) · (v−w) = v ·v− 2v ·w+w ·w. The Law of Cosines writes

‖v‖‖w‖ cos θ for v · w. Here θ is the angle between v and w. When θ < 90◦ this

v ·w is positive, so in this case v · v +w ·w is larger than ‖v −w‖2.

Pythagoras changes from equality a2+b2 = c2 to inequality when θ < 90 ◦ or θ > 90 ◦.
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21 2v ·w ≤ 2‖v‖‖w‖ leads to ‖v+w‖2 = v ·v+2v ·w+w ·w ≤ ‖v‖2+2‖v‖‖w‖+
‖w‖2. This is (‖v‖+ ‖w‖)2. Taking square roots gives ‖v +w‖ ≤ ‖v‖+ ‖w‖.

22 v21w
2
1 + 2v1w1v2w2 + v22w

2
2 ≤ v21w

2
1 + v21w

2
2 + v22w

2
1 + v22w

2
2 is true (cancel 4 terms)

because the difference is v21w
2
2 + v22w

2
1 − 2v1w1v2w2 which is (v1w2 − v2w1)

2 ≥ 0.

23 cosβ = w1/‖w‖ and sin β = w2/‖w‖. Then cos(β−a) = cosβ cosα+sinβ sinα =

v1w1/‖v‖‖w‖+ v2w2/‖v‖‖w‖ = v ·w/‖v‖‖w‖. This is cos θ because β − α = θ.

24 Example 6 gives |u1||U1| ≤ 1
2(u

2
1 + U2

1 ) and |u2||U2| ≤ 1
2 (u

2
2 + U2

2 ). The whole line

becomes .96 ≤ (.6)(.8) + (.8)(.6) ≤ 1
2(.6

2 + .82) + 1
2 (.8

2 + .62) = 1. True: .96 < 1.

25 The cosine of θ is x/
√
x2 + y2, near side over hypotenuse. Then | cos θ|2 is not greater

than 1: x2/(x2 + y2) ≤ 1.

26–27 (with apologies for that typo !) These two lines add to 2||v||2 + 2||w||2 :

||v +w||2 = (v +w) · (v +w) = v · v + v ·w +w · v +w ·w

||v −w||2 = (v −w) · (v −w) = v · v − v ·w −w · v +w ·w

28 The vectors w = (x, y) with (1, 2) ·w = x+ 2y = 5 lie on a line in the xy plane. The

shortest w on that line is (1, 2). (The Schwarz inequality ‖w‖ ≥ v ·w/‖v‖ =
√
5 is

an equality when cos θ = 0 and w = (1, 2) and ‖w‖ =
√
5.)

29 The length ‖v−w‖ is between 2 and 8 (triangle inequality when ‖v‖ = 5 and ‖w‖ =

3). The dot product v ·w is between −15 and 15 by the Schwarz inequality.

30 Three vectors in the plane could make angles greater than 90◦ with each other: for

example (1, 0), (−1, 4), (−1,−4). Four vectors could not do this (360◦ total angle).

How many can do this in R3 or Rn? Ben Harris and Greg Marks showed me that the

answer is n + 1. The vectors from the center of a regular simplex in Rn to its n + 1

vertices all have negative dot products. If n+2 vectors in Rn had negative dot products,

project them onto the plane orthogonal to the last one. Now you have n+ 1 vectors in

Rn−1 with negative dot products. Keep going to 4 vectors in R2 : no way!

31 For a specific example, pick v = (1, 2,−3) and then w = (−3, 1, 2). In this example

cos θ = v · w/‖v‖‖w‖ = −7/
√
14
√
14 = −1/2 and θ = 120◦ . This always

happens when x+ y + z = 0:
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v ·w = xz + xy + yz =
1

2
(x+ y + z)2 − 1

2
(x2 + y2 + z2)

This is the same as v ·w = 0− 1

2
‖v‖‖w‖. Then cos θ =

1

2
.

32 Wikipedia gives this proof of geometric mean G = 3
√
xyz ≤ arithmetic mean

A = (x + y + z)/3. First there is equality in case x = y = z. Otherwise A is

somewhere between the three positive numbers, say for example z < A < y.

Use the known inequality g ≤ a for the two positive numbers x and y + z − A. Their

mean a = 1
2(x + y + z − A) is 1

2(3A − A) = same as A! So a ≥ g says that

A3 ≥ g2A = x(y + z − A)A. But (y + z − A)A = (y − A)(A − z) + yz > yz.

Substitute to find A3 > xyz = G3 as we wanted to prove. Not easy!

There are many proofs of G = (x1x2 · · ·xn)
1/n ≤ A = (x1 + x2 + · · · + xn)/n. In

calculus you are maximizing G on the plane x1 + x2 + · · · + xn = n. The maximum

occurs when all x’s are equal.

33 The columns of the 4 by 4 “Hadamard matrix” (times 1
2

) are perpendicular unit

vectors:

1

2
H =

1

2




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1



.

34 The commands V = randn (3, 30);D = sqrt (diag (V ′ ∗ V )); U = V \D; will give

30 random unit vectors in the columns of U . Then u ′ ∗ U is a row matrix of 30 dot

products whose average absolute value should be close to 2/π.

Problem Set 1.3, page 29

1 3s1 + 4s2 + 5s3 = (3, 7, 12). The same vector b comes from S times x = (3, 4, 5):
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


1 0 0

1 1 0

1 1 1







3

4

5


 =




(row 1) · x
(row 2) · x
(row 2) · x


 =




3

7

12


 .

2 The solutions are y1 = 1, y2 = 0, y3 = 0 (right side = column 1) and y1 = 1, y2 = 3,

y3 = 5. That second example illustrates that the first n odd numbers add to n2.

3

y1 = B1

y1 + y2 = B2

y1 + y2 + y3 = B3

gives

y1 = B1

y2 = −B1 +B2

y3 = −B2 +B3

=




1 0 0

−1 1 0

0 −1 1







B1

B2

B3




The inverse of S=




1 0 0

1 1 0

1 1 1


 is A=




1 0 0

−1 1 0

0 −1 1


: independent columns in A and S!

4 The combination 0w1 + 0w2 + 0w3 always gives the zero vector, but this problem

looks for other zero combinations (then the vectors are dependent, they lie in a plane):

w2 = (w1 +w3)/2 so one combination that gives zero is w1 − 2w2 +w3 = 0.

5 The rows of the 3 by 3 matrix in Problem 4 must also be dependent: r2 = 1
2
(r1 + r3).

The column and row combinations that produce 0 are the same: this is unusual. Two

solutions to y1r1 + y2r2 + y3r3 = 0 are (Y1, Y2, Y3) = (1,−2, 1) and (2,−4, 2).

6 c = 3




1 1 0

3 2 1

7 4 3


 has column 3 = column 1− column 2

c = −1




1 0 −1

1 1 0

0 1 1


 has column 3 = − column 1 + column 2

c = 0




0 0 0

2 1 5

3 3 6


 has column 3 = 3 (column 1)− column 2
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7 All three rows are perpendicular to the solution x (the three equations r1 · x = 0 and

r2 ·x = 0 and r3 ·x = 0 tell us this). Then the whole plane of the rows is perpendicular

to x (the plane is also perpendicular to all multiples cx).

8

x1 − 0 = b1

x2 − x1 = b2

x3 − x2 = b3

x4 − x3 = b4

x1 = b1

x2 = b1 + b2

x3 = b1 + b2 + b3

x4 = b1 + b2 + b3 + b4

=




1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1







b1

b2

b3

b4



= A−1b

9 The cyclic difference matrix C has a line of solutions (in 4 dimensions) to Cx = 0:




1 0 0 −1

−1 1 0 0

0 −1 1 0

0 0 −1 1







x1

x2

x3

x4



=




0

0

0

0




when x =




c

c

c

c



= any constant vector.

10

z2 − z1 = b1

z3 − z2 = b2

0− z3 = b3

z1 = −b1 − b2 − b3

z2 = − b2 − b3

z3 = − b3

=




−1 −1 −1

0 −1 −1

0 0 −1







b1

b2

b3


 = ∆−1b

11 The forward differences of the squares are (t+ 1)2 − t2 = t2 + 2t+ 1− t2 = 2t+ 1.

Differences of the nth power are (t+ 1)n − tn = tn − tn + ntn−1 + · · · . The leading

term is the derivative ntn−1. The binomial theorem gives all the terms of (t+ 1)n.

12 Centered difference matrices of even size seem to be invertible. Look at eqns. 1 and 4:




0 1 0 0

−1 0 1 0

0 −1 0 1

0 0 −1 0







x1

x2

x3

x4



=




b1

b2

b3

b4




First

solve

x2 = b1

−x3 = b4




x1

x2

x3

x4



=




−b2 − b4

b1

−b4

b1 + b3




13 Odd size: The five centered difference equations lead to b1 + b3 + b5 = 0.
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x2 = b1

x3 − x1 = b2

x4 − x2 = b3

x5 − x3 = b4

− x4 = b5

Add equations 1, 3, 5

The left side of the sum is zero

The right side is b1 + b3 + b5

There cannot be a solution unless b1 + b3 + b5 = 0.

14 An example is (a, b) = (3, 6) and (c, d) = (1, 2). We are given that the ratios a/c and

b/d are equal. Then ad = bc. Then (when you divide by bd) the ratios a/b and c/d

must also be equal!
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Problem Set 2.1, page 41

1 The row picture for A = I has 3 perpendicular planes x = 2 and y = 3 and z = 4.

Those are perpendicular to the x and y and z axes : z = 4 is a horizontal plane at

height 4.

The column vectors are i = (1, 0, 0) and j = (0, 1, 0) and k = (0, 0, 1). Then b =

(2, 3, 4) is the linear combination 2i+ 3j + 4k.

2 The planes in a row picture are the same: 2x = 4 is x = 2, 3y = 9 is y = 3, and

4z = 16 is z = 4. The solution is the same point X = x. The three column vectors

are changed; but the same combination (coefficients z, produces b = 34), (4, 9, 16).

3 The solution is not changed! The second plane and row 2 of the matrix and all columns

of the matrix (vectors in the column picture) are changed.

4 If z = 2 then x+ y = 0 and x − y = 2 give the point (x, y, z) = (1,−1, 2). If z = 0

then x+ y = 6 and x− y = 4 produce (5, 1, 0). Halfway between those is (3, 0, 1).

5 If x, y, z satisfy the first two equations they also satisfy the third equation = sum of

the first two. The line L of solutions contains v = (1, 1, 0) and w = (12 , 1,
1
2) and

u = 1
2v+ 1

2w and all combinations cv+ dw with c+ d = 1. (Notice that requirement

c+ d = 1. If you allow all c and d, you get a plane.)

6 Equation 1 + equation 2− equation 3 is now 0 = −4. The intersection lineL of planes

1 and 2 misses plane 3 : no solution.

7 Column 3 = Column 1 makes the matrix singular. For b = (2, 3, 5) the solutions are

(x, y, z) = (1, 1, 0) or (0, 1, 1) and you can add any multiple of (−1, 0, 1). b = (4, 6, c)

needs c = 10 for solvability (then b lies in the plane of the columns and the three

equations add to 0 = 0).

8 Four planes in 4-dimensional space normally meet at a point. The solution to Ax =

(3, 3, 3, 2) is x = (0, 0, 1, 2) if A has columns (1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0),

(1, 1, 1, 1). The equations are x+ y+ z+ t = 3, y+ z+ t = 3, z+ t = 3, t = 2. Solve

them in reverse order !
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9 (a) Ax = (18, 5, 0) and (b) Ax = (3, 4, 5, 5).

10 Multiplying as linear combinations of the columns gives the same Ax = (18, 5, 0) and

(3, 4, 5, 5). By rows or by columns: 9 separate multiplications when A is 3 by 3.

11 Ax equals (14, 22) and (0, 0) and (9, 7).

12 Ax equals (z, y, x) and (0, 0, 0) and (3, 3, 6).

13 (a) x has n components and Ax has m components (b) Planes from each equation

in Ax = b are in n-dimensional space. The columns of A are in m-dimensional space.

14 2x+3y+z+5t= 8 is Ax = b with the 1 by 4 matrix A = [ 2 3 1 5 ] : one row. The

solutions (x, y, z, t) fill a 3D “plane” in 4 dimensions. It could be called a hyperplane.

15 (a) I =


1 0

0 1


 = “identity” (b) P =


0 1

1 0


 = “permutation”

16 90◦ rotation from R =


 0 1

−1 0


, 180◦ rotation from R2 =


−1 0

0 −1


 = −I .

17 P =




0 1 0

0 0 1

1 0 0


 produces




y

z

x


 and Q =




0 0 1

1 0 0

0 1 0


 recovers




x

y

z


. Q is the

inverse of P . Later we write QP = I and Q = P−1.

18 E =


 1 0

−1 1


 and E =




1 0 0

−1 1 0

0 0 1


 subtract the first component from the second.

19 E =




1 0 0

0 1 0

1 0 1


 and E−1 =




1 0 0

0 1 0

−1 0 1


, Ev =




3

4

8


 and E−1Ev recovers




3

4

5


.

20 P1 =


1 0

0 0


 projects onto the x-axis and P2 =


0 0

0 1


 projects onto the y-axis.

The vector v =


5

7


 projects to P1v =


5

0


 and P2P1v =


0

0


.
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21 R =
1

2



√
2 −

√
2

√
2

√
2


 rotates all vectors by 45◦ . The columns of R are the results

from rotating (1, 0) and (0, 1)!

22 The dot product Ax = [ 1 4 5 ]




x

y

z


 = (1 by 3)(3 by 1) is zero for points (x, y, z)

on a plane in three dimensions. The 3 columns of A are one-dimensional vectors.

23 A = [ 1 2 ; 3 4 ] and x = [ 5 −2 ]
′

or [ 5 ; −2 ] and b = [ 1 7 ]
′

or [ 1 ; 7 ].

r = b− A ∗ x prints as two zeros.

24 A ∗ v = [ 3 4 5 ]
′

and v ′ ∗ v = 50. But v ∗ A gives an error message from 3 by 1

times 3 by 3.

25 ones(4, 4) ∗ ones(4, 1) = column vector [ 4 4 4 4 ]
′
; B ∗w = [ 10 10 10 10 ]

′
.

26 The row picture has two lines meeting at the solution (4, 2). The column picture will

have 4(1, 1) + 2(−2, 1) = 4(column 1) + 2(column 2) = right side (0, 6).

27 The row picture shows 2 planes in 3-dimensional space. The column picture is in

2-dimensional space. The solutions normally fill a line in 3-dimensional space.

28 The row picture shows four lines in the 2D plane. The column picture is in four-

dimensional space. No solution unless the right side is a combination of the two columns.

29 u2 =


 .7

.3


 and u3 =


 .65

.35


 .

The components add to 1. They are always positive.

Their components still add to 1.

30 u7 and v7 have components adding to 1; they are close to s = (.6, .4).


 .8 .3

.2 .7




 .6

.4


 =


 .6

.4


 = steady state s. No change when multiplied by


 .8 .3

.2 .7


.

31 M =




8 3 4

1 5 9

6 7 2


 =




5 + u 5− u+ v 5− v

5− u− v 5 5 + u+ v

5 + v 5 + u− v 5− u


; M3(1, 1, 1) = (15, 15, 15);

M4(1, 1, 1, 1) = (34, 34, 34, 34) because 1 + 2 + · · ·+ 16 = 136 which is 4(34).
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32 A is singular when its third column w is a combination cu + dv of the first columns.

A typical column picture has b outside the plane of u, v, w. A typical row picture has

the intersection line of two planes parallel to the third plane. Then no solution.

33 w = (5, 7) is 5u + 7v. Then Aw equals 5 times Au plus 7 times Av. Linearity

means : When w is a combination of u and v, then Aw is the same combination of Au

and Av.

34




2 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2







x1

x2

x3

x4



=




1

2

3

4




has the solution




x1

x2

x3

x4



=




4

7

8

6




.

35 x = (1, . . . , 1) gives Sx = sum of each row = 1+ · · ·+9 = 45 for Sudoku matrices.

6 row orders (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1) are in Section 2.7.

The same 6 permutations of blocks of rows produce Sudoku matrices, so 64 = 1296

orders of the 9 rows all stay Sudoku. (And also 1296 permutations of the 9 columns.)

Problem Set 2.2, page 53

1 Multiply equation 1 by ℓ21 = 10
2

= 5 and subtract from equation 2 to find 2x+3y = 1

(unchanged) and −6y = 6. The pivots to circle are 2 and −6.

2 −6y = 6 gives y = −1. Then 2x + 3y = 1 gives x = 2. Multiplying the right side

(1, 11) by 4 will multiply the solution by 4 to give the new solution (x, y) = (8,−4).

3 Subtract − 1
2 (or add 1

2 ) times equation 1. The new second equation is 3y=3. Then

y=1 and x=5. If the right side changes sign, so does the solution: (x, y)=(−5,−1).

4 Subtract ℓ = c
a times equation 1 from equation 2. The new second pivot multiplying y

is d− (cb/a) or (ad− bc)/a. Then y = (ag− cf)/(ad− bc). Notice the “determinant

of A” = ad− bc. It must be nonzero for this division.
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5 6x + 4y is 2 times 3x + 2y. There is no solution unless the right side is 2 · 10 = 20.

Then all the points on the line 3x+2y = 10 are solutions, including (0, 5) and (4,−1).

The two lines in the row picture are the same line, containing all solutions.

6 Singular system if b = 4, because 4x+ 8y is 2 times 2x+ 4y. Then g = 32 makes the

lines 2x+ 4y = 16 and 4x+ 8y = 32 become the same: infinitely many solutions like

(8, 0) and (0, 4).

7 If a = 2 elimination must fail (two parallel lines in the row picture). The equations

have no solution. With a = 0, elimination will stop for a row exchange. Then 3y = −3

gives y = −1 and 4x+ 6y = 6 gives x = 3.

8 If k = 3 elimination must fail: no solution. If k = −3, elimination gives 0 = 0 in

equation 2: infinitely many solutions. If k = 0 a row exchange is needed: one solution.

9 On the left side, 6x− 4y is 2 times (3x− 2y). Therefore we need b2 = 2b1 on the right

side. Then there will be infinitely many solutions (two parallel lines become one single

line in the row picture). The column picture has both columns along the same line.

10 The equation y = 1 comes from elimination (subtract x + y = 5 from x + 2y = 6).

Then x = 4 and 5x− 4y = 20− 4 = c = 16.

11 (a) Another solution is 1
2
(x+X, y+Y, z+Z). (b) If 25 planes meet at two points,

they meet along the whole line through those two points.

12 Elimination leads to this upper triangular system; then comes back substitution.

2x + 3y + z = 8

y + 3z = 4

8z = 8

gives

x = 2

y = 1 If a zero is at the start of row 2 or row 3,

z = 1 that avoids a row operation.

13 2x − 3y = 3

4x − 5y + z = 7

2x − y − 3z = 5

gives

2x − 3y = 3

y + z = 1

2y + 3z = 2

and

2x − 3y = 3

y + z = 1

− 5z = 0

and

x = 3

y = 1

z = 0

Here are steps 1, 2, 3 : Subtract 2 × row 1 from row 2, subtract 1 × row 1 from row 3,

subtract 2 × row 2 from row 3
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14 Subtract 2 times row 1 from row 2 to reach (d−10)y−z = 2. Equation (3) is y−z = 3.

If d = 10 exchange rows 2 and 3. If d = 11 the system becomes singular.

15 The second pivot position will contain −2 − b. If b = −2 we exchange with row 3.

If b = −1 (singular case) the second equation is −y − z = 0. But equation (3) is the

same so there is a line of solutions (x, y, z) = (1, 1,−1).

16 (a)

Example of

2 exchanges

0x + 0y + 2z = 4

x + 2y + 2z = 5

0x + 3y + 4z = 6

(exchange 1 and 2, then 2 and 3)

(b)

Exchange

but then

breakdown

0x + 3y + 4z = 4

x + 2y + 2z = 5

0x + 3y + 4z = 6

(rows 1 and 3 are not consistent)

17 If row 1 = row 2, then row 2 is zero after the first step; exchange the zero row with row

3 and row 3 has no pivot. If column 2 = column 1, then column 2 has no pivot.

18 Example x + 2y + 3z = 0, 4x + 8y + 12z = 0, 5x + 10y + 15z = 0 has 9 different

coefficients but rows 2 and 3 become 0 = 0: infinitely many solutions to Ax = 0 but

almost surely no solution to Ax = b for a random b.

19 Row 2 becomes 3y − 4z = 5, then row 3 becomes (q + 4)z = t − 5. If q = −4 the

system is singular—no third pivot. Then if t = 5 the third equation is 0 = 0 which

allows infinitely many solutions. Choosing z = 1 the equation 3y−4z = 5 gives y = 3

and equation 1 gives x = −9.

20 Singular if row 3 is a combination of rows 1 and 2. From the end view, the three planes

form a triangle. This happens if rows 1+2=row 3 on the left side but not the right side:

x+y+z= 0, x−2y−z = 1, 2x−y= 4. No parallel planes but still no solution. The

three planes in the row picture form a triangular tunnel.

21 (a) Pivots 2, 3
2
, 4
3
, 5
4

in the equations 2x + y = 0, 3
2
y + z = 0, 4

3
z + t = 0, 5

4
t = 5

after elimination. Back substitution gives t = 4, z = −3, y = 2, x = −1. (b) If

the off-diagonal entries change from +1 to −1, the pivots are the same. The solution is

(1, 2, 3, 4) instead of (−1, 2,−3, 4).

22 The fifth pivot is 6

5
for both matrices (1’s or −1’s off the diagonal). The nth pivot is

n+1

n
.
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23 If ordinary elimination leads to x + y = 1 and 2y = 3, the original second equation

could be 2y+ ℓ(x+y) = 3+ ℓ for any ℓ. Then ℓ will be the multiplier to reach 2y = 3,

by subtracting ℓ times equation 1 from equation 2.

24 Elimination fails on


a 2

a a


 if a = 2 or a = 0. (You could notice that the determinant

a2 − 2a is zero for a = 2 and a = 0.)

25 a = 2 (equal columns), a = 4 (equal rows), a = 0 (zero column).

26 Solvable for s = 10 (add the two pairs of equations to get a+b+c+d on the left sides,

12 and 2 + s on the right sides). So 12 must agree with 2 + s, which makes s = 10.

The four equations for a, b, c, d are singular! Two solutions are


1 3

1 7


 and


0 4

2 6


,

A =




1 1 0 0

1 0 1 0

0 0 1 1

0 1 0 1




and U =




1 1 0 0

0 −1 1 0

0 0 1 1

0 0 0 0




.

27 Elimination leaves the diagonal matrix diag(3, 2, 1) in 3x = 3, 2y = 2, z = 2. Then

x = 1, y = 1, z = 2.

28 A(2, :) = A(2, :)− 3 ∗ A(1, :) subtracts 3 times row 1 from row 2.

29 The average pivots for rand(3) without row exchanges were 1
2 , 5, 10 in one experiment—

but pivots 2 and 3 can be arbitrarily large. Their averages are actually infinite ! With

row exchanges in MATLAB’s lu code, the averages .75 and .50 and .365 are much

more stable (and should be predictable, also for randn with normal instead of uniform

probability distribution for the numbers in A).

30 If A(5, 5) is 7 not 11, then the last pivot will be 0 not 4.

31 Row j of U is a combination of rows 1, . . . , j of A (when there are no row exchanges).

If Ax = 0 then Ux = 0 (not true if b replaces 0). U just keeps the diagonal of A when

A is lower triangular.

32 The question deals with 100 equations Ax = 0 when A is singular.
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(a) Some linear combination of the 100 rows is the row of 100 zeros.

(b) Some linear combination of the 100 columns is the column of zeros.

(c) A very singular matrix has all ones: A = ones (100). A better example has 99

random rows (or the numbers 1i, . . . , 100i in those rows). The 100th row could

be the sum of the first 99 rows (or any other combination of those rows with no

zeros).

(d) The row picture has 100 planes meeting along a common line through 0. The

column picture has 100 vectors all in the same 99-dimensional hyperplane.

Problem Set 2.3, page 66

1 E21 =




1 0 0

−5 1 0

0 0 1


 , E32 =




1 0 0

0 1 0

0 7 1


 , P =




1 0 0

0 0 1

0 1 0







0 1 0

1 0 0

0 0 1


 =




0 1 0

0 0 1

1 0 0


.

2 E32E21b = (1,−5,−35) but E21E32b = (1,−5, 0). When E32 comes first, row 3

feels no effect from row 1.

3




1 0 0

−4 1 0

0 0 1


 ,




1 0 0

0 1 0

2 0 1


 ,




1 0 0

0 1 0

0 −2 1


 M = E32E31E21 =




1 0 0

−4 1 0

10 −2 1


 .

Those E’s are in the right order to give MA = U .

4 Elimination on column 4: b =




1

0

0




E21→




1

−4

0




E31→




1

−4

2




E32→




1

−4

10




. The

original Ax = b has become Ux = c = (1,−4, 10). Then back substitution gives

z = −5, y = 1
2
, x = 1

2
. This solves Ax = (1, 0, 0).

5 Changing a33 from 7 to 11 will change the third pivot from 5 to 9. Changing a33 from

7 to 2 will change the pivot from 5 to no pivot.
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6 Example:




2 3 7

2 3 7

2 3 7







1

3

−1



=




4

4

4




. If all columns are multiples of column 1, there

is no second pivot.

7 To reverse E31, add 7 times row 1 to row 3. The inverse of the elimination matrix

E =




1 0 0

0 1 0

−7 0 1




is E−1 =




1 0 0

0 1 0

7 0 1




. Multiplication confirms EE−1 = I.

8 M =


a b

c d


 and M* =


 a b

c− ℓa d− ℓb


. detM* = a(d − ℓb) − b(c − ℓa)

reduces to ad− bc ! Subtracting row 1 from row 2 doesn’t change detM .

9 M=




1 0 0

0 0 1

−1 1 0


. After the exchange, we need E31 (not E21) to act on the new row 3.

10 E13=




1 0 1

0 1 0

0 0 1


 ;




1 0 1

0 1 0

1 0 1


 ;E31E13=




2 0 1

0 1 0

1 0 1


 . Test on the identity matrix!

11 An example with two negative pivots is A =




1 2 2

1 1 2

1 2 1


. The diagonal entries can

change sign during elimination.

12 The first product is




9 8 7

6 5 4

3 2 1




rows and

also columns

reversed.

The second product is




1 2 3

0 1 −2

0 2 −3


.
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13 (a) E times the third column of B is the third column of EB. A column that starts

at zero will stay at zero. (b) E could add row 2 to row 3 to change a zero row to a

nonzero row.

14 E21 has −ℓ21=
1
2 , E32 has −ℓ32=

2
3 , E43 has −ℓ43=

3
4 . Otherwise the E’s match I .

15 aij = 2i− 3j: A =




−1 −4 −7

1 −2 −5

3 0 −3


 →




−1 −4 −7

0 −6 −12

0 −12 −24


. The zero became −12,

an example of fill-in. To remove that −12, choose E32 =




1 0 0

0 1 0

0 −2 1


.

Every 3 by 3 matrix with entries aij = ci+ dj is singular !

16 (a) The ages of X and Y are x and y: x− 2y = 0 and x+ y = 33; x = 22 and y = 11

(b) The line y = mx + c contains x = 2, y = 5 and x = 3, y = 7 when 2m+ c = 5

and 3m+ c = 7. Then m = 2 is the slope.

17 The parabola y=a+bx+cx2 goes through the 3 given points when

a+ b+ c = 4

a+ 2b+ 4c = 8

a+ 3b+ 9c = 14

.

Then a = 2, b = 1, and c = 1. This matrix with columns (1, 1, 1), (1, 2, 3), (1, 4, 9) is

a “Vandermonde matrix.”

18 EF =




1 0 0

a 1 0

b c 1


, FE=




1 0 0

a 1 0

b+ac c 1


, E2=




1 0 0

2a 1 0

2b 0 1


, F 3=




1 0 0

0 1 0

0 3c 1


 .

19 PQ =




0 1 0

0 0 1

1 0 0


. In the opposite order, two row exchanges giveQP =




0 0 1

1 0 0

0 1 0


,

P 2 = I . If M exchanges rows 2 and 3 then M2 = I (also (−M)
2
= I). There are

many square roots of I : Any matrix M =


a b

c −a


 has M2 = I if a2 + bc = 1.
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20 (a) Each column of EB is E times a column of B (b)


1 0

1 1





1 2 4

1 2 4


 =


 1 2 4

2 4 8


. All rows of EB are multiples of

[
1 2 4

]
.

21 No. E =


1 0

1 1


 and F =


1 1

0 1


 give EF =


1 1

1 2


 but FE =


2 1

1 1


.

22 (a)
∑

a3jxj (b) a21 − a11 (c) a21 − 2a11 (d) (EAx)1 = (Ax)1 =
∑

a1jxj .

23 E(EA) subtracts 4 times row 1 from row 2 (EEA does the row operation twice).

AE subtracts 2 times column 2 of A from column 1 (multiplication by E on the right

side acts on columns instead of rows).

24

[
A b

]
=


2 3 1

4 1 17


→


2 3 1

0 −5 15


. The triangular system is

2x1 + 3x2 = 1

−5x2 = 15

Back substitution gives x1 = 5 and x2 = −3.

25 The last equation becomes 0 = 3. If the original 6 is 3, then row 1 + row 2 = row 3.

Then the last equation is 0 = 0 and the system has infinitely many solutions.

26 (a) Add two columns b and b∗ to get [A b b∗]. The example has

1 4 1 0

2 7 0 1


→


1 4 1 0

0 −1 −2 1


→ x =


−7

2


 and x∗ =


 4

−1


.

27 (a) No solution if d=0 and c 6=0 (b) Many solutions if d=0=c. No effect from a, b.

28 A = AI = A(BC) = (AB)C = IC = C. That middle equation is crucial.

29 E=




1 0 0 0

−1 1 0 0

0 −1 1 0

0 0 −1 1




subtracts each row from the next row. The result




1 0 0 0

0 1 0 0

0 1 1 0

0 1 2 1




still has multipliers = 1 in a 3 by 3 Pascal matrix. The product M of all elimination
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matrices is




1 0 0 0

−1 1 0 0

1 −2 1 0

−1 3 −3 1




. This “alternating sign Pascal matrix” is on page 91.

30 (a) E = A−1 =


 1 0

−1 1


 will reduce row 2 of EM to [2 3].

(b) Then F = B−1 =


 1 −1

0 1


 will reduce row 1 of FEM to [1 1].

(c) Then E = A−1 twice will reduce row 2 of EEFEM to [0 1]

(d) Now EEFEM = B. Move E’s and F ’s to get M = ABAAB. This question

focuses on positive integer matrices M with ad − bc = 1. The same steps make the

entries smaller and smaller until M is a product of A’s and B’s.

31 E21 =




1

a 1

0 0 1

0 0 0 1




, E32 =




1

0 1

0 b 1

0 0 0 1




, E43 =




1

0 1

0 0 1

0 0 c 1




,

E43 E32E21 =




1

a 1

ab b 1

abc bc c 1




Problem Set 2.4, page 77

1 If all entries of A,B,C,D are 1, then BA = 3 ones(5) is 5 by 5; AB = 5 ones(3) is

3 by 3; ABD = 15 ones(3, 1) is 3 by 1. DC and A(B + C) are not defined.

2 (a) A (column 2 of B) (b) (Row 1 of A) B (c) (Row 3 of A)(column 5 of B)

(d) (Row 1 of C)D(column 1 of E). (Part (c) assumed 5 columns in B)
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3 AB + AC is the same as A(B + C) =


3 8

6 9


. (Distributive law).

4 A(BC) = (AB)C by the associative law. In this example both answers are


0 0

0 0


.

Column 1 of AB and row 2 of C are zero (then multiply columns times rows).

5 (a) A2 =


1 2b

0 1


 and An =


1 nb

0 1


. (b) A2 =


4 4

0 0


 and An =


2

n 2n

0 0


.

6 (A+B)2 =


10 4

6 6


 = A2 +AB +BA+B2. But A2 + 2AB +B2 =


16 2

3 0


.

7 (a) True (b) False (c) True (d) False: usually (AB)2 = ABAB 6= A2B2.

8 The rows of DA are 3 (row 1 of A) and 5 (row 2 of A). Both rows of EA are row 2 of A.

The columns of AD are 3 (column 1 of A) and 5 (column 2 of A). The first column of

AE is zero, the second is column 1 of A + column 2 of A.

9 AF =




a a+ b

c c+ d


 and E(AF ) equals (EA)F because matrix multiplication is

associative.

10 FA =




a+ c b+ d

c d


 and then E(FA) =




a+ c b+ d

a+ 2c b+ 2d


. E(FA) is not

the same as F (EA) because multiplication is not commutative: EF 6= FE.

11 Suppose EA does the row operation and then (EA)F does the column operation (be-

cause F is multiplying from the right). The associative law says that (EA)F = E(AF )

so the column operation can be done first !

12 (a) B = 4I (b) B = 0 (c) B =




0 0 1

0 1 0

1 0 0


 (d) Every row of B is 1, 0, 0.
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13 AB =




a 0

c 0


 = BA =




a b

0 0


 gives b = c = 0. Then AC = CA gives

a = d. The only matrices that commute with B and C (and all other matrices) are

multiples of I : A = aI .

14 (A − B)2 = (B − A)2 = A(A − B) − B(A − B) = A2 − AB − BA + B2. In a

typical case (when AB 6= BA) the matrix A2−2AB+B2 is different from (A−B)2.

15 (a) True (A2 is only defined when A is square).

(b) False (if A is m by n and B is n by m, then AB is m by m and BA is n by n).

(c) True by part (b).

(d) False (take B = 0).

16 (a) mn (use every entry of A) (b) mnp = p×part (a) (c) n3 (n2 dot products).

17 (a) Use only column 2 of B (b) Use only row 2 of A (c)–(d) Use row 2 of first A.

Column 2 ofAB =


 0

0


 Row 2 ofAB =

[
1 0 0

]
Row 2 of A2 =

[
0 1

]

Row 2 of A3 =
[
3 −2

]

18 A =




1 1 1

1 2 2

1 2 3




has aij = min(i, j). A =




1 −1 1

−1 1 −1

1 −1 1




has aij = (−1)i+j =

“alternating sign matrix”. A =




1/1 1/2 1/3

2/1 2/2 2/3

3/1 3/2 3/3




has aij = i/j. This will be an

example of a rank one matrix : 1 column
[
1 2 3

]T
multiplies 1 row

[
1 1

2
1
3

]
.

19 Diagonal matrix, lower triangular, symmetric, all rows equal. Zero matrix fits all four.

20 (a) a11 (b) ℓ31 = a31/a11 (c) a32 −
(
a31
a11

)
a12 (d) a22 −

(
a21
a11

)
a12.
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21 A2 =




0 0 4 0

0 0 0 4

0 0 0 0

0 0 0 0




, A3 =




0 0 0 8

0 0 0 0

0 0 0 0

0 0 0 0




, A4 = zero matrix for strictly triangular A.

Then Av = A




x

y

z

t




=




2y

2z

2t

0




, A2v =




4z

4t

0

0




, A3v =




8t

0

0

0




, A4v = 0.

22 A =


 0 1

−1 0


 has A2 = −I ; BC =


1 −1

1 −1




1 1

1 1


 =


0 0

0 0


;

DE =


0 1

1 0




 0 1

−1 0


 =


−1 0

0 1


 = −ED. You can find more examples.

23 A =




0 1

0 0


 has A2 = 0. Note: Any matrix A = column times row = uvT will

have A2 = uvTuvT = 0 if vTu = 0. A =




0 1 0

0 0 1

0 0 0




has A2 =




0 0 1

0 0 0

0 0 0




but A3 = 0; strictly triangular as in Problem 21.

24 (A1)
n =


2

n 2n − 1

0 1


, (A2)

n = 2n−1


1 1

1 1


, (A3)

n =


a

n an−1b

0 0


.

25




a b c

d e f

g h i







1 0 0

0 1 0

0 0 1


=




a

d

g




[
1 0 0

]

+




d

e

h




[
0 1 0

]

+




c

f

i




[
0 0 1

]

.
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26
Columns of A

times rows of B




1

2

2



[
3 3 0

]
+




0

4

1



[
1 2 1

]
=




3 3 0

6 6 0

6 6 0


+




0 0 0

4 8 4

1 2 1


 =




3 3 0

10 14 4

7 8 1


 = AB.

27 (a) (row 3 of A) · (column 1 or 2 of B) and (row 3 of A) · (column 2 of B) are all zero.

(b)




x

x

0



[
0 x x

]
=




0 x x

0 x x

0 0 0


 and




x

x

x



[
0 0 x

]
=




0 0 x

0 0 x

0 0 x


: both upper.

28
A times B

with cuts
A

[ ∣∣∣∣
∣∣∣∣
∣∣∣∣
]

,


 −−−−


B,


 −−−−



[ ∣∣∣∣

∣∣∣∣
∣∣∣∣
]

,

[ ∣∣∣∣
∣∣∣∣
]



−−−−
−−−−




4 cols 2 rows 2 rows – 4 cols 3 cols – 3 rows

29 E21 =




1 0 0

1 1 0

0 0 1


 and E31 =




1 0 0

0 1 0

−4 0 1


 produce zeros in the 2, 1 and 3, 1 entries.

Multiply E’s to get E = E31E21 =




1 0 0

1 1 0

−4 0 1


. Then EA =




2 1 0

0 1 1

0 1 3


 is the

result of both E’s since (E31E21)A = E31(E21A).

30 In 29, c =


−2

8


, D =


0 1

5 3


, D − cb/a =


1 1

1 3


 in the lower corner of EA.

31


A −B

B A




x

y


=


Ax− By

Bx+ Ay


 real part

imaginary part.

Complex matrix times complex vector

needs 4 real times real multiplications.

32 A times X = [x1 x2 x3 ] will be the identity matrix I = [Ax1 Ax2 Ax3 ].
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33 b =




3

5

8


 gives x = 3x1 + 5x2 + 8x3 =




3

8

16


 ; A =




1 0 0

−1 1 0

0 −1 1


 will have

those x1 = (1, 1, 1),x2 = (0, 1, 1),x3 = (0, 0, 1) as columns of its “inverse” A−1.

34 A ∗ ones =


a+ b a+ b

c+ d c+ d


 agrees with ones ∗A =


a+ c b+ b

a+ c b+ d


 when b = c

and a = d

Then A =


a b

b a


. These are the matrices that commute with


1 1

1 1


.

35 S =




0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0



, S2 =




2 0 2 0

0 2 0 2

2 0 2 0

0 2 0 2



,

aba, ada cba, cda

bab, bcb dab, dcb

abc, adc cbc, cdc

bad, bcd dad, dcd

These show

16 2-step

paths in

the graph

36 Multiplying AB =(m by n)(n by p) needs mnp multiplications. Then (AB)C needs

mpq more. Multiply BC = (n by p)(p by q) needs npq and then A(BC) needs mnq.

(a) If m,n, p, q are 2, 4, 7, 10 we compare (2)(4)(7) + (2)(7)(10) = 196 with the

larger number (2)(4)(10) + (4)(7)(10) = 360. So AB first is better, we want to

multiply that 7 by 10 matrix by as few rows as possible.

(b) If u,v,w are N by 1, then (uTv)wT needs 2N multiplications but uT(vwT)

needs N2 to find vwT and N2 more to multiply by the row vector uT. Apologies

to use the transpose symbol so early.

(c) We are comparing mnp + mpq with mnq + npq. Divide all terms by mnpq:

Now we are comparing q−1 + n−1 with p−1 + m−1. This yields a simple im-

portant rule. If matrices A and B are multiplying v for ABv, don’t multiply the

matrices first. Better to multiply Bv and then A(Bv).
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37 The proof of (AB)c = A(Bc) used the column rule for matrix multiplication.

“The same is true for all other columns of C.”

Even for nonlinear transformations, A(B(c)) would be the “composition” of A with

B (applying B then A). This composition A ◦ B is just written as AB for matrices.

One of many uses for the associative law: The left-inverse B = the right-inverse C

because B = B(AC) = (BA)C = C.

38 (a) Multiply the columns a1, . . . ,am by the rows aT
1 , . . . ,a

T
m and add the resulting

matrices.

(b) ATCA = c1a1a
T
1 + · · ·+ cmamaT

m. Diagonal C makes it neat.

Problem Set 2.5, page 92

1 A−1 =


 0 1

4

1
3

0


 and B−1 =




1
2

0

−1 1
2


 and C−1 =


 7 −4

−5 3


.

2 For the first, a simple row exchange has P 2 = I so P−1 = P . For the second,

P−1 =




0 0 1

1 0 0

0 1 0


. Always P−1 = “transpose” of P , coming in Section 2.7.

3


x

y


 =


 .5

−.2


 and


 t

z


 =


−.2

.1


 so A−1 =

1

10


 5 −2

−2 1


. This question

solved AA−1 = I column by column, the main idea of Gauss-Jordan elimination. For

a different matrix A =


 1 1

0 0


, you could find a first column for A−1 but not a

second column—so A would be singular (no inverse).

4 The equations are x+ 2y = 1 and 3x+ 6y = 0. No solution because 3 times equation

1 gives 3x+ 6y = 3.
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5 An upper triangular U with U2 = I is U =


1 a

0 −1


 for any a. And also −U .

6 (a) Multiply AB = AC by A−1 to find B = C (since A is invertible) (b) As long as

B − C has the form


 x y

−x −y


, we have AB = AC for A =


1 1

1 1


.

7 (a) In Ax = (1, 0, 0), equation 1 + equation 2 − equation 3 is 0 = 1 (b) Right

sides must satisfy b1+ b2 = b3 (c) Row 3 becomes a row of zeros—no third pivot.

8 (a) The vector x = (1, 1,−1) solves Ax = 0 (b) After elimination, columns 1

and 2 end in zeros. Then so does column 3 = column 1 + 2: no third pivot.

9 Yes, B is invertible (A was just multiplied by a permutation matrix P ). If you exchange

rows 1 and 2 of A to reach B, you exchange columns 1 and 2 of A−1 to reach B−1. In

matrix notation, B = PA has B−1 = A−1P−1 = A−1P for this P .

10 A−1 =




0 0 0 1/5

0 0 1/4 0

0 1/3 0 0

1/2 0 0 0




and B−1 =




3 −2 0 0

−4 3 0 0

0 0 6 −5

0 0 −7 6




( invert each

block of B )

11 (a) If B = −A then certainly A+ B = zero matrix is not invertible.

(b) A =


1 0

0 0


 and B =


0 0

0 1


 are both singular but A+B = I is invertible.

12 Multiply C = AB on the left by A−1 and on the right by C−1. Then A−1 = BC−1.

13 M−1 = C−1B−1A−1 so multiply on the left by C and the right by A : B−1 =

CM−1A.

14 B−1 = A−1


1 0

1 1



−1

= A−1


 1 0

−1 1


: subtract column 2 of A−1 from column 1.

