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Preface

This book has been developed based on my years of firsthand experiences
in teaching computational modeling of multidisciplinary problems with the
motivation to encourage transdisciplinary learning, integrative thinking, and
holistic problem solving. The structure of this book is shaped by my philo-
sophic views toward learning and teaching. These views include mainly that
(1) an integrative transdisciplinary approach, rather than a reductive com-
partmentalized one, should be pursued in today’s teaching and learning in
order to equip students and engineers to take on the twenty-first-century chal-
lenges and (2) knowing how our minds function differently in learning that and
learning how, it is feasible to devise ways to stimulate learning how besides
learning that to cultivate and develop critical and creative minds in students
within the time frame of current curricula.

With its sight set on encouraging learning how, this book introduces a
systemic look into the blackbox of how the engineering world is linked to
differential equations, and how these differential equations are solved by
computer-based approximate methods through domain discretization, field
quantity interpolations, weighted integral of residue evaluations, linearization
of differential equations into matrix algebraic equations, Gauss quadrature
and numerical integrations, and minimization of approximation errors, among
other topics.

Through hands-on experiences in the process of learning that and devel-
oping crucial hard skills, students and readers will find it not only feasible
but also practical to examine and solve engineering problems in a holistic way
by taking advantage of a computational tool. With this approach, real-world
problems exhibiting mechanical, electrical, thermal, electrochemical, and mass
transport phenomena, either individually or combined, will be dealt with in a
coupled multidisciplinary (i.e., transdisciplinary) way, rather than in the con-
ventional single-discipline (i.e., compartmentalized disciplinary) way. I hope
that this practice, in the long run, will help set future modelers and engineers
on a journey of integrative learning and problem solving.

Although this book will discuss procedures used in the finite element
method (FEM), it is not like any other books on FEM. It aims to introduce
a computational modeling approach based on FEM for facilitating integrative
learning through consolidation of commonalities in various compartmental-
ized disciplines, and for gaining a deep understanding of how this “intricate
machinery” of computational modeling operates to encourage learning how
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xvi Preface

beyond learning that. It aims to pave some groundwork toward restructuring
the engineering curriculum with the assistance of a computational modeling–
based investigative tool, to promote integrative thinking and transdisciplinary
reasoning in hypothesis testing, problem solving, inventing, designing, pro-
totyping, and testing, among others, for the generation of novel solutions
and cultivation of senses of unlimited possibilities in engineering research and
industrial R&D activities. Such a journey is, of course, expected to be a long
road. In its first edition, this book aims to lay the foundation. In future revi-
sions, more and more integrated problems as case studies will be presented
and discussed.

This book is designed for junior and senior undergraduate students in bio-
engineering and other related fields of engineering and applied sciences, and
graduate students and practicing engineers in industry R&D labs and other
consultancies. It was developed to suit the needs of not only novice modelers
but also experienced ones. It is necessary that the reader has some basic under-
standing of elementary calculus and differential equations. Some knowledge
with one or more of the following science and engineering disciplines would
also be helpful: physics; chemistry; computer science; mechanical, electrical,
chemical, biomedical, and materials science; and electrochemical, civil, and
environmental engineering.

This book is structured in four parts. In Part I, the need for convert-
ing from a compartmentalized disciplinary to a transdisciplinary approach
in education is argued for, for the purpose of promoting integrative rather
than reductive learning. In Part II, a systemic discussion on the ins and
outs of computational modeling procedures is presented, starting from the
facts that the engineering world is linked to differential equations; where
differential equations come from; how they are solved by computer-based
approximate methods through domain discretization, field quantity interpola-
tions, weighted integral of residue evaluations, and linearization of differential
equations into matrix algebraic equations; how numerical integrations are
performed using Gauss quadrature; and how minimization of approximation
errors is ensured, among others. In Part III, the modeling environments of
some common software, including COMSOL, ABAQUS, and ANSYS, are
discussed, with the connections between software settings and the FEM fun-
damentals highlighted. Moreover, methods to develop hands-on practical skills
in performing computational modeling and practical issues concerning image-
based modeling, as well as the standardization and regulatory processes,
are discussed. In Part IV, useful knowledge in the mechanics of materials
and mathematics is provided as extra “just-in-time” learning and referencing
materials.

Guigen Zhang
Clemson University
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1

From Compartmentalized Disciplines
to Transdiscipline

Disciplines are not products of universities. They precede the founding of the
first university back in the Middle Ages. Today, the word discipline often
means a field of study or a trade in which a set of rules, codes, or way of
doing things is imparted from teachers to students. The origin of disciplines
is likely the result of our cognitive dealing with the world we live in, through
a reductive process. Reductive thinking helps reduce a complex issue into
small independent pieces by neglecting and discarding as much as possible
any factors and issues that we have no knowledge or comprehension of at
the moment. Doing so, we can avoid complexity and ambiguity, and gain the
comfort of simplicity and clarity, as Roger Martin put it. The formation of
disciplines not only makes the simplification of complex phenomena possible,
but also offers compartmentalized frameworks and guidelines through which
we explore, understand, and interact with the world.

1.1 Reductive Specialization for
the Twentieth Century

As a tool for facilitating learning, disciplines have characterized higher
education since the beginning of academic life. Even to this day, we still
describe universities in terms of traditional disciplines, such as physics,
chemistry, mathematics, medicine, biosciences, finances, social science, and
engineering. Take engineering; the word has its lexiconic root in the Latin
word ingenium, which means “innate quality, intelligence, natural capacity”
to build and create. So engineering is all about creation and innovation. By
today’s definition, engineering often refers to the practice of exploiting basic
laws and principles of science to design and construct tools and objects of cer-
tain utility. According to this definition, engineering practices can be dated
back to the beginning of human history as humans devised fundamental tools
for survival needs.

To facilitate learning, impart skills, and encourage specialized practices,
the engineering field has witnessed, over the past century, subdivisions of the
field into many specialized areas, such as mechanical, agricultural, materials,
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civil, electrical, chemical, industrial, computer, biomedical, and environmen-
tal. The benefit of such a compartmentalized division of disciplines is that in
each discipline, certain selected or specialized knowledge, ways of thinking,
procedures, and practices can be emphasized and imparted to students. This
practice has proven useful in the past centuries, as engineers played many
crucial roles in bringing on the industrial as well as digital revolution.

1.2 Integrative Problem Solving for
the Twenty-First Century

But time has changed and we live in a different world now. With the dis-
appearing of so-called “low-hanging fruits” in innovation, we can no longer
ignore the complex and interwoven issues. Evidence is emerging that tradi-
tional compartmentalized disciplinary approaches are becoming insufficient
for dealing with the unknowns and uncertainties of the real world, because
our attention to simplicity has also made us unable to see the interconnected-
ness in the systems of the problems. Future innovation will require a strategy
that encourages integrative knowledge acquisition at the convergence of bio-
logical, health, and behavioral sciences; physical sciences; engineering; and
beyond, rather than reductive knowledge acquisition. Lately, a growing sense
of calling for transdisciplinary approaches is emerging in all these traditional
disciplines. Here, transdiscipline refers to a strategy that goes across and
beyond disciplinary boundaries to seek a holistic understanding of the world
around us from all possible angles and aspects, technical and beyond. The
design and production of tomorrow’s systems and products will require such
a transdisciplinary way of practice.

A transdisciplinary approach encourages knowledge integration rather
than reduction. Integrative learning and thinking require one to actively
seek commonalities and patterns from various different angles to sort out
potentially relevant factors; embrace complexity; welcome missing links;
consider multidirectional, multivariable, and nonlinear relationships and inter-
dependencies; see all factors in a systems view; and perform integrative
investigations on how one possibility might affect another.

Bioengineering, or biomedical engineering, is a field that exemplifies the
essence of transdisciplinary needs. In bioengineering, problems are solved
based on myriad laws of physics and thermodynamics, as well as biochem-
istry and biology, among others. At a population level, statistical rules
(e.g., Bayesian probability) may play an influential role as well. Over the past
decades, advances in bioengineering have contributed to numerous innovations
and developments of medical devices, sensors, implants, prostheses, and so
forth, and they have resulted in significant improvement in our quality of life.
However, one of the major challenges facing the field of bioengineering is its
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reliance on the knowledge and investigative approaches developed through the
reductive method in the traditional compartmentalized disciplines. A case in
point: Metal-on-metal articulating implants, such as total hip and knee joints
made of alloys, are thought to be superior to metal-on-polymer implants in
resisting wear, but the corrosion processes (an electrochemical phenomenon)
of two alloys are much more active than those of an alloy and a polymer. Since
wear is a mechanical and material issue and corrosion is an electrochemical
problem, they are seldom dealt with in the same context. Because of this, seri-
ous corrosion-related problems have been coming to light recently for those
metallic implants thought to provide better wear resistance.

This is just one example of the consequences of our reductive way of dealing
with the real world. Looking around us, we can find similar problems in
almost all traditional engineering fields and beyond. “Can anything be done
about it?” you may ask. The answer depends on who you ask.

1.3 Jack of All Trades, Master of None?

In an effort to gage students’ views on how they would react to an integrative
and transdisciplinary way of learning, I found myself in a debate over whether
one should be a “jack of all trades” or a “master of one trade.” These phrases
prompted me to recall the debate we had some 20 years ago concerning the
nascent field of biomedical engineering. Back then, the phrase was “being
a bioengineer is like becoming a jack of all trades and a master of none!”
According to Wikipedia, “jack of all trades, master of none” is a phrase used
with negative connotation in reference to a person who is competent with
many skills, but spends so little time learning each skill in depth that he
or she cannot become an expert in any particular one. William Shakespeare
(1564–1616) was dismissively referred to as a “jack of all trades and master
of none” by Robert Greene in his 1592 booklet “Greene’s Groats-Worth of
Wit.” Of course, the students in the camp of jack of all trades do not regard
themselves negatively. Instead, they believe being a jack of all trades is like
being a generalist in the field of medicine and they can fulfill an important
role in the field of biomedical engineering. On the other hand, the students
in the camp of master of one trade believe that it is necessary to special-
ize in a particular area, like athletes, so that they can gain entrance to a
collaborative team.

Looking back upon the phrase “jack of all trades, master of none,” I can
only speculate that it might have been the creation of people who were trained
in these traditional disciplines—people who would regard themselves as the
ones on a path to becoming an expert, or a master, of their trade. But knowing
the fact that their disciplines are compartmentalized, how does one think of
such a master? Do you recall the fabled story of the blind men and an elephant
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that you might have heard as a child? In case you forgot, here is a shortened
version from Wikipedia: a group of blind men (or men in the dark) touch an
elephant to learn what it is like. Each one feels a different part, but only one
part, such as the side or the tusk. They then tell their individual “knowledge”
of the elephant. As you can imagine, they ended with complete disagreements;
although they were not wrong in a reductive way, none was complete, and
hence none was correct.

1.4 Venturing Out of Our Comfort Zones

If a master of incompleteness is not what you aspire to, a complete way of
inquiry may be what you need to develop. To be complete, we have to exercise
integrative learning rather than reductive learning. Instead of narrowing our
focus onto a specific aspect of a problem, we need to examine the problem
from all possible angles.

Does this way of “integrative learning” require us to rethink and restruc-
ture the way of educating future engineers? Indeed, to alter the way
engineering is taught and to connect engineering education to real-world appli-
cations, in the early 2000s, the University of Georgia established the Faculty
of Engineering and Harvard University created the School of Engineering and
Applied Sciences, both aiming to take a transdisciplinary approach to struc-
ture their engineering education with more broad connections with liberal
arts, humanities, and biological sciences. Resistance to this way of reengi-
neering can be attributed mainly to the worry of not equipping students with
sufficient specialty knowledge, again, the worry of producing jacks of all trades
and masters of none.

Even without a restructured engineering curriculum, one can still con-
sciously develop the trait of integrative thinking as a habit of thought, as
Martin suggested. To start, all you need is a willingness to venture out
of your comfort zones, or develop a sense of “technology foolishness,” in
James March’s words. According to March, a certain amount of technology
foolishness is necessary to make you creative and cross-disciplinary. Using
a scenario we are familiar with, technology foolishness refers to “stealing”
ideas from one field and applying them to another with a certain degree
of twisting and straining. Of course, please do not get carried away. “The
chance that someone who knows no physics will be usefully creative in
physics must be so close to zero as to be indistinguishable from it,” as
March also warned us. But applying some borrowed ideas from a domain
you barely know to a field you know well may lead to breakthrough devel-
opments, as long as you can find the delicate balance “between how much
foolishness is good for knowledge and how much knowledge is good for
foolishness.”
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1.5 Difference in Learning That and Learning How

Finding the delicate balance between knowledge and foolishness is actually
not as easy as it seems. For example, consider the fool in the fabled story
about a hungry man and five pancakes; can you see any wisdom? One after
another, the man kept buying and eating pancakes until he felt his stomach
full after the fifth one. He then concluded that the fifth one made him full and
he was so sorry that he had wasted the money on the previous four: “Had I
known that, I should have bought only the fifth one.”

The antifoolishness moral of this story has taught humankind the lesson
that proper accumulation is necessary, whether being the food we eat or the
knowledge we acquire. We accept this notion as if once we accumulate a certain
amount of learning, a magic thing will happen.

Indeed, this way of thinking has influenced the way of teaching and learn-
ing for pretty much the entire history of civilization. The famous Chinese
philosopher Mencius (372–289 BC; second only to Confucius, 551–479 BC)
once said that “a master can only teach students rules and regulations and he
cannot make them innovative.” The innovative mind will emerge, or not, only
after the students accumulate sufficient amounts of rules and regulations.

Sound familiar? The only difference is that Mencius’s rules and regulations
are today’s specialty knowledge.

Certainly, spending more time learning and accumulating will help one to
become creative and innovative, as in the case of Leonardo da Vinci (1452–
1519), who had spent 14 years as an apprentice before becoming a great
master. But extending the time for an engineering curriculum today is not a
viable option, let alone not the wishes of students. “I would die in my forties
if I do,” lamented one student in answering if one can become a master of
all trades, or a polymath, even with the knowledge that da Vinci, one of the
greatest polymaths, had lived to his late sixties in his time.

So what is the solution to this problem? The answer, it turns out, lies in
the wisdom of British philosopher Gilbert Ryle (1900–1976). As Ryle put
it, learning how (the procedures) is not like learning that (the facts and
truth). So other than spending all the time to learn that—the rules and
regulations, or the specialty knowledge, one may spend some time to learn
how—the procedures in which rules and regulations came about, or the spe-
cialty knowledge that was developed. As Ryle explained, knowing how to
perform an act skillfully may be a matter of not only being able to rea-
son practically, but also being able to put practical reasoning into action.
It may further lead to the discovery of new facts and the development of
new knowledge to replace the obsolete ones. After all, our knowledge of the
world is expected to evolve, update, and renew, as evident by the saying that
the greatest discovery of the nineteenth century is that equations of nature
were linear, and the greatest discovery of the twentieth century is that they
were not.
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It is enlightening to know that our minds function differently in learning
that and learning how. It makes us aware that learning only the rules and
regulations, no matter how long it takes or how many rules and regulations
a person accumulates, may never bring about the creative genie. Instead,
learning how these rules and regulations, or specialty knowledge, are developed
may provide the crucial link to becoming creative and innovative. Even for
the food we eat, modern nutrition and health guidelines suggest that a full
stomach may not be a good metric for guiding food consumption.

1.6 Connecting the Dots

Using today’s words to describe learning that and learning how, we may refer
to the common phrase connecting the dots. Learning how is like learning to
connect the dots. Before connecting, you will need to collect them, learn-
ing that—the acquisition of information and known theories and principles
(or rules and regulations in Mencius’s words). Connecting the dots is the
integrative process in which the acquired facts and rules are processed and
integrated into interconnected knowledge, insight, and wisdom. Do not be
satisfied by just collecting the dots; nothing much will happen if you do not
connect them.

We all know what connecting the dots has done for Steve Jobs in inspiring
him to create Apple Computers and other handheld i-devices. He did this
even without a formal college education. So collect as many dots as possi-
ble, no matter where (or in what discipline) the dots lie or whether you are
in college or out, and then follow through by connecting the dots you have
collected. This surely will help you to become a master of integration and be
able to generate creative new options and innovative solutions to today and
tomorrow’s problems.

1.7 Borrowing Zen’s Way of Seeing the World
with the Assistance of Computational Modeling

“Stay hungry and stay foolish!” To heed the parting advice that Steve Jobs
left us after telling his story of connecting the dots, let us venture into a Zen
Buddha’s world for a moment. According to Daisetz Teitaro Suzuki (1870–
1966), a Japanese Zen philosopher, Zen’s way of knowing a flower should not
be analytically reductive, in which one would pluck the flower, bring it to a
laboratory, dissect it, and go through all the necessary analytical processes,
because once the flower is plucked, it is no longer the flower one sees or
intends to know. Instead, Zen’s way is not to detach it from the totality of
its surroundings, but to leave it where it is, let it be in its living state and
environment, and contemplate it.
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I know what you are thinking, but please remember I am not here to pro-
mote Zen philosophy or to address Zen’s acceptance issue. I am borrowing a
useful idea—the idea of interacting with our surroundings in a totality and
nonreductive way, or in other words, in an integrative way. Fortunately for
us, we can do this in a way far better than Zen’s way of contemplating. In my
belief, a computational modeling–based approach is well positioned to provide
a nonreductive and nondestructive, yet analytical and investigative means to
address real-world problems—problems of not only a mechanical nature, but
also electrical, electrostatic, electrochemical, thermal, electromagnetic, chem-
ical, biochemical, and biological natures, among others, under the governing
laws of thermodynamics, biochemistry, biology, and physics, as well as the
probabilistic rules of statistics. It will provide a much needed practical tool
for us to interact with our surroundings.

1.8 Seeking Convergence beyond Engineering

Steve Jobs once said, “It is in Apple’s DNA that technology alone is
not enough—it is technology married with liberal arts, married with the
humanities, that yields us the result that makes our heart sing.”

Technology married with liberal arts and humanities!
In a 1989 article “The Civilized Engineer,” Samuel Florman summarized

his views with many historical, as well as anecdotal, accounts in arguing for
the need to broaden the horizons of engineering education to include liberal
arts and humanities content (so as to make engineers less “boring” and more
humanistically integrated into the world they live in). According to Florman,
back in the early 1860s General Sylvanus Thayer (1785–1872), known as the
father of the U.S. Military Academy at West Point, endowed an engineering
school at Dartmouth College where he advocated the training of engineers
in not only engineering subjects, science, and mathematics, but also liberal
arts. However, General Thayer’s idea never gained much traction on a larger
scale because the passing of the Morrill Act, the so-called “land grants,” by
the U.S. Congress in 1862 tilted the engineering education in America toward
the training of the industrial classes. And it has pretty much stayed that
way ever since, even though calls for adding more content of liberal arts and
humanities to engineering education have never faded over the years.

If we keep doing what we have been doing in the past, it will be a daunting
challenge for the engineering profession to remain relevant to a changing world.
Lately, a converging sense is that future engineers must be creative, innovative,
lifelong learners and effective communicators in technical and nontechnical
forums and competitive in a global environment. Future engineers will have to
wrestle with problems that are rooted in physical sciences, biological sciences,
environmental sciences, arts, humanities, and social and behavioral sciences,
among others, in addition to the engineering aspects, in the spirit of seeking
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convergence to facilitate transdisciplinary integration of all these aspects as
called for by the National Research Council of the National Academies of
Science, Engineering and Medicine.

What does this mean in a practical sense? To me, it means that we all
need to develop an integrative mindset and keep collecting and connecting
dots. To encourage this practice, we, as a society, need to stop defining and
categorizing ourselves or others by the fields of study in 4 years of one’s life,
as labeled in the diploma or degree, and instead identify people by their track
records, and sometimes even their motivations.

After all, engineering is about creating what has never been and turning
the opportunities into means for the sustainable advancement of the human
race and our civilized society. A wrongly defined problem, even solved cor-
rectly in a technical sense, may lead to some unintended consequences. Thus,
to be able to define the problems rightly in a societal-relevant context, engi-
neers should be not only technically competent but also fully conscious of
the humanistic and economic context surrounding these technical challenges,
because all engineering problems are technical challenges rooted in a socially,
economically, environmentally, and humanistically intertwined world. General
George Marshall once complained that he did not receive a good education
at Virginia Military Institute because there was no training in history. He
knew that to be a leader, one must have a sense of history, for history is the
human story. The same can be said for an engineer: to be able to innovate,
the engineer must have a sense of humanistic appreciation of our society, for
innovation is not just a technical endeavor, but a human one, as exemplified
by “Apple’s DNA” in Steve Jobs’s words.

This book is designed to introduce a unique approach to help the reader or
student learn not only that but also how through the process of learning and
mastering the use of an advanced computational tool to embark on a jour-
ney of integrative learning, questioning, hypothesis testing, problem solving,
invention, design, prototyping, and testing, among others, for the genera-
tion of novel solutions and the cultivation of senses of limitless possibilities in
engineering research and industrial R&D activities. In the long run, I hope
this journey will help pave some groundwork toward restructuring engineering
education by promoting transdisciplinary learning, integrative thinking and
reasoning, and learning how besides learning that, as well as making some
curricular room for incorporating more relevant content from liberal arts and
humanities in the engineering curricula.

1.9 Exercises

1. Reflect upon your views toward compartmentalized versus transdis-
ciplinary and reductive versus integrative learning.
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2. What are your thoughts regarding the discussion on a jack of all
trades, master of one trade, or master of none?

3. What are your thoughts regarding the discussion on technology
foolishness and venturing out of our comfort zones?

4. Knowing the difference between learning that and learning how,
what will you do differently in your study and learning?
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2

Engineering Problems and Partial
Differential Equations

Most of the physical phenomena encountered in engineering problems, such
as fluid dynamics, mechanics, materials, electricity, magnetism, electrochem-
istry, optics, photonics, plasmonics, heat flow, and mass transport, can be
described by partial differential equations because these phenomena follow the
laws of thermodynamics in terms of mass, momentum, and energy conserva-
tion. Solutions to these partial differential equations under certain initial and
boundary conditions can shed in-depth and systemic insights into the under-
lying mechanisms governing these physical phenomena and provide valuable
information toward the analysis of real-world problems, as well as the design
of engineering solutions.

2.1 Brief Review of Differential Equations

A differential equation is a mathematical function that contains derivatives
of its dependent variable or variables (which are sometimes termed as the
unknown or unknowns) with respect to an independent variable or several
independent variables. Very often, these independent variables represent spa-
tial locations in a physical space and temporal variations with respect to time.
For example, in a mechanical problem, dependent variables include displace-
ments, deformations, stresses, and strains, while in a heat transfer or mass
diffusion problem, dependent variables can be temperature, concentration,
and heat or mass fluxes, among others. In all these problems, independent
variables are often the spacial locations and time. Differential equations can
be classified as ordinary or partial, linear or nonlinear, or time independent
or time dependent, and by their order and dimension, among others.

2.1.1 Ordinary versus partial differential equations

When a differential equation has only one independent variable, it is called an
ordinary differential equation (ODE), and when it has two or more indepen-
dent variables, it is a partial differential equation (PDE). As a case in point,

15
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letting a and b be known constants, Equation 2.1 describes a relationship
between a dependent variable u and its derivative with respect to an inde-
pendent variable x. Since x is the only independent variable appearing,
Equation 2.1 is an ODE. In Equation 2.2, however, the dependent variable u
appears in second-order partial derivatives with respect to two independent
variables, x and y; thus, Equation 2.2 is a PDE.

a
du

dx
− bu = 0 (2.1)

a
∂2u

∂x2
+ b

∂2u

∂y2
= f(x, y) (2.2)

2.1.2 Order of differential equations

ODEs and PDEs are often classified by the order of their highest derivatives
appearing in the equation. For example, in Equation 2.1, the highest order
in which the dependent variable appears in a derivative form is first order
(sometimes called first derivative, for short); thus, it is a first-order ODE.
In Equation 2.2, second derivative is the highest order, so it is a second-
order PDE.

2.1.3 Linear versus nonlinear differential equations

Differential equations can be linear or nonlinear depending on whether they
contain a single factor or multiple factors of the dependent variable or its
derivatives. For example, in Equation 2.3 the dependent variable u appears
only in single-factor terms of itself and its first- and second-order derivatives;
thus, it is a linear PDE. In Equation 2.4, however, the dependent variable
u appears in a multifactor (e.g., square) term, although its second-order
derivative terms appear only once; therefore, it is nonlinear.

a11
∂2u

∂x2
+ a12

∂2u

∂x∂y
+ a22

∂2u

∂y2
+ a1

∂u

∂x
+ a2

∂u

∂y
+ a0u = f(x, y) (2.3)

a(x, y, z)
∂2u

∂x2
+ b(x, y, z)

∂2u

∂y2
+ c(x, y, z)

∂2u

∂z2
+ e(x, y, z)u2 = f(x, y, z) (2.4)

2.1.4 Constant versus nonconstant coefficients

The terms appearing with the dependent variable and its derivatives in an
ODE or a PDE are the coefficients of the ODE or PDE. When these coefficients
do not vary with the independent variables, they are constant coefficients.
In this case, they are often expressed in simple alphabets, as in Equations 2.1
and 2.2, or indexed alphabets, as in Equation 2.3. When they vary with the
independent variables, they are nonconstant coefficients. For example, when
a certain material property varies with physical positions within a structure,
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this material property is a nonconstant property. In this case, the coeffi-
cients have to be expressed as functions of the independent variables, as in
Equation 2.4. Sometimes, when a coefficient is not a constant, certain high-
order derivatives in a differential equation may need to be expressed in a
sequential derivative form, as in Equation 2.5, in which κ(x) is a coefficient
varying with x:

− d

dx

[
κ(x)

du

dx

]
= f(x) (2.5)

2.1.5 Dimension of differential equations

All the differential equations discussed above are functions of only the spatial
variables, namely, x only, x and y, or x, y, and z. With different spatial vari-
ables, they describe problems of different spatial dimensions. For example,
Equation 2.1 is a one-dimensional (1D) ODE describing a physical phe-
nomenon occurring only in the x dimension. On the other hand, Equations 2.2
and 2.3 describe physical phenomena occurring in the two-dimensional (2D)
space of x and y, and Equation 2.4 represents a physical phenomenon occur-
ring in the three-dimensional (3D) space of x, y, and z; therefore, Equations
2.2 and 2.3 are 2D PDEs and Equation 2.4 is a 3D PDE.

2.1.6 Time-dependent and -independent
differential equations

The differential equations listed earlier are not functions of time. In other
words, they are time independent, meaning that they describe stationary
or steady-state physical phenomena. Stationary or steady-state differential
equations often deal with problems in which either the dependent variable
does not change with time at all, or the change is so small that its effect can
be conveniently ignored. For a stationary problem, we can think of a moment
right before a diver makes a jump at the tip of a diving board. At this moment,
nothing moves and all is in a static equilibrium. Of course, the events occurring
after this moment will be transient and time dependent. For a steady-state
problem, we can relate to a situation where a heat sink is absorbing heat from
a microprocessor on one side and dissipating it to the surrounding air on the
other sides without causing any changes in the overall temperature profile in
the heat sink. In this case, the heat exchange is regarded as being in a state
of dynamic equilibrium, or steady state.

When the dependent variable changes with time, the differential equation
will have to include relevant time derivative terms of the dependent variable,
as in Equation 2.6.

a0
∂2u

∂t2
+ a1

∂u

∂t
+ b1

∂2u

∂x2
+ b2

∂2u

∂x∂y
+ b3

∂2u

∂y2
+ d1

∂u

∂x
+ d2

∂u

∂y
+ eu = f(t, x, y)

(2.6)
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Time derivative terms include velocity, acceleration, and the rate of change in
heat or mass, among others.

2.1.7 Initial and boundary conditions

Differential equations use simple mathematical expressions to capture the gov-
erning principles underlying the problems one intends to analyze. The term
differential often means that the governing equation is applied to a represent-
ing unit volume of the physical structure over a unit period of time (if the
problems are time dependent). This makes differential equations powerful:
a simple equation, or a set of equations, can describe many different physical
problems. This, however, imposes strict requirements when solving the dif-
ferential equations in order to have the solutions reflect truthfully the actual
physical problems under investigation. It is therefore important to define an
appropriate physical domain in which the differential equation is applied and
specify the necessary boundary conditions at certain boundaries (along with
initial values if it is time dependent) to properly constrain the differential
equation according to the actual physical situations of the problems.

Dependent variables in a differential equation may appear directly or in
their derivative forms. In direct forms, they are called primary variables, and
in derivative forms they are secondary variables. Similarly, boundary condi-
tions can also be given as either values for the primary variables or values for
the secondary variables. For example, in solving Equation 2.7,

∂u(t, x)
∂t

− κ
∂2u(t, x)

∂x2
= f(t, x) (2.7)

when the boundary conditions are given as values for the primary variable u
directly as

u(t, a) = α(t), u(t, b) = β(t)

they are essential boundary conditions, which are sometimes called Dirichlet
boundary conditions , and when they are known as values for the secondary
variables, such as derivatives of u as

∂u(t, a)
∂x

= γ(t),
∂u(t, b)

∂x
= λ(t)

they are natural boundary conditions, which are also known as Neumann
boundary conditions . The reason we call them natural boundary conditions
is that these conditions are always related to natural phenomena, such as
mechanical forces or flux of matters. When the boundary conditions are given
in a mixed form of Dirichlet and Neumann, they are termed Robins boundary
conditions . Since Equation 2.7 is a time-dependent PDE, an initial value at
t = 0 is also necessary for solving it:

u(0, x) = u0(x)



T&F Cat #K16587 — K16587 C002 — page 19 — 1/23/2017 — 13:38

Engineering Problems and Partial Differential Equations 19

Example 2.1

Classify the following differential equations according to their categories,
including ODE or PDE, order, dimension, linearity, time dependency,
and type of coefficient. Also, identify the dependent and independent
variables.

a.
dx

dt
+ tx = 0

b.
∂u

∂t
− ∂2u

∂x2
= (1+ t) sin(x)

c.
∂w

∂t
+ w

∂w

∂x
= 0

Answer

a. It is an ODE, first-order, linear, 0D (because x is the depen-
dent variable and there is no independent dimensional variable),
time-dependent equation, with nonconstant coefficients (t is the
coefficient of x, which is not a constant). x is a dependent variable
and t is the independent time variable.

b. It is a PDE, second-order, linear, 1D, time-dependent equation,
with constant coefficient. u is a dependent variable and x is the
independent dimensional variable.

c. It is a PDE, first-order, nonlinear (it has the product of w and
∂w

∂x
), 1D, time-dependent equation, with constant coefficient. w is a

dependent variable, x is the independent dimensional variable, and
t is the independent time variable.

2.2 Connecting PDEs to the Engineering World

Most engineering problems can be represented by differential equations. In
this section, we review some common ODEs and PDEs and link them to the
physics of many engineering problems. Before we do that, it will be helpful to
review some of the differential notations and symbols.

2.2.1 Some differential notations

2.2.1.1 ∇ operator

∇ (pronounced “del”) is a mathematical notation used to serve as a vector
form differential operator. In a 3D spacial domain, it can be expressed as a



T&F Cat #K16587 — K16587 C002 — page 20 — 1/21/2017 — 17:28

20 Introduction to Integrative Engineering

vector in terms of three first derivatives:

∇ =
∂

∂x
�i +

∂

∂y
�j +

∂

∂z
�k (2.8)

where �i,�j,�k are the standard unit vectors along the x, y, and z directions,
respectively, in the Cartesian coordinate system.

As an operator, the ∇ symbol can be simply applied to a field variable, and
as a vector, it can be multiplied, either in a dot product or in a cross product,
with another vector. As a differential operator, ∇ follows the algebra rules of
calculus. For example, when F and G are field variables and k is a constant,
we have the following properties:

1. Sum rule: ∇(F + G) = ∇F +∇G

2. Difference rule: ∇(F −G) = ∇F −∇G

3. Constant multiple rule: ∇(kF ) = k∇F

4. Product rule: ∇(FG) = F∇G+ G∇F

5. Quotient rule: ∇
(

F

G

)
=

G∇F −F∇G

G2

Clearly, these rules are familiar to us when we think of the ∇ operator as d/dx
or ∂/∂x.

2.2.1.2 Gradient of a field

When the ∇ operator is applied to a field quantity, Φ(x, y, z), the resulting
expression is called the gradient of Φ, which is a vector:

gradΦ = ∇Φ =
∂Φ

∂x
�i +

∂Φ

∂y
�j +

∂Φ

∂z
�k (2.9)

In a physical sense, the gradient of a field measures the variation of the field
quantity with respect to its spacial variables. For example, when Φ is a 1D
field, that is, Φ = Φ(x), ∇Φ simply measures the slope of this field with
respect to the x axis, as illustrated in Figure 2.1. Since all variables in 1D
are varying with x only, the unit vector, �i, is often omitted. In 2D and 3D

∇Φ = dΦ
dx

(x)
x

Φ

x

y

∇Φ = ∂Φ
∂x i + ∂Φ

∂y j

(x, y)

FIGURE 2.1
Gradient of a field in 1D and 2D spaces.
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spaces, the gradient represents the magnitude and direction of the greatest
change of the field quantity in space. For a 2D field, Φ = Φ(x, y), ∇Φ captures
the steepness and direction of the greatest change in the field with respect
to x and y, which can be represented by the vector normal to the tangent
line of the field at (x, y), as illustrated in Figure 2.1. Similarly for a 3D
field, Φ = Φ(x, y, z), ∇Φ measures the steepness and direction of the greatest
change in the field with respect to x, y, and z by the vector normal to the
tangent plane of the field at (x, y, z).

2.2.1.3 Dot product and divergence of a field

Next, we will look at the dot product of the ∇ vector with another vector.
First, let us recall the definition of the dot product. As illustrated in Figure 2.2,
the dot product of two vectors, u = ux

�i + uy
�j + uz

�k and v = vx
�i + vy

�j + vz
�k,

defines the length of the first vector (e.g., |u|) multiplying the projection length
of the second vector on the first (e.g., |v| cos θ), where θ is the angle between
the two vectors. By vector algebra and the law of cosines, the dot product
of two vectors is no longer a vector but a scalar, and its magnitude can be
expressed as (refer to Appendix B for more details)

u · v = |u||v| cos θ = uxvx + uyvy + uzvz

The dot product of the ∇ vector with any vector field, F = Fx(x, y, z)�i +
Fy(x, y, z)�j + Fz(x, y, z)�k, is called the divergence of F , which is no longer a
vector but a scalar:

∇·F = div F =
∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z
(2.10)

Physically, the divergence of a vector field (often a flow vector) measures
the flux density of the vector field within a given region of space. Here, flux
describes the amount of matter (mass, energy, current, etc.) entering or exist-
ing through a surface of unit area in a unit amount of time. Divergence is often
used in the consideration of the conservation of matters when the principle
of continuity applies. For example, by measuring the net flux of the matter
passing through an enclosed surface surrounding the region of space, one can
determine the change in the density of the matter. This statement can be

u

v
|v|cosθθ

u · v = |u||v|cosθ

u = uxi + uy j + uzk, v = vxi + vy j + vzk

FIGURE 2.2
Dot product of two vectors.
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expressed by the following equation, known as the divergence theorem:

∫∫
A

F ·ndA =
∫∫∫

V

∇·FdV (2.11)

The divergence theorem works in both 2D and 3D situations. As illustrated
in Figure 2.3, in a 3D space it states that the amount of an expanding vector
field F outflowing through the boundary surface (A) of a spherical space can
be determined by integrating the divergence of the field (i.e., the flux density)
over the enclosed volume (V ). Similarly, in a 2D space, the amount of an
expanding vector field F outflowing through the boundary (L) of an enclosed
region can be determined by integrating the divergence of the field over the
area (S) of the enclosed region.

2.2.1.4 Cross product and curl of a field

As illustrated in Figure 2.4, assuming that two vectors, u = ux
�i + uy

�j + uz
�k

and v = vx
�i + vy

�j + vz
�k, are not parallel to each and that they intersect at an

angle θ, by definition, the cross product of these two vectors can be expressed

y

z

x

F

3D :  ſſA F · ndA = ſſſV ∇ · F d V

2D :  ſſL F · ndl = ſſA ∇ · F d AS, V

FIGURE 2.3
Illustration of the divergence theorem.

u

v

θ

u × v

n
u × v = (|u||v|sinθ) n 

u = uxi + uy j + uzk, v = vxi + vy j + vzk

FIGURE 2.4
Cross product of two vectors.
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as follows (see Appendix B for more details):

u× v = (|u||v| sin θ) �n =

⎡
⎢⎣

�i �j �k

ux uy uz

vx vy vz

⎤
⎥⎦

= (uyvz − uzvy)�i− (uxvz − uzvx)�j + (uxvy − uyvx)�k

Unlike the dot product, the cross product is a vector, and its direction
(with a unit vector �n) is determined by the right-hand rule: by curling your
fingers along the angle (θ) from u to v, the direction your right thumb points
is the direction of �n.

The cross product of the ∇ vector with the vector field F is called the curl
of F , which is a vector:

∇×F = curlF =

⎡
⎢⎢⎢⎣

�i �j �k

∂

∂x

∂

∂y

∂

∂z
Fx Fy Fz

⎤
⎥⎥⎥⎦

=
(

∂Fz

∂y
− ∂Fy

∂z

)
�i +
(

∂Fx

∂z
− ∂Fz

∂x

)
�j +
(

∂Fy

∂x
− ∂Fx

∂y

)
�k (2.12)

Physically, the curl vector measures the rate of circulation (or circulation den-
sity) of a rotating vector field with its direction determined by the right-hand
rule: when the fingers curl along the direction of rotation, the thumb points
in the direction of the curl vector (see Figure 2.5). The curl operation can be
illustrated by Stokes’ theorem, which states that the circulation of a rotating
flow vector F along an enclosed path L in the direction counterclockwise with
respect to the surface’s unit normal vector (n) can be determined by the inte-
gral of the dot product of the curl of the rotating vector (∇×F ) with the unit
vector (n) over the enclosed projection area S, as illustrated in Figure 2.5.

n

y

∇ × F

x

∫оL F · dl = ∫∫A ∇ × F · ndA

L, AF

FIGURE 2.5
Illustration of Stokes’ theorem.
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2.2.1.5 Laplacian of a field

The dot product of the ∇ vector with the gradient of Φ (i.e., ∇Φ) is a scalar
commonly known as the Laplacian of Φ:

∇ ·∇Φ = ∇2Φ =
∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
(2.13)

Here, the notation (∇2) is called the Laplacian operator, representing the sum
of three second-order derivatives:

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

The Laplacian operator plays a very important role in differential equa-
tions describing many engineering problems. The Laplacian of a field allows
us to quantitatively compare the field at a selected point with those at neigh-
boring points. An intuitive way to understand this is to recall the way we find
extremes (maximum and minimum) of a 1D function: first, we set the first-
order derivative of the function to zero to find the locations of the extremes,
and then to know whether an extreme point is a maximum or minimum, we
evaluate the corresponding second-order derivative. If the second-order deriva-
tive is greater than zero, we have a minimum; if it is zero, we have a local
constant field; and if it is less than zero, we have a maximum.

Similarly, with the Laplacian operator we can say the following:

1. When ∇2u > 0 at a point (x, y, z), u(x, y, z) will be smaller than
the average of u at its neighboring points.

2. When ∇2u = 0 at a point (x, y, z), u(x, y, z) will be equal to the
average of u at its neighboring points.

3. When ∇2u < 0 at a point (x, y, z), u(x, y, z) will be greater than
the average of u at its neighboring points.

2.2.2 Common engineering problems and their
governing PDEs

As pointed out earlier, most of the physical phenomena encountered in engi-
neering problems can be described by PDEs because these problems obey the
laws of physics and thermodynamics. Without going into any details, we now
give a quick overview of some common PDEs and link them to the engineering
problems they govern.

For many mechanical problems, such as structural movements or deforma-
tions under internal and external forces or loads, PDEs are commonly used
to relate their dependent variables, often the displacements of the structure
at a given point, to their spacial and temporal independent variables, as well
as constraints like loads, tractions, and motions. Here, let us have a look at
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two 1D examples. The first, as listed in Equation 2.14, describes a 1D bar
structure undergoing deformation or motions in response to a volume load
f(x, t), and the second, given in Equation 2.15, describes the vibration of a
string:

ρ
∂2u

∂t2
= k

∂2u

∂x2
+ f(x, t) (2.14)

ρ
∂2u

∂t2
= a2 ∂2u

∂x2
(2.15)

These two PDEs, although describing two different physical phenomena, share
some common mathematical traits: they both have a second-order derivative
term with respect to time, representing the acceleration (or force), and a
second-order derivative term with respect to x, which is the Laplacian of u in
1D space. In other words, these PDEs can be interpreted to mean that the
acceleration (or force) is proportional to the Laplacian (∇2u). Based on the
knowledge we learned in Section 2.2.1, we know that when ∇2u > 0 at a point
(in the case of the vibrating string), the transverse displacement of this point
will be less than the average of its neighboring points. In this situation, the
point will move outward to catch up with the neighboring points by increasing
the acceleration. The commonality in these two PDEs indicates that although
we face two different mechanical problems, we actually deal with the same
type of differential equations.

In the case of heat transfer, the dependent variable, temperature (T ),
obeys the following PDE in terms of its first-order time derivative, the
Laplacian, and a volume heat source (Q):

ρc
∂T

∂t
= ∇· (κ∇T )+ Q (2.16)

Equation 2.16 can be interpreted to mean that the change in temperature
with respect to time is proportional to the Laplacian of temperature, ∇2T .
This means that the temperature at a point will increase if the temperature
at that point is less than the average of its neighboring points (∇2T > 0), or
vice versa.

In the case of mass transport by diffusion, the dependent variable, namely,
the concentration (c) of a substance, obeys the following PDE in terms of its
first-order time derivative and the Laplacian, as well as a rate volume reaction
source (R):

∂c

∂t
= ∇· (D∇c)+ R (2.17)

Similarly, since the change in concentration with respect to time is propor-
tional to the Laplacian of concentration, ∇2c, as shown in Equation 2.17,
the concentration at a point will increase if the concentration at that point
is less than the average of its neighboring points (i.e., ∇2c > 0), or vice
versa. Moreover, although we have in Equation 2.16 a heat transfer problem
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and in Equation 2.17 a diffusion problem, these two PDEs are identical
mathematically. This is another example showing that although we face two
engineering problems of different physics, we practically deal with the same
partial differential equation.

For the propagation of acoustic (mechanical or sound) waves, the depen-
dent variable u (representing the particle displacement in the case of a
mechanical wave, or the pressure in the case of a sound wave) obeys the
following PDE:

1
c2
s

∂2u

∂t2
= ∇· (∇u) (2.18)

where cs is the wave phase velocity. Mathematically, Equation 2.18 is of
the same type of PDEs as Equations 2.14 and 2.15, in which the accelera-
tion of particles (or sound) is proportional to the Laplacian of the particle
displacement (or the pressure).

PDEs also play a major role in helping us deal with electrical and electro-
magnetic problems. For example, the phenomenon of electrostatics is governed
by the following PDE:

ε0εr∇2V = −ρ (2.19)

Here, ε0 and εr are the permittivity of the vacuum and dielectric medium,
respectively, V the electrical potential, and ρ the charge density. Again,
we see the Laplacian term. Due to the nonzero term on the right-hand
side, Equation 2.19 is often referred to as Poisson’s equation. In this equa-
tion, potential V varies smoothly in a quadratic relationship with its spacial
variables and V has a minimum (or maximum) when ρ < 0 (or ρ > 0).

To sum up, this section is not intended to give an exhaustive list of PDEs.
Instead, it presents some common PDEs and discusses their meanings in
relation to engineering problems from a differential equation–oriented view.
From this exercise, we noted that the PDEs applied to different problems are
sometimes of the same mathematical type. This fact suggests that although
there are countless real-world problems, their governing differential equations
are actually of limited numbers and types. It is therefore beneficial to examine
these problems from a differential equation–oriented angle.

Solving PDEs analytically for complex problems, however, is very difficult
and sometimes impossible. To make matters worse, as the saying goes, the
greatest discovery of the nineteenth century is that equations of nature were
linear, and the greatest discovery of the twentieth century is that they were
not. This means that complex real-world problems are not only of a transdis-
ciplinary nature but also sometimes governed by nonlinear PDEs. The good
news is that the explosion in computational powers and capabilities makes
solving multiphysics nonlinear PDEs not only possible but also relatively
easier to do. Therefore, in this book we will learn to take advantage of a
computational method to solve complex PDEs. The ability to solve real-world
problems of a transdisciplinary nature, like bioengineering problems, in this
way can help break the barriers among the traditional disciplines, provide
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a holistic way to gain better insights into the real problems, and present a
practical way to seek new possibilities.

2.3 Brief Review of Matrix Algebra

A matrix is a rectangular array of elements, consisting of numbers, symbols,
or other expressions, arranged in rows and columns. The number of rows and
the number of columns define the dimension of a matrix. For example,

{A} =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦

is a m×n matrix having m rows and n columns. The elements of a matrix are
often expressed as aij , in which i is the row index number (i = 1, 2, . . . , m)
and j is the column index number (j = 1, 2, . . . , n).

2.3.1 Row and column vectors

A matrix of dimension 1×n is called a 1×n row vector, and a matrix of
dimension m× 1 is called a m× 1 column vector. For example,

{a} =
[
2 9 5

]
is a 1× 3 row vector and

{b} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3
7
15
−8
4

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

is a 5× 1 column vector. Very often, we use square brackets for row vectors
and curly brackets for column vectors.

2.3.2 Addition and subtraction

Matrix addition and subtraction can be performed when two or more matri-
ces are of the same dimension, and they are calculated by the addition or
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subtraction of the corresponding elements. For example,

[
5 9
2 8

]
+
[
8 3
4 7

]
=
[
13 12
6 15

]
[
5 9
2 8

]
−
[
8 3
4 7

]
=
[−3 6
−2 1

]

2.3.3 Multiplication by a scalar

When a matrix is multiplied by a scalar, all the elements in the matrix are
multiplied by the scalar. For example,

103 ×
[
25 9
2 8

]
=
[
25000 9000
2000 8000

]

This operation is often useful in factoring out a common multiplier, as in

[
25000 9000
2000 8000

]
= 103

[
25 9
2 8

]

2.3.4 Matrix–matrix multiplication

Two matrices can be multiplied only when the column number of the first
matrix equals the row number of the second matrix, and the resulting matrix
will have its row number equaling that of the first matrix, and column number
that of the second matrix.

[A]m×n[B]n×p = [C]m×p

where

cmp =
n∑

k=1

amkbkn

For example,

[
2 8 9 6
5 4 7 3

]
2×4

×

⎡
⎢⎢⎣
1 4 6
2 6 9
3 8 10
7 8 5

⎤
⎥⎥⎦

4×3

=
[
87 176 204
55 124 151

]
2×3
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2.3.5 Transposition

The transpose of a matrix can be obtained by converting its rows into its
columns. For example,

[A] =
[
2 8 9 6
5 4 7 3

]
, [A]T =

⎡
⎢⎢⎣
2 5
8 4
9 7
6 3

⎤
⎥⎥⎦

[B] =

⎡
⎢⎢⎣
1 4 6
2 6 9
3 8 10
7 8 5

⎤
⎥⎥⎦ , [B]T =

⎡
⎣1 2 3 7

4 6 8 8
6 9 10 5

⎤
⎦

where the superscript T denotes the transpose operation.

2.3.6 Differentiation and integration

By definition, the elements of a matrix can be scalar constants, expressions,
or functional expressions. For example,

[A] =
[

2x2 8x+ 9
5x− 4 9x3 − 3x2

]

In this case, the matrix may be differentiated and integrated. The derivative
or integral of a matrix is obtained by taking the derivative, or integral, of each
element as follows:

d

dx
[A] =

[
4x 8
5 27x2 − 6x

]

∫ x

0

[A]dx =

⎡
⎢⎢⎣

2x3

3
4x2 + 9x

5x2

2
− 4x

9x4

4
− x3

⎤
⎥⎥⎦

2.3.7 Square matrix

When the row number of a matrix equals its column number, the matrix is
called a square matrix. For example,

[A] =

⎡
⎣5 4 6

8 7 9
3 15 17

⎤
⎦

is a square matrix.
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2.3.8 Diagonal matrix

When a square matrix has only nonzero elements along its principal diagonal,
it is called a diagonal matrix. For example,

[M ] =

⎡
⎢⎢⎣
5 0 0 0
0 4 0 0
0 0 7 0
0 0 0 9

⎤
⎥⎥⎦

2.3.9 Identity matrix

The identity matrix, sometimes called unit matrix, is a diagonal matrix with
1’s along its principal diagonal. We often use [I] for the identity matrix,

[I] =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

2.3.10 Symmetric matrix

A symmetric matrix is a square matrix whose elements satisfy

aij = aji

By the definition of matrix transposition, a square matrix satisfies

[A] = [A]T

For example,

[A] =

⎡
⎣ 7 −8 1
−8 16 −8
1 −8 7

⎤
⎦

is a symmetric matrix.

2.3.11 Determinant

For a 2× 2 square matrix [A], its determinant det[A] is calculated by the
product of the elements along the principal diagonal minus the product of the
elements along the secondary diagonal. For example,

[A] =
[
a b
c d

]
det[A] = ad− bc



T&F Cat #K16587 — K16587 C002 — page 31 — 1/21/2017 — 17:28

Engineering Problems and Partial Differential Equations 31

For matrices of higher dimension, one can always reduce them, using
the matrix partition method, to 2× 2 matrices and then calculate their
determinants. If the determinant of a matrix is 0, the matrix is called singular.

2.3.12 Matrix inversion

For a square and nonsingular matrix [A], its inverse [A]−1 is a matrix such
that

[A][A]−1 = [I]

For a 2× 2 matrix,

[A] =
[
a b
c d

]

[A]−1 =
1

det|A|
[

d −b
−c a

]
=

1
ad− bc

[
d −b
−c a

]

2.3.13 Matrix partition

A matrix of large dimension can be partitioned into a matrix of submatrices
of smaller dimension. For example,

[A] =

⎡
⎢⎢⎢⎢⎣
a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

⎤
⎥⎥⎥⎥⎦

can be partitioned into

[A] =
[
A11 A12

A21 A22

]

where

[A11] =
[
a11 a12 a13

a21 a22 a23

]
, [A12] =

[
a14 a15 a16

a24 a25 a26

]

[A21] =

⎡
⎣a31 a32 a33

a41 a42 a43

a51 a52 a53

⎤
⎦ , [A22] =

⎡
⎣a34 a35 a36

a44 a45 a46

a54 a55 a56

⎤
⎦

The partitioned matrix follows the same algebra rules as listed above.

2.3.14 Matrix calculation using MATLAB

MATLAB� is a useful tool for performing matrix algebra calculations. For
example, at a MATLAB prompt (>>), typing A = [2 8; 4 9] will define
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matrix [A] as (note that the underline is used here to highlight the input
text for MATLAB)

[A] =
[
2 8
4 9

]
Typing A′ will produce its transpose,

[A]T =
[
2 4
8 9

]

Typing det(A) will calculate its determinant,

det[A] = −14

And typing Aˆ−1 will produce its inverse,

[A]−1 =
−1
14

[
9 −8
−4 2

]
=
[−0.6429 0.5714

0.2857 −0.1429

]

Similarly, typing A = [5 9; 2 8]; B = [8 3; 4 7]; will define matrices [A]
and [B] as

[A] =
[
5 9
2 8

]
and [B] =

[
8 3
4 7

]
Typing A+ B will produce their addition:

[A] + [B] =
[
13 12
6 15

]

Typing A ∗B will calculate their multiplication:

[A][B] =
[
76 78
48 62

]

MATLAB can also be used to find the solutions to matrix algebra
equations. For example, to solve[

2 8
4 9

]{
x1

x2

}
=
{

13
9

}

one just types A = [2 8; 4 9]; B = [13; 9]; at a MATLAB prompt such that
the algebra equation above can be structured as

[A]{X} = {B}
Then by typing X = Aˆ−1 ∗B, one can find its solution,

{X} =
{

x1

x2

}
= [A]−1{B} =

{−3.2143
2.4286

}

The reader is encouraged to review the MATLAB manual for more matrix
algebra operations.
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FIGURE 2.6
A 2D line plot and 3D surface plot made using MATLAB�.

2.3.15 Making plots using MATLAB

MATLAB can also be used to make easy 2D and 3D plots. For exam-
ple, to make a 2D line plot of function (1− x)/2 for x from −1 to 1 with
MATLAB, one first types figure to activate a figure box, and then types
ezplot(‘(1− x)/2’,[−1,1]) to make the plot. The obtained plot is shown in
Figure 2.6a.

To make a 3D surface plot of function x(1 + x)(1− y2)/4 for x from −1 to
1 and y from −1 to 1, one just types figure to activate a figure box, and then
types ezsurf(‘x*(1+x)*(1− yˆ 2)/4’,[−1,1,−1,1]). For a 3D surface plot, one
can use the Rotate 3D button to adjust the viewing angle before saving the
plot in jpg or other file formats. The obtained plot is shown in Figure 2.6b.

2.4 Exercises

1. Classify the following differential equations according to their cat-
egories, such as ODE or PDE, order, dimension, linearity, time
dependency, and type of coefficient. Also, identify the dependent
and independent variables.

a.
d2x

dt2
+ 2

dx

dt
+ 7tx = 0

b.
∂u

∂t
− 5

∂2u

∂y2
= (1 + 5t) sin(y)
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c.
∂3w

∂x3
+ w

∂w

∂x
+ 9w = 0

d.
d2x

dt2
− 2

1
t2

x = 0

e.
∂v

∂t
+
(

∂v

∂x

)2

+ 8v = x+ t2 + 8xt

f.
∂w

∂t
− ∂

∂x

[
2w

∂2w

∂x2

]
− 8w = 0

2. Classify the following differential equations according to their cat-
egories, such as ODE or PDE, order, dimension, linearity, time
dependency, and type of coefficient. Also, identify the dependent
and independent variables.

a.
d3θ

dt3
+ 5θ+ sin(θ) = 0

b.
∂2u

∂x2
− 2

∂u

∂x
+ 15

∂u

∂y
= 1 + x+ y

c.

ρ(x, y, z)
∂2u

∂t2
+ α(x, y, z)

∂u

∂t
−T (x, y, z)

{
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

}
= g(x, y, z)

d.
d2v

dt2
− 2

dv

dt
+ t2v = 0

e.

ρ(x)c(x)
(

∂y

∂t

)3

− ∂

∂x

(
κ(x)

∂y

∂x

)
= 0

f.
d2x

dt2
+ 2

d4x

dt4
+ 2015x2 = sin(πt)
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3. Determine whether each of the following is a solution of the
corresponding differential equation in Exercise 1:

a.
x(t) = tet

b.
u(y, t) = t sin(y)

c.
w(x) = x3 + 5x

d.
x(t) =

1
t

e.
v(x, t) = tx

f.
w(x, t) = x2t

4. Identify the size and type of the given matrices and denote whether
each is a square, column, diagonal, row, identity, or symmetric
matrix.

a. ⎡
⎣23 12 0

12 40 25
0 25 9

⎤
⎦ ,

b. ⎧⎪⎪⎨
⎪⎪⎩

t
t2

t3

t4

⎫⎪⎪⎬
⎪⎪⎭ ,

c. [
1 x x2 x3

]
,

d. ⎡
⎣6 3
5 7
4 1

⎤
⎦ ,

e. ⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,
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f. ⎡
⎢⎢⎢⎢⎣

a1 0 0 0 0
0 a2 0 0 0
0 0 a3 0 0
0 0 0 a4 0
0 0 0 0 a5

⎤
⎥⎥⎥⎥⎦

5. Given matrices

[A] =

⎡
⎣7 3 2

9 0 −8
5 −7 4

⎤
⎦ , [B] =

⎡
⎣5 4 −3
9 4 6
2 1 −6

⎤
⎦ , and [C] =

⎧⎨
⎩

3
−7
9

⎫⎬
⎭

perform the following operations:

a. [A] + [B] = ?
b. 5[A] = ?
c. [A][B] = ?
d. [B][A] = ?
e. [A]{C}=?
f. [B]2 =?
g. Show that [I][A] = [A][I] = [A].

6. Given the matrices

[A] =

⎡
⎣1 6 9

7 3 2
5 −1 4

⎤
⎦ and [B] =

⎡
⎣ 0 8 −3
−5 9 3
2 5 −9

⎤
⎦

perform the following operations:

a. [A]T = ? and [B]T = ?
b. Verify that ([A] + [B])T = [A]T + [B]T

c. Verify that ([A][B])T = [B]T [A]T

7. Given the following matrices

[A] =

⎡
⎣ 2 7 −5

8 9 7
13 −5 6

⎤
⎦ and [B] =

⎡
⎣ 3 8 −2

5 13 0
14 −7 6

⎤
⎦

calculate

a. Determinant of [A] and [B]
b. Determinant of [A]T

c. Determinant of 7[A]
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8. Given the following matrices

[A] =

⎡
⎣0 7 0
4 3 5
9 −4 −7

⎤
⎦

calculate the determinant of [A] and of [A]T .

9. Solve the following matrix equation by using the Gauss elimination
method and MATLAB:⎡

⎣2187500 −937500 0
−937500 2187500 −1250000

0 −1250000 1250000

⎤
⎦
⎧⎨
⎩

u2

u3

u4

⎫⎬
⎭ =

⎧⎨
⎩

0
0

500

⎫⎬
⎭

10. Calculate the inverse of the following matrices:

[A] =

⎡
⎢⎢⎣

7 0 0 0
0 1 0 0
0 0 3 0
0 0 0 6

⎤
⎥⎥⎦ , [B] =

⎡
⎣ 1 1 1

3 7 2
−1 3 4

⎤
⎦ , and [C] =

[
k11 k12

k21 k22

]
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3

Where Do Differential Equations
Come From?

Differential equations are developed mathematically upon the fundamental
theorem of calculus according to the laws of thermodynamics in terms of mass,
force, momentum, and energy conservation, as well as other relevant laws and
principles. In this chapter, we revisit some of the partial differential equations
(PDEs) listed earlier. This time we do so from the very beginning to find out
how a “differential unit” is selected and how the laws of physics and thermo-
dynamics are applied. Through these exercises, we will know how differential
equations are developed. To simplify matters, we will work on the develop-
ment of several one-dimensional (1D) PDEs. When necessary, expanding 1D
PDEs to multidimensional PDEs should be fairly straightforward.

3.1 PDE for a Hanging Bar

Let us first examine a hanging bar. As illustrated in Figure 3.1, a slender
(its lateral dimension is much smaller than its longitudinal dimension) linear
elastic structure is assumed to have a uniform cross section area of A and
length of l, and it is subjected to downward pulling due to gravity. Because
of its large length-to-width ratio, it mainly undergoes longitudinal (or axial)
loading and deformation with negligible lateral deformation (e.g., narrowing
due to the Poisson’s ratio effect); we consider this to be a 1D mechanical
bar structure. Note that Poisson’s ratio, named after Simeon Denis Poisson
(1781–1840), a French mathematician and physicist, describes the dimensional
change in a transverse direction (e.g., narrowing) caused by the change in the
longitudinal direction (e.g., elongation) in a fractional ratio.

To develop its governing PDE, we isolate an arbitrary infinitesimal sec-
tion of the bar between x and x+ Δx, and examine the equilibrium of this
section in terms of force and motion. As shown in the free-body diagram of
the isolated section, there are three forces acting on it: F (x) at the upper
edge, F (x+ Δx) at the lower edge, and a downward volume force (includ-
ing gravity) f . According to Newton’s second law of motion, named after
Isaac Newton (1642–1726), ΣF = ma, where m is mass and a is acceleration,
we have

ΣF = F (x+ Δx)+ AΔxf −F (x) = ma

39
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Let u be the dependent variable representing the displacement of the bar at
any given time t and location along the x direction; then the displacement at
x can be expressed as u(x, t), the displacement at x+ Δx as u(x+ Δx, t), and
the acceleration as a = ∂2u/∂t2.

x
Δx

x

F(x)

F (x + Δx)

f

FIGURE 3.1
Hanging bar.

With m = ρAΔx, where ρ is the mass den-
sity of the bar material, we express the above
equation further as

F (x+ Δx)−F (x)+ AΔxf = ρAΔx
∂2u

∂t2

Multiplying both sides of the equation by 1/Δx,
we have

F (x+ Δx)−F (x)
Δx

+ Af = ρA
∂2u

∂t2

By the fundamental theorem of calculus, we
know [F (x+ Δx)−F (x)]/Δx = ∂F/∂x; thus,
we arrive at the following differential equation:

∂F (x)
∂x

+ Af = ρA
∂2u

∂t2
(3.1)

We now introduce a term called strain (ε), which represents the relative
change in length. By this definition, the strains at x can be expressed as

ε(x, t) =
u(x+ Δx, t)− u(x, t)

Δx
=

∂u

∂x
(x, t)

For this linear elastic bar structure, this strain can be related to force by
applying Hooke’s law, named after Robert Hooke (1635–1703), an English
natural philosopher, architect, and polymath. Hooke’s law states that the
stress, σ(x), in a structure is linearly proportional to its strain: σ(x) = Eε(x),
where E is Young’s modulus, named in honor of Thomas Young (1773–1829),
an English polymath and physician, which is also known as the modulus of
elasticity. Since stress is defined as force per unit area, multiplying the stress
by the cross section area of the bar, we can calculate the corresponding force:

F (x) = Aσ(x) = AEε(x) = AE
∂u

∂x
(x, t)

By substituting this force expression into Equation 3.1, eliminating A, and
rearranging it, we have

ρ
∂2u

∂t2
(x, t) =

∂

∂x

[
E

∂u(x, t)
∂x

]
+ f (3.2)
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When E is a constant, it can be moved outside the differential operator; thus,
we have

ρ
∂2u

∂t2
(x, t) = E

∂2u

∂x2
(x, t)+ f

Equation 3.2 is the 1D PDE for a hanging bar, in which u is the displacement of
the bar (m), ρ is the mass density of the bar material (kg/m3), E is the Young’s
modulus (N/m2), and f is the volume force (N/m3). From the derivation steps,
we see that this PDE is obtained by considering the force equilibrium of an
arbitrary infinitesimal section of the bar, and by applying Hooke’s law of
elasticity and Newton’s second law of motion, as well as the fundamental
theorem of calculus. In comparing the obtained differential equation of a
hanging bar with Equation 2.14, we can see that the coefficients ρ and k in
Equation 2.14 are, respectively, the mass density and Young’s modulus of
the material of which the linear elastic bar is made. Since this is a mechanical
problem, expanding it to a higher dimension is a relatively complicated pro-
cess due to the vector fields, as well as Poisson’s ratio effect. We discuss this
issue in Chapter 8.

3.2 PDE for a Vibrating String

We now consider a thin string fixed at its two ends (A and B) vibrating in
a two-dimensional (2D) space, as illustrated in Figure 3.2. To be regarded as
a string, the structure is often considered to be (1) linear elastic and homo-
geneous, (2) very thin such that its gravitational force is negligible compared
with the tension force applied to the string, (3) having vibrational displace-
ment in only the transverse direction (i.e., the u direction), and (4) possessing
no resistance to bending (therefore, it will only transfer tension force tangent
to the string).

Figure 3.2 shows a free-body diagram of an arbitrary infinitesimal sec-
tion (Δx) of the string at time t with tension forces T (x, t) and T (x+ Δx, t)
applied at its two ends. Let u be the transverse displacement of the string;

T (x, t)

A B

T (x + Δx, t)
x

θ1

θ2

x

u
Δx

FIGURE 3.2
Vibrating string.
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then the vibrational acceleration for this isolated string section is a = ∂2u/∂t2.
Since the string only moves in the u direction, we can write the following
two conditions at time t according to Newton’s second law of motion for the
equilibrium of the free body:

ΣFx = 0 : T (x+ Δx, t) cos θ2 −T (x, t) cos θ1 = 0

ΣFu = ma : T (x+ Δx, t) sin θ2 −T (x, t) sin θ1 = ρlΔx
∂2u

∂t2
(x, t)

where ρl is linear density (i.e., mass per unit length) for the string. Suppose
that the string is vibrating with a very small amplitude (imagine a string on
a string instrument); then the two angles, θ1 and θ2, ought to be extremely
small as well. Therefore, by relationships of trigonometry we express

cos θ1 ≈ cos θ2 ≈ 1

sin θ1 =
∂u
∂x (x, t)√
1 + (∂u

∂x )2
≈ ∂u

∂x
(x, t), sin θ2 =

∂u
∂x (x+ Δx, t)√

1 + (∂u
∂x )2

≈ ∂u

∂x
(x+ Δx, t)

Plugging the first set of expressions into the x direction equilibrium equation,
we find that T (x+ Δx, t) = T (x, t). This means that the tension force does
not vary with x; thus, it is a constant (T ). And substituting the second set of
expressions into the u direction equilibrium equation, we arrive at

T

[
∂u

∂x
(x+ Δx, t)− ∂u

∂x
(x, t)
]

1
Δx

= ρl
∂2u

∂t2
(x, t)

With
1

Δx

[
∂u

∂x
(x+ Δx, t)− ∂u

∂x
(x, t)
]

=
∂2u

∂x2
(x, t), we can write

ρl
∂2u

∂t2
(x, t) = T

∂2u

∂x2
(x, t) (3.3)

Equation 3.3 is the PDE for a vibrating string, in which u is the transverse
vibrational displacement (m), ρl is the mass per unit length of the string mate-
rial (kg/m), and T is the tension force in the string (N). Again, this PDE is
obtained by considering the force equilibrium of an arbitrary infinitesimal sec-
tion of the string and Newton’s second law of motion. Comparing Equation 3.3
with Equation 2.15, it is clear that a2 in Equation 2.15 is actually the string
tension force T .
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3.3 PDE for Heat Transfer

x

x

dx

q

FIGURE 3.3
Heat transfer in a rod.

Next, we examine a heat transfer
problem. As illustrated in Figure 3.3,
a long and thin rod structure with a
uniform cross section area is subjected
to a heat flux at its left end, caus-
ing temperature to change in the rod.
Because the rod is thin and long, we
assume that the dependent variable

temperature (T ) varies only in the longitudinal direction (i.e., the x direction)
and with time t. To develop a differential equation for this heat transfer prob-
lem, we first isolate an arbitrary infinitesimal section between x and x+ Δx
and examine the state of its energy equilibrium.

According to the definition of heat energy, a rise in temperature with
respect to a reference temperature T0, ΔT = T −T0, will cause a change in
its heat energy by (Aρc)Δx(T −T0), where A is the cross section area of the
bar, and ρ and c are, respectively, the mass density and specific heat of the
rod material.

Then the rate of heat (energy) change can be expressed by taking its time
derivative as (Aρc)Δx∂T/∂t. By energy conservation, this rate of heat change
is the result of the heat being generated from an internal volume heat source Q
per unit time and the net heat flux entering (at x) and exiting (at x+ Δx) this
isolated section. Here, the term flux describes the amount of substance (e.g.,
mass, energy, or current) per unit area. According to Fourier’s law of heat
conduction, named after Jean–Baptiste Joseph Fourier (1768–1830), a French
mathematician and physicist, the heat flux (q) entering a cross section is
linearly related to the negative temperature gradient: q = −κ∂T/∂x, where
κ is the thermal conductivity of the bar. So, the heat fluxes entering the small
isolated section at x and exiting at x+ Δx can be expressed as Aq(x, t) and
Aq(x+ Δx, t), respectively. Putting all these together, we have

(Aρc)Δx
∂T

∂t
(x, t) = AΔxQ + A[q(x, t)− q(x+ Δx, t)]

Multiplying both sides of this equation by 1/AΔx and rearranging it, we have

ρc
∂T

∂t
(x, t) = Q− 1

Δx
[q(x+ Δx, t)− q(x, t)]

By equating
1

Δx
[q(x+ Δx, t)− q(x, t)] to ∂q/∂x, we express

ρc
∂T

∂t
(x, t) = Q− ∂q

∂x
(x, t) (3.4)
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and substituting q with −κ∂T/∂x, we arrive at

ρc
∂T

∂t
(x, t) =

∂

∂x

[
κ
∂T

∂x
(x, t)
]

+ Q (3.5)

Equation 3.5 is the PDE for heat transfer (it is often called the heat equation).
In this equation, T is the temperature (K), ρ is the mass density (kg/m3), c is
the specific heat (J/[kg ·K]), κ is the thermal conductivity (W/[K ·m]), and
Q is the volume heat source (W/m3). Once again, this equation is obtained in
a similar manner as the previous two cases in which the heat energy equilib-
rium of an arbitrary infinitesimal section of the rod is considered by applying
Fourier’s law of heat transfer.

Since this is a scalar field problem, we can easily expand this 1D heat
equation to a higher dimension. Referring to Equation 3.4, we can write

ρc
∂T

∂t
(x, y, z, t) = Q− ∂qx

∂x
(x, y, z, t)− ∂qy

∂y
(x, y, z, t)− ∂qz

∂z
(x, y, z, t)

By assuming a thermally isotropic material, we have qx = −κ∂T/∂x, qy =
−κ∂T/∂y, and qz = −κ∂T/∂z; therefore, we write

ρc
∂T

∂t
=

∂

∂x

[
κ
∂T

∂x

]
+

∂

∂y

[
κ
∂T

∂y

]
+

∂

∂z

[
κ
∂T

∂z

]
+ Q

By the definition of divergence (see Equation 2.10) in Section 2.2.1.3, we
simplify this equation to

ρc
∂T

∂t
= ∇· (κ∇T )+ Q

This equation is exactly the same as Equation 2.16. However, when the mate-
rial is not thermally isotropic, we may not treat the thermal conductivity
(κ) as a constant. For instance, for a thermally orthotropic material, we
may express qx = −κx∂T/∂x, qy = −κy∂T/∂y, and qz = −κz∂T/∂z; thus, the
PDE is written as

ρc
∂T

∂t
=

∂

∂x

[
κx

∂T

∂x

]
+

∂

∂y

[
κy

∂T

∂y

]
+

∂

∂z

[
κz

∂T

∂z

]
+ Q

3.4 PDE for Mass Diffusion

In this section, we examine a problem of mass transport by diffusion. As
shown in Figure 3.4, a given substance is being transported along a channel
having a uniform cross section area. Because the channel is long and thin,
the concentration of the substance (c) can be considered to vary only in the
longitudinal direction (i.e., the x direction) and with time t.
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x

x

dx

c

FIGURE 3.4
Diffusion through a channel.

We now examine the state of mass
balance in an arbitrary infinitesimal
section of the channel between x and
x+ Δx. At time t, the amount of mass
of the substance in this isolated section
can be expressed as ΔxAc(x, t); then
the rate of change in mass can be deter-
mined by taking its time derivative as

ΔxA∂c/∂t. According to Fick’s first law of diffusion, named after Adolf Eugen
Fick (1829–1901), a German physician and physiologist, the rate of mass diffu-
sion (r) across a sectional area is linearly related to the negative concentration
gradient: r = −D∂c/∂x, where D is the diffusion coefficient. So, the mass flux
entering the isolated section at x and exiting at x+ Δx can be expressed as
Ar(x, t) and Ar(x+ Δx, t), respectively. By mass conservation, the rate of
change in mass is the result of substance being generated internally by a vol-
ume reaction source (R) per unit time and the net mass flux entering and
exiting the isolated section:

ΔxA
∂c

∂t
(x, t) = ΔxAR + A[r(x, t)− r(x+ Δx, t)]

Multiplying both sides of this equation by 1/AΔx and rearranging it, we have

∂c

∂t
(x, t) = R− 1

Δx
[r(x+ Δx, t)− r(x, t)]

By equating
1

Δx
[r(x+ Δx, t)− r(x, t)] to ∂r/∂x and substituting r with

−D∂c/∂x, we arrive at

∂c

∂t
(x, t) =

∂

∂x

[
D

∂c

∂x
(x, t)
]

+ R (3.6)

Equation 3.6 is the PDE for mass diffusion (it is often called the diffusion
equation), in which c is the concentration of the diffusive substance (kg/m3),
D is the diffusion coefficient (m2/s), and R is the rate volume reaction source
(kg/[m3 · s]). Clearly, this PDE is obtained in the same manner as in other
cases in which the mass conservation of the diffusive substance within an
arbitrary infinitesimal section of the channel is considered by applying Fick’s
first law of diffusion.

Similarly as in the case of heat transfer, this 1D scalar field mass diffusion
equation can be expanded to a higher dimension as follows when the diffusive
medium is homogeneous:

∂c

∂t
= ∇· (D∇c)+ R

which is exactly the same as Equation 2.17.



T&F Cat #K16587 — K16587 C003 — page 46 — 1/21/2017 — 17:28

46 Introduction to Integrative Engineering

3.5 PDE for Beam Structures

In problems of solid mechanics, when a slender structure is mainly used for
sustaining axial loading and deformation, we call it a bar (like the hanging
bar). However, in reality almost all slender mechanical structures bear some
flexure loading and deformation in addition to the axial ones. The reason
we consider certain structures as bars is that in these cases, the axial type of
loading and deformation dominates the flexure type. When the flexure loading
and deformation become significant, we refer to these slender structures as
beams. That is, with beams we mainly deal with transverse loading and flexure
deformation. For this reason, although a beam is a slender structure, we
consider it a 3D structure, or a 2D one if we limit the transverse loading and
deformation to a single plane.

Figure 3.5 shows a cantilever beam subjected to a transversely line-
distributed load f(x), a bending moment M0, and a shear force V0. Imagine
that under such a loading condition, the beam bends downward with a deflec-
tion curve of u(x), as marked by a dashed line in the figure, with a bending
radius of r. This deflection will cause rotation of any cross section (except at
the fixed end) about an axis normal to the page (let it be the z axis).

