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To the curious—

May all that you know illuminate,

All that you learn enlighten,

And all that you discover fulfill.



Preface

To the Student

I have learned the hard way that, when it comes to study habits, nothing is
too obvious to state explicitly and repeatedly. Let me take this opportunity,
at the start of a new voyage of discovery, to make a few suggestions.

First, reading passively is essentially useless. When reading this or any
text, read with pencil in hand. Draw figures to help your understanding. After
reading through an example, close the text and try to reproduce
the example. If you cannot reproduce it, identify where you went wrong,
study the text, and try again. Stop only when you can comfortably solve the
example problem.

Second, incorporate lectures organically into the study process. Study
the relevant reading before each lecture. Engage actively in lectures: take
notes, ask questions, make observations. Laugh at the instructor’s jokes. The
evening after each lecture, resolve the problems that were presented
that day. You will find that actively reviewing each lecture will solidify ma-
terial beyond what you might now think is possible. Over the course of the
semester, you will probably save time—and you will learn the material better
than you would otherwise.

Third, solve exercises in the text even when they are not assigned. Use
them to gauge your understanding of the material. If you are not confident
that you solved a problem correctly, ask your peers for help or go to office
hours. I have provided many exercises with solutions and explanations to
facilitate an active approach to learning. Therefore, be active.

Finally, address confusions immediately. If you procrastinate on clear-
ing up a point of confusion, it is likely to bite you again and again.

This book introduces a subject that is wide in scope. It focuses on con-
cepts and techniques rather than listing how to use libraries and functions.
Therefore, use Internet search engines to locate references on C libraries, par-
ticularly starting with Chapter 5; the man Unix utility to read about Unix
programs; Internet search engines to learn how to use editors like emacs and
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vim; the help command in gdb; and the help and doc commands in Matlab.
Engineers must learn new powerful tools throughout their careers, so use this
opportunity to learn how to learn.

To learn to program is to be initiated into an entirely new way of think-
ing about engineering, mathematics, and the world in general. Computation
is integral to all modern engineering disciplines. The better you are at pro-
gramming, the better you will be in your chosen field. Make the most of this
opportunity. I promise that you will not regret the effort.

To the Instructor

This book departs radically from the typical presentation of programming:
it presents pointers in the very first chapter—and thus in the first or second
lecture of a course—as part of the development of a computational model.
This model facilitates an ab initio presentation of otherwise mysterious sub-
jects: function calls, call-by-reference, arrays, the stack, and the heap. Further-
more, it allows students to practice the essential skill of memory manipulation
throughout the entire course rather than just at the end. Consequently, it is
natural to go further in this text than is typical for a one-semester course:
abstract data types and linked lists are covered in depth in Chapters 7 and
8. The computational model will also serve students in their adventures with
programming beyond the course: instead of falling back on rules, they can
think through the model to decide how a new programming concept fits with
what they already know.

Another departure from the norm is the emphasis on programming from
scratch. Most exercises do not provide starter code; the use of gcc and make are
covered when appropriate. I expect students to leave the course knowing how
to open a text editor, write one or multiple program files, compile the code,
and execute and debug the resulting program. Many engineering students will
not take an additional course on programming; hence, it is essential for them
to know how to program from scratch after this course.

This book covers two programming languages: C and Matlab. The com-
putational model and concepts of modularity are developed in the context
of C. Matlab provides an engineering context in which students can transfer,
and thus solidify, their mastery of programming from C. Matlab also provides
an environment in which students, having learned how to create libraries in
Chapters 6–8, can be critical users of libraries. They can think through how
complex built-in functions and libraries might be implemented and thus learn
techniques and patterns “on the job.”

There are strong dependencies among chapters, except that Chapters 8
and 10 may be skipped. Furthermore, Chapter 4 is best left as a reading
assignment. Of course, chapters may also be eliminated starting from the
ending if time is in short supply.

Your results with my approach may vary. Certainly part of my success with
this presentation of the material is a result of my aggressive teaching style and



Preface IX

the way that I organize my classes. Two studies in particular influence the
way I approach teaching. The first investigates our ability, as students, to
self-assess:

Justin Kruger and David Dunning, Unskilled and Unaware of It:

How Difficulties in Recognizing One’s Own Incompetence Lead to In-

flated Self-Assessments, J. of Personality and Social Psychology, v. 77,
pp. 1121-1134, 1999.

The second addresses cause-and-effect in cheating and performance:

David J. Palazzo, Young-Jin Lee, Rasil Warnakulasooriya, and
David E. Pritchard, Patterns, Correlates, and Reduction of Home-

work Copying, Phys. Rev. ST Phys. Educ. Res., v. 6, n. 1, 2010.

My experience in the classroom having confirmed these studies, I admin-
ister hour-long quizzes every two to three weeks that test the material that
students ought to have learned from the text, from lectures and labs, and from
homework. Additionally, I give little weight to homework in the final grade.
Therefore, students have essentially no incentive to cheat (themselves out of
learning opportunities) on homework—and all the possible incentive to use
homework to learn the material. Students have responded well to this struc-
ture. They appreciate the frequent feedback, and a significant subset attends
office hours regularly. Fewer students fall behind. Consequently, I am able to
fit all of the material in this book into one semester. In order to motivate
students who start poorly, I announce mid-semester that the final exam grade
can trump all quiz grades. Many students seem to learn what they need to
know from the quizzes, and so many are better prepared for the final exam.

As side benefits, since enacting this teaching strategy in this and another
course, I have never had to deal with an honor code violation—which is rare for
introductory programming courses—and have not received a single complaint
about a final grade, which is rarer still.
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1

Memory: The Stack

Computation is mathematics projected onto reality: at one level an interplay
of time, space, and procedure; at another, energy. The study of computation
has yielded deep insights into the universe of the mind—revealing startling
consequences of the mathematics that humans have developed since the be-
ginning of recorded history, like the undecidability of certain questions and
the hardness of answering others. It also offers a powerful and practical tool
for creating and analyzing complex systems, which is why programming has
become a fundamental subject of study for engineers.

In the first three chapters, we embark on a practical study of computation.
Our goal is to develop and understand a simple but expressive model of com-
putation that will underlie the material in the remainder of this book—and
on which you can subsequently draw when learning more advanced program-
ming skills and concepts. In the first chapter, we introduce memory; in the
second, procedure. In the third, we combine memory and procedure to study
two basic data structures.

Whereas a traditional programming course reserves “pointers” for late in
the semester and may not even mention the stack, let alone how function
calling works, this chapter covers both—for two reasons. First, manipulating
memory is fundamental to practical programming, yet many students, through
lack of practice, leave their first programming course unable to do so effec-
tively. By introducing memory manipulation in the first week, students have
a full semester to master the topic. Second, the correct usage of call-by-value,
call-by-reference, pointers, and arrays is crucial for writing anything but the
simplest of programs. Rather than taking an abstract and rule-based perspec-
tive, this chapter covers the program stack and the function call protocol,
which naturally give rise to these concepts. A mechanistic understanding of
computation lays the foundations for the powerful abstraction methodologies
that come later.

2 Chapter 1. Memory: The Stack

1.1 Playing with Memory

1.1.1 A First Foray into Programming

Consider the following code snippet:

1 {

2 int a, b, c, d;

3 a = 1;

4 b = 1;

5 c = a + b;

6 d = c + b;

7 }

Line 2 declares four variables of type int, short for “integer.” This dec-
laration tells the computer to set aside four cells of memory that we shall
call a, b, c, and d, respectively. Each memory cell can be read from
and written to, and each should be interpreted as holding integer values
({. . . ,−2,−1, 0, 1, 2, . . .}). A memory cell must have a location, which we ref-
erence via its address. Finally, there is no reason why four variables declared
together in the program text should not be neighbors in memory and many
reasons why they should be. We visualize the memory using a stack diagram:

int d ⊗ 1012
int c ⊗ 1008
int b ⊗ 1004
int a ⊗ 1000

As a first approximation, a program’s memory can be viewed as a contiguous
array of memory cells. We visualize memory vertically. In this case, the bottom
cell, which we refer to as a in our program, is at memory address 1000. Just
as we have declared in the program text, the memory for b is next to a (and
at a higher address). Next comes c, then d. We will discuss why the addresses
are the particular values that they are later. Each cell is annotated with its
associated variable and the type of that variable. The type indicates how to
interpret the data.

The symbol ⊗ indicates that a memory cell currently holds garbage—that
is, a meaningless value left over from the last time this particular memory was
used. Since line 2 does not specify initial values for the program variables,
there is nothing with which to replace the garbage until execution continues.

Line 3 writes the (integer) value 1 to a, resulting in a new memory config-
uration:

int d ⊗ 1012
int c ⊗ 1008
int b ⊗ 1004
int a 1 1000



1.1. Playing with Memory 3

Then line 4 writes the value 1 to b, resulting in a similar update to memory.
Line 5 becomes interesting. The instruction c = a + b tells the computer

to retrieve the values for a and b from memory, sum them, and then write the
sum to the memory cell associated with c. After this instruction is executed,
memory is configured as follows:

int d ⊗ 1012
int c 2 1008
int b 1 1004
int a 1 1000

Line 6 describes a similar update, yielding the following configuration:

int d 3 1012
int c 2 1008
int b 1 1004
int a 1 1000

Fundamentally, all programs execute in the same manner as this simple
program. The reason is simple. Computers operate on a clock. At the begin-
ning of each clock cycle, input values are read from memory; during the cycle,
arithmetic occurs over the input values; at the end of the cycle, computed val-
ues are written to memory. (I massively oversimplify.) Read, compute, write;
read, compute, write; read, compute, write—billions of times per second. This
chapter is concerned with reading and writing memory.

Exercise 1.1. Consider this code snippet:

1 {

2 int a, b, c;

3 a = 1;

4 a = a + a;

5 a = a + a;

6 b = a;

7 c = a + b;

8 }

Fill in the data corresponding to the final memory configuration:

int c 1008
int b 1004
int a 1000

Solution. In this code snippet, a is assigned a value multiple times: first 1
at line 3, then 2 at line 4, then 4 at line 5:

int c 8 1008
int b 4 1004
int a 4 1000

�
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Exercise 1.2. Consider this code snippet:

1 {

2 int a, b, c;

3 a = 1;

4 b = a + 1;

5 c = b + 1;

6 a = c + 1;

7 }

Fill in the data corresponding to the final memory configuration:

int c 1008
int b 1004
int a 1000

�

1.1.2 Introduction to Pointers

Memory addresses are nothing more than integers, so we quickly come to
the realization that we can manipulate memory using arithmetic. From this
insight comes all of programming.

Consider this snippet of code:

1 {

2 int a, b;

3 int * x;

4 x = &a;

5 *x = 2;

6 b = *x;

7 }

Line 2 is easy enough: it declares two integer variables, a and b. The next line
uses a new symbol that looks like the computer text version of × (multipli-
cation) but is not. The value of a variable, like x, declared with type int *

is interpreted as a memory address. Furthermore, if the memory cell at the
address that x holds is accessed, its data is interpreted as being of type int,
that is, as an integer. As of line 3, memory is configured as follows:

int * x ⊗ 1008
int b ⊗ 1004
int a ⊗ 1000

All memory cells hold garbage. Therefore, it would be unwise to use the
garbage in x’s memory cell as an actual address.

Line 4 uses another new symbol, &. Just as * is sometimes used for multi-
plication but has nothing to do with multiplication in our current discussion
of memory, & has several meanings. In its usage here, & is an operator being
applied to variable a. It computes the address of the memory cell associated
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with a. If we examine the visualization of memory above, we see that a’s ad-
dress is 1000. Therefore, &a simply evaluates to 1000, and x = &a writes the
value 1000 to x. After line 4 executes, memory looks as follows:

int * x 1000 1008
int b ⊗ 1004
int a ⊗ 1000

Now x points to or references a: x holds the address of a’s memory cell.
Their types match: x, as an int *, references an int variable; and a is indeed
an int variable. The type int * can be read as “pointer to an integer.”

Line 5 uses * differently than in line 3. In line 3, * is part of the variable
declaration: it is not being used as a verb (that is, as an operator) but as
an adjective. It describes x in line 3. In line 5, it is a verb: *x = 2 tells the
computer to write the value 2 to the memory cell whose address x currently
holds. Since x currently holds the value 1000, the computer writes 2 to the
memory cell located at address 1000, resulting in the following configuration:

int * x 1000 1008
int b ⊗ 1004
int a 2 1000

Finally, line 6 uses * in a manner similar but subtly different from its usage
in line 5. Here, *x is a request to read the datum at the memory cell whose
address x currently holds. This value is then written to b. Since x references the
memory cell at address 1000, the following memory configuration is obtained:

int * x 1000 1008
int b 2 1004
int a 2 1000

Variables declared with a *, as in int * x, are traditionally called point-
ers because they “point” to a place in memory. Presentations of pointers often
draw arrows coming from a pointer variable’s memory cell to the memory cell
to which it is pointing. For example, in the memory configuration above, one
could draw an arrow from the memory cell associated with x to the memory
cell associated with a. If seeing such arrows would aid your understanding
of the memory configurations, then draw them in when convenient. I have
elected to emphasize that pointer variables hold data just like other variables
by using explicit addresses in illustrations.

It is worth your time to go through this section as many times as necessary
until you fully understand the code and the resulting computation. Draw your
own memory diagrams rather than relying on the provided ones.

Exercise 1.3. Consider this code snippet:

1 {

2 int a;

3 int * x;

6 Chapter 1. Memory: The Stack

4 x = &a;

5 *x = 1;

6 a = *x + a;

7 }

Notice that the * operator is “stickier,” or has higher precedence, than the
+ operator, so that *x + a is executed as “add the value stored in a to the
value in the memory cell pointed to by x.” Fill in the data corresponding to
the final memory configuration:

int * x 1004
int a 1000

Solution. After line 5, the stack is configured as follows:

int * x 1000 1004
int a 1 1000

Then line 6 modifies a again:

int * x 1000 1004
int a 2 1000

�

Exercise 1.4. Consider this code snippet:

1 {

2 int a, b;

3 int * x;

4 x = &b;

5 b = 1;

6 a = *x + 1;

7 }

Complete the stack diagram corresponding to the final memory configuration:

int * x 1008
int b 1004
int a 1000

�

1.1.3 Pointers to Pointers

What may now seem like an interesting diversion will be crucial in implement-
ing the sophisticated data structures of Chapter 8 and, of course, those that
you encounter subsequently. Therefore, we might as well take the full plunge
into pointers. Consider this snippet of code:
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1 {

2 int a;

3 int * x;

4 int ** y;

5 y = &x;

6 *y = &a;

7 **y = 1;

8 }

The initial memory configuration is as follows:

int ** y ⊗ 1008
int * x ⊗ 1004
int a ⊗ 1000

All memory cells initially contain garbage, that is, whatever data are left over
from the last time the cells were used. Variables a and x have types that
should be familiar, but variable y’s type is new: y is a pointer to a pointer to

an integer memory cell. In other words, y is intended to reference a memory
cell of type int * whose own value references a memory cell of type int.

Line 5 is where the action begins: y is assigned the address of x. According
to the initial memory configuration, x’s address is 1004; hence, the memory
configuration after execution of line 5 is the following:

int ** y 1004 1008
int * x ⊗ 1004
int a ⊗ 1000

(You might draw an arrow from y’s memory cell to x’s memory cell.) Rather
than holding garbage, y now points to an integer pointer.

At this point, speculate as to what lines 6 and 7 accomplish; draw your
own final memory configuration. Check if it matches the remainder of the
exposition on this snippet of code. If it doesn’t, understand where and why
you went awry.

Line 6 assigns the address of a, computed with the expression &a, to the
memory cell at which y points. According to the last memory configuration,
y holds address 1004. Hence, the value of the expression &a, which is 1000, is
written to the memory cell at address 1004, yielding:

int ** y 1004 1008
int * x 1000 1004
int a ⊗ 1000

Now y points to x, and x points to a. Both are pointing to variables according
to their types: x, an int *, points to an int; and y, an int **, points to an
int *. Notice how the types can be read in reverse: int * is read as “pointer
to an integer,” while int ** is read as “pointer to a pointer to an integer.”

Line 7, the coda of the code as it were, brings resolution to the flurry of
pointer assignments. Whereas *y = 1 would write a 1 into the memory cell
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pointed to by y, **y = 1 writes a 1 into the memory cell pointed to by the
memory cell pointed to by y. Following the addresses in the previous memory
diagram, we see that y holds address 1004. At address 1004, we find the value
1000, which is interpreted according to its int * type and thus as a pointer
to an integer. The 1 is thus written into the memory cell at address 1000,
which corresponds to a, yielding the final configuration:

int ** y 1004 1008
int * x 1000 1004
int a 1 1000

Trace through this code and its execution until you fully understand each line.
A pointer variable, or simply a “pointer,” is sometimes called a reference,

because it refers to a memory location. Applying the * operator to a pointer,
as in *x, is sometimes referred to as dereferencing it.

Exercise 1.5. Consider this code snippet:

1 {

2 int a;

3 int * x;

4 int ** y;

5 y = &x;

6 x = &a;

7 **y = 1;

8 *x = a + **y;

9 a = *x + **y;

10 }

Fill in the data corresponding to the final memory configuration:

int ** y 1008
int * x 1004
int a 1000

Solution. After line 7, the stack is configured as follows:

int ** y 1004 1008
int * x 1000 1004
int a 1 1000

Then line 8 reads twice from the cell at 1000, adds the two (same) values
together, and writes to the same cell:

int ** y 1004 1008
int * x 1000 1004
int a 2 1000

Line 9 behaves similarly, except that the value read from the cell is different:

int ** y 1004 1008
int * x 1000 1004
int a 4 1000
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Hence, a, *x, and **y are all ways of referring to the memory cell at 1000. �

When writing pointer-rich code, one useful trick is to make sure that the
number of *’s for the type of the expressions on the left and right sides of an
assignment agree. (In general, types for the two sides of an assignment should
always agree.) For example, in the code snippet of the previous exercise, the
type of both expressions y and &x at line 5 is int **; in particular, since x

is an int *, the type of the expression &x is int **, because it evaluates to
the address of a pointer to an integer. Similarly, the type of the expressions at
line 6 is int *, of those at line 7 is int (since dereferencing an int ** twice
yields an integer), and of those at lines 8 and 9 is int.

Exercise 1.6. Consider this code snippet:

1 {

2 int a, b, * x, * y, ** z;

3 a = 1;

4 x = &a;

5 z = &y;

6 *z = x;

7 b = *y;

8 }

Line 2 compactly declares two int, a and b; two int *’s, x and y; and one
int **, z. Fill in the data corresponding to the final memory configuration:

int ** z 1016
int * y 1012
int * x 1008
int b 1004
int a 1000

What are the types of the expressions on lines 3–7? �

Exercise 1.7. Consider this code snippet:

1 {

2 int a, b, * x, * y, ** z;

3 x = &a;

4 z = &y;

5 *z = &b;

6 *x = 1;

7 *y = 1;

8 **z = a + b;

9 }

Fill in the data corresponding to the final memory configuration:

int ** z 1016
int * y 1012
int * x 1008
int b 1004
int a 1000
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What are the types of the expressions on lines 3–8?
Solution. After line 7, the stack is configured as follows:

int ** z 1012 1016
int * y 1004 1012
int * x 1000 1008
int b 1 1004
int a 1 1000

Then line 8 modifies the cell at 1004:

int ** z 1012 1016
int * y 1004 1012
int * x 1000 1008
int b 2 1004
int a 1 1000

The types by line are int * (line 3), int ** (line 4), int * (line 5), and int

(lines 6–8). �

Exercise 1.8. Consider this code snippet:

1 {

2 int * x, * y, ** z, a, b;

3 z = &y;

4 x = &a;

5 *z = x;

6 *y = 1;

7 **z = 2;

8 *x = 3;

9 b = a;

10 }

Fill in the data corresponding to the final memory configuration:

int b 1016
int a 1012
int ** z 1008
int * y 1004
int * x 1000

Notice that the memory cells corresponding to variables are ordered according
to the order of their declaration. What are the types of the expressions on lines
3–9? �

Exercise 1.9. Write your own pointer-rich code snippet and draw the final
memory configuration. Trade puzzles with a few of your colleagues; check each
other’s work. �
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1.1.4 How to Crash Your Program

There is no faster way to crash a program than to make a mistake with
memory. (Actually, this statement overstates the case: a program need not
crash immediately after an erroneous memory access but can hum merrily
and insanely along for a while instead. Fortunately, we have tools, which we
discuss in later chapters, to assist us in such situations.) In this section, we
take our first look at bugs.

Consider this code snippet:

1 {

2 int a, b;

3 a = b;

4 }

What is the value of a at the end of execution? Of b? Both variables’ memory
cells start with garbage, so line 3 merely assigns b’s garbage to a. At the
end of execution, the two memory cells hold equal (and equally meaningless)
values. This code snippet illustrates the possibility of unintentionally using
uninitialized memory, but it won’t crash the program.

One method to avoid using uninitialized memory is to initialize variables
at declaration:

1 {

2 int a = 0, b = 0;

3 a = b;

4 }

In practice it is not always possible to find reasonable values to which to
initialize variables, and one can still unintentionally use the initializing value
when another value was intended. But initializing variables at least avoids the
introduction of truly garbage data, data that can be any arbitrary value.

Here is a far more dangerous use of uninitialized variables:

1 {

2 int * x;

3 *x = 1;

4 }

What happens in line 3? The value 1 is written to somewhere in memory, but
to where exactly? The value NULL, which is simply a standard way of writing
address 0, can be used to initialize pointers:

1 {

2 int * x = NULL;

3 *x = 1;

4 }
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Line 3 will now definitely cause a segmentation fault. A segmentation fault
occurs when a program reads from or writes to memory outside of the ad-
dress range allotted to the program by the operating system. Address NULL

(address 0) is never in a program’s memory range. While a segmentation fault
is annoying, it is not nearly so annoying as when *x = 1 silently corrupts a
program’s data by writing a 1 somewhere (but where?) in memory. Initializing
pointers to NULL thus causes a buggy program to crash as soon as possible
rather than later—or, worse, never—in its execution.

Exercise 1.10. Find the memory error in the following code snippet:

1 {

2 int a = 0;

3 int * x;

4 *x = 1;

5 }

Would it necessarily crash the program? (Hint: Find an initial value for the
pointer that would allow execution to complete but in an unintended way.)
At what point would the following variation cause a segmentation fault?

1 {

2 int a = 0;

3 int * x = NULL;

4 *x = 1;

5 }

Solution. At line 4 of the first code snippet, x is uninitialized; hence, its
associated memory cell has garbage data. If this garbage happened to form
the address corresponding to a’s memory cell, then the program would not
crash, although a would unexpectedly have the value 1 instead of 0.

In the second version, dereferencing x, which holds address NULL, at line 4
would immediately cause a segmentation fault. �

Exercise 1.11. Find the memory error in the following code snippet:

1 {

2 int a, b, * x, * y, ** z;

3 a = 1;

4 z = &y;

5 *z = x;

6 b = *y;

7 }

Would it necessarily crash the program? (Hint: Find initial values for the
pointers that would allow execution to complete but in an unintended way.)
At what point would the following variation cause a segmentation fault?

1 {

2 int a = 0, b = 0;
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3 int * x = NULL , * y = NULL;

4 int ** z = NULL;

5 a = 1;

6 z = &y;

7 *z = x;

8 b = *y;

9 }

�

Exercise 1.12. Write your own memory bug puzzle and swap with colleagues.
Check each other’s work. �

1.2 Functions and the Stack

So far we have only seen examples of static memory usage. However, the
memory requirements of a program typically change throughout its execution.
The use of the stack to facilitate function calls is the most fundamental
dynamic memory mechanism.

1.2.1 Introduction to Functions

A function is a modular unit of computation. It accepts input in the form
of variables called parameters and possibly produces output in the form of
a return value. Here is a simple arithmetic function for computing the sum
of three integers:

1 int sum3(int a, int b, int c) {

2 int sum = 0;

3 sum = a + b + c;

4 return sum;

5 }

The function is called sum3—a reasonably descriptive name, although any
name would do. The function’s parameters, or input, are the integer variables
a, b, and c. Its output type is given by the leftmost int declaration on line
1, and the return statement at line 4 indeed returns an integer value, in
particular the contents of the int variable sum. Hence, sum3 is a function
mapping three integers to an integer.1 This code snippet illustrates how to
call sum3:

1 In mathematical notation, one can describe the input–output characteristics of
sum3 as sum3 : Z × Z × Z → Z, or more compactly, sum3 : Z

3
→ Z, where

Z
3 is the domain of the function and Z is its range. Of course, the actual

computer implementation of sum3 is over integers of fixed maximum magnitude,
as we discuss in Section 1.3.
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1 {

2 int x = 1;

3 x = sum3(x, x, x);

4 x = sum3(x, x, x);

5 }

What is the final value of x? (At line 2, it is assigned 1; at line 3, it is assigned
3 since sum3(1, 1, 1) returns 3; and at line 4, it is assigned 9 since sum3(3,
3, 3) returns 9.)

Of all possible function names, one name is reserved for special usage: the
main function, which is where execution begins when a program is run. The
following code forms a full program:

1 int sum3(int a, int b, int c) {

2 int sum = 0;

3 sum = a + b + c;

4 return sum;

5 }

6

7 int main(int argc , char ** argv) {

8 int x = 1;

9 x = sum3(x, x, x);

10 x = sum3(x, x, x);

11 return 0;

12 }

Line 7 is currently beyond your understanding, but we can use it as a “magic
incantation” for now. Briefly, main’s input is an array of strings from the
command line, represented as the number of elements (argc) and the actual
array (argv). We introduce arrays and strings in Chapter 3 and use them
extensively in practice.

Saving this code in file sum.c and compiling it with the command gcc

-Wall -Wextra sum.c yields the executable a.out. Execution of a.out ef-
fectively begins at line 7, not at line 1. It is traditional on Unix variants—e.g.,
Linux, BSD, AIX, etc.—for main to return 0 to indicate successful execution;
non-0 values are typically returned to indicate that the program encountered
an error or an otherwise exceptional situation during execution.

1.2.2 A Protocol for Calling Functions

Let’s examine how functions and memory work together. The C compiler
constructs a stack frame for every function of the program. A function’s stack
frame is a template of the function’s memory requirements, including space
for parameters and its return value as well as declared variables. Consider
again the function sum3. The stack frame for the function is the following:
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int sum 20
void * pc 16
int rv 12
int c 8
int b 4
int a 0

Because this visualized stack frame is a template and not part of the stack,
addresses show the offsets of the memory cells relative to the frame. When an
instance of a stack frame is placed on the stack, the addresses are instantiated
to start at the current top of the stack, as we’ll see by example shortly.

The bottom three memory cells correspond to the parameters. Next comes
the memory cell reserved for the return value of the function. Since sum3

returns int data, the return value, rv, has type int.
The next memory cell holds the address of the instruction that should be

executed immediately after the return of sum3. When a program is compiled,
the resulting binary file (called a.out by default) is a sequence of machine
instructions. Execution proceeds by essentially running the machine instruc-
tions in order, except that function calls and control statements (the subject
of the next chapter) cause out-of-order execution. The program counter is
a special register, or segment of on-chip memory, in the computer that holds
the address of the currently executing machine instruction. When a function
call occurs, the address of the subsequent instruction is saved so that, at the
end of execution of the function, the computer can recall where to resume.
We illustrate this process in detail shortly.

The final memory cell is a result of the local variable sum of the function
sum3. Local variables are variables that are declared inside a function; they
are only visible within the context of the function in which they are declared,
hence their characterization as “local.”

Consider the following invocation of sum3. To simplify execution, we have
omitted the standard parameters of main; the resulting code still compiles.

1 int main() {

2 int x = 1;

3 x = sum3(x, x, x);

4 return 0;

5 }

At the beginning of execution of line 3 of main, memory is configured as
follows:

int x 1 1000
void * pc “system” 996
int rv ⊗ 992

The addresses are arbitrary, and so we choose ones that are convenient. In
particular, 1000 is used throughout the text as the first interesting address.
This configuration of memory is directly related to main’s stack frame, which
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consists of the return value rv, the cell pc to hold a reference to where exe-
cution should return once main has completed, and the local variable x. The
rv cell eventually holds the value 0 because of the return statement at line 4
but is uninitialized until then. The location “system” refers to the standard
code that is inserted into every binary file during compilation: it interfaces be-
tween the system and the program, taking care of such tasks as transferring
command-line arguments (see Chapter 5) to main and main’s return value
back to the operating system.

We are finally ready to treat program memory as the stack that we have
been calling it throughout the chapter. The name “stack” is purposely descrip-
tive: think of a stack of plates in a cafeteria. One can push data (plates) onto
the stack and pop data (plates) off the stack. In both cases, the operations
affect only the top of the stack. Similarly, stack frames are pushed onto and
popped off the stack as their corresponding functions are called and return.

Calling the function sum3 at line 3 causes the following steps to occur,
which form the function call protocol:

1. The arguments to sum3 are pushed onto the stack. In this case, the three
arguments are all 1 because the expression x at line 3 evaluates to 1, as
memory cell 1000 indicates. The term “arguments” refers to the data that
are the input to a function, while the term “parameters” refers to the
variables that hold that input from the called function’s perspective. In
other words, a parameter is a hole; an argument fills a hole. Pushing the
arguments yields the following memory configuration:

int c 1 1012
int b 1 1008
int a 1 1004

int x 1 1000
void * pc “system” 996
int rv ⊗ 992

The double line indicates the separation between main’s stack frame and
the stack frame for sum3 that is currently under construction.

2. Next, space is made for the data that sum3 will return:

int rv ⊗ 1016
int c 1 1012
int b 1 1008
int a 1 1004

int x 1 1000
void * pc “system” 996
int rv ⊗ 992

Notice that rv’s memory cell holds garbage at this point, since nothing
has yet been computed.
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3. The computer needs to remember to return to the calling location after
execution of sum3 finishes, so the address of the subsequent instruction is
pushed. We represent this address with “line 3+,” which indicates that,
when execution of sum3 completes, control should finish the tasks indi-
cated at line 3, in particular, the assignment of the return value (acquired
from rv) to x:

void * pc “line 3+” 1020
int rv ⊗ 1016
int c 1 1012
int b 1 1008
int a 1 1004

int x 1 1000
void * pc “system” 996
int rv ⊗ 992

The type void * describes a pointer to an address corresponding to any
type of data, which in this case is a machine instruction.

4. Finally, space for sum3’s local variables is allocated. The code for sum3

initializes sum to 0:

int sum 0 1024
void * pc “line 3+” 1020
int rv ⊗ 1016
int c 1 1012
int b 1 1008
int a 1 1004

int x 1 1000
void * pc “system” 996
int rv ⊗ 992

This step yields sum3’s full stack frame, just as it was described above
except that the parameters and pc have context-specific values.

Whew! That’s a lot of work! And the execution of sum3 hasn’t even begun.
Execution of sum3 begins when the program counter is updated to point to

the first of the machine instructions that sum3 compiled into. The execution of
the statements sum = a + b + c and return sum yield the following memory
configuration:

int sum 3 1024
void * pc “line 3+” 1020
int rv 3 1016
int c 1 1012
int b 1 1008
int a 1 1004

int x 1 1000
void * pc “system” 996
int rv ⊗ 992
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The statement return sum writes the value of sum into rv’s memory cell.
With sum3 completed, it is time to deconstruct sum3’s stack frame and

return control to the calling context. The following steps of the function
return protocol accomplish these tasks:

1. Memory for local variables is popped:

void * pc “line 3+” 1020
int rv 3 1016
int c 1 1012
int b 1 1008
int a 1 1004

int x 1 1000
void * pc “system” 996
int rv ⊗ 992

2. The program counter is restored from pc, and then memory for pc is
popped:

int rv 3 1016
int c 1 1012
int b 1 1008
int a 1 1004

int x 1 1000
void * pc “system” 996
int rv ⊗ 992

3. Control is now back at line 3 of the calling context: x = sum3(x, x,

x). The variable x, local to main, is updated according to rv, and rv is
popped:

int c 1 1012
int b 1 1008
int a 1 1004

int x 3 1000
void * pc “system” 996
int rv ⊗ 992

4. The arguments are popped:

int x 3 1000
void * pc “system” 996
int rv ⊗ 992

As you perhaps predicted, the final value of x is 3.

Exercise 1.13. Walk through the more complicated main of the previous
section to check your understanding:
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1 int main(int argc , char ** argv) {

2 int x = 1;

3 x = sum3(x, x, x);

4 x = sum3(x, x, x);

5 return 0;

6 }

The final value of this main’s x should be 9. As you step through this exercise,
notice how the analogy of a stack of plates is apt: the stack grows with the first
call to sum3, then shrinks, then grows again with the second call to sum3, then
shrinks. Each function manipulates the memory near the top of the stack.

Since main has parameters, the initial memory configuration is as follows:

int x 1 1000
void * pc “system” 996
int rv ⊗ 992
char ** argv 988
int argc 984

For now, we ignore the possible initial values of argc and argv. Chapter 5
discusses their usage in depth. �

While modern architectures facilitate more efficient function call and re-
turn protocols through the use of on-chip memory (registers), the protocols
for calling and returning from a function presented here are representative
of those employed by typical compilers and architectures. Furthermore, the
treatment of memory as a stack is fundamental. These protocols and the stack
are important components of our computational model.

Exercise 1.14. Consider the following main function:

1 int main() {

2 int a, * x;

3 x = &a;

4 *x = sum3(1, 2, 3);

5 a = sum3(*x, a, *x);

6 return 0;

7 }

Trace through the execution of the program, and draw the critical memory
configurations. �

Exercise 1.15. Consider the following program, which calls a function that
multiplies a given number by 10 using only addition:

1 /* Computes and returns ‘‘10 * a’’ without using

2 * multiplication.

3 */

4 int times10 (int a) { // input: int a, output : an int
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5 int x, y; // local variables

6 x = a + a; // 2 * a

7 y = x + x; // 4 * a

8 y = y + y; // 8 * a

9 return x + y; // 2*a + 8*a == 10*a

10 }

11

12 int main() {

13 int n = 42; // n is local to main

14 n = times10 (n);

15 return 0;

16 }

While the multiplication operator * is available, the sequence of additions at
lines 6–9 can be faster than multiplying by 10 on some platforms.

Trace through the execution of this program, and draw the critical memory
configurations. Remember that execution begins in the main function.

Solution. The stack frame for main consists of the return value, the cell pc
to hold a reference to where execution should return once main has completed,
and one memory cell for the local variable n, which is initialized to 42:

int n 42 1000
void * pc “system” 996
int rv ⊗ 992

Line 14 calls times10, so the stack frame for times10 is pushed:

int y ⊗ 1020
int x ⊗ 1016
void * pc “line 14+” 1012
int rv ⊗ 1008
int a 42 1004

int n 42 1000
void * pc “system” 996
int rv ⊗ 992

Notice how the parameter a is initialized to the value of the argument n. Next,
lines 6–7 execute, yielding the following configuration:

int y 168 1020
int x 84 1016
void * pc “line 14+” 1012
int rv ⊗ 1008
int a 42 1004

int n 42 1000
void * pc “system” 996
int rv ⊗ 992
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Line 8 computes the final value for y; then the return statement at line
9 causes the value 420 to be written to the memory cell corresponding to
times10’s return value:

int y 336 1020
int x 84 1016
void * pc “line 14+” 1012
int rv 420 1008
int a 42 1004

int n 42 1000
void * pc “system” 996
int rv ⊗ 992

and the local memory to be popped:

void * pc “line 14+” 1012
int rv 420 1008
int a 42 1004

int n 42 1000
void * pc “system” 996
int rv ⊗ 992

The pc cell at the top of the stack allows control to return to line 14, where
the task of assigning n remains; once there, pc can be popped:

int rv 420 1008
int a 42 1004

int n 42 1000
void * pc “system” 996
int rv ⊗ 992

The assignment to n then occurs: the value in the rv cell at the top of the stack
is transferred to n, and the remainder of times10’s stack frame is popped:

int n 420 1000
void * pc “system” 996
int rv ⊗ 992

The return statement at line 15 assigns 0 to main’s return value:

int n 420 1000
void * pc “system” 996
int rv 0 992

Finally, local memory is popped, and the pc and rv cells are used to return
to the system code, at which point the remainder of the stack is popped. �

Exercise 1.16. Consider replacing the main of the program of Exercise 1.15
with the following main:
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1 int main() {

2 int x;

3 x = times10 (12);

4 x = times10 (x);

5 return 0;

6 }

Trace through the execution of this alternate program, and draw the critical
memory configurations. �

1.2.3 Call-by-Value and Call-by-Reference

Suppose that we want to write a function that computes division just as
you did in elementary school: given a dividend (the number being divided)
and a divisor, it should compute a quotient and a remainder. For example,
dividing 7 (the dividend) by 3 (the divisor) yields a quotient of 2 and a
remainder of 1. How can we return two values from the function? Consider
the following implementation, which uses call-by-value semantics for the first
two parameters and call-by-reference semantics for the latter two:

1 void divide (int dividend , int divisor ,

2 int * quotient , int * remainder ) {

3 * quotient = dividend / divisor ;

4 * remainder = dividend % divisor ;

5 return ;

6 }

The / and % operators compute integer division and modulo, respectively.2

The return type of void indicates that divide does not return any value
through the return statement.

The idea of call-by-reference is to use pointer parameters to update data
in the caller’s stack frame. Let’s visualize the following call to divide:

1 int main() {

2 int q, r;

3 divide (7, 3, &q, &r);

4 return 0;

5 }

At the beginning of line 3 of main, the stack is as follows:

int r ⊗ 1004
int q ⊗ 1000
void * pc “system” 996
int rv ⊗ 992

2 More precisely, the modulus operator computes the remainder when applied to
nonnegative integers, but its operation on negative integers is machine dependent.
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The function call builds up the stack frame for divide:

void * pc “line 3+” 1024
int * remainder 1004 1020
int * quotient 1000 1016
int divisor 3 1012
int dividend 7 1008

int r ⊗ 1004
int q ⊗ 1000
void * pc “system” 996
int rv ⊗ 992

Notice that, since divide’s return type is void, indicating that it does not
return a value, a memory cell for a return value is not pushed. Furthermore,
divide does not have any local variables. Hence, its stack frame consists of
its parameters and pc.

Study the memory configuration carefully. What are the arguments to
divide? Consequently, to which values are its parameters initialized? In par-
ticular, where do quotient and remainder point? Trace through the execu-
tion of divide. Do you get the following memory configuration at line 5 of
divide?

void * pc “line 3+” 1024
int * remainder 1004 1020
int * quotient 1000 1016
int divisor 3 1012
int dividend 7 1008

int r 1 1004
int q 2 1000
void * pc “system” 996
int rv ⊗ 992

When divide returns, memory is configured as follows:

int r 1 1004
int q 2 1000
void * pc “system” 996
int rv ⊗ 992

This configuration—particularly the values of q and r—is precisely what we
hoped to obtain from the call to divide.

Exercise 1.17. Trace through the execution of the following program, and
draw the critical memory configurations:

1 void incr(int * x) {

2 *x = *x + 1;

3 }

4
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5 int main() {

6 int a = 0;

7 incr(&a);

8 incr(&a);

9 return 0;

10 }

Although incr lacks an explicit return statement, it behaves as if it has one
after line 2.

Solution. The stack frame for main consists of the return value, the pc cell,
and one memory cell for the local variable a, which is initialized to 0:

int a 0 1000
void * pc “system” 996
int rv ⊗ 992

Line 7 calls incr, so the stack frame for incr is pushed:

void * pc “line 8” 1008
int * x 1000 1004

int a 0 1000
void * pc “system” 996
int rv ⊗ 992

Notice that, since incr has a void return type—that is, it does not return
anything—the stack frame lacks a cell for a return value. Also, since line 7 does
not include an assignment, control returns to line 8 upon incr’s completion.
Line 2 then executes to increment the value in the cell associated with a:

void * pc “line 8” 1008
int * x 1000 1004

int a 1 1000
void * pc “system” 996
int rv ⊗ 992

Control then returns to line 8:

int a 1 1000
void * pc “system” 996
int rv ⊗ 992

Another call to incr is executed, yielding the following configuration just
before incr returns:

void * pc “line 9” 1008
int * x 1000 1004

int a 2 1000
void * pc “system” 996
int rv ⊗ 992
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Upon return, a has value 2. The return statement sets main’s return value
to 0:

int a 2 1000
void * pc “system” 996
int rv 0 992

Finally, local memory is popped, and the pc and rv cells are used to return
to the system code, at which point the remainder of the stack is popped. �

Exercise 1.18. Trace through the execution of the following program, and
draw the critical memory configurations:

1 void incrBy (int * x, int a) {

2 *x = *x + a;

3 }

4

5 int main() {

6 int a = 0;

7 incrBy (&a, 3);

8 incrBy (&a, a);

9 return 0;

10 }

Notice that the parameter a of incrBy is unrelated, except in name, to the
variable a of main; in particular, they correspond to distinct memory cells. �

1.2.4 Building Fences

Functions are the basic unit of modularity in programs. As such, functions
can be executed in contexts that you, as the function writer, may not have
predicted. Hence, it’s good practice to protect the function that you’re writing.
What are potential problems that could occur if a naive user calls divide?
Here are two:

• The divisormay be 0, which would lead to a divide-by-zero runtime error.
Additionally, we may want to assume that the divisor is always positive,
as you probably did in elementary school.

• The quotient or the remainder parameters may be NULL, leading to a
segmentation fault.

A standard method of protecting code is to use assertions, which are checked
at runtime. If the assertion does not hold, the program stops with a message so
that the programmer can fix the problem. Here is how we might use assertions
for divide:

1 void divide (int dividend , int divisor ,

2 int * quotient , int * remainder ) {

3 assert (divisor > 0);

4 assert (quotient != NULL);
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5 assert (remainder != NULL);

6 * quotient = dividend / divisor ;

7 * remainder = dividend % divisor ;

8 return ;

9 }

These assertions are being used as function preconditions. They define the
(pre)conditions that must hold for the function to behave correctly. If, say, the
user were to pass a divisor of 0, the assertion at line 3 would be triggered: the
program would print a message to the console indicating that the assertion
failed and then abort.

Another worthwhile discipline is to use assertions to state expectations,
although this task can be much more difficult than stating preconditions. In
divide, we expect a certain arithmetic property to hold upon completion of
execution, namely the following:

1 void divide (int dividend , int divisor ,

2 int * quotient , int * remainder ) {

3 assert (divisor > 0);

4 assert (quotient != NULL);

5 assert (remainder != NULL);

6 * quotient = dividend / divisor ;

7 * remainder = dividend % divisor ;

8 assert (divisor * (* quotient ) + (* remainder ) == dividend );

9 return ;

10 }

In typical C fashion, the character * means different things in different con-
texts. At line 8, it is being used once to indicate multiplication and twice to
dereference pointers. The assertion at line 8 states the key property of divi-
sion: the sum of the remainder and the product of the divisor and the quotient
yields the dividend. This assertion is being used as a function postcondi-
tion. It states the condition that is expected to hold after execution of the
function, that is, just before it returns.

The value of assertions is that they identify the effect of a bug near the
buggy lines. Furthermore, they can be deactivated during compilation when
performance is desired.