15 If A has a column of zeros, so does BA. Then BA = I is impossible. There is no A−1.
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16


a b

c d




 d −b

−c a


 =


ad− bc 0

0 ad− bc


.

The inverse of each matrix is

the other divided by ad− bc

17 E32E31E21 =




1

1

−1 1







1

1

−1 1







1

−1 1

1


 =




1

−1 1

0 −1 1


 = E.

Reverse the order and change −1 to +1 to get inverses E−1
21 E−1

31 E−1
32 =




1

1 1

1 1 1


 =

L = E−1. Notice that the 1’s are unchanged by multiplying inverses in this order.

18 A2B = I can also be written as A(AB) = I . Therefore A−1 is AB.

19 The (1, 1) entry requires 4a− 3b = 1; the (1, 2) entry requires 2b− a = 0. Then b = 1

5

and a = 2

5
. For the 5 by 5 case 5a− 4b = 1 and 2b = a give b = 1

6
and a = 2

6
.

20 A ∗ ones(4, 1) = A (column of 1’s) is the zero vector so A cannot be invertible.

21 Six of the sixteen 0− 1 matrices are invertible : I and P and all four with three 1’s.

22


1 3 1 0

2 7 0 1


→


1 3 1 0

0 1 −2 1


→


1 0 7 −3

0 1 −2 1


 =

[
I A−1

]
;


1 4 1 0

3 9 0 1


→


1 4 1 0

0 −3 −3 1


→


1 0 −3 4/3

0 1 1 −1/3


 =

[
I A−1

]
.

23 [A I] =




2 1 0 1 0 0

1 2 1 0 1 0

0 1 2 0 0 1


→




2 1 0 1 0 0

0 3/2 1 −1/2 1 0

0 1 2 0 0 1


→




2 1 0 1 0 0

0 3/2 1 −1/2 1 0

0 0 4/3 1/3 −2/3 1


→




2 1 0 1 0 0

0 3/2 0 −3/4 3/2 −3/4

0 0 4/3 1/3 −2/3 1


→
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


2 0 0 3/2 −1 1/2

0 3/2 0 −3/4 3/2 −3/4

0 0 4/3 1/3 −2/3 1


→




1 0 0 3/4 −1/2 1/4

0 1 0 −1/2 1 −1/2

0 0 1 1/4 −1/2 3/4


 =

[I A−1].

24




1 a b 1 0 0

0 1 c 0 1 0

0 0 1 0 0 1


→




1 a 0 1 0 −b

0 1 0 0 1 −c

0 0 1 0 0 1


→




1 0 0 1 −a ac− b

0 1 0 0 1 −c

0 0 1 0 0 1


.

25




2 1 1

1 2 1

1 1 2




−1

=
1

4




3 −1 −1

−1 3 −1

−1 −1 3


 ; B




1

1

1


 =




2 −1 −1

−1 2 −1

−1 −1 2







1

1

1


 =




0

0

0




so B−1 does not exist.

26 E21A=


 1 0

−2 1




1 2

2 6


=


1 2

0 2


. E12E21A=


1 −1

0 1




 1 0

−2 1


A =


1 0

0 2


.

Multiply by D =


1 0

0 1/2


 to reach DE12E21A = I . Then A−1 = DE12E21 =

1

2


 6 −2

−2 1


.

27 A−1 =




1 0 0

−2 1 −3

0 0 1


 (notice the sign changes); A−1 =




2 −1 0

−1 2 −1

0 −1 1


.

28


0 2 1 0

2 2 0 1


→


2 2 0 1

0 2 1 0


→


2 0 −1 1

0 2 1 0


→


1 0 −1/2 1/2

0 1 1/2 0


.

This is
[
I A−1

]
: row exchanges are certainly allowed in Gauss-Jordan.
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29 (a) True (If A has a row of zeros, then every AB has too, and AB = I is impossible).

(b) False (the matrix of all ones is singular even with diagonal 1’s.

(c) True (the inverse of A−1 is A and the inverse of A2 is (A−1)2).

30 Elimination produces the pivots a and a−b and a−b. A−1 =
1

a(a− b)




a 0 −b

−a a 0

0 −a a


.

The matrix C is not invertible if c = 0 or c = 7 or c = 2.

31 A−1 =




1 1 0 0

0 1 1 0

0 0 1 1

0 0 0 1




and x = A−1




1

1

1

1



=




2

2

2

1




. When the triangular A alternates

1 and −1 on its diagonals, A−1 has 1’s on the diagonal and first superdiagonal.

32 x = (1, 1, . . . , 1) has x = Px = Qx so (P −Q)x = 0. Permutations do not change

this all-ones vector.

33


 I 0

−C I


 and


 A−1 0

−D−1CA−1 D−1


 and


−D I

I 0


.

34 A can be invertible with diagonal zeros (example to find). B is singular because each

row adds to zero. The all-ones vector x has Bx = 0.

35 The equation LDLD = I says that LD = pascal (4, 1) is its own inverse.

36 hilb(6) is not the exact Hilbert matrix because fractions are rounded off. So inv(hilb(6))

is not the exact inverse either.

37 The three Pascal matrices have P = LU = LLT and then inv(P ) = inv(LT)∗inv(L).

38 Ax = b has many solutions when A = ones (4, 4) = singular and b = ones (4, 1).

A\b in MATLAB will pick the shortest solution x = (1, 1, 1, 1)/4. This is the only

solution that is a combination of the rows of A (later it comes from the “pseudoinverse”

A+ = pinv(A) which replaces A−1 when A is singular). Any vector that solvesAx = 0

could be added to this particular solution x.
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39 The inverse of A =




1 −a 0 0

0 1 −b 0

0 0 1 −c

0 0 0 1




is A−1 =




1 a ab abc

0 1 b bc

0 0 1 c

0 0 0 1




. (This would

be a good example for the cofactor formula A−1 = CT/ detA in Section 5.3)

40




1

a 1

b 0 1

c 0 0 1







1

0 1

0 d 1

0 e 0 1







1

1

1

f 1



=




1

a 1

b d 1

c e f 1




In this order the multipliers a, b, c, d, e, f are unchanged in the product (important for

A = LU in Section 2.6).

41 4 by 4 still with T11 = 1 has pivots 1, 1, 1, 1; reversing to T ∗ = UL makes T ∗
44 = 1.

T =




1 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2




and T−1 =




4 3 2 1

3 3 2 1

2 2 2 1

1 1 1 1




42 Add the equations Cx = b to find 0 = b1 + b2 + b3 + b4. So C is singular. Same for

Fx = b.

43 The block pivots are A and S = D − CA−1B (and d− cb/a is the correct

second pivot of an ordinary 2 by 2 matrix). The example problem has

Schur complement S =


 1 0

0 1


−


 4

4


 1

2

[
3 3

]
=


 −5 −6

−6 −5


.

44 Inverting the identity A(I + BA) = (I + AB)A gives (I + BA)−1A−1 = A−1(I +

AB)−1. So I+BA and I+AB are both invertible or both singular whenA is invertible.

(This remains true also when A is singular : Chapter 6 will show that AB and BA have

the same nonzero eigenvalues, and we are looking here at the eigenvalue −1.)
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Problem Set 2.6, page 104

1 ℓ21 = 1 multiplied row 1; L =


1 0

1 1


 times Ux =


1 0

1 1




x

y


 =


5

2


 = c is

Ax = b =


1 1

1 2




x

y


 =


5

7


. In letters, L multiplies Ux = c to give Ax = b.

2 Lc = b is


1 0

1 1




c1
c2


 =


5

7


, solved by c =


5

2


 as elimination goes forward.

Ux = c is


1 1

0 1




x

y


 =


5

2


, solved by x =


3

2


 in back substitution.

3 ℓ31 = 1 and ℓ32 = 2 (and ℓ33 = 1): reverse steps to get Au = b from Ux = c:

1 times (x+y+z = 5)+2 times (y+2z = 2)+1 times (z = 2) gives x+3y+6z = 11.

4 Lc =




1

1 1

1 2 1







5

2

2


 =




5

7

11


; Ux =




1 1 1

1 2

1





x


 =




5

2

2


; x =




5

−2

2


.

5 EA =




1

0 1

−3 0 1







2 1 0

0 4 2

6 3 5


 =




2 1 0

0 4 2

0 0 5


 = U .

With E−1 as L, A = LU =




1

0 1

3 0 1







2 1 0

0 4 2

0 0 5


 =




2 1 0

0 4 2

6 3 5


.

6




1

0 1

0 −2 1







1

−2 1

0 0 1


A =




1 1 1

0 2 3

0 0 −6


 = U . Then A =




1 0 0

2 1 0

0 2 1


 U is

the same as E−1
21 E−1

32 U = LU . The multipliers ℓ21 = ℓ32 = 2 fall into place in L.
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7 E32E31E21 A =




1

1

−2 1







1

1

−3 1







1

−2 1

1







1 0 0

2 2 2

3 4 5


. This is




1 0 1

0 2 0

0 0 2


 = U . Put those multipliers 2, 3, 2 intoL.Then A =




1 0 0

2 1 0

3 2 1


U = LU .

8 E = E32E31E21 =




1

−a 1

ac− b −c 1


 is mixed butL isE−1

21 E−1
31 E−1

32 =




1

a 1

b c 1


.

9 2 by 2: d = 0 not allowed;




1 1 0

1 1 2

1 2 1


=




1

ℓ 1

m n 1







d e g

f h

i




d = 1, e = 1, then ℓ = 1

f = 0 is not allowed

no pivot in row 2

10 c = 2 leads to zero in the second pivot position: exchange rows and not singular.

c = 1 leads to zero in the third pivot position. In this case the matrix is singular.

11 A =




2 4 8

0 3 9

0 0 7


 has L = I (A is already upper triangular) and D =




2

3

7


 ;

A=LU has U=A; A=LDU has U = D−1A=




1 2 4

0 1 3

0 0 1


with 1’s on the diagonal.

12 A =


2 4

4 11


 =


1 0

2 1




2 4

0 3


 =


1 0

2 1




2 0

0 3




1 2

0 1


=LDU ; U is LT




1

4 1

0 −1 1







1 4 0

0 −4 4

0 0 4


 =




1

4 1

0 −1 1







1

−4

4







1 4 0

0 1 −1

0 0 1


=LDLT.
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13




a a a a

a b b b

a b c c

a b c d



=




1

1 1

1 1 1

1 1 1 1







a a a a

b− a b− a b− a

c− b c− b

d− c




. Need

a 6= 0 All of the

b 6= a multipliers

c 6= b are ℓij = 1

d 6= c for this A

14




a r r r

a b s s

a b c t

a b c d



=




1

1 1

1 1 1

1 1 1 1







a r r r

b− r s− r s− r

c− s t− s

d− t




. Need

a 6= 0

b 6= r

c 6= s

d 6= t

15


1 0

4 1


 c =


 2

11


 gives c =


2

3


. Then


2 4

0 1


x =


2

3


 gives x =


−5

3


.

Ax = b is LUx =


2 4

8 17


 x =


 2

11


. Eliminate to


2 4

0 1


x =


2

3


 = c.

16




1 0 0

1 1 0

1 1 1


 c =




4

5

6


 gives c =




4

1

1


. Then




1 1 1

0 1 1

0 0 1


x =




4

1

1


 gives x =




3

0

1


.

Those are forward elimination and back substitution for




1 1 1

1 2 2

1 2 3


x =




4

5

6


.

17 (a) L goes to I (b) I goes to L−1 (c) LU goes to U . Elimination multiplies by L−1!

18 (a) Multiply LDU = L1D1U1 by inverses to get L−1
1 LD = D1U1U

−1. The left side

is lower triangular, the right side is upper triangular ⇒ both sides are diagonal.

(b) L,U, L1, U1 have diagonal 1’s so D = D1. Then L−1
1 L and U1U

−1 are both I .

19




1

1 1

0 1 1







1 1 0

1 1

1


 = LIU ;




a a 0

a a+ b b

0 b b+ c


 = L




a

b

c


U .

A tridiagonal matrix A has bidiagonal factors L and U .
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20 A tridiagonal T has 2 nonzeros in the pivot row and only one nonzero below the pivot

(one operation to find ℓ and then one for the new pivot!). Only 2n operations for

elimination on a tridiagonal matrix. T =bidiagonal L times bidiagonal U .

21 For the first matrix A,L keeps the 3 zeros at the start of rows. But U may not have the

upper zero where A24 = 0. For the second matrix B,L keeps the bottom left zero at

the start of row 4. U keeps the upper right zero at the start of column 4. One zero in A

and two zeros in B are filled in.

22 Eliminating upwards,




5 3 1

3 3 1

1 1 1


 →




4 2 0

2 2 0

1 1 1


 →




2 0 0

2 2 0

1 1 1


 = L. We reach

a lower triangular L, and the multipliers are in an upper triangular U . A = UL with

U =




1 1 1

0 1 1

0 0 1


.

23 The 2 by 2 upper submatrix A2 has the first two pivots 5, 9. Reason: Elimination on A

starts in the upper left corner with elimination on A2.

24 The upper left blocks all factor at the same time as A: Ak is LkUk. So A = LU is

possible only if all those blocks Ak are invertible.

25 The i, j entry of L−1 is j/i for i ≥ j. And Li i−1 is (1− i)/i below the diagonal

26 (K−1)ij = j(n− i+ 1)/(n+ 1) for i ≥ j (and symmetric): Multiply K−1 by n+ 1

(the determinant of K) to see all whole numbers.



Solutions to Exercises 39

Problem Set 2.7, page 117

1 A =


1 0

9 3


 has AT =


1 9

0 3


 , A−1 =


 1 0

−3 1/3


 , (A−1)T = (AT)−1 =


1 −3

0 1/3


;

A =


1 c

c 0


 has AT = A and A−1 =

1

c2


0 c

c −1


 = (A−1)T.

2 (AB)T =


1 2

3 7


 = BTAT. This answer is different from ATBT (except when

AB = BA and transposing gives BTAT = ATBT).

3 (a) ((AB)−1)T = (B−1A−1)T = (A−1)T(B−1)T. This is also (AT)−1(BT)−1.

(b) If U is upper triangular, so is U−1: then (U−1)T is lower triangular.

4 A =


0 1

0 0


 has A2 = 0. But the diagonal of ATA has dot products of columns of A

with themselves. If ATA = 0, zero dot products ⇒ zero columns ⇒ A = zero matrix.

5 (a) xTAy=
[
0 1

]

1 2 3

4 5 6







0

1

0


=5

(b) This is the row xTA =
[
4 5 6

]
times y.

(c) This is also the row xT times Ay=


2

5


.

6 MT =


A

T CT

BT DT


; MT = M needs AT = A and BT = C and DT = D.

7 (a) False:


 0 A

A 0


 is symmetric only if A = AT.

(b) False: The transpose of AB is BTAT = BA. So (AB)T = AB needs BA = AB.
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(c) True: Invertible symmetric matrices have symmetric inverses! Easiest proof is to

transpose AA−1 = I .

(d) True: (ABC)T is CTBTAT(= CBA for symmetric matrices A,B, and C).

8 The 1 in row 1 has n choices; then the 1 in row 2 has n− 1 choices . . . (n! overall).

9 P1P2 =




0 1 0

0 0 1

1 0 0







1 0 0

0 0 1

0 1 0


 =




0 0 1

0 1 0

1 0 0


 but P2P1 =




0 1 0

1 0 0

0 0 1


.

If P3 and P4 exchange different pairs of rows, P3P4 = P4P3 = both exchanges.

10 (3, 1, 2, 4) and (2, 3, 1, 4) keep 4 in place; 6 more even P ’s keep 1 or 2 or 3 in place;

(2, 1, 4, 3) and (3, 4, 1, 2) and (4, 3, 2, 1) exchange 2 pairs. (1, 2, 3, 4) makes 12.

11 PA =




0 1 0

0 0 1

1 0 0







0 0 6

1 2 3

0 4 5


 =




1 2 3

0 4 5

0 0 6


 is upper triangular. Multiplying A

on the right by a permutation matrix P2 exchanges the columns of A. To make this A

lower triangular, we also need P1 to exchange rows 2 and 3:

P1AP2 =




1

1

1


A




1

1

1


 =




6 0 0

5 4 0

3 2 1


.

12 (Px)T(Py)=xTPTPy=xTy since PTP =I . In general Px·y=x·PTy 6= x·Py:

Non-equality where P 6= PT:




0 1 0

0 0 1

1 0 0







1

2

3


 ·




1

1

2


 6=




1

2

3


 ·




0 1 0

0 0 1

1 0 0







1

1

2


.

13 A cyclic P =




0 1 0

0 0 1

1 0 0


 or its transpose will have P 3 = I : (1, 2, 3) → (2, 3, 1) →

(3, 1, 2) → (1, 2, 3). The permutation P̂ =


1 0

0 P


 for the same P has P̂ 4 = P̂ 6= I.
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14 The “reverse identity” P takes (1, . . . , n) into (n, . . . , 1). When rows and also columns

are reversed, the 1, 1 and n, n entries of A change places in PAP . So do the 1, n and

n, 1 entries. In general (PAP )ij is (A)n−i+1,n−j+1 .

15 (a) If P sends row 1 to row 4, then PT sends row 4 to row 1 (b) P =


E 0

0 E


 =

PT with E =


0 1

1 0


 moves all rows: 1 and 2 are exchanged, 3 and 4 are exchanged.

16 A2−B2 and also ABA are symmetric if A and B are symmetric. But (A+B)(A−B)

and ABAB are generally not symmetric.

17 (a) S =


1 1

1 1


= ST is not invertible (b) S =


0 1

1 1


 needs row exchange

(c) S =


1 1

1 0


 has pivots D =


1 0

0 −1


 : no real square root.

18 (a) 5+ 4+ 3+ 2+ 1 = 15 independent entries if S = ST (b) L has 10 and D has 5;

total 15 in LDLT (c) Zero diagonal if AT = −A, leaving 4+3+2+1 = 10 choices.

19 (a) The transpose of ATSA is ATSTAT T = ATSA = n by n when ST = S (any m

by n matrix A) (b) (ATA)jj = (column j of A)· (column j of A) = (length squared

of column j) ≥ 0.

20


1 3

3 2


 =


1 0

3 1




1 0

0 −7




1 3

0 1


;


1 b

b c


 =


1 0

b 1




1 0

0 c− b2




1 b

0 1







2 −1 0

−1 2 −1

0 −1 2


 =




1

−1

2
1

0 −2

3
1







2

3

2

4

3







1 −1

2
0

1 −2

3

1


 = LDLT.

21 Elimination on a symmetric 3 by 3 matrix leaves a symmetric lower right 2 by 2 matrix.


2 4 8

4 3 9

8 9 0


 and




1 b c

b d e

c e f


 lead to


−5 −7

−7 −32


 and


d− b2 e− bc

e− bc f − c2


 : symmetric!



42 Solutions to Exercises

22




1

1

1


A =




1

0 1

2 3 1







1 0 1

1 1

−1


;




1

1

1


A =




1

1 1

2 0 1







1 2 0

−1 1

1




23 A =




0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0



= P and L = U = I .

Elimination on this A = P exchanges

rows 1-2 then rows 2-3 then rows 3-4.

24 PA = LU is




1

1

1







0 1 2

0 3 8

2 1 1


 =




1

0 1

0 1/3 1







2 1 1

3 8

−2/3


. If we

wait to exchange and a12 is the pivot,A = L1P1U1 =




1

3 1

1







1

1

1







2 1 1

0 1 2

0 0 2


.

25 One way to decide even vs. odd is to count all pairs that P has in the wrong order. Then

P is even or odd when that count is even or odd. Hard step: Show that an exchange

always switches that count! Then 3 or 5 exchanges will leave that count odd.

26 (a) E21=




1

−3 1

1


puts 0 in the 2, 1 entry of E21A. Then E21AE

T
21=




1 0 0

0 2 4

0 4 9




is still symmetric, with zero also in its 1, 2 entry. (b) Now use E32 =




1

1

−2 1




to make the 3, 2 entry zero and E32E21AE
T
21E

T
32 = D also has zero in its 2, 3 entry.

Key point: Elimination from both sides (rows + columns) gives the symmetric LDLT.

27 A =




0 1 2 3

1 2 3 0

2 3 0 1

3 0 1 2




= AT has 0, 1, 2, 3 in every row. I don’t know any rules for a

symmetric construction like this “Hankel matrix” with constant antidiagonals.
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28 Reordering the rows and/or the columns of
[
a b

c d

]
will move the entry a. So the result

cannot be the transpose (which doesn’t move a).

29 (a) Total currents are ATy =




1 0 1

−1 1 0

0 −1 −1







yBC

yCS

yBS


 =




yBC + yBS

−yBC + yCS

−yCS − yBS


.

(b) Either way (Ax)Ty = xT(ATy) = xByBC + xByBS − xCyBC + xCyCS −
xSyCS − xSyBS . Six terms.

30




1 50

40 1000

2 50





x1

x2


 = Ax; ATy =


 1 40 2

50 1000 50







700

3

3000


 =


 6820

188000


 1 truck

1 plane

31 Ax · y is the cost of inputs while x ·ATy is the value of outputs.

32 P 3 = I so three rotations for 360◦; P rotates every v around the (1, 1, 1) line by 120◦.

33


1 2

4 9


 =


1 0

2 1




1 2

2 5


 = EH = (elementary matrix) times (symmetric ma-

trix).

34 L(UT)−1 is lower triangular times lower triangular, so lower triangular. The transpose

of UTDU is UTDTUT T = UTDU again, so UTDU is symmetric. The factorization

multiplies lower triangular by symmetric to get LDU which is A.

35 These are groups: Lower triangular with diagonal 1’s, diagonal invertible D, permuta-

tions P , orthogonal matrices with QT = Q−1.

36 Certainly BT is northwest. B2 is a full matrix! B−1 is southeast:
[
1 1
1 0

]−1
=
[
0 1

1 −1

]
.

The rows of B are in reverse order from a lower triangular L, so B = PL. Then

B−1 = L−1P−1 has the columns in reverse order from L−1. So B−1 is southeast.

Northwest B = PL times southeast PU is (PLP )U = upper triangular.

37 There are n! permutation matrices of order n. Eventually two powers of P must be

the same permutation. And if P r = P s then P r − s = I . Certainly r − s ≤ n!

P =


P2

P3


 is 5 by 5 with P2 =


0 1

1 0


 and P3 =




0 1 0

0 0 1

1 0 0


 and P 6 = I .
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38 To split the matrix M into (symmetric S) + (anti-symmetric A), the only choice is

S = 1
2
(M +MT) and A = 1

2
(M −MT).

39 Start from QTQ = I , as in




qT
1

qT
2





q1 q2


 =




1 0

0 1




(a) The diagonal entries give qT
1 q1 = 1 and qT

2 q2 = 1: unit vectors

(b) The off-diagonal entry is qT
1 q2 = 0 (and in general qT

i qj = 0)

(c) The leading example for Q is the rotation matrix


cos θ − sin θ

sin θ cos θ


.
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Problem Set 3.1, page 131

Note An interesting “max-plus” vector space comes from the real numbers R combined

with −∞. Change addition to give x + y = max(x, y) and change multiplication to

xy = usual x + y. Which y is the zero vector that gives x+0 = max(x,0) = x for every

x?

1 x+ y 6= y + x and x+ (y + z) 6= (x+ y) + z and (c1 + c2)x 6= c1x+ c2x.

2 When c(x1, x2) = (cx1, 0), the only broken rule is 1 times x equals x. Rules (1)-(4)

for addition x+ y still hold since addition is not changed.

3 (a) cx may not be in our set: not closed under multiplication. Also no 0 and no −x

(b) c(x+ y) is the usual (xy)c, while cx+ cy is the usual (xc)(yc). Those are equal.

With c = 3, x = 2, y = 1 this is 3(2+ 1) = 8. The zero vector is the number 1.

4 The zero vector in matrix space M is


0 0

0 0


 ; 1

2
A =


1 −1

1 −1


 and −A =


−2 2

−2 2


.

The smallest subspace of M containing the matrix A consists of all matrices cA.

5 (a) One possibility: The matrices cA form a subspace not containing B (b) Yes: the

subspace must contain A−B = I (c) Matrices whose main diagonal is all zero.

6 When f(x) = x2 and g(x) = 5x, the combination 3f − 4g in function space is

h(x) = 3f(x)− 4g(x) = 3x2 − 20x.

7 Rule 8 is broken: If cf(x) is defined to be the usual f(cx) then (c1 + c2)f =

f((c1 + c2)x) is not generally the same as c1f + c2f = f(c1x) + f(c2x).

8 If (f + g)(x) is the usual f(g(x)) then (g + f)x is g(f(x)) which is different. In

Rule 2 both sides are f(g(h(x))). Rule 4 is broken because there might be no inverse

function f−1(x) such that f(f−1(x)) = x. If the inverse function exists it will be the

vector −f .

9 (a) The vectors with integer components allow addition, but not multiplication by 1
2

(b) Remove the x axis from the xy plane (but leave the origin). Multiplication by any

c is allowed but not all vector additions : (1, 1) + (−1, 1) = (0, 2) is removed.
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10 The only subspaces are (a) the plane with b1 = b2 (d) the linear combinations of v

and w (e) the plane with b1 + b2 + b3 = 0.

11 (a) All matrices


a b

0 0


 (b) All matrices


a a

0 0


 (c) All diagonal matri-

ces.

12 For the plane x+ y− 2z = 4, the sum of (4, 0, 0) and (0, 4, 0) is not on the plane. (The

key is that this plane does not go through (0, 0, 0).)

13 The parallel plane P0 has the equation x + y − 2z = 0. Pick two points, for example

(2, 0, 1) and (0, 2, 1), and their sum (2, 2, 2) is in P0.

14 (a) The subspaces ofR2 areR2 itself, lines through (0, 0), and (0, 0) by itself (b) The

subspaces of D are D itself, the zero matrix by itself, and all the “one-dimensional”

subspaces that contain all multiples of one fixed matrix :

c


 d1 0

0 d2


 for all c.

15 (a) Two planes through (0, 0, 0) probably intersect in a line through (0, 0, 0)

(b) The plane and line probably intersect in the point (0, 0, 0). Could be a line !

(c) If x and y are in both S and T , x+ y and cx are in both subspaces.

16 The smallest subspace containing a plane P and a line L is either P (when the line L

is in the plane P) or R3 (when L is not in P).

17 (a) The invertible matrices do not include the zero matrix, so they are not a subspace

(b) The sum of singular matrices


1 0

0 0


+


0 0

0 1


 is not singular: not a subspace.

18 (a) True: The symmetric matrices do form a subspace (b) True: The matrices with

AT = −A do form a subspace (c) False: The sum of two unsymmetric matrices

could be symmetric.

19 The column space of A is the x-axis = all vectors (x, 0, 0) : a line. The column space

of B is the xy plane = all vectors (x, y, 0). The column space of C is the line of vectors

(x, 2x, 0).
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20 (a) Elimination leads to 0 = b2 − 2b1 and 0 = b1 + b3 in equations 2 and 3:

Solution only if b2 = 2b1 and b3 = −b1 (b) Elimination leads to 0 = b1 + b3

in equation 3: Solution only if b3 = −b1.

21 A combination of the columns of C is also a combination of the columns of A. Then

C =


1 3

2 6


 and A =


1 2

2 4


 have the same column space. B =


1 2

3 6


 has a

different column space. The key word is “space”.

22 (a) Solution for every b (b) Solvable only if b3 = 0 (c) Solvable only if b3 = b2.

23 The extra column b enlarges the column space unless b is already in the column space.

[A b ] =


1 0 1

0 0 1


 (larger column space)

(no solution to Ax = b)


1 0 1

0 1 1


 (b is in column space)

(Ax = b has a solution)

24 The column space of AB is contained in (possibly equal to) the column space of A.

The example B = zero matrix and A 6= 0 is a case when AB = zero matrix has a

smaller column space (it is just the zero space Z) than A.

25 The solution to Az = b+ b∗ is z = x+ y. If b and b∗ are in C(A) so is b+ b∗.

26 The column space of any invertible 5 by 5 matrix is R5. The equation Ax = b is

always solvable (by x = A−1b) so every b is in the column space of that invertible

matrix.

27 (a) False: Vectors that are not in a column space don’t form a subspace.

(b) True: Only the zero matrix has C(A) = {0}. (c) True: C(A) = C(2A).

(d) False: C(A− I) 6= C(A) when A = I or A =


1 0

0 0


 (or other examples).

28 A =




1 1 0

1 0 0

0 1 0


 and




1 1 2

1 0 1

0 1 1


 do not have




1

1

1


 in C(A). A =




1 2 0

2 4 0

3 6 0


 has

C(A) = line in R3.

29 When Ax = b is solvable for all b, every b is in the column space of A. So that space

is C(A) = R9.
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30 (a) If u and v are both in S + T , then u = s1 + t1 and v = s2 + t2. So u + v =

(s1 + s2)+(t1 + t2) is also in S+T . And so is cu = cs1+ct1 : S+T = subspace.

(b) If S and T are different lines, then S ∪ T is just the two lines (not a subspace) but

S + T is the whole plane that they span.

31 If S = C(A) and T = C(B) then S + T is the column space of M = [A B ].

32 The columns of AB are combinations of the columns of A. So all columns of [A AB ]

are already in C(A). But A =


0 1

0 0


 has a larger column space than A2 =


0 0

0 0


.

For square matrices, the column space is Rn exactly when A is invertible.

Problem Set 3.2, page 142

1 (a) U=




1 2 2 4 6

0 0 1 2 3

0 0 0 0 0




Free variables x2, x4, x5

Pivot variables x1, x3

(b) U=




2 4 2

0 4 4

0 0 0




Free x3

Pivot x1, x2

2 (a) Free variables x2, x4, x5 and solutions (−2, 1, 0, 0, 0), (0, 0,−2, 1, 0), (0, 0,−3, 0, 1)

(b) Free variable x3: solution (1,−1, 1). Special solution for each free variable.

3 R =




1 2 0 0 0

0 0 1 2 3

0 0 0 0 0


, R =




1 0 −1

0 1 1

0 0 0


, R has the same nullspace as U and A.

4 (a) Special solutions (3, 1, 0) and (5, 0, 1) (b) (3, 1, 0). Total of pivot and free is n.

5 (a) False: Any singular square matrix would have free variables (b) True: An in-

vertible square matrix has no free variables. (c) True (only n columns to hold pivots)

(d) True (only m rows to hold pivots)

6




0 1 1 1 1 1 1

0 0 0 1 1 1 1

0 0 0 0 1 1 1

0 0 0 0 0 0 0







1 1 1 1 1 1 1

0 0 1 1 1 1 1

0 0 0 0 0 1 1

0 0 0 0 0 0 1







0 0 0 1 1 1 1

0 0 0 0 0 1 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0



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7




1 1 0 1 1 1 0 0

0 0 1 1 1 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




,




0 1 1 0 0 1 1 1

0 0 0 1 0 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0




. Notice the identity

matrix in the pivot columns of these reduced row echelon forms R.

8 If column 4 of a 3 by 5 matrix is all zero then x4 is a free variable. Its special solution

is x = (0, 0, 0, 1, 0), because 1 will multiply that zero column to give Ax = 0.

9 If column 1 = column 5 then x5 is a free variable. Its special solution is (−1, 0, 0, 0, 1).

10 If a matrix has n columns and r pivots, there are n−r special solutions. The nullspace

contains only x = 0 when r = n. The column space is all of Rm when r = m. All

those statements are important!

11 The nullspace contains only x = 0 when A has 5 pivots. Also the column space is R5,

because we can solve Ax = b and every b is in the column space.

12 A = [ 1 − 3 − 1 ] gives the plane x − 3y − z = 0; y and z are free variables. The

special solutions are (3, 1, 0) and (1, 0, 1).

13 Fill in 12 then 3 then 1 to get the complete solution in R3 to x − 3y − z = 12:


x

y

z


 =




12

0

0


+ y




3

1

0


+ z




1

0

1


 = one particular solution + all nullspace solutions.

14 Column 5 is sure to have no pivot since it is a combination of earlier columns. With

4 pivots in the other columns, the special solution is s = (1, 0, 1, 0, 1). The nullspace

contains all multiples of this vector s (this nullspace is a line in R5).

15 To produce special solutions (2, 2, 1, 0) and (3, 1, 0, 1) with free variables x3, x4:

R =


1 0 −2 −3

0 1 −2 −1


 and A can be any invertible 2 by 2 matrix times this R.
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16 The nullspace of A =




1 0 0 −4

0 1 0 −3

0 0 1 −2


 is the line through the special solution




4

3

2

1




.

17 A =




1 0 −1/2

1 3 −2

5 1 −3


 has




1

1

5


 and




0

3

1


 in C(A) and




1

1

2


 in N(A). Which other A’s?

18 This construction is impossible for 3 by 3 ! 2 pivot columns and 2 free variables.

19 A =




1 −1 0 0

1 0 −1 0

1 0 0 −1


 has (1, 1, 1) in C(A) and only the line (c, c, c, c) in N(A).

20 A =


0 1

0 0


 has N(A) = C(A). Notice that rref(AT)=


1 0

0 0


 is not AT.

21 If nullspace = column space (with r pivots) then n − r = r. If n = 3 then 3 = 2r is

impossible.

22 If A times every column of B is zero, the column space of B is contained in the nullspace

of A. An example is A =


1 1

1 1


 and B =


 1 1

−1 −1


. Here C(B) equals N(A).

For B = 0,C(B) is smaller than N(A).

23 For A = random 3 by 3 matrix, R is almost sure to be I . For 4 by 3, R is most likely

to be I with a fourth row of zeros. What is R for a random 3 by 4 matrix?

24 A =


0 1

0 0


 shows that (a)(b)(c) are all false. Notice rref(AT) =


1 0

0 0


.

25 If N(A) = line through x = (2, 1, 0, 1), A has three pivots (4 columns and 1 special

solution). Its reduced echelon form can be R =




1 0 0 −2

0 1 0 −1

0 0 1 0


 (add any zero rows).

26 R = [ 1 −2 −3 ], R =


1 0 0

0 1 0


, R = I . Any zero rows come after those rows.
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27 (a)


1 0

0 1


 ,


1 0

0 0


,


1 1

0 0


,


0 1

0 0


,


0 0

0 0


 (b) All 8 matrices are R’s !

28 One reason that R is the same for A and −A: They have the same nullspace. (They

also have the same row space. They also have the same column space, but that is not

required for two matrices to share the same R. R tells us the nullspace and row space.)

29 The nullspace of B = [A A ] contains all vectors x =


 y

−y


 for y in R4.

30 If Cx = 0 then Ax = 0 and Bx = 0. So N(C) = N(A) ∩N(B) = intersection.

31 (a) R =




1 1 1 1

0 0 0 0

0 0 0 0


 rank 1 (b) R =




1 0 −1 −2

0 1 2 3

0 0 0 0


 rank 2

(c) R =




1 −1 1 −1

0 0 0 0

0 0 0 0


 rank 1

32 ATy = 0 : y1 − y3 + y4 = −y1 + y2 ++y5 = −y2 + y4 + y6 = −y4 − y5 − y6 = 0.

These equations add to 0 = 0. Free variables y3, y5, y6: watch for flows around loops.

The solutions to ATy = 0 are combinations of (−1, 0, 0, 1,−1, 0) and (0, 0,−1,−1, 0, 1)

and (0,−1, 0, 0, 1,−1). Those are flows around the 3 small loops.

33 (a) and (c) are correct; (b) is completely false; (d) is false because R might have 1’s

in nonpivot columns.

34 RA =




1 2 0

0 0 1

0 0 0


 RB =

[
RA RA

]
RC −→


RA 0

0 RA


 −→

Zero rows go

to the bottom

35 If all pivot variables come last then R =


0 I

0 0


. The nullspace matrix is N =


I

0


.

36 I think R1 = A1, R2 = A2 is true. But R1 − R2 may have −1’s in some pivots.
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37 A and AT have the same rank r = number of pivots. But pivcol (the column number)

is 2 for this matrix A and 1 for AT: A =




0 1 0

0 0 0

0 0 0


.

38 Special solutions in N = [−2 −4 1 0; −3 −5 0 1 ] and [ 1 0 0; 0 −2 1 ].

39 The new entries keep rank 1 : A =




1 2 4

2 4 8

4 8 16


 , B =




3 9 −4.5

1 3 −1.5

2 6 −3


 ,

M =


a b

c bc/a


.

40 If A has rank 1, the column space is a line in Rm. The nullspace is a plane in Rn

(given by one equation). The nullspace matrix N is n by n − 1 (with n − 1 special

solutions in its columns). The column space of AT is a line in Rn.

41




3 6 6

1 2 2

4 8 8


=




3

1

4




[
1 2 2

]

and


 2 2 6 4

−1 −1 −3 −2


=


 2

−1



[
1 1 3 2

]

42 With rank 1, the second row of R is a zero row.

43
Invertible r by r submatrices

Use pivot rows and columns
S =


1 3

1 4


 and S = [ 1 ] and S =


1 0

0 1


.

44 P has rank r (the same as A) because elimination produces the same pivot columns.

45 The rank of RT is also r. The example matrix A has rank 2 with invertible S:

P =




1 3

2 6

2 7


 PT =


1 2 2

3 6 7


 ST =


1 2

3 7


 S =


1 3

2 7


 .

46 The product of rank one matrices has rank one or zero. These particular matrices have

rank(AB) = 1; rank(AC) = 1 except AC = 0 if c = −1/2.

47 (uvT)(wzT) = u(vTw)zT has rank one unless the inner product is vTw = 0.



Solutions to Exercises 53

48 (a) By matrix multiplication, each column of AB is A times the corresponding column

of B. So if column j of B is a combination of earlier columns, then column j of AB

is the same combination of earlier columns of AB. Then rank (AB) ≤ rank (B). No

new pivot columns! (b) The rank of B is r = 1. Multiplying by A cannot increase

this rank. The rank of AB stays the same for A1 = I and B =
[
1 1
1 1

]
. It drops to zero

for A2 =
[

1 1

−1 −1

]
.

49 If we know that rank(BTAT) ≤ rank(AT), then since rank stays the same for trans-

poses, (apologies that this fact is not yet proved), we have rank(AB) ≤ rank(A).

50 We are given AB = I which has rank n. Then rank(AB) ≤ rank(A) forces rank(A) =

n. This means that A is invertible. The right-inverse B is also a left-inverse: BA = I

and B = A−1.

51 Certainly A and B have at most rank 2. Then their product AB has at most rank 2.

Since BA is 3 by 3, it cannot be I even if AB = I .

52 (a) A and B will both have the same nullspace and row space as the R they share.

(b) A equals an invertible matrix times B, when they share the same R. A key fact!

53 A = (pivot columns)(nonzero rows of R) =




1 0

1 4

1 8





1 1 0

0 0 1


 =




1 1 0

1 1 0

1 1 0


 +




0 0 0

0 0 4

0 0 8


. B =


2 2

2 3




1 0

0 1


 =

columns

times rows
=


2 0

2 0


+


0 2

0 3




54 If c = 1, R =




1 1 2 2

0 0 0 0

0 0 0 0


 has x2, x3, x4 free. If c 6= 1, R =




1 0 2 2

0 1 0 0

0 0 0 0




has x3, x4 free. Special solutions in N =




−1 −2 −2

1 0 0

0 1 0

0 0 1




(for c = 1) and N =
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


−2 −2

0 0

1 0

0 1




(for c 6= 1). If c = 1, R =


0 1

0 0


 and x1 free; if c = 2, R =


1 −2

0 0




and x2 free; R = I if c 6= 1, 2. Special solutions in N =


1

0


 (c = 1) or N =


2

1


 (c = 2) or N = 2 by 0 empty matrix.

55 A =
[
I I

]
has N =


 I

−I


 ;B =


I I

0 0


 has the same N ; C =

[
I I I

]
has

N =




−I −I

I 0

0 I


.

56




1 1 1 1

1 1 1 1

1 1 1 1


 = (pivot column) (first row) =




1

1

1



[
1 1 1 1

]

57 The m by n matrix Z has r ones to start its main diagonal. Otherwise Z is all zeros.

58 R=


I F

0 0


=


 r by r r by n−r

m−r by r m−r by n−r


; rref(RT)=


I 0

0 0


; rref(RTR)=same

R

59 R =


1 2 0

0 0 1


 hasRTR =




1 2 0

2 4 0

0 0 1


 and this matrix row reduces to




1 2 0

0 0 1

0 0 0


 =


 R

zero row


. Always RTR has the same nullspace as R, so its row reduced form must

be R with n−m extra zero rows. R is determined by its nullspace and shape !

60 The row-column reduced echelon form is always


I 0

0 0


; I is r by r.
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Problem Set 3.3, page 158

1




2 4 6 4 b1

2 5 7 6 b2

2 3 5 2 b3


→




2 4 6 4 b1

0 1 1 2 b2 − b1

0 −1 −1 −2 b3 − b1


→




2 4 6 4 b1

0 1 1 2 b2 − b1

0 0 0 0 b3 + b2 − 2b1




Ax = b has a solution when b3 + b2 − 2b1 = 0; the column space contains all combi-

nations of (2, 2, 2) and (4, 5, 3). This is the plane b3+ b2− 2b1 = 0 (!). The nullspace

contains all combinations of s1 = (−1,−1, 1, 0) and s2 = (2,−2, 0, 1);xcomplete =

xp + c1s1 + c2s2;

[
R d

]
=




1 0 1 −2 4

0 1 1 2 −1

0 0 0 0 0


 gives the particular solution xp = (4,−1, 0, 0).

2




2 1 3 b1

6 3 9 b2

4 2 6 b3


→




2 1 3 b1

0 0 0 b2 − 3b1

0 0 0 b3 − 2b1


 Then [R d ] =




1 1/2 3/2 5

0 0 0 0

0 0 0 0




Ax = b has a solution when b2 − 3b1 = 0 and b3 − 2b1 = 0; C(A) = line through

(2, 6, 4) which is the intersection of the planes b2 − 3b1 = 0 and b3 − 2b1 = 0;

the nullspace contains all combinations of s1 = (−1/2, 1, 0) and s2 = (−3/2, 0, 1);

particular solution xp = d = (5, 0, 0) and complete solution xp + c1s1 + c2s2.

3 x
complete

=




−2

0

1


 + x2




−3

1

0


. The matrix is singular but the equations are

still solvable; b is in the column space. Our particular solution has free variable y = 0.

4 x
complete

= xp + xn = (1
2
, 0, 1

2
, 0) + x2(−3, 1, 0, 0) + x4(0, 0,−2, 1).

5




1 2 −2 b1

2 5 −4 b2

4 9 −8 b3


→




1 2 −2 b1

0 1 0 b2 − 2b1

0 0 0 b3 − 2b1 − b2


 solvable if b3 − 2b1 − b2 = 0.



56 Solutions to Exercises

Back-substitution gives the particular solution to Ax = b and the special solution to

Ax = 0: x =




5b1 − 2b2

b2 − 2b1

0


+ x3




2

0

1


.

