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The QKKR method is a recently invented band theory with 

remarkable advantages of fast computational speed and no 

special requirements on the one electron potential. It has 

been successfully applied to the band structure calculation 

for simple crystals. A program for QKKR band theory calcula-

tions for complex crystals (more than one atom per unit 

cell) is developed and applied to PdH. It is shown that, 

compared with the KKR method, the QKKR method is more 

efficient and yields very accurate results in the range of 

energies in which we are interested. Unlike other band 

theories, the QKKR requires the expansion of a three dimen-

sional step function in real spherical harmonics. A general 

method for evaluating this expansion is established in this 

thesis. 
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CHAPTER 1 

INTRODUCTION 

1.1 OUTLINE OF THESIS 

Since the KKR method (also called the Green's function 

method) was first developed by Korringa 1 , Kohn and Ros­

toker 2 , it has been proved that this is one of the most 

successful band theory methods because of its ability to 

yield quantitatively accurate results and rapid conver­

gence3. However, a lot of efforts have been made by some 

scientists to improve the technique of the calculation and 

eliminate the requirement of a special shape for the one­

electron potential 4 ' 5 ' 6 ' 7 • The most remarkable progress on 

this aspect must be due to the QKKR method, proposed by Dr. 

Faulkner8 in 1982. 

Derived from the multiple-scattering theory, the QKKR 

method gives a new band theory equation for calculating the 

one-electron energy eigenvalues and wave functions. The most 

important advantage of the QKKR method is that, instead of 

looking for every zero of the determinant of the KKR secular 

equation matrix relating to a certain vector k, it finds 

1 
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all of the eigenvalues for each vector k by diagonalizing a 

single matrix. Compared with the KKR method, it saves a 

large amount of computing time without losing accuracy over 

the range of energy bands of interest. 

The band structure calculations for both simple crys­

tals with one atom per unit cell, e.g. cu, Zn, Na, ... etc, 

and complex crystals, which have more than one atom per unit 

cell, e.g. Si, NaCl, GaAs, PdH ... etc, have been carried 

out in KKR method by a lot of people 9 , 10 , 11 , 12 • Previously 

the QKKR method has been applied only to the band structure 

calculations for simple crystals 8 , 13 • In order to develop a 

complete QKKR method that could replace the KKR method and 

be used for wide range of purposes, especially for alloy 

theory in the future, it is necessary to study its applica­

tion to the band theory for complex crystals and develop the 

necessary computer programs. This is the purpose of this 

thesis. The sample material considered in my research is 

PdH, which has been widely studied by many people using 

various methods 14 ,Is,Is,l7. 

In the second chapter, I will briefly review the multi­

ple-scattering theory. Then both KKR and QKKR methods will 

be derived based on this theory in chapter 3 and chapter 4, 

respectively. In these two chapters, the formulas for both 

simple and complex lattice structures are provided. 

In QKKR theory, the three dimensional step function 

o(r), which equals 1 inside and zero outside a polyhedron, 
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plays a very important role. A general method for evaluat­

ing the expansion of a(r) in terms of real spherical func­

tions YL(r), defined in Appendix II, is invented and dis­

cussed thoroughly in chapter 5. 

Chapter 6 gives the detailed discussion of the proce­

dures and techniques in applying both KKR and QKKR methods 

to the band structure calculation for the complex crystal 

PdH. The E vs. k curves derived from the both methods are 

provided and compared to each other to demonstrate how 

successful the QKKR method is in the case of complex crys­

tals . The conclusions of my work and results are put in the 

last chapter. 

Before turning to the derivations of KKR and QKKR 

theory, it is helpful to consider some basic concepts. 
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1.2 CRYSTAL STRUCTURE 

It is well-known that a perfect crystal can be repre-

sented by a set of periodic lattice points with a certain 

basis of atoms, say N atoms, around each point. The position 

of each atom in the basis relative to the associated lattice 

point is denoted as a vector qi, i=1,2,· · ·N. Conventionally, 

the coordinate system is set in such a way that the origin 

is at a lattice point, which we call the central lattice 

point, and the position vector of nth lattice point is 

denoted as Rn. 

According to the one-electron approximation, the one 
A 

electron wave functions wk(r) will satisfy the following 

single particle Schrodinger equation (assuming atomic units, 

see Appendix I.) 

(1.1) 

where k is a vector in reciprocal lattice space, A refers to 

the index of a certain band and V(r) is the one electron 

potential. In a perfect crystal, V(r) must have the period-

icity of the crystal and can be written as 

V(r + Rn) = V(r) (1.2) 

The Bloch theorem states that the one-electron wave function 
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(also called Bloch wave function) associated with energy E 

satisfies 

( 1. 3) 

Assuming that the one-electron potential is composed of 

a set of local and non-overlapping potentials, we have 

V(r) ( 1. 4) 
r E interstitial area 

where vi(r - Rn - qi) is the local potential defined in the 

region On(i) and due to the atom locating at the position qi 

relative to nth lattice point, and V0 is a constant poten­

tial within the interstitial area between the regions On(i). 

From the equation (1.1), it is obvious that the constant 

interstitial potential can be set to zero by subtracting the 

energy with V0 • Usually we will assume that the interstitial 

potential is zero unless giving a special statement. There-

fore, the one-electron potential can be written as 

V(r) =I vi(r - Rn - qi) 
n,i 

If the potentials vi(r 

( 1. 5) 

qi) are spherically 

symmetric with Rmt ( i) being the radius of the spherical 
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region On(i), i.e. 

( 1. 6) 

the one-electron potential V(r) is called a muffin-tin 

potential and the radii Rmt(i) are muffin-tin radii. 
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1.3 UNIT CELL 

Usually it is useful to construct a lattice cell that 

contains one or more lattice points and will fill all the 

space through the action of sui table displacements with 

vectors Rn so that the lattice space is composed of identi­

cal lattice cells. A unit cell is defined as the lattice 

cell inside which there is only one lattice point. The 

simple crystal is one whose lattice unit cell contains one 

atom, and a complex crystal has more than one atom in the 

unit cell. The central unit cell refers to the one contain­

ing the central lattice point. 

Although there is more than one method to construct a 

unit cell, the Wigner-Seitz cell is the most useful. Its 

boundaries are composed of planes which are perpendicular to 

and intersecting at the mid-point of a line connecting the 

inside lattice point and one of its neighboring lattice 

points. As an example, the metal Cu has so-called FCC 

(face-centered cubic) lattice structure (see Fig.1-1), and 

its Wigner-Seitz cell is a regular rhombic dodecahedron (see 

Fig.1-2). 

In this thesis, I choose the Wigner-Seitz cell as a unit 

cell for simple crystal structures. For complex crystals, 

the unit cell is divided into sub-cells, each of which 

contains one atom. They are constructed to contain the 

muffin-tin sphere of each atom in the unit cell. An example 

of this case is NaCl (see Fig.1-3), which lattice structure 
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is FCC and unit cell is constructed in the way shown in 

Fig.l-4. 
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8 Cu 

Fig. 1-1. The crystal structure of Cu is FCC type. 

