
Chapter 4

RIVERS AND STREAMS

4.1 The Hydrological Cycle

Rivers and streams are but a link in the global cycle of water, called the hydro-
logical cycle. Approximately half of the solar energy striking the earth’s surface
is estimated to be consumed by the latent heat necessary to convert liquid wa-
ter into water vapor, either through evaporation (mostly over the oceans) or
through transpiration (mostly of plant leaves). The combination of these two
processes, together called evapotranspiration, consumes an enormous amount
of energy, about 4000 times the present rate of human energy consumption, and
corresponds to the annual removal of a one-meter thick layer of water around
the entire globe.

The moisture so introduced in the lower atmosphere travels with the pre-
vailing winds and is subjected to the vagaries of their thermodynamics. Sooner
or later, an air mass undergoes a temperature drop (due to net cooling or
to an adiabatic pressure decrease) that lowers the saturation level sufficiently
to force an excess of moisture to condense. Precipitation (rain, snow, sleet,
etc.) forms and returns the water to the earth’s surface. Some of what falls
on the continents percolates through the ground and creates subsurface flow
in aquifers, while the rest remains on the surface and gathers in a system of
streams and rivers. Both flow systems, collectively called runoff, return water
to the vegetation, lakes and, of course, the oceans, where it is subjected to
evapotranspiration, thereby closing the loop. This water loop, consisting of
evapotranspiration, precipitation and runoff, constitute the hydrological cycle
(Figure 4-1).

Absent from this admittedly simplified scenario is the transient nature of
some of the implicated processes. Besides the obvious seasonal variations, cy-
cles of droughts and floods do occur, temporarily modifying the amounts of
water stored in lakes and flowing in rivers. Also worth mentioning is the stor-
age effect of underground aquifers and especially of the polar ice caps.

103



104 CHAPTER 4. RIVERS & STREAMS

Figure 4-1. The hydrological cycle. Units are 103 km3/year. [From Masters,
1997, based on earlier estimates]

Of all the links in the hydrological cycle, rivers and streams have tradition-
ally been the greatest environmental victims, for the simple reason that their
network extends over large continental areas and, consequently, there is almost
always a river or stream in the proximity of human activities. Furthermore,
with the long-held belief that rivers were self-cleaning (and a hefty dose of ‘out
of sight – out of mind’ !), people felt relatively free to dump their wastes into
the nearest body of moving water. This went on for centuries, until the in-
dustrial revolution when the population in cities grew rapidly and industrial
wastes began to compound the effects of domestic and agricultural wastes.
Eventually, problems of water-related diseases (such as cholera), dubious col-
ors, foul odors and fish kills became too obvious to be ignored. Nowadays,
the substances that harm rivers and streams are well known; the chief culprits
are: pathogens (disease-causing viruses and bacteria), any organic substance
the decay of which is accompanied by a depletion of dissolved oxygen (such as
untreated sewage), nutrients (such as phosphorus and nitrogen, which cause un-
wanted algal growth), heavy metals, pesticides and volatile organic compounds
(nicknamed VOCs, such as trichloroethylene (TCE)).

4.2 Turbulent Dispersion in Rivers

Hydraulics

River flow is driven by gravity: water goes downhill. So, there is a clear re-
lationship between water velocity and bottom slope. Because rivers have rough
bottoms and relatively fast currents, their flow is almost always turbulent, even
though the casual observer may not realize that it is so. Ground friction retards
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Figure 4-2. Schematic longitudinal section of a river depicting the vertically
sheared flow and turbulent vortices.

the flow near the bottom and creates a velocity shear in the vertical, producing
‘tumbling’ eddies as depicted in Figure 4-2. The eddy rotation is mostly about
a horizontal axis transverse to the main direction of the flow, with the largest
vortices having therefore a length scale equal to the depth of the water:

dmax = H.

These eddies cause vertical diffusion, which proceeds at a rate given by a
turbulent diffusivity propotional to the product of the typical orbital velocity
u∗ and the length scale dmax = H:

Dvertical ≃ u∗H. (4.1)

But, what should u∗ be?

To answer this question, consider a parcel of fluid extending from bottom
to surface and stretching over a length L and width W of the river (Figure 4-
3). The bottom stress, τb, is the force (per unit area) that impels fluid parcels
to reverse their velocities from about u∗ near the surface to about −u∗ near
the bottom. Invoking Newton’s law, we write: mass times acceleration equals
the force. Since mass is density times volume, volume is area times depth,
acceleration is change in speed divided by the time for this change to occur,
and the force is stress times area, we have:

mass × acceleration = force

ρWLH ×
u∗

τ
≃ τbWL,

where ρ is the water density (1000 kg/m3) and τ the eddy turn-around time,
about H/u∗. Simplifications yield ρu2

∗
≃ τb, i.e.
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Figure 4-3. Relationship between the orbital velocity u∗ in a vertical vortex
and the bottom stress.

u∗ ≃

√

τb

ρ
.