6 (a) Solvable if b2 = 2b1 and 3b1 − 3b3 + b4 = 0. Then x =


5b1 − 2b3

b3 − 2b1


 = xp

(b) Solvable if b2 = 2b1 and 3b1 − 3b3 + b4 = 0. x =




5b1 − 2b3

b3 − 2b1

0


+ x3




−1

−1

1


.

7




1 3 1 b1

3 8 2 b2

2 4 0 b3


→




1 3 1 b2

0 −1 −1 b2 − 3b1

0 −2 −2 b3 − 2b1




One more step gives [ 0 0 0 0 ] =

row 3− 2 (row 2) + 4(row 1)

provided b3−2b2+4b1=0.

8 (a) Every b is in C(A): independent rows, only the zero combination gives 0.

(b) We need b3 = 2b2, because (row 3)− 2(row 2) = 0.

9 L
[
U c

]
=




1 0 0

2 1 0

3 −1 1







1 2 3 5 b1

0 0 2 2 b2 − 2b1

0 0 0 0 b3 + b2 − 5b1


=




1 2 3 5 b1

2 4 8 12 b2

3 6 7 13 b3




=
[
A b

]
; particular xp = (−9, 0, 3, 0) means −9(1, 2, 3) + 3(3, 8, 7) = (0, 6,−6).

This is Axp = b.

10


1 0 −1

0 1 −1


x =


2

4


 has xp = (2, 4, 0) and xnull = (c, c, c). Many possible A !

11 A 1 by 3 system has at least two free variables. But xnull in Problem 10 only has one.

12 (a) If Ax1 = b and Ax2 = b then x1 − x2 and also x = 0 solve Ax = 0

(b) A(2x1 − 2x2) = 0, A(2x1 − x2) = b

13 (a) The particular solution xp is always multiplied by 1 (b) Any solution can be xp

(c)


3 3

3 3




x

y


 =


6

6


. Then


1

1


 is shorter (length

√
2) than


2

0


 (length 2)

(d) The only “homogeneous” solution in the nullspace is xn = 0 when A is invertible.
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14 If column 5 has no pivot, x5 is a free variable. The zero vector is not the only solution

to Ax = 0. If this system Ax = b has a solution, it has infinitely many solutions.

15 If row 3 of U has no pivot, that is a zero row. Ux = c is only solvable provided

c3 = 0. Ax = b might not be solvable, because U may have other zero rows needing

more ci = 0.

16 The largest rank is 3. Then there is a pivot in every row. The solution always exists.

The column space is R3. An example is A = [ I F ] for any 3 by 2 matrix F .

17 The largest rank of a 6 by 4 matrix is 4. Then there is a pivot in every column. The

solution is unique (if there is a solution). The nullspace contains only the zero vector.

Then R = rref(A) =


 I (4 by 4)

0 (2 by 4)


.

18 Rank = 2; rank = 3 unless q = 2 (then rank = 2). Transpose has the same rank!

19 Both matrices A have rank 2. Always ATA and AAT have the same rank as A.

20 A = LU =


1 0

2 1




3 4 1 0

0 −3 0 1


 ;A = LU =




1 0 0

2 1 0

0 3 1







1 0 1 0

0 2 −2 3

0 0 11 −5


.

21 (a)




x

y

z


 =




4

0

0


 + y




−1

1

0


 + z




−1

0

1


 (b)




x

y

z


 =




4

0

0


+ z




−1

0

1


. The second

equation in part (b) removed one special solution from the nullspace.

22 If Ax1 = b and also Ax2 = b then A(x1 − x2) = 0 and we can add x1 − x2 to any

solution of Ax = B: the solution x is not unique. But there will be no solution to

Ax = B if B is not in the column space.

23 For A, q = 3 gives rank 1, every other q gives rank 2. For B, q = 6 gives rank 1, every

other q gives rank 2. These matrices cannot have rank 3.

24 (a)


1

1


 [x ] =


b1
b2


 has 0 or 1 solutions, depending on b (b)

[
1 1

] 
x1

x2


 =

[ b ] has infinitely many solutions for every b (c) There are 0 or ∞ solutions when A
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has rank r < m and r < n: the simplest example is a zero matrix. (d) one solution

for all b when A is square and invertible (like A = I).

25 (a) r < m, always r ≤ n (b) r = m, r < n (c) r < m, r = n (d) r = m = n.

26




2 4 4

0 3 6

0 0 0


→ R =




1 0 −2

0 1 2

0 0 0


 and




2 4 4

0 3 6

0 0 5


→ R = I .

27 R = I when A is square and invertible—so for a triangular matrix, all diagonal entries

must be nonzero.

28


1 2 3 0

0 0 4 0


→


1 2 0 0

0 0 1 0


; xn =




−2

1

0


;


1 2 3 5

0 0 4 8


→


1 2 0 −1

0 0 1 2


.

Free x2 = 0 gives xp = (−1, 0, 2) because the pivot columns contain I .

29 [R d ] =




1 0 0 0

0 0 1 0

0 0 0 0


 leads to xn =




0

1

0


; [R d ] =




1 0 0 −1

0 0 1 2

0 0 0 5


:

this has no solution because of the 3rd equation

30




1 0 2 3 2

1 3 2 0 5

2 0 4 9 10


→




1 0 2 3 2

0 3 0−3 3

0 0 0 3 6


→




1 0 2 0 −4

0 1 0 0 3

0 0 0 1 2


;




−4

3

0

2




; xn = x3




−2

0

1

0




.

31 For A =




1 1

0 2

0 3


, the only solution to Ax =




1

2

3


 is x =


0

1


. B cannot exist since

2 equations in 3 unknowns cannot have a unique solution.

32 A =




1 3 1

1 2 3

2 4 6

1 1 5




factors into LU =




1

1 1

2 2 1

1 2 0 1







1 3 1

0 −1 2

0 0 0

0 0 0




and the rank is

r = 2. The special solution to Ax = 0 and Ux = 0 is s = (−7, 2, 1). Since
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b = (1, 3, 6, 5) is also the last column of A, a particular solution to Ax = b is

(0, 0, 1) and the complete solution is x = (0, 0, 1) + cs. (Or use the particular solution

xp = (7,−2, 0) with free variable x3 = 0.)

For b = (1, 0, 0, 0) elimination leads to Ux = (1,−1, 0, 1) and the fourth equa-

tion is 0 = 1. No solution for this b.

33 If the complete solution to Ax =


1

3


 is x =


1

0


+


0

c


 then A =


1 0

3 0


.

34 (a) If s = (2, 3, 1, 0) is the only special solution to Ax = 0, the complete solution is

x = cs (a line of solutions). The rank of A must be 4− 1 = 3.

(b) The fourth variable x4 is not free in s, and R must be




1 0 −2 0

0 1 −3 0

0 0 0 1


.

(c) Ax = b can be solved for all b, because A and R have full row rank r = 3.

35 For the −1, 2,−1 matrix K(9 by 9) and constant right side b = (10, · · · , 10), the

solution x = K−1b = (45, 80, 105, 120, 125, 120, 105, 80, 45) rises and falls along

the parabola xi = 50i− 5i2. (A formula for K−1 is later in the text.)

36 If Ax = b and Cx = b have the same solutions, A and C have the same shape and

the same nullspace (take b = 0). If b = column 1 of A, x = (1, 0, . . . , 0) solves

Ax=b so it solves Cx=b. Then A and C share column 1. Other columns too: A=C!

37 The column space of R (m by n with rank r) spanned by its r pivot columns (the first

r columns of an m by m identity matrix).
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Problem Set 3.4, page 175

1




1 1 1

0 1 1

0 0 1







c1

c2

c3


 = 0 gives c3 = c2 = c1 = 0. So those 3 column vectors are

independent. But




1 1 1 2

0 1 1 3

0 0 1 4





c


 =




0

0

0


 is solved by c = (1, 1,−4, 1). Then

v1 + v2 − 4v3 + v4 = 0 (dependent).

2 v1,v2,v3 are independent (the −1’s are in different positions). All six vectors in R4

are on the plane (1, 1, 1, 1) · v = 0 so no four of these six vectors can be independent.

3 If a = 0 then column 1 = 0; if d = 0 then b(column 1)− a(column 2) = 0; if f = 0

then all columns end in zero (they are all in the xy plane, they must be dependent).

4 Ux =




a b c

0 d e

0 0 f







x

y

z


 =




0

0

0


 gives z = 0 then y = 0 then x = 0 (by back

substitution). A square triangular matrix has independent columns (invertible matrix)

when its diagonal has no zeros.

5 (a)




1 2 3

3 1 2

2 3 1


→




1 2 3

0 −5 −7

0 −1 −5


→




1 2 3

0 −5 −7

0 0 −18/5




: invertible ⇒ independent

columns.

(b)




1 2 −3

−3 1 2

2 −3 1


→




1 2 −3

0 7 −7

0 −7 7


→




1 2 −3

0 7 −7

0 0 0


 ;A




1

1

1


 =




0

0

0




columns

add to 0.

6 Columns 1, 2, 4 are independent. Also 1, 3, 4 and 2, 3, 4 and others (but not 1, 2, 3).

Same column numbers (not same columns!) for A. This is because EA = U for the

matrix E that subtracts 2 times row 1 from row 4. So A and U have the same nullspace

(same dependencies of columns).
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7 The sum v1−v2+v3 = 0 because (w2−w3)− (w1−w3)+(w1−w2) = 0. So the

differences are dependent and the difference matrix is singular: A =




0 1 1

1 0 −1

−1 −1 0


.

8 If c1(w2+w3)+ c2(w1+w3)+ c3(w1+w2) = 0 then (c2+ c3)w1+(c1+ c3)w2+

(c1 + c2)w3 = 0. Since the w’s are independent, c2 + c3 = c1 + c3 = c1 + c2 = 0.

The only solution is c1 = c2 = c3 = 0. Only this combination of v1,v2,v3 gives 0.

(changing −1’s to 1’s for the matrix A in solution 7 above makes A invertible.)

9 (a) The four vectors in R3 are the columns of a 3 by 4 matrix A. There is a nonzero

solution to Ax = 0 because there is at least one free variable (b) Two vectors are

dependent if [v1 v2 ] has rank 0 or 1. (OK to say “they are on the same line” or “one

is a multiple of the other” but not “v2 is a multiple of v1” —since v1 might be 0.)

(c) A nontrivial combination of v1 and 0 gives 0: 0v1 + 3(0, 0, 0) = 0.

10 The plane is the nullspace of A = [ 1 2 −3 −1 ]. Three free variables give three inde-

pendent solutions (x, y, z, t) = (2,−1, 0, 0) and (3, 0, 1, 0) and (1, 0, 0, 1).

Combinations of those special solutions give more solutions (all solutions).

11 (a) Line in R3 (b) Plane in R3 (c) All of R3 (d) All of R3.

12 b is in the column space when Ax = b has a solution; c is in the row space when

ATy = c has a solution. False. The zero vector is always in the row space.

13 The column space and row space of A and U all have the same dimension = 2. The row

spaces of A and U are the same, because the rows of U are combinations of the rows

of A (and vice versa!).

14 v = 1
2
(v +w) + 1

2
(v −w) and w = 1

2
(v +w)− 1

2
(v −w). The two pairs span the

same space. They are a basis when v and w are independent.

15 The n independent vectors span a space of dimension n. They are a basis for that space.

If they are the columns of A then m is not less than n (m ≥ n). Invertible if m = n.
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16 These bases are not unique! (a) (1, 1, 1, 1) for the space of all constant vectors

(c, c, c, c) (b) (1,−1, 0, 0), (1, 0,−1, 0), (1, 0, 0,−1) for the space of vectors with

sum of components = 0 (c) (1,−1,−1, 0), (1,−1, 0,−1) for the space perpendic-

ular to (1, 1, 0, 0) and (1, 0, 1, 1) (d) The columns of I are a basis for its column

space, the empty set is a basis (by convention) for N(I) = Z = {zero vector}.

17 The column space of U =


1 0 1 0 1

0 1 0 1 0


 is R2 so take any bases for R2; (row 1

and row 2) or (row 1 and row 1+ row 2) or (row 1 and − row 2) are bases for the row

space of U .

18 (a) The 6 vectors might not span R4 (b) The 6 vectors are not independent

(c) Any four might be a basis.

19 n independent columns ⇒ rank n. Columns span Rm ⇒ rank m. Columns are basis

for Rm ⇒ rank = m = n. The rank counts the number of independent columns.

20 One basis is (2, 1, 0), (−3, 0, 1). A basis for the intersection with the xy plane is

(2, 1, 0). The normal vector (1,−2, 3) is a basis for the line perpendicular to the plane.

21 (a) The only solution to Ax = 0 is x = 0 because the columns are independent

(b) Ax = b is solvable because the columns span R5. Key point: A basis gives

exactly one solution for every b.

22 (a) True (b) False because the basis vectors for R6 might not be in S.

23 Columns 1 and 2 are bases for the (different) column spaces of A and U ; rows 1 and

2 are bases for the (equal) row spaces of A and U ; (1,−1, 1) is a basis for the (equal)

nullspaces.

24 (a) False A = [ 1 1 ] has dependent columns, independent row (b) False Column

space 6= row space for A =


0 1

0 0


 (c) True: Both dimensions = 2 if A is

invertible, dimensions= 0 if A = 0, otherwise dimensions= 1 (d) False, columns

may be dependent, in that case not a basis for C(A).
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25 A has rank 2 if c = 0 and d = 2; B =


 c d

d c


 has rank 2 except when c = d or

c = −d.

26 (a) Basis for all diagonal matrices :




1 0 0

0 0 0

0 0 0


 ,




0 0 0

0 1 0

0 0 0


 ,




0 0 0

0 0 0

0 0 1




(b) Add




0 1 0

1 0 0

0 0 0


 ,




0 0 1

0 0 0

1 0 0


,




0 0 0

0 0 1

0 1 0


 = basis for symmetric matrices.

(c)




0 1 0

−1 0 0

0 0 0


 ,




0 0 1

0 0 0

−1 0 0


 ,




0 0 0

0 0 1

0 −1 0


.

These are simple bases (among many others) for (a) diagonal matrices (b) symmetric

matrices (c) skew-symmetric matrices. The dimensions are 3, 6, 3.

27 I ,




1 0 0

0 1 0

0 0 2


,




1 0 0

0 2 0

0 0 1


,




1 1 0

0 1 0

0 0 1


,




1 0 1

0 1 0

0 0 1


,




1 0 0

0 1 1

0 0 1


;

echelon matrices do not form a subspace; they span the upper triangular matrices (not

every U is an echelon matrix).

28


 1 0 0

−1 0 0


,


0 1 0

0 −1 0


,


0 0 1

0 0 −1


;


 1 −1 0

−1 1 0


 and


 1 0 −1

−1 0 1


.

29 (a) The invertible matrices span the space of all 3 by 3 matrices (b) The rank one

matrices also span the space of all 3 by 3 matrices (c) I by itself spans the space of

all multiples cI .

30


−1 2 0

0 0 0


,


−1 0 2

0 0 0


,


 0 0 0

−1 2 0


,


 0 0 0

−1 0 2


. Dimension = 4.

31 (a) y(x)= constant C (b) y(x)=3x. (c) y(x)=3x+C=yp + yn solves y ′ = 3.

32 y(0) = 0 requires A+ B + C = 0. One basis is cosx− cos 2x and cosx− cos 3x.
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33 (a) y(x) = e2x is a basis for all solutions to y′ = 2y (b) y = x is a basis for all

solutions to dy/dx = y/x (First-order linear equation ⇒ 1 basis function in solution

space).

34 y1(x), y2(x), y3(x) can be x, 2x, 3x (dim 1) or x, 2x, x2 (dim 2) or x, x2, x3 (dim 3).

35 Basis 1, x, x2, x3, for cubic polynomials; basis x− 1, x2 − 1, x3 − 1 for the subspace

with p(1) = 0.

36 Basis for S: (1, 0,−1, 0), (0, 1, 0, 0), (1, 0, 0,−1); basis for T: (1,−1, 0, 0) and (0, 0, 2, 1);

S∩T= multiples of (3,−3, 2, 1)= nullspace for 3 equations in R4 has dimension 1.

37 The subspace of matrices that have AS = SA has dimension three. The 3 numbers

a, b, c can be chosen independently in A.

38 (a) No, 2 vectors don’t span R3 (b) No, 4 vectors in R3 are dependent (c) Yes, a

basis (d) No, these three vectors are dependent

39 If the 5 by 5 matrix [A b ] is invertible, b is not a combination of the columns of A :

no solution to Ax = b. If [A b ] is singular, and the 4 columns of A are independent

(rank 4), b is a combination of those columns. In this case Ax = b has a solution.

40 (a) The functions y = sinx, y = cosx, y = ex, y = e−x are a basis for solutions to

d4y/dx4 = y(x).

(b) A particular solution to d4y/dx4 = y(x)+1 is y(x) = −1. The complete solution

is y(x) = −1 + c1 sinx + c2 cosx + c3e
x + c4e

−x (or use another basis for the

nullspace of the 4th derivative).

41 I =




1

1

1


 −




1

1

1


 +




1

1

1


 +




1

1

1


 −




1

1

1


.

The six P ’s

are dependent
.

Those five are independent: The 4th has P11 = 1 and cannot be a combination of the

others. Then the 2nd cannot be (from P32 = 1) and also 5th (P32 = 1). Continuing,

a nonzero combination of all five could not be zero. Further challenge: How many

independent 4 by 4 permutation matrices?
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42 The dimension of S spanned by all rearrangements of x is (a) zero when x = 0

(b) one when x = (1, 1, 1, 1) (c) three when x = (1, 1,−1,−1) because all rear-

rangements of this x are perpendicular to (1, 1, 1, 1) (d) four when the x’s are not

equal and don’t add to zero. No x gives dim S = 2. I owe this nice problem to Mike

Artin—the answers are the same in higher dimensions: 0, 1, n− 1, n.

43 The problem is to show that the u’s, v’s, w’s together are independent. We know the

u’s and v’s together are a basis for V , and the u’s and w’s together are a basis for W .

Suppose a combination of u’s, v’s, w’s gives 0. To be proved: All coefficients = zero.

Key idea: In that combination giving 0, the part x from the u’s and v’s is in V . So the

part from the w’s is −x. This part is now in V and also in W . But if −x is in V ∩W

it is a combination of u’s only. Now the combination giving 0 uses only u’s and v’s

(independent in V !) so all coefficients of u’s and v’s must be zero. Then x = 0 and

the coefficients of the w’s are also zero.

44 The inputs to multiplication by an m by n matrix fill Rn : dimension n. The outputs

(column space!) have dimension r. The nullspace has n − r special solutions. The

formula becomes r + (n− r) = n.

45 If the left side of dim(V) + dim(W) = dim(V ∩W) + dim(V+W) is greater than

n, then dim(V ∩W) must be greater than zero. So V ∩W contains nonzero vectors.

Oh here is a more basic approach : Put a basis for V and then a basis for W in the

columns of a matrix A. Then A has more columns than rows and there is a nonzero

solution to Ax = 0. That x gives a combination of the V columns = a combination of

the W columns.

46 If A2 = zero matrix, this says that each column of A is in the nullspace of A. If the

column space has dimension r, the nullspace has dimension 10 − r. So we must have

r ≤ 10− r and this leads to r ≤ 5.
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Problem Set 3.5, page 190

1 (a) Row and column space dimensions = 5, nullspace dimension = 4, dim(N (AT))

= 2 sum 5 + 5 + 4 + 2 = 16 = m+ n

(b) Column space is R3; left nullspace contains only 0.

2 A: Row space basis = row 1 = (1, 2, 4); nullspace (−2, 1, 0) and (−4, 0, 1); column

space basis = column 1 = (1, 2); left nullspace (−2, 1). B: Row space basis =

both rows = (1, 2, 4) and (2, 5, 8); column space basis = two columns = (1, 2) and

(2, 5); nullspace (−4, 0, 1); left nullspace basis is empty because the space contains

only y = 0 : the rows of B are independent.

3 Row space basis = first two rows of U ; column space basis = pivot columns (of A not U )

= (1, 1, 0) and (3, 4, 1); nullspace basis (1, 0, 0, 0, 0), (0, 2,−1, 0, 0), (0, 2, 0,−2, 1);

left nullspace (1,−1, 1) = last row of E−1 = L.

4 (a)




1 0

1 0

0 1


 (b) Impossible: r+(n−r)must be 3 (c) [ 1 1 ] (d)


9 −3

3 −1




(e) Impossible Row space= column space requires m = n. Then m − r = n −
r; nullspaces have the same dimension. Section 4.1 will prove N(A) and N(AT)

orthogonal to the row and column spaces respectively—here those are the same space.

5 A =


1 1 1

2 1 0


 has those rows spanning its row space. B =

[
1 −2 1

]
has the

same rows spanning its nullspace and ABT = 0.

6 A: dim 2,2,2,1: Rows (0, 3, 3, 3) and (0, 1, 0, 1); columns (3, 0, 1) and (3, 0, 0);

nullspace (1, 0, 0, 0) and (0,−1, 0, 1); N(AT) (0, 1, 0). B: dim 1,1,0,2 Row space

(1), column space (1, 4, 5), nullspace: empty basis, N(AT) (−4, 1, 0) and (−5, 0, 1).

7 Invertible 3 by 3 matrix A: row space basis = column space basis = (1, 0, 0), (0, 1, 0),

(0, 0, 1); nullspace basis and left nullspace basis are empty. Matrix B =
[
A A

]
: row

space basis (1, 0, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0) and (0, 0, 1, 0, 0, 1); column space basis
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(1, 0, 0), (0, 1, 0), (0, 0, 1); nullspace basis (−1, 0, 0, 1, 0, 0) and (0,−1, 0, 0, 1, 0) and

(0, 0,−1, 0, 0, 1); left nullspace basis is empty.

8

[
I 0

]
and

[
I I ; 0 0

]
and

[
0
]
= 3 by 2 have row space dimensions = 3, 3, 0 =

column space dimensions; nullspace dimensions 2, 3, 2; left nullspace dimensions 0, 2, 3.

9 (a) Same row space and nullspace. So rank (dimension of row space) is the same

(b) Same column space and left nullspace. Same rank (dimension of column space).

10 For rand (3), almost surely rank= 3, nullspace and left nullspace contain only (0, 0, 0).

For rand (3, 5) the rank is almost surely 3 and the dimension of the nullspace is 2.

11 (a) No solution means that r < m. Always r ≤ n. Can’t compare m and n here.

(b) Since m− r > 0, the left nullspace must contain a nonzero vector.

12 A neat choice is




1 1

0 2

1 0





1 0 1

1 2 0


 =




2 2 1

2 4 0

1 0 1


; r + (n − r) = n = 3 does

not match 2 + 2 = 4. Only v = 0 is in both N(A) and C(AT).

13 (a) False: Usually row space 6= column space (they do not have the same dimension!)

(b) True: A and −A have the same four subspaces

(c) False (choose A and B same size and invertible: then they have the same four

subspaces)

14 Row space basis can be the nonzero rows of U : (1, 2, 3, 4), (0, 1, 2, 3), (0, 0, 1, 2);

nullspace basis (0, 1,−2, 1) as for U ; column space basis (1, 0, 0), (0, 1, 0), (0, 0, 1)

(happen to have C(A) = C(U) = R3); left nullspace has empty basis.

15 After a row exchange, the row space and nullspace stay the same; (2, 1, 3, 4) is in the

new left nullspace after the row exchange.

16 If Av = 0 and v is a row of A then v · v = 0. So v = 0.

17 Row space = yz plane; column space = xy plane; nullspace = x axis; left nullspace

= z axis. For I + A: Row space = column space = R3, both nullspaces contain only

the zero vector.
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18 Row 3−2 row 2+ row 1 = zero row so the vectors c(1,−2, 1) are in the left nullspace.

The same vectors happen to be in the nullspace (an accident for this matrix).

19 (a) Elimination on Ax = 0 leads to 0 = b3 − b2 − b1 so (−1,−1, 1) is in the left

nullspace. (b) 4 by 3: Elimination leads to b3 − 2b1 = 0 and b4 + b2 − 4b1 = 0, so

(−2, 0, 1, 0) and (−4, 1, 0, 1) are in the left nullspace. Why? Those vectors multiply

the matrix to give zero rows in vA. Section 4.1 will show another approach: Ax = b

is solvable (b is in C(A)) exactly when b is orthogonal to the left nullspace.

20 (a) Special solutions (−1, 2, 0, 0) and (− 1
4
, 0,−3, 1) are perpendicular to the rows of

R (and rows of ER). (b) ATy = 0 has 1 independent solution= last row of E−1.

(E−1A = R has a zero row, which is just the transpose of ATy = 0).

21 (a) u and w (b) v and z (c) rank < 2 if u and w are dependent or if v and z

are dependent (d) The rank of uvT +wzT is 2.

22 A =


u w





 vT

zT


 =




1 2

2 2

4 1





1 0

1 1


 =




3 2

4 2

5 1




u,w span column space;

v, z span row space

23 As in Problem 22: Row space basis (3, 0, 3), (1, 1, 2); column space basis (1, 4, 2),

(2, 5, 7); the rank of (3 by 2) times (2 by 3) cannot be larger than the rank of either

factor, so rank ≤ 2 and the 3 by 3 product is not invertible.

24 ATy = d puts d in the row space of A; unique solution if the left nullspace (nullspace

of AT) contains only y = 0.

25 (a) True (A and AT have the same rank) (b) False A = [ 1 0 ] and AT have very

different left nullspaces (c) False (A can be invertible and unsymmetric even if

C(A) = C(AT)) (d) True (The subspaces for A and −A are always the same. If

AT = A or AT = −A they are also the same for AT)

26 Choose d = bc/a to make
[
a b

c d

]
a rank-1 matrix. Then the row space has basis (a, b)

and the nullspace has basis (−b, a). Those two vectors are perpendicular !

27 B and C (checkers and chess) both have rank 2 if p 6= 0. Row 1 and 2 are a basis for the

row space of C, BTy = 0 has 6 special solutions with −1 and 1 separated by a zero;
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N(CT) has (−1, 0, 0, 0, 0, 0, 0, 1) and (0,−1, 0, 0, 0, 0, 1, 0) and columns 3, 4, 5, 6 of

I ; N(C) is a challenge : one vector in N(C) is (1, 0, . . . , 0,−1).

28 a11 = 1, a12 = 0, a13 = 1, a22 = 0, a32 = 1, a31 = 0, a23 = 1, a33 = 0, a21 = 1.

(Need to specify the five moves).

29 The subspaces for A = uvT are pairs of orthogonal lines (v and v⊥, u and u⊥).

If B has those same four subspaces then B = cA with c 6= 0.

30 (a) AX = 0 if each column of X is a multiple of (1, 1, 1); dim(nullspace) = 3.

(b) If AX = B then all columns of B add to zero; dimension of the B’s = 6.

(c) 3 + 6 = dim(M3×3) = 9 entries in a 3 by 3 matrix.

31 The key is equal row spaces. First row of A = combination of the rows of B: only

possible combination (notice I) is 1 (row 1 of B). Same for each row so F = G.
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Problem Set 4.1, page 202

1 Both nullspace vectors will be orthogonal to the row space vector in R3. The column

space of A and the nullspace of AT are perpendicular lines in R2 because rank = 1.

2 The nullspace of a 3 by 2 matrix with rank 2 is Z (only the zero vector because the 2

columns are independent). So xn = 0, and row space = R2. Column space = plane

perpendicular to left nullspace = line in R3 (because the rank is 2).

3 (a) One way is to use these two columns directly : A =




1 2 −3

2 −3 1

−3 5 −2




(b)
Impossible because N(A) and C(AT)

are orthogonal subspaces :




2

−3

5


 is not orthogonal to




1

1

1




(c)




1

1

1


 and




1

0

0


 in C(A) and N(AT) is impossible: not perpendicular

(d) Rows orthogonal to columns makes A times A = zero matrix ρ. An example is A =
[
1 −1

1 −1

]

(e) (1, 1, 1) in the nullspace (columns add to the zero vector) and also (1, 1, 1) is in

the row space: no such matrix.

4 If AB = 0, the columns of B are in the nullspace of A and the rows of A are in the left

nullspace of B. If rank = 2, all those four subspaces have dimension at least 2 which

is impossible for 3 by 3.

5 (a) If Ax = b has a solution and ATy = 0, then y is perpendicular to b. bTy =

(Ax)Ty = xT(ATy) = 0. This says again that C(A) is orthogonal to N(AT).

(b) If ATy = (1, 1, 1) has a solution, (1, 1, 1) is a combination of the rows of A. It is

in the row space and is orthogonal to every x in the nullspace.
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6 Multiply the equations by y1, y2, y3 = 1, 1,−1. Now the equations add to 0 = 1 so

there is no solution. In subspace language, y = (1, 1,−1) is in the left nullspace.

Ax = b would need 0 = (yTA)x = yTb = 1 but here yTb = 1.

7 Multiply the 3 equations by y = (1, 1,−1). Then x1−x2 = 1 plus x2−x3 = 1 minus

x1 − x3 = 1 is 0 = 1. Key point: This y in N(AT) is not orthogonal to b = (1, 1, 1)

so b is not in the column space and Ax = b has no solution.

8 Figure 4.3 has x = xr + xn, where xr is in the row space and xn is in the nullspace.

Then Axn = 0 and Ax = Axr + Axn = Axr. The example has x = (1, 0) and row

space = line through (1, 1) so the splitting is x = xr + xn =
(
1
2
, 1
2

)
+
(
1
2
,− 1

2

)
. All

Ax are in C(A).

9 Ax is always in the column space of A. If ATAx = 0 then Ax is also in the nullspace

of AT. Those subspaces are perpendicular. So Ax is perpendicular to itself. Conclu-

sion: Ax = 0 if ATAx = 0.

10 (a) With AT = A, the column and row spaces are the same. The nullspace is always

perpendicular to the row space. (b) x is in the nullspace and z is in the column

space = row space: so these “eigenvectors” x and z have xTz = 0.

11 For A: The nullspace is spanned by (−2, 1), the row space is spanned by (1, 2). The

column space is the line through (1, 3) and N(AT) is the perpendicular line through

(3,−1). For B: The nullspace of B is spanned by (0, 1), the row space is spanned by

(1, 0). The column space and left nullspace are the same as for A.

12 x = (2, 0) splits into xr + xn = (1,−1) + (1, 1). Notice N(AT) is the y − z plane.

13 V TW = zero matrix makes each column of V orthogonal to each column of W . This

means: each basis vector for V is orthogonal to each basis vector for W . Then every

v in V (combinations of the basis vectors) is orthogonal to every w in W .

14 Ax = Bx̂ means that [A B ]


 x

−x̂


 = 0. Three homogeneous equations (zero right

hand sides) in four unknowns always have a nonzero solution. Here x = (3, 1) and
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x̂ = (1, 0) and Ax = Bx̂ = (5, 6, 5) is in both column spaces. Two planes in R3 must

share a line.

15 A p-dimensional and a q-dimensional subspace of Rn share at least a line if p + q > n.

(The p + q basis vectors of V and W cannot be independent, so same combination of

the basis vectors of V is also a combination of the basis vectors of W .)

16 ATy = 0 leads to (Ax)Ty = xTATy = 0. Then y ⊥ Ax and N(AT) ⊥ C(A).

17 If S is the subspace of R3 containing only the zero vector, then S⊥ is all of R3.

If S is spanned by (1, 1, 1), then S⊥ is the plane spanned by (1,−1, 0) and (1, 0,−1).

If S is spanned by (1, 1, 1) and (1, 1,−1), then S⊥ is the line spanned by (1,−1, 0).

18 S⊥ contains all vectors perpendicular to those two given vectors. SoS⊥ is the nullspace

of A =


1 5 1

2 2 2


. Therefore S⊥ is a subspace even if S is not.

19 L⊥ is the 2-dimensional subspace (a plane) in R3 perpendicular to L. Then (L⊥)⊥ is

a 1-dimensional subspace (a line) perpendicular to L⊥. In fact (L⊥)⊥ is L.

20 If V is the whole space R4, then V ⊥ contains only the zero vector. Then (V ⊥)⊥ =

all vectors perpendicular to the zero vector = R4 = V .

21 For example (−5, 0, 1, 1) and (0, 1,−1, 0) spanS⊥=nullspace of A=


1 2 2 3

1 3 3 2


.

22 (1, 1, 1, 1) is a basis for the line P⊥ orthogonal to P . A =
[
1 1 1 1

]
has P as its

nullspace and P⊥ as its row space.

23 x in V ⊥ is perpendicular to every vector in V . Since V contains all the vectors in S,

x is perpendicular to every vector in S. So every x in V ⊥ is also in S⊥.

24 AA−1 = I : Column 1 of A−1 is orthogonal to rows 2, 3, . . . , n and therefore to the

space spanned by those rows.

25 If the columns of A are unit vectors, all mutually perpendicular, then ATA = I . Simple

but important ! We write Q for such a matrix.
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26 A =




2 2 −1

−1 2 2

2 −1 2


,

This example shows a matrix with perpendicular columns.

ATA = 9I is diagonal: (ATA)ij = (column i of A) · (column j of A).

When the columns are unit vectors, then ATA = I .

27 The lines 3x + y = b1 and 6x + 2y = b2 are parallel. They are the same line if

b2 = 2b1. In that case (b1, b2) is perpendicular to (−2, 1). The nullspace of the 2 by 2

matrix is the line 3x+ y = 0. One particular vector in the nullspace is (−1, 3).

28 (a) (1,−1, 0) is in both planes. Normal vectors are perpendicular, but planes still in-

tersect! Two planes in R3 can’t be orthogonal. (b) Need three orthogonal vectors to

span the whole orthogonal complement in R5. (c) Lines in R3 can meet at the zero

vector without being orthogonal.

29 A =




1 2 3

2 1 0

3 0 1


 , B =




1 1 −1

2 −1 0

3 0 −1


;

A has v = (1, 2, 3) in row and column spaces

B has v in its column space and nullspace.

v can not be in the nullspace and row space,

or in the left nullspace and column space. These spaces are orthogonal and vTv 6= 0.

30 When AB = 0, every column of B is multiplied by A to give zero. So the column

space of B is contained in the nullspace of A. Therefore the dimension of C(B) ≤
dimension of N(A). This means rank(B) ≤ 4 − rank(A).

31 null(N ′) produces a basis for the row space of A (perpendicular to N(A)).

32 We need rTn = 0 and cTℓ = 0. All possible examples have the form acrT with

a 6= 0.

33 Both r’s must be orthogonal to both n’s, both c’s must be orthogonal to both ℓ’s, each

pair (r’s, n’s, c’s, and ℓ’s) must be independent. Fact : All A’s with these subspaces

have the form [c1 c2]M [r1 r2]
T for a 2 by 2 invertible M .

You must take [c1, c2] times [r1, r2]
T.

Problem Set 4.2, page 214

1 (a) aTb/aTa = 5/3; p = 5a/3 = (5/3, 5/3, 5/3); e = (−2, 1, 1)/3
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(b) aTb/aTa=−1; p=−a; e=0.

2 (a) The projection of b = (cos θ, sin θ) onto a = (1, 0) is p = (cos θ, 0)

(b) The projection of b = (1, 1) onto a = (1,−1) is p = (0, 0) since aTb = 0.

The picture for part (a) has the vector b at an angle θ with the horizontal a. The picture

for part (b) has vectors a and b at a 90◦ angle.

3 P1 =
1

3




1 1 1

1 1 1

1 1 1


 and P1b =

1

3




5

5

5


. P2 =

1

11




1 3 1

3 9 3

1 3 1


 and P2b =




1

3

1


.

4 P1 =


1 0

0 0


, P2 =

aaT

aTa
=

1

2


 1 −1

−1 1


.

P1 projects onto (1, 0), P2 projects onto (1,−1)

P1P2 6= 0 and P1 + P2 is not a projection matrix.

(P1 + P2)
2 is different from P1 + P2.

5 P1 =
1

9




1 −2 −2

−2 4 4

−2 4 4


 and P2 =

1

9




4 4 −2

4 4 −2

−2 −2 1


.

P1 and P2 are the projection matrices onto the lines through a1 = (−1, 2, 2) and

a2 = (2, 2,−1). P1P2 = zero matrix because a1 ⊥ a2.

6 p1=(1
9
,− 2

9
,− 2

9
) and p2=(4

9
, 4
9
,− 2

9
) and p3 = (4

9
,− 2

9
, 4
9
). So p1 + p2 + p3 = b.

7 P1 + P2 + P3 =
1

9




1 −2 −2

−2 4 4

−2 4 4


+

1

9




4 4 −2

4 4 −2

−2 −2 1


+

1

9




4 −2 4

−2 1 −2

4 −2 4


 = I .

We can add projections onto orthogonal vectors to get the projection matrix onto the

larger space. This is important.

8 The projections of (1, 1) onto (1, 0) and (1, 2) are p1 = (1, 0) and p2 = 3
5
(1, 2). Then

p1 + p2 6= b. The sum of projections is not a projection onto the space spanned by

(1, 0) and (1, 2) because those vectors are not orthogonal.

9 Since A is invertible, P = A(ATA)−1AT separates into AA−1(AT)−1AT = I . And

I is the projection matrix onto all of R2.
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10 P2 =
a2a

T
2

aT
2 a2

=


0.2 0.4

0.4 0.8


,P2a1 =


0.2

0.4


,P1 =

a1a
T
1

aT
1 a1

=


1 0

0 0


,P1P2a1 =


0.2

0


.

This is not a1 = (1, 0)

No, P1P2 6= (P1P2)
2.

11 (a) p=A(ATA)−1ATb=(2, 3, 0), e=(0, 0, 4), ATe=0

(b) p = (4, 4, 6) and e=0 because b is in the column space of A.

12 P1 =




1 0 0

0 1 0

0 0 0


 = projection matrix onto the column space of A (the xy plane)

P2 =




0.5 0.5 0

0.5 0.5 0

0 0 1


=

Projection matrix A(ATA)−1AT onto the second column space.

Certainly (P2)
2 = P2. A true projection matrix.

13 A =




1 0 0

0 1 0

0 0 1

0 0 0




, P = square matrix =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0




, p = P




1

2

3

4



=




1

2

3

0




.

14 The projection of this b onto the column space of A is b itself because b is in that

column space. But P is not necessarily I . Here b = 2(column 1 of A) :

A =




0 1

1 2

2 0


 gives P =

1

21




5 8 −4

8 17 2

−4 2 20


 and b = Pb = p =




0

2

4


.

15 2A has the same column space as A. Then P is the same for A and 2A, but x̂ for 2A

is half of x̂ for A.

16
1
2(1, 2,−1) + 3

2 (1, 0, 1) = (2, 1, 1). So b is in the plane. Projection shows Pb = b.

17 If P 2 = P then (I − P )2 = (I −P )(I −P ) = I −PI − IP +P 2 = I − P . When

P projects onto the column space, I − P projects onto the left nullspace.
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18 (a) I − P is the projection matrix onto (1,−1) in the perpendicular direction to (1, 1)

(b) I − P projects onto the plane x+ y + z = 0 perpendicular to (1, 1, 1).

19
For any basis vectors in the plane x− y − 2z = 0,

say (1, 1, 0) and (2, 0, 1), the matrix P = A(ATA)−1AT is




5/6 1/6 1/3

1/6 5/6 −1/3

1/3 −1/3 1/3


.

20 e =




1

−1

−2


, Q = eeT

eTe =




1/6 −1/6 −1/3

−1/6 1/6 1/3

−1/3 1/3 2/3


, I −Q =




5/6 1/6 1/3

1/6 5/6 −1/3

1/3 −1/3 1/3


.

21
(
A(ATA)−1AT

)2
= A(ATA)−1(ATA)(ATA)−1AT = A(ATA)−1AT. So P 2 = P .

Pb is in the column space (where P projects). Then its projection P (Pb) is also Pb.

22 PT = (A(ATA)−1AT)T = A((ATA)−1)TAT = A(ATA)−1AT = P . (ATA is sym-

metric!)

23 If A is invertible then its column space is all of Rn. So P = I and e = 0.

24 The nullspace of AT is orthogonal to the column space C(A). So if ATb = 0, the pro-

jection of b ontoC(A) should be p = 0. Check Pb = A(ATA)−1ATb = A(ATA)−10.

25 The column space of P is the space that P projects onto. The column space of A

always contains all outputs Ax and here the outputs Px fill the subspace S. Then rank

of P = dimension of S = n.

26 A−1 exists since the rank is r = m. Multiply A2 = A by A−1 to get A = I .

27 If ATAx = 0 then Ax is in the nullspace of AT. But Ax is always in the column

space of A. To be in both of those perpendicular spaces, Ax must be zero. So A and

ATA have the same nullspace : ATAx = 0 exactly when Ax = 0.

28 P 2 = P = PT give PTP = P . Then the (2, 2) entry of P equals the (2, 2) entry of

PTP . But the (2, 2) entry of PTP is the length squared of column 2.

29 A = BT has independent columns, so ATA (which is BBT) must be invertible.

30 (a) The column space is the line through a =


3
4


 so PC =

aaT

aTa
=

1

25


 9 12

12 16


.
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The formula P = A(ATA)−1AT needs independent columns—this A has dependent

columns. The update formula is correct.

(b) The row space is the line through v = (1, 2, 2) and PR = vvT/vTv. Always

PCA = A (columns of A project to themselves) and APR = A. Then PCAPR = A.

31 Test: The error e = b− p must be perpendicular to all the a’s.

32 Since P1b is in C(A) and P2 projects onto that column space, P2(P1b) equals P1b.

So P2P1 = P1 = aaT/aTa where a = (1, 2, 0).

33 Each b1 to b99 is multiplied by 1
999 − 1

1000

(
1

999

)
= 999

1000
1

999 = 1
1000 . The last pages of

the book discuss least squares and the Kalman filter.

Problem Set 4.3, page 229

1 A =




1 0

1 1

1 3

1 4




and b =




0

8

8

20




give ATA =


4 8

8 26


 and ATb =


 36

112


.

ATAx̂ = ATb gives x̂ =


1

4


 and p = Ax̂ =




1

5

13

17




and e = b− p =

E = ‖e‖2 = 44




−1

3

−5

3




2




1 0

1 1

1 3

1 4





C

D


=




0

8

8

20




.
This Ax = b is unsolvable

Project b to p = Pb =




1

5

13

17




; When p replaces b,

x̂=


1

4


 exactly solves Ax̂ = p.

3 In Problem 2, p = A(ATA)−1ATb = (1, 5, 13, 17) and e = b − p = (−1, 3,−5, 3).

This e is perpendicular to both columns of A. This shortest distance ‖e‖ is
√
44.
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4 E = (C + 0D)2 + (C + 1D − 8)2 + (C + 3D − 8)2 + (C + 4D − 20)2. Then

∂E/∂C = 2C + 2(C + D − 8) + 2(C + 3D − 8) + 2(C + 4D − 20) = 0 and

∂E/∂D = 1 · 2(C + D − 8) + 3 · 2(C + 3D − 8) + 4 · 2(C + 4D − 20) = 0.