It is often assumed that cross sections perpendicular to the axis of the
beam (the x axis) will remain plane and perpendicular to the axis after defor-
mation. This means that the two cross sections on both sides of the free-body
diagram are considered planes perpendicular to the rotated axis (the dashed
line). Referring to the free-body diagram, which is in equilibrium under two
bending moments (M and M + dM), two shear forces (V and V + dV ), and
a distributed force, f(x), we can write (note that the moment equilibrium is
taken at a point on the right side of the free body; hence, the shear force

x

y

f (x) F0 M0

r

u(x)

dx V + dV

M + dM

V

M

f

σx = σm y/c

xc
σm

FIGURE 3.5
Beam deflection under transverse loading.
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V + dV does not contribute to it)

∑
Fy = 0: V − fdx− (V + dV ) = 0∑
Mz = 0: V dx− (M + dM)+ M = 0

Thus, we have

f = −dV

dx
and V =

dM

dx

which yields

f = −d2M

dx2
(3.7)

Because all forces and moments experienced by the beam are vectors, it is
necessary to set some sign conventions for distinguishing their directions.

1. For distributed forces, a downward force (in the same direction as
the gravity) is positive and upward one is negative.

2. For transverse point forces (or shear forces), one that causes clock-
wise shearing motion is positive, and one causing counterclockwise
shearing motion is negative.

3. For bending moments, one that causes upside concavity is positive,
and vice versa.

Based on these conventions, the forces and moments shown in the figure are all
positive. This means that any forces or moments that have the same directions
as those shown in the figure will be entered in positive values, and those with
opposite directions will be entered in negative values.

Within a cross section, by assuming a linear elastic material property we
can express the normal stress as σx = σmy/c, where σm is the maximum stress
value within the cross section, c is the distance between the upper edge of the
beam (where the maximum stress occurs) and the neutral axis (where σx = 0),
and y is the vertical coordinate.

From force and moment equilibrium, again, we have

∑
Fx = 0:

∫∫
σxdA = 0 =

∫∫
σm

c
ydA =

σm

c

∫∫
ydA = 0 (3.8)

∑
Mz = 0: M =

∫∫
σxydA =

∫∫
σm

c
y2dA =

σm

c

∫∫
y2dA (3.9)

Since the integral in Equation 3.8 represents the product of the distance
from the centroid of the cross section to the neutral axis and the area of the
cross section, the fact that Equation 3.8 equals zero indicates that the neutral
axis actually goes through the centroid. The integral in Equation 3.9 defines
the second moment of inertia of the cross section area of the beam, which we
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often denote, using I, as

I =
∫∫

y2dA

By Hooke’s law of linear elasticity, we can relate the maximum stress σm

to the maximum strain εm by Young’s modulus E as

σm = Eεm

Since strain measures relative changes in length, it can be expressed as the
ratio of change in length over the whole length. In this case, the change in
length on the upper edge of the beam is proportional to the radius of rotation
with respect to the neutral axis (c) and the whole length is proportional to
the radius of the bent beam (r); thus, we write

εm =
c

r

Putting them all together, we have

M =
σm

c
I = EI

1
r

where the inverse of the beam bending radius, namely, the bending curvature,
1/r, can be determined from the deflection curve of the beam, u(x), as

1
r

=
d2u
dx2√(

1 +
(

du
dx

)2)3 ≈ d2u

dx2

Therefore, we have

M = EI
d2u

dx2

By the relationship between M and f obtained in Equation 3.7, we express
the following:

d2

dx2

(
EI

d2u

dx2

)
+ f = 0 (3.10)

Equation 3.10 is the PDE for a beam structure. Unlike any other PDEs
discussed in previous sections, this PDE is a fourth-order equation. In this
equation, u represents the deflection of the beam (m), E is the Young’s mod-
ulus (N/m2), I is the second moment of inertia of the beam cross section
area (m4), and f is the line-distributed force (N/m). In a product form, EI
is called the flexure rigidity (Nm2), measuring the capability of the beam to
resist bending.
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3.6 Commonality in PDEs for Different Problems

It is now clear that differential equations are developed mathematically upon
the fundamental theorem of calculus according to the laws of thermodynam-
ics in terms of mass, force, momentum, and energy conservation, as well as
other relevant laws and principles of physics, such as Hooke’s law of elasticity,
Newton’s second law of motion, Fourier’s law of heat transfer, and Fick’s law
of diffusion. From the PDEs given in Equations 3.2, 3.3, 3.5, and 3.6, we can
see that PDEs sometimes are of the same mathematical type even though
they govern problems of different physics, thus suggesting that for countless
real-world problems we may only need to deal with limited types of governing
differential equations. Moreover, most of these PDEs contain the Laplacian
of the corresponding field of interest, except for the beam problem where the
PDE contains a double Laplacian.

Of the PDEs given in Equations 3.2, 3.5, and 3.6, if we are only concerned
with stationary or steady-state conditions (note the vibrating string is always
a time-dependent problem), we can ignore the time-related terms in all these
PDEs. Thus, these PDEs will reduce to, respectively,

∂

∂x

(
E

∂u

∂x

)
+ f = 0, ∇· (κ∇T )+ Q = 0, ∇· (D∇c)+ R = 0

These differential equations are mathematically identical, except that the first
equation is valid only for mechanical and structural problems that can be
simplified to 1D problems.

3.7 Exercises

1. Summarize the commonality in the procedures used in the develop-
ment of the PDEs discussed in this chapter.

2. In view of the fact that the heat equation and diffusion equation
are mathematically identical, what are your thoughts regarding the
ways in which we learn and solve problems?

3. Identify a PDE that is not discussed in this chapter and show
detailed steps for the development of the PDE. Make sure you
provide sufficient details in order for others to understand.

4. Considering the discussion on learning that and learning how in
Chapter 1, examine how have you put your learning how to work
by showing the steps you developed for the problem above to an
engineering friend to see if he or she can follow and understand.
Have you provided the needed information so that your friend can
understand the underlying logic and reasoning?
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4

Approximate Solutions to
Differential Equations

Analytically, there are many ways to solve differential equations. These
methods are often discussed in detail in textbooks on ordinary differential
equations (ODEs) or partial differential equations (PDEs). Here, we do not
concern ourselves with these analytical methods because solving PDEs ana-
lytically for complex problems will be very difficult and sometimes impossible.
Instead, we focus on using numerical methods to find approximate solutions
to differential equations by taking advantage of today’s computational powers
and numerical capabilities.

4.1 Approximate Solutions

First, let us obtain some basic knowledge about what approximate solutions
to differential equations are like and how they are found. We begin with a
differential equation having a second-order derivative (the Laplacian) as

− d

dx

(
x

du

dx

)
+ 2u = 0; 0 < x < 1; u(0) = 1, x

du

dx

∣∣∣∣
x=1

= 0 (4.1)

For classifications, this is a second-order, one-dimensional (1D), linear, and
time-independent ODE in which the dependent variable u varies with the
independent variable x. The 1D physical domain for this ODE spans from
x = 0 to x = 1 along the x axis. It is constrained by two boundary conditions;
one is an essential Dirichlet type, and the other is a natural Neumann type.

Intuitively, the solution to this ODE ought to be a function of x, which we
wish to approximate with a polynomial function. In general, such a polynomial
function needs to contain the lowest-order terms, including the zeroth- and
first-degree terms and up to the highest terms admissible.

ũ(x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·

Now our task is to find the coefficients for this polynomial function such
that it satisfies the ODE and the boundary conditions given in Equation 4.1.
In doing so, one might realize that it is easier to work with an alternative
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form of a polynomial function:

ũ(x) = φ0 + c1φ1 + c2φ2 + · · · (4.2)

where c1 and c2 are constants to be determined, and φ0, φ1, and φ2 are pre-
selected polynomial functions that satisfy the boundary conditions. In this
alternative form, the same requirements apply: each selected polynomial
function needs to contain the lowest-order terms, including the zeroth- and
first-degree terms and up to the highest terms admissible.

Of these preselected polynomials, φ0 is a zeroth-degree term, or a constant
(a special case of polynomial). Aside from this zeroth-degree term, a sufficient
number of polynomial functions must be selected such that the correspond-
ing coefficients can be determined. For example, for a polynomial function
of ũ(x) = φ0 + c1φ1 + c2φ2, to determine the values of constants, c1 and c2,
we need to select two distinct polynomials besides φ0.

Here, let us go through an exercise to select three polynomial functions,
φ0, φ1, and φ2, such that ũ(x) = φ0 + c1φ1 + c2φ2 satisfies the constraints of

u(0) = 1 and x
du

dx

∣∣∣
x=1

= 0.

For the zeroth-degree term, let φ0 = a, where a is an arbitrary constant.
By applying the first boundary condition, we have φ0 = a = 1. With φ0 = 1,
the other two functions, φ1 and φ2, need to meet the conditions of φi(0) = 0

and x
dφi

dx

∣∣∣
x=1

= 0. Intuitively, a polynomial meeting these conditions should
have a general form of xn −nx, for an integer n ≥ 2. So, going from the lowest
number upwards, we take n = 2 and n = 3. Therefore, we have

φ0 = 1, φ1 = x2 − 2x, φ2 = x3 − 3x

With these selected polynomials, we express the approximate solution as

ũ(x) = 1 + c1(x2 − 2x)+ c2(x3 − 3x) (4.3)

All we need to do next is to determine the two coefficients, c1 and c2, by
plugging Equation 4.3 into the ODE given in Equation 4.1. In doing so, we
obtain the following:

− d

dx

(
x

dũ

dx

)
+ 2ũ = −dũ

dx
− x

d2ũ

dx2
+ 2ũ

= 2c2x
3 + (2c1 − 9c2)x2 − (8c1 + 6c2)x+ (3c2 + 2c1 + 2)=0

For c1 and c2 to satisfy this equation at all x within the domain 0 < x < 1,
we must have

c2 = 0, 2c1 − 9c2 = 0, 8c1 + 6c2 = 0, 3c2 + 2c1 + 2 = 0
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It is obvious that no c1 and c2 can be found to satisfy all four conditions
simultaneously. This means that the approximate solution (i.e., Equation 4.3)
will not satisfy the ODE given in Equation 4.1.

4.2 Approximate Solutions by Weighted Integral

The fact that we cannot find proper coefficients c1 and c2 to make the
approximate solution (Equation 4.3) satisfy the ODE given in Equation 4.1
means

− d

dx

(
x

dũ

dx

)
+ 2ũ �= 0

In other words, by seeking an approximate solution, we introduce an error,
which we will call residual and express in R as follows:

R = − d

dx

(
x

dũ

dx

)
+ 2ũ

Now instead of seeking R = 0, we introduce a weight function w(x) and
set the weighted integral of the residual to zero as follows:

∫ 1

0

w(x)Rdx = 0 (4.4)

With the approximate solution given in Equation 4.3, we determine

R = 2c2x
3 + (2c1 − 9c2)x2 − (8c1 + 6c2)x+ (3c2 + 2c1 + 2)

Since there are two unknown coefficients, we need two weight functions. For
the weight functions, we again turn to something we are very familiar with,
that is, polynomials. Since there are no more boundary conditions to satisfy,
we just select single-term polynomials of the zeroth- and first-degree as

w1 = 1 and w2 = x

With these two weight functions, we construct the following two weighted
integrals of the residual and use them to determine the values of c1 and c2:

∫ 1

0

1 ·Rdx = 0 and
∫ 1

0

x ·Rdx = 0
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By substituting the R expression into these two integrals, we have

∫ 1

0

[2c2x
3 + (2c1 − 9c2)x2 − (8c1 + 6c2)x+ (3c2 + 2c1 + 2)]dx

=
1
2
c2 +

1
3
(2c1 − 9c2)− 1

2
(8c1 + 6c2)+ (3c2 + 2c1 + 2)

= 2− 4
3
c1 − 5

2
c2 = 0∫ 1

0

x[2c2x
3 + (2c1 − 9c2)x2 − (8c1 + 6c2)x+ (3c2 + 2c1 + 2)]dx

=
2
5
c2 +

1
4
(2c1 − 9c2)− 1

3
(8c1 + 6c2)+

1
2
(3c2 + 2c1 + 2)

= 1− 7
6
c1 − 47

20
c2 = 0

Solving these two algebraic equations simultaneously, we obtain

c1 =
132
13

and c2 = −60
13

So by allowing a residual and forcing the weighted integral of the residual
zero, we now find an approximate solution,

ũ(x) = 1 +
132
13

(x2 − 2x)− 60
13

(x3 − 3x)

to the ODE defined in Equation 4.1.

4.3 How Good Are Approximate Solutions?

Knowing that the method of weighted integral of residual helps find approxi-
mate solutions to differential equations, one cannot stop wondering how good
such approximate solutions are. The answer is: it depends. Sometimes, the
solution can be very good when appropriate polynomials and weight functions
are selected. Since a closed-form solution to the ODE given in Equation 4.1 is
hard to find, we cannot make a direct comparison between the approximate
and the analytical solutions in the previous case. Thus, we now take a look at
a simpler ODE equation.

Example 4.1

Find the exact and approximate solutions to the ODE given in Equa-
tion 4.5, in which the dependent variable u varies with the independent
variable x in a 1D domain between x = 0 and x = 1. This ODE
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is constrained by two Dirichlet-type boundary conditions.

d2u

dx2
− 500x2 − 25 = 0; 0 < x < 1; u(0) = 0, u(1) = 0 (4.5)

Answer
By direct integration along with the constraints of the given bound-
ary conditions, we find a closed-form analytical expression as the exact
solution to this ODE:

u =
125

3
x4 +

25

2
x2 − 325

6
x (4.6)

Next, we use the weighted integral method to find approximated
solutions and compare them with this analytical solution. Referring to
Equation 4.2, we consider two cases for the approximate solutions: in
the first case, we consider one polynomial term and one weight function,
ũ(x) = φ0 + c1φ1 and w1, and in the second case, two polynomial terms
and two weight functions, ũ(x) = φ0 + c1φ1 + c2φ2, w1, and w2.

For the first case, we need to determine φ0 and φ1. For the first
term, φ0 = 0 meets the given boundary conditions. For the second term,
to satisfy the boundary conditions u(0) = 0 and u(1) = 0, a polynomial
should have a general form of xm(x− 1)n, for integers m, n ≥ 1. So we
take the lowest-order case of m = n = 1. Therefore, we have

φ0 = 0, φ1 = x2 − x

Then we have

ũ(x) = c1(x
2 − x)

with which we find the residual as

R = −500x2 +2c1 − 25

For the weight function, without introducing more new polynomials,
this time we just use the selected φ1 for it, namely, w = φ1 = x2 − x.
Constructing a weighted integral with the selected polynomial function
and the weight function, we obtain

∫ 1

0

wRdx =

∫ 1

0

(x2 − x)[−500x2 +2c1 − 25]dx =
175

6
− 1

3
c1 = 0

which yields c1 = 175/2. Thus, the approximate solution for this first
case is

ũ(x) =
175

2
(x2 −x) (4.7)

For the second case, we need to select one more polynomial function,
namely, φ2, in addition to φ0 and φ1. For this, we go to the next case in
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the general form of xm(x− 1)n, that is, m = 2, n = 1. Thus, we have

φ0 = 0, φ1 = x2 −x, φ2 = x3 − x2

Then the approximate solution can be expressed as

ũ(x) = c1(x
2 −x) + c2(x

3 −x2)

with which we express the residual as

R = 2c1 − 2c2 + 6c2x− 500x2 − 25

For weight functions, we need two in this case because we have two
unknown coefficients. Again, for convenience sake we select w1 =
φ1 = x2 −x and w2 = φ2 = x3 −x2. Now by constructing two weighted
integrals using the selected polynomials and weight functions, we
arrive at

∫ 1

0

(x2 −x)[2c1 − 2c2 +6c2x− 500x2 − 25]dx =
175

6
− 1

3
c1 − 1

6
c2 = 0

∫ 1

0

(x3 − x2)[2c1 − 2c2 +6c2x− 500x2 − 25]dx =
75

4
− 1

6
c1 − 2

15
c2 = 0

Solving these two algebra equations simultaneously, we find

c1 =
275

6
and c2 =

250

3

The approximate solution for this second case is therefore

ũ(x) =
275

6
(x2 −x) +

250

3
(x3 − x2) (4.8)

Knowing the closed-form analytical solution (Equation 4.6) and the
one-term and two-term approximate solutions (Equations 4.7 and 4.8),
we now make some comparisons based on these results. As shown
in Figure 4.1, the one-term approximate solution, although following
the general pattern of the analytical solution and satisfying the two
boundary conditions, differs significantly from the analytical solution.
The two-term approximate solution, however, aside from satisfying the
boundary conditions, agrees fairly well with the analytical solution.

This example demonstrates that the polynomial-based approximate solu-
tions can sometimes produce results that closely match the analytical solution
when proper polynomial terms are selected. In fact, if we go one step further
by selecting a fourth-degree polynomial function, then the approximate solu-
tion will be exactly the same as the analytical one. The reader is encouraged
to show this as an exercise.
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FIGURE 4.1
Comparison of approximate solutions with analytical solution.

4.4 Influence of Weight Functions

In Section 4.3, we learned that the weighted integral of residual method allows
us to find approximate solutions to ODEs and PDEs because of its use of cer-
tain weight functions. In the examples discussed earlier, we have seen two
different ways of selecting the weight functions. In the first, we select the
polynomial base terms such as 1, x, x2, . . . , as the weight functions, and in
the second, we use the interpolation functions as the weight functions. When
the weight functions are the same as the interpolation functions, the weighted
integral–based approximation method is called the Galerkin method, honor-
ing its creator, Boris Galerkin (1871–1945), a Russian mathematician and
engineer. When the weight functions are different from the interpolation func-
tions, they are of some modified versions of the Galerkin method. For instance,
the one using the polynomial base terms is called the Petrov–Galerkin (P–G)
method.

Example 4.2

Revisit Example 4.1 by examining and comparing several two-term
approximate solutions based on the Galerkin and P–G methods.

Answer
We begin with the following interpolation functions:

ũ(x) = φ0 + c1φ1 + c2φ2 with φ0 = 0, φ1 = x2 −x, φ2 = x3 − x2
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With these functions, we have

R = 2c1 − 2c2 + 6c2x− 500x2 − 25

Next, we select different weight functions to evaluate the following two
weighted integrals in order to determine the two constants, c1 and c2:∫ 1

0

w1[2c1 − 2c2 + 6c2x− 500x2 − 25]dx = 0

∫ 1

0

w2[2c1 − 2c2 + 6c2x− 500x2 − 25]dx = 0

For the Galerkin method, we select

w1 = φ1 = x2 − x and w2 = φ2 = x3 − x2

and for the P–G method, we consider the following four cases:

1. w1 = 1 and w2 = x 2. w1 = x and w2 = x2

3. w1 = x and w2 = x3 4. w1 = x2 and w2 = x3

Figure 4.2 shows the obtained results. Of these cases considered,
the Galerkin method appears to provide the best approximate solution.
The second and third cases of the P–G method also provide reason-
ably good approximation. But the first and fourth cases are way off the
mark: the curve for the first P–G case is below the analytical curve,
and the curve for the fourth P–G case is above the analytical curve. So
this example shows that to produce a two-term approximate solution,
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FIGURE 4.2
Comparison of different approximate solutions.
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the Galerkin method gives the best result. Aside from this comparison,
another benefit of using the Galerkin method is that we only need to
select one set of polynomial functions to be used as the interpolation
functions and weight functions.

4.5 Exercises

1. Use the weighted integral approximation method discussed in this
chapter to solve the following ODE:

d2y

dx2
− 50x3 + 15x− 10 = 0; 0 ≤ x ≤ 1; y(0) = 0, y(1) = 0

Be sure to show all the steps you take and plot your approximated
solutions together with the exact solution, which you will need to
find.

a. Use a one-term polynomial function (φ1, w1).
b. Use a two-term polynomial function (φ1, φ2, w1, w2).
c. Use a three-term polynomial function (φ1, φ2, φ3, w1, w2, w3).

2. Use the weighted integral approximation method along with a three-
term polynomial function to solve the following ODE:

d2y

dx2
− 2015x2 + 7x+ 4 = 0; 0 ≤ x ≤ 1; y(0) = 0, y(1) = 0

Plot your approximated solutions together with the exact solution,
which you will need to find.

3. Use the weighted integral approximation method along with a two-
term polynomial function to solve the following ODEs and plot your
approximated solution together with the exact solution, which you
will need to find.

a.
d2y

dx2
− 147x2 + 10 = 0; 0 ≤ x ≤ 1; y(0) = 0, y(1) = 0

b.
d2y

dx2
+ 55x3 + 11 = 0; 0 ≤ x ≤ 1; y(0) = 0, y(1) = 0

c.

d2y

dx2
+ 63x2 − 189x+ 21 = 0; 0 ≤ x ≤ 1; y(0) = 0, y(1) = 0
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d.

d2y

dx2
+ 127x3 − 97x+ 51 = 0; 0 ≤ x ≤ 1; y(0) = 0, y(1) = 0

4. Use the weighted integral approximation method along with a three-
term polynomial function (φ1, φ2, φ3, w1, w2, w3) to solve the ODE
discussed in Section 4.3, and compare your approximated solution
with the exact solution given in Equation 4.6 in a plot.

5. Use the weighted integral method to find a two-term polynomial
approximate solution to the following ODE with the given boundary
conditions,

−7
d

dx

(
x

du

dx

)
+ 5u = 0; 0 < x < 1; u(0) = 1, x

du

dx

∣∣∣∣
x=1

= 0

for the following two cases:

a. Use x and x2 as the weight functions.
b. Use the two selected polynomial functions as the weight

functions.

Plot both solutions in a single graph and compare the results.

6. Use the weighted integral method to find a three-term polynomial
approximate solution to the following ODE with the given boundary
conditions,

9
d

dx

(
x

du

dx

)
+ 25u = 0; 0 < x < 1; u(0) = 1, x

du

dx

∣∣∣∣
x=1

= 0

for the following two cases:

a. Use x, x2, and x3 as the weight functions.
b. Use the three selected polynomial functions as the weight

functions.

Plot both solutions in a single graph and compare the results.

7. Use the weighted integral method to find two-term polynomial
approximate solutions to the following ODE with the given bound-
ary conditions,

d2y

dx2
+ 23x3 − 15x2 − 21x+ 7 = 0; 0 ≤ x ≤ 1; y(0) = 0, y(1) = 0

for the following four cases:

a. Use x and x2 as the weight functions.
b. Use x and x3 as the weight functions.
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c. Use x2 and x3 as the weight functions.
d. Use the two selected polynomial functions as the weight func-

tions.

Plot all solutions in a single graph and compare the results with the
analytical solution, which you will need to find yourself.

Recommended Readings

1. J. N. Reddy. 1993. An Introduction to the Finite Element Method.
2nd ed. Boston: McGraw-Hill.

2. Nan-Ho Kim and Bhavani V. Sankar. 2009. Introduction to Finite
Element Analysis and Design. Hoboken, NJ: John Wiley & Sons.
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5

Discretization of Physical Domains

Knowing that polynomial-based approximate solutions can sometimes provide
very satisfying solutions to differential equations, one may wonder if such an
approximate-solution-finding procedure based on polynomial functions can
be handled by a computer program. Finite element method (FEM), which is
also known as finite element analysis (FEA), is exactly one such computer-
ized numerical procedure for finding approximate solutions to a wide range
of scientific and engineering problems. Although the term finite element was
coined by Ray W. Clough in 1960, the concept of using framework method
and polynomial interpolations was first introduced by Alexander Hrennikoff
and Richard Courant in the 1940s for solving structural engineering problems.
Since 1960, the field of finite elements has witnessed many significant leaps,
moving from solving problems of solid mechanics, fluid flow, heat transfer, and
nonlinear and large deformations, to dealing with issues like mass transport,
electricity and electronics, chemical reactions, and electrochemistry. Lately, it
is moving to tackle problems of multiphysics and multiscale natures, thanks
to the rapid advances in computer sciences and engineering and to the drastic
explosion of computational powers and capabilities.

5.1 Dividing Physical Domains into Small Elements

In direct translation, finite element means small pieces of a structure with
finite sizes. That is, in FEM we break physical constructs (e.g., mechan-
ical structures, or sometimes just the spacial volumes, like those inside a
heating or cooling duct) into small pieces. The physical space occupied by
these constructs is often referred to as domain. These small pieces are called
the elements of a domain. In other words, an element is a geometric unit
of a physical domain. The word finite is used to distinguish these small ele-
ments from those infinitesimal elements we referred to during the development
of differential equations. Depending on the spacial dimensions of a physical
domain, these finite elements can take various shapes and sizes of different
dimensions. In general, for one-dimensional (1D) structures elements are line
segments, for two-dimensional (2D) structures elements can be triangles or
quadrilaterals, and for three-dimensional (3D) structures elements can be
tetrahedrons, hexahedrons, and so on.

63
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For example, the slender structures we assumed during the development
of differential equations for a hanging bar and heat transfer, as well as mass
diffusion, can be divided into segments of 1D elements as shown in Figure 5.1.

When a structure is thin in one dimension compared with the other two
dimensions, we can regard it as a 2D structure. Strain gages commonly used
for mechanical and biomechanical measurements are one such example. In
this case, the physical domain of the strain gage can be regarded as a 2D
domain, which is often divided into 2D elements like triangles and quadri-
laterals. Figure 5.2 shows a 2D model strain gage in which domains of both
the metallic foil (in blue) and the backing film are divided into quadrilateral
elements for the upper leg of the foil gage and triangular elements for the rest
part of the foil gage and the backing film. It is common that the elements are
not of the same size or shape.

The physical space occupied by a 3D structure is regarded as a 3D domain,
especially when the structure is not of the truss type. A 3D domain is often
divided into 3D elements like tetrahedrons or hexahedrons, among others.
Figure 5.3 shows a 3D denture model in which the 3D spacial domain of the
denture is divided into numerous small tetrahedral elements. Similarly as in
2D situations, although all the elements are of the tetrahedral type, they may
differ in sizes and shapes. It is obvious that in regions having smaller and
finer geometric features, the elements tend to be smaller as well. We will learn
more about this at a later time.

These general element division rules apply to most of the situations except
for a few occasions, such as when the structures are of the truss type. A truss
structure is one in which its components are made of multiple slender members

x x⇒

FIGURE 5.1
Division of a 1D domain into small line elements.

FIGURE 5.2
Division of a 2D domain into quadrilateral and triangular elements.



T&F Cat #K16587 — K16587 C005 — page 65 — 1/21/2017 — 17:28

Discretization of Physical Domains 65

100

50

0
240 220 200 180 160 140 120

y

x
100 80 60 40 20 0 40

60
80

100
120

140
160

FIGURE 5.3
Division of a 3D domain into small tetrahedral elements.
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FIGURE 5.4
Truss bridge made of long and thin members.

connected into a frame-like structure. As illustrated in Figure 5.4, an everyday
example for a 3D truss structure is a truss bridge or a suspension bridge. For
this type of structure, we are more concerned about the wire-frame structure
and its members and less about the space enveloped by the 3D structure.
Therefore, whether they are 2D or 3D truss structures, we always divide these
truss frames into 1D elements.

5.2 Nodal Connectivity and Degrees of Freedom

Although a domain in FEM is always divided into small elements of finite sizes,
these elements are not individually separated pieces. Instead, they are linked
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to their neighboring elements through connecting points, known as nodes.
Through these connecting nodes, elements are connected together to form a
network of elements to represent the entire domain. In FEM, this network of
elements is called mesh. The examples given in Figures 5.2 and 5.3 show the
corresponding mesh in each case. When referring to a mesh, we often use the
term mesh density to describe the number of elements in the mesh. A high
mesh density means more elements (and consequently smaller elements) are
in the mesh, and a low mesh density means fewer elements (and consequently
larger elements) are in the mesh.

Nodes are very important in FEM. Aside from providing connections
between neighboring elements, nodes are where the geometric information
of the physical domain is passed to the elements through the coordinates
of nodes. As illustrated in Figure 5.5, the 1D domain on the left-hand side
is divided into four elements, (1) through (4), and these elements are linked
together by three nodes (2 through 4). Sometimes we refer to these connecting
nodes as common nodes to distinguish them from the end nodes (e.g., nodes 1
and 5). In each element, the coordinates of these nodes define the physi-
cal shape, position, orientation, and length of the element. Similarly, for
domains of higher dimensions, nodes are not only where elements are con-
nected, but also where the position and shape of the elements are defined.
As illustrated in Figure 5.5, three and four nodes of known coordinates are
needed to mark the locations, shapes, and sizes of triangular and quadrilateral
elements, respectively.

Additionally, nodes are also where the admissible variations of a field quan-
tity (e.g., displacement, temperature, or concentration) are specified and their
values are determined. Here, the number and type of admissible variations at
any node are termed nodal degrees of freedom (DOF). Nodal DOF are often
specified according to the underlying physical problems. When an unknown
field quantity belongs to a scalar field problem, the DOF of each node will be
determined solely by the number and type of dependent variables regardless
of the dimension of the problems. For example, in a heat transfer problem,
since temperature (a scalar field quantity) is the only dependent variable,
the admissible variation of a node will be the temperature; thus, the nodal
DOF = 1 no matter whether the problem is in 1D, 2D, or 3D spaces. For this

1 2 3 4 5

(1)

1D line segments
1 2

34

(1)
(2)

2D triangles
1 2
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2D quadrilaterals
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FIGURE 5.5
Nodes as connecting points of elements.
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reason, scalar field problems are sometimes called single-variable problems.
However, when the unknown field quantity belongs to a vector field prob-
lem (e.g., a solid mechanics problem), the nodal DOF will be determined by
the number of dependent variables as well as the number of dimensions. For
instance, in a 3D mechanical problem, a node may move along (in translation)
an axis and rotate about the same axis (say the x axis). Thus, there will be
two admissible variables (DOF = 2) in each axis. Extending this to all three
axes, the admissible DOF for each node becomes six (DOF = 6), represent-
ing three translational movements and three rotational movements. When the
rotation movements are ignored, the nodal DOF is reduced to three transla-
tional movements only. Accordingly, if the problem is simplified to 2D, the
admissible movements in the third dimension can be ignored. In this case, the
corresponding nodal DOF = 4, representing two translational and two rota-
tional movements. If only the translational movements are considered, the
DOF reduces to 2.

5.3 Linking Nodal DOF to Polynomial Functions

One of the purposes of dividing a physical domain into small finite elements
is to develop a polynomial-finding routine that can be handled by a computer
program. So the question we ask now is, how are elements linked to polynomial
functions? It is done through information dealt with at nodes. A node in
FEM is associated with two things. The first is its physical location, which
is specified by a set of coordinates (think of this as its address in a physical
domain), and the second is the nodal DOF in the form of dependent variables
it represents (think of this as its boundary condition). In this section, we
discuss how the nodal information is linked to polynomial functions, or in
other words, how we can find polynomial functions that satisfy the boundary
conditions at the nodes.

For the sake of convenience, we limit our discussion to a scalar field quan-
tity or a vector field quantity in a single dimension. This means that we will
have single degree of freedom (DOF = 1) for each node, and this single DOF
at each node will represent directly the field quantity of interest, such as dis-
placement, temperature, or concentration. This limitation, however, will not
affect the generality of the discussion because we always use the same set of
polynomial functions to approximate the field quantities in other dimensions.

5.3.1 1D elements

We begin with 1D elements with nodal DOF representing the field quantity.
Figure 5.6 shows a 1D element consisting of two nodes with their coordinates
given at x1 = 0 and x2 = l, respectively. From these coordinates we know that
the element has a length of l. Since each node has DOF = 1, we know that
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ũ(x) = a0 + a1x + a2x2 + a3x3 +

FIGURE 5.6
A 2-node 1D element.

the elementary DOF for this 2-node element is 2. Let u(x) be the single field
quantity to be solved over this 1D element; we express the two elementary
DOF as u1 and u2 for node 1 and node 2, respectively.

Recalling that approximate solutions to partial differential equations
(PDEs) can be expressed in polynomial functions, we refer to the general
polynomial function given in Figure 5.6 to find an expression to approximate
the unknown field quantity u(x) over the entire element. Knowing the coor-
dinates and nodal DOF for the two nodes, we express the following boundary
conditions in terms of the two known DOF for the given 1D 2-node element:

x = x1 = 0, u(x) = u1

x = x2 = l, u(x) = u2

(5.1)

These two conditions allow us to select a polynomial function with two
constants. Thus, by starting from the lowest-degree terms, we take

ũ(x) = a0 + a1x

By applying the two nodal boundary conditions given in Equation 5.1 to this
polynomial function, we obtain

ũ(0) = a0 = u1 and ũ(l) = a0 + a1l = u2

hence,

a0 = u1 and a1 =
u2 − u1

l

Then through substitution to the two-term polynomial function, we express

ũ(x) = u1 +
u2 − u1

l
x

With some rearrangements, we have

ũ(x) =
l− x

l
u1 +

x

l
u2 (5.2)

Equation 5.2 is a linear polynomial function that satisfies the boundary
conditions at the two nodes. This fact means that for a 1D 2-node element
we can write a linear polynomial function in terms of its nodal coordinates
and nodal DOF as an approximate expression for the field quantity. This 1D
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2-node element is therefore a linear element. Since this equation approximates
the field quantity over the entire element, it is often called the interpolation
function for the field quantity.

1 2
x

u2 u3u1

x1 = 0 x2 = l/2 x3 = l

FIGURE 5.7
A 3-node 1D element.

Similarly, for the 1D 3-node element
shown in Figure 5.7, with elementary
DOF = 3, represented by u1, u2, and
u3 for nodes 1 through 3, respectively,
we have the following three boundary
conditions:

x = x1 = 0, u(x) = u1

x = x2 = l/2, u(x) = u2

x = x3 = l, u(x) = u3

Based on these three conditions, we select a three-term polynomial function
to interpolate the field quantity:

ũ(x) = a0 + a1x+ a2x
2

Through a similar exercise, we find the three constants:

a0 = u1, a1 =
−3u1 + 4u2 − u3

l
, a2 =

2(u1 − 2u2 + u3)
l2

By plugging them into the three-term polynomial function we have

ũ(x) =
l2 − 3lx+ 2x2

l2
u1 +

4lx− 4x2

l2
u2 +

−lx+ 2x2

l2
u3 (5.3)

Equation 5.3 is a quadratic polynomial function that satisfies the boundary
conditions at the three nodes. This means that using a 1D 3-node element we
can write a quadratic polynomial function in terms of the nodal coordinates
and nodal DOF as the interpolation function for the field quantity over the
entire element. This 1D 3-node element is therefore a quadratic element.

As these two examples demonstrate, the number of nodes in a 1D element
dictates the number of constants we can have for the polynomial interpo-
lation function as an approximate representation of the field quantity of
interest. This in turn determines the order of the interpolation function. More
specifically, a 2-node element produces a linear interpolation function, and
a 3-node element a quadratic interpolation function. We often regard this as
the order of element discretization. For example, for 1D elements, we have lin-
ear elements (2-node elements), quadratic elements (3-node elements), cubic
elements (4-node elements), and quartic elements (5-node elements).

5.3.2 2D elements

We now expand our discussion to 2D situations. With 2D elements, all nodal
DOF are restricted to vary within a 2D plane and no out-of-plane DOF
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3 (0, b)

(a, 0)(0, 0)
1 2

u3

u1 u2

y

x

FIGURE 5.8
A 2D triangular element.

are admissible. Again, we will consider single
DOF per node to represent the 2D field quantity
of either a scalar field or a vector field, u(x, y).

So for the triangular element shown in
Figure 5.8, we have elementary DOF = 3. We
express the three nodal DOF as u1, u2, and u3 at
nodes 1, 2, and 3, respectively. With the geometry
of the element defined by its nodal coordinates,
we write the following boundary conditions as the
three nodes:

x = 0, y = 0, u(x, y) = u1

x = a, y = 0, u(x, y) = u2

x = 0, y = b, u(x, y) = u3

Knowing these three conditions, we select a three-term 2D polynomial function
to interpolation the field quantity:

ũ(x, y) = b0 + b1x+ b2y

After substitution along with some algebraic exercises, we find the three
constants as

b0 = u1, b1 =
u2 − u1

a
, and b2 =

u3 − u1

b

and then the interpolation function as

ũ(x, y) =
(
1− x

a
− y

b

)
u1 +

x

a
u2 +

y

b
u3 (5.4)

Equation 5.4 is a 2D linear polynomial function that satisfies the bound-
ary conditions. This result points to the fact that with a 3-node triangular
element, we can express a linear 2D polynomial function in terms of the nodal
coordinates and nodal DOF as an interpolation function for the field quantity
over the element.

1 2

34
(a, b)

(a, −b)(−a, −b)

(−a, b) u3

u2

u4

u1

y

x

FIGURE 5.9
A 2D rectangular element.

Figure 5.9 shows a 2D rectangular (a par-
ticular case of quadrilateral elements) element.
Again, by considering single DOF per node,
we have elementary DOF = 4. For the 2D field
quantity, u(x, y), to be solved over this 2D
rectangular element, we express the four ele-
mentary DOF as u1, u2, u3, and u4 at nodes 1
through 4, respectively, and select a four-term
2D polynomial function (without the square
terms) to interpolate the field quantity:

ũ(x, y) = b0 + b1x+ b2y + b3xy
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With the geometric information of the element given, we write the
following four boundary conditions at the nodes:

x = −a, y = −b, u(x, y) = u1

x = a, y = −b, u(x, y) = u2

x = a, y = b, u(x, y) = u3

x = −a, y = b, u(x, y) = u4

After substitution along with some algebraic exercises, we find the four
constants as

b0 =
u1 + u2 + u3 + u4

4
, b1 =

−u1 + u2 + u3 − u4

4a

b2 =
−u1 − u2 + u3 + u4

4b
, b3 =

u1 − u2 + u3 − u4

4ab

By plugging these constants into the interpolation function with some
rearrangements, we arrive at

ũ(x, y) =
(a− x)(b− y)

4ab
u1 +

(a + x)(b− y)
4ab

u2

+
(a + x)(b + y)

4ab
u3 +

(a− x)(b + y)
4ab

u4

(5.5)

Equation 5.5 is a 2D quadratic polynomial function that satisfies the boundary
conditions. This result states that for a 4-node rectangular element, we can
express a 2D quadratic polynomial function (without the square terms) in
terms of the nodal coordinates and nodal DOF as an interpolation function
for the field quantity over the entire element.

5.4 Choice of Polynomial Terms

From the above discussions, we note that although different polynomial func-
tions are associated with different elements, the choice for the terms of a
polynomial function is not arbitrary. For the 1D cases, the 2-node element is
linked to a two-term linear polynomial function of x, and the 3-node element to
a three-term quadratic polynomial function of x. For the 2D cases, the 3-node
triangular element is associated with a three-term linear polynomial function
of x and y, and the 4-node rectangular element with a four-term quadratic
polynomial function of x and y without the square terms. Based on these
facts, we can make the following observations: (1) the number of terms in all
these polynomial functions equals the number of elementary DOF and (2) the
polynomial functions all contain terms of the lowest degree (e.g., zeroth- and
first-degree terms) up to the highest degree permissible.
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Since the use of polynomial functions is for interpolating a field quan-
tity (i.e., a dependent variable of PDEs), the selected function has to meet
the requirements of a field quantity in a general sense. The two general
requirements for a field quantity are

1. It must have the lowest-degree terms, including the zeroth- and first-
degree terms such that the field quantity can capture a constant and
linear condition in a stationary, steady-state, or rigid-body motion
situation.

2. It must be balanced with respect to all the independent variables
(e.g., x, y, z) without favoring any individual variable. In other
words, the function should remain characteristically unchanged
when any two independent variables swap places.

5.4.1 Pascal triangle

In 2D space, the selection of proper terms for polynomial functions is made
easy when we refer to the 2D Pascal triangle shown in Table 5.1. In this
2D Pascal triangle, the base terms of polynomials are listed in rows by the
degree of the terms. The zeroth-degree term is at the pinnacle of the triangle,
and it is followed by the two first-degree terms, then three second-degree
terms, and so on. Polynomial functions having all the terms of the same
degree, as well as all the terms of lower degrees down to the zeroth degree,
are called complete polynomials. For example, a polynomial having the 1, x,
and y terms is a complete one, and so is the one with the 1, x, y, x2, xy, and
y2 terms. Obviously, a complete polynomial is also a balanced one. However,
completeness is not a requirement for the selection of polynomial functions
for field quantity interpolation.

To see how the Pascal triangle is utilized, let us revisit the cases discussed
earlier. For the 1D elements, since x is the only variable, we ignore the y
term. This of course leaves us with a series of x terms in an ascending degree
along the left side of the Pascal triangle. For the 2-node case, with elementary

TABLE 5.1
Pascal triangle for the selection of polynomial terms in 2D

Polynomial base terms Order of terms
1 0th degree (constant)

x y 1st degree (linear)

x2 xy y2 2nd degree (quadratic)

x3 x2y xy2 y3 3rd degree (cubic)

x4 x3y x2y2 xy3 y4 4th degree (quartic)
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DOF = 2, we select 1 and x as the base terms to make the two-term polynomial
function

ũ(x) = a0 + a1x

For the 3-node case, with its elementary DOF = 3, we select 1, x, and x2 as
the base terms to make the three-term polynomial function

ũ(x) = a0 + a1x+ a2x
2

For the 2D elements, we need both the x and y terms. For the 3-node
triangular case, with elementary DOF = 3, we select 1, x, and y as the base
terms to make the three-term polynomial function

ũ(x, y) = b0 + b1x+ b2y

So the interpolation function for a 2D triangular element is a complete
polynomial.

For the 4-node rectangular case, with elementary DOF = 4, we need to
select four base terms. Starting from the zeroth-degree term upward, we pick
the first three base terms, 1, x, and y, straightforwardly. The difficulty comes
when deciding which one of the three second-degree terms, namely, x2, xy,
or y2, we should pick. Clearly, by referring to the second requirement for
the polynomial functions, it becomes obvious that of these three terms, only
the xy term meets the field balance requirement for x and y. Otherwise, the
selected function will favor either x or y. Therefore, we select

ũ(x, y) = b0 + b1x+ b2y + b3xy

for the 4-node rectangular case. Although this polynomial is not a complete
one, as it does not have all the second-degree terms, it is nevertheless a
balanced polynomial function.

5.4.2 Pascal pyramid and 3D elements

This polynomial term selection scheme can be extended to 3D situations. By
considering three independent variables x, y, and z, we can construct a Pascal
pyramid as illustrated in Figure 5.10. As in the 2D Pascal triangle, the base
terms in the Pascal pyramid are arranged in layers by the degree of the terms.
The zeroth-degree term is at the pinnacle of the pyramid, and it is followed
by the three first-degree terms, then the six second-degree terms, and so on.

For using the Pascal pyramid, let us take a look at the two 3D elements
shown in Figure 5.10. For the 4-node tetrahedral element, with elementary
DOF = 4, we can select a four-term polynomial function as the interpolation
function for the field quantity. Referring to the Pascal pyramid, it is fairly
straightforward that we select four terms as 1, x, y, and z. Thus, we have the
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FIGURE 5.10
Pascal pyramid and 3D elements.

four-term 3D polynomial function

ũ(x, y) = c0 + c1x+ c2y + c3z

for the 4-node tetrahedral element. Since it has all the zeroth- and first-
degree terms, the interpolation function for the 4-node tetrahedral element
is a complete polynomial; thus, it is a balanced one.

For the 8-node hexahedral element, with elementary DOF = 8, we can
select an eight-term polynomial function to interpolate the field quantity. By
the Pascal pyramid, we pick the first four terms as 1, x, y, and z. For the
rest, we move down to the layers of higher-degree terms. In the second-degree
layer, we have six terms, of which three are square terms (x2, y2, and z2) and
three are product terms, xy, yz, and xz. Since we cannot pick all six terms,
our choice is reduced to three, in order to meet the balance requirement for
polynomial selection. So the question now is, should we choose the three
square terms or the three product terms? To answer this question, we need
to see the difference between a square term and a product term. Although
both terms are of second degree, a product term consists of two single-factor
(i.e., linear) variables, while a square term is one variable in double factors
(i.e., quadratic). Therefore, according to the first requirement for the lowest-
degree terms, the product terms are preferred over the square terms. So we
select three more terms as xy, yz, and xz. This still leaves us with one more
term to go. Since we cannot select any one of the remaining three square terms,
we move to the next layer, where 10 cubic terms are available. For picking one
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term out of these 10 cubic terms to satisfy the field balance requirement, we
quickly narrow the choice to the xyz term. With these eight terms, we write
the eight-term polynomial function as

ũ(x, y) = c0 + c1x+ c2y + c3z + c4xy + c5yz + c6xz + c7xyz

for the 8-node hexahedral element. Obviously, this interpolation function is
not a complete polynomial but a balanced one.

5.5 Shape Functions

In Section 5.4, we learned that a given element can be linked to a polynomial
function based on the information on its nodal DOF and nodal coordinates. In
a close inspection of these polynomial expressions (see Equations 5.2 through
5.5), we notice that these equations can be written in a generalized form in
terms of the nodal DOF, um, and their corresponding polynomial functions,
Nm, for m = 1, . . . , ne, as

ũ = N1u1 + N2u2 + · · · =
ne∑

m=1

Nmum (5.6)

where ne represents the number of elementary DOF. In expressing the approx-
imate field quantity in this generalized form, we can now relate the polynomial
functions, Nm, (m = 1, . . . , ne) to the actual elements they represent in a
physically meaningful way.

For the 1D 2-node element (ne = 2), by matching the terms in Equation
5.2 with those in Equation 5.6, we can write

N1(x) =
l− x

l
and N2(x) =

x

l

By plotting these two polynomial functions in position with the element,
as shown in Figure 5.11, we can see that both N1(x) and N2(x) vary linearly
with x, and they exhibit the following behavior:

N1(x) = 1 and N2(x) = 0 at node 1
N1(x) = 0 and N2(x) = 1 at node 2
N1(x) + N2(x) = 1 throughout the element

(5.7)

Clearly, N1(x) and N2(x) are also polynomial interpolation functions. They
depict the variation of the field quantity, normalized by the corresponding
admissible nodal DOF (u1 or u2), over the entire element. More specifically,
N1(x) describes the shape of the normalized interpolation function for the
first fundamental nodal DOF under the constraints of u1 = 1 and u2 = 0, while
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N1 = (l − x)/l N2 = x/l

2 (x = l)1 (x = 0) 2 (x = l)1 (x = 0)
x

N
1

x

N
1

FIGURE 5.11
Shape functions for 2-node 1D elements.

N2(x) describes the shape of the normalized interpolation function for the sec-
ond fundamental nodal DOF under the constraints of u1 = 0 and u2 = 1. For
this reason, we call these normalized interpolation functions shape functions.
In other words, shape functions are polynomial base functions (normalized
polynomial functions) corresponding to each of the admissible DOF allowed
individually for interpolating the field quantities.

The observations listed in Equation 5.7 can be generalized as

1. Nm(xm) = 1, and Nm(xi) = 0 when i �= m

2.
ne∑

m=1

Nm = 1, where ne is the number of nodes in each

These conditions, in turn, ensure that the resulting field interpolation function
given by Equation 5.6 meets the polynomial selection requirements.

Knowing the physical meanings of N1(x) and N2(x), Equation 5.6 can be
interpreted as saying that a field quantity can be approximated over the entire
element by an interpolation function expressed in the sum of the products of
the associated nodal DOF and the shape function for each every node. For

example, for the 1D 2-node element we have ũ(x, y) =
2∑

m=1

Nmum = N1u1 +

N2u2.
We call these polynomials shape functions for a good reason. Imagine the

element as a thin flexible wire; we fasten the wire at the nodal points with small
rings (note that this type of fastening only restricts translational movements
and not rotations). We first remove the ring at node 1 and move the node by
1 to represent the unity amount for the field quantity at node 1. The function
describing the shape of the wire at this moment is the first shape function.
Next, we put node 1 back to its original position, remove the ring at node 2,
and move the node by unity amount (1). The function representing the shape
of the wire this time is the second shape function. The benefit of expressing
the approximate field quantity in this form is that the shape functions of any
element can be determined when the nodal DOF and coordinates are known,
as demonstrated in the following examples.
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Example 5.1

Find the shape functions for the 2-node element.

Answer
In this example, we also review some basic knowledge of matrix algebra.
Abiding by the polynomial selection requirements, for the 2-node ele-
ment (with elementary DOF = 2) we write the following interpolation
function as an approximate expression for the field quantity:

ũ(x) = a0 + a1x

Substituting the nodal DOF and coordinates, we have

u1 = a0 + a1x1 and u2 = a0 + a1x2

Expressing these relationships in matrix forms, we arrive at

ũ(x) =
[
1 x

]{a0

a1

}
and

{
u1

u2

}
=

[
1 x1

1 x2

]{
a0

a1

}

Let

p =
[
1 x

]
and M =

[
1 x1

1 x2

]

we can write{
a0

a1

}
= M−1

{
u1

u2

}
and ũ(x) = p

{
a0

a1

}
= pM−1

{
u1

u2

}
= N

{
u1

u2

}

where M−1 is the inverse matrix of M , and N = pM−1. By substituting
the nodal coordinates given in Figure 5.6, namely, x1 = 0 and x2 = l,
we have

N = pM−1 =
[
1 x

] [1 0
1 l

]−1

=

[
1 x

]
l

[
l 0
−1 1

]
=

1

l

[
l− x x

]

By separating the two individual shape functions, we have

N1 =
l− x

l
and N2 =

x

l
(5.8)

Example 5.2

Find the shape functions for the 1D 3-node element.

Answer
According to the polynomial selection requirements, we write the follow-
ing interpolation function for the field quantity in a 1D 3-node element
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having elementary DOF = 3:

ũ(x) = a0 + a1x+ a2x
2

with p =
[
1 x x2

]
. Substituting the nodal information, we have

⎧⎨
⎩

u1

u2

u3

⎫⎬
⎭ =

⎡
⎢⎣
1 x1 x2

1

1 x2 x2
2

1 x3 x2
3

⎤
⎥⎦
⎧⎨
⎩

a0

a1

a2

⎫⎬
⎭ and M =

⎡
⎢⎣
1 x1 x2

1

1 x2 x2
2

1 x3 x2
3

⎤
⎥⎦

By plugging in the nodal coordinates listed in Figure 5.7, namely, x1 = 0,
x2 = l/2, and x3 = l, we obtain

N = pM−1 =
[
1 x x2

] ⎡⎢⎣
1 0 0

1 l/2 (l/2)2

1 l l2

⎤
⎥⎦

−1

=

[
1 x x2

]
l2

⎡
⎢⎣

l2 0 0

−3l 4l −l

2 −4 2

⎤
⎥⎦

which yields

N =
1

l2
[
l2 − 3lx +2x2 4lx− 4x2 −lx+ 2x2

]
By separating the individual shape functions, we obtain the following
three quadratic functions as the shape functions:

N1 =
l2 − 3lx +2x2

l2
, N2 =

4lx− 4x2

l2
, N3 =

−lx+ 2x2

l2
(5.9)

Figure 5.12 shows the plots of these three quadratic shape functions.
Again, we can see that Ni = 1 when x = xi, Ni = 0 when x = xj , and∑

Ni = 1.

These shapes can also be intuitively explained by imagining the
3-node element as a thin flexible wire fastened with three small rings
at nodes 1 through 3. First, we remove the ring at node 1 and move the
node by 1. The shape the wire takes at this moment is the first shape.
Next, we start from the original position, remove the ring at node 2,
and move the node by 1. The shape the wire takes at this moment is
the second shape. Finally, we repeat the process and remove the ring
at node 3, and move the node by 1. The shape the wire takes now
is the third shape. Moreover, it can be shown that Nm(xm) = 1 and

1 2 3 1 2 3 1 2 3
x

N

1
N2 = (4lx − 4x 2)/l2 N3 = (–lx + 2x 2)/l2N1 = (l2 – 3lx + 2x 2)/l2

x

N

1
x

N

1

FIGURE 5.12
Shape functions for 3-node 1D elements.
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Nm(xi) = 0 when i �= m, and

ne∑
m=1

Nm = 1 for m = 1, . . . , 3. The reader

is encouraged to show these relationships as an exercise.

Example 5.3

Find the shape functions for the 3-node triangular element shown in
Figure 5.8.

Answer
According to the polynomial selection requirements, we write the fol-
lowing interpolation function for the field quantity in a 3-node triangle
element with elementary DOF = 3:

ũ(x) = b0 + b1x + b2y with p =
[
1 x y

]
and M =

⎡
⎢⎣
1 x1 y1

1 x2 y2

1 x3 y3

⎤
⎥⎦

With the nodal coordinates given in Figure 5.8, namely, x1 = y1 = 0,
x2 = a, y2 = 0, and x3 = 0, y3 = b, we express the shape functions as

N = pM−1 =
[
1 x y

] ⎡⎢⎣
1 0 0

1 a 0

1 0 b

⎤
⎥⎦

−1

=
[
1 x y

] ⎡⎢⎣
1 0 0

−1/a 1/a 0

−1/b 0 1/b

⎤
⎥⎦

which yields

N =
[(

1− x

a
− y

b

) x

a

y

b

]

Separating them out, we have the following three linear shape functions:

N1 = 1− x

a
− y

b
, N2 =

x

a
, N3 =

y

b
(5.10)

Figure 5.13 shows the surface plots of these three linear shape func-
tions, with each showing a function of a tilted flat plane (linear function).
The reader is encouraged to show that Nm(xi, yi) = 1 when i = m, and

Nm(xi, yi) = 0 when i �= m, and

ne∑
m=1

Nm = 1 for m = 1, . . . , 3. These

shapes can also be intuitively explained by imagining the following: fas-
ten a thin flexible sheet with small rings at node 1, node 2, and node 3,
and then remove one ring at a time and move the released node by a
unity amount (1). Each time, the resulting shape of the thin flexible
sheet describes the corresponding shape function.
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1 N1 N2 N31 1

FIGURE 5.13
Shape functions for 3-node triangular elements.

Example 5.4

Find the shape functions for the 4-node rectangular element shown in
Figure 5.9.

Answer
By the polynomial selection requirements, we write the following inter-
polation function for the field quantity in a 4-node rectangular element
with elementary DOF = 4:

ũ(x) = b0 + b1x+ b2y + b3xy

In the same way as in previous examples, we express

p =
[
1 x y xy

]
, M =

⎡
⎢⎢⎢⎣
1 x1 y1 x1y1

1 x2 y2 x2y2

1 x3 y3 x3y3

1 x4 y4 x4y4

⎤
⎥⎥⎥⎦

With the nodal coordinates given in Figure 5.9, namely, x1 = −a,
y1 = −b; x2 = a, y2 = −b; x3 = a, y3 = b; and x4 = −a, y4 = b, we cal-
culate the shape functions using N = pM−1:

N = pM−1 = p

⎡
⎢⎢⎢⎣
1 −a −b ab

1 a −b −ab

1 a b ab

1 −a b −ab

⎤
⎥⎥⎥⎦

−1

=

[
1 x y xy

]
4ab

⎡
⎢⎢⎢⎣

ab ab ab ab

−b b b −b

−a −a a a

1 −1 1 −1

⎤
⎥⎥⎥⎦

By multiplying the terms out and rearranging them, we obtain the
following:

N =

[
(a− x)(b− y)

4ab

(a+x)(b− y)

4ab

(a +x)(b+ y)

4ab

(a− x)(b+ y)

4ab

]
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FIGURE 5.14
Shape functions for 4-node rectangular elements.

By separating the four terms, we arrive at the following four
quadratic shape functions:

N1 =
(a− x)(b− y)

4ab
, N2 =

(a+ x)(b− y)

4ab

N3 =
(a+ x)(b+ y)

4ab
, N4 =

(a− x)(b+ y)

4ab

(5.11)

Figure 5.14 shows the surface plots of these four shape functions,
each showing a slightly curved quadratic surface. That these surfaces are
curved can be intuitively pictured based on the fact that the moved node
cannot be in the same plane formed by the three unmoved nodes. Again,
the reader is encouraged to show that Nm(xi, yi) = 1 when i = m, and

Nm(xi, yi) = 0 when i �= m, and

ne∑
m=1

Nm = 1 for m = 1, . . . , 4. These

shapes can also be explained intuitively: (1) fasten a thin flexible sheet
with small rings at nodes 1 through 4, (2) remove one ring at a time,
and (3) move the released node by a unity amount (1). Each time, the
resulting shape of the thin flexible sheet gives the corresponding nodal
shape function.

5.6 Lagrange Interpolation Formulas

The intuitive way of imagining the shape functions can actually be expressed
by mathematical equations based on the Lagrange interpolation formula. In its
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original form, Lagrange interpolation uses a polynomial function to construct a
smooth curve passing through a set of points. By passing through these points,
the Lagrange interpolation formula reproduces the values of the ordinates of
all the points.

5.6.1 Lagrange formula for 1D elements

We begin by considering 1D situations. For k points in 2D Cartesian coor-
dinates with their abscissas and ordinates given as xm and ym, respectively,
for m = 1, . . . , k, the Lagrange interpolation formula produces a smooth poly-
nomial curve of (k− 1)th degree to pass through all these k points using the
following expression:

y(x) =
k∑

m=1

ym

k∏
i=1(i�=m)

x− xi

xm − xi
=

k∑
m=1

ymLm(x) (5.12)

in which

Lm(x) =
k∏

i=1(i�=m)

x− xi

xm − xi

=
(x− x1) · · · (x− xm−1)(x− xm+1) · · · (x− xk)

(xm − x1) · · · (xm − xm−1)(xm − xm+1) · · · (xm − xk)

for m = 1, . . . , k, are called the base functions of the Lagrange interpolation
formula. Note that when calculating each Lm(x), to ensure i �= m, the term
with an index of i = m is skipped.

x

y

L1

y(x) = Σm = 1 ymLm
5

FIGURE 5.15
Lagrange interpolation curves.

To illustrate the usage of this formula,
let us look at an example. As shown in
Figure 5.15, to produce a smooth inter-
polation curve passing through the five
given points (filled circles), a fourth-degree
polynomial curve, y(x), can be written
based on the Lagrange interpolation for-
mula (Equation 5.12) in terms of the
known values for the abscissas (xm) and
ordinates (ym) of these points.

These base functions, Lm(x) (m = 1, . . . , k), are also interpolation func-
tions. The only difference is that with these base functions, the points being
interpolated are the projection points of the original ones on the x axis,
as marked by the hollow circles. As we can see from the Lm(x) formula,
the numerator part ensures that the functions are zero at x = x1, x2, . . . , xk

except at x = xm, and the denominator part guarantees that the functions
are unity at x = xm. In other words, these Lm(x) functions pass through all
the projection points except the mth point, where Lm(xm) = 1.
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Based on the definition, we know they are actually shape functions.
Therefore, we express

Nm(x) = Lm(x) =
ne∏

i=1(i�=m)

x− xi

xm − xi
(5.13)

as the mth shape function, for m = 1, . . . , ne, of an element with ne nodes. So
in a 1D situation, the Lagrange formula is a product of polynomial functions of
a single independent variable; thus, we refer to it as a single-variable product.
As an example, Figure 5.15 shows the curve for the m = 1 case, where the
L1 function is plotted in a dashed line. Imagine this dashed line as a rigid
but flexible wire fastened with small rings at all five project points; we first
remove the ring at the left end, and then move that end by unity amount
(y = 1). The resulting shape of the wire will overlap with the dashed curve.

To represent shape functions, these polynomial functions, Lm(x), have
to meet certain conditions (such that the interpolation functions meet the
polynomial selection requirements). The reader is encouraged to show that

Nm(xm) = 1 and Nm(xi) = 0 when i �= m, and that
ne∑

m=1

Nm = 1. Next, we

will go through some examples to see how this formula is utilized.

Example 5.1a

Repeat Example 5.1 to find the shape functions using the Lagrange
formula.

Answer
For the 1D 2-node element, ne = 2:

m = 1: N1 =
2∏

i=1(i�=1)

x− xi

x1 − xi
=

x−x2

x1 − x2

m = 2: N2 =

2∏
i=1(i�=2)

x− xi

x2 − xi
=

x−x1

x2 − x1

With the nodal coordinates given in Figure 5.6, namely, x1 = 0 and
x2 = l, we obtain the same shape functions as in Equation 5.8, as follows:

N1 =
l−x

l
and N2 =

x

l

Example 5.1b

Repeat Example 5.2 to find the shape functions using the Lagrange
formula.
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Answer
For the 1D 3-node element, ne = 3:

m = 1: N1 =

3∏
i=1(i�=1)

x−xi

x1 −xi
=

(x− x2)(x− x3)

(x1 − x2)(x1 −x3)

m = 2: N2 =

3∏
i=1(i�=2)

x−xi

x2 −xi
=

(x− x1)(x− x3)

(x2 − x1)(x2 −x3)

m = 3: N3 =
3∏

i=1(i�=3)

x−xi

x3 −xi
=

(x− x1)(x− x2)

(x3 − x1)(x3 −x2)

With the nodal coordinates of x1 = 0, x2 = l/2, and x3 = l (see
Figure 5.7), we arrive at the same shape functions as in Equation 5.9:

N1 =
l2 − 3lx + 2x2

l2
, N2 =

4lx− 4x2

l2
, N3 =

−lx+2x2

l2

5.6.2 Lagrange formula for 2D quadrilateral elements

In a 2D situation, the Lagrange interpolation formula can be obtained by
extending the 1D formula (Equation 5.13) to include a second product of the
second independent variable. For example, with x and y as the two indepen-
dent variables, we express the 2D formula as the product of the x-variable
product and the y-variable product:

Lmx,my(x, y) =
nx∏

i=1(i�=mx)

x− xi

xmx − xi

ny∏
j=1(j �=my)

y − yj

ymy − yj

where mx and my are nodal coordinate indexes: mx = 1, . . . , nx and my =
1, . . . , ny, nx, and ny are the number of nodes in the element along the x and
y directions, respectively.

By this way of expansion, the number of nodes in 2D elements will be
n = nx ×ny. Since the values of nx and ny dictate the degree of polynomial
functions in each dimension, due to the field balance requirement, elements
with nx �= ny are rarely used. When nx = ny, the elementary DOF is a square
digit, such as the 4-node and 9-node quadrilateral elements.

This means that we can only use this formula to obtain shape functions
for 2D elements having the number of nodes in a square digit (e.g., 4, 9,
16, . . .). A case in point, although 2D triangular elements are Lagrange ele-
ments, because they do not possess such a nodal arrangement, we cannot use
this formula to write their shape functions. For triangular elements, a dif-
ferent form of Lagrange interpolation formula is needed, which we discuss in
Section 5.6.4.
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Example 5.1c

Repeat Example 5.4 to find the shape functions using the Lagrange
formula.

Answer
For the 2D 4-node rectangular element, we have nx = ny = 2. As illus-
trated in Figure 5.16, the nodal coordinate indexes can be assigned
in the following manner: node 1 with mx = 1, my = 1; node 2 with
mx = 2, my = 1; node 3 with mx = 2, my = 2; and node 4 with mx =
1, my = 2. Thus, we write

N1 = L1,1(x, y) =

2∏
i=1(i�=1)

x−xi

x1 −xi

2∏
j=1(j �=1)

y− yj

y1 − yj
=

x−x2

x1 −x2

y − y2

y1 − y2

N2 = L2,1(x, y) =
2∏

i=1(i�=2)

x−xi

x2 −xi

2∏
j=1(j �=1)

y− yj

y1 − yj
=

x−x1

x2 −x1

y − y2

y1 − y2

N3 = L2,2(x, y) =
2∏

i=1(i�=2)

x−xi

x2 −xi

2∏
j=1(j �=2)

y− yj

y2 − yj
=

x−x1

x2 −x1

y − y1

y2 − y1

N4 = L1,2(x, y) =

2∏
i=1(i�=1)

x−xi

x1 −xi

2∏
j=1(j �=2)

y− yj

y2 − yj
=

x−x2

x1 −x2

y − y1

y2 − y1

With the nodal coordinates of x1 = −a, x2 = a, y1 = −b, and y2 = b, we
obtain the same shape functions as those given in Equation 5.11 and
sketched in Figure 5.14:

N1 =
(a− x)(b− y)

4ab
, N2 =

(a +x)(b− y)

4ab

N3 =
(a+ x)(b+ y)

4ab
, N4 =

(a−x)(b+ y)

4ab

(a, −b)(−a, −b)

(a, b)(−a, b)

34

y

x

mx my1 2

21
1

2

FIGURE 5.16
Coordinate indexes used for a 2D 4-node rectangle element.
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Similarly, this formula can be applied to a 9-node rectangular ele-
ment with four midside nodes and an interior center node, in which
nx = ny = 3. As illustrated in Figure 5.17, its nodal coordinate indexes
can be written as

mx = my = 1 for node 1, mx = 3, my = 1 for node 2

mx = my = 3 for node 3, mx = 1, my = 3 for node 4

mx = 2, my = 1 for node 5, mx = 3, my = 2 for node 6

mx = 2, my = 3 for node 7, mx = 1, my = 2 for node 8

mx = my = 2 for node 9

With x1 = −a, x2 = 0, x3 = a, y1 = −b, y2 = 0, and y3 = b, we apply
the Lagrange formula to obtain the selected shape functions as follows:

N1 = L1,1(x, y) =
3∏

i=1(i�=1)

x− xi

x1 −xi

3∏
j=1(j �=1)

y − yj

y1 − yj

=
x−x2

x1 − x2

x− x3

x1 −x3

y− y2

y1 − y2

y − y3

y1 − y3
=

xy(a− x)(b− y)

4a2b2

N3 = L3,3(x, y) =
3∏

i=1(i�=3)

x− xi

x3 −xi

3∏
j=1(j �=3)

y − yj

y3 − yj

=
x−x1

x3 − x1

x− x2

x3 −x2

y− y1

y3 − y1

y − y2

y3 − y2
=

xy(a+ x)(b+ y)

4a2b2

N6 = L3,2(x, y) =

3∏
i=1(i�=3)

x− xi

x3 −xi

3∏
j=1(j �=2)

y − yj

y2 − yj

=
x−x1

x3 − x1

x− x2

x3 −x2

y− y1

y2 − y1

y − y3

y2 − y3
=

x(a+x)(b2 − y2)

4a2b2

1

34

5

6

7

8
9 (0, 0)

y

x

1 2 3

1

2

3

mx my

(a, −b)(−a, −b) (0, −b)

(a, b)

(a, 0)

(−a, b)

(−a, 0)

(0, b)

2

FIGURE 5.17
Coordinate indexes used for a 2D 9-node rectangle element.
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1 1
N3

N9

N1

N6

1 1

FIGURE 5.18
Selected shape functions for 9-node rectangular elements.

N9 = L2,2(x, y) =
3∏

i=1(i�=2)

x− xi

x2 −xi

3∏
j=1(j �=2)

y − yj

y2 − yj

=
x−x1

x2 − x1

x− x3

x2 −x3

y− y1

y2 − y1

y − y3

y2 − y3
=

(a2 −x2)(b2 − y2)

4a2b2

The reader is encouraged to find the rest of the shape functions for the
9-node rectangular element.

Figure 5.18 shows the surface plots of these four shapes functions,
N1, N3, N6, and N9, for the 9-node rectangular element. Because this element
is a Lagrange element, comparing with the shape functions of a 4-node rect-
angular element (see Figure 5.14), these plots clearly show that these nodes
act like additional ring fasteners to constrain the element.

5.6.3 Shape functions for serendipity elements

As we can see in the above example, having interior nodes makes finding the
shape functions for rectangular elements straightforward because we can use
the Lagrange formula. Since interior nodes do not connect with neighboring
elements, they will complicate the numerical calculations.

It is thus desirable to omit these interior nodes. Quadrilateral elements
without any interior nodes are often referred to as serendipity elements.
For example, omitting the interior node of a 9-node rectangular element
results in an 8-node rectangular serendipity element, as shown in Figure 5.19.
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(a, b)

(a, 0)

(–a, b)

(a, –b)(–a, –b)

(–a, 0)

(0, b)

(0, –b)1 2

34

5

6

7

8

y

x

FIGURE 5.19
An 8-node serendipity element.

Similarly, omitting all the interior
nodes in a 16-node rectangular ele-
ment will lead to a 12-node serendipity
element.

For serendipity elements, since we
cannot use the Lagrange formula to
find the shape functions directly, we
need to use another method for it.
A common way to do this is to omit
N9 and use it to adjust the remaining
eight shape functions. Here, we use the
matrix method to find the eight shape
functions. Considering one DOF per
node with the elementary DOF = 8, we express the nodal DOF as u1, u2,
u3, u4, u5, u6, u7, and u8. Then, we select the following polynomial function
with eight constants as an approximate interpolation function:

ũ(x) = b0 + b1x+ b2y + b3x
2 + b4xy + b5y

2 + b6x
2y + b7xy2 (5.14)

With this interpolation function, we express its corresponding polynomial
vector:

p =
[
1 x y x2 xy y2 x2y xy2

]
and then construct the [M ] matrix:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 y1 x2
1 x1y1 y2

1 x2
1y1 x1y

2
1

1 x2 y2 x2
2 x2y2 y2

2 x2
2y2 x2y

2
2

1 x3 y3 x2
3 x3y3 y2

3 x2
3y3 x3y

2
3

1 x4 y4 x2
4 x4y4 y2

4 x2
4y4 x4y

2
4

1 x5 y5 x2
5 x5y5 y2

5 x2
5y5 x5y

2
5

1 x6 y6 x2
6 x6y6 y2

6 x2
6y6 x6y

2
6

1 x7 y7 x2
7 x7y7 y2

7 x2
7y7 x7y

2
7

1 x8 y8 x2
8 x8y8 y2

8 x2
8y8 x8y

2
8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Referring to Figure 5.19, we have the following nodal coordinates:

x = −a, y = −b, u(x, y) = u1 x = a, y = −b, u(x, y) = u2

x = a, y = b, u(x, y) = u3 x = −a, y = b, u(x, y) = u4

x = 0, y = −b, u(x, y) = u5 x = a, y = 0, u(x, y) = u6

x = 0, y = b, u(x, y) = u7 x = −a, y = 0, u(x, y) = u8
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Substituting these relationships into the [M ] matrix, we obtain

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −a −b a2 ab b2 −a2b −ab2

1 a −b a2 −ab b2 −a2b ab2

1 a b a2 ab b2 a2b ab2

1 −a b a2 −ab b2 a2b −ab2

1 0 −b 0 0 b2 0 0

1 a 0 a2 0 0 0 0
1 0 b 0 0 b2 0 0

1 −a 0 a2 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Taking its inverse, we have

M−1 =
1

4a2b2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a2b2 −a2b2 −a2b2 −a2b2 2a2b2 2a2b2 2a2b2 2a2b2

0 0 0 0 0 2ab2 0 −2ab2

0 0 0 0 −2a2b 0 2a2b 0
b2 b2 b2 b2 −2b2 0 −2b2 0
4ab −ab ab −ab 0 0 0 0
a2 a2 a2 a2 0 −2a2 0 −2a2

−b −b b b 2b 0 −2b 0
−a a a −a 0 −2a 0 2a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Using the formula N = pM−1, we obtain the shape functions for the 8-node
serendipity rectangular element:

NT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1

N2

N3

N4

N5

N6

N7

N8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1

4a2b2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(a− x)(b− y)(ay + bx+ ab)
−(a + x)(b− y)(ay− bx+ ab)
(a + x)(b + y)(ay + bx− ab)
(a− x)(b + y)(ay− bx− ab)

2b(a2 − x2)(b− y)

2a(a + x)(b2 − y2)
2b(a2 − x2)(b + y)

2a(a− x)(b2 − y2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 5.20 shows the surface plots of the eight shape functions for the
8-node serendipity element. Comparing with those shown in Figure 5.18, espe-
cially the corresponding ones (say, N6), we can see that omitting the center
interior node not only releases the constraint at the center location but also
alters the rest of the shape functions. In a similar way, we can find the shape
functions for other serendipity elements.
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1
N1

1
N2

N3
N4

N7
N8

N5
N6

1 1

1 1

1 1

FIGURE 5.20
Shape functions for the 8-node serendipity element.

5.6.4 Lagrange formulas for 2D triangular elements

5.6.4.1 Area coordinates for triangles

We now discuss the development of the Lagrange interpolation formula for 2D
triangular elements. To do that, we need to first define an area coordinate sys-
tem for triangles. Figure 5.21 shows a triangle defined by vertices 1, 2, and 3
with their coordinates given. Point O(x, y) is an arbitrary interior point that
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1

2

3

O

(x3, y3)

(x2, y2)

(x1, y1)

A1A2

A3

t
2

t3

t 1

1

2

3

t0
3

t1
3

t1
2

t0
2

t1
1

t0
1

t s–2
3

t s–1
3

t s–2
2

t s–2
1t s–1

1

t s–1
2

FIGURE 5.21
Area coordinates for triangular elements.

divides the triangle into three subtriangles. Let A0, A1, A2, and A3, respec-
tively, be the areas of the original triangle and the three subtriangles; we
define three area coordinates, t1, t2, and t3, one with respect to each vertex,
as follows:

t1 =
A1

A0
, t2 =

A2

A0
, t3 =

A3

A0
(5.15)

Clearly, several observations can be made about these three area coordinates:
(1) they vary with x and y as point O moves around within the trian-
gle; (2) t1 = 1 at vertex 1, t2 = 1 at vertex 2, and t3 = 1 at vertex 3; and
(3) t1 + t2 + t3 = 1.

Physically, each of these area coordinates measures the distance from
point O to a base normalized by the height of the triangle measured from
the same base. For example, t1 measures the normalized distance from the
base opposite of node 1 to a line parallel to the same base passing through
point O. Thus, when point O coincides with vertex 1, t1 = 1. Similarly, t2 and
t3 measure the normalized distance from their respective bases to the corre-
sponding parallel lines passing through point O, and when point O coincides
with vertex 2, t2 = 1, and when it coincides with vertex 3, t3 = 1. The fact
that t1 + t2 + t3 = 1 indicates that these area coordinates are not independent
of each other.