Assertions are defined in the standard library assert.h, so we need to
include the assert library in the source file. In fact, we also need to include
stdlib.h, which defines NULL:

1 #include <assert .h>

2 #include <stdlib .h>

3

4 void divide (int dividend , int divisor ,

5 int * quotient , int * remainder ) {

6 assert (divisor > 0);

7 assert (quotient != NULL);
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8 assert (remainder != NULL);

9 * quotient = dividend / divisor ;

10 * remainder = dividend % divisor ;

11 assert (divisor * (* quotient ) + (* remainder ) == dividend );

12 }

13

14 int main() {

15 int q, r;

16 divide (7, 3, &q, &r);

17 return 0;

18 }

We omitted the return statement of divide in this version because it is not
necessary when the function does not have a return value.

Assertions are not always desirable for functions that should work in any
environment. In the next chapter, we add a return value to divide that indi-
cates whether there is an input error.

Exercise 1.19. Write a function that swaps the values of two int variables.
It should have the following prototype, or interface:

1 void swap(int * a, int * b);

For example, calling swap(&x, &y) should result in y’s having x’s original
value and x’s having y’s original value. Write a main function that calls swap.
Using assertions, write function preconditions and postconditions. Illustrate
various interesting memory configurations during its execution. Write the code
in a file called swap.c, compile it, and run it.

Solution. The following program tests the swap function. The use of the
entry function main is as a unit test of the function swap: it tests swap in
a specific environment. Writing unit tests—that is, tests of modules such as
functions or, in Chapter 7, abstract data types—is good engineering practice.
In large programming efforts, it is desirable to catch as many bugs as possible
before attempting to integrate many units. Writing unit tests in main functions
is one method of unit testing.3

1 #include <assert .h>

2 #include <stdlib .h>

3

4 void swap(int * x, int * y) {

5 assert (x != NULL);

6 assert (y != NULL);

7 int t = *x;

8 *x = *y;

9 *y = t;

3 In Chapter 5, we will write general main functions in order to make general-
purpose programs. Then unit tests can take the form of external scripts that call
the program with various command-line arguments.
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10 }

11

12 int main() {

13 int a = 0, b = 1;

14 swap(&a, &b);

15 assert (a == 1);

16 assert (b == 0);

17 return 0;

18 }

To compile and run the resulting executable, we run the following on the
terminal:

$ gcc -Wall -Wextra -o swap swap.c

$ ./swap

Nothing is printed to the terminal; however, an assertion failure would be
obvious, so we conclude that swap passed the test.

Out of curiosity, let’s implement swap incorrectly to see an assertion fail-
ure. We modify swap as follows:

1 void swap(int * x, int * y) {

2 assert (x != NULL);

3 assert (y != NULL);

4 // Wrong!

5 *x = *y;

6 *y = *x;

7 }

Again, we compile and run the program:

$ gcc -Wall -Wextra -o swap swap.c

$ ./swap

swap: swap.c:16: main: Assertion ‘b == 0’ failed.

Aborted

The assertion failure points to a mistake in the implementation of swap. �

Exercise 1.20. Write a function that swaps the values of three int variables.
It should have the following prototype:

1 void swap3(int * a, int * b, int * c);

For example, calling swap3(&x, &y, &z) should result in z’s having y’s orig-
inal value, y’s having x’s original value, and x’s having z’s original value. Use
assertions to protect the function. Write a unit test of swap3 in a main func-
tion. Illustrate various interesting memory configurations during its execution.
How can swap3 be called in order to swap the values of two variables rather
than three, given that three arguments must be passed? �
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1.3 Bits, Bytes, and Words

As long as we are discussing computer memory, it is worth a brief aside to
discuss how computers actually represent data. Computers work in binary,
or base 2 arithmetic, instead of decimal, or base 10 arithmetic. While
knowing how to compute in binary arithmetic is not essential, the basics of
base 2 arithmetic explain why addresses so far have been multiples of 4. So
let’s take a brief tour of binary arithmetic.

0 and 1 are just, well, 0 and 1. But 10 in binary is 2 in decimal, and 100 in
binary is 4 in decimal. Here is the general case. To convert the binary number

dkdk−1 . . . d1d0 ,

where each digit di is either 0 or 1, compute

k
∑

i=0

di2
i .

For example, 1001101 in binary is

1 · 20 + 0 · 21 + 1 · 22 + 1 · 23 + 0 · 24 + 0 · 25 + 1 · 26 ,

which simplifies to 1 + 4 + 8 + 64, or 77 in decimal.
There is a formal way of converting from decimal to binary, but the easiest

on-the-fly method is simply to subtract largest powers of 2 until you are left
with 0. For example, 29 in base 10 is computed as 11101 in base 2:

29 = 24 + 13
= 24 + 23 + 5
= 24 + 23 + 22 + 1
= 24 + 23 + 22 + 20

= 1 · 24 + 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20

Just as powers of 10 are important in decimal, powers of 2 are important
in binary. For that reason, memory is divided hierarchically into powers of
two. A bit is one binary digit: either 0 or 1. A nybble is four (22) bits, and
a byte is eight (23) bits. A word is not standard: 32-bit architectures have
32-bit, or 4-byte, words; 64-bit architectures have 64-bit, or 8-byte, words. We
assume 32-bit words in this text to keep address arithmetic more manageable.

How many different values can a bit take on? Two, of course: 0 or 1. How
many different values can a byte take on? The smallest byte is 00000000, that
is, 0 in decimal; the largest byte is 11111111, that is, 255 in decimal. Hence,
a byte can take on 28 = 256 different values. A 32-bit word can take on
232 = 4, 294, 967, 296 different values—a lot but still a long way from infinitely
many. Basic computer arithmetic is limited by the finiteness of number rep-
resentations. For example, in computer arithmetic, adding 1 to an int value
of 231 − 1 = 2, 147, 483, 647 yields −231 = −2, 147, 483, 648 for reasons that
are beyond the scope of this text.4

4 Read about two’s complement representation if you are curious.
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In our computational model, addresses refer to bytes and occupy 32 bits—
that is, four bytes, or one word. Therefore, memory cells corresponding to
pointer and int variables both occupy four bytes, so that memory cells have
addresses that are typically multiples of 4. In later chapters, we encounter
variable types that require different numbers of bytes.

Exercise 1.21.

(a) Compute the binary representation of 89. Pad it with 0s so that it con-
sumes a byte.

(b) Compute the decimal representation of 01101001.
(c) How can you tell if a binary number is even or odd? If it is a multiple of

4? Of 8? Of 32?
(d) Write a list of random decimal and binary numbers, and convert them

back and forth.

�

Exercise 1.22. Explain why the function times10 of Exercise 1.15 works. �
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Control

Computation rests on two foundations: memory and control. Having devel-
oped a memory model in Chapter 1, this chapter extends the computational
model with control statements. Such statements direct the flow of computa-
tion: the if/else construct enables conditional computation; and the while

and for constructs facilitate iterative computation. Function calls, when com-
bined with conditional statements, can yield even more complex control in the
form of recursion.

2.1 Conditionals

The most basic control statement is the conditional. Consider this improve-
ment of divide, which checks the input and either returns –1, indicating
malformed input, or computes the quotient and remainder and returns 0,
indicating a successful computation:1

1 int divide (int dividend , int divisor ,

2 int * quotient , int * remainder ) {

3 if (divisor <= 0 ||

4 quotient == NULL ||

5 remainder == NULL) {

6 // error: malformed input

7 return -1;

8 }

9 else {

10 *quotient = dividend / divisor ;

11 *remainder = dividend % divisor ;

1 Returning a negative integer to indicate an error or 0 to indicate success is a
custom based on this observation: “There are many ways of messing up, but only
one way of getting it right.” However, some libraries, including some standard C
libraries, use other customs. For example, some functions may return 0 or 1 to
indicate an error or successful completion, respectively.
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12 // successful computation

13 return 0;

14 }

15 }

Lines 6 and 12 are comments, which are ignored by the compiler but are
intended to be useful to the reader. Lines 3–5 check if divisor <= 0 or
quotient == NULL or remainder == NULL. The operator <= is read as “less
than or equal to” or “at most,” while the operator || is read as “or.” Because
= is reserved for assignment, == is read as “equals.” If any one (or more) of the
predicates is true, then the block of code after the if is executed; otherwise,
the block of code after the else is executed.

A caller could then check for an indication of an error:

1 int main() {

2 int q, r;

3 int errorCode = divide (7, 3, &q, &r);

4 assert (! errorCode );

5 return 0;

6 }

In this case, the error checking is minimal. The ! operator is read as “not”: !0
is 1, while !n is 0 for any n 6= 0. Since an assert is triggered if its argument
is false, which in C is 0, the assertion at line 4 is triggered precisely when
divide returns −1, that is, when its input is malformed. While the overall
effect in this particular use of divide is the same as in the previous chapter,
the idea is that this new version of divide allows the caller to recover from
an error if appropriate.

We have seen two logical operators so far: “or,” ||, and “not,” !. The
operator && is read as “and.” Using &&, divide can be implemented equiva-
lently as follows:

1 int divide (int dividend , int divisor ,

2 int * quotient , int * remainder ) {

3 if (divisor > 0 &&

4 quotient != NULL &&

5 remainder != NULL) {

6 *quotient = dividend / divisor ;

7 *remainder = dividend % divisor ;

8 // successful computation

9 return 0;

10 }

11 else {

12 // error: malformed input

13 return -1;

14 }

15 }
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Logical operators are also called Boolean operators after George Boole,
whose contribution to mathematics includes the study of Boolean algebras.
One particular Boolean algebra is the algebra of logical 0 and 1, also called
“false” and “true,” respectively. Here are some basic identities written using
C syntax:

• (!0) == 1, (!1) == 0;
• when x is 0 or 1, (!!x) == x;
• (x && y) == (y && x),

(x || y) == (y || x);
• (x && (y && z)) == ((x && y) && z),

(x || (y || z)) == ((x || y) || z);
• (0 && x) == 0,

(1 && x) == x;
• (0 || x) == x,

(1 || x) == 1;
• (!(x && y)) == (!x || !y),

(!(x || y)) == (!x && !y).

Developing an intuition for logical arithmetic is useful in programming because
conditional statements are sometimes complex.

Exercise 2.1. Apply these identities to solve the following problems:

(a) Manipulate !(x && (y || !z)) so that ! is only applied to variables.
Solution. One application of the penultimate identity above, known as
De Morgan’s law, yields !x || !(y || !z); an application of its dual,
the final identity, yields !x || (!y && !!z); and an application of the
second identity yields !x || (!y && z).

(b) Write an expression equivalent to x || y || z that uses only ! and &&.
(c) Write your own logic manipulations and trade with your colleagues.

�

Conditional statements can extend beyond two options. Consider the fol-
lowing function, which computes the “sign” of an integer: it returns −1, 0, or
1 if the given integer is negative, 0, or positive, respectively:

1 int sign(int x) {

2 int s = 0;

3 if (x < 0)

4 s = -1;

5 else if (x == 0)

6 s = 0;

7 else

8 s = 1;

9 return s;

10 }
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Notice that this code snippet does not use braces ({ and }) for the conditional
blocks. Braces are not required when a block consists of only one statement.
However, one must be careful to avoid introducing bugs by accidentally omit-
ting braces.

A function can have multiple return statements, a freedom that becomes
relevant with control. The following is a functionally equivalent but more
concise version of sign:

1 int sign(int x) {

2 if (x < 0) return -1;

3 else if (x == 0) return 0;

4 else return 1;

5 }

Notice that spacing can be used to clarify (or obscure) code.

Exercise 2.2. Modify the swap function of Exercise 1.19 so that it check its
input and returns −1 if it is malformed and 0 otherwise.

Solution. Rather than asserting that neither x nor y is NULL as in Exercise
1.19, which causes the program to abort on bad input, we use an int return
value to indicate whether the function executes successfully. If either is NULL,
the function returns −1; otherwise, it executes normally and returns 0:

1 #include <assert .h>

2 #include <stdlib .h>

3

4 int swap(int * x, int * y) {

5 if (x == NULL || y == NULL) return -1;

6 int t = *x;

7 *x = *y;

8 *y = t;

9 return 0;

10 }

11

12 int main() {

13 int a = 0, b = 1;

14 int rv = swap (&a, &b);

15 assert (rv == 0);

16 assert (a == 1);

17 assert (b == 0);

18 rv = swap(&a, NULL);

19 assert (rv != 0);

20 assert (a == 1);

21 return 0;

22 }

The unit test implemented in main tests both normal and abnormal situations
for swap. The second call to swap would cause the program to abort with the
old version of swap. �
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Exercise 2.3. Modify the swap3 function of Exercise 1.20 so that it check its
input and returns −1 if it is malformed and 0 otherwise. �

Exercise 2.4. Write a function that returns the absolute value of an integer
variable. It should have the following prototype:

1 int abs(int a);

Write a unit test of abs in main.
Solution. We explore various equivalent ways of implementing this func-

tion. Given that this function is so simple, the variety in even this example
suggests that, as we tackle ever more interesting programming problems, there
will be ever greater freedom in the design and implementation choices.

The first implementation is verbose but straightforward:

1 #include <assert .h>

2

3 int abs(int a) {

4 int x;

5 if (a < 0) {

6 x = -a;

7 }

8 else {

9 x = a;

10 }

11 return x;

12 }

13

14 int main() {

15 int x = -3;

16 int y = abs(x);

17 assert (x == y || -x == y);

18 assert (y >= 0);

19 x = abs (y);

20 assert (y == x);

21 return 0;

22 }

There are two tests in main: abs should return a nonnegative number that
is equal in magnitude to the original number, and it should leave a positive
number unchanged.

In this variation, we realize that we don’t need a local variable:

1 int abs(int a) {

2 if (a < 0)

3 a = -a;

4 return a;

5 }

In the final variant, we realize that we don’t need to change the value of a at
all but can instead use multiple return statements:

36 Chapter 2. Control

1 int abs(int a) {

2 if (a < 0) return -a;

3 return a;

4 }

�

Exercise 2.5. Write a function that computes the minimum and the max-
imum of two integer variables and returns them through call-by-reference
parameters. It should have the following prototype:

1 int minmax (int a, int b, int * min , int * max );

Write a unit test of minmax in a main function. �

2.2 Recursion

According to the Church–Turing thesis, you have now learned all the tools
necessary to compute anything that is theoretically computable—were mem-
ory and time unlimited. Does this statement surprise you? For that matter,
have you ever thought about what is and is not computable? An entire branch
of knowledge called computability theory has evolved from the pioneering
work of Gödel, Church, Turing, and others.

To get a taste of just how powerful the combination of the stack, func-
tions, and conditional statements are, let’s implement a short function that
computes the sum 1 + 2 + · · ·+ n, for a given positive integer n:

1 int sum(int n) {

2 int upto = 0;

3 // n must be positive

4 assert (n > 0);

5 if (n == 1)

6 // the sum of 1 is just 1

7 return 1;

8 else {

9 // the sum 1 + ... + n == (the sum 1 + ... + n-1) + n

10 upto = sum(n -1);

11 return upto + n;

12 }

13 }

Line 4 asserts that n is positive, which is according to the English specification
of the function given above. Then, if n == 1, the function simply returns 1:
the sum of 1 is 1. For the general case, we recognize that

1 + · · ·+ n = (1 + · · ·+ (n− 1)) + n ,
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because addition is associative. Thus, to compute the sum 1 + · · · + n, sum
simply needs to compute the sum 1 + · · · + (n− 1) and then add n, which is
what lines 10–11 accomplish.

Let’s trace through a call to sum arising in the following context:

1 int main() {

2 int s = sum (3);

3 return 0;

4 }

At entry, memory has the following configuration:

int s ⊗ 1000
void * pc “system” 996
int rv ⊗ 992

The call at line 2 causes sum’s stack frame to get pushed:

int upto 0 1016
void * pc main:2+ 1012
int rv ⊗ 1008
int n 3 1004

int s ⊗ 1000
void * pc “system” 996
int rv ⊗ 992

The location main:2+ refers to the address of the machine instructions that
must be executed after sum returns, which corresponds to the assignment
of the return value to s. sum(3) executes. The second conditional block is
executed because 3 != 1. Line 10 of sum calls sum again, so that a second
instance of sum’s stack frame is pushed:

int upto 0 1032
void * pc sum:10+ 1028
int rv ⊗ 1024
int n 2 1020

int upto 0 1016
void * pc main:2+ 1012
int rv ⊗ 1008
int n 3 1004

int s ⊗ 1000
void * pc “system” 996
int rv ⊗ 992

Notice how, in the new instance, the parameter n is initialized to 2 and the
program counter is set to be restored to line 10 of sum upon return.

Once again, the second conditional block is executed because 2 != 1, and
another stack frame is pushed:
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int upto 0 1048
void * pc sum:10+ 1044
int rv ⊗ 1040
int n 1 1036

int upto 0 1032
void * pc sum:10+ 1028
int rv ⊗ 1024
int n 2 1020

int upto 0 1016
void * pc main:2+ 1012
int rv ⊗ 1008
int n 3 1004

int s ⊗ 1000
void * pc “system” 996
int rv ⊗ 992

This time, the parameter is initialized to 1. Therefore, the first conditional
block is executed so that the return value is set to 1:

int upto 0 1048
void * pc sum:10+ 1044
int rv 1 1040
int n 1 1036

int upto 0 1032
void * pc sum:10+ 1028
int rv ⊗ 1024
int n 2 1020

int upto 0 1016
void * pc main:2+ 1012
int rv ⊗ 1008
int n 3 1004

int s ⊗ 1000
void * pc “system” 996
int rv ⊗ 992

Then control returns to the calling context, where upto is set to the return
value, and the expended stack frame is popped:
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int upto 1 1032
void * pc sum:10+ 1028
int rv ⊗ 1024
int n 2 1020

int upto 0 1016
void * pc main:2+ 1012
int rv ⊗ 1008
int n 3 1004

int s ⊗ 1000
void * pc “system” 996
int rv ⊗ 992

Control now proceeds to line 11, where the sum upto + n is computed and
stored in the return value:

int upto 1 1032
void * pc sum:10+ 1028
int rv 3 1024
int n 2 1020

int upto 0 1016
void * pc main:2+ 1012
int rv ⊗ 1008
int n 3 1004

int s ⊗ 1000
void * pc “system” 996
int rv ⊗ 992

Then control returns to the calling context, where upto is set to the return
value, and the expended stack frame is popped:

int upto 3 1016
void * pc main:2+ 1012
int rv ⊗ 1008
int n 3 1004

int s ⊗ 1000
void * pc “system” 996
int rv ⊗ 992

Control now proceeds to line 11, where the sum upto + n is computed and
stored in the return value:

int upto 3 1016
void * pc main:2+ 1012
int rv 6 1008
int n 3 1004

int s ⊗ 1000
void * pc “system” 996
int rv ⊗ 992
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Finally, control returns to the calling context, where s is set to the return
value, the expended stack frame is popped, and main’s rv is set to 0:

int s 6 1000
void * pc “system” 996
int rv 0 992

Execution of the program then completes.
Study this section until you understand precisely how the computer exe-

cutes this program.
This example demonstrates recursion, which is the most powerful tech-

nique for writing programs that do an amount of work dependent on input.

Exercise 2.6. To make sum callable in any context, it would be best to remove
the need for the assertion at line 4.

(a) Rename sum to sum. Adding an underscore ( ) at the beginning of a
function name is a common naming convention to indicate that it is a
function that is not intended to be called outside of a specific context.

(b) Write an entry function called sum with the following prototype:

1 int sum(int n, int * s);

The return value should be used to indicate whether the input is mal-
formed, in particular if n <= 0 or s == NULL. As usual, it should return 0
to indicate successful execution and a negative value to indicate an error.
The sum itself should be returned via the reference s. After checking that
the input is well formed, sum should call sum, which should perform the
main computation.

(c) Remove the protection in sum to optimize the implementation.

Solution. The function sum does the hard work. Unlike the original version
of sum above, it does not protect itself against spurious input because it is not
intended to be called outside of a context in which we can guarantee well
formed input:

1 #include <assert .h>

2 #include <stdio.h>

3 #include <stdlib .h>

4

5 /* Helper function that computes the product . Returns the

6 * sum 1 + 2 + 3 + ... + n. Assumes that n > 0.

7 */

8 int _sum(int n) {

9 // Base case: the sum 1 is just 1.

10 if (n == 1) return 1;

11 // Recursive case: compute (1 + 2 + ... + (n -1)) + n.

12 return _sum(n-1) + n;

13 }



2.2. Recursion 41

The function sum checks its input and invokes sum if the input is well formed:

1 /* Interface for computing the sum

2 * 1 + 2 + 3 + ... + n

3 * Returns -1 if n <= 0 or s is NULL; otherwise , stores the

4 * sum in the cell that s references and returns 0.

5 */

6 int sum(int n, int * s) {

7 if (n <= 0 || s == NULL)

8 return -1;

9

10 // We know that n > 0 at this point , so we can safely

11 // call the helper function .

12 *s = _sum(n);

13

14 // success

15 return 0;

16 }

Although the check that n > 0 is simple, this pattern of separating the main
computation from the external interface is common in situations in which the
input check is more complex.

Finally, main tests sum with both well formed and malformed input. It
uses the output function printf, which is discussed in depth in Chapter 5, to
print the sum to the console:

1 int main() {

2 // test the sum function

3 int s, err;

4 err = sum (5, &s);

5 assert (err == 0);

6 // print the result to the console

7 printf ("%d\n", s);

8 // test bad input

9 err = sum (-3, &s);

10 assert (err != 0);

11 return 0;

12 }

Compiling and running the program yields the expected output of 15:

$ gcc -Wall -Wextra -o sum sum.c

$ ./sum

15

�

Exercise 2.7. Write a function to compute the product 1× · · · × n, for pos-
itive n. Write a main function to call it, and illustrate various interesting
memory configurations during its execution. Use the protection and naming
conventions of Exercise 2.6. �
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2.3 Loops

While recursion is necessary for solving some important problems and the
most natural looping structure in some widely used programming languages
such as lisp and ocaml, the iteration exhibited in the sum example is better
expressed—in C, anyway—through explicit looping control statements.

Let’s revisit the problem of summing 1 + · · · + n, for positive integer n.
This time we will use a while statement:

1 int sum(int n) {

2 assert (n > 0);

3 int i = 1, s = 0;

4 while (i <= n) {

5 s = s + i;

6 i = i + 1;

7 }

8 return s;

9 }

Line 2 declares a loop counter, i, that is incremented from 1 to n and an
accumulator, s, that is initialized to 0. Lines 4–7 execute iteratively, as long
as i <= n. The effect is thus that every integer between 1 and n is added to
s precisely once.

The stack is not the best way to visualize looping, or iterative, program
behavior. Instead, we construct the following table for an input to sum of 5:

n i s

5 1 0
1 5 2 1
2 5 3 3
3 5 4 6
4 5 5 10
5 5 6 15

The first row of numbers indicates the variables’ initial values. Subsequent
rows indicate their values at the end of each iteration of the loop. Trace
through the code and the table to verify your understanding of the computa-
tion. Explain to yourself why sum(5) returns 15. What does sum(8) return?
What about sum(0)?

Once again, we may not be satisfied with the possibility that calling sum

with a nonpositive value could halt our program: such violent behavior com-
promises the modularity of the function. Instead, we write the following more
modular and more robust function:

1 int sum(int n, int * s) {

2 int i = 1;

3

4 // check for well formed input
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5 if (n <= 0 || s == NULL)

6 // indicate malformed input

7 return -1;

8

9 *s = 0;

10 while (i <= n) {

11 *s += i; // short for *s = *s + i;

12 i++; // short for i = i + 1;

13 }

14 // indicate successful execution

15 return 0;

16 }

This implementation introduces new operators for accumulating sums. Loop
counters are so prevalent in C that the language designers included the opera-
tor ++ to increment a variable by 1. Accumulation is also a frequent operation,
and the += operator provides a convenient shorthand. Similar operators exist
for other arithmetic operations, including --, -=, *=, and /=.

Exercise 2.8. Write a version of product (see Exercise 2.7) that uses a while
loop instead of recursion. Draw a table that illustrates values of its variables
during execution for a reasonable input. �

The loop of sum follows a common pattern that motivates the for loop:

1 int sum(int n, int * s) {

2 int i;

3

4 // check for malformed input

5 if (n <= 0 || s == NULL) return -1;

6

7 *s = 0;

8 for (i = 1; i <= n; i++)

9 *s += i;

10

11 return 0;

12 }

Lines 8–9 compile to exactly the same machine instructions as this loop:

1 i = 1;

2 while (i <= n) {

3 *s += i;

4 i++;

5 }

In general, a for loop of the form

1 for (<initialize >; <condition >; <increment >) {

2 <body >

3 }
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is exactly the same as a while loop of the form

1 <initialize >

2 while (<condition >) {

3 <body >

4 <increment >

5 }

Programmer preference dictates when to use a while statement and when to
use a for statement. Readability is the goal.

Exercise 2.9. Rewrite the product function of Exercise 2.8 using a for loop.
�

Exercise 2.10. Write a function to compute the power an, where n ≥ 0. It
should have the following prototype:

1 /* Sets *p to the n’th power of a and returns 0, except

2 * when n < 0 or p is NULL , in which case it returns -1.

3 */

4 int power (int a, int n, int * p);

Write a unit test in a main function to test various values. The following code
sequence illustrates how to use printf to provide informative output:

1 int x = 3, y = 5, pow;

2 power(x, y, &pow );

3 printf ("%d^%d = %d\n", x, y, pow );

�

Exercise 2.11. Mathematical sequences can be computed using loops. Con-
sider, for example, the following sequence:

a0 = 1 and ai+1 = 2 · ai + 1 for i > 0 ,

whose first elements are 1, 3, 7, 15, 31, 63, . . .. This function returns the nth
element:

1 int seq(int n) {

2 int i, a = 1;

3 for (i = 1; i <= n; i++)

4 a = 2*a + 1;

5 return a;

6 }

For example, seq(0) returns 1, seq(1) returns 3, and seq(4) returns 31.
Write functions to compute the nth elements of the following sequences:

(a) a0 = 1 and ai+1 = 3 · ai + 2 for i > 0.
(b) a0 = 59 and ai+1 = ai/2 + 1 for i > 0, where / denotes integer division;

in C, use /. For example, 3/2 = 1. The first elements of the sequence are
59, 59/2 + 1 = 29 + 1 = 30, 16, 9, 5, 3, . . ..
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(c) a0 = 1, a1 = 1, and ai+1 = ai−1 + ai for i > 1. The first elements of the
sequence, called the Fibonacci sequence, are 1, 1, 2, 3, 5, 8, . . ..
Solution. This function needs to remember the previous two values:

1 int seq(int n) {

2 int i, a = 1, b = 1;

3 for (i = 2; i <= n; i++) {

4 int t = b; // temporary variable

5 b = a + b;

6 a = t;

7 }

8 return b;

9 }

Verify that this function indeed returns the nth element of the sequence
for various n.

(d) a0 = 0, a1 = 2, and ai+1 = 2 · ai−1 − ai for i > 1.
(e) a0 = 7, a1 = 11, and ai+1 = −ai−1 + ai for i > 1.
(f) a0 = 1, a1 = 1, a2 = 1, and ai+1 = ai−2 + ai for i > 2.

�

Exercise 2.12. Mathematical series can be computed using loops. Consider,
for example, the following sequence:

a0 = 1 and ai+1 = 2 · ai + 1 for i > 0 .

The corresponding series is constructed by computing the partial sums:

a0,
1

∑

j=0

aj ,
2

∑

j=0

aj ,
3

∑

j=0

aj , . . . .

Since the first elements of the sequence are 1, 3, 7, 15, 31, 63, . . ., the first ele-
ments of the corresponding series are 1, 1+3 = 4, 1+3+7 = 11, 26, 57, 120, . . ..
This function returns the nth element of the series:

1 int series (int n) {

2 int i, a = 1, sum = 1;

3 for (i = 1; i <= n; i++) {

4 a = 2*a + 1;

5 sum += a;

6 }

7 return sum;

8 }

For example, series(0) returns 1, series(1) returns 4, and series(4) re-
turns 57. Write similar functions to compute the nth elements of series corre-
sponding to the sequences of Exercise 2.11. �

More complex control patterns will come after we have studied more com-
plex data structures. However, all control builds on conditionals, loops, and
occasionally recursion.
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Arrays and Strings

Memory and control come together in data structures. A data structure
is a program-defined structure in memory with corresponding operations to
give it meaning. For example, an int variable is a simple data structure when
combined with the operations of reading, writing, and basic arithmetic. It
has an explicit place in memory—a 32-bit memory cell—and the arithmetic
operations give meaning to the data—the 32 bits, or four bytes—that reside
there. An int * variable, while occupying the same amount of memory as an
int, is given a different meaning through the operators * and &, in addition
to the arithmetic operators.

These basic data structures can only take us so far. Their fixed size is lim-
iting, for example. (Technically, through recursion, one can program anything
that can be programmed using only integer and pointer variables, though
the value of such a discipline is questionable.) Compound data structures
consist of a possibly variable number of basic data structures. They are given
meaning through code. In this chapter, we begin our study of compound data
structures with the simplest and most fundamental of all: the array, which
consists of a contiguous range of more basic data structures, all of the same
type. An array of int data is a typical example. An array is indexable, al-
lowing reading or writing of each of its elements. Besides reading and writing
element-wise, iteration over an array can be seen as a fundamental operation;
hence, arrays and loops go hand in hand.

One application of arrays is to hold text. Textual data are called strings in
programming parlance, and we study them in the second half of this chapter.

3.1 Arrays

3.1.1 Introduction to Arrays

A C array defines a contiguous region of memory divided into memory cells
accessible via indexing:

48 Chapter 3. Arrays and Strings

1 int main() {

2 int a[4];

3 a[0] = 1;

4 a[1] = 1;

5 a[2] = a[0] + a[1];

6 a[3] = a[1] + a[2];

7 return 0;

8 }

The array a declared at line 2 consists of four integer memory cells arranged
consecutively in memory:

int a[3] ⊗ 1012
int a[2] ⊗ 1008
int a[1] ⊗ 1004
int a[0] ⊗ 1000
void * pc “system” 996
int rv ⊗ 992

An array is indexed from 0 to 1 less than its size. By the end of line 6,
memory is configured as follows:

int a[3] 3 1012
int a[2] 2 1008
int a[1] 1 1004
int a[0] 1 1000
void * pc “system” 996
int rv ⊗ 992

Let’s be clear on one point from the beginning: a itself is implicitly a
pointer. The expression a evaluates to the address of the beginning of the
array, which in this case is 1000. The following program is almost identical to
the one above:

1 int main() {

2 int a[4];

3 int * x;

4 x = a; // Notice that the right expression is a, not &a!

5 x[0] = 1;

6 x[1] = 1;

7 x[2] = x[0] + x[1];

8 x[3] = x[1] + x[2];

9 return 0;

10 }

At function entry, memory is configured as follows:
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int * x ⊗ 1016
int a[3] ⊗ 1012
int a[2] ⊗ 1008
int a[1] ⊗ 1004
int a[0] ⊗ 1000
void * pc “system” 996
int rv ⊗ 992

The expression a evaluates to the address of the beginning of the array; hence
at line 4, x is assigned 1000:

int * x 1000 1016
int a[3] ⊗ 1012
int a[2] ⊗ 1008
int a[1] ⊗ 1004
int a[0] ⊗ 1000
void * pc “system” 996
int rv ⊗ 992

Now, indeed, x points to an integer, namely the memory cell at address 1000,
which holds int data.

At this point, there are two puzzles. First, why does the pointer x corre-
spond to a memory cell while the pointer a does not? While a is implicitly
a pointer, it does not have the same functionality as x: it can only be read
and dereferenced, whereas x can also be written, as at line 4. In other words,
a always refers to the same address relative to main’s stack frame, which, in
this case, is eight bytes beyond the beginning of the frame (992). No matter
what the address of the stack frame is, a’s value is a constant offset from
that address. The compiler replaces a with this stack frame-relative offset.
Stack-allocated arrays always behave in this manner.

Second, why do lines 5–8 work? Indexing into an array is just syntactic
sugar for dereferencing memory: a convenient but unnecessary language fea-
ture. The last version of main compiles into exactly the same program as the
following version:

1 int main() {

2 int a[4];

3 int * x;

4 x = a;

5 *x = 1;

6 *(x + 1) = 1;

7 *(x + 2) = *x + *(x + 1);

8 *(x + 3) = *(x + 1) + *(x + 2);

9 return 0;

10 }

Cool, right? But it’s ugly and unnecessary, so don’t write code like this exam-
ple in practice. Lines 5–8 make heavy use of pointer arithmetic. If memory
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addresses are just data that look very much like integers, why not add them
and subtract them as you would any other integer data? And once a new
address has been formed through pointer arithmetic, why not dereference it
so as to read from or write to the addressed memory cell?

The only puzzle is why *(x + 1) is the same as x[1]. Shouldn’t we write
*(x + 4) since the second word of the array is four bytes later in memory?
The answer is “no.” Pointer arithmetic differs from standard integer arith-
metic in one crucial manner: the C compiler takes into account the types of
the pointers when it compiles pointer arithmetic. In this case, x is an int *.
Since an int occupies one word (four bytes) and x is an int *, x + 1 evalu-
ates to the address one word, or four bytes, later in memory than x evaluates
to. Therefore, x[1] and *(x + 1) are synonymous: both evaluate to the value
in the memory cell one word beyond the address in x.

We can use pointer arithmetic on a itself, since a is implicitly a pointer:

1 int main() {

2 int a[4];

3 *a = 1;

4 *(a + 1) = 1;

5 *(a + 2) = *a + *(a + 1);

6 *(a + 3) = *(a + 1) + *(a + 2);

7 return 0;

8 }

Study the four versions of main until you understand precisely how and
why they work, and why they effectively describe the same computation.

3.1.2 Looping over Arrays

With the power to declare arbitrary segments of memory for use, the next
logical step is to construct loops that modify arbitrarily large arrays.

The Fibonacci sequence is defined as follows. The first two elements of the
sequence are 1; then subsequent elements are defined as the sum of their two
predecessors:

1, 1, 2, 3, 5, 8, 13, 21, 34, . . . .

In code, we have the following:

1 // defines N to be synonymous with 100

2 #define N 100

3

4 int main() {

5 // declare an array of N integers

6 int fib [N];

7 int i;

8

9 // define the first two elements
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10 fib [0] = 1;

11 fib [1] = 1;

12

13 // define the remaining elements up to the N’th

14 for (i = 2; i < N; i++)

15 fib[i] = fib[i-2] + fib[i -1];

16

17 return 0;

18 }

We have used a new feature in this code. #define N 100 defines N to be a syn-
onym for 100. The use of #define allows us to write code that is parametrized
by a small set of constants. If we ever want to change a parameter, we need
only change its definition. In this case, changing #define N 100 to #define

N 200 is simpler than changing every occurrence of 100 throughout the code.
More importantly, changing one line of code is less likely to introduce bugs
than changing many lines of code.

Notice that fib is indexed from 0 to N-1. In particular, the loop counter
i ranges between 2 and N-1, because the loop only executes while i < N.
Novice (and even experienced) programmers often introduce off-by-one bugs
in which the loop condition is incorrectly written as i <= N. Such errors can
be insidious because one word beyond an array is typically still within the
program’s allotted memory. Thus, rather than causing a clean segmentation
fault, the bug causes memory corruption—which can induce in the young
programmer frustration, then anger... fear... aggression. The dark side are
they. Or so I’ve heard, anyway.

We can visualize the first several iterations of the loop as follows:

i fib[0] fib[1] fib[2] fib[3] fib[4] fib[5]

2 1 1 ⊗ ⊗ ⊗ ⊗
1 3 1 1 2 ⊗ ⊗ ⊗
2 4 1 1 2 3 ⊗ ⊗
3 5 1 1 2 3 5 ⊗
4 6 1 1 2 3 5 8

The first row indicates the variables’ values just before the loop executes, but
after i is initialized to 2. Subsequent rows indicate their values at the end of
each iteration. Recall that i++ is executed after the statement at line 14, but
before the condition i < N is checked. Hence, i has value 3 at the end of the
first iteration.

Exercise 3.1. Rewrite the main loop of the Fibonacci computation as a
while loop.

Solution. The while loop form makes the execution table above more clear:

1 i = 2;

2 while (i < N) {

3 fib[i] = fib[i-2] + fib[i -1];
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4 i++;

5 }

�

3.1.3 Arrays as Parameters

Doing too much in main is bad practice. A program tends to grow over time
as more is required of it, so it’s best to factor code into manageable bundles—
that is, functions and, in a few chapters, modules—from the beginning. This
modularity pays dividends: it allows modular thinking, where one does not
have to recall how exactly a certain function is implemented but only what it
accomplishes; it facilitates code reuse, in which a function is called in multiple
contexts; and it looks nicer.

Therefore, let’s extract the Fibonacci code from main and put it in its own
function:

1 /* Given an array , fib , with length n, computes the first n

2 * elements of the Fibonacci sequence . Returns 0 to

3 * indicate success and negative values for bad input.

4 */

5 int fibonacci (int * fib , int n) {

6 // check for well -formed input

7 if (fib == NULL)

8 return -1;

9 if (n <= 0)

10 return -2;

11

12 fib [0] = 1;

13 if (n >= 2)

14 fib [1] = 1;

15 int i;

16 for (i = 2; i < n; i++)

17 fib[i] = fib[i-2] + fib[i -1];

18

19 // indicate successful computation

20 return 0;

21 }

This well-protected function returns different error codes depending on how
the input is malformed: it returns −1 if fib == NULL and −2 if n <= 0. Notice
how lines 7–10 are not structured as an if/else statement. Because execution
of the body of either condition causes the function to return immediately, no
else is necessary.

Unfortunately, the implementation must make one assumption that can-
not be checked: it assumes that fib points to a programmer-declared region
of memory that extends at least n int memory cells. Otherwise, it makes no
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further assumptions. Lines 12–17 are careful to write only to the first n mem-
ory cells beyond the address held in fib. Since array variables and pointer
variables are essentially the same thing, array indexing works on the integer
pointer fib.

Exercise 3.2. Array indexing and for loops are “syntactic sugar”: convenient
but unnecessary. Rewrite fibonacci to use pointer arithmetic instead of array
indexing and a while loop instead of a for loop. (For further personal growth
through deprivation, replace your keyboard with a punch card interface.) Once
you get it right, never, ever write such unnecessarily hideous code again. �

Let’s add a proper calling context:

1 #define N 3

2

3 int main() {

4 int a[N];

5 int error;

6 error = fibonacci (a, N);

7 assert (! error );

8 return 0;

9 }

It’s worth visualizing critical memory configurations during the execution of
this program. At the function call at line 6, memory is configured as follows:

int i ⊗ 1032
void * pc main:6+ 1028
int rv ⊗ 1024
int n 3 1020
int * fib 1000 1016

int error ⊗ 1012
int a[2] ⊗ 1008
int a[1] ⊗ 1004
int a[0] ⊗ 1000
void * pc “system” 996
int rv ⊗ 992

In particular, the parameter fib holds the address of the beginning of array
a of main, while parameter n holds the value 3. As authors of fibonacci, we
have no choice but to believe the caller that fib indeed points to a region of
memory with at least three consecutive reserved memory cells. In this case,
the assumption is correct.

Upon completion of fibonacci, memory is configured as follows:
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int i 3 1032
void * pc main:6+ 1028
int rv 0 1024
int n 3 1020
int * fib 1000 1016

int error ⊗ 1012
int a[2] 2 1008
int a[1] 1 1004
int a[0] 1 1000
void * pc “system” 996
int rv ⊗ 992

After fibonacci returns, memory has the following configuration:

int error 0 1012
int a[2] 2 1008
int a[1] 1 1004
int a[0] 1 1000
void * pc “system” 996
int rv ⊗ 992

If we desired to emphasize that fib can and should be treated as an array,
we could write fibonacci’s header as follows:

1 int fibonacci (int fib [], int n);

Writing int * fib or int fib[] is a personal preference that does not at
all impact the resulting machine code. One of C’s peculiarities is how it is
frugal in some ways—for example, the meaning of * depends on its context:
to perform multiplication, to specify a pointer, to dereference a pointer—but
lavish in others.

3.1.4 Further Adventures with Arrays

Exercise 3.3. Write a function to copy the elements of one integer array to
another, where both have the same length. The function should implement
the following specification:

1 /* Copies a to cp and returns 0, unless either is NULL ,

2 * in which case it returns -1.

3 */

4 int copyArray (int * a, int * cp, int len );

Implement a unit test of copyArray in a main function.
Solution. The strategy is to iterate through the index range and assign

each element:

1 #include <assert .h>

2 #include <stdlib .h>
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3

4 int copyArray (int * a, int * cp, int len) {

5 if (!a || !cp) return -1;

6 int i;

7 for (i = 0; i < len; i++)

8 cp[i] = a[i];

9 return 0;

10 }

11

12 // a unit test of copyArray

13 #define N 5

14 int main() {

15 int a[N], b[N];

16 int i;

17 // initialize the source array

18 for (i = 0; i < N; i++) a[i] = i;

19 // should copy a’s elements to b

20 copyArray (a, b, N);

21 // check that the copy indeed occurred

22 for (i = 0; i < N; i++)

23 assert (a[i] == b[i]);

24 // check corner cases

25 assert (copyArray (NULL , a, 0));

26 assert (copyArray (a, NULL , 0));

27 return 0;

28 }

Line 5 checks if either of a or cp is NULL; the condition is equivalent to a ==

NULL || cp == NULL. Since NULL is address 0, the condition could be written
as a == 0 || cp == 0. But then we observe that, according to the definition
of C’s Boolean operator !, a == 0 is equivalent to !a. The final form of the
condition is a common C idiom. We similarly use C’s Boolean facilities in lines
25–26, which assert that the return values are nonzero.

Throughout this chapter, we sometimes take advantage of Boolean oper-
ators and sometimes write the more explicit forms of conditions so that you
may become accustomed to various patterns; but in later chapters, we prefer
the more concise forms. �

Exercise 3.4. Write a function to sum the elements of one integer array. The
function should implement the following specification:

1 /* Sums the elements of a, an array of length len , and

2 * writes the sum to where sum references. Returns 0,

3 * unless a or sum is NULL , in which case returns -1.

4 */

5 int sumArray (int * a, int len , int * sum );

Implement a unit test of sumArray in a main function. �
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Exercise 3.5. Write a function to compute the dot product of two n-
dimensional vectors. The dot product of two vectors

x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)

is

x · y = x1y1 + x2y2 + · · ·+ xnyn .

The function should implement the following specification:

1 /* Computes the dot product of two n-dimensional vectors , x

2 * and y, and stores it at address dp. Returns 0 if

3 * successful; -1 if any of x, y, or dp is NULL; and -2 if

4 * n <= 0.

5 */

6 int dotProduct(int x[], int y[], int n, int * dp);

Solution. Here is one possible implementation:

1 int dotProduct(int x[], int y[], int n, int * dp) {

2 // check if input is well -formed

3 if (x == NULL || y == NULL || dp == NULL)

4 return -1;

5 if (n <= 0)

6 return -2;

7

8 // compute the dot product

9 *dp = 0;

10 int i;

11 for (i = 0; i < n; i++)

12 *dp += x[i] * y[i];

13

14 // indicate success

15 return 0;

16 }

�

Exercise 3.6. Write a function to compute the sum of two n-dimensional
vectors. The sum of two vectors

x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)

is the vector

(x1 + y1, x2 + y2, . . . , xn + yn) .

The function should implement the following specification:

1 /* Computes the sum of two n- dimensional vectors , x and y,

2 * and stores it in vector sum. Returns 0 if successful;

3 * -1 if any of x, y, or sum is NULL; and -2 if n <= 0.