These two normal equations are again


4 8

8 26




C

D


 =


 36

112


.

5 E = (C−0)2+(C−8)2+(C−8)2+(C−20)2. AT = [ 1 1 1 1 ] and ATA = [ 4 ].

ATb = [ 36 ] and (ATA)−1ATb = 9 = best height C for the horizontal line.

Errors e = b− p = (−9,−1,−1, 11) still add to zero.

6 a = (1, 1, 1, 1) and b = (0, 8, 8, 20) give x̂ = aTb/aTa = 9 and the projection is

x̂a = p = (9, 9, 9, 9). Then eTa = (−9,−1,−1, 11)T(1, 1, 1, 1) = 0 and the shortest

distance from b to the line through a is ‖e‖ =
√
204.

7 Now the 4 by 1 matrix in Ax = b is A = [ 0 1 3 4 ]
T

. Then ATA = [ 26 ] and

ATb = [ 112 ]. Best D = 112/26 = 56/13.

8 x̂ = aTb/aTa = 56/13 and p = (56/13)(0, 1, 3, 4). (C,D) = (9, 56/13) don’t

match (C,D) = (1, 4) from Problems 1-4. Columns of A were not perpendicular so

we can’t project separately to find C and D.

9

Parabola

Project b

4D to 3D




1 0 0

1 1 1

1 3 9

1 4 16







C

D

E


=




0

8

8

20




. ATAx̂=




4 8 26

8 26 92

26 92 338







C

D

E


=




36

112

400


.

Figure 4.9 (a) is fitting 4 points and 4.9 (b) is a projection in R4: same problem !

10




1 0 0 0

1 1 1 1

1 3 9 27

1 4 16 64







C

D

E

F



=




0

8

8

20




. Then




C

D

E

F



=
1

3




0

47

−28

5




.

Exact cubic so p = b, e = 0.

This Vandermonde matrix

gives exact interpolation

by a cubic at 0, 1, 3, 4

11 (a) The best line x = 1 + 4t gives the center point b̂ = 9 at center time, t̂ = 2.

(b) The first equation Cm +D
∑

ti =
∑

bi divided by m gives C +Dt̂ = b̂. This

shows : The best line goes through b̂ at time t̂.
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12 (a) a = (1, . . . , 1) has aTa = m, aTb = b1 + · · · + bm. Therefore x̂ = aTb/m is

the mean of the b’s (their average value)

(b) e = b − x̂a and ‖e‖2 = (b1 − mean )2 + · · · + (bm − mean )2 = variance

(denoted by σ2).

(c) p = (3, 3, 3) and e = (−2,−1, 3) pTe = 0. Projection matrix P =
1

3




1 1 1

1 1 1

1 1 1


.

13 (ATA)−1AT(b − Ax) = x̂− x. This tells us: When the components of Ax − b add

to zero, so do the components of x̂− x : Unbiased.

14 The matrix (x̂− x)(x̂− x)T is (ATA)−1AT(b− Ax)(b −Ax)TA(ATA)−1. When

the average of (b−Ax)(b−Ax)T is σ2I , the average of (x̂−x)(x̂−x)T will be the

output covariance matrix (ATA)−1ATσ2A(ATA)−1 which simplifies to σ2(ATA)−1.

That gives the average of the squared output errors x̂− x.

15 When A has 1 column of 4 ones, Problem 14 gives the expected error (x̂ − x)2 as

σ2(ATA)−1 = σ2/4. By taking m measurements, the variance drops from σ2 to

σ2/m. This leads to the Monte Carlo method in Section 12.1.

16
1

10
b10 +

9

10
x̂9 =

1

10
(b1 + · · ·+ b10). Knowing x̂9 avoids adding all ten b’s.

17




1 −1

1 1

1 2





C

D


 =




7

7

21


. The solution x̂ =


9

4


 comes from


3 2

2 6




C

D


 =


35

42


.

18 p = Ax̂ = (5, 13, 17) gives the heights of the closest line. The vertical errors are

b− p = (2,−6, 4). This error e has Pe = Pb− Pp = p− p = 0.

19 If b = error e then b is perpendicular to the column space of A. Projection p = 0.

20 The matrix A has columns 1, 1, 1 and −1, 1, 2. If b = Ax̂ = (5, 13, 17) then x̂ = (9, 4)

and e = 0 since b = 9 (column 1) + 4 (column 2) is in the column space of A.
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21 e is in N(AT); p is in C(A); x̂ is in C(AT); N(A) = {0} = zero vector only.

22 The least squares equation is


 5 0

0 10




C

D


=


 5

−10


. Solution: C = 1, D = −1.

The best line is b = 1− t. Symmetric t’s ⇒ diagonal ATA ⇒ easy solution.

23 e is orthogonal to p in Rm; then ‖e‖2 = eT(b− p) = eTb = bTb− bTp.

24 The derivatives of ‖Ax− b‖2 = xTATAx− 2bTAx+ bTb (this last term is constant)

are zero when 2ATAx = 2ATb, or x = (ATA)−1ATb.

25 3 points on a linewill give equal slopes (b2 − b1)/(t2 − t1) = (b3 − b2)/(t3 − t2).

Linear algebra: Orthogonal to the columns (1, 1, 1) and (t1, t2, t3) is y = (t2− t3, t3−
t1, t1 − t2) in the left nullspace of A. b is in the column space ! Then yTb = 0 is the

same equal slopes condition written as (b2 − b1)(t3 − t2) = (b3 − b2)(t2 − t1).

26

The unsolvable

equations for

C +Dx+Ey = (0, 1, 3, 4)

at the 4 corners are




1 1 0

1 0 1

1 −1 0

1 0 −1







C

D

E


 =




0

1

3

4




. Then ATA =




4 0 0

0 2 0

0 0 2




and ATb =




8

−2

−3


 and




C

D

E


=




2

−1

−3/2


. At x, y = 0, 0 the best plane 2 − x − 3

2y

has height C = 2 = average of 0, 1, 3, 4.

27 The shortest link connecting two lines in space is perpendicular to those lines.

28 If A has dependent columns, then ATA is not invertable and the usual formula P =

A(ATA)−1AT will fail. Replace A in that formula by the matrix B that keeps only the

pivot columns of A.

29 Only 1 plane contains 0,a1,a2 unlessa1,a2 are dependent. Same test for a1, . . . ,an−1.

If they are dependent, there is a vector v perpendicular to all the a’s. Then they all lie

on the plane vTx = 0 going through x = (0, 0, . . . , 0).
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30 When A has orthogonal columns (1, . . . , 1) and (T1, . . . , Tm), the matrix ATA is

diagonal with entries m and T 2
1 + · · ·+ T 2

m. Also ATb has entries b1 + · · ·+ bm and

T1b1+ · · ·+Tmbm. The solution with that diagonal ATA is just the given x̂ = (C,D).

Problem Set 4.4, page 242

1 (a) Independent (b) Independent and orthogonal (c) Independent and orthonormal.

For orthonormal vectors, (a) becomes (1, 0), (0, 1) and (b) is (.6, .8), (.8,−.6).

2
Divide by length 3 to get

q1 = (2
3
, 2
3
,− 1

3
). q2 = (− 1

3
, 2
3
, 2
3
).

QTQ =


1 0

0 1


 but QQT =




5/9 2/9 −4/9

2/9 8/9 2/9

−4/9 2/9 5/9


.

3 (a) ATA will be 16I (b) ATA will be diagonal with entries 12, 22, 32 = 1, 4, 9.

4 (a) Q =




1 0

0 1

0 0


, QQT =




1 0 0

0 1 0

0 0 0


 6= I . Any Q with n < m has QQT 6= I .

(b) (1, 0) and (0, 0) are orthogonal, not independent. Nonzero orthogonal vectors are

independent. (c) From q1 = (1, 1, 1)/
√
3 my favorite is q2 = (1,−1, 0)/

√
2 and

q3 = (1, 1,−2)/
√
6.

5 Orthogonal vectors are (1,−1, 0) and (1, 1,−1). Orthonormal after dividing by their

lengths :
(

1√
2
,− 1√

2
, 0
)

and
(

1√
3
, 1√

3
,− 1√

3

)
.

6 Q1Q2 is orthogonal because (Q1Q2)
TQ1Q2 = QT

2 Q
T
1Q1Q2 = QT

2 Q2 = I .

7 When Gram-Schmidt gives Q with orthonormal columns, QTQx̂ = QTb becomes

x̂ = QTb. No cost to solve the normal equations !

8 If q1 and q2 are orthonormal vectors in R5 then p = (qT
1 b)q1+(qT

2 b)q2 is closest to b.

The error e = b− p is orthogonal to q1 and q2.

9 (a) Q =




.8 −.6

.6 .8

0 0


 has P = QQT =




1 0 0

0 1 0

0 0 0


 = projection on the xy plane.
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(b) (QQT)(QQT) = Q(QTQ)QT = QQT.

10 (a) If q1, q2, q3 are orthonormal then the dot product of q1 with c1q1+c2q2+c3q3 =

0 gives c1 = 0. Similarly c2 = c3 = 0. This proves : Independent q’s

(b) Qx = 0 leads to QTQx = 0 which says x = 0.

11 (a) Two orthonormal vectors are q1 = 1
10
(1, 3, 4, 5, 7) and q2 = 1

10
(−7, 3, 4,−5, 1)

(b) Closest projection in the plane= projectionQQT(1, 0, 0, 0, 0) = (0.5,−0.18,−0.24, 0.4, 0).

12 (a) Orthonormal a’s: aT
1 b = aT

1 (x1a1 + x2a2 + x3a3) = x1(a
T
1 a1) = x1

(b) Orthogonal a’s: aT
1 b = aT

1 (x1a1 + x2a2 + x3a3) = x1(a
T
1 a1). Therefore

x1 = aT
1 b/a

T
1 a1

(c) x1 is the first component of A−1 times b (A is 3 by 3 and invertible).

13 The multiple to subtract is aTb
aTa . Then B = b − aTb

aTaa =


 4

0


 − 2


 1

1


 =


 2

−2


.

14


1 4

1 0


 =

[
q1 q2

]
‖a‖ qT

1 b

0 ‖B‖


 =


1/

√
2 1/

√
2

1/
√
2 −1/

√
2





√
2 2

√
2

0 2
√
2


 = QR.

15 (a) Gram-Schmidt chooses q1 = a/||a|| = 1

3
(1, 2,−2) and q2 = 1

3
(2, 1, 2). Then

q3 = 1
3
(2,−2,−1).

(b) The nullspace of AT contains q3

(c) x̂ = (ATA)−1AT(1, 2, 7) = (1, 2).

16 p = (aTb/aTa)a = 14a/49 = 2a/7 is the projection of b onto a. q1 = a/‖a‖ =

a/7 is (4, 5, 2, 2)/7. B = b− p = (−1, 4,−4,−4)/7 has ‖B‖ = 1 so q2 = B.

17 p = (aTb/aTa)a = (3, 3, 3) and e = (−2, 0, 2). Then Gram-Schmidt will choose

q1 = (1, 1, 1)/
√
3 and q2 = (−1, 0, 1)/

√
2.

18 A = a = (1,−1, 0, 0);B = b−p = (1
2
, 1
2
,−1, 0);C = c−pA−pB = (1

3
, 1
3
, 1
3
,−1).

Notice the pattern in those orthogonal A,B,C. In R5, D would be (1
4
, 1
4
, 1
4
, 1
4
,−1).

Gram-Schmidt would go on to normalize q1 = A/||A||, q2 = B/||B||, q3 = C/||C||.



Solutions to Exercises 83

19 If A = QR then ATA = RTQTQR = RTR = lower triangular times upper triangular

(this Cholesky factorization of ATA uses the same R as Gram-Schmidt!). The example

has A =




−1 1

2 1

2 4


 =

1

3




−1 2

2 −1

2 2





3 3

0 3


 = QR and the same R appears in

ATA =


9 9

9 18


 =


3 0

3 3




3 3

0 3


 = RTR.

20 (a) True because QTQ = I leads to (Q−1) (Q−1) = I .

(b) True. Qx = x1q1 + x2q2. ‖Qx‖2 = x2
1 + x2

2 because q1 · q2 = 0. Also

||Qx||2 = xTQTQx = xTx.

21 The orthonormal vectors are q1 = (1, 1, 1, 1)/2 and q2 = (−5,−1, 1, 5)/
√
52. Then

b = (−4,−3, 3, 0) projects to p = (qT
1 b)q1 + (qT

2 b)q2 = (−7,−3,−1, 3)/2. And

b− p = (−1,−3, 7,−3)/2 is orthogonal to both q1 and q2.

22 A = (1, 1, 2), B = (1,−1, 0), C = (−1,−1, 1). These are not yet unit vectors. As in

Problem 18, Gram-Schmidt will divide by ||A|| and ||B|| and ||C||.

23 You can see why q1 =




1

0

0


, q2 =




0

0

1


, q3 =




0

1

0


. A =




1 0 0

0 0 1

0 1 0







1 2 4

0 3 6

0 0 5


 =

QR. This Q is just a permutation matrix—certainly orthogonal.

24 (a) One basis for the subspace S of solutions to x1+x2+x3−x4 = 0 is the 3 special

solutions v1 = (−1, 1, 0, 0), v2 = (−1, 0, 1, 0), v3 = (1, 0, 0, 1)

(b) Since S contains solutions to (1, 1, 1,−1)Tx = 0, a basis for S⊥ is (1, 1, 1,−1)

(c) Split (1, 1, 1, 1) into b1 + b2 by projection on S⊥ and S: b2 = (12 ,
1
2 ,

1
2 ,− 1

2 ) and

b1 = (12 ,
1
2 ,

1
2 ,

3
2).

25 This question shows 2 by 2 formulas for QR; breakdown R22 = 0 for singular A.

Nonsingular example


2 1

1 1


 =

1√
5


2 −1

1 2


 · 1√

5


5 3

0 1


.
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Singular example


1 1

1 1


 =

1√
2


1 −1

1 1


 · 1√

2


2 2

0 0


.

The Gram-Schmidt process breaks down when ad− bc = 0.

26 (qT
2 C

∗)q2 = BTc
BTB

B because q2 = B
‖B‖ and the extra q1 in C∗ is orthogonal to q2.

27 When a and b are not orthogonal, the projections onto these lines do not add to the pro-

jection onto the plane of a and b. We must use the orthogonal A and B (or orthonormal

q1 and q2) to be allowed to add projections on those lines.

28 There are 1
2
m2n multiplications to find the numbers rkj and the same for vij .

29 q1 = 1
3
(2, 2,−1), q2 = 1

3
(2,−1, 2), q3 = 1

3
(1,−2,−2).

30 The columns of the wavelet matrix W are orthonormal. Then W−1 =WT. This is a

useful orthonormal basis with many zeros.

31 (a) c = 1
2

normalizes all the orthogonal columns to have unit length (b) The pro-

jection (aTb/aTa)a of b = (1, 1, 1, 1) onto the first column is p1 = 1
2
(−1, 1, 1, 1).

(Check e = 0.) To project onto the plane, add p2 = 1
2 (1,−1, 1, 1) to get (0, 0, 1, 1).

32 Q1 =


1 0

0 −1


 reflects across x axis, Q2 =




1 0 0

0 0 −1

0 −1 0


 across plane y+ z = 0.

33 Orthogonal and lower triangular ⇒ ±1 on the main diagonal and zeros elsewhere.

34 (a) Qu = (I − 2uuT)u = u − 2uuTu. This is −u, provided that uTu equals 1

(b) Qv = (I − 2uuT)v = u− 2uuTv = u, provided that uTv = 0.

35 Starting from A = (1,−1, 0, 0), the orthogonal (not orthonormal) vectors B =

(1, 1,−2, 0) and C=(1, 1, 1,−3) and D=(1, 1, 1, 1) are in the directions of q2, q3, q4.

The 4 by 4 and 5 by 5 matrices with integer orthogonal columns (not orthogonal rows,

since not orthonormal Q!) are
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

A B C D



=




1 1 1 1

−1 1 1 1

0 −2 1 1

0 0 −3 1




and




1 1 1 1 1

−1 1 1 1 1

0 −2 1 1 1

0 0 −3 1 1

0 0 0 −4 1




36 [Q,R] = qr(A) produces from A (m by n of rank n) a “full-size” square Q=[Q1 Q2 ]

and


R

0


. The columns of Q1 are the orthonormal basis from Gram-Schmidt of the

column space of A. The m − n columns of Q2 are an orthonormal basis for the left

nullspace of A. Together the columns of Q = [Q1 Q2 ] are an orthonormal basis

for Rm.

37 This question describes the next qn+1 in Gram-Schmidt using the matrix Q with the

columns q1, . . . , qn (instead of using those q’s separately). Start from a, subtract its

projection p = QTa onto the earlier q’s, divide by the length of e = a − QTa to get

qn+1 = e/‖e‖.
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Problem Set 5.1, page 254

1 det(2A)= 24 detA = 8; det(−A) = (−1)4 detA = 1
2 ; det(A

2) = 1
4 ; det(A

−1)=2.

2 det(12A) = (12 )
3 detA = − 1

8 and det(−A) = (−1)3 detA = 1; det(A2) = 1;

det(A−1) = −1.

3 (a) False: det(I + I) is not 1 + 1 (except when n = 1) (b) True: The product rule

extends to ABC (use it twice) (c) False: det(4A) is 4n detA

(d) False: A =


0 0

0 1


, B =


0 1

1 0


, AB − BA =


0 −1

1 0


 is invertible.

4 Exchange rows 1 and 3 to show |J3| = −1. Exchange rows 1 and 4, then rows 2 and 3

to show |J4| = 1.

5 |J5| = 1 by exchanging row 1 with 5 and row 2 with 4. |J6| = −1, |J7| = −1.

Determinants 1, 1,−1,−1 repeat in cycles of length 4 so the determinant of J101 is +1.

6 To prove Rule 6, multiply the zero row by t = 2. The determinant is multiplied by 2

(Rule 3) but the matrix is the same. So 2 det(A) = det(A) and det(A) = 0.

7 det(Q) = 1 for rotation and det(Q) = 1− 2 sin2 θ − 2 cos2 θ = −1 for reflection.

8 QTQ = I ⇒ |QT| |Q| = |Q|2 = 1 ⇒ |Q| = ±1; Qn stays orthogonal so its

determinant can’t blow up as n → ∞.

9 detA = 1 from two row exchanges . detB = 2 (subtract rows 1 and 2 from row 3, then

columns 1 and 2 from column 3). detC = 0 (equal rows) even though C = A+B!

10 If the entries in every row add to zero, then (1, 1, . . . , 1) is in the nullspace: singular

A has det = 0. (The columns add to the zero column so they are linearly dependent.)

If every row adds to one, then rows of A − I add to zero (not necessarily detA = 1).

11 CD = −DC ⇒ detCD = (−1)n detDC and not just − detDC. If n is even then

detCD = detDC and we can have an invertible CD.

12 det(A−1) divides twice by ad − bc (once for each row). This gives detA−1 =
ad− bc

(ad− bc)2
=

1

ad− bc
.
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13 Pivots 1, 1, 1 give determinant = 1; pivots 1,−2,−3/2 give determinant = 3.

14 det(A) = 36 and the 4 by 4 second difference matrix has det = 5.

15 The first determinant is 0, the second is 1− 2t2 + t4 = (1− t2)2.

16 A singular rank one matrix has determinant = 0. The skew-symmetric K also has

detK = 0 (see #17): a skew-symmetric matrix K of odd order 3.

17 Any 3 by 3 skew-symmetric K has det(KT) = det(−K) = (−1)3det(K). This is

−det(K). But always det(KT) = det(K). So we must have det(K) = 0 for 3 by 3.

18

∣∣∣∣∣∣∣∣∣

1 a a2

1 b b2

1 c c2

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

1 a a2

0 b− a b2 − a2

0 c− a c2 − a2

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
b− a b2 − a2

c− a c2 − a2

∣∣∣∣∣∣
(to reach 2 by 2,

eliminate a and a2 in row 1 by column operations)—subtract a and a2 times

column 1 from columns 2 and 3. Factor out b − a and c − a from the 2 by 2:

(b− a)(c − a)

∣∣∣∣∣∣
1 b+ a

1 c+ a

∣∣∣∣∣∣
= (b− a)(c − a)(c − b).

19 For triangular matrices, just multiply the diagonal entries: det(U) = 6, det(U−1) = 1
6

,

and det(U2) = 36. 2 by 2 matrix: det(U) = ad, det(U2) = a2d2. If ad 6= 0 then

det(U−1) = 1/ad.

20 det


a− Lc b− Ld

c− ℓa d− ℓb


 reduces to (ad− bc)(1−Lℓ). The determinant changes if you

do two row operations at once.

21 We can exchange rows using the three elimination steps in the problem, followed by

multiplying row 1 by −1. So Rules 5 and 3 give Rule 2. (Since Rules 4 and 3 give 5,

they also give Rule 2.)

22 det(A) = 3, det(A−1) = 1
3 , det(A − λI) = λ2 − 4λ + 3. The numbers λ = 1 and

λ = 3 give det(A− λI) = 0. The (singular !) matrices are

A− I =


 1 1

1 1


 and A− 3I =


 −1 1

1 −1



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Note to instructor: You could explain that this is the reason determinants come before

eigenvalues. Identify λ = 1 and λ = 3 as the eigenvalues of A.

23 A =


4 1

2 3


 has det(A) = 10, A2 =


18 7

14 11


, det(A2) = 100, A−1 =

1
10


 3 −1

−2 4


 has det 1

10
. det(A− λI) = λ2 − 7λ+ 10 = 0 when λ = 2 or 5; those

are eigenvalues.

24 Here A = LU with det(L) = 1 and det(U) = −6 = product of pivots, so also

det(A) = −6. det(U−1L−1) = − 1
6 = 1/ det(A) and det(U−1L−1A) is det I = 1.

25 When the i, j entry is ij, row 2 = 2 times row 1 so detA = 0.

26 When the ij entry is i+ j, row 3− row 2 = row2− row 1 so A is singular: detA = 0.

27 detA = abc, detB = −abcd, detC = a(b − a)(c − b) by doing elimination.

28 (a) True: det(AB) = det(A) det(B) = 0 (b) False: A row exchange gives − det =

product of pivots. (c) False: A = 2I and B = I have A−B = I but the determinants

have 2n − 1 6= 1 (d) True: det(AB) = det(A) det(B) = det(BA).

29 A is rectangular so det(ATA) 6= (detAT)(detA): these determinants are not defined.

In fact if A is tall and thin (m > n), then det(ATA) adds up | detB|2 where the B’s

are all the n by n submatrices of A.

30 Derivatives of f = ln(ad− bc):


∂f/∂a ∂f/∂c

∂f/∂b ∂f/∂d


 =




d

ad− bc

−b

ad− bc
−c

ad− bc

a

ad− bc


 =

1

ad− bc


 d −b

−c a


 = A−1.

31 The Hilbert determinants are 1, 8 × 10−2, 4.6 × 10−4, 1.6 × 10−7, 3.7 × 10−12,

5.4× 10−18, 4.8× 10−25, 2.7× 10−33, 9.7× 10−43, 2.2× 10−53. Pivots are ratios of

determinants so the 10th pivot is near 10−10. The Hilbert matrix is numerically difficult

(ill-conditioned). Please see the Figure 7.1 and Section 8.3.
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32 Typical determinants of rand(n) are 106, 1025, 1079, 10218 for n = 50, 100, 200, 400.

randn(n) with normal distribution gives 1031, 1078, 10186, Inf which means ≥ 21024.

MATLAB allows 1.999999999999999× 21023 ≈ 1.8× 10308 but one more 9 gives Inf!

33 I now know that maximizing the determinant for 1, −1 matrices is Hadamard’s prob-

lem (1893): see Brenner in American Math. Monthly volume 79 (1972) 626-630. Neil

Sloane’s wonderful On-Line Encyclopedia of Integer Sequences (research.att.com/∼
njas) includes the solution for small n (and more references) when the problem is

changed to 0, 1 matrices. That sequence A003432 starts from n = 0 with 1, 1, 1, 2,

3, 5, 9. Then the 1,−1 maximum for size n is 2n−1 times the 0, 1 maximum for size

n− 1 (so (32)(5) = 160 for n = 6 in sequence A003433).

To reduce the 1,−1 problem from 6 by 6 to the 0, 1 problem for 5 by 5, multiply the

six rows by ±1 to put +1 in column 1. Then subtract row 1 from rows 2 to 6 to get a 5

by 5 submatrix S with entries −2 and 0. Then divide S by −2.

Here is an advanced MATLAB code that finds a 1,−1 matrix with largest detA = 48

for n = 5:

n = 5; p = (n− 1)ˆ2;A0 =ones(n); maxdet= 0;

for k = 0 : 2ˆp− 1

Asub = rem(floor(k. ∗ 2.ˆ(−p+ 1 : 0)), 2);A = A0;A(2 : n, 2 : n) = 1− 2∗
reshape(Asub, n− 1, n− 1);

if abs(det(A)) > maxdet, maxdet = abs(det(A)); maxA = A;

end

end

Output: maxA =

1 1 1 1 1

1 1 1 −1 −1

1 1 −1 1 −1

1 −1 1 1 −1

1 −1 −1 −1 1

maxdet = 48.
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34 Reduce B by row operations to [ row 3; row 2; row 1 ]. Then detB = −6 (odd per-

mutation from the order of the rows in A).

Problem Set 5.2, page 266

1 detA = 1 + 18 + 12 − 9 − 4 − 6 = 12, the rows of A are independent;

detB = 0, row 1 + row 2 = row 3 so the rows of B are linearly dependent;

detC = −1, so C has independent rows (detC has one term, an odd permutation).

2 detA = −2, independent; detB = 0, dependent; detC = −1, independent but

detD = 0 because its submatrix B has dependent rows.

3 The problem suggests 3 ways to see that detA = 0 : All cofactors of row 1 are zero.

A has rank ≤ 2. Each of the 6 terms in detA is zero. Notice also that column 2 has no

pivot.

4 a11a23a32a44 gives −1, because the terms a23a32 have columns 2 and 3 in reverse

order. a14a23a32a41 which has 2 row exchanges gives +1, detA = 1− 1 = 0. Using

the same entries but now taken from B, detB = 2 ·4 ·4 ·2−1 ·4 ·4 ·1 = 64−16 = 48.

5 Four zeros in the same row guarantee det = 0 (and also four zeros in the same column).

A = I has 12 zeros (this is the maximum with det 6= 0).

6 (a) If a11 = a22 = a33 = 0 then 4 terms will be zeros (b) 15 terms must be zero.

Effectively we are counting the permutations that make everyone move; 2, 3, 1 and

3, 1, 2 for n = 3 mean that the other 4 permutations take a term from the diagonal of

A; so those terms are 0 when the diagonal is all zeros.

7 5!/2 = 60 permutation matrices (half of 5 ! = 120 permutations) have det = +1.

Move row 5 of I to the top; then starting from (5, 1, 2, 3, 4) elimination will do four

row exchanges on P .

8 If detA 6= 0, then certainly some term a1αa2β · · · anω in the big formula is not zero!

Move rows 1, 2, . . ., n into rows α, β, . . ., ω. Then all these nonzero a’s will be on the

main diagonal.
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9 The big formula has six terms all ±1 : say q are −1 and 6 − q are 1. Then detA =

−q + 6− q = even (so detA = 5 is impossible). Also detA = 6 is impossible. All 3

even permutations like a11a22a33 would have to give +1 (so an even number of −1’s

in the matrix). But all 3 odd permutations like a11a23a32 would have to give −1 (so an

odd number of −1’s in the matrix). We can’t have it both ways, so detA = 4 is best

possible and not hard to arrange : put −1’s on the main diagonal.

10 The 4!/2 = 12 even permutations are (1, 2, 3, 4), (2, 1, 4, 3), (3, 1, 4, 2), (4, 3, 2, 1), and

8 P ’s with one number in place and even permutation of the other three numbers :

examples are 1, 3, 4, 2 and 1, 4, 2, 3.

det(I + Peven) is always 16 or 4 or 0 (16 comes from I + I).

11 C =


 d −b

−c a


. D =




0 42 −35

0 −21 14

−3 6 −3


.

detB = 1(0) + 2(42) + 3(−35) = −21.

Puzzle: detD = 441 = (−21)2. Why is

det(cofactor matrix) = (det matrix)n−1 ?

12 C =




3 2 1

2 4 2

1 2 3


 and ACT =




4 0 0

0 4 0

0 0 4


. Therefore A−1 = 1

4C
T = CT/ detA.

13 (a) C1 = 0, C2 = −1, C3 = 0, C4 = 1 (b) Cn = −Cn−2 by cofactors of row

1 then cofactors of column 1. Therefore C10 = −C8 = C6 = −C4 = C2 = −1.

14 For the matrices in Problem 13 to produce nonzeros in the big formula, we must choose

1’s from column 2 then column 1, column 4 then column 3,and so on. Therefore n

must be even to have det 6= 0. The number of row exchanges is n/2 so the overall

determinant is Cn = (−1)n/2.

15 The 1, 1 cofactor of the n by n matrix is En−1. The 1, 2 cofactor has a single 1 in its

first column, with cofactor En−2: sign gives −En−2. So En = En−1 − En−2. Then

E1 to E6 is 1, 0, −1, −1, 0, 1 and this cycle of six will repeat: E100 = E4 = −1.

16 The 1, 1 cofactor of the n by n matrix is Fn−1. The 1, 2 cofactor has a 1 in column

1, with cofactor Fn−2. Multiply by (−1)1+2 and also (−1) from the 1, 2 entry to find

Fn = Fn−1 + Fn−2. So these determinants are Fibonacci numbers.
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17 Use cofactors along row 4 instead of row 1 (last row instead of first).

|B4| = 2det




1 −1

−1 2 −1

−1 2


+det




1 −1

−1 2

−1 −1


 = 2|B3| − det


 1 −1

−1 2


 .

So |B4| = 2|B3| − |B2|.

18 Rule 3 (linearity in row 1) gives |Bn| = |An| − |An−1| = (n+ 1)− n = 1.

19 Since x, x2, x3 are all in the same row, they never multiply each other in detV4.

The determinant is zero at x = a or b or c because of equal rows ! So detV has

factors (x − a)(x − b)(x − c). Multiply by the cofactor V3. The Vandermonde matrix

Vij = (xi)
j−1 is for fitting a polynomial p(x) = b at the points xi. It has detV =

product of all xk − xm for k > m.

20 G2 = −1, G3 = 2, G4 = −3, and Gn = (−1)n−1(n− 1). One way to reach that Gn

is to multiply the n eigenvalues −1,−1, . . . ,−1, n − 1 of the matrix. Is there a good

choice of row operations to produce this determinant Gn ?

21 S1 = 3, S2 = 8, S3 = 21. The rule looks like every second number in Fibonacci’s

sequence . . . 3, 5, 8, 13, 21, 34, 55, . . . so the guess is S4 = 55. Following the solution

to Problem 30 with 3’s instead of 2’s on the diagonal confirms S4 = 81+1−9−9−9 =

55. Problem 32 directly proves Sn = F2n+2.

22 Changing 3 to 2 in the corner reduces the determinant F2n+2 by 1 times the cofactor

of that corner entry. This cofactor is the determinant of Sn−1 (one size smaller) which

is F2n. Therefore changing 3 to 2 changes the determinant to F2n+2 − F2n which is

Fibonacci’s F2n+1.

23 (a) If we choose an entry from B we must choose an entry from the zero block; re-

sult zero. This leaves entries from A times entries from D leading to (detA)(detD)

(b) and (c) Take A =


1 0

0 0


, B =


0 0

1 0


, C =


0 1

0 0


, D =


0 0

0 1


. See

#25.

24 (a) All the lower triangular blocks Lk have 1’s on the diagonal and det = 1. Then use

Ak = LkUk to find detUk=detAk=2, 6,−6 for k=1, 2, 3
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(b) Equation (3) in this section gives the kth pivot as detAk/ detAk−1. So detAk =

5, 6, 7 gives pivot dk = 5/1, 6/5, 7/6.

25 Problem 23 gives det


 I 0

−CA−1 I


 = 1 and det


A B

C D


 = |A| times |D −

CA−1B|. By the product rule this is |AD−ACA−1B|. If AC = CA this is |AD−
CAA−1B| = det(AD − CB).

26 If A is a row and B is a column then detM = detAB = dot product of A and B. If

A is a column and B is a row then AB has rank 1 and detM = detAB = 0 (unless

m = n = 1). This block matrix M is invertible when AB is invertible which certainly

requires m ≤ n.

27 (a) detA = a11C11 + · · ·+ a1nC1n. Derivative with respect to a11 = cofactor C11.

28 Row 1− 2 row 2 + row 3 = 0 so this matrix is singular and detA is zero.

29 There are five nonzero products, all 1’s with a plus or minus sign. Here are the (row,

column) numbers and the signs: +(1, 1)(2, 2)(3, 3)(4, 4) + (1, 2)(2, 1)(3, 4)(4, 3) −
(1, 2)(2, 1)(3, 3)(4, 4) − (1, 1)(2, 2)(3, 4)(4, 3) − (1, 1)(2, 3)(3, 2)(4, 4). Total −1.

30 The 5 products in solution 29 change to 16 + 1− 4− 4− 4 since A has 2’s and −1’s:

(2)(2)(2)(2) + (−1)(−1)(−1)(−1)− (−1)(−1)(2)(2)− (2)(2)(−1)(−1)−
(2)(−1)(−1)(2) = 5 = n + 1.

31 detP = −1 because the cofactor of P14 = 1 in row one has sign (−1)1+4. The

big formula for detP has only one term (1 · 1 · 1 · 1) with minus sign because three

exchanges take 4, 1, 2, 3 into 1, 2, 3, 4; det(P 2) = (detP )(detP ) = +1 so

det


0 I

I 0


 = det


0 1

1 0


 is not right.

32 The problem is to show that F2n+2 = 3F2n − F2n−2. Keep using Fibonacci’s rule:

F2n+2=F2n+1+F2n=F2n+F2n−1+F2n=2F2n+(F2n−F2n−2)=3F2n−F2n−2.
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33 The difference from 20 to 19 multiplies its 3 by 3 cofactor = 1: then det drops by 1.

34 (a) The last three rows must be dependent because only 2 columns are nonzero

(b) In each of the 120 terms: Choices from the last 3 rows must use 3 different columns;

at least one of those choices will be zero.

35 Subtracting 1 from the n, n entry subtracts its cofactor Cnn from the determinant. That

cofactor is Cnn = 1 (smaller Pascal matrix). Subtracting 1 from 1 leaves 0.

Problem Set 5.3, page 283

1 (a) |A| =

∣∣∣∣∣∣
2 5

1 4

∣∣∣∣∣∣
= 3, |B1| =

∣∣∣∣∣∣
1 5

2 4

∣∣∣∣∣∣
= 6, |B2| =

∣∣∣∣∣∣
2 1

1 2

∣∣∣∣∣∣
= 3 so x1 =

−6/3 = −2 and x2 = 3/3 = 1 (b) |A| = 4, |B1| = 3, |B2| = 2, |B3| = 1.

Therefore x1 = 3/4 and x2 = −1/2 and x3 = 1/4.

2 (a) y =
∣∣∣ a 1

c 0

∣∣∣ /
∣∣∣ a b

c d

∣∣∣ = c/(ad − bc) (b) y = detB2/ detA = (fg − id)/D.

That is because B2 with (1, 0, 0) in column 2 has detB2 = fg − id.

3 (a) x1 = 3/0 and x2 = −2/0: no solution (b) x1 = x2 = 0/0: undetermined.

4 (a) x1 = det
(
[ b a2 a3 ]

)
/ detA, if detA 6= 0. This is |B1|/|A|.

(b) The determinant is linear in its first column so |x1a1 + x2a2 + x3a3a2a3| splits

into x1|a1 a2 a3|+ x2|a2 a2 a3|+ x3|a3 a2 a3|. The last two determinants are zero

because of repeated columns, leaving x1|a1 a2 a3| which is x1 detA.

5 If the first column in A is also the right side b then detA = detB1. Both B2 and B3 are

singular since a column is repeated. Therefore x1 = |B1|/|A| = 1 and x2 = x3 = 0.

6 (a)




1 − 2
3

0

0 1
3

0

0 − 7
3 1




(b)
1

4




3 2 1

2 4 2

1 2 3




.
An invertible symmetric matrix

has a symmetric inverse.
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7 If all cofactors = 0 then A−1 would be the zero matrix if it existed; cannot exist. (And

also, the cofactor formula gives detA = 0.) A =


1 1

1 1


 has no zero cofactors but it

is not invertible.

8 C =




6 −3 0

3 1 −1

−6 2 1


 and ACT=




3 0 0

0 3 0

0 0 3


.

This is (detA)I and detA = 3.

The 1, 3 cofactor of A is 0.

Then C31 = 4 or 100: no change.

9 If we know the cofactors and detA = 1, then CT = A−1 and also detA−1 = 1.

Now A is the inverse of CT, so A can be found from the cofactor matrix for C.

10 Take the determinant ofACT = (detA)I . The left side gives detACT = (detA)(detC)

while the right side gives (detA)n. Divide by detA to reach detC = (detA)n−1.

11 The cofactors of A are integers. Division by detA = ±1 gives integer entries in A−1.

12 Both detA and detA−1 are integers since the matrices contain only integers. But

detA−1 = 1/ detA so detA must be 1 or −1.

13 A =




0 1 3

1 0 1

2 1 0


 has cofactor matrix C =




−1 2 1

3 −6 2

1 3 −1


 and A−1 =

1

5
CT.

14 (a) Lower triangular L has cofactors C21 = C31 = C32 = 0 (b) C12 = C21,

C31 = C13, C32 = C23 make S−1 symmetric. (c) Orthogonal Q has cofactor

matrix C = (detQ)(Q−1)T = ±Q also orthogonal. Note detQ = 1 or −1.

15 For n = 5, C contains 25 cofactors and each 4 by 4 cofactor has 24 terms. Each term

needs 3 multiplications: total 1800 multiplications vs.125 for Gauss-Jordan.

16 (a) Area
∣∣ 3 2
1 4

∣∣ = 10 (b) and (c) Area 10/2 = 5, these triangles are half of the

parallelogram in (a).

17 Volume=

∣∣∣∣
3 1 1
1 3 1
1 1 3

∣∣∣∣=20.
Area of faces =

length of cross product
=

∣∣∣∣
i j k
3 1 1
1 3 1

∣∣∣∣=
−2i− 2j + 8k

length=6
√
2

18 (a) Area 1
2

∣∣∣∣
2 1 1
3 4 1
0 5 1

∣∣∣∣ = 5 (b) 5 + new triangle area 1
2

∣∣∣∣
2 1 1
0 5 1

−1 0 1

∣∣∣∣ = 5 + 7 = 12.

19
∣∣ 2 1
2 3

∣∣ = 4 =
∣∣ 2 2
1 3

∣∣ because the transpose has the same determinant. See #22.
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20 The edges of the hypercube have length
√
1 + 1 + 1 + 1 = 2. The volume detH

is 24 = 16. (H/2 has orthonormal columns. Then det(H/2) = 1 leads again to

detH = 16 in 4 dimensions.)

21 The maximum volume L1L2L3L4 is reached when the edges are orthogonal in R4.

With entries 1 and −1 all lengths are
√
4 = 2. The maximum determinant is 24 = 16,

achieved in Problem 20. For a 3 by 3 matrix, detA = (
√
3)3 can’t be achieved by ±1.

ρ2 sinφdρ dφ dθ.

22 This question is still waiting for a solution! An 18.06 student showed me how to trans-

form the parallelogram for A to the parallelogram for AT, without changing its area.

(Edges slide along themselves, so no change in baselength or height or area.)

23 ATA =




aT

bT

cT



[
a b c

]
=




aTa 0 0

0 bTb 0

0 0 cTc


 has

detATA = (‖a‖‖b‖‖c‖)2

detA = ±‖a‖‖b‖‖c‖

24 The box has height 4 and volume = det




1 0 0

0 1 0

2 3 4


 = 4. i× j = k and (k ·w) = 4.

25 The n-dimensional cube has 2n corners, n2n−1 edges and 2n (n − 1)-dimensional

faces. Coefficients from (2 + x)n in Worked Example 2.4A. Cube from 2I has volume

2n.

26 The pyramid has volume 1
6

. The 4-dimensional pyramid has volume 1
24

(and 1
n!

in Rn)

27 x = r cos θ, y = r sin θ give J = r. This is the r in polar area r dr dθ. The columns

are orthogonal and their lengths are 1 and r.

28 J =

∣∣∣∣∣∣∣∣∣

sinφ cos θ ρ cosφ sin θ −ρ sinφ sin θ

sinφ sin θ ρ cosφ sin θ ρ sinφ cos θ

cosφ −ρ sinφ θ

∣∣∣∣∣∣∣∣∣
= ρ2 sinφ. This Jacobian is needed

for triple integrals inside spheres. Those integrals have ρ2 sinφdρ dφ dθ.
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29 From x, y to r, θ:

∣∣∣∣∣∣
∂r/∂x ∂r/∂y

∂θ/∂x ∂θ/∂y

∣∣∣∣∣∣
=

∣∣∣∣∣∣
x/r y/r

−y/r2 x/r2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
cos θ sin θ

(− sin θ)/r (cos θ)/r

∣∣∣∣∣∣

=
1

r
=

1

Jacobian in 27
. The surprise was that dr

dx
and dx

dr
are both x

r
.

30 The triangle with corners (0, 0), (6, 0), (1, 4) has area (6)(4)/2 = 12. Rotated by

θ = 60◦ the area is unchanged. The determinant of the rotation matrix is

J =

∣∣∣∣∣∣
cos θ − sin θ

sin θ cos θ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1/2 −

√
3/2

√
3/2 1/2

∣∣∣∣∣∣
= 1.

31 Base area ||u× v|| = 10, height ||w|| cos θ = 2, volume (10)(2) = 20.

32 The volume of the box is det




2 4 0

−1 3 0

1 2 2


 = 20, agreeing with Problem 31.

33

∣∣∣∣∣∣∣∣∣

u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣∣∣
= u1

∣∣∣∣∣∣
v2 v3

w2 w3

∣∣∣∣∣∣
−u2

∣∣∣∣∣∣
v1 v3

w1 w3

∣∣∣∣∣∣
+u3

∣∣∣∣∣∣
v1 v2

w1 w2

∣∣∣∣∣∣
. This is u ·(v×w).

34 (w × u) · v = (v ×w) · u = (u× v) ·w : Even permutation of (u,v,w) keeps the

same determinant. Odd permutations like (u× v) · v will reverse the sign.

35 S = (2, 1,−1), area ‖PQ × PS‖ = ‖(−2,−2,−1)‖ =
√
22 + 22 + 12 = 3. The

other four corners of the box can be (0, 0, 0), (0, 0, 2), (1, 2, 2), (1, 1, 0). The volume

of the tilted box with edges along P,Q, and R is | det | = 1.