There is one atom per unit cell. 
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Fig. 1-2. The shadowed area is the Wigner-Seitz cell 

of FCC lattice structure. 
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e: c1 
0: Na 

Fig. 1-3. The crystal structure of NaCl is FCC type. 

There are two atoms per unit cell. 
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0 0 

0 

Fig. 1-4. The area bounded by the bold lines is the 

unit cell of NaCl lattice. The unit cell is divided 

into two sub-cells, each of which contains one atom, Na 

or Cl. 



CHAPTER 2 

MULTIPLE-SCATTERING THEORY 

2.1 INTRODUCTION 

Multiple scattering theory deals with a particle that is 

scattered by the potential V composed of a collection of 

local and non-overlaping potentials vn, i.e. 

V = I Vn . 
n 

( 2. 1) 

The first contributions to this theory were in the late 

nineteenth century. Rayleigh 18 , Ewald 1 9 and Kasterin 20 were 

the persons who made the major early developments of this 

theory. In the following section, a brief review of this 

theory is given within the frame work of formal scattering. 

More information about multiple scattering theory and its 

application to sol i d state physics can be found in Faulk-

ner's book 2 1 • 

13 
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2.2 MULTIPLE SCATTERING THEORY 

Usually in formal scattering theory the first step is to 

write the Lipmann-Schwinger equation22 

(2.2) 

where the potential Vis described by (4.1), lx> satisfies 

the unperturbed Schrodinger equation 

Ho I X> = E I X> ' (2.3) 

and lw>, the state vector of the single particle, is the 

solution of Schrodinger's equation 

E I W> I ( 2. 4) 

corresponding to the same energy E in (4.3). The operator G
0 

is defined as 

G0 =lim (E + iE - H
0
)- 1 ( 2. 5) 

f-+O 

By introducing the well-known transition-matrix T, which 

is related to the transition probability and defined as 

Tlx> = Vlw> , ( 2. 6) 
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we can rewrite the Lipmann-Schwinger equation as following 

( 2. 7) 

The T-matrix may be written in the form as 

( 2. 8) 

which can be shown to be equivalent to (2.6}. 

The basic idea of the multiple scattering theory is to 

obtain the T-matrix describing the scattering of a system of 

many scatterers in terms of the corresponding t-matrix for 

individual scatterers. This is accomplished by considering 

(2.1) and introducing 

so that 

T = I Qn • 
n 

( 2. 9) 

( 2. 10) 

According to (2.8}, the t matrix for scattering from the 

nth scatterer with potential vn can be written as 

(2.11} 
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Substituting Tin (2.9) with (2.10), we can find 

Qn = Vn· (1 + Go·I Qn) I (2.12) 
n 

or 

Qn = (1 - v ·G )- 1 v ·(1 + Go. I Qm) n o n 
m,..n 

= tn· (1 + G . I Qm) 0 
(2.13) 

m,..n 

Obviously the T matrix for the system without nth scatterer 

will be I Qm. Therefore, comparing with (2.7), 
m,..n 

lx> +Go· I Qmlx> 
m,..n 

(2.14) 

defines the incoming wave, scattered by other scatterers, to 

the nth scatterer. Because of (2.13), we have 

( 2. 15) 

i 
l*n> = I x> + G . I Qmlx> 0 

m,..n 

i 
lx> + I Go· tml *m> (2.16) 

m,..n 
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and 

lx> + (2.17) 

Equations (2.16) and (2.17) are called the fundamental 

equations of multiple scattering theory. 

Notice that in solids the one-electron wave function lw> 

is a stationary state, in which case T must be singular at 

the eigenvalues E. Therefore, in order to find nontrivial 

solution of the equation ( 2. 7) for stationary state, we 

should set 

I x> = o • (2.18) 

If we define the outgoing wave from nth scatterer as 

(2.19) 

then (2.17) with the condition (2.18) gives 

(2.20) 

This equation states that the total solution is the sum of 

the outgoing waves from all of the scatterers, or 
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I*> (2.21) 

the solution is the sum of incoming and outgoing waves 

associated with any scatterer. 

Notice that combining (2.17) and (2.18) with (2.19), we 

can find the incoming wave on any scatterer is the sum of 

outgoing waves from all other scatterers 

(2.22) 

These last two equations, (2.21) and (2.22) are very impor-

tant in the derivation of KKR theory. 



CHAPTER 3 

KKR THEORY 

3.1 INTRODUCTION 

There are two ways to derive the KKR method. One way was 

proposed in 1947 by Korringa from the point view of multiple 

scattering theory 1 • Another one was suggested in 1954 by 

Kohn and Rostoker through the variational principle method 2 • 

Many people 3 , 1 2 prefer the variational approach because of 

its simplicity in mathematical technique, but the derivation 

with multiple scattering theory provides a very clear 

physical picture and leads to some further developments 5 ' 7 

such as the invention of the QKKR method 8 • 

In this chapter, I will give a brief derivation of the 

KKR method using the results from the multiple scattering 

theory. A comprehensive discussion about this approach can 

be found in the paper 7 by Faulkner. 

19 
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3.2 KKR THEORY 

In last chapter, the multiple scattering theory has been 

discussed. We will find that it is a very powerful tool to 

solve the one-electron Schrodinger equation, which is the 

fundamental equation in band theory: 

( 3. 1) 

where the atomic units have been assumed (see Appendix I). 

For simple crystals (the generalization to complex 

crystals is straightforward and will be considered in the 

section 3.3), the one-electron potential V(r) is composed of 

a set of identical local non-overlapping potentials, 

v(r - Rn), centered at the lattice points and can be written 

as 

V(r) = I v(r - Rn) ( 3 • 2) 
n 

{ v(r - Rn) r E On 
= 

0 r E interstitial region ' 

where On is the region centered at the nth lattice point 

with the local potential v(r - Rn) being defined inside it. 

To find the outgoing and incoming waves related to the 

nth scatterer, the intuitive approach is to look at the 
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interstitial area outside the bounding sphere of 0 (see 

Fig.3-1 and Fig.3-2) where V(r) = o, and the wave function 

satisfies the Helmholtz equation 

( -v 2 
- E) · <t> ( E, r) 0 . ( 3 • 3) 

We define rn = r- Rn and rn = lr- Rnl. Since the out-

going wave must be singular and the incoming wave 
i 0 

<Pn(E,rn) must be regular as rn-- o, we can expand <Pn(E,rn) 

in terms of YL(rn) · n1 (arn) 

YL(rn)·j.Q(arn) as follows 

and 

0 
a· I 

n 
<Pn(E,rn) YL(rn) n1 (arn). ~L 

L 

i 
I 

n 
<Pn(E,rn) = YL(rn) j1 (arn) · 77L 

L 

by defining 

in terms of 

r ~ S (3.4a) 

r ~ S (3.4b) 

( 3. 5) 

and S being the radius of the bounding sphere. For the area 

inside the sphere, let us assume aNL(E,rn) and JL(E,rn) 

are the extensions of outgoing and incoming wave components 

with angular momentum L, respectively. Therefore, for r 
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Fig. 3-1 An example of muffin-tin potential. The 

bounding spheres of local potentials do not overlap 

each other. 
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Fig. 3-2. An example of nonmuffin-tin potential. The 

bounding spheres of local potentials do not overlap 

each other. 