4 */

5 int vectorSum (int x[], int y[], int n, int sum []);
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Implement a unit test of sum in a main function. �

Exercise 3.7. Write a function to find the minimum value in an integer array.
The function should implement the following specification:

1 /* Computes the minimum element of the array a of length n

2 * and stores it in the memory cell referenced by min.

3 * Returns 0 if successful; -1 if a or n is NULL; and -2 if

4 * n <= 0.

5 */

6 int min(int * a, int n, int * min );

Implement a unit test of min in a main function.
Solution. The strategy is to remember, using a variable, the smallest value

seen so far as the function examines each element in turn:

1 #include <assert .h>

2 #include <stdlib .h>

3

4 int min(int * a, int n, int * min) {

5 if (a == NULL || min == NULL)

6 return -1;

7 if (n <= 0)

8 return -2;

9 // the minimum value so far is at position 0

10 int m = a[0], i;

11 for (i = 1; i < n; i++)

12 if (a[i] < m)

13 // a[i] is even smaller than previously seen elements

14 m = a[i];

15 *min = m;

16 return 0;

17 }

18

19 int main() {

20 // initializes a to a constant array of 5 elements

21 int a[] = {7, -1, 13, -3, 9};

22 int x;

23 min(a, 5, &x);

24 assert (x == -3);

25 // corner cases

26 assert (min(a, 0, &x) != 0);

27 assert (min(NULL , 0, &x) != 0);

28 assert (min(a, 0, NULL) != 0);

29 return 0;

30 }

Line 10 sets m to be a[0], essentially saying that a[0] is the smallest value
seen so far. Then the loop at lines 11–14 inspects each element in turn. If a
given element a[i] is less than the previously known minimum value, m, then
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m is updated accordingly. Hence, at line 12, m is invariably the minimum value
for the subarray indexed between 0 and i-1, and by line 15, it is the minimum
value for the entire array. �

Exercise 3.8. Write a function to compute the minimum and maximum val-
ues of an integer array. It should implement the following specification:

1 /* Computes the minimum and maximum elements of the array

2 * a of length n, storing them in the memory cells to which

3 * min and max , respectively , point . Returns 0 if

4 * successful; -1 if one or more of a, min , or max is NULL;

5 * and -2 if n <= 0.

6 */

7 int minmax (int * a, int n, int * min , int * max );

Implement a unit test of minmax in a main function. �

Exercise 3.9. Write a function that computes the range, or the difference
between the minimum and maximum values, of an array of integers. It should
implement the following specification:

1 /* Computes the range of an array and stores it where rng

2 * references. Returns -1 for erroneous input; and 0

3 * otherwise .

4 */

5 int range (int * a, int n, int * rng );

Implement a unit test of range in a main function.
Solution. This function provides an opportunity to reuse previous work,

in particular the minmax function of Exercise 3.8:

1 #include <assert .h>

2 #include <stdlib .h>

3

4 // Insert minmax here.

5

6 int range (int * a, int n, int * rng ) {

7 if (!a || !rng || n <= 0) return -1;

8

9 int min , max;

10 minmax (a, n, &min , &max );

11 *rng = max - min;

12

13 return 0;

14 }

15

16 int main() {

17 // initializes a to a constant array of 5 elements

18 int a[] = {7, -1, 13, -3, 9};

19 int r;
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20 // test main functionality

21 range(a, 5, &r);

22 assert (r == 16);

23 // corner cases

24 assert (! range(NULL , 5, &r));

25 assert (! range(a, 5, NULL ));

26 assert (! range(a, 0, &r));

27 return 0;

28 }

�

Exercise 3.10. Write a function that counts the number of occurrences of a
given number in a given array. It should implement the following specification:

1 /* Computes the number of occurrences of value v in array a

2 * of length n and stores it in occ . Returns 0 if

3 * successful; -1 if either of a or occ is NULL; and -2 if

4 * n < 0.

5 */

6 int numOccur (int a[], int n, int v, int * occ );

Implement a unit test of numOccur in a main function. �

Exercise 3.11. Write a function that computes the integer mean of an array
of integers. For example, the integer mean of −1, 4, 2 is (−1 + 4 + 2)/3 =
5/3 = 1, where / denotes integer division. The function should implement the
following specification:

1 /* Computes the integer mean of an array and stores it

2 * where mn references. Returns -1 for erroneous input

3 * (len <= 0 or NULL array ); otherwise returns 0.

4 */

5 int mean(int * a, int len , int * mn);

Implement a unit test of mean in a main function. �

Exercise 3.12. Write a function that concatenates the elements of two arrays
into a third one. It should implement the following specification:

1 /* Concatenates arrays a and b, of lengths an and bn ,

2 * respectively , storing the result in c. Returns -1 for

3 * erroneous input , and 0 otherwise .

4 */

5 int concat (int * a, int an , int * b, int bn , int * c);

Solution. We explore several strategies for implementing this function. The
first two variants require two loops. In the first, a variable j maintains the
write position in c, while i loops through first a and then b:
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1 int concat (int * a, int an , int * b, int bn , int * c) {

2 if (!a || !b || !c)

3 return -1;

4 int i, j = 0;

5 for (i = 0; i < an; i++) {

6 c[j] = a[i];

7 j++;

8 }

9 for (i = 0; i < bn; i++) {

10 c[j] = b[i];

11 j++;

12 }

13 return 0;

14 }

In the second variant, the variable j is dropped and instead the length an of
a is used for positioning in the second loop:

1 int concat (int * a, int an , int * b, int bn , int * c) {

2 if (!a || !b || !c)

3 return -1;

4 int i;

5 for (i = 0; i < an; i++)

6 c[i] = a[i];

7 for (i = 0; i < bn; i++)

8 c[an + i] = b[i];

9 return 0;

10 }

Using linear functions to index into arrays is a common technique.
Notice in the second variation that the placement of b’s elements is inde-

pendent of the placement of a’s elements. The third variation therefore fuses
the two loops into one. The idea is to iterate sufficiently for the longer of a
and b:

1 int concat (int * a, int an , int * b, int bn , int * c) {

2 if (!a || !b || !c)

3 return -1;

4 int i;

5 for (i = 0; i < an || i < bn; i++) {

6 if (i < an) c[i] = a[i];

7 if (i < bn) c[an + i] = b[i];

8 }

9 return 0;

10 }

�

Exercise 3.13. Write a function to zip together two arrays of equal length
into a third of double the length:
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1 /* Zips together two arrays into a third , alternating their

2 * values . E.g.,

3 * a: [1, 2, 3]

4 * b: [4, 5, 6]

5 * each of length 3, zip together to form

6 * c: [1, 4, 2, 5, 3, 6]

7 * Returns -1 if the input is malformed and 0 otherwise .

8 */

9 int zip(int * a, int * b, int * c, int n);

Solution. The trick is to devise the right linear function to index into c:

1 int zip(int * a, int * b, int * c, int n) {

2 if (!a || !b || !c) return -1;

3 int i;

4 for (i = 0; i < n; i++) {

5 c[2*i] = a[i];

6 c[2*i+1] = b[i];

7 }

8 return 0;

9 }

Operator precedence is the same as elementary-school PEMDAS—
parentheses, exponents, multiplication, addition, subtraction—except that C
lacks an exponentiation operator, since it can be programmed about as ef-
ficiently as one could devise a hardware implementation. Hence, 2*i+1 is
computed as “multiply i by 2 and then add 1.” �

Exercise 3.14. Write a function to unzip an array of length 2n into two
arrays of length n each:

1 /* Unzips an array into two ( opposite of zip ). E.g.,

2 * c: [1, 2, 3, 4, 5, 6]

3 * unzips into

4 * a: [1, 3, 5]

5 * b: [2, 4, 6]

6 * In this case , n is 3. Returns -1 if the input is

7 * malformed and 0 otherwise .

8 */

9 int unzip (int * a, int * b, int * c, int n);

�

3.2 Strings

Text is probably the single most widely used form of data in computer applica-
tions. Even scientists or engineers, for whom numbers are fundamental, write
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their programs using text editors, typically interact with their programs via
textual interfaces, describe their results to their colleagues mainly with text,
and summarize their results in bullet points for their managers via (preferably
monosyllabic) text.

However, underlying text is its numeric representation as char, or char-
acter, data. Like all data in a computer, text is in the end nothing but
numbers—which means that everything that you have learned so far directly
applies to textual data.

3.2.1 Strings: Arrays of chars

A value of type char, short for character, requires one byte (eight bits) of
storage and thus can be only one of 256 possible values. A character is not a
particularly funny or charming kind of value; rather it is supposed to represent
a written character, for example, one of ’a’ through ’z’, ’A’ though ’Z’, or
’0’ through ’9’.

ASCII—the American Standard Code for Information Interchange—
defines the first 128 possible values of a char to represent certain characters.
For example, ASCII codes 65–90 represent ’A’ to ’Z’, 97–122 represent ’a’
to ’z’, and 48–57 represent ’0’ to ’9’. ASCII code 10 represents the new
line character. Fortunately, we don’t have to remember these codes: the C
expression ’p’ evaluates to the corresponding ASCII code for the letter p,
while ’\n’ evaluates to the new line code.

Assemble a few chars in a char array, and you have a string—almost. A
C string is a sequence of char values that ends with the string terminator,
’\0’. C provides the convenience of defining constant strings:

1 #include <stdio.h>

2

3 int main() {

4 char str [] = "Hello!";

5 printf ("%s\n", str );

6 return 0;

7 }

Line 1 includes the standard input/output library, stdio.h, which we discuss
in some detail in Chapter 5. We include it so that at line 5 we can print to
the terminal the string str. As a preview, the printf function is a powerful
function for printing formatted text. In this case, the first argument, "%s\n"
is a format string that specifies that printf should print a string, given by
the argument str, followed by a new line. Notice that both the format string
and the second argument, str, are text data.

The string "Hello!" is compiled into a segment of memory disjoint from
the stack that looks like the following:
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char 0 506
char 33 505
char 111 504
char 108 503
char 108 502
char 101 501
char 72 500

Notice that each char value occupies only one byte, and that the string is
terminated with ’\0’, which corresponds to ASCII code 0. Check that the se-
quence 72, 101, 108, 108, 111, 33, 0 actually corresponds to the string “Hello!”.
ASCII tables are easy to find online.

When the program is executed, the stack frame for main yields the follow-
ing initial memory configuration:

char * str 500 1000
void * pc “system” 996
int rv ⊗ 992

Because str holds an address, it occupies a word (32 bits). In this case, it
holds the address 500, corresponding to the beginning of the constant string
"Hello!" in memory.

3.2.2 Programming with Strings

By applying the programming tools we have covered so far to strings, we can
manipulate strings in some truly interesting ways. (Try the game nethack,
which is easily installed on most Unix variants, to witness what can be
achieved with strings, ambition, and time.)

As a first venture into programming with strings, we implement a function
to shout—that is, to capitalize all lowercase letters of a message:

1 /* Writes the message of msgIn into msgOut , except with all

2 * capitals . Returns 0 if successful and -1 if either of

3 * msgIn or msgOut is NULL.

4 */

5 int shout (char * msgIn , char * msgOut ) {

6 int i = 0;

7 char c;

8

9 // check for well -formed input

10 if (msgIn == NULL || msgOut == NULL)

11 return -1;

12

13 // loop over msgIn until the string terminator is found

14 while (msgIn[i] != ’\0’) {

15 // obtain the i’th character of the message

16 c = msgIn[i];
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17 // if it’s a lowercase letter , capitalize it

18 if (’a’ <= c && c <= ’z’)

19 c += ’A’ - ’a’;

20 // write the character to msgOut

21 msgOut [i] = c;

22 // don ’t forget to increment i

23 i++;

24 }

25 // terminate msgOut

26 msgOut [i] = ’\0’;

27

28 // indicate success

29 return 0;

30 }

Both msgIn and msgOut are char arrays, which is the same thing as saying
that they are char *’s. Each holds an address: msgIn holds the address of
what we can only hope is a well-formed C string, one that is a sequence of
characters ending with the string terminator ’\0’; msgOut holds the address
of what we can only hope is the beginning of a sufficiently large sector of
memory to hold all of msgIn. If either assumption (dearly held hope) is false,
prepare for memory corruption, anger, fear, the dark side, etc. (Actually, the
non-dark (light?) side has powerful weapons, gdb and valgrind, which we
cover in Chapters 4 and 7.)

The loop counter, i, iterates over the range of msgIn until
msgIn[i] == ’\0’, which indicates the end of the string. In the loop body,
the i’th character is retrieved from msgIn. Lines 18–19 might look like a bit
of magic, but they’re straightforward once you accept that computers manip-
ulate numbers—nothing more, nothing less. Recall that the ASCII code for
’a’ is 97, that the code for ’z’ is 122, and that the compiler converts ’a’

and ’z’ to these values. Therefore, ’a’ <= c && c <= ’z’ is true precisely
when c holds the code for a lowercase letter. In this case, something should
be added to c to make it an uppercase letter. But that’s easy (if a bit subtle):
simply add ’A’ - ’a’ to it, the offset between the uppercase and lowercase
letters in the ASCII system.1

After the loop, the string being constructed in msgOut is completed with
the string terminator.

Consider the following calling context:

1 #include <assert .h>

2 #include <stdio.h>

3 #include <stdlib .h>

4

5 int main() {

1 Notice that the ASCII codes for ’A’ and ’a’ are 65 and 97, respectively, and
thus have a difference of 32. Challenge: Exploit the binary representation of the
character codes to develop another, even cleverer, “shout” conversion.
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6 char msg [] = "Hi!";

7 char out [4];

8 int err = shout(msg , out );

9 assert (!err );

10 printf ("%s -> %s\n", msg , out );

11 return 0;

12 }

When shout is called, memory is configured as follows:

char c ⊗ 1032
int i 0 1028
void * pc main:7+ 1024
int rv ⊗ 1020
char * msgOut 1004 1016
char * msgIn 500 1012

int err ⊗ 1008
char out[3] ⊗ 1007
char out[2] ⊗ 1006
char out[1] ⊗ 1005
char out[0] ⊗ 1004
char * msg 500 1000
void * pc “system” 996
int rv ⊗ 992

char 0 503
char 33 502
char 105 501
char 72 500

The four bytes holding the C string "Hi!" that start at address 500 are outside
of the program stack, which is indicated by the separation between the final
byte and the bottom of the program stack starting at address 1000. Study the
addresses carefully. Which memory cells are one byte? Which are four bytes?
Why? Study the values that the memory cells hold. Explain why each value
makes sense given that control is at the beginning of line 10 of shout.

Just before shout’s stack frame is popped, memory is configured as follows:

66 Chapter 3. Arrays and Strings

char c 33 1032
int i 3 1028
void * pc main:7+ 1024
int rv 0 1020
char * msgOut 1004 1016
char * msgIn 500 1012

int err ⊗ 1008
char out[3] 0 1007
char out[2] 33 1006
char out[1] 73 1005
char out[0] 72 1004
char * msg 500 1000
void * pc “system” 996
int rv ⊗ 992

char 0 503
char 33 502
char 105 501
char 72 500

Then printf prints the following message to the terminal:

Hi! -> HI!

Exercise 3.15. Write a function whisper that changes every uppercase letter
to a lowercase letter. It should implement the following specification:

1 /* Writes the message of msgIn into msgOut , except with all

2 * lowercase letters . Returns 0 if successful and -1 if

3 * either of msgIn or msgOut is NULL.

4 */

5 int whisper (char * msgIn , char * msgOut );

Illustrate several critical memory configurations of an execution of whisper
from a context similar to the main function above. �

There are other ways of implementing shout that take advantage of pointer
arithmetic. Recall that for parameter x declared either by int * x or int

x[], the two memory dereferences, x[1] and *(x + 1), are identical. The
same holds for char * s: s[1] is the same as *(s + 1). But there is one
subtle difference. Memory cells of type int occupy four bytes while those of
type char occupy only one byte. The C compiler translates x + 1 to an offset
of four bytes from address x, while it translates s + 1 to an offset of one byte
from address s. We don’t need to do anything except understand what the
compiler does.

Here is an implementation of shout that really shouts to the world, “I’m
implemented in C!” Other than C++, C’s more sophisticated younger sibling,
no other widely used language allows this level of direct memory manipulation:
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1 /* Alternate implementation of shout. */

2 int shout (char * msgIn , char * msgOut ) {

3 // check for well -formed input

4 if (!msgIn || !msgOut ) return -1;

5

6 // loop over msgIn until the string terminator is found

7 while (* msgIn != ’\0’) {

8 // transfer the (possibly modified ) character to msgOut

9 if (’a’ <= *msgIn && *msgIn <= ’z’)

10 *msgOut = *msgIn + (’A’ - ’a’);

11 else

12 *msgOut = *msgIn ;

13 // increment the pointers

14 msgIn ++;

15 msgOut ++;

16 }

17 // terminate msgOut

18 *msgOut = ’\0’;

19

20 // indicate success

21 return 0;

22 }

Lines 14–15 apply the ++ operator to the character pointers msgIn and msgOut,
thus incrementing the addresses they hold by one byte. Again, the C compiler
figures out the necessary byte offset based on the fact that they are declared
as char *’s. The rest of the loop is written assuming that msgIn points to
the byte-size memory cell holding the character that should be read, and that
msgOut points to the byte-size memory cell to which the new character should
be written.

Exercise 3.16. Write another version of whisper, from Exercise 3.15, that
does not use a loop counter but instead uses pointer arithmetic. �

3.2.3 Further Adventures with Strings

Exercise 3.17. Implement the following specification:

1 /* Returns the length of the string . Returns 0 if str is

2 * NULL and otherwise the length of str.

3 */

4 int strlen (char * str );

For example, strlen("Hello universe!") should return 15.
Solution. We explore several variations. The first is a straightforward im-

plementation that counts the number of iterations until the string terminator
is encountered:
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1 int strlen (char * str) {

2 if (str == NULL) return 0;

3 int n = 0;

4 while (str[n] != ’\0’) {

5 n++;

6 }

7 return n;

8 }

Recall that, because NULL has value 0, the expression str == NULL is equiv-
alent to the expression str == 0, which in turn is equivalent to the expres-
sion !str. Similarly, the string terminator character ’\0’ has ASCII value 0;
hence, the expressions str[n] != ’\0’, str[n] != 0, and str[n] are equiv-
alent, yielding the following minor variation:

1 int strlen (char * str) {

2 if (!str) return 0;

3 int n = 0;

4 while (str[n]) n++;

5 return n;

6 }

The while loop can be restructured as a for loop lacking a body:

1 int strlen (char * str) {

2 if (!str) return 0;

3 int n;

4 for (n = 0; str[n]; n++);

5 return n;

6 }

A more significant variation relies on pointer arithmetic. At each itera-
tion of the loop, str is incremented—by one byte, because str is declared
as a char *. To check if the string terminator has been reached, any of
*str != ’\0’, *str != 0, and *str can be used:

1 int strlen (char * str) {

2 if (!str) return 0;

3 int n;

4 for (n = 0; *str; n++, str ++);

5 return n;

6 }

Notice how both n and str are incremented in the for loop by separating the
incrementing statements by a comma.

We can drop the counter entirely by once and for all grasping the true
nature of addresses:

1 int strlen (char * str) {

2 if (!str) return 0;
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3 char * start = str;

4 for (; *str; str ++);

5 return str - start;

6 }

In this version, we remember str’s initial value with start, iterate through
the string until the string terminator is encountered, and then return the
difference between the final address held by str and its initial address, held
by start. Since a character occupies one byte, this difference is exactly the
length of the string. �

Exercise 3.18. Write a function that concatenates two C strings. It should
implement the following specification:

1 /* Writes str1 followed by str2 into the memory pointed to

2 * by out . Returns 0 if successful and -1 if any of the

3 * parameters are NULL.

4 */

5 int concat (char * str1 , char * str2 , char * out );

Solution. The strategy is to copy str1 and then str2 to out. The only
potential error to watch for is copying str1’s terminator to out or forgetting
to add a terminator to out at the ending.

1 int concat (char * str1 , char * str2 , char * out) {

2 // check for well -formed input

3 if (str1 == NULL || str2 == NULL || out == NULL)

4 return -1;

5

6 // write str1 to out , skipping the terminator

7 int i = 0;

8 while (str1[i] != ’\0’) {

9 out[i] = str1[i];

10 i++;

11 }

12 // write str2 to out

13 int j = 0;

14 while (str2[j] != ’\0’) {

15 out[i] = str2[j];

16 i++;

17 j++;

18 }

19 // terminate out

20 out[i] = ’\0’;

21

22 // indicate success

23 return 0;

24 }
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C programmers have many idioms, some of which are tough to read and
have nonnegligible odds of introducing bugs, but all of which are, well, awe-
some. Here is an implementation that uses some of these idioms:

1 int concat (char * str1 , char * str2 , char * out) {

2 // check for well -formed input

3 if (!str1 || !str2 || !out)

4 return -1;

5

6 // write str1 to out , skipping the terminator

7 while (* str1)

8 *out ++ = *str1 ++;

9 // write str2 to out

10 while (* str2)

11 *out ++ = *str2 ++;

12 // terminate out

13 *out = ’\0’;

14

15 // indicate success

16 return 0;

17 }

The conditions at lines 3, 7, and 10 prefer the Boolean shortcuts, which rely
on both NULL’s and ’\0’’s equaling 0. The loops use pointer arithmetic, like
in the second version of shout, but they also use the ++ operator in a most
vexing fashion—vexing, that is, until you understand what is happening. Once
you do, you’ll probably overuse it. But remember: with great power comes
great responsibility—or more likely just the overwhelming temptation to abuse
it and few consequences to stop you from doing so. In any case, *out++ =

*str1++ yields the same result as the following:

1 *out = *str;

2 out = out + 1;

3 str = str + 1;

When ++ is used after a variable, it’s called a post-increment. There is
a pre-increment version as well: *(++out) = *(++str1) yields the same
result as the following:

1 out = out + 1;

2 str = str + 1;

3 *out = *str;

This code sequence yields different results than the post-increment form.
Overusing these idioms can be tempting at times. Here’s a puzzle for those

who go in for such things. Figure out why the following implementation works:

1 int concat (char * str1 , char * str2 , char * out) {

2 if (!str1 || !str2 || !out) return -1;

3 --out;
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4 while (*++ out = *str1 ++);

5 while (* out ++ = *str2 ++);

6 return 0;

7 }

The pre- and post-increments are applied before the *’s in lines 4–5—but keep
in mind that a pre-increment expression evaluates to the original value.

Here is where I’d like to say that I don’t write such code in practice; that
the best code is correct, efficient, and readable; and that modern compilers
optimize so well that every version is equally efficient, thus leaving no reason
not to go with the version that is easiest to read. But, alas, I can’t—and not
because one of the latter two statements is wrong. (Challenge: Translate this
last paragraph into Boolean logic.) �

Exercise 3.19. Write a function copyString that copies a C string in to
another character array referenced by out. We provide a version that uses
pointer arithmetic intensively:

1 /* Copy string in into the buffer referenced by out. */

2 int copyString(char * in, char * out) {

3 if (!in || !out) return -1;

4 while (*in) *out ++ = *in ++;

5 *out = ’\0’;

6 return 0;

7 }

An expression like *in++ is executed by first incrementing in and then apply-
ing * to the resulting address. Implement a version that uses array indexing
instead of pointer arithmetic, and test it via a main function.

In fact, an even more concise version is possible using do/while:

1 /* Copy string in into the buffer referenced by out. */

2 int copyString(char * in, char * out) {

3 if (!in || !out) return -1;

4 do { *out ++ = *in++; } while (*in);

5 return 0;

6 }

In this version, the assignment occurs before the check, allowing the string
terminator to be copied in the loop. �

Exercise 3.20. Do you suffer from a friend or a family member who
overuses exclamation marks in textual communication? Write a function called
toneItDown to convert all exclamation marks to periods.

1 /* Replaces each ’!’ with a ’.’. Return value indicates

2 * erroneous input or success .

3 */

4 int toneItDown(char * in, char * out );
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The following unit test in main exercises its basic functionality:

1 #include <assert .h>

2 #include <stdio.h>

3

4 // Write toneItDown here.

5

6 int main() {

7 // unit test

8 char email [] = "Hi friends ! Im so excited about "

9 "programming!!! Its so kewl!";

10 char out [128];

11 printf ("%s\n", email );

12 int err = toneItDown(email , out );

13 assert (!err );

14 printf ("%s\n", out );

15 return 0;

16 }

Notice how the definition of a string constant can be spread across multiple
lines, as in lines 8–9; the C compiler concatenates the parts into one long
string. Once toneItDown is added, compiling and running yields an improved,
though far from perfect, translation of the text message:

$ gcc -Wall -Wextra -o tid tid.c

$ ./tid

Hi friends! Im so excited about programming!!! Its so kewl!

Hi friends. Im so excited about programming... Its so kewl.

�

Exercise 3.21. String manipulation functions are often vulnerable to ill-
formed C strings: character arrays that lack string terminators. For example,
if copyString of Exercise 3.19 is given an ill-formed string as in, it will read
and write through memory until a 0 is found or until a segmentation fault
occurs. Write a protected version of copyString that transfers at most n− 1
characters from in to out and always writes a string terminator to out.

1 /* Copies at most n-1 characters of string in into the

2 * buffer pointed to by out. If n is reached , returns -2.

3 * Otherwise , returns -1 for malformed input and 0 upon

4 * successful completion.

5 */

6 int copyStringN(char * in, char * out , int n);

Implement a unit test of copyStringN in a main function that exercises its
full protective functionality. �

Exercise 3.22. Write a function that reverses a string. It should implement
the following specification:
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1 /* Reverses the string in into the string out. Returns 0

2 * if successful and -1 if in or out is NULL.

3 */

4 int reverse (char * in, char * out );

For example, consider this unit test in main:

1 #include <assert .h>

2 #include <stdio.h>

3

4 // Write reverse here.

5

6 int main() {

7 char str [] = "Hello universe !";

8 char out [32];

9 int err = reverse (str , out );

10 assert (!err );

11 printf ("%s\n%s\n", str , out );

12 return 0;

13 }

It should yield the following on the terminal:

Hello universe!

!esrevinu olleH

Solution. This exercise essentially requires careful thinking about what to
do with string terminators.

The first step is to find the end of string in:

1 int i;

2 for (i = 0; in[i] != ’\0’; i++);

The for loop does not need a body since all the work is being done in the
condition and increment. The corresponding while loop is the following:

1 int i = 0;

2 while (in[i] != ’\0’)

3 i++;

At this point, in[i] == ’\0’. We are now ready to read in in reverse
while simultaneously writing into out. Whereas indexing made sense for the
first task, a mix of indexing and pointer arithmetic works well for the second:

1 for (i--; i >= 0; i--) {

2 *out = in[i];

3 out ++;

4 }

The corresponding while loop is the following:
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1 i--;

2 while (i >= 0) {

3 *out = in[i];

4 out ++;

5 i--;

6 }

To avoid writing ’\0’ as the first character of *out (which would yield a
rather short string), i is first decremented. Then in is read backwards by
decrementing i as the pointer out advances in memory.

Finally, the reversed string must be terminated to really be a string:

1 *out = ’\0’;

All together, we have the following:

1 int reverse (char * in, char * out) {

2 // check for well -formed input

3 if (!in || !out) return -1;

4

5 // find the end of the string in

6 int i;

7 for (i = 0; in[i] != ’\0’; i++);

8

9 // i should index the terminator of in

10 assert (in[i] == ’\0’);

11

12 // read in backwards , write out forwards

13 for (i--; i >= 0; i--) {

14 assert (in[i] != ’\0’);

15 *out = in[i];

16 out ++;

17 }

18 // terminate out

19 *out = ’\0’;

20

21 // indicate success

22 return 0;

23 }

If you are having trouble understanding this implementation, execute it by
hand on a small example string. �

Exercise 3.23. A clichéd trick to passing secret messages is to embed the
message in a larger text. For example, one might write a letter in such a way
that reading the final word of each line reveals the actual message. Write
a function called decode that, given a multi-line string (a string with ’\n’

characters within it), prints the message consisting of only the final word of
each line. For example, consider this innocuous message:
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Hey, old friend. I need to go
to the market today or tonight
to fetch some drinks and food to
bring – maybe also a pint or two
for some jolly times, hey? Oh
I almost forgot: Martha got seven
if you can believe it. From Elmer
no doubt. Cheerio – ST

Applying decode should reveal the sinister message, “go tonight to two Oh
seven Elmer ST.”

Solution. Tackling a complex task like this one requires designing an algo-
rithm before attempting to write the code:

1. Throughout the computation, maintain the pointer word so that it points
to the beginning of the current word. A word is a sequence of nonspace
characters that is either at the start of the message or preceded by a space
character, which might be a new line.

2. str iterates through subsequent characters until either a space (’ ’) or a
newline (’\n’) is encountered.

3. If a newline is encountered, copy the string starting at word and ending
at str - 1 into the output buffer.

4. If instead a space is encountered, set word to the address one character
beyond str.

5. Return to Step 2 unless the string terminator is encountered, in which
case, terminate the output string and return.

Now that we understand what we need to do, we can implement both the
function and the unit test inspired by the example above:

1 #include <assert .h>

2 #include <stdio.h>

3

4 /* Given a string str , writes the final word of each line

5 * of str into msg. Returns 0 or -1 to indicate

6 * success /input error , as usual. See the unit test below

7 * for an example application.

8 */

9 int decode (char * str , char * msg) {

10 if (!str || !msg) return -1;

11

12 // Step 1: points to the word currently being read

13 char * word = str;

14

15 while (* str) {

16 // reached the end of a line?

17 if (*str == ’\n’) {

18 // Step 3: copy the last word into msg

19 while (word != str)
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20 *msg ++ = *word++;

21 *msg ++ = ’ ’;

22 // Step 1

23 word ++;

24 }

25 // reached the end of a word?

26 else if (*str == ’ ’) {

27 // Steps 4, 1: set word to point to the next position

28 word = str + 1;

29 }

30 // keep reading

31 str ++;

32 }

33 // Step 5: don ’t forget to terminate the string

34 *msg = ’\0’;

35

36 return 0;

37 }

38

39 // unit test of decode

40 int main() {

41 // C allows writing constant strings across multiple

42 // lines as follows :

43 char * letter = "Hey , old friend . I need to go\n"

44 "to the market today or tonight \n"

45 "to fetch some drinks and food to\n"

46 "bring -- maybe also a pint or two\n"

47 "for some jolly times , hey? Oh\n"

48 "I almost forgot : Martha got seven\n"

49 "if you can believe it. From Elmer\n"

50 "no doubt. Cheerio -- ST\n";

51 // buffer to hold decoded message

52 char decoded [128];

53

54 int err = decode (letter , decoded );

55 assert (!err );

56 printf ("%s\n%s\n", letter , decoded );

57 return 0;

58 }

Compiling and running the program reveals the murderous message:

$ gcc -Wall -Wextra test.c

$ ./a.out

Hey, old friend. I need to go

to the market today or tonight

to fetch some drinks and food to

bring -- maybe also a pint or two

for some jolly times, hey? Oh
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I almost forgot: Martha got seven

if you can believe it. From Elmer

no doubt. Cheerio -- ST

go tonight to two Oh seven Elmer ST

With the true meaning revealed, it remains only to decide whether we should
go tonight to 207 Elmer St. to prevent whatever blood-chilling crime is in the
works. �

Exercise 3.24. Implement the following specification:

1 /* Removes all vowels from string in and writes the result

2 * to out . Returns 0 if successful and -1 if either in or

3 * out is NULL.

4 */

5 int xvowelize (char * in , char * out );

For example, consider this unit test:

1 #include <assert .h>

2 #include <stdio.h>

3

4 // Write xvowelize here.

5

6 int main() {

7 char str [] = "Hello universe !";

8 char out [32];

9 int err = xvowelize (str , out );

10 assert (!err );

11 printf ("%s\n%s\n", str , out );

12 return 0;

13 }

Executing it should yield the following on the terminal:

Hello universe!

Hll nvrs!

�

Exercise 3.25. Implement the following specification:

1 /* Returns whether str1 and str2 are equal. Returns 0 if

2 * either str1 or str2 is NULL or if they are not equal;

3 * returns 1 if they are equal

4 */

5 int streq (char * str1 , char * str2);

�

78 Chapter 3. Arrays and Strings

Exercise 3.26. Write a function that determines whether a given string has
a given prefix:

1 /* Returns 0 if pre or str is NULL or if pre is not a

2 * prefix of str. Otherwise returns 1.

3 */

4 int prefix (char * pre , char * str );

Recall that integer values 0 and 1 correspond to Boolean values “false” and
“true,” respectively.

Solution. The strategy is to iterate through the strings simultaneously. If
ever there is a mismatch, the function returns 0, but if it iterates through all
of the prefix and always finds matches, it returns 1.

1 int prefix (char * pre , char * str) {

2 if (!pre || !str) return 0;

3 int i;

4 for (i = 0; pre[i]; i++)

5 if (pre[i] != str[i])

6 return 0;

7 return 1;

8 }

Test this function on several examples. Include examples in which one or the
other string is empty, that is, consists of just the string terminator, and in
which the prefix is longer than the string.

A version using pointer arithmetic avoids the use of the loop variable i:

1 int prefix (char * pre , char * str) {

2 if (!pre || !str) return 0;

3 while (* pre)

4 if (*pre ++ != *str ++)

5 return 0;

6 return 1;

7 }

�

Exercise 3.27. Write a function that determines whether a given string has
a given suffix:

1 /* Returns 0 if str or suf is NULL or if suf is not a

2 * suffix of str. Otherwise returns 1.

3 */

4 int suffix (char * str , char * suf );

To decide if a string has a given suffix, it would be wise to increment backward
through the string and the suffix. Review Exercise 3.22 to see another function
that reads a string in reverse. �

Exercise 3.28. Implement the following specification:
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1 /* Returns whether str contains an instance of substr .

2 * Returns 0 if either str or substr is NULL or substr is

3 * not in str; returns 1 if substr is in str.

4 */

5 int hasSubstring(char * str , char * substr );

For example, hasSubstring("Hello universe!", "verse") should return
1. Use the following main function to test your code:

1 #include <assert .h>

2 int main() {

3 assert ( hasSubstring("Hello universe !", "lo"));

4 assert ( hasSubstring("Hello universe !", "verse"));

5 assert ( hasSubstring("Hello universe !", ""));

6 assert ( hasSubstring("", ""));

7 assert (! hasSubstring("Hello universe !", "verses "));

8 assert (! hasSubstring("Hello universe !", "loun"));

9 assert (! hasSubstring("Hello universe !", "erse!!"));

10 return 0;

11 }

This exercise hints at the depth of the subject of computation. While the
straightforward implementation is what is intended here, the interested reader
should investigate the Knuth–Morris–Pratt, or KMP, algorithm. �

Exercise 3.29. Implement the following specification:

1 /* Compares str1 and str2 according to "dictionary" (aka ,

2 * "lexicographic") order , where characters are ordered by

3 * their ASCII values . Returns -1 if str1 comes before

4 * str2; 0 if either str1 or str2 is NULL or if they are

5 * equal; and 1 if str1 comes after str2.

6 */

7 int strcmp (char * str1 , char * str2);

For example, consider the following unit test in strcmp test.c:

1 #include <stdio.h>

2

3 // Write strcmp here.

4

5 int main() {

6 printf ("aardvark , aardwolf %d\n",

7 strcmp ("aardvark ", " aardwolf "));

8 printf ("AVAST , avast %d\n", strcmp ("AVAST", "avast"));

9 printf ("ahoy , ahoy %d\n", strcmp ("ahoy", "ahoy"));

10 printf ("Watch for aardvarks !, "

11 "Watches aren’t for aardwolves. %d\n",

12 strcmp ("Watch for aardvarks !",

13 "Watches aren’t for aardwolves."));
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14 printf ("zoology , zoo %d\n", strcmp ("zoology ", "zoo"));

15 return 0;

16 }

Once strcmp is added, compiling and running indicates the ASCII-based dic-
tionary order of these strings:

$ gcc -Wall -Wextra -o strcmp_test strcmp_test.c

$ ./strcmp_test

aardvark, aardwolf -1

AVAST, avast -1

ahoy, ahoy 0

Watch for aardvarks!, Watches aren’t for aardwolves. -1

zoology, zoo 1

�
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Debugging

Two aspects of programming frustrate novice programmers: getting the syntax
right; and dealing with the many, often simple, bugs that cause program
behavior to differ from what was expected. Experience resolves the first issue:
braces, semicolons, and funny phrases like int * become natural in time,
until you find yourself speaking programming in everyday conversation. (For
example: “Dude, didn’t parse that; can you repeat?” “Yeah, we’re neighbors,
so my address is just hers plus plus.” “And then I’m all, like, you know, int star
star, obviously.” Don’t blame me when it happens; I’m just the messenger.)

Experience partially helps with the second issue. Over time, you will in-
troduce fewer novice bugs into your code, although the potential subtlety of
the bugs that you do introduce will rise in proportion with the complexity
of the code. Hence, even the most experienced programmers encounter bugs
regularly. This chapter discusses techniques and tools to minimize the number
of bugs and to squash the ones that inevitably get around your defenses.

4.1 Write-Time Tricks and Tips

The easiest way to debug is to avoid introducing bugs in the first place.Defen-
sive programming is, as the term suggests, the first line of defense against
bugs. While preventing bugs entirely is impossible, defensive practices prevent
many simple bugs and help to reveal and to isolate bugs when they do occur.

4.1.1 Build Fences around Functions

Program functions defensively. Write them as if they will be called by someone
with malevolent (or at least mischievous) intent.

When appropriate, structure functions as we have been doing for the past
few chapters. First, use the return value to indicate erroneous input or if
an issue arises during the main computation. Use call-by-reference semantics
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to return the actual result of a computation. Second, immediately check that
input is well formed. Not everything can be checked, of course. For example, we
can check if a pointer is NULL, but if it is simply uninitialized and thus holding
a random value, we’re out of luck. Similarly, discovering if a supposed string
is not well formed is difficult, although Exercise 3.21 offers one preventative
technique, and Exercise 7.7 suggests another.

Some functions are too simple or are not part of an exposed interface and
thus do not warrant the full treatment. For example, in complex programs,
one often writes many functions that together do the actual work and a few
functions that are intended to be interfaces. It is convenient to write the
worker functions in an unprotected form—in particular, such that they use
their return values to return actual computed values rather than to indicate
success or failure. They might additionally make unchecked assumptions about
their inputs (recall, for example, sum of Exercise 2.6). But an interface
function—one that separates the internals of how a related set of functions
work from the external environment of the rest of the program—should have
a tall and sturdy fence.

Use assertions. Whenever you make an assumption or have an expectation
that must always hold, write an assert statement. Think of assert as a way
of comparing the model in your head against the actual implementation. It
often happens that an assumption that was valid for a while becomes invalid
when a function is called in a new context.

Let’s examine the solution to Exercise 3.22:

1 int reverse (char * in, char * out) {

2 // check for well formed input

3 if (!in || !out) return -1;

4

5 // find the end of the string in

6 int i;

7 for (i = 0; in[i]; i++);

8

9 // i should index the terminator of in

10 assert (in[i] == ’\0’);

11

12 // read in backward , write out forwards

13 for (i--; i >= 0; i--) {

14 assert (in[i] != ’\0’);

15 *out = in[i];

16 out ++;

17 }

18 // terminate out

19 *out = ’\0’;

20

21 // indicate success

22 return 0;

23 }
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This function is a “black box” to the caller: the caller wants to reverse a string
but does not care how the reversal is accomplished. Therefore, this function
has a fence: line 3 checks the input, and the return value indicates erroneous
input or success. Line 10 asserts that line 7, which is somewhat tricky, has
achieved the desired result: i indexes the end of the C string in. This assertion
is thus a self-check: “Go, me! This code is so clever. (I guess I better make sure
it does the right thing.)” Line 14 asserts our primary hope in the loop—that
we don’t accidentally terminate the string that we’re writing in out too early.
For example, if we had forgotten the decrement of i in line 13 the assert

would be triggered.
This function is still vulnerable to a malformed string. The loop at line 7

would execute forever (well, until a segmentation fault occurs) if in lacked a
string terminator. One option for making reverse more robust is to require
the caller to provide a maximum possible length:1

1 /* Reverses the C string in into out. maxLength indicates

2 * the maximum possible length of in; if this length is

3 * exceeded , returns -2. Returns 0 if successful , and -1

4 * if either in or out is NULL.

5 */

6 int nreverse (char * in , char * out , int maxLength ) {

7 // check for well formed input

8 if (!in || !out) return -1;

9

10 // find the end of the string in

11 int i;

12 for (i = 0; in[i]; i++) {

13 if (maxLength <= 0) return -2;

14 maxLength --;

15 }

16

17 // The remainder of the code is as in reverse .

A return value of −2 alerts the caller that an assumption is incorrect: the
string is longer than expected and thus may be lacking a terminator. If you’re
both the function writer and the caller, you’ll thank yourself.

4.1.2 Document Code

When it’s too difficult to write an assertion, write a comment that explains
what you expect to hold at a given point. In particular, provide a complete
function specification at the top of important functions, as in the implemen-
tation of nreverse above. When programming in a team environment, which

1 Some functions in the standard string library, string.h, require this protective
argument.
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is typical, comments help team members to detect inconsistent internal mod-
els among team members and to isolate bugs that span multiple members’
contributions.

4.1.3 Prefer Readability to Cleverness

Modern compilers can usually compile readable code and “clever” code into
machine code with similar performance. Only algorithmic optimizations are
typically worth pursuing.2 Therefore, write readable code. Avoid embedding
pre- and post-increments in complex statements. Avoid embedding assign-
ments in conditionals or on the right-hand side of other assignments. (It’s
possible! And done!) Write brief comments to explain tricky lines. If a “clever”
section of code inspires manic laughter, consider rewriting it.

4.2 Compile-Time Tricks and Tips

As the complexity of our programs increases, we will switch from invoking the
compiler, gcc, at the command-line to using make and makefiles. In either
case, one easy way to catch trivial but annoying bugs is to up the warning
level: gcc -Wall -Wextra <file> enables additional warnings.3 Consider the
following (buggy) program, which we will assume is in file buggyfib.c:

1 #define N 100

2 int main() {

3 // declare an array of N integers

4 int fib [N];

5 int i;

6

7 // define the first two elements

8 fib [0] = 1;

9 fib [1] = 1;

10

11 while (1) {

12 fib[i] = fib[i-2] + fib[i -1];

13 i++;

14 if (i = N) break; // break exits the loop

15 }

16 }

2 An exception is when programming in an underpowered environment, for exam-
ple, when using a proprietary compiler for an embedded system. Even then, only
particular sections of code need be optimized at the statement level, and it may
be worth writing those sections in assembly anyway.

3 -Wall means “warnings: all,” but it’s cool that it is pronounced “wall.” -Wextra

is necessary because -Wall doesn’t actually produce all warnings.
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The break statement (line 14) causes control to exit the loop. How many bugs
can you spot?

Running without warnings reveals nothing: gcc buggyfib.c doesn’t re-
port any issues. But here is what gcc -Wall -Wextra buggyfib.c finds:

buggyfib.c: In function main:

buggyfib.c:14: warning: suggest parentheses around assignment

used as truth value

buggyfib.c:16: warning: control reaches end of non-void

function

buggyfib.c:12: warning: i is used uninitialized in this

function

At line 14, the compiler suggests that we use parentheses around the
assignment—wait, what?! Assignment? Oh, right, I guess I intended i ==

N, didn’t I? Typing = when one means == is a common mistake.
At line 16, the compiler points out that main must return a value since

main is declared as returning an integer. Easy enough: add return 0.
At line 12, the compiler spots a potentially nasty problem: i might be

uninitialized. Whoops.
Compiling without -Wall -Wextra is like riding a racing bicycle with the

tires at 40 psi. And ignoring the output of gcc -Wall -Wextra is like inflating
them to 100 psi but leaving the valves open just for kicks.