Because the turbulent velocity u∗ has yet to be precisely defined (within a
dimensionless multiplicative constant), we shall use:

u∗ =

√

τb

ρ
. (4.2)

In numerous books on turbulence, the velocity u∗ defined from the wall stress
τb by (4.2) is called the friction velocity. The next question is: What is the
bottom stress τb?

For this, consider the same fluid parcel again but paying now attention to
the net forces over many eddies (Figure 4-4). The river flows against friction
thanks to the forward gravitational force due to the downward slope of the
river bed. With the slope defined as S = sinθ, the downstream component of
gravity is gsinθ = gS. Equating the forward gravitational force (mass times the
forward component of the gravitational acceleration) to the retarding frictional
force (bottom stress times area), we obtain:

mass × gravity = frictional force

ρLA × gS = τbLP ,
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Figure 4-4. Balance of forces in a moving stream.

for a stretch L of the river, where the cross-sectional area is A and the so-called
wetted perimeter is P (Figure 4-4). We can solve this equation for the bottom
stress:

τb = ρg
A

P
S = ρgRhS . (4.3)

where the quantity Rh defined by

Rh =
A

P
(4.4)

is called the hydraulic radius. For a wide and shallow river, Rh is nearly equal
to the depth H. Finally, replacing this expression for τb in Equation (4.2)
yields:

u∗ =
√

gRhS , (4.5)

where g=9.81 m/s2 is the gravitational acceleration, Rh=cross-sectional area
divided by wetted perimeter is the hydraulic radius, and S is the slope of the
river bed.

Numerous observations indicate that the mean velocity ū of a river is nearly
proportional to the turbulent velocity scale. [You can think that the tumbling
of vortices causes the mean flow just as a bicycle wheel rolls downhill.] So, we
write

ū = Cu∗

or

ū = C
√

gRhS , (4.6)
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where the value of the dimensionless constant C typically ranges from 10 to 30.
In hydraulics, this relation between mean velocity and bottom slope is called
the Chézy formula.

The exact value of the coefficient C , or rather C
√

g since the two constants
can be lumped together, depends on the nature of the bottom (e.g., sand,
gravel or stones), shape of the cross-section and the tortuosity of the river.
The commonly accepted expression, which was obtained from a large number
of observations, is:

C
√

g =
R

1/6

h

n
,

which leads to a

ū =
1

n
R

2/3

h S1/2 . (4.7)

In this expression, Rh is to be expressed in meters to obtain ū is meters per
second. Typical values for n (called the Manning coefficient) range from 0.012
for a very smooth and straight channel to 0.15 for a very rough flood plain. See
tabulated values below. [In the absence of information, take n=0.035, which
corresponds to a typical river in its natural state.]

CHANNEL TYPE n

Artificial channels finished cement 0.012

unfinished cement 0.014

brick work 0.015

rubble masonry 0.025

smooth dirt 0.022

gravel 0.025

with weeds 0.030

cobbles 0.035

Natural channels clean and straight 0.030

most rivers 0.035

with deep pools 0.040

irregular sides 0.045

dense side growth 0.080

Flood plains farmland 0.035

small brushes 0.125

with trees 0.150

Table 4.1 Values of the Manning coefficient for common channels.

Vertical diffusion

We can now return to vertical diffusion. With definition (4.2) for u∗, ob-
servations provide the multiplicative constant necessary to complete (4.1) that
gives the vertical diffusion coefficient:

Dvertical = 0.067 u∗H

= 0.067 H
√

gRhS . (4.8)
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Of course, the numerical value 0.067 is not universal. Some published accounts
quote values as low as 0.05 and as high as 0.07. The case could also be made
that Dvertical is not constant but actually varies with depth, being greatest at
mid-depth and smallest at top and bottom, because turbulent eddies centered
at mid-depth have the most vertical room and are thus the most efficient mixing
agents. Expression (4.8) represents the most commonly accepted formula.

For a discharge at mid-depth, the time taken to achieve nearly complete
mixing from top to bottom in the river is:

tvertical = 0.134
H2

Dvertical

= 2.0
H

u∗

. (4.9)

During that time, the distance traveled downstream is

xvertical = ūtvertical

= 2.0
ūH

u∗

. (4.10)

Transverse diffusion

Transverse (or lateral) diffusion, which acts across the current between the
left and right banks of the river, is accomplished by transverse vortices that
are spun off from the vortices aligned with the flow (Figure 4-5). The control-
ling length scale remains the depth H, but because rivers are typically wider
than they are deep, transverse vortices can be somewhat elongated, and the
numerical coefficient is larger for transverse diffusion than for vertical diffusion:

Dtransverse = 0.15 u∗H

= 0.15 H
√

gRhS . (4.11)

However, the numerical value of the coefficient is less precisely known than for
vertical diffusion, because it depends to some extent on the channel width, side-
wall irregularities, river meandering, and numerous other factors. For example,
sidewall irregularities can increase the value to 0.4 and, if the river is slowly me-
andering, the secondary transverse circulation generated by centrifugal forces
can cause the coefficient to reach 0.6.