24 

either inside or outside the bounding sphere we have 

0 
a· I 

n 
cJ>n(E,rn) NL(E,rn)·~L (3.6a) 

L 

i 
I 

n 
cJ>n(E,rn) JL(E, rn) "17L ( 3. 6b) 

L 

with the conditions 

(3.7a) 

( 3. 7b) 

It can be shown 7 by considering the scattering of an incom-

ing wave into an outgoing wave by the local potential that 

with 

n 
17L 

n 
- I X LL , ( E ) . ~ L , 

L ' 
(3.8) 

(3.9) 

The cosine and sine matrices in the equation (3.9) are 

a·J n1 (ar)YL(r)v(r)cpL - (E,r)d3 r- 6LL' 
r :;;; s 

(3.10a) 
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a·J j 1 (ar)YL(r)v(r)¢L'(E,r)d3 r 
r~ S 

(3.10b) 

where ¢L'(E,r) is the wave function component with angular 

momentum L' and satisfies 

or 

with 

( -v 2 + v ( r) - E) · ¢ L, ( E, r) 0 I 

¢L' (E,r) = YL ' (r)j1 , (ar) - f G(E,r,r ' )v(r ' ) 

G(E,r,r ' ) -a·I YL(r)·[j 1 (ar)n1 (ar ' ) 
L 

Thus the incoming wave can be written as 

(3.11a) 

(3.11b) 

(3.11c) 

(3.12) 

According to equation (2.21) in multiple scattering theory, 

we have 
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(3.13) 

where the subscript and superscript for n=O on the left hand 

side of above equation are dropped off. Notice that the 

Bloch's theorem requires 

n ik·Rn 
~L = e • ~L (3.14) 

so that eq. (3.13) becomes 

( 3. 15) 

We can expand the outgoing waves from all other unit cells 

(n ~ 0) in terms of the incoming wave into the central unit 

cell (n = 0) as following, since NL ' (E,rn) with n ~ 0 are 

regular within the central unit cell 

n 
I J L , ( E , r) · ALL , (E) 
L ' 

( 3. 16) 

with r being inside the central unit cell. Actually, the 
n 

expansion coefficients ALL ' can be found by considering the 

interstitial area inside the central unit cell but outside 
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the bounding sphere of the region 0 

so that 

n n 
ALL , ( E ) = BLL , ( E ) 

n 
I YL ' (r) j1 ( a r) · BLL ' (E) 
L ' 

(3.17) 

(3.18) 

except for those n's which, in the case shown in Fig.3-3, 

are nearest neighboring unit cells with the bounding spheres 

of On overlapping with the one in the central unit cell. 
n n n 

Define NLL ' as the difference between ALL ' and BLL ' for 

those neighboring unit cells, so that 

ALL ' ( E ' k) = I 
n?'O 

"k n e l . Rn . ALL , ( E ) 

(3.19) 

where NLL ' (E,k) are called near-field corrections due to the 

overlapping effect mentioned above, and BLL ' (E,k) are called 

structure constants 

BLL , (E, k) 
"k n e l . Rn . BLL , ( E ) ' (3.20) 
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Fig. 3-3. An example of nonmuffin-tin potential. The 

bounding spheres of local potentials overlap each 

other. 
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which only depend on E, the k vector and the lattice struc-

ture. The technique of calculating structure constants was 

first treated by Ewald19 • The explicit expression of these 

coefficients is available 3 • 

Therefore, combining (3.15) with (3.16) and (3.19), we 

have a set of homogeneous equations for ~L' 

I [ X LL ' (E) + BLL ' ( E I k) + N LL ' ( E I k) ] . ~ L ' 
L ' 

0 • (3.21) 

In fact, the near-field corrections NLL ' (E,k) can be ignored 

in practical calculations of interest, so that the nontriv-

ial solutions of ~L' exit only if 

det [ X(E) + ~(E,k) ] 0 (3.22) 

which is the fundamental KKR equation for general potential. 

Thus, the E vs. k curves can be evaluated by looking for the 

energy eigenvalues E which satisfy the equation (3.22) for 

certain k vectors, and the Bloch waves are, according to 

(2.20) 

i 0 
1> (E,r) + 1> (E,r) 

). 
= I [ a · N L ( E , r) - I J L , ( E , r) · X LL , ( E ) ] · ~ L ( k) 

L L ' 
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(3.23) 

with r inside the central unit cell and ZL(EA(k),r) is a 

solution of the differential equation 

[-V 2 + v(r)]·f(E,r) = E·f(E,r) , (3.24) 

with the boundary condition 

a·YL(r)n1 (ar) -I YL-(r)j 1 - (ar)·XLL ' (E) 
L' 

for r ~ S . (3.25) 

In the case of a muffin-tin potential, it can easily 

been shown that the sine and cosine matrices are diagonal 

(3.26a) 

with 

2 d d 
a·S [n1 (ar)·dr ¢L(E,r) - ¢L(E,r)·dr n1(ar)]l , 

r=S 

(3.26b) 

and 
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(3.27a) 

with 

2 d d 
= a·S [j 1 (ar)·dr <PL(E,r) - <PL(E,r)·dr j.Q(ar)]l , 

r=S 

(3.27b) 

where S is just the muffin-tin radius Rmt· Thus 

(3.28) 

Equations (3.26) ~ (3.28) are the results of the origi-

nal derivation of KKR theory. In that derivation one has to 

assume that the potential is in the muffin-tin form. The 

band structure calculation based on ( 3. 2 6) ~ ( 3. 2 8) is 

called the ordinary KKR calculation. 

In practical calculations, the value of 1 is taken only 

up to 1max because the scattering of wave components with 

high angular momentum can be ignored. 
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3.3 COMPLEX CRYSTAL 

A complex crystal structure is one in which there is 

more than one scatterer within a unit cell. An example of 

two atoms per unit cell is shown in Fig.l-4. 

Let us assume that there are N scatterers i.e. atoms) 

within a unit cell and qi, i=1,2,· · · ,N, denotes the position 

of ith scatterer. Then the potential V(r) should be written 

as 

V(r) I I vi(r - Rn - qi) 
n i 

(3.29) 

with the assumption, as before, that the local potentials do 

not overlap each other. We can still follow the procedure 

used before but consider the scatterers within a unit cell 

separately. 