Since the area of a triangle can be calculated by the determinant of a
matrix formed in terms of the Cartesian coordinates of its three vertices, we
express the following:

A0 =
1
2
det

⎡
⎣1 x1 y1

1 x2 y2

1 x3 y3

⎤
⎦ , A1 =

1
2
det

⎡
⎣1 x y
1 x2 y2

1 x3 y3

⎤
⎦
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A2 =
1
2
det

⎡
⎣1 x1 y1

1 x y
1 x3 y3

⎤
⎦ , A3 =

1
2
det

⎡
⎣1 x1 y1

1 x2 y2

1 x y

⎤
⎦

For example, for the triangle shown in Figure 5.8, we have

A0 =
1
2
det

⎡
⎣1 0 0

1 a 0
1 0 b

⎤
⎦ =

ab

2
, A1 =

1
2
det

⎡
⎣1 x y

1 a 0
1 0 b

⎤
⎦ =

ab− bx− ay

2

A2 =
1
2
det

⎡
⎣1 0 0

1 x y
1 0 b

⎤
⎦ =

bx

2
, A3 =

1
2
det

⎡
⎣1 0 0
1 a 0
1 x y

⎤
⎦ =

ay

2

Therefore, we have the three area coordinates for this particular case as

t1 = 1− x

a
− y

b
, t2 =

x

a
, t3 =

y

b
(5.16)

Referring to Equation 5.10, we know that these are actually the three shape
functions of the 3-node triangular element. This means that the three area
coordinates of a triangle not only describe the location of the interior point O
but also represent the three shape functions of a 3-node triangular element.

Now, let us consider a general case in which a triangular element has
s nodes on each side as shown in Figure 5.21. With the area coordinate sys-
tem, we use tpi to mark the locations of these nodes, where the superscript
p represents the location index (p = 0, . . . , s− 1) of the nodes, and the sub-
script i the index of the associated vertex node, i = 1, 2, 3. For example, the
nodes on the base opposite of node 1 (i.e., alongside 2–3) all have an area
coordinate of t01, the nodes on the next parallel line have an area coordinate
of t11, and so on. The last node in this counting order (which is node 1) has
an area coordinate of ts−1

1 . Similarly, t02, t
1
2, . . . , t

s−1
2 mark the coordinates of

nodes on the base and the respective parallel lines opposite of node 2, and
t03, t

1
3, . . . , t

s−1
3 the coordinates of nodes on the base and parallel lines opposite

of node 3. Note that with a superscript, tpi no longer represents the coordinate
of an arbitrary point but that of a node (also, keep in mind that a superscript
here denotes indexes and not exponents or power terms).

When these nodes are evenly spaced, we can calculate the actual values of
their coordinates using the following formula:

tpi =
p

s− 1
(5.17)

for i = 1, 2, and p = 0, 1, . . . , s− 1. For instance, in a triangular element with
two nodes on each side (s = 2), we have t0i = 0 and t1i = 1, and in a triangular
element with three nodes on each side (s = 3), we have t0i = 0, t1i = 1/2, and
t2i = 1.
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5.6.4.2 Lagrange formulas for 2D triangular elements

With the above information, we now write the Lagrange formulas for triangu-
lar elements with s evenly spaced nodes in each of the three area coordinates.
We first assign a set of area coordinates, (ti, tj , tk), with respect to the three
vertices of a triangle (i, j, and k), to an arbitrary interior point, and then
mark the locations of the nodes with (tpi

i , t
pj

j , tpk

k ), in which pi, pj , and pk are
location indexes with pi, pj , pk = 0, 1, . . . , s− 1. Because the three area coordi-
nates are not independent of each other, these nodal location indexes are also
not independent (pi + pj + pk = s− 1). With these assignments, we write the
following multiproduct formula containing a ti-variable product, a tj-variable
product and a tk-variable product, as

Lpi,pj ,pk
=

pi−1(pi �=0)∏
m=0

ti − tmi
tpi

i − tmi

pj−1(pj �=0)∏
m=0

tj − tmj

t
pj

j − tmj

pk−1(pk �=0)∏
m=0

tk − tmk
tpk

k − tmk
(5.18)

Like the other Lagrange interpolation formulas we have seen before, the
numerator parts of this formula make Lpi,pj ,pk

zero at all nodes except at
(tpi

i , t
pj

j , tpk

k ), and the denominator parts ensure that Lpi,pj ,pk
is unity when the

arbitrary point (ti, tj , tk) coincides with (tpi

i , t
pj

j , tpk

k ). In using Equation 5.18
to write the shape functions, when any individual location index, namely,
pi, pj , or pk, is zero, the corresponding ti, tj , or tk product term is to be
omitted.

As we know, in a triangular element, the location of a node can be generally
categorized into three groups: (1) at a vertex, (2) on a side, and (3) at an
interior location. In the first group, nodes have one nonzero area coordinate;
in the second group, nodes have two nonzero area coordinates; and in the
third group, none of the area coordinates are zero. Thus, this general formula
can be used directly to obtain the shape functions for interior nodes.

For nodes at vertices, since they are associated with only one nonzero
area coordinate, we can express their coordinates as (tpi

i , 0, 0) for i = 1, 2,
and 3. Thus, by omitting the tj and tk product terms in Equation 5.18 and
letting pi = s− 1 (note that a vertex node has an index of s− 1), we have the
following single-variable product formula for the three vertex nodes (i = 1, 2,
and 3):

Li,s =
s−2∏
m=0

ti − tmi
ts−1
i − tmi

=
ti − t0i

ts−1
i − t0i

ti − t1i
ts−1
i − t1i

. . .
ti − ts−2

i

ts−1
i − ts−2

i

(5.19)

Clearly, Li,s is unity when ti = ts−1
i , and zero at ti = t0i , t

1
i , . . . , t

s−2
i .

Similarly, for the nodes on a side, say the side of i− j (i, j = 1, 2, 3), we
express their coordinates as (tpi

i , t
pj

j , 0). Then by omitting the k product term
in Equation 5.18, we have the following two-product formula consisting of the
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ti-variable and tj-variable products for the side nodes:

Lpi,pj =
pi−1(pi �=0)∏

m=0

ti − tmi
tpi

i − tmi

pj−1(pj �=0)∏
m=0

tj − tmj

t
pj

j − tmj
(5.20)

Again, this formula ensures that Lpi,pj is unity when the arbitrary point
coincides with (tpi

i , t
pj

j , 0) and zero when it takes the locations of the rest
of the nodes. Now let us see how these formulas are applied through some
examples.

Example 5.5

Find the shape functions for the 3-node, 6-node, and 10-node triangular
elements shown in Figure 5.22 using the Lagrange interpolation formulas
for triangle elements.

Answer
In the 3-node triangular element, there are only three vertex nodes, 1,
2, and 3. With s = 2, we calculate the following nodal coordinates using
Equation 5.17:

t01 = t02 = t03 = 0, t11 = t12 = t13 = 1

By Equation 5.19, since s− 1 = 1 and s− 2 = 0, we only have one term
(i.e., the term of m = 0) in the product. Thus, we calculate the shape
functions for the three vertex nodes as

N1 = Li=1
s=2

=
0∏

m=0

t1 − tm
1

t11 − tm
1

=
t1 − t01
t11 − t01

=
t1 − 0

1− 0
= t1

1

2

3

1

2

3

4

56

1

2

3

4

10

t 0
1t 1

1t 2
1t 3

1

t 0
3

t 1
3

t 2
3

t 3
3

t 3
2

t 2
2

t 1
2

t 0
2t 0

2

t 1
2

t 2
2

t 0
1

t 0
1

t 1
1

t 0
3

t 1
2

t 1
3

t 0
2

t 1
1t 2

1

t 0
3

t 1
3

t 2
3

FIGURE 5.22
Three-node, 6-node, and 10-node triangle elements in area coordinates.
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N2 = Li=2
s=2

=

0∏
m=0

t2 − tm
2

t12 − tm
2

=
t2 − t02
t12 − t02

=
t2 − 0

1− 0
= t2

N3 = Li=3
s=2

=
0∏

m=0

t3 − tm
3

t13 − tm
3

=
t3 − t03
t13 − t03

=
t3 − 0

1− 0
= t3

where t1, t2, and t3 are the area coordinates defined in Equation 5.15.
These results confirm that the three area coordinates are shape
functions.

For the 6-node triangular element with three nodes on each side,
s = 3, we have the following nodal coordinates based on Equation 5.17:
t01 = t02 = t03 = 0, t11 = t12 = t13 = 1/2, and t21 = t22 = t23 = 1.

With s− 1 = 2 and s− 2 = 1, by Equation 5.19 we have two terms
(m = 0, 1) in the product. Thus, we express the following as the shape
functions for the three vertex nodes:

N1 = Li=1
s=3

=

1∏
m=0

t1 − tm
1

t21 − tm
1

=
t1 − t01
t21 − t01

t1 − t11
t21 − t11

= t1(2t1 − 1)

N2 = Li=2
s=3

=
1∏

m=0

t2 − tm
2

t22 − tm
2

=
t2 − t02
t22 − t02

t2 − t12
t22 − t12

= t2(2t2 − 1)

N3 = Li=3
s=3

=
1∏

m=0

t3 − tm
3

t23 − tm
3

=
t3 − t03
t23 − t03

t3 − t13
t23 − t13

= t3(2t3 − 1)

For a side node, say, node 4 along the side of 1–2, it has vertex indexes
of i = 1 and j = 2 and area coordinates of (t11, t

1
2, 0), along with the

corresponding location indexes pi = 1 and pj = 1. By Equation 5.20, we
have one term (m = 0) in each of the i and j product terms:

N4 = Lpi=1,pj=1
i=1,j=2

=
0∏

m=0

t1 − tm
1

t11 − tm
1

0∏
m=0

t2 − tm
2

t12 − tm
2

=
t1 − t01
t11 − t01

t2 − t02
t12 − t02

= 4t1t2

Similarly, we have

N5 = 4t2t3, N6 = 4t1t3

Figure 5.23 shows the surface plots of the shape functions for the 6-node
triangular element. They are quite different from those for the 3-node
element shown in Figure 5.13 due to the additional nodal constraints.
However, since this 6-node element is a Lagrange element, these shapes
can be intuitively imagined by considering the element as a thin flexible
sheet fastened with small rings at nodes 1 through 6.

Finally, for the 10-node triangular element with four nodes on each
side, s = 4, we have the following area coordinates:

t01 = t02 = t03 = 0, t11 = t12 = t13 = 1/3, t21 = t22 = t23 = 2/3, t31 = t32 = t33 = 1
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1 1 1

1 1 1

N1 N2 N3

N4 N5 N6

FIGURE 5.23
Shape functions for 6-node triangular elements.

With s− 1 = 3, s− 2 = 2, by Equation 5.19 we have three terms (m =
0, 1, 2) in the product of the shape function for vertex node 1:

N1 = Li=1
s=4

=
2∏

m=0

t1 − tm
1

t31 − tm
1

=
t1 − t01
t31 − t01

t1 − t11
t31 − t11

t1 − t21
t31 − t21

=
1

2
t1(3t1 − 1)(3t1 − 2)

For side nodes, let us again take node 4, which has vertex indexes of
i = 1 and j = 2 and area coordinates of (t21, t

1
2, 0) along with location

indexes pi = 2 and pj = 1. Thus, by using Equation 5.20, we have two
terms (m = 0, 1) in the i product and one term (m = 0) in the j product:

N4 = Lpi=2,pj=1
i=1,j=2

=
1∏

m=0

t1 − tm
1

t21 − tm
1

0∏
m=0

t2 − tm
2

t12 − tm
2

=
t1 − t01
t21 − t01

t1 − t11
t21 − t11

t2 − t02
t12 − t02

=
9

2
t1t2(3t1 − 1)

For interior nodes, we only have one node, that is node 10 in this case.
Node 10 has its area coordinates at (t11, t

1
2, t

1
3) with the corresponding

vertex indexes of i = 1, j = 2, and k = 3 and location indexes of pi =
1, pj = 1, and pk = 1. Thus, by Equation 5.18 we have one term (m = 0)
in each of the i, j, and k product terms:

N10 = Lpi=1,pj=1,pk=1
i=1,j=2,k=3

=

0∏
m=0

t1 − tm
1

t11 − tm
1

0∏
m=0

t2 − tm
2

t12 − tm
2

0∏
m=0

t3 − tm
3

t13 − tm
3

=
t1 − t01
t11 − t01

t2 − t02
t12 − t02

t3 − t03
t13 − t03

= 27t1t2t3
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1
N1 N4 N10

1 1

FIGURE 5.24
Selected shape functions for 10-node triangular elements.

The reader is encouraged to find the rest of the shape functions as an
exercise. Figure 5.24 shows the surface plots for these three shape functions.
Again, because this 10-node element is a Lagrange element, comparing with
those shown in Figures 5.13 and 5.23, these shape functions are quite different
because the additional nodes act like additional ring fasteners to constrain the
element.

5.6.5 Lagrange formula for 3D hexahedral elements

In a similar way, the 1D Lagrange interpolation formula given in Equation 5.13
can also be extended to a 3D situation with x, y, and z as the independent
variables:

Lmx,my,mz =
nx∏

i=1(i�=mx)

x− xi

xmx − xi

ny∏
j=1(j �=my)

y− yj

ymy − yj

nz∏
k=1(k �=mz)

z − zk

zmz − zk

for mx = 1, . . . , nx; my = 1, . . . , ny; and mz = 1, . . . , nz, where nx, ny, and
nz are the number of nodes in the element along the x, y, and z directions,
respectively. Again, by this way of expansion, the number of nodes in 3D
elements will be n = nx ×ny ×nz. That is, only 3D elements having this kind
of nodal arrangement can use this formula to obtain their shape functions.
Similarly, due to the field balance requirement, elements with nx �= ny �= nz

are rarely used. When nx = ny = nz, the elementary DOF is a cubic digit,
such as the 8-node and 27-node hexahedral elements.

Example 5.6

Find the shape functions for a 3D 8-node hexahedral element shown in
Figure 5.25 using the Lagrange formula.

Answer
Since the 8-node hexahedral element has two nodes along each edge,
nx = ny = nz = 2, we assign the nodal indexes, i, j, and k, as follows:

Node 1: i = 1, j = 1, k = 1
Node 2: i = 2, j = 1, k = 1
Node 3: i = 2, j = 2, k = 1
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FIGURE 5.25
An 8-node hexahedral element.

Node 4: i = 1, j = 2, k = 1
Node 5: i = 1, j = 1, k = 2
Node 6: i = 2, j = 1, k = 2
Node 7: i = 2, j = 2, k = 2
Node 8: i = 1, j = 2, k = 2

Then, based on the 3D Lagrange formula, we express the following:

N1 = L1,1,1 =

2∏
i=1(i�=1)

x−xi

x1 − xi

2∏
j=1(j �=1)

y− yj

y1 − yj

2∏
k=1(k �=1)

z − zk

z1 − zk

N2 = L2,1,1 =
2∏

i=1(i�=2)

x−xi

x2 − xi

2∏
j=1(j �=1)

y− yj

y1 − yj

2∏
k=1(k �=1)

z − zk

z1 − zk

N3 = L2,2,1 =
2∏

i=1(i�=2)

x−xi

x2 − xi

2∏
j=1(j �=2)

y− yj

y2 − yj

2∏
k=1(k �=1)

z − zk

z1 − zk

N4 = L1,2,1 =

2∏
i=1(i�=1)

x−xi

x1 − xi

2∏
j=1(j �=2)

y− yj

y2 − yj

2∏
k=1(k �=1)

z − zk

z1 − zk

N5 = L1,1,2 =

2∏
i=1(i�=1)

x−xi

x1 − xi

2∏
j=1(j �=1)

y− yj

y1 − yj

2∏
k=1(k �=2)

z − zk

z2 − zk

N6 = L2,1,2 =
2∏

i=1(i�=2)

x−xi

x2 − xi

2∏
j=1(j �=1)

y− yj

y1 − yj

2∏
k=1(k �=2)

z − zk

z2 − zk

N7 = L2,2,2 =

2∏
i=1(i�=2)

x−xi

x2 − xi

2∏
j=1(j �=2)

y− yj

y2 − yj

2∏
k=1(k �=2)

z − zk

z2 − zk

N8 = L1,2,2 =

2∏
i=1(i�=1)

x−xi

x1 − xi

2∏
j=1(j �=2)

y− yj

y2 − yj

2∏
k=1(k �=2)

z − zk

z2 − zk

Since all the product terms have only one term, we can easily write them
out:

N1 =
x− x2

x1 −x2

y− y2

y1 − y2

z − z2

z1 − z2
, N2 =

x− x1

x2 −x1

y − y2

y1 − y2

z − z2

z1 − z2
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N3 =
x− x1

x2 −x1

y− y1

y2 − y1

z − z2

z1 − z2
, N4 =

x− x2

x1 −x2

y − y1

y2 − y1

z − z2

z1 − z2

N5 =
x− x2

x1 −x2

y− y2

y1 − y2

z − z1

z2 − z1
, N6 =

x− x1

x2 −x1

y − y2

y1 − y2

z − z1

z2 − z1

N7 =
x− x1

x2 −x1

y− y1

y2 − y1

z − z1

z2 − z1
, N8 =

x− x2

x1 −x2

y − y1

y2 − y1

z − z1

z2 − z1

Assuming the hexahedral element has a right-angle hexahedral
shape, then by letting x1 = y1 = z1 = 0, x2 = a, y2 = b, and z2 = c, we
can associate the nodes with the following coordinates:

Node 1 at (0, 0, 0) Node 2 at (a, 0, 0)
Node 3 at (a, b, 0) Node 4 at (0, b, 0)
Node 5 at (0, 0, c) Node 6 at (a, 0, c)
Node 7 at (a, b, c) Node 8 at (0, b, c)

Plugging these coordinate values into the shape function expressions, we
obtain the following eight shape functions for the 3D 8-node hexahedral
element:

N1 =
(a− x)(b− y)(c− z)

abc
, N2 =

x(b− y)(c− z)

abc
, N3 =

xy(c− z)

abc

N4 =
(a− x)y(c− z)

abc
, N5 =

(a−x)(b− y)z

abc
, N6 =

x(b− y)z

abc

N7 =
xyz

abc
, N8 =

(a− x)yz

abc

(5.21)

5.6.6 Lagrange formulas for 3D tetrahedral elements

5.6.6.1 Volume coordinates for tetrahedrons

Since 3D tetrahedral elements do not possess the nodal arrangement
required for using the 3D Lagrange interpolation formula for the hex-
ahedrons discussed in the last section, we cannot use it to write the
shape functions for tetrahedral elements. However, because a tetrahedron
to a hexahedron in 3D is like a triangle to a rectangle in 2D, using a

1

2

3

4

x

y

z

1

2

3

4

O

FIGURE 5.26
Four-node tetrahedral elements.

similar approach, we can define
a set of volume coordinates and
use them to write the Lagrange
interpolation formula for tetrahe-
dral elements.

As shown in Figure 5.26, for
the tetrahedron defined by vertices
1 through 4, let point O(x, y, z)
be an arbitrary interior point that
divides the tetrahedron into four
subtetrahedrons; then we define
four volume coordinates, one with
respect to each vertex, t1, t2, t3,
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and t4, as follows:

t1 =
V1

V0
, t2 =

V2

V0
, t3 =

V3

V0
, t4 =

V4

V0
(5.22)

where V0 is the volume of the original tetrahedron, V1 is the volume of the
subtetrahedron formed by point O and the surface opposite of vertex 1, and
V2, V3, and V4 the volumes of the remaining three subtetrahedrons formed
by point O and the surfaces opposite of vertices 2, 3, and 4, respectively.
Similarly, as with the area coordinates for triangles, these volume coordinates
vary with x, y, and z as point O(x, y, z) moves around within the tetrahedron.
Moreover, t1 = 1 at vertex 1, t2 = 1 at vertex 2, t3 = 1 at vertex 3, t4 = 1 at
vertex 4, and t1 + t2 + t3 + t4 = 1. Therefore, these four volume coordinates
actually represent the four shape functions of a 4-node tetrahedral element.

Since the volume of a tetrahedron can be calculated by the determinant
of a matrix formed in terms of the Cartesian coordinates of its four vertices,
we express the following:

V0 =
1
6
det

⎡
⎢⎢⎣

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

⎤
⎥⎥⎦

A1 =
1
6
det

⎡
⎢⎢⎣

1 x y z
1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

⎤
⎥⎥⎦ , A2 =

1
6
det

⎡
⎢⎢⎣

1 x1 y1 z1

1 x y z
1 x3 y3 z3

1 x4 y4 z4

⎤
⎥⎥⎦

A3 =
1
6
det

⎡
⎢⎢⎣

1 x1 y1 z1

1 x2 y2 z2

1 x y z
1 x4 y4 z4

⎤
⎥⎥⎦ , A4 =

1
6
det

⎡
⎢⎢⎣

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x y z

⎤
⎥⎥⎦

With these relationships, the four volume coordinates of any tetrahedron can
be calculated by using Equation 5.22.

Like the area coordinates, these volume coordinates measure the distance
from point O to a surface normalized by the height of the tetrahedron mea-
sured from the same surface. For example, t1 measures the normalized distance
from the surface opposite of vertex 1 to a plane parallel to the surface pass-
ing through point O. Thus, when point O coincides with vertex 1, t1 = 1.
Similarly, t2, t3, and t4 measure the normalized distance from their respective
surfaces to any parallel planes passing through point O, and when point O
coincides with vertices 2, 3, and 4, t2 = 1, t3 = 1, and t4 = 1, respectively.

With these volume coordinates, we again use tpi to mark the locations
of nodes in a tetrahedral element with s nodes along each edge, where the
superscript p represents the location index (p = 0, . . . , s− 1) of the nodes,
and the subscript i the index of the associated vertex node, i = 1, 2, 3, 4. Keep
in mind that a superscript here does not represent a power degree, and that
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with a superscript, tpi no longer represents the coordinate of an arbitrary point
but that of a node. When these nodes are evenly spaced, the formula given in
Equation 5.17 can be used to calculate the actual values of the nodal volume
coordinates.

5.6.6.2 Lagrange formulas for 3D tetrahedral elements

To write the Lagrange formula for tetrahedral elements with s evenly
spaced nodes along each edge, we first assign a set of volume coordinates
(ti, tj , tk, tl), with respect to the four vertices of the tetrahedron (i, j, k,
and l), to an arbitrary interior point, and then mark the locations of the
nodes with (tpi

i , t
pj

j , tpk

k , tpl

l ), in which pi, pj , pk, and pl are location indexes
with pi, pj , pk, pl = 0, 1, . . . , s− 1 and pi + pj + pk + pl = s− 1. With these
assignments, we write the following multiproduct formula consisting of the
ti-variable product, tj-variable product, tk-variable product, and tl-variable
product for tetrahedral elements:

Lpi,pj ,pk,pl
=

pi−1(pi �=0)∏
m=0

ti − tmi
tpi

i − tmi

pj−1(pj �=0)∏
m=0

tj − tmj

t
pj

j − tmj

×
pk−1(pk �=0)∏

m=0

tk − tmk
tpk

k − tmk

pl−1(pl �=0)∏
m=0

tl − tml
tpl

l − tml

(5.23)

In using Equation 5.23 to write the shape functions, when any individual
location index, namely, pi, pj , pk, or pl, is zero, the corresponding ti, tj , tk, or
tl product term is to be omitted.

For nodes at vertices, since they are associated with only one nonzero
volume coordinate, we can express their coordinates as (tpi

i , 0, 0, 0) for i = 1,
2, 3, and 4. Thus, by omitting the tj , tk, and tl product terms in Equation 5.23
and letting pi = s− 1, we have the following single-variable-product formula
for the four vertex nodes (i = 1, 2, 3, and 4):

Li,s =
s−2∏
m=0

ti − tmi
ts−1
i − tmi

(5.24)

Similarly, for the nodes on a surface, say the surface of i− j − k (i, j, k = 1,
2, 3, 4), we express their coordinates as (tpi

i , t
pj

j , tpk

k , 0). Then by omitting the
tl product term in Equation 5.23, we have the following three-product formula
for the surface nodes:

Lpi,pj ,pk
=

pi−1(pi �=0)∏
m=0

ti − tmi
tpi

i − tmi

pj−1(pj �=0)∏
m=0

tj − tmj

t
pj

j − tmj

pk−1(pk �=0)∏
m=0

tk − tmk
tpk

k − tmk
(5.25)

Note that Equation 5.25 is technically equivalent to Equation 5.18, with the
only difference being that ti (i = 1, 2, . . .) is calculated using Equation 5.22
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for tetrahedral elements and using Equation 5.15 for triangular elements. This
means that when a node falls onto a surface, the Lagrange formula for a
tetrahedral element can be further simplified depending on whether the node
is on a side edge or in an interior location of the triangular surface (see Section
5.6.4 for more details).

Example 5.7

Find the shape functions for the 4-node and 10-node tetrahedral ele-
ments shown in Figure 5.27 using the Lagrange interpolation formula
for tetrahedrons.

Answer
For the 4-node tetrahedral element, with s = 2, according to Equa-
tion 5.17, we have t0i = 0 and t1i = 1, for i = 1, . . . , 4.

Referring to Equation 5.24, we have only one term, that is, the term
of m = 0, in the product; thus, we express

N1 = Li=1
s=2

=

0∏
m=0

t1 − tm
1

t11 − tm
1

=
t1 − t01
t11 − t01

= t1

N2 = Li=2
s=2

=
0∏

m=0

t2 − tm
2

t12 − tm
2

=
t2 − t02
t12 − t02

= t2

N3 = Li=3
s=2

=

0∏
m=0

t3 − tm
3

t13 − tm
3

=
t3 − t03
t13 − t03

= t3

N4 = Li=4
s=2

=
0∏

m=0

t4 − tm
4

t14 − tm
4

=
t4 − t04
t14 − t04

= t4

These results confirm that the four volume coordinates are indeed shape
functions of a 4-node tetrahedral element. For the 4-node tetrahedral

2

3

8

4

7

5

6

10

1

9

x

y

z
Node 1: (0, 0, 0)

Node 2: (a, 0, 0)

Node 3: (0, b, 0)

Node 4: (0, 0, c)

Node 5: (a/2 ,0, 0)

Node 6: (0, b/2, 0)

Node 7: (0, 0, c/2)

Node 8: (a/2, b/2, 0)

Node 9: (0, b/2, c/2)

Node 10: (a/2, 0, c/2)

FIGURE 5.27
Tetrahedral element with either 4 nodes or 10 nodes.
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element shown in Figure 5.27, we have its vertex coordinates at
(0, 0, 0), (a, 0, 0), (0, b, 0), and (0, 0, c) for nodes 1 through 4, respectively.
By using Equation 5.22 along with the matrix formulas for calculating
volumes, we obtain the following:

N1 = t1 = 1− x

a
− y

b
− z

c
, N2 = t2 =

x

a
, N3 = t3 =

y

b
, N4 = t4 =

z

c
(5.26)

For the 10-node tetrahedral element, with s = 3, we have t0i = 0,
t1i = 1/2, and t2i = 1, for i = 1, . . . , 4. For the vertex nodes, referring to
Equation 5.24, we express

N1 = Li=1
s=3

=
1∏

m=0

t1 − tm
1

t11 − tm
1

=
t1 − t01
t11 − t01

t1 − t11
t11 − t11

= t1(2t1 − 1)

N2 = Li=2
s=3

=
1∏

m=0

t2 − tm
2

t12 − tm
2

=
t2 − t02
t12 − t02

t2 − t12
t12 − t12

= t2(2t2 − 1)

N3 = Li=3
s=3

=

1∏
m=0

t3 − tm
3

t13 − tm
3

=
t3 − t03
t13 − t03

t3 − t13
t13 − t13

= t3(2t3 − 1)

N4 = Li=4
s=3

=
1∏

m=0

t4 − tm
4

t14 − tm
4

=
t4 − t04
t14 − t04

t4 − t14
t14 − t14

= t4(2t4 − 1)

For the rest of the nodes, since all of them are on side edges, their
volume coordinates can be expressed as (tpi

i , t
pj

j , 0, 0) for i, j = 1, . . . , 4.
Because of this, the k and l product terms in Equation 5.23 can be
omitted; thus, we can directly use Equation 5.20, of course with the
volume coordinates rather than the area coordinates. Moreover, since
node 5 is between vertices 1 and 2, it has vertex indexes of i = 1 and
j = 2 and location indexes of pi = 1 and pj = 1. Then, we have

N5 = Lpi=1,pj=1
i=1,j=2

=

0∏
m=0

t1 − tm
1

t11 − tm
1

0∏
m=0

t2 − tm
2

t12 − tm
2

=
t1 − t01
t11 − t01

t2 − t02
t12 − t02

= 4t1t2

In a similar manner, we find

N6 = Lpi=1,pj=1
i=1,j=3

= 4t1t3

N7 = Lpi=1,pj=1
i=1,j=4

= 4t1t4

N8 = Lpi=1,pj=1
i=2,j=3

= 4t2t3

N9 = Lpi=1,pj=1
i=3,j=4

= 4t3t4

N10 = Lpi=1,pj=1
i=2,j=4

= 4t2t4

where t1, t2, t3, and t4 are given in Equation 5.26.
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5.7 Hermite Interpolation

The elements we have discussed to this point are of the Lagrange type, in
which the nodal DOF represent directly the field quantity of interest. The
shape functions associated with these elements are interpolations functions of
the Lagrange type. Although the field interpolation based on the Lagrange
interpolation is continuous at the nodes between neighboring elements, there
is no guarantee that any derivatives of the field quantity will be continuous as
well. This could bring serious problems when we deal with certain structures.
Take the case of the 3D bridge truss sketched in Figure 5.4 as an example;
if we use 1D Lagrange elements for bridge truss discretization, we basically
assume that relevant members are connected together by pins, which means
that all the members can freely rotate at all the joints. This of course is not
the case. In real life, as we know, these members are welded together to form
joints in these truss bridges. So we need a new type of element for situations
like this. The elements we need should capture the continuity not only at the
level of the field quantity, but also at the derivative levels of the field quantity.
Obviously, the Lagrange interpolation functions will not be able to provide
the appropriate shape functions for such elements. For this reason, we turn to
Hermite interpolation.

5.7.1 Hermite interpolation formulas

Like Lagrange interpolation, Hermite interpolation provides a smooth curve
passing through a given number points. But their similarities end there.
Instead of using only the ordinate information, the Hermite interpolation uses
both the ordinate and slope information to produce a smooth interpolation
curve that provides continuity to a higher order.

Let us first discuss how the Hermite interpolation works. For a set of k
points in a 2D Cartesian coordinate system with their abscissas and ordinates
given as xm and ym (for m = 1, . . . , k), respectively, a Hermite interpolation
curve is a polynomial function that not only passes through these k points
but also has the slope of the curve at these points controlled at y′

m (for m =
1, . . . , k). To describe this statement in mathematical expressions, we first
construct a kth-degree Lagrange polynomial function having zeros at x = xm

for m = 1, . . . , k:

L(x) =
k∏

m=1

(x− xm)

With this function, we express the Hermite interpolation formula as

y(x) =
k∑

m=1

[
ymh(1)

m (x)+ y′
mh(2)

m (x)
]

(5.27)
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where

h(1)
m (x) =

[
1− L′′(xm)

L′(xm)
(x− xm)

]
λ2

m(x) and h(2)
m (x) = (x− xm)λ2

m(x)

are the base functions for the Hermite interpolation formula, L′(x) and L′′(x)
are the first and second derivatives of L(x), respectively, and

λm(x) =
L(x)

L′(xm)(x− xm)

Figure 5.28 shows an example where a Hermite interpolation curve passes
two points with controllable tangents at both points: the curve has a slope of
zero (i.e., 0◦ angle) at the left point and a slope of 1 (or 45◦ angle) at the right
point. As we learned earlier, the Lagrange interpolated curve passing these
two points would be a straight line. Clearly, the Hermite formula provides a
higher-degree polynomial function than the Lagrange formula to ensure the
continuity of the interpolated curve to the first-derivative level or higher.

The two sets of base functions in the Hermite interpolation formula,
namely, h(1)

m (x) and h(2)
m for m = 1, . . . , k, are also interpolation functions.

Judging from the interpolation formula and the curve shown in Figure 5.28,
we can see that they provide polynomial interpolation functions depicting the
variation of the field quantity normalized by the respective admissible nodal
DOF (u1, u′

1, u2, or u′
2) over the element. So they are actually shape functions.

Therefore, we express the following for m = 1, . . . , ne,

N2m−1(x) = h(1)
m (x) and N2m(x) = h(2)

m (x) (5.28)

as the 2ne shape functions for an element with ne nodes with nodal DOF of
u and u′.

1

2

x

y

y(x) = y1h(1)
1  (x) + y'1h(2)

1  (x)
           + y2h(1)

2  (x) + y'2h(2)
2  (x)

y2 = 0.5, y'2 = 1

y1 = 0.2, y'1 = 0

FIGURE 5.28
Hermite interpolation.
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As shape functions, these base functions satisfy the following conditions:
ne∑

m=1

h(1)
m (x) = 1 and

ne∑
m=1

[
xmh(1)

m (x)+ h(2)
m (x)
]

= x

h(1)
m (xm) = 1 and h(1)

m (xj) = 0, j �= m

h
′(2)
m (xm) = 1 and h

′(2)
m (xj) = 0, j �= m

5.7.2 Shape functions for beam elements

As we discussed in Section 3.5, in mechanical terms, a bar structure is mainly
used for supporting axial loading, while a beam is mainly used for supporting
transverse loading and sustaining flexure deformations. In other words, when
axial loading and deformations dominate, we consider a slender mechanical
structure as a bar, but when the transverse loading and flexure deformations
dominate, we treat it as a beam.

FIGURE 5.29
Ilizarov fixation device.

This difference calls for the consideration of
different modes of deformations for these slender
structures. For example, the tension wires in an
Ilizarov ring frame external fixation device, illus-
trated in Figure 5.29, are such slender members used
to provide tensions (axial loading) to strengthen the
ring frame and at the same time offer flexure resis-
tance for the bone segments to limit their vertical
movements. For these wires, their transverse deflec-
tion and the associated rotation (often measured as the slope of the deflection)
are of great concern.

To capture the mechanical behavior of a beam structure, a special type
of element is needed to provide control of nodal admissible variations in not
only the transverse deflection but also the rotation caused by the bending
moments in the beam structures. This means that these elements will have
DOF to represent the transverse deflection (expressed as u) and the slope of
the deflection (expressed as the first derivative of deflection u′).

21
x

y

u1 u2u'1 u'2

FIGURE 5.30
A 2-node beam element.

For the 2-node beam element illus-
trated in Figure 5.30, to simplify mat-
ters, we assume that the deflection and
rotation of the beam occur within the
x-y plane. Doing this will not affect
the expansion of our discussion to other
planes because we will use the same set
of shape functions for deflections and
rotations there. Thus, we only need to
consider two admissible DOF for each
node; one is the transverse deflection u(x) and the other the slope u′(x) caused
by the deflection of the beam. Thus, the elementary DOF for a 2-node beam
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element is 4, and they are u1, u′
1, u2, and u′

2. Next, we use the Hermite
interpolation formula to find the shape functions for such a beam element.

Example 5.8

Find the shape functions for a 2-node beam element using the Hermite
interpolation formula.

Answer
For a 2-node beam element, we have n = 2, and assuming x1 = 0 and
x2 = l, we express

L(x) =

n∏
m=1

(x−xm) = (x−x1)(x−x2) = x2 − lx

Taking the first and second derivatives of L(x), we have

L′(x) = 2x− l, L′′(x) = 2

With substitution of the nodal coordinates, we have

L′(x1) = −l, L′(x2) = l, L′′(x1) = 2, L′′(x2) = 2

Knowing these expressions, we can evaluate λm(x) for m = 1 and 2

λ1(x) =
L(x)

L′(x1)(x− x1)
=

x2 − lx

−l(x)
=

l− x

l

λ2(x) =
L(x)

L′(x2)(x− x2)
=

x2 − lx

l(x− l)
=

x

l

With these relationships, we calculate h(1)
m (x) and h(2)

m (x) for m = 1
and 2

h
(1)
1 (x) =

[
1− L′′(x1)

L′(x1)
(x− x1)

]
λ

2
1(x) =

[
1− 2

(−l)
(x)

]
(l− x)2

l2
= 1− 3x2

l2
+

2x3

l3

h
(2)
1 (x) = (x− x1)λ

2
1(x) = (x)

(1− x)2

l2
= x− 2x2

l
+

x3

l2

h
(1)
2 (x) =

[
1− L′′(x2)

L′(x2)
(x− x2)

]
λ

2
2(x) =

[
1− 2

(l)
(x− l)

]
x2

l2
=

3x2

l2
− 2x3

l3

h
(2)
2 (x) = (x− x2)λ

2
2(x) = (x− l)

x2

l2
= −x2

l
+

x3

l2

Therefore, according to Equation 5.28 we have

N1 = 1− 3x2

l2
+

2x3

l3
, N2 = x− 2x2

l
+

x3

l2

N3 =
3x2

l2
− 2x3

l3
, N4 = −x2

l
+

x3

l2

(5.29)

Figure 5.31 shows the sketches of these four shape functions in position
with the element.
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x

N
1

1

1

1 2

1 12 2

x

N

x

N
1

x

N

N1 = 1 − 3x2/l2 + 2x3/l3

N3 = 3x2/l2 – 2x3/l3

N2 = x − 2x2/l  + x3/l2

N4 = −x2/l  + x3/l2

1 (x = 0) 2 (x = 1)

FIGURE 5.31
Shape functions for 2-node beam elements.

The reader is encouraged to show the following for j, m = 1 and 2:

2∑
m=1

N2m−1(x) = 1 and
2∑

m=1

[xmN2m−1(x)+N2m(x)] = x

N2m−1(xm) = 1 and N2m−1(xj) = 0, j �= m

N
′
2m(xm) = 1 and N

′
2m(xj) = 0, j �= m

Example 5.8b

Repeat Example 5.8 using the matrix method.

Answer
We rework this example by using the matrix method to demonstrate
that the matrix method can be applied to both the Lagrange elements
and the Hermite elements. Since both the translational and rotational
movements are considered, we have 2 DOF per node; thus, for a 2-node
beam element, the elementary DOF = 4. Then we can select a 1D poly-
nomial function with four constants to express the approximate field
quantity:

ũ(x) = a0 + a1x + a2x
2 + a3x

3

which, in a matrix form, can be written as

ũ(x) = p

⎧⎪⎪⎨
⎪⎪⎩

a0

a1

a2

a3

⎫⎪⎪⎬
⎪⎪⎭ , where p =

[
1 x x2 x3

]
(5.30)

The slope of the field is calculated by taking the first derivative of ũ(x) as

ũ′(x) = a1x+ 2a2x +3a3x
2
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With the nodal information, we express

⎧⎪⎪⎨
⎪⎪⎩

u1

u′
1

u2

u′
2

⎫⎪⎪⎬
⎪⎪⎭ =

⎡
⎢⎢⎣
1 x1 x2

1 x3
1

0 1 2x1 3x2
1

1 x2 x2
2 x3

2

0 1 2x2 3x2
2

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

a0

a1

a2

a3

⎫⎪⎪⎬
⎪⎪⎭

let M =

⎡
⎢⎢⎣

1 x1 x2
1 x3

1

0 1 2x1 3x2
1

1 x2 x2
2 x3

2

0 1 2x2 3x2
2

⎤
⎥⎥⎦ ; we have

⎧⎪⎪⎨
⎪⎪⎩

a0

a1

a2

a3

⎫⎪⎪⎬
⎪⎪⎭ = M−1

⎧⎪⎪⎨
⎪⎪⎩

u1

u′
1

u2

u′
2

⎫⎪⎪⎬
⎪⎪⎭ (5.31)

Recall the field quantity expression in terms of nodal DOF:

ũ(x) = N1u1 +N2u
′
1 +N3u2 +N4u

′
2

With this expression along with Equations 5.30 and 5.31, we can write

ũ(x) = N

⎧⎪⎪⎨
⎪⎪⎩

u1

u′
1

u2

u′
2

⎫⎪⎪⎬
⎪⎪⎭ = p

⎧⎪⎪⎨
⎪⎪⎩

a0

a1

a2

a3

⎫⎪⎪⎬
⎪⎪⎭ = pM−1

⎧⎪⎪⎨
⎪⎪⎩

u1

u′
1

u2

u′
2

⎫⎪⎪⎬
⎪⎪⎭

By substituting the values of the nodal coordinates, namely, x1 = 0 and
x2 = l, we obtain

N = pM−1 =
[
1 x x2 x3

]
⎡
⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

1 l l2 l3

0 1 2l 3l2

⎤
⎥⎥⎥⎥⎦

−1

=
[
1 x x2 x3

]
⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

−3/l2 −2/l 3/l2 −1/l

2/l3 l/l2 −2/l3 1/l2

⎤
⎥⎥⎥⎦

which yields

N =

[
1− 3x2

l2
+

2x3

l3
x− 2x2

l
+

x3

l2
3x2

l2
− 2x3

l3
−x2

l
+

x3

l2

]

By separating them out, we obtain the following four individual cubic
shape functions:

N1 = 1− 3x2

l2
+

2x3

l3
, N2 = x− 2x2

l
+

x3

l2
, N3 =

3x2

l2
− 2x3

l3
, N4 = −x2

l
+

x3

l2

Obviously, these four shape functions are exactly the same as those
obtained by using the Hermite interpolation formula (see Equation 5.29).
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Equipped with the knowledge of the shape functions of beam elements,
we now take another look at the discussions on the distinction between a bar
structure and a beam structure and ask when one should use bar elements or
beam elements to discretize them. In fact, bar elements are applicable to slen-
der structures that are not necessarily only going through axial deformation
under axial loads. As long as we can ignore the rotational DOF in a slender
structure (hence a Lagrange type of elements will suffice to capture its DOF),
we can use bar elements to discretize it. For example, for the vibrating string
problem we discussed in Chapter 3, the main displacement of the string is
actually the lateral transverse one and not the axial one. Since we neglect its
rotational constraints or DOF, there is no need for a Hermite type of elements
for discretization; therefore, the string vibration problem can be modeled with
bar elements (in many software packages, bar elements are also called truss
elements). A detailed discussion on modeling a vibrating string is presented
in Chapter 14.

5.7.3 Plate and shell elements

As we pointed out earlier, although both are 1D structures, a bar structure is
mainly used for sustaining axial loads and deformations, while a beam struc-
ture is used for transverse loads and deformations. In a similar extension,
there are 2D structures that are mainly used for sustaining out-of-plane loads
and deformations. Since the 2D elements we have discussed in previous sec-
tions are all for sustaining in-plane loads and deformations, we need different
elements to capture the out-of-plane deformations in these 2D structures.

In FEM, we use two types of 2D elements for these structures; one type is
the plate elements and the other is the shell elements (also known as membrane
elements). The difference between a plate element and a shell (or membrane)
element is in the thickness of the structure. When the structure is extremely
thin such that the mechanical variation across the thickness is negligible, we
consider it as a shell, like an eggshell (or a membrane, like an inflated bal-
loon). Otherwise, we consider it as a plate, although its thickness is small
relative to its other two dimensions. The out-of-plane deformations these 2D
structures undergo often include transverse deflection, which in turn will lead
to rotations of the structure with respect to its midplane. Because of this,
plate and shell elements are of the Hermite type. By extending the Hermite
interpolation formula to 2D, we can find the shape functions for these plate
and shell types of elements.

5.8 Interpolation of Field Quantities in a Matrix Form

From the discussions in the previous sections, we know that a field quantity
can be approximated by a polynomial interpolation function over the domain
of a given element, and that this single polynomial interpolation function
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can be replaced by multiple subinterpolation functions, known as the shape
functions. Moreover, the number of shape functions associated with an element
equals the number of the elementary DOF, and the equations for the shape
functions can be determined directly by using either the matrix method or
an interpolation formula, for example, the Lagrange or Hermite formulas,
depending on the continuity requirements for the elements.

Equipped with this knowledge, we now revisit the general expression given
in Equation 5.6, that is,

ũ =
ne∑

m=1

Nmum

This equation states that a field quantity can be interpolated mathematically
in terms of the elementary DOF and their corresponding shape functions. For
example, for a 1D 3-node element, ũ(x) = N1(x)u1 + N2(x)u2 + N3(x)u3; for
a 2-node beam element, ũ(x) = N1(x)u1 + N2(x)u′

1 + N3(x)u2 + N4(x)u′
2; and

for an 8-node hexahedral element, ũ(x, y, z) = N1(x, y, z)u1 + N2(x, y, z)u2 +
N3(x, y, z)u3 + N4(x, y, z)u4 + N5(x, y, z)u5 + N6(x, y, z)u6 + N7(x, y, z)u7 +
N8(x, y, z)u8. Clearly, this type of expression can be expanded to any elements
with any number of elementary DOF.

These expressions are often condensed to matrix forms. For instance, the
equation for the 1D 3-node element can be expressed as

ũ(x) =
[
N1(x) N2(x) N3(x)

]⎧⎨⎩
u1

u2

u3

⎫⎬
⎭

The equation for the 2-node beam element can be expressed as

ũ(x) =
[
N1(x) N2(x) N3(x) N4(x)

]
⎧⎪⎪⎨
⎪⎪⎩

u1

u′
1

u2

u′
2

⎫⎪⎪⎬
⎪⎪⎭

The equation for the 2D 4-node rectangular element can be expressed as

ũ(x, y) =
[
N1(x, y) N2(x, y) N3(x, y) N4(x, y)

]
⎧⎪⎪⎨
⎪⎪⎩

u1

u2

u3

u4

⎫⎪⎪⎬
⎪⎪⎭

And the equation for the 3D 8-node hexahedral element can be rewritten as

ũ(x, y, z) =
[
N1 N2 N3 N4 N5 N6 N7 N8

]
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u1

u2

u3

u4

u5

u6

u7

u8

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
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Seeing these new expressions, we can write a compact general expression
for all these cases as

ũ =
ne∑

m=1

Nmum =
[
N
] {

d0

}
(5.32)

where [N ] is called the elementary shape function matrix and {d0} is the
elementary DOF vector.

For scalar field problems (which sometimes are also referred to as single-
variable problems) and 1D vector field problems, an element with elementary
DOF = ne will have a ne × 1 vector for {d0} containing the individual
elementary DOF in its rows and a 1×ne matrix for [N ] containing the shape
functions in its columns. Thus, their single-variable field quantity can be
approximated as

ũ =
[
N
] {

d0

}
=
[
N1 N2 · · · Nne

]
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1

u2

...
une

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.33)

For 2D vector field problems, the field quantity is a 2× 1 vector as {d} =
{ux uy}T, but we use the same set of shape functions to interpolate them:

ũx =
ne∑

m=1

Nmumx, ũy =
ne∑

m=1

Nmumy

Thus, we have the following expression, with a 2ne × 1 {d0} vector and a
2× 2ne [N ] matrix for an element with elementary DOF = ne:

{d} =
{

ũx

ũy

}
=
[
N1 0 N2 0 · · · Nne 0
0 N1 0 N2 · · · 0 Nne

]
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1x

u1y

u2x

u2y

...
unex

uney

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
[
N
] {

d0

}

(5.34)
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Similarly, for 3D vector field problems, their 3× 1 field quantity vector,
{d} = {ux uy uz}T, is approximated as

{d} =

⎧⎨
⎩

ũx

ũy

ũz

⎫⎬
⎭

=

⎡
⎣N1 0 0 N2 0 0 · · · Nne 0 0

0 N1 0 0 N2 0 · · · 0 Nne 0
0 0 N1 0 0 N2 · · · 0 0 Nne

⎤
⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1x

u1y

u1z

u2x

u2y

u2z

...
unex

uney

unez

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
[
N
] {

d0

}
(5.35)

This equation shows that for 3D vector field problems, an element with
elementary DOF = ne has a 3ne × 1 {d0} vector and a 3× 3ne [N ] matrix.

5.9 Exercises

1. Describe the following terms:

a. Finite element
b. Elements
c. Nodes
d. Domain
e. Mesh
f. Mesh density
g. Shape functions
h. Requirements for the selection of polynomial terms
i. Order of element discretization

2. What are nodes in FEM for? What information is dealt with at
nodes?

3. How is a vector problem different from a scalar problem in terms of
DOF?
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4. What are the requirements for choosing polynomial terms to form
interpolation functions? What can one do to simplify the selection
process?

5. What types of polynomial functions are regarded as balanced
functions and what as complete? Which condition is a required
one?

6. How would you describe the connections between the types of
elements and the types and orders of polynomial functions?

7. What are serendipity elements, and are there any benefits of using
them?

8. Use the matrix method discussed in Section 5.5 to find the shape
functions for the following elements. Sketch the shape functions
you found in either 2D or 3D plots. Also, show that all the shape
functions meet the following two requirements:

a. Nm(xm) = 1 and Nm(xi) = 0 when i �= m

b.
ne∑

m=1

Nm = 1, where ne is the number of nodes in each element

i. A 1D 2-node element with l = 3 shown in Figure 5.32
ii. A 1D 3-node element with l = 4 shown in Figure 5.32
iii. A 2D 3-node triangle element shown in Figure 5.33
iv. A 2D 4-node rectangle element with a = 2 and b = 1 shown

in Figure 5.33

21 1
x1 = l x2 = 2l

u1 u2
x

x1 = l x2 = 1.5l x3 = 2l

u1 u2 u3

2

FIGURE 5.32
One-dimensional 2-node and 3-node elements.

1
(2, 0)

2
(6, 0)

3 (3, 3)

u1

u3

u2

u4

u1

u2

u3

y

x

4(0, 2b)

1(0, 0)

3(2a, 2b)

2(2a, 0)

y

x

FIGURE 5.33
Two-dimensional 3-node triangle and 4-node rectangle elements.
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9. Use the Lagrange interpolation formulas discussed in Section 5.6
to find the shape functions for the following elements. Sketch the
shape functions you found and compare the results of Exercises 8a,
9a, and 9c, and Exercises 8b, 9b, and 9d. What can you conclude
from the comparison?

a. A 1D 2-node element with l = 3 shown in Figure 5.34
b. A 1D 3-node element with l = 4 shown in Figure 5.34
c. A 1D 2-node element with l = 3 shown in Figure 5.35
d. A 1D 3-node element with l = 4 shown in Figure 5.35

10. Use the Lagrange interpolation formulas to find the shape functions
for the following elements. Sketch the shape functions you found.

a. The same 4-node 2D rectangle element in Exercise 8b(iv)
b. A 2D 9-node rectangle element shown on the left in Figure 5.36

with the following coordinate locations: 1(2, 2), 2(6, 2), 3(6, 5),
4(2, 5), 5(4, 2), 6(6, 3.5), 7(4, 5), 8(2, 3.5), and 9(4, 3.5)

c. The same element given in (b), but with its location moved,
having node 1 coincide with the origin of the coordinate system,
as shown on the right in Figure 5.36.

11. What are the advantages for using the area coordinate and vol-
ume coordinate systems in developing the Lagrange interpolation
formulas for 2D triangle elements and 3D tetrahedral elements,
respectively?

12. Use the Lagrange interpolation formulas for triangle elements to
show

N5 = 4t2t3 and N6 = 4t1t3

for the 6-node element given in Example 5.5.

21 1
x1 = 0 x2 = l

u1 u2

x1 = 0 x2 = 0.5l x3 = l

u1 u2 u3

2
x

FIGURE 5.34
One-dimensional 2-node and 3-node elements.

21
x1 = −l/2 x2 = l/2

u1 u2

1
x

x1 = –l/2 x2 = 0 x3 = l/2

u1 u2 u3

2

FIGURE 5.35
One-dimensional 2-node and 3-node elements.
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9

1 2

34

5

6

7

8

x

y

9

1 2

34

5

6

7

8

x

y

FIGURE 5.36
A 9-node 2D rectangle element.

13. Use the Lagrange interpolation formulas for triangle elements to
show

N2 = t2(3t2 − 1)(3t2 − 2)/2
N3 = t3(3t3 − 1)(3t3 − 2)/2
N5 = 9t1t2(3t2 − 1)/2
N6 = 9t2t3(3t2 − 1)/2
N7 = 9t2t3(3t3 − 1)/2
N8 = 9t1t3(3t3 − 1)/2
N9 = 9t1t3(3t1 − 1)/2

for the 10-node element given in Example 5.5.

14. Use the Lagrange interpolation formulas for tetrahedral elements to
show the details for verifying the results given for shape functions
N6 through N10 for the 10-node tetrahedral element discussed in
Example 5.7, namely,

N6 = 4t1t3, N7 = 4t1t4, N8 = 4t2t3, N9 = 4t3t4, N10 = 4t2t4

15. Referring to the four shape functions obtained for the beam element
in Example 5.8, show the following relationships for j, m = 1 and 2:

2∑
m=1

N2m−1(x) = 1 and
2∑

m=1

[xmN2m−1(x)+ N2m(x)] = x

N2m−1(xm) = 1 and N2m−1(xj) = 0, j �= m

N
′
2m(xm) = 1 and N

′
2m(xj) = 0, j �= m
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x1 x2

x

u1 u2u'1 u'2

FIGURE 5.37
A 2-node beam element.

16. What are the main differences between the elements developed using
the Lagrange interpolation and Hermite interpolation methods?

17. Use the Hermite interpolation formulas to find the shape functions
for a 2-node beam element shown in Figure 5.37 with x1 = l and
x2 = 2l.

18. Why are different elements, such as bar elements, beam elements,
2D elements, and 3D elements, needed in FEM?

Recommended Readings

1. J. N. Reddy. 1993. An Introduction to the Finite Element Method.
2nd ed. Boston: McGraw-Hill.
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Witt. 2002. Concepts and Applications of Finite Element Analysis.
4th ed. Hoboken, NJ: John Wiley & Sons.

3. Tirupathi R. Chandrupatla and Ashok D. Belegundu. 2002. Intro-
duction to Finite Elements in Engineering. 3rd ed. Upper Saddle
River, NJ: Prentice Hall.

4. Jacob Fish and Ted Belytschko. 2007. A First Course in Finite
Elements. Hoboken, NJ: John Wiley & Sons.
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6

Solving Differential Equations
Computationally

Discretization of a physical domain into finite elements is for linking nodal
degrees of freedom (DOF) to polynomial interpolation functions such that
an approximate solution to the original problem can be found. Let us not
get lost in this pursuit. Recall that in answering the question “Where do
differential equations come from?” we have learned not only that they are
developed mathematically upon the fundamental theorem of calculus accord-
ing to the laws of thermodynamics in terms of mass, force, momentum, and
energy conservation, as well as other relevant laws and principles, such as
Hooke’s law of elasticity, Newton’s second law of motion, Fourier’s law of heat
transfer, and Fick’s law of diffusion, but also that partial differential equations
(PDEs) governing different engineering problems are sometimes of the same
mathematical type. This suggests that although there are countless real-world
problems, there are limited number of types of differential equations.

In developing various differential equations, we have seen firsthand that
PDEs for different problems indeed share many commonalities, especially that
most of them contain the second derivative or the Laplacian of a field quantity
of interest. Also, of the PDEs given in Equations 3.2, 3.5, and 3.6 that govern
mechanical, heat transfer, and mass transport problems, respectively, if we
ignore the time effect, all these PDEs reduce to a mathematically identical
form, as can be seen from the following three PDEs:

∂

∂x

[
E

∂u

∂x

]
+ f = 0,

∂

∂x

[
κ
∂T

∂x

]
+ Q = 0,

∂

∂x

[
D

∂c

∂x

]
+ R = 0

Thus, in this chapter, we learn how to solve PDEs of a common mathemati-
cal type for different engineering problems defined over slender structures or
domains. To facilitate this, we express them in the following common form,
with u standing for u, T , or c; k for E, κ, or D; and g for f, Q, or R, as:

∂

∂x

[
k

∂u(x)
∂x

]
+ g = 0

119
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6.1 Differential Equations in Strong and Weak Forms

In this chapter, we limit our discussion to slender structures or domains.
Assuming that such a slender structure or domain has a uniform cross
section area of A and a length of l, we express the common form differential
equation as

d

dx

[
k

du(x)
dx

]
+ g = 0 (6.1)

for 0 ≤ x ≤ l. Using an approximate solution ũ, we calculate a residual as

R =
d

dx

[
k

dũ(x)
dx

]
+ g

Let w(x) be a set of weight functions (which are sometimes also called
test functions); we construct the following weighted integral of residual
over the entire three-dimensional (3D) domain first and then reduce it to
one-dimensional (1D) as

∫∫∫
V

w(x)
[

d

dx

[
k

dũ(x)
dx

]
+ g

]
dV =

∫ l

0

w(x)
[

d

dx

[
k

dũ(x)
dx

]
+ g

]
Adx

=
∫ l

0

w(x)
d

dx

[
k

dũ(x)
dx

]
Adx

+
∫ l

0

w(x)gAdx = 0

(6.2)

By the product rule of differentiation, we know

d

dx

[
w(x)k

dũ(x)
dx

]
= w(x)

d

dx

[
k

dũ(x)
dx

]
+

dw(x)
dx

k
dũ(x)

dx

Substituting this relationship into Equation 6.2, we have

∫ l

0

d

dx

[
w(x)k

dũ(x)
dx

]
Adx−

∫ l

0

dw(x)
dx

k
dũ(x)

dx
Adx+

∫ l

0

w(x)gAdx = 0

Integrating the first term and rearranging it, we arrive at

∫ l

0

dw(x)
dx

k
dũ(x)

dx
Adx =

∫ l

0

w(x)gAdx+
[
w(x)Ak

dũ(x)
dx

]l
0

(6.3)

Equation 6.3 is called the weak-form differential equation of Equation 6.1
because it has the reduced (or weakened) continuity requirement for the field
quantity u from second derivative to first derivative. In this sense, PDEs in
their original forms, like Equation 6.1, are called strong-form PDEs. In the
weak-form equation, the reduced requirement for the field continuity is made
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possible by the use of weight functions through the method of weighted integral
of the residual. Note that the order of reduction in the continuity requirement
could be 1 or higher depending on the original strong-form PDEs. For example,
the weak-form PDE for beams discussed in Section 6.7.1 is reduced by an order
of 2 in the continuity requirement compared with its strong-form PDE.

The two terms on the right-hand side of the equation are related to the
physical constraints. For example, the first term describes the influence of a
volume quantity, and the second term, Akdũ(x)/dx, represents a point load
in mechanical problems, a heat flux in thermal problems, and a mass flux in
transport problems.

6.2 FEM Formulation Using the Galerkin Method

As we learned in Section 4.4, the Galerkin method provides not only better
approximate results but also the benefit of using the interpolation functions
as the weight functions. Thus, by using the shape functions of an element
(with the elementary DOF = ne) as the weight functions (or test functions),
we have

wm = Nm for m = 1, . . . , ne

Substituting this set of relationships into Equation 6.3, we obtain

∫ l

0

dNm

dx
k

dũ(x)
dx

Adx =
∫ l

0

NmgAdx+
[
NmAk

dũ(x)
dx

]l
0

for m = 1, . . . , ne. According to Equation 5.32, the approximate field quantity
can be written in terms of the shape functions and nodal DOF in a matrix
form; thus, we have

ũ(x) =
ne∑

m=1

Nmum = [N ] {d0}

Plugging this expression into the term on the left side of the equation above
and rearranging it, we arrive at

∫ l

0

dNm

dx
k

d([N ]{d0})
dx

Adx =
∫ l

0

NmgAdx+
[
NmAk

dũ

dx
(x)
]l

0

Since only the shape function matrix, [N ], varies with x and the nodal DOF
vector, {d0}, does not, we rearrange it as

∫ l

0

dNm

dx
k

[
dN

dx

]
Adx{d0} =

∫ l

0

NmgAdx+
[
NmAk

dũ

dx
(x)
]l
0
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for m = 1, . . . , ne. By summing all these ne equations together,
∫ l

0

dN1

dx
k

[
dN

dx

]
Adx{d0} =

∫ l

0

N1gAdx+
[
N1Ak

dũ

dx
(x)
]l

0

+∫ l

0

dN2

dx
k

[
dN

dx

]
Adx{d0} =

∫ l

0

N2gAdx+
[
N2Ak

dũ

dx
(x)
]l

0

· · ·
+∫ l

0

dNne

dx
k

[
dN

dx

]
Adx{d0} =

∫ l

0

NnegAdx+
[
NneAk

dũ

dx
(x)
]l

0

we obtain the finite element method (FEM) formulation for the differential
equation given in Equation 6.1:
∫ l

0

[
dN

dx

]T
k

[
dN

dx

]
Adx{d0} =

∫ l

0

[N ]T gAdx+
[
[N ]T Ak

dũ

dx
(x)
]l
0

(6.4)

6.2.1 Elementary [Ke] matrix

The coefficient associated with the elementary DOF vector, {d0}, on the left-
hand side of Equation 6.4 is called the elementary [Ke] matrix, that is,

[Ke] = A

∫ l

0

[
dN

dx

]T
k

[
dN

dx

]
dx (6.5)

Note that the [Ke] matrix has different meanings for different engineering
problems. For example, when k stands for Young’s modulus E in a mechanical
problem, [Ke] is called the stiffness matrix, and when k represents thermal
conductivity κ in a heat transfer problem, [Ke] becomes the conductance
matrix.

Because it is calculated as the product of a matrix and its transpose, the
[Ke] matrix possesses the following three properties:

1. It is a square matrix (ne ×ne for an element with elementary
DOF = ne).

2. It is symmetric about the principal diagonal.

3. All the diagonal terms are positive.

Now let us go through some examples to see how the [Ke] matrix is determined.

Example 6.1

Find the elementary [Ke] matrix for a 2-node bar element with two nodes
at x = 0 and x = l, respectively, and a constant k value.
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Answer
From Equation 5.8, we write the 1× 2 elementary shape function matrix
for the 2-node bar element as

[N ] =
[
N1 N2

]
=

[
l−x

l

x

l

]

Then, taking the first derivative of the [N ] matrix with respect to x, we
have [

dN

dx

]
=

[
dN1

dx

dN2

dx

]
=

1

l

[−1 1
]

Substituting it into Equation 6.5, we obtain

[Ke] =
kA

l2

∫ l

0

[−1
1

] [−1 1
]
dx

Multiplying out the two matrices and taking the integral, we obtain the
following elementary [Ke] matrix for a 2-node bar element:

[Ke] =
kA

l2

∫ l

0

[
1 −1
−1 1

]
dx =

kA

l

[
1 −1
−1 1

]
(6.6)

Obviously, this matrix is a 2× 2 square matrix, is symmetric about
the principal diagonal, and has positive diagonal terms, thus possess-
ing the three properties discussed earlier. The reader is encouraged to
show that this result is applicable to any 2-node bar element, no matter
where it is located.

Example 6.2

Find the elementary [Ke] matrix for the 3-node bar element with three
nodes at x = 0, x = l/2, and x = l, respectively, with a constant k value.

Answer
For the 3-node bar element, from the shape functions given in
Equation 5.9, we express the 1× 3 elementary shape function matrix as

[N ] =
[
N1 N2 N3

]
with its three individual shape functions being

N1 =
l2 − 3lx+ 2x2

l2
, N2 =

4lx− 4x2

l2
, and N3 =

−lx+ 2x2

l2

By taking the first derivative of the [N ] matrix, we have

[
dN

dx

]
=

[
dN1

dx

dN2

dx

dN3

dx

]
=

1

l2
[−3l + 4x 4l− 8x −l +4x

]
Then, substituting it into Equation 6.5, multiplying out the two matri-
ces, and taking the integral, we obtain the elementary [Ke] matrix for
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the 3-node bar element:

[Ke] =
kA

l4

∫ l

0

⎡
⎣−3l + 4x

4l− 8x
−l + 4x

⎤
⎦ [−3l +4x 4l− 8x −l +4x

]
dx

=
kA

l4

∫ l

0

⎡
⎣ 9l2 − 24lx+ 16x2 −12l2 +40lx− 32x2 3l2 − 16lx + 16x2

−12l2 + 40lx− 32x2 16l2 − 64lx + 64x2 −4l2 + 24lx− 32x2

3l2 − 16lx+ 16x2 −4l2 + 24lx− 32x2 l2 − 8lx + 16x2

⎤
⎦ dx

=
kA

l4

⎡
⎢⎢⎢⎢⎢⎢⎣

9l2x− 12lx2 +
16x3

3
−12l2x+ 20lx2 − 32x3

3
3l2x− 8lx2 +

16x3

3

−12l2x+ 20lx2 − 32x3

3
16l2x− 32lx2 +

64x3

3
−4l2x + 12lx2 − 32x3

3

3l2x− 8lx2 +
16x3

3
−4l2x +12lx2 − 32x3

3
l2x− 4lx2 +

16x3

3

⎤
⎥⎥⎥⎥⎥⎥⎦

l

0

=
kA

3l

⎡
⎣ 27− 36 +16 −36+ 60− 32 9− 24 +16
−36+ 60− 32 48− 96+ 64 −12+ 36− 32
9− 24+ 16 −12+ 36− 32 3− 12 +16

⎤
⎦

=
kA

3l

⎡
⎣ 7 −8 1
−8 16 −8
1 −8 7

⎤
⎦

Again, the result is a 3× 3 square matrix, and it is symmetric
about the principal diagonal with positive diagonal terms. The reader
is encouraged to show that this result is applicable to any 3-node bar
element with even spacing between nodes, no matter where it is located.

6.2.2 Volumetric and point loads or constraints

Knowing the meaning of the term on the left-hand side of Equation 6.4, let
us now move to the right-hand side. The first term on the right resolves the
volumetric quantity (if any), for example, a volume force, a volume heat
source, or a volume reaction source, into equivalent nodal quantities, and
the second term distributes a point constraint, for example, a point load,
a heat flux, or a mass flux, to the nodes of the element. Let us go through
some examples to see how these expressions are used to resolve the nodal
equivalences.

Example 6.3

For the 2-node and 3-node 1D bar elements shown in Figure 6.1, find
the nodal equivalent loads of a volumetrically distributed load g and
a point load P (note that g and P can be mechanical loads, heat fluxes
and sources, or mass fluxes and sources).

Answer
We first examine the volumetrically distributed load. For the nodal
equivalences of a volumetrically distributed load g, we use the first
integral expression on the right-hand side of Equation 6.4, namely,∫ l

0

[N ]T gAdx
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1 (x = 0) 2 (x = l)

x
g

1 (x = 0) 2 (x = l/2) 3 (x = l)

x
g

1 2

P x

x = l/4 1 2 3

xP

x = l/4

FIGURE 6.1
Two-node and 3-node 1D elements.

For the 2-node element, by plugging in its shape function matrix, we
have

∫ l

0

⎧⎪⎨
⎪⎩

l−x

l
x

l

⎫⎪⎬
⎪⎭ gAdx =

gAl

2

{
1
1

}

The result is a 2× 1 vector containing the two nodal equivalent loads
of a volumetrically distributed load in a 2-node bar element. Clearly,
because the two shape functions are linear equations, each node takes
one-half of the total volume load exerting on the element (i.e., g times
the volume).

For the 3-node bar element, using its shape function matrix we have

∫ l

0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

l2 − 3lx +2x2

l2

4lx− 4x2

l2

−lx+ 2x2

l2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

gAdx =
gAl

6

⎧⎨
⎩

1
4
1

⎫⎬
⎭

For this 3-node bar element, we have a 3× 1 vector containing the three
nodal equivalent loads of a volumetrically distributed load. Unlike in the
2-node case, the nodal equivalence of a volumetrically distributed load
in a 3-node bar element is not evenly divided among the nodes. The
two end nodes get one-sixth of the total volume load and the midnode
two-thirds of the total volume load.

Next, we examine the nodal distribution of a point load or constraint.
As mentioned earlier, the term Akdũ(x)/dx represents a point load in
mechanical problems, a heat flux in thermal problems, a mass flux in
transport problems, and so on. If we express it in a unified term P ,
that is, P = Akdũ(x)/dx, then the second term on the right-hand side
of Equation 6.4 can be written as

[
[N ]T Ak

dũ

dx
(x)

]l

0

=
[
[N ]T P

]l

0
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For the 2-node element, by plugging in its shape function matrix along

with a constant P at x =
l

4
, we have

[
[N ]T P

]l

0
=

⎧⎪⎨
⎪⎩

l−x

l
x

l

⎫⎪⎬
⎪⎭

x= l
4

×P =

{
3
1

}
P

4

Similarly, for the 3-node element, by substituting its shape function

matrix along with a constant P at x =
l

4
, we obtain

[
[N ]T P

]l

0
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

l2 − 3lx +2x2

l2

4lx− 4x2

l2

−lx+ 2x2

l2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

x= l
4

×P =

⎧⎨
⎩

3
6
−1

⎫⎬
⎭ P

8

The results show that the point load P is distributed to the correspond-
ing nodes according to a formula determined by the shape functions
evaluated at the location of the point constraints. The resulting nodal
load is a 2× 1 vector for the 2-node element and a 3× 1 vector for the
3-node element. Based on the characteristics of shape functions, it is
clear that when a point load is on a node, this particular node will bear
all the load and the other nodes get none.

6.3 Single-Element Structure

To put the above discussions together, let us take a look at a slender mechan-
ical structure with Young’s modulus E, uniform cross section area A, and
length l, as shown in Figure 6.2. Assume that the structure is subjected to a
volumetrically distributed force f over the entire structure and a point load P
at the right end and is fixed at its left end.

f P
F x

l

E , A
1 (x = 0) 2 (x = l)

x2-node element

1 (x = 0) 2 (x = l/2) 3 (x = l)

x3-node element

FIGURE 6.2
Bar structure and 1D bar elements.
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Since this slender structure is under axial loads and deformations, by ignor-
ing the Poisson ratio effect, we can treat it as a bar structure that is governed
by the differential Equations 6.1 and 6.4. Thus, we can use 1D bar elements
for its domain discretization.

First, we consider a 2-node bar element with {d0} = [u1 u2]T. The [Ke]
matrix and the nodal equivalences of the distributed load can be found by
referring to Examples 6.1 and 6.3. For the point loads, in a free-body mode,
the left constraint is replaced by an unknown reaction force F acting on node 1;
thus, we have two point loads. The one at node 1 will be assigned totally to
node 1, and the one at node 2 to node 2. Therefore, putting them all into
Equation 6.4 along with k = E, we arrive at

EA

l

[
1 −1
−1 1

]{
u1

u2

}
=

fAl

2

{
1
1

}
+
{

F
P

}

Next, we consider a 3-node bar element with {d0} = [u1 u2 u3]T. By Equa-
tion 6.4 along with k = E and the results from Examples 6.2 and 6.3, we
obtain

EA

3l

⎡
⎣ 7 −8 1
−8 16 −8
1 −8 7

⎤
⎦
⎧⎨
⎩

u1

u2

u3

⎫⎬
⎭ =

fAl

6

⎧⎨
⎩

1
4
1

⎫⎬
⎭+

⎧⎨
⎩

F
0
P

⎫⎬
⎭

It is now clear that Equation 6.4 is actually a matrix form algebraic
equation. In a general form, we can express these matrix algebraic equations as

[Ke]{d0} = {Pe} (6.7)

where {Pe} is the nodal load vector. This fact indicates that a FEM formula-
tion procedure has not only reduced a PDE or ordinary differential equation
(ODE) from its strong form (e.g., Equation 6.1) to a weak form, but also
linearized the weak-form PDE or ODE into an algebraic matrix equation in
the form of Equation 6.7.

6.4 From Elementary to Global through Assembly

In calculating the weighted integral of residual to find the approximate solu-
tion to differential equation 6.1, we assumed that the physical domain consists
of only one element; thus, the integration over the entire domain is reduced to
one element (see Equation 6.2). However, when the physical domain consists
of m elements, this expression needs to be rewritten as

∫∫∫
V

w(x)
[

d

dx

[
ki

dũ(x)
dx

]
+ g

]
dV =

m∑
i=1

∫ li

0

w(x)
[

d

dx

[
ki

dũ(x)
dx

]
+ g

]
Aidx

= 0
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This in turn leads to a modified version of Equation 6.4 as

m∑
i=1

∫ li

0

[
dN

dx

]T
ki

[
dN

dx

]
Aidx{d(i)

0 } =
m∑

i=1

∫ li

0

[N ]T gAidx

+
m∑

i=1

[
[N ]T Aiki

dũ

dx
(x)
]li

0

(6.8)

where li is the length, Ai the cross section area, ki the physics-related property,
and {d(i)

0 } is the DOF vector of the ith element (i = 1, . . . , m).
Referring to Equation 6.7, we can further express it in a matrix form:

m∑
i=1

[K(i)
e ]{d(i)

0 } =
m∑

i=1

{P (i)
e } (6.9)

This equation states that for a domain that is discretized into m ele-
ments, its governing matrix algebraic equation can be obtained by summing
all individual elementary matrix equations together. As we learned in previous
sections, the term on the right-hand side of Equation 6.9 is a vector containing
the equivalent nodal loads resulting from volumetrically distributed quantities
or point quantities. When the discretized structure has n nodes with 1 DOF
for each node, the load vector should be a n× 1 vector, with its rows filled
with the corresponding nodal equivalent loads, or zeros if the nodes are not
associated with any loads. Thus, we can express it in a global load vector as

{P} =
m∑

i=1

{P (i)
e } = {p1 p2 . . . pn−1 pn}T

On the other hand, the structural DOF vector consists of all the nodal DOF
(note that elementary DOF vectors are subsets of the structural DOF vector),
making it also a n× 1 vector. Since the structural DOF vector is common to
all elements, we thus express it as a global DOF vector:

{D} = {u1 u2 . . . un−1 un}T

With these two global vectors, we rewrite Equation 6.9 as(
m∑

i=1

[K(i)
e ]

)
{D} = {P} (6.10)

6.4.1 Global [K] matrix

Recall that [Ke] is a square matrix with ne rows and ne columns, where
ne is the elementary DOF and ne < n. Since {D} is a n× 1 vector, to make
Equation 6.10 work, we need to expand each of the [Ke] matrices from ne ×ne

to n×n by filling the expanded terms with zeros.
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z
-z
-z z

y
-y
-y yy
-y
-y yy
-y
-y y

x
-x
-x x

u 1
u 2 . . . . u n−1

u n

From element (1)

From element (2)

. . .
From element (m)

FIGURE 6.3
Assembly of elementary matrices into global matrix.