Most often, discharges into rivers occur along one of the banks. Therefore,
the time taken to achieve nearly complete mixing from side to side in the river
is given by (2.32):

ttransverse = 0.536
W 2

Dtransverse

= 3.6
W 2

u∗H
. (4.12)
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Figure 4-5. Transverse vortices in a river.

During that time, the distance traveled downstream is

xtransverse = ūttransverse

= 3.6
ūW 2

u∗H
. (4.13)

Longitudinal diffusion

Finally, longitudinal diffusion is accomplished essentially by shear disper-
sion, for which a theory was outlined in Chapter 3. The effective diffusion
coefficient depends on the velocity profile, from bottom to surface. A fair
representation of the velocity profile in a turbulent flow of thickness H in a
laterally unbounded domain is

u(z) =
8

7
ū

( z

H

)1/7

, (4.14)

where ū is its vertical average. The shear component is

u′(z) = u(z) − ū

= ū

[

8

7

( z

H

)1/7

− 1

]

. (4.15)

From this, we can calculate the cumulated shear [see Eq. (3.8)]

ũ(z) =
1

H

∫ z

0

u′(z′) dz′

= ū

[

( z

H

)8/7

−
z

H

]

(4.16)
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and the effective diffusivity [see Eqs. (3.9) and (4.8)]

Dlongitudinal =
H

Dvertical

∫ H

0

ũ2(z) dz

= 0.0197
ū2H

u∗

. (4.17)

If we adopt the default value C=17 for the Chézy coefficient, we obtain Dlongitudinal

= 5.68 u∗H, an expression close to one that has been established by a slightly
different method and that has been used in studies of shallow and broad rivers:

Dlongitudinal = 5.93 u∗H. (4.18)

Lateral friction along the river banks may be significant, and the resulting
shearing of the velocity in the transverse horizontal direction can dominate the
shear dispersion effect. The most widely accepted formula in such case is:

Dlongitudinal = 0.011
ū2W 2

u∗H
, (4.19)

where ū is the average velocity, W is the width, u∗ is the turbulent velocity,
and H = A/W is the average depth. In practice, the transverse diffusivity is
taken as the largest between (4.17) and (4.19).

Example

An industrial plant discharges a conservative substance at one point along
the side of a straight river, which is 2-m deep, 50-m wide and has a 0.02%
slope. What is the downstream distance where the pollutant begins to affect
the opposite side?

To answer this question, we must first calculate the hydraulic radius. Equa-
tion (4.4) provides:

Rh =
A

P
=

(2m)(50m)

(2m) + (50m) + (2m)
= 1.85 m.

From this, the turbulent velocity is determined, using Equation (4.5):

u∗ =
√

gRhS =

√

(9.81m/s
2
)(1.85m)(2 × 10−4)

= 0.0603 m/s = 6.03 cm/s.

Using the generic value for the Manning coefficient (n=0.035), we obtain C
√

g=31.7,
or C=10.1, and an estimate of the average velocity:

ū = Cu∗ = (10.1)(0.0603m/s) = 0.61 m/s.

The transverse diffusivity is given by (4.11):
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Dtransverse = 0.15 u∗H = (0.15)(0.0603m/s)(2m)

= 0.0181 m2/s.

By considering one-sided diffusion (from one bank of the river to the opposite
side, rather than from middle to both sides), we estimate the width of the
pollutant at 2σ. It is equal to the river width W at time t such that

W = 2σ = 2
√

2Dtransverse t ,

which gives

t =
W 2

8Dtransverse

=
(50m)2

(8)(0.0181m2/s)

= 17, 280 s = 4.80 hrs.

Since time traveled becomes distance down the river, we can estimate the down-
stream distance for such spreading:

x = ūt = (0.61m/s)(17, 280s)

= 10, 530 m = 10.53 km.

Thus, the pollutant becomes a problem approximately 11 km downstream of
the industrial plant.

4.3 Air-Water Exchanges

Surface chemistry

Wherever water is in contact with air, such as in rivers, ponds, lakes and
oceans, a chemical transfer occurs between the two fluids. Some of the water
evaporates creating moisture in the atmosphere while some of the air dissolves
into the water. Different constituents of air (N2, O2, CO2 etc.) dissolve to
different degrees and in amounts that depend on temperature.