Therefore, the incoming and outgoing waves associated 

with the ith scatterer within the nth unit cell are 

i 
<Pn,i(E,rn,i> 

respectively, where rn i = r - Rn - qi . 
' 

have 

(3.30a) 

(3.30b) 

As in ( 3 • 8) , we 



n,i 
~L - I 

L' 

The matrix Xi is 
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(3.31) 

(3.32) 

where the sine and cosine matrices have the same form as 

(3.10) except additional superscripts and subscripts i 

(3.33a) 

i i 
SLL ' = a·f j1(ari)YL(ri)v(ri)~L ' (E,ri)d 3 r 

ri~ si 
(3.33b) 

i 
Si is the radius of the bounding sphere of O(i) and ~L(E,ri) 

is the solution of the differential equation 

(3.33c) 

According to the multiple scattering theory, the incom-

ing wave to the ith scatterer within the central unit cell 

can be written as 
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(3.34) 

by suppressing the subscripts for n = 0. The second term of 

the above equation comes from the contribution of the 

scatterers other than the ith within all of the unit cells. 

In terms of the incoming wave component of angular 

momentum L ' to the ith scatterer within the central unit 

cell, the expansion of the outgoing wave components of 

angular momentum L from the ith scatterer within the nth 

unit cell (n ~ 0) can be written as 

(3.35) 

Another expansion is about the outgoing wave component from 

the ith scatterer (i ' ~ i) within any unit cell 

(3. 36) 

Ignoring the near-field corrections, the expansion coeffi-

cients can be found as 

n,i 
ALL' (E) 

n,i 
BLL ' (E) (3.37) 



with 

and 

with 

ii ' 
ALL ' (E) 

ii ' 
MLL , (E) 
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(3.38) 

(3.39) 

(3.40) 

The structure constants for complex crystal are defined as 

and 

ii ' 
M LL , ( E I k) = I 

n 

i 

(3.41a) 

'k ii ' 
e l . Rn. M LL , ( E) ( 3. 41b) 

Obviously BLL ' (E,k) = BLL ' (E,k), because of the transla-

tion symmetry in a perfect crystal. The explicit expression 
ii ' 

for the structure constants MLL ' (E,k) is also available in 

the literatures 11 , 2 3 • Combining (3.32) with (3.29), (3.30) 

and structure constants obtained above, and considering 
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i 
we finally have a set of homogeneous equations for ~ L 

with the definition 

ii 
M LL , ( E I k) = 0 . 

i 
The coefficients ~L have nontrivial solutions only if 

det [ X(E) + ~(E,k) + M(E) 

x1 + ~ !:F 2 

M2 1 x2 + ~ 
= det 

M3 1 M32 

Mn1 Mn2 

0 

(3.42) 

(3.43) 

(3 . 44) 

(3.45) 

Compared with the simple crystal, the size of above matrix 

is N x N times larger. 

In the case of muffin-tin potential, sine and cosine 

matrices will be in the diagonal form 



with 

and 

with 
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i i 
CLL, (E) COSTJ _p_ • o LL , 

i 
SLL, (E) 

. i 
SlnTJ _p_ • o LL , 

. i d 
slnTJ_p_= a·Si 2 [j_p_(ari)·dr·¢_p_{E,ri) 

l 

therefore 

i 
a· COtTJ _p_ • o LL, 

(3.46a) 

( 3. 4 6b) 

(3.47a) 

(3.47b) 

{3.48) 
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The ordinary KKR calculation for complex crystals are 

based on equations (3.46) ~ (3.48). 



CHAPTER 4 

QKKR THEORY 

4.1 INTRODUCTION 

As in the last chapter, We shall treat simple crystals 

first. The generalization to complex crystals will be given 

in section 4.3. 

Notice that an alternate form of KKR equation can be 

obtained by defining the column matrix gA(k) as following 

.Q_-1(E)·!_(k) • ( 4. 1) 

Therefore the equation (3.21) becomes 

0 ' (4.2) 

with 

E(E,k) a·Q(E) + [f!(E,k) + .N(E,k) )·.Q.(E) • (4.3) 

Equation (3.22) becomes 

39 
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det E(E,k) = 0 . (4.4) 

This is a very useful equation because it eliminates the 

singular points of the sine matrix Q(E) so that they won't 

affect our looking for the eigenvalues with the KKR method 

through the equation (4.4). on the other hand this equation 

is important in the QKKR theory, as discussed in the follow­

ing. 
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4.2 QKKR THEORY 

The starting point of QKKR theory is to consider the 

fact that when the boundaries of the regions On approach to 

the boundaries of the Wigner-Seitz cells, the volume of the 

interstitial area goes to zero, so that the value of the 

constant interstitial potential Vcon becomes an irrelevant 

parameter. In this case the local potential should be 

written as: 

( 4. 5) 

where o(rn) is a three dimensional step function defined as: 

( 4. 6) 

Let us define a so-called pivotal energy E
0

, which 

relates to Vcon=O. Since Vcon is an irrelevant parameter, we 

can choose it to be some value other than zero, such as 

(4.7) 

This leaves the one-electron Schrodinger equation 

(4.8) 
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unchanged, where the one-electron potential is 

( 4. 9) 

As discussed before (in section 1.2), we can subtract 

~A (k) from the local potentials v ' (rn) which will shift the 

energy EA(k) back to E0 while Vcon remains zero. The local 

potential is replaced by 

( v(rn) - ~A (k) )·a(r) , (4.10) 

and the equivalent one-electron Schrodinger equation is 

(4.11) 

where 

v~ (r) (4.12) 

Thus, we can still apply the equations derived in the last 

chapter with v(r) replaced by v~(r). 

Therefore the Bloch wave function can be written as 
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w~(r) = [ ( 4. 13) 
L 

where 

+ J G(E 0 ,r,r ' )v6 (r ' )¢~(E 0 ,r ' )d 3 r ' , 
I r ' I ~ I rl 

(4.14) 

with 

(4.15) 

). 
G(E 0 ,r,r ' ) is given by (3.11b), and dL(k) are solutions of 

[ 0 (4.16) 
L ' 

in which the matrix (ignoring near-field corrections) 

(4.17) 

The sine and cosine matrices can be found by evaluating the 

following integral equations: 

(4.18a) 
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(4.18b) 

Notice that the matrices ~6(E 0 ) and ~6 (E 0 ) are entire 

functions of 6 . Therefore we can expand them as Taylor 

series in 6, so that 

(4.19a) 

(4.19b) 

Inserting these equations into (4.14) with assuming that 

the near field corrections can be ignored, i.e., N6 (E 0 ,k)=O, 

we have 

E6 (E 0 ,k) = Ji(k) - Q(k) · 6 + A(k) · 6 2 + · · · , (4.20) 

where 

(4.2la) 

( 4. 21b) 

(4.21c) 
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If we define the matrices 

f.. (k) Q(k)-1 ·H(k) (4.22a) 

!2(k) A(k)-1 ·Q(k) (4.22b) 

and ignore all terms beyond the quadratic one in the equa-

tions (4.17a&b), the equation (4.18) can be written in the 

form as 

[ 6 2 
- !2(k). (6 - f..(k)) ] . g(k) 0 (4.23) 

The elements of the column matrix g(k) are the coefficients 
). 

dL(k). A column matrix h(k) with elements, related to the 
). 

band :X, that will be called hL(k) is defined as 

h(k) [ 6 - f..(k) ]·g(k) (4.24) 

Coupling this equation with (4.22a&b) and (4.23) leads to 

the important matrix equation of QKKR theory 

[ 

6· 1. + f.. 