By the way, use assertions as much as you want because you can always
disable them: gcc -Wall -Wextra -DNDEBUG disables assertions. Just be sure
that you don’t use assertions as follows:

1 assert (nreverse (str , out , length ) == 0);

Disabling assertions in this case will remove the entire statement. Instead,
write

1 int err ;

2 err = nreverse (str , out , length );

3 assert (!err ); // same as assert (err == 0)

You might be concerned that err will still occupy memory even when asser-
tions are disabled. Rest assured: modern compilers can remove unnecessary
variables while juggling swords blindfolded.

Finally, when your program is ready for release, compile with gcc -O3 to
enable all optimizations.
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4.3 Runtime Tricks and Tips

4.3.1 GDB: The GNU Project Debugger

Bugs happen. If the error-signaling return values and the assertions are not
revealing the source, the next step is to invoke gdb. Consider this (buggy)
program, which we assume is saved to sum.c:

1 #include <assert .h>

2 #include <stdio.h>

3

4 #define N 5

5

6 int _sum(int n) {

7 assert (n > 0);

8 if (n == 1)

9 return 0;

10 else {

11 int upto = _sum(n-1);

12 return upto + n;

13 }

14 }

15

16 int sum(int n, int * s) {

17 if (n <= 0) return -1;

18 if (!s) return -2;

19 *s = _sum(n);

20 return 0;

21 }

22

23 int main() {

24 int s;

25 int err = sum(N, &s);

26 assert (!err );

27 printf ("%d\n", s);

28 return 0;

29 }

gcc -Wall -Wextra sum.c is silent, but running ./a.out yields 14, not 15 as
expected. You may be able to spot the bug already—and, indeed, one of the
most effective debugging techniques is simply to read the code critically—but
let’s suppose that you haven’t.

To prepare for gdb, we compile with the -g flag, which causes gcc to com-
pile debugging information into the binary: gcc -Wall -Wextra -g sum.c.
Then we fire up gdb:

$ gdb ./a.out

(gdb)

First let’s run it:
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(gdb) run

Starting program: .../a.out

14

Program exited normally.

Let’s look deeper:

(gdb) break sum.c:main

Breakpoint 1 at 0x400606: file sum.c, line 25.

(gdb) list

20 return 0;

21 }

22

23 int main() {

24 int s;

25 int err = sum(N, &s);

The command break sum.c:main sets a breakpoint at the beginning of
main in file sum.c. Typing break main would have been sufficient in this
case, as there is no ambiguity when there is only one function named main.
The command list lists the (source) code around where the program counter
is currently pointing, which is currently at the beginning of main.

Now when we run, something different happens:

(gdb) run

Starting program: .../a.out

Breakpoint 1, main () at sum.c:25

25 int err = sum(N, &s);

(gdb)

Let’s step through the code:

(gdb) step

sum (n=5, s=0x7fffffffe05c) at sum.c:17

17 if (n <= 0) return -1;

(gdb) step

18 if (!s) return -2;

(gdb) step

19 *s = _sum(n);

(gdb) print n

$1 = 5

Stepping causes gdb to execute one statement at a time. The first step enters
sum, and the next two step past sum’s “fence” code. The command print

n prints the current value of n, which is 5 as expected. This value is also
indicated by the second line above, which displays the arguments to sum.
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Control is now at line 19. Stepping once more brings us into the function
that does the real work: sum.

(gdb) step

_sum (n=5) at sum.c:7

7 assert (n > 0);

(gdb) backtrace

#0 _sum (n=5) at sum.c:7

#1 0x00000000004005f1 in sum (n=5, s=0x7fffffffe05c) at

sum.c:19

#2 0x0000000000400617 in main () at sum.c:25

Executing backtrace shows a summary of the stack. Each entry is a stack
frame, with #0 referring to the stack frame at the top of the stack. Let’s keep
stepping:

(gdb) step

8 if (n == 1)

(gdb) step

11 int upto = _sum(n-1);

Control reaches the line that recursively calls sum. Let’s follow Alice into the
rabbit hole:

(gdb) step

_sum (n=4) at sum.c:7

7 assert (n > 0);

(gdb) backtrace

#0 _sum (n=4) at sum.c:7

#1 0x00000000004005b8 in _sum (n=5) at sum.c:11

#2 0x00000000004005f1 in sum (n=5, s=0x7fffffffe05c) at

sum.c:19

#3 0x0000000000400617 in main () at sum.c:25

(gdb) step

8 if (n == 1)

(gdb) step

11 int upto = _sum(n-1);

(gdb) step

_sum (n=3) at sum.c:7

7 assert (n > 0);

(gdb) backtrace

#0 _sum (n=3) at sum.c:7

#1 0x00000000004005b8 in _sum (n=4) at sum.c:11

#2 0x00000000004005b8 in _sum (n=5) at sum.c:11

#3 0x00000000004005f1 in sum (n=5, s=0x7fffffffe05c) at

sum.c:19

#4 0x0000000000400617 in main () at sum.c:25
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Notice how each invocation of sum is shown with the value of its parameter.
The recursion is evident in the growth of the stack, as revealed by backtrace.

The values of sum’s parameters are shown as well: it was called with 5
and a pointer to where to write the sum. Let’s suppose that we suddenly got
curious about sum’s parameter s:

(gdb) frame 4

#4 0x0000000000400617 in main () at sum.c:25

25 int err = sum(N, &s);

(gdb) print s

$2 = 0

(gdb) frame 3

#3 0x00000000004005f1 in sum (n=5, s=0x7fffffffe05c) at sum.c:19

19 *s = _sum(n);

(gdb) print *s

$3 = 0

(gdb) print s

$4 = (int *) 0x7fffffffe05c

(gdb) frame 0

#0 _sum (n=3) at sum.c:7

7 assert (n > 0);

The first command focuses on stack frame #4, which is main’s. Now we can
inspect the value of main’s local variable s. The command frame 3 changes
focus to sum’s stack frame, where we can inspect sum’s parameter s. (As
should be plain to you by now, sum’s parameter s just happens to have the
same name as main’s local variable s; they are otherwise unrelated—except
that sum’s s points to the memory cell associated with main’s s.) Executing
frame 0 returns focus to the top of the stack.

Nothing seems amiss so far, so let’s set a breakpoint to catch when the
runtime behavior changes substantially, namely, when n == 1:

(gdb) break sum.c:8 if n == 1

Breakpoint 2 at 0x40059e: file sum.c, line 8.

(gdb) continue

Continuing.

Breakpoint 2, _sum (n=1) at sum.c:8

8 if (n == 1)

The first command sets a breakpoint and a watch condition: gdb breaks at
line 8 only if n == 1. Then the command continue causes gdb to continue
running until the next breakpoint is reached or the program halts. In this
case, the new breakpoint is reached:

(gdb) step

9 return 0;
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At this point, an alert programmer might wonder why sum is returning
0 instead of 1 when n == 1, since the sum of 1 is 1, not 0. But then again,
maybe not—or maybe it’s 2:00 am, and you’re not exactly running at full
capacity. Either way, let’s continue:

(gdb) step

14 }

(gdb) step

12 return upto + n;

(gdb) print upto

$1 = 0

(gdb) print n

$2 = 2

Now that pair of values looks strange for sure, especially if you grab a pencil
and paper and write out a few sums:

1 = 1
1 + 2 = 3
1 + 2 + 3 = 6

Having found the issue, let’s clean up:

(gdb) quit

A debugging session is active.

Inferior 1 [process 14535] will be killed.

Quit anyway? (y or n) y

We change line 9 to return 1. Recompiling and running yields the expected
value of 15.

This gdb session tracked down a computation bug. What happens with an
assertion error? Consider this (really buggy) version of sum:

1 int _sum(int n) {

2 assert (n > 0);

3 int upto = _sum(n -1);

4 return upto + n;

5 }

Executing ./a.out yields

a.out: sum.c:7: _sum: Assertion ‘n > 0’ failed.

Aborted

Super! The assertion worked. Now let’s finish off this bug with gdb:

(gdb) run

Starting program: .../a.out

a.out: sum.c:7: _sum: Assertion ‘n > 0’ failed.
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Program received signal SIGABRT, Aborted.

0x00007ffff7a8da75 in *__GI_raise (sig=<value optimized out>)

at ../nptl/sysdeps/unix/sysv/linux/raise.c:64

64 ../nptl/sysdeps/unix/sysv/linux/raise.c: No such file

or directory.

in ../nptl/sysdeps/unix/sysv/linux/raise.c

(gdb) backtrace

#0 0x00007ffff7a8da75 in *__GI_raise (sig=<value optimized

out>) at ../nptl/sysdeps/unix/sysv/linux/raise.c:64

#1 0x00007ffff7a915c0 in *__GI_abort () at abort.c:92

#2 0x00007ffff7a86941 in *__GI___assert_fail

(assertion=0x400752 "n > 0", file=<value optimized out>,

line=7, function=0x400766 "_sum") at assert.c:81

#3 0x000000000040059e in _sum (n=0) at sum.c:7

#4 0x00000000004005ab in _sum (n=1) at sum.c:8

#5 0x00000000004005ab in _sum (n=2) at sum.c:8

#6 0x00000000004005ab in _sum (n=3) at sum.c:8

#7 0x00000000004005ab in _sum (n=4) at sum.c:8

#8 0x00000000004005ab in _sum (n=5) at sum.c:8

#9 0x00000000004005ed in sum (n=5, s=0x7fffffffe05c) at

sum.c:15

#10 0x0000000000400613 in main () at sum.c:21

(gdb) frame 4

#4 0x00000000004005ab in _sum (n=1) at sum.c:8

8 int upto = _sum(n-1);

As usual when working with a complex system, not everything makes sense.
What do all the lines concerning raise.c and GI abort mean? Apparently,
the computer on which this session was run did not have the Linux source
code installed. Nonetheless, typing backtrace and carefully filtering out the
irrelevant information yields a clue: the stack, which we expected to top out
when n == 1, shows calls to sum with arguments 5, 4, 3, 2, 1, and 0. The final
call is unexpected and points to a lack of a condition for ending the recursion.
Inspecting stack frame #4 reveals that sum is indeed being called when n ==

1, so that n-1 == 0.
The lesson here is twofold. First, don’t panic when not everything makes

sense; instead, pick out the useful information and discard the rest. Working
with computers can be frustrating if you insist on understanding everything
that they do. Try to flow instead. Second, assertions and gdb play well to-
gether: simply run the program within gdb until it aborts; then inspect the
carnage.

Suppose, though, that even the assertion were missing:

1 int _sum(int n) {

2 int upto = _sum(n -1);
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3 return upto + n;

4 }

Executing this program yields: Segmentation fault. Time to fire up gdb:

(gdb) run

Starting program: .../a.out

Program received signal SIGSEGV, Segmentation fault.

0x000000000040057c in _sum (n=Cannot access memory at address

0x7fffff5aeffc) at sum.c:6

6 int _sum(int n) {

Notice that the value of sum’s parameter cannot even be displayed. That
can’t be good. Typing backtrace is probably a bad idea at this point (try
it!). Instead, I carefully and with bated breath type the command up, which
moves focus to the next stack frame. (It’s unfortunate that the command is
up when we actually intend to move down the stack—an issue of convention.)

(gdb) up

#1 0x000000000040058c in _sum (n=-225189) at sum.c:7

7 int upto = _sum(n-1);

Whoa, there. It looks like n == -225189, indicating that the recursive calls
to sum continued just a tad longer than desired. The segmentation fault
occurred because of a stack overflow: the stack just got too big, which
usually indicates an issue with recursion, specifically, a missing base case.

This section merely introduces gdb. Use gdb’s help command to learn
more as your expanding programming skills demand greater debugging power.
Also, try using gdb inside an editor like emacs or vim; add-on modules to these
editors facilitate debugging.

4.3.2 Valgrind

Another powerful tool is valgrind, which tracks all memory operations of
an executable. Simply run valgrind ./a.out and read the resulting report.
With various options, it can provide details on reading uninitialized data,
reading or writing to undesired places, and more. However, until we cover
dynamic memory allocation in Chapter 6, valgrind is not terribly useful, so
we postpone our discussion of this tool until then.

4.4 A Final Word

Discipline, patience, and critical thinking are the three most powerful tools
we have when creating software (or anything, for that matter). Tools help,
but only to the extent that we keep our wits about us. When you encounter a
particularly nasty bug, take a productive break; then return and apply critical
thinking to the task.
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I/O

A program is only useful to the extent that it communicates the result of a
computation to the user. Moreover, the most useful programs are those whose
executions vary according to user-provided input. This chapter covers every-
day usage of the standard I/O (input/output) library, stdio.h. As with
the rest of this text, the coverage of the standard I/O library is not meant
to be exhaustive but rather tutorial in nature. Standard references, such as
Kernighan and Ritchie’s The C Programming Language, fill in the details; al-
ternately, technical descriptions of standard library functions—including those
used in this chapter: printf, scanf, and sscanf—are easily found online.

5.1 Output

Output to the terminal is accomplished with the printf function. The func-
tion virtually defines its own programming language, but basic usage is
straightforward. One bit of magic is that printf accepts a variable number
of arguments. (In fact, we can write such functions too, by using the standard
argument library, stdarg.h. I don’t recall any occasion on which I have found
this facility to offer the right design choice. It seems to have been designed
for a few specific applications, printf being one of them.)

Actually, printf does not print to the terminal, per se. Rather it prints
to a special file handle called stdout, short for standard output, that is
defined in stdio.h. Unix shells print stdout to the terminal, but they also
offer facilities for redirecting stdout to a file. Try executing, for example,
the command ls on a terminal. It lists the current directory. Now execute ls
> out.tmp. Instead of printing to the terminal, it prints to the file out.tmp.
Open out.tmp in an editor to verify that the redirection worked.

Suppose that we need to print out the elements of an integer array:

1 /* Prints the n integers of a to stdout . Returns -1 if a

2 * is NULL or n < 0; otherwise , returns 0.
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3 */

4 int printIntArray(int a[], int n) {

5 // check for well -formed input

6 if (!a || n < 0) return -1;

7

8 // print to stdout : one number per line

9 int i;

10 for (i = 0; i < n; i++)

11 printf ("%d\n", a[i]);

12

13 return 0;

14 }

The call to printf at line 11 has two arguments, a format string that defines
the format of what is being printed, and an argument that is used to fill in
the one placeholder in the format string. The format string "%d\n" specifies
that an integer should be printed in decimal form, followed by a newline.
The character % indicates the beginning of a placeholder expression, while %d
indicates that the placeholder should be filled by an integer. The string \n

specifies the newline character, as usual.
We could get fancier. Suppose that we want to indicate the index of the

element as well. Then we need only replace line 11 with this one:

11 printf ("%d. %d\n", i, a[i]);

In this usage, printf takes three arguments because the format string requires
two int values.

Assume that fibonacci is defined as in previous chapters, and consider
this calling context:

1 #include <stdio.h>

2

3 // Insert fibonacci , printIntArray here.

4

5 #define N 5

6

7 int main() {

8 int fib [N];

9 int err = fibonacci (fib , N);

10 assert (!err );

11 err = printIntArray(fib , N);

12 assert (!err );

13 return 0;

14 }

The following is printed to the terminal:

0. 1

1. 1



5.1. Output 95

2. 2

3. 3

4. 5

If vertical space is in short supply, we could replace lines 10–11 of
printIntArray with the following:

1 for (i = 0; i < n; i++) {

2 // print the index and element followed by spaces

3 printf ("%d. %d ", i, a[i]);

4 // print a newline every 4th entry

5 if (i % 4 == 3)

6 printf ("\n");

7 }

8 // print a newline if one was not just printed

9 if (i % 4 != 0)

10 printf ("\n");

Redefining N,

1 #define N 44

yields the following output:

0. 1 1. 1 2. 2 3. 3

4. 5 5. 8 6. 13 7. 21

8. 34 9. 55 10. 89 11. 144

12. 233 13. 377 14. 610 15. 987

16. 1597 17. 2584 18. 4181 19. 6765

20. 10946 21. 17711 22. 28657 23. 46368

24. 75025 25. 121393 26. 196418 27. 317811

28. 514229 29. 832040 30. 1346269 31. 2178309

32. 3524578 33. 5702887 34. 9227465 35. 14930352

36. 24157817 37. 39088169 38. 63245986 39. 102334155

40. 165580141 41. 267914296 42. 433494437 43. 701408733

We can finally see that the Fibonacci sequence grows very quickly indeed. One
more line of output would have yielded an overflow:

44. 1134903170 45. 1836311903 46. -1323752223

47. 512559680

Starting at fib[46], the computation is no longer correct. Thus we encounter
the problem with fixed-size representations of integers.

Strings are just as easy to print as integers. The only difference is that the
placeholder expression is %s instead of %d, and the corresponding argument
should have type char * and be a well-formed C string. Recall the functions
shout, concat, and reverse of Section 3.2:

1 #include <stdio.h>

2
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3 // Insert the functions shout , concat , and reverse here.

4

5 /* Prints an array of strings . Return 0 if successful , and

6 * -1 if a is NULL , n < 0, or any entry of a is NULL.

7 */

8 int printStringArray(char ** a, int n) {

9 // check for well -formed input

10 if (!a || n < 0) return -1;

11

12 int i;

13 for (i = 0; i < n; i++) {

14 // return -1 if a[i] is NULL

15 if (!a[i]) return -1;

16 printf ("%s ", a[i]);

17 }

18 printf ("\n");

19

20 return 0;

21 }

22

23 int main(int argc , char ** argv) {

24 char str1 [32] = "Hello universe !";

25 char str2 [32], str3 [64];

26

27 // 1. Print the command -line argument array.

28 printStringArray(argv , argc);

29

30 // 2. Print the "shouted " version of str1.

31 shout(str1 , str2 );

32 printf ("%s -> %s\n", str1 , str2);

33

34 // 3. Print the concatenation of str1 and str2.

35 concat (str1 , str2 , str3 );

36 printf ("%s + %s =\n %s\n", str1 , str2 , str3);

37

38 // 4. Print the reversal of str1.

39 reverse (str1 , str2);

40 printf ("%s -> %s\n", str1 , str2);

41

42 return 0;

43 }

Assuming that this program is completed with the appropriate functions and
resides in strings.c, compiling and running yields four lines of output:

$ gcc -Wall -Wextra -o strings strings.c

$ ./strings some random command-line arguments

./strings some random command-line arguments

Hello universe! -> HELLO UNIVERSE!
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Hello universe! + HELLO UNIVERSE! =

Hello universe!HELLO UNIVERSE!

Hello universe! -> !esrevinu olleH

Notice the first line of output. The first element of the argv array—which,
recall, is an array of C strings—is the name of the executable. The next ele-
ments are the command-line arguments to the program that we typed on the
command line, in this case, some random command-line arguments. Gener-
ating the next three lines requires mixing text and placeholders in the format
strings at lines 32, 36, and 40.

This section merely introduces what is possible with printf. We can mix
integers, strings, and constant text—as well as floats and doubles, which
are number types for representing real numbers and which we will discuss
in Chapter 6. Moreover, the format string allows complex specifications to
indicate alignment and precision of numerical data.

5.2 Input

Input is a fascinating topic, first, because reading user data is typically a
basic requirement of an interesting program; and, second, because one can
never be too careful about protecting oneself from mischievous, malevolent,
or—most likely—ignorant users. There are two types of input: command-
line arguments and terminal or file input. The user provides command-
line arguments before executing the program. For example, the Unix shell
command ls can take a modifier, -l, that causes it to print more information;
in the command ls -l, -l is a command-line argument to the program ls.
Command-line arguments are available to the program via the parameters of
main: argc and argv.

In contrast, terminal or file input is read during execution of the program.
It is made available to the program via stdin, short for standard input. In
this chapter, we introduce scanf as a function for reading stdin, although
there are many other methods. Whereas command-line arguments are typi-
cally short and intended to modify program behavior—think of ls -l, where
-l instructs ls to list more information—input through stdin can be ar-
bitrarily long and is typically data, such as a text document, a sequence of
numbers, or a comma-delimited spreadsheet.

We discuss each of these input types in turn.

5.2.1 Command-Line Input

Command-line arguments are intended to modify the behavior of a program or
to provide basic information. We already saw a simple example of processing
the command-line in the previous section, which consisted of simply printing
it; here, we treat argc and argv as they are really meant to be used.
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Suppose that we would like to write a program to write out the Fibonacci
sequence up to a user-provided bound, or up to a set bound if the user does
not provide one. Given the issue with overflow, the maximum allowable bound
is 46. In the program below, we interpret argv so that the user can provide the
bound via an option, -b. Additionally, the -h option causes a usage message to
be printed. For example, ./fib -b 13 causes the 0th through 13th elements of
the Fibonacci sequence to be printed, while ./fib -h causes a message to be
printed informing the user how to use the fib program. Finally, a misuse of the
command-line—for example, ./fib -notanoption but oh well—causes an
informational message to the user as well.

1 #include <assert .h>

2 #include <stdio.h>

3 #include <string .h>

4

5 // Insert the functions fibonacci and printIntArray here.

6

7 #define MAX_N 46

8

9 void printUsage() {

10 printf ("Usage: [-b <bound >] [-h]\n where <bound >"

11 " is a number between 0 and 46\n");

12 }

13

14 int main(int argc , char ** argv) {

15 int n = MAX_N;

16 int fib [MAX_N ];

17 int i = 0, numRead = 0;

18

19 // parse command line , skipping argv [0] (program ’s name)

20 for (i = 1; i < argc; i++) {

21 // strcmp , defined in string .h, returns 0 if the two

22 // strings are equal

23 if (strcmp ("-h", argv[i]) == 0) {

24 // user requested usage message

25 printUsage();

26 }

27 else if (strcmp ("-b", argv[i]) == 0) {

28 if (i+1 == argc) {

29 // -b should be followed by another argument

30 printUsage();

31 return -1;

32 }

33 // convert the next argument into the integer n

34 numRead = sscanf (argv[i+1], "%d", &n);

35 i++;

36 // numRead == 0 if the next argument isn ’t an integer

37 if (numRead == 0 || n < 0 || n > MAX_N) {
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38 printUsage();

39 return -1;

40 }

41 assert (numRead == 1);

42 }

43 else {

44 // unrecognized argument

45 printUsage();

46 return -1;

47 }

48 }

49

50 fibonacci (fib , n);

51 printIntArray(fib , n);

52 return 0;

53 }

A command-line argument parsing loop typically has this form. The loop
counter, i, ranges from 1 to argc-1, so that each string argv[i] can be exam-
ined. On each iteration of the loop, each major conditional (at lines 23 and 27)
tests whether argument argv[i] is equal to one of the interpreted modifiers
(-b or -h in this case) by using the function strcmp from the string.h stan-
dard library: strcmp(str1, str2) returns 0 precisely when the two strings
str1 and str2 are equal.

Lines 27–42 are complicated by the possibility that the user may not use
the -b option properly. Each of the commands

./fib -b

./fib -b -13

./fib -b 99

./fib -b totalnonsense

yields a polite usage message and a nonzero return value. In Unix, nonzero
return values conventionally indicate that the program did not execute suc-
cessfully.

Line 34 uses the sscanf function, which is similar to the scanf function
that we study in detail next. As their names suggest, scanf and its cousins
scan a file or a string (sscanf, for “string scan”). The format string indicates
how the input should be structured. It uses placeholders just like printf,
except that the corresponding arguments are pointers to where the input
should be written.

At line 34, sscanf is used to scan the string argv[i+1]. The format string
"%d" indicates that an integer is expected, so the corresponding argument
is the address of int variable n. However, it is reading user-provided data,
and the user should be assumed to be a 6-month old. Therefore, we take
precautions. In particular, sscanf returns the number of placeholders that
were processed, which we store in numRead; in this case, there is only one
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placeholder, %d, so that sscanf must return either 0 or 1. Line 37 checks if
numRead is 0, which would indicate that the string argv[i+1] does not have
the form of an integer. It also checks if n is negative or too large. In any of
these cases, the program politely informs the user, yet again, of how to use
the program. When robot arms become standard equipment on laptops, it
may be worth programming a smack function to emphasize the point.

This careful handling of input is necessary to create robust programs.
Several subsequent examples require reading simpler information from the
command line and have correspondingly simpler code; nevertheless, the code
must still be written to be robust.

Exercise 5.1. Write a program that takes one argument, a positive integer
n, and prints the sum 1 + 2 + · · ·+ n.

Solution. The main task is to use sscanf to convert the one argument
from a string to an integer; however, the code is complicated by the need to
work with — how shall I put it? — challenged users.

1 #include <stdio.h>

2

3 int main(int argc , char ** argv) {

4 if (argc != 2) {

5 printf ("*cough* Expected precisely one argument .\n");

6 return -1;

7 }

8 int n;

9 if (sscanf (argv[1], "%d", &n) == 0) {

10 printf ("Erm , expected an integer .\n");

11 return -1;

12 }

13 if (n <= 0) {

14 printf ("You ’ve got to be kidding : positive !\n");

15 return -1;

16 }

17

18 int i, sum = 0;

19 for (i = 1; i <= n; i++) sum += i;

20 printf ("Sum: %d\n", sum );

21 return 0;

22 }

All kidding aside, mishandling user input is a major source of security vul-
nerabilities in production software, so try to get it right. If users cause your
program to crash or misbehave, you’re the fool, not them. �

Exercise 5.2. Write a program that takes two arguments, two positive inte-
gers m and n such that m < n, and prints the sum m + (m + 1) + · · · + n.

�
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5.2.2 Structured Input: Integer Data

Just as printf prints to stdout, scanf reads from stdin, short for standard
input. Unix shells provide mechanisms for chaining programs together via
stdout and stdin. For example, in a directory containing a mix of C and
other files, running the command ls | grep "\.c$" prints a list of all .c
files in the directory. The standard Unix utility grep reads from stdin. The
| operator, pronounced “pipe,” links ls’s output, on stdout, to grep’s input,
on stdin. This command runs too fast to see that grep runs concurrently with
ls, a useful feature. Writing to stdout and reading from stdin are effective
ways of building programs that can be used as modules in larger commands.
Such programs are called Unix filters: they “filter” input data into output
data.

Like printf and sscanf, scanf takes a format string, and subsequent
arguments must correspond to the placeholders of the format string. Since
scanf, like sscanf, reads rather than writes, the subsequent arguments must
tell scanf where to write; in other words, they must be addresses.

Two important characteristics of scanf are that it reads a data stream
incrementally and just once. For example, if a stream of integers comes in
through stdin, as in the program below, each call of scanf("%d", &num),
where num is an integer variable, reads precisely one integer. Hence, scanf is
typically used within a loop that executes as long as stdin has data.

Reading input is complicated by the possibility of malformed data. For ex-
ample, an integer might be expected but an arbitrary string provided instead.
Alternately, the data stream may end unexpectedly. To detect such situations,
scanf returns three types of values:

• A positive integer indicating the number of matches. For example,
scanf("%d", &num) would return 1 to indicate that an integer was read
into num.

• 0 to indicate that a match did not occur. For example, if scanf("%d",
&num) was applied at a point in the data stream with, say, "banana", then
it would return 0 (unless we switch to a fruit-based number system) and
leave "banana" unread.

• EOF, an acronym for End of File, indicating that the data stream has
ended.

Consider this program to compute the integer mean of a list of numbers:

1 #include <stdio.h>

2

3 int main() {

4 int sum = 0;

5 int cnt = 0;

6

7 while (1) {

8 // read an integer
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9 int num;

10 int ret = scanf("%d", &num );

11 // check if stdin has closed

12 if (ret == EOF)

13 // stdin has closed , so exit the loop

14 break;

15 // check if scanf returned 0, indicating bad input

16 if (ret == 0) {

17 printf ("Expected an integer .\n");

18 return -1;

19 }

20 sum += num;

21 cnt ++;

22 }

23

24 printf ("Sum: %d\nInteger mean: %d\n", sum , sum /cnt );

25 return 0;

26 }

Notice at line 10 that the second argument to scanf is the address of num,
allowing scanf to write a value to the memory cell associated with the variable
num. Dropping the & would cause scanf to write to whatever “address” the
(integer) value of num corresponds to, a serious and potentially frustrating
memory bug.

The constant EOF is defined in stdio.h.1 A return value from scanf of
EOF indicates that stdin has been closed, likely by the external environment,
which indicates that all the numbers that are to be entered have been entered.
In this case, the break statement causes control to jump out of the loop to
line 24. Otherwise, scanf returns the number of placeholders that it filled. If
that number is 0, then the user provided input other than an integer, so a
warning and a clean exit is appropriate.

There are two ways of using this program. One method is to write a list
of numbers in a file, say tmp.in, and then run ./a.out < tmp.in, where < is
the Unix shell redirection operator. It causes the contents of the file tmp.in to
be accessible to the executable a.out as stdin. Suppose that tmp.in contains
the following data:

13 29 51

-5 1

129

Then ./a.out < tmp.in yields the following:

Sum: 218

Integer mean: 36

1 The integer value of EOF is not standardized, but we can find out what it is on a
given system. Write code to discover its value on your system.
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Spacing in the input does not matter when the format string is "%d".
The second method is to execute ./a.out and then type the numbers

directly into the terminal. Pressing Control-D closes stdin, causing the pro-
gram to exit the loop and print the sum. Notice that, if a non-integer is
entered, the program provides a message and then exits.

Exercise 5.3. Write a program that reads one or more integers from stdin

and prints the minimum. For example,

$ ./min

-5 6 4 -7

Min: -7

This example is executed by running min, typing -5 6 4 -7, pressing Enter

to keep things tidy, and then pressing Control-D to close stdin. Once stdin
is closed, the loop inside the program should terminate upon detecting EOF

and then print the minimum value.
Solution. We implement the main loop using a slightly different control

structure than in the integer mean example, although with the same effect:

1 #include <stdio.h>

2

3 void printUsage() {

4 printf ("Usage: min < [data file], where the file is a "

5 "nonempty list of integers \n");

6 }

7

8 int main() {

9 int min ;

10

11 // 1. obtain the first value as min

12 if (scanf("%d", &min ) != 1) {

13 // either empty file or not an integer

14 printUsage();

15 return -1;

16 }

17

18 // 2. scan the rest

19 // A busy line of code:

20 // a. call scanf , requesting to scan for an integer that

21 // should be written to val

22 // b. set rc to the return code (EOF , 0, or 1)

23 // EOF - end of file

24 // 0 - did not match an integer

25 // 1 - matched an integer

26 // c. check if the return code is (not) EOF

27 int rc, val;

28 while ((rc = scanf("%d", &val )) != EOF) {

29 // not EOF , but it might be 0
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30 if (rc == 0) {

31 // bad data

32 printUsage();

33 return -1;

34 }

35 // good data

36 if (val < min)

37 min = val;

38 }

39

40 // 3. report the min

41 printf ("Min: %d\n", min );

42

43 return 0;

44 }

�

Exercise 5.4. Write a program that prints the range of a sequence of integers
provided through stdin. For example, the range of −3, 15,−8, 29, 17 is 29 −
(−8) = 37. �

Exercise 5.5. Write a program that reads one integer n from the command
line and then n integers from stdin. It should then print the reverse of the
sequence.

Solution. Unlike in previous exercises, this program needs to remember all
of the numbers so that it can then reverse them. We can use a feature of C
called variable-length arrays in order to declare an array of the appropriate
size. In Chapter 6, we explore heap-allocated memory, a standard and more
powerful alternative.

1 #include <stdio.h>

2

3 void printUsage() {

4 printf ("Usage: rev [n] < [data file], where the file is "

5 "a list of n integers \n");

6 }

7

8 int main(int argc , char ** argv) {

9 if (argc != 2) {

10 // argument n not provided

11 printUsage();

12 return -1;

13 }

14 int n;

15 if (sscanf (argv[1], "%d", &n) != 1) {

16 // the argument is not an integer

17 printUsage();

18 return -1;
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19 }

20

21 // variable -length array

22 int nums[n];

23

24 int i;

25 for (i = 0; i < n; ++i) {

26 // Tricky ! Tell scanf to write the value directly

27 // into the correct position of nums.

28 int rc = scanf("%d", nums+i);

29 if (rc == EOF) {

30 printf ("Unexpected end of file.\n");

31 printUsage();

32 return -1;

33 }

34 if (rc == 0) {

35 printf ("Expected an integer .\n");

36 printUsage();

37 return -1;

38 }

39 }

40

41 // print the numbers in reverse

42 for (i = n-1; i >= 0; --i)

43 printf ("%d ", nums[i]);

44 printf ("\n");

45

46 return 0;

47 }

�

5.2.3 Structured Input: String Data

Text data are as easy to read as integers. The invocation scanf("%s", buf)

tells scanf to read characters into buf up to but excluding the next space

character, which might be a space, a tab, or a newline. Hence, calling scanf

in this way is typically done in a loop; each iteration reads a block of nonspace
characters.

For example, recall the shout function of Section 3.2. To transform textual
data from stdin to all capitals, we can write the following program, where
line 3 should be replaced by the full text of shout:

1 #include <stdio.h>

2

3 // Insert shout here.

4

5 int main() {
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6 // assume that any word is at most 127 characters

7 char in[128] , out [128];

8 while (scanf("%s", in) != EOF) {

9 // read one word , now process it

10 shout (in, out );

11 // print the result

12 printf ("%s ", out );

13 }

14 printf ("\n");

15 return 0;

16 }

Compiling and running the program yields the expected behavior:

$ gcc -Wall -Wextra -o shout shout.c

$ ./shout

Let’s all use our inside voices.

LET’S ALL USE OUR INSIDE VOICES.

To run this program, we type ./shout and then Enter at the command line.
The program stops at the call to scanf and waits for input. When we type,
Let’s all use our inside voices. followed by Enter, the data are passed
through stdin to the program via stdin. Then the text is handled in chunks,
one chunk per iteration: Let’s, all, use, our, inside, voices. Finally, we
press Control-D to close stdin, which causes scanf to return EOF and the
loop to exit.

Unfortunately, the program is vulnerable: if the user ever types a word
with more than 127 characters, we risk a memory corruption at line 8 since
scanf is unaware of the size of buf from the way we called it. One of many
solutions is to read single characters. Calling scanf("%c", &x), where x is
of type char, reads a single character from stdin. Since the shout program
only needs to examine a character at a time to achieve its objective, we can
implement a safer variant as follows:

1 #include <stdio.h>

2

3 int main() {

4 char c;

5 while (scanf("%c", &c) != EOF) {

6 if (’a’ <= c && c <= ’z’)

7 c += ’A’ - ’a’;

8 printf ("%c", c);

9 }

10 printf ("\n");

11 return 0;

12 }
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Exercise 5.6. Write a program according to the following specification:

(1) It has two possible command-line arguments: -s indicates “shout” mode,
while -w indicates “whisper” mode.

(2) It reads an arbitrary list of strings from stdin.
(3) It writes the strings to stdout, except that it writes all letters in either

uppercase or lowercase according to the mode.

�

5.3 Working with Files

While Unix redirection allows reading from a file via stdin and writing to a
file via stdout, it is sometimes appropriate to access files directly. stdio.h
defines functions for opening and closing files. Assuming that filename is a
C string holding the name of a file,

• FILE * inf = fopen(filename, "r") opens the file for reading;
• FILE * outf = fopen(filename, "w") creates the file (and discards an

existing one of the same name if necessary) for writing;
• and FILE * outf = fopen(filename, "a") opens the file for appending.

The FILE * variables inf and outf are referred to as file pointers. Then
fprintf can be used to write to outf, and fscanf can be used to read from
inf. In both cases, the first argument is the file pointer. When reading or
writing is complete, fclose(inf) (fclose(outf)) closes the file.

5.4 Further Adventures with I/O

Exercise 5.7. Numerical simulation is one valuable application of program-
ming. In this exercise, we explore binomially distributed random events.

Consider tossing an unbiased coin n times. What is the probability that
k, 0 ≤ k ≤ n, of the tosses turn up heads? One could of course compute this
probability analytically. However, in simulations it is common to sample events
from a distribution. The function rand(), declared in stdlib.h, provides
random sampling of a uniform distribution: it returns an integer between 0 and
RAND MAX, a constant also declared in stdlib.h, such that each integer has an
equal probability of occurring. We will use this function to simulate sampling
from binomial distributions (with parameter n varying and parameter p =
0.5, for those with background in probability, which describe n tosses of an
unbiased coin).

The main idea is that a sequence of n tosses can be simulated by summing
the results of evaluating rand() % 2 n times. Recall that m % 2 is 0 or 1,
for any integer m; % is pronounced “modulo.” Each evaluation of rand() % 2

returns 0 (tails) or 1 (heads). Summing the result of n evaluations thus yields
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an integer between 0 and n. This process is implemented in the function toss

below.
Simulating one event is not informative about the distribution. We im-

plement a function, performExperiment, to run the experiment many times
and record the data. Finally, printDistribution uses printf creatively to
visualize the results, and main orchestrates the whole ensemble.

1 #include <stdio.h>

2 #include <stdlib .h>

3

4 /* Simulates tossing an unbiased coin n times. Returns

5 * the number of heads .

6 */

7 int toss(int n) {

8 int nHeads = 0, i;

9 for (i = 0; i < n; ++i)

10 // rand() % 2 yields 0 or 1 with uniform probability

11 nHeads += rand () % 2;

12 return nHeads ;

13 }

14

15 /* Perform nTrials of an nTosses coin -tossing experiment

16 * and store the results in nOccur .

17 */

18 void performExperiment(int * nOccur , int nTosses ,

19 int nTrials )

20 {

21 if (! nOccur ) return ;

22 int i;

23 // Initialize nOccur .

24 for (i = 0; i <= nTosses ; ++i)

25 nOccur [i] = 0;

26 // Perform nTrials of the experiment.

27 for (i = 0; i < nTrials ; ++i)

28 // 1. toss(nTosses ) returns the outcome of one trail.

29 // 2. Increment the count for that outcome .

30 nOccur [toss(nTosses )]++;

31 }

32

33 /* Given an array of occurrence data of size sz

34 * representing the results of nTrials of an experiment ,

35 * each instance of which yields an integer in the range

36 * [0, sz), prints a distribution labeled with the outcomes

37 * and the percentages (as an int) of trials that yielded

38 * those outcomes .

39 */

40 void printDistribution(int * nOccur , int sz , int nTrials ) {

41 if (! nOccur ) return ;

42 int i, j;
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43 for (i = 0; i < sz; ++i) {

44 int percent = (100 * nOccur [i]) / nTrials ;

45 printf ("%2d %2d ", i, percent );

46 for (j = 0; j < percent ; ++j)

47 printf ("*");

48 printf ("\n");

49 }

50 }

51

52 /* Prints usage. */

53 void printUsage() {

54 printf ("Usage: binomial [# tosses ] [# trials ]\n");

55 }

56

57 /* Graphs a distribution for nTrials of a coin -tossing

58 * experiment , where each trial consists of nTosses coin

59 * tosses , and the number of heads is counted . Explores

60 * the binomial distribution.

61 */

62 int main(int argc , char ** argv) {

63 // Zeroth argument : name of the executable

64 // First argument : nTosses

65 // Second argument : nTrials

66 // If different , print usage and quit.

67 if (argc != 3) {

68 printUsage();

69 return 0;

70 }

71

72 // Obtain the input. Protect against malformed input.

73 int nTosses , nTrials , numRead ;

74 numRead = sscanf (argv[1], "%d", &nTosses );

75 if (numRead != 1 || nTosses <= 0) {

76 printUsage();

77 return 0;

78 }

79 numRead = sscanf (argv[2], "%d", &nTrials );

80 if (numRead != 1 || nTrials <= 0) {

81 printUsage();

82 return 0;

83 }

84

85 // Set up the occurrence array , which maps the number of

86 // heads out of nTosses to the number of trials that had

87 // precisely that number of heads .

88 int nOccur [ nTosses +1];

89

90 // Perform the experiment.

91 performExperiment(nOccur , nTosses , nTrials );
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92

93 // Visualize the result of the experiment.

94 printDistribution(nOccur , nTosses +1, nTrials );

95

96 return 0;

97 }

Compiling and running the program with various command-line arguments
yields about what one would expect of binomially distributed data. Notice that
the distribution becomes more ideal as the number of trials increases.

$ gcc -Wall -Wextra -o binomial binomial.c

$ ./binomial

Usage: binomial [# tosses] [# trials]

$ ./binomial 20 1000

0 0

1 0

2 0

3 0

4 0

5 1 *

6 4 ****

7 7 *******

8 12 ************

9 16 ****************

10 16 ****************

11 18 ******************

12 11 ***********

13 6 ******

14 2 **

15 1 *

16 0

17 0

18 0

19 0

20 0

$ ./binomial 20 10000

0 0

1 0

2 0

3 0

4 0

5 1 *

6 3 ***

7 7 *******

8 12 ************
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9 16 ****************

10 17 *****************

11 15 ***************

12 12 ************

13 7 *******

14 3 ***

15 1 *

16 0

17 0

18 0

19 0

20 0

�

Exercise 5.8. Write a program according to the following specification:

(1) It reads an arbitrary list of strings from stdin.
(2) It records the number of vowels encountered.
(3) It prints the number of occurrences of each vowel to stdout.

�

Exercise 5.9. Write a program, called hide, according to the following spec-
ification:

(1) It has two possible arguments: -encrypt indicates encryption mode, while
-decrypt indicates decryption mode.

(2) It reads an arbitrary list of strings from stdin.
(3) It applies a cypher to the strings. You may invent your own, but a simple

one is to shift the letters by a constant amount (for example, ’a’ becomes
’d’, and ’z’ becomes ’c’). It either encrypts or decrypts the strings
(“shifts” or “deshifts” the letters) depending on the mode.

(4) It prints the encrypted or decrypted text to stdout.

At minimum, it should be able to handle text consisting only of lowercase
letters. For example, if the message

attention home planet stop prepare invasion stop earth is

ripe for the taking stop cu soon full stop

is in file msg.txt, then

$ ./hide -encrypt < msg.txt > msge.txt

would produce the following cyphertext in file msge.txt if hide is using a
shift of 12:

mffqzfuaz tayq bxmzqf efab bdqbmdq uzhmeuaz efab qmdft ue

dubq rad ftq fmwuzs efab og eaaz rgxx efab
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Then

$ ./hide -decrypt < msge.txt

would yield the original message. Using Unix piping would also result in the
output of the original message:

$ ./hide -encrypt < msg.txt | ./hide -decrypt

To achieve the proper shift, use the following formula:

’a’ + (((c - ’a’) + sh) % 26)

The idea is to find c’s position in the alphabet (c - ’a’), add the shift ((c -

’a’) + sh) modulo 26 (((c - ’a’) + sh) % 26), and finally translate the
character back into the ASCII range for lowercase letters.