Figure 6.3 shows such an expansion scheme. Each expanded elementary
matrix is now a n×n square matrix, in which the original terms are placed in
proper rows and columns corresponding to the positions of the respective ele-
mentary DOF in the global DOF vector. The blank spaces in these expanded
matrices will be filled with zeros. The summation of all these m expanded
elementary [Ke] matrices is often referred to as the assembly of the global [K]
matrix, namely,

[K] =
m∑

i=1

[K(i)
e ]

The global [K] matrix possesses the same properties of as elementary [Ke]
matrix; namely, it is a square matrix, is symmetric about the principal diag-
onal, and has positive diagonal terms. Moreover, like the elementary [Ke]
matrix, the global [K] matrix also represents different physical parameters in
different problems, including the stiffness matrix and the conductance matrix.
With the global [K] matrix and DOF and load vectors, Equation 6.10 can be
expressed in a general algebraic matrix equation:

[K]{D} = {P} (6.11)

6.5 Bar Elements for 1D Problems

In this section, we use two examples, a mechanical (or vector) problem
and a heat (or scalar) problem, to get better understanding of how global
matrix equations are developed and solved by imposing proper boundary
conditions.
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(1) (4)
(2)

(3)

1 2 3 4
PF

2 ft 4 ft 2 ft

FIGURE 6.4
Spring loading structure.

Example 6.4

The spring loading structure shown in Figure 6.4 is made of four mem-
bers. The structure has a fixed constraint on the left and a point
load P = 500 lb on the right. The two side members have a length
of l1 = l4 = 2 ft and a cross section area of A1 = A4 = 1 in.2, and the
two middle members have a length of l2 = l3 = 4 ft and a cross sec-
tion area of A2 = A3 = 0.75 in.2. All members are made of steel with
Young’s modulus E = 30× 106 lb/in.2. Use the matrix equation to find
the displacements at four joints 1 through 4.

Answer
Since these members mainly sustain axial forces and deformations, they
are governed by the PDE given in Equation 6.1. Thus, the structure
can be discretized by bar elements. As illustrated in the figure, the
spring structure is discretized into four 2-node elements, (1) through (4),
connected by nodes 1 through 4. For the four 2-node bar elements, each
has elementary DOF = 2; thus, by using Equation 6.6 with k = E, we
obtain the following 2× 2 elementary stiffness matrices:

[K(1)
e ] = [K(4)

e ] = 1250000

[
1 −1
−1 1

]
(lb/in.)

[K(2)
e ] = [K(3)

e ] = 468750

[
1 −1
−1 1

]
(lb/in.)

For this structure, its global nodal DOF vector can be expressed
as {D} = [u1 u2 u3 u4]

T . In reference to this vector, we expand each
elementary stiffness matrix from 2× 2 to 4× 4 with the original terms
highlighted:

[K(1)
e ] =

⎡
⎢⎢⎣

1250000 −1250000 0 0
−1250000 1250000 0 0

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

[K(2)
e ] =

⎡
⎢⎢⎣

0 0 0 0
468750 −4687500 0
−468750 4687500 0

0 0 0 0

⎤
⎥⎥⎦
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[K(3)
e ] =

⎡
⎢⎢⎣

0 0 0 0
468750 −4687500 0
−468750 4687500 0

0 0 0 0

⎤
⎥⎥⎦ ,

[K(4)
e ] =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0

1250000 −12500000 0
−1250000 12500000 0

⎤
⎥⎥⎦

By summing these expanded matrices, we obtain the global [K]
matrix:

[K] =

⎡
⎢⎢⎣

1250000 −1250000 0 0
−1250000 2187500 −937500 0

0 −937500 2187500 −1250000
0 0 −1250000 1250000

⎤
⎥⎥⎦ (lb/in.)

The structure is not subjected to any volumetric loads, but it has a
point load applied at node 4. Moreover, in a free-body mode, the left
constraint is replaced by an unknown reaction force F acting on node 1.
Therefore, we determine the global load vector as

{P} =

⎧⎪⎪⎨
⎪⎪⎩

F
0
0

500

⎫⎪⎪⎬
⎪⎪⎭ (lb)

Thus, by [K]{D} = {P} (Equation 6.11) we have⎡
⎢⎢⎣

1250000 −1250000 0 0
−1250000 2187500 −937500 0

0 −937500 2187500 −1250000
0 0 −1250000 1250000

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

u1

u2

u3

u4

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

F
0
0

500

⎫⎪⎪⎬
⎪⎪⎭ (lb) (6.12)

Because this equation is developed based on the equilibrium of a
free body, it is not constrained. To solve this equation, we need to
impose some boundary conditions to constrain it. For the problem given,
since the left end is fixed, we have u1 = 0. This suggests that we have
one less unknown to solve in the matrix equation. Thus, by partitioning
the matrix equation, we can reduce it to simpler equations. For example,
the following matrix equation,[

A B

G H

]{
U1

U2

}
=

{
F1

F2

}

can be partitioned into two submatrix equations as

[A]{U1}+ [B]{U2} = {F1} and [G]{U1}+ [H ]{U2} = {F2}
When {U1} is known, the second equation can be used to find {U2}. Sub-
sequently, the first equation, along with {U2}, can be used to find [F1]



T&F Cat #K16587 — K16587 C006 — page 132 — 1/21/2017 — 17:28

132 Introduction to Integrative Engineering

in the following manner:

[H ]{U2} = {F2}− [G]{U1}
{F1} = [A]{U1}+ [B]{U2}

(6.13)

In particular, when U1 = 0, the first equation in Equation 6.13 becomes

[H ]{U2} = {F2}

if the row and column of the matrix equation associated with U1 before
partitioning are striked out.

Using this matrix partition concept, we partition Equation 6.12 as

follows with the corresponding [H ], {U2}, and {F2} highlighted:⎡
⎢⎢⎣

1250000 −1250000 0 0
−1250000 2187500 −937500 0

0 −937500 2187500 −1250000
0 −1250000 12500000

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

0
u2

u3

u4

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

F
0
0

500

⎫⎪⎪⎬
⎪⎪⎭ (lb)

Since u1 = 0 (or U1 = 0 in Equation 6.13), the above equation is
simplified further by striking out the row and column correspond-
ing to the constraint u1 = 0, that is, the first row and first column
of the matrix equation, to a constrained matrix equation in the
form of [H ]{U2} = {F2}:⎡
⎣2187500 −937500 0
−937500 2187500 −1250000

0 −1250000 1250000

⎤
⎦
⎧⎨
⎩

u2

u3

u4

⎫⎬
⎭ =

⎧⎨
⎩

0
0

500

⎫⎬
⎭ (lb)

By solving it, we find
⎧⎨
⎩

u2

u3

u4

⎫⎬
⎭ =

⎡
⎣2187500 −937500 0
−937500 2187500 −1250000

0 −1250000 1250000

⎤
⎦
−1⎧⎨
⎩

0
0

500

⎫⎬
⎭ = 10−3

⎧⎨
⎩

0.40
0.93
1.33

⎫⎬
⎭ (in.)

Together with u1 = 0, we obtain the global DOF vector:

{D} =

⎧⎪⎪⎨
⎪⎪⎩

u1

u2

u3

u4

⎫⎪⎪⎬
⎪⎪⎭ = 10−3

⎧⎪⎪⎨
⎪⎪⎩

0
0.40
0.93
1.33

⎫⎪⎪⎬
⎪⎪⎭ (in.)

The unknown reaction force can be determined by using the second
expression in Equation 6.13:

{F} = [A]{U1}+ [B]{U2} = 1250000× u1− 1250000× u2 + 0× u3 + 0× u4

= −1250000× 0.4× 10−3 = −500 (lb)
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In a nutshell, the above procedure can be summarized as

1. Structural discretization using proper elements

2. Calculation of all the elementary [Ke] matrices

3. Assembly of the global [K] matrix, DOF vector, and load vector
and establishment of a global matrix equation

4. Partitioning of the matrix equation according to boundary condi-
tions

5. Solution finding for the unknown DOF and other associated physical
parameters

Example 6.5

For the heat conduction rod shown in Figure 6.5, determine the temper-
ature distribution along the bar. The rod has a uniform diameter (d) of
10 cm and length (l) of 80 cm with a thermal conductivity (κ) of 380
W/[m·K]. The left end of the bar is subjected to a heat source (Qs) of
2500 W/m2, the right end held at a constant temperature (T0) at 100◦C,
and the side insulated.

Answer
Based on the problem description, heat conduction in this slender rod
structure will be mainly along the longitudinal direction. Moreover,
because this problem is governed by the PDE given in Equation 6.1,
the structure can be discretized by using bar elements. For this prob-
lem, we will use two 2-node bar elements for domain discretization, as
illustrated in the figure. For the two 2-node bar elements, each with
elementary DOF = 2, we use Equation 6.6 with k = κ = 380 W/[m·K],
l1 = l2 = 0.4 m, and A = πd2/4, d = 0.1 m to obtain the following 2× 2
elementary stiffness matrices:

[K(1)
e ] = [K(2)

e ] = 7.46

[
1 −1

−1 1

]
(W/K)

Since the whole rod structure has three nodes, its global nodal DOF
vector can be expressed as {D} = {T1 T2 T3}T . Using this global DOF

T = 100°CQs

1 (1) 2 (2) 3 x

FIGURE 6.5
Heat conduction in a rod.
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vector as a reference, we expand each elementary stiffness matrix from
2× 2 to 3× 3:

[K(1)
e ] =

⎡
⎣ 7.46 −7.46 0
−7.46 7.46 0

0 0 0

⎤
⎦ , [K(2)

e ] =

⎡
⎣0 0 0
0 7.46 −7.46
0 −7.46 7.46

⎤
⎦

By summing these expanded matrices, we obtain the global [K]
matrix:

[K] =

⎡
⎣ 7.46 −7.46 0
−7.46 14.92 −7.46

0 −7.46 7.46

⎤
⎦ (W/K)

The structure is not subject to any volumetric heat source, but it has
a heat flux applied at node 1, along with an unknown heat flux q3 at
node 3. Thus, we write the global load vector as

{P} =

⎧⎨
⎩

2500
0
q3

⎫⎬
⎭ πd2

4
=

⎧⎨
⎩

19.63
0

q3 × 7.85× 10−3

⎫⎬
⎭ (W)

Thus, by [K]{D} = {P} (Equation 6.11) we have

⎡
⎣ 7.46 −7.46 0

−7.46 14.92 −7.46
0 −7.46 7.46

⎤
⎦
⎧⎨
⎩

T1

T2

T3

⎫⎬
⎭ =

⎧⎨
⎩

19.63
0

q3 × 7.85× 10−3

⎫⎬
⎭ (W)

For the problem given, since the right end is at a constant temper-
ature, we have T3 = 100◦C = 373 K. So by using the partition method,
we write[

7.46 −7.46
−7.46 14.92

]{
T1

T2

}
+

{
0

−7.46

}
T3 =

{
19.63

0

}
(W)

By substituting the known boundary condition, that is, T3 = 373 K, we
obtain the following constrained matrix equation:

[
7.46 −7.46
−7.46 14.92

]{
T1

T2

}
=

{
19.63
2783.1

}
(W)

Solving it, we have {
T1

T2

}
=

{
378.26
375.63

}
(K)

Together with the known boundary condition, we have

⎧⎨
⎩

T1

T2

T3

⎫⎬
⎭ =

⎧⎨
⎩

378.26
375.63
373.00

⎫⎬
⎭ (K)
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By using Equation 5.32, we obtain the following temperature distribu-
tion along the conduction rod:

T̃ =

2∑
m=1

NmTm =
(
1− x

0.4

)
T1 +

x

0.4
T2 = 378.26− 6.58x (K)

or

T̃ =
2∑

m=1

NmTm =

(
1− x− 0.4

0.4

)
T2 +

x− 0.4

0.4
T3 = 378.26− 6.58x (K)

Clearly, a procedure similar to the one used in Example 6.4 is used
here for solving this problem.

6.6 Bar Elements for 2D and 3D Truss Structures

6.6.1 2D truss structures

As we learned earlier, slender mechanical structures supporting axial load-
ing and sustaining axial deformations can be discretized as bar elements.
Although a bar element can only support axial loading, the orientation of
the bar structure does not need to be parallel to an axis.

1

2

x

y

u1x

u1y

u2x

u2y

u1

u2

θ

FIGURE 6.6
Bar in 2D space.

Let us consider a bar structure in two-
dimensional (2D) Cartesian coordinates, x
and y. As shown in Figure 6.6, a 2-node bar ele-
ment is oriented in an arbitrary angle (θ) with
respect to the x axis. The element has an ele-
mentary DOF vector of {u1 u2}T , defining the
admissible DOF of the two nodes in the axial
(or more precisely, the longitudinal) direction
of the bar structure.

In this 2D space, these nodal DOF, u1 and
u2, can be expressed in terms of their Cartesian
components, namely, u1x, u1y, u2x, and u2y,
respectively. Referring to the figure along with

trigonometry relationships, we express

u1 = u1x cos θ+ u1y sin θ

u2 = u2x cos θ+ u2y sin θ

In a matrix form, these two equations can be written as

{
u1

u2

}
=
[
cos θ sin θ 0 0

0 0 cos θ sin θ

]⎧⎪⎪⎨
⎪⎪⎩

u1x

u1y

u2x

u2y

⎫⎪⎪⎬
⎪⎪⎭ (6.14)
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This means that in a vector field problem, when a bar element is oriented in
2D space, its nodal DOF becomes 2, making the elementary DOF = 4 for a
2-node bar element. From Equation 6.7, we have

[Ke]
{

u1

u2

}
=
{

P1

P2

}

or

[Ke]
[
cos θ sin θ 0 0

0 0 cos θ sin θ

]⎧⎪⎪⎨
⎪⎪⎩

u1x

u1y

u2x

u2y

⎫⎪⎪⎬
⎪⎪⎭ =
{

P1

P2

}
(6.15)

Let

[R2] =
[
cos θ sin θ 0 0

0 0 cos θ sin θ

]

Multiplying both sides of Equation 6.15 by [R2]T , we obtain

[R2]T [Ke][R2]

⎧⎪⎪⎨
⎪⎪⎩

u1x

u1y

u2x

u2y

⎫⎪⎪⎬
⎪⎪⎭ = [R2]T

{
P1

P2

}
=

⎧⎪⎪⎨
⎪⎪⎩

P1x

P1y

P2x

P2y

⎫⎪⎪⎬
⎪⎪⎭

This equation is actually the 2D equivalent of Equation 6.7, that is, the 2D
expanded matrix equation for bar elements,

[Ke2]{d0} = {Pe2}
where

[Ke2] = [R2]T [Ke][R2]

{Pe2} = [R2]T {Pe}
For a 1D 2-node bar element, by Equation 6.6, we have

[Ke2] =
kA

l

⎡
⎢⎢⎣

cos θ 0
sin θ 0

0 cos θ

0 sin θ

⎤
⎥⎥⎦
[

1 −1
−1 1

] [
cos θ sin θ 0 0

0 0 cos θ sin θ

]

which yields

[Ke2] =
kA

l

⎡
⎢⎢⎣

cos2 θ cos θ sin θ − cos2 θ − cos θ sin θ

cos θ sin θ sin2 θ − cos θ sin θ − sin2 θ

− cos2 θ − cos θ sin θ cos2 θ cos θ sin θ

− cos θ sin θ − sin2 θ cos θ sin θ sin2 θ

⎤
⎥⎥⎦ (6.16)

So for an arbitrary oriented bar element in 2D space, Equation 6.16 is used
to determine the elementary [Ke2] matrix with known values of k, A, l, and θ.
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345

x

y

(1)

(2)

(3)(6)

(5) (4) P

48 cm 48 cm
48

 cm
1 2

FIGURE 6.7
A 2D truss structure.

Example 6.6

For the 2D truss structure shown in Figure 6.7 consisting of six members
and subjected to a vertical downward load P = 700 N at the upper right
corner, determine the displacements at the joints and the stress and
force in each member. All the members are made of steel material with
Young’s modulus 210 MPa with a cross section area of 80 cm2. The
lengths of the members are shown in the figure.

Answer
Since these members mainly sustain axial forces and deformations, they
are governed by the PDE given in Equation 6.1. Thus, the structure
is discretized by six 2-node bar elements (1) through (6), connected by
nodes 1 through 5, as shown in the figure. For these linear bar elements in
2D, each has elementary DOF = 4. Knowing k = E = 210× 106 N/m2,
A = 0.008 m2, l1 = l3 = l4 = l6 = 0.48 m, l2 = l5 = 0.48

√
2 m, θ(1) =

θ(3) = θ(6) = 0, θ(2) = θ(5) = 45◦, and θ(4) = 90◦, by using Equation 6.16,
we obtain the following elementary [Ke2] matrices:

[K(1)
e ] = [K

(3)
e2 ] = [K

(6)
e2 ] = 3.5× 106

⎡
⎢⎢⎣

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

⎤
⎥⎥⎦ (N/m)

[K(2)
e ] = [K

(5)
e2 ] = 1.2× 106

⎡
⎢⎢⎣

1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

⎤
⎥⎥⎦ ,

[K
(4)
e2 ] = 3.5× 106

⎡
⎢⎢⎣
0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

⎤
⎥⎥⎦

Since the entire structure has five nodes, its global nodal DOF vector can
be expressed as {D} = {u1x u1y u2x u2y u3x u3y u4x u4y u5x u5y}T .
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Using this as a reference, we expand each elementary stiffness matrix
from 4× 4 to 10× 10 (note that the original terms are highlighted in
each expanded matrix):

[K
(1)
e2 ] = 3.5× 106

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N/m)

[K
(2)
e2 ] = 1.2× 106

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

1 1 −1 −10 0 0 0 0 0
1 1 −1 −10 0 0 0 0 0
−1 −1 1 10 0 0 0 0 0
−1 −1 1 10 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N/m)

[K
(3)
e2 ] = 3.5× 106

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

1 0 −1 00 0 0 0 0 0
0 0 0 00 0 0 0 0 0
−1 0 1 00 0 0 0 0 0
0 0 0 00 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N/m)

[K
(4)
e2 ] = 3.5× 106

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 00 0 0 0 0 00 0 0 0 0 0
0 10 0 0 0 0 −10 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 00 0 0 0 0 00 0 0 0 0 0
0 −10 0 0 0 0 10 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N/m)
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[K
(5)
e2 ] = 1.2× 106

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 −1 −1 0 0
1 1 0 0 0 0 −1 −1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
−1 −1 0 0 0 0 1 1 0 0
−1 −1 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N/m)

[K
(6)
e2 ] = 3.5× 106

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

1 0 −1 00 0 0 0 0 0
0 0 0 00 0 0 0 0 0
−1 0 1 00 0 0 0 0 0
0 0 0 00 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N/m)

Summing them all together, we have

[K] = 106

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.7 1.2 −3.5 0 0 0 −1.2 −1.2 0 0
1.2 1.2 0 0 0 0 −1.2 −1.2 0 0
−3.5 0 4.7 1.2 −1.2 −1.2 0 0 0 0

0 0 1.2 4.7 −1.2 −1.2 0 −3.5 0 0
0 0 −1.2 −1.2 4.7 1.2 −3.5 0 0 0
0 0 −1.2 −1.2 1.2 1.2 0 0 0 0

−1.2 −1.2 0 0 −3.5 0 8.2 1.2 −3.5 0
−1.2 −1.2 0 −3.5 0 0 1.2 4.7 0 0

0 0 0 0 0 0 −3.5 0 3.5 0
0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N/m)

The global load vector can be determined with the consideration of
the point load P and reaction forces F1x, F1y , F2y, F5x, and F5y at nodes
1, 2, and 5. Because all these point loads and forces are at nodes, we
can simply write

{P} =
{
F1x F1y 0 F2y 0 −700 0 0 F5x F5y

}T
(N)

Thus, by [K]{D} = {P} (Equation 6.11) we have

10
6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.7 1.2 −3.5 0 0 0 −1.2 −1.2 0 0

1.2 1.2 0 0 0 0 −1.2 −1.2 0 0

−3.5 0 4.7 1.2 −1.2 −1.2 0 0 0 0

0 0 1.2 4.7 −1.2 −1.2 0 −3.5 0 0

0 0 −1.2 −1.2 4.7 1.2 −3.5 0 0 0

0 0 −1.2 −1.2 1.2 1.2 0 0 0 0

−1.2 −1.2 0 0 −3.5 0 8.2 1.2 −3.5 0

−1.2 −1.2 0 −3.5 0 0 1.2 4.7 0 0

0 0 0 0 0 0 −3.5 0 3.5 0

0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1x

u1y

u2x

u2y

u3x

u3y

u4x

u4y

u5x

u5y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1x

F1y

0

F2y

0

−700

0

0

F5x

F5y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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With the boundary conditions, u1x = u1y = u2y = u5x = u5y = 0,
referring to Equation 6.13, we can simplify this matrix equation by strik-
ing out the relevant rows and columns and reducing it to the following
constrained matrix equation:

106

⎡
⎢⎢⎢⎢⎣

4.7 −1.2 −1.2 0 0
−1.2 4.7 1.2 −3.5 0
−1.2 1.2 1.2 0 0

0 −3.5 0 8.2 1.2
0 0 0 1.2 4.7

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u2x

u3x

u3y

u4x

u4y

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0
0

−700
0
0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(N)

After solving it, we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u2x

u3x

u3y

u4x

u4y

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= 10−3

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−0.20
0.36
−1.12
0.16
−0.04

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(m)

Together with u1x = u1y = u2y = u5x = u5y = 0, we obtain the global
DOF vector:

{D} = 10−3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0

−0.20
0

0.36
−1.12
0.16
−0.04

0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(m)

Recall that the global load vector {P} consists of known applied
nodal forces and unknown reaction forces; thus, we can express it as the
sum of the two as follows:

{P} = {F}+ {R}

where {F} represents the known applied force vector and {R} the
unknown reaction force vector. Knowing the global [K], {D}, the
reaction force vector can be found by using [K]{D} = {P} = {F}+ {R}:

[K]{D} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1x

F1y

0
F2y

0
0
0
0

F5x

F5y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
0

−700
0
0
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, so {R} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1x

F1y

0
F2y

0
0
0
0

F5x

F5y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

555.02
−144.98

0
844.98

0
0
0
0

−555.02
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(N)
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From the obtained global DOF vector {D}, we can write the sub-
DOF vector for each element. For example, for element (2), we have

⎧⎪⎪⎨
⎪⎪⎩

u2x

u2y

u3x

u3y

⎫⎪⎪⎬
⎪⎪⎭ = 10−3

⎧⎪⎪⎨
⎪⎪⎩
−0.20

0
0.36
−1.12

⎫⎪⎪⎬
⎪⎪⎭

By using Equation 6.14, we can determine the local axial displace-
ments in element (2) as follows:

{
u2(axial)

u3(axial)

}
=

[
cos 45 sin 45 0 0

0 0 cos 45 sin 45

]⎧⎪⎪⎨
⎪⎪⎩

u2x

u2y

u3x

u3y

⎫⎪⎪⎬
⎪⎪⎭ = 10−3

{−0.14
−0.54

}

Referring to Equation 5.33 along with the shape function matrix for
a 2-node bar element, that is,

[N ] =
1

l

[
l−x x

]
we write

u = [N ]

{
u2(axial)

u3(axial)

}

According to Hooke’s law and the definition for stress (see Section 3.1),
we have

σ = E
∂u

∂x
, F = Aσ

then we calculate the stress in element (2) as follows:

σ2 = E
∂u

∂x
= E

∂[N ]

∂x

{
u2(axial)

u3(axial)

}
=

E

l

[
u3(axial) −u2(axial)

]
= −1.24× 105

Following the same steps, we obtain the following global stress
and force vectors with their elements representing the stress and force,
respectively, in each element:

{σ} = 1× 105

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−0.87
−1.24
0.87
−0.18
0.25
0.69

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(N/m2) and {f} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−700.00
−989.94
700.00
−144.98
205.02
555.02

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(N)

6.6.2 3D truss structures

When a bar structure is in 3D space as illustrated in Figure 6.8, its orien-
tation can be marked by a set of angles, θx, θy, and θz , formed between the
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1

2

x

y

z

u1x

u1y

u1z

u2x

u2y

u2z

u1

u2

θx

θy

θz

FIGURE 6.8
Bar in 3D space.

longitudinal line of the bar and Cartesian axes, x, y, and z, respectively, as

cos θx =
xi − xj√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

cos θy =
yi − yj√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

cos θz =
zi − zj√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

(6.17)

In this 3D space, the elementary DOF vector of a 2-node bar element,
{u1 u2}T , can be expressed in terms of its Cartesian components, namely,
u1x, u1y, u1z, u2x, u2y, and u2z using the basic relationships in trigonometry:

u1 = u1x cos θx + u1y cos θy + u1z cos θz

u2 = u2x cos θx + u2y cos θy + u2z cos θz

In a matrix form, these two equations can be written as

{
u1

u2

}
=
[
cos θx cos θy cos θz 0 0 0

0 0 0 cos θx cos θy cos θz

]
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u1x

u1y

u1z

u2x

u2y

u2z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
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This indicates that for a mechanical bar structure in 3D, its nodal DOF
expands from 1 to 3, making the elementary DOF = 6 for a 2-node bar
element. Applying this expression to Equation 6.7, we have

[Ke]
[
cos θx cos θy cos θz 0 0 0

0 0 0 cos θx cos θy cos θz

]
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u1x

u1y

u1z

u2x

u2y

u2z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=
{

P1

P2

}

(6.18)
Let

[R3] =
[
cos θx cos θy cos θz 0 0 0

0 0 0 cos θx cos θy cos θz

]

Multiplying both sides of Equation 6.18 by [R3]T , we obtain

[R3]T [Ke][R3]

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u1x

u1y

u1z

u2x

u2y

u2z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= [R3]T
{

P1

P2

}
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P1x

P1y

P1z

P2x

P2y

P2z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

This equation is the 3D equivalent of Equation 6.7, that is, the 3D expanded
matrix equation for bar elements

[Ke3]{d0} = {Pe3}

where

[Ke3] = [R3]T [Ke][R3]

{Pe3} = [R3]T {Pe}

With the elementary [Ke] matrix for a 1D 2-node bar element, we have

[Ke3] =
kA

l

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θx 0
cos θy 0
cos θz 0

0 cos θx

0 cos θy

0 cos θz

⎤
⎥⎥⎥⎥⎥⎥⎦
[

1 −1
−1 1

]

×
[
cos θx cos θy cos θz 0 0 0

0 0 0 cos θx cos θy cos θz

]
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Letting cx = cos θx, cy = cos θy , and cz = cos θz, we simplify the above equa-
tion to

[Ke3] =
kA

l

⎡
⎢⎢⎢⎢⎢⎢⎣

c2
x cxcy cxcz −c2

x −cxcy −cxcz

cxcy c2
y cycz −cxcy −c2

y −cycz

cxcz cycz c2
z −cxcz −cycz −c2

z

−c2
x −cxcy −cxcz c2

x cxcy cxcz

−cxcy −c2
y −cycz cxcy c2

y cycz

−cxcz −cycz −c2
z cxcz cycz c2

z

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.19)

For an arbitrary oriented bar element in 3D space, Equation 6.19 is used to
determine the elementary [Ke2] matrix with known values of k, A, l, θx, θy ,
and θz .

Example 6.7

For the 3D truss structure shown in Figure 6.9, determine the displace-
ments and the joint and reaction forces at the anchors.

The structure consists of three members, made of a material with
a Young’s modulus of 70 Msi with a cross section area of 1 in.2, linked
together at joint 4 with fixed constraints at joints 1 through 3 and a
vertical load P = 10000 lb at joint 4. The coordinates of the joints are
known as 1(0, 0, 0), 2(0,−12, 12), 3(0, 12, 12) and 4(12, 0, 12) measured
in inches.

Answer
For the given bar, by using Equation 6.17, we calculate the following:

cos θx = 0.707, cos θy = 0, cos θz = 0.707 forelement (1)

cos θx = 0.707, cos θy = 0.707, cos θz = 0 forelement (2)

cos θx = 0.707, cos θy = −0.707, cos θz = 0 forelement (3)

Since all the members are subjecting axial loads and deformations,
we can use bar elements for structural discretization. Thus, by using

x

z

y

3

1

2

4

(1)

(2)

(3)

P

FIGURE 6.9
A 3D truss structure.
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Equation 6.19, we calculate the following elementary [Ke3] matrices:

[K
(1)
e3 ] = 1× 106

⎡
⎢⎢⎢⎢⎢⎢⎣

2.0624 0 2.0624 −2.0624 0 −2.0624
0 0 0 0 0 0

2.0624 0 2.0624 −2.0624 0 −2.0624
−2.0624 0 −2.0624 2.0624 0 2.0624

0 0 0 0 0 0
−2.0624 0 −2.0624 2.0624 0 2.0624

⎤
⎥⎥⎥⎥⎥⎥⎦

(lb/in.)

[K
(2)
e3 ] = 1× 106

⎡
⎢⎢⎢⎢⎢⎢⎣

2.0624 2.0624 0 −2.0624 −2.0624 0
2.0624 2.0624 0 −2.0624 −2.0624 0

0 0 0 0 0 0
−2.0624 −2.0624 0 2.0624 2.0624 0
−2.0624 −2.0624 0 2.0624 2.0624 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(lb/in.)

[K
(3)
e3 ] = 1× 106

⎡
⎢⎢⎢⎢⎢⎢⎣

2.0624 −2.0624 0 −2.0624 2.0624 0
−2.0624 2.0624 0 2.0624 −2.0624 0

0 0 0 0 0 0
−2.0624 2.0624 0 2.0624 −2.0624 0
2.0624 −2.0624 0 −2.0624 2.0624 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(lb/in.)

For this structure, the global DOF vector is

{D} = {u1x u1y u1z u2x u2y u2z u3x u3y u3z u4x u4y u4z}T (in.)

thus, using this vector as a reference, we expand the elementary [Ke3]
matrices as follows:

[K
(1)
e3 ] = 1× 106

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.0624 0 2.0624 0 0 0 0 0 0 −2.0624 0 −2.0624
0 0 0 0 0 0 0 0 0 0 0 0

2.0624 0 2.0624 0 0 0 0 0 0 −2.0624 0 −2.0624
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

−2.0624 0 −2.0624 0 0 0 0 0 0 2.0624 0 2.0624
0 0 0 0 0 0 0 0 0 0 0 0

−2.0624 0 −2.0624 0 0 0 0 0 0 2.0624 0 2.0624

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[K
(2)
e3 ] = 1× 106

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2.0624 2.0624 0 0 0 0 −2.0624 −2.0624 0
0 0 0 2.0624 2.0624 0 0 0 0 −2.0624 −2.0624 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −2.0624 −2.0624 0 0 0 0 2.0624 2.0624 0
0 0 0 −2.0624 −2.0624 0 0 0 0 2.0624 2.0624 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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[K
(3)
e3 ] = 1× 106

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2.0624 −2.0624 0 −2.0624 2.0624 0
0 0 0 0 0 0 −2.0624 2.0624 0 2.0624 −2.0624 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −2.0624 2.0624 0 2.0624 −2.0624 0
0 0 0 0 0 0 2.0624 −2.0624 0 −2.0624 2.0624 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

By summing them together, we obtain the global [K] matrix:

[K] = 1× 10
6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.06 0 2.06 0 0 0 0 0 0 −2.06 0 −2.06

0 0 0 0 0 0 0 0 0 0 0 0

2.06 0 2.06 0 0 0 0 0 0 −2.06 0 −2.06

0 0 0 2.06 2.06 0 0 0 0 −2.06 −2.06 0

0 0 0 2.06 2.06 0 0 0 0 −2.06 −2.06 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2.06 −2.06 0 −2.06 2.06 0

0 0 0 0 0 0 −2.06 2.06 0 2.06 −2.06 0

0 0 0 0 0 0 0 0 0 0 0 0

6.19 0 2.06−2.06 0 −2.0 −2.06 −2.06 0 −2.06 2.06 0

0 4.12 00 0 0 −2.0 −2.06 0 2.06 −2.06 0

2.06 0 2.06−2.06 0 −2.06 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The global load vector for this 3D structure can be determined with
the consideration of the point load P and reaction forces at nodes 1, 2,
and 3. Because all these point loads and forces are at nodes, we can
simply write

{P} =
{
F1x F1y F1z F2x F2y F2z F3x F3y F3z 0 0 −10000

}T
(lb)

Thus, by [K]{D} = {P}, along with the boundary conditions, u1x =
u1y = u1z = u2x = u2y = u2z = u3x = u3y = u3z = 0, we obtain the fol-
lowing constrained matrix equation after applying the partition method
(see Equation 6.13):

1× 106

⎡
⎣6.19 0 2.06

0 4.12 0
2.06 0 2.06

⎤
⎦
⎧⎨
⎩

u4x

u4y

u4z

⎫⎬
⎭ =

⎧⎨
⎩

0
0

−10000

⎫⎬
⎭ (lb)

By solving it, we obtain

⎧⎨
⎩

u4x

u4y

u4z

⎫⎬
⎭ =

⎧⎨
⎩

0.0024
0

−0.0073

⎫⎬
⎭ (in.)
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Putting it together with the known boundary conditions, we have the
global DOF vector:

{D} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
0
0
0
0
0

0.0024
0

−0.0073

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(in.)

The global reaction force vector can be determined as

{R} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1x

F1y

F1z

F2x

F2y

F2z

F3x

F3y

F3z

0
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= [K]{D}−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
0
0
0
0
0
0
0

−10000

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10000
0

10000
−5000
−5000

0
−5000
5000

0
0
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(lb)

6.7 FEM Formulation for Beams

To complete the discussion of FEM for slender structures and domains, we
look at beam structures in this section, although beams are not governed by
the differential equation given in Equation 6.1. However, as we shall see in the
following section, the procedures we use to develop the weak-form PDE and
FEM formulation are the same as those discussed in Sections 6.1 and 6.2.

6.7.1 Weak-form PDE for beams

As we learned in Section 3.5, the governing differential equation for beams is

d2

dx2

(
EI

d2u

dx2

)
+ f = 0
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For this fourth-order PDE, we first develop its weak-form expression. By
the method of weighted integral of residual, let w(x) be a set of weight
functions; then we express

∫ l

0

w

[
d2

dx2

(
EI

d2ũ

dx2

)
+ f

]
dx = 0 (6.20)

According to the product rule of differentiation, we can write

d

dx

[
w

d

dx

(
EI

d2ũ

dx2

)]
=

dw

dx

d

dx

(
EI

d2ũ

dx2

)
+ w

d2

dx2

(
EI

d2ũ

dx2

)

and
d

dx

[
dw

dx
EI

d2ũ

dx2

]
=

d2w

dx2
EI

d2ũ

dx2
+

dw

dx

d

dx

(
EI

d2ũ

dx2

)

Putting these two relationships together, we have

w
d2

dx2

(
EI

d2ũ

dx2

)
=

d

dx

[
w

d

dx

(
EI

d2ũ

dx2

)]
− d

dx

[
dw

dx
EI

d2ũ

dx2

]
+

d2w

dx2
EI

d2ũ

dx2

Substituting this relationship into Equation 6.20, we have

∫ l

0

[
d2w

dx2
EI

d2ũ

dx2

]
dx+
∫ l

0

wfdx+
[
w

d

dx

(
EI

d2ũ

dx2

)]l
0

−
[
dw

dx
EI

d2ũ

dx2

]l
0

= 0

Recall that (see Section 3.5)

M = EI
d2ũ

dx2
and V =

dM

dx
=

d

dx

(
EI

d2ũ

dx2

)

we obtain the following weak-form PDE for beams

∫ l

0

[
d2w

dx2
EI

d2ũ

dx2

]
dx = −

∫ l

0

wfdx− [wV ]l0 +
[
dw

dx
M

]l
0

(6.21)

Note that in using this equation, one needs to obey the sign conventions
discussed in Section 3.5.

6.7.2 FEM formulation

By applying the Galerkin method to Equation 6.21, along with Equation 5.32,
we have

wm = Nm and ũ =
ne∑

m=1

Nmum =
[
N
] {

d0

}
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where [N ] is the shape function matrix for a beam element with elementary
DOF = ne. Substituting these expressions into Equation 6.21, we have

∫ l

0

[
d2Nm

dx2
EI

d2[N ]{d0}
dx2

]
dx = −

∫ l

0

Nmfdx− [NmV ]l0 +
[
dNm

dx
M

]l
0

for m = 1, . . . , ne. Since only the shape function matrix, [N ], is a function of
x and the nodal DOF vector, {d0}, is not, we simplify this equation to

∫ l

0

d2Nm

dx2
EI

[
d2N

dx2

]
dx{d0} = −

∫ l

0

Nmfdx− [NmV ]l0 +
[
dNm

dx
M

]l
0

for m = 1, . . . , ne.
By summing all these ne equations together, as we did in Section 6.2, we

obtain the following FEM formulation for a beam element:

∫ l

0

[
d2N

dx2

]T
EI

[
d2N

dx2

]
dx{d0} = −

∫ l

0

[N ]T fdx− [N ]T |l0 +
[
dN

dx

]T
M |l0
(6.22)

The first integral gives the elementary [Ke] matrix (i.e., the stiffness matrix)
for a beam element:

[Ke] =
∫ l

0

[
d2N

dx2

]T
EI

[
d2N

dx2

]
dx (6.23)

Example 6.8

Find the elementary [Ke] matrix for the 2-node beam element shown in
Figure 6.10 having a flexure rigidity of EI , where E is Young’s modulus
and I is the second moment of inertia of the cross section of the beam.

Answer
For the 2-node beam element, by using the Hermite interpolation
formula (see Equation 5.28 and follow the steps in Example 5.8
in Section 5.7.2), with x1 = l, x2 = 2l, we obtain the four shape

1(x = l) 2 (x = 2l)
x

u1 u2u'1 u'2

FIGURE 6.10
A 2-node beam element.
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functions as follows:

N1 =
(2x− l)(x− 2l)2

l3
, N2 =

(x− l)(x− 2l)2

l2

N3 =
(x− l)2(5l− 2x)

l3
, N4 =

(x− l)2(x− 2l)

l2

With these shape functions, we write the following shape function
matrix:

[N ] =

[
(2x− l)(x− 2l)2

l3
(x− l)(x− 2l)2

l2
(x− l)2(5l− 2x)

l3
(x− l)2(x− 2l)

l2

]

Then, we calculate[
d2N

dx2

]
=

[
6(2x− 3l)

l3
2(3x− 5l)

l2
6(3l− 2x)

l3
2(3x− 4l)

l2

]

Substituting this expression into Equation 6.23, we obtain

[Ke] = EI

∫ 2l

l

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6(2x − 3l)

l3
2(3x − 5l)

l2
6(3l − 2x)

l3
2(3x − 4l)

l2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
6(2x − 3l)

l3

2(3x − 5l)

l2

6(3l − 2x)

l3

2(3x − 4l)

l2

]
dx

=
EI

l6

∫ 2l

l

⎡
⎢⎢⎢⎣

36(l − 2x)
2

12l(l − 2x)(2l − 3x) −36(l − 2x)
2

12l(l − 2x)(l − 3x)

12l(l − 2x)(2l − 3x) 4l
2
(2l − 3x)

2 −12l(l − 2x)(2l − 3x) 4l
2
(l − 3x)(2l − 3x)

−36(l − 2x)
2 −12l(l − 2x)(2l − 3x) 36(l − 2x)

2 −12l(l − 2x)(l − 3x)

12l(l − 2x)(l − 3x) 4l
2
(l− 3x)(2l − 3x) −12l(l − 2x)(l − 3x) 4l

2
(l− 3x)

2

⎤
⎥⎥⎥⎦dx

Integrating each term in the matrix, we obtain

[Ke] =
EI

l3

⎡
⎢⎢⎣

12 6l −12 6l

6l 4l2 −6l 2l2

−12 −6l 12 −6l

6l 2l2 −6l 4l2

⎤
⎥⎥⎦ (6.24)

Equation 6.24 gives the elementary [Ke] matrix or, more specifically, the
stiffness matrix for a 2-node beam element.

Like 1D bar elements, this [Ke] matrix applies to any 2-node beam
element with a length of l and flexure rigidity of EI .

Example 6.9

For the cantilever beam shown in Figure 6.11, determine the defections
and rotation at nodes 2 and 3. The beam is subjected to a distributed
load f = −5 N/m between nodes 1 and 2, a downward force P1 = −15 N
at x = 4 m and an upward force P2 = 7.5 N at node 2, and a downward
force P3 = −25 N and a downward bending moment M = 30 N-m at
node 3. Consider that the beam structure is made of a material having
a flexure rigidity of EI = 105 Nm2.
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x

y

f

3

P1(x = 4 m) P3P2

M

12 m 4 m

1 2(1) (2)

FIGURE 6.11
Beam under transverse loading and bending.

Answer
For this problem, we use two beam elements, elements (1) and (2),
for structural discretization. The two elements are linked together by a
common node, node 2.

Using Equation 6.24, we obtain the following stiffness matrix for
beam (1) with EI = 105 Nm2 and l = 12 m:

[K(1)
e ] = 103

⎡
⎢⎢⎣

0.69 4.17 −0.69 4.17
4.17 33.33 −4.17 16.67
−0.69 −4.17 0.69 −4.17
4.17 16.67 −4.17 33.33

⎤
⎥⎥⎦

and the following for beam (2) with EI = 105 Nm2 and l = 4 m:

[K(2)
e ] = 103

⎡
⎢⎢⎣

18.75 37.50 −18.75 37.50
37.50 100.00 −37.50 50.00
−18.75 −37.50 18.75 −37.50
37.50 50.00 −37.50 100.00

⎤
⎥⎥⎦

Referring to the global DOF vector, which can be expressed as
{D} = {u1, u

′
1, u2, u

′
2, u3, u

′
3}, we expand these two matrices to

[K(1)
e ] = 103

⎡
⎢⎢⎢⎢⎢⎢⎣

0.69 4.17 −0.69 4.17 0 0
4.17 33.33 −4.17 16.67 0 0
−0.69 −4.17 0.69 −4.17 0 0
4.17 16.67 −4.17 33.33 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

[K(2)
e ] = 103

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 18.75 37.50 −18.75 37.50
0 0 37.50 100.00 −37.50 50.00
0 0 −18.75 −37.50 18.75 −37.50
0 0 37.50 50.00 −37.50 100.00

⎤
⎥⎥⎥⎥⎥⎥⎦
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By summing them up, we obtain the global stiffness matrix as

[K] = 103

⎡
⎢⎢⎢⎢⎢⎢⎣

0.69 4.17 −0.69 4.17 0 0
4.17 33.33 −4.17 16.67 0 0
−0.69 −4.17 19.44 33.33 −18.75 37.50
4.17 16.67 33.33 133.33 −37.50 50.00
0 0 −18.75 −37.50 18.75 −37.50
0 0 37.50 50.00 −37.50 100.00

⎤
⎥⎥⎥⎥⎥⎥⎦

To determine the elementary load vectors, we express the shape func-
tion matrix using the shape functions given in Equation 5.29 (note that
these functions are obtained using local coordinates, namely, between
x = 0 and x = l) as

[N ] =

[
1− 3x2

l2
+

2x3

l3
x− 2x2

l
+

x3

l2
3x2

l2
− 2x3

l3
−x2

l
+

x3

l2

]

Then, by referring to Equation 6.22, we determine the elementary load
vectors using the following expression:

{Pe} = −
∫ l

0

[N ]T fdx− [N ]T |l0 +

[
dN

dx

]T

M |l0

According to the sign conventions set forth in Section 3.5, f, P1, P3, and
M are positive and P2 is negative. By substituting the signed values of
f, P1, P2, P3, and M along with their relative locations, namely, x = 4
for P1, x = 0 for P2 and x = 4 for P3, and M , we find the following load
vector for element (1):

{P (1)
e } = −

∫ 12

0

[N ]T × (5)dx− [N ]Tx=4 × (15) =

⎧⎪⎪⎨
⎪⎪⎩
−41.11
−86.67
−33.89
73.33

⎫⎪⎪⎬
⎪⎪⎭

and the following for element (2):

{P (2)
e } = −[N ]Tx=0 × (−7.5)− [N ]Tx=4 × (25) +

[
dN

dx

]T

x=4

× (30) =

⎧⎪⎪⎨
⎪⎪⎩

7.5
0

−25
30

⎫⎪⎪⎬
⎪⎪⎭

Adding these two load vectors together, we obtain the global load vector:

{P} =
{−41.11 −86.67 −26.39 73.33 −25.00 30.00

}T



T&F Cat #K16587 — K16587 C006 — page 153 — 1/21/2017 — 17:28

Solving Differential Equations Computationally 153

Putting these together in the global matrix algebraic equation [K]{D} =
{P}, we have

104

⎡
⎢⎢⎢⎢⎢⎢⎣

0.69 4.17 −0.69 4.17 0 0
4.17 33.33 −4.17 16.67 0 0
−0.69 −4.17 19.44 33.33 −18.75 37.50
4.17 16.67 33.33 133.33 −37.50 50.00
0 0 −18.75 −37.50 18.75 −37.50
0 0 37.50 50.00 −37.50 100.00

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u1

u′
1

u2

u′
2

u3

u′
3

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−41.11
−86.67
−26.39
73.33
−25.00
30.00

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Since the beam structure has a fixed end at node 1, we have u1 =
u′

1 = 0 as the boundary conditions. By applying these boundary
conditions to the above matrix equation, we strike out the first
two rows and columns according to the matrix partition method;
thus, we write

104

⎡
⎢⎢⎣

19.44 33.33 −18.75 37.50
33.33 133.33 −37.50 50.00
−18.75 −37.50 18.75 −37.50
37.50 50.00 −37.50 100.00

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

u2

u′
2

u3

u′
3

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩
−26.39
73.33
−25.00
30.00

⎫⎪⎪⎬
⎪⎪⎭

Solving this constrained matrix equation, we obtain⎧⎪⎪⎨
⎪⎪⎩

u2

u′
2

u3

u′
3

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩
−0.2936
−0.0366
−0.4429
−0.0374

⎫⎪⎪⎬
⎪⎪⎭

6.8 The Essence of FEM

In Examples 6.6, 6.7, and 6.9, we follow the same procedure listed at the end of
Example 6.4. The fact that a common procedure is used for structures that can
be discretized by either bar or beam elements actually captures the essence
of the FEM. In other words, in FEM, we first determine elementary [Ke]
matrices for the discretized finite elements based on the type of elements and
their corresponding shape functions, and then assemble them into the global
[K] matrix. After that, with the global load vector {P} filled with known
and unknown loading conditions, we establish the global matrix equation in
the form of [K]{D} = {P}, and reduce it to a constrained matrix equation
through matrix partition based on the given boundary conditions. Finally, by
solving the reduced matrix equation, we obtain the DOF vector, and using
relevant principles and relationships in physics and engineering, we determine
other associated engineering unknown variables.
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6.9 Exercises

1. Use the following formula,

[Ke] = A

∫
l

[
dN

dx

]T
k

[
dN

dx

]
dx

to determine the elementary [Ke] matrix for the two 1D 2-node
elements given in Figure 6.12 in terms of k, A, and l.

2. Use the same formula given in Exercise 1 to determine the elemen-
tary [Ke] matrix for the two 1D 3-node elements given in Figure 6.13
in terms of k, A, and l.

3. The spring loading structure shown in Figure 6.14 is made of two
members. The structure is fixed at the left end and is subjected to
a point load P = 150 lb at the right end, as shown. The lengths
of all members are given in the figure. Assuming that all members
are made of aluminum with Young’s modulus E = 10× 106 lb/in.2

and cross section area A = 0.25 in.2, determine the displacements
at joints 2 and 3.

1 2
x

x1  =  l x2  =  2l

u1 u2 u1 u2

1 2
x

x1  =  –l/2 x2 = l/2

FIGURE 6.12
Two 1D 2-node elements located at different positions.

x x
1

x1= l

u1

2
x2= 1.5l

u2

3
x3= 2l

u3

1
x1= –l/2

u1

2
x2= 0

u2

3
x3= l/2

u3

FIGURE 6.13
Two 1D 3-node elements located at different positions.

21 3
P

4 ft 4 ft

FIGURE 6.14
Spring loading structure made of two bar elements.
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4. The spring loading structure shown in Figure 6.15 is made of
four members of circular cross section with radius r = 0.5 in. The
structure is fixed at the left end and is subjected to a point load
P = 275 lb at the right end, as shown. The lengths of all members
are given in the figure. Assuming that all members are made of tita-
nium alloy with Young’s modulus E = 17× 106 lb/in.2, determine
the displacements at joints 2 through 4.

5. The spring loading structure shown in Figure 6.16 is made of six
members. The structure is fixed at both ends and is subjected to
a point load P = 450 lb, as shown. The lengths of all members are
given in the figure. Assuming that all members are made of steel
with Young’s modulus E = 30× 106 lb/in.2 and cross section area
A = 1.5 in.2, determine the displacements at the three inner joints.

6. The members of the 2D truss shown in Figure 6.17 have a cross
section area of 5 cm2 and are made of steel with Young’s modulus
E = 210 GPa. The truss is subject to a vertical load P = 1 KN and
a horizontal load F = 2.5 KN at joint 3. Determine the deflection
of each joint, the stress in each member, and the reaction forces.
Use a FEM software tool to model the problem and compare the
results.

7. The members of the 2D truss shown in Figure 6.18 have a cross
section area of 4 cm2 and are made of brass with Young’s modulus
E = 120 GPa. The truss is subject to loads P = 0.75 KN and F =
2.0 KN at joint 2, as shown. Determine the deflection of each joint,

1 2 3 4
P

2 ft 4 ft 2 ft

FIGURE 6.15
Spring loading structure made of four bar elements.

1
2

3
54P

2.5 ft 2.5 ft 2.5 ft 2.5 ft

(1)

(6)

(2)

(3)
(4)

(5)

FIGURE 6.16
Spring loading structure made of six bar elements.
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P

2 
m

60°
30° 60°

60°

(1)

(3)

(2)

FIGURE 6.17
A 2D truss structure made of three bar elements.

x

y

1

2

3

F

P
60°

30°

2 
m

FIGURE 6.18
A 2D truss structure made of two bar elements.

the stress in each member, and the reaction forces. Use a FEM
software tool to model the problem and compare the results.

8. The members of the 2D truss shown in Figure 6.19 have a cross
section area of 1 in.2 and are made of silicon carbide with Young’s
modulus E = 65× 106 lb/in.2. The truss is subject to load F =
275 lb at joint 2, as shown. Determine the deflection of each joint,
the stress in each member, and the reaction forces. Use a FEM
software tool to model the problem and compare the results.

9. The members of the 2D truss shown in Figure 6.20 have a cross
section area of 1.5 in.2 and are made of steel with Young’s modulus
E = 30× 106 lb/in.2. The truss is subject to loads P = 200 lb and
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3

F
45° 45°

3 
ft

FIGURE 6.19
A 2D truss structure made of two bar elements.

x

y

1 2

34
F

P

45°
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FIGURE 6.20
A 2D truss structure made of four bar elements.

F = 275 lb at joint 3, as shown. Determine the deflection of each
joint, the stress in each member, and the reaction forces. Use a
FEM software tool to model the problem and compare the results.

10. The members of the 2D truss shown in Figure 6.21 have a cross
section area of 1.5 in.2 and are made of steel with Young’s modulus
E = 30× 106 lb/in.2. The truss is subject to loads P = 200 lb and
F = 275 lb at joint 3, as shown. Determine the deflection of each
joint, the stress in each member, and the reaction forces. Use a
FEM software tool to model the problem and compare the results.

11. The members of the 2D truss shown in Figure 6.22 have a cross
section area of 2 in.2 and are made of aluminum with Young’s mod-
ulus E = 10× 106 lb/in.2. The truss is subject to loads P = 1500 lb
and F = 2750 lb at joint 3, as shown. Determine the deflection of
each joint, the stress in each member, and the reaction forces. Use a
FEM software tool to model the problem and compare the results.
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FIGURE 6.21
A 2D truss structure made of four bar elements.
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21

34 F

P
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FIGURE 6.22
A 2D truss structure made of four bar elements.

12. The members of the 2D truss shown in Figure 6.23 have a cross
section area of 0.5 in.2 and are made of titanium alloy with Young’s
modulus E = 17× 106 lb/in.2. The truss is subject to loads P =
50 lb and F = 80 lb at joint 3, as shown. Determine the deflection
of each joint, the stress in each member, and the reaction forces.
Use a FEM software tool to model the problem and compare the
results.

13. The members of the 2D truss shown in Figure 6.24 have a cross
section area of 6 mm2 and are made of steel with Young’s modulus
E = 210 GPa. The truss is subject to loads P = 150 N and F = 300
N at joint 3, as shown. Determine the deflection of each joint, the
stress in each member, and the reaction forces. Use a FEM software
tool to model the problem and compare the results.

14. The four joints of the 3D truss shown in Figure 6.25 have the follow-
ing coordinates: 1(0, 0,−1), 2(0, 0, 1), 3(0, 1, 0), and 4(1.5, 0.25, 0),
with units in meters. All members have the same cross section area
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FIGURE 6.23
A 2D truss structure made of three bar elements.
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FIGURE 6.24
2D truss structure made of three bar elements.
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FIGURE 6.25
A 3D truss structure made of three bar elements.

of 10 cm2 and are made of titanium alloy with Young’s modulus
E = 120 GPa. The truss is subject to a vertical load P = 2 KN and
a horizontal load F = 1.5 KN at joint 4. Determine the deflection
of each joint, the stress in each member, and the reaction forces.
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Use a FEM software tool to model the problem and compare the
results.

15. The four joints of the 3D truss shown in Figure 6.26 have the fol-
lowing coordinates: 1(0.5, 1.5, 0.5), 2(0, 0, 0), 3(0, 0, 1) 4(1, 0, 1), and
5(1, 0, 0), with units in meters. All members have the same cross
section area of 5 cm2 and are made of steel with Young’s modulus
E = 210 GPa. The truss is subject to a vertical load P = 5 KN and
a horizontal load F = 7.5 KN at joint 1. Determine the deflection of
each joint, the stress in each member, and the reaction forces. Use a
FEM software tool to model the problem and compare the results.

16. The four joints of the 3D truss shown in Figure 6.27 have the follow-
ing coordinates: 1(2, 0, 0), 2(0, 0,−1), 3(0, 1, 0), and 4(0, 0, 1), with
units in meters. All members have the same cross section area of
7.5 cm2 and are made of brass with Young’s modulus E = 125 GPa.
The truss is subject to a vertical load P = 2.5 KN and a horizontal
load F = 5 KN at joint 1. Determine the deflection of each joint, the

x

y
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3 4

5

F
P

FIGURE 6.26
A 3D truss structure made of four bar elements.
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FIGURE 6.27
A 3D truss structure made of three bar elements.
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stress in each member, and the reaction forces. Use a FEM software
tool to model the problem and compare the results.

17. The four joints of the 3D truss shown in Figure 6.28 have the follow-
ing coordinates: 1(0,−3, 0), 2(2, 0, 0), 3(−1, 0,−1), and 4(0, 0, 2),
with units in meters. All members have the same cross section
area of 15 cm2 and are made of aluminum with Young’s modu-
lus E = 70 GPa. The truss is subject to a vertical load P = 5 KN
at joint 1. Determine the deflection of each joint, the stress in each
member, and the reaction forces. Use a FEM software tool to model
the problem and compare the results.

18. Use the formula given in Equation 6.23 to determine the elementary
[Ke] matrix for the 2-node beam element shown in Figure 6.29 in
terms of Young’s modulus, E; the second moment of inertia of the
cross section of the beam, I; and length, l.

19. For the bridge structure shown in Figure 6.30 made of beam ele-
ments, determine the rotation at nodes 1 through 4. The beam is
subjected to a distributed load f = −15 lb/in. and a downward
force P = −50 lb, as shown. Consider that the beam structure is

x

y

z

1

2

3

4

P

FIGURE 6.28
A 3D truss structure made of three bar elements.

x1 = 0 x2 = l
x

u1 u2u'1
u'2

FIGURE 6.29
A 2-node beam element.
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21 3

P
f

7.5 ft 7.5 ft 5 ft 5 ft

FIGURE 6.30
Bridge structure made of beam elements.

1 2 43

P
f

7.5 ft 7.5 ft 5 ft 5 ft

FIGURE 6.31
Bridge structure made of beam elements.

made of a material having flexure rigidity of EI = 109 lb-in.2. Use a
FEM software tool to model the problem and compare the results.

20. For the bridge structure shown in Figure 6.31 made of beam ele-
ments, determine the rotation at nodes 1 through 3. The beam is
subjected to a distributed load f = −15 lb/in. and a downward
force P = −50 lb, as shown. Consider that the beam structure is
made of a material having flexure rigidity of EI = 109 lb-in.2. Use a
FEM software tool to model the problem and compare the results.
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7

Scalar Field Problems in
Higher Dimensions

In this chapter, we focus our discussion on scalar field engineering problems
in two-dimensional (2D) and three-dimensional (3D) spaces. For scalar field
problems, the field quantities of interest are scalar variables, such as tem-
perature, concentration of a certain species, and electrical potential. Since
scalar variables are independent of directions, even in 2D and 3D spaces
there is only one field quantity at each node of the discretized elements
(i.e., nodal DOF = 1). Scalar problems are sometimes referred to as single-
variable problems. Because of this, solving single-variable scalar problems of
high dimensions is relatively easy to do. In the following sections, we use a
single variable u to represent these scalar variables.

7.1 FEM Formulation for 2D Scalar Field Problems

7.1.1 FEM formulation

For scalar field problems in a 2D space, their domains can be discretized into
elements of two dimensions. Assuming the orthotropic property, the common
form differential equation 6.1 can be expressed in 2D as

∂

∂x

[
kx

∂u

∂x

]
+

∂

∂y

[
ky

∂u

∂y

]
+ g = 0 (7.1)

where u = u(x, y) represents a 2D field quantity. Let ũ(x, y) be an approxi-
mate solution; we write the following residual based on the given differential
equation:

R =
∂

∂x

[
kx

∂ũ

∂x

]
+

∂

∂y

[
ky

∂ũ

∂y

]
+ g

Assuming the 2D domain has a thickness of t and an area of A, we con-
struct the following weighted integral of residual by introducing a set of weight
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functions w(x, y):

∫∫∫
V

wRdV =
∫∫

A

wRtdA

=
∫∫

A

w

{
∂

∂x

[
kx

∂ũ

∂x

]
+

∂

∂y

[
ky

∂ũ

∂y

]
+ g

}
tdA = 0

By the product rule of differentiation, we have

w
∂

∂x

[
kx

∂ũ

∂x

]
= −∂w

∂x

[
kx

∂ũ

∂x

]
+

∂

∂x

(
w

[
kx

∂ũ

∂x

])

w
∂

∂y

[
ky

∂ũ

∂y

]
= −∂w

∂y

[
ky

∂ũ

∂y

]
+

∂

∂y

(
w

[
ky

∂ũ

∂y

])

Substituting these relationships into the equation above and rearranging it,
we obtain∫∫

A

[
∂w

∂x

[
kx

∂ũ

∂x

]
+

∂w

∂y

[
ky

∂ũ

∂y

]]
tdA

=
∫∫

A

[
∂

∂x

(
w

[
kx

∂ũ

∂x

])
+

∂

∂y

(
w

[
ky

∂ũ

∂y

])]
tdA+

∫∫
A

wgtdA

(7.2)

The integral on the left-hand side of Equation 7.2 can be expressed in a

compact form by using the ∇ operator in 2D
(
i.e., ∇ =

∂

∂x
�i +

∂

∂y
�j
)
, the

dot product expression, and k (for kx, ky):

∫∫
A

[
∂w

∂x

[
kx

∂ũ

∂x

]
+

∂w

∂y

[
ky

∂ũ

∂y

]]
tdA =

∫∫
A

∇w · [k∇ũ]tdA

First, we rewrite the first integral on the right-hand side of Equation 7.2 using
the ∇ operator:

∫∫
A

[
∂

∂x

(
w

[
kx

∂ũ

∂x

])
+

∂

∂y

(
w

[
ky

∂ũ

∂y

])]
tdA

=
∫∫

A

∇·
(

w

[
kx

∂ũ

∂x

]
�i + w

[
ky

∂ũ

∂y

]
�j

)
tdA

then we apply the divergence theorem (see Figure 2.3):

∫∫
A

∇·
(

w

[
kx

∂ũ

∂x

]
�i + w

[
ky

∂ũ

∂y

]
�j

)
tdA

=
∫

L

w

([
kx

∂ũ

∂x

]
�i +
[
ky

∂ũ

∂y

]
�j

)
·�ntdL =

∫
L

w[k∇ũ] ·�ntdL
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where �n = nx
�i + ny

�j is the unit normal vector of the boundary line at a given
point. Putting all these expressions together, we rewrite Equation 7.2 as∫∫

A

∇w · [k∇ũ]tdxdy =
∫

L

w[k∇ũ] ·�ntdL +
∫∫

A

wgtdxdy (7.3)

By the Galerkin method, we will take the shape functions as the weight
functions; thus, we write

wm = Nm for m = 1, . . . , ne

By plugging in these weight functions along with

ũ = [N ] {d0}
we obtain∫∫

A

(∇Nm · k∇[N ])tdxdy{d0} =
∫

L

Nm[k∇ũ] ·�n}tdL +
∫∫

A

Nmgtdxdy

for m = 1, . . . , ne.
By summing all these ne equations together (in the same steps used in

Section 6.2), we arrive at∫∫
A

([∇N ]T · k∇ [N ])tdA{d0} =
∫

L

[N ]T [k∇ũ] ·�ntdL +
∫∫

A

[N ]T gtdA (7.4)

in which the coefficient associated with the elementary degrees of freedom
(DOF) vector, {d0}, is the elementary [Ke] matrix for 2D elements for scalar
field problems, that is,

[Ke] =
∫∫

A

([∇N ]T · k∇ [N ])tdA (7.5)

Note that although this [Ke] matrix has the same meaning as its coun-
terpart in the one-dimensional (1D) domain, because the procedures used to
derive it only apply to scalar field problems, it should not be used to calculate
the mechanical stiffness matrix. For mechanical problems, due to their vec-
tor fields, as well as other material-related issues, such as the Poison’s ratio
effect and material anisotropy, they are dealt with in a separate chapter (see
Chapter 8).

Similar to the 1D situation, the first term on the right-hand side of
Equation 7.4 distributes point and edge constraints, for example, a heat flux
or a mass flux, to the nodes of the element, and the second term resolves the
volume loads (if any), for example, a volume heat source or a volume reaction
source, into equivalent nodal quantities. So if we use the load vector {Pe} to
represent them, we can express Equation 7.4 of 2D scalar problems as

[Ke]{d0} = {Pe}
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7.1.2 Elementary [Ke] matrix

Using Equation 7.5, we can find the elementary [Ke] matrix of any 2D elements
based on the type and order of the elements and their corresponding shape
functions. Once all the elementary [Ke] matrices are known, we will assemble
them into the global [K] matrix. To do this, we can go through the same steps
as discussed in Section 6.4, which will eventually lead us to the same matrix
equation, that is, Equation 6.11,

[K]{D} = {P}
in which the global load vector on the right-hand side will be determined by
evaluating the integral terms on the right-hand side of Equation 7.4. To solve
the matrix equation, we will again apply the matrix partition method based
on the given boundary conditions to obtain the unknown DOF.

Of course, this procedure can be handled manually when the number of ele-
ments is small, as we saw in the several examples discussed in Chapter 6. But
when the physical domain is discretized into a large number of elements, and
sometimes with higher-order elements, performing this procedure manually
may become too tedious or impossible. Thus, we often turn to a computer
program (e.g., a finite element program) to do all these, including geome-
try building, domain discretization, element selection, [Ke] and [K] matrix
evaluation, and matrix equation solving, until the problem is fully solved
and relevant parameters of interest are determined. Therefore, from now on
we will not complete this procedure manually. Instead, we will just evaluate
the [Ke] matrix in order to understand some important issues in performing
integrations over the domains defined by the elements.

Example 7.1

For the 2D rectangular element shown in Figure 7.1, determine its ele-
mentary [Ke] matrix using Equation 7.5. Assume that the element has a
uniform thickness of t = 0.005 and a constant kx = ky = k = 1000 (note
that because this example can be applied to different physics problems,
such as heat conduction, mass diffusion, fluid flow in porous medium,
and electric, without losing generality, we intentionally ignore the units
of these values).

1 (0.0, 0.0) 2 (0.2, 0.0)

3 (0.2, 0.1)4 (0.0, 0.1)
y

x

FIGURE 7.1
A 2D rectangular element with a uniform thickness.
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Answer
To determine the elementary [Ke] matrix, we first expand Equation 7.5

by using the 2D ∇ operator, ∇ =
∂

∂x
�i +

∂

∂y
�j:

[Ke] =

∫∫
A

[
∂[N ]

∂x
�i +

∂[N ]

∂y
�j

]T

·
(

kx
∂[N ]

∂x
�i + ky

∂[N ]

∂y
�j

)
tdA

=

∫∫
A

([
∂N

∂x

]T

�i +

[
∂N

∂y

]T

�j

)
·
(

kx

[
∂N

∂x

]
�i + ky

[
∂N

∂y

]
�j

)
tdA

=

∫∫
A

([
∂N

∂x

]T

kx

[
∂N

∂x

]
+

[
∂N

∂y

]T

ky

[
∂N

∂y

])
tdA

(7.6)

For the rectangular element, by using the Lagrange interpolation
formula (see Section 5.6.2), we calculate its four shape functions as

N1 =
x− x2

x1 − x2

y− y2

y1 − y2
=

(x− 0.2)(y − 0.1)

(0− 0.2)(0− 0.1)
= (1− 5x)(1− 10y)

N2 =
x− x1

x2 − x1

y− y2

y1 − y2
=

(x− 0)(y − 0.1)

(0.1− 0)(0− 0.1)
= 5x(1− 10y)

N3 =
x− x1

x2 − x1

y− y1

y2 − y1
=

(x− 0)(y − 0)

(0.1− 0)(0.1− 0)
= 50xy

N4 =
x− x2

x1 − x2

y− y1

y2 − y1
=

(x− 0.1)(y − 0)

(0− 0.1)(0.1− 0)
= 10(1− 5x)y

Putting these shape functions into the shape function matrix, we
have

[N ] =
[
(1− 5x)(1− 10y) 5x(1− 10y) 50xy 10(1− 5x)y

]
Taking its first derivative with respect to x and y, we obtain[

∂N

∂x

]
=
[
50y − 5 5− 50y 50y −50y

]
[

∂N

∂y

]
=
[
50x− 10 −50x 50x 10− 50x

]
Plugging these expressions into Equation 7.6, and integrating it over the
rectangular area defined by the element along with dA = dady and the
kx, ky , t values, we obtain

[Ke] = kxt

∫ 0.2

x=0

∫ 0.1

y=0

⎡
⎢⎢⎣
50y − 5
5− 50y

50y
−50y

⎤
⎥⎥⎦ [50y − 5 5− 50y 50y −50y

]
dydx

+ kyt

∫ 0.2

x=0

∫ 0.1

y=0

⎡
⎢⎢⎣
50x− 10
−50x
50x

10− 50x

⎤
⎥⎥⎦ [50x− 10 −50x 50x 10− 50x

]
dydx
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By multiplying the terms out and integrating them, we obtain

[Ke] =

⎡
⎢⎢⎣

4.17 0.83 −2.08 −2.92
−0.83 4.17 −2.92 −2.08
−2.08 −2.92 4.17 0.83
−2.92 −2.08 0.83 4.17

⎤
⎥⎥⎦

Example 7.2

For the 2D triangular element shown in Figure 7.2, determine its ele-
mentary [Ke] matrix using Equation 7.5. Assume that the element has
a uniform thickness of t = 0.005 and a constant kx = ky = k = 1000
(ignore the units).

Answer
For the triangular element, by using the Lagrange interpolation formula
for triangles (see Section 5.6.4), we determine the three shape functions:

N1 = t1 = det

⎡
⎢⎣
1 x y

1 0.2 0

1 0.2 0.1

⎤
⎥⎦ /det

⎡
⎢⎣
1 0 0

1 0.2 0

1 0.2 0.1

⎤
⎥⎦ = 1− 5x

N2 = t2 = det

⎡
⎢⎣
1 0 0

1 x y

1 0.2 0.1

⎤
⎥⎦ /det

⎡
⎢⎣
1 0 0

1 0.2 0

1 0.2 0.1

⎤
⎥⎦ = 5x− 10y

N3 = t3 = det

⎡
⎢⎣
1 0 0

1 0.2 0

1 x y

⎤
⎥⎦ /det

⎡
⎢⎣

1 0 0

1 0.2 0

1 0.2 0.1

⎤
⎥⎦ = 10y

Putting them into the shape function matrix, we have

[N ] =
[
1− 5x 5x− 10y 10y

]

1 (0.0, 0.0) 2 (0.2, 0.0)

3 (0.2, 0.1)

y = 0.5x

y

x

FIGURE 7.2
A 2D triangular element with a uniform thickness.
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Taking its first derivative with respect to x and y, we obtain[
∂N

∂x

]
=
[−5 5 0

]
[

∂N

∂y

]
=
[
0 −10 10

]
Plugging these expressions into Equation 7.6, integrating it over the
triangular area defined by the element, and substituting the kx, ky , t
values, we obtain

[Ke] = kxt

∫ 0.2

x=0

∫ 0.5x

y=0

⎡
⎣−5

5
0

⎤
⎦ [−5 5 0

]
dydx

+ kyt

∫ 0.2

x=0

∫ 0.5x

y=0

⎡
⎣ 0
−10
10

⎤
⎦ [0 −10 10

]
dydx

=

⎡
⎣ 1.25 −1.25 0
−1.25 6.25 −5.00

0 −5.00 5.00

⎤
⎦

These two examples show that to determine the elementary [Ke] matrix
for a 2D element, we need to first evaluate the shape function matrix for
the element and then perform integration over the areal domain defined by
the element. Moreover, because the areal domains of the two elements given
here are very regular with easily defined edges, integration over these areal
domains can be performed analytically. When elements have irregular shapes,
integration over some irregularly shaped areas may become difficult. For these
two reasons, it is desirable to have a unified way to express shape functions and
perform integration for all elements, regardless of their shapes and locations.

7.2 Types of 2D Scalar Field Problems

Equation 7.4 is developed for a general scalar field problem in 2D space; thus,
it is applicable to all scalar field problems in 2D.

For example, the governing differential equation for laminate flow of
incompressible and nonviscous fluid can be expressed as

∂2ψ

∂x2
+

∂2ψ

∂y2
= 0

where ψ is a steam function. By referring to Equation 7.1, we can just
replace ψ for u, and let g = 0 and kx = ky = 1. In this way, we can then
use Equation 7.4 to solve laminate flow problems.
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For transport of fluid in a porous medium, we have the following governing
differential equation:

∂

∂x

(
kx

∂φ

∂x

)
+

∂

∂y

(
ky

∂φ

∂y

)
= 0

where φ stands for hydraulic potential (or hydraulic head), and kx, ky are
hydraulic conductivity. Again, by referring to Equation 7.1, we can see that
in substitution of u with φ and letting g = 0, we can use Equation 7.4 to deal
with transport problems in porous media.

Similarly, for electrical and magnetic field problems, their governing
differential equations are

ε0εr

(
∂2V

∂x2
+

∂2V

∂y2

)
= −ρ

μ

(
∂2B

∂x2
+

∂2B

∂y2

)
= 0

respectively, where V stands for electrical potential, ε0 for permittivity of
the vacuum, εr for relative permittivity of a medium, ρ for electrical charge
density, B for magnetic potential, and μ for permeability of a medium. With
proper substitutions and replacements of variables and constants, one can use
Equation 7.4 to solve electrical and magnetic problems in 2D.

