Summary Chapter 1: Prerequisites
Algebra and Trigonometry from OpenStax, a free and open online.

Section 1:

Terminology

- Absolute value
- Algebraic expression
- Order of operations

Be Able To

- Use inequality symbols
- Evaluate absolute value
- Simplify an algebraic expression
- Evaluate an algebraic expression
- Use order of operations
- Apply the concepts: Reference page 16 problems 53-59

Section 2:

Terminology

- Exponent

Be Able To

- Simplify expressions using Product Rule for Exponents:

$$
a^{m} \cdot a^{n}=a^{m+n}
$$

- Simplify expressions using Power-to-a-Power Rule for Exponent: $\left(a^{m}\right)^{n}=a^{m n}$
- Simplify expressions using Product-to-a-Power Rule for Exponents: $(a b)^{m 2}=a^{m} b^{m}$
- Simplify expressions using Quotient Rule for Exponents: $\frac{a^{m}}{a^{n}}=a^{m-n}$
- Simplify expressions using Negative rule for Exponents: $a^{-n}=\frac{1}{a^{n}}$
- Simplify expressions using Integer Exponents Rule: $a^{0}=1$
- Simplify expression using Quotient-to-a-Power Rule for Exponents: $\left(\frac{a}{b}\right)^{m-}=\frac{a^{m m}}{b^{m}}$
- Convert from Scientific to Decimal Notation and vice versa (know calculator notation)
- Apply the concepts: Reference pages 29-30 problems 44-50

Section 3:

Terminology

- Roots
- Radical
- Rationalize
- Rational exponents

Be Able To

- Evaluate $n^{\text {th }}$ roots
- Use the Product Rule for Square Roots: $\sqrt[n]{a b}=\sqrt[n]{a} \bullet \sqrt[n]{b}$
- Use the Quotient Rule for Square Roots: $\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$
- Add and subtracting radicals
- Rationalize denominators
- Evaluate and simplify rational exponents
- Apply the concepts: Reference page 40 problems 65-66

Section 4:

Terminology

- Polynomial
- Degree
- Leading coefficient

Be Able To

- Identify the degree and leading coefficient of polynomials
- Add and subtract polynomials
- Multiply binomials: sum and difference of the same two terms: $\quad(a+b)(a-b)=a^{2}-b^{2}$
squaring binomial: $\quad(a+b)^{2}=a^{2}+2 a b+b^{2}$

$$
(a-b)^{2}=a^{2}-2 a b+b^{2}
$$

cubing binomial: $\quad(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$

$$
(a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}
$$

- Multiply polynomials in two variables
- Apply the concepts: Reference page 48 problems 53-54

Section 5:

Terminology

- Factor
- Greatest common factor

Section 6:

Terminology

- Rational expression
- Complex expression

Be Able To

- Factor out the greatest common factor of a polynomial
- Factor by grouping
- Factor trinomials
- Factor the difference of two squares: $a^{2}-b^{2}=(a+b)(a-b)$
- Factor perfect square trinomials: $a^{2}+2 a b+b^{2}=(a+b)^{2}$

$$
a^{2}-2 a b+b^{2}=(a-b)^{2}
$$

- Factor the sum or difference of two cubes:

$$
a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
$$

$a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$

- Factoring algebraic expressions containing fractional and negative exponents
- Apply the concepts: Reference page 57 problems 51-54

Be Able To

- Find domain of rational expressions
- Simplify rational expressions
- Multiply rational expressions
- Divide rational expressions
- Add and subtracting rational expressions with the same denominator
- Add and subtracting rational expressions with different denominator
- Complex rational expressions
- Fractional expressions in Calculus
- Rationalize numerators
- Apply the concepts: Reference page 65 problems 51-33