36 If (1, 1, 0), (1, 2, 1), (x, y, z) are in a plane the volume is det

The “box” with those edges is flattened to zero height.




x y z

1 1 0

1 2 1



=x−y+z=0.

37 det




x y z

2 3 1

1 2 3


 = 7x−5y+z will be zero when (x, y, z) is a combination of (2, 3, 1)

and (1, 2, 3). The plane containing those two vectors has equation 7x − 5y + z = 0.

Volume = zero because the 3 box edges out from (0, 0, 0) lie in a plane.
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38 Doubling each row multiplies the volume by 2n. Then 2 detA=det(2A) only if n=1.

39 ACT = (detA)I gives (detA)(detC) = (detA)n. Then detA = (detC)1/3 with

n = 4. With detA−1 = 1/ detA, construct A−1 using the cofactors. Invert to find A.

40 The cofactor formula adds 1 by 1 determinants (which are just entries) times their co-

factors of size n−1. Jacobi discovered that this formula can be generalized. For n = 5,

Jacobi multiplied each 2 by 2 determinant from rows 1-2 (with columns a < b) times a

3 by 3 determinant from rows 3-5 (using the remaining columns c < d < e).

The key question is + or − sign (as for cofactors). The product is given a +

sign when a, b, c, d, e is an even permutation of 1, 2, 3, 4, 5. This gives the correct

determinant +1 for that permutation matrix. More than that, all other P that permute a,

b and separately c, d, e will come out with the correct sign when the 2 by 2 determinant

for columns a, b multiplies the 3 by 3 determinant for columns c, d, e.

41 The Cauchy-Binet formula gives the determinant of a square matrix AB (and AAT in

particular) when the factors A, B are rectangular. For (2 by 3) times (3 by 2) there are

3 products of 2 by 2 determinants from A and B (printed in boldface):


a b c

d e f







g j

h k

i ℓ





a b c

d e f







g j

h k

i ℓ





a b c

d e f







g j

h k

i ℓ




Check A =


1 2 3

1 4 7


 B =




1 1

2 4

3 7


 AB =


14 30

30 66




Cauchy-Binet: (4− 2)(4− 2) + (7− 3)(7− 3) + (14− 12)(14− 12) = 24

det of AB : (14)(66)− (30)(30) = 24

42 A 5 by 5 tridiagonal matrix has cofactor C11 = 4 by 4 tridiagonal matrix. Cofactor

C12 has only one nonzero at the top of column 1. That nonzero multiplies its 3 by 3

cofactor which is tridiagonal. So detA = a11C11+a12C12 = tridiagonal determinants

of sizes 4 and 3. The number Fn of nonzero terms in detA follows Fibonacci’s rule

Fn = Fn−1 + Fn−2.
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Problem Set 6.1, page 298

1 The eigenvalues are 1 and 0.5 for A, 1 and 0.25 for A2, 1 and 0 for A∞. Exchanging

the rows of A changes the eigenvalues to 1 and −0.5 (the trace is now 0.2 + 0.3).

Singular matrices stay singular during elimination, so λ = 0 does not change.

2 A has λ1 = −1 and λ2 = 5 with eigenvectors x1 = (−2, 1) and x2 = (1, 1). The

matrix A + I has the same eigenvectors, with eigenvalues increased by 1 to 0 and 6.

That zero eigenvalue correctly indicates that A+ I is singular.

3 A has λ1 = 2 and λ2 = −1 (check trace and determinant) with x1 = (1, 1) and

x2 = (2,−1). A−1 has the same eigenvectors, with eigenvalues 1/λ = 1
2

and −1.

4 det(A−λI) = λ2+λ− 6 = (λ+3)(λ− 2). Then A has λ1 = −3 and λ2 = 2 (check

trace = −1 and determinant = −6) with x1 = (3,−2) and x2 = (1, 1). A2 has the

same eigenvectors as A, with eigenvalues λ2
1 = 9 and λ2

2 = 4.

5 A and B have eigenvalues 1 and 3 (their diagonal entries : triangular matrices). A+B

has λ2 + 8λ + 15 = 0 and λ1 = 3, λ2 = 5. Eigenvalues of A + B are not equal to

eigenvalues of A plus eigenvalues of B.

6 A and B have λ1 = 1 and λ2 = 1. AB and BA have λ2 − 4λ + 1 and the quadratic

formula gives λ = 2±
√
3. Eigenvalues of AB are not equal to eigenvalues of A times

eigenvalues of B. Eigenvalues of AB and BA are equal (this is proved at the end of

Section 6.2).

7 The eigenvalues of U (on its diagonal) are the pivots of A. The eigenvalues of L (on its

diagonal) are all 1’s. The eigenvalues of A are not the same as the pivots.

8 (a) Multiply Ax to see λx which reveals λ (b) Solve (A− λI)x = 0 to find x.

9 (a) Multiply by A: A(Ax) = A(λx) = λAx gives A2x = λ2x

(b) Multiply by A−1: x = A−1Ax = A−1λx = λA−1x gives A−1x = 1

λ
x

(c) Add Ix = x: (A+ I)x = (λ + 1)x.



100 Solutions to Exercises

10 det(A− λI) = d2 − 1.4λ+ 0.4 so A has λ1 = 1 and λ2 = 0.4 with x1 = (1, 2) and

x2 = (1,−1). A∞ has λ1 = 1 and λ2 = 0 (same eigenvectors). A100 has λ1 = 1 and

λ2 = (0.4)100 which is near zero. So A100 is very near A∞: same eigenvectors and

close eigenvalues.

11 Columns of A−λ1I are in the nullspace of A−λ2I because M = (A−λ2I)(A−λ1I)

is the zero matrix [this is the Cayley-Hamilton Theorem in Problem 6.2.30].

Notice that M has zero eigenvalues (λ1−λ2)(λ1−λ1) = 0 and (λ2−λ2)(λ2−λ1) = 0.

So those columns solve (A− λ2I)x = 0, they are eigenvectors.

12 The projection matrix P has λ = 1, 0, 1 with eigenvectors (1, 2, 0), (2,−1, 0), (0, 0, 1).

Add the first and last vectors: (1, 2, 1) also has λ = 1. The whole column space of P

contains eigenvectors with λ = 1 ! Note P 2 = P leads to λ2 = λ so λ = 0 or 1.

13 (a) Pu = (uuT)u = u(uTu) = u so λ = 1 (b) Pv = (uuT)v = u(uTv) = 0

(c) x1 = (−1, 1, 0, 0), x2 = (−3, 0, 1, 0), x3 = (−5, 0, 0, 1) all have Px = 0x = 0.

14 det(Q−λI) = λ2− 2λ cos θ+1 = 0 when λ = cos θ± i sin θ = eiθ and e−iθ . Check

that λ1λ2 = 1 and λ1 + λ2 = 2 cos θ. Two eigenvectors of this rotation matrix are

x1 = (1, i) and x2 = (1,−i) (more generally cx1 and dx2 with cd 6= 0).

15 The other two eigenvalues are λ = 1
2
(−1± i

√
3). The three eigenvalues are 1, 1,−1.

16 Set λ = 0 in det(A− λI) = (λ1 − λ) . . . (λn − λ) to find detA = (λ1)(λ2) · · · (λn).

17 λ1 = 1
2
(a + d+

√
(a− d)2 + 4bc) and λ2 = 1

2
(a + d−

√
) add to a + d.

If A has λ1 = 3 and λ2 = 4 then det(A− λI) = (λ− 3)(λ− 4) = λ2 − 7λ+ 12.

18 These 3 matrices have λ = 4 and 5, trace 9, det 20:


4 0

0 5


 ,


 3 2

−1 6


 ,


 2 2

−3 7


.

19 (a) rank = 2 (b) det(BTB) = 0 (d) eigenvalues of (B2 + I)−1 are 1, 12 ,
1
5 .

20 A =


 0 1

−28 11


 has trace 11 and determinant 28, so λ = 4 and 7. Moving to a 3 by

3 companion matrix, for eigenvalues 1, 2, 3 we want det(C − λI) = (1 − λ)(2 − λ)

(3 − λ). Multiply out to get −λ3 + 6λ2 − 11λ + 6. To get those numbers 6,−11, 6

from a companion matrix you just put them into the last row:
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C =




0 1 0

0 0 1

6 −11 6


 Notice the trace 6 = 1 + 2 + 3 and determinant 6 = (1)(2)(3).

21 (A − λI) has the same determinant as (A − λI)T because every square matrix has

detM = detMT. Pick M = A− λI .


1 0

1 0


 and


1 1

0 0


 have different

eigenvectors.

22 The eigenvalues must be λ = 1 (because the matrix is Markov), 0 (for singular), −1

2

(so sum of eigenvalues = trace = 1
2
).

23


0 0

1 0


,


0 1

0 0


,


−1 1

−1 1


.

Always A2 is the zero matrix if λ = 0 and 0,

by the Cayley-Hamilton Theorem in Problem 6.2.30.

24 λ = 0, 0, 6 (notice rank 1 and trace 6). Two eigenvectors of uvT are perpendicular to

v and the third eigenvector is u : x1=(0,−2, 1), x2=(1,−2, 0), x3=(1, 2, 1).

25 When A and B have the same n λ’s and x’s, look at any combination v = c1x1 +

· · · + cnxn. Multiply by A and B : Av = c1λ1x1 + · · · + cnλnxn equals Bv =

c1λ1x1 + · · ·+ cnλnxn for all vectors v. So A = B.

26 The block matrix has λ = 1, 2 from B and λ = 5, 7 from D. All entries of C are

multiplied by zeros in det(A− λI), so C has no effect on the eigenvalues of the block

matrix.

27 A has rank 1 with eigenvalues 0, 0, 0, 4 (the 4 comes from the trace of A). C has rank

2 (ensuring two zero eigenvalues) and (1, 1, 1, 1) is an eigenvector with λ = 2. With

trace 4, the other eigenvalue is also λ = 2, and its eigenvector is (1,−1, 1,−1).

28 Subtract from 0, 0, 0, 4 in Problem 27. B = A − I has λ = −1, −1, −1, 3 and

C = I − A has λ = 1, 1, 1,−3. Both have det = −3.

29 A is triangular : λ(A) = 1, 4, 6; λ(B) = 2,
√
3, −

√
3; C has rank one : λ(C) = 0, 0, 6.
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30


a b

c d




1

1


 =


a+ b

c+ d


 = (a + b)


1

1


; λ2 = d − b to produce the correct trace

(a+ b) + (d− b) = a+ d.

31 Eigenvector (1, 3, 4) for A with λ = 11 and eigenvector (3, 1, 4) for PAPT with

λ = 11. Eigenvectors with λ 6= 0 must be in the column space since Ax is always

in the column space, and x = Ax/λ.

32 (a) u is a basis for the nullspace (we know Au = 0u); v and w give a basis for the

column space (we know Av and Aw are in the column space).

(b) A(v/3 + w/5) = 3v/3 + 5w/5 = v + w. So x = v/3 + w/5 is a particular

solution to Ax = v +w. Add any cu from the nullspace

(c) If Ax = u had a solution, u would be in the column space: wrong dimension 3.

33 Always (uvT)u = u(vTu) so u is an eigenvector of uvT with λ = vTu. (watch

numbers vTu, vectors u, matrices uvT!!) If vTu = 0 then A2 = u(vTu)vT is the

zero matrix and λ2 = 0, 0 and λ = 0, 0 and trace (A) = 0. This zero trace also comes

from adding the diagonal entries of A = uvT:

A =


u1

u2



[
v1 v2

]
=


u1v1 u1v2

u2v1 u2v2


 has trace u1v1 + u2v2 = vTu = 0

34 det(P − λI) = 0 gives the equation λ4 = 1. This reflects the fact that P 4 = I .

The solutions of λ4 = 1 are λ = 1, i,−1,−i. The real eigenvector x1 = (1, 1, 1, 1)

is not changed by the permutation P . Three more eigenvectors are (1, i, i2, i3) and

(1,−1, 1,−1) and (1,−i, (−i)2, (−i)3).

35 The six 3 by 3 permutation matrices include P = I and three single row exchange

matrices P12, P13, P23 and two double exchange matrices like P12P13. Since PTP = I

gives (detP )2 = 1, the determinant of P is 1 or −1. The pivots are always 1 (but there

may be row exchanges). The trace of P can be 3 (for P = I) or 1 (for row exchange)

or 0 (for double exchange). The possible eigenvalues are 1 and −1 and e2πi/3 and

e−2πi/3.
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36 AB − BA = I can happen only for infinite matrices. If AT = A and BT = −B then

xTx = xT (AB − BA)x = xT (ATB + BTA)x ≤ ||Ax|| ||Bx||+ ||Bx|| ||Ax||.

Therefore ||Ax|| ||Bx|| ≥ 1
2 ||x||2 and (||Ax||/||x||) (||Bx||/||x||) ≥ 1

2 .

37 λ1 = e2πi/3 and λ2 = e−2πi/3 give detλ1λ2 = 1 and trace λ1 + λ2 = −1.

A =


cos θ − sin θ

sin θ cos θ


 with θ =

2π

3
has this trace and det. So does every M−1AM !

38 (a) Since the columns of A add to 1, one eigenvalue is λ = 1 and the other is c − 0.6

(to give the correct trace c+ 0.4).

(b) If c = 1.6 then both eigenvalues are 1, and all solutions to (A − I) x = 0 are

multiples of x = (1,−1). In this case A has rank 1.

(c) If c = 0.8, the eigenvectors for λ = 1 are multiples of (1, 3). Since all powers An

also have column sums = 1, An will approach
1

4


1 1

3 3


 = rank-1 matrix A∞ with

eigenvalues 1, 0 and correct eigenvectors. (1, 3) and (1,−1).

Problem Set 6.2, page 314

1 Eigenvectors in X and eigenvalues inΛ. Then A = XΛX−1 is


1 2

0 3


 =


1 1

0 1




1 0

0 3




1 −1

0 1


.

The second matrix has λ = 0 (rank 1) and λ = 4 (trace = 4). Then A = XΛX−1 is
1 1

3 3


 =


 1 1

−1 3




0 0

0 4







3
4 − 1

4

1
4

1
4


.

2
Put the eigenvectors in X

and eigenvalues 2, 5 in Λ.
A = XΛX−1 =


1 1

0 1




2 0

0 5




1 −1

0 1


 =


2 3

0 5


.

3 If A = XΛX−1 then the eigenvalue matrix for A + 2I is Λ + 2I and the eigenvector

matrix is still X . So A+ 2I = S(Λ + 2I)X−1 = XΛX−1 +X(2I)X−1 = A+ 2I .

4 (a) False: We are not given the λ’s (b) True (c) True (d) False: For this we

would need the eigenvectors of X .
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5 With X = I, A = XΛX−1 = Λ is a diagonal matrix. If X is triangular, then X−1 is

triangular, so XΛX−1 is also triangular.

6 The columns of S are nonzero multiples of (2,1) and (0,1): either order. The same

eigenvector matrices diagonalize A and A−1.

7 A = XΛX−1 =


1 1

1 −1




λ1

λ2




1 1

1 −1


 /2 =


λ1 + λ2 λ1 − λ2

λ1 − λ2 λ1 + λ2


 /2.

These are the matrices


a b

b a


, their eigenvectors are (1, 1) and (1,−1).

8 A = XΛX−1 =


1 1

1 0


 =

1

λ1 − λ2


λ1 λ2

1 1




λ1 0

0 λ2




 1 −λ2

−1 λ1


.

XΛkX−1 =
1

λ1 − λ2


λ1 λ2

1 1




λ

k
1 0

0 λk
2




 1 −λ2

−1 λ1




1

0


.

The second component is Fk = (λk
1 − λk

2)/(λ1 − λ2).

9 (a) The equations are


 Gk+2

Gk+1


 = A


 Gk+1

Gk


 with A =


 .5 .5

1 0


. This matrix

has λ1 = 1, λ2 = − 1
2

with x1 = (1, 1), x2 = (1,−2)

(b) An = XΛnX−1 =


1 1

1 −2




1

n 0

0 (−.5)n







2
3

1
3

1
3 − 1

3


→ A∞ =




2
3

1
3

2
3

1
3




10 The rule Fk+2 = Fk+1 + Fk produces the pattern: even, odd, odd, even, odd, odd, . . .

11 (a) True (no zero eigenvalues) (b) False (repeated λ = 2 may have only one line of

eigenvectors) (c) False (repeated λ may have a full set of eigenvectors)

12 (a) False: don’t know if λ = 0 or not.

(b) True: an eigenvector is missing, which can only happen for a repeated eigenvalue.

(c) True: We know there is only one line of eigenvectors.

13 A =


 8 3

−3 2


 (or other), A =


 9 4

−4 1


, A =


 10 5

−5 0


;

only eigenvectors

are x = (c,−c).

14 The rank of A − 3I is r = 1. Changing any entry except a12 = 1 makes A

diagonalizable (the new A will have two different eigenvalues)
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15 Ak = XΛkX−1 approaches zero if and only if every |λ| < 1; A1 is a Markov matrix

so λmax = 1 and Ak
1 → A∞

1 , A2 has λ = .6± .3 so Ak
2 → 0.

16 A1 is XΛX−1 with Λ =


1 0

0 .2


 and X =


1 1

1 −1


 ; Λk →


1 0

0 0


.

Then A1k = XΛkX−1 →




1
2

1
2

1
2

1
2


: steady state.

17 A2 is XΛX−1 with Λ =


 .9 0

0 .3


 and X =


3 −3

1 1


; A10

2


3

1


 = (.9)10


3

1


.

A10
2


 3

−1


 = (.3)10


 3

−1


. Then A10

2


6

0


 = (.9)10


3

1


 + (.3)10


 3

−1


 because


6

0


 is the sum of


3

1


+


 3

−1


.

18


 2 −1

−1 2


 = XΛX−1 =

1

2


1 −1

1 1




1 0

0 3




 1 1

−1 1


 and

Ak = XΛkX−1 =
1

2


1 −1

1 1




1 0

0 3k




 1 1

−1 1


.

Multiply those last three matrices to get Ak =
1

2


1 + 3k 1− 3k

1− 3k 1 + 3k


.

19 Bk = XΛkX−1 =


1 1

0 −1




5 0

0 4



k 
1 1

0 −1


 =


5

k 5k − 4k

0 4k


.

20 detA = (detX)(detΛ)(detX−1) = detΛ = λ1 · · ·λn. This proof (det = product

of λ’s) works when A is diagonalizable. The formula is always true.

21 traceXY = (aq + bs) + (cr + dt) is equal to (qa + rc) + (sb + td) = traceY X .

Diagonalizable case: the trace of XΛX−1 = trace of (ΛX−1)X = Λ: sum of the λ’s.
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22 AB − BA = I is impossible since trace AB − trace BA = zero 6= trace I .

AB − BA = C is possible when trace (C) = 0. For example E =


1 0

1 1


 has

EET −ETE =


−1 0

0 1


 = C with trace zero.

23 If A = XΛX−1 then B =


A 0

0 2A


 =


X 0

0 X




Λ 0

0 2Λ




X

−1 0

0 X−1


. So

B has the original λ’s from A and the additional eigenvalues 2λ1, . . . , 2λn from 2A.

24 The A’s form a subspace since cA and A1 + A2 all have the same X . When X = I

theA’s with those eigenvectors give the subspace of diagonal matrices. The dimension

of that matrix space is 4 since the matrices are 4 by 4.

25 If A has columns x1, . . . ,xn then column by column, A2 = A means every Axi = xi.

All vectors in the column space (combinations of those columns xi) are eigenvectors

with λ = 1. Always the nullspace has λ = 0 (A might have dependent columns,

so there could be less than n eigenvectors with λ = 1). Dimensions of those spaces

C (A) and N (A) add to n by the Fundamental Theorem, so A is diagonalizable (n

independent eigenvectors altogether).

26 Two problems: The nullspace and column space can overlap, so x could be in both.

There may not be r independent eigenvectors in the column space.

27 R=X
√
ΛX−1 =


1 1

1 −1




3

1




1 1

1 −1


 /2 =


2 1

1 2


 has R2=A.

√
B needs λ =

√
9 and

√
−1, trace (their sum) is not real so

√
B cannot be real. Note

that


−1 0

0 −1


 has two imaginary eigenvalues

√
−1 = i and −i, real trace 0, real

square root


 0 1

−1 0


.

28 The factorizations of A and B into XΛX−1 are the same. So A = B. (This is

the same as Problem 6.1.25, expressed in matrix form.)
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29 A = XΛ1X
−1 and B = XΛ2X

−1. Diagonal matrices always give Λ1Λ2 = Λ2Λ1.

Then AB = BA from

XΛ1X
−1XΛ2X

−1 = XΛ1Λ2X
−1 = XΛ2Λ1X

−1 = XΛ2X
−1XΛ1X

−1 = BA.

30 (a) A =


a b

0 d


 has λ = a and λ = d: (A−aI)(A−dI) =


0 b

0 d− a




a− d b

0 0




=


0 0

0 0


. (b) A =


1 1

1 0


 has A2 =


2 1

1 1


 and A2 − A − I = 0 is true,

matching λ2 − λ− 1 = 0 as the Cayley-Hamilton Theorem predicts.

31 When A = XΛX−1 is diagonalizable, the matrix A − λjI = X(Λ − λjI)X
−1 will

have 0 in the j, j diagonal entry of Λ− λjI . The product p(A) becomes

p(A) = (A− λ1I) · · · (A− λnI) = X(Λ− λ1I) · · · (Λ− λnI)X
−1.

That product is the zero matrix because the factors produce a zero in each

diagonal position. Then p(A) = zero matrix, which is the Cayley-Hamilton Theorem.

(If A is not diagonalizable, one proof is to take a sequence of diagonalizable matrices

approaching A.)

Comment I have also seen the following Cayley-Hamilton proof but I am not con-

vinced:

Apply the formula ACT = (detA)I from Section 5.3 to A − λI with variable λ. Its

cofactor matrix C will be a polynomial in λ, since cofactors are determinants:

(A− λI)CT = det(A− λI)I = p(λ)I.

“For fixed A, this is an identity between two matrix polynomials.” Set λ = A to find

the zero matrix on the left, so p(A) = zero matrix on the right—which is the Cayley-

Hamilton Theorem.

I am not certain about the key step of substituting a matrix for λ. If other matrices B

are substituted for λ, does the identity remain true? If AB 6= BA, even the order of

multiplication seems unclear . . .
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32 If AB = BA, then B has the same eigenvectors (1, 0) and (0, 1) as A. So B is

also diagonal b = c = 0. The nullspace for the following equation is 2-dimensional:

AB − BA =


1 0

0 2




a b

c d


 −


a b

c d




1 0

0 2


 =


0 −b

c 0


 =


0 0

0 0


.

Those 4 equations 0 = 0,−b = 0, c = 0, 0 = 0 have a 4 by 4 coefficient matrix with

rank 4− 2 = 2.

33 B has λ = i and −i, so B4 has λ4 = 1 and 1 and B1024 = I .

C has λ = (1 ±
√
3i)/2. This λ is exp(±πi/3) so λ3 = −1 and −1. Then C3 = −I

which leads to C1024 = (−I)341C = −C.

34 The eigenvalues of A =


cos θ − sin θ

sin θ cos θ


 are λ = eiθ and e−iθ (trace 2 cos θ and

determinant = 1). Their eigenvectors are (1,−i) and (1, i):

An = XΛnX−1 =


 1 1

−i i




e

inθ

e−inθ




 i −1

i 1


 /2i

=


 (einθ + e−inθ)/2 · · ·
(einθ − e−inθ)/2i · · ·


 =


cosnθ − sinnθ

sinnθ cosnθ


 .

Geometrically, n rotations by θ give one rotation by nθ.

35 Columns of X times rows of ΛX−1 gives a sum of r rank-1 matrices (r = rank of A).

36 Multiply ones(n) ∗ ones(n) = n ∗ ones(n). This leads to C = −1/(n + 1).

AA−1 = (eye(n) + ones(n)) ∗ (eye(n) + C ∗ ones(n))

= eye(n) + (1 + C + Cn) ∗ ones(n) = eye(n).
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Problem Set 6.3, page 332

1 Eigenvalues 4 and 1 with eigenvectors (1, 0) and (1,−1) give solutions u1 = e4t


1

0




and u2 = et


 1

−1


. If u(0) =


 5

−2


 = 3


1

0


+ 2


 1

−1


, then

u(t) = 3e4t


1
0


+ 2et


 1

−1


.

2 z(t) = 2et solves dx/dt = z with z(0) = 2. Then dy/dt = 4y − 6et with y(0) = 5

gives y(t) = 3e4t + 2et as in Problem 1.

3 (a) If every column of A adds to zero, this means that the rows add to the zero row.

So the rows are dependent, and A is singular, and λ = 0 is an eigenvalue.

(b) The eigenvalues of A =


−2 3

2 −3


 are λ1 = 0 with eigenvector x1 = (3, 2) and

λ2 = −5 (to give trace = −5) with x2 = (1,−1). Then the usual 3 steps:

1. Write u(0) =


4

1


 as


3

2


+


 1

−1


 = x1 + x2 = combination of eigenvectors

2. The solutions follow those eigenvectors: e0tx1 and e−5tx2

3. The solution u(t) = x1 + e−5tx2 has steady state x1 = (3, 2) since e−5t → 0.

4 d(v + w)/dt = (w − v) + (v − w) = 0, so the total v + w is constant.

A =


−1 1

1 −1


 has

λ1 = 0

λ2 = −2
with x1 =


1

1


, x2 =


 1

−1


.


 v(0)

w(0)


 =


 30

10


 = 20


 1

1


+10


 1

−1


 leads to

v(1) = 20 + 10e−2

w(1) = 20− 10e−2

v(∞) = 20

w(∞) = 20

5
d

dt


 v

w


 =


 1 −1

−1 1


 has λ = 0 and λ = +2: v(t) = 20 + 10e2t → −∞ as

t → ∞.

6 A =


a 1

1 a


 has real eigenvalues a+1 and a−1. These are both negative if a < −1.

In this case the solutions of u′ = Au approach zero.
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B =


 b −1

1 b


 has complex eigenvalues b+ i and b− i. These have negative real parts

if b < 0. In this case and all solutions of v′ = Bv approach zero.

7 A projection matrix has eigenvalues λ = 1 and λ = 0. Eigenvectors Px = x fill the

subspace that P projects onto: here x = (1, 1). Eigenvectors with Px = 0 fill the

perpendicular subspace: here x = (1,−1). For the solution to u′ = −Pu,

u(0) =


3

1


 =


2

2


+


 1

−1


 u(t) = e−t


2

2


+e0t


 1

−1


 approaches


 1

−1


 .

8


6 −2

2 1


 has λ1 = 5, x1 =


2

1


, λ2 = 2, x2 =


1

2


; rabbits r(t) = 20e5t+10e2t,

w(t) = 10e5t+20e2t. The ratio of rabbits to wolves approaches 20/10; e5t dominates.

9 (a)


4

0


 = 2


1

i


+2


 1

−i


. (b) Then u(t) = 2eit


1

i


+2e−it


 1

−i


 =


4 cos t

4 sin t


.

10
d

dt


y

y′


 =


y

′

y′′


 =


0 1

4 5




y

y′


. This correctly gives y ′ = y ′ and y ′′ = 4y+5y ′.

A =


0 1

4 5


 has det(A− λI) = λ2 − 5λ− 4 = 0. Directly substituting y = eλt into

y′′ = 5y′ + 4y also gives λ2 = 5λ+ 4 and the same two values of λ. Those values are

1

2
(5±

√
41) by the quadratic formula.

11 The series for eAt is eAt = I + t


0 1

0 0


+ zeros =


1 t

0 1


.

Then


 y(t)

y′(t)


 =


1 t

0 1




 y(0)

y′(0)




y(0) + y′(0)t

y′(0)


. This y(t) = y(0) + y ′(0)t

solves the equation—the factor t tells us that A had only one eigenvector : not diago-

nalizable.
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12 A =


 0 1

−9 6


 has trace 6, det 9, λ = 3 and 3 with one independent eigenvector

(1, 3). Substitute y = te3t to show that this gives the needed second solution (y = e3t

is the first solution).

13 (a) y(t) = cos 3t and sin 3t solve y′′ = −9y. It is 3 cos 3t that starts with y(0) = 3 and

y′(0) = 0. (b) A =


 0 1

−9 0


 has det = 9: λ = 3i and −3i with eigenvectors

x =


 1

3i


 and


 1

−3i


. Then u(t) = 3

2
e3it


 1

3i


+3

2
e−3it


 1

−3i


 =


 3 cos 3t

−9 sin 3t


.

14 WhenA is skew-symmetric, the derivative of ||u(t)||2 is zero. Then ‖u(t)‖ = ‖eAtu(0)‖
stays at ‖u(0)‖. So eAt is matrix orthogonal.

15 up = 4 and u(t) = cet+4. For the matrix equation, the particular solution up = A−1b

is


4

2


 and u(t) = c1e

t


1

t


+ c2e

t


0

1


+


4

2


.

16 Substituting u = ectv gives cectv = Aectv − ectb or (A − cI)v = b or v = (A −
cI)−1b = particular solution. If c is an eigenvalue then A− cI is not invertible.

17 (a)


1 0

0 −1


 (b)


1 0

0 1


 (c)


 1 1

−1 1


. These show the unstable cases

(a) λ1 < 0 and λ2 > 0 (b) λ1 > 0 and λ2 > 0 (c) λ = a± ib with a > 0

18 d/dt(eAt) = A+A2t+ 1

2
A3t2 + 1

6
A4t3 + · · · = A(I +At+ 1

2
A2t2 + 1

6
A3t3 + · · · ).

This is exactly AeAt, the derivative we expect.

19 eBt = I + Bt (short series with B2 = 0) =


1 −4t

0 1


. Derivative =


0 −4

0 0


 =

B.

20 The solution at time t+ T is eA(t+T )u(0). Thus eAt times eAT equals eA(t+T ).

21


1 4

0 0


 =


1 4

0 −1




1 0

0 0


 diagonalizes A = XΛX−1.

Then eAt = XeΛtX−1 =


1 4

0 −1


;


1 4

0 −1




e

t 0

0 1




1 4

0 −1


 =


e

t 4et − 4

0 1


.
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22 A2 = A gives eAt = I+At+ 1
2
At2+ 1

6
At3+ · · · = I+(et−1)A =


e

t 4et − 4

0 1


.

23 eA =


e 4(e− 1)

0 1


 from 21 and eB =


1 −4

0 1


 from 19. By direct multiplication

eAeB 6= eBeA 6= eA+B =


e 0

0 1


.

24 A =


1 1

0 3


 =


1 1

0 2




1 0

0 3




1 − 1

2

0 1
2


. Then eAt =


e

t 1
2
(e3t − et)

0 e3t


.

At t = 0, eAt = I and ΛeAt = A.

25 The matrix has A2 =


1 3

0 0



2

=


1 3

0 0


 = A. Then all An = A. So eAt =

I + (t+ t2/2! + · · · )A = I + (et − 1)A =


e

t 3(et − 1)

0 0


 as in Problem 22.

26 (a) The inverse of eAt is e−At (b) If Ax = λx then eAtx = eλtx and eλt 6= 0.

To see eAtx, write (I +At + 1
2A

2t2 + · · · )x = (1 + λt+ 1
2λ

2t2 + · · · )x = eλtx.

27 (x, y) = (e4t, e−4t) is a growing solution. The correct matrix for the exchanged

u =


y

x


 is


 2 −2

−4 0


. It does have the same eigenvalues as the original matrix.

28 Invert


 1 0

∆t 1


 to produceUn+1 =


 1 0

−∆t 1




1 ∆t

0 1


Un =


 1 ∆t

−∆t 1− (∆t)2


Un.

At ∆t = 1,


 1 1

−1 0


 has λ = eiπ/3 and e−iπ/3. Both eigenvalues have λ6 = 1 so

A6 = I . Therefore U6 = A6U0 comes exactly back to U0.

29
First A has λ = ±i and A4 = I .

Second A has λ = −1,−1 and
An = (−1)n


1− 2n −2n

2n 2n+ 1


 Linear growth.

30 With a = ∆t/2 the trapezoidal step is Un+1 =
1

1 + a2


1− a2 2a

−2a 1− a2


Un.

That matrix has orthonormal columns ⇒ orthogonal matrix ⇒ ‖Un+1‖ = ‖Un‖
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31 (a) If Ax = λx then the infinite cosine series gives (cosA)x = (cosλ)x

(b) λ(A) = 2π and 0 so cosλ = 1 and 1 which means that cosA = I

(c) u(t) = 3(cos 2πt)(1, 1)+1(cos 0t)(1,−1) [u ′ = Au has exp, u ′′ = Au has cos ]

32 For proof 2, square the start of the series to see (I + A+ 1
2A

2 + 1
6A

3)2 = I + 2A+

1
2(2A)

2 + 1
6 (2A)

3 + · · · . The diagonalizing proof is easiest when it works (needing

diagonalizable A).

Problem Set 6.4, page 345

Note A way to complete the proof at the end of page 334, (perturbing the matrix to pro-

duce distinct eigenvalues) is now on the course website: “Proofs of the Spectral Theorem.”

math.mit.edu/linearalgebra.

1 The first is ASAT: symmetric but eigenvalues are different from 1 and −1 for S.

The second is ASA−1: same eigenvalues as S but not symmetric.

The third is ASAT = ASA−1: symmetric with the same eigenvalues as S.

This needed B = AT = A−1 to be an orthogonal matrix.

2 (a) ASB stays symmetric like S when B = AT

(b) ASB is similar to S when B = A−1

To have both (a) and (b) we need B = AT = A−1 to be an orthogonal matrix

3 A =




1 3 6

3 3 3

6 3 5


+




0 −1 −2

1 0 −3

2 3 0




= 1
2
(A+AT) + 1

2
(A− AT)

= symmetric + skew-symmetric.

4 (ATCA)T = ATCT(AT)T = ATCA. When A is 6 by 3, C will be 6 by 6 and the

triple product ATCA is 3 by 3.

5 λ = 0, 4,−2; unit vectors ±(0, 1,−1)/
√
2 and ±(2, 1, 1)/

√
6 and ±(1,−1,−1)/

√
3.
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6 λ = 10 and −5 in Λ =


10 0

0 −5


, x =


1

2


 and


 2

−1


 have to be normalized to

unit vectors in Q =
1√
5


1 2

2 −1


.

7 Q =
1

3




2 1 2

2 −2 −1

−1 −2 2


.

The columns of Q are unit eigenvectors of S

Each unit eigenvector could be multiplied by −1

8 S =


 9 12

12 16


 has λ = 0 and 25 so the columns of Q are the two eigenvectors:

Q =


 .8 .6

−.6 .8


 or we can exchange columns or reverse the signs of any column.

9 (a)


1 2

2 1


 has λ = −1 and 3 (b) The pivots 1, 1− b2 have the same signs as the λ’s

(c) The trace is λ1 + λ2 = 2, so S can’t have two negative eigenvalues.

10 If A3 = 0 then all λ3 = 0 so all λ = 0 as in A =


0 1

0 0


. If A is symmetric then

A3 = QΛ3QT = 0 requires Λ = 0. The only symmetric A is Q 0QT = zero matrix.

11 If λ is complex then λ is also an eigenvalue (Ax = λx). Always λ + λ is real. The

trace is real so the third eigenvalue of a 3 by 3 real matrix must be real.

12 If x is not real then λ=xTAx/xTx is not always real. Can’t assume real eigenvectors!

13


3 1

1 3


 = 2




1
2 − 1

2

− 1
2

1
2


+4




1
2

1
2

1
2

1
2


;


 9 12

12 16


 = 0


 .64 −.48

−.48 .36


+25


 .36 .48

.48 .64




14

[
x1 x2

]
is an Q matrix so P1 + P2 = x1x

T
1 + x2x

T
2 =

[
x1 x2

]

xT
1

xT
2


 = I ;

also P1P2 = x1(x
T
1 x2)x

T
2 = zero matrix.

Second proof: P1P2 = P1(I − P1) = P1 − P1 = 0 since P 2
1 = P1.
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15 A =


 0 b

−b 0


 has λ = ib and −ib. The block matrices


A 0

0 A


 and


 0 A

A 0


 are

also skew-symmetric with λ = ib (twice) and λ = −ib (twice).

16 M is skew-symmetric and orthogonal; λ’s must be i, i, −i, −i to have trace zero.

17 A =


 i 1

1 −i


 has λ = 0, 0 and only one independent eigenvector x = (i, 1). The

good property for complex matrices is not AT = A (symmetric) but A
T

= A (Her-

mitian with real eigenvalues and orthogonal eigenvectors: see Problem 22 and Sec-

tion 9.2).

18 (a) If Az = λy and ATy = λz then B[y; −z ] = [−Az; ATy ] = −λ[y; −z ].

So −λ is also an eigenvalue of B. (b) ATAz = AT(λy) = λ2z. (c) λ = −1, −1,

1, 1; x1 = (1, 0,−1, 0), x2 = (0, 1, 0,−1), x3 = (1, 0, 1, 0), x4 = (0, 1, 0, 1).

19 The eigenvalues of S =




0 0 1

0 0 1

1 1 0


 are 0,

√
2,−

√
2 by Problem 16 with

x1 =




1

−1

0


 ,x2 =




1

1
√
2


 ,x3 =




1

1

−
√
2


 .

20 1. y is in the nullspace of S and x is in the column space (that is also row space because

S = ST). The nullspace and row space are perpendicular so yTx = 0.

2. If Sx = λx and Sy = βy then shift S by βI to have a zero eigenvalue that matches

Step 1.(S − βI)x = (λ− β)x and (S − βI)y = 0 and again x is perpendicular to y.

21 S has X =




1 1 0

1 −1 0

0 0 1


; B has X =




1 0 1

0 1 0

0 0 2d


.

Perpendicular for A

Not perpendicular for S

since BT 6= B
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22 S =


 1 3 + 4i

3− 4i 1


 is a Hermitian matrix (S

T
= S). Its eigenvalues 6 and −4 are

real. Adjust equations (1)–(2) in the text to prove that λ is always real when S
T
= S:

Sx = λx leads to Sx = λx. Transpose to xTS = xTλ using S
T
= S.

Then xTSx = xTλx and also xTSx = xTλx. So λ = λ is real.

23 (a) False. A =


1 2

0 1


 (b) True from AT = QΛQT = A

(c) True from S−1 = QΛ−1QT
(d) False!

24 A and AT have the same λ’s but the order of the x’s can change. A =


 0 1

−1 0


 has

λ1 = i and λ2 = −i with x1 = (1, i) first for A but x1 = (1,−i) is first for AT.

25 A is invertible, orthogonal, permutation, diagonalizable, Markov; B is projection, diag-

onalizable, Markov. A allows QR,XΛX−1, QΛQT; B allows XΛX−1 and QΛQT.

26 Symmetry gives QΛQT if b = 1; repeated λ and no X if b = −1; singular if b = 0.

27 Orthogonal and symmetric requires |λ| = 1 and λ real, so λ = ±1. Then S = ±I or

S = QΛQT =


cos θ − sin θ

sin θ cos θ




1 0

0 −1




 cos θ sin θ

− sin θ cos θ


=


cos 2θ sin 2θ

sin 2θ − cos 2θ


.

28 Eigenvectors (1, 0) and (1,1) give a 45◦ angle even with AT very close to A.

29 The roots of λ2 + bλ + c = 0 are
1

2
(−b ±

√
b2 − 4ac). Then λ1 − λ2 is

√
b2 − 4c.

For det(A+ tB − λI) we have b = −3− 8t and c = 2 + 16t − t2. The minimum of

b2 − 4c is 1/17 at t = 2/17. Then λ2 − λ1 = 1/
√
17 : close but not equal !

30 S =


 4 2 + i

2− i 0


 = S

T
has real eigenvalues λ = 5 and −1 with trace = 4 and

det = −5. The solution to 20 proves that λ is real when S
T
= S is Hermitian.

31 (a) A = QΛQT times A T = QΛTQT equals A T times A because Q = Q
T

and

ΛΛ T = ΛTΛ (diagonal!) (b) Step 2: The 1, 1 entries of T T T and TT T are |a|2

and |a|2 + |b|2. Equally makes b = 0 and T = Λ.
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32 a11 is
[
q11 . . . q1n

] [
λ1q11 . . . λnq1n

]T
≤ λmax

(
|q11|2 + · · ·+ |q1n|2

)
= λmax.

33 (a) xT(Ax) = (Ax)Tx = xTATx = −xTAx. (b) zTAz is pure imaginary, its

real part is xTAx + yTAy = 0 + 0 (c) detA = λ1 . . . λn ≥ 0 : pairs of λ’s

= ib,−ib.

34 Since S is diagonalizable with eigenvalue matrix Λ = 2I , the matrix S itself has to be

XΛX−1 = X(2I)X−1 = 2I . (The unsymmetric matrix [2 1 ; 0 2] also has λ = 2, 2.)

35 (a) ST = S and STS = I lead to S2 = I .

(b) The only possible eigenvalues of S are 1 and −1.

(c) Λ =


 I 0

0 −I


 so S=

[
Q1 Q2

]
Λ


QT

1

QT
2


= Q1Q

T
1 −Q2Q

T
2 with QT

1Q2 = 0.

36 (ATSA)T = ATSTATT = ATSA. This matrix ATSA may have different eigen-

values from S, but the “inertia theorem” says that the two sets of eigenvalues have the

same signs. The inertia = number of (positive, zero, negative) eigenvalues is the same

for S and ATSA.

37 Substitute λ = a to find det(S− aI) = a2 − a2 − ca+ ac− b2 = −b2 (negative). The

parabola crosses at the eigenvalues λ because they have det(S − λI) = 0.

Problem Set 6.5, page 358

1 Suppose a > 0 and ac > b2 so that also c > b2/a > 0.

(i) The eigenvalues have the same sign because λ1λ2 = det = ac− b2 > 0.

(ii) That sign is positive because λ1 + λ2 > 0 (it equals the trace a+ c > 0).

2 Only S4 =


 1 10

10 101


 has two positive eigenvalues since 101 > 102.

xTS1x = 5x2
1 + 12x1x2 + 7x2

2 is negative for example when x1 = 4 and x2 = −3:

A1 is not positive definite as its determinant confirms; S2 has trace c0; S3 has det = 0.
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3
Positive definite

for −3 < b < 3


1 0

b 1




1 b

0 9− b2


=


1 0

b 1




1 0

0 9− b2




1 b

0 1


=LDLT

Positive definite

for c > 8


1 0

2 1




2 4

0 c− 8


 =


1 0

2 1




2 0

0 c− 8




1 2

0 1


=LDLT.

Positive definite

for c > b
L =


 1 1

−b/c 0


 D =


 c 0

0 c− b/c


 S = LDLT.

4 f(x, y) = x2 + 4xy + 9y2 = (x+ 2y)2 + 5y2; x2 + 6xy + 9y2 = (x + 3y)2.

5 x2+4xy+3y2 = (x+2y)2−y2 = difference of squares is negative at x = 2, y = −1,

where the first square is zero.