7.3 FEM Formulation for 3D Scalar Field Problems

7.3.1 FEM formulation

For scalar field problems in 3D space, the common form differential equa-
tion 6.1 can be expressed in a compact form as

∇· [k∇u]+ g = 0

where ∇ =
∂

∂x
�i +

∂

∂y
�j +

∂

∂z
�k and u = u(x, y, z) represents a 3D scalar field

quantity. Let ũ(x, y, z) be an approximate solution; we write the following
residual based on the given differential equation:

R = ∇· [k∇ũ] + g

Then, we construct the following weighted integral of residual by introducing
a set of weight functions w(x, y, z):∫∫∫

V

wRdV =
∫∫∫

V

w{∇ · [k∇ũ] + g}dV = 0
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Assuming an orthotropic property (i.e., k will be replaced by kx, ky, kz in the
three orthogonal directions), and by the definition of dot product, we write
out all the terms for the above equation:∫∫∫

V

w

[
∂

∂x

[
kx

∂ũ

∂x

]
+

∂

∂y

[
ky

∂ũ

∂y

]
+

∂

∂z

[
kz

∂ũ

∂z

]
+ g

]
dV = 0

By the product rule of differentiation, we have

w
∂

∂x

[
kx

∂ũ

∂x

]
= −∂w

∂x

[
kx

∂ũ

∂x

]
+

∂

∂x

(
w

[
kx

∂ũ

∂x

])

w
∂

∂y

[
ky

∂ũ

∂y

]
= −∂w

∂y

[
ky

∂ũ

∂y

]
+

∂

∂y

(
w

[
ky

∂ũ

∂y

])

w
∂

∂z

[
kz

∂ũ

∂z

]
= −∂w

∂z

[
kz

∂ũ

∂z

]
+

∂

∂z

(
w

[
kz

∂ũ

∂z

])

Substituting these relationships into the above equation, we have∫∫∫
V

[
∂w

∂x

[
kx

∂ũ

∂x

]
+

∂w

∂y

[
ky

∂ũ

∂y

]
+

∂w

∂z

[
kz

∂ũ

∂z

]]
dV

=
∫∫∫

V

[
∂

∂x

(
w

[
kx

∂ũ

∂x

])
+

∂

∂y

(
w

[
ky

∂ũ

∂y

])
+

∂

∂z

(
w

[
kz

∂ũ

∂z

])]
dV

+
∫∫∫

V

wgdV (7.7)

The integral on the left-hand side of Equation 7.7 can be simplified into a
compact form by using the ∇ operator and dot product expression∫∫∫

V

[
∂w

∂x

[
kx

∂ũ

∂x

]
+

∂w

∂y

[
ky

∂ũ

∂y

]
+

∂w

∂z

[
kz

∂ũ

∂z

]]
dV =

∫∫∫
V

∇w · [k∇ũ]dV

To the first integral on the right-hand side of Equation 7.7, we apply the
divergence theorem (see Equation 2.11):∫∫∫

V

[
∂

∂x

(
w

[
kx

∂ũ

∂x

])
+

∂

∂y

(
w

[
ky

∂ũ

∂y

])
+

∂

∂z

(
w

[
kz

∂ũ

∂z

])]
dV

=
∫∫

S

[
w

[
kx

∂ũ

∂x

]
nx + w

[
ky

∂ũ

∂y

]
ny + w

[
kz

∂ũ

∂z

]
nz

]
dS

=
∫∫

S

w[k∇ũ] ·�ndS

where �n = nx
�i + ny

�j + nz
�k is the unit vector of the boundary surface. Putting

them together, we express Equation 7.7 as∫∫∫
V

∇w · [k∇ũ]dV =
∫∫

S

w[k∇ũ] ·�ndS +
∫∫∫

V

wgdV



T&F Cat #K16587 — K16587 C007 — page 172 — 1/21/2017 — 17:28

172 Introduction to Integrative Engineering

According to the Galerkin method, we have wm = Nm for m = 1, . . . , ne.
With ũ = [N ] {d0}, we obtain

∫∫∫
V

(∇Nm · k∇[N ])dV {d0} =
∫∫

S

Nm[k∇ũ] ·�n}dS +
∫∫∫

V

NmgdV

for m = 1, . . . , ne.
By summing all these ne equations together (see steps in Section 6.2), we

have∫∫∫
V

([∇N ]T · k∇ [N ])dV {d0} =
∫∫

S

[N ]T [k∇ũ] ·�ndS +
∫∫∫

V

[N ]T gdV

(7.8)

along with the elementary [Ke] matrix for 3D elements for scalar field
problems:

[Ke] =
∫∫∫

V

([∇N ]T · k∇ [N ])dV (7.9)

As in the 2D case, this [Ke] matrix should not be used to calculate the mechan-
ical stiffness matrix. The two terms on the right-hand side of Equation 7.8
have the same meaning as those in the 1D and 2D cases; namely, the first
distributes point and surface constraints to the nodes of the element, and the
second resolves the volume loads into equivalent nodal quantities. Similarly,
we can also express Equation 7.8 in the following matrix form:

[Ke]{d0} = {Pe}

7.3.2 Elementary [Ke] matrix

Like in the 2D case, Equation 7.9 can be used to find the elementary [Ke]
matrix of any 3D elements according to the type and order of the elements
and their corresponding shape functions. Following that, the procedure can be
used to assemble the global [K] matrix, evaluate the global load vector, and
eventually solve the matrix equation [K]{D} = {P}. Again, all these steps
are often handled by using a finite element program. However, as with the
2D situation, we will go through some simple examples of evaluating the [Ke]
matrix for 3D scalar problems to see how domain integration is done in 3D.

Example 7.3

For the 3D hexahedral element shown in Figure 7.3, determine its ele-
mentary [Ke] matrix using Equation 7.9. Assume that the element has
constant kx = ky = kz = k = 1000 along with the coordinates of their
vertices given in the figure (ignore the units).
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1 (0, 0, 0)
2 (1, 0, 0)

6 (1, 0, 1)

5 (0, 0, 1) 4 (0, 2, 0)

3 (1, 2, 0)

7 (1, 2, 1)

8 (0, 2, 1)

x

z
y

FIGURE 7.3
A 3D hexahedral element.

Answer
To determine the 3D elementary [Ke] matrix for scalar problems, we
again expand Equation 7.9 by using the ∇ operator in 3D:

[Ke] =

∫∫∫
V

([
∂N

∂x

]T

kx

[
∂N

∂x

]
+

[
∂N

∂y

]T

ky

[
∂N

∂y

]
+

[
∂N

∂z

]T

kz

[
∂N

∂z

])
dV

(7.10)

For the hexahedral element, by using the Lagrange interpolation
formula (see Section 5.6.5), we calculate its eight shape functions as

N1 =
x−x2

x1 −x2

y − y2

y1 − y2

z − z2

z1 − z2
= (1−x)(2− y)(1− z)/2

N2 =
x−x1

x2 −x1

y − y2

y1 − y2

z − z2

z1 − z2
= x(2− y)(1− z)/2

N3 =
x−x1

x2 −x1

y − y2

y1 − y2

z − z1

z2 − z1
= xy(1− z)/2

N4 =
x−x2

x1 −x2

y − y2

y1 − y2

z − z1

z2 − z1
= (1−x)y(1− z)/2

N5 =
x−x2

x1 −x2

y − y1

y2 − y1

z − z2

z1 − z2
= (1−x)(2− y)z/2

N6 =
x−x1

x2 −x1

y − y1

y2 − y1

z − z2

z1 − z2
= x(2− y)z/2

N7 =
x−x1

x2 −x1

y − y1

y2 − y1

z − z1

z2 − z1
= xyz/2

N8 =
x−x2

x1 −x2

y − y1

y2 − y1

z − z1

z2 − z1
= (1−x)yz/2
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Putting them into the shape function matrix and taking its first
derivative with respect to x, y, and z, we obtain

[
∂N

∂x

]

=
1

2

[−(2− y)(1− z) (2− y)(1− z) y(1− z) −y(1− z) −(2− y)z (2− y)z yz −yz
]

[
∂N

∂y

]

=
1

2

[−(1− x)(1− z) −x(1− z) x(1− z) (1−x)(1− z) −(1− x)z −xz xz (1− x)z
]

[
∂N

∂z

]

=
1

2

[−(1− x)(2− y) −x(2− y) −xy −(1−x)y (1− x)(2− y) x(2− y) xy (1− x)y
]

Plugging these expressions into Equation 7.10, and integrating it over
the hexahedral volume defined by the hexahedral element, along with
substituting the kx = ky = kz = k values, we obtain

[Ke] = k

∫ 1

x=0

∫ 2

y=0

∫ 1

z=0

([
∂N

∂x

]T [∂N

∂x

]
+

[
∂N

∂y

]T [∂N

∂y

]
+

[
∂N

∂z

]T [∂N

∂z

])
dzdydx

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

500.00 −83.33 −83.33 166.67 −83.33 −208.33 −125.00 −83.33
−83.33 500.00 166.67 −83.33 −208.33 −83.33 −83.33 −125.00
−83.33 166.67 500.00 −83.33 −125.00 −83.33 −83.33 −208.33
166.67 −83.33 −83.33 500.00 −83.33 −125.00 −208.33 −83.33
−83.33 −208.33 −125.00 −83.33 500.00 −83.33 −83.33 166.67
−208.33 −83.33 −83.33 −125.00 −83.33 500.00 166.67 −83.33
−125.00 −83.33 −83.33 −208.33 −83.33 166.67 500.00 −83.33
−83.33 −125.00 −208.33 −83.33 166.67 −83.33 −83.33 500.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Example 7.4

For the 3D tetrahedral element shown in Figure 7.4, determine its ele-
mentary [Ke] matrix using Equation 7.9. Assume that the element has
a constant kx = ky = kz = k = 1000, along with the coordinates of their
vertices given in the figure (ignore the units).

Answer
For the tetrahedral element, by using the Lagrange interpolation formula
for tetrahedral elements (see Section 5.6.6), we obtain its four shape
functions:

N1 = t1 =
V1

V0
=

1

6
det

⎡
⎢⎢⎢⎣

1 x y z

1 1 0 0

1 0 2 0

1 0 0 1

⎤
⎥⎥⎥⎦
/

1

6
det

⎡
⎢⎢⎢⎣
1 0 0 0

1 1 0 0

1 0 2 0

1 0 0 1

⎤
⎥⎥⎥⎦ = 1−x− y/2− z
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1 (0, 0, 0)

2 (1, 0, 0)

3 (0, 2, 0)

4 (0, 0, 1)

x

y

z
z = 1 − x − y/2

y = 2 − 2x

FIGURE 7.4
A 3D tetrahedral element.

N2 = t2 =
V2

V0
=

1

6
det

⎡
⎢⎢⎢⎣

1 0 0 0

1 x y z

1 0 2 0

1 0 0 1

⎤
⎥⎥⎥⎦
/

1

6
det

⎡
⎢⎢⎢⎣
1 0 0 0

1 1 0 0

1 0 2 0

1 0 0 1

⎤
⎥⎥⎥⎦ = x

N3 = t3 =
V3

V0
=

1

6
det

⎡
⎢⎢⎢⎣

1 0 0 0

1 1 0 0

1 x y z

1 0 0 1

⎤
⎥⎥⎥⎦
/

1

6
det

⎡
⎢⎢⎢⎣
1 0 0 0

1 1 0 0

1 0 2 0

1 0 0 1

⎤
⎥⎥⎥⎦ = y/2

N4 = t4 =
V4

V0
=

1

6
det

⎡
⎢⎢⎢⎣

1 0 0 0

1 1 0 0

1 0 2 0

1 x y z

⎤
⎥⎥⎥⎦
/

1

6
det

⎡
⎢⎢⎢⎣
1 0 0 0

1 1 0 0

1 0 2 0

1 0 0 1

⎤
⎥⎥⎥⎦ = z

Putting them into the shape function matrix and taking its first
derivative with respect to x, y, and z, we obtain

[
∂N

∂x

]
=
[−1 1 0 0

]
,

[
∂N

∂y

]
=
[−0.5 0 0.5 0

]
,

[
∂N

∂z

]
=
[−1 0 0 1

]

Plugging these expressions into Equation 7.10 and integrating it over the
tetrahedral domain occupied by the element, along with substitution of
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the kx = ky = kz = k values, we obtain

[Ke] = kx

∫ 1

x=0

∫ 2−2x

y=0

∫ 1−x−y/2

z=0

⎡
⎢⎢⎣
−1
1
0
0

⎤
⎥⎥⎦ [−1 1 0 0

]
dzdydx

+ ky

∫ 1

x=0

∫ 2−2x

y=0

∫ 1−x−y/2

z=0

⎡
⎢⎢⎣
−0.5

0
0.5
0

⎤
⎥⎥⎦ [−0.5 0 0.5 0

]
dzdydx

+ kz

∫ 1

x=0

∫ 2−2x

y=0

∫ 1−x−y/2

z=0

⎡
⎢⎢⎣
−1
0
0
1

⎤
⎥⎥⎦ [−1 0 0 1

]
dzdydx

=

⎡
⎢⎢⎣

750.00 −333.33 −83.33 −333.33
−333.33 333.33 0.00 0.00
−83.33 0.00 83.33 0.00
−333.33 0.00 0.00 333.33

⎤
⎥⎥⎦

As we can see from these 3D cases, to determine the elementary
[Ke] matrix, one needs to first evaluate the shape function matrix for
the element and perform integration over the volumetric domain defined
by the element. Thus, the issues and challenges related to the odd shape
of the element in 2D exist here also. So the best way to overcome these
issues and challenges is to take advantage of the concept of isoparamet-
ric elements for shape function development and Gauss quadrature for
numerical integration, which we discuss in later chapters.

7.4 Types of 3D Scalar Field Problems

In a similar manner, Equation 7.8 is developed for a general-case scalar field
problem in 3D space. The discussions in Section 7.2 can be extended to other
scalar field 3D situations. That is, with proper substitutions and replacements
of variables and constants, we can use Equation 7.8 to solve all scalar field
problems, including the laminate flow, transport in porous media, and electric
problems in 3D.

7.5 Exercises

1. For the 2D rectangular element shown in Figure 7.5, determine its
elementary [Ke] matrix. Assume that the element has a uniform
thickness of t = 0.01 and a constant kx = ky = k = 100 (ignore the
units for these values).
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1 (0, 0) 2 (1, 0)

3 (1, 1)
4 (0, 1)

y

x

FIGURE 7.5
A 2D rectangular element with a uniform thickness.

2. For the 2D rectangular element shown in Figure 7.6, determine its
elementary [Ke] matrix. Assume that the element has a uniform
thickness of t = 0.01 and a constant kx = ky = k = 100 (ignore the
units for these values).

3. For the 2D triangular element shown in Figure 7.7, determine its
elementary [Ke] matrix. Assume that the element has a uniform
thickness of t = 0.01 and a constant kx = ky = k = 100 (ignore the
units for these values).

4. For the 2D triangular element shown in Figure 7.8, determine its
elementary [Ke] matrix. Assume that the element has a uniform

1 (0, 0) 2 (1.5, 0)

3 (1.5, 1)
4 (0, 1)

y

x

FIGURE 7.6
A 2D rectangular element with a uniform thickness.

1 (0, 0) 2 (1.5, 0)

3 (1.5, 1)
y

x

FIGURE 7.7
A 2D triangular element with a uniform thickness.
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thickness of t = 0.01 and a constant kx = ky = k = 100 (ignore the
units for these values).

5. For the 3D hexahedral element shown in Figure 7.9, determine its
elementary [Ke] matrix. Assume that the element has a constant
kx = ky = kz = k = 1000 (ignore the units for these values).

1 (0, 0) 2 (1.5, 0)

3 (0, 1)

y

x

FIGURE 7.8
A 2D triangular element with a uniform thickness.

1 (0, 0, 0)

2 (2, 0, 0)

3 (2, 2, 0)

4 (0, 2, 0)5 (0, 0, 1)

6 (2, 0, 1)

7 (2, 2, 1)

8 (0, 2, 1)

x

z y

FIGURE 7.9
A 3D hexahedral element.

1 (0, 0, 0)

2 (2, 0, 0)

3 (2, 1, 0)

4 (0, 1, 0)

5 (0, 0, 1)

6 (2, 0, 1)

7 (2, 1, 1)

8 (0, 1, 1)

x

z

y

FIGURE 7.10
A 3D hexahedral element.
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1 (0, 0, 0)

2 (1, 0, 0)

3 (0, 2, 0)

4 (0, 0, 2)

x

y

z

z = 2 (1 − x − y/2)

y = 2 − 2x

FIGURE 7.11
A 3D tetrahedral element.

6. For the 3D hexahedral element shown in Figure 7.10, determine its
elementary [Ke] matrix. Assume that the element has a constant
kx = ky = kz = k = 1000 (ignore the units for these values).

7. For the 3D tetrahedral element shown in Figure 7.11, determine its
elementary [Ke] matrix. Assume that the element has a constant
kx = ky = kz = k = 1000 (ignore the units for these values).
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8

Vector Field Problems in
Higher Dimensions

For vector field problems, we concentrate our discussion on problems of solid
mechanics. Due to the directional dependence of the field quantity, the finite
element method (FEM) formulations developed for scalar field problems can-
not be used. Moreover, although we have seen twice the partial differential
equations (PDEs) and FEM formulations for mechanical structures, such as
bars and beams, because we have neglected the Poisson’s ratio effect and
material anisotropy, these PDEs and FEM formulations cannot be applied to
problems of solid mechanics either. Thus, in this chapter we develop PDEs
of equilibrium for solid mechanical structures and the corresponding FEM
formulations in three-dimensional (3D) and two-dimensional (2D) spaces.

8.1 3D Solid Mechanics Problems

8.1.1 Free-body diagram and PDEs of equilibrium

We begin by considering a free-body diagram of an arbitrary, infinitesimal
cube, shown in Figure 8.1, with dimensions dx, dy, and dz along the three
Cartesian axes, x, y, and z, respectively. Each surface of the cube has three
stress components as marked in the figure. Thus, we write the following
three stress vectors:

Sx = σx
�i + τxy

�j + τxz
�k

Sy = τyx
�i + σy

�j + τyz
�k

Sz = τzx
�i + τzy

�j + σz
�k

where τxy = τyx, τxz = τzx, and τyz = τzy. To establish the force equilibrium
for this infinitesimal cube, we calculate the net force in each of the three axes
by multiplying the differential stresses in the opposite surfaces as

∑
Fx :
(

σx +
∂σx

∂x
dx− σx

)
dydz +

(
τxy +

∂τxy

∂y
dy − τxy

)
dxdz

+
(

τxz +
∂τxz

∂z
dz − τxz

)
dxdy + fxdxdydz

181
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A

B

C

σxτxz

τyx
τxy

τyz

τzy

τzx

τzy+
∂τzy

∂z dz τzx +
∂τzx

∂z dz

τyz +
∂τyz

∂y dy

τyx +
∂τyx

∂y dy
τxy+

∂τxy

∂x dx

τxz+
∂τxz

∂x dx

σz+
∂σz

∂z
dz

σy

σz

σy

+
∂σy

∂y dy

σx+
∂σx
∂x dx

x

z

y

nTz

Tx Ty

FIGURE 8.1
A 3D free-body diagram in Cartesian coordinates.

∑
Fy :
(

σy +
∂σy

∂y
dy − σy

)
dxdz +

(
τxy +

∂τxy

∂x
dx− τxy

)
dydz

+
(

τyz +
∂τyz

∂z
dz − τyz

)
dxdy + fydxdydz

∑
Fz :
(

σz +
∂σz

∂z
dz − σz

)
dxdy +

(
τxz +

∂τxz

∂x
dx− τxz

)
dydz

+
(

τyz +
∂τyz

∂y
dy − τyz

)
dydz + fzdxdydz

where fx, fy, and fz are the three components of the volume force in Cartesian
coordinates. By considering Newton’s second law of motion, we express the
following three equilibrium equations (after multiplying 1/dxdydz on both
sides of the equations):

∑
Fx = max :

∂σx

∂x
+

∂τxy

∂y
+

∂τxz

∂z
+ fx = ρ

∂2u

∂t2∑
Fy = may :

∂τxy

∂x
+

∂σy

∂y
+

∂τyz

∂z
+ fy = ρ

∂2v

∂t2∑
Fz = maz :

∂τxz

∂x
+

∂τyz

∂y
+

∂σz

∂z
+ fz = ρ

∂2w

∂t2

(8.1)
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where ρ(= m/dxdydz) is the mass density of the material, and u, v, and w are
displacements in the x, y, and z directions, respectively, and t is time.

These are the PDEs of equilibrium in Cartesian coordinates for govern-
ing 3D solid mechanical problems. Note that if we ignore all components
except σx, we can reduce this set of equations to a one-dimensional (1D)
equation as

∂σx

∂x
+ fx = ρ

∂2u

∂t2

which is the same as the 1D hanging bar equation, Equation 3.2, after con-

sidering σx = Eεx = E
∂u

∂x
. Now we can see that the mechanical situation in

the PDE of a hanging bar is indeed much simplified.
By selecting an arbitrary plane defined by points A, B, and C, with a

normal vector of �n = nx
�i + ny

�j + nz
�k, we calculate tractions in this plane by

the projections of the three stress vectors, namely, the dot products of the
stress vectors and �n as

Tx = �n ·Sx = σxnx + τxyny + τxznz

Ty = �n ·Sy = τxynx + σyny + τyznz

Tz = �n ·Sz = τxznx + τyzny + σznz

(8.2)

8.1.2 Weighted integral of residual

We now consider a stationary (or static) condition (so the time effect is
ignored) by constructing the weighted integral of residual to Equation 8.1.
With weight functions expressed in a vector {w} = {wx wy wz}T , we write∫∫∫

V

[
wx

(
∂σx

∂x
+

∂τxy

∂y
+

∂τxz

∂z
+ fx

)
+ wy

(
∂τxy

∂x
+

∂σy

∂y
+

∂τyz

∂z
+ fy

)

+ wz

(
∂τxz

∂x
+

∂τyz

∂y
+

∂σz

∂z
+ fz

)]
dV = 0 (8.3)

By the product rule of differentiation, we can express

wx
∂σx

∂x
= −σx

∂wx

∂x
+

∂

∂x
(σxwx)

wx
∂τxy

∂y
= −τxy

∂wx

∂y
+

∂

∂y
(τxywx)

wx
∂τxz

∂z
= −τxz

∂wx

∂z
+

∂

∂z
(τxzwx)

wy
∂τxy

∂x
= −τxy

∂wy

∂x
+

∂

∂x
(τxywy)

wy
∂σy

∂y
= −σy

∂wy

∂y
+

∂

∂y
(σywy)

wy
∂τyz

∂z
= −τyz

∂wy

∂z
+

∂

∂z
(τyzwy)
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wz
∂τxz

∂x
= −τxz

∂wz

∂x
+

∂

∂x
(τxzwz)

wz
∂τyz

∂y
= −τyz

∂wz

∂y
+

∂

∂y
(τyzwz)

wz
∂σz

∂z
= −σz

∂wz

∂z
+

∂

∂z
(σzwz)

Substituting these relationships into Equation 8.3, we obtain

−
∫∫∫

V

[
σx

∂wx

∂x
+ σy

∂wy

∂y
+ σz

∂wz

∂z
+ τyz

(
∂wy

∂z
+

∂wz

∂y

)
+ τxz

(
∂wx

∂z
+

∂wz

∂x

)

+ τxy

(
∂wx

∂y
+

∂wy

∂x

)]
dV

+
∫∫∫

V

[
∂

∂x
(σxwx + τxywy + τxzwz)

+
∂

∂y
(τxywx + σywy + τyzwz)+

∂

∂z
(τxzwx + τyzwy + σzwz)

]
dV

+
∫∫∫

V

(wxfx + wyfy + wzfz)}dV = 0 (8.4)

To simplify this equation, let us introduce some new expressions. We first
express the stress and strain components in vectors as

{σ} =
{
σx σy σz τyz τxz τxy

}T and

{ε} =
{
εx εy εz γyz γxz γxy

}T
By the definition of strains, we can write the following relationships for

the strains in terms of the displacements in a matrix form:

{ε} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εx

εy

εz

γyz

γxz

γxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ux

∂x
∂uy

∂y
∂uz

∂z
∂uy

∂z
+

∂uz

∂y
∂ux

∂z
+

∂uz

∂x
∂ux

∂y
+

∂uy

∂x

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where ux, uy, and uz are displacement components in the x, y, and z directions,
respectively. Based on this matrix expression, we introduce a new differential
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operator in a matrix form:

∇s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z

0
∂

∂z

∂

∂y
∂

∂z
0

∂

∂x
∂

∂y

∂

∂x
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

or ∇T
s =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0 0 0

∂

∂z

∂

∂y

0
∂

∂y
0

∂

∂z
0

∂

∂x

0 0
∂

∂z

∂

∂y

∂

∂x
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(8.5)

Moreover, we express the displacements, volume forces, and weight
functions in vector forms as

{d} =

⎧⎨
⎩

ux

uy

uz

⎫⎬
⎭ , {f} =

⎧⎨
⎩

fx

fy

fz

⎫⎬
⎭ , {w} =

⎧⎨
⎩

wx

wy

wz

⎫⎬
⎭

Then, we can write the following matrix equations:

{ε} =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z

0
∂

∂z

∂

∂y
∂

∂z
0

∂

∂x
∂

∂y

∂

∂x
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

ux

uy

uz

⎫⎪⎪⎬
⎪⎪⎭ = ∇s{d} and ∇s{w} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂wx

∂x
∂wy

∂y
∂wz

∂z
∂wy

∂z
+

∂wz

∂y
∂wx

∂z
+

∂wz

∂x
∂wx

∂y
+

∂wy

∂x

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.6)

With the above preparation, we now go back to simplify Equation 8.4.
Using Equation 8.6 along with the stress vector expression, we simplify the
first integral into a compact matrix form as

−
∫∫∫

V

{∇s{w}}T{σ}dV
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For the second integral, first let

Fx = σxwx + τxywy + τxzwz

Fy = τxywx + σywy + τyzwz

Fz = τxzwx + τyzwy + σzwz

and then we apply the divergence theorem (see Equation 2.11 in Chapter 2)
with �n = nx

�i + ny
�j + nz

�k:

∫∫∫
V

[
∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z

]
dV =

∫∫
A

F ·�ndA =
∫∫

A

[Fxnx + Fyny + Fznz]dA

Thus, we rewrite the second integral, after regrouping and substitution of the
traction expressions, as∫∫

A

[(σxwx + τxywy + τxzwz)nx + (τxywx + σywy + τyzwz)ny

+ (τxzwx + τyzwy + σzwz)nz ]dA

=
∫∫

A

[wx(σxnx + τxyny + τxznz)+ wy(τxynx + σyny + τyznz)

+ wz(τxznx + τyzny + σznz)]dA

=
∫∫

A

[wxTx + wyTy + wzTz]dA =
∫∫

A

{w}T {T }dA+
∑

{w}T P

where P represents point loads on the boundary surfaces, if any.
The last integral in Equation 8.4 can be expressed in compact form as∫∫∫

V

(wxfx + wyfy + wzfz)dV =
∫∫∫

V

{w}T {f}dV

Putting all these together, we have∫∫∫
V

{∇s{w}}T {σ}dV =
∫∫∫

V

{w}T {f}dV +
∫∫

A

{w}T {T }dA+
∑

{w}T P

(8.7)
For any given material, stresses are related to strains according to a

generalized Hooke’s law, which can be expressed as

{σ} = [C]{ε} =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
{ε}
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where [C] is the material property matrix, with cij representing properties of
an anisotropic material. For an isotropic material (i.e., a material with the
same and homogeneous properties in all directions), [C] is a much simpler
matrix:

[C] =
E

(1 + ν)(1− 2ν)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 0.5− ν 0 0
0 0 0 0 0.5− ν 0
0 0 0 0 0 0.5− ν

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.8)

where E is Young’s modulus and ν is Poisson’s ratio of the material. With
this expression, we can write the matrix form stress–strain relationship as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σx

σy

σz

τyz

τxz

τxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
E

(1+ ν)(1− 2ν)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 0.5− ν 0 0

0 0 0 0 0.5− ν 0

0 0 0 0 0 0.5− ν

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

εx

εy

εz

γyz

γxz

γxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.9)

or an inverse strain–stress relationship as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

εx

εy

εz

γyz

γxz

γxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
1
E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σx

σy

σz

τyz

τxz

τxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.10)

8.1.3 FEM formulation

We will now develop the FEM formulation for 3D solid mechanical problems
using Equation 8.7 with an element having elementary DOF = ne. Referring
to Equations 5.32 and 5.35, we can express the three field quantities in the
x, y, and z directions in terms of the elementary shape functions and degrees
of freedom (DOF), respectively, as

ũx =
ne∑

m=1

Nmumx, ũy =
ne∑

m=1

Nmumy, ũz =
ne∑

m=1

Nmumz
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and in a matrix form as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ũx

ũy

ũz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎣
N1 0 0 N2 0 0 N3 0 0 · · ·

0 N1 0 0 N2 0 0 N3 0 · · ·

0 0 N1 0 0 N2 0 0 N3 · · ·

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1x

u1y

u1z

u2x

u2y

u2z

u3x

u3y

u3z

...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= [N ]{d0} (8.11)

The shape function matrix [N ] for a 3D vector field element with elementary
DOF = ne is a 3× 3ne matrix, and the DOF vector {do} is a 3ne × 1 vector.

By the Galerkin method, we select the shape function matrix as the weight
vector. Thus, using the following expressions,

{d} = [N ]{d0}, {w} = [N ]

along with Equation 8.6, we further express the stress–strain relationship as

{σ} = [C]{ε} = [C]∇s{d} = [C]∇s[N ]{d0}

Then, the term on the left side of Equation 8.7 can be expressed as

∫∫∫
V

{∇s{w}}T{σ}dV =
∫∫∫

V

{∇s[N ]}T [C](∇s[N ])dV {d0}

Therefore, we have the following finite element formulation for 3D solid
mechanical problems in a matrix form:

∫∫∫
V

{∇s[N ]}T [C](∇s[N ])dV {d0} =
∫∫∫

V

[N ]T {f}dV

+
∫∫

S

[N ]T {T }dS +
∑

[N ]T P

(8.12)

Similarly, the coefficient of the DOF vector {d0} is the elementary [Ke] matrix:

[Ke] =
∫∫∫

V

{∇s[N ]}T [C](∇s[N ])dV (8.13)

where [C] is given in Equation 8.8.
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8.1.4 Elementary [Ke] matrix for solid
mechanics problems

To solve the 3D vector field solid mechanics problem, we can follow the same
procedure as discussed in Chapter 7, namely, (1) find the elementary [Ke]
matrix using Equation 8.13 based on the type and order of the elements and
their corresponding shape functions, (2) assemble them into the global [K]
matrix, (3) determine the global load vector, (4) establish the global matrix
equation, [K]{D} = {P}, and (5) solve this matrix equation by applying the
matrix partition method based on the given boundary conditions to obtain
the unknown DOF. Next, we will go through an example to see how the
elementary [Ke] is developed for 3D elements for problems of solid mechanics.

Example 8.1

For the 3D hexahedral element shown in Figure 8.2, determine its ele-
mentary [Ke] matrix using Equation 8.13. Assume that the element is
made of an isotropic material with E = 200 GPa and ν = 0.3. The coor-
dinates of the nodes of the element (with units of meters) are given in
the figure.

Answer
For the hexahedral element, since the element is the same as that in
Figure 7.3, we have the same shape functions, namely,

N1 = (1− x)(2− y)(1− z)/2, N2 = x(2− y)(1− z)/2,

N3 = xy(1− z)/2, N4 = (1−x)y(1− z)/2,

N5 = (1− x)(2− y)z/2, N6 = x(2− y)z/2,

N7 = xyz/2, N8 = (1−x)yz/2

1 (0, 0, 0)
2 (1, 0, 0)

6 (1, 0, 1)

5 (0, 0, 1) 4 (0, 2, 0)

3 (1, 2, 0)

7 (1, 2, 1)

8 (0, 2, 1)

x

z
y

FIGURE 8.2
A 3D hexahedral element.
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Referring to Equation 8.11, we know that the shape function matrix
for this 8-node 3D solid mechanical element is a 3× 24 matrix in the
following form:

[N ] =

⎡
⎣N1 0 0 N2 0 0 N3 0 0 · · · N7 0 0 N8 0 0

0 N1 0 0 N2 0 0 N3 0 · · · 0 N7 0 0 N8 0
0 0 N1 0 0 N2 0 0 N3 · · · 0 0 N7 0 0 N8

⎤
⎦

With this matrix, we calculate ∇s[N ] using the expression given in
Equation 8.5:

∇s[N ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂x
0 0

∂N2

∂x
0 0 · · · ∂N7

∂x
0 0

∂N8

∂x
0 0

0
∂N1

∂y
0 0

∂N2

∂y
0 · · · 0

∂N7

∂y
0 0

∂N8

∂y
0

0 0
∂N1

∂z
0 0

∂N2

∂z
· · · 0 0

∂N7

∂z
0 0

∂N8

∂z

0
∂N1

∂z

∂N1

∂y
0

∂N2

∂z

∂N2

∂y
· · · 0

∂N7

∂z

∂N7

∂y
0

∂N8

∂z

∂N8

∂y

∂N1

∂z
0

∂N1

∂x

∂N2

∂z
0

∂N2

∂x
· · · ∂N7

∂z
0

∂N7

∂x

∂N8

∂z
0

∂N8

∂x

∂N1

∂y

∂N1

∂x
0

∂N2

∂y

∂N2

∂x
0 · · · ∂N7

∂y

∂N7

∂x
0

∂N8

∂y

∂N8

∂x
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

∂N1

∂x
= −(2− y)(1− z)/2,

∂N2

∂x
= (2− y)(1− z)/2,

∂N3

∂x
= y(1− z)/2

∂N4

∂x
= −y(1− z)/2,

∂N5

∂x
= −(2− y)z/2,

∂N6

∂x
= (2− y)z/2,

∂N7

∂x
= yz/2

∂N8

∂x
= −yz/2,

∂N1

∂y
= −(1−x)(1− z)/2,

∂N2

∂y
= −x(1− z)/2

∂N3

∂y
= x(1− z)/2,

∂N4

∂y
= −(1− x)(1− z)/2,

∂N5

∂y
= −(1− x)z/2

∂N6

∂y
= −xz/2,

∂N7

∂y
= xz/2,

∂N8

∂y
= (1− x)z/2

∂N1

∂z
= −(1−x)(2− y)/2,

∂N2

∂z
= −x(2− y)/2,

∂N3

∂z
= −xy/2,

∂N4

∂z
= (1−x)y/2

∂N5

∂z
= (1−x)(2− y)/2,

∂N6

∂z
= x(2− y)/2,

∂N7

∂z
= xy/2,

∂N8

∂z
= (1−x)y/2
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in this 6× 24 matrix. Moreover, using Equation 8.8 along with E = 200
GPa and ν = 0.3, we calculate the material property matrix:

[C] = 1011

⎡
⎢⎢⎢⎢⎢⎢⎣

2.69 1.15 1.15 0 0 0
1.15 2.69 1.15 0 0 0
1.15 1.15 2.69 0 0 0
0 0 0 0.77 0 0
0 0 0 0 0.77 0
0 0 0 0 0 0.77

⎤
⎥⎥⎥⎥⎥⎥⎦

Putting all these into Equation 8.13 and integrating it over the hex-
ahedral volume defined by the hexahedral element, along with dV =
dxdydz, we obtain the following 24× 24 elementary [Ke] matrix for an
8-node 3D solid mechanical element:

[Ke] =

∫ 1

x=0

∫ 2

y=0

∫ 1

z=0

{∇s[N ]}T [C] {∇s[N ]} dzdydx
24× 6 6× 6 6× 24

= 1010

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

8.12 1.60 3.21 · · · −0.16 −0.32
1.60 4.91 1.60 · · · −1.18 −1.60
3.21 1.60 8.12 · · · −1.60 −2.78

...
...

...
. . .

...
...

−0.16 −1.18 −1.60 · · · 4.91 1.60
−0.32 −1.60 −2.78 · · · 1.60 8.12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

24×24

Example 8.2

For the 3D tetrahedral element shown in Figure 8.3, determine its ele-
mentary [Ke] matrix using Equation 8.13. Assume that the element is
made of an isotropic material with E = 200 GPa and ν = 0.3. The coor-
dinates of the nodes of the elements (with units of meters) are given in
the figure.

1 (0, 0, 0)

2 (1, 0, 0)

3 (0, 2, 0)

4 (0, 0, 1)

x

y

z
z =1 − x − y/2

y = 2 − 2x

FIGURE 8.3
A three-dimensional tetrahedral element.
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Answer
For the tetrahedral element, since the element is the same as that in
Figure 7.4, we have the same shape functions as

N1 = 1−x− y/2− z, N2 = x, N3 = y/2, N4 = z

With these expressions, we calculate the 6× 12 ∇s[N ]:

∇s[N ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 0 1 0 0 0 0 0 0 0 0
0 −0.5 0 0 0 0 0 0.5 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 1
0 −1 −0.5 0 0 0 0 0 0.5 0 1 0
−1 0 −1 0 0 1 0 0 0 1 0 0
−0.5 −1 0 0 1 0 0.5 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Plugging this expression and the [C] matrix into Equation 8.13 and
integrating it over the tetrahedral volume defined by the element, we
obtain the following 12× 12 elementary [Ke] matrix for a 4-node 3D
solid mechanical element:

[Ke] =

∫ 1

x=0

∫ 2−2x

y=0

∫ 1−x−y/2

z=0

{∇s[N ]}T [C] {∇s[N ]} dzdydx
12× 6 6× 6 6× 12

= 1010

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

12.18 3.21 6.41 · · · −0 −3.85
3.21 7.37 3.21 · · · −2.56 −1.92
6.41 3.21 12.18 · · · −1.28 −8.97

...
...

...
. . .

...
...

0 −2.56 −1.28 · · · 2.56 0
−3.85 −1.92 −8.97 · · · 0 8.97

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

12×12

By comparing these two examples with Examples 7.3 and 7.4, we can
see that although the general procedure to calculate the 3D elementary [Ke]
matrix for a solid mechanics (vector field) problem is similar to that for a
scalar field problem, there exist several distinct differences.

1. The [N ] matrix is different. For a scalar field 3D problem, the [N ]
matrix is a one-row matrix, but for a 3D solid mechanics problem,
it is a three-row matrix.

2. The way to calculate the shape function derivative is different. For
scalar field, we calculate ∂[N ]/∂x, ∂[N ]/∂y, and ∂[N ]/∂z directly,
but for solid mechanics, we apply the ∇s operator to determine
∇s[N ].

3. The material property is handled differently in the actual [Ke] for-
mula. For scalar field, the material properties of a homogeneous
domain can be represented by constants, but for solid mechanics,
even a homogeneous isotropic material, its properties need to be
expressed in a 6× 6 [C] matrix due to the Poisson’s ratio effect.
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Aside from these differences, these is something in common in both situa-
tions, namely, the difficulty in performing integration when elements have odd
shapes and varying shape function expressions due to their different locations.
This again points to the need to have a unified way to write shape func-
tions and perform numerical integration based on the concept of isoparametric
elements and Gauss quadrature.

8.2 2D Solid Mechanics Problems

There are situations where a 3D solid mechanics problem can be simplified
as a 2D problem. For example, when a mechanical structure is thin in its
third dimension (say, along the z axis) in comparison with the other two
dimensions, and if the loading and deformations of the structure occur only
within the plane of the sheet structure, the stresses in the third dimension,
σz, τyz, τxz, are negligible. Another example is that when the structure is
very long in its longitudinal z direction compared with the x, y dimensions,
the loading, deformations, and even the cross section area of this structure
remain unchanged over the entire longitudinal length. In this case, the strains
in the third dimension, εz, γyz, γxz, are negligible. We call the first situation
plane stress and the second one plane strain. Of course, unlike scalar field
problems, mechanical problems are vector field problems; thus, reducing a 3D
vector field problem to a 2D one cannot be done by simply neglecting the
third dimension.

8.2.1 Plane stress situation

q1

q2

F1

σz= τyz= τxz= 0

F2

x

y

z

FIGURE 8.4
Plane stress situation.

When a structure is very thin in the
z direction relative to the dimensions
along the x, y directions, we may
regard it as a 2D structure.

If the loads and constraints sub-
jected to around the edge of the 2D
structure are within the plane of the
structure (e.g., the x-y plane) and
distributed uniformly over the thick-
ness of this thin 2D structure, the
resulting deformations are expected
to occur within the same plane (note
that in this situation, out-of-plane
deformations are considered negligi-
ble). Then, the right and left sur-
faces of this thin structure become
stress-free, as shown in Figure 8.4.
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Thus, we have the following on the two free surfaces:

σz = τyz = τxz = 0

Since the 2D structure is very thin, it is reasonable to assume that all these
stress components are also negligible (or zero) throughout the 2D structure.
This situation is commonly referred to as the plane stress situation. In other
words, a plane stress situation is one in which only three of the six stress
components exist, and these existing stress components all appear within a
single plane (e.g., the x-y plane in the case depicted in Figure 8.4).

For isotropic materials, by applying these zero stress expressions to
Equation 8.10, we express the reduced strain–stress relationship for a 2D
plane stress situation as⎧⎪⎨

⎪⎩
εx

εy

γxy

⎫⎪⎬
⎪⎭ =

1
E

⎡
⎢⎣

1 −ν 0
−ν 1 0
0 0 2(1 + ν)

⎤
⎥⎦
⎧⎪⎨
⎪⎩

σx

σy

τxy

⎫⎪⎬
⎪⎭

which, after inversing, can be expressed in an equivalent stress–strain
relationship as ⎧⎪⎨

⎪⎩
σx

σy

τxy

⎫⎪⎬
⎪⎭ =

E

(1− ν2)

⎡
⎢⎣

1 ν 0
ν 1 0
0 0 (1− ν)/2

⎤
⎥⎦
⎧⎪⎨
⎪⎩

εx

εy

γxy

⎫⎪⎬
⎪⎭

In the plane stress situation depicted in Figure 8.4, the fact that these three
stress components are zero does not automatically make the corresponding
strains zero. From equation 8.10, we find that

εz = −ν(σx + σy)/E, γyz = γxz = 0

Moreover, referring to the reduced stress–strain relationship, we express the
reduced material property matrix [C] for a 2D plane stress solid mechanics
problem as

[C] =
E

(1− ν2)

⎡
⎢⎣
1 ν 0
ν 1 0
0 0 (1− ν)/2

⎤
⎥⎦ (8.14)

8.2.2 Plane strain situation

As defined in Chapter 3, strains measure the relative change in length, that is,
the change in length (either elongation or shortening) of a structure divided
by the original length of the structure.
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z

y

x

q1

q2

Єz= γyz= γxz= 0

FIGURE 8.5
Plane strain situation.

When a structure with a con-
stant cross section area is very long
in its longitudinal direction (say,
the z direction) compared with the
x, y dimensions, such as the levee
structure shown in Figure 8.5, the
z-related strains (e.g., εz, γyz, and
γxz) become negligible because any
finite change in length divided by
a very large length will make these
strains negligible. Under such a con-
dition, when the loading and con-
straints are perpendicular to the
longitudinal axis and they do not

vary along the length, this structural problem can be simplified by consid-
ering a thin section perpendicular to the longitudinal axis. For instance, the
shaded section in the figure is one such section. The resulting problem is a 2D
plane strain problem due to

εz = γyz = γxz = 0

In other words, a plane strain situation is one in which only three of the
six strain components exist, and these existing stress components all appear
within a single plane (e.g., the x-y plane in the case depicted in Figure 8.5).

For isotropic materials, by applying these zero-strain expressions to
Equation 8.9, we reduce it to a 2D stress–strain relationship for a plane strain
situation:

⎧⎪⎨
⎪⎩

σx

σy

τxy

⎫⎪⎬
⎪⎭ =

E

(1 + ν)(1− 2ν)

⎡
⎢⎣
1− ν ν 0

ν 1− ν 0
0 0 0.5− ν

⎤
⎥⎦
⎧⎪⎨
⎪⎩

εx

εy

γxy

⎫⎪⎬
⎪⎭

which, after inversing, yields the strain–stress relationship for a plane strain
problem: ⎧⎪⎨

⎪⎩
εx

εy

γxy

⎫⎪⎬
⎪⎭ =

(1 + ν)
E

⎡
⎢⎣

1− ν −ν 0
−ν 1− ν 0
0 0 2

⎤
⎥⎦
⎧⎪⎨
⎪⎩

σx

σy

τxy

⎫⎪⎬
⎪⎭

Similarly, of the three stress components corresponding to the three zero
strains, only the shear components are zero and the normal stress is not:

σz = Eν(εx + εy)/[(1 + ν)(1− 2ν), τyz = τxz = 0
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Referring to the reduced stress–strain relationship, we express the reduced
material property matrix [C] for a 2D plane strain solid mechanics problem as

[C] =
E

(1 + ν)(1− 2ν)

⎡
⎢⎣

1− ν ν 0
ν 1− ν 0
0 0 0.5− ν

⎤
⎥⎦ (8.15)

8.2.3 FEM formulation for 2D solid mechanics

For a 2D solid mechanics problem, the DOF, force, and weight vectors can be
reduced to

{d} =
{

ux

uy

}
, {f} =

{
fx

fy

}
, {w} =

{
wx

wy

}

and the stress and strain vectors reduced to

{σ} =

⎧⎪⎪⎨
⎪⎪⎩

σx

σy

τxy

⎫⎪⎪⎬
⎪⎪⎭ , {ε} =

⎧⎪⎪⎨
⎪⎪⎩

εx

εy

γxy

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ux

∂x
∂uy

∂y
∂ux

∂y
+

∂uy

∂x

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= ∇s2{d}

where ∇s2 is the 2D reduced differential operator matrix, which is expressed as

∇s2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x

⎤
⎥⎥⎥⎥⎥⎥⎦

or ∇T
s2 =

⎡
⎢⎢⎣

∂

∂x
0

∂

∂y

0
∂

∂y

∂

∂x

⎤
⎥⎥⎦ (8.16)

With the above information, the PDEs given in Equation 8.1 can be
reduced to

∂σx

∂x
+

∂τxy

∂y
+ fx = 0

∂τxy

∂x
+

∂σy

∂y
+ fy = 0

and the tractions in Equation 8.2 reduced to

σxnx + τxyny = Tx

τxynx + σyny = Ty
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Thus, Equation 8.4 can be simplified to its 2D counterpart as

−
∫∫

A

[
σx

∂wx

∂x
+ σy

∂wy

∂y
+ τxy

(
∂wx

∂y
+

∂wy

∂x

)]
tdA

+
∫∫

A

[
∂

∂x
(σxwx + τxywy)+

∂

∂y
(τxywx + σywy)

]
tdA

+
∫∫

A

(wxfx + wyfy)}tdA = 0

(8.17)

where t is the thickness of the 2D structure. By applying the ∇s2 operator
to the first integral and the divergence theorem to the second integral, and
expressing the equation in a compact form, we obtain

∫∫
A

{∇s2{w}}T {σ}tdA =
∫∫

A

{w}T {f}tdA+
∫

L

{w}T {T }tdL +
∑

{w}T P

(8.18)

For this 2D solid mechanics problem, referring to Equations 5.32 and 5.34,
we can approximate the two field quantities in the x, y directions in terms of
the elementary shape functions and DOF vector as

ũx =
ne∑

m=1

Nmumx, ũy =
ne∑

m=1

Nmumy

or in a matrix form as

⎧⎨
⎩

ũ

ṽ

⎫⎬
⎭ =

⎡
⎣N1 0 N2 0 N3 0 · · ·

0 N1 0 N2 0 N3 · · ·

⎤
⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1x

u1y

u2x

u2y

u3x

u3y

...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= [N ]{d0} (8.19)

The shape function matrix [N ] for a 2D solid mechanics element with ele-
mentary DOF = ne is a 2× 2ne matrix and the DOF vector {do} is a 2ne × 1
vector.

By the Galerkin method, we select the shape function matrix as the weight
vector. Thus, using the following expressions,

{d} = [N ]{d0}, {w} = [N ]

we express

{σ} = [C]{ε} = [C]∇s2{d} = [C]∇s2[N ]{d0}
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Then, by substituting these relationships into Equation 8.18, we obtain the
following finite element formulation for a 2D solid mechanical problem,∫∫

A

{∇s2[N ]}T [C](∇s2[N ])tdA{d0} =
∫∫

A

[N ]T {f}tdA

+
∫

L

[N ]T {T }tdL +
∑

[N ]T P

(8.20)

along with the elementary [Ke] matrix:

[Ke] =
∫∫

A

{∇s2[N ]}T [C](∇s2[N ])tdA (8.21)

Note that in calculating the [Ke] matrix for a 2D solid mechanics problem
using this equation, when the problem is a plane stress problem, we need to
use the [C] matrix given in Equation 8.14, and when the problem is a plane
strain one, we will use the [C] matrix given in Equation 8.15.

Example 8.3

For the 2D rectangular element shown in Figure 8.6, determine its ele-
mentary [Ke] matrix using Equation 8.21. Assume that the element is
made of an isotropic material with E = 200 GPa and ν = 0.3 and has a
uniform thickness of t = 0.005 m. The coordinates of the nodes of the
element (with units of meters) are given in the figure.

Answer
For the rectangular element, since this element is the same as the one
in Figure 7.1, we have the same set of shape functions:

N1 = (1− 5x)(1− 10y), N2 = 5x(1− 10y), N3 = 50xy, N4 = 10(1− 5x)y

Referring to Equation 8.19, we know that the shape function matrix
for this 4-node 2D solid mechanical element is a 2× 8 matrix in the
following form:

[N ] =

[
N1 0 N2 0 N3 0 N4 0
0 N1 0 N2 0 N3 0 N4

]

1 (0.0, 0.0) 2 (0.2, 0.0)

3 (0.2, 0.1)4 (0.0, 0.1)
y

x

FIGURE 8.6
A 2D rectangular element with a uniform thickness.
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With this matrix, we calculate the 3× 8∇s2[N ] matrix:

∇s2[N ] =

⎡
⎣ 50y − 5 0 5− 50y 0 50y 0 −50y 0

0 50x− 10 0 −50x 0 50x 0 10− 50x
50x− 10 50y − 5 −50x 5− 50y 50x 50y 10− 50x −50y

⎤
⎦

Moreover, using Equations 8.14 and 8.15, along with E = 200 GPa
and ν = 0.3, we calculate the material property matrix,

[C] = 1011 ×
⎡
⎣2.20 0.66 0
0.66 2.20 0
0 0 0.77

⎤
⎦

for a plane stress problem and

[C] = 1011 ×
⎡
⎣2.69 1.15 0
1.15 2.69 0
0 0 0.77

⎤
⎦

for a plane strain problem.
Putting all these into Equation 8.21, along with t = 0.005 and dA =

dxdy, and integrating it over the rectangular area of the element, we
obtain the following 8× 8 elementary [Ke] matrix for the rectangular
element for plane stress solid mechanics problems,

[Ke] =

∫ 2

x=0

∫ 1

y=0

{∇s2[N ]}T [C] {∇s2[N ]} tdydx
8× 3 3× 3 3× 8

= 108 ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.396 1.786 −0.549 −0.137 −2.198 −1.786 −1.648 0.137
1.786 7.967 0.137 3.022 −1.786 −3.984 −0.137 −7.005
−0.549 0.137 4.396 −1.786 −1.648 −0.137 −2.198 1.786
−0.137 3.022 −1.786 7.967 0.137 −7.005 1.786 −3.984
−2.198 −1.786 −1.648 0.137 4.396 1.786 −0.549 −0.137
−1.786 −3.984 −0.137 −7.005 1.786 7.967 0.137 3.022
−1.648 −0.137 −2.198 1.786 −0.549 0.137 4.396 −1.786
0.137 −7.005 1.786 −3.984 −0.137 3.022 −1.786 7.967

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the following 8× 8 elementary [Ke] matrix for the rectangular
element for plane strain solid mechanics problems:

[Ke] = 108 ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.808 2.404 −0.962 0.481 −2.404 −2.404 −1.442 −0.481
2.404 9.615 −0.481 3.846 −2.404 −4.808 0.481 −8.654
−0.962 −0.481 4.808 −2.404 −1.442 0.481 −2.404 2.404
0.481 3.846 −2.404 9.615 −0.481 −8.654 2.404 −4.808
−2.404 −2.404 −1.442 −0.481 4.808 2.404 −0.962 0.481
−2.404 −4.808 0.481 −8.654 2.404 9.615 −0.481 3.846
−1.442 0.481 −2.404 2.404 −0.962 −0.481 4.808 −2.404
−0.481 −8.654 2.404 −4.808 0.481 3.846 −2.404 9.615

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Example 8.4

For the 2D triangular element shown in Figure 8.7, determine its ele-
mentary [Ke] matrix using Equation 8.21. Assume that the element is
made of an isotropic material with E = 200 GPa and ν = 0.3 and has a
uniform thickness of t = 0.005 m. The coordinates of the nodes of the
element (with units of meters) are given in the figure.

Answer
For the triangular element, since this element is the same as the one in
Figure 7.2, we have the same set of shape functions as

N1 = 1− 5x, N2 = 5x− 10y, N3 = 10y

With these expressions, we calculate the 3× 6 ∇s2[N ] matrix:

∇s[N ] =

⎡
⎣−5 0 5 0 0 0

0 0 0 −10 0 10
0 −5 −10 5 10 0

⎤
⎦

Plugging this expression, along with t = 0.005 and the [C] matrix,
into Equation 8.21 and integrating it over the triangular area of the
element, we obtain the following 6× 6 elementary [Ke] matrix for the
triangular element for plane stress solid mechanics problems,

[Ke] =

∫ 2

x=0

∫ 0.5x

y=0

{∇s2[N ]}T [C] {∇s2[N ]} tdydx
6× 3 3× 3 3× 6

= 109 ×

⎡
⎢⎢⎢⎢⎢⎢⎣

2.747 0.000 −2.747 1.648 0.000 −1.648
0.000 0.962 1.923 −0.962 −1.923 0.000
−2.747 1.923 6.593 −3.571 −3.846 1.648
1.648 −0.962 −3.571 11.951 1.923 −10.989
0.000 −1.923 −3.846 1.923 3.846 0.000
−1.648 0.000 1.648 −10.989 0.000 10.989

⎤
⎥⎥⎥⎥⎥⎥⎦

1 (0.0, 0.0) 2 (0.2, 0.0)

3 (0.2, 0.1)

y = 0.5x

y

x

FIGURE 8.7
A 2D triangular element with a uniform thickness.
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and the following 6× 6 elementary [Ke] matrix for the triangular element
for plane strain solid mechanics problems:

[Ke] = 109 ×

⎡
⎢⎢⎢⎢⎢⎢⎣

3.365 0.000 −3.365 2.885 0.000 −2.885
0.000 0.962 1.923 −0.962 −1.923 0.000
−3.365 1.923 7.212 −4.808 −3.846 2.885
2.885 −0.962 −4.808 14.423 1.923 −13.462
0.000 −1.923 −3.846 1.923 3.846 0.000
−2.885 0.000 2.885 −13.462 0.000 13.462

⎤
⎥⎥⎥⎥⎥⎥⎦

From Examples 8.3 and 8.4, we note that the elementary [Ke] matrix for
a plane stress situation is different from that for a plane strain situation.
Quantitatively, the plane strain results, on average, are higher than the plane
stress results. Thus, it is important to know when to perform which analysis,
as the unintended differences may lead to serious consequences.

8.3 Exercises

1. For the 3D hexahedral element shown in Figure 8.8, deter-
mine its elementary [Ke] matrix following the steps discussed in
Example 8.1. Assume that the element is made of an isotropic mate-
rial with E = 200 GPa and ν = 0.3. The coordinates of the nodes
of the elements (with units of centimeters) are given in the figure.

2. For the 3D hexahedral element shown in Figure 8.9, deter-
mine its elementary [Ke] matrix following the steps discussed in
Example 8.1. Assume that the element is made of an isotropic
material with E = 200 GPa and ν = 0.3. The coordinates of the
nodes of the elements (with units of centimeters) are given in the
figure.

1 (0, 0, 0)

2 (2, 0, 0)

3 (2, 2, 0)

4 (0, 2, 0)5 (0, 0, 1)

6 (2, 0, 1)

7 (2, 2, 1)

8 (0, 2, 1)

x

z
y

FIGURE 8.8
A 3D hexahedral element.
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1 (0, 0, 0)

2 (2, 0, 0)

3 (2, 1, 0)

4 (0, 1, 0)

5 (0, 0, 1)

6 (2, 0, 1)

7 (2, 1, 1)

8 (0, 1, 1)

x

z

y

FIGURE 8.9
A 3D hexahedral element.

1 (0, 0, 0)

2 (1, 0, 0)

3 (0, 2, 0)

4 (0, 0, 2)

x

y

z

z = 2(1 − x − y/2)

y = 2 − 2x

FIGURE 8.10
A 3D tetrahedral element.

3. For the 3D tetrahedral element shown in Figure 8.10, deter-
mine its elementary [Ke] matrix following the steps discussed in
Example 8.1. Assume that the element is made of an isotropic mate-
rial with E = 200 GPa and ν = 0.3. The coordinates of the nodes
of the elements (with units of centimeters) are given in the figure.

4. In analyzing a thin structural problem with no out-of-plane stresses
or displacements, an engineer confidently simplified it to a 2D prob-
lem and employed a finite element software to perform the analysis.
Without the engineer’s notice, the software has plane strain as
the default setting for 2D structural problems. Use the knowledge
you have learned in this chapter to describe the problem that the
engineer’s negligence has caused. Can you be more quantitative in
estimating the errors in the results?
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5. For the 2D rectangular element shown in Figure 8.11, determine its
elementary [Ke] matrix for both the plane stress and plane strain
situations following the steps discussed in Example 8.2. Assume that
the element is made of an isotropic material with E = 210 GPa and
ν = 0.33 and has a uniform thickness of t = 0.1 cm. The coordinates
of the nodes of the elements (with units of centimeters) are given
in the figure.

6. For the 2D rectangular element shown in Figure 8.12, determine its
elementary [Ke] matrix for both the plane stress and plane strain
situations following the steps discussed in Example 8.2. Assume that
the element is made of an isotropic material with E = 210 GPa and
ν = 0.33 and has a uniform thickness of t = 0.1 cm. The coordinates
of the nodes of the elements (with units of centimeters) are given
in the figure.

7. For the 2D triangular element shown in Figure 8.13, determine its
elementary [Ke] matrix for both the plane stress and plane strain
situations following the steps discussed in Example 8.2. Assume that
the element is made of an isotropic material with E = 210 GPa and
ν = 0.33 and has a uniform thickness of t = 0.1 cm. The coordinates

1 (0, 0) 2 (1, 0)

3 (1, 1)
4 (0, 1)

y

x

FIGURE 8.11
A 2D rectangular element with a uniform thickness.

1 (0, 0) 2 (1.5, 0)

3 (1.5, 1)
4 (0, 1)

y

x

FIGURE 8.12
A 2D rectangular element with a uniform thickness.
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1 (0, 0) 2 (1.5, 0)

3 (1.5, 1)
y

x

FIGURE 8.13
A 2D triangular element with a uniform thickness.

1 (0, 0) 2 (1.5, 0)

3 (0, 1)

y

x

FIGURE 8.14
A 2D triangular element with a uniform thickness.

of the nodes of the elements (with units of centimeters) are given
in the figure.

8. For the 2D triangular element shown in Figure 8.14, determine its
elementary [Ke] matrix for both the plane stress and plane strain
situations following the steps discussed in Example 8.2. Assume that
the element is made of an isotropic material with E = 210 GPa and
ν = 0.33 and has a uniform thickness of t = 0.1 cm. The coordinates
of the nodes of the elements (with units of centimeters) are given
in the figure.
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9

Axisymmetric Scalar and Vector
Field Problems

When a structure can be formed by rotating a section with respect to an axis,
such a structure is said to have axial symmetric geometry. Sometimes, we call
it axisymmetric structure, for short. For an axisymmetric structure, when its
loading and constraints also have the same axial symmetric characteristic, we
can simplify the analysis of the structure by considering a radial section of
the structure. Axisymmetry can occur in both scalar field problems and vector
field problems. Because of some major differences in scalar field and vector
field problems, we discuss their finite element method (FEM) formulations
separately in this chapter.

9.1 Axisymmetric Scalar Field Problems

r

θ

z

FIGURE 9.1
Axisymmetric situation.

When the geometry of a domain and the
loading and constraint conditions are all sym-
metric about an axis, say the z axis, as shown
in Figure 9.1, it is often sufficient to analyze
the problem as axisymmetric by isolating a
2D radial section (e.g., the shaded section in
Figure 9.1). In this section, we learn how to
set up the FEM formulation for scalar field
problems that have the axisymmetric char-
acteristic. For scalar field problems, we are
often concerned about one degree of freedom
(DOF) per node, such as temperature in a
heat transfer or conduction problem, concen-

tration of a substance in a mass transport problem, or potential in an electrical
problem.

9.1.1 PDE in cylindrical coordinates

Before we develop the finite element formulation for an axisymmetric situa-
tion, let us first express the ∇ operator and the divergence of a field in a 3D

205
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cylindrical coordinate system:

∇ =
∂

∂r
�ar +

1
r

∂

∂θ
�aθ +

∂

∂z
�az

∇·F =
1
r

∂(rFr)
∂r

+
1
r

∂Fθ

∂θ
+

∂Fz

∂z

Recall that the governing partial differential equation (PDE) for 3D scalar
field problems in Cartesian coordinates (x, y, z) can be expressed as

∇· [k∇u]+ g = 0

we now rewrite this PDE in cylindrical coordinates (r, θ, z). First, by using
the above ∇ and divergence expressions and assuming an orthotropic material
property, we write

k∇u = kr
∂u

∂r
�ar +

kθ

r

∂u

∂θ
�aθ + kz

∂u

∂z
�az

and

∇· [k∇u] =
1
r

∂

∂r

(
rkr

∂u

∂r

)
+

1
r

∂

∂θ

(
kθ

r

∂u

∂θ

)
+

∂

∂z

(
kz

∂u

∂z

)

With this expression, we rewrite the PDE in Cartesian coordinates as one in
cylindrical coordinates:

1
r

∂

∂r

(
rkr

∂u

∂r

)
+

1
r

∂

∂θ

(
kθ

r

∂

∂θ

)
+

∂

∂z

(
kz

∂u

∂z

)
+ g = 0

9.1.2 Axisymmetry and FEM formulation

For an axisymmetric problem, the field quantity u does not change with θ;
thus, the above PDE is simplified to a 2D equation:

1
r

∂

∂r

(
rkr

∂u

∂r

)
+

∂

∂z

(
kz

∂u

∂z

)
+ g = 0 (9.1)

where u = u(r, z) represents a 2D field quantity. This means that an axisym-
metric problem can be equivalently dealt with by considering a 2D radial
section (e.g., the shaded section in Figure 9.1) and solving it as a 2D problem.

Let ũ(r, z) be an approximate solution; we write the following residual:

R =
1
r

∂

∂r

(
rkr

∂ũ

∂r

)
+

∂

∂z

(
kz

∂ũ

∂z

)
+ g
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Considering the 2D section has an area of S, we construct the following
weighted integral by introducing a set of weight functions w(x, y):

∫∫∫
V

wRdV =
∫ 2π

0

dθ

∫∫
A

wR rdA

= 2π

∫∫
A

{
w

r

∂

∂r

(
rkr

∂ũ

∂r

)
+ w

∂

∂z

(
kz

∂ũ

∂z

)
+ wg

}
rdA = 0

By the product rule of differentiation, we have

∂

∂r

[
w

(
rkr

∂ũ

∂r

)]
= w

∂

∂r

(
rkr

∂ũ

∂r

)
+

∂w

∂r

(
rkr

∂ũ

∂r

)

∂

∂z

[
w

(
kz

∂ũ

∂z

)]
= w

∂

∂z

(
kz

∂ũ

∂z

)
+

∂w

∂z

(
kz

∂ũ

∂z

)

Substituting these relationships into the above equation and eliminating the
constant (2π), we arrive at

∫∫
A

[
∂w

∂r

(
kr

∂ũ

∂r

)
+

∂w

∂z

(
kz

∂ũ

∂z

)]
rdA

=
∫∫

A

(
1
r

∂

∂r

[
w

(
rkr

∂ũ

∂r

)]
+

∂

∂z

[
w

(
kz

∂ũ

∂z

)])
rdA+

∫∫
A

wgrdA

(9.2)

Again, the integral on the left-hand side of Equation 9.2 can be expressed

in a compact form by using the 2D cylindrical ∇ operator
(
i.e., ∇ =

∂

∂r
�ar +

∂

∂z
�az

)
, the dot product expression, and k (for kr, kz, assuming an orthotropic

property) as

∫∫
A

[
∂w

∂r

(
kr

∂ũ

∂r

)
+

∂w

∂z

(
kz

∂ũ

∂z

)]
rdA =

∫∫
A

∇w · [k∇ũ]rdA

To the first integral on the right-hand side of Equation 9.2, we apply the
divergence theorem:

∫∫
A

(
1
r

∂

∂r

[
w

(
rkr

∂ũ

∂r

)]
+

∂

∂z

[
w

(
kz

∂ũ

∂z

)])
rdA

=
∫∫

A

∇·
[
w

(
kr

∂ũ

∂r

)
�ar + w

(
kz

∂ũ

∂z

)
�az

]
rdA

=
∫

L

w

(
kr

∂ũ

∂r
�ar + kz

∂ũ

∂z
�az

)
·�nrdL =

∫
L

w[k∇ũ] ·�nrdL
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where �n = nr �ar + nz �az is the unit normal vector of the boundary line L at a
given point. Putting all these expressions together, we rewrite Equation 9.2 as

∫∫
A

∇w · [k∇ũ]rdA =
∫

L

w[k∇ũ] ·�nrdL +
∫∫

A

wg rdA (9.3)

Using the Galerkin method, we have wm = Nm for m = 1, ..., ne. With
ũ = [N ] {d0}, we obtain

∫∫
A

(∇Nm · k∇[N ])rdA{d0} =
∫

L

Nm[k∇ũ] ·�n}rdL +
∫∫

A

NmgrdA

for m = 1, . . . , ne.
By summing all these ne equations together (see steps in Section 6.2), we

obtain the following for axisymmetric scalar field problems,

∫∫
A

([∇N ]T · k∇ [N ])rdA{d0} =
∫

L

[N ]T [k∇ũ] ·�nrdL +
∫∫

A

[N ]T grdA (9.4)

and the elementary [Ke] matrix:

[Ke] =
∫∫

A

([∇N ]T · k∇ [N ])rdA (9.5)

Example 9.1

For the 2D rectangular element shown in Figure 9.2, determine its
elementary [Ke] matrix using Equation 9.5. Assume that the element
is intended for solving axisymmetric scalar problems with constant
kr = kz = k = 1000 and the coordinates of their nodes given in the fig-
ure (note that because this example can be applied to different physics
problems, such as heat conduction, mass diffusion, fluid flow in porous
medium, and as electric, without losing generality, we intentionally
ignore the units of these values).

1 (0.0, 0.0) 2 (0.2, 0.0)

3 (0.2, 0.1)4 (0.0, 0.1)z

r

FIGURE 9.2
A 2D rectangular element with a uniform thickness.
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Answer
To determine the elementary [Ke] matrix for a 2D axisymmetric scalar
problem, we first expand Equation 9.5 by using the 2D cylindrical ∇
operator, ∇ =

∂

∂r
�ar +

∂

∂z
�az:

[Ke] =

∫∫
A

([
∂N

∂r

]T

kr

[
∂N

∂r

]
+

[
∂N

∂z

]T

kz

[
∂N

∂z

])
rdA (9.6)

For the rectangular element, since this element is the same as the one
in Figure 8.6, we have the same set of shape functions (after replacing
x with r and y with z); thus, we express the shape function matrix as

[N ] =
[
(1− 5r)(1− 10z) 5r(1− 10z) 50rz 10(1− 5r)z

]
Taking its first derivative with respect to r and z, we have

[
∂N

∂r

]
=
[
50z − 5 5− 50z 50z −50z

]
[

∂N

∂z

]
=
[
50r − 10 −50r 50r 10− 50r

]

Plugging these expressions into Equation 9.6, and integrating it over
the rectangular area defined by the element, along with substituting the
kr = kz = k value, we obtain

[Ke] = kr

∫ 0.2

r=0

∫ 0.1

z=0

⎡
⎢⎢⎣
50z − 5
5− 50z

50z
−50z

⎤
⎥⎥⎦ [50z − 5 5− 50z 50z −50z

]
rdrdz

+ kz

∫ 0.2

r=0

∫ 0.1

z=0

⎡
⎢⎢⎣
50r− 10
−50r
50r

10− 50r

⎤
⎥⎥⎦ [50r− 10 −50r 50r 10− 50r

]
rdzdr

=

⎡
⎢⎢⎣

50.00 16.67 −41.67 −25.00
16.67 116.67 −91.67 −41.67
−41.67 −91.67 116.67 16.67
−25.00 −41.67 16.67 50.00

⎤
⎥⎥⎦

Example 9.2

For the 2D triangular element shown in Figure 9.3, determine its ele-
mentary [Ke] matrix using Equation 9.5. Assume that the element
is intended for solving axisymmetric scalar problems with constant
kr = kz = k = 1000 and the coordinates of their nodes given in the figure
(ignore the units).
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1 (0.0, 0.0) 2 (0.2, 0.0)

3 (0.2, 0.1)

z = 0.5r

z

r

FIGURE 9.3
A 2D triangular element with a uniform thickness.

Answer
For the triangular element, since it is the same as the one in Figure 8.7,
we have the same set of shape functions (after replacing x with r and y
with z):

[N ] =
[
1− 5r 5r− 10z 10z

]

Taking its first derivative with respect to r and z, we obtain

[
∂N

∂r

]
=
[−5 5 0

]
,

[
∂N

∂z

]
=
[
0 −10 10

]

Plugging these expressions into Equation 9.6, along with dA = drdz,
integrating it over the triangular area of the element, and substituting
the kr = kz = k value, we obtain

[Ke] = k

∫ 0.2

r=0

∫ 0.5r

z=0

⎛
⎝
⎡
⎣−5

5
0

⎤
⎦ [−5 5 0

]
+

⎡
⎣ 0
−10
10

⎤
⎦ [0 −10 10

]⎞⎠ rdzdr

=

⎡
⎣ 33.33 −33.33 0
−33.33 166.67 −133.33

0 −133.33 133.33

⎤
⎦

In comparing Equations 7.5 and 9.5, we note that the two equations
look very much alike, but the results of the corresponding elements in
Section 7.1.2 and here are quite different, although the corresponding
elements are of exactly the same shape, size, and location. The reason
for this is that the way we solve an axisymmetric problem treats the
structure as a 3D domain; thus, the integrand in Equation 9.5 contains
r, which accounts for the volume of a rotational 3D structural domain.
By contrast, the integrand in Equation 7.5 contains t, which accounts
for the volume of a uniformly thin 2D domain.



T&F Cat #K16587 — K16587 C009 — page 211 — 1/21/2017 — 15:52

Axisymmetric Scalar and Vector Field Problems 211

9.2 Axisymmetric Vector Field Problems

For vector fields, we are mainly concerned about the problems of solid mechan-
ics, in which the geometry of the structural domains and the loading and
constraint conditions are all symmetric about an axis, say the z axis. These
situations can be treated as axisymmetric problems by analyzing a 2D radial
section of the structure. Since solid mechanics are vector field problems, the
finite element formulation developed in Section 9.1 for scalar field problems
cannot be used. We need to develop PDEs and a finite element formulation
for axisymmetric problems of solid mechanics.

9.2.1 PDEs of equilibrium in cylindrical coordinates

We begin by reexamining the stress and strain relationships and developing
the PDEs of equilibrium in cylindrical coordinates.

In cylindrical coordinates, r, θ, z, the stress and strain can be expressed in
vector forms by their corresponding components as

{σ} =
{
σr σθ σz τrz τrθ τθz

}T
{ε} =

{
εr εθ εz γrz γrθ γθz

}T
These strain components can be related to the components of the displace-
ment fields, ur, uθ, uz in the r, θ, z directions, respectively, by the following
relationships:

εr =
∂ur

∂r
, σθ =

ur

r
+

∂uθ

r∂θ
, εz =

∂uz

∂z
,

γrθ =
∂ur

r∂θ
+

∂uθ

∂r
− uθ

r
, γrz =

∂ur

∂z
+

∂uz

∂r
, γθz =

∂uθ

∂z
+

∂uz

r∂θ

In the free-body diagram, shown in Figure 9.4, of an arbitrary, infinitesimal
block in cylindrical coordinates, each surface of the block has three stress
components, as marked in the figure with τrz = τzr, τrθ = τθr, and τθz = τzθ.
By considering the force equilibrium of this block with dimensions dr, dθ,
and dz along the three cylindrical axes, we express the following by ignoring
acceleration:

∑
Fr = 0 :

(
σr +

∂σr

∂r
dr− σr

)
rdθdz +

(
τrθ +

∂τrθ

r∂θ
rdθ− τrθ

)
cos

dθ

2
drdz

−
(

σθ +
∂σθ

r∂θ
rdθ+ σθ

)
sin

dθ

2
drdz +

(
τrz +

∂τrz

∂z
dz − τrz

)
drrdθ

+ frrdθdrdz = 0
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r

τrz +
∂τrz

∂r
dr

σr

τrθ
τrz

σz +
∂σz

∂z

dz

τzr +
∂τzr

∂z dz

τzθ +
∂τzθ
r∂z

dz

σz

τzθ

τzr

dθ/2

z

dθ

σθ

τθr

τθz

∂σθ

r∂θ
rdθσθ +

τθz +
∂τθz

r∂θ
rdθ

σr +
∂σr
∂r

dr

τrθ +
∂τrθ

∂r
dr

τθr +
∂τθr

r∂θ
rdθ

FIGURE 9.4
A 3D free-body diagram in cylindrical coordinates.