At equilibrium, a relation known as Henry’s Law exists between the amounts
of the gas dissolved in the water and the amount present in the atmosphere:

[gas]in water = KH Pgas in air (4.20)

which states a proportionality between the concentration of gas dissolved in
the water, [gas]in water (in moles per liter, M), and the partial pressure of
the same gas in the air, Pgas in air (in atmosphere, atm). The coefficient of
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proportionality is the so-called Henry’s Law constant, KH (in M/atm). [The
partial pressure of a gas species in a gas mixture is the pressure times the mole
fraction of that species in the mixture. For example, oxygen is 20.95% of the
air on a molar basis and, therefore, PO2

is 20.95% of the atmospheric pressure,
or 0.2095 atm under standard conditions.]

Temperature Oxygen Carbon dioxide
(◦C) (M/atm) (M/atm)

0 0.0021812 0.076425
5 0.0019126 0.063532
10 0.0016963 0.053270
15 0.0015236 0.045463
20 0.0013840 0.039172
25 0.0012630 0.033363

Table 4.2 Values of Henry’s Law constants for oxygen and carbon dioxide.

Let us apply Henry’s Law to dissolved oxygen (DO) in water at two tem-
peratures. At 15◦C, Table 4.2 provides KH = 0.0015236 M/atm, which yields
under a standard partial pressure of oxygen in the atmosphere equal to 0.2095
atm:

[O2] = (0.0015236 M/atm) × (0.2095 atm) = 3.19 × 10−4 M.

And, since the molecular weight of the oxygen molecule is 2 × 16 = 32 g/mole
= 32000 mg/mole, we deduce

DO = 32000 mg/mole × 3.19 × 10−4 moles/L = 10.21 mg/L.

Likewise, at 20◦C: KH is 0.0013840 M/atm, leading successively to [O2] =
0.0013840 × 0.2095 = 2.89 × 10−4 M and DO = 32000 × 2.89 × 10−4 = 9.23
mg/L.

The preceding values are realized only when an equilibrium is reached be-
tween the water and air, which is not always the case. Thus, a distinction must
be made between this equilibrium value, called the saturated value denoted
DOs, and the actual value, DO. The table below recapitulates the saturated
values of dissolved oxygen for various temperatures and under a standard at-
mospheric pressure.
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Temperature Oxygen Temperature Oxygen
(◦C) (mg/L) (◦C) (mg/L)

0 14.6 13 10.6
1 14.2 14 10.4
2 13.8 15 10.2
3 13.5 16 10.0
4 13.1 17 9.7
5 12.8 18 9.5
6 12.5 19 9.4
7 12.2 20 9.2
8 11.9 21 9.0
9 11.6 22 8.8
10 11.3 23 8.7
11 11.1 24 8.5
12 10.8 25 8.4

Table 4.3 Values of saturated dissolved oxygen DOs as function of tempera-
ture, in pure freshwater under standard atmospheric pressure.

Acidity of pristine water

It is also instructive to apply Henry’s Law to carbon dioxide (CO2) because
the result provides the acidity of pristine water and natural rain. The case,
however, is complicated by the fact that CO2 reacts in and with water. The
first reaction taking place is binding with water to form carbonic acid H2CO3

with subsequent decomposition into the bicarbonate ion HCO−

3 and a proton
H+:

CO2 + H2O ⇐⇒ H2CO3 ⇐⇒ HCO−

3 + H+

The equilibrium constants of these two reactions are:

K1 =
[H2CO3]

[CO2]
= 1.58 × 10−3 (4.21)

K2 =
[HCO−

3 ][H+]

[H2CO3]
= 2.83 × 10−4 M. (4.22)

And, a second reaction is the further decomposition of HCO−

3 into the carbon-
ate ion CO−−

3 and another proton:

HCO−

3 ⇐⇒ CO−−

3 + H+

The equilibrium constant of this last reaction is

K3 =
[CO−−

3 ][H+]

[HCO−

3 ]
= 4.68 × 10−11 M. (4.23)

The atmosphere currently contains 370 ppm (= parts per million, 10−6) of
CO2, corresponding to a partial pressure of 370 × 10−6 = 3.70 × 10−4 atm.
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At 15◦C, the Henry’s Law constant is 0.045463 M/atm (see Table 4.2), and the
concentration of dissolved undissociated carbon dioxide is [CO2] = 0.045463
M/atm × 3.70 × 10−4 atm = 1.682 × 10−5 M.

The equilibrium constants yield successively

[H2CO3] = K1[CO2] = 2.658 × 10−8 M

[HCO−

3 ] =
K2 [H2CO3]

[H+]
=

7.521 × 10−12 M2

[H+]

[CO−−

3 ] =
K3 [HCO−

3 ]

[H+]
=

3.520 × 10−22 M3

[H+]2

While these reactions occur, water simultaneously dissociates, as it always does,
providing another source or sink of H+ ions:

H2O ⇐⇒ OH− + H+

with constant of dissociation equal to:

Kw = [OH−][H+] = 10−14 M2.