To unshift, set sh to 26 - sh and use the same formula. For example, if
sh is 12, then

’a’ + (((c - ’a’) + 12) % 26)

yields ’q’ if c == ’e’ since ’q’ is 12 characters later than ’e’; and ’f’ if c
== ’t’ since ’f’ is 12 characters later than ’t’ modulo 26. �

Exercise 5.10. Write a program that reads strings from stdin and computes
the integer mean of their lengths. �

Exercise 5.11. Write a program to determine word-length frequencies in a
text file read through stdin. Reserve one category for all words of length 32 or
greater. Output the frequencies in a useful way, which could include rendering
a chart as in Exercise 5.7. �
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Memory: The Heap

In any complex system—whether engineered or natural—products are con-
structed, distributed, used, and finally recycled. The lifetimes of such products
are typically independent of the manufacturing process. Data structures are
the primary (intermediate) products of complex programs, and data struc-
tures require memory. However, the memory that we have used so far—the
stack—is not well suited for creating data structures whose existence is inde-
pendent of functions’ execution periods. Stack frames form the stack, and the
lifetimes of stack frames, by definition, correspond to function execution peri-
ods: a frame is pushed on the stack at the beginning of a function’s execution
and popped from the stack at the end of the function’s execution; any data
structure that resides in the stack frame is then lost.

This chapter introduces a sector of program memory, called the heap,
specifically intended for producing data structures whose lifetimes are inde-
pendent of the execution periods of the functions that create and manipulate
them. Dynamic memory allocation is the process of obtaining segments
of memory from the heap for use.

As a motivating application, this chapter focuses on implementing a li-
brary of functions for creating, manipulating, and disposing of matrices and
vectors. Along the way, we will cover basic data types for representing real
numbers and a mechanism for defining new data types. In Chapter 7, we will
refine the matrix library into an abstract data type.

In Chapters 9–11, we will use Matlab’s basic matrix data structure to
accomplish computational tasks. How it works will be irrelevant; only how
to use it will matter. In contrast, this and the next two chapters provide the
complementary perspective, that of the library designer and implementer. In
this context, we care how the library is intended to be used, which motivates
the choice of functions that are offered, which in turn dictates what functions
we must implement.
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6.1 Review of Matrices

An m × n matrix M consists of m rows of n real numbers, while an m-
dimensional vector is a m×1 matrix. For concreteness, consider the following
matrices and vectors:

A =





1 .25 −.1
0 .4 .3
0 .1 −.3



 , B =





.5 0 0
0 2 0
0 0 1



 , c =





1
0
1



 , d =





0
.5
.5



 .

We refer to elements of each using indexing: A3,1 refers to the bottom-left
element 0 of matrix A, while c1 refers to the top element 1 of c. Notice that
rows and columns of a matrix are numbered starting at 1 rather than at 0, as
in arrays. While this difference is annoying and causes minor complications
in the matrix library, it is in keeping with standard practice; for example,
matrices in Matlab are indexed starting from 1.

The transpose of a matrix essentially swaps indices: if A′ is the transpose
of A, then element Ai,j corresponds to A′

j,i. For example,

A′ =





1 0 0
.25 .4 .1
−.1 .3 −.3



 c′ =
[

1 0 1
]

.

Matrix addition requires two matrices of equal dimensions—that is,
they must have the same number of rows and columns. Matrices are summed
element-wise: if S = A+B, then Si,j = Ai,j + Bi,j . For example,





1 .25 −.1
0 .4 .3
0 .1 −.3



+





.5 0 0
0 2 0
0 0 1



 =





1.5 25 −.1
0 2.4 .3
0 .1 .7



 ,

and




1
0
1



+





0
.5
.5



 =





1
.5
1.5



 .

Matrix multiplication is more complicated. To form the product P =
AB, the number of columns of A must match the number of rows of B: if A
has dimensions ℓ×m, and B has dimensions m×n, then the product AB has
dimensions ℓ× n. Furthermore, element Pi,j is defined as follows:

Pi,j =

m
∑

k=1

Ai,kBk,j . (6.1)

For example, to compute the top-left element of the product of the matrices
A and B above, compute

A1,1B1,1 +A1,2B2,1 +A1,3B3,1 = 1 · .5 + .25 · 0 +−.1 · 0 = .5 .

The dot product of m-dimensional vectors c and d is computed as the
matrix product c′d. For example,
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c′d =
[

1 0 1
]





0
.5
.5



 = 1 · 0 + 0 · .5 + 1 · .5 = .5 .

6.2 Matrix: A Specification

Our goal is to implement functions to create matrices, to read and write their
values, to obtain their dimensions, to print them, to compute their transposes,
and to calculate their sums and products. As the matrices should hold real
values, we use the basic type double to represent elements. A double value is a
double-word (that is, 8-byte) IEEE floating point value, which represents real
numbers with high precision. We will define a type called matrix, and with this
type we will implement the following application programming interface
(API), which defines operations for manipulating matrices. In general, an
API is an interface to a possibly complex set of functions and data types; it
hides the complexity behind (ideally) straightforward function and data type
specifications.

1 /* Creates a ‘‘rows by cols ’’ matrix with all values 0.

2 * Returns NULL if rows <= 0 or cols <= 0 and otherwise a

3 * pointer to the new matrix .

4 */

5 matrix * newMatrix (int rows , int cols);

6

7 /* Copies a matrix . Returns NULL if mtx is NULL.

8 */

9 matrix * copyMatrix(matrix * mtx );

10

11 /* Deletes a matrix . Returns 0 if successful and -1 if mtx

12 * is NULL.

13 */

14 int deleteMatrix(matrix * mtx );

15

16 /* Sets the (row , col) element of mtx to val. Returns 0 if

17 * successful , -1 if mtx is NULL , and -2 if row or col are

18 * outside of the dimensions of mtx .

19 */

20 int setElement(matrix * mtx , int row , int col , double val );

21

22 /* Sets the reference val to the value of the (row , col)

23 * element of mtx. Returns 0 if successful , -1 if either

24 * mtx or val is NULL , and -2 if row or col are outside of

25 * the dimensions of mtx.

26 */

27 int getElement(matrix * mtx , int row , int col ,

28 double * val );

29
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30 /* Sets the reference n to the number of rows of mtx.

31 * Returns 0 if successful and -1 if mtx or n is NULL.

32 */

33 int nRows (matrix * mtx , int * n);

34

35 /* Sets the reference n to the number of columns of mtx.

36 * Returns 0 if successful and -1 if mtx is NULL.

37 */

38 int nCols (matrix * mtx , int * n);

39

40 /* Prints the matrix to stdout . Returns 0 if successful

41 * and -1 if mtx is NULL.

42 */

43 int printMatrix(matrix * mtx );

44

45 /* Writes the transpose of matrix in into matrix out.

46 * Returns 0 if successful , -1 if either in or out is NULL ,

47 * and -2 if the dimensions of in and out are incompatible.

48 */

49 int transpose (matrix * in, matrix * out );

50

51 /* Writes the sum of matrices mtx1 and mtx2 into matrix

52 * sum. Returns 0 if successful , -1 if any of the matrices

53 * are NULL , and -2 if the dimensions of the matrices are

54 * incompatible.

55 */

56 int sum(matrix * mtx1 , matrix * mtx2 , matrix * sum );

57

58 /* Writes the product of matrices mtx1 and mtx2 into matrix

59 * prod. Returns 0 if successful , -1 if any of the

60 * matrices are NULL , and -2 if the dimensions of the

61 * matrices are incompatible.

62 */

63 int product (matrix * mtx1 , matrix * mtx2 , matrix * prod);

64

65 /* Writes the dot product of vectors v1 and v2 into

66 * reference prod. Returns 0 if successful , -1 if any of

67 * v1, v2 , or prod are NULL , -2 if either matrix is not a

68 * vector , and -3 if the vectors are of incompatible

69 * dimensions.

70 */

71 int dotProduct(matrix * v1 , matrix * v2 , double * prod );

Just as we write unit tests of individual functions, we must write unit tests
of libraries. Here is a unit test of this specification:

1 int main() {

2 matrix * A, * Ac, * B, * c, * d, * M, * ct, * mdp;

3 double dp;
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4

5 A = newMatrix (3, 3);

6 setElement(A, 1, 1, 1.0);

7 setElement(A, 1, 2, .25);

8 setElement(A, 1, 3, -.1);

9 setElement(A, 2, 2, .4);

10 setElement(A, 2, 3, .3);

11 setElement(A, 3, 2, .1);

12 setElement(A, 3, 3, -.3);

13 printf ("Matrix A:\n");

14 printMatrix(A);

15

16 Ac = copyMatrix(A);

17 printf ("\nCopy of A:\n");

18 printMatrix(Ac);

19

20 B = newMatrix (3, 3);

21 setElement(B, 1, 1, .5);

22 setElement(B, 2, 2, 2.0);

23 setElement(B, 3, 3, 1.0);

24 printf ("\nMatrix B:\n");

25 printMatrix(B);

26

27 c = newMatrix (3, 1);

28 setElement(c, 1, 1, 1.0);

29 setElement(c, 3, 1, 1.0);

30 printf ("\nVector c:\n");

31 printMatrix(c);

32

33 d = newMatrix (3, 1);

34 setElement(d, 2, 1, 1.0);

35 setElement(d, 3, 1, 1.0);

36 printf ("\nVector d:\n");

37 printMatrix(d);

38

39 M = newMatrix (3, 3);

40 transpose (A, M);

41 printf ("\nA ’:\n");

42 printMatrix(M);

43

44 ct = newMatrix (1, 3);

45 transpose (c, ct);

46 printf ("\nc ’:\n");

47 printMatrix(ct);

48

49 sum(A, B, M);

50 printf ("\nA + B:\n");

51 printMatrix(M);

52
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53 product (A, B, M);

54 printf ("\nA * B:\n");

55 printMatrix(M);

56

57 mdp = newMatrix (1, 1);

58 product (ct, d, mdp );

59 getElement(mdp , 1, 1, &dp);

60 printf ("\nDot product (1): %.2f\n", dp);

61

62 dotProduct(c, d, &dp);

63 printf ("\nDot product (2): %.2f\n", dp);

64

65 product (A, c, d);

66 printf ("\nA * c:\n");

67 printMatrix(d);

68

69 deleteMatrix(A);

70 deleteMatrix(Ac);

71 deleteMatrix(B);

72 deleteMatrix(c);

73 deleteMatrix(d);

74 deleteMatrix(M);

75 deleteMatrix(ct);

76 deleteMatrix(mdp );

77

78 return 0;

79 }

This unit test not only shows that the library, as designed, offers the necessary
functionality to perform basic matrix arithmetic but also will become the first
test of the eventual implementation of the API. In general, a unit test is a test
program that exercises the functionality of a programming unit independent
of the rest of the program—whether that unit be a function, a library, or
a set of related libraries. Unit tests usually encode a set of usage scenarios;
hence, writing a unit test can sometimes reveal deficiencies in an API’s design.
In large engineering efforts involving software development, the developers
typically create their own unit tests while the product analysts design and
execute system tests that test many modules at once. Subgroups may also
design and execute integration tests to exercise several modules together.

Once we implement the specification, we should get the following output
for this unit test:

Matrix A:

1.00 0.25 -0.10

0.00 0.40 0.30

0.00 0.10 -0.30

Copy of A:
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1.00 0.25 -0.10

0.00 0.40 0.30

0.00 0.10 -0.30

Matrix B:

0.50 0.00 0.00

0.00 2.00 0.00

0.00 0.00 1.00

Vector c:

1.00

0.00

1.00

Vector d:

0.00

1.00

1.00

A’:

1.00 0.00 0.00

0.25 0.40 0.10

-0.10 0.30 -0.30

c’:

1.00 0.00 1.00

A + B:

1.50 0.25 -0.10

0.00 2.40 0.30

0.00 0.10 0.70

A * B:

0.50 0.50 -0.10

0.00 0.80 0.30

0.00 0.20 -0.30

Dot product (1): 1.00

Dot product (2): 1.00

A * c:

0.90

0.30

-0.30
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6.3 Matrix: An Implementation

6.3.1 Defining the Data Structure

The primary attributes of a matrix are the number of rows, the number of
columns, and the elements themselves. These attributes can be organized into
a single new datatype called matrix as follows:

1 typedef struct {

2 int rows;

3 int cols;

4 double * data;

5 } matrix ;

A C struct, short for “structure,” is the primary mechanism for creating
complex data structures. This declaration is actually a C idiom; the long
version is as follows:

1 struct _matrix {

2 int rows;

3 int cols;

4 double * data;

5 };

6

7 typedef struct _matrix matrix ;

Lines 1–5 declare the type struct matrix. Then in line 7, the typedef

statement, read as “define matrix as short for struct matrix,” provides
the simpler name matrix for the type struct matrix.

The first two fields of matrix are self-evident; the third is a double *

because it is intended to be an array of doubles. However, we will use dynamic
memory allocation to obtain the actual memory for the array.

To access the fields of an instance of the matrix structure, we use the .

(dot) operator:

1 {

2 matrix mtx;

3 mtx.rows = 3;

4 mtx.cols = 3;

5 }

Structures are laid out as one block of memory, so accessing a field is compiled
into a constant memory offset from the beginning of a structure’s block. For
example, a matrix structure has the following layout:

double * data 8
int cols 4
int rows 0

In the code snippet above, the stack looks as follows at the beginning of
execution:
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double * mtx.data ⊗ 1008
int mtx.cols ⊗ 1004
int mtx.rows ⊗ 1000
void * pc header 996
int rv ⊗ 992

Therefore, mtx.cols refers to the memory cell at address 1004, an offset of
four bytes from the beginning of the matrix structure.

Another method of accessing a structure’s fields is via a pointer to the
structure:

1 {

2 matrix m;

3 matrix * mtx = &m; // mtx points to a matrix structure

4 mtx ->rows = 3;

5 mtx ->cols = 3;

6 }

The operator -> (arrow) is convenient but unnecessary: mtx->cols is equiva-
lent to (*mtx).cols—a dereference of the pointer mtx followed by an access of
the field cols. The int memory cell that is four bytes offset from the address
stored in mtx is accessed in this case.

The type declaration describes what a matrix looks like, while the func-
tions newMatrix and deleteMatrix actually create and destroy instances of
matrix. Dynamic memory allocation is required:

1 matrix * m = (matrix *) malloc (sizeof (matrix ));

The standard library, stdlib.h, defines malloc, which is actually a call to
the operating system. It returns a generic pointer (of type void *) to a seg-
ment of memory containing the number of bytes specified as the argument.
Here we use sizeof(matrix) to specify the number of bytes. The compiler re-
places sizeof(matrix) with the actual number of bytes, which in this case is
sizeof(int) + sizeof(int) + sizeof(double *), or 4+4+4 = 12 bytes.
The final peculiar notation of this allocation is the typecast, (matrix *),
preceding malloc. It casts the void * type generically returned by malloc to
the specific type matrix *, which matches the type of m; hence, the typecast
allows the left and right sides of the assignment to have the same type, as
desired.

The allocated memory is located not on the stack but in the heap. This
memory remains allocated for arbitrarily long after newMatrix returns—until,
in fact, free(m) is called. The function free is also defined in stdlib.h. Every
call to malloc should correspond to precisely one call to free. A bug in which
dynamically allocated memory is never freed is referred to as amemory leak.
Long-running programs with memory leaks can eventually crash or—worse—
compromise the performance of the entire system. Another type of bug, a
double-free bug, is when free is called twice on the same allocated memory;
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it may or may not crash the system. Both types of bugs can be detected with
valgrind, which we discuss later.

Let’s take a look at the implementation of newMatrix:

1 matrix * newMatrix (int rows , int cols) {

2 if (rows <= 0 || cols <= 0) return NULL;

3

4 // allocate a matrix structure

5 matrix * m = (matrix *) malloc (sizeof (matrix ));

6

7 // set dimensions

8 m->rows = rows;

9 m->cols = cols;

10

11 // allocate a double array of length rows * cols

12 m->data = (double *) malloc (rows*cols*sizeof (double ));

13 // set all data to 0

14 int i;

15 for (i = 0; i < rows*cols; i++)

16 m->data[i] = 0.0;

17

18 return m;

19 }

Line 5 allocates the matrix, but it does not allocate the data field of the
matrix. This allocation is accomplished at line 12. Lines 8–9 and 15–16 ini-
tialize the matrix to be the rows× cols zero matrix.

To make it absolutely clear that heap memory is separate from stack mem-
ory, let’s visualize newMatrix’s stack frame:

int i 20
matrix * m 16
void * pc 12
matrix * rv 8
int cols 4
int rows 0

Every memory cell of the stack frame occupies one word. When the assignment
at line 5 occurs, m is set to the allocated address.

How can we use an array to represent a matrix? In other words, how do we
map a matrix’s two-dimensional existence onto one-dimensional memory? We
have to be clever. The idea is to decide on a policy for laying out the elements
of the matrix. One policy—the one that we adopt—is to concatenate the
columns of the matrix into one long list.1 For example, matrix A from above
is represented as a sequence of nine doubles:

1.00 0.00 0.00 0.25 0.40 0.10 -0.10 0.30 -0.30

1 This policy is referred to as column major, which is a standard policy for dense
matrix representations.
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The middle element, A2,2, is at index 4 in the flat representation. Notice that
we must translate between two indexing standards: C arrays are indexed start-
ing at 0 since indices represent explicit memory offsets, while mathematical
matrices are indexed starting at 1. In general, we access the element at row
row and column col of matrix mtx as follows:

mtx->data[(col - 1) * mtx->rows + (row - 1)]

In the case of A, element A2,2 corresponds to index

(2− 1) · 3 + (2− 1) = 4 .

Verify that this formula correctly maps the elements of A to their positions
in the flat representation above.

To isolate this policy decision to one place, we encode it as a C macro:

1 #define ELEM(mtx , row , col) \

2 mtx ->data[(col -1) * mtx ->rows + (row -1)]

A macro is expanded during compilation and is thus an efficient means of
gaining modularity without losing efficiency. For example,

1 ELEM(mtx1 , row , k) = 0.0;

expands to

1 mtx1 ->data [(k-1) * mtx1 ->rows + (row -1)] = 0.0;

during compilation.
Having decided on a definition of a matrix—both its type matrix and the

data layout policy—we need to implement the remaining functions that define
a matrix to the user. First, deleteMatrix provides a way of de-allocating a
matrix:

1 int deleteMatrix(matrix * mtx) {

2 if (!mtx) return -1;

3 // free mtx ’s data

4 assert (mtx ->data);

5 free(mtx ->data);

6 // free mtx itself

7 free(mtx );

8 return 0;

9 }

Next, copyMatrix creates a separate matrix instance that is initialized
with the same values as the given matrix:

1 matrix * copyMatrix(matrix * mtx) {

2 if (!mtx) return NULL;

3

4 // create a new matrix to hold the copy

5 matrix * cp = newMatrix (mtx ->rows , mtx ->cols);
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6

7 // copy mtx ’s data to cp’s data

8 memcpy (cp->data , mtx ->data ,

9 mtx ->rows * mtx ->cols * sizeof (double ));

10

11 return cp;

12 }

The function memcpy is defined in the standard string library, string.h. (Why
string.h? Good question.) A call to memcpy(to, from, nBytes) copies the
nBytes of memory starting at address from to the nBytes of memory starting
at address to. An alternative to lines 8–9 is the following:

1 int i;

2 for (i = 0; i < mtx ->rows * mtx ->cols; i++)

3 cp ->data[i] = mtx ->data[i];

Yet another alternative is the following:

1 int row , col;

2 for (col = 1; col <= mtx ->cols; col ++)

3 for (row = 1; row <= mtx ->rows; row ++)

4 ELEM(cp , row , col) = ELEM(mtx , row , col );

Notice that these two alternatives write values to cp->data in exactly the
same order because of the column major layout. It is likely that the implemen-
tation based on memcpy is the most efficient, followed by the first alternative.
The final method requires multiplication (see the definition of ELEM).

The next four functions provide access to a matrix’s dimensions and ele-
ments:

1 int setElement(matrix * mtx , int row , int col , double val)

2 {

3 if (!mtx) return -1;

4 assert (mtx ->data);

5 if (row <= 0 || row > mtx ->rows ||

6 col <= 0 || col > mtx ->cols)

7 return -2;

8

9 ELEM(mtx , row , col) = val;

10 return 0;

11 }

12

13 int getElement(matrix * mtx , int row , int col ,

14 double * val) {

15 if (!mtx || !val) return -1;

16 assert (mtx ->data);

17 if (row <= 0 || row > mtx ->rows ||

18 col <= 0 || col > mtx ->cols)

19 return -2;
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20

21 *val = ELEM(mtx , row , col );

22 return 0;

23 }

24

25 int nRows (matrix * mtx , int * n) {

26 if (!mtx || !n) return -1;

27 *n = mtx ->rows;

28 return 0;

29 }

30

31 int nCols (matrix * mtx , int * n) {

32 if (!mtx || !n) return -1;

33 *n = mtx ->rows;

34 return 0;

35 }

The majority of the implementation of each function focuses on protecting
against bad input, which is appropriate since these are interface functions—
that is, functions that can be called by a less-than-informed user.

Exercise 6.1. Heap-allocated memory allows a program to store an un-
bounded amount of data. Implement a program that reads and stores a given
number, n, of strings from stdin. To show that the text was indeed saved,
make it print the strings just before freeing all allocated memory and exiting.
As usual, it is reasonable to assume that the longest word has fewer than 128
characters.

Solution. The main data structure is a char * array, strings, with n ele-
ments, each of which points to a char array that holds a string. The program
iteratively reads a string into a temporary buffer, buf, of size 128; allocates
a new char array according to the length of the string, using strlen from
string.h (see also Exercise 3.17); and copies the string from buf to the newly
allocated array using strcpy from string.h (see also Exercise 3.19).

One essential and often missed detail is that the allocated character array
must have one more byte than the length of the string, as returned by strlen,
to hold the string terminator.

1 #include <stdio.h>

2 #include <stdlib .h>

3 #include <string .h>

4

5 int main(int argc , char ** argv) {

6 // 1. Obtain number of strings .

7 if (argc != 2) {

8 printf ("Expected one integer argument .\n");

9 return -1;

10 }

11
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12 int n;

13 if (sscanf (argv[1], "%d", &n) != 1 || n <= 0) {

14 printf ("Expected a positive integer .\n");

15 return -1;

16 }

17

18 // 2. Read n strings .

19 // Array of char *’s to hold strings .

20 char ** strings = (char **) malloc (n * sizeof (char *));

21 // Temporary buffer .

22 char buf [128];

23

24 int i;

25 for (i = 0; i < n; ++i) {

26 // 2a. Scan for each string .

27 if (scanf("%127s", buf) == EOF) {

28 printf ("Unexpected end of input .\n");

29 return -1;

30 }

31 // 2b. Allocate space to hold string permanently.

32 // Notice the extra byte to hold the string terminator.

33 strings [i] = (char *) malloc (strlen (buf) + 1);

34 // 2c. Copy string from buffer to its space.

35 strcpy (strings [i], buf );

36 }

37

38 // 3. Do something with strings . In this case , print.

39 for (i = 0; i < n; ++i)

40 printf ("%s\n", strings [i]);

41

42 // 4. Free allocated memory .

43 for (i = 0; i < n; ++i)

44 free(strings [i]);

45 free(strings );

46

47 return 0;

48 }

Notice at line 27 the format string "%127s". It tells scanf to read at most
127 characters, even if the string is longer. The remaining characters are read
subsequently. This format string makes the assumption at line 22 safe. �

Exercise 6.2. The realloc function in stdlib allows growing a region of
memory. Suppose that strings is a char ** variable pointing to an array of
n strings. The statement

1 strings = realloc (strings , 2*n);

reallocates the array to be twice its original size while preserving the existing
data, although its base address may be changed. Use realloc to implement
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a version of the program of Exercise 6.1 that does not take an argument
specifying the number of strings, instead storing as many strings as are given.

Solution. A standard strategy is to allocate an initial array, here called
strings, of a default size, n, and then to double the size of the array—and
n—each time more space is required. This strategy guarantees that less than
twice as much memory as required is used and that a number of reallocations
only logarithmic in the amount of data are executed. For example, if n is
initially 1, and 600 strings are read, strings will have sizes 1, 2, 4, 8, 16, 32,
64, 128, 256, 512, and finally 1,024 during execution.

1 #include <stdio.h>

2 #include <stdlib .h>

3 #include <string .h>

4

5 int main() {

6 // Allocate initial array of char *’s to hold strings .

7 int n = 1; // size of array

8 char ** strings = (char **) malloc (n * sizeof (char *));

9

10 int nstrings = 0; // number of strings read

11 char buf [128];

12 while (scanf("%127s", buf) != EOF ) {

13 // Is there space in strings for another string ?

14 if (nstrings == n) {

15 // No, so double size of strings .

16 n *= 2;

17 strings = realloc (strings , n * sizeof (char *));

18 }

19 // Allocate space to hold string permanently.

20 strings [nstrings ] = (char *) malloc (strlen (buf) + 1);

21 // Copy string from buffer to its space.

22 strcpy (strings [nstrings ], buf );

23 // Increment the number of strings read.

24 ++ nstrings ;

25 }

26

27 // Do something with strings . In this case , print.

28 int i;

29 for (i = 0; i < nstrings ; ++i)

30 printf ("%s\n", strings [i]);

31

32 // Free allocated memory .

33 for (i = 0; i < nstrings ; ++i)

34 free(strings [i]);

35 free(strings );

36

37 return 0;

38 }
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6.3.2 Manipulating the Data Structure

Having defined the functionality to create, copy, destroy, read from, and write
to matrices, we can now implement higher level functionality. We use the ELEM
macro to access the elements of matrixes so that the memory layout policy
impacts as little of the code as possible. If we were to change the policy at
some point, we would not have to change the following code.

Our first function is printMatrix. Here we employ some of the sophisti-
cated formatting features of printf. Perhaps the one new programming idea
here is the double loop in lines 5–15. The outer loop iterates over the rows,
while the inner loop iterates over the columns of each row:

1 int printMatrix(matrix * mtx) {

2 if (!mtx) return -1;

3

4 int row , col;

5 for (row = 1; row <= mtx ->rows; row ++) {

6 for (col = 1; col <= mtx ->cols; col ++) {

7 // Print the floating -point element with

8 // - either a - if negative or a space if positive

9 // - at least 3 spaces before the .

10 // - precision to the hundredths place

11 printf ("% 6.2f ", ELEM(mtx , row , col ));

12 }

13 // separate rows by newlines

14 printf ("\n");

15 }

16 return 0;

17 }

The output at the end of Section 6.2 provides many examples of this function
in action.

The functions transpose and sum are fairly straightforward implementa-
tions of definitions (see Section 6.1):

1 int transpose (matrix * in, matrix * out) {

2 if (!in || !out) return -1;

3 if (in->rows != out ->cols || in ->cols != out ->rows)

4 return -2;

5

6 int row , col;

7 for (row = 1; row <= in->rows; row ++)

8 for (col = 1; col <= in ->cols; col ++)

9 ELEM(out , col , row) = ELEM(in , row , col );

10 return 0;

11 }

12

13 int sum(matrix * mtx1 , matrix * mtx2 , matrix * sum) {

14 if (!mtx1 || !mtx2 || !sum) return -1;
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15 if (mtx1 ->rows != mtx2 ->rows ||

16 mtx1 ->rows != sum ->rows ||

17 mtx1 ->cols != mtx2 ->cols ||

18 mtx1 ->cols != sum ->cols)

19 return -2;

20

21 int row , col;

22 for (col = 1; col <= mtx1 ->cols; col ++)

23 for (row = 1; row <= mtx1 ->rows; row ++)

24 ELEM(sum , row , col) =

25 ELEM(mtx1 , row , col) + ELEM(mtx2 , row , col );

26 return 0;

27 }

In contrast, the implementation of product is not exactly straightforward,
although it does follow from the standard definition (see Section 6.1):

1 int product (matrix * mtx1 , matrix * mtx2 , matrix * prod) {

2 if (!mtx1 || !mtx2 || !prod) return -1;

3 if (mtx1 ->cols != mtx2 ->rows ||

4 mtx1 ->rows != prod ->rows ||

5 mtx2 ->cols != prod ->cols)

6 return -2;

7

8 int row , col , k;

9 for (col = 1; col <= mtx2 ->cols; col ++)

10 for (row = 1; row <= mtx1 ->rows; row ++) {

11 double val = 0.0;

12 for (k = 1; k <= mtx1 ->cols; k++)

13 val += ELEM(mtx1 , row , k) * ELEM(mtx2 , k, col );

14 ELEM(prod , row , col) = val;

15 }

16 return 0;

17 }

Find the correspondence between the code and Equation (6.1). Trace through
the execution of this function for line 53 of the unit test, which computes the
product AB.

Notice the triple loop. For an n × n matrix, n3 scalar products are com-
puted at line 13. Oddly enough, matrix multiplication can be done faster: in
1969, Strassen surprised the linear algebra world with an algorithm requiring
approximately n2.807 multiplications; and the Coppersmith–Winograd algo-
rithm, introduced in 1990, theoretically requires about n2.376 multiplications
although is not practical.

When computing a dot product of two vectors, it is inconvenient to trans-
pose one vector, allocate a 1×1 matrix, compute the product of the transposed
vector with the other vector, and then extract the one element from the prod-
uct matrix, as in lines 44–45, 57–59 of the unit test. The dotProduct function
computes the dot product of two vectors directly:
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1 int dotProduct(matrix * v1 , matrix * v2 , double * prod) {

2 if (!v1 || !v2 || !prod) return -1;

3 if (v1->cols != 1 || v2->cols != 1) return -2;

4 if (v1->rows != v2 ->rows) return -3;

5

6 *prod = 0;

7 int i;

8 for (i = 1; i <= v1->rows; i++)

9 *prod += ELEM(v1 , i, 1) * ELEM(v2, i, 1);

10 return 0;

11 }

Exercise 6.3. Implement a function to return the n×n identity matrix, which
is a square matrix with 1s on its diagonal and 0s everywhere else.

Solution. At least two interfaces are possible. In the first version, the user
provides an integer n for the size of the desired identity matrix and receives
a new matrix in return:

1 matrix * identity (int n) {

2 if (n <= 0) return NULL;

3 matrix * m = newMatrix (n, n);

4 int i;

5 for (i = 1; i <= n; i++)

6 ELEM(m, i, i) = 1.0;

7 return m;

8 }

Since newMatrix returns an all-0 matrix, lines 5–6 need only set the diagonal
elements.

In the second version, the user provides a matrix. If it is square, then it is
set to be the identity matrix:

1 int identity (matrix * m) {

2 if (!m || m->rows != m->cols) return -1;

3 int row , col;

4 for (col = 1; col <= m->cols; col ++)

5 for (row = 1; row <= m->rows; row ++)

6 if (row == col)

7 ELEM(m, row , col) = 1.0;

8 else

9 ELEM(m, row , col) = 0.0;

10 return 0;

11 }

This version allows the user to control when memory is allocated. �

Exercise 6.4. Implement a function that returns whether a given matrix is
a diagonal matrix, that is, square and 0 everywhere except possibly on the
diagonal.
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Solution. The strategy is to check each off-diagonal element in turn—
except that if the matrix is not even square, then it can’t be diagonal. If ever
a nonzero value is encountered, then the function can immediately return
0 (false). If the search concludes without finding a nonzero value, then the
function concludes that the matrix is indeed diagonal.

1 int isSquare (matrix * mtx) {

2 return mtx && mtx ->rows == mtx ->cols;

3 }

4

5 int isDiagonal(matrix * mtx) {

6 if (! isSquare (mtx )) return 0;

7 int row , col;

8 for (col = 1; col <= mtx ->cols; col ++)

9 for (row = 1; row <= mtx ->rows; row ++)

10 // if the element is not on the diagonal and not 0

11 if (row != col && ELEM(mtx , row , col) != 0.0)

12 // then the matrix is not diagonal

13 return 0;

14 return 1;

15 }

�

Exercise 6.5. Implement a function that returns whether a given matrix is
upper triangular, that is, square and with all 0s below the diagonal.

Solution. We use the isSquare function of Exercise 6.4. The strategy is to
check the below-diagonal elements; if any is nonzero, then the matrix is not
upper triangular.

1 int isUpperTriangular(matrix * mtx) {

2 if (! isSquare (mtx )) return 0;

3 int row , col;

4 // looks at positions below the diagonal

5 for (col = 1; col <= mtx ->cols; col ++)

6 for (row = col +1; row <= mtx ->rows; row ++)

7 if (ELEM(mtx , row , col) != 0.0)

8 return 0;

9 return 1;

10 }

Notice the initialization of the inner loop. �

Exercise 6.6. Implement a function that returns whether a given matrix is
lower triangular, that is, square and with all 0s above the diagonal. �

Exercise 6.7. Implement the following specification:

1 /* Return 1 if mtx is square and symmetric and 0 otherwise

2 * (including if mtx is NULL ).
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3 */

4 int symmetric (matrix * mtx );

�

Exercise 6.8. Implement the following specification:

1 /* Returns column col of mtx as a new vector . Returns NULL

2 * if mtx is NULL or col is inconsistent with mtx ’s

3 * dimensions.

4 */

5 matrix * getColumn (matrix * mtx , int col );

6

7 /* Returns row row of mtx as a row vector . Returns NULL if

8 * mtx is NULL or row is inconsistent with mtx ’s

9 * dimensions.

10 */

11 matrix * getRow (matrix * mtx , int row );

�

Exercise 6.9. Implement a function that constructs a diagonal matrix from
a given vector. For example,





1
2
3



 yields the matrix





1 0 0
0 2 0
0 0 3



 .

Solution. The following version accepts a vector and a matrix from the
user and then, if they are of the correct dimensions, sets the matrix to be
diagonal with the vector’s elements on the diagonal.

1 int diagonal (matrix * v, matrix * mtx) {

2 if (!v || !mtx ||

3 v->cols > 1 || v->rows != mtx ->rows ||

4 mtx ->cols != mtx ->rows)

5 return -1;

6 int row , col;

7 for (col = 1; col <= mtx ->cols; col ++)

8 for (row = 1; row <= mtx ->rows; row ++)

9 if (row == col)

10 ELEM(mtx , row , col) = ELEM(v, col , 1);

11 else

12 ELEM(mtx , row , col) = 0.0;

13 return 0;

14 }

Implement a version that returns a fresh matrix given a vector:

1 matrix * diagonal (matrix * v);

�
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Exercise 6.10. Implement a function that sets a matrix to its product with
a scalar:

1 /* Sets each element of mtx to the product of that element

2 * with s. Returns -1 if mtx is NULL and 0 otherwise .

3 */

4 int scalarProduct(double s, matrix * mtx );

�

Exercise 6.11. Implement the following specification:

1 /* Writes the pow ’th power of square matrix mtx into out.

2 * Returns 0 if successful , -1 if mtx or out is NULL , -2

3 * if mtx is not square , and -3 if pow < 0.

4 */

5 int power (matrix * mtx , int pow , matrix * out );

For n×n matrix A, A0 is the identity matrix, and An+1 = A×An = An×A.
�

Exercise 6.12. Challenge: Implement Gaussian elimination. �

Exercise 6.13. Challenge: Implement a less-than-naive version of power by
exploiting the binary representation of pow. �

Exercise 6.14. Challenge: Sophisticated implementations of dense matrix
operations are complicated by a critical memory-access optimization: they
exploit the caching behavior of modern architectures. In particular, a memory
access causes a block of memory to be transferred from main memory (RAM,
for “random access memory”) to an on-chip cache, unless the accessed address
is already mirrored in the cache because of a prior access to the same or nearby
address. As the cache is limited in size, such a transfer typically causes another
cached memory segment to be evicted from the cache. Cache-aware code tries
to maximize the computational work accomplished for each main-memory
transfer, often yielding substantial performance gains over naive code.

Implement a version of product that exploits the cache. In particular,
notice that line 13 of product accesses mtx2 in a manner that, along with the
memory layout policy defined by ELEM, plays well with the cache. However,
its access pattern for mtx1 is about as bad as it can get: for large matrices,
each arithmetic operation corresponds to one RAM-to-cache transfer.

Additionally, implement the loop counters so that the multiplication in
ELEM is not required.2 �

2 This question was suggested by Andrew Bradley.
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6.4 Debugging Programs that Use the Heap

Manipulating heap memory is prone to the same bugs as manipulating stack
memory:

• Dereferencing NULL

• Dereferencing an uninitialized pointer
• Reading uninitialized memory
• Off-by-one indexing
• Getting hosed by a malformed C string

and some new ones:

• Failing to free allocated memory (memory leak)
• Accessing freed memory
• Double-freeing a pointer
• Exhausting the heap and failing to notice when malloc returns NULL

This list contains typical bugs. One can be alarmingly creative in “inventing”
new categories of bugs.

With so many ways of introducing memory bugs into our code, what are
we to do? Fortunately, there is an amazing (and open-source) tool available:
valgrind. According to the valgrind website, it’s named for the entrance to
“Valhalla,” where Norse heroes headed after one heroic act too many.

Let’s take a rusty scalpel to lines 69–76 of the main function that defines
our unit test:

69 deleteMatrix(A);

70 deleteMatrix(Ac);

71 // deleteMatrix(B);

72 deleteMatrix(c);

73 deleteMatrix(d);

74 // deleteMatrix(M);

75 deleteMatrix(ct);

76 deleteMatrix(mdp );

After compiling, running valgrind ./a.out yields the following report:

HEAP SUMMARY:

in use at exit: 176 bytes in 4 blocks

total heap usage: 16 allocs, 12 frees, 496 bytes allocated

LEAK SUMMARY:

definitely lost: 32 bytes in 2 blocks

indirectly lost: 144 bytes in 2 blocks

possibly lost: 0 bytes in 0 blocks

still reachable: 0 bytes in 0 blocks

suppressed: 0 bytes in 0 blocks

Rerun with --leak-check=full to see details of leaked memory
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For counts of detected and suppressed errors, rerun with: -v

ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 4 from

4)

The good news is that the ERROR SUMMARY indicates a clean bill of health. The
bad news is that 32 bytes were definitely lost in 2 blocks, and another 144 bytes
were indirectly lost in 2 blocks. (For fun, let’s do the arithmetic. On my 64-bit
machine, each int of matrix requires 4 bytes, and the double * requires 8
bytes, yielding 16 bytes per matrix structure. Each matrix is 3× 3 and each
double requires 8 bytes, so each matrix’s data field points to 3 · 3 · 8 = 72
bytes. It checks out.) Running valgrind --leak-check=full ./a.out as
recommended yields the following additional information:

88 (16 direct, 72 indirect) bytes in 1 blocks are definitely

lost in loss record 3 of 4

at 0x4C274A8: malloc (vg_replace_malloc.c:236)

by 0x40072D: newMatrix (matrix.c:21)

by 0x4010C1: main (matrix.c:212)

88 (16 direct, 72 indirect) bytes in 1 blocks are definitely

lost in loss record 4 of 4

at 0x4C274A8: malloc (vg_replace_malloc.c:236)

by 0x40072D: newMatrix (matrix.c:21)

by 0x40120E: main (matrix.c:231)

The report is clear in pointing out that two instances of matrix were not
freed—both reports indicate that newMatrix was the source of the lost
memory—but we still have to track down which instances they are.

Let’s wield the rusty scalpel again:

69 deleteMatrix(A);

70 deleteMatrix(Ac);

71 deleteMatrix(B);

72 deleteMatrix(c);

73 deleteMatrix(d);

74 deleteMatrix(M);

75 deleteMatrix(ct);

76 deleteMatrix(mdp );

77 deleteMatrix(A); // double -free

Recompiling and executing the program goes just fine on my system, even
with -O3. But what does valgrind have to say?

Invalid read of size 8

at 0x400857: deleteMatrix (matrix.c:55)

by 0x4013F6: main (matrix.c:269)

Address 0x51b0048 is 8 bytes inside a block of size 16

free’d

at 0x4C270BD: free (vg_replace_malloc.c:366)
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by 0x400894: deleteMatrix (matrix.c:58)

by 0x401396: main (matrix.c:261)

Invalid read of size 8

at 0x40087D: deleteMatrix (matrix.c:56)

by 0x4013F6: main (matrix.c:269)

Address 0x51b0048 is 8 bytes inside a block of size 16

free’d

at 0x4C270BD: free (vg_replace_malloc.c:366)

by 0x400894: deleteMatrix (matrix.c:58)

by 0x401396: main (matrix.c:261)

Invalid free() / delete / delete[]

at 0x4C270BD: free (vg_replace_malloc.c:366)

by 0x400888: deleteMatrix (matrix.c:56)

by 0x4013F6: main (matrix.c:269)

Address 0x51b0090 is 0 bytes inside a block of size 72

free’d

at 0x4C270BD: free (vg_replace_malloc.c:366)

by 0x400888: deleteMatrix (matrix.c:56)

by 0x401396: main (matrix.c:261)

Invalid free() / delete / delete[]

at 0x4C270BD: free (vg_replace_malloc.c:366)

by 0x400894: deleteMatrix (matrix.c:58)

by 0x4013F6: main (matrix.c:269)

Address 0x51b0040 is 0 bytes inside a block of size 16

free’d

at 0x4C270BD: free (vg_replace_malloc.c:366)

by 0x400894: deleteMatrix (matrix.c:58)

by 0x401396: main (matrix.c:261)

The first two reports indicate that deleteMatrix is chomping on memory
that has already been freed; the latter two reports indicate double-freeing.
Line numbers don’t correspond to the text, but, for example, lines 261 and
269 correspond to lines 69 and 77 above. Perhaps only having a TA leaning
over your shoulder pointing directly to the buggy line could possibly make
the issue any clearer. The lesson here is that valgrind is worth running even
when the program seems to run fine.

You may be wondering why we need to free memory when the program
is about to exit. We technically don’t. However, in more complex programs,
data that we intentionally—or, rather, lazily—decide not to free can mask
valid reports of leaked memory that indicate true bugs.

It’s probably unnecessary to provide further evidence of valgrind’s capa-
bilities. You’ll surely discover them for yourself.
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Abstract Data Types

The matrix type, with its supporting functions, is the first complex data
structure that we have encountered. But there are several aspects of the im-
plementation that are unsatisfying. First, the entire implementation, including
the unit test, is in one file, yet the type and its functions are clearly intended to
be used as a library in larger programs—similar to the way we use, for exam-
ple, the standard I/O library in many programs. Second, the struct defining
a matrix is visible to anyone, which, if nothing else, is esthetically displeas-
ing. More to the point, it encourages an unmodular style of programming in
which any part of a program can access data that are essentially private to the
matrix module. Furthermore, it prevents the possibility of offering multiple
implementations of the same interface, for example, dense or sparse matrix
representations and manipulations.

Modern programming languages provide facilities for separating public
and private aspects of interfaces. While C does not explicitly provide facilities,
there is a way of organizing code that yields this separation. Data types defined
in this way are called abstract data types, or ADTs for short.

The idea of an ADT becomes apparent when one considers built-in types,
such as int. An int variable, up to certain technicalities, holds integer values;
it can be manipulated using arithmetic operations. A knowledge of how an int

value is represented in memory, or how arithmetic on ints is implemented, is
unnecessary to use int data. Indeed, two computer architectures may imple-
ment int operations in different ways. Now suppose, for example, that one
might want to manipulate matrices, coordinates, or complex numbers, none
of which are part of C. We must define these types and their corresponding
operations. An ADT is a programmatic method of defining new data types in
a modular and elegant fashion.

The specification of an ADT resides in a header file. It consists of the
declaration of the ADT itself and a list of function prototypes, also called
function signatures; each prototype specifies the name, input types, and
output type of a function. The implementation of an ADT resides in a
different file: the memory layout for the type and the implementations of each
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function declared in the header file must be provided. Finally, various projects
can include the header file, just as we have included stdio.h, in order to have
access to the new type.

7.1 Revisiting Matrices

Let’s put aside the rusty scalpel of Section 6.4 and pull out a freshly sharpened
one. The goal is to make minor modifications to the matrix module to convert
it into an ADT.