∑
Fθ = 0 :

(
σθ +

∂σθ

r∂θ
rdθ− σθ

)
cos

dθ

2
drdz

+
(

τrθ +
∂τrθ

r∂θ
rdθ+ τrθ

)
sin

dθ

2
drdz +

(
τrθ +

∂τrθ

∂r
dr− τrθ

)
rdθdz

+
(

τθz +
∂τθz

∂z
dz − τθz

)
rdθdr + fθrdθdrdz = 0

∑
Fz = 0 :

(
σz +

∂σz

∂z
dz − σz

)
drrdθ+

(
τrz +

∂τrz

∂r
dr− τrz

)
rdθdz

+
(

τθz +
∂τθz

r∂θ
rdθ− τθz

)
drdz + fzrdθdrdz = 0

where fr, fθ, fz are the three components of the volume force in cylin-
drical coordinates. Since dθ is very small, we have sin(dθ/2) ≈ dθ/2 and
cos(dθ/2) ≈ 1. Thus, applying these expressions to the above equations
and neglecting the two extremely small terms (i.e., [∂σθ/∂θ]dθdθdrdz and
[∂τrθ/∂θ]dθdθdrdz), we simplify them into the following PDEs of equilibrium
in cylindrical coordinates (after multiplying 1/rdrdθdz on both sides of these
equations):

∑
Fr = 0 :

∂σr

∂r
+

∂τrθ

r∂θ
+

∂τrz

∂z
− σθ

r
+ fr = 0

∑
Fθ = 0 :

∂τrθ

∂r
+

∂σθ

r∂θ
+

∂τθz

∂z
+

τrθ

r
+ fθ = 0

∑
Fz = 0 :

∂τrz

∂r
+

∂τθz

r∂θ
+

∂σz

∂z
+ fz = 0

(9.7)
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In an axisymmetric situation, any radial section of the structure will
remain in the same section plane after deformation and all variables are inde-
pendent of θ; thus, we have τrθ = τzθ = γrθ = γzθ = 0 and v = 0. Then, the
stress and strain vectors are reduced to

{σ} =
{
σr σθ σz τrz

}T
{ε} =

{
εr εθ εz γrz

}T
the PDEs of equilibrium are reduced to

∂σr

∂r
+

∂τrz

∂z
− σθ

r
+ fr = 0

∂τrz

∂r
+

∂σz

∂z
+ fz = 0

(9.8)

and the displacement, volume force, and weight function vectors are reduced to

{d} =
{

ur

uz

}
, {f} =

{
fr

fz

}
, {w} =

{
wr

wz

}

With the above information, we express the reduced strain–displacement
relationships in a matrix form as

{ε} =
{
εr εθ εz γrz

}T =
{

∂ur

∂r

ur

r

∂uz

∂z

∂ur

∂z
+

∂uz

∂r

}T

By introducing the following differential operator matrix,

∇sa =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂r
0

1
r

0

0
∂

∂z
∂

∂z

∂

∂r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

or ∇T
sa =

⎡
⎢⎣

∂

∂r

1
r

0
∂

∂z

0 0
∂

∂z

∂

∂r

⎤
⎥⎦ (9.9)

we write the following matrix equations:

{ε} =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂r
0

1
r

0

0
∂

∂z
∂

∂z

∂

∂r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{
ur

uz

}
= ∇sa{d} and ∇sa{w} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂wr

∂r
wr

r
∂wz

∂z
∂wr

∂z
+

∂wz

∂r

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.10)
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Assuming an isotropic material and referring to Equation 8.9, we have the
following stress and strain relationships:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σr

σθ

σz

τrz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=
E

(1 + ν)(1− 2ν)

⎡
⎢⎢⎢⎣

1− ν ν ν 0
ν 1− ν ν 0
ν ν 1− ν 0
0 0 0 0.5− ν

⎤
⎥⎥⎥⎦
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εr

εθ

εz

γrz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Then the material property matrix [C] for an axisymmetric solid mechanics
problem becomes

[C] =
E

(1 + ν)(1− 2ν)

⎡
⎢⎢⎢⎣
1− ν ν ν 0

ν 1− ν ν 0
ν ν 1− ν 0
0 0 0 0.5− ν

⎤
⎥⎥⎥⎦ (9.11)

9.2.2 FEM formulation for axisymmetric solid mechanics

By constructing the weighted integral of residual to Equation 9.8 using the
weight function vector, we write

∫∫∫
V

[
wr

(
∂σr

∂r
+

∂τrz

∂z
− σθ

r
+ fr

)
+ wz

(
∂τrz

∂r
+

∂σz

∂z
+ fz

)]
dV = 0

(9.12)

By the product rule of differentiation, we can express

wr
∂σr

∂r
= −σr

∂wr

∂r
+

∂

∂r
(σrwr)

wr
∂τrz

∂z
= −τrz

∂wr

∂z
+

∂

∂z
(τrzwr)

wz
∂τrz

∂r
= −τrz

∂wz

∂r
+

∂

∂r
(τrzwz)

wz
∂σz

∂z
= −σz

∂wz

∂z
+

∂

∂z
(σzwz)

Substituting these expressions to Equation 9.12, we have

∫∫∫
V

[
−σr

∂wr

∂r
− σz

∂wz

∂z
− τrz

(
∂wr

∂z
+

∂wz

∂r

)
− σθwr

r

]
dV

+
∫∫∫

V

[
∂

∂r
(σrwr + τrzwz)+

∂

∂z
(τrzwr + σzwz)

]
dV

+
∫∫∫

V

(wrfr + wzfz)dV = 0
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After rearranging it, substituting rdrdθdz for dV , and integrating for θ from
0 to 2π, we obtain

2π

∫∫
A

[
σr

∂wr

∂r
+

σθwr

r
+ σz

∂wz

∂z
+ τrz(

∂wr

∂z
+

∂wz

∂r
)
]

rdrdz

= 2π

∫∫
A

[
∂

∂r
(σrwr + τrzwz)+

∂

∂z
(τrzwr + σzwz)

]
rdrdz

+ 2π

∫∫
A

(wrfr + wzfz)rdzdr

(9.13)

in which the constant 2π can be eliminated.
By using Equation 9.10 along with the reduced stress vector, we simplify

the first integral in Equation 9.13 into a compact matrix form as

−
∫∫

A

{∇sa{w}}T{σ}rdA

For the second integral, we apply the divergence theorem, with �n = nr �ar +
nz �az: ∫∫

A

[
∂

∂r
(σrwr + τrzwz)+

∂

∂z
(τrzwr + σzwz)

]
rdA

=
∫

L

[(σrwr + τrzwz)nr + (τrzwr + σzwz)nz ]rdL

=
∫

L

[wr(σrnr + τrznz)+ wz(τrznr + σznz)]rdL

=
∫

L

[wrTr + wzTz]rdL =
∫

L

{w}T {T }rdL +
∑

{w}T P

where T is traction vector and P is point load on the boundary of the 2D
domain.

The last integral in Equation 9.13 can be expressed in a compact form as∫∫
A

(wrfr + wzfz)rdA =
∫∫

A

{w}T {f}rdA

Putting all these together, we have∫∫
A

{∇sa{w}}T {σ}rdA =
∫∫

A

{w}T {f}rdA+
∫

L

{w}T {T }rdL +
∑

{w}T P

(9.14)

Referring to Equation 5.32, we can express the two field quantities in the r
and z directions in terms of the elementary shape functions and DOF vector as

ũr =
ne∑

m=1

Nmumr, ũz =
ne∑

m=1

Nmwmz
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for a 2D element having elementary DOF = ne. Putting these expressions
together in accordance with the displacement vector, {d} = {ũr ũz}T , we
obtain the following matrix equation:

⎧⎨
⎩

ũr

ũz

⎫⎬
⎭ =

⎡
⎣N1 0 N2 0 N3 0 · · ·

0 N1 0 N2 0 N3 · · ·

⎤
⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1r

u1z

u2r

u2z

u3r

u3z

...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= [N ]{d0} (9.15)

By substituting the above shape function matrix, the stress–strain rela-
tionship {σ} = [C]{ε} = [C]∇sa[N ]{d0}, and {w} = [N ] (per the Galerkin
method) into Equation 9.14, we obtain

∫∫
A

{∇T
sa[N ]}[C](∇sa[N ])rdA{d0} =

∫∫
A

[N ]T {f}rdA

+
∫

L

[N ]T {T }rdL +
∑

[N ]T P

(9.16)

and the elementary [Ke] matrix,

[Ke] =
∫∫

A

{∇sa[N ]}T [C](∇sa[N ])rdA (9.17)

where [C] is given in Equation 9.11.

Example 9.3

For the 2D rectangular element shown in Figure 9.2, determine its ele-
mentary [Ke] matrix using Equation 9.17. Assume that the element is
made of an isotropic material with E = 200 GPa and ν = 0.3.

Answer
For the rectangular element, we directly copy the shape functions of that
in Figure 9.2 here:

N1 = (1− 5r)(1− 10z), N2 = 5r(1− 10z), N3 = 50rz, N4 = 10(1− 5r)z

Referring to Equation 9.15, we know that the shape function matrix for
this 4-node 2D solid mechanical element is a 2× 8 matrix, which can be
expressed as

[N ] =

[
N1 0 N2 0 N3 0 N4 0
0 N1 0 N2 0 N3 0 N4

]
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With this matrix, we calculate ∇sa[N ], which is a 4× 8 matrix:

∇sa[N ]

=

⎡
⎢⎢⎣

50z − 50 0 5− 50z 0 50z 0 −50z 0
(1− 5r)(1− 10z)/r 0 5− 50z 0 50z 0 10z(1− 5r)/r 0

0 50r − 10 0 −50r 0 50r 0 10− 50r
50r − 10 50z − 5 −50r 5− 50z 50r 50z 10− 50r −50z

⎤
⎥⎥⎦

Moreover, using Equation 9.11, along with E = 200 GPa and ν = 0.3,
we calculate the material property matrix:

[C] = 1011 ×

⎡
⎢⎢⎣
2.69 1.15 1.15 0
1.15 2.69 1.15 0
1.15 1.15 2.69 0
0 0 0 0.77

⎤
⎥⎥⎦

Putting all these into Equation 9.17 along with dA = drdz, and
integrating it over the rectangular area of the element, we obtain the
following 8× 8 elementary [Ke] matrix for a 4-node 2D axisymmetric
element for solid mechanics:

[Ke] =

∫ 1

r=0

∫ 1

z=0

{∇sa[N ]}T [C] {∇sa[N ]} rdzdr
8× 4 4× 4 4× 8

= 109 ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞ −0.64 2.56 0.64 −2.56 −3.21 ∞ 3.21
−0.64 10.26 −1.28 7.69 −6.41 −9.62 −3.21 −8.33
2.56 −1.28 20.51 −10.26 −1.28 5.13 −2.56 6.41
0.64 7.69 −10.26 28.21 −5.13 −26.28 3.21 −9.62
−2.56 −6.41 −1.28 −5.13 20.51 10.26 2.56 1.28
−3.21 −9.62 5.13 −26.28 10.26 28.21 −0.64 7.69
∞ −3.21 −2.56 3.21 2.56 −0.64 ∞ 0.64

3.21 −8.33 6.41 −9.62 1.28 7.69 0.64 10.26

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that this [Ke] matrix contains several terms of infinity. The reason
is that these terms contain 1/r2 because the geometric domain includes
the edge of r = 0, which in turn causes division by zero when we eval-
uate them by integration analytically. This problem can be avoided by
performing numerical integration instead. This is another reason why
Gauss quadrature numerical integration is necessary.

Example 9.4

For the 2D triangular element shown in Figure 9.3, determine its ele-
mentary [Ke] matrix using Equation 9.17. Assume that the element is
made of an isotropic material with E = 200 GPa and ν = 0.3.

Answer
For the triangular element, we have the following shape functions by
copying the ones for the element shown in Figure 9.3:

N1 = 1− 5r, N2 = 5r− 10z, N3 = 10z
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With these expressions, we calculate the 4× 6 ∇sa[N ] matrix:

∇sa[N ] =

⎡
⎢⎢⎣

−5 0 5 0 0 0
(1− 5r)/r 0 (5r− 10z)/r 0 10z/r 0

0 0 0 −10 0 10
0 −5 −10 5 10 0

⎤
⎥⎥⎦

Plugging this expression and the [C] matrix into Equation 9.17 and
integrating it over the triangular area of the element, we obtain the
following 6× 6 elementary [Ke] matrix for a 3-node 2D solid mechanical
element for an axisymmetric problem:

[Ke] =

∫ 1

r=0

∫ 0.5r

z=0

{∇sa[N ]}T [C] {∇sa[N ]} rdzdr
6× 4 4× 4 4× 6

= 109 ×

⎡
⎢⎢⎢⎢⎢⎢⎣

14.10 0 −6.73 3.85 0.32 −3.85
0 2.56 5.13 −2.56 −5.13 0

−6.73 5.13 26.07 −16.67 −6.84 11.54
3.85 −2.56 −16.67 38.46 1.28 −35.90
0.32 −5.13 −6.84 1.28 13.25 3.85
−3.85 0 11.54 −35.90 3.85 35.90

⎤
⎥⎥⎥⎥⎥⎥⎦

When comparing Equations 9.17 and 8.21, we note that these two
equations differ in several ways. First, the differential operator is dif-
ferent: for axisymmetric solid mechanics, ∇sa is given in Equation 9.9,
while for 2D solid mechanics, ∇s2 is given in Equation 8.16. Second, the
material property [C] matrix is different: [C] is a 4× 4 matrix as given
in Equation 9.11 for axisymmetric problems, and it is a 3× 3 matrix
as given by Equation 8.14 (for plane stress) or Equation 8.15 (for plane
strain). Third, the integrand is different: it contains r to account for the
volume of a rotational 3D domain for axisymmetric situations, but it
uses t to account for the volume of a uniformly thin 2D domain.

9.3 Exercises

1. For the 2D rectangular element shown in Figure 9.5, deter-
mine its elementary [Ke] matrix following the steps discussed in
Example 9.1. Assume that the element is intended for solving
axisymmetric scalar problems with constant kr = kz = k = 1000
and the coordinates of their nodes given in the figure (ignore the
units of these values).

2. For the 2D rectangular element shown in Figure 9.6, deter-
mine its elementary [Ke] matrix following the steps discussed in
Example 9.1. Assume that the element is intended for solving
axisymmetric scalar problems with constant kr = kz = k = 1000
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1 (1, 0) 2 (2, 0)

3 (2, 1)4 (1, 1)z

r

FIGURE 9.5
A 2D rectangular element with a uniform thickness.

1 (0, 0) 2 (1.5, 0)

3 (1.5, 1)
4 (0, 1)

z

r

FIGURE 9.6
A 2D rectangular element with a uniform thickness.

and the coordinates of their nodes given in the figure (ignore the
units of these values).

3. For the 2D triangular element shown in Figure 9.7, determine its ele-
mentary [Ke] matrix following the steps discussed in Example 9.1.
Assume that the element is intended for solving axisymmetric scalar
problems with constant kr = kz = k = 1000 and the coordinates of
their nodes given in the figure (ignore the units of these values).

4. For the 2D triangular element shown in Figure 9.8, determine its ele-
mentary [Ke] matrix following the steps discussed in Example 9.1.
Assume that the element is intended for solving axisymmetric scalar

1 (0, 0) 2 (1.5, 0)

3 ( 1.5, 1)z

r

FIGURE 9.7
A 2D triangular element with a uniform thickness.
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1 (1, 0)

3 (1, 1)z

r
2 (2.5, 0)

FIGURE 9.8
A 2D triangular element with a uniform thickness.

problems with constant kr = kz = k = 1000 and the coordinates of
their nodes given in the figure (ignore the units of these values).

5. For the 2D rectangular element shown in Figure 9.5, determine
its elementary [Ke] matrix following the steps discussed in Exam-
ple 9.2. Assume that the element is intended for solving axisymmet-
ric solid mechanics problems with its material made of an isotropic
material with E = 200 GPa and ν = 0.3.

6. For the 2D rectangular element shown in Figure 9.6, determine
its elementary [Ke] matrix following the steps discussed in
Example 9.2. Assume that the element is intended for solving
axisymmetric solid mechanics problems with its material made of
an isotropic material with E = 200 GPa and ν = 0.3.

7. For the 2D triangular element shown in Figure 9.7, determine its ele-
mentary [Ke] matrix following the steps discussed in Example 9.2.
Assume that the element is intended for solving axisymmetric solid
mechanics problems with its material made of an isotropic material
with E = 200 GPa and ν = 0.3.

8. For the 2D triangular element shown in Figure 9.8, determine its ele-
mentary [Ke] matrix following the steps discussed in Example 9.2.
Assume that the element is intended for solving axisymmetric solid
mechanics problems with its material made of an isotropic material
with E = 200 GPa and ν = 0.3.

Recommended Readings

1. S. P. Timoshenko and J. N. Goodier. 1970. Theory of Elasticity.
New York: McGraw-Hill.

2. Pei Chi Chou and Nicholas J. Pagano. 1967. Elasticity Tensor,
Dyadic and Engineering Approaches. New York: Dover.
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Isoparametric Elements

In the previous several chapters, we noted that integration over the domains
defined by the elements is necessary in calculating the elementary [Ke] matri-
ces. In those examples given, we intentionally used elements with regular
shapes such that the integration bounds can be easily defined and that the
actual integration over the domains can be determined directly in an analytic
way. In a real situation, however, it is impossible to do so because the shape
of elements can be very complicated (e.g., see Figures 5.2 and 5.3), making
it difficult and sometimes impossible to define the integration bounds. Thus,
it is desirable to have elements of the same type transformed into a standard
element with a fixed shape at a fixed location. In this way, all elements of the
same type can be represented by a common element having the same parame-
ters (i.e., the shape and vertex coordinates). Isoparametric elements are such
elements that just serve this purpose. Additionally, isoparametric elements
use the same set of shape functions to interpolate the field quantity and to
transform an arbitrarily shaped element to the corresponding isoparametric
element.

10.1 Isoparametric Elements for Slender Structures

The isoparametric element for slender structures in a natural coordinate sys-
tem, ξ, is defined as a thin and long element with two ends located at ξ = −1
and ξ = 1, as shown in Figure 10.1.

When the element consists of only two end nodes, it is a linear element.
For higher-order elements, more nodes are added with even spacing between
nodes. For example, the quadratic (3-node) isoparametric element will have
an additional node at ξ = 0; the cubic (4-node) isoparametric element will
have two additional nodes, one at ξ = −1/3 and the other at ξ = 1/3; and
so on.

10.1.1 Shape and mapping functions for bar elements

10.1.1.1 The 2-node isoparametric bar element

In its natural coordinate system, the 2-node bar element has its two ends
located at ξ = −1 and ξ = 1, as shown in Figure 10.2.

221
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ξ = −1 ξ = 1
ξ

ξ = 0

FIGURE 10.1
Isoparametric one-dimensional (1D) element.

⇐
ξ

ξ1= −1 ξ2= 1

1 2
x

x1 x2

1 2

FIGURE 10.2
Isoparametric transformation of a 2-node bar element.

By using the Lagrange formula (see Section 5.6.1), we write the following
two shape functions for the isoparametric element:

N1 =
2∏

i=1(i�=1)

ξ− ξi

ξ1 − ξi
=

(ξ− ξ2)
(ξ1 − ξ2)

=
1
2
(1− ξ)

N2 =
2∏

i=1(i�=2)

ξ− ξi

ξ2 − ξi
=

(ξ− ξ1)
(ξ2 − ξ1)

=
1
2
(1 + ξ)

(10.1)

which can be put together in a shape function matrix:

[N ] =
[
1
2
(1− ξ)

1
2
(1 + ξ)

]
(10.2)

For most isoparametric elements, their shape functions are used not only
for interpolating the field quantity, but also for transforming an arbitrary
element in the x coordinates to the isoparametric element in the ξ coordinates.
For example, the 2-node arbitrary bar element located between x1 and x2 (in
Figure 10.2) can be transformed to the isoparametric element by using the
following mapping function:

x =
2∑

m=1

Nmxm = N1x1 + N2x2 =
1
2
(1− ξ)x1 +

1
2
(1 + ξ)x2 (10.3)

Clearly, this mapping function yields x = x1 when ξ = −1, and x = x2 when
ξ = 1. In this way, an arbitrary element located between x1 and x2 in the
x coordinates is transformed to the isoparametric element in the ξ coordinates.
The benefits of doing this include (1) all 2-node bar elements can be dealt with
using the same set of shape functions as those given in Equation 10.1, and
(2) integration over the elementary domain will be performed in a fixed range
from −1 to 1. The information on the location of the original element is passed
on through the mapping function given in Equation 10.3.
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1 2 3
x

1 2 3

ξ1= −1 ξ2= 0 ξ3= 1
ξ

x1 x2 x3

⇐

FIGURE 10.3
Isoparametric transformation of a 3-node bar element.

10.1.1.2 The 3-node isoparametric bar element

The 3-node isoparametric bar element is an element with three nodes located
at ξ1 = −1, ξ2 = 0, and ξ3 = 1 in the ξ coordinate system (see Figure 10.3).

Using the Lagrange formula, we express its shape functions as

N1 =
3∏

i=1(i�=1)

ξ− ξi

ξ1 − ξi
=

(ξ− ξ2)(ξ− ξ3)
(ξ1 − ξ2)(ξ1 − ξ3)

=
1
2
(−ξ + ξ2)

N2 =
3∏

i=1(i�=2)

ξ− ξi

ξ2 − ξi
=

(ξ− ξ1)(ξ− ξ3)
(ξ2 − ξ1)(ξ2 − ξ3)

= 1− ξ2

N3 =
3∏

i=1(i�=3)

ξ− ξi

ξ3 − ξi
=

(ξ− ξ1)(ξ− ξ2)
(ξ3 − ξ1)(ξ3 − ξ2)

=
1
2
(ξ + ξ2)

(10.4)

and the shape function matrix

[N ] =
[
1
2
(−ξ + ξ2) 1− ξ2 1

2
(ξ + ξ2)

]
(10.5)

With these shape functions, we construct the following mapping function,

x =
3∑

m=1

Nmxm =
1
2
(−ξ + ξ2)x1 + (1− ξ2)x2 +

1
2
(ξ + ξ2)x3 (10.6)

for transforming an arbitrary element in the x coordinate system to the
ξ coordinate system, as shown in Figure 10.3.

10.1.1.3 ne-Node isoparametric bar element

As a general extension, for a bar element with ne nodes, we first determine
its shape functions, Nm for m = 1, 2, . . . , ne, by using the Lagrange formula
(Equation 5.13):

Nm =
ne∏

i=1(i�=m)

ξ− ξi

ξm − ξi
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With the obtained shape functions, we write the mapping function in terms
of the nodal coordinates (xm, for m = 1, 2, . . . , ne),

x =
ne∑

m=1

Nmxm

for transforming an arbitrary bar element in the x coordinate system to the
corresponding isoparametric one in the ξ coordinate system.

10.1.2 Elementary [Ke] matrix for bar elements

It is now clear that the isoparametric transformation provides us with standard
elements. But how is the evaluation of the elementary [Ke] matrix handled
such that the same results are ensured after the transformation?

To determine the elementary [Ke] matrix for bar elements, we use
Equation 6.5, that is,

[Ke] = A

∫
l

[
dN

dx

]T
k

[
dN

dx

]
dx

Since the shape functions for isoparametric elements are expressed as functions
of ξ, we apply the chain rule of differentiation:[

dN

dx

]
=
[
dN

dξ

]
dξ

dx
=

1
J

[
dN

dξ

]

where J = dx/dξ is called the Jacobian of transformation from an arbitrary
element to its corresponding isoparametric one. The Jacobian of isoparametric
transformation is a scalar factor in a 1D situation that can be determined by
using the mapping function as

[J ] =
dx

dξ
=

ne∑
m=1

dNm

dξ
xm

Putting the above relationship into the [Ke] equation along with dx = Jdξ,
we have

[Ke] = A

∫ l

0

[
dN

dx

]T
k

[
dN

dx

]
dx = A

∫ 1

−1

1
J2

[
dN

dξ

]T
k

[
dN

dξ

]
Jdξ

=
1
J

(
A

∫ 1

−1

[
dN

dξ

]T
k

[
dN

dξ

]
dξ

)
=

[Kiso
e ]
J

Note that the integration bounds are transformed from 0 and l to −1
and 1, respectively. In the above equation, [Kiso

e ] represents the elementary
[Ke] matrix of an isoparametric element in the natural coordinate system,
which is a constant matrix due to its fixed shape and size. It is clear that
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the [Ke] matrix of an arbitrary bar element equals [Kiso
e ] divided by the

Jacobian (J) of the isoparametric transformation.

Example 10.1

Determine the [Ke] matrix of a 2-node bar element located between
x1 = l and x2 = 2l having a uniform cross section area of A and a
constant material property of k.

Answer
By using the mapping function given in Equation 10.3 for the 2-node
bar element, we calculate the Jacobian:

J =
dx

dξ
=

x2 − x1

2
=

l

2

With the shape function matrix given in Equation 10.2, we express[
dN

dξ

]
=

[
dN1

dξ

dN2

dξ

]
=
[
−1

2

1

2

]

Substituting this relationship into the [Ke] matrix expression along with
dx = Jdξ and J = l/2, we obtain the following elementary [Ke] for
2-node bar elements:

[Ke] =
kA

J

∫ 1

−1

⎡
⎢⎣−

1

2
1

2

⎤
⎥⎦[−1

2

1

2

]
dξ =

kA

4J

∫ 1

−1

[
1 −1
−1 1

]
dξ

=
kA

2J

[
1 −1
−1 1

]
=

kA

l

[
1 −1
−1 1

]

This result is the same as that in Example 6.1 in Section 6.2.1, although
the two elements have different locations. It is as expected because the
Jacobian (J) is a constant in this case, and it is proportional to the
length of the element. So as long as a 2-node bar element has a length
of l and material property of kA, it will have the same [Ke] matrix
as given above. This result also proves that transforming an arbitrary
element into the isoparametric element will not change the values of its
[Ke] matrix.

Example 10.2

Determine the [Ke] matrix of a 3-node bar element located at x1 = l,
x2 = 3l/2, and x3 = 2l having a uniform cross section area of A and
a constant material property of k.

Answer
By using the mapping function given in Equation 10.6 for the 3-node
bar element, we calculate the Jacobian:

J =
dx

dξ
=

x3 −x1

2
+ ξ(x1 − 2x2 +x3) =

l

2
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With the shape functions given in Equation 10.5, we express

[
dN

dξ

]
=
[
(−1+2ξ)/2 −2ξ (1+ 2ξ)/2

]

Substituting this expression into the [Ke] matrix expression along
with dx = Jdξ and J = l/2, we obtain the following elementary [Ke] for
3-node bar elements:

[Ke] =
kA

J

∫ 1

−1

⎡
⎢⎢⎣
(−1+2ξ)/2

−2ξ

(1+2ξ)/2

⎤
⎥⎥⎦ [(−1+2ξ)/2 −2ξ (1+2ξ)/2

]
dξ

=
kA

4J

∫ 1

−1

⎡
⎢⎢⎣

(1− 2ξ)2 4ξ(1− 2ξ) 4ξ
2 − 1

4ξ(1− 2ξ) 16ξ
2 −4ξ(1+ 2ξ)

4ξ
2 − 1 −4ξ(1+ 2ξ) (1 +2ξ)2

⎤
⎥⎥⎦ dξ

=
kA

3l

⎡
⎣ 7 −8 1
−8 16 −8
1 −8 7

⎤
⎦

This result is the same as that in Example 6.2 in Section 6.2.1, which
is, again, as expected because the Jacobian (J) is also a constant in
this case. Thus, as long as a 3-node bar element has a length of l and
material property of kA, this result applies to all such elements.

10.1.3 Shape and mapping functions for beam elements

The 2-node isoparametric beam element is defined as an element with two end
nodes at ξ1 = −1 and ξ2 = 1 in the ξ coordinate system (note that this is the
same as in the 2-node bar element case). By using the Hermite interpolation
formula and following the steps in Example 5.8 in Section 5.7.2), we obtain
the following four shape functions:

N1 =
(1− ξ)2(ξ + 2)

4
, N2 =

(1− ξ)2(1 + ξ)
4

N3 =
(1 + ξ)2(2− ξ)

4
, N4 =

(ξ− 1)(1 + ξ)2

4

(10.7)

For the mapping function, although N1 and N3 can be used to map a beam
element located between x1 and x2 in the x coordinate to the natural ξ coor-
dinate between −1 and 1, doing so will introduce a nonconstant Jacobian.
Thus, we choose a simpler mapping function. In view of the fact that geo-
metrically, a beam element is like a 2-node bar element and has only two end
nodes, we take the hint of this similarity to use the same mapping function
as that used for a 2-node bar element for the beam element. Thus, for an
arbitrary beam located at x1 = 0 and x2 = l in the x coordinate, we have the
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following mapping function and the Jacobian of isoparametric transformation:

x =
1
2
(1− ξ)x1 +

1
2
(1 + ξ)x2 =

l

2
(1 + ξ) and J =

dx

dξ
=

l

2
(10.8)

For the beam element, since the DOF vector contains derivatives, we need
to include the Jacobian factor when performing transformation⎧⎪⎪⎨

⎪⎪⎩
u1(x)
u′

1(x)
u2(x)
u′

2(x)

⎫⎪⎪⎬
⎪⎪⎭→

⎧⎪⎪⎨
⎪⎪⎩

u1(ξ)
Ju′

1(ξ)
u2(ξ)
Ju′

2(ξ)

⎫⎪⎪⎬
⎪⎪⎭

Thus, the interpolation of the field quantity can be written as

ũ =
4∑

m=1

Nmum = [N ]

⎧⎪⎪⎨
⎪⎪⎩

u1(ξ)
Ju′

1(ξ)
u2(ξ)
Ju′

2(ξ)

⎫⎪⎪⎬
⎪⎪⎭ =
[
N1 JN2 N3 JN4

]
⎧⎪⎪⎨
⎪⎪⎩

u1(ξ)
u′

1(ξ)
u2(ξ)
u′

2(ξ)

⎫⎪⎪⎬
⎪⎪⎭

With the above expression along with J = l/2, we obtain the following shape
function matrix for isoparametric beam elements:

[N ] =
[
(1− ξ)2(ξ + 2)

4
(1− ξ)2(1 + ξ)l

8
(1 + ξ)2(2− ξ)

4
(ξ− 1)(1 + ξ)2l

8

]
(10.9)

10.1.4 Elementary [Ke] matrix for beam elements

For the elementary [Ke] matrix, referring to Equation 6.23, we express

[Ke] = EI

∫ l

0

[
d2N

dx2

]T [
d2N

dx2

]
dx

By applying twice the chain rule of differentiation to the shape function
matrix, we have

[
d2N

dx2

]
=
[
d2N

dξ2

](
dξ

dx

)2

=
1
J2

[
d2N

dξ2

]

Substituting this expression into the [Ke] matrix equation above, along
with dx = Jdξ and J = l/2, we obtain

[Ke] = EI

∫ l

0

[
d2N

dx2

]T [
d2N

dx2

]
dx = EI

∫ 1

−1

1
J4

[
d2N

dξ2

]T [
d2N

dξ2

]
Jdξ

=
EI

J3

∫ 1

−1

[
d2N

dξ2

]T [
d2N

dξ2

]
dξ =

[Kiso
e ]

J3
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where [Kiso
e ] represents the elementary [Ke] matrix for the isoparametric beam

element. Clearly, unlike in the bar element cases, the [Ke] matrix for beam
elements equals [Kiso

e ] divided by J3.

Example 10.3

Determine the [Ke] matrix of a 2-node beam element located at x1 = 0
and x2 = l having flexure rigidity EI .

Answer
Using the shape function matrix given in Equation 10.9, we calculate[

d2N

dξ2

]
=

[
3ξ

2

(3ξ− 1)l

4

−3ξ

2

(3ξ+ 1)l

4

]

Substituting this expression into the [Ke] expression, along with J = l/2,
we obtain

[Ke] =
EI

16J3

∫ 1

−1

⎡
⎢⎢⎢⎢⎣

6ξ

(3ξ− 1)l

−6ξ

(3ξ +1)l

⎤
⎥⎥⎥⎥⎦
[
6ξ (3ξ− 1)l −6ξ (3ξ+ 1)l

]
dξ

=
EI

2l3

∫ 1

−1

⎡
⎢⎢⎢⎢⎢⎣

36ξ
2 6lξ(3ξ− 1) −36ξ

2 6lξ(3ξ +1)

6lξ(3ξ− 1) l2(3ξ− 1)2 −6lξ(3ξ− 1) l2(9ξ
2 − 1)

−36ξ
2 −6lξ(3ξ− 1) 36ξ

2 −6lξ(3ξ +1)

6lξ(3ξ + 1) l2(9ξ
2 − 1) −6lξ(3ξ +1) l2(3ξ +1)2)

⎤
⎥⎥⎥⎥⎥⎦ dξ

=
EI

l3

⎡
⎢⎢⎢⎢⎣

12 6l −12 6l

6l 4l2 −6l 2l2

−12 −6l 12 −6l

6l 2l2 −6l 4l2

⎤
⎥⎥⎥⎥⎦

This result is the same as that in Equation 6.24, although the two
elements have different locations. This is as expected because the
two beams have the same length, which results in the same constant
Jacobian. So, as long as a 2-node beam element has a length of l and
flexure rigidity of EI , this [Ke] matrix result applies to all such elements.

10.2 Isoparametric Elements for 2D Structures

For isoparametric elements in two-dimensional (2D) space, we often consider
two elements: one is the square element and the other the right angle isosceles
triangle defined in the natural coordinate system, ξ, η. For the isoparamet-
ric square element, its four vertex nodes are located at (ξ = ±1, η = ±1).
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Of course, like any quadrilateral elements, it can be made of just four vertex
nodes, nine nodes (including the 8-node serendipity one), or more, depending
on the order of the interpolation. For the isoparametric triangular element, it
has its three vertex nodes at (ξ = 0, η = 0), (ξ = 1, η = 0), and (ξ = 1, η = 0).
In the same way, this element can have just 3 vertex nodes, or 6 nodes, 10
nodes, or more, depending on the order of the interpolation.

10.2.1 Shape and mapping functions

10.2.1.1 The 4-node isoparametric square element

Figure 10.4 shows the isoparametric square element with its four vertex
nodes located at (−1,−1), (1,−1), (1, 1), and (−1, 1) in the natural coordinate
system, ξ and η.

Using the Lagrange formula (see Section 5.6.2) with nξ = nη = 2 and ξ1 =
−1, ξ2 = 1, η1 = −1, and η2 = 1, we express the following shape functions:

N1 = L1,1 =
ξ− ξ2

ξ1 − ξ2

η− η2

η1 − η2
=

(1− ξ)(1− η)
4

N2 = L2,1 =
ξ− ξ1

ξ2 − ξ1

η− η2

η1 − η2
=

(1 + ξ)(1− η)
4

N3 = L2,2 =
ξ− ξ1

ξ2 − ξ1

η− η1

η2 − η1
=

(1 + ξ)(1 + η)
4

N4 = L1,2 =
ξ− ξ2

ξ1 − ξ2

η− η1

η2 − η1
=

(1− ξ)(1 + η)
4

(10.10)

With these shape functions, we write the mapping functions

x =
4∑

m=1

Nmxm = N1x1 + N2x2 + N3x3 + N4x4

y =
4∑

m=1

Nmym = N1y1 + N2y2 + N3y3 + N4y4

(10.11)

ξ ⇐
ξ

η

1 (−1, −1) 2 (1, −1)

3 (1, 1)4 (−1, 1)

x

y

1 (x1, y1)
2 (x2, y2)

3 (x3, y3)

4 (x4, y4)

η

FIGURE 10.4
Isoparametric transformation of a 4-node quadrilateral element.
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for transforming an arbitrary quadrilateral element with vertices at (x1, y1),
(x2, y2), (x3, y3), and (x4, y4) into the 4-node isoparametric square element, as
shown in Figure 10.4. With this transformation, the elementary domain in the
natural coordinate system, ξ and η, is now within the bounds of −1 ≤ ξ ≤ 1
and −1 ≤ η ≤ 1.

10.2.1.2 ne-Node isoparametric square element

In general, when the isoparametric square element has ne nodes, we express
its shape function matrix as

[N ] =
[
N1 N2 N3 N4 · · · Nne

]
where the individual shape functions are determined by using the Lagrange
formula for quadrilateral elements discussed in Section 5.6.2. With these shape
functions, we have the mapping functions for isoparametric transformation as

x =
ne∑

m=1

Nmxm, y =
ne∑

m=1

Nmym

10.2.1.3 The 3-node isoparametric triangular element

Figure 10.5 shows the isoparametric triangular element with its three vertex
nodes located at (0, 0), (1, 0), and (0, 1) in the natural coordinate system,
(ξ, η).

Using the Lagrange formula for triangles along with the following calcu-
lated areas (see Section 5.6.4),

A0 = 1/2, A1 = (1− ξ− η)/2, A2 = ξ/2, A3 = η/2

we obtain the three shape functions

N1 = A1/A0 = 1− ξ− η, N2 = A2/A0 = ξ, N3 = A3/A0 = η (10.12)

1 (0, 0) 2 (1, 0)

3 (0, 1)

ξ

η

η = 1 − ξ

x

ξ

y

1 (x1, y1)
2 (x2, y2)

3 (x3, y3)

η

⇐

FIGURE 10.5
Isoparametric transformation of a 3-node triangular element.
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And with that, we write the mapping functions

x =
3∑

m=1

Nmxm = N1x1 + N2x2 + N3x3

y =
3∑

m=1

Nmym = N1y1 + N2y2 + N3y3

(10.13)

for transforming an arbitrary triangular element with vertex nodes at (x1, y1),
(x2, y2), and (x3, y3) into the corresponding 3-node isoparametric triangular
element, as shown in Figure 10.5. With this isoparametric transformation, the
elementary domain in the natural coordinate system, ξ and η, is now within
the bounds of 0 ≤ ξ ≤ 1 and 0 ≤ η ≤ 1− ξ.

10.2.1.4 ne-Node isoparametric triangular element

In a similar way, when the isoparametric triangular element has ne nodes, we
can express the shape function matrix as

[N ] =
[
N1 N2 N3 N4 · · · Nne

]
where the individual shape functions are determined by using the Lagrange
formula for triangular elements discussed in Section 5.6.4. With these shape
functions, we write the mapping functions for isoparametric transformation:

x =
ne∑

m=1

Nmxm, y =
ne∑

m=1

Nmym

10.2.2 Elementary [Ke] matrix for scalar field problems

We now discuss the evaluation of the elementary [Ke] matrix based on
the isoparametric transformation for 2D scalar field problems. Referring to
Equation 7.5, we know that the elementary [Ke] matrix can be expressed as

[Ke] =
∫∫

A

([∇N ]T · k∇ [N ])tdA

=
∫∫

A

([
∂N

∂x

]T
k

[
∂N

∂x

]
+
[
∂N

∂y

]T
k

[
∂N

∂y

])
tdA

For 2D isoparametric elements, since their shape function matrices [N ] are
expressed in terms of ξ and η, to find ∂N/∂x and ∂N/∂y, we first apply the
chain rule of differentiation to obtain the following derivatives:

∂N

∂ξ
=

∂N

∂x

∂x

∂ξ
+

∂N

∂y

∂y

∂ξ
,

∂N

∂η
=

∂N

∂x

∂x

∂η
+

∂N

∂y

∂y

∂η
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In a matrix form, these expressions can be condensed to

⎧⎪⎪⎨
⎪⎪⎩

∂N

∂ξ

∂N

∂η

⎫⎪⎪⎬
⎪⎪⎭ =

⎡
⎢⎢⎣

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

∂N

∂x

∂N

∂y

⎫⎪⎪⎬
⎪⎪⎭ =
[
J
]
⎧⎪⎪⎨
⎪⎪⎩

∂N

∂x

∂N

∂y

⎫⎪⎪⎬
⎪⎪⎭

where

[
J
]

=

⎡
⎢⎢⎣

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

⎤
⎥⎥⎦

is the Jacobian matrix of isoparametric transformation, which is a 2× 2 matrix
in a 2D situation.

Knowing the Jacobian matrix, [J ], we express

⎧⎪⎪⎨
⎪⎪⎩

∂N

∂x

∂N

∂y

⎫⎪⎪⎬
⎪⎪⎭ =
[
J
]−1

⎧⎪⎪⎨
⎪⎪⎩

∂N

∂ξ

∂N

∂η

⎫⎪⎪⎬
⎪⎪⎭ =
[
Γ
]
⎧⎪⎪⎨
⎪⎪⎩

∂N

∂ξ

∂N

∂η

⎫⎪⎪⎬
⎪⎪⎭

Here, [Γ] is the inverse of the Jacobian matrix, which can be written out in a
2× 2 matrix as

[
Γ
]

=

[
Γ11 Γ12

Γ21 Γ22

]

Then, we write

∂N

∂x
= Γ11

∂N

∂ξ
+ Γ12

∂N

∂η
,

∂N

∂y
= Γ21

∂N

∂ξ
+ Γ22

∂N

∂η

Substituting these two relationships into the [Ke] matrix and integrating over
the isoparametric square domain, along with dA = det[J ]dξdη (see Equa-
tion B.3 in Appendix B), we obtain the following elementary [Ke] matrix
for quadrilateral elements:

[Ke] =
∫ 1

−1

∫ 1

−1

([
Γ11

∂N

∂ξ
+ Γ12

∂N

∂η

]T
k

[
Γ11

∂N

∂ξ
+ Γ12

∂N

∂η

])
t det[J ]dηdξ

+
∫ 1

−1

∫ 1

−1

([
Γ21

∂N

∂ξ
+ Γ22

∂N

∂η

]T
k

[
Γ21

∂N

∂ξ
+ Γ22

∂N

∂η

])
t det[J ]dηdξ

(10.14)
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For triangular elements, by integrating over the isoparametric triangular
domain, we have

[Ke] =
∫ 1

0

∫ 1−ξ

0

([
Γ11

∂N

∂ξ
+ Γ12

∂N

∂η

]T
k

[
Γ11

∂N

∂ξ
+ Γ12

∂N

∂η

])
t det[J ]dηdξ

+
∫ 1

0

∫ 1−ξ

0

([
Γ21

∂N

∂ξ
+ Γ22

∂N

∂η

]T
k

[
Γ21

∂N

∂ξ
+ Γ22

∂N

∂η

])
t det[J ]dηdξ

(10.15)

Equations 10.14 and 10.15 provide the formulas to determine the elementary
[Ke] matrices for 2D scalar field problems for quadrilateral and triangu-
lar elements, respectively. They are developed based on the isoparametric
transformation.

To obtain the actual value for any given element, we need to know the
shape function matrix of the corresponding isoparametric element in its nat-
ural coordinate system, the Jacobian matrix of transformation ([J ]), and its
inverse matrix, [Γ]. In the following sections, we will see how this is done for
an arbitrary quadrilateral element and a triangular element.

10.2.2.1 The 4-node quadrilateral elements

For 4-node quadrilateral elements, referring to Equation 10.10, we have the
following shape function matrix [N ] for the isoparametric element:

[N ] =
[
(1− ξ)(1− η)

4
(1 + ξ)(1− η)

4
(1 + ξ)(1 + η)

4
(1− ξ)(1 + η)

4

]
(10.16)

The Jacobian matrix of isoparametric transformation is determined using the
mapping functions given in Equation 10.11 as

[J ] =

⎡
⎢⎢⎣

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

⎤
⎥⎥⎦ =

1
4

⎡
⎣−(1− η) (1− η) (1 + η) −(1 + η)

−(1− ξ) −(1 + ξ) (1 + ξ) (1− ξ)

⎤
⎦
⎡
⎢⎢⎣

x1 y1

x2 y2

x3 y3

x4 y4

⎤
⎥⎥⎦

(10.17)
With this [J ] matrix, we calculate its inverse, the [Γ] matrix, as

[
Γ
]

= [ J ]−1 =

[
Γ11 Γ12

Γ21 Γ22

]

10.2.2.2 The 3-node isoparametric triangular elements

For 3-node triangular elements, using the shape functions given in
Equation 10.12, we have the following shape function matrix for the isopara-
metric element:

[N ] =
[
1− ξ− η ξ η

]
(10.18)
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The Jacobian matrix is determined by using the mapping functions given in
Equation 10.13:

[ J ] =

⎡
⎢⎢⎣

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

⎤
⎥⎥⎦ =
[−1 1 0
−1 0 1

]⎡⎣x1 y1

x2 y2

x3 y3

⎤
⎦ =

⎡
⎣x2 − x1 y2 − y1

x3 − x1 y3 − y1

⎤
⎦ (10.19)

With this [J ] matrix, we further calculate its inverse, the [Γ] matrix.

Example 10.4

For the 2D rectangular and triangular elements shown in Figure 10.6,
determine their elementary [Ke] matrices using Equations 10.14 and
10.15. Assume that the elements have a constant property, kt = 5.

Answer
For the rectangular element, by using Equation 10.17, along with the
nodal coordinates given in the figure, we calculate the Jacobian matrix:

[J ] =
1

4

⎡
⎣−(1− η) (1−η) (1+ η) −(1+η)

−(1− ξ) −(1+ ξ) (1+ ξ) (1− ξ)

⎤
⎦
⎡
⎢⎢⎣

0 0
0.2 0
0.2 0.1
0 0.1

⎤
⎥⎥⎦ =

[
0.1 0
0 0.05

]

From this, we find

[ Γ ] = [ J ]−1 =

⎡
⎣10 0

0 20

⎤
⎦

Then, we have det[J ] = 1/200, Γ11 = 10, Γ22 = 20, and Γ12 = Γ21 = 0.
From the shape function matrix given in Equation 10.16, we express[

∂N

∂ξ

]
=

1

4

[−(1−η) (1− η) (1+η) −(1+ η)
]

1 (0.0, 0.0) 2 (0.2, 0.0)

3 (0.2, 0.1)4 (0.0, 0.1)
y

x
1 (0.0, 0.0) 2 (0.2, 0.0)

3 (0.2, 0.1)

y = 0.5x

y

x

FIGURE 10.6
Two-dimensional rectangular and triangular elements with a uniform
thickness.
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∂N

∂η

]
=

1

4

[−(1− ξ) −(1+ ξ) (1+ ξ) (1− ξ)
]

Putting all these into Equation 10.14, we have

[Ke] = kt

∫ 1

−1

∫ 1

−1

([
Γ11

∂N

∂ξ

]T [
Γ11

∂N

∂ξ

]
+

[
Γ22

∂N

∂η

]T [
Γ22

∂N

∂η

])
det[J ]dηdξ

=
100× 5

16× 200

∫ 1

−1

∫ 1

−1

⎡
⎢⎢⎣
−(1−η)
(1−η)
(1+η)
−(1+η)

⎤
⎥⎥⎦ [−(1−η) (1− η) (1+η) −(1+ η)

]
dηdξ

+
400× 5

16× 200

∫ 1

−1

∫ 1

−1

⎡
⎢⎢⎣
−(1− ξ)
−(1+ ξ)
(1+ ξ)
(1− ξ)

⎤
⎥⎥⎦ [−(1− ξ) −(1+ ξ) (1+ ξ) (1− ξ)

]
dηdξ

By multiplying out the matrix terms and completing the two integra-
tions, we obtain

[Ke] =

⎡
⎢⎢⎣

4.17 0.83 −2.08 −2.92
0.83 4.17 −2.92 −2.08
−2.08 −2.92 4.17 0.83
−2.92 −2.08 0.83 4.17

⎤
⎥⎥⎦

Similarly, for the triangular element, by using Equation 10.19, along
with the nodal coordinates given in the figure, we calculate

[J ] =

[
0.2 0
0.2 0.1

]
, [Γ] =

[
5 0

−10 10

]

Then, we have det[J ] = 1/50, Γ11 = 5, Γ12 = 0, Γ21 = −10, Γ22 = 10.
From the shape function matrix given in Equation 10.18, we have[

∂N

∂ξ

]
=
[−1 1 0

]
,

[
∂N

∂η

]
=
[−1 0 1

]
Putting all these into Equation 10.15, we have

[Ke] =
25× 5

50

∫ 1

0

∫ 1−ξ

0

⎡
⎣−1

1
0

⎤
⎦ [−1 1 0

]
dηdξ

+
100× 5

50

∫ 1

0

∫ 1−ξ

0

⎛
⎝−

⎡
⎣−1

1
0

⎤
⎦+

⎡
⎣−1

0
1

⎤
⎦
⎞
⎠(− [−1 1 0

]
+
[−1 0 1

])
dηdξ

=

⎡
⎣ 1.25 −1.25 0
−1.25 6.25 −5.00

0 −5.00 5.00

⎤
⎦

The results are the same as those in Examples 7.1 and 7.2 in
Section 7.1.2. This is as expected because the corresponding elements
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are the same, thus confirming that isoparametric transformation does
not affect the outcomes.

10.2.2.3 Axisymmetric situation

For axisymmetric scalar field problems, we can go through the same procedure
by letting ξ point to the radial direction and η the axial direction. For example,
for ne-node elements, we have the following mapping functions:

r =
ne∑

m=1

Nmxm, z =
ne∑

m=1

Nmzm

Referring to Equations 9.4, 10.14, and 10.15, we write the following elementary
[Ke] matrix for quadrilateral elements for axisymmetric scalar field problems,

[Ke] =
∫ 1

−1

∫ 1

−1

([
Γ11

∂N

∂ξ
+ Γ12

∂N

∂η

]T
k

[
Γ11

∂N

∂ξ
+ Γ12

∂N

∂η

])

×
[

ne∑
m=1

Nmxm

]
det[J ]dηdξ

+
∫ 1

−1

∫ 1

−1

([
Γ21

∂N

∂ξ
+ Γ22

∂N

∂η

]T
k

[
Γ21

∂N

∂ξ
+ Γ22

∂N

∂η

])

×
[

ne∑
m=1

Nmxm

]
det[J ]dηdξ

(10.20)

and the following for triangular elements for axisymmetric scalar field
problems:

[Ke] =
∫ 1

0

∫ 1−ξ

0

([
Γ11

∂N

∂ξ
+ Γ12

∂N

∂η

]T
k

[
Γ11

∂N

∂ξ
+ Γ12

∂N

∂η

])

×
[

ne∑
m=1

Nmxm

]
det[J ]dηdξ

+
∫ 1

0

∫ 1−ξ

0

([
Γ21

∂N

∂ξ
+ Γ22

∂N

∂η

]T
k

[
Γ21

∂N

∂ξ
+ Γ22

∂N

∂η

])

×
[

ne∑
m=1

Nmxm

]
det[J ]dηdξ

(10.21)

Example 10.5

For the 2D rectangular and triangular elements shown in Figure 10.7,
determine their elementary [Ke] matrices using Equations 10.20 and
10.21. Assume that the elements have a constant property of k = 1000.
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1 (0.0, 0.0) 2 (0.2, 0.0)

3 (0.2, 0.1)4 (0.0, 0.1)z

r
1 (0.0, 0.0) 2 (0.2, 0.0)

3 (0.2, 0.1)

z = 0.5r

z

r

FIGURE 10.7
Two-dimensional rectangular and triangular elements.

Answer
Since the two elements are the same as those in Example 10.4, we have
the same [J ] and [Γ] matrices for the corresponding elements. Thus, for
the rectangular element, we have

[J ] =

[
0.1 0
0 0.05

]
, [ Γ ] =

⎡
⎣10 0

0 20

⎤
⎦

Thus, det[J ] = 1/200, Γ11 = 10, Γ22 = 20, and Γ12 = Γ21 = 0. More-
over, by using the shape functions given in Equation 10.16, we
calculate

r =

4∑
m=1

Nmxm =
1+ ξ

10

Putting all these into Equation 10.20, along with k = 1000, we have

[Ke] =
25

8

∫ 1

−1

∫ 1

−1

⎡
⎢⎢⎣
−(1− η)
(1− η)
(1+ η)
−(1+ η)

⎤
⎥⎥⎦ [−(1−η) (1− η) (1+η) −(1+η)

]
(1+ ξ)dηdξ

+
25

2

∫ 1

−1

∫ 1

−1

⎡
⎢⎢⎣
−(1− ξ)
−(1+ ξ)
(1+ ξ)
(1− ξ)

⎤
⎥⎥⎦ [−(1− ξ) −(1+ ξ) (1 + ξ) (1− ξ)

]
(1+ ξ)dηdξ

=

⎡
⎢⎢⎣

50.00 16.67 −41.67 −25.00
16.67 116.67 −91.67 −41.67
−41.67 −91.67 116.67 16.67
−25.00 −41.67 16.67 50.00

⎤
⎥⎥⎦

Similarly, for the triangular element, we have

[J ] =

[
0.2 0
0.2 0.1

]
, [Γ] =

[
5 0

−10 10

]
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and det[J ] = 1/50, Γ11 = 5, Γ12 = 0, Γ21 = −10, Γ22 = 10. Using the
shape functions given in Equation 10.18, we calculate

r =

3∑
m=1

Nmxm =
ξ+ η

5

Putting all these into Equation 10.21, along with k = 1000, we have

[Ke] = 100

∫ 1

0

∫ 1−ξ

0

⎡
⎣−1

1
0

⎤
⎦ [−1 1 0

]
(ξ+ η)dηdξ

+ 400

∫ 1

0

∫ 1−ξ

0

⎛
⎝−

⎡
⎣−1

1
0

⎤
⎦+

⎡
⎣−1

0
1

⎤
⎦
⎞
⎠(− [−1 1 0

]
+
[−1 0 1

])
× (ξ+ η)dηdξ

=

⎡
⎣ 33.33 −33.33 0
−33.33 166.67 −133.33

0 −133.33 133.33

⎤
⎦

Since the elements in this example are the same as in Examples 9.1
and 9.2 in Section 9.1.2, the results are the same as well, thus further
confirming that isoparametric transformation does not affect the out-
comes. However, the differences between these two axisymmetric cases
and the two 2D cases in Example 10.4 highlight that an axisymmetric
solution is equivalent to a three-dimensional (3D) solution.

10.2.3 Elementary [Ke] matrix for vector field problems

For vector field problems, the above development cannot be used. In this
section, we discuss the evaluation of the elementary [Ke] matrix based on
isoparametric transformation for 2D vector field problems. Again, we will
limit our discussion to problems of solid mechanics. To determine the [Ke]
matrix for vector field solid mechanics problems, we need to reevaluate the
left-hand term in Equation 8.18, namely,∫∫

S

{∇s2{w}}T {σ}tdS (10.22)

By using Equation 8.16, we express

∇s2{w} =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x

⎤
⎥⎥⎥⎥⎥⎥⎦
{

wx

wy

}
=
[
A2

]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂wx

∂x
∂wx

∂y
∂wy

∂x
∂wy

∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, and {ε} = ∇s2{d} =
[
A2

]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ux

∂x
∂ux

∂y
∂uy

∂x
∂uy

∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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where

[A2] =

⎡
⎣1 0 0 0
0 0 0 1
0 1 1 0

⎤
⎦ (10.23)

Using the Jacobian matrix of isoparametric transformation [J ] and its
inverse [Γ], we express

⎧⎪⎪⎨
⎪⎪⎩

∂ux

∂x

∂ux

∂y

⎫⎪⎪⎬
⎪⎪⎭ =
[
J
]−1

⎧⎪⎪⎨
⎪⎪⎩

∂ux

∂ξ

∂ux

∂η

⎫⎪⎪⎬
⎪⎪⎭ ,

⎧⎪⎪⎨
⎪⎪⎩

∂uy

∂x

∂uy

∂y

⎫⎪⎪⎬
⎪⎪⎭ =
[
J
]−1

⎧⎪⎪⎨
⎪⎪⎩

∂uy

∂ξ

∂uy

∂η

⎫⎪⎪⎬
⎪⎪⎭

or ⎧⎪⎪⎨
⎪⎪⎩

∂ux

∂x

∂ux

∂y

⎫⎪⎪⎬
⎪⎪⎭ =

[
Γ11 Γ12

Γ21 Γ22

]⎧⎪⎪⎨
⎪⎪⎩

∂ux

∂ξ

∂ux

∂η

⎫⎪⎪⎬
⎪⎪⎭ ,

⎧⎪⎪⎨
⎪⎪⎩

∂uy

∂x

∂uy

∂y

⎫⎪⎪⎬
⎪⎪⎭ =

[
Γ11 Γ12

Γ21 Γ22

]⎧⎪⎪⎨
⎪⎪⎩

∂uy

∂ξ

∂uy

∂η

⎫⎪⎪⎬
⎪⎪⎭

Putting them together, we can write

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ux

∂x

∂ux

∂y

∂uy

∂x

∂uy

∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Γ11 Γ12 0 0

Γ21 Γ22 0 0

0 0 Γ11 Γ12

0 0 Γ21 Γ22

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ux

∂ξ

∂ux

∂η

∂uy

∂ξ

∂uy

∂η

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= [Γe2]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ux

∂ξ

∂ux

∂η

∂uy

∂ξ

∂uy

∂η

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Here, [Γe2] represents the 4× 4 matrix expanded based on the 2× 2 [Γ] matrix
for 2D vector field problems.

For 2D elements having ne nodes, with the following mapping functions,

x =
ne∑

m=1

Nmxm, y =
ne∑

m=1

Nmym

we first calculate the Jacobian matrix [J ] and its inverse matrix [Γ], as well
as the expanded [Γe2]. Then, using the following field quantity interpolation
functions,

ux =
ne∑

m=1

Nmumx, uy =
ne∑

m=1

Nmumy
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we express

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ux

∂ξ

∂ux

∂η

∂uy

∂ξ

∂uy

∂η

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂ξ
0

∂N2

∂ξ
0 · · · ∂Nne

∂ξ
0

∂N1

∂η
0

∂N2

∂η
0 · · · ∂Nne

∂η
0

0
∂N1

∂ξ
0

∂N2

∂ξ
· · · 0

∂Nne

∂ξ

0
∂N1

∂η
0

∂N2

∂η
· · · 0

∂Nne

∂η

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1x

u1y

u2x

u2y

...
unex

uney

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= [∂N2]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1x

u1y

u2x

u2y

...
unex

uney

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Here, [∂N2] represents the 4× 2ne shape function matrix derivative. With
these compact expressions, we express the strain vector as

{ε} = ∇s2{d} =
[
A2

] [
Γe2

] [
∂N2

] {d0}

In similar steps, we have

∇s2{w} =
[
A2

] [
Γe2

] [
∂N2

]
Putting them all back into Equation 10.22, along with {σ} = [C]{ε} and
dA = det[J ]dηdξ (see Equation B.3 in Appendix B) and integrating over the
isoparametric square domain, we obtain the following [Ke] for 2D quadrilat-
eral elements based on isoparametric transformation for 2D solid mechanics
problems:

[Ke] =
∫ 1

−1

∫ 1

−1

[[
A2

] [
Γe2

] [
∂N2

]]T [C]
[[

A2

] [
Γe2

] [
∂N2

]]
det [J ] tdηdξ

(10.24)

For triangular elements, we have

[Ke] =
∫ 1

0

∫ 1−ξ

0

[[
A2

] [
Γe2

] [
∂N2

]]T [C]
[[

A2

] [
Γe2

] [
∂N2

]]
det [J ] tdηdξ

(10.25)
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So, for 2D solid mechanics problems, to find the elementary [Ke] matrix based
on the isoparametric transformation, we just need to find the [Γe2] and [∂N2]
for a given element.

Example 10.6

For the 2D rectangular and triangular elements shown in Figure 10.8
(note that coordinates are in units of meters), determine their ele-
mentary [Ke] matrices using Equations 10.24 and 10.25. Assume that
the elements are made of an isotropic material with E = 200 GPa and
ν = 0.3 with a uniform thickness of t = 0.005 m.

Answer
Referring to the examples discussed above, we have the following for the
rectangular element:

[J ] =

[
0.1 0
0 0.05

]
, det[J ] =

1

200
, [ Γ ] =

[
10 0
0 20

]

Then, we have

[Γe2] =

⎡
⎢⎢⎣
10 0 0 0
0 20 0 0
0 0 10 0
0 0 0 20

⎤
⎥⎥⎦

Moreover, with the shape functions given in Equation 10.16, we calculate

[∂N2] =
1

4

⎡
⎢⎢⎣

η− 1 0 1−η 0 1 +η 0 −1−η 0
ξ− 1 0 −1− ξ 0 ξ+ 1 0 1− ξ 0

0 η− 1 0 1−η 0 1+ η 0 −1− η

0 ξ− 1 0 −1− ξ 0 1+ ξ 0 1− ξ

⎤
⎥⎥⎦

Substituting these expressions, along with [A2] (Equation 10.23), [C]
for plane stress (Equation 8.14), and the values of E, ν, and t, into

1 (0.0, 0.0) 2 (0.2, 0.0)

3 (0.2, 0.1)4 (0.0, 0.1)
y

x
1 (0.0, 0.0) 2 (0.2, 0.0)

3 (0.2, 0.1)

y = 0.5x

y

x

FIGURE 10.8
Two-dimensional rectangular and triangular elements with a uniform
thickness.
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Equation 10.24, we have

[Ke] =
0.005

200

∫ 1

−1

∫ 1

−1

[[
A2

] [
Γe2

] [
∂N2

]]T
[C]

[[
A2

] [
Γe2

] [
∂N2

]]
dηdξ

= 109 ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.440 0.179 −0.055 −0.014 −0.220 −0.179 −0.165 0.014
0.179 0.797 0.014 0.302 −0.179 −0.398 −0.014 −0.701
−0.055 0.014 0.440 −0.179 −0.165 −0.014 −0.220 0.179
−0.014 0.302 −0.179 0.797 0.014 −0.701 0.179 −0.398
−0.220 −0.179 −0.165 0.014 0.440 0.179 −0.055 −0.014
−0.179 −0.398 −0.014 −0.701 0.179 0.797 0.014 0.302
−0.165 −0.014 −0.220 0.179 −0.055 0.014 0.440 −0.179
0.014 −0.701 0.179 −0.398 −0.014 0.302 −0.179 0.797

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Similarly, for the triangular element, we have

[J ] =

[
0.2 0
0.2 0.1

]
, det[J ] =

1

50
, [ Γ ] =

[
5 0

−10 10

]

and

[Γe2] =

⎡
⎢⎢⎣

5 0 0 0
−10 10 0 0
0 0 5 0
0 0 −10 10

⎤
⎥⎥⎦

Moreover, with the shape functions given in Equation 10.18, we calculate

[∂N2] =

⎡
⎢⎢⎣
−1 0 1 0 0 0
−1 0 0 0 1 0
0 −1 0 1 0 0
0 −1 0 0 0 1

⎤
⎥⎥⎦

Substituting these expressions, along with [A2] (Equation 10.23), [C]
for plane stress (Equation 8.14), and the values of E, ν, and t, into
Equation 10.25, we have

[Ke] =
0.005

50

∫ 1

0

∫ 1−ξ

0

[[
A2

] [
Γe2

] [
∂N2

]]T
[C]

[[
A2

] [
Γe2

] [
∂N2

]]
dηdξ

= 109 ×

⎡
⎢⎢⎢⎢⎢⎢⎣

0.275 0.000 −0.275 0.165 0.000 −0.165
0.000 0.096 0.192 −0.096 −0.192 0.000
−0.275 0.192 0.659 −0.357 −0.385 0.165
0.165 −0.096 −0.357 1.195 0.192 −1.099
0.000 −0.192 −0.385 0.192 0.385 0.000
−0.165 0.000 0.165 −1.099 0.000 1.099

⎤
⎥⎥⎥⎥⎥⎥⎦

Comparing these results with those in Examples 8.3 and 8.4, it is clear
the results are the same, which is as expected because the problems are
the same.
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10.2.3.1 Axisymmetric situation

For axisymmetric problems, referring to Equation 9.9, we express

∇sa{w} =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂r
0

1

r
0

0
∂

∂z
∂

∂z

∂

∂r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{
wr

wz

}
=
[
Aa

]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂wr

∂r
wr

r
∂wr

∂z
∂wz

∂r
∂wz

∂z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, and {ε} = ∇sa{d} =
[
Aa

]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ur

∂r
ur

r
∂ur

∂z
∂uz

∂r
∂uz

∂z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where

[Aa] =

⎡
⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 1 1 0

⎤
⎥⎥⎦ (10.26)

For 2D elements having ne nodes, with the following mapping functions,

r =
ne∑

m=1

Nmrm, z =
ne∑

m=1

Nmzm

we calculate the Jacobian matrix [J ]:

[
J
]

=

⎡
⎢⎢⎣

∂r

∂ξ

∂z

∂ξ

∂r

∂η

∂z

∂η

⎤
⎥⎥⎦

With the inverse of the Jacobian matrix, [Γ], we have

⎧⎪⎪⎨
⎪⎪⎩

∂ur

∂r

∂uz

∂z

⎫⎪⎪⎬
⎪⎪⎭ =

[
Γ11 Γ12

Γ21 Γ22

]⎧⎪⎪⎨
⎪⎪⎩

∂ur

∂ξ

∂ur

∂η

⎫⎪⎪⎬
⎪⎪⎭ ,

⎧⎪⎪⎨
⎪⎪⎩

∂ur

∂r

∂uz

∂z

⎫⎪⎪⎬
⎪⎪⎭ =

[
Γ11 Γ12

Γ21 Γ22

]⎧⎪⎪⎨
⎪⎪⎩

∂uz

∂ξ

∂uz

∂η

⎫⎪⎪⎬
⎪⎪⎭

Moreover, with the mapping function for r, we express

ur

r
=

ur∑ne

m=1 Nmrm
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Putting them together, we write

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ur

∂r
ur

r

∂ur

∂z

∂uz

∂r

∂uz

∂z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ11 0 Γ12 0 0

0
1∑ne

m=1 Nmxm
0 0 0

Γ21 0 Γ22 0 0

0 0 0 Γ11 Γ12

0 0 0 Γ21 Γ22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ur

∂ξ

ur

∂ur

∂η

∂uz

∂ξ

∂uz

∂η

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= [Γea]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ur

∂ξ

ur

∂ur

∂η

∂uz

∂ξ

∂uz

∂η

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Here, [Γea] represents the 5× 5 matrix expanded based on the 2× 2 [Γ] matrix.
With the following field quantity interpolation functions,

ur =
ne∑

m=1

Nmumr, uz =
ne∑

m=1

Nmumz

we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ur

∂ξ

ur

∂ur

∂η

∂uz

∂ξ

∂uz

∂η

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂ξ
0

∂N2

∂ξ
0 · · · ∂Nne

∂ξ
0

N1 0 N2 0 · · · Nne 0

∂N1

∂η
0

∂N2

∂η
0 · · · ∂Nne

∂η
0

0
∂N1

∂ξ
0

∂N2

∂ξ
· · · 0

∂Nne

∂ξ

0
∂N1

∂η
0

∂N2

∂η
· · · 0

∂Nne

∂η

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1r

u1z

u2r

u2z

...

uner

unez

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= [∂Na]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1r

u1z

u2r

u2z

...

uner

unez

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Here, [∂Na] represents the 5× 2ne shape function matrix derivative.
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Using these matrices, we express the strain vector as

{ε} = ∇sa{d} =
[
Aa

] [
Γea

] [
∂Na

] {d0}

and
∇sa{w} =

[
Aa

] [
Γea

] [
∂Na

]
Putting them all in the term on the left-hand side of Equation 9.14, along

with {σ} = [C]{ε} and dA = det[J ]dξdη, and integrating over the isoparamet-
ric square domain, we obtain the following [Ke] for 2D quadrilateral elements
for axisymmetric solid mechanics problems:

[Ke] =
∫ 1

−1

∫ 1

−1

[[
Aa

] [
Γea

] [
∂Na

]]T [C]
[[

Aa

] [
Γea

] [
∂Na

]]

× det [J ]

[
ne∑

m=1

Nmxm

]
dηdξ (10.27)

For triangular elements, we have

[Ke] =
∫ 1

0

∫ 1−ξ

0

[[
Aa

] [
Γea

] [
∂Na

]]T [C]
[[

Aa

] [
Γea

] [
∂Na

]]

× det [J ]

[
ne∑

m=1

Nmxm

]
dηdξ (10.28)

So, for axisymmetric solid mechanics problems, to find the elementary [Ke]
matrix based on the isoparametric transformation, we need to find the [Γea]
and [∂Na] for a given element.

Example 10.7

For the 2D rectangular and triangular elements shown in Figure 10.9,
determine their elementary [Ke] matrices using Equations 10.27 and
10.28. Assume that the elements are made of an isotropic material with
E = 200 GPa and ν = 0.3.

1 (0.0, 0.0) 2 (0.2, 0.0)

3 (0.2, 0.1)4 (0.0, 0.1)z

r
1 (0.0, 0.0) 2 (0.2, 0.0)

3 (0.2, 0.1)

z = 0.5r

z

r

FIGURE 10.9
Two-dimensional rectangular and triangular elements.
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Answer
Referring to the examples discussed above, we have the following for the
rectangular element:

[J ] =

[
0.1 0
0 0.05

]
, det[J ] =

1

200
, [ Γ ] =

[
10 0
0 20

]
, r =

4∑
m=1

Nmxm =
1+ ξ

10

Then, we express

[Γea] =

⎡
⎢⎢⎢⎢⎣

10 0 0 0 0
0 10/(ξ +1) 0 0 0
0 0 20 0 0
0 0 0 10 0
0 0 0 0 20

⎤
⎥⎥⎥⎥⎦

Moreover, we calculate

[∂Na] =
1

4

⎡
⎢⎢⎢⎢⎢⎣

η − 1 0 1− η 0 1 + η 0 −1− η 0

(1 − ξ)(1− η) 0 (1 + ξ)(1 − η) 0 (1 + ξ)(1 + η) 0 (1− ξ)(1 + η) 0

ξ − 1 0 −1− ξ 0 ξ + 1 0 1− ξ 0

0 η − 1 0 1− η 0 1 + η 0 −1− η

0 ξ − 1 0 −1− ξ 0 1 + ξ 0 1− ξ

⎤
⎥⎥⎥⎥⎥⎦

Substituting these expressions, along with [Aa] (Equation 10.26), [C] for
the axisymmetric situation (Equation 9.11), and the values of E and ν,
into Equation 10.27, we have

[Ke] =
1

2000

∫ 1

−1

∫ 1

−1

[[
Aa

] [
Γea

] [
∂Na

]]T
[C]

[[
Aa

] [
Γea

] [
∂Na

]]
(1+ ξ)dηdξ

= 109 ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞ −0.64 2.56 0.64 −2.56 −3.21 ∞ 3.21
−0.64 10.26 −1.28 7.69 −6.41 −9.62 −3.21 −8.33
2.56 −1.28 20.51 −10.26 −1.28 5.13 −2.56 6.41
0.64 7.69 −10.26 28.21 −5.13 −26.28 3.21 −9.62
−2.56 −6.41 −1.28 −5.13 20.51 10.26 2.56 1.28
−3.21 −9.62 5.13 −26.28 10.26 28.21 −0.64 7.69
∞ −3.21 −2.56 3.21 2.56 −0.64 ∞ 0.64

3.21 −8.33 6.41 −9.62 1.28 7.69 0.64 10.26

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Similarly, for the triangular element, we have

[J ] =

[
0.2 0
0.2 0.1

]
, det[J ] =

1

50
, [ Γ ] =

[
5 0

−10 10

]
, r =

3∑
m=1

Nmxm =
ξ+ η

5

Then, we write

[Γea] =

⎡
⎢⎢⎢⎢⎣

5 0 0 0 0
0 5/(ξ +η) 0 0 0

−10 0 10 0 0
0 0 0 5 0
0 0 0 −10 10

⎤
⎥⎥⎥⎥⎦
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Moreover, we have

[∂Na] =

⎡
⎢⎢⎢⎢⎣

−1 0 1 0 0 0
1− ξ− η 0 ξ 0 η 0

−1 0 0 0 1 0
0 −1 0 1 0 0
0 −1 0 0 0 1

⎤
⎥⎥⎥⎥⎦

Substituting these expressions, along with [Aa] (Equation 10.26),
[C] for the axisymmetric situation (Equation 9.11), and the values of E
and ν, into Equation 10.28, we have

[Ke] =
1

250

∫ 1

0

∫ 1−ξ

0

[[
Aa

] [
Γea

] [
∂Na

]]T
[C]

[[
Aa

] [
Γea

] [
∂Na

]]
(ξ+ η)dηdξ

= 109 ×

⎡
⎢⎢⎢⎢⎢⎢⎣

14.10 0 −6.73 3.85 0.32 −3.85
0 2.56 5.13 −2.56 −5.13 0

−6.73 5.13 26.07 −16.67 −6.84 11.54
3.85 −2.56 −16.67 38.46 1.28 −35.90
0.32 −5.13 −6.84 1.28 13.25 3.85
−3.85 0 11.54 −35.90 3.85 35.90

⎤
⎥⎥⎥⎥⎥⎥⎦

Comparing these results with those in Examples 9.3 and 9.4 in
Section 9.2.2, we can see that the results are the same as expected
because we solved the same problems. However, the result for the rect-
angular element still contains several terms of infinity. This fact suggests
that the isoparametric transformation does not alleviate the problem of
division by zero in integrating terms containing 1/r2 over a geometric
domain that includes the edge of r = 0. We will reexamine this issue
in Example 11.3 in Section 11.2 when we discuss Gauss quadrature for
numerical integration.

10.3 Isoparametric Elements for 3D Structures

For isoparametric elements in a 3D space, we mainly consider two elements:
one is the right angle hexahedral element and the other the right angle tetra-
hedron defined in the natural coordinate system, ξ, η, ζ. For the isoparametric
hexahedral element, its eight vertex nodes are located at (ξ = ±1, η = ±1,
ζ = ±1). Of course, like any hexahedral elements, it can have just 8 vertex
nodes, or 27 nodes, or more depending on the order of the interpolation.
For the isoparametric tetrahedral element, it has its four vertex nodes at
(0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1). In the same way, this element can have
just 4 vertex nodes, or 10 nodes, or more depending on the order of the
interpolation.
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10.3.1 Shape and mapping functions

10.3.1.1 The 8-node isoparametric hexahedral element

The 8-node isoparametric hexahedral element in the natural coordinate sys-
tem, ξ, η, ζ, is defined as a hexahedral element with eight vertex nodes located
at ξ = ±1, η = ±1, and ζ = ±1, as shown in Figure 10.10.