To determine the acidity of the water, we need to calculate the concentra-
tion of H+ ions. This is accomplished by enforcing conservation of electrons,
otherwise called the equation of electroneutrality. This holds true because the
negative ions have acquired electrons at the expense of the positive ions. Thus,

[H+] = [OH−] + [HCO−

3 ] + 2[CO−−

3 ]

Replacing the various concentration values in terms of [H+], we obtain

[H+] =
10−14 M2

[H+]
+

7.521 × 10−12 M2

[H+]
+ 2

3.520 × 10−22 M3

[H+]2

The solution is [H+]= 2.74 × 10−6 M, and the corresponding pH value is

pH = − log10[H
+] = 5.56. (4.24)

Reaeration/Volatization

Henry’s Law expresses an equilibrium between air and water, but not all
situations are at equilibrium because processes in one medium may skew the
situation. An example is the consumption of dissolved oxygen by bacteria in
dirty water. The oxygen depletion disrupts the surface equilibrium, and the
resulting imbalance draws a flux of new oxygen from the air into the water. In
other words, equilibrium corresponds to a state of no net flux between the two
fluids, whereas displacement away from equilibrium is characterized by a flux
in the direction of restoring the situation toward equilibrium.
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Figure 4-6. The thin-film model at the air-water interface during a situation
away from equilibrium.

A useful way of determining the flux in non-equilibrium situation is the so-
called thin-film model. According to this model, both fluids have thin boundary
layers (a few micrometers thick), in which the concentration of the substance
under consideration varies from the value inside that fluid rapidly but contin-
ually to a value at the interface between the two fluids, as depicted in Figure
4-6.

If we denote by Ca and Cw the air and water concentrations of the substance
away from the interface, by Cao and Cwo the concentrations at the interface,
by da and dw the thicknesses of the film layers, and by Da and Db the air
and water molecular diffusivities, we can write two statements. First, because
there is no accumulation or depletion of the substance at the interface itself,
the diffusion flux in the air must exactly match that in the water:

j = Da
Cao − Ca

da
= Dw

Cw − Cwo

dw
(4.25)

Also, instantaneous equilibrium may be assumed at the level of the interface:

Cwo = KH Po = KH RT Cao, (4.26)

where Po is the partial pressure of the substance in the air at the level of the
interface. Replacing Cwo by this value in (4.25) and solving for Cao, we obtain:

Cao =
dwDaCa + daDwCw

dwDa + daDwKHRT
.

Substitution in either expression of the flux j yields:

j =
DaDw

dwDa + daDwKHRT
(Cw − KHRTCa)
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=
1

dw

Dw

+ da

Da

KHRT
(Cw − KHP ), (4.27)

where P is the partial pressure of the substance in the air away from the inter-
face. The result is that the flux is proportional to the departure (Cw − KHP )
from equilibrium. Lumping the front fraction as a single coefficient of reaera-
tion kr, we write:

j = kr (Cw − KHP ). (4.28)

Naturally, this flux is in the direction of restoration toward equilibrium. If the
concentration in the water is less than at equilbrium (Cw < KHP ), then the
flux is negative (j < 0), meaning downward from air into water, and vice versa
if the concentration in the water exceeds that of equilibrium (Cw > KHP →
j > 0), or upward from water into the air.

In the particular case of oxygen, equilibrium is achieved at saturation, when
the actual dissolved oxygen DO equals the maximum, saturated amount DOs.
Thus, the reaeration flux is expressed in terms of the oxygen deficit:

kr (DOs − DO),

which is counted positive if the water is taking oxygen from the air. Because
it has dimensions of a speed, the coefficient kr is sometimes called the piston
velocity, evoking the idea that the oxygen is being pushed down, as it were,
from the air into the water.

The preceding expression is on a per-area, per-time basis. To obtain the
rate of oxygen intake, we multiply by the area As of the water surface exposed
to the air:

R = Askr (DOs − DO). (4.29)

The coefficient of reaeration kr depends on temperature. The formula most
often used is

kr(at T ) = kr(at 20◦C) 1.024T−20 , (4.30)

where T is here the temperature in degrees Celsius. The value at the reference
temperature of 20◦C depends on the degree of agitation (turbulence) in the
water, which in turns depends on the speed and depth of the river. A useful
empirical formula is

kr(at 20◦C) = 3.9
( ū

H

)1/2

, (4.31)

In this formula, which is dimensionally inconsistent, the stream velocity ū and
depth H must be expressed in m/s and m, respectively, to obtain the kr value
in m/day. In most applications, the reaeration coefficient has to be divided by
the water depth, and some authors define the ratio
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Kr =
kr

H
(4.32)

as the reaeration coefficient. The accompanying table lists typical values of
this ratio.