The first step is to create a header file called matrix.h, whose purpose
is to define the public interface for the matrix module:

1 #ifndef _MATRIX_H_

2 #define _MATRIX_H_

3

4 /* The type declaration of the ADT. */

5 typedef struct _matrix * matrix ;

6

7 /* Creates a rows x cols matrix with all values 0. */

8 matrix newMatrix (int rows , int cols);

9

10 /* Copies a matrix . */

11 matrix copyMatrix(matrix mtx );

12

13 /* Deletes a matrix . */

14 void deleteMatrix(matrix mtx );

15

16 /* Sets the (row , col) element of mtx to val. Returns 0 if

17 * successful , and -1 if row or col are outside of the

18 * dimensions of mtx.

19 */

20 int setElement(matrix mtx , int row , int col , double val );

21

22 /* Sets the reference val to value of the (row , col)

23 * element of mtx. Returns 0 if successful , -1 if val is

24 * NULL , and -2 if row or col are outside of the dimensions

25 * of mtx .

26 */

27 int getElement(matrix mtx , int row , int col , double * val );

28

29 /* Returns the number of rows of mtx. */

30 int nRows (matrix mtx );

31

32 /* Returns the number of columns of mtx. */

33 int nCols (matrix mtx );

34

35 /* Prints the matrix to stdout . */
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36 void printMatrix(matrix mtx );

37

38 /* Writes the transpose of matrix in into matrix out.

39 * Returns 0 if successful , and -1 if the dimensions of in

40 * and out are incompatible.

41 */

42 int transpose (matrix in , matrix out );

43

44 /* Writes the sum of matrices mtx1 and mtx2 into matrix sum.

45 * Returns 0 if successful , and -1 if the dimensions of the

46 * matrices are incompatible.

47 */

48 int sum(matrix mtx1 , matrix mtx2 , matrix sum );

49

50 /* Writes the product of matrices mtx1 and mtx2 into matrix

51 * prod. Returns 0 if successful , and -1 if the dimensions

52 * of the matrices are incompatible.

53 */

54 int product (matrix mtx1 , matrix mtx2 , matrix prod);

55

56 /* Writes the dot product of vectors v1 and v2 into

57 * reference prod. Returns 0 if successful , -1 if prod is

58 * NULL , -2 if either matrix is not a vector , and -3 if

59 * the vectors are of incompatible dimensions.

60 */

61 int dotProduct(matrix v1, matrix v2 , double * prod);

62

63 #endif

There are several differences between this specification and the original. First,
lines 1, 2, and 62 areC preprocessor instructions that prevent multiple inclu-
sions of matrix.h even if several files include matrix.h (through a #include

"matrix.h" statement). One reads such instructions as follows: if the constant
MATRIX H is not yet defined (line 1), then define it (line 2) and read every-
thing through line 62; otherwise (if MATRIX H is already defined), skip ev-
erything through line 62. Preprocessor instructions are executed during com-
pilation and direct the compilation process itself.

Second, line 5 defines the type matrix as short for struct matrix *.
Subsequently, each matrix * of the original specification is converted into
simply matrix, as the type itself is a pointer. From the user’s point of view,
the type being defined is simply called matrix, and except for a slight leak of
information—that a matrix is actually a struct matrix *—the user can-
not deduce from the file matrix.h how a matrix is actually represented in
memory. The definition of struct matrix itself will be provided shortly in
the implementation file matrix.c.

With implementation information hidden, we can design the library to
be more convenient to use; in particular, deleteMatrix, nRows, nCols,
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printMatrix, transpose, sum, product, and dotProduct need not be de-
signed in such a way as to alert the user that a matrix argument is NULL. Of
course, a mischievous user can always find a way to undermine an interface,
but a well-meaning user will still be protected.

The file matrix.c contains the implementation:

1 #include <assert .h>

2 #include <stdio.h>

3 #include <stdlib .h>

4 #include <string .h>

5

6 #include "matrix .h"

7

8 struct _matrix {

9 int rows;

10 int cols;

11 double * data;

12 };

13

14 matrix newMatrix (int rows , int cols) {

15 // allocate a matrix structure

16 matrix m = (matrix ) malloc (sizeof (struct _matrix ));

17

18 // set dimensions

19 m->rows = rows;

20 m->cols = cols;

21

22 if (rows > 0 && cols > 0) {

23 // allocate a double array of length rows * cols

24 m->data = (double *) malloc (rows*cols*sizeof (double ));

25 // set all data to 0

26 int i;

27 for (i = 0; i < rows*cols; i++)

28 m->data[i] = 0.0;

29 }

30 else

31 m->data = NULL;

32

33 return m;

34 }

35

36 void deleteMatrix(matrix mtx) {

37 if (mtx ->data) free(mtx ->data );

38 free(mtx );

39 }

40

41 // ...
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The implementation continues with minor differences relative to the original
implementation. Notice, however, that newMatrix always returns a matrix
structure, even when the number of specified rows or columns is nonpositive.
This implementation ensures that NULL is never returned to the user, and so
a NULL matrix can never be passed as an argument. However, because the
data field may be set to NULL, deleteMatrix must take this possibility into
account at line 37.

Notice also that the implementation includes matrix.h so that it be-
comes aware of the type matrix. Line 16 uses both types struct matrix

and matrix: matrix is the convienient name for referring to the pointer type,
while struct matrix must be used explicitly for obtaining the size of the
structure.

Finally, we place main, which implements a unit test, in its own file,
matrix test.c:

1 #include <stdio.h>

2 #include "matrix .h"

3

4 int main() {

5 matrix A, Ac , B, c, d, M, ct , mdp ;

6 double dp;

7

8 A = newMatrix (3, 3);

9 setElement(A, 1, 1, 1.0);

10 // ...

To obtain access to the library, the unit test simply includes matrix.h.
The difference in inclusion style—"matrix.h" with quotes, <stdio.h> with
brackets—tells the compiler where to look for the files. Brackets indicate stan-
dard or system header files, which typically reside in system-level directories
such as /usr/include, while quotes indicate project header files, which reside
in the same or a nearby directory.

Because matrix.c and not matrix.h has the definition of struct

matrix, the data layout is as invisible to the user as are the implementations
of the functions, achieving true separation of interface and implementation.

One can compile the multiple files manually:

$ gcc -Wall -Wextra -c matrix.c

$ gcc -Wall -Wextra -c matrix_test.c

$ gcc -o matrix_test matrix.o matrix_test.o

The -c flag tells gcc to compile but not to link; gcc yields the two object
files matrix.o and matrix test.o in this mode. The final invocation of gcc
links the two object files together; the -o matrix test option tells gcc to
call the final executable matrix test rather than a.out. The first call to gcc

also checks the syntax of matrix.h because matrix.c includes it; however,
one can explicitly check the file—for example, after writing the interface but
before implementing it—by running gcc on it:
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$ gcc -Wall -Wextra -c matrix.h

A more convenient option is to define a makefile, which is typically called
Makefile:

1 CC = gcc # sets gcc as the compiler

2 CFLAGS = -Wall -Wextra -g # our standard arguments to gcc

3

4 # to make matrix_test , we need matrix .o and matrix_test.o

5 matrix_test: matrix .o matrix_test.o

6

7 # "make clean" removes the executable and the object files

8 clean:

9 rm -f matrix_test *.o

Now we simply run make, yielding the executable matrix test as well as the
following output:

$ make

gcc -Wall -Wextra -g -c -o matrix_test.o matrix_test.c

gcc -Wall -Wextra -g -c -o matrix.o matrix.c

gcc matrix_test.o matrix.o -o matrix_test

By using the standard variables CC, for “C Compiler,” and CFLAGS, for “C
Flags,” the make utility does most of the work for us. We just provide the
target executable (matrix test) and the object files that it depends on
(matrix.o and matrix test.o) at line 5. The second target, clean, is ex-
ecuted via make clean; it deletes the executable and object files. Executing
./matrix test then yields the output at the end of Section 6.1.

Separate compilation highlights the separation of implementation
from specification that ADTs offer. The reason that gcc can compile
matrix test.c without having the definition of struct matrix is because
matrix is a pointer type. All pointers occupy the same number of bytes; hence,
gcc can compute stack offsets, among many other tasks, without knowing
about struct matrix.

Exercise 7.1. Implement an abstract data type for representing and manip-
ulating complex numbers. For two complex numbers a+ bi and c+ di,

• (a+ bi) + (c+ di) = (a+ c) + (b+ d)i
• (a+ bi)(c+ di) = ac+ adi + bci + bdi2 = (ac− bd) + (ad+ bc)i

Solution. In complex.h, we write the following interface, which defines
how a user creates, manipulates, and destroys complex numbers:

1 #ifndef _COMPLEX_H_

2 #define _COMPLEX_H_

3

4 /* The type declaration of the ADT. */

5 typedef struct _complex * complex ;
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6

7 /* Creates a complex number , initially 0. */

8 complex newComplex();

9

10 /* Deletes a complex number . */

11 void deleteComplex(complex c);

12

13 // "setters "

14

15 /* Sets the real component of c. */

16 void setReal ( complex c, double r);

17

18 /* Sets the imaginary component of c. */

19 void setImaginary(complex c, double i);

20

21 // "getters "

22

23 /* Returns the real component of c. */

24 double getReal (complex c);

25

26 /* Returns the imaginary component of c. */

27 double getImaginary(complex c);

28

29 // basic arithmetic

30

31 /* Adds b to a, with the result being stored in a. */

32 void addTo(complex a, complex b);

33

34 /* Multiplies b by a, with the result being stored in a. */

35 void multiplyBy(complex a, complex b);

36

37 /* Multiplies complex a by real b, with the result being

38 * stored in a.

39 */

40 void multiplyByReal(complex a, double b);

41

42 /* Prints in a + bi form. */

43 void printComplex(complex c);

44

45 #endif

Even before implementing the interface, we can test if the interface itself
is “complete.” Does it allow us to perform the work that we would like to
accomplish? The test of the interface later becomes a unit test of the imple-
mentation. We implement the test in complex test.c:

1 #include "complex .h"

2 #include <stdio.h>

3
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4 int main() {

5 complex c1 = newComplex();

6 complex c2 = newComplex();

7

8 // create c1 with value 1

9 setReal (c1, 1.0);

10 setImaginary(c1 , 0.0);

11 printComplex(c1);

12 printf (", ");

13

14 // create c2 with initial value i

15 setReal (c2, 0.0);

16 setImaginary(c2 , 1.0);

17 printComplex(c2);

18 printf ("\n");

19

20 // set c1 = c1 * c2, which is i

21 multiplyBy(c1, c2);

22 printComplex(c1);

23 printf ("\n");

24

25 // negate c1 so that it becomes -i

26 multiplyByReal(c1 , -1);

27 printComplex(c1);

28 printf ("\n");

29

30 // set c1 = c1 + c2, which is -i + i, or 0

31 addTo(c1 , c2);

32 printComplex(c1);

33 printf ("\n");

34

35 // clean up

36 deleteComplex(c1);

37 deleteComplex(c2);

38

39 return 0;

40 }

If all goes well with the implementation, we expect to see the following printed
to the terminal when we run the unit test:

1.000000 + 0.000000i, 0.000000 + 1.000000i

0.000000 + 1.000000i

-0.000000 + -1.000000i

0.000000 + 0.000000i

Having established that the interface for manipulating complex numbers
is usable, we turn to the task of implementing the ADT in complex.c:

1 #include "complex .h"



7.1. Revisiting Matrices 145

2 #include <stdio.h>

3 #include <stdlib .h>

4

5 // represents a complex number as a pair of doubles

6 struct _complex {

7 double r; // the real part

8 double i; // the imaginary part

9 };

10

11 complex newComplex() {

12 complex c = (complex ) malloc (sizeof (struct _complex ));

13 c->r = 0.0;

14 c->i = 0.0;

15 return c;

16 }

17

18 void deleteComplex(complex c) {

19 free(c);

20 }

21

22 void setReal ( complex c, double r) {

23 c->r = r;

24 }

25

26 void setImaginary(complex c, double i) {

27 c->i = i;

28 }

29

30 double getReal (complex c) {

31 return c->r;

32 }

33

34 double getImaginary(complex c) {

35 return c->i;

36 }

37

38 void multiplyByReal(complex c, double r) {

39 c->r = r * c->r;

40 c->i = r * c->i;

41 }

42

43 void addTo(complex a, complex b) {

44 a->r += b->r;

45 a->i += b->i;

46 }

47

48 void multiplyBy(complex a, complex b) {

49 double r = a->r * b->r - a->i * b->i;

50 double i = a->r * b->i + a->i * b->r;
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51 a->r = r;

52 a->i = i;

53 }

54

55 void printComplex(complex c) {

56 printf ("%f + %fi", c->r, c->i);

57 }

Each function is relatively straightforward, but all together, they define a
powerful new data type.

To compile the three files into a unit test, we write the following in
Makefile:

1 CC = gcc

2 CFLAGS = -Wall -Wextra -g

3

4 all : complex_test

5

6 complex_test: complex .o complex_test.o

7

8 clean:

9 rm -f complex_test *.o

At the command line, we do the following:

$ make

$ ./complex_test

1.000000 + 0.000000i, 0.000000 + 1.000000i

0.000000 + 1.000000i

0.000000 + -1.000000i

0.000000

In practice, the complex ADT would be used in a more complicated program
with its own Makefile and main function. For example, a program that im-
plemented the discrete Fourier transform (see Chapter 11) would require a
representation of complex numbers. �

Exercise 7.2. Implement the following interface for the abstract data type
of two-dimensional coordinates. The interface provides access to a coordinate
using both Cartesian and polar coordinates.

Cartesian coordinate (x, y) corresponds to polar coordinate (r =
√

x2 + y2, θ = atan2(y, x)), where atan2(y, x) returns the angle between 0
and 2π, exclusive, corresponding to (x, y). Conversely, polar coordinate (r, θ)
corresponds to Cartesian coordinate (x = r cos(θ), y = r sin(θ)).

1 #ifndef _COORD_H_

2 #define _COORD_H_

3

4 /* The type declaration of the ADT. */
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5 typedef struct _coord * coord;

6

7 /* Creates a coordinate. */

8 coord newCoord ();

9

10 /* Deletes a coordinate. */

11 void deleteCoord(coord c);

12

13 // "getters "

14

15 /* For Cartesian coordinates. */

16 double getX(coord c);

17 double getY(coord c);

18

19 /* Returns the radius component . */

20 double getR(coord c);

21

22 /* Returns the angle component through the reference th.

23 * The angle is undefined if the corresponding Cartesian

24 * coordinate is (0, 0), so it returns -1 in this case;

25 * otherwise , it returns 0.

26 */

27 int getTheta (coord c, double * th);

28

29 // "setters "

30

31 /* For Cartesian coordinates. */

32 void setX(coord c, double x);

33 void setY(coord c, double y);

34

35 /* Set the radius /angle components if possible and return

36 * 0. However , neither can be set if the corresponding

37 * Cartesian coordinate is (0, 0), so they leave the

38 * coordinate unmodified and return -1 in this case.

39 */

40 int setR(coord c, double r);

41 int setTheta (coord c, double th);

42

43 #endif

As an example of the ADT’s usage, consider the following unit test:

1 #include "coord.h"

2 #include <stdio.h>

3

4 int main() {

5 coord c = newCoord ();

6 double th;

7

8 setX(c, 1.0);
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9 // c is (1, 0), so th should be 0

10 getTheta (c, &th);

11 printf ("%f\n", th);

12

13 setY(c, .5);

14 // c is (1, .5), so th should be atan (.5/1)

15 getTheta (c, &th);

16 printf ("%f\n", th);

17

18 setX(c, 0.0);

19 setR(c, 1.0);

20 // c is (0, 1)

21 printf ("%f %f\n", getX(c), getY(c));

22

23 setTheta (c, 3.14159265);

24 // c is (-1, 0)

25 printf ("%f %f\n", getX(c), getY(c));

26

27 deleteCoord(c);

28

29 return 0;

30 }

To implement the ADT, use the trigonometric functions sin, cos, and
atan2 defined in math.h. You can read about them online. Compiling when
using the standard math library requires the library inclusion flag -lm:

1 CC = gcc

2 CFLAGS = -Wall -Wextra -g

3 LIBS = -lm

4

5 all : coord_test

6

7 coord_test: coord.o coord_test.o

8 gcc -o $@ $^ $(CFLAGS ) $(LIBS)

9

10 clean:

11 rm -f coord_test *.o

When implementing the ADT, think carefully about the basic representa-
tion. There are two obvious possibilities:

• Represent the coordinate using Cartesian coordinates only, so that struct
coord has two double fields: x and y.

• Represent the coordinate using polar coordinates only, so that struct

coord has two double fields: r and theta.

The first representation is fast if the user mostly uses the Cartesian function-
ality but relatively slow if the user mostly uses the polar functionality; the
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opposite is true of the second representation. As a challenge, devise a repre-
sentation that is fast whenever the user only uses the Cartesian functions or
only uses the polar functions; in other words, it adapts to how the user applies
the library. �

7.2 FIFO Queue: A Specification

A queue is a data structure into which one can put elements and from which
one can subsequently get elements. The policy of the queue dictates in what
order elements are retrieved. A first-in first-out, or FIFO, queue is one in
which elements are retrieved in the same order that they were added. A line at
the grocery store is a FIFO. A last-in first-out, or LIFO, queue (sometimes
called a first-in last-out, or FILO, queue) has the opposite policy. Another
name for a LIFO queue is a stack.

Queues of both types are frequently used data structures in complex pro-
grams. For example, FIFO queues are used to buffer sensory input in embed-
ded systems, to orchestrate software pipelines in multicore systems, and as
a basis for breadth-first search in graph-based algorithms. LIFO queues are
used to implement general recursion with loops, in compilers to implement
variable scoping, in interpreters to provide a program stack, and as a basis
for depth-first search in graph-based algorithms. The program stack that we
have been using is, of course, a LIFO—although one that is implicit in the
programming model rather than explicit as a data structure.

In some applications, FIFOs can be effectively unbounded, while other
applications require FIFOs with a maximum capacity. When that capacity
is reached, the client program must implement its own policy. For example,
inessential sensory information in an embedded system might be ignored. In
contrast, the arrival of vital sensory information when a FIFO is full might
trigger a different mode of behavior that is intended to handle the vital in-
formation as soon as possible. The FIFO module itself need only provide a
mechanism for alerting the client module that the FIFO is full. In this chap-
ter, we explore an implementation of the FIFO ADT that has a user-specified
maximum capacity; in Chapter 8, we discuss a new basic data structure that
enables an unbounded implementation of FIFOs.

The file fifo.h specifies the abstract data type of fifo:

1 #ifndef _FIFO_H_

2 #define _FIFO_H_

3

4 /* Defines the ADT of First -In First -Out queues . */

5

6 /* The type declaration of the ADT. */

7 typedef struct _fifo * fifo;

8

9 /* Returns a new fifo with the given maximum capacity . */
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10 fifo newFifo (int capacity );

11

12 /* Deletes a fifo. */

13 void deleteFifo(fifo q);

14

15 /* Returns whether q is empty -- 1 (true) or 0 (false ). */

16 int isEmptyFifo(fifo q);

17

18 /* Adds element e to q. Returns 0 if successful and -1 if

19 * e could not be added to q because q is full.

20 */

21 int putFifo (fifo q, void * e);

22

23 /* Sets e to point to the first element of q and removes

24 * the element from q. Returns 0 if successful and -1 if e

25 * is NULL. If q is empty , returns -2 and sets *e to NULL.

26 */

27 int getFifo (fifo q, void ** e);

28

29 /* Specification of user -provided printing function . */

30 typedef void (* printFn )( void *);

31

32 /* Prints the elements of q in order. Requires a printFn ,

33 * a user -provided function that prints an element .

34 * Returns 0 if successful and -1 if f is NULL.

35 */

36 int printFifo (fifo q, printFn f);

37

38 #endif

There are several new programming concepts in this specification. The
first is the use of the pointer type void *, which is used to indicate a pointer
to data with an unknown structure. From the fifo’s perspective, the form of
the data does not matter. However, a user of a fifo must cast data to be of
type void * to avoid a lot of compiler warnings:

1 char * in = "Gallia est omnis divisa in partes tres ...";

2 putFifo (q, (void *) str );

More generally, a FIFO is a container ADT: it stores user-provided data,
and it should work for any type of data. Some languages, like C++ and
Java, provide advanced facilities for writing container types like FIFOs, but C
does not. Therefore, it makes sense that we use a “generic” type like void *

when implementing a container ADT: it says that the fifo neither knows nor
cares about what the data are, but it will do a good job of storing them and
returning them in the same order that they were given.

The second new concept is the use of a function pointer. A function
pointer is, as its name suggests, a pointer to a function. The type declaration
at line 30 declares the type printFn to describe a pointer to a function that
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accepts one argument, data, and returns nothing (void). The need for a func-
tion pointer is simple: we would like to provide a function to print the state
of the fifo, but the fifo does not have any knowledge of what the data that
it holds look like. Hence, the user provides a function that prints one data
element. We provide an example usage shortly.

We have reached a point where I must assume that you have developed
a certain level of programming maturity in order to continue the exposition.
In particular, the use of void *, the consequent typecasting, and the use of
function pointers are only the first of a set of “advanced” C techniques that
we will use in the next two chapters. If you feel that your understanding of the
foundations is inadequate or that the advanced material requires too big of a
jump, now is a good time to allocate extra time to shore up the foundations.

Without further ado, we consider a unit test for the fifo module, which
we put in the file fifo test.c. The first half of the test uses a fifo to
hold data of type long, which is an integer type that on many, but not all,
platforms occupies the same number of bytes as a pointer and which may or
may not occupy more bytes than an int.1 Therefore, we typecast values of
type long to be values of type void *, a seemingly hacky thing to do. A hack
is a kludge, an inelegant widget, an application of duct tape, a programming
no-no—in short, a line or two of code that you hope nobody notices but that
gets the job done. But what makes a hack a hack is that it’s not commonly
accepted practice—or if it is, it’s at least frowned upon. This kind of cast is
common, and while it may cause a raised eyebrow, it probably should not
induce a frown.

The second half of the test exercises a fifo that holds strings. Both fifos
are initialized to have a maximum capacity of three elements.

Finally, the functions printLong and printString are passed to
printFifo. They provide the interface between the user and the library in
order to print out the state of the fifo. Notice that the void * datum that is
passed to these function must be typecast to long and char *, respectively.

1 #include <assert .h>

2 #include <stdio.h>

3 #include <stdlib .h>

4

5 #include "fifo.h"

6

7 static void printLong (void * e) {

8 // %ld tells printf to print a long integer

9 printf ("%ld", (long) e);

10 }

11

12 static void printString(void * e) {

13 printf ("%s", (char *) e);

1 On 32-bit and 64-bit Unix platforms, a long occupies 4 and 8 bytes, respectively,
the same as a pointer.
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14 }

15

16 int main() {

17 fifo longq , stringq ;

18 void * e;

19

20 // test with longs

21

22 longq = newFifo (3);

23

24 assert ( isEmptyFifo(longq ));

25

26 printf ("longq (empty ): ");

27 printFifo (longq , printLong );

28

29 assert (! putFifo (longq , (void *) 1));

30 assert (! putFifo (longq , (void *) 2));

31 assert (! putFifo (longq , (void *) 3));

32

33 assert (putFifo (longq , (void *) 4));

34

35 printf ("longq (3 elements ): ");

36 printFifo (longq , printLong );

37

38 assert (! getFifo (longq , &e));

39 printf ("from longq (1): %ld\n", (long) e);

40

41 assert (! putFifo (longq , (void *) 4));

42

43 printf ("longq (3 elements ): ");

44 printFifo (longq , printLong );

45

46 assert (! getFifo (longq , &e));

47 printf ("from longq (2): %ld\n", (long) e);

48 assert (! getFifo (longq , &e));

49 printf ("from longq (3): %ld\n", (long) e);

50 assert (! getFifo (longq , &e));

51 printf ("from longq (4): %ld\n", (long) e);

52

53 assert ( isEmptyFifo(longq ));

54 assert (getFifo (longq , &e));

55 assert (!e);

56

57 deleteFifo(longq );

58

59 // test with strings

60

61 stringq = newFifo (3);

62
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63 assert ( isEmptyFifo(stringq ));

64

65 printf ("stringq (empty ): ");

66 printFifo (stringq , printString);

67

68 assert (! putFifo (stringq , (char *) "Hello"));

69 assert (! putFifo (stringq , (char *) "there"));

70 assert (! putFifo (stringq , (char *) "universe "));

71

72 assert (putFifo (stringq , (char *) "!"));

73

74 printf ("stringq (3 elements ): ");

75 printFifo (stringq , printString);

76

77 assert (! getFifo (stringq , &e));

78 printf ("from stringq (Hello ): %s\n", (char *) e);

79

80 assert (! putFifo (stringq , (char *) "!"));

81

82 printf ("stringq (3 elements ): ");

83 printFifo (stringq , printString);

84

85 assert (! getFifo (stringq , &e));

86 printf ("from stringq (there ): %s\n", (char *) e);

87 assert (! getFifo (stringq , &e));

88 printf ("from stringq (universe ): %s\n", (char *) e);

89 assert (! getFifo (stringq , &e));

90 printf ("from stringq (!): %s\n", (char *) e);

91

92 assert ( isEmptyFifo(stringq ));

93 assert (getFifo (stringq , &e));

94 assert (!e);

95

96 deleteFifo( stringq );

97

98 return 0;

99 }

Running this unit test yields the following output:

longq (empty):

longq (3 elements): 1:1 2:2 3:3

from longq (1): 1

longq (3 elements): 1:2 2:3 3:4

from longq (2): 2

from longq (3): 3

from longq (4): 4

stringq (empty):

stringq (3 elements): 1:Hello 2:there 3:universe
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from stringq (Hello): Hello

stringq (3 elements): 1:there 2:universe 3:!

from stringq (there): there

from stringq (universe): universe

from stringq (!): !

It is customary in unit tests to indicate parenthetically the expected output
as well as to use an abundance of asserts.

Exercise 7.3. Write a specification for a LIFO module in file lifo.h. Run
gcc -Wall -Wextra -c lifo.h to check for syntax errors. �

Exercise 7.4. Write a unit test for a LIFO module in file lifo test.c. Run
gcc -Wall -Wextra -c lifo test.c to check for syntax errors. �

7.3 FIFO Queue: A First Implementation

In this and the next chapters, we cover two implementations of the spec-
ification given in fifo.h. The implementation that is chosen at link time
determines the runtime behavior, although the functionality looks almost
identical—almost, because the second implementation allows the user to spec-
ify an unbounded queue—from a fifo user’s perspective. This section focuses
on an implementation based on a circular buffer, which we place in a file
called cbuffer.c.

A circular buffer is simply a bit of logic built on top of an array.

1 #include <assert .h>

2 #include <stdio.h>

3 #include <stdlib .h>

4

5 #include "fifo.h"

6

7 struct _fifo {

8 unsigned capacity ;

9 unsigned head;

10 unsigned tail;

11 void * data [0];

12 };

A head index, a tail index, and the data buffer itself form the circular buffer.
The capacitymust also be recorded for reasons that will become clear shortly.
The type unsigned is short for “unsigned integer.” Data in memory cells of
type unsigned are interpreted as nonnegative integers.

The data field is declared as a 0-length array of void * elements. In fact,
in newFifo below, we allocate memory in such a way that the data array
has a number of elements equal to the capacity. This cryptic but idiomatic
declaration allows us to allocate one contiguous chunk of memory to hold
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both the struct fifo structure and the data. We could have declared data

to be a void **, as in the matrix implementation, but then we would have
to allocate one chunk of memory to hold the struct fifo structure and
another to hold the data.

Before delving into the implementation, let’s consider circular buffers func-
tionally and pictorially. Here is a partially full circular buffer:

2 3 4 ⊗
The overline in cell 0 indicates that tail is 0, while the underline in cell 3
indicates that head is 3. This circular buffer has three elements, and they are
placed in the first three cells. The symbol ⊗ indicates that cell 3 does not hold
valid data. Here is another partially full circular buffer:

8 ⊗ ⊗ 7

Notice how head < tail in this configuration. A circular buffer is circular
in the sense that indexing is modulo its capacity. The valid data range is
between tail and head - 1, modulo capacity. In the second configuration,
the cells with valid data are thus 3 and 0.

A new element is added by placing it in the head cell and then setting head
to (head + 1) % capacity. If a new element were added to the first configu-
ration, it would be the case that head == tail in the resulting configuration.
Yet when head == tail, the valid data range is empty. Therefore, a circu-
lar buffer is full when (head + 1) % capacity == tail. Circular buffers are
slightly inefficient in that one cell is always garbage. Adding an element, say
9, to the second configuration yields a full buffer:

8 9 ⊗ 7

If a circular buffer is nonempty—that is, head != tail—then an element
can be removed from the tail cell: the value is returned, and tail is set to
(tail + 1) % capacity. For example, removing an element from the config-
uration above yields the element 7 and the following new configuration:

8 9 ⊗ ⊗
Of course, the ⊗ in cell 3 is technically still 7; there is no reason to explicitly
delete that datum.

Exercise 7.5. How large a circular buffer is required for the following se-
quence of actions to succeed: put 1, put 2, put 3, get, put 4, get, get, put 5,
put 6, put 7? Which value will the next “get” yield with this sufficiently large
buffer?

Solution. By analyzing the sequence of puts and gets, we see that the most
elements—four of them—are in the circular buffer after the 7 is put. Given
that circular buffers have one wasted cell, we apparently need a buffer of size
five. Let’s visualize the sequence to verify that five is indeed correct:
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initial: ⊗ ⊗ ⊗ ⊗ ⊗

put 1: 1 ⊗ ⊗ ⊗ ⊗

put 2: 1 2 ⊗ ⊗ ⊗

put 3: 1 2 3 ⊗ ⊗

get: ⊗ 2 3 ⊗ ⊗

put 4: ⊗ 2 3 4 ⊗

get: ⊗ ⊗ 3 4 ⊗

get: ⊗ ⊗ ⊗ 4 ⊗

put 5: ⊗ ⊗ ⊗ 4 5

put 6: 6 ⊗ ⊗ 4 5

put 7: 6 7 ⊗ 4 5

The next “get” will yield 4. �

With this visual introduction to circular buffers, let’s see how the im-
plementation plays out. First, newFifo allocates and initializes the circular
buffer:

1 fifo newFifo (int capacity ) {

2 assert (capacity > 0);

3

4 // The capacity of a circular buffer is one less than one

5 // would think: if the user wants a given capacity , the

6 // required array is one cell larger .

7 capacity ++;

8

9 // allocate one chunk of memory

10 fifo q = (fifo) malloc (sizeof (struct _fifo) +

11 capacity * (sizeof (void *)));

12 q->capacity = (unsigned ) capacity ;

13 q->head = 0;

14 q->tail = 0;

15 return q;

16 }

Notice first that capacity is incremented at line 7. Recall that the actual
capacity of a circular buffer is one fewer than its number of cells—head ==

tail indicates an empty buffer, so that (head + 1) % capacity == tail

indicates a full buffer.
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Next, observe the allocation trick that we employ at lines 10–11. Rather
than allocating two separate chunks of memory, one of sizeof(struct

fifo) bytes and the other of capacity * sizeof(void *) bytes, we allo-
cate a single chunk. Therefore, q->capacity, q->head, q->tail, and elements
q->data[0] through q->data[q->capacity-1] of the q->data array are all
within the one chunk of allocated memory.

Deleting a circular buffer is comparatively easy, especially since there is
only one chunk of memory to free:

1 void deleteFifo(fifo q) {

2 assert (q);

3 free(q);

4 }

The implementations of the next three functions, isEmptyFifo, putFifo,
and getFifo, follow directly from the discussion of circular buffers and the
specifications of the functions in fifo.h:

1 int isEmptyFifo(fifo q) {

2 assert (q);

3 return (q->head == q->tail );

4 }

5

6 int putFifo (fifo q, void * e) {

7 assert (q);

8 if ((q->head +1) % q-> capacity == q->tail) // full?

9 return -1;

10 q->data[q->head] = e;

11 q->head = (q->head +1) % q-> capacity ;

12 return 0;

13 }

14

15 int getFifo (fifo q, void ** e) {

16 assert (q);

17 if (!e) return -1;

18 if ( isEmptyFifo(q)) {

19 *e = NULL;

20 return -2;

21 }

22 *e = q->data[q->tail];

23 q->tail = (q->tail +1) % q-> capacity ;

24 return 0;

25 }

Finally, printFifo applies the user-supplied printFn to every valid cell,
in order:

1 int printFifo (fifo q, printFn f) {

2 assert (q);

3 if (!f) return -1;
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4

5 unsigned i, cnt = 1;

6 for (i = q->tail; i != q->head; i = (i+1) % q-> capacity )

7 {

8 printf (" %d:", cnt );

9 f(q->data[i]);

10 cnt ++;

11 }

12 printf ("\n");

13 return 0;

14 }

Notice how modulo is used in the loop increment.
To compile fifo.h, cbuffer.c, and fifo test.c, we write the following

Makefile:

1 CC = gcc

2 CFLAGS = -Wall -Wextra -g

3

4 cbuffer_test: cbuffer .o fifo_test .o

5 $(CC) -o cbuffer_test cbuffer .o fifo_test .o

6

7 clean:

8 rm -f cbuffer_test *.o

This Makefile is slightly more complicated than the one for the matrix mod-
ule because the target, cbuffer test, has a different name than the file con-
taining the function main. We use a different name because we intend to
augment this Makefile with another target that uses the alternate fifo im-
plementation of the next chapter but the same fifo test.c.

The result of running ./cbuffer test is at the end of Section 7.2. Not sat-
isfied, we also run valgrind -v ./cbuffer test, which yields the following
satisfying report:

All heap blocks were freed -- no leaks are possible

ERROR SUMMARY: 0 errors from 0 contexts

Exercise 7.6. Implement in file buffer.c your specification from Exercise
7.3 of the LIFO queue using an array (as part of a struct) as the basic un-
derlying data structure. Test it using your unit test from Exercise 7.4. The
implementation is simpler than than of the circular buffer, so if you’re intro-
ducing head and tail indices and trying to apply modulo addition, retreat
and regroup. �

Exercise 7.7. Accessing basic C arrays can be dangerous because they are
nothing more than regions of memory. If the wrong size is passed to a function,
or a string is missing its string terminator, a loop over an array can easily read
or write beyond the allocated memory. A segmentation fault is then the best
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case; a subtle and occasional memory corruption is far worse; and a security
vulnerability is worse still.

Design and implement an ADT of protected arrays of void * elements.
A user should be able to create and destroy arrays of given sizes, set and get
their elements, and get its size. One of the key decisions is how to handle the
case when a user provides an index outside the domain of an array. Whatever
you decide, it better not result in a memory corruption.

As motivation, consider the following function that uses such a library:

1 void printNums (parray a) {

2 int i;

3 for (i = 0; i < size(a); i++)

4 printf ("%ld ", (long) get(a, i));

5 printf ("\n");

6 }

Your interface may of course have a different type name than parray and
different functions than size and get. �
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Linked Lists

While arrays are probably the most used data structure, they have their lim-
its. In particular, whether stack or heap allocated, an array’s size is fixed. For
some applications, such as matrix-based computations or real-time control in
embedded systems, this fixed size is appropriate. But many other applica-
tions require data structures that grow and shrink throughout their lifetimes
according to demands. The linked list is among the most widely used data
structure in such applications.

8.1 Introduction to Linked Lists

The Henry Ford Museum in Dearborn, Michigan, has a section on bicycles.

One of the displays documents a turn-of-the-century (19th to 20th, that is)
bicycling club that awarded a pin for the first century (100-mile ride) that a
cyclist completed and a smaller medallion for each subsequent century. Each
medallion linked via a hook to the previous one, and the pin itself had a hole
for the first medallion, thus allowing the proud cyclist to display for everyone
to see a list of his or her accomplishments. As I had reached that region of the
country via my bicycle in a relatively short period, my first thought was that
riding centuries is apparently much easier now than it was then. My second
was — Behold! A linked list!

A singly linked list consists of a head pointer (the pin) followed by an
arbitrary number of nodes (the medallions), each pointing to the next. Here
is one possible definition of a node:

1 typedef struct _node {

2 struct _node * next;

3 void * e;

4 } * node;

The next pointer is intended to hold the address of the next struct node

in the list or NULL if it is the last, while the e field is intended to hold a
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(generic) element of data. This data structure is recursively defined: the
type of next is a pointer to an instance of the very same structure in which
the next field resides. At line 2, the short name node for a struct node *

is not yet known, so the full name, provided on line 1, must be used.
A list can be as simple as a structure with a single field of type node:

1 typedef struct _llist {

2 node head;

3 } * llist ;

Or it could be more complex, potentially including an int field to hold the
size of the list, another node to hold the tail of a list, or other information.

Linked lists are easy to visualize:

mylist->head
•
1

•
2

•
3

◦
4

This list represents the data consisting of the sequence 1, 2, 3, 4. The final
node’s next field is NULL.

Manipulating linked lists is the fun part. Let’s suppose that we have one
node called head that points to the beginning of the list and one called tail

that points to the end:

head

•
1

•
2

•
3

tail

◦
4

We want to append the datum 5 to the list. After creating a new node, refer-
enced by n, whose next field is NULL and whose e field is 5,

head

•
1

•
2

•
3

tail

◦
4

n

◦
5

we append it to the list:

• Assign tail->next = n:

head

•
1

•
2

•
3

tail

•
4

n

◦
5

• Assign tail = n:

head

•
1

•
2

•
3

•
4

tail n

◦
5
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Let’s suppose now that we want to obtain and remove the first element of
the list. After obtaining the datum via head->e, we remove the first node:

• Assign node n = head:

n

head

•
1

•
2

•
3

•
4

tail

◦
5

• Assign head = head->next:

n
•
1

head

•
2

•
3

•
4

tail

◦
5

• Free the node pointed to by n.

head

•
2

•
3

•
4

tail

◦
5

These two operations are the ones required for implementing a FIFO queue
using linked lists.

Exercise 8.1. Declare the type of a comparison function that should take two
void * elements and return one of −1, 0, or 1 to indicate the first element is
less than, equal to, or greater than the second element, respectively.

Solution.

1 /* Type of user -defined comparison function . Should return

2 * -1 - first element is less than second

3 * 0 - the two elements are equally valued

4 * 1 - the second element is greater than the first

5 */

6 typedef int (* compareFn )( void *, void *);

�

Exercise 8.2. Using the llist type declared above and the compareFn type
of Exercise 8.1, implement a function to decide if a given list is sorted in
ascending order according to the provided comparison function:

1 /* Returns 0 for false or if f is NULL , 1 for true. */

2 int isSorted (llist ll, compareFn f);

Solution. The strategy is to compare adjacent elements. There are two
corner cases: if the list is empty or if the list has one element. In both cases,
the list is sorted independent of f.
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1 int isSorted (llist ll, compareFn f) {

2 node n = ll ->head;

3

4 // empty?

5 if (!n) return 1;

6 // single element ?

7 if (!n->next) return 1;

8

9 if (!f) return 0;

10

11 while (n->next) {

12 // If any adjacent pair are in the wrong order ...

13 if (f(n->e, n->next ->e) > 0)

14 // ... the list is not sorted .

15 return 0;

16 n = n->next;

17 }

18 // All adjacent pairs are ordered ; hence , so is the list.

19 return 1;

20 }

�

Exercise 8.3. Using the llist type declared above, implement a function to
reverse one linked list into another:

1 /* Reverses the elements of ll1 into ll2. For example , if

2 * ll1 is [0, 1, 2] and ll2 is [3, 4, 5], then after

3 * running , ll1 will be empty and ll2 will be

4 * [2, 1, 0, 3, 4, 5].

5 */

6 void reverse (llist ll1 , llist ll2 );

Solution. This function plays the juggling game typical of linked-list ma-
nipulation. A node is carefully pulled from the front of ll1 in a way so as not
to forget the node’s successor and then inserted at the front of ll2:

1 void reverse (llist ll1 , llist ll2) {

2 node n = ll1 ->head;

3 while (n) {

4 node next = n->next;

5 n->next = ll2 ->head;

6 ll2 ->head = n;

7 n = next;

8 }

9 ll1 ->head = NULL;

10 }

It may help to sketch several iterations. �
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Exercise 8.4. Using the llist type declared above, implement a function to
concatenate linked lists:

1 /* Concatenates the elements of ll1 with ll2. For example ,

2 * if ll1 is [0, 1, 2] and ll2 is [3, 4, 5], then after

3 * running , ll1 will be [0, 1, 2, 3, 4, 5], and ll2 will be

4 * empty.

5 */

6 void concat (llist ll1 , llist ll2 );

Solution. See Exercise 8.14. �

8.2 FIFO Queue: A Second Implementation

Before reading this section, review the specification of the ADT fifo from
Section 7.2.

Since linked lists are an integral part of the implementation, we first im-
plement a definition of the node data type and functions for creating and
deleting nodes in llist.c:

1 #include <assert .h>

2 #include <stdio.h>

3 #include <stdlib .h>

4

5 #include "fifo.h"

6

7 typedef struct _node {

8 struct _node * next;

9 void * e;

10 } * node;

11

12 static node newNode (void * e) {

13 node n = (node) malloc (sizeof (struct _node ));

14 n->next = NULL;

15 n->e = e;

16 return n;

17 }

18

19 static void deleteNode(node n) {

20 assert (n);

21 free(n);

22 }

As these functions are internal to the module—that is, not intended to be
called by a user—we use the static qualifier to hide them from other files. A
file implementing a complex ADT’s specification can have many static, or
private, functions; only interface functions are non-static.
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We next define struct fifo. Similar to the circular buffer implementa-
tion, it has a capacity. Unlike circular buffers, however, linked lists can be
of arbitrary length, so we also need to track the list’s size. Finally, head and
tail pointers are intended to be used as in the figures of Section 8.1: elements
are removed via the head and added via the tail.

1 struct _fifo {

2 int capacity ;

3 int size;

4 node head;

5 node tail;

6 };

The newFifo implementation takes advantage of a linked list’s ability to
be of arbitrary size. If capacity <= 0, we set q->capacity = -1 to indicate
unbounded capacity:

1 fifo newFifo (int capacity ) {

2 fifo q = (fifo) malloc (sizeof (struct _fifo ));

3 if (capacity <= 0) capacity = -1;

4 q->capacity = capacity ;

5 q->size = 0;

6 q->head = NULL;

7 q->tail = NULL;

8 return q;

9 }

Deleting a linked list is tricky, so we save its implementation for later.
A fifo is empty when its size parameter is 0:

1 int isEmptyFifo(fifo q) {

2 assert (q);

3 return (q->size == 0);

4 }

Another characteristic of an empty fifo based on linked lists is that both
the head and the tail pointers are NULL. Hence, if we decided not to have a
size field, we could implement isEmptyFifo based on checking whether head
(alternately, tail) is NULL.

Now we get to the heart of the linked list implementation. For putFifo,
we need to translate the illustrated steps in Section 8.1 of appending a new
node holding the value e to the end of the list:

1 int putFifo (fifo q, void * e) {

2 assert (q);

3 if (q->size == q-> capacity )

4 // Full? Impossible if q->capacity == -1.

5 return -1;

6

7 node n = newNode (e);
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8 if (q->size == 0) {

9 // Both the head and the tail should be NULL.

10 assert (!q->head);

11 assert (!q->tail);

12 // Set them both to point to n.

13 q->head = n;

14 q->tail = n;

15 }

16 else {

17 // The tail node should be the last one.