Using the Lagrange formula (see Section 5.6.5) with nξ = nη = nζ = 2 and
ξ1 = η1 = ζ1 = −1, ξ2 = η2 = ζ2 = 1, we obtain the following shape functions:

N1 = L1,1,1 =
ξ− ξ2

ξ1 − ξ2

η− η2

η1 − η2

ζ− ζ2

ζ1 − ζ2
=

(1− ξ)(1− η)(1− ζ)
8

N2 = L2,1,1 =
ξ− ξ1

ξ2 − ξ1

η− η2

η1 − η2

ζ− ζ2

ζ1 − ζ2
=

(1 + ξ)(1− η)(1− ζ)
8

N3 = L2,2,1 =
ξ− ξ1

ξ2 − ξ1

η− η1

η2 − η1

ζ− ζ2

ζ1 − ζ2
=

(1 + ξ)(1 + η)(1− ζ)
8

N4 = L1,2,1 =
ξ− ξ2

ξ1 − ξ2

η− η1

η2 − η1

ζ− ζ2

ζ1 − ζ2
=

(1− ξ)(1 + η)(1− ζ)
8

N5 = L1,1,2 =
ξ− ξ2

ξ1 − ξ2

η− η2

η1 − η2

ζ− ζ1

ζ2 − ζ1
=

(1− ξ)(1− η)(1 + ζ)
8

N6 = L2,1,2 =
ξ− ξ1

ξ2 − ξ1

η− η2

η1 − η2

ζ− ζ1

ζ2 − ζ1
=

(1 + ξ)(1− η)(1 + ζ)
8

N7 = L2,2,2 =
ξ− ξ1

ξ2 − ξ1

η− η1

η2 − η1

ζ− ζ1

ζ2 − ζ1
=

(1 + ξ)(1 + η)(1 + ζ)
8

N8 = L1,2,2 =
ξ− ξ2

ξ1 − ξ2

η− η1

η2 − η1

ζ− ζ1

ζ2 − ζ1
=

(1− ξ)(1 + η)(1 + ζ)
8

(10.29)

which are often put together as the shape function matrix

[N ] =
[
N1 N2 N3 N4 N5 N6 N7 N8

]

2

3

7
6

1

4

8
5

η

ζ

ξ

Node 1: (−1, −1, −1)

Node 2: (1, −1, −1)

Node 3: (1, 1, −1)

Node 4: (−1, 1, −1)

Node 5: (−1, −1, 1)

Node 6: (1, −1, 1)

Node 7: (1, 1, 1)

Node 8: (−1, 1, 1)

FIGURE 10.10
The 8-node isoparametric hexahedral element.
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With these shape functions, we write the mapping functions as

x =
8∑

m=1

Nmxm, y =
8∑

m=1

Nmym, z =
8∑

m=1

Nmzm (10.30)

for transforming an arbitrary hexahedral element with vertex nodes at
(x1, y1, z1), (x2, y2, z2), (x3, y3, z3), (x1, y1, z3), (x4, y4, z4), (x5, y5, z5)
(x6, y6, z6), (x7, y7, z7), and (x8, y8, z8) into the 8-node isoparametric hexahe-
dral element. After this transformation, the elementary domain is now within
the bounds of −1 ≤ ξ ≤ 1, −1 ≤ η ≤ 1, and −1 ≤ ζ ≤ 1.

10.3.1.2 ne-Node isoparametric hexahedral element

In general, when the isoparametric hexahedral element has ne nodes, we can
express its shape function matrix as

[N ] =
[
N1 N2 N3 N4 · · · Nne

]
where the individual shape functions are determined by using the Lagrange
formula for hexahedral elements discussed in Section 5.6.5. With these shape
functions, we write the mapping functions for isoparametric transformation:

x =
ne∑

m=1

Nmxm, y =
ne∑

m=1

Nmym z =
ne∑

m=1

Nmzm

10.3.1.3 The 4-node isoparametric tetrahedral element

The 4-node isoparametric tetrahedral element in the natural coordinate sys-
tem, ξ, η, ζ, is defined as the right angle tetrahedron with four vertex nodes
located at (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1), as shown in Figure 10.11.

2

3

4

1 η

ζ

Node 1: (0, 0, 0)

Node 2: (1, 0, 0)

Node 3: (0, 1, 0)

Node 4: (0, 0, 1)

ζ = 1 − ξ − η

η = 1 − ξ
ξ

FIGURE 10.11
A 4-node isoparametric tetrahedral element.
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Using the Lagrange formula for tetrahedral elements (see Section 5.6.6),
along with the calculated volumes,

V0 = 1/6, V1 = (1− ξ− η− ζ)/6
V2 = ξ/6, V3 = η/6, V4 = ζ/6

we express the following shape functions,

N1 = V1/V0 = 1− ξ− η− ζ, N2 = V2/V0 = ξ

N3 = V3/V0 = η, N4 = V4/V0 = ζ
(10.31)

and the mapping functions,

x =
4∑

m=1

Nmxm, y =
4∑

m=1

Nmym, z =
4∑

m=1

Nmzm (10.32)

for transforming an arbitrary tetrahedral element with vertex nodes at
(x1, y1, z1), (x2, y2, z2), (x3, y3, z3), and (x4, y4, z4) into the corresponding
4-node isoparametric tetrahedral element. After this transformation, the ele-
mentary domain is now within the bounds of 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1− ξ, and
0 ≤ ζ ≤ 1− ξ− η.

10.3.1.4 ne-Node isoparametric tetrahedral element

In a similar way, when the isoparametric tetrahedral element has ne nodes,
we can express the shape function matrix as

[N ] =
[
N1 N2 N3 N4 · · · Nne

]
where the individual shape functions are determined by using the Lagrange
formula for tetrahedral elements discussed in Section 5.6.6. With these shape
functions, we write the mapping functions for isoparametric transformation:

x =
ne∑

m=1

Nmxm, y =
ne∑

m=1

Nmym z =
ne∑

m=1

Nmzm

10.3.2 Elementary [Ke] matrix for scalar field problems

For 3D scalar field problems, referring to Equation 7.9, we know that the
elementary [Ke] matrix can be expressed as

[Ke] =
∫∫∫

V

([∇N ]T · k∇ [N ])dV

=
∫∫∫

V

([
∂N

∂x

]T
kx

[
∂N

∂x

]
+
[
∂N

∂y

]T
ky

[
∂N

∂y

]
+
[
∂N

∂z

]T
kz

[
∂N

∂z

])
dV
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Since the shape function matrix [N ] is now expressed in terms of ξ, η, and ζ, we
again apply the chain rule of differentiation to obtain the following derivatives:

∂N

∂ξ
=

∂N

∂x

∂x

∂ξ
+

∂N

∂y

∂y

∂ξ
+

∂N

∂z

∂z

∂ξ

∂N

∂η
=

∂N

∂x

∂x

∂η
+

∂N

∂y

∂y

∂η
+

∂N

∂z

∂z

∂η

∂N

∂ζ
=

∂N

∂x

∂x

∂ζ
+

∂N

∂y

∂y

∂ζ
+

∂N

∂z

∂z

∂ζ

Condensing them into a matrix form, we have⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂N

∂ξ

∂N

∂η

∂N

∂ζ

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂x

∂ξ

∂y

∂ξ

∂z

∂ξ

∂x

∂η

∂y

∂η

∂z

∂η

∂x

∂ζ

∂y

∂ζ

∂z

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂N

∂x

∂N

∂y

∂N

∂z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=
[
J
]
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂N

∂x

∂N

∂y

∂N

∂z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(10.33)

where

[
J
]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂x

∂ξ

∂y

∂ξ

∂z

∂ξ

∂x

∂η

∂y

∂η

∂z

∂η

∂x

∂ζ

∂y

∂ζ

∂z

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

is the Jacobian matrix of isoparametric transform, which is a 3× 3 matrix in
a 3D situation.

For a 3D element with ne nodes, we express its mapping functions in terms
of shape functions and nodal coordinates as

x =
ne∑

m=1

Nmxm, y =
ne∑

m=1

Nmym, z =
ne∑

m=1

Nmzm

for m = 1, 2, . . . , ne. Applying these relationships to Equation 10.33, we
calculate

[J ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂ξ

∂N2

∂ξ

∂N3

∂ξ

∂N4

∂ξ

∂N5

∂ξ
· · · ∂Nne

∂ξ

∂N1

∂η

∂N2

∂η

∂N3

∂η

∂N4

∂η

∂N5

∂η
· · · ∂Nne

∂η

∂N1

∂ζ

∂N2

∂ζ

∂N3

∂ζ

∂N4

∂ζ

∂N5

∂ζ
· · · ∂Nne

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

x5 y5 z5

...
...

...
xne yne zne

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.34)
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Then, we have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂N

∂x

∂N

∂y

∂N

∂z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=
[
J
]−1

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂N

∂ξ

∂N

∂η

∂N

∂ζ

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=
[
Γ
]
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂N

∂ξ

∂N

∂η

∂N

∂ζ

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

in which [Γ] is the inverse of the Jacobian matrix, which can be expressed as

[
Γ
]

=

⎡
⎢⎣
Γ11 Γ12 Γ13

Γ21 Γ22 Γ23

Γ31 Γ32 Γ33

⎤
⎥⎦

Then, we write

∂N

∂x
= Γ11

∂N

∂ξ
+ Γ12

∂N

∂η
+ Γ13

∂N

∂ζ

∂N

∂y
= Γ21

∂N

∂ξ
+ Γ22

∂N

∂η
+ Γ23

∂N

∂ζ

∂N

∂z
= Γ31

∂N

∂ξ
+ Γ32

∂N

∂η
+ Γ33

∂N

∂ζ

Substituting these relationships into the [Ke] matrix and integrating over
the isoparametric hexahedral domain, along with dV = det[J ]dξdηdζ (see
Equation B.4 in Appendix B), we obtain the following elementary [Ke] for
hexahedral elements for scalar field problems,

[Ke] =
∫∫∫ 1

−1

([
Γ11

∂N

∂ξ
+ Γ12

∂N

∂η
+ Γ13

∂N

∂ζ

]T

× k

[
Γ11

∂N

∂ξ
+ Γ12

∂N

∂η
+ Γ13

∂N

∂ζ

])
det[J ]dζdηdξ

+
∫∫∫ 1

−1

([
Γ21

∂N

∂ξ
+ Γ22

∂N

∂η
+ Γ23

∂N

∂ζ

]T

× k

[
Γ21

∂N

∂ξ
+ Γ22

∂N

∂η
+ Γ23

∂N

∂ζ

])
det[J ]dζdηdξ

+
∫∫∫ 1

−1

([
Γ31

∂N

∂ξ
+ Γ32

∂N

∂η
+ Γ33

∂N

∂ζ

]T

× k

[
Γ31

∂N

∂ξ
+ Γ32

∂N

∂η
+ Γ33

∂N

∂ζ

])
det[J ]dζdηdξ

(10.35)
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and the following for tetrahedral elements by integrating over the isoparamet-
ric tetrahedral domain:

[Ke] =
∫ 1

0

∫ 1−ξ

0

∫ 1−ξ−η

0

([
Γ11

∂N

∂ξ
+ Γ12

∂N

∂η
+ Γ13

∂N

∂ζ

]T

× k

[
Γ11

∂N

∂ξ
+ Γ12

∂N

∂η
+ Γ13

∂N

∂ζ

])

× det[J ]dζdηdξ

+
∫ 1

0

∫ 1−ξ

0

∫ 1−ξ−η

0

([
Γ21

∂N

∂ξ
+ Γ22

∂N

∂η
+ Γ23

∂N

∂ζ

]T

× k

[
Γ21

∂N

∂ξ
+ Γ22

∂N

∂η
+ Γ23

∂N

∂ζ

])

× det[J ]dζdηdξ

+
∫ 1

0

∫ 1−ξ

0

∫ 1−ξ−η

0

([
Γ31

∂N

∂ξ
+ Γ32

∂N

∂η
+ Γ33

∂N

∂ζ

]T

× k

[
Γ31

∂N

∂ξ
+ Γ32

∂N

∂η
+ Γ33

∂N

∂ζ

])

× det[J ]dζdηdξ

(10.36)

Example 10.8

For the 3D hexahedral and tetrahedral elements shown in Figure 10.12,
determine their elementary [Ke] matrices using Equations 10.35 and
10.36. Assume that the elements have a constant k = 1000.

1 (0, 0, 0)
2 (1, 0, 0)

6 (1, 0, 1)
5 (0, 0, 1) 4 (0, 2, 0)

3 (1, 2, 0)

7 (1, 2, 1)

8 (0, 2, 1)

x

z
y

1 (0, 0, 0)

2 (1, 0, 0)

3 (0, 2, 0)

4 (0, 0, 1)

x

y

z
z = 1 − x − y/2

y = 2 − 2x

FIGURE 10.12
Three dimensional hexahedral and tetrahedral elements.
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Answer
By applying Equation 10.34 to a hexahedral element, we obtain the
following:

[J ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂N1

∂ξ

∂N2

∂ξ

∂N3

∂ξ

∂N4

∂ξ

∂N5

∂ξ

∂N6

∂ξ

∂N7

∂ξ

∂N8

∂ξ

∂N1

∂η

∂N2

∂η

∂N3

∂η

∂N4

∂η

∂N5

∂η

∂N6

∂η

∂N7

∂η

∂N8

∂η

∂N1

∂ζ

∂N2

∂ζ

∂N3

∂ζ

∂N4

∂ζ

∂N5

∂ζ

∂N6

∂ζ

∂N7

∂ζ

∂N8

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

x5 y5 z5

x6 y6 z6

x7 y7 z7

x8 y8 z8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.37)
where

∂N1

∂ξ
= − (1− η)(1− ζ)

8
,

∂N2

∂ξ
=

(1− η)(1− ζ)

8
,

∂N3

∂ξ
=

(1+η)(1− ζ)

8

∂N4

∂ξ
= − (1+ η)(1− ζ)

8
,

∂N5

∂ξ
= − (1−η)(1+ ζ)

8
,

∂N6

∂ξ
=

(1−η)(1+ ζ)

8

∂N7

∂ξ
=

(1+η)(1+ ζ)

8
,

∂N8

∂ξ
= − (1+ η)(1+ ζ)

8

∂N1

∂η
= − (1− ξ)(1− ζ)

8
,

∂N2

∂η
= − (1+ ξ)(1− ζ)

8
,

∂N3

∂η
=

(1+ ξ)(1− ζ)

8

∂N4

∂η
=

(1− ξ)(1− ζ)

8
,

∂N5

∂η
= − (1− ξ)(1+ ζ)

8
,

∂N6

∂η
= − (1+ ξ)(1+ ζ)

8

∂N7

∂η
=

(1+ ξ)(1+ ζ)

8
,

∂N8

∂η
=

(1− ξ)(1+ ζ)

8

∂N1

∂ζ
= − (1− ξ)(1− η)

8
,

∂N2

∂ζ
= − (1+ ξ)(1−η)

8
,

∂N3

∂ζ
= − (1+ ξ)(1+η)

8

∂N4

∂ζ
= − (1− ξ)(1+ η)

8
,

∂N5

∂ζ
=

(1− ξ)(1−η)

8
,

∂N6

∂ζ
=

(1+ ξ)(1− η)

8

∂N7

∂ζ
=

(1+ ξ)(1+η)

8
,

∂N8

∂ζ
=

(1− ξ)(1+ η)

8
(10.38)

based on the shape functions given in Equation 10.29. Substituting the
nodal coordinates given in the figure into Equation 10.37, we obtain

[J ] =

⎡
⎣0.5 0 0

0 1 0
0 0 0.5

⎤
⎦

With that, we find

det[J ] =
1

4
, [Γ] =

⎡
⎣2 0 0
0 1 0
0 0 2

⎤
⎦
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Moreover, with the terms given in Equation 10.38, we assemble the
following shape function derivative matrices:

[
∂N

∂ξ

]
=

[
∂N1

∂ξ

∂N2

∂ξ

∂N3

∂ξ

∂N4

∂ξ

∂N5

∂ξ

∂N6

∂ξ

∂N7

∂ξ

∂N8

∂ξ

]
[

∂N

∂η

]
=

[
∂N1

∂η

∂N2

∂η

∂N3

∂η

∂N4

∂η

∂N5

∂η

∂N6

∂η

∂N7

∂η

∂N8

∂η

]
[

∂N

∂ζ

]
=

[
∂N1

∂ζ

∂N2

∂ζ

∂N3

∂ζ

∂N4

∂ζ

∂N5

∂ζ

∂N6

∂ζ

∂N7

∂ζ

∂N8

∂ζ

]

Putting all these into Equation 10.35, we obtain

[Ke] = k

∫∫∫ 1

−1

(
Γ

2
11

[
∂N

∂ξ

]T [
∂N

∂ξ

]
+ Γ

2
22

[
∂N

∂η

]T [
∂N

∂η

]
+Γ

2
33

[
∂N

∂ζ

]T [
∂N

∂ζ

])

× det[J ]dζdηdξ

=
1000

4

∫∫∫ 1

−1

(
4

[
∂N

∂ξ

]T [
∂N

∂ξ

]
+

[
∂N

∂η

]T [
∂N

∂η

]
+4

[
∂N

∂ζ

]T [
∂N

∂ζ

])
dζdηdξ

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

500.0 −83.3 −83.3 166.7 −83.3 −208.3 −125.0 −83.3

−83.3 500.0 166.7 −83.3 −208.3 −83.3 −83.3 −125.0

−83.3 166.7 500.0 −83.3 −125.0 −83.3 −83.3 −208.3

166.7 −83.3 −83.3 500.0 −83.3 −125.0 −208.3 −83.3

−83.3 −208.3 −125.0 −83.3 500.0 −83.3 −83.3 166.7

−208.3 −83.3 −83.3 −125.0 −83.3 500.0 166.7 −83.3

−125.0 −83.3 −83.3 −208.3 −83.3 166.7 500.0 −83.3

−83.3 −125.0 −208.3 −83.3 166.7 −83.3 −83.3 500.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Similarly, for the tetrahedral element, by applying Equation 10.34
to a tetrahedral element along with the shape functions given in Equa-
tion 10.31, we obtain the following Jacobian matrix of transformation:

[J ] =

⎡
⎣−1 1 0 0
−1 0 1 0
−1 0 0 1

⎤
⎦
⎡
⎢⎢⎣

x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

⎤
⎥⎥⎦ (10.39)

Substituting the nodal coordinates given in the figure, we have

[J ] =

⎡
⎣1 0 0
0 2 0
0 0 1

⎤
⎦ , det[J ] = 2, [Γ] =

⎡
⎣1 0 0
0 0.5 0
0 0 1

⎤
⎦



T&F Cat #K16587 — K16587 C010 — page 256 — 1/21/2017 — 15:52

256 Introduction to Integrative Engineering

Moreover, with these individual shape functions we calculate

[
∂N

∂ξ

]
=
[−1 1 0 0

]
,

[
∂N

∂η

]
=
[−1 0 1 0

]
,

[
∂N

∂ζ

]
=
[−1 0 0 1

]

Plugging these expressions into Equation 10.36 and integrating it over
the isoparametric tetrahedral domain, along with the k value, we obtain

[Ke] = k

∫ 1

0

∫ 1−ξ

0

∫ 1−ξ−η

0

([
Γ11

∂N

∂ξ

]T [
Γ11

∂N

∂ξ

])
det[J ]dζdηdξ

+ k

∫ 1

0

∫ 1−ξ

0

∫ 1−ξ−η

0

([
Γ22

∂N

∂η

]T [
Γ22

∂N

∂η

])
det[J ]dζdηdξ

+ k

∫ 1

0

∫ 1−ξ

0

∫ 1−ξ−η

0

([
Γ33

∂N

∂ζ

]T [
Γ33

∂N

∂ζ

])
det[J ]dζdηdξ

= 2000

∫ 1

0

∫ 1−ξ

0

∫ 1−ξ−η

0

⎡
⎢⎢⎣
−1
1
0
0

⎤
⎥⎥⎦ [−1 1 0 0

]
dζdηdξ

+500

∫ 1

0

∫ 1−ξ

0

∫ 1−ξ−η

0

⎡
⎢⎢⎣
−1
0
1
0

⎤
⎥⎥⎦ [−1 0 1 0

]
dζdηdξ

+2000

∫ 1

0

∫ 1−ξ

0

∫ 1−ξ−η

0

⎡
⎢⎢⎣
−1
0
0
1

⎤
⎥⎥⎦ [−1 0 0 1

]
dζdηdξ

=

⎡
⎢⎢⎣

750.00 −333.33 −83.33 −333.33
−333.33 333.33 0 0
−83.33 0 83.33 0
−333.33 0 0 333.33

⎤
⎥⎥⎦

Comparing the results from this example with those in Examples 7.3
and 7.4 in Section 7.3.2, we can see that they are exactly the same. This
is as expected because the corresponding elements are the same.

10.3.3 Elementary [Ke] matrix for vector field problems

To determine the elementary [Ke] matrix for 3D isoparametric elements for
solid mechanics problems, we go back to reevaluate the left-hand term in
Equation 8.7, namely,

∫∫∫
V

{∇s{w}}T {σ}dV (10.40)
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By using Equation 8.6, we write

∇s{w} =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z

0
∂

∂z

∂

∂y
∂

∂z
0

∂

∂x
∂

∂y

∂

∂x
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎨
⎩

wx

wy

wz

⎫⎬
⎭ =

[
A3
]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂wx

∂x
∂wx

∂y
∂wx

∂z
∂wy

∂x
∂wy

∂y
∂wy

∂z
∂wz

∂x
∂wz

∂y
∂wz

∂z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, and {ε} = ∇s{d} =
[
A3
]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ux

∂x
∂ux

∂y
∂ux

∂z
∂uy

∂x
∂uy

∂y
∂uy

∂z
∂uz

∂x
∂uz

∂y
∂uz

∂z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where

[A3] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(10.41)

For a 3D element with ne nodes, the Jacobian matrix of isoparametric
transformation is given in Equation 10.34. With a known [J ], we express its
inverse [Γ] as

[
Γ
]

=

⎡
⎢⎣
Γ11 Γ12 Γ13

Γ21 Γ22 Γ23

Γ31 Γ32 Γ33

⎤
⎥⎦

Then, we write

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ux

∂x

∂ux

∂y

∂ux

∂z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=
[
Γ
]
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂ux

∂ξ

∂ux

∂η

∂ux

∂ζ

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂uy

∂x

∂uy

∂y

∂uy

∂z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=
[
Γ
]
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂uy

∂ξ

∂uy

∂η

∂uy

∂ζ

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂uz

∂x

∂uz

∂y

∂uz

∂z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=
[
Γ
]
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂uz

∂ξ

∂uz

∂η

∂uz

∂ζ

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
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Putting them together, we have
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ux

∂x

∂ux

∂y

∂ux

∂z

∂uy

∂x

∂uy

∂y

∂uy

∂z

∂uz

∂x

∂uz

∂y

∂uz

∂z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ11 Γ12 Γ13 0 0 0 0 0 0

Γ21 Γ22 Γ23 0 0 0 0 0 0

Γ31 Γ32 Γ33 0 0 0 0 0 0

0 0 0 Γ11 Γ12 Γ13 0 0 0

0 0 0 Γ21 Γ22 Γ23 0 0 0

0 0 0 Γ31 Γ32 Γ33 0 0 0

0 0 0 0 0 0 Γ11 Γ12 Γ13

0 0 0 0 0 0 Γ21 Γ22 Γ23

0 0 0 0 0 0 Γ31 Γ32 Γ33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ux

∂ξ

∂ux

∂η

∂ux

∂ζ

∂uy

∂ξ

∂uy

∂η

∂uy

∂ζ

∂ux

∂ξ

∂uz

∂η

∂uz

∂ζ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= [Γe3]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ux

∂ξ

∂ux

∂η

∂ux

∂ζ

∂uy

∂ξ

∂uy

∂η

∂uy

∂ζ

∂ux

∂ξ

∂uz

∂η

∂uz

∂ζ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

in which [Γe3] represents the 9× 9 matrix expanded based on the 3× 3 [Γ]
matrix for 3D vector field problems.
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With the interpolation functions

ux =
ne∑

m=1

Nmumx, uy =
ne∑

m=1

Nmumy, uz =
ne∑

m=1

Nmumz

for m = 1, 2, . . . , ne, we write

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ux

∂ξ
∂ux

∂η
∂ux

∂ζ
∂uy

∂ξ
∂uy

∂η
∂uy

∂ζ
∂uz

∂ξ
∂uz

∂η
∂uz

∂ζ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂ξ
0 0

∂N2

∂ξ
0 0 · · · ∂Nne

∂ξ
0 0

∂N1

∂η
0 0

∂N2

∂η
0 0 · · · ∂Nne

∂η
0 0

∂N1

∂ζ
0 0

∂N2

∂ζ
0 0 · · · ∂Nne

∂ζ
0 0

0
∂N1

∂ξ
0 0

∂N2

∂ξ
0 · · · 0

∂Nne

∂ξ
0

0
∂N1

∂η
0 0

∂N2

∂η
0 · · · 0

∂Nne

∂η
0

0
∂N1

∂ζ
0 0

∂N2

∂ζ
0 · · · 0

∂Nne

∂ζ
0

0 0
∂N1

∂ξ
0 0

∂N2

∂ξ
· · · 0 0

∂Nne

∂ξ

0 0
∂N1

∂η
0 0

∂N2

∂η
· · · 0 0

∂Nne

∂η

0 0
∂N1

∂ζ
0 0

∂N2

∂ζ
· · · 0 0

∂Nne

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1x

u1y

u1z

u2x

u2y

u2z

u3x

u3y

u3z

u4x

u4y

u4z

u5x

u5y

u5z

..

.
unex

uney

unez

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Let [∂N3] represent the above 9× 3ne shape function matrix derivative; then
by using these matrices, we can express the strain vector as

{ε} = ∇s{d} =
[
A3

] [
Γe3

] [
∂N3

] {d0}
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In similar steps, we have

∇s{w} =
[
A3

] [
Γe3

] [
∂N3

]
Putting them all back into Equation 10.40, along with {σ} = [C]{ε} and
dxdydz = det[J ]dζdηdξ, and integrating it over the isoparametric hexahe-
dral domain, we obtain the following for 3D hexahedral elements for solid
mechanics problems,

[Ke] =
∫ 1

−1

∫ 1

−1

∫ 1

−1

[[
A3

] [
Γe3

] [
∂N3

]]T
[C]
[[

A3

] [
Γe3

] [
∂N3

]]
det [J ] dζdηdξ

(10.42)
and the following for tetrahedral elements:

[Ke] =
∫ 1

0

∫ 1−ξ

0

∫ 1−ξ−η

0

[[
A3

] [
Γe3

] [
∂N3

]]T [C]
[[

A3

] [
Γe3

] [
∂N3

]]
× det [J ] dζdηdξ (10.43)

Example 10.9

For the 3D hexahedral and tetrahedral elements shown in Figure 10.13
(with coordinates in units of meters), determine their elementary [Ke]
matrices using Equations 10.42 and 10.43. Assume that the elements are
made of an isotropic material with E = 200 GPa and ν = 0.3.

Answer
Referring to Example 10.8, we have the following for the hexahedral
element:

[J ] =

⎡
⎣0.5 0 0

0 1 0
0 0 0.5

⎤
⎦ , det[J ] =

1

4
, [Γ] =

⎡
⎣2 0 0
0 1 0
0 0 2

⎤
⎦

1 (0, 0, 0)
2 (1, 0, 0)

6 (1, 0, 1)
5 (0, 0, 1) 4 (0, 2, 0)

3 (1, 2, 0)

7 (1, 2, 1)

8 (0, 2, 1)

x

z
y

1 (0, 0, 0)

2 (1, 0, 0)

3 (0, 2, 0)

4 (0, 0, 1)

x

y

z
z = 1 − x − y/2

y = 2 − 2x

FIGURE 10.13
Three dimensional hexahedral and tetrahedral elements for solid mechanics
problems.
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Then, we express

[Γe3] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Moreover, with the shape functions given in Equation 10.29, we calculate

[∂N3] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂ξ
0 0

∂N2

∂ξ
0 0 · · · ∂N8

∂ξ
0 0

∂N1

∂η
0 0

∂N2

∂η
0 0 · · · ∂N8

∂η
0 0

∂N1

∂ζ
0 0

∂N2

∂ζ
0 0 · · · ∂N8

∂ζ
0 0

0
∂N1

∂ξ
0 0

∂N2

∂ξ
0 · · · 0

∂N8

∂ξ
0

0
∂N1

∂η
0 0

∂N2

∂η
0 · · · 0

∂N8

∂η
0

0
∂N1

∂ζ
0 0

∂N2

∂ζ
0 · · · 0

∂N8

∂ζ
0

0 0
∂N1

∂ξ
0 0

∂N2

∂ξ
· · · 0 0

∂N8

∂ξ

0 0
∂N1

∂η
0 0

∂N2

∂η
· · · 0 0

∂N8

∂η

0 0
∂N1

∂ζ
0 0

∂N2

∂ζ
· · · 0 0

∂N8

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the individual shape function derivatives are given in
Equation 10.38.

Substituting these expressions, along with [A3] (Equation 10.41),
[C] for 3D solid mechanics (Equation 8.8), and the values of E and ν,
into Equation 10.42, we have

[Ke] =
1

4

∫ 1

−1

∫ 1

−1

∫ 1

−1

[[
A3

] [
Γe3

] [
∂N3

]]T
[C]

[[
A3

] [
Γe3

] [
∂N3

]]
dζdηdξ

= 1010

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

8.12 1.60 3.21 · · · −0.16 −0.32
1.60 4.91 1.60 · · · −1.18 −1.60
3.21 1.60 8.12 · · · −1.60 −2.78

...
...

...
. . .

...
...

−0.16 −1.18 −1.60 · · · 4.91 1.60
−0.32 −1.60 −2.78 · · · 1.60 8.12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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Similarly, for the tetrahedral element, we have

[J ] =

⎡
⎣1 0 0
0 2 0
0 0 1

⎤
⎦ , det[J ] = 2, [Γ] =

⎡
⎣1 0 0
0 0.5 0
0 0 1

⎤
⎦

Then, we express

[Γe3] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 0.5 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0.5 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0.5 0
0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Using the shape functions given in Equation 10.31, we calculate

[∂N3] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 1 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 1 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 1 0 0
0 −1 0 0 1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 1 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 1 0
0 0 −1 0 0 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 1 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Substituting these expressions, along with [A3] (Equation 10.41), [C]
for 3D solid mechanics (Equation 8.8), and the values of E and ν, into
Equation 10.43, we have

[Ke] = 2

∫ 1

0

∫ 1−ξ

0

∫ 1−ξ−η

0

[[
A3

] [
Γe3

] [
∂N3

]]T
[C]

[[
A3

] [
Γe3

] [
∂N3

]]
dζdηdξ

= 1010

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

12.18 3.21 6.41 · · · −0 −3.85
3.21 7.37 3.21 · · · −2.56 −1.92
6.41 3.21 12.18 · · · −1.28 −8.97

...
...

...
. . .

...
...

0 −2.56 −1.28 · · · 2.56 0
−3.85 −1.92 −8.97 · · · 0 8.97

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

These results are exactly the same as those in Examples 8.1 and 8.2
in Section 8.1.4, as expected, because the corresponding elements are
the same.
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10.4 Exercises

1. Determine the [Ke] matrix for the 2-node bar elements shown in
Figure 10.14 in terms of E, A, and l.

2. Determine the [Ke] matrix for the 3-node bar elements shown in
Figure 10.15 in terms of E, A, and l.

3. Determine the [Ke] matrix for the two 3-node bar elements shown
in Figure 10.16 with a slightly off-centered middle node in terms
of E, A, and l. Also, try to solve this problem using the method
discussed in Chapter 6.

4. Follow the discussion in Section 10.1.4 and in Example 10.3 to deter-
mine the elementary [Ke] matrix for the two 2-node beam elements
shown in Figure 10.17 in terms of E, I, and l and compare the
results of the two elements.

5. For the 2D square and rectangular elements shown in Figure 10.18
to be used for 2D scalar problems, determine their elementary [Ke]
matrices. Assume that the elements have a constant property of
kt = 4 (ignore the units).

1 2
x

1 2
x

u1 u2 u1 u2

x1 = l x1 = 4lx2 = 2l x2 = 5l

FIGURE 10.14
Two 1D 2-node elements located at different positions.

1 2 3
x

x1 = l x2 = 1.5l x3 = 2l
1 2 3

x

x1 = 3l x2 = 3.5l x3 = 4l

u1 u2 u3 u1 u2 u3

FIGURE 10.15
Two 1D 3-node elements located at different positions.

1 2 3
x

x1 = 2l x2 = 2.55l x3 = 3l

u1 u2 u3

1 2 3
x

x1 = 0 x2 = 0.4l x3 = l

u1 u2 u3

FIGURE 10.16
Two 1D 3-node elements located at different positions.
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x1 = 0 x2 = l
x

u1 u'1
u2

u'2

x1 = 3l x2 = 4l
x

u1 u'1
u2

u'2

FIGURE 10.17
Two 2-node beam elements at different locations.

1 (0, 0) 2 (1, 0)

3 (1, 1)
4 (0, 1)

y

x
1 (0, 0) 2 (1.5, 0)

3 (1.5, 1)
4 (0, 1)

y

x

FIGURE 10.18
Two 2D rectangular elements with a uniform thickness.

1 (0, 0) 2 (1.5, 0)

3 (1.5, 1)
y

x
1 (0, 0) 2 (1.5, 0)

3 (0, 1)

y

x

FIGURE 10.19
Two 2D triangular elements with a uniform thickness.

6. For the two 2D triangular elements shown in Figure 10.19 to be used
for 2D scalar problems, determine their elementary [Ke] matrices.
Assume that the elements have a constant property of kt = 4 (ignore
the units).

7. For the two 2D rectangular elements shown in Figure 10.20 to be
used for scalar axisymmetric problems, determine their elementary
[Ke] matrices. Assume that the elements have a constant property
of k = 500 (ignore the units).

8. For the two 2D triangular elements shown in Figure 10.21 to be
used for scalar axisymmetric problems, determine their elementary
[Ke] matrices. Assume that the elements have a constant property
of k = 500 (ignore the units).
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1 (1, 0) 2 (2, 0)

3 (2, 1)4 (1, 1)
z

r
1 (0, 0) 2 (1.5, 0)

3 (1.5, 1)
4 (0, 1)

z

r

FIGURE 10.20
Two 2D rectangular elements with a uniform thickness.

1 (0, 0) 2 (1.5, 0)

3 (1.5, 1)z

r
1 (1, 0) 2 (2.5, 0)

3 (1, 1)z

r

FIGURE 10.21
Two 2D triangular elements with a uniform thickness.

9. For the 2D square and rectangular elements shown in Figure 10.18
to be used for 2D solid mechanics problems, determine their ele-
mentary [Ke] matrices. Assume that the elements are made of an
isotropic material with E = 200 GPa and ν = 0.3. Consider both
the plane stress and plane strain situations.

10. For the two 2D triangular elements shown in Figure 10.19 to be
used for 2D solid mechanics problems, determine their elementary
[Ke] matrices. Assume that the elements are made of an isotropic
material with E = 200 GPa and ν = 0.3. Consider both the plane
stress and plane strain situations.

11. For the two 2D rectangular elements shown in Figure 10.20 to be
used for axisymmetric solid mechanics problems, determine their
elementary [Ke] matrices. Assume that the elements are made of
an isotropic material with E = 200 GPa and ν = 0.3.

12. For the two 2D triangular elements shown in Figure 10.21 to be
used for axisymmetric solid mechanics problems, determine their
elementary [Ke] matrices. Assume that the elements are made of
an isotropic material with E = 200 GPa and ν = 0.3.

13. For the 3D hexahedral element shown in Figure 10.22 to be used for
3D scalar problems, determine its elementary [Ke] matrix. Assume
that the element has a constant k = 1000 (ignore the units).
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1 (0, 0, 0)

2 (2, 0, 0)

3 (2, 2, 0)

4 (0, 2, 0)5 (0, 0, 1)

6 (2, 0, 1)

7 (2, 2, 1)

8 (0, 2, 1)

x

z y

FIGURE 10.22
A 3D hexahedral element.

1 (0, 0, 0)

2 (2, 0, 0)

3 (2, 1, 0)

4 (0, 1, 0)

5 (0, 0, 1)

6 (2, 0, 1)

7 (2, 1, 1)

8 (0, 1, 1)

x

z

y

FIGURE 10.23
A 3D hexahedral element.

14. For the 3D hexahedral element shown in Figure 10.23 to be used for
3D scalar problems, determine its elementary [Ke] matrix. Assume
that the element has a constant k = 1000 (ignore the units).

15. For the 3D tetrahedral element shown in Figure 10.24 to be used for
3D scalar problems, determine its elementary [Ke] matrix. Assume
that the element has a constant k = 1000 (ignore the units).

16. For the 3D hexahedral element shown in Figure 10.22 to be used
for 3D solid mechanics problems, determine its elementary [Ke]
matrix. Assume that the element is made of an isotropic material
with E = 200 GPa and ν = 0.3.

17. For the 3D hexahedral element shown in Figure 10.23 to be used
for 3D solid mechanics problems, determine its elementary [Ke]
matrix. Assume that the element is made of an isotropic material
with E = 200 GPa and ν = 0.3.
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1 (0, 0, 0)

2 (1, 0, 0)

3 (0, 2, 0)

4 (0, 0, 2)

x

y

z

z = 2 (1− x − y/2)

y = 2 − 2x

FIGURE 10.24
A 3D tetrahedral element.

18. For the 3D tetrahedral element shown in Figure 10.24 to be used
for 3D solid mechanics problems, determine its elementary [Ke]
matrix. Assume that the element is made of an isotropic material
with E = 200 GPa and ν = 0.3.

Recommended Readings

1. J. N. Reddy. 1993. An Introduction to the Finite Element Method.
2nd ed. Boston: McGraw-Hill.
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Witt. 2002. Concepts and Applications of Finite Element Analysis.
4th ed. Hoboken, NJ: John Wiley & Sons.
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11

Gauss Quadrature and
Numerical Integration

As we learned in Chapters 7 through 10, integration over the domain of an
element is a necessary step for evaluating the elementary [Ke] matrix and other
relevant vectors. Although isoparametric elements offer uniform elements with
well-defined boundaries as integration bounds, they still leave us with inte-
grations to perform. Performing integrations using a computer program is
actually not an easy task. Moreover, in Chapters 9 and 10 we encountered
terms of infinity in the elementary [Ke] matrix of axisymmetric elements for
vector field problems. To address all these issues, it is necessary to have a
numerical approach to perform integrations. The Gauss quadrature method,
named after Carl Friedrich Gauss (1777–1855), a German mathematician, is
one such approach: it approximates an integration with the weighted sum of
the integrand evaluated at some predetermined locations. In this chapter, we
discuss how Gauss quadrature works.

Because of the isoparametric transformation, we can define all integrations
in domains defined by isoparametric elements. Thus, the integration bounds
for various elements are as follows:

1. For one-dimensional (1D) elements:
∫ 1

−1

f(ξ)dξ

2. For two-dimensional (2D) quadrilateral elements:∫ 1

−1

dξ

∫ 1

−1

f(ξ, η)dη

3. For 2D triangular elements:
∫ 1

0

dξ

∫ 1−ξ

0

f(ξ, η)dη

4. For three-dimensional (3D) hexahedral elements:∫ 1

−1

dξ

∫ 1

−1

dη

∫ 1

−1

f(ξ, η, ζ)dζ

5. For 3D tetrahedral elements:
∫ 1

0

dξ

∫ 1−ξ

0

dη

∫ 1−ξ−η

0

f(ξ, η, ζ)dζ

269
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11.1 Gauss Quadrature

The general idea behind Gauss quadrature is to reduce the difficulty level of
calculation by expressing integration as a sum of a series of multiplications. We

begin by examining integration in a 1D situation. For the integral
∫ 1

−1

f(ξ)dξ,

we ask, can we approximate it as a sum of a series of multiplications such that

∫ 1

−1

f(ξ)dξ ≈
n∑

i=1

f(ξi)wi

for i = 1, . . . , n?
This kind of numerical approximation is called Gauss quadrature. So the

above question can be rephrased as, can we find a series of Gauss points
with values of ξi and weights of wi to satisfy the above approximation? The
answer is yes, but the goodness of approximation depends on how many Gauss
points, along with associated weights, we will use. In the following sections,
we examine cases with different numbers of Gauss points.

11.1.1 A 1-point Gauss quadrature

We will now expand on this idea and see how this procedure is actually carried
out. For the case of one Gauss point along with one weight factor, we express

∫ 1

−1

f(ξ)dξ ≈ w1f(ξ1)

Since we have two parameters that need to be determined, namely, ξ1 and
w1, we select a polynomial function with two constants as f(ξ) = a0 + a1ξ

to approximate the integrand function (note that the same polynomial term
selection criterion discussed in Section 5.4 applies here). With substitution,
we have ∫ 1

−1

(a0 + a1ξ)dξ ≈ w1(a0 + a1ξ1)

After integrating and rearranging it, we obtain

∫ 1

−1

(a0 + a1ξ)dξ = 2a0 ≈ w1(a0 + a1ξ1)

which leads to
(2−w1)a0 + ξ1a1 = 0

For this to be true for any arbitrary values of a0, a1, we set

w1 = 2, ξ1 = 0
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Thus, we have ∫ 1

−1

f(ξ)dξ ≈ 2f(0) (11.1)

This is the result of 1-point Gauss quadrature, in which ξ = 0 is the location
of the Gauss point and w1 = 2 is the weight factor.

Figure 11.1 illustrates the meaning of Equation 11.1. Instead of integrating
the function f(ξ) from −1 to 1 (the result should be the shaded areas under
the integrand curve), we approximate it by the area of a rectangle having
a height determined by the integrand function f(ξ) evaluated at the Gauss
point (ξ = 0) and a width determined by the weight factor (w1 = 2). This
single weight factor equals the width of the integration domain.

11.1.2 A 2-point Gauss quadrature

If we are concerned about the goodness of such an approximation, let us
consider adding more Gauss points. For a 2-point case, we select two location
points, ξ1, ξ2, along with two weights, w1, w2. Thus, we express∫ 1

−1

f(ξ)dξ ≈ w1f(ξ1)+ w2f(ξ2)

Since we now have four parameters that need to be determined, we select
a four-term polynomial function: f(ξ) = a0 + a1ξ + a2ξ

2 + a3ξ
3. By plugging

this function in the above equation, we find∫ 1

−1

(a0 + a1ξ + a2ξ
2 + a3ξ

3)dξ ≈ w1(a0 + a1ξ1 + a2ξ
2
1 + a3ξ

3
1)

+ w2(a0 + a1ξ1 + a2ξ
2
2 + a3ξ

3
2)

Integrating the left-hand side and rearranging the right-hand side, we arrive at

2a0 +
2
3
a2 ≈ a0(w1 + w2)+ a1(w1ξ1 + w2ξ2)+ a2(w1ξ

2
1 + w2ξ

2
2)

+ a3(w1ξ
3
1 + w2ξ

3
2)

f (ξ)

ξ

f (
ξ 1)

w1= 2

−1 1ξ1 = 0

FIGURE 11.1
A 1-point Gauss quadrature.
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For this to be true for any arbitrary values of ai, i = 0, . . . , 3, we set

w1 + w2 = 2, w1ξ1 + w2ξ2 = 0, w1ξ
2
1 + w2ξ

2
2 =

2
3
, w1ξ

3
1 + w2ξ

3
2 = 0

By solving these four algebraic equations together, we obtain the following,

w1 = w2 = 1, ξ1 = −1/
√

3, ξ2 = 1/
√

3

as the point locations and weight factors for the 2-point Gauss quadrature.
Thus, we have

∫ 1

−1

f(ξ)dξ ≈
2∑
i

f(ξi)wi = f(−1/
√

3)+ f(1/
√

3) (11.2)

Figure 11.2 illustrates the meaning of Equation 11.2. In this case, the
shaded area under the curve is now approximated by two rectangles with the
same width (or weight) of 1. The height of the first rectangle is f(ξ = −1/

√
3)

taken at Gauss point ξ = −1/
√

3, and that of the second rectangle is f(ξ =
1/

√
3) taken at Gauss point ξ = 1/

√
3. The sum of the two weight factors

equals the width of the integration domain.

11.1.3 A 3-point Gauss quadrature

If we want to use three Gauss points, then we will need three weight factors
to go with them. Thus, we express∫ 1

−1

f(ξ)dξ ≈ w1f(ξ1)+ w2f(ξ2)+ w3f(ξ3)

Since we have six parameters that need to be determined, namely, w1, w2, w3

and ξ1, ξ2, ξ3, we select a six-term polynomial function:

f(ξ) = a0 + a1ξ + a2ξ
2 + a3ξ

3 + a4ξ
4 + a5ξ

5

1/3 0

–1 1

w1 = 1

w2 = 1

f (
ξ 1)

f (ξ )

ξ

f (
ξ 2)

ξ 1= – 1/3ξ 2 =

FIGURE 11.2
A 2-point Gauss quadrature.
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By plugging this function into the above equation, we have

∫ 1

−1

(a0 + a1ξ + a2ξ
2 + a3ξ

3 + a4ξ
4 + a5ξ

5)dξ

≈ w1(a0 + a1ξ1 + a2ξ
2
1 + a3ξ

3
1 + a4ξ

4
1 + a5ξ

5
1)

+ w2(a0 + a2ξ2 + a3ξ
2
2 + a3ξ

3
2 + a4ξ

4
2 + a5ξ

5
2)

+ w3(a0 + a1ξ3 + a2ξ
3
3 + a3ξ

3
3 + a4ξ

4
3 + a5ξ

5
3)

Integrating and expressing it in a matrix form, we have

[
2 0

2
3

0
2
5

0
]
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a0

a1

a2

a3

a4

a5

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=
[
w1 w2 w3

]
⎡
⎢⎣
1 ξ1 ξ2

1 ξ3
1 ξ4

1 ξ5
1

1 ξ2 ξ2
2 ξ3

2 ξ4
2 ξ5

2

1 ξ3 ξ2
3 ξ3

3 ξ4
3 ξ5

3

⎤
⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a0

a1

a2

a3

a4

a5

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

For this to be true for any arbitrary values of ai, i = 0, . . . , 5, we set

[
2 0

2
3

0
2
5

0
]

=
[
w1 w2 w3

]⎡⎢⎣
1 ξ1 ξ2

1 ξ3
1 ξ4

1 ξ5
1

1 ξ2 ξ2
2 ξ3

2 ξ4
2 ξ5

2

1 ξ3 ξ2
3 ξ3

3 ξ4
3 ξ5

3

⎤
⎥⎦

This produces the following six algebra equations:

w1 + w2 + w3 = 2
w1ξ1 + w2ξ2 + w3ξ3 = 0

w1ξ
2
1 + w2ξ

2
2 + w3ξ

2
3 =

2
3

w1ξ
3
1 + w2ξ

3
2 + w3ξ

3
3 = 0

w1ξ
4
1 + w2ξ

4
2 + w3ξ

4
3 =

2
5

w1ξ
5
1 + w2ξ

5
2 + w3ξ

5
3 = 0

By solving them simultaneously, we obtain the following:

w1 =
5
9
, w2 =

8
9
, w3 =

5
9
, ξ1 = −

√
3/5, ξ2 = 0, ξ3 = 1/

√
3/5

This leads to 3-point Gauss quadrature as

∫ 1

−1

f(ξ)dξ ≈
3∑
i

f(ξi)wi =
5
9
f(−
√

3/5)+
8
9
f(0)+

5
9
f(
√

3/5) (11.3)
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ξ
–1 1

w1 = 5/9

w2= 8/9

w3= 5/9

3/5ξ 1 = – 3/5ξ 3=ξ 2 = 0

f (
ξ 1)

f (
ξ 2)

f (
ξ 3)

f (ξ )

FIGURE 11.3
A 3-point Gauss quadrature.

Figure 11.3 illustrates the meaning of 3-point Gauss quadrature. The
shaded area under the integrand curve is now approximated by three rect-
angles. Of these rectangles, the two side ones have a width (weight factor) of
5/9 and the middle one of 8/9. The sum of the three weight factors equals the
width of the integration domain.

Example 11.1

Evaluate I =

∫ 1

−1

(ξ2 − 5ξ + 9)dξ by integration and by 1-point, 2-point,

and 3-point Gauss quadrature.

Answer
We first integrate this expression directly to find the analytical answer:

I =

∫ 1

−1

(ξ2 − 5ξ +9)dξ =

[
ξ3

3
− 5ξ2

2
+9ξ

]1

−1

=
2

3
+9 =

56

3

Next, we use Gauss quadrature to find approximate solutions.
For n = 1, we have ξ1 = 0, w1 = 2; thus,

I ≈ w1f(ξ1) = 2f(0) = 18

For n = 2, with ξ1 = − 1√
3
, ξ2 =

1√
3
, w1 = w2 = 1, we have

I ≈
2∑

i=1

wif(ξi) = (1)

[(−1√
3

)2

− 5

(−1√
3

)
+9

]
+ (1)

[(
1√
3

)2

− 5

(
1√
3

)
+9

]
=

56

3

For n = 3, we have

I ≈
3∑

i=1

wif(ξi) =
5

9

[(
−
√

3

5

)2

− 5

(
−
√

3

5

)
+9

]

+
8

9
[0+0+ 9]+

5

9

[(√
3

5

)2

− 5

(√
3

5

)
+ 9

]
=

56

3
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TABLE 11.1
Weights and locations of Gauss points∫ 1

−1

f(ξ)dξ ≈
n∑

i=1

f(ξi)wi

Number of points, n Weights, wi Locations, ξi

1 2.0 0.0

2 1.0 ±1/
√

3 ≈ ±0.5773

3 8/9 ≈ 0.8889 0.0
5/9 ≈ 0.5556 ±

√
3/5 ≈ ±0.7746

4 0.3479 ±0.8611
0.6521 ±0.3399

5 0.5689 0.0
0.2369 ±0.9062
0.4786 ±0.5385

6 0.1713 ±0.9325
0.3608 ±0.6612
0.4679 ±0.2386

Clearly, for this second-degree integrand function, the solutions of
2-point and 3-point Gauss quadrature are exactly the same as the ana-
lytical answer, but that of 1-point Gauss quadrature is slightly less than
the analytical answer.

11.1.4 Locations and weights of Gauss points

The procedure used to determine the locations and weights for the Gauss
points can be extended to include more points. Table 11.1 lists the weights and
locations of the Gauss points for the cases of 1- to 6-point Gauss quadrature.
Note that in each case, the sum of the weight factors equals the width of the
1D isoparametric domain, which is 2.

11.2 Gauss Quadrature for 2D Quadrilateral Elements

The Gauss quadrature method discussed for 1D space can be extended to 2D
space of quadrilateral shapes by adding a second dimension. The same sets
of Gauss points and weights will be used. This statement can be expressed
mathematically by

∫∫ 1

−1

f(ξ, η)dηdξ ≈
n∑

i=1,j=1

f(ξi, ηj)wξiwηj
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where f(ξ, η) is a 2D integrand function, and i, j are index numbers of Gauss
points along the two axes in coordinates ξ and η. In a 2D situation, the
location of a Gauss point is marked by the coordinates (ξi, ηj) and each point
is associated with two weight factors (one for each coordinate), wξi and wηj .

11.2.1 A 2-point Gauss quadrature

Figure 11.4 shows how 2-point Gauss quadrature over the isoparametric square
domain is determined. In this case, with two Gauss points along each coordi-
nate direction, there are four Gauss points in total. We express the coordinates
of these Gauss points and weights, in combination with the two locations and
weights determined in 1D, as

Gauss point 1: ξ1 =
√

1/3, η1 =
√

1/3, wξ1 = wη1 = 1

Gauss point 2: ξ2 = −
√

1/3, η2 =
√

1/3, wξ2 = wη2 = 1

Gauss point 3: ξ3 = −
√

1/3, η3 = −
√

1/3, wξ3 = wη3 = 1

Gauss point 4: ξ4 =
√

1/3, η4 = −
√

1/3, wξ4 = wη4 = 1

So, the 2-point Gauss quadrature in 2D approximates the volume under
the curved surface, which is defined by the integrand function (f(ξ, η)), by
the sum of the volume of four square blocks with heights of f(

√
1/3,
√

1/3),
f(−
√

1/3,
√

1/3), f(−
√

1/3,−
√

1/3), and f(
√

1/3,−
√

1/3), respectively.
The four quadrants on the base plane mark the bases of these square blocks,
with a width equaling the weight factors (which is 1 for all cases). The sum
of the four products of the two associated weight factors at each point equals
the area of the base plane, which is 4.

− 1

1
–1

1

ξ

η

f (ξ.η)

G3

G4

1

–1
f (ξ, η)dξdη =

2

i, j
f (ξi, ηj)wξi

 wηj

G1 : ξ1 = η1= 1/3
wξ1

= wη1
= 1

wξ3
= wη3

= 1
G3 : ξ3 = η3 = – 1/3

wξ2
= wη2

= 1
G2 :ξ2=– 1/3, η2 = 1/3

wξ4
= wη4

= 1
G4 : ξ4 = 1/3, η4 = – 1/3

G2

G1

FIGURE 11.4
A 2-point Gauss quadrature extended to 2D.
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1
–1

ξ

η

G1 : ξ1 = η1=

G5 : ξ5= η5= 0

3/5

G2 : ξ2= 0, η2 = 3/5

wξ1
= wη1

= 5/9

wξ3
= wη3

= 5/9

wξ7
= wη7

= 5/9

wξ9
= wη9

= 5/9

wξ5
= wη5

= 8/9

wξ2
= 8/9, wη2

= 5/9

wξ4
= 5/9, wη4

= 8/9

wξ6
= 5/9, wη6

= 8/9

wξ8
= 8/9, wη8

= 5/9

G3 : ξ3= – 3/5, η3 = 

G4 : ξ4 = 3/5, η4 = 0 

3/5

G7 : ξ7= 3/5, η7 = – 3/5

G8 : ξ8 = 0, η8 = – 3/5

G9 : ξ9 = η9 = – 3/5

G6 : ξ6= – 3/5, η6 = 0

1

–1
f (ξ, η)dξdη =

2

i,j
f (ξi, ηj)wξi wηj

f (ξ.η)

–1

1

G1
G2

G3

G4
G5

G6

G7
G8

G9

FIGURE 11.5
A 3-point Gaussian quadrature extended to 2D.

11.2.2 A 3-point Gauss quadrature

In a similar way, 3-point Gauss quadrature over the isoparametric square
domain uses combinations of the three Gauss points and weight factors to
produce nine Gauss points.

Figure 11.5 shows how 3-point Gauss quadrature is determined. It approx-
imates the volume under the curved surface by the sum of the volume of nine
blocks. The bases of these blocks are marked by the green lines on the base
plane, and the heights are determined by the integrand function evaluated at
these nine Gauss points, respectively. The sum of the nine products of the two
associated weight factors at each point equals the area of the base plane.

Example 11.2

Evaluate I =

∫∫ 1

−1

(4ξ
2
η

2 − 15ξη +12)dηdξ by integration and by

2-point and 3-point Gauss quadrature. We first integrate this expression
directly to find the analytical answer:

I =

∫∫ 1

−1

(4ξ
2
η

2 − 15ξη + 12)dηdξ =

∫ 1

−1

(
8ξ2

3
+24

)
dξ =

448

9
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Answer
For 2-point Gauss quadrature in 2D, referring to Figure 11.4, we evaluate
the sum at four Gauss points:

I ≈
2∑

i=1,j=1

f(ξi, ηj)wξiwηj

= (1× 1)

[
4

(
1√
3

)2 (
1√
3

)2

− 15

(
1√
3

)(
1√
3

)
+ 12

]

+(1× 1)

[
4

(−1√
3

)2 (
1√
3

)2

− 15

(−1√
3

)(
1√
3

)
+12

]

+(1× 1)

[
4

(−1√
3

)2 (−1√
3

)2

− 15

(−1√
3

)(−1√
3

)
+12

]

+(1× 1)

[
4

(
1√
3

)2 (−1√
3

)2

− 15

(
1√
3

)(−1√
3

)
+12

]

=
448

9

For 3-point Gauss quadrature, referring to Figure 11.5, we evaluate the
sum at nine Gauss points:

I ≈
3∑

i=1,j=1

f(ξi, ηj)wξiwηj

=

(
5

9
× 5

9

)[
4

(√
3

5

)2(√
3

5

)2

− 15

(√
3

5

)(√
3

5

)
+12

]

+

(
8

9
× 5

9

)
[0− 0+ 12]

+

(
5

9
× 5

9

)[
4

(
−
√

3

5

)2(√
3

5

)2

− 15

(
−
√

3

5

)(√
3

5

)
+12

]

+

(
5

9
× 8

9

)
[0− 0+ 12] +

(
8

9
× 8

9

)
[0− 0+ 12] +

(
5

9
× 8

9

)
[0− 0+ 12]

+

(
5

9
× 5

9

)[
4

(√
3

5

)2(
−
√

3

5

)2

− 15

(√
3

5

)(
−
√

3

5

)
+12

]

+

(
8

9
× 5

9

)
[0− 0+ 12]

+

(
5

9
× 5

9

)[
4

(
−
√

3

5

)2(
−
√

3

5

)2

− 15

(
−
√

3

5

)(
−
√

3

5

)
+ 12

]

I = 4× 25

81

[
36

25
+12

]
+ 4× 40

81
× 12+

64

81
× 12

=
1

81
[4× 36 +48× 25 +40× 48 + 64× 12] =

448

9
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Obviously, the results of both the 2-point and 3-point Gauss quadrature
cases are the same as the analytical answer.

Like in 1D space, 2D Gauss quadrature may be evaluated with more points.
To use more Gauss points, we just go down the list in Table 11.1 to find the
values for the locations and weights of these points and extend the calculation
to 2D in the same manner as in Example 11.1.

Example 11.3

Reevaluate the elementary [Ke] matrix for the rectangular element in
Example 9.3 of Chapter 9 and in Example 10.7 of Chapter 10.

Answer
Recall that in evaluating the elementary [Ke] matrix for a rectangular
element for axisymmetric solid mechanics problems (see Example 9.3 in
Chapter 9), we noticed that the result had several terms of infinity due
to division by zero in integration over the domain that includes the edge
r = 0. In Example 10.7 of Chapter 10, we reexamined the same problem
by using the isoparametric transformation method, but the result we
got still contained the infinity terms. For comparison, we list the result
obtained in these two examples here:

[Ke] =

∫ 1

−1

∫ 1

−1

[[
Aa

] [
Γea

] [
∂Na

]]T
[C]

[[
Aa

] [
Γea

] [
∂Na

]] (1+ ξ)

10
det[J ]dηdξ

= 109 ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞ −0.64 2.56 0.64 −2.56 −3.21 ∞ 3.21
−0.64 10.26 −1.28 7.69 −6.41 −9.62 −3.21 −8.33
2.56 −1.28 20.51 −10.26 −1.28 5.13 −2.56 6.41
0.64 7.69 −10.26 28.21 −5.13 −26.28 3.21 −9.62
−2.56 −6.41 −1.28 −5.13 20.51 10.26 2.56 1.28
−3.21 −9.62 5.13 −26.28 10.26 28.21 −0.64 7.69
∞ −3.21 −2.56 3.21 2.56 −0.64 ∞ 0.64

3.21 −8.33 6.41 −9.62 1.28 7.69 0.64 10.26

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We now use Gauss quadrature to evaluate the integration instead. With
the following expressions obtained previously,

[Aa] =

⎡
⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 1 1 0

⎤
⎥⎥⎦ , [C] = 1011 ×

⎡
⎢⎢⎣

2.69 1.15 1.15 0
1.15 2.69 1.15 0
1.15 1.15 2.69 0
0 0 0 0.77

⎤
⎥⎥⎦ , det[J ] =

1

200

and

[∂Na] =
1

4

⎡
⎢⎢⎢⎢⎢⎣

η − 1 0 1− η 0 1 + η 0 −1− η 0

(1 − ξ)(1− η) 0 (1 + ξ)(1 − η) 0 (1 + ξ)(1 + η) 0 (1− ξ)(1 + η) 0

ξ − 1 0 −1− ξ 0 ξ + 1 0 1− ξ 0

0 η − 1 0 1− η 0 1 + η 0 −1− η

0 ξ − 1 0 −1− ξ 0 1 + ξ 0 1− ξ

⎤
⎥⎥⎥⎥⎥⎦
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we first express

f(ξ, η) =
[[

Aa

] [
Γea

] [
∂Na

]]T
[C]

[[
Aa

] [
Γea

] [
∂Na

]]
(1+ ξ)det[J ]

Then, we evaluate f(ξ,η) using 4-point Gauss quadrature using a
computer program code (e.g., MATLAB) and obtain the following:

[Ke] =

∫ 1

−1

∫ 1

−1
f(ξ, η)dηdξ =

4∑
i=1,j=1

f(ξi, ηj)wiwj

= 109 ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

27.135 −0.641 2.564 0.641 −2.564 −3.205 9.722 3.205
−0.641 10.256 −1.282 7.692 −6.410 −9.615 −3.205 −8.333
2.564 −1.282 20.512 −10.256 −1.282 5.128 −2.564 6.410
0.641 7.692 −10.256 28.205 −5.128 −26.282 3.205 −9.615
−2.564 −6.410 −1.282 −5.128 20.513 10.256 2.564 1.282
−3.205 −9.615 5.128 −26.282 10.256 28.205 −0.641 7.692
9.722 −3.205 −2.564 3.205 2.564 −0.641 27.135 0.641
3.205 −8.333 6.410 −9.615 1.282 7.692 0.641 10.256

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Clearly, the method of Gauss quadrature not only resolves finite values
for these four previously unsolvable infinite terms but also provides the
same corresponding values for the rest of the terms in the [Ke] matrix.

11.3 Gauss Quadrature for 2D Triangular Elements

Since triangular elements are not in the same geometric group as the quadri-
lateral elements, as we noted during the development of the Lagrange
interpolation formula, a different treatment is necessary to find the Gauss
points and weights.

To evaluate a 2D function over the isoparametric triangle domain, we
express the following approximation:∫ 1

0

∫ 1−ξ

0

f(ξ, η)dηdξ ≈
n∑

i=1

f(ξi, ηi)wi

When using one Gauss point, we have∫ 1

0

∫ 1−ξ

0

f(ξ, η)dηdξ ≈ w1f(ξ1, η1)

Since we have three parameters that need to be determined, namely, w1, ξ1,
and η1, we select a three-term polynomial function:

f(ξ, η) = a0 + a1ξ + a2η

Plugging this function in to the above equation, we obtain∫ 1

0

∫ 1−ξ

0

(a0 + a1ξ + a2η)dηdξ ≈ w1(a0 + a1ξ1 + a2η1)
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in which∫ 1

0

∫ 1−ξ

0

(a0 + a1ξ + a2η)dηdξ =
∫ 1

0

[
(a0(1− ξ)+ a1ξ(1− ξ)+

a2

2
(1− ξ)2

]
dξ

=
a0

2
+

a1

6
+

a2

6

Putting them together, we have

[
1
2

1
6

1
6

]⎧⎨
⎩

a0

a1

a2

⎫⎬
⎭ = w1

[
1 ξ1 η1

]⎧⎨⎩
a0

a1

a2

⎫⎬
⎭

For this to be true for any arbitrary values of ai, i = 0, . . . , 2, we set[
1
2

1
6

1
6

]
= w1

[
1 ξ1 η1

]
This leads to

w1 =
1
2
, ξ1 =

1
3
, η1 =

1
3

This procedure can be repeated for cases with more Gauss points.

11.3.1 Locations and weights of Gauss points

Table 11.2 lists the weights and locations of the Gauss points for the cases of
1-, 3-, and 4-point Gauss quadrature for triangles. Note that in each case, the
sum of the weight factors equals the area of the triangle, which is 1/2.

Example 11.4

Evaluate I =

∫ 1

0

∫ 1−ξ

0

(ξ2 +3ξη +4η
2 + 5ξ +7η + 9)dηdξ by direct inte-

gration and by 3-point Gauss quadrature for triangles.

Answer
By direct integration, we have

I ≈
∫ 1

0

∫ 1−ξ

0

(ξ2 + 3ξη +4η
2 + 5ξ+ 7η + 9)dηdξ

=

∫ 1

0

[
ξ
2
η+

3ξη2

2
+

4η3

3
+5ξη +

7η2

2
+ 9η

]1−ξ

0

dξ

=

∫ 1

0

(1− ξ)(5ξ2 + 2ξ+ 83)

6
dξ =

169

24

For 3-point Gauss quadrature, referring to Figure 11.6, we notice
that there are two sets of integration points and weights for the 3-point
triangle Gauss quadrature. The first set (marked with hollow circles)
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TABLE 11.2
Weights and locations of Gauss points for triangles∫ 1

0

∫ 1−ξ

0

f(ξ, η)dηdξ ≈
n∑

i=1

f(ξi, ηi)wi

Number of
points, n Weights, wi ξi ηi 1 − ξi − ηi

1 1/2 1/3 1/3 1/3

3 1/6 2/3 1/6 1/6
1/6 1/6 2/3 1/6
1/6 1/6 1/6 2/3

3 1/6 1/2 1/2 0
1/6 0 1/2 1/2
1/6 1/2 0 1/2

4 −9/32 1/3 1/3 1/3
25/96 3/5 1/5 1/5
25/96 1/5 3/5 1/5
25/96 1/5 1/5 3/5

η = 1 − ξ

ξ

η

(0, 0)

(0, 1)

(1, 0)

FIGURE 11.6
Gauss points in an isoparametric triangle.

has Gauss points at
(2

3
,
1

6

)
,
(1

6
,
2

3

)
, and

(1

6
,
1

6

)
, and the second set

(marked by filled circles) has Gauss points at
(1

2
,
1

2

)
,
(
0,

1

2

)
, and(1

2
, 0
)
. In both sets, the weight factor is

1

6
for all points. We will evaluate

the integral for both cases.
A general expression for 3-point Gauss quadrature for triangles is

expressed:

I =

∫ 1

0

∫ 1−ξ

0

(ξ2 +3ξη + 4η
2 + 5ξ +7η + 9)dηdξ ≈

3∑
i=1

f(ξi, ηi)wi
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For the first case, we have

I ≈
3∑

i=1

f(ξi, ηi)wi =
1

6

[(
2

3

)2

+ 3

(
2

3

)(
1

6

)
+ 4

(
1

6

)2

+5

(
2

3

)
+7

(
1

6

)
+9

]

+
1

6

[(
1

6

)2

+3

(
1

6

)(
2

3

)
+ 4

(
2

3

)2

+ 5

(
1

6

)
+ 7

(
2

3

)
+ 9

]

+
1

6

[(
1

6

)2

+3

(
1

6

)(
1

6

)
+ 4

(
1

6

)2

+ 5

(
1

6

)
+ 7

(
1

6

)
+ 9

]

=
169

24

For the second case, we have

I ≈
3∑

i=1

f(ξi, ηi)wi =
1

6

[(
1

2

)2

+ 3

(
1

2

)(
1

2

)
+ 4

(
1

2

)2

+5

(
1

2

)
+7

(
1

2

)
+9

]

+
1

6

[
4

(
1

2

)2

+ 7

(
1

2

)
+ 9

]
+

1

6

[(
1

2

)2

+5

(
1

2

)
+9

]
=

169

24

Obviously, the analytical solution and the quadrature results based on
these two sets of Gauss points are exactly the same.

11.3.2 Integration in area coordinates

For the isoparametric triangular element in natural coordinates, ξ, η, its area
coordinates are the same as the three shape functions of the 3-node triangular
element (see Example 5.5 in Section 5.6.4); thus, we have

t1 = 1− ξ− η, t2 = ξ, t3 = η

With this information, it is now clear that the location coordinates of these
Gauss points listed in Table 11.2 are actually expressed in area coordinates.

For a function expressed in terms of area coordinates t1, t2, or t3, its
integration can be calculated by using area coordinate integration formulas.
For example, for an integrand expressed as f(ξ, η) = ta1t

b
2, in which a and b

are positive-integer exponents (or power terms) of the area coordinates, its
integration along a line with a length of l can be calculated as

∫
l

ta1t
b
2ds = (l)

a! b!
(a + b + 1)!

(11.4)

where ! is the factorial symbol (e.g., 5! = 5× 4× 3× 2× 1 = 120, and 0! = 1).
Moreover, for an integrand expressed as f(ξ, η) = ta1t

b
2t

c
3, in which a, b, and

c are exponents of the area coordinates, its integration over the domain of a
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triangle with an area of A can be calculated as∫∫
A

ta1t
b
2t

c
3dA = (2A)

a! b! c!
(a + b + c + 2)!

(11.5)

Example 11.5

Use the area coordinate integration formula to calculate the elementary
[Ke] matrix for the triangular element in Example 10.5 in Section 10.2.2.
Note that k = 1000.

Answer
For the triangular element, we know

[J ] =

[
0.2 0
0.2 0.1

]
, det[J ] =

1

50
, [Γ] =

[
5 0

−10 10

]

and [
∂N

∂ξ

]
=
[−1 1 0

]
,

[
∂N

∂η

]
=
[−1 0 1

]
, r =

ξ+ η

5

Substituting them into Equation 10.21, we have

[Ke] =
1000× 25

50× 5

×
∫∫

A

⎡
⎣
⎡
⎣−1

1
0

⎤
⎦ [−1 1 0

]
+ 4

⎛
⎝
⎡
⎣−1

0
1

⎤
⎦−

⎡
⎣−1

1
0

⎤
⎦
⎞
⎠([−1 0 1

]− [−1 1 0
])⎤⎦

× (ξ+η)dA

= 100

⎡
⎣ 1 −1 0
−1 5 −4
0 −4 4

⎤
⎦∫∫

A

(ξ+ η)dA

in which A is the area of the isoparametric triangle, A = 1/2. Using
Equation 11.5, with t2 = ξ, t3 = η, we calculate

∫∫
A

(ξ+ η)dA =

∫∫
A

(t2 + t3)dA = 2A

[
0!1!0!

(0+ 1+ 0+2)!
+

0!0!1!

(0+ 0+ 1+2)!

]

=
2A

3
=

1

3

Then, we have

[Ke] =
100

3

⎡
⎣ 1 −1 0
−1 5 −4
0 −4 4

⎤
⎦ =

⎡
⎣ 33.33 −33.33 0
−33.33 166.67 −133.33

0 −133.33 133.33

⎤
⎦

Obviously, this result is the same as that in Example 10.5 in
Section 10.2.2.
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11.4 Gauss Quadrature for 3D Hexahedral Elements

In a similar way, Gauss quadrature can be further extended to the 3D space
of hexahedral shapes by adding a third dimension. The same sets of Gauss
points and weights will be used. In mathematical expression, we write

∫∫∫ 1

−1

f(ξ, η, ζ)dζdηdξ ≈
n∑

i=1,j=1,k=1

f(ξi, ηj , ζk)wξiwηj wζk

where f(ξ, η, ζ) is a 3D integrand function, and i, j, k are index numbers of
Gauss points along the three axes in coordinates ξ, η, and ζ. In a 3D situ-
ation, the location of a Gauss point is marked by (ξi, ηj , ζk) and each point
is associated with three weight factors (one for each coordinate), wξi , wηj ,
and wζj .

Example 11.6

Evaluate I =

∫∫∫ 1

−1

(7ξ
2
η

2
ζ
2 − 25ξηζ +23)dζdηdξ by integration and by

2-point Gauss quadrature.

Answer
We first integrate this expression directly to find the analytical answer:

I =

∫∫∫ 1

−1

(7ξ
2
η

2
ζ
2 − 25ξηζ + 23)dζdηdξ =

∫∫ 1

−1

(
14ξ2η2

3
+46

)
dηdξ

=

∫ 1

−1

(
28ξ2

9
+ 92

)
dξ =

5024

27

To evaluate 2-point Gauss quadrature over the isoparametric cubic

domain, referring to Table 11.1, we have two Gauss points, ξ = ± 1√
3
,

η = ± 1√
3
, and ζ = ± 1√

3
, along each of the three axis directions, with

weight factors of 1 for all, making a total of eight Gauss points. Then,
we calculate the following sum at these eight Gauss points:

I ≈
2∑

i=1,j=1,k=1

f(ξi, ηj , ζk)wξiwηj wζk

= (1× 1× 1)

[
7

(
1√
3

)2(
1√
3

)2(
1√
3

)2

− 25

(
1√
3

)(
1√
3

)(
1√
3

)
+ 23

]

+ (1× 1× 1)

[
7

(−1√
3

)2(
1√
3

)2 (
1√
3

)2

− 25

(−1√
3

)(
1√
3

)(
1√
3

)
+ 23

]

+ (1× 1× 1)

[
7

(−1√
3

)2(−1√
3

)2 (
1√
3

)2

− 25

(−1√
3

)(−1√
3

)(
1√
3

)
+ 23

]



T&F Cat #K16587 — K16587 C011 — page 286 — 1/21/2017 — 15:52

286 Introduction to Integrative Engineering

+ (1× 1× 1)

[
7

(
1√
3

)2(−1√
3

)2 (
1√
3

)2

− 25

(
1√
3

)(−1√
3

)(
1√
3

)
+ 23

]

+ (1× 1× 1)

[
7

(
1√
3

)2(
1√
3

)2 (−1√
3

)2

− 25

(
1√
3

)(
1√
3

)(−1√
3

)
+ 23

]

+ (1× 1× 1)

[
7

(−1√
3

)2(
1√
3

)2 (−1√
3

)2

− 25

(−1√
3

)(
1√
3

)(−1√
3

)
+ 23

]

+ (1× 1× 1)

[
7

(−1√
3

)2(−1√
3

)2 (−1√
3

)2

− 25

(−1√
3

)(−1√
3

)(−1√
3

)
+ 23

]

+ (1× 1× 1)

[
7

(
1√
3

)2(−1√
3

)2 (−1√
3

)2

− 25

(
1√
3

)(−1√
3

)(−1√
3

)
+ 23

]

= 8

(
7

27
+ 23

)
=

5024

27

Obviously, the result is the same as the analytical answer.

11.5 Gauss Quadrature for 3D Tetrahedral Elements

For 3D tetrahedral shapes, Gauss quadrature can be expressed as∫ 1

0

∫ 1−ξ

0

∫ 1−ξ−η

0

f(ξ, η, ζ)dζdηdξ ≈
n∑

i=1

f(ξi, ηi, ζi)wi

where f(ξ, η, ζ) is a 3D integrand function. In this case, the location of a Gauss
point is marked by (ξi, ηi, ζi) and each point is associated with one weight
factor wi. Table 11.3 lists the weights and locations of the Gauss points for
the cases of 1-, 4-, and 5-point Gauss quadrature for tetrahedral elements.
Note that in each case, the sum of the weight factors equals the volume of the
tetrahedron, which is 1/6.

Example 11.7

Evaluate I =

∫ 1

0

∫ 1−ξ

0

∫ 1−ξ−η

0

(ξ3 +4η
3 + 9ζ

3 + 5ξηζ+ 45)dζdηdξ by

integration and by 5-point Gauss quadrature for tetrahedrons.