-.I 

- !2 
(4.25a) 

which has the form of a standard eigenvalue equation, i.e., 
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.Q - £. 
0 ( 4. 25b) 

0 l [ 
and can be evaluated by diagonalizing the matrix Q(k) 

.Q - £. 
-£_ 2 l 

£. 

(4.26} 

so that the ordinary energy eigenvalues will be 

(4.27} 

It can easily be concluded that, if the angular momenta are 

considered only up to ~max' the dimension of the matrices ~6 

and ~6 is (~max+l}x(~max+l}, while that of the matrix Q is 

2 <~max+l)x 2 (~max+l} · 
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4.3 COMPLEX CRYSTAL 

It is very easy to carry out the extension to the 

complex crystal if we carefully add those subscripts and 

superscripts, which represent the index of atoms in a unit 

cell, to the functions and matrices in the above equations. 

Thus the Bloch function is given by 

(4.28) 

where 

(4.29) 

). 
and dL i(k) are solutions of the set of equations 

I 

(4.30) 

With the assumption that the near-field corrections can be 

ignored, 
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= H(k) - Q(k)·~ + 8(k)·~ 2 (4.31) 

The structure constant matrices ~ and M are given in the 

literatures mentioned in the last chapter. The matrices H, Q 

and 8 are of the form 

H(k) = a
0 

.Q( 0 )(E
0

) + [~(E 0 ,k) + M(E 0 ,k)]·~(O)(E 0 ) 

(4.32a) 

Q ( k) -a 
0 

.Q ( 1 ) ( E 
0 

) - [ ~ ( E 
0 

, k) + M ( E 
0 

, k) ] · ~ ( 1 ) ( E 
0 

) 

(4.32b) 

8(k) = a
0 

_Q(2)(E
0

) + [~(E 0 ,k) + M(E 0 ,k)]·~(2)(E 0 ) 

(4.32c) 

in which the sine and cosine matrices are given by 

~ i 
x <I> L ~ (Eo ' r i , ) d 3 r i , - o LL , ] 

(4.30a) 
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(0) i (l),i 
= 8 i i ' . [ S LL ' ' (Eo ) + !:::. • S LL ' (E o ) 

2 (2),i 
+ t:::. • S LL ' (E o ) J • 

(4.30b) 

Equations (4.22) ~ (4.27) are in the same form except 

the dimensions of these matrices are N x N times larger. 
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4.4 THE COMPARISON WITH KKR METHOD 

The most important advantage of QKKR method is its much 

smaller time consumption in practical calculations. The QKKR 

theory provides a very effective method that can be used to 

find all the energy eigenvalues for a certain k vector by 

diagonalizing the matrix Q, which takes the same time as 

calculating one determinant. The accuracy of the QKKR method 

depends on the range of ~ values, since we include only up 

to the quadratic terms in the expansions of sine and cosine 

matrices. Usually, we choose E0 around the middle of the 

energy range in which we are most interested, so that the 

energy bands within that range, calculated from the equation 

(4.27), will have enough accuracy. Obviously, the closer to 

the E
0

, the more accurate the energy eigenvalue will be. 

The QKKR calculations for some simple metals have been 

carried out by Faulkner and demonstrate great accuracy when 

compared with the results from the KKR method. 

In chapter 6, I will provide the results of calcula­

tions for a complex crystal. 



CHAPTER 5 

STEP FUNCTION 

5.1 INTRODUCTION 

The most difficult problem in the QKKR calculation is 

evaluating the elements of the sine and cosine matrices. In 

order to find the expansion coefficients of s6 (E
0

) and 

c6 (E 0 ) on 6, we need to give 6 a trial value, such as o. For 

a certain atom in the unit cell with origin of the coordi-

nates set on it 

0 0 
CL L ' (E o ) ao · f n 1 (a 0 r) Y L ( r) Y 0 ( r) · <P L , ( E 0 , r) d 3 r - 0 LL ' ' 

' 
(5.1a) 

0 0 
8 L,L ' (E o ) ao · f j 1 (a o r ) Y L ( r ) yo ( r ) . <P L , ( E o ' r ) d 3 r, 

(5.1b) 

where I drop the superscripts or subscripts 'i' representing 

the type of atom for convenience, and the integrations are 

carried over the sub-cell. 

Expanding the local potential Y0 (r) in terms of the real 

spherical harmonics yields 

51 
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v8 (r) (5.2) 

where 

(5.3) 

Thus the equations (5.la&b) become 

(5.4a) 

[ Is 8 8 

0 

r 2 ·dr j~(a 0 r)vL- (r)¢LoL' (E 0 ,r) 

L -
x gL,Lo ' 

(5.4b) 

defining 

(5.5) 

which are called Gaunt factors, and 

8 
f do Y Lo ( r) ¢ L- ( E 0 , r) 
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o o L -
x vL- (r ' )~LL ' (E o ,r ' }·gLo,L 

(5.6) 

in which 

G_q, (E 0 ,r,r ' ) -a 0 • [ j _q, ( a 0 r ) n _q, ( a 0 r , ) - n_q, (a 0 r} j_q, (a 0 r ' )], 

(5.7) 

0 [ [ 0 
CLo L ' (E o ' r) = a o r ' 2 dr ' n_q, 0 (a 0 r ' )vL- (r ' ) 

' L,L-
0 L-

X ~LL ' (E o ,r ' ) · gLo ,L- 0 Lo L ' ' 

(5.8a) 

0 [ [ 0 
8Lo , L' (Eo 'r) a o r ' 2 dr ' j_q, 0 (a 0 r ' )vL- (r ' ) 

L, L-
0 L-

X ~ LL ' (E o ,r ' )·gLo ,L . 
(5.8b} 

Comparing (5.8a&b) with (5.4a&b), one has 

0 0 
CLo L ' (E o ) CLo ,L ' (E o ,r) I r (5.9a} 

' s ' 

0 0 
8Lo L' (E o) SLo 'L , (Eo 'r) I r (5.9b) 

' s . 