18 assert (!q->tail ->next);

19 // Append n and make it the new tail.

20 q->tail ->next = n;

21 q->tail = n;

22 }

23 q->size++;

24

25 return 0;

26 }

Line 3 checks if the queue is full. If capacity == -1, the queue can never
be full. Lines 13–14 handle the case in which the queue is empty, while lines
20–21 handle the nonempty case. Read these lines carefully. Draw your own
illustrations for key assignments and for both empty and nonempty situations.

The implementation of getFifo similarly follows the illustrated steps of
removing the first node of the list:

1 int getFifo (fifo q, void ** e) {

2 assert (q);

3 if (!e) {

4 // Nowhere to write result .

5 return -1;

6 }

7 if ( isEmptyFifo(q)) {

8 // Nothing to get.

9 *e = NULL;

10 return -2;

11 }

12 // Should be nonempty at this point.

13 assert (q->head);

14

15 node n = q->head;

16 // Write the element .

17 *e = n->e;

18 if (q->size == 1) {

19 // n should not have a successor .

20 assert (!n->next);

21 // Set both head and tail to NULL (empty list).

22 q->head = NULL;
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23 q->tail = NULL;

24 }

25 else {

26 // Set the head to n’s successor .

27 q->head = n->next;

28 }

29 deleteNode(n);

30 q->size --;

31

32 return 0;

33 }

Lines 22–23 handle the special case in which the queue has one element. Again,
draw your own illustrations for key assignments and for both one-element and
multi-element situations.

The implementation of printFifo is interesting in that it uses a common
programming idiom: iterating over a linked list (lines 7–13):

1 int printFifo (fifo q, printFn f) {

2 assert (q);

3 if (!f) return -1;

4

5 int cnt = 1;

6 node n;

7 for (n = q->head; n != NULL; n = n->next) {

8 // Print the index of the element .

9 printf (" %d:", cnt );

10 // Call user -provided f to print the element .

11 f(n->e);

12 cnt ++;

13 }

14 printf ("\n");

15

16 return 0;

17 }

Exercise 8.5. Illustrate the execution of the following loop:

1 node n;

2 for (n = q->head; n != NULL; n = n->next) {

3 // do something

4 }

Consider both empty and nonempty queues.
An idiomatic form drops the comparison with NULL:

1 node n;

2 for (n = q->head; n; n = n->next) {

3 // do something

4 }
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�

Finally, we must implement deleteFifo. The tricky part of this function
is that we must free not only the struct fifo instance but also any node
that is in its list. Iterating over a linked list while freeing the nodes requires
some pointer juggling:

1 void deleteFifo(fifo q) {

2 assert (q);

3 node n = q->head;

4 while (n != NULL) {

5 node next = n->next;

6 deleteNode(n);

7 n = next;

8 }

9 free(q);

10 }

Let’s visualize one iteration of the loop. We start with n pointing to the first
(remaining) member of the list:

n

•
1

•
2

◦
3

Then the assignment next = n->next occurs:

n

•
1

next

•
2

◦
3

The node referenced by n is deleted:

n

⊗

next

•
2

◦
3

Finally, n is set to next:

n next

•
2

◦
3

The iterations continue.

Exercise 8.6. Illustrate the final iteration, when next is assigned NULL. �
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With two implementations of the same specification, we can augment the
Makefile to allow us to choose which implementation to use:

1 CC = gcc

2 CFLAGS = -Wall -Wextra -g

3

4 all: cbuffer_test llist_test

5

6 cbuffer_test: cbuffer .o fifo_test .o

7 $(CC) -o cbuffer_test cbuffer .o fifo_test .o

8

9 llist_test: llist.o fifo_test .o

10 $(CC) -o llist_test llist.o fifo_test .o

11

12 clean:

13 rm -f cbuffer_test llist_test *.o

Executing make all creates both versions of fifo test—one called
cbuffer test and the other called llist test—while executing make

cbuffer test or make llist test makes one or the other. Running
valgrind llist test indicates a clean bill of health, which is a good sign
given the tricky code.1

Exercise 8.7. Implement your specification from Exercise 7.3 of the LIFO
queue using a linked list as the basic underlying data structure. Test it using
your unit test from Exercise 7.4. �

8.3 Priority Queue: A Specification

FIFO and LIFO queues have simple policies that are sufficient for many situa-
tions. But what if some values are more important than others? For example,
in embedded systems, some sensory data are more important than others. In
general, in many applications, one needs to impose an order on data other
than order of arrival. A priority queue accepts a user-defined comparison
function, and the getPQueue function returns the datum with the highest
priority according to that comparison function.

The following specification is in file pqueue.h:

1 It may relieve you to know that I did not simply type this module, compile it, and
run it without a problem. For your edification, I confess to the following issues: (1)
multiple syntax errors, (2) an initially incorrect implementation of deleteFifo,
(3) a forgotten call to printf at line 14 of printFifo, and (4) a forgotten call to
deleteNode at line 29 of getFifo. While I caught problems (2) and (4) myself,
valgrind would have indicated them. I also had a copy–paste error in Makefile:
line 10 initially compiled in cbuffer.o, so that I wasn’t even testing the linked
list implementation at first. This final issue took longer to discover, although the
fact that everything seemed to be working fine upon first execution should have
been a good indicator that I had messed up the Makefile.
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1 #ifndef _PQUEUE_H_

2 #define _PQUEUE_H_

3

4 /* Defines the ADT of Priority Queue. */

5

6 typedef struct _pqueue * pqueue ;

7

8 /* Definition of a comparison function :

9 * -1: e1 has higher priority than e2

10 * 0: e1 and e2 have equal priorities

11 * 1: e1 has lower priority than e2

12 */

13 typedef int (* compareFn )( void * e1 , void * e2);

14

15 /* Returns a new pqueue ordered by f. */

16 pqueue newPQueue (compareFn f);

17

18 /* Deletes a pqueue . */

19 void deletePQueue(pqueue q);

20

21 /* Returns 1 if q is empty and otherwise 0. */

22 int isEmptyPQueue(pqueue q);

23

24 /* Adds element e to q. */

25 void putPQueue (pqueue q, void * e);

26

27 /* Sets e to point to the element of q with the highest

28 * priority and removes that element from q. Returns 0 if

29 * successful and -1 if e is NULL. If q is empty , returns

30 * -2 and sets *e to NULL. If there are multiple elements

31 * with equal priorities , only one of them is returned , but

32 * which one is implementation -dependent .

33 */

34 int getPQueue (pqueue q, void ** e);

35

36 /* Prints the elements of q in order. Requires a pointer

37 * to a function that prints an element . Returns 0 if

38 * successful and -1 if f is NULL.

39 */

40 typedef void (* printFn )( void *);

41 int printPQueue(pqueue q, printFn f);

42

43 #endif

The pqueue specification is similar to the fifo specification, except that
newPQueue requires the user to provide a compareFn, and there is no way
of limiting the capacity of the queue.
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The following unit test, in file pqueue test.c, exercises the functionality of
an implementation of pqueue.h. Notice how it uses a command-line argument,
if one is provided, to modify its behavior:

1 #include <assert .h>

2 #include <stdio.h>

3 #include <stdlib .h>

4

5 #include "pqueue .h"

6

7 // for printPQueue

8 static void printLong (void * e) {

9 printf ("%ld", (long) e);

10 }

11

12 // defines priorities over long data

13 static int compareLong(void * e1 , void * e2) {

14 if ((long) e1 < (long) e2)

15 return -1;

16 else if (( long) e1 == (long) e2)

17 return 0;

18 else

19 return 1;

20 }

21

22 int main(int argc , char ** argv) {

23 int i, nElements = 5; // default value for nElements

24 pqueue q;

25

26 // Did the user provide an integer argument ?

27 if (argc > 1) {

28 int n;

29 if (sscanf (argv[1], "%d", &n))

30 // If so , use it as nElements .

31 nElements = n;

32 }

33

34 q = newPQueue ( compareLong);

35

36 // insert nElements random longs

37 for (i = 0; i < nElements ; ++i) {

38 // rand() is provided by stdlib .h

39 long e = (long) (rand () % 32);

40 printf ("putPQueue : %ld\n", e);

41 putPQueue (q, (void *) e);

42 }

43

44 printf ("State of the queue :\n");

45 printPQueue(q, printLong );
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46

47 // get and print the elements

48 while (! isEmptyPQueue(q)) {

49 long e;

50 assert (! getPQueue (q, (void **) &e));

51 printf ("getPQueue : %ld\n", e);

52 }

53

54 deletePQueue(q);

55

56 return 0;

57 }

A correct implementation should yield output similar (up to variations in
rand()) to the following if no argument is provided on the command line:

putPQueue: 7

putPQueue: 6

putPQueue: 9

putPQueue: 19

putPQueue: 17

State of the queue:

1:6 2:7 3:9 4:17 5:19

getPQueue: 6

getPQueue: 7

getPQueue: 9

getPQueue: 17

getPQueue: 19

Exercise 8.8. Augment the unit test to test a priority queue of strings. Use
the strcmp function of Exercise 3.29 or string.h. �

8.4 Priority Queue: An Implementation

Since the implementation is based on linked lists, we require the same def-
initions of node, newNode, and deleteNode in pqueue.c as in the linked
list-based FIFO implementation. Additionally, we place the following code
in pqueue.c:

1 struct _pqueue {

2 compareFn cmp;

3 node head;

4 };

5

6 pqueue newPQueue (compareFn f) {

7 pqueue q = (pqueue ) malloc (sizeof (struct _pqueue ));

8 q->cmp = f;
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9 q->head = NULL;

10 return q;

11 }

12

13 void deletePQueue(pqueue q) {

14 assert (q);

15 node n = q->head;

16 while (n) {

17 node next = n->next;

18 deleteNode(n);

19 n = next;

20 }

21 free(q);

22 }

Notice that deletePQueue is identical to deleteFifo; it’s worth studying
again.

A pqueue is empty if q->head is NULL:

1 int isEmptyPQueue(pqueue q) {

2 assert (q);

3 return (q->head == NULL );

4 }

Now we arrive at the interesting functions. In this implementation,
putPQueue applies the user-provided compareFn, stored in q->cmp, to find
where to insert a new node with the supplied datum:

1 void putPQueue (pqueue q, void * e) {

2 assert (q);

3

4 node nn = newNode (e);

5 node n = q->head;

6 node * np = &(q->head);

7 while (n) {

8 if (q->cmp(e, n->e) < 0) break;

9 np = &(n->next );

10 n = n->next;

11 }

12

13 nn ->next = n;

14 *np = nn;

15 }

The twist in this implementation is that np is a node * (and recall that a
node is itself a pointer) so that it can point either to the head field of q (line
6) or to the next field of a node (line 9). Recall that the break statement at
line 8 causes control to exit the loop and then execute line 13.



8.4. Priority Queue: An Implementation 175

To illustrate the putPQueue operation, let’s consider inserting the long

value 4 into the following priority queue, which is prioritized according to the
compareLong function of pqueue test.c:

cmp

•
•
1

•
3

◦
7

The first structure is a struct pqueue, which, recall, has a compareFn field
named cmp (top) and a node field named head (bottom). The other structures
are nodes. As we walk through the process, pay attention to how np is used.

• Create the new node and set nn to it; set np = &(q->head) and n =

q->head.

np
cmp

•

n

•
1

•
3

◦
7

nn

◦
4

Notice that np holds the address of the head field of the pqueue.
• Find nn’s place in the list:

cmp

•
•
1

np

•
3

n

◦
7

nn

◦
4

Here, np holds the address of the next field of the node holding 3. Recall
that the next field is of type node, and np is of type node *.

• Assign nn->next = n:

cmp

•
•
1

np

•
3

nn

•
4

n

◦
7

• Assign *np = nn:

cmp

•
•
1

np

•
3

nn

•
4

n

◦
7
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Upon return, putPQueue yields this new configuration of the priority queue:

cmp

•
•
1

•
3

•
4

◦
7

Because the hard work—placing the new node according to its element’s
priority—is done in putPQueue, getPQueue is comparatively straightforward:

1 int getPQueue (pqueue q, void ** e) {

2 assert (q);

3 if (!e) return -1;

4 if (!q->head) {

5 *e = NULL;

6 return -2;

7 }

8

9 *e = q->head ->e;

10 node n = q->head;

11 q->head = n->next;

12 deleteNode(n);

13

14 return 0;

15 }

The implementation is reminiscent of the linked list implementation of
getFifo.

Exercise 8.9. Illustrate the operation of getPQueue. �

We compile this implementation and the unit test file with the following
Makefile:

1 CC = gcc

2 CFLAGS = -Wall -Wextra -g

3

4 all : pqueue_test

5

6 pqueue_test: pqueue .o pqueue_test.o

7

8 clean:

9 rm -f pqueue_test *.o

The product is the executable llist test. Running valgrind ./llist test

with various arguments (none, 0, 15, etc.) indicates a solid implementation.

Exercise 8.10. Implement the following specification:

1 /* Returns the number of values in q whose priorities equal

2 * that of e.

3 */

4 int countPQueue(pqueue q, void * e);



8.4. Priority Queue: An Implementation 177

Solution. This function needs to perform a standard traversal of the list:

1 int countPQueue(pqueue q, void * e) {

2 int cnt = 0;

3 node n;

4 for (n = q->head; n; n = n->next)

5 if (q->cmp(n->e, e) == 0)

6 cnt ++;

7 return cnt;

8 }

�

Exercise 8.11. Implement the following specification:

1 /* Removes all values from q whose priorities are equal to

2 * that of e.

3 */

4 void removePQueue(pqueue q, void * e);

Solution. Here is one possible implementation:

1 void removePQueue(pqueue q, void * e) {

2 assert (q);

3

4 // Iterate over the list ...

5 node n = q->head;

6 // ... while maintaining a pointer to what points to n.

7 node *np = &(q->head);

8 while (n) {

9 if (q->cmp(n->e, e) == 0) {

10 // Remove n.

11 *np = n->next;

12 deleteNode(n);

13 // Advance n...

14 n = *np;

15 // ... but np is already just behind n.

16 }

17 else {

18 // Advance n and np.

19 np = &(n->next);

20 n = n->next;

21 }

22 }

23 }

However, it only tests for equality at line 9, whereas q->cmp returns compar-
ison information. Optimize it to use all of q->cmp’s possible return values.

�

Exercise 8.12. Illustrate the operation of removePQueue from Exercise 8.11.
As in putPQueue, you need to handle np carefully because it is a node *. �
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Exercise 8.13. The implementation presented here has the following char-
acteristics: putPQueue takes time proportional to the queue size, while
getPQueue takes constant time. Provide a new implementation of pqueue.h
in which putPQueue takes constant time and getPQueue takes time propor-
tional to the size of the queue. Hint: putPQueue should just insert the new
node at the beginning of the list, while getPQueue should search the list for
a maximum-priority value and then remove its corresponding node. �

8.5 Further Adventures with Linked Lists

Exercise 8.14. The use of node * variables—which, given that node is
short for struct node *, is a double-pointer type—in putPQueue and in
removePQueue of Exercise 8.11 is a simple trick, which I call the chaser
pointer technique, for implementing complex manipulations of pointer-based
data structures. The chaser pointer references the field in the data structure

that points to the node that the loop node variable points to. In other words,
it chases the node variable.

For example, consider the concat function of Exercise 8.4. One possible
implementation is the following:

1 void concat (llist ll1 , llist ll2) {

2 if (!ll1 ->head)

3 ll1 ->head = ll2 ->head;

4 else {

5 node n;

6 // position n so that it points to the final node

7 for (n = ll1 ->head; n->next; n = n->next );

8 // now append ll2

9 n->next = ll2 ->head;

10 }

11 ll2 ->head = NULL;

12 }

The cases of ll1’s being empty and nonempty must be treated separately: in
the former case, the head field of ll1 is updated directly; in the latter, the
next field of the last node of ll1 is updated. Re-implement concat using a
chaser pointer to avoid this case analysis.

Solution. The idea is to initialize the chaser pointer np to point to the
head field of ll1 and then iterate through ll1’s list. Upon completing, np
will point to the next field of the final node of ll1’s list, which is exactly the
field that must be updated:

1 void concat (llist ll1 , llist ll2) {

2 node n = ll1 ->head;

3 node * np = &(ll1 ->head ); // np chases n

4 while (n) {

5 // go to the end of ll1



8.5. Further Adventures with Linked Lists 179

6 np = &(n->next ); // np continues to chase n

7 n = n->next;

8 }

9 // np points to the next field of the final node of ll1

10 *np = ll2 ->head;

11 ll2 ->head = NULL;

12 }

�

Exercise 8.15. Illustrate the execution of the two versions of concat of Ex-
ercise 8.14. �

Exercise 8.16. Using the llist type declared above, implement a function
to copy a linked list:

1 /* Copies the list. */

2 llist copy(llist l);

Solution. Once again we use a chaser point, though in a slightly different
way. Here, the chaser pointer references the final node field in the new list
that is being created:

1 llist copy(llist l) {

2 // create the new linked list

3 llist cl = (llist) malloc (sizeof (struct _llist ));

4 cl ->head = NULL;

5

6 // copy each node of l and add to cl

7 node n = l->head;

8 // np "chases " the node to be created

9 node * np = &(cl->head);

10 while (n) {

11 node cn = newNode (n->e);

12 *np = cn;

13 n = n->next;

14 np = &(cn ->next);

15 }

16 return cl;

17 }

�

Exercise 8.17. Illustrate the execution of copy of Exercise 8.16. �

Exercise 8.18. Using the llist type declared above, implement a function
to “zip” together two linked lists:

1 /* Zips together the lists ll1 and ll2. For example , if

2 * ll1 is [0, 1, 2] and ll2 is [3, 4, 5, 6, 7], then after

3 * running , ll3 will be [0, 3, 1, 4, 2, 5, 6, 7], and both
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4 * ll1 and ll2 will be empty.

5 */

6 void zip(llist ll1 , llist ll2 , llist ll3 );

�

Exercise 8.19. Using the llist type declared above, implement a function
to “unzip” a linked list into two:

1 /* Unzips the list ll1 into ll2 and ll3. For example , if

2 * ll1 is [0, 1, 2, 3, 4, 5, 6] and ll2 and ll3 are empty ,

3 * then after running , ll1 will be empty , ll2 will be

4 * [0, 2, 4, 6], and ll3 will be [1, 3, 5].

5 */

6 void unzip(llist ll1 , llist ll2 , llist ll3 );

�

Exercise 8.20. Implement a version of Exercise 6.2 that uses a linked list,
rather than a growing array, to hold the strings. How does memory usage
compare between the two versions? How do the number of allocations or
re-allocations compare? Which data structure is more appropriate for the
application? Describe a scenario in which the alternative becomes more ap-
propriate. �
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Introduction to Matlab

Variables, functions, parameters, call-by-value and call-by-reference seman-
tics, control, data structures, ADTs, algorithms, modularity, design—these
are programming concepts, not C-specific concepts. An accomplished program-
mer in any language, such as C, can learn any other programming language
with little effort. In this chapter, we explore a high-level programming
language embedded within a powerful engineering tool: Matlab. A high-level
language is one in which a single statement can instigate an enormous amount
of work—the complete opposite of a low-level language like C, in which each
statement compiles to a small number of machine instructions.

High-level languages allow fast program development in specific domains.
For example, developing numerical software is typically easier in Matlab than
in C. Matlab provides built-in data structures for complex numbers and ma-
trices; a concise and expressive language for their manipulation; and a vast
library of functions for performing higher level computations, such as solv-
ing ordinary differential equations (Chapter 10), analyzing and manipulating
time- and frequency-domain signals (Chapters 9 and 11), and many others rel-
evant to engineers. As another example, the programming languages Python,
Perl, and Ruby have elements that make system-level development simple:
they provide powerful tools for analyzing and manipulating strings, interact-
ing with the operating system, and writing network-level applications.

The typical trade-off of a high-level language is a sometimes significant
decrease in performance. That said, a given language can be high performing
for some applications and be appropriate for a wide range of applications.
For example, NumPy is a Python package for programming fast numerical
computations in Python. Also, all practical high-level languages allow writing
performance-critical modules in a low-level language such as C or C++.

The final chapters of this text have three goals. The first is to make you a
more flexible programmer by forcing you to translate important programming
concepts from C to Matlab. In other words, there is a “meta-learning” oppor-
tunity: you should learn how to learn a new language. Engineers who write
software learn (and sometimes forget) many languages over their careers. The
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second goal is to switch from creating ADTs and libraries (as in Chapters 7
and 8) to using ADTs and libraries. At the same time, you should critically
analyze the libraries that you use—with the eyes of a developer. What are
their flaws? What are their strengths? Hence, the first two goals are in line
with the primary focus of this book: learning to program.

The final goal is to introduce several engineering applications of high-level
programming. This and Chapter 11 focus on time- and frequency-domain
analysis and manipulation, with the fun motivation of understanding and cre-
ating music mathematically. Chapter 10 introduces the numerical approach
to solving ordinary differential equations (ODEs) in the context of simulat-
ing orbital dynamics. Teaching all of the necessary fundamentals of these
applications is well beyond the scope of this text; however, in future or con-
current courses that cover these topics, you should recall these applications
and challenge yourself to identify opportunities to apply programming to help
you understand new mathematical concepts and to obtain more general—and
more impressive—results than can be obtained by hand.

9.1 The Command-Line Interface

High-level programming languages typically have command-line interfaces
that allow users to construct relatively complex computations on the fly.

Suppose that we want to solve the following set of linear equations:

x1 − x2 = 1
1
2
x2 + x3 = 0

−x1 − x2 − x3 = 2

As you have learned in your linear algebra course, we can view this system as
a matrix equation of the form Ax = b:





1 −1 0
0 1

2 1
−1 −1 −1



 x =





1
0
2





In a linear algebra course, you would perhaps at this point solve the matrix
equation using Gaussian elimination. As engineers, however, we can turn to
Matlab, as matrix manipulation is one area where it excels. Let’s fire up its
command-line interface by running matlab:

>> A = [1 -1 0; 0 1/2 1; -1 -1 -1]

A =

1.0000 -1.0000 0

0 0.5000 1.0000

-1.0000 -1.0000 -1.0000
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>> b = [1; 0; 2]

b =

1

0

2

>> A\b

ans =

-1

-2

1

Semicolons suppress output:

>> A = [1 -1 0; 0 1/2 1; -1 -1 -1];

>> b = [1; 0; 2];

>> A\b

ans =

-1

-2

1

On the language-level spectrum, if C is at sea level (sea level—get it?), then
Matlab’s language is somewhere above Mt. Everest.

Deconstructing the above three input lines, we see that the first line defines
matrix A, the second defines column vector b, and the third applies the left
division, or backslash, operator to solve the matrix equation Ax = b. The
left division operator is a one-character interface to a library of horrendously
complicated code. Defining a matrix or a vector is simple: spaces or commas
separate elements of a row, and semicolons separate rows. Based on our ex-
ploration of a naive matrix library in Chapters 6 and 7, you can imagine the
fair amount of code that underlies even the first two straightforward lines.

Exercise 9.1. Play around with the following matrix operators and functions
to discover how they work: \ (left division operator), ’ (transpose), * (ma-
trix product), .* (element-wise product), +, -, eye, ones, zeros, size, and
length. Use the command help, as in help eye, to learn more about each
function. For punctuation-based operators (’, *, etc.), typing help * yields a
menu of further help topics by name, next to their associated operators. �
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Since a matrix is one of Matlab’s primary data types, the language has
a sophisticated facility for manipulating matrices. For matrix A defined as
follows,

>> A = ones(4,3)

A =

1 1 1

1 1 1

1 1 1

1 1 1

we can obtains its dimensions,

>> [m,n] = size(A)

m =

4

n =

3

set every element of row 2 to 0,

>> A(2,:) = 0

A =

1 1 1

0 0 0

1 1 1

1 1 1

and then multiply the resulting matrix’s third column by 2,

>> A(:,3) = A(:,3) * 2

A =

1 1 2

0 0 0

1 1 2

1 1 2

form the indicator matrix of those elements that are greater than 1,
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>> indA = A > 1

indA =

0 0 1

0 0 0

0 0 1

0 0 1

multiply all elements that are at most 1 by the scalar value 3,

>> 3 * (A <= 1) .* A

ans =

3 3 0

0 0 0

3 3 0

3 3 0

set a submatrix to all −1,

>> A(2:3,1:2) = -1

A =

1 1 2

-1 -1 0

-1 -1 2

1 1 2

and much more. Like most high-level languages, the fun of Matlab is in writing
short, clever code to accomplish a given task.

Exercise 9.2. At the Matlab command line, type doc colon and read the
resulting documentation. �

As a few more examples, recall from Chapters 6 and 7 that our naive matrix
ADT provides two methods of computing the dot product of two vectors. The
same two methods are encoded in Matlab as follows:

>> v = [1; 2; -1];

>> v’ * v

ans =

6

>> sum(v .* v)
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ans =

6

Recall also the power function:

>> A = diag([1;2;3]); A(1,3) = 1; A(3,1) = 1/2

A =

1.0000 0 1.0000

0 2.0000 0

0.5000 0 3.0000

>> A^3

ans =

3.5000 0 13.5000

0 8.0000 0

6.7500 0 30.5000

Exercise 9.3. Write short Matlab command sequences to accomplish the fol-
lowing tasks:

(a) Create the following matrix:

A =

0 0 0 1

0 0 0 2

0 0 0 3

0 0 0 4

Solution. A = zeros(4); A(:,4) = 1:4

(b) Create the following matrix:

A =

0 0 0 4

0 0 0 3

7 9 11 2

0 0 0 1

Solution. A = zeros(4); A(:,4) = 4:-1:1; A(3,1:3) = 7:2:11

(c) Multiply the odd elements of a matrix by 2 and the even elements by 3
(hint: help mod); for example, applying this operation to A of the previous
problem yields the following matrix:
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ans =

0 0 0 12

0 0 0 6

14 18 22 6

0 0 0 2

Solution. The idea is to form two indicator matrices, mod(A, 2) == 0 and
mod(A, 2) == 1, which yield complementary 1s and 0s. The first matrix
should be multiplied element-wise by 3 * A, while the second should be
multiplied element-wise by 2 * A; the results should then be summed:

A .* (3 * (mod(A, 2) == 0)) + A .* (2 * (mod(A, 2) == 1))

(d) Create the following matrix:

A =

0 0 0 0 1.0000

0 2.5000 0 0 1.0000

0 0 5.0000 0 1.0000

0 0 0 7.5000 1.0000

0 0 0 0 10.0000

(e) Create a table of powers of 2 of arbitrary size, for example,

ans =

1 2 4 8 16 32

(f) Replace every element of a matrix whose value is less than −1 by −1.
Solution. The trick is to use two complementary indicator matrices:

(A < -1) * -1 + (A >= -1) .* A

The first term yields a matrix of −1s and 0s, where the −1s are at the
positions at which A has elements less than −1. The second term yields
a matrix like A except that each position at which A has an element less
than −1, it has a 0 instead.

(g) Scale the negative elements of a matrix by 2.
(h) Challenge: Decide if a matrix is symmetric. (Use help to learn about

all, any, ==, and &&.)

�

Matlab enables easy visualization, as we’ll see in several applications in
the next few chapters. But to get started, consider the function e−

t

5 cos θ+3.
To plot it over the interval [0, 6π] in Matlab, simply select a sample of points
in the interval:

>> s = 0:pi/100:6*pi; plot(s, exp(-s/5) .* cos(s) + 3);
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The resulting plot is shown in Figure 9.1.1 Notice that, just as s is a row vector,
exp(-s/5), cos(s), exp(-s/5) .* cos(s), and exp(-s/5) .* cos(s) + 3

are all row vectors as well, which is why the element-wise operator .* is used.

0 2 4 6 8 10 12 14 16 18 20

2.5

3

3.5

4

Fig. 9.1. plot(s, exp(-s/5) .* cos(s) + 3)

Exercise 9.4. Consider the vector function
[

x(t)
y(t)

]

=

[

e−t/3 cos 3t
e−t/10 sin t+ 1

]

.

Plot the described trajectory over the interval [0, 10π]. You should create a
plot that looks similar to the one in Figure 9.2. �

Matlab is a huge system encompassing a powerful set of built-in functions,
extension packages, and open-source modules from the Matlab user commu-
nity. Besides learning to use Matlab, you should learn how to learn to use a

new tool : use help, doc, and Internet search engines extensively.

9.2 Programming in Matlab

Matlab’s capabilities will become more relevant to you as you advance through
your academic career and learn about the engineering applications that require

1 If the use of the colon operator, :, in the statement above is unfamiliar, return
to Exercise 9.2.
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Fig. 9.2. Plot from Exercise 9.4

its computational power. However, now is an excellent time to learn how to
program well in its language.

As a motivating example, we write a module, called song.m, that defines
a function to translate a musical score into a .wav file that can be played
by any audio player. Matlab provides a function, wavwrite, that converts a
sampled signal into a .wav file, so we need only construct the signal.

Fundamentally, sound is generated by periodic mechanical motion that
generates pressure waves in the surrounding medium, which propagate
through the medium to strike our ear, which causes structures in our ear
to vibrate accordingly, which our nervous system translates into electrical sig-
nals that our brains interpret as sound. Our appreciation of sound as music
is probably a consequence of our incessant recognizing of patterns, so it is
perhaps not surprising that the basic physics of music is fairly simple mathe-
matically.

9.2.1 Generating a Pure Tone

A wave’s frequency determines the pitch that we hear. For example, middle A
of the modern Western chromatic scale has a frequency of 440 Hz: a pressure
wave that peaks 440 times per second is interpreted by our ears as middle A.
Mathematically, we can represent middle A by a sine wave with a frequency
of 440 Hz. In general, a pure tone of frequency f corresponds to the trigono-
metric function sin(2πft), where t ranges over time, so middle A corresponds
to sin(2π · 440t).

Computers work in discrete time, not in continuous time. Therefore, we
cannot manipulate sin(2πft) directly to generate sound. Instead, we sample
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the function at some frequency—ideally at a frequency at least double that
of the function that we’re sampling, according to Nyquist and Shannon.

Suppose, then, that we want to produce a pure middle A tone for one
second using a computer. We decide on a sampling frequency that is at least
double the frequency of the tone but that is not so high that the computer
cannot keep up. We use 8,192 Hz as our sampling frequency throughout this
chapter, which is sufficient to produce music for the human ear. First we
produce an array of times at which the function should be sampled:

>> sampleTimes = (0:8192-1)/8192;

This command produces a row vector of 8,192 elements (that is, a 1 × 8,192
matrix) that, in floating point, approximates the matrix

[

0 1
8192

2
8192

· · ·
]

.

Because 8,192 is a power of two, the following statement produces the same
row vector:

>> sampleTimes = 0:1/8192:1-1/8192;

However, because floating points are approximate and repeated summa-
tion yields ever larger errors, it is better to create sample vectors using
(0:nsamples-1)/nsamples rather than 0:1/nsamples:1-1/nsamples when
nsamples is not a power of two.

Then we produce the samples of the function sin(2π · 440t) at these times:

>> samples = sin(2 * pi * 440 * sampleTimes);

This command produces a row vector of length 8,192 whose elements range
between −1 and 1 and approximate 440 cycles of a sine wave. Finally, we
produce the tone:

>> wavwrite(samples’, ’middle_a.wav’);

Since wavwrite expects a column vector, we apply the transpose operator, ’,
to samples. The resulting file can be played by any music player.

Let’s package these operations as a function, which we write in tone.m:

1 function rv = tone(duration , freq)

2 % Generates the sampled sine wave for the given ’freq ’ and

3 % ’duration ’. The sampling rate is 8192 Hz.

4 sampleTimes = (0: duration *8192 -1)/8192;

5 rv = sin (2* pi*freq*sampleTimes);

6 end

The Matlab programming language’s syntax differs from C’s, but its struc-
tures are similar. In particular, line 1 declares the function tone to have two
parameters, duration and freq, and to return a value that, at line 5, is appar-
ently a row vector of samples. The Matlab language is dynamically typed,
whereas C is statically typed. Types are “discovered” during execution, and
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type mismatches result in runtime errors rather than compile-time errors as
in C. Notice that, because the variable rv is declared as the return value on
line 1, there is no explicit return statement.

Comments immediately after the function header are read by Matlab’s
help command. In this case, the comments at lines 2–3 are printed if help
tone is executed. Given Matlab’s lack of static typing, it is important to
describe the parameters and return value.

Running Matlab from the directory in which tone.m resides allows us to
generate tones easily:

>> wavwrite(tone(1, 440)’, 8192, ’middle_a.wav’);

At a graphical Matlab console, one can also use the sound function, which,
according to help sound, assumes a default sampling rate of 8,192 Hz:

>> sound(tone(1, 440));

An audible tone should play.
Listening to the tone is one way to “visualize” the function. Another is to

plot the generated function:

>> midA = tone(1.0, 440);

>> plot(midA);

The result is in Figure 9.3. This plot is not terribly useful. The relevant part
of the x-axis ranges over the indices of midA, 1 to 8,192, while values on the
y-axis of course lie between −1 and 1. With a frequency of 440 Hz and a
duration of 1 s, there are 440 peaks and troughs of the sine wave, explaining
why we essentially have a gray box—with interesting moiré patterns, to be
sure, but still rather uninformative.

We can extract a portion of the vector midA using range notation; for
example, midA(1:10) selects the first 10 components. With a sampling fre-
quency of 8,192 Hz, one cycle of the sine function is between index 1 and
somewhere around 8,192

440
. We use the ceil function (for “ceiling”) to yield

the least integer greater than 8,192
440 , although it’s not strictly necessary (try it

without):

>> plot(midA(1:ceil(8192/440)));

The plot, displayed in Figure 9.4, is somewhat misleading because it suggests
that we are plotting a continuous function. In fact, plot is in line mode and so
is connecting the dots. The format option ’-o’ tells plot to draw the discrete
samples as dots, in addition to adding connecting lines:

>> plot(midA(1:ceil(8192/440)), ’-o’);

This plot, shown in Figure 9.5, reveals 19 discrete samples.
Finally, we can get a sense of the function by plotting multiple cycles:

>> plot(midA(1:ceil(10*8192/440)));
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Fig. 9.3. plot(midA)
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Fig. 9.4. plot(midA(1:ceil(8192/440)))
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Fig. 9.5. plot(midA(1:ceil(8192/440)), ’-o’)
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Fig. 9.6. plot(midA(1:ceil(10*8192/440)))
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The result is displayed in Figure 9.6.

Exercise 9.5. Figures 9.3-9.6 plot sample indices versus amplitude. Instead,
generate sampleTimes as above and plot time versus amplitude. It may help
to read help plot, in particular, about how to plot given x values versus y
values. �

Exercise 9.6. Changing the amplitude of the function affects volume. Exper-
iment with multiplying midA by values between, say, 0 and 2. Visualize the
results by both generating and listening to .wav files and plotting segments.
Once scalars become boring, use the .* operator (element-wise multiplica-
tion) to multiply the samples element-wise by some function, such as e−3t

or cos 10t. Generate a tone that gradually becomes quieter and another tone
whose volume pulses. �

9.2.2 Making Music

While generating tones has its uses, such as in modems, it is not all that
interesting. Generating music is our goal. We first introduce how to generate
notes of the Western chromatic scale; we then write a Matlab module, song.m,
that exports a function, song, that converts a restricted form of musical score
to a sampled signal.

The Western chromatic scale is generated by raising frequencies to powers.
One octave consists of the following 12 notes:

0 1 2 3 4 5 6 7 8 9 10 11

A A♯/B♭ B C C♯/D♭ D D♯/E♭ E F F ♯/G♭ G G♯

An octave of a note with frequency f is defined as that note whose frequency
is 2f . Furthermore, the chromatic scale consists of 12 notes that are each a
semitone different from its neighbor. In other words, the ratio r between
adjacent notes is constant. If f ∗ r12 = 2f , then it must be that r = 2

1
12 .

Therefore, to compute the frequency of a given note, we need only compute
its distance (in semitones) from middle A.

For example, the C♯ above middle A has index 4 and is thus four semitones
beyond middle A. Therefore, its frequency is 440 · (2 1

12 )4 = 440 · 2 4
12 ; and its

corresponding function is sin(2π · 440 · 2 4
12 t). In general, note i of the octave

above middle A is generated by the function sin(2π · 440 · 2 i

12 t). A note i of

the next octave has frequency 440 · 2 12+i

12 = 440 · 2 · 2 i

12 , while the same note

of the preceding octave has frequency 440 · 2−12+i

12 = 440 · 2−1 · 2 i

12 .

Exercise 9.7. Chords can be generated by summing multiple scaled sample
vectors together. Generate several notes using the tone function of tone.m;
then sum them together and divide by the number of notes. Examine the
results both aurally and visually. �
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A note can thus be characterized by its octave relative to middle A (−1
for the prior octave, 2 for two octaves higher), its index within its octave (0 to
11), and its duration (a nonnegative real number). In Matlab, a musical score
can be represented by a N × 3 matrix, where each of the N rows specifies a
note: the first column specifies the octave relative to the middle octave (an
integer), the second the note within the octave (an integer between 0 and 11,
inclusive), and the third the duration of the tone (a nonnegative real number).
Given such a row, the desired tone is the one with frequency 440 · 2octave+ note

12

and the given duration.
One complication is that we need to generate rests (silences of a given

duration) as well. We therefore decide that, if a row’s note column is −1, then
that row specifies a rest of the given duration. Calling tone with the duration
and a frequency of 0 generates the desired rest.

In song.m, we write the following code to meet this specification:

1 function samples = song(score)

2 % song(score)

3 % Constructs a sampled signal corresponding to the song

4 % specified by ’score ’. The format of ’score ’ is an

5 % N x 3 matrix , where each row corresponds to a note

6 % specification:

7 % [ octave , note , duration ]

8 % where

9 % - octave specifies the number of octaves away from

10 % middle A (440 Hz);

11 % - note specifies one of the 12 pitches of the

12 % chromatic scale , 0-11;

13 % - duration specifies the length in seconds .

14 % If the ’note ’ element is -1, the row specifies a rest

15 % of the given duration and the octave specifier is

16 % ignored .

17

18 % The matrix to hold the signal , which consists of

19 % concatenated sine wave samples .

20 samples = [];

21 % Extract the number of notes.

22 [N, width] = size(score );

23 if (width ~= 3) % ~= is ’not equal ’

24 % malformed input

25 return ;

26 end

27 % For each note specification...

28 for n = 1:N

29 % ... extract the components of the specification...

30 octave = score(n, 1);

31 note = score(n, 2);

32 duration = score(n, 3);

33 % ... compute the frequency ...
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34 freq = 0;

35 if (note >= 0)

36 % it ’s not a rest

37 freq = 2^( octave + note /12) * middleA ;

38 end

39 % ... and concatenate its wave.

40 samples = [samples tone(duration , freq )];

41 end

42 end

43

44 function rv = middleA

45 % Defines the frequency of middle A. Constants in Matlab

46 % are generated in this peculiar way.

47 rv = 440;

48 end

49

50 function rv = tone(duration , freq)

51 % Generates the sampled sine wave for the given ’freq ’ and

52 % ’duration ’. The sampling rate is 8192 Hz.

53 sampleTimes = (0: duration *8192 -1)/8192;

54 rv = sin (2* pi*freq*sampleTimes) * .999; % scale

55 end

The first function in a .m file is the only one that can be called publicly and
must have the same name as the file. The other functions are only visible
within the file.

While the syntax is new, I bet that you can read and understand it fairly
easily, given your knowledge of C. However, there is one major, yet subtle,
point that this code illustrates and that is not an issue in C: the difference
between explicitly “looping” code, as in lines 28–41, and implicitly “looping”—
or vectorized—code, as in lines 53–54. The program itself is interpreted by
software, so loop iteration is orders of magnitude slower than loop iteration
in C. However, vectorized functions—like sin—which can act on either scalar
values or vector values, cause Matlab to execute highly optimized C, C++,
or Fortran functions internally. A good strategy is to use explicit looping for
high-level operations and implicit looping for mathematical operations.

At line 54, the generated tone is multiplied by .999 so that the resulting
function ranges between−1 and 1, exclusive. Matlab’s functions wavwrite and
sound expect signals within that range and produce aberrations otherwise.

In Matlab, we execute the following:

>> bs5 = [0 -1 1/4; 0 10 1/4; 0 10 1/4; 0 10 1/4; 0 6 1;

0 -1 1/4; 0 8 1/4; 0 8 1/4; 0 8 1/4; 0 5 2];

>> sound(song(bs5));

The resulting music probably sounds familiar, if a bit unemotional.

Exercise 9.8. A note can also be characterized by its volume. Scaling a sam-
pled function by a value between 0 and 1 yields a quieter tone. Augment



9.2. Programming in Matlab 197

song.m to take a score defined by an N × 4 matrix, where the fourth column
specifies volume. Modify the bs5 score to produce a less-unemotional song. �

Exercise 9.9. Notes played on an instrument such as a piano fade over time.
Using the ideas explored in Exercise 9.6, modify song.m so that each note
decays over the period that it is played. �

Exercise 9.10. Write a Matlab function, chord, that takes two arguments:
a chord specification as an N × 2 matrix, where the first column specifies the
octave and the second column specifies the note; and a duration in seconds. It
should produce a signal sampled at 8,192 Hz of the corresponding chord. To
avoid problems with clipping, the signal should be scaled to be between −1
and 1, exclusive. Use Matlab’s sound function to play several common chords.

Solution. In chord.m, we implement the following function:

1 function rv = chord(spec , dur)

2 % obtain number of notes in chord

3 [N, width] = size(spec);

4 if (width ~= 2)

5 % malformed input

6 rv = [];

7 return

8 end

9

10 % sample times

11 t = (0:8192* dur -1)/8192;

12 % initialize signal and accumulate notes into it

13 rv = zeros (1, length (t));

14 for j = 1:N

15 f = 440 * 2^( spec(j ,1) + spec(j ,2)/12);

16 rv = rv + sin (2* pi*f*t);

17 end

18 % scale the signal to within (-1, 1)

19 rv = rv/N * 0.999;

20 end

In general, to produce the signal corresponding to two signals being played
at once, we simply have to add them; this observation is an example of the
superposition principle. �

Exercise 9.11. For a pure tone of a given frequency f , its harmonics are
tones at frequencies that are integer multiples of f : 2f , 3f , 4f , and so on; f
itself is called the fundamental. Playing some of the harmonics of a funda-
mental adds depth to the resulting sound.

Implement a Matlab function, hchord, that takes three arguments: the first
two are as in Exercise 9.10, while the third is a row vector whose elements
sum to 1. Each element specifies the contribution of a given harmonic to the
overall contribution of a note of the chord.
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For example, hchord([0 0; 0 3; 0 7], 0.25, [0.7 0.05 0.15 0.1])

specifies the chord ACE, to be played for a quarter of a second, and such
that each note be played with 0.7 contribution from the fundamental, 0.05
contribution from the first harmonic, 0.15 from the second, and 0.1 from the
third. Hence, the note A will yield signals at frequencies 440, 880, 1,340, and
1,760 Hz, and most of its contribution will come from the 440 Hz signal.