6 A =


0 1

1 0


 produces f(x, y) =

[
x y

]

0 1

1 0




x

y


 = 2xy. A has λ = 1 and

−1. Then A is an indefinite matrix and f(x, y) = 2xy has a saddle point.

7 ATA =


1 2

2 13


 and ATA =


6 5

5 6


 are positive definite; ATA =




2 3 3

3 5 4

3 4 5


 is

singular (and positive semidefinite). The first two A’s have independent columns. The

2 by 3 A cannot have full column rank 3, with only 2 rows; ATA is singular.

8 S =


3 6

6 16


 =


1 0

2 1




3 0

0 4




1 2

0 1


.

Pivots 3, 4 outside squares, ℓij inside.

xTSx = 3(x+ 2y)2 + 4y2

9 S =




4 −4 8

−4 4 −8

8 −8 16




has only one pivot = 4, rank S = 1,

eigenvalues are 24, 0, 0, detS = 0.

10 S =




2 −1 0

−1 2 −1

0 −1 2




has pivots

2, 3
2
, 4
3

;
T =




2 −1 −1

−1 2 −1

−1 −1 2


 is singular; T




1

1

1


 =




0

0

0


.

11 Corner determinants |S1| = 2, |S2| = 6, |S3| = 30. The pivots are 2/1, 6/2, 30/6.

12 S is positive definite for c > 1; determinants c, c2 − 1, and (c − 1)2(c + 2) > 0.

T is never positive definite (determinants d− 4 and −4d+ 12 are never both positive).
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13 S =


1 5

5 10


 is an example with a+ c > 2b but ac < b2, so not positive definite.

14 The eigenvalues of S−1 are positive because they are 1/λ(S). Also the entries of S−1

pass the determinant tests. And xTS−1x = (S−1x)TS(S−1x) > 0 for all x 6= 0.

15 Since xTSx > 0 and xTTx > 0 we have xT(S + T )x = xTSx + xTTx > 0 for

all x 6= 0. Then S + T is a positive definite matrix. The second proof uses the test

S = ATA (independent columns in A): If S = ATA and T = BTB pass this test,

then S + T =
[
A B

]T

A

B


 also passes, and must be positive definite.

16 xTSx is zero when (x1, x2, x3) = (0, 1, 0) because of the zero on the diagonal. Actu-

ally xTSx goes negative for x = (1,−10, 0) because the second pivot is negative.

17 If ajj were smaller than all λ’s, S − ajjI would have all eigenvalues > 0 (positive

definite). But S − ajjI has a zero in the (j, j) position; impossible by Problem 16.

18 If Sx = λx then xTSx = λxTx. If S is positive definite this leads to λ = xTSx/xTx >

0 (ratio of positive numbers). So positive energy ⇒ positive eigenvalues.

19 All cross terms are xT
i xj = 0 because symmetric matrices have orthogonal eigenvec-

tors. So positive eigenvalues ⇒ positive energy.

20 (a) The determinant is positive; all λ > 0 (b) All projection matrices except I are

singular (c) The diagonal entries of D are its eigenvalues (d) S = −I has det =

+1 when n is even.

21 S is positive definite when s > 8; T is positive definite when t > 5 by determinants.

22 A =











1 −1

1 1











√
2











√
9

√
1





















1 1

−1 1











√
2

=


2 1

1 2


; A = Q


4 0

0 2


QT =


3 1

1 3


.

23 x2/a2 + y2/b2 is xTSx when S = diag(1/a2, 1/b2). Then λ1 = 1/a2 and λ2 = 1/b2

so a = 1/
√
λ1 and b = 1/

√
λ2. The ellipse 9x2 +16y2 = 1 has axes with half-lengths

a = 1
3

and b = 1
4

. The points (1
3
, 0) and (0, 1

4
) are at the ends of the axes.

24 The ellipse x2 + xy + y2 = 1 has axes with half-lengths 1/
√
λ =

√
2 and

√
2/3.
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25 S = CTC =


9 3

3 5


;


4 8

8 25


 =


1 0

2 1




4 0

0 9




1 2

0 1


 and C =


2 4

0 3




26 The Cholesky factors C =
(
L
√
D
)T

=




3 0 0

0 1 2

0 0 2


 and C =




1 1 1

0 1 1

0 0
√
5


 have

square roots of the pivots from D. Note again CTC = LDLT = S.

27 Writing out xTSx = xTLDLTx gives ax2+2bxy+cy2 = a(x+ b
ay)

2+ ac−b2

a y2. So

the LDLT from elimination is exactly the same as completing the square. The example

2x2+8xy+10y2 = 2(x+2y)2+2y2 with pivots 2, 2 outside the squares and multiplier

2 inside.

28 detS = (1)(10)(1) = 10; λ = 2 and 5; x1 = (cos θ, sin θ), x2 = (− sin θ, cos θ); the

λ’s are positive. So S is positive definite.

29 S1 =


6x

2 2x

2x 2


 is semidefinite; f1 = (1

2
x2 + y)2 = 0 on the curve 1

2
x2 + y = 0;

S2 =


6x 1

1 0


 =


0 1

1 0


 is indefinite at (0, 1) where first derivatives = 0. Then

x = 0, y = 1 is a saddle point of the function f2(x, y).

30 ax2 + 2bxy + cy2 has a saddle point if ac < b2. The matrix is indefinite (λ < 0 and

λ > 0) because the determinant ac− b2 is negative.

31 If c > 9 the graph of z is a bowl, if c < 9 the graph has a saddle point. When c = 9 the

graph of z = (2x+ 3y)2 is a “trough” staying at zero along the line 2x+ 3y = 0.

32 Orthogonal matrices, exponentials eAt, matrices with det = 1 are groups. Examples

of subgroups are orthogonal matrices with det = 1, exponentials eAn for integer n.

Another subgroup: lower triangular elimination matrices E with diagonal 1’s.

33 A product ST of symmetric positive definite matrices comes into many applications.

The “generalized” eigenvalue problem Kx = λMx has ST = M−1K. (Often we use
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eig(K,M) without actually inverting M .) All eigenvalues λ are positive:

STx = λx gives (Tx)TSTx = (Tx)Tλx. Then λ = xTTTSTx/xTTx > 0.

34 The five eigenvalues of K are 2 − 2 cos kπ
6

= 2 −
√
3, 2 − 1, 2, 2 + 1, 2 +

√
3.

The product of those eigenvalues is 6 = detK.

35 Put parentheses in xTATCAx = (Ax)TC(Ax). Since C is assumed positive definite,

this energy can drop to zero only when Ax = 0. SineA is assumed to have independent

columns, Ax = 0 only happens when x = 0. Thus ATCA has positive energy and is

positive definite.

My textbooks Computational Science and Engineering and Introduction to Ap-

plied Mathematics start with many examples of ATCA in a wide range of applications.

I believe this is a unifying concept from linear algebra.

36 (a) The eigenvectors of λ1I − S are λ1 − λ1, λ1 − λ2, . . . , λ1 − λn. Those are ≥ 0;

λ1I − S is semidefinite.

(b) Semidefinite matrices have energy xT (λ1I − S)x2 ≥ 0. Then λ1x
Tx ≥ xTSx.

(c) Part (b) says xTSx/xTx ≤ λ1 for all x. Equality at the eigenvector with Sx =

λ1x.

37 Energy xTSx = a (x1+x2+x3)
2+c (x2−x3)

2 ≥ 0 if a ≥ 0 and c ≥ 0 : semidefinite.

S has rank ≤ 2 and determinant = 0; cannot be positive definite for any a and c.

Problem Set 6.6, page 360

1 B=GCG−1=GF−1AFG−1 so M=FG−1. C similar to A and B⇒A similar to B.

2 A =


1 0

0 3


 is similar to B =


3 0

0 1


 = M−1AM with M =


0 1

1 0


.
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3 B =


1 0

0 0


 =


1 0

1 1



−1 
1 0

1 0




1 0

1 1


 = M−1AM ;

B =


 1 −1

−1 1


 =


1 0

0 −1



−1 
1 1

1 1




1 0

0 −1


;

B =


4 3

2 1


 =


0 1

1 0



−1 
1 2

3 4




0 1

1 0


.

4 A has no repeated λ so it can be diagonalized: S−1AS = Λ makes A similar to Λ.

5


1 1

0 0


,


0 0

1 1


,


1 0

1 0


,


0 1

0 1


 are similar (they all have eigenvalues 1 and 0).


1 0

0 1


 is by itself and also


0 1

1 0


 is by itself with eigenvalues 1 and −1.

6 Eight families of similar matrices: six matrices have λ = 0, 1 (one family); three

matrices have λ = 1, 1 and three have λ = 0, 0 (two families each!); one has λ = 1,−1;

one has λ = 2, 0; two matrices have λ = 1
2
(1±

√
5) (they are in one family).

7 (a) (M−1AM)(M−1x) = M−1(Ax) = M−10 = 0 (b) The nullspaces of A

and of M−1AM have the same dimension. Different vectors and different bases.

8
Same Λ

Same S
But A =


0 1

0 0


 and B =


0 2

0 0


 have the same line of eigenvectors

and the same eigenvalues λ = 0, 0.

9 A2 =


1 2

0 1


, A3 =


1 3

0 1


, every Ak =


1 k

0 1


. A0 =


1 0

0 1


 and A−1 =


1 −1

0 1


.

10 J2 =


c

2 2c

0 c2


 and Jk =


c

k kck−1

0 ck


; J0 = I and J−1 =


c

−1 −c−2

0 c−1


.

11 u(0) =


5

2


 =


 v(0)

w(0)


. The equation

du

dt
=


λ 1

0 λ


u has

dv

dt
= λv + w and

dw

dt
= λw. Then w(t) = 2eλt and v(t) must include 2teλt (this comes from the

repeated λ). To match v(0) = 5, the solution is v(t) = 2teλt + 5eλt.
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12 If M−1JM=K then JM=




m21 m22 m23 m24

0 0 0 0

m41 m42 m43 m44

0 0 0 0




= MK=




0 m12 m13 0

0 m22 m23 0

0 m32 m33 0

0 m42 m43 0




.

That means m21 = m22 = m23 = m24 = 0. M is not invertible, J not similar to K.

13 The five 4 by 4 Jordan forms with λ = 0, 0, 0, 0 are J1 = zero matrix and

J2 =




0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0




J3 =




0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0




J4 =




0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0




J5 =




0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0




Problem 12 showed that J3 and J4 are not similar, even with the same rank. Every

matrix with all λ = 0 is “nilpotent” (its nth power is An = zero matrix). You see

J4 = 0 for these matrices. How many possible Jordan forms for n = 5 and all λ = 0?

14 (1) Choose Mi = reverse diagonal matrix to get M−1
i JiMi = MT

i in each block

(2) M0 has those diagonal blocksMi to get M−1
0 JM0 = JT. (3) AT = (M−1)TJTMT

equals (M−1)TM−1
0 JM0M

T = (MM0M
T)−1A(MM0M

T), and AT is similar to

A.

15 det(M−1AM − λI) = det(M−1AM −M−1λIM). This is det(M−1(A− λI)M).

By the product rule, the determinants of M and M−1 cancel to leave det(A− λI).

16


a b

c d


 is similar to


d c

b a


;


 b a

d c


 is similar to


 c d

a b


. So two pairs of similar

matrices but


1 0

0 1


 is not similar to


0 1

1 0


: different eigenvalues!
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17 (a) False: Diagonalize a nonsymmetric A = SΛS−1. Then Λ is symmetric and similar

(b) True: A singular matrix has λ = 0. (c) False:


 0 1

−1 0


 and


0 −1

1 0


 are simi-

lar

(they have λ = ±1) (d) True: Adding I increases all eigenvalues by 1

18 AB = B−1(BA)B so AB is similar to BA. If ABx = λx then BA(Bx) = λ(Bx).

19 Diagonal blocks 6 by 6, 4 by 4; AB has the same eigenvalues as BA plus 6− 4 zeros.

20 (a) A = M−1BM ⇒ A2 = (M−1BM)(M−1BM) = M−1B2M . So A2 is similar

to B2. (b) A2 equals (−A)2 but A may not be similar to B = −A (it could be!).

(c)


3 1

0 4


is diagonalizableto


3 0

0 4


becauseλ1 6= λ2, sothesematrices are similar.

(d)


3 1

0 3


 has only one eigenvector, so not diagonalizable (e) PAPT is similar

to A.

21 J2 has three 1’s down the second superdiagonal, and two independent eigenvectors for

λ = 0. Its 5 by 5 Jordan form is


J3

J2


with J3 =




0 1 0

0 0 1

0 0 0


 and J2 =


0 1

0 0


.

Note to professors: An interesting question: Which matrices A have (complex) square

roots R2 = A? If A is invertible, no problem. But any Jordan blocks for λ = 0 must

have sizes n1 ≥ n2 ≥ . . . ≥ nk ≥ nk+1 = 0 that come in pairs like 3 and 2 in this

example: n1 = (n2 or n2+1) and n3 = (n4 or n4+1) and so on.
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A list of all 3 by 3 and 4 by 4 Jordan forms could be




a 0 0

0 b 0

0 0 c


,




a 1 0

0 a 0

0 0 b


,




a 1 0

0 a 1

0 0 a




(for any numbers a, b, c)

with 3, 2, 1 eigenvectors; diag(a, b, c, d) and




a 1

a

b

c




,




a 1

a

b 1

b




,




a 1

a 1

a

b




,




a 1

a 1

a 1

a




with 4, 3, 2, 1 eigenvectors.

22 If all roots are λ = 0, this means that det(A − λI) must be just λn. The Cayley-

Hamilton Theorem in Problem 6.2.32 immediately says that An = zero matrix. The

key example is a single n by n Jordan block (with n − 1 ones above the diagonal):

Check directly that Jn = zero matrix.

23 Certainly Q1R1 is similar to R1Q1 = Q−1
1 (Q1R1)Q1. Then A1 = Q1R1 − cs2I is

similar to A2 = R1Q1 − cs2I.

24 A could have eigenvalues λ = 2 and λ = 1
2

(A could be diagonal). Then A−1 has the

same two eigenvalues (and is similar to A).

Problem Set 6.7, page 371

1 A=UΣV T=



u1 u2




σ1

0





v1 v2



T

=











1 3

3 −1











√
10











√
50 0

0 0





















1 2

2 −1











√
5
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2 This A =


1 2

3 6


 is a 2 by 2 matrix of rank 1. Its row space has basis v1, its nullspace

has basis v2, its column space has basis u1, its left nullspace has basis u2:

Row space
1√
5


1

2


 Nullspace

1√
5


 2

−1




Column space
1√
10


1
3


 , N(AT)

1√
10


 3

−1


 .

3 If A has rank 1 then so does ATA. The only nonzero eigenvalue of ATA is its trace,

which is the sum of all a2ij . (Each diagonal entry of ATA is the sum of a2ij down one

column, so the trace is the sum down all columns.) Then σ1 = square root of this sum,

and σ2
1 = this sum of all a2ij .

4 ATA = AAT =


2 1

1 1


 has eigenvalues σ2

1 =
3 +

√
5

2
, σ2

2 =
3−

√
5

2
.

But A is

indefinite

σ1 = (1 +
√
5)/2 = λ1(A), σ2 = (

√
5− 1)/2 = −λ2(A); u1 = v1 but u2 = −v2.

5 A proof that eigshow finds the SVD. When V 1 = (1, 0),V 2 = (0, 1) the demo finds

AV 1 and AV 2 at some angle θ. A 90◦ turn by the mouse to V 2,−V 1 finds AV 2 and

−AV 1 at the angle π − θ. Somewhere between, the constantly orthogonal v1 and v2

must produce Av1 and Av2 at angle π/2. Those orthogonal directions give u1 and u2.

6 AAT =


2 1

1 2


 has σ2

1 = 3 with u1 =


1/

√
2

1/
√
2


 and σ2

2 = 1 with u2 =


 1/

√
2

−1/
√
2


.

ATA =




1 1 0

1 2 1

0 1 1


 has σ2

1 = 3 with v1 =




1/
√
6

2/
√
6

1/
√
6


, σ2

2 = 1 with v2 =




1/
√
2

0

−1/
√
2


;

and v3 =




1/
√
3

−1/
√
3

1/
√
3


. Then


1 1 0

0 1 1


 = [u1 u2 ]



√
3 0 0

0 1 0


 [v1 v2 v3 ]

T
.
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7 The matrix A in Problem 6 had σ1 =
√
3 and σ2 = 1 in Σ. The smallest change to

rank 1 is to make σ2 = 0. In the factorization

A = UΣV T = u1σ1v
T
1 + u2σ2v

T
2

this change σ2 → 0 will leave the closest rank–1 matrix as u1σ1v
T
1 . See Problem 14

for the general case of this problem.

8 The number σmax(A
−1)σmax(A) is the same as σmax(A)/σmin(A). This is certainly ≥

1. It equals 1 if all σ’s are equal, and A = UΣV T is a multiple of an orthogonal matrix.

The ratio σmax/σmin is the important condition number of A studied in Section 9.2.

9 A = UV T since all σj = 1, which means that Σ = I .

10 A rank–1 matrix with Av = 12u would have u in its column space, so A = uwT

for some vector w. I intended (but didn’t say) that w is a multiple of the unit vector

v = 1
2
(1, 1, 1, 1) in the problem. Then A = 12uvT to get Av = 12u when vTv = 1.

11 If A has orthogonal columns w1, . . . ,wn of lengths σ1, . . . , σn, then ATA will be

diagonal with entries σ2
1, . . . , σ

2
n. So the σ’s are definitely the singular values of A

(as expected). The eigenvalues of that diagonal matrix ATA are the columns of I , so

V = I in the SVD. Then the ui are Avi/σi which is the unit vector wi/σi.

The SVD of this A with orthogonal columns is A = UΣV T = (AΣ−1)(Σ)(I).

12 Since AT = A we have σ2
1 = λ2

1 and σ2
2 = λ2

2. But λ2 is negative, so σ1 = 3 and

σ2 = 2. The unit eigenvectors of A are the same u1 = v1 as for ATA = AAT and

u2 = −v2 (notice the sign change because σ2 = −λ2, as in Problem 4).

13 Suppose the SVD of R is R = UΣV T. Then multiply by Q to get A = QR. So the

SVD of this A is (QU)ΣV T. (Orthogonal Q times orthogonal U = orthogonal QU .)

14 The smallest change in A is to set its smallest singular value σ2 to zero. See # 7.
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15 The singular values of A + I are not σj + 1. They come from eigenvalues of

(A+ I)T(A+ I).

16 This simulates the random walk used by Google on billions of sites to solve Ap = p.

It is like the power method of Section 9.3 except that it follows the links in one “walk”

where the vector pk = Akp0 averages over all walks.

17 A = UΣV T = [cosines including u4] diag(sqrt(2 −
√
2, 2, 2 +

√
2)) [sine matrix]

T
.

AV = UΣ says that differences of sines in V are cosines in U times σ’s.

The SVD of the derivative on [0, π] with f(0) = 0 has u = sinnx, σ = n, v = cosnx!
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Problem Set 7.1, page 370

1 A = uvT has rank 1 with uT = vT =
[
1 2 3 4

]
. Those vectors have ||u||2 =

||v||2 = 30 so the SVD has a division by
√
30 to reach u1 and v1. Multiply by σ1 = 30

to recover A.

A = σ1u1v
T
1 = 30

u√
30

vT

√
30

= UΣV T (1 column in U and V ).

B has rank r = 2. The first two columns of B are independent (the pivot columns).

Column 3 is a combination 2 (col 2)− (col 1). Column 4 is 3 (col 2)− 2 (col 1) :

B =




2 3 4 5

3 4 5 6

4 5 6 7

5 6 7 8



=




2 3

3 4

4 5

5 6





1 0 −1 −2

0 1 2 3


 (col 1)(row 1)T

+

(col 2)(row 2)T

Those pivot columns come from the first half of the book : not orthogonal ! They don’t

give the u’s and v’s of the SVD. For that we need eigenvalues and eigenvectors of

BTB and BBT.

2 All the singular values of I are σ = 1. We cannot leave out any of the terms ui·vT
i

without making an error of size 1. And the matrix A = I starts with size 1 ! None of

the SVD pieces can be left out.

Notice that the SVD is I = (U)(I)(UT) so that U = V . The natural choice for

the SVD is just UΣV T = III . But we could actually choose any orthogonal matrix

U . (The eigenvectors of I are very far from unique—many choices ! Any orthogonal

matrix U holds orthonormal eigenvectors of I .)

One possible rank 5 flag with a 3 by 3 cross of zeros is A =




1 0 1 0 0

0 0 0 1 1

1 0 1 1 1

1 1
2 1 1 1

1 1
2 1 1

2
1
2




.
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3



1 2 1 1

2 2 2 2

1 2 1 1


 =




1 0

0 1

1 0


 =


1 2 1 1

2 2 2 2





1 2 2

1 3 3


 =


1 2

1 3




1 0 0

0 1 1


 =


 pivot

columns




 rows

of R




4 BBT =


1 2 2

1 3 3






1 1

2 3

2 3


 =


 9 13

13 19




. Trace 28, Determinant 2.

BTB =




1 1

2 3

2 3





1 2 2

1 3 3




=




2 5 5

5 13 13

5 13 13


. Trace 28, Determinant 0.

With a small singular value σ2 ≈ 1√
14
, B is compressible. But we don’t just keep the

first row and column of B. The good row v1 and column u1 are eigenvectors of BTB

and BBT.

5 My hand calculation produced ATA =




7 10 7

10 16 10

7 10 7


 and det(ATA − λI) =

−λ3 + 30λ2 − 24λ.

This gives λ = 0 as one eigenvalue of ATA (correct). The others are :

λ2 − 30λ+ 24 = 0 gives λ = 15±
√

152 − 24 ≈ 15± 14 = 29 and 1.

So σ1 ≈
√
29 and σ2 = 1. The svd (A) command in MATLAB will give accurate σ’s

and U and V .

6 The matrix A has trace 4 and determinant 0. So its eigenvalues are 4 and 0—not used

in the SVD ! The matrix ATA has trace 25 and determinant 0, so λ1 = 25 = σ2
1 gives

σ1 = 5.

The eigenvectors v1,v2 of ATA (a symmetric matrix !) are orthogonal :
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
20 10

10 5




2

1


 = 25


2

1


 and


20 10

10 5




 1

−2


 = 0


 1

−2




Similarly AAT has orthogonal eigenvectors u1,u2 :


 5 10

10 20




1

2


 = 25


1

2


 and


 5 10

10 20




 2

−1


 = 0


 2

−1




7 Multiply both sides of A = UΣV T by the matrix V to get AV = UΣ. Column by

column this says that Avi = σiui. Notice that Σ goes on the right side of U when we

want to multiply every column of U by its singular value σi.

8 The text found λ1=σ2
1=

1
2

(
3+

√
5
)

and then σ1=
1
2

(
1+

√
5
)
. Then σ1+1 equals σ2

1 .

Also λ2 = σ2
2 = 1

2

(
3−

√
5
)

and σ2 = 1
2

(√
5− 1

)
and σ1 − σ2 = 1

2 + 1
2 = 1.

(Why don’t we choose σ2 = 1
2

(
1−

√
5
)

?).

9 The 20 by 40 random matrices are A = rand (20, 40) and B = randn (20, 40). With

those random choices the 20 rows are independent with probability 1. Notice for these

continuous probabilities, this does not mean that the rows are always independent ! A

random determinant might be 0 even when the probability of nonzero is 1.

MATLAB again gives the singular values of a random A and B.

By averaging 100 samples you would begin to see the expected distribution of σ’s,

which is highly imortant in “random matrix theory”.

Problem Set 7.2, page 379

1 A =


0 4

0 0


 has eigenvalues 0 and 0; ATA =


0 0

0 16


 has eigenvalues λ = 16 and

0. Then σ1(A) =
√
16 = 4. The eigenvectors of ATA and AAT are the columns of

V =


0 1

1 0


 and U =


1 0

0 1


.
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Then UΣV T =


1 0

0 1




4 0

0 0




0 1

1 0


 =


0 4

0 0


 = A.

A =


0 4

1 0


 gives ATA =


1 0

0 16


 with λ1 = 16 and λ2 = 1. Same U and V .

Then UΣV T =


1 0

0 1




4 0

0 1




0 1

1 0


 =


0 4

1 0


 = A.

2 A =


 2 2

−1 1


 leads to ATA =


5 3

3 5


 with eigenvectors in V =

1√
2


1 −1

1 1


 .

σ2
1 = 8 u1 =

Av1

σ1
=

1√
2


4

0


 1

σ1
has unit vector u1 =


1

0


 and σ1 = 2

√
2

σ2
2 = 2 u2 =

Av2

σ2
=

1√
2


0

2


 1

σ2
has unit vector u2 =


0

1


 and σ2 =

√
2

The full SVD is A = UΣV T =


1 0

0 1




2

√
2

√
2




 1 1

−1 1


 /

√
2.

3 Problem 7.2.2 happens to have AAT = diagonal matrix


8 0

0 2


. So its eigenvectors

(1, 0) and (0, 1) go in U = I . Its eigenvalues are σ2
1 = 8 and σ2

2 = 2. The rows of A

are orthogonal but not orthonormal. So ATA is not diagonal and V is not I .

4 AAT =


2 1

1 2


 has σ2

1 = 3 with u1 =


1/

√
2

1/
√
2


 and σ2

2 = 1 with u2 =


 1/

√
2

−1/
√
2


.

ATA =




1 1 0

1 2 1

0 1 1


 has σ2

1 = 3 with v1 =




1/
√
6

2/
√
6

1/
√
6


, σ2

2 = 1 with v2 =




1/
√
2

0

−1/
√
2




and v3=




1/
√
3

−1/
√
3

1/
√
3


. Then


1 1 0

0 1 1




v1 v2 v3


=


u1 u2





√
3 0 0

0 1 0


=UΣ.
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5 (a) A =


1 1

3 3


 has v1 =

1√
2


1

1


 in its row space and u1 =

1√
10


1

3


 in its

column space. Those are unit vectors.

Since ATA =


10 10

10 10


 has λ1 = 20 and λ2 = 0, A itself has σ1 =

√
20 and has no

σ2. (Remember that the r singular values have to be strictly positive!)

(b) If we want square matrices U and V , choose u2 and v2 orthogonal to u1 and v1 :

U =
1√
10


1 3

3 −1


 and V =

1√
2


1 −1

1 1


 .

6 If A = UΣV T then AT = V ΣTUT and ATA = V ΣTΣV T. This is a diagonaliza-

tion V ΛV T with Λ = ΣTΣ (so each σ2
i = λi). Similarly AAT = UΣΣTUT is a

diagonalization of AAT. We see that the eigenvalues in ΣΣT are the same σ2
i = λi.

7 This small question is a key to everything. It is based on the associative law (AAT)A =

A(ATA). Here we are applying both sides to an eigenvector v of ATA :

(AAT)Av = A(ATA)v = Aλv = λAv.

So Av is an eigenvector of AAT with the same eigenvalue λ.

8 A=UΣV T=



u1 u2




σ1

0





v1 v2



T

=











1 3

3 −1











√
10











√
50 0

0 0





















1 2

2 −1











√
5

9 This A =


1 2

3 6


 is a 2 by 2 matrix of rank 1. Its row space has basis v1, its nullspace

has basis v2, its column space has basis u1, its left nullspace has basis u2:

Row space
1√
5


1

2


 Nullspace

1√
5


 2

−1




Column space
1√
10


1

3


 , N(AT)

1√
10


 3

−1


 .
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10 If A has rank 1 then so does ATA. The only nonzero eigenvalue of ATA is its trace,

which is the sum of all a2ij . (Each diagonal entry of ATA is the sum of a2ij down one

column, so the trace is the sum down all columns.) Then σ1 = square root of this sum,

and σ2
1 = this sum of all a2ij .

11 ATA = AAT =


2 1

1 1


 has eigenvalues σ2

1 =
3 +

√
5

2
, σ2

2 =
3−

√
5

2
.

But A is

indefinite

σ1 = (1+
√
5)/2 = λ1(A), σ2 = (

√
5− 1)/2 = −λ2(A); u1 = v1 but u2 = −v2.

12 A proof that eigshow finds the SVD. When V 1 = (1, 0),V 2 = (0, 1) the demo finds

AV 1 and AV 2 at some angle θ. A 90◦ turn by the mouse to V 2,−V 1 finds AV 2 and

−AV 1 at the angle π − θ. Somewhere between, the constantly orthogonal v1 and v2

must produce Av1 and Av2 at angle π/2. Those orthogonal directions give u1 and u2.

13 The number σmax(A
−1)σmax(A) is the same as σmax(A)/σmin(A). This is certainly ≥

1. It equals 1 if all σ’s are equal, and A = UΣV T is a multiple of an orthogonal matrix.

The ratio σmax/σmin is the important condition number of A studied in Section 9.2.

14 A = UV T since all σj = 1, which means that Σ = I .

15 A rank–1 matrix with Av = 12u would have u in its column space, so A = uwT

for some vector w. I intended (but didn’t say) that w is a multiple of the unit vector

v = 1
2(1, 1, 1, 1) in the problem. Then A = 12uvT to get Av = 12u when vTv = 1.

16 If A has orthogonal columns w1, . . . ,wn of lengths σ1, . . . , σn, then ATA will be

diagonal with entries σ2
1, . . . , σ

2
n. So the σ’s are definitely the singular values of A

(as expected). The eigenvalues of that diagonal matrix ATA are the columns of I , so

V = I in the SVD. Then the ui are Avi/σi which is the unit vector wi/σi.

The SVD of this A with orthogonal columns is A = UΣV T = (AΣ−1)(Σ)(I).

17 Since AT = A we have σ2
1 = λ2

1 and σ2
2 = λ2

2. But λ2 is negative, so σ1 = 3 and

σ2 = 2. The unit eigenvectors of A are the same u1 = v1 as for ATA = AAT and

u2 = −v2 (notice the sign change because σ2 = −λ2, as in Problem 11).

18 Suppose the SVD of R is R = UΣV T. Then multiply by Q to get A = QR. So the

SVD of this A is (QU)ΣV T. (Orthogonal Q times orthogonal U = orthogonal QU .)
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19 The smallest change in A is to set its smallest singular value σ2 to zero.

20 ATA =


1 100

0 1




 1 0

100 1


 =


10001 100

100 1


 has eigenvaluesλ(ATA) = σ2(A).

λ2 − 10002λ+ 1 = 0 gives λ = 5001±
√
(5001)2 − 1 ≈ 5001±

(
5001− 1

10002

)
.

So λ ≈ 10002 and 1/10002 and σ ≈ 100.01 and 1/100.01. Check σ1σ2 ≈ 1 = detA.

21 The singular values of A + I are not σj + 1. They come from eigenvalues of

(A+ I)T(A+ I). Test the diagonal matrix A =


1 0

0 3


.

22 Since Q1 and U are orthogonal, so is Q1U . (check : (Q1U)T(Q1U) = UTQT
1 Q1U =

UTU = I .) So the SVD of the matrix Q1AQ
T
2 is just Q1UΣV TQT

2 = (Q1U)Σ(Q2V )T

and Σ is the same as for A. The matrices A and Q1AQ
T
2 and Σ are all “isometric” =

sharing the same Σ.

23 The singular values of Q are the eigenvalues of QTQ = I (therefore all 1’s).

24 (a) From xTSx = 3x2
1 + 2x1x2 + 3x2

2 you can see that S =


3 1

1 3


. Its eigenvalues

are 4 and 2. The maximum of xTSx/xTx is 4.

(b) The 1 by 2 matrix A =
[
1 4

]
leads to

||Ax||2
||x||2 =

(x1 + 4x2)
2

x2
1 + x2

2

. The maximum

value is σ2
1(A). For this matrix A =

[
1 4

]
that singular value squared is σ2

1 = 17.

This is because AAT =
[
17
]

and also ATA =


1 4

4 16


 has λ = 17 and 0.

25 The minimum value of
xTSx

xTx
is the smallest eigenvalue of S. The eigenvector is the

minimizing x. That eigenvector gives xTSx = xTλminx.

Since
||Ax||2
||x||2 =

xTATAx

xTx
we see that the minimizing x is an eigenvector of ATA

(and not usually an eigenvector of A).
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26 From AV = UΣ we know that


0

1


 = first column of V goes to 2


cos θ

sin θ


 = first

column of UΣ. Similarly the second column


1

0


 goes to


− sin θ

cos θ


. The two outputs

are orthogonal and they are the axes of an ellipse. With θ = 30◦ those axes are



√
3

1




going out from (0, 0) at 30◦ and
1

2


−1
√
3


 going out at 120◦. Comparing to the picture

in Section 7.4, the first step would be a reflection (not a rotation), then a stretch by

factors 2 and 1, then a 30◦ rotation.

27 Start from A = UΣV T. The columns of U are a basis for the column space of A, and

so are the columns of C, so U = CF for some invertible r by r matrix F .

Similarly the columns of V are a basis for the row space of A and so are the columns

of B, so V = BG for some invertible r by r matrix G.

Then A = UΣV T = C(FΣGT)BT = CMBT and M = FΣGT is r by r and

invertible.

Problem Set 7.3, page 391

1 The row averages of A0 are 3 and 0. Therefore

A =


 2 1 0 −1 −2

−1 1 0 1 −1


 and S =

AAT

4
=

1

4


10 0

0 4




The eigenvalues of S are λ1 =
10

4
and λ2 =

4

4
= 1. The top eigenvector of S is


1

0


.

I think this means that a vertical line is closer to the five points (2,−1), . . . , (−2,−1)

in the columns of A than any other line through the origin (0, 0).
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2 Now the row averages of A0 are 1
2

and 2. Therefore

A =




1
2

− 1
2

1
2

− 1
2

1
2

− 1
2

−1 0 1 1 0 −1


 and S =

AAT

5
=

1

5




3
2

0

0 4


 .

Again the rows of A are accidentally orthogonal (because of the special patterns of

those rows). This time the top eigenvector of S is


0

1


. So a horizontal line is closer

to the six points
(
1
2
,−1

)
, . . . ,

(
− 1

2
,−1

)
from the columns of A than any other line

through the center point (0, 0).

3 A0 =


1 2 3

5 2 2


 has row averages 2 and so A =


−1 0 1

2 −1 −1


. Then S =

1

2
AAT =

1

2


 2 −3

−3 6


.

Then trace (S) = 1
2
(8) and det(S) =

(
1
2

)2
(3). The eigenvalues λ(S) are 1

2
times the

roots of λ2 − 8λ + 3 = 0. Those roots are 4 ±
√
16− 3. Then the σ’s are

√
λ1 and

√
λ2.

4 This matrix A with orthogonal rows has S =
AAT

n− 1
=

1

3




2 0 0

0 8 0

0 0 4


.

With λ’s in descending order λ1 > λ2 > λ3, the eigenvectors are (0, 1, 0) and (0, 0, 1)

and (1, 0, 0). The first eigenvector shows the u1 direction. Combined with the second

eigenvector u2, the best plane is the yz plane.

These problems are examples where the sample correlation matrix (rescaling S so all

its diagonal entries are 1) would be the identity matrix. If we think the original scaling

is not meaningful and the rows should have the same length, then there is no reason to

choose u1 = (0, 1, 0) from the 8 in row 2.

5 The correlation matrix DSD which has 1’s on the diagonal is

DSD =




1
2

1
2

1







4 2 0

2 4 1

0 1 1







1
2

1
2

1


 =




1 1
2 0

1
2 1 1

2

0 1
2 1


 .
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6 Working with letters instead of numbers, the correlation matrix C = DSD is




1 c12 c13

c12 1 c23

c13 c23 1


 with c12 =

S12

σ1σ2
and c13 =

S13

σ1σ3
and c23 =

S23

σ2σ3
.

Then D =




1/σ1

1/σ2

1/σ3


 gives DSD = C.

7 From each row of A0, subtract the average of that row (the average grade for that

course) from the 10 grades in that row. This produces the centered matrix A. Then the

sample covariance matrix is S = 1
9
AAT. The leading eigenvector of the 5 by 5 matrix

S tells the weights on the 5 courses to produce the “eigencourse”. This is the course

whose grades have the most information (the greatest variance).

If a course gives everyone an A, the variance is zero and that course is not included in

the eigencourse. We are looking for most information not best grade.

Problem Set 7.4, page 398

1 ATA =


10 20

20 40


 has λ = 50 and 0, v1 =

1√
5


1

2


, v2 =

1√
5


 2

−1


; σ1 =

√
50.

2 Orthonormal bases: v1 for row space, v2 for nullspace, u1 for column space, u2 for

N(AT). All matrices with those four subspaces are multiples cA, since the subspaces

are just lines. Normally many more matrices share the same 4 subspaces. (For example,

all n by n invertible matrices share Rn as their column space.)

3 A = QS =
1√
50


7 −1

1 7


 1√

50


10 20

20 40


. S is semidefinite because A is singular.

4 A+ = V


1/

√
50 0

0 0


UT =

1

50


1 3

2 6


; A+A =


 .2 .4

.4 .8


, AA+ =


 .1 .3

.3 .9


.
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5 ATA =


10 8

8 10


 has λ = 18 and 2, v1 =

1√
2


1

1


, v2 =

1√
2


 1

−1


, σ1 =

√
18

and σ2 =
√
2.

6 AAT =


18 0

0 2


 has u1 =


1
0


, u2 =


0
1


. The same

√
18 and

√
2 go into Σ.

7


σ1u1 σ2u2






vT
1

vT
2


=σ1u1v

T
1 +σ2u2v

T
2 . In general this is σ1u1v

T
1 +· · ·+σrurv

T
r .

8 A = UΣV T splits into QK (polar): Q = UV T =
1√
2


1 1

1 −1


 and K = V ΣV T =



√
18 0

0
√
2


.

9 A+ is A−1 because A is invertible. Pseudoinverse equals inverse when A−1 exists!

10 ATA =




9 12 0

12 16 0

0 0 0


 has λ = 25, 0, 0 and v1 =




.6

.8

0


, v2 =




.8

−.6

0


, v3 =




0

0

1


.

Here A = [ 3 4 0 ] has rank 1 and AAT = [ 25 ] and σ1 = 5 is the only singular value

in Σ = [ 5 0 0 ].

11 A=[ 1 ] [ 5 0 0 ]V T and A+=V




.2

0

0


=




.12

.16

0


; A+A=




.36 .48 0

.48 .64 0

0 0 0


 ;AA+=[ 1 ]

12 The zero matrix has no pivots or singular values. Then Σ = same 2 by 3 zero matrix

and the pseudoinverse is the 3 by 2 zero matrix.

13 If detA = 0 then rank(A) < n; thus rank(A+) < n and detA+ = 0.

14 This problem explains why the matrix A transforms the circle of unit vectors ||x|| = 1

into an ellipse of vectors y = Ax. The reason is that x = A−1y and the vectors with

||A−1y|| = 1 do lie on an ellipse :

||A−1 y||2 = 1 is yT (A−1)T A−1 y = 1 or yT (AAT)−1 y = 1.

That matrix (AAT)−1 is symmetric positive definite (A is assumed invertible).
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A =


 2 1

1 2


 gives AAT =


 5 4

4 5


 and (AAT)−1 =

1

9


 5 −4

−4 5


 .

So the ellipse ||A−1 y||2 = 1 of outputs y = Ax has equation 5y21 − 8y1y2 +5y22 = 9.

The singular values of this positive definite A are its eigenvalues 3 and 1.

The ellipse ||A−1 y|| = 1 has semi-axes of lengths 1/3 and 1/1.

15 (a) ATA is singular (b) Thisx+ in the row space does giveATAx+ = ATb (c) If

(1,−1) in the nullspace of A is added to x+, we get another solution to ATAx̂ = ATb.

But this x̂ is longer than x+ because the added part is orthogonal to x+ in the row space

and ||x̂||2 = ||x+||2 + ||added part from nullspace||2.

16 x+ in the row space of A is perpendicular to x̂ − x+ in the nullspace of ATA =

nullspace of A. The right triangle has c2 = a2 + b2.

17 AA+p = p, AA+e = 0, A+Axr = xr, A+Axn = 0.

18 A+ = V Σ+UT is 1
5
[ .6 .8 ] = [ .12 .16 ] and A+A = [ 1 ] and AA+ =


 .36 .48

.48 .64


 =

projection.

19 L is determined by ℓ21. Each eigenvector in X is determined by one number. The

counts are 1 + 3 for LU , 1 + 2 + 1 for LDU , 1 + 3 for QR (notice 1 rotation angle),

1 + 2 + 1 for UΣV T, 2 + 2 + 0 for XΛX−1.

20 LDLT and QΛQT are determined by 1+ 2+ 0 numbers because A is symmetric.

Note Problem 20 should have referred to Problem 19 not 18.

21 Check the formula for A+A using A+ and A :

A+A=

(
r∑

1

viu
T
i

σi

)(
r∑

1

σjujv
T
j

)
=

r∑

1

viu
T
i uiv

T
i because uT

i uj=0 when i 6= j

Then every uT
i ui = 1 (unit vector) so A+A =

r∑

1

viv
T
i is correct.

Similarly AA+ =

(
r∑

1

σj uj v
T
j

)(
r∑

1

vi u
T
i

σi

)
=

r∑

1

ui u
T
i .
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22 M =


 0 A

AT 0




u

v


 =


 Av

ATu


 = σ


u

v


. Thus


u

v


 is an eigenvector.

The singular values of A are eigenvalues of this block matrix.
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Problem Set 8.1, page 407

1 With w = 0 linearity gives T (v + 0) = T (v) + T (0). Thus T (0) = 0. With c = −1

linearity gives T (−0) = −T (0). This is a second proof that T (0) = 0.

2 Combining T (cv) = cT (v) and T (dw) = dT (w) with addition gives T (cv + dw) =

cT (v) + dT (w). Then one more addition gives cT (v) + dT (w) + eT (u).

3 (d) is not linear.

4 (a) S(T (v)) = v (b) S(T (v1) + T (v2)) = S(T (v1)) + S(T (v2)).

5 Choose v = (1, 1) and w = (−1, 0). Then T (v) + T (w) = (v+w) but T (v+w) =

(0, 0).

6 (a) T (v) = v/‖v‖ does not satisfy T (v + w) = T (v) + T (w) or T (cv) = cT (v)

(b) and (c) are linear (d) satisfies T (cv) = cT (v).

7 (a) T (T (v))=v (b) T (T (v))=v+(2, 2) (c) T (T (v))=−v (d) T (T (v))=T (v).

8 (a) The range of T (v1, v2) = (v1 − v2, 0) is the line of vectors (c, 0). The nullspace

is the line of vectors (c, c). (b) T (v1, v2, v3) = (v1, v2) has Range R2, kernel

{(0, 0,v3)} (c) T (v) = 0 has Range {0}, kernel R2 (d) T (v1, v2) = (v1, v1)

has Range = multiples of (1, 1), kernel = multiples of (1,−1).

9 If T (v1, v2, v3) = (v2, v3, v1) then T (T (v)) = (v3,v1,v2); T
3(v) = v; T 100(v) =

T (v).