Therefore, if the function is known, the sine and 
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cosine matrices for certain value of S can be evaluated by 

iterating the equations (5.6) ~ (5.9). 

The expansion coefficients of the matrices will be found 

as follows 

~(O)(Eo) s 
~ (Eo) Is = (5.10a) 

o, 

~(1)(Eo) s s 
(~ (Eo) Is - ~ (Eo) Is ) I 2 ' {3 =-{3 

(5.10b) 

~(2)(Eo) s s 
(~ (Eo) Is + ~ (Eo) Is 

{3 =-{3 

s 
- ~ (Eo) Is ) I 2 ' (5.10c) 

0 

~(0) (Eo) 
s 

~ (Eo) Is = 
0 ' (5.11a) 

~(1) (Eo) 
s s 

= (~ (Eo) Is - ~ (Eo) Is ) I 2 ' (5.11b) 
{3 =-{3 

~(2)(Eo) s s 
(~ (Eo) Is + ~ (Eo) Is 

{3 =-{3 

s 
- ~ (Eo) Is ) I 2 . (5.11c) 

= 0 

Assuming that 

v (r) - s (5.12) 
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one has 

I do YL(r) · [v(r) - o] ·a (r) 

= I 
L ' 

I (5.13) 
L ' 

where 

0 
u L , ( r) = I do Y L , ( r) · [ v ( r) - o ] (5.14) 

0 
a LL , ( r) = I do Y L ( r) Y L , ( r) · a ( r) . (5.15) 

Hence, the evaluation of the integration in (5.15) becomes a 

major problem in QKKR theory. The difficulty arises from the 

fact that the step function a(r) equals 1 within the polyhe-

dron, which is a Wigner-Seitz cell in the case of simple 

crystals or a sub-cell in the case of complex crystals. The 

development of the technique for doing this integral for 

complex crystals is reported in this thesis for the first 

time. 

Notice that, if one expands a(r) as 

a (r) (5.16a) 
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(5.15) becomes 

(5.16b) 

where 

f do YL- (r) ·a (r) . (5.17) 

Therefore it needs to develop an effective method for 

evaluating aL(r). 
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5.2 TECHNIQUE FOR THE EXPANSION OF a(r) 

First of all, let us study the geometrical properties of 

the polyhedron. Notice that its boundaries are composed of 

several planes with certain distances from the center, where 

the atom is located. The distances are determined according 

to the muffin-tin radii Rmt ( i) (with i=1, 2, · · · , N) of the 

atoms within the unit cell and the lattice constants. An 

example was shown before by Fig.1-4. 

Assume that the nth boundary plane is represented by Pn, 

which has a normal unit vector Tn directed outward from the 

polyhedron and has a distance dn from the center of the 

polyhedron. The position vector of the associated neighbor­

ing atom on the opposite side of the plane is denoted by Rn, 

which can be written as 

Rn = Rn· Tn 

Xn·ex + Yn·ey + Zn·e 2 • (5.18) 

Obviously, any point inside the polyhedron must satisfy 

the following equation 

for n 1, 2, · · · , Np , (5.19) 

where r is a position vector whose origin is at the center, 

and Np is the total number of boundary planes. Because of 
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(5.18) the equation (5.19) can be written in an alternate 

form as 

A spherical surface with radius r that is concentric 

with the polyhedron will intersect its boundaries unless r 

less than Rmt, the radius of its inscribed sphere or r 

larger than s, the radius of its circumscribed sphere. The 

intersection points can be found by equating both side of 

equation (5.20) 

(5.21) 

where 8 is the polar angle and an(r,8) is the difference 

between the azimuthal angles of r and Rn. If we denote ~n as 

the azimuthal angle of Rn, ~n + an(r,8) is the azimuthal 

angle of r representing the intersection point with the nth 

plane for a given polar angle. These angles can be calcu-

lated by 

(5.22a) 

Jx 2 + y 2 n n 

and 
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± 

(5.22b) 

Without loosing any generality, one may assume that 

{ 
(5.23a) 

(5.23b) 

Therefore the necessary and sufficient condition for a point 

on the spherical surface locating inside the polyhedron is 

that the azimuth angle ¢ associated with this point must 

satisfies 

(5.24) 

Thus, the expansion coefficients of the step function is 

calculated from 

I
1( J271: 

0 

sinO dO· 
0 

d¢ YL(r)·a(r) 



= 
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N 

I nd8·sin8·P~(cos8)~ --1-·~n(B)·{sin[m· (~n+l n=l m 
0 

- l<>n+l(r,OJI11- sin[m·(<l>n + l<>n(r,O)I)]} 

if m > o, 

N 

I nd8·sin8·P~(cos8)~ --1-·~n(B) ·{cos[m· (~n+l 
n=l m 

0 

- l<>n+l(r,O) I)] - cos(m· (<l>n + l<>n(r,O) I)]} 

if m < o, 

N 

I nd8·sin8·P1 (cos8)~ --1-·~n(B)·{[~n+l n=l m 
0 

- I "n+l (r' 0) I 1 - [<l>n + I "n (r' 0) I 1} 

if m = 0, 

(5.25a) 

which takes on the limiting values 

if r ~ Rmt and 1 0 

(5.25b) 

0 if r ~ Rmt and 1 ~ 0 or r > S, 
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where AL are the constant coefficients of the real spherical 

harmonics (see Appendix II), and ~n(B) is defined as 

if ~n + lan(r,B) I < ~n+l - lan+l(r,B) I 

if ~n + lan(r,B) I ~ ~n+l - lan+l(r,B) I' 

(5.26) 

in order to eliminate the case 

(5.27) 

during the integrations over ~ in (5.25). The final integra­

tions over 8 in (5.25) can be carried through by numerical 

methods without any difficulty. 



CHAPTER 6 

COMPUTATIONS AND RESULTS 

6.1 INTRODUCTION 

All of the basic equations have been displayed or 

derived in previous chapters. Now it is ready to carry out 

the calculations for a given crystal. The sample material I 

considered is PdH, which is a complex crystal with two atoms 

per unit cell and has the same lattice structure as NaCl 

(see Fig. 6-1.). 

The lattice constant a
0 

and the muffin-tin radii for 

both Pd and H atoms are, in atomic units, 

a 0 = 7.61570 , 

Rmt(Pd) = 2.47510 , 

Rmt(H) = 1.33275 , 

S(Pd) = 3.29769 , 

S(H) = 2.30839 . 

The unit cell and sub-cells of PdH are shown in Fig.6-2 so 

that the step functions for both atoms, i.e. apd(r) and 

62 
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e:~ 

O:H 

Fig. 6-1. The crystal structure of PdH is FCC type. It 

has two atoms per unit cell. 
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0 0 

Fig. 6-2. The unit cell of PdH lattice is bounded by 

the bold lines. It is divided into two sub-cells, each 

of which contains one atom, Pd or H. 
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oH(r) are defined. 