Stream type Kr at 20◦C
(in 1/day)

Sluggish river 0.23–0.35
Large river of low velocity 0.35–0.46
Large stream of normal velocity 0.46–0.49
Swift streams 0.69–1.15
Rapids and waterfalls > 1.15

Table 4.4 Typical values of the reaeration coefficient for various streams.
[From Peavy, Rowe and Tchobanoglous, 1985, p.87]

4.4 Dissolved Oxygen

Biological oxygen demand

By far the most important characteristic determining the quality of a river
or stream is its dissolved oxygen. While the saturated value DOs is rarely
achieved, a stream can nonetheless be considered healthy as long as its dissolved
oxygen DO exceeds 5 mg/L. Below 5 mg/L, most fish, especially the more
desirable species such as trout, do not survive. Actually, trout and salmon
need at least 8 mg/L during their embryonic and larval stages and the first 30
days after hatching.

Except for pathogens, organic matter in water is generally not harmful
in and of itself but may be considered as a pollutant because its bacterial
decomposition generates a simultaneous oxygen depletion. Indeed, bacteria
that feed on organic matter consume oxygen as part of their metabolism, just
as we humans need to both eat and breathe. The product of the decomposition
is generally cellular material and carbon dioxide. The more organic matter is
present, the more bacteria feed on it, and the greater the oxygen depletion.
For this reason, the amount of organic matter is directly related to oxygen
depletion, and it is useful to measure the quantity of organic matter not in
terms of its own mass but in terms of the mass of oxygen it will have removed
by the time it is completely decomposed by bacteria. This quantity is called the
Biochemical Oxygen Demand and noted BOD. Like disolved oxygen DO, it is
expressed in mg/L. BOD values can be extremely large in comparison to levels
of dissolved oxygen. For example, BOD of untreated domestic sewage generally
exceeds of 200 mg/L and drops to 20–30 mg/L after treatment in a conventional
wastewater treatment facility (Table 4.5). Still, a value of 20 mg/L is high in
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comparison to the maximum, saturated value of dissolved oxygen (no more
than 8 to 12 mg/L). This implies that even treated sewage must be diluted,
lest it completely depletes the receiving stream from its oxygen.

Sewage type BOD

(in mg/L)

Untreated – low 100
Untreated – average 250
Untreated – high 400
After primary treatment 80 to 120
After primary and secondary treatment 30 or less

Table 4.5 Typical BOD values of sewage.

Should the BOD of a waste be excessive and the DO value reach zero,
the absence of oxygen causes an anaerobic condition, in which the oxygen-
demanding bacteria die off and are replaced by an entirely different set of
non-oxygen-demanding bacteria, called anaerobic bacteria. The by-product of
their metabolism is methane (CH4) and hydrogen sulfide (H2S), both of which
are gases that escape to the atmosphere and of which the latter is malodorous.
Needless to say, such condition is to be avoided at all cost!

Under normal, aerobic conditions, organic matter decays at a rate propor-
tional to its amount, that is, the decay rate of BOD is proportional to the
BOD value. Thus, we write:

d BOD

dt
= − Kd BOD, (4.33)

where Kd is the decay constant of the organic matter. Since by definition,
BOD is the amount of oxygen that is potentially depleted, every milligram
of BOD that is decayed entrains a loss of one milligram of dissolved oxygen.
Therefore, the accompanying decay of DO is:

d DO

dt
= − Kd BOD, (4.34)

Like the reaeration coefficient, the decay coefficient depends on tempera-
ture. The formula most often used is

Kd(at T ) = Kd(at 20◦C) 1.047T−20 , (4.35)

where T is here the temperature in degrees Celsius. The value at the reference
temperature of 20◦C depends on the nature of the waste. The accompanying
table lists a few common values.

Waste type Kd at 20◦C
(in 1/day)

Raw domestic sewage 0.35–0.70
Treated domestic sewage 0.12–0.23
Pollutted river water 0.12–0.23
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Table 4.6 Typical values of the decay coefficient for various types of wastes.
[From Davis and Cornwell, 1991]

Oxygen sag curve

Let us now consider a river in which a BOD-laden discharge is introduced.
Downstream of that point, the decay of BOD is accompanied by a consumption
of DO, which in turn creates an increasing deficit of dissolved oxygen. But,
as the oxygen deficit grows, so does the reaeration rate, according to (4.29).
At some point downstream, reaeration is capable of overcoming the loss due to
BOD decomposition, which gradually slows down as there is increasingly less
BOD remaining. The net result is a variation of dissolved oxygen downstream
of the discharge that first decays and then reccovers, with a minimum some-
where along the way. Plotting the DO value as a function of the downstream
distance yields a so-called oxygen-sag curve.

Because the worst water condition occurs where the dissolved oxygen is at
its lowest, it is important to determine the location of the minimum, if any,
and its value. For this purpose, let us model the river as a one-dimensional
system, with uniform volumetric flowrate Q along the downstream direction x
measured from the point of discharge (x = 0). The 1D assumption presupposes
relatively rapid vertical and transverse mixing of the discharge. Let us further
assume that the situation is in steady state (constant discharge and stream
properties unchanging over time), and that the flow is sufficiently swift to
create a highly advective situation, so that we may neglect diffusion in the
downstream direction.