10 (a) T (1, 0)=0 (b) (0, 0, 1) is not in the range (c) T (0, 1)=0.

11 For multiplication T (v) = Av: V = Rn, W = Rm; the outputs fill the column

space; v is in the kernel if Av = 0.

12 T (v) = (4, 4); (2, 2); (2, 2); if v = (a, b) = b(1, 1)+ a−b
2 (2, 0) then T (v) = b(2, 2)+

(0, 0).

13 The distributive law (page 69) gives A(M1 + M2) = AM1 + AM2. The distributive

law over c’s gives A(cM) = c(AM).
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14 This A is invertible. Multiply AM = 0 and AM = B by A−1 to get M = 0 and

M = A−1B. The kernel contains only the zero matrix M = 0.

15 This A is not invertible. AM = I is impossible. A


 2 2

−1 −1


 =


0 0

0 0


. The

range contains only matrices AM whose columns are multiples of (1, 3).

16 No matrix A gives A


0 0

1 0


 =


0 1

0 0


. To professors: Linear transformations on

matrix space come from 4 by 4 matrices. Those in Problems 13–15 were special.

17 For T (M) = MT (a) T 2 = I is True (b) True (c) True (d) False.

18 T (I) = 0 but M =


0 b

0 0


 = T (M); these M ’s fill the range. Every M =


a 0

c d




is in the kernel. Notice that dim (range) +dim (kernel) = 3 + 1 = dim (input space

of 2 by 2 M ’s).

19 T (T−1(M)) = M so T−1(M) = A−1MB−1.

20 (a) Horizontal lines stay horizontal, vertical lines stay vertical (b) House squashes

onto a line (c) Vertical lines stay vertical because T (1, 0) = (a11, 0).

21 D =


2 0

0 1


 doubles the width of the house. A =


 .7 .7

.3 .3


 projects the house (since

A2 = A from trace = 1 and λ = 0, 1). The projection is onto the column space of A =

line through (.7, .3). U =


1 1

0 1


 will shear the house horizontally: The point at

(x, y) moves over to (x+ y, y).

22 (a) A =


a 0

0 d


 with d > 0 leaves the house AH sitting straight up (b) A = 3I

expands the house by 3 (c) A =


cos θ − sin θ

sin θ cos θ


 rotates the house.

23 T (v) = −v rotates the house by 180◦ around the origin. Then the affine transformation

T (v) = −v + (1, 0) shifts the rotated house one unit to the right.

24 A code to add a chimney will be gratefully received!
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25 This code needs a correction: add spaces between −10 10 −10 10

26


1 0

0 .1


 compresses vertical distances by 10 to 1.


 .5 .5

.5 .5


 projects onto the 45◦ line.


 .5 .5

−.5 .5


 rotates by 45◦ clockwise and contracts by a factor of

√
2 (the columns have

length 1/
√
2).


1 1

1 0


 has determinant −1 so the house is “flipped and sheared.” One

way to see this is to factor the matrix as LDLT:


1 1

1 0


 =


1 0

1 1




1

−1




1 1

0 1


 = (shear) (flip left-right) (shear).

27 Also 30 emphasizes that circles are transformed to ellipses (see figure in Section 6.7).

28 A code that adds two eyes and a smile will be included here with public credit given!

29 (a) ad − bc = 0 (b) ad − bc > 0 (c) |ad − bc| = 1. If vectors to two

corners transform to themselves then by linearity T = I . (Fails if one corner is (0, 0).)

30 Linear transformations keep straight lines straight! And two parallel edges of a square

(edges differing by a fixed v) go to two parallel edges (edges differing by T (v)). So

the output is a parallelogram.

Problem Set 8.2, page 418

1

For Sv = d2v/dx2

v1, v2, v3, v4 = 1, x, x2, x3

Sv1 = Sv2 = 0, Sv3 = 2v1, Sv4 = 6v2;

The matrix for S is B =




0 0 2 0

0 0 0 6

0 0 0 0

0 0 0 0




.

2 Sv = d2v/dx2 = 0 for linear functions v(x) = a + bx. All (a, b, 0, 0) are in the

nullspace of the second derivative matrix B.

3 (Matrix A)2 = B when (transformation T )2 = S and output basis = input basis.
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4 The third derivative matrix has 6 in the (1, 4) position; since the third derivative of x3

is 6. This matrix also comes from AB. The fourth derivative of a cubic is zero, and B2

is the zero matrix.

5 T (v1 + v2 + v3) = 2w1 +w2 + 2w3; A times (1, 1, 1) gives (2, 1, 2).

6 v = c(v2−v3) gives T (v) = 0; nullspace is (0, c,−c); solutions (1, 0, 0)+(0, c,−c).

7 (1, 0, 0) is not in the column space of the matrix A, and w1 is not in the range of

the linear transformation T . Key point: Column space of matrix matches range of

transformation.

8 We don’t know T (w) unless the w’s are the same as the v’s. In that case the matrix is

A2.

9 Rank of A = 2 = dimension of the range of T . The outputs Av (column space) match

the outputs T (v) (the range of T ). The “output space” W is like Rm: it contains all

outputs but may not be filled up.

10 The matrix for T is A =




1 0 0

1 1 0

1 1 1


. For the output




1

0

0


 choose input v =




1

−1

0


 =

A−1




1

0

0


. This means: For the output w1 choose the input v1 − v2.

11 A−1 =




1 0 0

−1 1 0

0 −1 1


 so T−1(w1) = v1 − v2, T

−1(w2) = v2 − v3, T
−1(w3) =

v3. The columns of A−1 describe T−1 from W back to V . The only solution to

T (v) = 0 is v = 0.

12 (c) T−1(T (w1)) = w1 is wrong because w1 is not generally in the input space.

13 (a) T (v1) = v2, T (v2) = v1 is its own inverse (b) T (v1) = v1, T (v2) = 0 has

T 2 = T (c) If T 2 = I for part (a) and T 2 = T for part (b), then T must be I .
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14 (a)


2 1

5 3


 (b)


 3 −1

−5 2


 = inverse of (a) (c) A


2

6


 must be 2A


1

3


.

15 (a) M =


r s

t u


 transforms


1

0


 and


0

1


 to


r

t


 and


 s

u


; this is the “easy”

direction. (b) N =


a b

c d



−1

transforms in the inverse direction, back to the stan-

dard basis vectors. (c) ad = bc will make the forward matrix singular and the inverse

impossible.

16 MW =


1 0

1 2




2 1

5 3



−1

=


 3 −1

−7 3


.

17 Reordering basis vectors is done by a permutation matrix. Changing lengths is done by

a positive diagonal matrix.

18 (a, b) = (cos θ,− sin θ). Minus sign from Q−1 = QT.

19 M =


1 1

4 5


;


a

b


 =


 5

−4


 = first column of M−1 = coordinates of


1

0


 in basis


1

4




1

5


.

20 w2(x) = 1− x2; w3(x) =
1
2
(x2 − x); y = 4w1 + 5w2 + 6w3.

21 w’s to v’s:




0 1 0

.5 0 −.5

.5 −1 .5


 . v’s to w’s: inverse matrix =




1 1 1

1 0 0

1 −1 1


. The key

idea: The matrix multiplies the coordinates in the v basis to give the coordinates in the

w basis.

22 The 3 equations to match 4, 5, 6 at x = a, b, c are




1 a a2

1 b b2

1 c c2







A

B

C




=




4

5

6




. This

Vandermonde determinant equals (b − a)(c − a)(c − b). So a, b, c must be distinct to

have det 6= 0 and one solution A,B,C.



Solutions to Exercises 147

23 The matrix M with these nine entries must be invertible.

24 Start from A = QR. Column 2 is a2 = r12q1+ r22q2. This gives a2 as a combination

of the q’s. So the change of basis matrix is R.

25 Start from A = LU . Row 2 of A is ℓ21(row 1 of U) + ℓ22 (row 2 of U ). The change of

basis matrix is always invertible, because basis goes to basis.

26 The matrix for T (vi) = λivi is Λ = diag(λ1, λ2, λ3).

27 If T is not invertible, T (v1), . . . , T (vn) is not a basis.We couldn’t choose wi = T (vi).

28 (a)


0 3

0 0


 gives T (v1) = 0 and T (v2) = 3v1. (b)


1 0

0 0


 gives T (v1) = v1

and T (v1 + v2) = v1 (which combine into T (v2) = 0 by linearity).

29 T (x, y) = (x,−y) is reflection across the x-axis. Then reflect across the y-axis to get

S(x,−y) = (−x,−y). Thus ST = −I .

30 S takes (x, y) to (−x, y). S(T (v))=(−1,2). S(v)=(−2, 1) and T (S(v))=(1,−2).

31 Multiply the two reflections to get


cos 2(θ − α) − sin 2(θ − α)

sin 2(θ − α) cos 2(θ − α)


 which is rotation

by 2(θ − α). In words: (1, 0) is reflected to have angle 2α, and that is reflected again

to angle 2θ − 2α.

32 The matrix for T in this basis is A =




1 0 0 0

0 1 0 0

0 0 0 0


.

33 Multiplying by


a b

c d


 gives T (v1) = A


1 0

0 0


 =


a 0

c 0


 = av1 + cv3. Simi-

larly T (v2) = av2+cv4 and T (v3) = bv1+dv3 and T (v4) = bv2+dv4. The matrix

for T in this basis is




a 0 b 0

0 a 0 b

c 0 d 0

0 c 0 d




34 False: We will not know T (v) for every v unless the n v’s are linearly independent.
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Problem Set 8.3, page 429

1 For this matrix J , the rank of J − 3I is 3 so the dimension of the nullspace is only

1. There is only 1 independent eigenvector even though λ = 3 is a double root of

det(J − λI) = 0 : a repeated eigenvalue.

J =




2

2

3 1

3



.

2 J =


 0 1

0 0


 is similar to all other 2 by 2 matrices A that have 2 zero eigenvalues but

only 1 independent eigenvector. Then J = B−1
1 A1B1 is the same as B1J = A1B1 :

B1J =


 4 0

0 1




 0 1

0 0


 =


 0 4

0 0




 4 0

0 1


 = A1B1

B2J =


 4 1

2 0




 0 1

0 0


 =


 4 −8

2 −4




 4 1

2 0


 = A2B2

3 Every matrix is similar to its transpose (same eigenvalues, same multiplicity, more than

that the same Jordan form). In this example

BJ =




1

1

1







2 1 0

0 2 1

0 0 2


 =




2 0 0

1 2 0

0 1 2







1

1

1


 = JTB.

4 Here J and K are different Jordan forms (block sizes 2, 2 versus block sizes 3, 1). Even

though J and K have the same λ’s (all zero) and same rank, J and K are not similar.

If BK = JB then B is not invertible :

BK = B




0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0



=




0 b11 b12 0

0 b21 b22 0

0 b31 b32 0

0 b41 b42 0



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JB =




0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0



B =




b21 b22 b23 b24

0 0 0 0

b41 b42 b43 b44

0 0 0 0




Those right hand sides agree only if b21 = 0, b41 = 0, b24 = 0, b44 = 0, b22 = 0,

b42 = 0. But then also b11 = b22 = 0 and b31 = b42 = 0. So the first column has

b11 = b21 = b31 = b41 = 0 and B is not invertible.

5 If A3 is the zero matrix then every eigenvalue of A is λ = 0 (because Ax = λx leads

to θ = A3x = λ3x). The Jordan form J will also have J3 = 0 because J = B−1AB

has J3 = B−1A3B = 0. The blocks of J must become zero blocks in J3. So those

blocks of J can be

[
0
]

 0 1

0 0







0 1 0

0 0 1

0 0 0


 but not




0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0





 third power

is not zero




The rank of J (and A) is largest if every block is 3 by 3 of rank 2. Then rank ≤ 2

3
n.

If An = zero matrix then A is not invertible and rank (A) < n.

6 This question substitutes u1 = teλt and u2 = eλt to show that u1, u2 solve the system

u ′ = Ju :

u ′

1 = λu1 + u2 eλt + tλeλt = λ(teλt) + (eλt)

u ′

2 = λu2 λeλt = λ(eλt) .

Certainly u1 = 0 and u2 = 1 at t = 0, so we have the solution and it involves teλt (the

factor t appears because λ is a double eigenvalue of J).

7 The equation uk+2 − 2λuk+1 + λ2uk is certainly solved by uk = λk. But this is a

second order equation and there must be another solution. In analogy with teλt for the

differential equation in 8.3.6, that second solution is uk = kλk. Check :

(k + 2)λk+2 − 2λ(k + 1)λk+1 + λ2(k)λk =
[
k + 2− 2(k + 1) + k

]
λk+2 = 0.
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8 λ3 = 1 has 3 roots λ = 1 and e2πi/3 and e4πi/3. Those are 1,λ,λ2 if we take

λ = e2πi/3. The Fourier matrix is

F3 =




1 1 1

1 λ λ2

1 λ2 λ4


 =




1 1 1

1 e2πi/3 e4πi/3

1 e4πi/3 e8πi/3


 .

9 A 3 by 3 circulant matrix has the form on page 425 :

C =




c0 c1 c2

c2 c0 c1

c1 c2 c0


 with C




1

1

1


 = (c0 + c1 + c2)




1

1

1




C




1

λ

λ2


 = (c0+c1λ+c2λ

2)




1

λ

λ2


 C




1

λ2

λ4


 = (c0+c1λ

2+c2λ
4)




1

λ2

λ4


 .

Those 3 eigenvalues of C are exactly the 3 components of Fc = F




c0

c1

c2


,

10 The Fourier cosine coefficient c3 is in formula (7) with integrals from −π to π. Because

f drops to zero at x = L, the integral stops at L :

a3 =

∫
f(x) cos 3x dx∫
(cos 3x)2 dx

=
1

π

∫ L

−L

(1)(cos 3x) dx =
1

3π

[
sin 3x

]x=L

x=−L

=
2 sin 3L

3π
.

Note that we should have defined f(x) = 0 for L < |x| < π (not 2π !).
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Problem Set 9.1, page 436

1 (a)(b)(c) have sums 4, −2 + 2i, 2 cos θ and products 5, −2i, 1. Note (eiθ)(e−iθ) = 1.

2 In polar form these are
√
5eiθ , 5e2iθ , 1√

5
e−iθ ,

√
5.

3 The absolute values are r = 10, 100, 1
10

, and 100. The angles are θ, 2θ, −θ and −2θ.

4 |z × w| = 6, |z + w| ≤ 5, |z/w| = 2
3 , |z − w| ≤ 5.

5 a+ ib =
√
3
2

+ 1
2
i, 1

2
+

√
3
2
i, i, − 1

2
+

√
3
2
i; w12 = 1.

6 1/z has absolute value 1/r and angle −θ; (1/r)e−iθ times reiθ equals 1.

7


a −b

b a




 c

d




ac− bd

bc+ ad


 real part

imaginary part


1 −3

3 1




 1

−3


 =


10

0


 is the matrix

form of (1 + 3i)(1 − 3i) = 10.

8


A1 −A2

A2 A1




x1

x2


 =


b1
b2


 gives complex matrix = vector multiplication (A1 +

iA2)(x1 + ix2) = b1 + ib2.

9 2 + i; (2 + i)(1 + i) = 1 + 3i; e−iπ/2 = −i; e−iπ = −1; 1−i
1+i

= −i; (−i)103 = i.

10 z + z is real; z − z is pure imaginary; zz is positive; z/z has absolute value 1.

11


 a b

−b a


 includes aI (which just adds a to the eigenvalues and b


 0 1

−1 0


. So the

eigenvectors are x1 = (1, i) and x2 = (1,−i). The eigenvalues are λ1 = a + bi and

λ2 = a− bi. We see x1 = x2 and λ1 = λ2 as expected for real matrices with complex

eigenvalues.

12 (a) When a = b = d = 1 the square root becomes
√
4c; λ is complex if c < 0

(b) λ = 0 and λ = a+ d when ad = bc (c) the λ’s can be real and different.

13 Complex λ’s when (a+d)2 < 4(ad−bc); write (a+d)2−4(ad−bc) as (a−d)2+4bc

which is positive when bc > 0.

14 The symmetric block matrix has real eigenvalues; so iλ is real and λ is pure imaginary.

15 (a) 2eiπ/3, 4e2iπ/3 (b) e2iθ, e4iθ (c) 7e3πi/2, 49e3πi (= −49) (d)
√
50e−πi/4,

50e−πi/2.
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16 r = 1, angle π
2
− θ; multiply by eiθ to get eiπ/2 = i.

17 a+ ib = 1, i, −1, −i, ± 1√
2
± i√

2
. The root w = w−1 = e−2πi/8 is 1/

√
2− i/

√
2.

18 1, e2πi/3, e4πi/3 are cube roots of 1. The cube roots of −1 are −1, eπi/3, e−πi/3.

Altogether six roots of z6 = 1.

19 cos 3θ=Re[(cos θ+ i sin θ)3]=cos3 θ−3 cos θ sin2 θ; sin 3θ=3 cos2 θ sin θ− sin3 θ.

20 If the conjugate z = 1/z then |z|2 = 1 and z is any point eiθ on the unit circle.

21 ei is at angle θ = 1 on the unit circle; |ie| = 1e; Infinitely many ie = ei(π/2+2πn)e.

22 (a) Unit circle (b) Spiral in to e−2π (c) Circle continuing around to angle θ=2π2.

Problem Set 9.2, page 443

1 ‖u‖ =
√
9 = 3, ‖v‖ =

√
3, uHv = 3i+ 2, vHu = −3i+ 2 (this is the conjugate of

uHv).

2 AHA =




2 0 1 + i

0 2 1 + i

1− i 1− i 2


 and AAH =


3 1

1 3


 are Hermitian matrices. They

share the eigenvalues 4 and 2.

3 z=multiple of (1+i, 1+i,−2); Az=0 gives zHAH = 0H so z (not z!) is orthogonal

to all columns of AH (using complex inner product zH times columns of AH).

4 The four fundamental subspaces are now C(A), N(A), C(AH), N(AH). AH and notAT.

5 (a) (AHA)H = AHAHH = AHA again (b) If AHAz = 0 then (zHAH)(Az) = 0.

This is ‖Az‖2 = 0 so Az = 0. The nullspaces of A and AHA are always the same.

6
(a) False

(c) False
A = Q =


 0 1

−1 0


 (b) True: −i is not an eigenvalue when S = SH.

7 cS is still Hermitian for real c; (iS)H = −iSH = −iS is skew-Hermitian.
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8 This P is invertible and unitary. P 2 =




0 0 −1

−1 0 0

0 −1 0


, P 3 =




−i

−i

−i


 =

−iI . Then P 100 = (−i)33P = −iP . The eigenvalues of P are the roots of λ3 = −i,

which are i and ie2πi/3 and ie4πi/3.

9 One unit eigenvector is certainly x1 = (1, 1, 1) with λ1 = i. The other eigenvectors

are x2 = (1, w, w2) and x3 = (1, w2, w4) with w = e2πi/3. The eigenvector matrix

is the Fourier matrix F3. The eigenvectors of any unitary matrix like P are orthogonal

(using the correct complex form xHy of the inner product).

10 (1, 1, 1), (1, e2πi/3, e4πi/3), (1, e4πi/3, e2πi/3) are orthogonal (complex inner product!)

because P is an orthogonal matrix—and therefore its eigenvector matrix is unitary.

11 If QHQ = I then Q−1(QH)−1 = Q−1(Q−1)H = I so Q−1 is also unitary. Also

(QU)H(QU) = UHQHQU = UHU = I so QU is unitary.

12 Determinant= product of the eigenvalues (all real). And A = AH gives detA =detA.

13 (zHAH)(Az) = ‖Az‖2 is positive unless Az = 0. When A has independent columns

this means z = 0; so AHA is positive definite.

14 S =
1√
3


 1 −1 + i

1 + i 1




2 0

0 −1


 1√

3


 1 1− i

−1− i 1


.

15 K =(iAT in Problem 14)=
1√
3


 1 −1− i

1− i 1




2i 0

0 −i


 1√

3


 1 1 + i

−1 + i 1


;

λ’s are imaginary.

16 U =
1√
2


 1 −i

−i 1




cos θ + i sin θ 0

0 cos θ − i sin θ


 1√

2


1 i

i 1


 has |λ| = 1.

17 U =
1

L


1 +

√
3 −1 + i

1 + i 1 +
√
3




1 0

0 −1


 1

L


1 +

√
3 1− i

−1− i 1 +
√
3


withL2 = 6+2

√
3.

Unitary means |λ| = 1. U = UH gives real λ. Then trace zero gives λ = 1 and −1.

18 The v’s are columns of a unitary matrix U , so UH is U−1. Then z = UUHz =

(multiply by columns) = v1(v
H
1 z)+ · · ·+vn(v

H
nz): a typical orthonormal expansion.
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19 z = (1, i,−2) completes an orthogonal basis for C3. So does any eiθz.

20 S = A+ iB = (A+ iB)H = AT − iBT; A is symmetric but B is skew-symmetric.

21 Cn has dimension n; the columns of any unitary matrix are a basis. For example use

the columns of iI : (i, 0, . . . , 0), . . . , (0, . . . , 0, i)

22 [ 1 ] and [−1 ]; any [ eiθ ];


 a b+ ic

b− ic d


;


 w eiφz

−z eiφw


 with |w|2 + |z|2 = 1

and any angle φ

23 The eigenvalues of AH are complex conjugates of the eigenvalues of A: det(A−λI)=0

gives det(AH − λI) = 0.

24 (I − 2uuH)H = I − 2uuH and also (I − 2uuH)2 = I − 4uuH + 4u(uHu)uH = I .

The rank-1 matrix uuH projects onto the line through u.

25 Unitary UHU = I means (AT−iBT)(A+iB) = (ATA+BTB)+i(ATB−BTA)=I .

ATA+ BTB = I and ATB −BTA = 0 which makes the block matrix orthogonal.

26 We are given A+ iB = (A+ iB)H = AT − iBT. Then A = AT and B = −BT. So

that


A −B

B A


 is symmetric.

27 SS−1 = I gives (S−1)HSH = I . Therefore (S−1)H is (SH)−1 = S−1 and S−1 is

Hermitian.

28 If U has (complex) orthonormal columns, then UHU = I and U is unitary. If those

columns are eigenvectors of A, then A = UΛU−1 = UΛUH is normal. The direct test

for a normal matrix (which is AAH = AHA because diagonals could be real!) and ΛH

surely commute:

AAH=(UΛUH)(UΛHUH)=U(ΛΛH)UH=U(ΛHΛ)UH=(UΛHUH)(UΛUH)=AHA.

An easy way to construct a normal matrix is 1 + i times a symmetric matrix. Or take

A = S + iT where the real symmetric S and T commute (Then AH = S − iT and

AAH = AHA).
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Problem Set 9.3, page 450

1 Equation (3) (the FFT) is correct using i2 = −1 in the last two rows and three columns.

2 F−1 =




1

1

1

1




1

2




1 1

1 i2

1 1

1 i2




1

2




1 1

1 1

1 −1

−i i



=

1

4
FH.

3 F =




1

1

1

1







1 1

1 i2

1 1

1 i2







1 1

1 1

1 −1

−i i




permutation last.

4 D =




1

e2πi/6

e4πi/6


 (note 6 not 3) and F3




1 1 1

1 e2πi/3 e4πi/3

1 e4πi/3 e2πi/3


.

5 F−1w = v and F−1v = w/4. Delta vector ↔ all-ones vector.

6 (F4)
2 =




4 0 0 0

0 0 0 4

0 0 4 0

0 4 0 0




and (F4)
4 = 16I . Four transforms recover the signal!

7 c=




1

0

1

0



→




1

1

0

0



→




2

0

0

0



→




2

0

2

0



=Fc. Also C=




0

1

0

1



→




0

0

1

1



→




0

0

2

0



→




2

0

−2

0



=FC.

Adding c+ C gives (1, 1, 1, 1) to (4, 0, 0, 0) = 4 (delta vector).

8 c → (1, 1, 1, 1, 0, 0, 0, 0) → (4, 0, 0, 0, 0, 0, 0, 0) → (4, 0, 0, 0, 4, 0, 0, 0) = F8c.

C → (0, 0, 0, 0, 1, 1, 1, 1) → (0, 0, 0, 0, 4, 0, 0, 0) → (4, 0, 0, 0,−4, 0, 0, 0) = F8C.

9 If w64 = 1 then w2 is a 32nd root of 1 and
√
w is a 128th root of 1: Key to FFT.
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10 For every integer n, the nth roots of 1 add to zero. For even n, they cancel in pairs. For

any n, use the geometric series formula 1+w+ · · ·+wn−1 = (wn − 1)/(w− 1) = 0.

In particular for n = 3, 1 + (−1 + i
√
3)/2 + (−1− i

√
3)/2 = 0.

11 The eigenvalues of P are 1, i, i2 = −1, and i3 = −i. Problem 11 displays the eigen-

vectors. And also det(P − λI) = λ4 − 1.

12 Λ = diag(1, i, i2, i3); P =




0 1 0

0 0 1

1 0 0


 and PT lead to λ3 − 1 = 0.

13 e1 = c0+c1+c2+c3 and e2 = c0+c1i+c2i
2+c3i

3; E contains the four eigenvalues

of C = FEF−1 because F contains the eigenvectors.

14 Eigenvalues e1 = 2− 1− 1 = 0, e2 = 2− i− i3 = 2, e3 = 2− (−1)− (−1) = 4,

e4 = 2− i3 − i9 = 2. Just transform column 0 of C. Check trace 0 + 2 + 4 + 2 = 8.

15 Diagonal E needs n multiplications, Fourier matrix F and F−1 need 1
2
n log2 n multi-

plications each by the FFT. The total is much less than the ordinary n2 for C times x.

16 The row 1, wk, w2k, . . . in F is the same as the row 1, wN−k, wN−2k , . . . in F because

wN−k = e(2πi/N)(N−k) is e2πie−(2πi/N)k = 1 times wk. So F and F have the same

rows in reversed order (except for row 0 which is all ones).

17 0 000 reverses to 000 = 0

1 001 reverses to 100 = 4

2 010 reverses to 010 = 2 Now evens come before odds !

3 011 reverses to 110 = 6

4 100 reverses to 001 = 1

5 101 reverses to 101 = 5

6 110 reverses to 011 = 3

7 111 reverses to 111 = 7
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Problem Set 10.1, page 459

1 A =




−1 1 0

−1 0 1

0 −1 1


; nullspace contains




c

c

c


;




1

0

0


 is not orthogonal to that nullspace.

2 ATy = 0 for y = (1,−1, 1); current along edge 1, edge 3, back on edge 2 (full loop).

3 [A b ] =




−1 1 0 b1

−1 0 1 b2

0 −1 1 b3


 leads to [U c ] =




−1 1 0 b1

0 −1 1 b2 − b1

0 0 0 b3 − b2 + b1


.

The nonzero rows of U come from edges 1 and 3 in a tree. The zero row comes from

the loop (all 3 edges).

4 For the matrix in Problem 3, Ax = b is solvable for b = (1, 1, 0) and not solvable

for b = (1, 0, 0). For solvable b (in the column space), b must be orthogonal to y =

(1,−1, 1); that combination of rows is the zero row, and b1 − b2 + b3 = 0 is the third

equation after elimination.

5 Kirchhoff’s Current Law ATy = f is solvable for f = (1,−1, 0) and not solvable for

f = (1, 0, 0); f must be orthogonal to (1, 1, 1) in the nullspace: f1 + f2 + f3 = 0.

6 ATAx =




2 −1 −1

−1 2 −1

−1 −1 2


x =




3

−3

0


 = f produces x =




1

−1

0


 +




c

c

c


; potentials

x = 1,−1, 0 and currents −Ax = 2, 1, −1; f sends 3 units from node 2 into node 1.

7 AT




1

2

2


A =




3 −1 −2

−1 3 −2

−2 −2 4


; f =




1

0

−1


 yields x =




5/4

1

7/8


+ any




c

c

c


;

potentials x = 5
4 , 1,

7
8 and currents −CAx = 1

4 ,
3
4 ,

1
4 .
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8 A =




−1 1 0 0

−1 0 1 0

0 −1 1 0

0 −1 0 1

0 0 −1 1




leads to x =




1

1

1

1




and y =




−1

1

−1

0

0




and




0

0

1

−1

1




solving

ATy = 0.

9 Elimination on Ax = b always leads to yTb = 0 in the zero rows of U and R:

−b1 + b2 − b3 = 0 and b3 − b4 + b5 = 0 (those y’s are from Problem 8 in the left

nullspace). This is Kirchhoff’s Voltage Law around the two loops.

10 The echelon form ofA is U =




−1 1 0 0

0 −1 1 0

0 0 −1 1

0 0 0 0

0 0 0 0




The nonzero rows of U keep

edges 1, 2, 4. Other spanning trees

from edges, 1, 2, 5; 1, 3, 4; 1, 3, 5;

1, 4, 5; 2, 3, 4; 2, 3, 5; 2, 4, 5.

11 ATA =




2 −1 −1 0

−1 3 −1 −1

−1 −1 3 −1

0 −1 −1 2




diagonal entry = number of edges into the node

the trace is 2 times the number of nodes

off-diagonal entry = −1 if nodes are connected

ATA is the graph Laplacian, ATCA is weighted by C

12 (a) The nullspace and rank of ATA and A are always the same (b) ATA is always

positive semidefinite because xTATAx = ‖Ax‖2 ≥ 0. Not positive definite because

rank is only 3 and (1, 1, 1, 1) is in the nullspace (c) Real eigenvalues all ≥ 0 because

positive semidefinite.

13 ATCAx =




4 −2 −2 0

−2 8 −3 −3

−2 −3 8 −3

0 −3 −3 6



x =




1

0

0

−1




gives four potentials x = ( 5
12
, 1
6
, 1
6
, 0)

I grounded x4 = 0 and solved for x

currents y = −CAx = (2
3
, 2
3
, 0, 1

2
, 1
2
)

14 ATCAx = 0 for x = c(1, 1, 1, 1) = (c, c, c, c). If ATCAx = f is solvable, then f in

the column space (= row space by symmetry) must be orthogonal to x in the nullspace:

f1 + f2 + f3 + f4 = 0.
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15 The number of loops in this connected graph is n − m + 1 = 7 − 7 + 1 = 1.

What answer if the graph has two separate components (no edges between)?

16 Start from (4 nodes) − (6 edges) + (3 loops) = 1. If a new node connects to 1 old

node, 5 − 7 + 3 = 1. If the new node connects to 2 old nodes, a new loop is formed:

5− 8 + 4 = 1.

17 (a) 8 independent columns (b) f must be orthogonal to the nullspace so f ’s add

to zero (c) Each edge goes into 2 nodes, 12 edges make diagonal entries sum to 24.

18 A complete graph has 5 + 4 + 3 + 2 + 1 = 15 edges. With n nodes that count is

1 + · · ·+ (n− 1) = n(n− 1)/2. Tree has 5 edges.

Problem Set 10.2, page 472

1 Det AT
0 C0A0 =




c1 + c2 −c2 0

−c2 c2 + c3 −c3

0 −c3 c3 + c4


 is by direct calculation. Set c4 = 0 to

find detAT
1 C1A1 = c1c2c3.

2 (AT
1 C1A1)

−1 =




1 0 0

1 1 0

1 1 1







c−1
1

c−1
2

c−1
3







1 1 1

0 1 1

0 0 1


 =




c−1
1 c−1

1 c−1
1

c−1
1 c−1

1 + c−1
2 c−1

1 + c−1
2

c−1
1 c−1

1 + c−1
2 c−1

1 + c−1
2 + c−1

3


.

3 The rows of the free-free matrix in equation (9) add to [ 0 0 0 ] so the right side needs

f1 + f2 + f3 = 0. f = (−1, 0, 1) gives c2u1 − c2u2 = −1, c3u2 − c3u3 = −1, 0 = 0.

Then uparticular = (−c−1
2 −c−1

3 ,−c−1
3 , 0). Add any multiple of unullspace = (1, 1, 1).

4

∫
− d

dx

(
c(x)

du

dx

)
dx=−

[
c(x)

du

dx

]1

0

=0 (bdry cond) so we need

∫
f(x) dx=0.
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5 −dy

dx
= f(x) gives y(x) = C −

∫
x

0

f(t)dt. Then y(1) = 0 gives C =

∫ 1

0

f(t)dt and

y(x) =

∫ 1

x

f(t)dt. If the load is f(x) = 1 then the displacement is y(x) = 1− x.

6 Multiply AT
1 C1A1 as columns of AT

1 times c’s times rows of A1. The first 3 by 3

“element matrix” c1E1 = [ 1 0 0 ]
T
c1[ 1 0 0 ] has c1 in the top left corner.

7 For 5 springs and 4 masses, the 5 by 4 A has two nonzero diagonals: all aii = 1

and ai+1,i = −1. With C = diag(c1, c2, c3, c4, c5) we get K = ATCA, symmetric

tridiagonal with diagonal entries Kii = ci + ci+1 and off-diagonals Ki+1,i = −ci+1.

With C = I this K is the −1, 2,−1 matrix and K(2, 3, 3, 2) = (1, 1, 1, 1) solves

Ku = ones(4, 1). (K−1 will solve Ku = ones(4).)

8 The solution to −u′′=1 with u(0)=u(1)= 0 is u(x)= 1
2
(x − x2). At x= 1

5
, 2
5
, 3
5
, 4
5

this gives u=2, 3, 3, 2 (discrete solution in Problem 7) times (∆x)2=1/25.

9 −u ′′ = mg has complete solution u(x) = A + Bx − 1
2mgx2. From u(0) = 0 we

get A = 0. From u ′(1) = 0 we get B = mg. Then u(x) = 1
2mg(2x − x2) at

x = 1
3 ,

2
3 ,

3
3 equals mg/6, 4mg/9,mg/2. This u(x) is not proportional to the discrete

u = (3mg, 5mg, 6mg) at the meshpoints. This imperfection is because the discrete

problem uses a 1-sided difference, less accurate at the free end. Perfect accuracy is

recovered by a centered difference (discussed on page 21 of my CSE textbook).

10 (added in later printing, changing 10-11 below into 11-12). The solution in this fixed-

fixed case is (2.25, 2.50, 1.75) so the second mass moves furthest.

11 The two graphs of 100 points are “discrete parabolas” starting at (0, 0): symmetric

around 50 in the fixed-fixed case, ending with slope zero in the fixed-free case.

12 Forward/backward/centered for du/dx has a big effect because that term has the large

coefficient. MATLAB: E = diag(ones(6, 1), 1); K = 64 ∗ (2 ∗ eye(7) − E − E′);

D = 80 ∗ (E− eye(7)); (K + D)\ones(7, 1); % forward; (K − D′)\ones(7, 1);

% backward; (K + D/2 − D ′/2)\ones(7, 1);% centered is usually the best: more

accurate
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Problem Set 10.3, page 480

1 Eigenvalues λ = 1 and .75; (A − I)x = 0 gives the steady state x = (.6, .4) with

Ax = x.

2 A =


 .6 −1

.4 1




1

.75




 1 1

−.4 .6


; A∞ =


 .6 −1

.4 −1




1 0

0 0




 1 1

−.4 .6


=


.6 .6

.4 .4


.

3 λ = 1 and .8, x = (1, 0); 1 and −.8, x = (59 ,
4
9 ); 1, 14 , and 1

4 , x = (13 ,
1
3 ,

1
3 ).

4 AT always has the eigenvector (1, 1, . . . , 1) for λ = 1, because each row of AT adds

to 1. (Note again that many authors use row vectors multiplying Markov matrices.

So they transpose our form of A.)

5 The steady state eigenvector for λ = 1 is (0, 0, 1) = everyone is dead.

6 Add the components of Ax = λx to find sum s = λs. If λ 6= 1 the sum must be s = 0.

7 (.5)k → 0 gives Ak → A∞; any A =


 .6 + .4a .6− .6a

.4− .4a .4 + .6a


 with

a ≤ 1

.4 + .6a ≥ 0

8 If P = cyclic permutation and u0 = (1, 0, 0, 0) then u1 = (0, 0, 1, 0); u2 = (0, 1, 0, 0);

u3 = (1, 0, 0, 0); u4 = u0. The eigenvalues 1, i,−1,−i are all on the unit circle. This

Markov matrix contains zeros; a positive matrix has one largest eigenvalue λ = 1.

9 M2 is still nonnegative; [ 1 · · · 1 ]M = [ 1 · · · 1 ] so multiply on the right by M

to find [ 1 · · · 1 ]M2 = [ 1 · · · 1 ] ⇒ columns of M2 add to 1.

10 λ = 1 and a+ d− 1 from the trace; steady state is a multiple of x1 = (b, 1− a).

11 Last row .2, .3, .5makesA = AT; rows also add to 1 so (1, . . . , 1) is also an eigenvector

of A.

12 B has λ = 0 and −.5 with x1 = (.3, .2) and x2 = (−1, 1); A has λ = 1 so A− I has

λ = 0. e−.5t approaches zero and the solution approaches c1e
0tx1 = c1x1.

13 x = (1, 1, 1) is an eigenvector when the row sums are equal; Ax = (.9, .9, .9)
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14 (I−A)(I+A+A2+· · · ) = (I+A+A2+· · · )−(A+A2+A3+· · · ) = I. This says that

I +A+A2 + · · · is (I −A)−1. When A =


0 .5

1 0


 , A2 = 1

2I, A
3 = 1

2A,A
4 = 1

4I

and the series adds to


1 +

1
2 + · · · 1

2 + 1
4 + · · ·

1 + 1
2 + · · · 1 + 1

2 + · · ·


 =


2 1

2 2


 = (I − A)−1.

15 The first two A’s have λmax < 1; p =


8

6


 and


130

32


; I−


 .5 1

.5 0


 has no inverse.

16 λ = 1 (Markov), 0 (singular), .2 (from trace). Steady state (.3, .3, .4) and (30, 30, 40).

17 No, A has an eigenvalue λ = 1 and (I −A)−1 does not exist.

18 The Leslie matrix on page 435 has det(A−λI) = det




F1 − λ F2 F3

P1 −λ 0

0 P2 −λ


 = −λ3+

F1λ
2 + F2P1λ + F3P1P2. This is negative for large λ. It is positive at λ = 1

provided that F1 + F2P1 + F3P1P2 > 1. Under this key condition, det(A − λI)

must be zero at some λ between 1 and ∞. That eigenvalue means that the population

grows (under this condition connecting F ’s and P ’s reproduction and survival rates).

19 Λ times X−1∆X has the same diagonal as X−1∆X times Λ because Λ is diagonal.

20 If B>A>0 and Ax=λmax(A)x>0 then Bx>λmax(A)x and λmax(B)>λmax(A).

of C = four components of Fc. Circulants are special!

Problem Set 10.4, page 489

1 Feasible set = line segment (6, 0) to (0, 3); minimum cost at (6, 0), maximum at (0, 3).

2 Feasible set has corners (0, 0), (6, 0), (2, 2), (0, 6). Minimum cost 2x− y at (6, 0).

3 Only two corners (4, 0, 0) and (0, 2, 0); let xi → −∞, x2 = 0, and x3 = x1 − 4.

4 From (0, 0, 2) move to x = (0, 1, 1.5) with the constraint x1+x2+2x3 = 4. The new

cost is 3(1) + 8(1.5) = $15 so r = −1 is the reduced cost. The simplex method also

checks x = (1, 0, 1.5) with cost 5(1) + 8(1.5) = $17; r = 1 means more expensive.
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5 Cost = 20 at start (4, 0, 0); keeping x1+x2+2x3 = 4 move to (3, 1, 0)with cost 18 and

r = −2; or move to (2, 0, 1) with cost 17 and r = −3. Choose x3 as entering variable

and move to (0, 0, 2) with cost 14. Another step will reach (0, 4, 0) with minimum cost

12.

6 If we reduce the Ph.D. cost to $1 or $2 (below the student cost of $3), the job will

go to the Ph.D. with cost vector c = (2, 3, 8) the Ph.D. takes 4 hours (x1+x2+2x3 =

4) and charges $8.

The teacher in the dual problem now has y ≤ 2, y ≤ 3, 2y ≤ 8 as constraints

ATy ≤ c on the charge of y per problem. So the dual has maximum at y = 2. The

dual cost is also $8 for 4 problems and maximum = minimum.

7 x = (2, 2, 0) is a corner of the feasible set with x1+x2+2x3 = 4 and the new constraint

2x1 + x2 + x3 = 6. The cost of this corner is cTx = (5, 3, 8) · (2, 2, 0) = 16. Is

this the minimum cost?

Compute the reduced cost r if x3 = 1 enters (x3 was previously zero). The two

constraint equations now require x1 = 3 and x2 = −1. With x = (3,−1, 1) the new

cost is 3.5− 1.3 + 1.8 = 20. This is higher than 16, so the original x = (2, 2, 0) was

optimal.

Note that x3 = 1 led to x2 = −1 and a negative x2 is not allowed. If x3 reduced

the cost (it didn’t) we would not have used as much as x3 = 1.

8 yTb ≤ yTAx = (ATy)Tx ≤ cTx. The first inequality needed y ≥ 0 and Ax−b ≥ 0.

Problem Set 10.5, page 494

1
∫ 2π

0
cos((j + k)x) dx =

[
sin((j+k)x)

j+k

]2π
0

= 0 and similarly
∫ 2π

0
cos((j − k)x) dx = 0

Notice j − k 6= 0 in the denominator. If j = k then
∫ 2π

0
cos2 jx dx = π.

2 Three integral tests show that 1, x, x2 − 1
3 are orthogonal on the interval [−1, 1 ]:

∫ 1

−1
(1)(x) dx = 0,

∫ 1

−1
(1)(x2 − 1

3) dx = 0,
∫ 1

−1
(x)(x2 − 1

3) dx = 0. Then
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2x2 = 2(x2 − 1
3
) + 0(x) + 2

3
(1). Those coefficients 2, 0, 2

3
can come from integrating

f(x) = 2x2 times the 3 basis functions and dividing by their lengths squared—in other

words using aTb/aTa for functions (where b is f(x) and a is 1 or x or x2− 1
3

) exactly

as for vectors.

3 One example orthogonal to v = (1, 1
2
, . . .) is w = (2,−1, 0, 0, . . .) with ‖w‖ =

√
5.

4
∫ 1

−1
(1)(x3 − cx) dx = 0 and

∫ 1

−1
(x2 − 1

3)(x
3 − cx) dx = 0 for all c (odd functions).

Choose c so that
∫ 1

−1
x(x3 − cx) dx = [ 1

5
x5 − c

3
x3]1−1 = 2

5
− c2

3
= 0. Then c = 3

5
.

5 The integrals lead to the Fourier coefficients a1 = 0, b1 = 4/π, b2 = 0.

6 From eqn. (3) ak = 0 and bk = 4/πk (odd k). The square wave has ‖f‖2 = 2π.

Then eqn. (6) is 2π=π(16/π2)( 1
12 + 1

32 + 1
52 + · · · ). That infinite series equals π2/8.