The muffin-tin potentials of Pd and H, Vpd(r) and vH(r), 

have also been given and arranged as the input data. 

The following sections will show the detailed computa­

tional procedure for the application of both KKR and QKKR 

method. All of the calculations were carried on the VAX8800. 
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6.2 KKR CALCULATION 

The computer programs of KKR calculation for complex 

crystal was built up by Faulkner et al. Fig.6-3 shows the 

computational procedure. 

The major input data are 1max' k, Vpd(r) and vH(r), and 

the output is the determinant 

D(E,k) det 

M? 1 (E,k) 

M?
2

(E,k) j 
_xH(E) + J2(E,k) 

(6.1) 

where the matrices _xPd(E) and _xH(E) are diagonal 

xPd (E) 
L,L ' 

xH (E) 
L,L' 

a·COt7]Pd(E)·8LL' 
1 

(6.2a) 

(6.2b) 

with 1 = 0,1,· ·· ,1max· The energy eigenvalues EA(k), which 

satisfy 

D (EA (k) , k) = 0 , (6.3) 

are found by carefully checking the sign changes of D(E,k) 

for different value E with certain k vector. 
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n=O , N=2 , FCC 

G•-Y_e_s-<~ 

set E=E+Dele 

Yes 

output D(E, k ) calculate the 
determinant D. 
set n = n + 1 . 

No 

Emin , Emax ,k , Dele 

Dele : increament of E. 

No , i=i+l 

Fig. 6-3. The computational procedure of KKR calcula-

tion. 
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In the calculation, I set ~max = 2. The final results 

for energy eigenvalues between 0.0 Ry to 1.0 Ry with k 

points along the axis (0,0,1) in reciprocal space have been 

shown in Fig.6-4. The definition of Ry (i.e. Rydberg), the 

unit of energy, is defined in Appendix I. 
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1.0 

E vs. K curves of Pd.H. 
0.8 KKR calculation with 

Lmax = 2. 

- 0.6 >. 
0::: 
..... ·-c 
::I 0.4 '-" 

>. 
OJ) 
1-o 
Q) 
c: 

0.2 c.tJ 

0.0 .- 0 • 0 .... 

0.0 0.2 0.4 0.6 0.8 1.0 

k 

Fig. 6-4. The E vs. k curves calculated by KKR method 

with 1max = 2. 
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6.3 STEP FUNCTION EXPANSION 

Before going through the QKKR calculation, we need to 

evaluate oL(r) for both Pd and H sub-cells respectively. 

In fact, only those L values which relate to 1 = o, 4, 6 and 

8 need to be considered, for reasons that will be described 

in Appendix III. The procedure for the calculation is shown 

in Fig.6-5. The final results are arranged to be the input 

data for QKKR calculation. 
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Yes 

reorder <P j so that 

.p j _.: <P j+l ' .p Np+l= <P l+2 1t 

output cr 
1 

( r ) 

No 

j=l , 2 , .. . Np . (all neighboring 
a ~ oms relative to 
the centra l one) 

i=l , 2, ... N. 

Dele : increament of r . 

No 

cr0 ( r) 1 . 

0 for 1 > 0 . 

No , set next L 

Fig. 6-5. The computational procedure of expanding the 

step function. 
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6.4 QKKR CALCULATION 

The program for QKKR calculations for complex crystals 

is developed by combining the KKR program for complex 

crystals, which I use to calculate the structure constants, 

and the QKKR program simple crystals, which I use to calcu-

late the sine and cosine matrices. It includes the program 

for the step functions described in section 5.2. Notice that 

an important property of QKKR theory is the sine and cosine 

matrices are nondiagonal, even in the case of muffin-tin 

potential. This doesn't mean we have to calculate (imax + 

1) 2 x (imax + 1) 2 elements for each sine or cosine matrix. 

Using the lattice symmetry property, we can transform the 

sine and cosine matrices into block diagonal shape so that 

most elements are zero. The transformation matrix and its 

related basis functions (other than real spherical harmon-

ics) can be found by applying group theory. 

In the case of PdH, the lattice symmetry is described 

by the point group oh. The basis functions are called Kubic 

harmonics represented by KL(r) 

(6.4) 

where the transformation coefficients ULL ' are given in 

Appendix III. 
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Instead of using the real spherical harmonics, we will 

use the Kubic harmonics in the expansions discussed in 

chapter 4 and chapter 5. It is easy to prove that the 

equations still hold, but the Gaunt factors should be 

written as 

(6.5) 

Since the coefficients in oL(r) were calculated based on the 

real spherical harmonics, we need to transform them by 

applying the coefficients ULL ' described above. After the 

sine and cosine expansion matrices are evaluated, we have to 

transform them back to matrices based on the spherical 

harmonics in order to be consistent with the structure 

constant matrices. The computational procedure is shown in 

Fig.6-6. The results for both ~max = 2 and 4 are given in 

Fig.6-7. 

Since the same input potentials are used for both KKR 

and QKKR calculations, we expect that the results should be 

very close. The E vs.k curves obtained from both KKR and 

QKKR methods are combined in Fig.6-8 and Fig.6-9, so that 

the reader can visualize the comparison of the results. 
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N=2 , FCC , Eo , Dele=O . l 

Yes 

output 
i 

1---"1111-- cr LL '(r) -

6 = (2 - J) *Dele 

6 6 
calculate .S. and C. 

calculate the 

expansions of .S. 6 
and !: 6 . 

i=i+l. 

No 

Fig.6-6 The computational procedure of QKKR calcula-

tion. 
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1.0 
E vs. K curves of PdH. 
QKKR calculation with 

0.8 Eo= 0.40 Ry. 
Solid Lines : Lmax = 4 . 

--~ Dashed Lines : Lmax = 2 . 
0:::: 0.6 
...... ·-= =' '-" 

~ 0.4 01) 
~ 
~ 

= f.I.l 

0.2 

0.0 

-0.2 -t-...--r--w~---r--r--r-,...-,......,.---r---ro-r-...,....... 

0.0 0.2 0.4 0.6 0.8 1. 0 

k 

Fig. 6-7. E vs. k curves obtained from the QKKR calcu-

lations in the both cases of 1max = 2 and 1max = 4 with 

E0 = 0.4 (Ry) being assumed in the calculation. 
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1.0 

E vs. K curves of PdH. 
KKR : Dashed Lines, 

0.8 Lmax = 2. 
QKKR: Solid Lines, 

,-.._ Lmax=4. 
>. 0.6 Eo= 0.4 ~ 
..... ·-1: 
::::l 
'-' 0.4 
>. 
OJ} 
1-o 
v 
1: 
~ 

0.2 

0.0 

0.0 0.2 0.4 0.6 0.8 1. 0 

k 

Fig. 6-8. E vs. k curves obtained from the KKR and QKKR 

calculations. 1max = 2 is assumed in the KKR calcula-

tion, 1max = 4 with E0 
0.4 (Ry) is assumed in the QKKR 

calculation. 
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1.0 

E vs. K curves of PdH. 