Plot the signals for several common chords; compare them to the signals
produced by the chord function of Exercise 9.10. Use Matlab’s sound function
to play the signals; try various harmonic specifications until you find one that
is pleasing. �

Exercise 9.12. Augment song.m to generate songs with chords. �

Exercise 9.13. More interesting tones can be created by playing a fundamen-
tal with tones—called overtones instead of harmonics—that are very slightly
different from its harmonics. Develop a specification for these differences, and
implement a Matlab function to generate chords with off-harmonic overtones.
Experiment to find a pleasing result. �

Exercise 9.14. Use help to learn about the rand and floor functions. For
example, floor(12 * rand) generates a random integer between 0 and 11,
inclusive. Write a function to generate random music. Try various strategies
to yield more pleasing results. For example, one method of creating melodic
music is to construct an overall structure to the piece by randomly assembling
a set of standard chord progressions for a given key. This structure directly
yields the harmony. Then add the melody by sampling within each chord
progression. Use techniques from Exercises 9.6, 9.8, 9.11, and 9.13 to add
complexity to the music. �
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Exploring ODEs with Matlab

Many physical processes, both natural and engineered, are best described by
ordinary differential equations (ODEs), which relate time derivatives of
particular quantities to each other. A mathematics course on ODEs would
likely focus on developing techniques to solve ODEs analytically. But com-
puters offer the option of solving ODEs numerically for fixed initial values. As
you will see, numerical methods actually provide an enlightening perspective
on ODEs. Solving an ODE numerically is sometimes called “simulating” it,
so numerical methods can be seen as a methodology for programming simu-
lations of physical processes.

In this chapter, we continue our exploration of Matlab in the context of
numerical methods. From two well-known physical laws—Newton’s second law
of motion (F = ma) and Newton’s law of universal gravitation (F = GMm

r2
)—

we develop an ODE to describe the orbits of satellites around planets. We then
study and apply various numerical methods to solve numerically for an orbit
given a satellite’s initial position and velocity. Our explorations will yield
one universal truth of numerical methods: no one method works best on all
problems. In order to determine which is the best for this application, we will
rely on some common sense reasoning to make predictions about what we
expect to see for certain initial conditions.

10.1 Developing an ODE Describing Orbits

10.1.1 Developing the ODE

Consider the following two equations describing physical laws: Newton’s sec-
ond law of motion relating force (F ), mass (m), and acceleration (a),

F = ma ;

and Newton’s law of universal gravitation between two point masses, M and
m, where G is the gravitational constant and r is the distance between the
centers of the two masses,
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F = G
Mm

r2
.

These equations should be familiar from a physics course.
In the two-dimensional setting, F , a, and r are two-dimensional vectors.

Let the mass M be at the origin, and let x be the position (in two dimensions)
of m relative to M . Then ẋ, which is sometimes written dx

dt , denotes the

velocity of mass m relative to M ; and ẍ, which is sometimes written d2x
dt2

,
denotes the acceleration of mass m relative to M . We can thus write the
second law of motion as

F = mẍ ,

and the law of universal gravitation as

F = −G
Mm

x′x

x

|x| = −G
Mm

x′x

x√
x′x

= −G
Mm

(x′x)
3
2

x ,

where x′ is the transpose of x, as in Matlab. In the universal law of gravitation,
we simply multiply the scalar value given by GMm

r2 = GMm
x′x by the unit

vector −x
|x|

, where |x| =
√
x′x =

√

x2
1 + x2

2, which indicates the direction of

the force—toward the central mass.
Notice that these equations are now vector equations:
[

F1

F2

]

= m

[

ẍ1

ẍ2

]

and

[

F1

F2

]

= G
Mm

(x2
1 + x2

2)
3
2

[

x1

x2

]

.

Setting their right sides equal and dividing out m yields
[

ẍ1

ẍ2

]

= G
M

(x2
1 + x2

2)
3
2

[

x1

x2

]

,

or, more concisely,

ẍ = −G
M

(x′x)
3
2

x .

This final equation is an ordinary differential equation (ODE) relating a satel-
lite’s position x, relative to a point massM , to its acceleration ẍ. In particular,
the force that M exerts on the satellite m is towards it—recall that M is at
the origin, so that −x is the vector pointing from the satellite’s location (also
x) to M—and proportional in magnitude to G M

(x′x)
3
2

. Via F = mẍ, this force

manifests itself as acceleration ẍ on the satellite.
As a simplification, we will choose units so that GM = 1, yielding our

final ODE:

ẍ = −(x′x)−
3
2x . (10.1)

While the satellite’s position x and acceleration ẍ are explicit in the equa-
tion, its velocity is not. Yet for a fixed position, the satellite’s velocity has a
major influence on where the satellite goes next. We must thus specify the
initial condition of the satellite: its initial velocity and position. Thereafter,
the ODE determines its path, as ẍ influences ẋ, and ẋ influences x.
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10.1.2 Converting into a System of First-Order ODEs

ODE (10.1) is of second order: it relates acceleration (the second derivative
of position) to position. For some applications, including numerical solving,
it is better to present such an ODE as a system of first-order ODEs.
Doing so is simple. Rather than looking at the problem in two (position)
dimensions and taking the second derivative, we instead look at the problem
in four dimensions—two for position and two for velocity—and take only a
first derivative.

Let y be a four-dimensional vector. We relate y to x as follows:








y1
y2
y3
y4









=









x1

x2

ẋ1

ẋ2









. (10.2)

That is, the first two elements of y describe the position of the satellite, and
the latter two elements of y describe the velocity of the satellite.

With Definition (10.2), we can build ẏ. First, by stepping through the
definition, we find that ẏ1 = ẋ1 = y3 and that ẏ2 = ẋ2 = y4. In words,
components y3 and y4 describe the satellite’s velocity, as expected. Second,
ẏ3 = ẍ1 and ẏ4 = ẍ2 form the acceleration vector of the satellite, which is
given by ODE (10.1) in terms of the satellite’s position. After translating x1

to y1 and x2 to y2 according to Definition (10.2), the result is the following:








ẏ1
ẏ2
ẏ3
ẏ4









=









y3
y4

−(y21 + y22)
− 3

2 y1
−(y21 + y22)

− 3
2 y2









, (10.3)

which is a system of first-order ODEs. We numerically solve this system
throughout the remainder of the chapter.

We can encode this ODE as a function in Matlab:

1 function ydot = orbit(t, y)

2 % Returns the vector of the derivative of y at time t.

3 r = sqrt(y(1:2) ’ * y(1:2));

4 ydot = [y(3); ... % an ellipsis continues the

5 y(4); ... % statement to the next line

6 -1/r^3 * y(1); ...

7 -1/r^3 * y(2)];

8 end

This function adheres to a standard way of encoding ODEs in Matlab: a time
t and a vector y are given, and the first-derivative vector ydot is returned. In
ODE (10.3), t does not appear explicitly and so the argument t is not used.

202 Chapter 10. Exploring ODEs with Matlab

10.2 Numerical Integration

For a given initial position and velocity of the satellite, we wish to determine
its future positions and velocities. That is, we would like to plot its orbit
around the central mass—or determine that it does not enter into an orbit but
instead shoots off into space. Furthermore, we would like to plot its velocity
over time. Ideally, we would like to observe circular and elliptical orbits as
well as parabolic paths leading into the depths of space. In short, we would
like to integrate ẏ over time.

We derive our first numerical method simply by understanding what the
system of ODEs says. Consider the vector y(t) as detailing the state of the
satellite, which consists of its position and its velocity, at time t. Its state in
the “next time instant”—if we can so discretize time—is determined by its
current state and the influence of the central mass, as ODE (10.3) so clearly
show: how y changes is given by ẏ. Suppose that time moves discretely in
increments of ∆T . Then one way of estimating the state after ∆T units of
time—that is, at time t + ∆T , if t is the current time—based on y(t) is by
assuming that y(t) changes at the constant rate of ẏ(t) throughout the period
[t, t+∆T ]. Hence,

y(t+∆T ) = y(t) + ẏ(t)∆T .

In words, an estimate for the state at time t+∆T is the current state plus the
rate of change at time t times the period ∆T . For system (10.3), the estimate
is the following:









y1(t+∆T )
y2(t+∆T )
y3(t+∆T )
y4(t+∆T )









=









y1(t)
y2(t)
y3(t)
y4(t)









+









ẏ1(t)
ẏ2(t)
ẏ3(t)
ẏ4(t)









∆T

=









y1(t)
y2(t)
y3(t)
y4(t)









+









y3(t)
y4(t)

−(y1(t)
2 + y2(t)

2)−
3
2 y1(t)

−(y1(t)
2 + y2(t)

2)−
3
2 y2(t)









∆T .

This method is known as Euler’s method, after Leonhard Euler, an 18th
century mathematician.

All that remains is to implement Euler’s method into Matlab and then
apply it to our system, as previously encoded in the function orbit. We
implement the following function in euler solve.m:

1 function sol = euler_solve(ydot , init , t)

2 % Input:

3 % ydot - a function for computing ydot given t and y

4 % init - the initial condition

5 % t - a row vector of times at which to solve

6 % Output : a length (init) x length (t) matrix giving the



10.2. Numerical Integration 203

7 % solutions at the specified time steps t

8 n = length (init); % determine the dimension

9 steps = length (t); % determine how many time steps

10 % create solution matrix

11 % #columns is # of discrete time steps

12 % #rows is # of dimensions

13 sol = zeros(n, steps );

14

15 % at time t(1), the state is init

16 sol (:,1) = init;

17 % iterate through time

18 for i = 1: length (t)-1

19 % add slope * time -step to current values

20 sol (:,i+1) = sol (:,i) + ...

21 (t(i+1)-t(i)) * ydot(t(i), sol (:,i));

22 end

23 end

Recall from Exercise 9.1 that the built-in length function returns the length
of a row or a column vector and that zeros makes a 0-matrix of the given
number of rows and columns. Also recall from Exercise 9.2 that Matlab takes
indexing to a new level with inline matrix slices: sol(:,1) refers to column
1 of matrix sol, and lines 20–21 use matrix slicing in both read and write
contexts. For vectors, like t, only one index is required.

Having implemented a basic numerical method, we now employ it to plot
orbits. We implement the following functions in plot orbit.m; recall that
only the function plot orbit itself is callable from outside.

1 function plot_orbit(y0 , T, s, solve )

2 % Input:

3 % y0 - the initial state of the satellite

4 % T - the maximum time to solve to

5 % s - the step size (delta -T)

6 % solve - a function to a solver

7 % Plots the orbit and the velocity vs. time for the

8 % satellite system , using the provided solver .

9

10 % Solve the system .

11 sol = solve(@orbit , y0, 0:s:T);

12

13 % Clear the plot window .

14 clf;

15 % Plot the orbit and the velocity w.r.t. time.

16 % plot 1: the orbit

17 subplot (2, 1, 1);

18 hold on;

19 title(’Position ’);

20 xlabel (’X’);

21 ylabel (’Y’);
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22 % central mass

23 plot([0], [0], ’or’);

24 % orbit

25 plot(sol (1,:), sol (2,:), ’-b’);

26 axis(’equal ’);

27 % plot 2: the velocity w.r.t. time

28 v = velocity (sol );

29 subplot (2, 1, 2);

30 hold on;

31 title(’Velocity ’);

32 xlabel (’Time’);

33 ylabel (’Absolute velocity ’);

34 plot(0: s:T, v, ’-b’);

35 end

36

37 function ydot = orbit(t, y)

38 % Returns the vector of the derivative of y at time t.

39 r = sqrt(y(1:2) ’ * y(1:2));

40 ydot = [y(3); ... % an ellipsis continues the

41 y(4); ... % statement to the next line

42 -1/r^3 * y(1); ...

43 -1/r^3 * y(2)];

44 end

45

46 function V = velocity (sol)

47 % Returns the vector of the velocities of the satellite at

48 % the timesteps .

49 V = sqrt(sol (3 ,:).*sol (3,:) + sol (4 ,:).*sol (4 ,:));

50 end

The function plot orbit takes four arguments: the initial condition, the pe-
riod over which to solve, the step size (∆T ), and a function handle to the
solver to use. So far we have only implemented euler solve, but we will ex-
plore other methods in the next section. A function handle is conceptually
like a function pointer in C: the user of plot orbit is expected to provide a
solver, and the function calls it (solve) at line 11. In fact, the solve function
itself requires a function handle to the function that describes the ODE, which
is orbit in our case.1

This program uses many built-in functions. Rather than describing them
here, let me encourage you once again to use Matlab’s help function: help
subplot, help hold, etc. It also uses complex matrix slicing. Line 25, for
example, plots the first row of the solution matrix, which has four rows and as
many columns as requested time steps, against the second row of the solution
matrix.

Figure 10.1 displays the result of an invocation with initial condition

1 Invoke help punct to read about punctuation-based operators in Matlab, in par-
ticular the use of @ as the operator to pass a function handle.
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y0 =









0
100
−.1
0









,

that is, with initial position (0, 100) and initial velocity (−.1, 0). The use of
axis(’equal’) at line 26 reveals that the orbit is possibly circular—except
that the satellite is apparently spiraling away from the central mass. Common
sense indicates that this predicted behavior cannot possibly be right.
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Fig. 10.1. plot orbit([0; 100; -.1; 0], 20000, 10, @euler solve)

10.3 Comparing Numerical Methods

Numerical methods differ. Euler’s method, it turns out, yields a bizarre “solu-
tion” for system (10.3), one in which (as explored in Exercise 10.2) the satellite
gains energy over time. In this section, we explore two other relatively simple
numerical methods that are known to yield good results on Hamiltonian sys-
tems like (10.3): the semi-implicit Euler method, also known as the symplectic
method, and the leapfrog method.

Euler’s method uses the current state’s position, velocity, and accelera-
tion to predict the satellite’s trajectory over the next ∆T time units. The
symplectic Euler method, in contrast, uses a two-phase approach:

• It uses the current-state acceleration to predict the velocity at the end of
∆T time units.
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• It then uses the new velocity to predict the position after ∆T time units.

It is “semi-implicit” in that next-state information appears on both sides of
the equations that describe the method.

In detail, the method works as follows. First it computes the next-state
velocity:

[

y3(t+∆T )
y4(t+∆T )

]

=

[

y3(t)
y4(t)

]

+

[

ẏ3(t)
ẏ4(t)

]

∆T . (10.4)

Then it computes the next-state position using the next-state velocity:
[

y1(t+∆T )
y2(t+∆T )

]

=

[

y1(t)
y2(t)

]

+

[

ẏ1(t+∆T )
ẏ2(t+∆T )

]

∆T .

For any system obtained via the transformation to a system of first-order
ODEs, the first-order terms on the right side can be replaced (see Definition
(10.2)):

[

y1(t+∆T )
y2(t+∆T )

]

=

[

y1(t)
y2(t)

]

+

[

y3(t+∆T )
y4(t+∆T )

]

∆T . (10.5)

Now, even though the right side of (10.5) refers to information from the next
time step, that information is already available from (10.4). In some applica-
tions of the semi-implicit method and in applications of fully implicit methods,
solving linear equations is required at each step.

The following code, in symplecticEuler solve.m, implements the nu-
merical method described by Equations (10.4) and (10.5) in Matlab. Unlike
euler solve, this implementation is dimension dependent: lines 11, 17, and
19–20 only work for a system of ODEs configured like ours, that is, in which
y consists of two position elements followed by two velocity elements.

1 function sol = symplecticEuler_solve(ydot , init , t)

2 % Input:

3 % ydot - a function for computing ydot given t and y

4 % init - the initial condition

5 % t - a row vector of times at which to solve

6 % Output : a length (init) x length (t) matrix giving the

7 % solutions at the specified time steps t

8 steps = length (t);

9 % only works for this problem : 2 position dimensions ,

10 % 2 velocity dimensions

11 sol = zeros (4, steps );

12

13 sol (:,1) = init;

14 for i = 1: length (t)-1

15 dot = ydot(t(i), sol (:,i));

16 % Compute the next -time velocity ...

17 sol (3:4,i+1) = sol (3:4,i) + (t(i+1)-t(i)) * dot (3:4);

18 % ... and use to compute the next -time position .

19 sol (1:2,i+1) = sol (1:2,i) + ...
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20 (t(i+1)-t(i)) * sol (3:4,i+1);

21 end

22 end
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Fig. 10.2. plot orbit([0;100;-.1;0], 20000, 10, @symplecticEuler solve)

Figure 10.2 illustrates the result of calling plot orbit using
symplecticEuler solve instead of euler solve with the same initial condi-
tions as in Figure 10.1. The orbit is now clearly circular. However, the velocity
oscillates around 0.1 by a small amount, whereas common sense indicates that
the velocity of a satellite in a circular orbit should be constant.

Euler’s method and the symplectic Euler method are both first-order nu-
merical methods, as their defining equations relate quantities separated only
by one derivative: acceleration updates velocity, and velocity updates position.
The next method we examine is of second order because it relates position, ve-
locity, and acceleration in a single equation. It is called the leapfrog method
because the computation of position and velocity “leapfrog” over each other
in time.

Like the symplectic Euler method, the next-state values are computed in
two phases. Compared with the two previous methods, the major difference
in this new method is the use of acceleration in computing the next-state
position:
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[

y1(t+∆T )
y2(t+∆T )

]

=

[

y1(t)
y2(t)

]

+

[

ẏ1(t)
ẏ2(t)

]

∆T +

[

ÿ1(t)
ÿ2(t)

]

∆T 2

2

=

[

y1(t)
y2(t)

]

+

[

y3(t)
y4(t)

]

∆T +

[

ẏ3(t)
ẏ4(t)

]

∆T 2

2 .

(10.6)

Notice how Definition (10.2) allows us to replace ÿ1(t) with ẏ3(t) and similarly
for ÿ2(t), which is essentially independent of the form of the original ODE.
That is, converting any other 2D second-order system to a first-order system
would yield the same equation ÿ1 = ẏ3. Also notice how the acceleration

component is multiplied by ∆T 2

2 , intuitively corresponding to the fact that
acceleration is the second derivative of position.

With the next-state position computed, the next phase is to compute the
next-state velocity. In these equations, the average of the current-state and
the next-state accelerations is used:

[

y3(t+∆T )
y4(t+∆T )

]

=

[

y3(t)
y4(t)

]

+

([

ẏ3(t)
ẏ4(t)

]

+

[

ẏ3(t+∆T )
ẏ4(t+∆T )

])

∆T

2
. (10.7)

The right side refers to ẏ3(t+∆T ) and ẏ4(t+∆T ), which have not yet been
computed. However, expanding the first-derivative terms according to ODE
(10.3) reveals that the necessary information is indeed available from (10.6):

[

y3(t)
y4(t)

]

+













[

−(y1(t)2 + y2(t)2)−
3
2 y1(t)

−(y1(t)
2 + y2(t)

2)−
3
2 y2(t)

]

+

[

−(y1(t+∆T )2 + y2(t+∆t)2)−
3
2 y1(t+∆T )

−(y1(t+∆T )2 + y2(t+∆t)2)−
3
2 y2(t+∆T )

]













∆T

2
.

Because the expansion based on system (10.3) is required, we expect to see
two calls to ydot per iteration in the Matlab implementation of this method.

The following function implements the leapfrog method as described by
Equations (10.6) and (10.7):

1 function sol = leapfrog_solve(ydot , init , t)

2 % Input:

3 % ydot - a function for computing ydot given t and y

4 % init - the initial condition

5 % t - a row vector of times at which to solve

6 % Output : a length (init) x length (t) matrix giving the

7 % solutions at the specified time steps t

8 steps = length (t);

9 % only works for this problem : 2 position dimensions ,

10 % 2 velocity dimensions

11 sol = zeros (4, steps );

12

13 sol (:,1) = init;

14 for i = 1: length (t)-1

15 step = t(i+1)-t(i);
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16 % Compute next -time position using

17 % 1. current -time velocity

18 % 2. current -time acceleration

19 dot1 = ydot(t(i), sol (:,i));

20 sol (1:2,i+1) = sol (1:2,i) + step * sol (3:4,i) + ...

21 step*step /2 * dot1 (3:4);

22 % Compute next -time velocity using

23 % 1. current -time acceleration

24 % 2. next -time acceleration (which requires next -time

25 % position from above)

26 dot2 = ydot(t(i+1), sol (:,i+1));

27 sol (3:4,i+1) = sol (3:4,i) + ...

28 step * (dot1 (3:4) + dot2 (3:4))/2;

29 end

30 end
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Fig. 10.3. plot orbit([0; 100; -.1; 0], 20000, 10, @leapfrog solve)

Figure 10.3 illustrates the result of calling plot orbit using
leapfrog solve with the same initial conditions as in Figure 10.1. The orbit
is again clearly circular, and the vertical scale of the velocity plot indicates
that the oscillations around a velocity of 0.1 are much smaller in amplitude
than the oscillations produced by the symplectic Euler method. Exercise 10.1
confirms this observation.

As a final point of comparison, the following function, in matlab solve.m,
provides access to Matlab’s built-in function, ode15s, using the same argu-
ments as our numerical methods:
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1 function sol = matlab_solve(ydot , init , t)

2 % Input:

3 % ydot - a function for computing ydot given t and y

4 % init - the initial condition

5 % t - a row vector of times at which to solve

6 % Output : a length (init) x length (t) matrix giving the

7 % solutions at the specified time steps t

8 % ignore the time -step part of the output (dummy)

9 [dummy , sol] = ode15s (ydot , t, init);

10 % transpose it to be like the output of the other solvers

11 sol = sol ’;

12 end
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Fig. 10.4. plot orbit([0; 100; -.1; 0], 20000, 10, @matlab solve)

Figure 10.4 illustrates the result of calling plot orbit using matlab solve

with the same initial conditions as in Figure 10.1. The velocity plot indicates
a downward trend—not what common sense predicts. Invoking help ode15s

reveals that Matlab has a quiver of ODE solvers: ode15s, ode23s, ode23t,
ode23tb, ode45, ode23, etc. An expert in numerical methods knows the ad-
vantages and disadvantages of each. Clearly, ode15s is not the right method
for our application, although it does much better than Euler’s method.

Exercise 10.1. Modify plot orbit to create a function compare that plots
the results of all four methods on the same position and velocity plots. Read
help plot to learn how to specify the line characteristics. The result should
be similar to the plots in Figure 10.5 for the specified initial condition.
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Try a variety of initial conditions. Find initial conditions for which the
numerical methods yield strikingly different qualitative results—for example,
certain initial conditions cause Euler’s method to predict a parabolic (non-
orbital) trajectory, contrary to the predictions of the other methods. Describe
what happens as the step size is varied. �
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Fig. 10.5. compare([0; 100; -.1; 0], 20000, 10)

Having established that the leapfrog method is seemingly the best among
the four numerical methods for our specific application, we can explore further
qualitative characteristics of the satellite–central mass system. In particular,
Figure 10.6 displays an elliptical orbit, while Figure 10.7 reveals a parabolic
trajectory in which a space probe’s course is influenced by the central mass,
yet the mass fails to capture the probe into an orbit.

Exercise 10.2. The energy of the satellite–central mass system is given by

E =
1

2
mẋ′ẋ−G

Mm√
x′x

,

that is, the sum of the kinetic and the potential energies, where x is the
position vector of system (10.1). Using our assumption that GM = 1 and
factoring out m, the energy of the system is proportional to the quantity

E ∝ 1

2
ẋ′ẋ− 1√

x′x
.

In an ideal system, energy should remain constant, and this ideal approxi-
mation works well in practice for orbital mechanics. Modify plot orbit to
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Fig. 10.6. plot orbit([0; 100; -.05; -.05], 10000, 10, @leapfrog solve)
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Fig. 10.7. plot orbit([0; 100; -.1; -.1], 10000, 10, @leapfrog solve)
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generate a third graph that illustrates energy over time. Try the various nu-
merical methods on several initial conditions. Which of the methods best
captures the expected ideal behavior? �

Exercise 10.3. Modify plot orbit and at least one of the numerical methods
symplecticEuler solve or leapfrog solve to solve the three-dimensional
version of the satellite–central mass system. First, derive the first-order system
of ODEs for the three-dimensional system, which should have three position
components and three velocity components. Then modify the orbit func-
tion, which encodes the system of ODEs into Matlab, to reflect the changes.
Next, use help plot3 to learn the basic features of Matlab’s 3D plotting ca-
pabilities, and modify the remainder of plot orbit.m accordingly; test the
modifications using matlab solve, which is dimension independent. Finally,
modify one of symplecticEuler solve or leapfrog solve. As an example,
Figure 10.8 displays the result for the given initial condition. �
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Fig. 10.8. plot orbit3d([-50; 10; 100; -.1; -.05; .03], 50000, 10,

@leapfrog3d solve)

Exercise 10.4. Consider the following specification of a numerical method:
[

y1(t+∆T )
y2(t+∆T )

]

=

[

y1(t)
y2(t)

]

+

[

ẏ1(t)
ẏ2(t)

]

∆T +

[

ÿ1(t)
ÿ2(t)

]

∆T 2

2

and
[

y3(t+∆T )
y4(t+∆T )

]

=

[

y3(t)
y4(t)

]

+

[

ẏ3(t)
ẏ4(t)

]

∆T .
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Implement it in Matlab, and compare it with the other methods explored in
this chapter in the context of the orbit system. �



11

Exploring Time and Frequency Domains with
Matlab

Physical processes often evolve periodically over time, making frequency-
domain analysis a powerful engineering tool for characterizing and designing
a system’s behavior. This chapter introduces the basic concepts of the time
domain, the frequency domain, and transformations between the two in the
context of our continuing study of Matlab. Subsequent engineering courses
study the subject in great depth, so our goal is to use Matlab to develop a
foundational understanding.

11.1 Time and Frequency Domains

A graph of a signal in the time domain plots the amplitude of a signal
against time. For example, consider the discretely sampled A major chord: on
a guitar, it consists of (in descending order) E, C♯, and A (at 440 Hz), and,
from one octave lower, E and A. From our study of the Western chromatic
scale in Chapter 9, we calculate the following frequencies:

E = 440 · 2 6
12 ≈ 622 Hz

C♯ = 440 · 2 4
12 ≈ 554 Hz

A = 440 Hz

E = 440 · 2−1+ 7
12 ≈ 330 Hz

A = 440 · 2−1 = 220 Hz

As usual, let us assume a sampling rate of 8,192 Hz. In Matlab, we carefully
construct exactly 8,192 sample times over one second:

>> t = (0:8192-1)/8192;

We then construct the signal of the A major chord with a duration of one
second:

>> f = (sin(2*pi*622*t) + sin(2*pi*554*t) + ...

sin(2*pi*440*t) + sin(2*pi*330*t) + ...

sin(2*pi*220*t)) / 5;
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We divide by 5 so that the overall signal is normalized to have a maximum
absolute amplitude of 1. Plotting the signal in the time domain,

>> plot(t, f)

yields the graph in Figure 11.1; a more instructive plot is obtained by plotting
only a portion of the signal,

>> plot(t(1:128), f(1:128))

as displayed in Figure 11.2. To hear the chord, use Matlab’s sound function,
which assumes a sampling rate of 8,192 Hz:

>> sound(f);

Exercise 11.1. For contrast, construct and play the A minor chord, which is
similar to the A major chord, except that the C♯ is instead a C. �
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Fig. 11.1. plot(t, f)

The time-domain plots are “interesting” at best and a mess at worst.
You might think that there must be a more informative way of visualizing
signals—and you would be right!

In the frequency domain, one plots the amplitudes of discrete frequen-
cies. In the case of the A major chord, we would hope that its frequency-
domain plot would reveal its component notes. We will later get into the
mathematics of constructing the frequency-domain plot, but for now let’s
simply put Matlab to work:
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Fig. 11.2. plot(t(1:128), f(1:128))

>> F = fft(f);

>> ssas = abs([F(1) 2*F(2:4096)])/8192;

>> plot(0:4095, ssas);

The resulting plot, called the single-sided amplitude spectrum (explain-
ing the variable name ssas), is shown in Figure 11.3. The units of the x-axis
are Hz; the y-axis, while without units, shows the magnitude of the contri-
bution of each frequency. A single-sided amplitude spectrum shows the am-
plitudes of component frequencies between 0—a signal without periodicity,
sometimes called DC for direct current—and about one-half of the number
of samples, 8,192

2
− 1 in this case. Hence, the x-axis actually has the units

of “cycles per sample period.” Because the sample period is 1 second and is
sampled at 8,192 Hz in our case, we end up with the units of Hz.

Figure 11.4 shows a zoomed view of the plot in Figure 11.3 so as to re-
veal the frequencies at which the function is nonzero. Rather satisfyingly, the
plot reveals five frequencies with amplitude 0.2—which makes sense when you
recall that we divided the sum of five magnitude-one sine functions by 5. More-
over, the five frequencies are exactly those of the A major chord—recovered
from analyzing a time-sampled trigonometric function.

Exercise 11.2. Plot the single-sided amplitude spectrum for the A minor
chord. �

The magic behind this transformation from the time to the frequency
domain is the discrete Fourier transform (DFT), as implemented in the
fast Fourier transform (FFT). And the magic works in two directions: the
inverse DFT, as implemented in the inverse FFT, maps a function in the
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frequency domain to a function in the time domain. Suppose that we want to
build the D major chord:

F ♯ = 440 · 2 9
12 ≈ 740 Hz

D = 440 · 2 5
12 ≈ 587 Hz

A = 440 Hz

D = 440 · 2−1+ 5
12 ≈ 370 Hz

Rather than building the signal in the time domain as we did for the A major
chord, we’ll build it in the frequency domain:

>> ssas = zeros(1, 4096);

>> ssas(740+1) = 0.25; % +1 b/c of Matlab indexing

>> ssas(587+1) = 0.25;

>> ssas(440+1) = 0.25;

>> ssas(370+1) = 0.25;

>> plot(0:4095, ssas);

>> F = [ssas(1), ssas(2:4096)/2, 0, ssas(4096:-1:2)/2]*8192;

>> f = real(ifft(F)); % eliminate residual Im component

>> plot(t(1:128), f(1:128));

>> sound(f);

The frequency domain plot is shown in Figure 11.5. It should not be a sur-
prise given that we explicitly constructed F to have nonzero (amplitude 0.25)
frequencies at 370 Hz, 440 Hz, 587 Hz, and 740 Hz. The mathematics behind
the seventh and eighth lines will become clear later. Notice now, however, that
a(r:-1:l) is a Matlab idiom for reversing a vector a in the range [l, r],
so that F contains ssas and its reverse, both scaled by 4,096. The eighth line
applies the inverse FFT to compute the time-domain signal, whose residual
imaginary components are removed via real. A portion of the resulting signal
is shown in Figure 11.6.

Exercise 11.3. Based on the discussion above, implement a function chord in
chord.m that, given a row vector of frequencies, constructs the corresponding
time-domain signal of duration one second via the inverse FFT. For example,
chord([370, 440, 587, 740]) should return the signal f, from above, of
the D major chord. �

11.2 The Discrete Fourier Transform

Consider a signal sampled at n uniformly spaced intervals to yield the n-vector
f . We assume that f is normalized to have a maximum absolute value of 1.
The discrete Fourier transform (DFT) constructs an n-vector F of frequencies,
expressed in cycles per n-step period, as follows:

Fk+1 =
n−1
∑

m=0

fm+1e
− 2πi

n
km for k ∈ {0, 1, . . . , n− 1}.
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Fk+1 is the magnitude of the “k cycles per n-period” frequency component.
Totally clear? I didn’t think so. Let’s delve deeper into the meaning of this

definition. For convenience, we assume that n = 8 throughout the discussion,
so that f is a row vector of 8 samples of the original analog signal, and F is a
row vector representing frequency components “0 cycles per period,” “1 cycle
per period,” . . . , “7 cycles per period.”

Let’s first try to understand the term e−
2πi
n

km. From Euler’s formula,

eiθ = cos θ + i sin θ ,

we see that this term cycles clockwise around the unit circle in the complex
plane at a frequency given by 2π

n
k.
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Fig. 11.7. One cycle per 8-step period

Figure 11.7 visualizes this periodicity for k = 1 (left) and k = 7 (right). In
the figure, the x-axis represents the real component and the y-axis represents
the imaginary component. The numbers around each circle indicate the values
of m. For k = 1, the angles are given by −2π

8
m, for m ∈ {0, 1, . . . , 7}: 0, −π

4
,

−π
2 , and so on. When k = 7, the reverse cycling occurs: rotating by −14π

8
radians is the same as rotating by 2π

8 radians. Notice that, in both cases,
precisely one traversal of the unit circle is achieved during the 8-step period;
hence, k = 1 and k = 7 correspond to a frequency of one cycle per 8-step
period.

The values k = 2 and k = 6 (Figure 11.8), and k = 3 and k = 5 (Figure
11.9) are similarly related. In general, k and n − k correspond to similar
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Fig. 11.8. Two cycles per 8-step period
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Fig. 11.9. Three cycles per 8-step period
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frequencies for k ∈ {1, 2, . . . , n
2 − 1}, except that n − k corresponds to the

“negative frequency” of n. Furthermore, for k = 2 and k = 6, two traversals are
made in the 8-step period, yielding a frequency of two cycles per 8-step period;
and for k = 3 and k = 5, three traversals are made, yielding a frequency of
three cycles per 8-step period.
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Fig. 11.10. DC and Nyquist frequencies

Two outliers are k = 0 and k = 4 (in general, n
2
; see Figure 11.10). The

former does not cycle; it corresponds to a DC signal, that is, a nonperiodic
element such as the constant term 0.1 in the function 0.1+sin 2πt. The latter
corresponds to the Nyquist frequency—one-half the sampling frequency. In
a realistic situation of a sampling frequency of 8,192 Hz, the Nyquist frequency
is 8,192

2 = 4,096. No k corresponds to a higher frequency. We discuss the
meaning of the Nyquist frequency in further depth momentarily.

Thus, the summation

n−1
∑

m=0

fm+1e
− 2πi

n
km

can be understood as a cyclic traversal of the time-domain signal f that yields
the degree to which the frequency component corresponding to k contributes
to the overall signal f . This contribution is computed as component Fk+1 of
the DFT.
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Notice that Fk+1 is a complex number. The absolute value (in the com-
plex sense: |a + bi| =

√
a2 + b2) of Fk+1 corresponds to the amplitude of

the corresponding frequency component, while its argument1 corresponds to
the phase of the component. In this chapter, we consider only the amplitude.
Therefore, the construction of the amplitude spectrum must compute the ab-
solute value of each Fk+1. And, indeed, recall from the Matlab computations
in Section 11.1 the use of the abs (absolute value) function in constructing
the amplitude spectrum.

One element has yet to be explained: in the computation of ssas in Sec-
tion 11.1, we scale by 2

n . The reason for 1
n is simple, as the k = 0 case reveals:

the sum of n values that range between −1 and 1 can be between −n and n,
so dividing the amplitudes by n normalizes them to have absolute values at
most 1.

The reason for multiplying by 2 is less obvious though also readily ex-
plained. From our discussion above, we know that the k and n−k components
are related; in fact, they represent the same frequency, so that the magnitude
of that frequency’s contribution is spread between the two. The result is ob-
vious once one sees a plot. For example, consider again the frequency-domain
analysis of the A major chord in Section 11.1. This time, we simply normalize:

>> asf = abs(fft(f))/8192;

>> plot(0:8191, asf);

Figure 11.11 shows the result. There is a clear symmetry around 8,192
2 = 4,096.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.02

0.04

0.06

0.08

0.1

0.12

Fig. 11.11. Raw amplitude spectrum

1 arg(a + bi) = arctan( b

a
) when a, b > 0; it is similarly defined for other signs of a

and b.
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The single-sided amplitude spectrum eliminates this symmetric re-
dundancy by dropping the right half of the DFT and scaling most of the left
half by 2. However, the DC frequency component should not be scaled by 2
since it is represented precisely once in the DFT. To construct the single-sided
amplitude spectrum ssas from time-domain signal f thus requires computing
the FFT of the signal and then extracting and scaling the components as
follows, where length(f) is assumed to be divisible by 2:

>> F = fft(f);

>> ssas = abs([F(1) 2*F(2:length(f)/2)])/length(f);

This structure is also apparent in the inverse DFT computation in the con-
struction of the D major chord of Section 11.1, in particular at line 7, where
the symmetry is artificially induced into F, to which ifft is then applied.
In general, from a single-sided amplitude spectrum ssas, one constructs the
time-domain signal f as follows:

>> F = [ssas(1), ... % DC

ssas(2:length(ssas))/2, ...

0, ... % Nyquist

ssas(length(ssas):-1:2)/2] * (2*length(ssas));

>> f = real(ifft(F));
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Fig. 11.12. plot(t, f, ’-o’)

To make these ideas more concrete, consider the function 0.1 + sin 2πt
sampled uniformly in the unit interval [0, 1):

>> t = (0:7)/8};
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>> f = 0.1 + sin(2*pi*t);

>> plot(t, f, ’-o’);

The function is plotted in Figure 11.12. Visually, we see that the function has a
DC component (0.1): the local (absolute) maxima are 1.1 at time 0.25 and 0.9
at time 0.75. It also has a frequency-1 component, that is, a component with
frequency one cycle per sample period. It does not have any higher-frequency
components.

To compute F1, which corresponds to k = 0, notice that e−
2πi
n

0m = 1.
Therefore, simply summing the values of 0.1 + sin 2πt at the sample times t
and then dividing by 8 (for eight samples) will yield a normalized F1:

>> sum(f)/8

ans =

0.1000

From the original function, 0.1 + sin 2πt, we see that the DC component is
indeed 0.1.

To compute F2, which corresponds to k = 1 and the “one cycle per sam-
ple period” frequency (see Figure 11.7), we must use the definition of the
transform directly:

>> sum(f .* exp(-2*pi*i/8*(0:7)*1))/8

ans =

0.0000 - 0.5000i

The amplitude of this component is thus | − 0.5i| =
√

02 + (−0.5)2 = 0.5.
But the amplitude of this frequency component in the original function, 0.1+
sin 2πt, is clearly 1. Recall, though, that half of its amplitude is detected by
component n− k and is thus stored in F8:

>> sum(f .* exp(-2*pi*i/8*(0:7)*7))/8

ans =

-0.0000 + 0.5000i

The absolute value of this complex number is also 0.5, and summing the two
absolute values yields the expected amplitude of 1.

Let’s examine one more pair, F3 and F7, corresponding to k = 2 and k = 6:

>> sum(f .* exp(-2*pi*i/8*(0:7)*2))/8

ans =
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-9.1056e-18 + 1.3878e-17i

>> sum(f .* exp(-2*pi*i/8*(0:7)*6))/8

ans =

2.8702e-16 + 9.7145e-17i

Both answers are close enough to 0 to be 0. Hence, the original signal appar-
ently does not contain a frequency-2 component, and indeed 0.1+sin 2πt does
not.

Exercise 11.4. Compute the frequency components F4, F5, and F6. �
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Fig. 11.13. A 10 Hz signal sampled at 20 Hz

Finally, we must understand a fundamental limitation of the DFT, ex-
pressed as the Nyquist frequency, which is half of the sampling frequency.
In Figure 11.13, a 10 Hz signal is sampled (represented by the circles) at 20
Hz—yielding a discrete signal that is 0 everywhere, rather than the expected
10 Hz signal. But Nyquist explained the problem: at a sampling rate of 20
Hz, one is not sampling sufficiently frequently to capture frequencies above
20
2 = 10 Hz. In general, any frequency at or above half the sampling rate will
not be detected correctly.

The inverse DFT is computed similarly to the DFT:

fk+1 =
1

n

n−1
∑

m=0

Fm+1e
2πi
n

km for k ∈ {0, 1, . . . , n− 1}.
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The intuition for the inverse transform is that a sampled signal can be repre-
sented by the finite sum of a properly scaled set of periodic functions—indeed,
by the sum of at most as many periodic functions as samples. In the construc-
tion of the A major chord, for example, we explicitly sum five scaled sine
functions, each of a component frequency.

Exercise 11.5. While Matlab’s implementations of the DFT (fft) and the
inverse DFT (ifft) are difficult to compete with, it is still edifying to imple-
ment one’s own naive versions. Using the basic definitions of these transforms,
implement mydft and myidft, and verify that they produce the expected re-
sults when used in the computations of Section 11.1. �

Exercise 11.6. Implement a Matlab function, ssas, that takes a time-
domain signal and returns its single-sided amplitude spectrum. You may as-
sume that the signal’s length is even. �

Exercise 11.7. Implement a Matlab function, signal, that takes a single-
sided amplitude spectrum and returns the corresponding time-domain signal.

�

11.3 De-hissing a Recording

Tape recordings are subject to “hissing”: high-frequency white noise. In this
section, we apply the DFT, first, to simulate hissing on a track and, second,
to de-hiss the track. The technique used in this section is about as naive as
one can get. In future courses, you will learn much more about time- and
frequency-domain operations, particularly the convolution operator, that are
necessary to implement nonnaive digital signal processing functions.

Matlab installations come with a file that defines a segment of Händel’s
“Hallelujah Chorus”:

>> load handel;

>> f = y’;

>> sound(f);

Lovely.
The following function makes it considerably less lovely:

1 function rv = hiss(f, th_freq )

2 % Input:

3 % f - sampled signal

4 % th_freq - threshold frequency beyond which to add

5 % white noise

6 % Output :

7 % original signal with high frequency white noise added

8

9 % make the magnitude of the white noise proportional
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10 % to the maximum magnitude of f

11 noise_lvl = max(abs(f))/3;

12

13 % add high - frequency white noise

14 w = randn (1, 8192); % normally distributed

15 W = fft (w); % transform of white noise

16 % zero out frequencies at and below th_freq

17 W(1: th_freq ) = 0;

18 W((8192 - th_freq ):8192) = 0;

19 % transform back to obtain high -frequency white noise

20 hfw = noise_lvl * real(ifft(W));

21

22 % add high - frequency white noise to each segment of f in

23 % increments of 8192 samples

24 rv = zeros (1, length (f));

25 for i = 0:8192: length (f)

26 sz = min (8192 , length (f)-i);

27 rv(i+1:i+sz) = f(i+1:i+sz) + hfw (1: sz);

28 end

29 end

Lines 13–20 create high-frequency, normally distributed white noise. Line
14 creates a signal in the time domain of normally distributed white noise.
Then line 15 transforms it to the frequency domain, where certain frequency
components are canceled out in lines 17–18. Finally, line 20 transforms the
signal back as hfw, for “high-frequency (white) noise.”

With the noise constructed, lines 24–28 add the noise to the provided
signal, f, one 8,192-sample window at a time. Let’s apply it to the lovely
music:

>> nzf = hiss(f, 3000); % add white noise above 3000 Hz

>> sound(nzf);

Not so lovely.

Exercise 11.8. Complete the following function, in dehiss.m, to cancel fre-
quency components beyond the threshold frequency.

1 function rv = dehiss (f, th_freq )

2 % Input:

3 % f - sampled signal

4 % th_freq - threshold frequency beyond which to cancel

5 % frequency components

6 % Output :

7 % original signal with high frequency components canceled

8

9 % modify one "window " of 8192 samples at a time

10 for i = 0:8192: length (f)

11 if i+8192 <= length (f)

12 lo = i+1;
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13 hi = i+8192;

14

15 % eliminate hiss in f(lo:hi)

16 % YOUR CODE HERE

17 end

18 end

19 end

The code currently ignores the rightmost incomplete “window” of the signal.
For an additional challenge, make the code handle this window as well.

Apply your implementation to nzf. While this naive approach leaves the
resurrected music sounding somewhat hollow, you should nevertheless hear the
“hallelujahs” clearly. Adjust th freq and noise lvl in hiss. What happens
as th freq becomes low? �

Exercise 11.9. Challenge: Write a Matlab program to generate Figures
11.7–11.10. �

Exercise 11.10. Percussion instruments typically produce a lot of white
noise. Using the DFT, implement a Matlab function to produce a percussion-
based beat of a specified duration. Add a beat track to the random music
generated by your program from Exercise 9.14. �
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