We establish the BOD and DO budgets for a slice dx of the river, as depicted
in Figure 4-7. The volume of this slice is V = Adx and the surface exposed
to the air is As = Wdx, where A is the river’s cross-sectional area and W its
width.

In steady state, there is no accumulation or depletion, and the BOD budget
demands that the downstream export be the upstream import minus the local
decay, namely:

Q BOD(x + dx) = Q BOD(x) − Kd V BOD.

Using V = Adx and re-arranging, we can write:

Q
BOD(x + dx) − BOD(x)

dx
= − Kd A BOD.

In the limit of a short slice, the difference on the left-hand side becomes a
derivative in x, and since Q = Aū, by definition of the average velocity, a
division by A yields:

ū
d

dx
BOD = − Kd BOD. (4.36)

The solution is
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Figure 4-7. Dissolved oxygen and BOD budgets in a stretch of a transversely
well mixed river.

BOD(x) = BODo exp

(

−
Kd x

ū

)

, (4.37)

where BODo is the value of the biochemical oxygen demand of the waste dis-
charged at x=0.

Similarly, the budget of dissolved oxygen consists in balancing the down-
stream export plus the local decay with the upstream import and the local
reaeration:

Q DO(x + dx) + Kd V BOD = Q DO(x) + kr As (DOs − DO).

Using V = Adx and As = Wdx and re-arranging the terms, we obtain

Q
DO(x + dx) − DO(x)

dx
= krW (DOs − DO) − Kd A BOD.

In the limit of a short slice, the differential equation is:

ū
d

dx
DO =

krW

A
(DOs − DO) − Kd BOD.

Next, we recall A/W = H (the cross-sectional area of the river divided by its
width is the average depth) and kr/H = Kr, and we also substitute for BOD
the solution given by (4.37):

ū
d

dx
DO = Kr (DOs − DO) − Kd BODo exp

(

−
Kd x

ū

)

. (4.38)
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The solution is

DO(x) =
Kd BODo

Kd − Kr

[

exp

(

−
Kd x

ū

)

− exp

(

−
Kr x

ū

)]

− (DOs − DOo) exp

(

−
Kr x

ū

)

+ DOs, (4.39)

where DOo is the level of dissolved oxygen at the discharge point, which may
or may not be equal to the saturated value DOs. The first term represents
the effect of the BOD consumption, while the second represents the recovery
toward saturation from a possible prior deficit.

As anticipated earlier, the function DO(x) may reach a minimum (Figure
4-8). Setting the derivative of DO with respect to x equal to zero and solving
for the critical value xc, we obtain:

xc =
ū

Kr − Kd
ln

{

Kr

Kd

[

1 −
(Kr − Kd)(DOs − DOo)

Kd BODo

]}

. (4.40)

This is the distance downstream from the discharge to the location where the
lowest dissolved oxygen occurs. At that location, the BOD decay rate exactly
balances the reaeration rate, so that there is no local change in the amount
of dissolved oxygen. Note that an xc value may not exist if the expression
inside the logarithm is negative. This occurs when the upstream oxygen deficit
DOs − DOo is relatively large compared to the BODo loading, in which case
the dissolved oxygen simply recovers from its initial deficit without passing
through a minimum anywhere downstream.

There is a useful simplification in the case when the stream has no prior
oxygen deficit (DOs − DOo = 0). The expression for the critical distance
reduces to:

xc =
ū

Kr − Kd
ln

(

Kr

Kd

)

, (4.41)

which, we note, is independent of the loading BODo and always exists. The
ratio Kr/Kd has been called the self-purification ratio.

Once the critical distance xc is determined, the minimum value DOmin
of the dissolved oxygen is found by substitution of (4.40) or (4.41), whichever
applies, into (4.39). No mathematical expression is written down here because
it is extremely cumbersome. In practice, numerical values are used before the
substitution.

Mathematically, it may happen that DOmin falls below zero, which is phys-
ically impossible. Should this be the case, the dissolved oxygen reaches zero
before a minimum is reached [at an x location found by setting expression
(4.39) to zero], and DO = 0 exists further downstream. Over this stretch of
the stream, the BOD no longer decays according to (4.36–37) because there is
not enough oxygen, and the formalism leading to the budget (4.38) no longer
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Figure 4-8. The oxygen-sag curve showing the initial decay of dissolved oxy-
gen under pollutant loading and subsequent recovery by reaeration. [Figure
adapted from Masters, 1998]

holds. Instead, the reaeration rate, then equal to KrDOs, limits the BOD con-
sumption, and if anaerobic degradation can be neglected, we may write that
the BOD decay is exactly the rate of reaeration:

ū
d

dx
BOD = − Kr DOs. (4.42)

and BOD decays linearly according to

BOD(x) = BOD(x1) −
KrDOs

ū
(x − x1), (4.43)

where x1 is the value where DO first falls to zero. The dissolved oxygen remains
at zero until the BOD has fallen to a value where it begins to decay less fast,
that is, at a distance x2 where its rate is capable of returning to the rate
prescribed by (4.36):

−Kr DOs = −Kd BOD(x2)

= −Kd[BOD(x1) −
KrDOs

ū
(x2 − x1)].