0.8 
KKR : Dashed Lines, 

Lmax = 2. 
QKKR: Solid Lines, 

Lmax = 4. 
,..-.. 0.6 Eo= 0.05 » 
~ 
.... ·-s:: = 0.4 
'._/ 

» 
OJ.) 
1-o 
<1.) 
s:: 0.2 ~ 

0.0 

0.0 0.2 0.4 0.6 0.8 1. 0 
k 

Fig. 6-9. E vs. k curves obtained from the KKR and QKKR 

calculations. ~ max = 2 is assumed in the KKR calcula-

tion, ~max = 4 with E
0 

= 0.05 (Ry) is assumed in the 

QKKR calculation. 



CHAPTER 7 

CONCLUSIONS 

From the E vs. k curves shown in the last chapter, we 

may conclude that: 

1. When we choose E0 = 0.4 Ry, which is at about the 

middle of the bands of interest, the QKKR calculation gives 

very accurate results within the range of the energy bands. 

2. As we expected, the closer to E0 the energy eigen­

value is, the more accurate it will be. 

3. If we change E0 to 0.05 Ry, our calculations show 

that the results from the QKKR calculation are almost 

unchanged. This stability property comes from the fact that 

the quadratic expansions of sine and cosine matrices in 

equation (4.19) provide very good approximation over a wide 

range of energies. 

4. The evidence that the difference between the results 

for 1max = 2 and 1max = 4 in QKKR calculation is very small 

can be considered, conventionally, as the result of the fast 

convergence of the QKKR method. 

5. In order to evaluate the E vs. k data with the KKR 
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method, I had to not only invest a lot of expensive CPU 

hours to calculate many determinants but also labor hours to 

disentangle the degenerate energy eigenvalues related to the 

multiple zeroes of the determinants. Compared with the KKR 

method, QKKR calculations save a large amount of time and 

provide a direct way to achieve self-consistent calcula­

tions. 

Therefore the application of QKKR calculation for 

complex crystals works as well as for simple crystals. 

Notice that the reason I use muffin-tin potential here 

is to meet the assumption in ordinary KKR calculations so 

that the comparisons can be made. Actually, it is not 

necessary in QKKR calculations to assume that the potential 

is in the muffin-tin form. This fact implies that the QKKR 

method will have wider applications than the ordinary KKR. 

Since a general method for evaluating the step function 

has been established, we are able to apply the QKKR method 

to a wide range of materials, even those with very compli­

cated crystal structures. This is a task in my future work. 



APPENDIX I 

ATOMIC UNITS 

It is well-known that the single electron Schrodinger 

equation is in the form as 

[ -
fz 2 

--·'\7 2 
2Me 

+ V(r) ] · 1lr(r) E·W(r) (I.l) 

If we choose the unit of energy as Ry (Rydberg), which is 

defined as 

1 Ry = (I. 2) 

and the unit of length as Bohr radius, i.e. fz 2 /2Me, it is 

easy to prove that the Schrodinger equation will become 

[ -v 2 + v ( r) ] · w ( r) E·W(r) (I. 3) 

These units are called atomic units. 
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APPENDIX II 

REAL SPHERICAL HARMONICS 

In order to avoid using complex functions in computa-

tional programming, it is very helpful to introduce the real 

spherical harmonics other than the normal spherical harmon-

ics in our band theory calculations. 

The real spherical harmonics are defined as 

lml { AL· P .Q (cosO)· 
cosmcp if m ~ 0 

(II.l) 
sinlml¢ if m < o 

The factors AL are 

l 

l 
[(2~ + 1)/4~]' ' 

{[(2.Q + l)·(.t- lml)!/[2n(.Q + lml)!]) -'2 

if m = 0 

if m ~ o. 

(II. 2) 
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APPENDIX III 

The Kubic harmonics KL(r), first introduced by Von der 

Large and Bethe 24 , are defined as the linear combinations of 

the spherical harmonics: 

(III.l) 

so that they are the basis functions belonging to a irredu-

cible representation of the cubic group oh, the elements of 

which rotate the cubic lattice properly or improperly and 

leave the lattice invariant. The subscripts L in the equa-

tion (III.l) represent the following indexes: 

~: the ordinary angular momentum quantum 

number. 

q: type of irreducible representation. 

p: = 1,2, .. ,Nq. Nq is the dimension of the 

qth irreducible representation. 

Those elements of the transformation matrix Q can found from 

the work of Altmann and Cracknell 25 • 

82 



g3 

For one-dimensional irreducible representation of the 

cubic group, it has been shown that 2 5 the related Kubic 

harmonics are: 

Ko (r) Yo,o(r) I (III.2a) 

K4 (r) 0.76376261·Y4 0 (r) + 0.64549722·Y4 , 4 (r) I 
I (III.2b) 

K6 (r) 0.35355339·Y 6 0 (r) - 0.93541435·Y6 4 (r) I 
I I (III.2c) 

Kg (r) = o.71go7033·Yg 0 (r) + o.3g1gg131·Yg 4 (r) 
I I 

+ o.sglg4333·Yg g(r) I 
I (III. 2d) 

Truncated at 1 = g, the local potential, wave functions and 

the step function can be expanded in terms of the Kubic 

harmonics (in the case of cubic lattice) as the following 

form: 

f(r) = f 0 (r)·Ko(r) + f 4 (r)·K4 (r) + f 6 (r)·K6 (r) 

+ fg (r) ·Kg (r) . 
(III.3) 

Therefore, in the expansion of the step function in terms of 

the real spherical harmonics (see section 6.3), only those 

( 1 1m) equa 1 ing ( 0 I 0) I ( 4 1 0) 1 ( 4 • 4) 1 ( 6 1 0) 1 ( 6 1 4) 1 ( g 1 0) 1 

(g,4) and (g,g) need to be considered. 

By applying group theory 2 6 , it can be shown that the 
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sine and cosine matrices will be in the form as displayed in 

Fig.III-1, for 1max = 4. 
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'\; ' 1 2 3 4 

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2 4 25 

0 0 1 r 1 r 1 

-1 2 

1 0 3 r 15 r 15 
1 4 

- 2 5 
r 12 ~ - 1 6 

2 0 7 

1 8 r 25 ' r 25 • 
2 9 

- 3 10 r 2 . 
- 2 11 

- 1 12 
r 25 

3 0 13 

1 14 

2 15 r 15 r 15 
3 16 

- 4 17 r · r , 
- 3 18 
~ 

- 2 19 r 12 r 12 

- 1 20 

4 0 21 
r 25 • r 25 • 

1 22 

2 23 

3 24 r 15 ' 
4 25 

Fig. III-1. The sine or cosine matrix is reduced into block 

form based on the irreducible representations of cubic 

group, where 1max = 4. 
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