7 The −1, 1 odd square wave is f(x) = x/|x| for 0 < |x| < π. Its Fourier series in

equation (8) is 4/π times [sinx + (sin 3x)/3 + (sin 5x/5) + · · · ]. The sum of the

first N terms has an interesting shape, close to the square wave except where the wave

jumps between −1 and 1. At those jumps, the Fourier sum spikes the wrong way to

±1.09 (the Gibbs phenomenon) before it takes the jump with the true f(x).

This happens for the Fourier sums of all functions with jumps. It makes shock

waves hard to compute. You can see it clearly in a graph of the sum of 10 terms.

8 ‖v‖2 = 1+ 1
2 +

1
4 +

1
8 + · · · = 2 so ‖v‖ =

√
2; ‖v‖2 = 1+a2+a4+ · · · = 1/(1−a2)

so ‖v‖ = 1/
√
1− a2;

∫ 2π

0
(1 + 2 sinx+ sin2 x) dx = 2π + 0 + π so ‖f‖ =

√
3π.

9 (a) f(x) = (1 + squarewave)/2 so the a’s are 1
2 , 0, 0, . . . and the b’s are 2/π, 0,

−2/3π, 0, 2/5π, . . . (b) a0 =
∫ 2π

0
x dx/2π = π, all other ak = 0, bk = −2/k.

10 The integral from −π to π or from 0 to 2π (or from any a to a + 2π) is over one

complete period of the function. If f(x) is periodic this changes
∫ 2π

0
f(x) dx to

∫ π

0
f(x) dx+

∫ 0

−π
f(x) dx. If f(x) is odd, those integrals cancel to give

∫
f(x) dx = 0

over one period.

11 cos2 x = 1
2 +

1
2 cos 2x; cos(x+ π

3 ) = cosx cos π
3 − sinx sin π

3 = 1
2 cosx−

√
3
2 sinx.
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12
d

dx




1

cosx

sinx

cos 2x

sin 2x




=




0

− sinx

cosx

−2 sin 2x

2 cos 2x




=




0 0 0 0 0

0 0 −1 0 0

0 1 0 0 0

0 0 0 0 −2

0 0 0 2 0







1

cosx

sinx

cos 2x

sin 2x




.
This shows the

differentiation matrix.

13 The square pulse with F (x) = 1/h for −x ≤ h/2 ≤ x is an even function, so all sine

coefficients bk are zero. The average a0 and the cosine coefficients ak are

a0 =
1

2π

∫ h/2

−h/2

(1/h)dx =
1

2π

ak =
1

π

∫ h/2

−h/2

(1/h) cos kxdx =
2

πkh

(
sin

kh

2

)
which is

1

π
sinc

(
kh

2

)

(introducing the sinc function (sinx)/x). As h approaches zero, the number x = kh/2

approaches zero, and (sinx)/x approaches 1. So all those ak approach 1/π.

The limiting “delta function” contains an equal amount of all cosines: a very ir-

regular function.

Problem Set 10.6, page 500

1 (x, y, z) has homogeneous coordinates (cx, cy, cz, c) for c = 1 and all c 6= 0.

2 For an affine transformation we also need T (origin), because T (0) need not be 0 for

affine T . Including this translation by T (0), (x, y, z, 1) is transformed to xT (i) +

yT (j) + zT (k) + T (0).

3 TT1=




1

1

1

1 4 3 1







1

1

1

0 2 5 1



=




1

1

1

1 6 8 1




is translation along (1, 6, 8).

4 S = diag (c, c, c, 1); row 4 of ST and TS is 1, 4, 3, 1 and c, 4c, 3c, 1; use vTS!
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5 S =




1/8.5

1/11

1


 for a 1 by 1 square, starting from an 8.5 by 11 page.

6 [x y z 1 ]




1

1

1

−1 −1 −2 1







2

2

2

1




= [x y z 1 ]




2

2

2

−2 −2 −4 1




.

The first matrix translates by (−1,−1,−2). The second matrix rescales by 2.

7 The three parts of Q in equation (1) are (cos θ)I and (1− cos θ)aaT and − sin θ(a×).

Then Qa = a because aaTa = a(unit vector) and a× a = 0.

8 If aTb = 0 and those three parts of Q (Problem 7) multiply b, the results in Qb are

(cos θ)b and aaTb = 0 and (− sin θ)a× b. The component along b is (cos θ)b.

9 n =

(
2

3
,
2

3
,
1

3

)
has P = I − nnT =

1

9




5 −4 −2

−4 5 −2

−2 −2 8


. Notice ‖n‖ = 1.

10 We can choose (0, 0, 3) on the plane and multiply T−PT+ =
1

9




5 −4 −2 0

−4 5 −2 0

−2 −2 8 0

6 6 3 9




.

11 (3, 3, 3) projects to 1
3

(
−1,−1, 4

)
and (3, 3, 3, 1) projects to

(
1
3
, 1
3
, 5
3
, 1
)
. Row vectors!

12 The projection of a square onto a plane is a parallelogram (or a line segment). The

sides of the square are perpendicular, but their projections may not be (xTy = 0 but

(Px)T(Py) = xTPTPy = xTPy may be nonzero).

13 That projection of a cube onto a plane produces a hexagon.

14 (3, 3, 3)(I − 2nnT) =

(
1

3
,
1

3
,
1

3

)



1 −8 −4

−8 1 −4

−4 −4 7


 =

(
−11

3
,−11

3
,−1

3

)
.
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15 (3, 3, 3, 1) → (3, 3, 0, 1) →
(
− 7

3
,− 7

3
,− 8

3
, 1
)
→
(
− 7

3
,− 7

3
, 1
3
, 1
)
.

16 Just subtracting vectors would give v = (x, y, z, 0) ending in 0 (not 1). In homoge-

neous coordinates, add a vector to a point.

17 Space is rescaled by 1/c because (x, y, z, c) is the same point as (x/c, y/c, z/c, 1).

Problem Set 10.7, page 507

1 Multiplying n whole numbers gives an odd number only when all n numbers are odd.

This translates to multiplication (mod 2). Multiplying n 1’s or 0’s gives 1 only when

all n numbers are 1.

2 Adding n whole numbers gives an odd number only when the n numbers include an

odd number of odd numbers. For addition of 1’s and 0’s (mod 2), the answer is odd

when the number of 1’s is odd.

3 (a) We are given that y1 − x1 and y2 − x2 are both divisible by p. Then their sum

y1 + y2 − x1 − x2 is divisible by p.

(b) 5 ≡ 2 (mod 3) and 8 ≡ 2 (mod 3) add to 13 ≡ 4 (mod 3). The number 1 is smaller

than 4 and 13 ≡ 1 (mod 3).

5 If y−x is divisible by p then x−y is also divisible by p. In other words, if y−x = mp

then x− y = (−m)p.

6 A =


 5 5

5 10


 is an invertible matrix but (mod 5) A becomes the zero matrix.

7


 1 0

0 1




 1 1

0 1




 1 0

1 1




 0 1

1 0




 0 1

1 1




 1 1

1 0


 are invertible :

6 out of 16 possible 0-1 matrices.

8 Yes, Ax = 0 (mod 11) says that every row of A is orthogonal to every x in the nullspace

(mod 11). But a basis for the usual N(A) could include vectors that are zero (mod 11).
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9 For simplicity, number the letters as they appear in the message :

THISWHOLEBOOKISINCODE = 123/452/678/966/(10)34/3(11)(12)/6(13)8.

Multiply each block by this L to obtain Hill’s cipher.

L =




1 0 0

1 1 0

1 1 1


 Cipher= 1 3 6/4 9 11/6 13 21/9 15 21/10 13 17/3 14 26/6 19 27.

If the cipher is mod p then replace each number by the correct number from 0 to p− 1.

To decode, first multiply by L−1. Then what to do??

10 First you have to discover the block size (= matrix size) and also the matrix L itself.

Start with a guess for the block size. Then the plaintext and the coded cipher tell you a

series of matrix-vector products Lx ≡ b. If the text is long enough (and the blocks are

not too long) this is enough information to find L—or to show that the block size must

be wrong, when there is no L that gets all correct blocks Lx ≡ b.

The extra difficulty is to find the value of p.
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Problem Set 11.1, page 516

1 Without exchange, pivots .001 and 1000; with exchange, 1 and −1. When the pivot is

larger than the entries below it, all |ℓij | =
|entry|
|pivot| ≤ 1. A =




1 1 1

0 1 −1

−1 1 1


.

2 The exact inverse of hilb(3) is A−1 =




9 −36 30

−36 192 −180

30 −180 180


.

3 A




1

1

1


=




11/6

13/12

47/60


=




1.833

1.083

0.783


 compares withA




0

6

−3.6


=




1.80

1.10

0.78


.‖∆b‖ < .04 but

‖∆x‖ > 6.

The difference (1, 1, 1)− (0, 6,−3.6) is in a direction ∆x that has A∆x near zero.

4 The largest ‖x‖ = ‖A−1b‖ is ‖A−1‖ = 1/λmin sinceAT = A; largest error 10−16/λmin.

5 Each row of U has at most w entries. Use w multiplications to substitute components

of x (already known from below) and divide by the pivot. Total for n rows < wn.

6 The triangular L−1, U−1, R−1 need 1
2
n2 multiplications. Q needs n2 to multiply the

right side by Q−1 = QT. So QRx = b takes 1.5 times longer than LUx = b.

7 UU−1 = I : Back substitution needs 1
2 j

2 multiplications on column j, using the j by

j upper left block. Then 1
2(1

2 + 22 + · · ·+ n2) ≈ 1
2 (

1
3n

3) = total to find U−1.

8


1 0

2 2


 →


2 2

1 0


 →


2 2

0 −1


 = U with P =


0 1

1 0


 and L =


 1 0

.5 1


;

A →




2 2 0

1 0 1

0 2 0


 →




2 2 0

0 −1 1

0 2 0


 →




2 2 0

0 2 0

0 −1 1


 →




2 2 0

0 2 0

0 0 1


 = U with

P =




0 1 0

0 0 1

1 0 0


 and L =




1 0 0

0 1 0

.5 −.5 1


.
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9 A =




1 1 0 0

1 1 1 0

0 1 1 1

0 0 1 1




has cofactors C13 = C31 = C24 = C42 = 1 and

C14 = C41 = −1. A−1 is a full matrix!

10 With 16-digit floating point arithmetic the errors ‖x − xcomputed‖ for ε = 10−3, 10−6,

10−9, 10−12, 10−15 are of order 10−16, 10−11, 10−7, 10−4, 10−3.

11 (a) cos θ = 1/
√
10, sin θ = −3/

√
10, R= 1√

10


 1 3

−3 1




1 −1

3 5


= 1√

10


10 14

0 8


.

(b) A has eigenvalues 4 and 2. Put one of the unit eigenvectors in row 1 of Q: either

Q =
1√
2


1 −1

1 1


 and QAQ−1 =


2 −4

0 4


 or

Q =
1√
10


1 −3

3 1


 and QAQ−1 =


4 −4

0 2


.

12 When A is multiplied by a plane rotation Qij , this changes the 2n (not n2) entries in

rows i and j. Then multiplying on the right by (Qij)
−1 = (Qij)

T changes the 2n

entries in columns i and j.

13 QijA uses 4n multiplications (2 for each entry in rows i and j). By factoring out cos θ,

the entries 1 and ± tan θ need only 2n multiplications, which leads to 2
3
n3 for QR.

14 The (2, 1) entry of Q21A is 1
3 (− sin θ + 2 cos θ). This is zero if sin θ = 2 cos θ or

tan θ = 2. Then the 2, 1,
√
5 right triangle has sin θ = 2/

√
5 and cos θ = 1/

√
5.

Every 3 by 3 rotation with detQ = +1 is the product of 3 plane rotations.

15 This problem shows how elimination is more expensive (the nonzero multipliers in L

and LL are counted by nnz(L) and nnz(LL)) when we spoil the tridiagonal K by a

random permutation.

If on the other hand we start with a poorly ordered matrix K, an improved ordering

is found by the code symamd discussed in this section.
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16 The “red-black ordering” puts rows and columns 1 to 10 in the odd-even order 1, 3, 5, 7,

9, 2, 4, 6, 8, 10. When K is the −1, 2,−1 tridiagonal matrix, odd points are connected

only to even points (and 2 stays on the diagonal, connecting every point to itself):

K =




2 −1

−1 2 −1

· · ·
−1 2




and PKPT =


 2I D

DT 2I


 with

D =




−1

−1 −1

0 −1 −1

−1 −1

−1 −1




1 to 2

3 to 2, 4

5 to 4, 6

7 to 6, 8

9 to 8, 10

17 Jeff Stuart’s Shake a Stick activity has long sticks representing the graphs of two linear

equations in the x-y plane. The matrix is nearly singular and Section 9.2 shows how to

compute its condition number c = ‖A‖‖A−1‖ = σmax/σmin ≈ 80, 000:

A =



1 1.0001

1 1.0000


 ‖A‖ ≈ 2 A−1 = 10000



−1 1.0001

1 −1




‖A−1‖ ≈ 20000

c ≈ 40000.

Problem Set 11.2, page 522

1 ‖A‖ = 2, ‖A−1‖ = 2, c = 4; ‖A‖ = 3, ‖A−1‖ = 1, c = 3; ‖A‖ = 2 +
√
2 =

λmax for positive definite A, ‖A−1‖ = 1/λmin, comd = (2 +
√
2)/(2−

√
2) = 5.83.

2 ‖A‖ =2, c = 1; ‖A‖ =
√
2, c = ∞ (singular matrix); ATA = 2I , ‖A‖ =

√
2, c = 1.

3 For the first inequality replace x by Bx in ‖Ax‖ ≤ ‖A‖‖x‖; the second inequality is

just ‖Bx‖ ≤ ‖B‖‖x‖. Then ‖AB‖ = max(‖ABx‖/‖x‖) ≤ ‖A‖‖B‖.

4 1 = ‖I‖ = ‖AA−1‖ ≤ ‖A‖‖A−1‖ = c(A).
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5 If Λmax = Λmin = 1 then all Λi = 1 and A = SIS−1 = I . The only matrices with

‖A‖ = ‖A−1‖ = 1 are orthogonal matrices.

6 All orthogonal matrices have norm 1, so ‖A‖ ≤ ‖Q‖‖R‖ = ‖R‖ and in reverse ‖R‖ ≤
‖Q−1‖‖A‖ = ‖A‖. Then ‖A‖ = ‖R‖. Inequality is usual in ‖A‖ < ‖L‖‖U‖ when

ATA 6= AAT. Use norm on a random A.

7 The triangle inequality gives ‖Ax + Bx‖ ≤ ‖Ax‖ + ‖Bx‖. Divide by ‖x‖ and take

the maximum over all nonzero vectors to find ‖A+B‖ ≤ ‖A‖+ ‖B‖.

8 If Ax = λx then ‖Ax‖/‖x‖ = |λ| for that particular vector x. When we maximize

the ratio ‖Ax‖/‖x‖ over all vectors we get ‖A‖ ≥ |λ|.

9 A+B =


0 1

0 0


+


0 0

1 0


 =


0 1

1 0


 has ρ(A) = 0 and ρ(B) = 0 but ρ(A+B) = 1.

The triangle inequality ‖A + B‖ ≤ ‖A‖ + ‖B‖ fails for ρ(A). AB =


1 0

0 0


 has

ρ(AB) > ρ(A) ρ(B); thus ρ(A) = max |λ(A)| = spectral radius is not a norm.

10 (a) The condition number of A−1 is ‖A−1‖‖(A−1)−1‖ which is ‖A−1‖‖A‖ = c(A).

(b) Since ATA and AAT have the same nonzero eigenvalues, AT has the same norm

as A.

11 Use the quadratic formula for λmax/λmin, which is c = σmax/σmin since this A = AT

is positive definite:

c(A) =
(
1.00005 +

√
(1.00005)2 − .0001

)
/
(
1.00005−

√ )
≈ 40, 000.

12 det(2A) is not 2 detA; det(A + B) is not always less than detA + detB; taking

| detA| does not help. The only reasonable property is detAB = (detA)(detB). The

condition number should not change when A is multiplied by 10.

13 The residual b− Ay = (10−7, 0) is much smaller than b− Az = (.0013, .0016). But

z is much closer to the solution than y.

14 detA = 10−6 so A−1 = 103


 659 −563

−913 780


:‖A‖ > 1, ‖A−1‖ > 106, then c > 106.
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15 x = (1, 1, 1, 1, 1) has ‖x‖ =
√
5, ‖x‖1 = 5, ‖x‖∞ = 1. x = (.1, .7, .3, .4, .5) has

‖x‖ = 1, ‖x‖1 = 2 (sum), ‖x‖∞ = .7 (largest).

16 x2
1+· · ·+x2

n is not smaller thanmax(x2
i ) and not larger than (|x1|+· · ·+|xn|)2= ‖x‖21.

x2
1 + · · · + x2

n ≤ n max(x2
i ) so ‖x‖ ≤ √

n‖x‖∞. Choose yi = signxi = ±1 to get

‖x‖1 = x · y ≤ ‖x‖‖y‖ =
√
n‖x‖. The vector x = (1, . . . , 1) has ‖x‖1 =

√
n ‖x‖.

17 For the ℓ∞ norm, the largest component of x plus the largest component of y is not

less than ‖x+ y‖∞ = largest component of x+ y.

For the ℓ1 norm, each component has |xi + yi| ≤ |xi|+ |yi|. Sum on i = 1 to n:

‖x+ y‖1 ≤ ‖x‖1 + ‖y‖1.

18 |x1| + 2|x2| is a norm but min(|x1|, |x2|) is not a norm. ‖x‖ + ‖x‖∞ is a norm;

‖Ax‖ is a norm provided A is invertible (otherwise a nonzero vector has norm zero;

for rectangular A we require independent columns to avoid ‖Ax‖ = 0).

19 xTy = x1y1 + x2y2 + · · · ≤ (max |yi|)(|x1|+ |x2|+ · · · ) = ||x||1 ||y||∞.

20 With λj = 2− 2 cos(jπ/n+1), the largest eigenvalue is λn ≈ 2+2 = 4. The smallest

is λ1 = 2−2 cos(π/n+1) ≈
(

π
n+1

)2
, using 2 cos θ ≈ 2−θ2. So the condition number

is c = λmax/λmin ≈ (4/π2) n2, growing with n.

Problem Set 11.3, page 531

1 The iteration xk+1 = (I − A)xk + b has S = I and T = I − A and S−1T = I − A.

2 If Ax = λx then (I−A)x = (1−λ)x. Real eigenvalues of B = I−A have |1−λ| < 1

provided λ is between 0 and 2.

3 This matrix A has I −A =


−1 1

1 −1


 which has |λ| = 2. The iteration diverges.

4 Always ‖AB‖ ≤ ‖A‖‖B‖. Choose A = B to find ‖B2‖ ≤ ‖B‖2. Then choose A =

B2 to find ‖B3‖ ≤ ‖B2‖‖B‖ ≤ ‖B‖3. Continue (or use induction) to find ‖Bk‖ ≤
‖B‖k. Since ‖B‖ ≥ max |λ(B)| it is no surprise that ‖B‖ < 1 gives convergence.
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5 Ax = 0 gives (S − T )x = 0. Then Sx = Tx and S−1Tx = x. Then λ = 1 means

that the errors do not approach zero. We can’t expect convergence when A is singular

and Ax = b is unsolvable!

6 Jacobi has S−1T = 1
3


0 1

1 0


 with |λ|max = 1

3 . Small problem, fast convergence.

7 Gauss-Seidel has S−1T =



0 1

3

0 1
9


 with |λ|max = 1

9 which is (|λ|max for Jacobi)2.

8 Jacobi has S−1T =


a

d



−1 
 0 −b

−c 0


 =


 0 −b/a

−c/d 0


with |λ| = |bc/ad|1/2.

Gauss-Seidel has S−1T =


a 0

c d



−1 
0 −b

0 0


 =


0 −b/a

0 −bc/ad


with |λ| = |bc/ad|.

So Gauss-Seidel is twice as fast to converge if |λ| < 1 (or to explode if |bc| > |ad|).

9 Gauss-Seidel will converge for the −1, 2,−1 matrix. |λ|max = cos2
(

π
n+1

)
is given

on page 527, together with the improvement from successive overrelaxation.

10 If the iteration gives all xnew
i = xold

i then the quantity in parentheses is zero, which

means Ax = b. For Jacobi change xnew on the right side to xold.

11 uk/λ
k
1 = c1x1+ c2x2(λ2/λ1)

k+ · · ·+ cnxn(λn/λ1)
k → c1x1 if all ratios |λi/λ1| <

1. The largest ratio controls the rate of convergence (when k is large). A =


0 1

1 0




has |λ2| = |λ1| and no convergence.

12 The eigenvectors of A and also A−1 are x1 = (.75, .25) and x2 = (1,−1). The inverse

power method converges to a multiple of x2, since |1/λ2| > |1/λ1|.

13 In the jth component of Ax1, λ1 sin
jπ
n+1 = 2 sin jπ

n+1 − sin (j−1)π
n+1 − sin (j+1)π

n+1 .

The last two terms combine into −2 sin jπ
n+1 cos

π
n+1 . Then λ1 = 2− 2 cos π

n+1 .
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14 A =


 2 −1

−1 2


 produces u0 =


1

0


, u1 =


 2

−1


, u2 =


 5

−4


, u3 =


 14

−13


.

This is converging to the eigenvector direction


 1

−1


 with largest eigenvalue λ = 3.

Divide uk by ‖uk‖ to keep unit vectors.

15 A−1 =
1

3


2 1

1 2


 givesu1 =

1

3


2

1


, u2 =

1

9


5

4


, u3 =

1

27


14

13


→u∞ =


1/2

1/2


.

16 R = QTA =


1 cos θ sin θ

0 − sin2 θ


 and A1 = RQ =


cos θ(1 + sin2 θ) − sin3 θ

− sin3 θ − cos θ sin2 θ


.

17 If A is orthogonal then Q = A and R = I . Therefore A1 = RQ = A again, and the

“QR method” doesn’t move from A. But shift A slightly and the method goes quickly

to Λ.

18 If A− cI = QR then A1 = RQ+ cI = Q−1(QR + cI)Q = Q−1AQ. No change in

eigenvalues from the shift and shift back, because A1 is similar to A.

19 Multiply Aqj = bj−1qj−1 + ajqj + bjqj+1 by qT
j to find qT

j Aqj = aj (because the

q’s are orthonormal). The matrix form (multiplying by columns) is AQ = QT where

T is tridiagonal. The entries down the diagonals of T are the a’s and b’s.

20 Theoretically the q’s are orthonormal. In reality this important algorithm is not very

stable. We must stop every few steps to reorthogonalize—or find another more stable

way to orthogonalize the sequence q, Aq, A2q, . . .

21 If A is symmetric then A1 = Q−1AQ = QTAQ is also symmetric. A1 = RQ =

R(QR)R−1 = RAR−1 has R and R−1 upper triangular, so A1 cannot have nonzeros

on a lower diagonal than A. If A is tridiagonal and symmetric then (by using symmetry

for the upper part of A1) the matrix A1 = RAR−1 is also tridiagonal.

22 From the last line of code, q2 is in the direction of v = Aq1 − h11q1 = Aq1 −
(qT

1 Aq1)q1. The dot product with q1 is zero. This is Gram-Schmidt with Aq1 as the

second input vector; we subtract from Aq1 its projection onto the first vector q1.
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Note The three lines after the short “pseudocodes” describe two key properties of con-

jugate gradients—the residuals rk = b−Axk are orthogonal and the search directions

are A-orthogonal (dT
i Adk = 0). Then each new approximation xk+1 is the closest

vector to x among all combinations of b, Ab . . . , Akb. Ordinary iteration Sxk+1 =

Txk + b does not find this best possible combination xk+1.

23 The solution is straightforward and important. Since H = Q−1AQ = QTAQ is

symmetric if A = AT, and since H has only one lower diagonal by construction, then

H has only one upper diagonal: H is tridiagonal and all the recursions in Arnoldi’s

method have only 3 terms.

24 H = Q−1AQ is similar to A, so H has the same eigenvalues as A (at the end of

Arnoldi). When Arnoldi is stopped sooner because the matrix size is large, the eigen-

values of Hk (called Ritz values) are close to eigenvalues of A. This is an important

way to compute approximations to λ for large matrices.

25 In principle the conjugate gradient method converges in 100 (or 99) steps to the exact

solution x. But it is slower than elimination and its all-important property is to give

good approximations to x much sooner. (Stopping elimination part way leaves you

nothing.) The problem asks how close x10 and x20 are to x100, which equals x except

for roundoff errors.

26 A =


1 1

0 1.1


 has An =


1 q

0 (1.1)n


 with q = 1 + 1.1 + · · · + (1.1)n−1 =

(1.1n − 1)/(1.1 − 1) ≈ 10 (1.1)n. So the growing part of An is (1.1)n


0 10

0 1




with ||An|| ≈
√
101 times 1.1n for larger n.



Solutions to Exercises 177

Problem Set 12.1, page 544

1 When 7 is added to every output, the mean increases by 7 and the variance does not

change (because new variance comes from (distance)2 to the new mean).

New sample mean and new expected mean : Add 7. New variance : No change.

2 If we add 1
3 to 1

7 (fraction of integers divisible by 3 plus fraction divisible by 7) we

have double counted the integers divisible by both 3 and 7. This is a fraction 1
21 of all

integers (because these double counted numbers are multiples of 21). So the fraction

divisible by 3 or 7 or both is
1

3
+

1

7
− 1

21
=

7

21
+

3

21
− 1

21
=

9

21
=

3

7
.

3 In the numbers from 1 to 1000, each group of ten numbers will contain each possible

ending x = 1, 2, 3, . . . , 0. So those endings all have the same probability pi = 1
10

.

Expected mean of that last digit x :

m = E [x] =Σ pi xi =
1

10

9∑

i=0

i =
45

10
= 4.5

The best way to find the variance σ2 = 8.25 is in the last line below and in problem

12.1.7. The slower way to find σ2 is

σ2 = E [(x− 4.5)2] =

9∑

i=0

pi(xi − 4.5)2 =
1

10

9∑

i=0

(i− 4.5)2

We can separate
(
i− 4.5

)2
into

(
i2 − 9i+ (4.5)2

)
and add from i = 0 to i = 9 :

1

10

(
9∑

0

i2 − 9

9∑

0

i+

9∑

0

(4.5)2

)
=

1

10

(
285− 9(45) + 10(4.5)2

)

=
1

10
(285− 405 + 202.5) =

82.5

10
= 8.25 =

33

4
.

Notice that 202.5 is half of 405—like Nm2 and 2Nm2 in equation (4), page 536.

I should have extended equation (4) to its best form :

σ2 = E [(x − m)2] = E [x2] − m2

That quickly gives 285
10 − (4.5)2 = 8.25 = same answer.
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4 For numbers ending in 0, 1, 2, . . . , 9 the squares end in x = 0, 1, 4, 9, 6, 5, 6, 9, 4, 1. So

the probabilities of x = 0 and 5 are p = 1
10

and the probabilities of x = 1, 4, 6, 9 are

p = 1
5

. The mean is

m =Σ pi xi =
0

0
+

5

10
+

1

5
(1 + 4 + 6 + 9) = 4.5 = same as before.

The variance using the improvement of equation (4) is

σ2 = E [x2]−m2 =
1

10
02 +

1

10
52 +

1

5
(12 + 42 + 62 + 92)−m2

=
25

10
+

134

5
− 20.25 = 9.05

5 For numbers from 1 to 1000, the first digit is x = 1 for 1000 and 100-199 and 10-19

and 1 (112 times). The first digit is x = 2 for 200-299 and 20-29 and 2 (111 times).

The other first digits x = 3 to 9 also happen (111 times). Total (1000 times) is correct.

The average first digit is the mean, close to 1
9

(
1 + 2 + · · ·+ 9

)
= 5 :

m=Σpi xi=
112

1000
(1)+

111

1000
(2+3+· · ·+9)=

112 + 111(44)

1000
=

4996

1000
=4.996 ≈ 5.

The variance is

σ2 = E [(x−m)2] = E [x2]−m2 =
112

1000
(12) +

111

1000
(22 + · · ·+ 92)−m2

=
112 + 111(284)

1000
−m2 ≈ 31635

1000
− 52 = 6.635.

6 The first digits of 1572, 3122, 6962, and 6022 are 2,9,4,3, The sample mean is

1
4
(2 + 9 + 4 + 3) = 18

4
= 4.5. The sample variance with N − 1 = 3 is

S2 =
1

3

[
(−2.5)2 + (4.5)2 + (−.5)2 + (−1.5)2

]
=

1

3

[
29
]
.

7 This question is about the fast way to compute σ2 using m2. The mean m is probably

already computed :

σ2 =
∑

pi (xi −m)2 =
∑

pi (x
2
i − 2mxi +m2)

=
∑

pix
2
i − 2m

∑
pixi +m2

∑
pi

=
∑

pix
2
i − 2m2 +m2 =

∑
pix

2

i − m2 = E [x2] − m2.
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8 For N = 24 samples, all equal to x = 20,

µ =
1

N

∑
xi =

24

24
(20) = 20 and S2 =

1

N − 1

∑
(xi − µ)2 = 0

.For 12 samples of x = 20 and 12 samples of x = 21,

µ =
12(20) + 12(21)

24
= 20.5 and S2=

1

N − 1

∑
(xi−µ)2 =

1

23
24

(
1

2

)2

=
6

23
.

9 This question asks you to set up a random 0-1 generator and run it a million times to

find the average A1000000.

One way is to use MATLAB’s rand command with a uniform distribution between 0

and 1. Add 1
2 to go between 0.5 and 1.5, then find the integer part (0 or 1). Using your

computed average AN (its mean is m = 1
2 since 0 and 1 are equally likely for every

sample) find the normalized variable X :

X =
AN − 1

2

2
√
N

=
AN − 1

2

2000
for N = one million.

10 The average number of heads in N fair coin flips is m = N/2. This is obvious—but

how to derive it from probabilities p0 to pN of 0 to N heads? We have to compute

m = 0p0 + 1p1 + · · ·+NpN with pi =
bi
2N

=
1

2N
N !

i! (N − i)!

A useful fact is pi = pN−i. The probability of i heads equals the probability of i tails.

If we take just those two terms in m, they give

ipi + (N − i)pN−i = ipi + (N − i)pi = Npi

So we can compute m two ways and add :

m = 0p0 + 1p1 + · · ·+ (N − 1)pN−1 +NpN

m = Np0 + (N − 1)p1 + · · ·+ 1pN−1 + 0p0

2m = Np0 +Np1 + · · ·+NpN−1 +NpN

= N(p0 + p1 + · · ·+ pN−1 + pN ) = N .

Then m = N/2. The average number of heads is N/2.
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11 E [x2] = E [(x−m)2 + 2xm−m2]

= E [(x−m)2] + 2mE [x]−m2 E [1]

= σ2 + 2m2 −m2 = σ2 + m2

12 The first step multiplies two independent 1-dimensional integrals (each one from −∞
to ∞) to produce a 2-dimensional integral over the whole plane :

2π

∞∫

−∞

p(x) dx

∞∫

−∞

p(y) dy = 2π

∞∫

−∞

∞∫

−∞

p(x) p(y) dxdy =

∞∫

−∞

∞∫

−∞

e−x2/2e−y2/2 dxdy.

The second step changes to polar coordinates (x = r cos θ, y = r sin θ, dxdy = r dr dθ,

x2 + y2 = r2 with 0 ≤ θ ≤ 2π and 0 ≤ r ≤ ∞). Notice −x2/2− y2/2 = −r2/2 :

∫

plane

∫
e−r2/2 r dr dθ =

2π∫

θ=0

∞∫

r=0

e−r2/2 r dr dθ

The r and θ integrals give the answers 1 and 2π :

∞∫

r=0

e−r2/2 r dr =
[
−e−r2/2

]∞
r=0

= 1

2π∫

θ=0

1 dθ = 2π.

The trick was to get e−r2/2 r dr (which is a perfect derivative of −e−r2/2) by combin-

ing e−x2/2 dx and e−y2/2 dy (which can not be separately integrated from a to b).

Problem Set 12.2, page 554

1 (a) Mean m = E [x] = (0)(1 − p) + (1)(p) = p when the probability of heads is

p. Here x = 0 for tails and x = 1 for heads. Notice that 02 = 0 and 12 = 1 so

E [x2] = E [x] = p.

Variance σ2 = E [x2]−m2 = p − p2

(b) These are independent flips ! So the N by N covariance matrix V is diagonal. The

diagonal entries are the variances σ2 = p−p2 for each flip. Then the rule (16−17−18)

gives the overall variance of the sum from N flips :
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overall variance = [1 1 . . . 1]V




1

1

...

1



= Nσ2 = N(p− p2)

This is just saying : Add the variances for the N independent experiments. Here those

N experiments just repeat one experiment.

2 I am just imitating equation (2) in the text. Now the experiments are numbered 3 and

5. They have means m3 and m5. The covariance σ35 adds up joint probabilities pij

times (distance xi − m3) times (distance yj − m5). Here xi and yj are outputs from

experiments 3 and 5 :

σ35 =
∑

all

∑

i, j

pij (xi −m3) (yj −m5).

3 The 3 by 3 covariance matrix V will be a sum of rank one matrices Vijk = UUT mul-

tiplied by the joint probability pijk of outputs xi, yj , zk. I am copying equation (12) :

V =
∑

all

∑

i, j, k

∑
pijk UUT U =




output xi − mean x

output yj − mean y

output zk − mean z




These matrices UUT = column times row are positive semidefinite with rank 1 (unless

U = 0). The sum V is positive definite unless the 3 experiments are dependent.

Notice that the means x, y, z = m1,m2,m3 have to be computed before the variances.

4 We are told that the 3 experiments are independent. Then the covariances are zero off

the main diagonal of V . This covariance matrix only shows “covariances with itself”

= “variances” σ2
1, σ

2
2, σ

2
3 on the main diagonal.

V =




σ2
1 0 0

0 σ2
2 0

0 0 σ2
3


 .
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5 The point is that some output X = xi must occur. So the possibilities are Y = yj

and X = x1, or Y = yj and X = x2, or Y = yj and X = x3 et cetera. The total

probability of Y = yj is the sum of the conditional probabilities that Y = yj when

X = xi.

Here is another way to say this law of total probability. When B1, B2, . . . are separate

disjoint outcomes that together account for all possible outcomes, then for any A

Prob (A) =
∑

i

Prob (A ∩Bi) =
∑

i

Prob (A|Bi)Prob (Bi).

6 Prob (A|B) = conditional probability of A given B satisfies this axiom :

Prob (A and B) = Prob (A|B)Prob (B).

Reason: If both A and B occur, then B must occur—and knowing that B occurs,

Prob (A|B) gives the probability that A also occurs.

This axiom is saying that pij = Prob (A|B) pi

where B is the event x = xi which has Prob (B) = pi.

7 The joint probabilities pij = Prob (x = xi and y = yj) are in the matrix P :

P =


 0.1 0.3

0.2 0.4


 with entries adding to 1.

Problem 6 says that Prob (Y = y2|X = x1) =
p12

p11 + p12
=

0.3

0.1 + 0.3
=

3

4
.

Problem 5 says that Prob (X = x1) = p11 + p12 = 0.1 + 0.3 = 0.4.

8 This product rule of conditional probability is the axiom in Solution 12.2.6 above :

Prob (A and B) = Prob (A given B) times Prob (B).



Solutions to Exercises 183

9 This discussion of Bayes’ Theorem is much too compressed ! Let me reproduce three

equations from Wolfram MathWorld. Here A and B are possible “sets” = “outcomes

from an experiment” and the simple-looking identity (∗) connects conditional and

unconditional probabilities.

We know from 8 that Prob (A and B) = Prob (A given B) times Prob (B)

Reversing A and B gives Prob (A and B) = Prob (B given A) times Prob (A)

(∗) Therefore Prob (B given A) =
Prob (A given B)Prob (B)

Prob (A)

MathWorld gives this extension to non-overlapping sets A1, . . . , An whose union is A :

Prob (Ai given A) =
Prob (Ai)Prob (A given Ai)∑

j

Prob (Aj)Prob (A given Aj)

Problem Set 12.3, page 560

1 The two equations from two measurements are

x = b1

x = b2
or


 1

1



[
x
]
=


 b1

b2


 or Ax = b.

The covariance matrix V is diagonal since the measurements are independent :

V =


 σ2

1 0

0 σ2
2


 .

The weighted least squares equation is ATV −1 Ax̂ = AT V −1b.

AT V −1 A =
[
1 1

]

 1/σ2

1 0

0 1/σ2
2




 1

1


 =

1

σ2
1

+
1

σ2
2

AT V −1 b =
[
1 1

]

 1/σ2

1 0

0 1/σ2
2




 b1

b2


 =

b1
σ2
1

+
b2
σ2
2

.

Then x̂ is the ratio of those numbers :

x̂ =
b1/σ

2
1 + b2/σ

2
2

1/σ2
1 + 1/σ2

2
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The variance of that estimate x̂ should be written as in (13) :

E
[
(x̂− x) (x̂− x)T

]
= (AT V −1 A)−1 =

(
1

σ2
1

+
1

σ2
2

)−1

.

2 (a) In the limit σ2 → 0 the ratio x̂ approaches b2 because :

(Multiply x̂ above and below by σ2
1 σ

2
2) x̂ =

b1σ
2
2 + b2σ

2
1

σ2
2 + σ2

1

→ b2σ
2
1

σ2
1

= b2.

The second equation x = b2 is 100% accurate if its variance is σ2 = 0.

(b) If σ2 → ∞ then 1/σ2
2 → 0 and x̂ → b1/σ

2
1

1/σ2
1

= b1. We are getting no information

from the totally unreliable measurement x = b2.

3 The key fact of independence is in the equation p(x, y) = p(x) p(y). Then
∫ ∫

p(x, y) dx dy =

∫ ∫
p(x) p(y) dx dy =

∫
p(x) dx

∫
p(y) dy = (1) (1) = 1.

∫ ∫
(x+ y) p(x, y) dx dy =

∫ ∫
x p(x) p(y) dx dy +

∫ ∫
y p(x) p(y) dx dy

=

∫
x p(x) dx

∫
p(y) dy +

∫
p(x) dx

∫
y p(y) dy

= (mx) (1) + (1) (my) = mx +my.

4 Continue Problem 3 to find variances σ2
x and σ2

y and to see covariance σxy = 0 :
∫ ∫

(x −mx)
2 p(x, y) dx dy =

∫
(x −mx)

2 p(x) dx

∫
p(y) dy = σ2

x

∫ ∫
(x−mx) (y−my) p(x, y) dx dy =

∫
(x−mx) p(x) dx

∫
(y−my) p(y) dy=(0) (0).

5 We are inverting a 2 by 2 matrix using


 a b

c d



−1

=
1

ad− bc


 d −b

−c a


 :

V −1 =


 σ2

1 σ12

σ12 σ2
2



−1

=
1

σ2
1 σ

2
2 − σ2

12


 σ2

2 −σ12

−σ12 σ2
1


 = ρ =

σ12

σ1 σ2

1

σ2
1 σ

2
2(1−ρ2)


 σ2

2 −σ12

−σ12 σ2
1


 =

1

1−ρ2


 1/σ2

1 −ρ/σ1 σ2

−ρ/σ1 σ2 1/σ2
2



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6 The right hand side of x̂k+1 shows the gain factor 1/(k + 1) :

x̂k+
1

k + 1
(bk+1−x̂k)=

b1 + · · ·+ bk
k

+
1

k + 1

(
bk+1 −

b1 + · · ·+ bk
k

)
=

b1 + · · ·+ bk+1

k + 1

Check that each number b1, b2, . . . , bk, bk+1 is correctly divided by k + 1 :

1

k
− 1

k + 1

1

k
=

1

k

(
k + 1 − 1

k + 1

)
=

1

k + 1
.

7 We are considering the case when all the measurements b1, b2, . . . , bk+1 have the same

variance σ2. We know that the correct variance of their average is Wk+1 = σ2/(k+1).

We want to see how this answer comes from equation (18) when we have the correct

Wk = σ2/k from the previous step, and we update to Wk+1 :

(18) says that W−1
k+1 = W−1

k +AT
k+1 V

−1
k+1 Ak+1 =

k

σ2
+[1] [1/σ2] [1] =

k

σ2
+

1

σ2
=

k + 1

σ2
.

So Wk+1 = σ2/(k + 1) is correct at the new step (and forever by induction).

8 The three equations have variances σ2, s2, σ2 and they have zero covariances. (This

makes the step-by-step Kalman filter possible.) We can divide the equations by σ, s, σ

to produce unit variances (which lead to ordinary unweighted least squares). We are

given F = 1 : 


1/σ 0

−1/s 1/s

0 1/σ





 x0

x1


 =




b0/σ

0

b1/σ


 is our Ax = b.

The normal equation (now unweighted) is AT A x̂ = AT b :




1

σ2
+

1

s2
− 1

s2

− 1

s2
1

σ2
+

1

s2







x̂1

x̂2


 =




b0
σ2

b1
σ2


 .

The determinant of this AT A is det =
1

σ4
+

2

σ2 s2
. The solution is

x̂1 =
1

det

(
b0
σ4

+
b0

σ2 s2
+

b1
σ2 s2

)
x̂2 =

1

det

(
b0

σ2 s2
+

b1
σ2 s2

+
b1
σ4

)
.
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9 With A = I and uT = vT = [1 2 3] we can use the direct formula for M−1 :

(I − uvT)−1 = I +
uvT

1− vTu
= I +

1

1− 14




1

2

3



[
1 2 3

]

=




1− 1
13

2
13

3
13

2
13 1− 4

13
6
13

3
13

6
13 1− 9

13


. Multiply b=




2

1

4


 to get y=




2

1

4


−

16

13




1

2

3


=

1

13




10

−19

4


 .

Instead of this formula for (I = uvT)−1, try steps 1 and 2 :

Step 1 with A = I gives x = b and z = u.

Step 2 gives y = b− vT u

13
u =




2

1

4


− 16

13




1

2

3


 as before.

10 We are asked to check that My = b using the update formula. Start with

My = (A− uvT)

(
x+

vT x

c
z

)

= Ax− u (vT x) +
vT xAz

c
− u (vTz) (vT x)

c

Since Ax = b we hope the other 3 terms combine to give zero when Az = u

uvT x

[
−1 +

1

c
− vTz

c

]
=

uvT x

c

[
−c+ 1− vT z

]
= 0 from the formula for c

11 Multiply columns times rows to see that the new v changes ATA to

[
AT v

]

 A

vT


 = ATA+ vvT

So adding the new row to A (and of course the new column to AT) has increased AT A

by the rank one matrix vvT.
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The book is ending with matrix multiplication ! We could allow changes of rank r :

When A changes to M = A− UW−1V , its inverse changes to

M−1 = A−1 + A−1 U(W − V A−1 U)−1 V A−1.

This change has rank r when Wr×r and Vr×n and Un×r all have rank r.