The solution is

x2 = x1 +
ū

Kd

[

KdBOD(x1)

KrDOs
− 1

]

. (4.44)

Beyond this point, the aerobic degradation resumes, and the problem can sim-
ply be considered as one with no initial oxygen (DOo = 0) and the remaining
BOD amount (BODo = BOD(x2) = KrDOs/Kd).
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The previous model tacitly assumed that the only oxygen demands on the
river are the BOD of the discharge and any prior oxygen deficit. In actual
rivers, sediments may cause a significant additional oxygen demand, because
many forms of river pollution contain suspended solids (SS) that gradually
settle along the river bed, spreading over a long distance, and subsequently
decay. In heavily polluted rivers, this sediment oxygen demand (SOD) can be
in the range 5–10 mg/(m2.day) along the surface of the channel bed. In budget
(4.38), the sediment oxygen demand appears as a sink term on the left-hand
side equal to −SOD/H, and solution (4.39) needs to be amended, but this is
beyond our scope.

4.5 Sedimentation and Erosion

Physical processes

Rivers and stream carry material in the form of solid particles that may
alternatively be deposited on the river bed (sedimentation) and entrained back
into the moving water (erosion). Such material may be contaminated, and
therefore one pollution transport mechanism in a river is by sedimentation and
erosion.

Studies have shown that the entrainment of a solid particle lying on the
bed into the flow depends primarily on the size of the particle and the stress
exerted by the moving water onto the bed. A particle of diameter d is entrained
into the flow when the bottom stress τb exceeds a critical value. The greater
the particle diameter, the stronger the stress must be. According to Equation
(4.3), the bottom stress is given by

τb = ρgRhS,

where the quantity Rh is the hydraulic radius. For a wide and shallow river,
Rh is nearly equal to the depth H, and we have approximately

τb ≃ ρgHS,

which is a more practical quantity because depth is far easier to determine than
the hydraulic radius. Further, since the constant g is universal, tradition is to
drop it from the preceding expression and to write more succintly

T =
τb

g
= ρHS. (4.45)

The quantity T is called the tractive force (which is a misleading expression
because it is not a force but a mass per area). Figure 4-9 shows how the
diameter of the particles that erode depends on the tractive force.

The relationship is not unique but there is some scatter, because underlying
factors are present, such as particle shape and density. If one adopts the line
that bisects the gray zone of scatter, one obtains the diameter d of the particle
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Figure 4-9. Relation between the tractive force on a stream bed and the size
of the bed material that will erode. [From Ward and Trimble, 2004]

that has a 50% chance of being entrained into the stream. For a tractive force
exceeding 0.2 kg/m2, the relationship is very nearly linear, and we can use the
simple proportionality

d = 12.9
u2
∗

g
for T > 0.2 kg/m2. (4.46)

Because the mean stream velocity ū is intimately related to the bottom
stress, via Equation (4.6) [ū = C

√

τb/ρ] and hence also to the tractive force,
one can recast the preceding plot in terms of particle diameter and stream
velocity. The result is the so-called Hjulstrom diagram (Figure 4-10), which
also shows the settling (fall) velocity.

The amount of sediment transported by the stream, if any, is called the wash
load, suspended load, or simply bedload. The load is carried downstream by a
combination of sliding, rolling and bouncing (called saltation). The volumetric
bedload discharge qs can be determined by the Meyer–Peter–Muller equation:

qs
√

g′d3
50

=

(

4u2
∗

g′d50

− 0.188

)3/2

, (4.47)

where qs is expressed in m3/s per unit width of channel, d50 is the median
particle size (in m), u∗ is the friction velocity defined in (4.2) (in m/s), and g′

is the gravitational acceleration experienced by the particles, defined as

g′ =
ρsolid − ρwater

ρwater

g, (4.48)
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Figure 4-10. Hjulstrom diagram relating flow velocity and bed material size
to erosion, entrainment, transport and deposition. [From Ward and Trimble,
2004]

which includes the discount due to buoyancy. Since the density of solid particles
is typically ρsolid = 2650 kg/m3 (value for quartz and, therefore, sand), g′ =
1.65 g = 16.19 m/s2. For the total bedload transport expressed as mass per
time conveyed by the stream, one needs to multiply the preceding expression
for qs by the width of the river and the solid density.

The expression quoted here for bedload transport is traditional, but it is
actually only one among many alternatives, all based on differing models.

Application

Text to be added later.
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