Answer
We first evaluate this expression by integrating with respect to each
independent variable in a reversing order, ζ, η, ξ, to find the analytical
answer:

I =

∫ 1

0

∫ 1−ξ

0

(1− ξ− η)

(
ξ
3 +

9(1− ξ−η)3

4
+ 4η

3 +
5ξη(1− ξ− η)

2
+ 45

)
dηdξ

+

∫ 1

0

(1− ξ)2(7ξ3 +184ξ2 − 209ξ +2778)

120
dξ =

5489

720
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TABLE 11.3
Weights and locations of Gauss points for tetrahedrons∫ 1

0

∫ 1−ξ

0

∫ 1−ξ−η

0

f(ξ, η, ζ)dζdηdξ ≈
n∑

i=1

f(ξi, ηi, ζi)wi

Number of
points, n Weights, wi ξi ηi ζi 1 − ξi − ηi − ζi

1 1/6 1/4 1/4 1/4 1/4

4 1/24 0.5854 0.1382 0.1382 0.1382
1/24 0.1382 0.5854 0.1382 0.1382
1/24 0.1382 0.1382 0.5854 0.1382
1/24 0.1382 0.1382 0.1382 0.5854

5 −2/15 1/4 1/4 1/4 1/4
3/40 1/2 1/6 1/6 1/6
3/40 1/6 1/2 1/6 1/6
3/40 1/6 1/6 1/2 1/6
3/40 1/6 1/6 1/6 1/2

Note:
5 + 3

√
5

20
= 0.5854 and

5−√
5

20
= 0.1382

For 5-point Gauss quadrature over a tetrahedron domain, referring to
Table 11.3, we evaluate the sum at five Gauss points:

I ≈
5∑

i=1

f(ξi, ηi, ζi)wi

=
−2

15

[(
1

4

)3

+ 4

(
1

4

)3

+9

(
1

4

)3

+ 5

(
1

4

)(
1

4

)(
1

4

)
+ 45

]

+
3

40

[(
1

2

)3

+ 4

(
1

6

)3

+ 9

(
1

6

)3

+ 5

(
1

2

)(
1

6

)(
1

6

)
+45

]

+
3

40

[(
1

6

)3

+ 4

(
1

2

)3

+ 9

(
1

6

)3

+ 5

(
1

6

)(
1

2

)(
1

6

)
+45

]

+
3

40

[(
1

6

)3

+ 4

(
1

6

)3

+ 9

(
1

2

)3

+ 5

(
1

6

)(
1

6

)(
1

2

)
+45

]

+
3

40

[(
1

6

)3

+ 4

(
1

6

)3

+ 9

(
1

6

)3

+ 5

(
1

6

)(
1

6

)(
1

6

)
+45

]
=

5489

720

Obviously, the result is the same as the analytical answer.

11.5.1 Integration in volume coordinates

For the isoparametric tetrahedral element in natural coordinates, ξ, η, ζ, its
volume coordinates are the same as the four shape functions of the 4-node
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tetrahedral element (see Example 5.7 in Section 5.6.6); thus, we have the
following four volume coordinates:

t1 = 1− ξ− η− ζ, t2 = ξ, t3 = η, t4 = ζ

Referring to Table 11.3, it is obvious that the location coordinates of these
Gauss points are expressed in volume coordinates.

For a function expressed in terms of volume coordinates t1, t2, t3, and t4,
for example, f(ξ, η, ζ) = ta1tb2t

c
3t

d
4, in which a, b, c, and d are exponents of the

volume coordinates, its integration over the domain of a tetrahedral element
with a volume of V can be calculated by using the following volume coordinate
integration formula:∫∫∫

V

ta1t
b
2t

c
3t

d
4dV = (6V )

a! b! c! d!
(a + b + c + d + 3)!

(11.6)

For integrations over a side surface or along an edge, the formulas given in
Equations 11.4 and 11.5 can be used (with the volume coordinates replacing
the area coordinates, of course).

Example 11.8

Use the volume coordinate integration formula to calculate the elemen-
tary [Ke] matrix for the tetrahedral element in Example 10.8 in Section
10.3.2. Note that k = 1000.

Answer
For the tetrahedral element, we know

[J ] =

⎡
⎣1 0 0
0 2 0
0 0 1

⎤
⎦ , det[J ] = 2, [Γ] =

⎡
⎣1 0 0
0 0.5 0
0 0 1

⎤
⎦

and[
∂N

∂ξ

]
=
[−1 1 0 0

]
,

[
∂N

∂η

]
=
[−1 0 1 0

]
,

[
∂N

∂ζ

]
=
[−1 0 0 1

]
Substituting them into Equation 10.36, we have

[Ke] = 2000

×
∫∫∫

V

⎛
⎜⎜⎝
⎡
⎢⎢⎣
−1
1
0
0

⎤
⎥⎥⎦ [−1 1 0 0

]
+ 0.25

⎡
⎢⎢⎣
−1
0
1
0

⎤
⎥⎥⎦ [−1 0 1 0

]

+

⎡
⎢⎢⎣
−1
0
0
1

⎤
⎥⎥⎦ [−1 0 0 1

]
⎞
⎟⎟⎠ dV
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= 2000

⎡
⎢⎢⎣

2.25 −1 −0.25 −1
−1 1 0 0

−0.25 0 0.25 0
−1 0 0 1

⎤
⎥⎥⎦
∫∫∫

V

dV

=

⎡
⎢⎢⎣

750.00 −333.33 −83.33 −333.33
−333.33 333.33 0 0
−83.33 0 83.33 0
−333.33 0 0 333.33

⎤
⎥⎥⎦

in which

∫∫∫
V

dV is evaluated using Equation 11.6, with V being the

volume of the isoparametric tetrahedron (V = 1/6):

∫∫∫
V

dV = 6V
0!0!0!0!

(0+ 0+0+ 0+ 3)!
= V =

1

6

Obviously, this result is the same as in Example 10.8 in Section 10.3.2.
Note that in this case, it is not necessary to use the volume coor-

dinate integration formula (Equation 11.6) because when the integrand

is 1, we know

∫∫∫
V

dV = V. Nevertheless, using it allows us to deal with

situations when the integrand is a function of the volume coordinates
t1, t2, t3, and t4, which are subsequently functions of the independent
variables ξ,η, and ζ.

11.6 Exercises

1. Evaluate the following integral by direct integration and by 1-point,
2-point, 3-point, and 4-point Gauss quadrature.

I =
∫ 1

−1

(5r2 + 27r− 67)dr

2. Evaluate the following integral by direct integration and by 1-point,
2-point, 3-point, and 4-point Gauss quadrature.

I =
∫ 1

−1

(r3 + 9r2 − 21r + 99)dr

3. Evaluate the following integral by direct integration and by 1-point,
2-point, 3-point, and 4-point Gauss quadrature.

I =
∫ 1

−1

(3r4 + 29r3 − 2r2 + 9r− 19)dr
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4. Evaluate the following integral by direct integration and by 1-point,
2-point, 3-point, and 4-point Gauss quadrature.

I =
∫ 1

−1

∫ 1

−1

(7r2 + 5rs + 6s2)drds

5. Evaluate the following integral by direct integration and by 1-point,
2-point, 3-point, and 4-point Gauss quadrature.

I =
∫ 1

−1

∫ 1

−1

(r3 + 25r2s− 23rs2 + 63s3)drds

6. Evaluate the following integral by direct integration and by 2-point
and 3-point Gauss quadrature.

I =
∫ 1

−1

∫ 1

−1

∫ 1

−1

[
(x− 2)2(y2 − 1)z2 + xyz

]
dxdydz

7. Evaluate the following integral by direct integration and by 3-point
Gauss quadrature for triangles.

I =
∫ 1

0

∫ 1−r

0

(7r2 + 127rs + 44s2 + 15r + 37s− 29)drds

8. Evaluate the following integral by direct integration and by 3-point
Gauss quadrature for triangles.

I =
∫ 1

0

∫ 1−r

0

(r3 + 12r2s + 35rs2 + s3 + 6r2 + 56s2 − 5rs + 7r + 3s + 78)drds

9. Evaluate the following integral by direct integration and by 4-point
Gauss quadrature for tetrahedrons.

I =
∫ 1

0

∫ 1−r

0

∫ 1−r−s

0

(3r2 + 4s2 + 7t2 + 15rs + 4st + 23rt + 17rst + 50)drdsdt

10. Evaluate the following integral by direct integration and by 4-point
Gauss quadrature for tetrahedrons.

I =
∫ 1

0

∫ 1−r

0

∫ 1−r−s

0

(3r3 + 34s3 + 19t3 + 25r2s + 4rs2 + 7rst + 5)drdsdt

11. Use 4-point Gauss quadrature to evaluate the [Ke] matrix for the
two 3-node bar elements shown in Figure 11.7 having l = 1 m,
A = 1 m2, and E = 1 N/m2.
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1 2 3
x

x1 = l x2 = 1.5l x3 = 2l

u1 u2 u3

1 2 3
x

x1 = 3l x2 = 3.5l x3 = 4l

u1 u2 u3

FIGURE 11.7
Two 1D 3-node elements located at different positions.

1 2 3
x

x1 = 2l x2 = 2.55l x3 = 3l

u1 u2 u3

1 2 3
x

x1 = 0 x2 = 0.4l x3 = l

u1 u2 u3

FIGURE 11.8
Two 1D 3-node elements located at different positions.

x1 = 0 x2 = l
x

u1 u2u'1 u'2

x1 = 3l x2 = 4l
x

u1 u2u'1 u'2

FIGURE 11.9
Two 2-node beam elements at different locations.

12. Use 4-point Gauss quadrature to evaluate the [Ke] matrix for the
two 3-node bar elements shown in Figure 11.8 having l = 1 m,
A = 1 m2, and E = 1 N/m2.

13. Use 4-point Gauss quadrature to evaluate the [Ke] matrix for the
two 2-node beam elements shown in Figure 11.9 having l = 1 m,
I = 1 m4, and E = 1 N/m2.

14. For the 2D quadrilateral element shown in Figure 11.10 to be used
for 2D scalar problems, use 4-point Gauss quadrature to evaluate
its [Ke] matrix. Assume that the element has a constant property
of kt = 4 (ignore the units).

15. For the 2D square and rectangular elements shown in Figure 11.11
to be used for 2D scalar problems, use 4-point Gauss quadrature
to evaluate their [Ke] matrices. Assume that the elements have a
constant property of kt = 4 (ignore the units).

16. For the two 2D triangular elements shown in Figure 11.12 to be
used for 2D scalar problems, use 4-point Gauss quadrature to eval-
uate their [Ke] matrices. Assume that the elements have a constant
property of kt = 4 (ignore the units).
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x

y

1 (0, 0)

2 (10, 2)

3 (2, 6)
4 (8, 8)

FIGURE 11.10
A 2D 4-node quadrilateral element.

1 (0, 0) 2 (1, 0)

3 (1, 1)
4 (0, 1)

y

x
1 (0, 0) 2 (1.5, 0)

3 (1.5, 1)
4 (0, 1)

y

x

FIGURE 11.11
Two 2D rectangular elements with a uniform thickness.

1 (0, 0) 2 (1.5, 0)

3 (1.5, 1)
y

x
1 (0, 0) 2 (1.5, 0)

3 (0, 1)

y

x

FIGURE 11.12
Two 2D triangular elements with a uniform thickness.

17. For the two 2D rectangular elements shown in Figure 11.13 to be
used for scalar axisymmetric problems, use 4-point Gauss quadra-
ture to evaluate their [Ke] matrices. Assume that the elements have
a constant property of k = 500 (ignore the units).

18. For the two 2D triangular elements shown in Figure 11.14 to be used
for scalar axisymmetric problems, use 4-point Gauss quadrature
to evaluate their [Ke] matrices. Assume that the elements have a
constant property of k = 500 (ignore the units).
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1 (1, 0) 2 (2, 0)

3 (2, 1)4 (1, 1)z

r
1 (0, 0) 2 (1.5, 0)

3 (1.5, 1)
4 (0, 1)

z

r

FIGURE 11.13
Two 2D rectangular elements with a uniform thickness.

1 (0, 0) 2 (1.5, 0)

3 (1.5, 1)z

r
1 (1, 0) 2 (2.5, 0)

3 (1, 1)z

r

FIGURE 11.14
Two 2D triangular elements with a uniform thickness.

19. For the 2D square and rectangular elements shown in Figure 11.11
to be used for 2D solid mechanics problems, use 4-point Gauss
quadrature to evaluate their [Ke] matrices. Assume that the ele-
ments are made of an isotropic material with E = 200 GPa and
ν = 0.3. Consider both the plane stress and plane strain situations.

20. For the two 2D triangular elements shown in Figure 11.12 to be used
for 2D solid mechanics problems, use 4-point Gauss quadrature to
evaluate their [Ke] matrices. Assume that the elements are made
of an isotropic material with E = 200 GPa and ν = 0.3. Consider
both the plane stress and plane strain situations.

21. For the two 2D rectangular elements shown in Figure 11.13 to be
used for axisymmetric solid mechanics problems, use 4-point Gauss
quadrature to evaluate their [Ke] matrices. Assume that the ele-
ments are made of an isotropic material with E = 200 GPa and
ν = 0.3.

22. For the two 2D triangular elements shown in Figure 11.14 to be
used for axisymmetric solid mechanics problems, use 4-point Gauss
quadrature to evaluate their [Ke] matrices. Assume that the ele-
ments are made of an isotropic material with E = 200 GPa and
ν = 0.3.

23. Use the area coordinate integration formula to solve Exercise 16.

24. Use the area coordinate integration formula to solve Exercise 18.



T&F Cat #K16587 — K16587 C011 — page 294 — 1/21/2017 — 15:52

294 Introduction to Integrative Engineering

25. For the 3D tetrahedral element shown in Figure 11.15 to be used for
3D scalar problems, use the volume coordinate integration formula
to determine its elementary [Ke] matrix. Assume that the element
has a constant k = 1000 (ignore the units).

1 (0, 0, 0)

2 (1, 0, 0)

3 (0, 2, 0)

4 (0, 0, 2)

x

y

z

z = 2(1 – x − y/2)

y = 2 – 2x

FIGURE 11.15
A 3D tetrahedral element.

1 (0, 0, 0)

2 (2, 0, 0)

3 (0, 2, 0)

4 (0, 0, 2)

x

y

z

z = 2 – x – y

y = 2 – x

FIGURE 11.16
A 3D tetrahedral element.
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26. For the 3D tetrahedral element shown in Figure 11.15 to be used for
3D solid mechanics problems, use the volume coordinate integration
formula to determine its elementary [Ke] matrix. Assume that the
element is made of an isotropic material with E = 200 GPa and
ν = 0.3.

27. For the 3D tetrahedral element shown in Figure 11.16 to be used for
3D scalar problems, use the volume coordinate integration formula
to determine its elementary [Ke] matrix. Assume that the element
has a constant k = 1500 (ignore the units).

28. For the 3D tetrahedral element shown in Figure 11.16 to be used for
3D solid mechanics problems, use the volume coordinate integration
formula to determine its elementary [Ke] matrix. Assume that the
element is made of an isotropic material with E = 210 GPa and
ν = 0.33.
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12

Dealing with Generalized PDEs

The partial differential equations (PDEs) we solved in Chapters 6 and 7 are
simplified ones, containing only a second derivative (the Laplacian) term (or
a fourth derivative term for a beam structure) and a constant term (see
Equation 6.1). The finite element method (FEM) formulation for solving these
simple PDEs results in the following matrix form algebraic equations at the
elementary and global levels, respectively:

[Ke]{d0} = {Pe} and [K]{D} = {P}
The FEM formulation for the solid mechanics problems discussed in

Chapter 8 also results in the same matrix equations, respectively, although
the governing PDEs are different from those presented in Chapters 6 and 7.
In a real world, however, we may encounter very complicated PDEs containing
many more terms than the ones we have seen thus far. For example, of these
other terms, one that we have encountered several times but have repeatedly
ignored is the time-dependent term (∂2u/∂t2). In this chapter, we discuss how
these other terms are handled.

12.1 A General Form PDE and Its Matrix Equation

In a general form, a PDE may be expressed:

ρ
∂2u

∂t2
+ χ

∂u

∂t
+∇· (k∇u)+ α∇u + βu + f = 0 (12.1)

where the first term represents acceleration, the second damping, the third
the Laplacian term, the fourth convection, the fifth absorption, and the last
the volume source.

Referring to the discussion in Section 5.8, we approximate the field
quantity in a matrix form expression as

u = {d} = [N ]{d0}
Since the shape function matrix is only a function of spacial coordinates,
independent of time, we calculate the first and second derivatives of the field

297

T&F Cat #K16587 — K16587 C012 — page 297 — 1/21/2017 — 15:52



T&F Cat #K16587 — K16587 C012 — page 298 — 1/21/2017 — 15:52

298 Introduction to Integrative Engineering

quantity with respect to time as

ü = [N ]{d̈0}, u̇ = [N ]{ḋ0}

where {d̈0} and {ḋ0} are the second and first derivatives of the degrees of
freedom (DOF) vector, {d0}, with respect to time. By going through the
same FEM formulation procedure, we arrive at the following general matrix
equation:

[Me]{d̈0}+ [Gd
e]{ḋ0}+ [Ke]{d0}+ [Gc

e]{d0}+ [Ga
e ]{d0} = {Pe} (12.2)

where other than the two familiar matrices ([Ke] and [Pe]), [Me], [Gd
e ], [G

c
e],

and [Ga
e ] are the elementary mass, damping, convection, and absorption

matrices, respectively.
So, to a general form PDE we still solve a linearized matrix form algebraic

equation. The difference is that the matrix equation now has more terms: it
may include time-dependent DOF vectors like the {d̈0} and {ḋ0}, as well as
convection and adsorption terms, among others. In the following sections, we
evaluate these matrix terms and learn some basics about how to deal with
time-dependent DOF vectors.

12.1.1 Elementary mass matrix: consistent and lumped

First, let us examine the elementary mass matrix, [Me], by isolating the accel-

eration term
(
ρ
∂2u

∂t2

)
in Equation 12.1 and calculating the residual of its

weighted integral as follows: ∫∫∫
V

wmρ
∂2u

∂t2
dV

By using the matrix form field quantity interpolation and applying the
Galerkin method (i.e., replacing the weight functions with shape functions),
we have

{u} = [N ]{d0}, wm = Nm, m = 1, . . . , ne

Substituting these expressions into the above equation and summing all ne

terms, we obtain

∫∫∫
V

ne∑
m=1

wmρ
∂2u

∂t2
dV =

∫∫∫
V

[N ]T ρ[N ]dV {d̈0}

The coefficient of the second derivative of the DOF vector, {d̈0}, is called the
elementary mass matrix, that is,

[Me] =
∫∫∫

V

[N ]T ρ[N ]dV (12.3)
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Example 12.1

Determine the elementary mass matrix, [Me], for a 2-node and a 3-node
bar element located between x1 = l and x2 = 2l having a length of l, a
uniform cross section area of A, and a constant density of ρ.

Answer
For the 2-node bar element, using Equation 12.3 along with the shape
functions expressed in an isoparametric form (see Section 10.1.1), we
write

[Me] = ρA

∫ x2

x1

[N ]T [N ]dx = ρA

∫ 1

−1

[N ]T [N ]Jdξ

where J = l/2, N1 =
1

2
(1− ξ), and N2 =

1

2
(1 + ξ). With substitution,

we obtain the following mass matrix for the 2-node bar element:

[Me] =
ρAl

2

∫ 1

−1

1

2

[
(1− ξ)
(1+ ξ)

]
1

2

[
(1− ξ) (1+ ξ)

]
dξ

=
ρAl

8

∫ 1

−1

[
(1− ξ)2 1− ξ

2

1− ξ
2 (1+ ξ)2

]
dξ =

ρAl

8

[
8/3 4/3
4/3 8/3

]
=

ρAl

6

[
2 1
1 2

]

Similarly, for the 3-node bar element, with J = l/2, N1 =
1

2
(−ξ+ ξ

2),

N2 = 1− ξ
2, and N3 =

1

2
(ξ + ξ

2) we calculate

[Me] =
ρAl

2

∫ 1

−1

⎡
⎢⎢⎣

1

2
(−ξ+ ξ

2)

1− ξ
2

1

2
(ξ+ ξ

2)

⎤
⎥⎥⎦[12 (−ξ+ ξ

2) 1− ξ
2 1

2
(ξ + ξ

2)
]
dξ

=
ρAl

30

⎡
⎣ 4 2 −1

2 16 2
−1 2 4

⎤
⎦

This is the mass matrix for the 3-node bar element.

Example 12.2

Determine the elementary mass matrix, [Me], for the 3-node isopara-
metric triangular element and the 4-node isoparametric square element
by assuming that the elements have a thickness of te, area of Ae, and
a constant material density of ρ.

Answer
For 2D elements, we will first use the shape functions defined in Section
10.2.1 to build the corresponding [N ] matrix according to Equation 5.34
(note that when considering mass, we often deal with motion—hence a
vector problem).
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So for the 3-node isoparametric triangular element, with N1 =
1− ξ− η, N2 = ξ, and N3 = η, we write

[N ] =

[
1− ξ− η 0 ξ 0 η 0

0 1− ξ− η 0 ξ 0 η

]

Substituting this [N ] matrix into Equation 12.3, along with Ae = 1/2,
we obtain

[Me] = ρte

∫ 1

0

∫ 1−ξ

0

[N ]T [N ]dξdη =
ρteAe

12

⎡
⎢⎢⎢⎢⎢⎢⎣

2 0 1 0 1 0
0 2 0 1 0 1
1 0 2 0 1 0
0 1 0 2 0 1
1 0 1 0 2 0
0 1 0 1 0 2

⎤
⎥⎥⎥⎥⎥⎥⎦

Similarly for the 4-node isoparametric square element, with N1 =
(1− ξ)(1− η)

4
, N2 =

(1+ ξ)(1− η)

4
, N3 =

(1+ ξ)(1+ η)

4
, and N4 =

(1− ξ)(1+ η)

4
we first build the following [N ] matrix:

[N ] =

[
N1 0 N2 0 N3 0 N4 0
0 N1 0 N2 0 N3 0 N4

]

Then, by substituting this [N ] matrix into Equation 12.3, along with
Ae = 4, we obtain

[Me] = ρte

∫ 1

−1

∫ 1

−1

[N ]T [N ]dξdη =
ρteAe

36

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 2 0 1 0 2 0
0 4 0 2 0 1 0 2
2 0 4 0 2 0 1 0
0 2 0 4 0 2 0 1
1 0 2 0 4 0 2 0
0 1 0 2 0 4 0 2
2 0 1 0 2 0 4 0
0 2 0 1 0 2 0 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Example 12.3

Determine the elementary mass matrix, [Me], for a 2-node beam element
located between x1 = 0 and x2 = l having a length of l, a uniform cross
section area of A, and a constant density of ρ.

Answer
By referring to the discussion in Section 10.1.3, we copy the shape
function matrix in an isoparametric form as given in Equation 10.9 here:

[N ] =

[
(1− ξ)2(ξ+ 2)

4

(1− ξ)2(1 + ξ)l

8

(1+ ξ)2(2− ξ)

4

(ξ− 1)(1+ ξ)2l

8

]
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By substituting the above shape function matrix into Equation 12.3,
along with J = l/2, we arrive at

[Me] = ρA

∫ x2

x1

[N ]T [N ]dx = ρA

∫ 1

−1

[N ]T [N ]Jdξ

=
ρAl

2

∫ 1

−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(1 − ξ)2(ξ + 2)

4

(1 − ξ)2(1 + ξ)l

8

(1 + ξ)2(2 − ξ)

4

(ξ − 1)(1 + ξ)2l

8

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
[

(1 − ξ)2(ξ + 2)

4

(1 − ξ)2(1 + ξ)l

8

(1 + ξ)2(2 − ξ)

4

(ξ − 1)(1 + ξ)2l

8

]
dξ

=
ρAl

420

⎡
⎢⎢⎣

156 22l 54 −13l

22l 4l2 13l −3l2

54 13l 156 −22l

−13l −3l2 −22l 4l2

⎤
⎥⎥⎦

These elementary mass matrices are sometimes called the consistent
mass matrices because they are obtained using the shape functions in
a way that is consistent with the elementary [Ke] matrix. Calling them
consistent is also for distinguishing them from lumped mass matrices,
which have the same number of rows and columns as the consistent
matrices but with only nonzero diagonal terms as a direct result of dis-
tributing the mass of a structure evenly to the nodes. For example, the
lumped mass matrix for a 2-node bar element is

[Me] =
ρAl

2

[
1 0
0 1

]

and the lumped mass matrix for a 3-node bar element is

[Me] =
ρAl

3

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦

Similarly, the lumped mass matrices for the isoparametric triangular
and square elements are as follows, respectively,

[Me]
iso–triangle =

ρteAe

3

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
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[Me]
iso–square =

ρteAe

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

12.1.2 Elementary damping matrix

In a similar way, we can find the elementary damping matrix [Gd
e ] by isolating

the damping term
(
χ

∂u

∂t

)
in Equation 12.1 and calculating the residual of its

weighted integral, as follows: ∫∫∫
V

wmχ
∂u

∂t
dV

After substituting the matrix form field quantity interpolation, replacing
the weight functions with shape functions (per the Galerkin method), and
summing all ne terms, we obtain

∫∫∫
V

ne∑
m=1

wmχ
∂u

∂t
dV =

∫∫∫
V

[N ]T χ[N ]dV {ḋ0}

The coefficient of the first derivative of the DOF vector, {ḋ0}, is called the
damping matrix, that is,

[Gd
e ] =
∫∫∫

V

[N ]T χ[N ]dV (12.4)

It is clear from Equations 12.3 and 12.4 that by replacing ρ (density)
with χ (damping coefficient) in the above mass matrices, we can obtain the
corresponding damping matrices. For example, the damping matrix for a
2-node and a 3-node bar element having a constant damping coefficient is,
respectively,

[Gd
e ]

2-node =
χAl

6

[
2 1
1 2

]
, [Gd

e ]
3-node =

χAl

30

⎡
⎣ 4 2 −1

2 16 2
−1 2 4

⎤
⎦

A situation in which the damping matrix is proportional to the mass matrix
is sometimes called mass proportional damping. In practice, there are several
ways to determine the damping of a system. For example, in addition to
this mass proportional damping, Rayleigh damping defines the elementary
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damping matrix in a linear sum of the [M ] matrix and [K] matrix as

[Gd
e ] = α[M ] + β[K]

where α and β are constants.

12.1.3 Elementary absorption matrix

By applying the same procedure to the absorption term, βu, in Equation 12.1,
we have ∫∫∫

V

ne∑
m=1

wmβudV =
∫∫∫

V

[N ]T β[N ]dV {d0}

From this, we find the absorption matrix:

[Ga
e ] =
∫∫∫

V

[N ]T β[N ]dV (12.5)

Comparing Equations 12.3 and 12.5, we can see that by replacing ρ with β

(absorption coefficient) in the mass matrices, we can obtain the corresponding
absorption matrices. For example, the absorption matrix for the isoparamet-
ric triangle and square element having a constant absorption coefficient is,
respectively,

[Ga
e ]iso–triangle =

βteAe

12

⎡
⎢⎢⎢⎢⎢⎢⎣

2 0 1 0 1 0
0 2 0 1 0 1
1 0 2 0 1 0
0 1 0 2 0 1
1 0 1 0 2 0
0 1 0 1 0 2

⎤
⎥⎥⎥⎥⎥⎥⎦

[Ga
e ]iso–square =

βteAe

36

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 2 0 1 0 2 0
0 4 0 2 0 1 0 2
2 0 4 0 2 0 1 0
0 2 0 4 0 2 0 1
1 0 2 0 4 0 2 0
0 1 0 2 0 4 0 2
2 0 1 0 2 0 4 0
0 2 0 1 0 2 0 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

12.1.4 Elementary convection matrix

For the convection term, α∇u, in Equation 12.1, we can apply the same weak-
form FEM formulation procedure by calculating the residual of its weighted
integral, ∫∫∫

V

wmα∇·udV
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along with
{u} = [N ]{d0}, wm = Nm, m = 1, . . . , ne

With substitution, we obtain

∫∫∫
V

ne∑
m=1

wmα∇udV =
∫∫∫

V

[N ]T α[∇N ]{d0}dV

From this expression, we find the convection matrix as

[Gc
e] =
∫∫∫

V

[N ]T α[∇N ]dV (12.6)

Example 12.4

Determine the convection matrix for a 3-node bar element located
between x1 = −l/2 and x3 = l/2 having a length of l, a uniform cross
section area of A, and a constant convective coefficient of α.

Answer
By using the Lagrange formula for one-dimensional (1D) elements given
in Equation 5.13, we first find the shape functions for the element. For
conveniences sake, by referring to Example 5.1b in Section 5.6.1, along
with x1 = l/2, x2 = 0, and x3 = l/2, we obtain

[N ] =

[
2x2 −xl

l2
l2 − 4x2

l2
2x2 +xl

l2

]

and

[∇N ] =

[
dN

dx

]
=

[
4x− l

l2
−8x

l2
4x + l

l2

]

By substituting these expressions into Equation 12.6, we obtain

[Gc
e] = αA

∫ l/2

−l/2

⎡
⎢⎢⎢⎢⎣

2x2 −xl

l2
l2 − 4x2

l2
2x2 +xl

l2

⎤
⎥⎥⎥⎥⎦
[
4x− l

l2
−8x

l2
4x+ l

l2

]
dx = αA

⎡
⎣−3 4 −1
−4 0 4
1 −4 3

⎤
⎦

12.2 Solving the General Matrix Equation

For the absorption and convection matrices, when they are plugged back into
the general matrix equation (Equation 12.2), they are associated directly with
the DOF vector, {d0}. This is the same as the elementary [K] matrix. Thus,
in solving the matrix equation, these terms can be summed together to form
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an expanded [K ′] matrix. In this way, the general form matrix equation given
in Equation 12.2 can be condensed to

[Me]{d̈0}+ [Gd
e]{ḋ0}+ [K ′

e]{d0} = {Pe} (12.7)

For the mass and damping matrices, when substituting them back into the
general matrix equation (Equation 12.2), the mass matrix is associated with
the second derivative of the DOF vector, {d̈0}, and the damping matrix with
the first derivative of the DOF vector, {ḋ0}. These are time-dependent terms,
and they are handled differently, as we will see in Section 12.3.

12.3 Eigenvalues, Eigenvectors, and Free Vibration

12.3.1 Eigenvalues and eigenvectors

Before we discuss solving PDEs with time-dependent terms, let us first review
the two relevant concepts, eigenvalues and eigenvectors. Eigenvalues are a
special set of scalars that are associated with a matrix equation, and they are
sometimes known as characteristic values. Similarly, eigenvectors are a special
set of vectors associated with a matrix equation, and they are sometimes
referred to as characteristic vectors. In daily life, the determination of the
eigenvalues and eigenvectors of a physical or engineering system is extremely
important in situations such as stability analysis, rotating bodies, and free
vibration. Each eigenvalue is associated with a corresponding eigenvector.

Mathematically, an eigenvector of a square matrix [A] is a nonzero vec-
tor {v}, which when multiplied with the matrix yields a constant multiple
of {v} as follows:

[A]{v} = λ{v}
where λ, the constant multiplier, is the eigenvalue of [A] corresponding
to the eigenvector vector {v}. The above equation can also be expressed
equivalently as

([A]−λ[I]){v} = {0} (12.8)

where [I] is the identity matrix.
To find the eigenvalues, one just solves the following equation,

det([A]−λ[I]) = 0 (12.9)

and to find the eigenvectors, one just substitutes the eigenvalues into the
following equation and solves for {v}:

([A]−λ[I]){v} = {0} (12.10)
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Example 12.5

Find the eigenvalues and eigenvectors of square matrix [A]:

[A] =

[
2 −4
−3 3

]

Answer
Using Equation 12.9, we calculate

det

([
2 −4
−3 3

]
−
[
λ 0
0 λ

])
= λ

2 − 5λ− 6 = 0 = (λ− 6)(λ + 1) = 0

From this equation, we obtain two roots as the two eigenvalues:

λ1 = 6, λ2 = −1

For the eigenvectors, we substitute these eigenvalues, one at a time, into
Equation 12.10. When λ1 = 6, we have([

2 −4
−3 3

]
−
[
6 0
0 6

])
{v} =

[−4 −4
−3 −3

]
{v} = {0}

Solving this equation, we find the first eigenvector, after normaliza-
tion, as

{v}1 =

{
0.707
−0.707

}

Note that a normalized vector is one having unity (1) length, that is,
{v}T {v} = 1. When λ2 = −1, we have

([
2 −4
−3 3

]
−
[−1 0

0 −1

])
{v} =

[
3 −4
−3 4

]
{v} = {0}

Solving this equation, we have the second eigenvector (after normaliza-
tion) as

{v}2 =

{
0.800
0.600

}

12.3.2 Free vibration

Free vibration describes a situation in which a mechanical system is activated
with a brief input and is allowed to deform (or more precisely, vibrate) freely
afterwards. The motion of a tuning fork is a typical example of free vibration.
In free vibration, the frequencies at which the system oscillates are called
natural frequencies and the profiles of oscillation are called vibration modes.
Usually, a system possesses a number of natural frequencies, with the lowest
frequency associated with the simplest vibration mode permissible and higher
natural frequencies associated with higher-order vibration modes. The lowest
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1 2

f0= v/2Lf1= 2f0 f2= 3f0

FIGURE 12.1
Vibration modes of a string.

natural frequency is often termed the fundamental frequency. To visualize
this, we can picture a tensioned string pinned at the two ends, as shown in
Figure 12.1. The profiles of free vibration of this string can be represented
by a series of sinusoidal wave functions. The fundamental vibration mode
takes the shape of a sinusoid passing through the two end points with 2L as
its period, where L is the length of the string, and the fundamental frequency
is f0 = v/2L, where v is the speed of the wave. Higher-order vibrational modes
take the shapes of sinusoids with periods of 2L/i and frequencies of fi−1 = if0,
where i is an integer, i = 2, 3, and so on.

The PDE for free vibration can be obtained by eliminating the damping
and force terms in Equation 12.7 as follows:

[M ]{d̈0}+ [K]{d0} = {0} (12.11)

In free vibration, the DOF vector {d0} can be represented by a sinusoidal wave
function {d0} = {d} sin ωt, where {d0} = {d} is the magnitude of the wave
function and ω is the angular frequency (ω = 2πf ; f is the natural frequency).
With this, we derive the acceleration vector as {d̈0} = −ω2{d} sin ωt. After
substituting the DOF and acceleration vectors into Equation 12.11, we obtain(

[K]−ω2[M ]
) {d} = {0} (12.12)

Here, the matrix term [K]−ω2[M ] is often referred to as the dynamic stiffness
matrix of a mechanical system undergoing free vibration.

In comparing with Equation 12.8, we can see that Equation 12.12 rep-
resents a generalized eigenvalue and eigenvector problem, with ω2 being the
eigenvalues and the corresponding vibration modes being the eigenvectors.
In other words, in free vibration the natural frequencies of a mechanical
system are its eigenfrequencies (which are related to the eigenvalues by the
relationship of f = ω/2π) and the vibration modes are its eigenvectors.

Example 12.6

Find the first two natural frequencies and vibration modes for the stand-
ing post undergoing free vibration. As shown in Figure 12.2, the post
has a length of l and its bottom end fixed to the ground.

Answer
We solve this free vibration problem as an eigenvalue problem. Since this
standing post with a fixed end will vibrate with flexural deformation,
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2

1 u1

θ1

l First mode

Second mode

FIGURE 12.2
Standing post and its first two vibration modes.

it should be treated as a beam structure. Thus, we will use the Hermite
elements for its discretization. To simplify matters, we will represent
the post with a single beam element, with nodal assignment shown in
Figure 12.2. For the [K] matrix, referring to Equation 6.24 we write

[K] =
EI

l3

⎡
⎢⎢⎢⎢⎣

12 6l −12 6l

6l 4l2 −6l 2l2

−12 −6l 12 −6l

6l 2l2 −6l 4l2

⎤
⎥⎥⎥⎥⎦

For the [M ] matrix, we will use the consistent mass matrix. Thus, from
Example 12.3 discussed earlier, we have

[M ] =
ρAl

420

⎡
⎢⎢⎣

156 22l 54 −13l

22l 4l2 13l −3l2

54 13l 156 −22l

−13l −3l2 −22l 4l2

⎤
⎥⎥⎦

By substituting the [K] and [M ] matrices into Equation 12.12, we have

⎛
⎜⎜⎜⎜⎝

EI

l3

⎡
⎢⎢⎢⎢⎣

12 6l −12 6l

6l 4l2 −6l 2l2

−12 −6l 12 −6l

6l 2l2 −6l 4l2

⎤
⎥⎥⎥⎥⎦− ω2ρAl

420

⎡
⎢⎢⎣

156 22l 54 −13l

22l 4l2 13l −3l2

54 13l 156 −22l

−13l −3l2 −22l 4l2

⎤
⎥⎥⎦
⎞
⎟⎟⎟⎟⎠
⎧⎪⎪⎨
⎪⎪⎩

v1

θ1

v2

θ2

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

0
0
0
0

⎫⎪⎪⎬
⎪⎪⎭
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Since node 2 is fixed, we have v2 = 0 and θ2 = 0. Thus, we strike out
the corresponding rows and columns and obtain(

EI

l3

[
12 6l

6l 4l2

]
− ω2ρAl

420

[
156 22l

22l 4l2

]){
v1

θ1

}
=

{
0
0

}
(12.13)

From this equation, we can find the eigenvalues, ω
2, by solving

det

(
EI

l3

[
12 6l

6l 4l2

]
− ω2ρAl

420

[
156 22l

22l 4l2

])
= 0

To do that, we first simplify it to

det

([
12− 156c 6l− 22lc

6l− 22lc 4l2 − 4l2c

])
= 0 (12.14)

where

c =
ω2ρAl4

420EI

Solving Equation 12.14, we obtain c1 = 0.0297 and c2 = 2.8846. With
that, we further find the first two eigenvalues as

ω1 = 3.5327

√
EI

ρAl4
, ω2 = 34.8069

√
EI

ρAl4

From the vibration theory of beams, one can find that the exact solution
has a coefficient of 3.5156 for the first eigenvalue and 22.0336 for the
second eigenvalue. Clearly, the first eigenvalue obtained from our single-
beam discretization approximation is much closer to the exact solution
than the second eigenvalue. The errors can be reduced by using more
elements or different types of mass matrices.

To find the eigenvectors, or the vibration modes, we just solve
Equation 12.13 with the above eigenvalues substituted.

For the first eigenvalue (ω1), we obtain

EI

l3

([
12 6l

6l 4l2

]
− 0.0297

[
156 22l

22l 4l2

]){
v1

θ1

}
=

{
0
0

}
(12.15)

This leads to the two following equations:

7.3668v1 + 5.3466lθ1 = 0 and 5.3466V1 +3.8812lθ1 = 0

From these equations, by setting v1 = 1, we obtain the first eigen-
vector as {

v1

θ1

}
=

{
1

−1.3778/l

}

Similarly, we find the second eigenvector corresponding to ω2 as{
v1

θ1

}
=

{
1

−7.6225/l

}
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Plotting these two eigenvectors in position with the standing post, as
shown in Figure 12.2, we can see the corresponding vibration modes.

12.4 Exercises

1. Determine the elementary mass matrix, [Me], for the two 2-node bar
elements shown in Figure 12.3 in terms of length l, cross section area
A, and density of ρ.

2. Determine the elementary mass matrix, [Me], for the two 3-node bar
elements shown in Figure 12.4 in terms of length l, cross section area
A, and density ρ.

3. Determine the convection matrix [Gc
e] for the two 2-node bar ele-

ments shown in Figure 12.3 in terms of length l, cross section area
A, and convective coefficient α.

4. Determine the convection matrix [Gc
e] for the two 3-node bar ele-

ments shown in Figure 12.4 in terms of length l, cross section area
A, and convective coefficient α.

5. Determine the elementary mass matrix, [Me], for the two 2-node
beam elements shown in Figure 12.5 in terms of length l, cross
section area A, and density ρ.

6. For the 2D square and rectangular elements shown in Figure 12.6,
determine their elementary mass matrix, [Me], in terms of thick-
ness te, area Ae, and material density ρ.

1 2
x

x1 = 0 x2 = l

u1 u2

1 2
x

x1 = 3l x2 = 4l

u1 u2

FIGURE 12.3
Two 1D 2-node elements located at different positions.

1 2 3
x

x1= 0 x1= 3l x2= 3.5l x3= 4lx2= 0.5l x3= l

u1 u1u2 u2u3 u3

1 2 3
x

FIGURE 12.4
Two 1D 3-node elements located at different positions.
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x x
x1= l x2= 2l x1= 3l x2= 4l

u1 u1
u2 u2u'2 u'2

u'1 u'1

FIGURE 12.5
Two 2-node beam elements at different locations.

1 (0, 0) 2 (1, 0)

3 (1, 1)
4 (0, 1)

y

x
1 (0, 0) 2 (1.5, 0)

3 (1.5, 1)
4 (0, 1)

y

x

FIGURE 12.6
Two 2D rectangular elements with a uniform thickness.

1 (0, 0) 2 (1.5, 0)

3 (1.5, 1)
y

x
1 (0, 0) 2 (1.5, 0)

3 (0, 1)

y

x

FIGURE 12.7
Two 2D triangular elements with a uniform thickness.

7. Determine the convection matrix [Gc
e] for the two square and rect-

angular elements shown in Figure 12.6 in terms of thickness te,
area Ae, and convective coefficient α.

8. For the two 2D triangular elements shown in Figure 12.7, deter-
mine their elementary mass matrix, [Me], in terms of thickness te,
area Ae, and material density ρ.

9. Determine the convection matrix [Gc
e] for the two 2D triangular

elements shown in Figure 12.7 in terms of thickness te, area Ae,
and convective coefficient α.

10. Solve the problem discussed in Example 12.6 by using two beam
elements, as illustrated in Figure 12.8.
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3

1

(1)

(2)

2

u1

θ1

l First mode

Second mode

FIGURE 12.8
Standing post and its first two vibration modes.
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13

Errors in FEM Results

The finite element method (FEM) is a computer-based approximate way of
finding solutions to differential equations. As we learned in Chapter 4, an
approximate way of seeking solutions to partial differential equations (PDEs)
and ordinary differential equations (ODEs) will inherently introduce errors.
Thus, FEM results will always contain errors. There are several different types
of errors in FEM, such as modeling error, user error, and program error. Of
all the possible errors, modeling errors are the most common ones, and they
are discussed in detail in this chapter. On the other end of the spectrum,
the most challenging cause for errors is when framing the problem becomes
difficult. This type of error is often categorized as the problem-framing error,
and it occurs when the PDE or the constraining conditions do not capture
the actual situation of the problem at hand due to required simplifications in
formulating the problem. This type of error may not be avoidable, especially
when the underlying physics of the problem is complicated or not fully known.
In this situation, the best thing one can do is to be fully aware of the limitation
of the framed problem and the results.

For other errors, especially those caused by human mistakes, they can be
further categorized as user error and programmer error, or simply program
error. If a user makes a mistake in building the model, selecting appropriate
elements, or assigning incorrect material properties, or even loading and con-
straining boundary conditions, and so forth, the results the user obtains will
surely not be correct. This type of error is user error, and it could be avoided
as the user becomes more knowledgeable of the FEM modeling technique and
the underlying science and engineering principles. If a programming engineer
makes a mistake causing some programming bugs in the software, this type of
error is program error, which is sometimes very hard to identify. In the case
of a commercial software package, because the developers and users are often
not the same group of people, any program bugs, when they go undetected
during the debugging stage, will be embedded in the package to introduce
calculation errors to the FEM results. This type of error, however, can be
identified by comparing some selected results either with known theoretical
values or with FEM results from a different software package. It is therefore
very important to develop a habit of validating FEM results in as many ways
as possible.

313
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13.1 Modeling Errors

Even when the software is free of bugs and when everything is done right by
an engineer, the FEM results will still possess errors. These are often regarded
as modeling errors. Modeling errors can come from three main sources:

1. Domain approximation error. This is caused by the elements used
for domain discretization not fully representing the actual domain,
leading an engineer to solve PDEs on a modified domain.

2. Field variable approximation error. This is inherent to any numer-
ical solutions, and it is generated from the approximation of a field
variable using polynomial interpretation functions.

3. Quadrature and arithmetic error. This is the round-off error in the
computation of values, numerical evaluation of integrals, and so
forth.

13.1.1 Domain approximation error

Since the various types of elements we have discussed in previous chapters
have either straight shapes (e.g., one-dimensional [1D] elements), straight
edges (e.g., two-dimensional [2D] elements), or straight edges and flat surfaces
(e.g., three-dimensional [3D] elements), for physical domains with straight
shapes and straight boundaries, domain approximation may be less a problem.
However, for physical domains possessing curved shapes, edges, or surfaces,
domain approximation will become inevitable, leading to domain approxi-
mation error. To minimize this type of errors, one could reduce the size
of elements (i.e., refine the mesh) such that the domain is more accurately
represented by smaller elements.

13.1.2 Field variable approximation error

Field variable approximation error is likely caused by the selected polynomial
interpretation functions not capturing the actual variation of the field vari-
able (the primary variable), or lacking the degree of continuity to represent
truthfully various secondary variables (i.e., various derivatives of the primary
variable). As we discussed in Chapter 5, the order of element discretization
can be linear, quadratic, cubic, quartic, and so on, and these discretization
orders are directly linked to the degrees of polynomial functions used for field
variable approximation. With Lagrange elements (see Section 5.6), increas-
ing the order of element discretization can be implemented by using elements
with midside nodes. Thus, even with elements of the same shapes as linear
elements, by selecting a higher discretization order, we may reduce the field
variable approximation error.
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13.1.3 Quadrature and arithmetic error

As discussed in Chapter 11, in FEM most operations for numerical computa-
tion and integral evaluation are done using quadrature techniques. Thus, the
accuracy of these numerical operations may rely on the number of points used
in the quadrature (see Tables 11.1 through 11.3). In this regard, adjusting the
number of quadrature points may help reduce the numerical error.

13.2 Convergence of FEM Solutions

Since errors in FEM results are inevitable, one of the most important things
an engineer must do is to ensure that the error is small or negligible, such that
the FEM solutions are reasonably close to the true solutions. This statement
can be conveyed by mathematical expressions. For example, let u be the
true solution to a given PDE, ũ the FEM solution, and e0 a preset small
error tolerance value; when the difference of these two solutions satisfies the
following relationship,

|u− ũ| ≤ e0

the FEM solution will be regarded as an acceptable solution because the error
associated with it is considered tolerable or negligible.

Let us now add some practical meaning to this mathematical expression
by using a 2-node bar element of length l to solve the second-order ODE given
in Equation 6.1.

By Equation 5.6, we express the FEM solution in terms of the shape
functions and nodal degrees of freedom (DOF) as

ũ = Niu1 + N2u2

where the two shape functions (see Section 5.5) are

N1 =
l− x

l
and N2 =

x

l
, in which 0 ≤ x ≤ l

We now introduce a fractional variable, s, such that

s =
x

l
with 0 ≤ s ≤ 1

With this new variable, we then express the FEM solution as a function of s:

ũ = (1− s)u1 + su2 (13.1)

For the sake of facilitating convenient comparison, we need to express the
true solution also in terms of s as u(s). So by using the Taylor series
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(see Appendix B), we expand u(s) in term of a as

u(s) = u(a)+ u′(a)(s− a)+
u′′(a)

2!
(s− a)2 + · · ·

in which a represents an arbitrary point within the elementary domain
(0 ≤ a ≤ 1). When a = 0, we are at node 1; therefore, we have u(0) =
u1, u

′(0) = u′
1, . . .. With these values, we express u(s) in terms of the first

nodal DOF (u1) as

u(s) = u1 + u′
1s +

u′′
1

2
s2 + · · · (13.2)

This equation means that the true solution is now expressed as a func-
tion variable s along with known values of u1, u

′
1, . . . at node 1 as constant

coefficients.
Letting s = 1 in Equation 13.2, we reach node 2 with associated second

nodal DOF (u2). In other words, u2 can be expressed in terms of u1, u
′
1, . . . as

u2 = u1 + u′
1 +

u′′
1

2!
+ · · · (13.3)

Substituting Equation 13.3 into Equation 13.1, we obtain

ũ(s) = (1− s)u1 + s

(
u1 + u′

1 +
u′′

1

2
+ · · ·
)

= u1 + u′
1s +

u′′
1

2
s + · · · (13.4)

From Equations 13.2 and 13.4, we calculate

|u− ũ| =
∣∣∣∣u′′

1

2
(s− s2)+ · · ·

∣∣∣∣
By taking the maximum value for u′′

1 along the entire element, we express the
above equation as the following inequity:

|u− ũ| ≤ (s− s2)
2 0≤s≤1

max
∣∣∣∣d2u

ds2

∣∣∣∣
Since s = x/l, we have ds = dx/l and

max
0≤s≤1

∣∣∣∣d2u

ds2

∣∣∣∣ = max
0≤s≤1

∣∣∣∣∣d
2u

dx2

(
dx

ds

)2
∣∣∣∣∣ = l2 max

0≤s≤1

∣∣∣∣d2u

dx2

∣∣∣∣
With this relationship, we write

|u− ũ| ≤ (s− s2)
2

max
0≤s≤1

∣∣∣∣d2u

dx2

∣∣∣∣ l2 (13.5)

Because 0 ≤ s ≤ 1, we can regard (s− s2) ≤ 1; then we further simplify
Equation 13.5 to

|u− ũ| ≤ 1
2

max
0≤s≤1

∣∣∣∣d2u

dx2

∣∣∣∣ l2 = c1l
2 (13.6)
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where c1 represents
1
2

max
0≤s≤1

∣∣∣∣d2u

dx2

∣∣∣∣, which is a constant. By taking the first

derivative of Equation 13.5 with respect to x, we obtain

d

dx
|(u− ũ)| ≤ (1− 2s)

2
(
ds

dx
) max

0≤s≤1

∣∣∣∣d2u

dx2

∣∣∣∣ l2 ≤ 1
2

max
0≤s≤1

∣∣∣∣d2u

dx2

∣∣∣∣ l = c2l (13.7)

in which c2 is a also constant.
Equations 13.6 and 13.7 show that by selecting a 2-node bar element of

length l, we can express the possible errors as

|u− ũ| ≤ c1l
2 and |u− ũ|1 ≤ c2l (13.8)

where |u− ũ|1 denotes the first derivative of |u− ũ| with respect to x. Clearly,
when the length of the element becomes small, the values of c1l

2 and c2l will
be small.

The inequalities given in Equation 13.8 can be expressed in a general form
as follows:

|u− ũ|m ≤ chp, p = k + 1−m (13.9)

where c is a constant, h is the characteristic length of an element, and p is the
power term with a positive value, often referred to as the rate of convergence.
The p value is determined as p = k + 1−m, in which k represents the degree
of polynomials associated with the selected element, and m is related to the
order of the differential equation (with 2m equal to the order).

For a FEM solution that satisfies Equation 13.9, it is said that as the
characteristic length (h) decreases or as the rate of convergence (p) increases,
the error in the FEM solution will become negligibly small, leading to the
convergence of the FEM solution to the true solution.

So for the case discussed earlier in which we use a 2-node bar element
(with first-order linear interpolation polynomials) of length l to solve a second-
order ODE, we have 2m = 2, or m = 1 and k = 1, along with h = l. Then,
we calculate p = 1 + 1− 1 = 1. With these values, Equation 13.9 reduces to
Equation 13.7. This fact suggests that the FEM solution provided by the
2-node element will converge to the true solution for the second-order ODE
as the length of the elements decreases.

According to Equation 13.9, the error in the FEM approximation can be
reduced by either reducing the size of the elements or increasing the degree of
polynomial interpretation. So when a FEM solution satisfies Equation 13.9,
the solution will converge to the true solution as the size of elements decreases
or the degree of the polynomial interpretation increases. Convergence of the
FEM solutions by decreasing the size of the elements with more of the same
kind of elements, which is often referred to as mesh refinement, is termed
h-convergence. Convergence with increasing the degree of polynomials is called
p-convergence.
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Example 13.1

Referring to Equation 13.9 show that a 3-node bar element used
for solving a second-order PDE or ODE will meet the convergence
requirement.

Answer
Since 2m = 2 and k = 2, we have p = k + 1−m = 2 +1− 1 = 2; thus,
if the element meets the convergence requirement, by referring to
Equation 13.9, we need to establish the following relationship:

|u− ũ|1 ≤ cl2

By introducing a fractional variable s as s = x/l, along with the three
shape functions for a 3-node bar element (see Section 5.6), we express
the FEM solution as

ũ(s) = (1− 3s + 2s2)u1 + (4s− 4s2)u2 + (2s2 − s)u3 (13.10)

Using the Taylor series (see Appendix B), we expand u(s) at s = 0
to express u(s) in terms of the first nodal DOF, u1:

u(s) = u1 + u′
1s+

u′′
1

2
s2 +

u
(3)
1

3!
s3 + · · · (13.11)

By letting s = 1/2 in Equation 13.11, we express the second nodal DOF
(u2) in terms of u1 as

u2 = u1 +u′
1
1

2
+

u′′
1

2

1

4
+

u
(3)
1

6

1

8
+ · · · (13.12)

and by letting s = 1 in Equation 13.11, we express the third nodal DOF
(u3) in terms of u1 as

u3 = u1 + u′
1 +

u′′
1

2
+

u
(3)
1

6
+ · · · (13.13)

Substituting Equations 13.12 and 13.13 into Equation 13.10, we obtain

ũ(s) = (1− 3s +2s2)u1 + (4s− 4s2)

(
u1 +u′

1
1

2
+

u′′
1

2

1

4
+

u
(3)
1

6

1

8
+ · · ·

)

+ (2s2 − s)

(
u1 + u′

1 +
u′′

1

2
+

u
(3)
1

6
+ · · ·

)

With simplification, we have

ũ(s) = u1 +u′
1s +

u′′
1

2
s2 +

u
(3)
1

6

(3s2 − s)

2
+ · · · (13.14)

From Equations 13.11 and 13.14, we calculate

|u− ũ| =

∣∣∣∣∣u
(3)
1

6

(
s3 − 3s2 − s

2

)
+ · · ·

∣∣∣∣∣ =

∣∣∣∣ 1

12
(s− 3s2 +2s3)u

(3)
1 + · · ·

∣∣∣∣
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Since s = x/l and s ≤ 1, we have ds = dx/l and

|u− ũ| ≤ 1

12
(s− 3s2 + 2s3) max

0≤s≤1

∣∣∣∣d3u

ds3

∣∣∣∣ =
1

12
max

0≤s≤1

∣∣∣∣d3u

dx3

∣∣∣∣ l3 = c3l
3

where c3 is a constant related to the length of the element.
Similarly, we have

d

dx
|(u− ũ)| = |u− ũ|1 ≤ 1

12
(1− 6s+ 6s2) max

0≤s≤1

∣∣∣∣d3u

dx3

∣∣∣∣ l2 ≤ 1

12
max

0≤s≤1

∣∣∣∣d3u

dx3

∣∣∣∣ l2
that is,

|u− ũ|1 ≤ c4l
2 (13.15)

in which c4 is a also constant related to the length of the element.
Equation 13.15 is exactly the relationship we set out to establish.

This result thus confirms that the convergence requirement is met when
a 3-node bar element is used for solving a second-order PDE or ODE.

13.2.1 Effect of mesh refinement: h-convergence

In this section, we use a quantitative example to illustrate the effect of mesh
refinement on the convergence of FEM solutions, or the h-convergence.

For many structures, either due to some specific design requirements or
as a result of processing flaws, they may possess geometric features such as
holes or notches. These features will cause elevated stresses in the surrounding
region. This phenomenon is commonly known as stress concentration.

Stress concentration is often characterized by the ratio of the maximum
stress (σmax) in the region to the nominal stress (σnom), and this ratio is
called the stress concentration factor (Kt). As shown in Figure 13.1, the stress
concentration factor in a rectangular plate with an elliptic hole is found to be

Kt = C1 + C2

(
2a

D

)
+ C3

(
2a

D

)2

+ C4

(
2a

D

)3

(13.16)

where for 0.5 ≤ a/b ≤ 10, C1 = 1 + 2a/b, C2 =− 0.351− 0.021
√

a/b− 2.483a/b,
C3 = 3.621− 5.183

√
a/b+ 4.494a/b, C4 = −2.27 + 5.204

√
a/b− 4.011a/b, D is

the width of the plate, and a and b are the lengths of the semimajor and
semiminor axises of the ellipse, respectively.

Figure 13.1 also shows the curve for the case of a/d = 1.5 based on the
analytical expression Kt as a function of 2a/D. We will now use FEM to solve
this problem by using different mesh densities to examine the differences of
the FEM solutions to the analytical solution. We use four different meshes
for domain discretization, as shown in Figure 13.2. Among the four meshes,
Mesh 1 and Mesh 2 are very coarse, Mesh 3 is fine, and Mesh 4 is extrafine.

Clearly, the two coarse meshes introduce domain discretization errors by
shaping the elliptic hole into polygonal ones. In the two refined meshes, Mesh 3
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FIGURE 13.1
Stress concentration in a rectangular plate around an elliptic hole.

Mesh 1 Mesh 2

Mesh 3 Mesh 4

FIGURE 13.2
Mesh refinement using more elements of smaller sizes.

and Mesh 4, such domain discretization error is reduced and the resulting
meshes provide much better geometrical representation of the domain.

Now let us look at the FEM results obtained from the four cases. As shown
in Figure 13.3, comparing with the analytical solution (the red solid curve),
the FEM solutions for Mesh 1 and Mesh 2 are scattered far away from the
analytic curve in regions below the curve, suggesting that the solutions from
Mesh 1 and Mesh 2 are less than the analytical solution. The results of Mesh 3
and Mesh 4 fare much better. While Mesh 4 provides slightly better results
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FIGURE 13.3
Convergence of FEM solutions with mesh refinement.

than Mesh 3, both results are overall very close to the analytical curve. This
example shows that with mesh refinement, one can reduce errors in FEM
solutions.

As we know, in pretty much all real-world situations we will not have the
analytical solution to make any comparisons with. However, as this example
shows, even without the analytical curve, we can make the following obser-
vations: (1) Mesh 2 solution differs from Mesh 1 solution quite significantly;
(2) Mesh 3 solution also differs from Mesh 2 solution, but with much reduced
differences; and (3) Mesh 4 solution almost overlaps that of Mesh 3. In other
worlds, from the solutions of Mesh 3 and Mesh 4, we can say that there
is a trend of convergence in the FEM solution with mesh refinement. With
such outcomes of a mesh refinement study, we can be confident that Mesh 4
will produce reasonably converged solution. With this properly refined mesh
(e.g., Mesh 4), we can go on to perform further analyses to obtain the physical
quantities of interest, such as tensile stresses, as shown in Figure 13.4. From
Figure 13.4, we can see that the maximum tensile stress increases as the size
of the elliptic hole increases. But as the elliptic hole becomes larger, the nom-
inal stress (σnom = P/(D− 2a)/t) also increases, albeit at a slower rate, thus
leading to a decrease in the stress concentration factor (Kt) with increasing
2a/D ratio.
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FIGURE 13.4
Stress distribution around an elliptic hole with different sizes.

13.2.2 Effect of element discretization order:
p-convergence

In the above example, one reason the FEM solutions converge quickly to
the analytical solution with the use of slightly finer meshes is that the ele-
ments used in those cases are of quadratic order; that is, the elements use
quadratic interpretation functions for field variable approximation. As we
discussed in Chapter 5, for elements of a common shape, the order of dis-
cretization (i.e., the degree of polynomial interpretation functions) can be
increased by introducing side nodes.

To see the effect of changing the order of element discretization or the order
of polynomial interpretation functions on the convergence of FEM solutions
(i.e., the p-convergence), we examine the outcomes when using elements of
linear, quadratic, and cubic orders for the case of Mesh 4, the finest mesh
case in the previous example.

Figure 13.5 shows the results for the variation of Kt as a function of
2a/D when the case of Mesh 4 is reanalyzed by using linear, quadratic, and
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FIGURE 13.5
FEM solutions with increasing order of discretization.

cubic element discretization, respectively. Clearly, even with the extrafine
mesh (Mesh 4), the case of linear element discretization exhibits poor results,
especially when the 2a/D ratio is large: the solutions deviate farther away from
the analytical curve as the 2a/D ratio increases. Of the quadratic and cubic
cases, although both results are very close to the analytic curve, the quadratic
case seems to have slightly better solutions than the cubic one. Recall that
the governing equation for this mechanical problem is a second-order PDE
(see Chapter 8); the fact that cubic elements do not provide any significant
benefits over quadratic elements may suggest that an element discretization
order higher than the order of the governing PDE may not necessarily provide
better FEM solutions.

13.2.3 Effect of quadrature points

Aside from the domain and discretization-related errors, errors in numeri-
cal computation and integral evaluation are also common due to the use of
quadrature techniques (see Chapter 11). Therefore, to have a complete discus-
sion of the possible sources of errors in FEM solutions, we now examine the
effect of changing the number of quadrature points. Note that due to the use
of a commercial FEM software program for this evaluation, the quadrature
points used to evaluate the [K] matrix, the load vector [P ], and so forth, are
not accessible for making changes; thus, we just limit the change in the num-
ber of quadrature points to the evaluation of the σmax. With σmax calculated
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FIGURE 13.6
FEM solutions with increasing number of integration points.

with different quadrature points, we then determine the stress concentration
factor (Kt) and make comparisons among the different cases.

Figure 13.6 shows the results of changing the number of quadrature points
from 2 to 6 in evaluating σmax. While the results for all three cases are very
close to the analytic curve and differ only slightly among themselves, the cases
of 4-point and 6-point seem to provide better results than the case of 2-point. It
is worth noting that because the change of quadrature points is limited to the
evaluation of the maximum stress only, the actual difference could have been
larger than what we see here if we had a way to change the quadrature points
for all numerical evaluations. Nevertheless, this example suggests that increas-
ing the number of quadrature points beyond 4 may provide little benefit.

13.3 Exercises

1. What are the three main modeling errors and how can one avoid
them?

2. Based on the definitions of p-convenience and h-convergence,
describe what one can do to ensure the convergence of FEM
solutions.

3. According to Equation 13.9, what types of bar elements are required
in order to ensure that the FEM solution for a fourth-order PDE
will meet the converge requirements.
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4. Follow the steps and discussion given in Example 13.1 to show
whether a 2-node, a 3-node, or even a 4-node bar element will
be needed for solving a fourth-order PDE in order for the FEM
solutions to meet the convergence requirements.

5. For the stress distribution around a circular hole centered in a rect-
angular plate, as shown in Figure 13.7, the stress concentration
factor can be expressed as a function of 2r/D as follows:

Kt = 3.00− 3.13
(

2r

D

)
+ 3.66

(
2r

D

)2

− 1.53
(

2r

D

)3

where r is the radius of the circular hole and D is the width of
the rectangular plate. Use a FEM program to show the effect of
mesh refinement using meshes with different densities (similar to
the ones used in this chapter). Plot your FEM solutions together
with the analytical solution and comment on them. If necessary,
refer to Part III for modeling help.

6. Use a coarse mesh with different discretization orders, that is,
linear, quadratic, cubic, and aquatic, to reexamine the stress con-
centration problem shown in Figure 13.7. Plot your FEM solutions
together with the analytical solution. If necessary, refer to Part III
for modeling help.
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FIGURE 13.7
Stress concentration in a rectangular plate around a circular hole.
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FIGURE 13.8
Stress concentration in a rectangular plate around a circular hole.

7. For the stress distribution around an off-center circular hole in a
rectangular plate, as shown in Figure 13.8, the stress concentration
factor can be expressed as a function of r/c as follows:

Kt = 3.00− 3.13
(r

c

)
+ 3.66

(r
c

)2
− 1.53

(r
c

)3
where r is the radius of the circular hole, c is the off-center location
of the hole, and D is the width of the rectangular plate. Use a
FEM program to show the effect of mesh refinement using meshes
with different densities (similar to the ones used in this chapter).
Plot your FEM solutions together with the analytical solution and
comment on them. If necessary, refer to Part III for modeling help.

8. Use a coarse mesh with different discretization orders, that is,
linear, quadratic, cubic, and aquatic, to reexamine the stress con-
centration problem shown in Figure 13.8. Plot your FEM solutions
together with the analytical solution. If necessary, refer to Part III
for modeling help.

Recommended Reading

1. J. N. Reddy. 1993. An Introduction to the Finite Element Method.
2nd ed. Boston: McGraw-Hill.
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14

A Quick Tour of the COMSOL
Modeling Environment

The discussions in Part II apply to any finite element method (FEM) modeling
software, such as COMSOL, ABAQUS, and ANSYS, as well as free-ware
packages. In this chapter, we briefly introduce the COMSOL platform and
highlight some of the connections between software settings and the FEM
fundamentals.

In a nutshell, a simple way to understand how a computer model based
on FEM should be developed is to keep in mind how a differential equation is
defined and solved. Based on the discussions in Part II, we can list a partial
differential equation (PDE)–solving procedure as follows:

1. Define the physics: the underlying governing PDE(s).

2. Specify the spacial dimension: the number of independent spacial
variables in the PDE(s).

3. Specify time dependency: whether the PDE(s) is time dependent.

4. Define the domain: the geometric construct or space over which the
PDE(s) is solved.

5. Define the coefficients: the material or other related properties for
the domain.

6. Set the study: the type of phenomena one seeks to investigate, such
as static or steady state, dynamic, and eigenvalues.

7. Apply boundary and initial conditions: the constraints at the
boundaries and at the beginning of an event if time dependent.

8. Apply loading conditions: internal and external sources of loads or
other forms of energy, and so forth.

9. Choose elements and their discretization order: the type of elements
and the order of discretization.

329
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14.1 COMSOL Starting Screen

Now let us have a look at the COMSOL interface to familiarize ourselves with
some of the key attributes, features, and functions of COMSOL and relate
them to the items in the procedural list above.

Figure 14.1 shows the screen image of COMSOL at the launch of the
software. At this stage, we can select either Model Wizard to take a step-
by-step approach to build models or Blank Model to build models at will.
An easy way to start a new model is to take the Model Wizard step-by-step
route (see Figure 14.2a), while the at-will Blank Model route is suited for
more experienced users or for accessing existing models. For example, clicking
Blank Model will send us directly to the COMSOL working environment, as
shown in Figure 14.2b where we can work on all aspects of modeling at will.

14.2 Making Initial Selections Step-By-Step

We now take a step-by-step approach to see what are the main selections we
have to make before reaching the COMSOL modeling working environment.

14.2.1 Selecting spacial dimension

After clicking the Model Wizard button, the first step is to Select Space
Dimension, as shown in Figure 14.3. This is where we decide the spacial

FIGURE 14.1
COMSOL starting screen.



T&F Cat #K16587 — K16587 C014 — page 331 — 1/21/2017 — 15:52

A Quick Tour of the COMSOL Modeling Environment 331

(a) (b)

FIGURE 14.2
COMSOL user interfaces showing two possible ways to start modeling:
(a) through the Model Wizard route and (b) through the Blank Model route.

FIGURE 14.3
Determining the spacial dimension for the model.

dimension in which the PDE is to be solved. The choices we have are 3D, 2D
Axisymmetric, 2D, 1D Axisymmetric, 1D, and 0D. Recall the discussions in
Chapter 2; the selection should be as follows:

• If the problem we intend to solve, or the governing PDE of the
problem, has three spacial independent variables (e.g., x, y, and z),
select 3D.

• If the 3D problem has the rotational features discussed in Chapter 9,
select 2D Axisymmetric.

• If the governing PDE of the problem has two spacial variables,
select 2D.

• If the 2D problem has the rotational features as discussed in Chapter
9, select 1D Axisymmetric.

• If the governing PDE of the problem has one spacial variable,
select 1D.

• If the governing PDE of the problem has no spacial variable, select
0D. In this case, the PDE is likely a time-dependent equation
with no reference to spacial dimensions. Thus, this type of PDE
is sometimes called a point equation—hence 0D.
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14.2.2 Selecting proper physics modules

After choosing a spacial dimension, the next step is to Select Physics, as shown
in Figure 14.4. This is where we need to decide what physics module(s) will be
needed to solve the PDE from a list of available modules. Recall the discussions
in Chapter 3; in each of these modules, a PDE of a particular physics problem,
for example, structural mechanics, mass diffusion, heat transfer, or electrical
problems, is to be solved.

If the problem to be solved is governed by a single physics principle, a single
module is sufficient, but if the problem is governed by a set of multiple physics
principles, all relevant modules will need to be selected. Aside from picking
the right module(s), this is also the moment we have the opportunity to review
the physics interface to make proper changes if desirable. For example, we may
give the dependent variables specific names, or add more dependent variables
in situations where the diffusion of multiple species is considered. If we were
to solve a problem of mass transport of chemical species, we would click and
expand Chemical Species Transport to select Transport of Diluted Species.
If we were dealing with the diffusion of five chemical species, we would enter 5
to replace the default value of 1 as the number of dependent variables. Once all
is set, we then click the Add button to load the selected module to the Added
Physics Interfaces box, as shown in Figure 14.4, to activate the module(s).

14.2.3 Selecting a proper type of study

The next step is to Select Study. To do that, we just click the Study arrow
button, which will lead us to the interface shown in Figure 14.5. This is
where we tell the software if the problem, or the PDE(s), we intend to solve
is time dependent or independent, or if the problem is an eigenvalue prob-
lem (e.g., linear buckling or modal analysis) or an eigenfrequency problem

FIGURE 14.4
Selecting the right physics module(s) for the model.
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FIGURE 14.5
Selecting the right study for the model.

(e.g., resonant frequency), from a list of Preset Studies or Custom Studies if
we have a different need.

14.3 Getting Familiar with the Modeling Environment

Once these three main selections are made, we just click the Done check
box to go to the modeling working environment, as shown in Figure 14.6,
where we will deal with the rest of the modeling issues. Note that the working
environments shown in Figures 14.2b and 14.6 are almost identical except that

FIGURE 14.6
COMSOL modeling environment.
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in the former, the three selections, namely, dimension, physics, and study,
have not been made. Of course, for an experienced modeler, making these
selections at this stage is an easy task.

In a close look at the COMSOL modeling environment shown in
Figure 14.6, we note that it is further grouped into three main windows:
(1) Model Builder, (2) Settings, and (3) Graphics. Let us now discuss what
each of the components does.

14.3.1 Model Builder window

As highlighted in Figures 14.7 and 14.8, the Model Builder window is like
a model building tree, listing all attributes of the model under development
(see Figure 14.7a), including defining parameters and variables to be used in
the model (Figure 14.7b), building geometry for the domain over which the
governing PDE(s) is solved (Figure 14.7c), and selecting materials (Figure
14.7d). Note that there are two levels of definitions, one at the global level
(Global Definitions) and the other at the component level (Component →
Definitions). Under the Component Definition tab, we can further define vari-
ables, functions, component couplings, and so forth. For example, integration
coupling can be added here to perform numerical integration of variables of
interest.

Moreover, we can also set boundary and initial conditions, as well as other
constraints for the PDE(s) (Figure 14.8a), and mesh the geometry for domain
discretization, as well as further tune the study (Figure 14.8b). Finally, we
can access the results for reviewing and analyzing (Figure 14.8a).

This tree type listing of all modeling attributes provides a quick overall
view, as well as easy access to all the modeling setups for modifications, addi-
tions or deletions, enabling or disabling, and many more. Each of the tabs in
the Model Builder trees can be expanded through right-clicking for viewing
and accessing many more attributes and functionalities. These illustrations
highlight just some of these functionalities.

14.3.2 Settings window

The Settings window shown in Figures 14.9 and 14.10 is where all the data
entry and selection of units, among others, take place. For example, by high-
lighting the Geometry tab in the Model Builder window, we can select a proper
units system for both the linear and angular dimensions of the model in the
Settings window (see Figure 14.9a) from a list of built-in unit systems, and by
adding a block feature to the geometry tab to build the geometry for a cubic
domain, we will enter the size, position, rotation angle, and other geometric
information for the block here (see Figure 14.9b). If an integration coupling
function is defined in the component definitions, we can select the domain,
boundary, edge, or point where the integration is to be performed in the cor-
responding Settings window, as well as the integration order (i.e., the number
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(a) (b)

(c) (d)

FIGURE 14.7
Close look at the Model Builder window. An overall view of the Model Builder
node (a) and expanded views of the settings under global definitions (b),
geometry (c), and materials (d).
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(a) (b)

FIGURE 14.8
Close look at the Model Builder window. Expanded views of the Solid
Mechanics node (a) and Study node (b).

of Gauss points to be used to calculate the integration; see Chapter 11 for
more discussion).

We can view the underlying PDE(s) and change the order of element dis-
cretization in the Settings window, as shown in Figure 14.10a from a list of
Linear, Quadratic, Cubic, Quartic, and so forth. Note that in many other soft-
ware packages, selection of the order of element discretization is taken care of
together with the selection of element types. In COMSOL, these two choices
are made in separate places. Moreover, in COMSOL’s default setting, the
Discretization box may not be visible. If so, one can activate it by expanding
the “eye icon” at the top of the Model Builder window (Figure 14.7a) to check
it out.

We can also modify a material’s properties (Figure 14.10b), change the
type of mesh density (Figure 14.10c) to be used for the model, and tune
the study settings (Figure 14.10d), such as deciding how the selected physics
modules are combined, or not, and whether the Include geometric nonlinearity
box should be checked. These are just a few highlights of the many setting
functionalities available in the software.
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(a) (b)

FIGURE 14.9
Close look at the Settings window. Expanded views of the Setting node (a)
and Block node (b).

14.3.3 Graphics window

The Graphics window shown in Figure 14.11 is where the geometry of the
model, meshing outcome, results, and so forth. are presented for real-time
visualization and other postprocessing purposes. Zooming and panning func-
tions, as well as various surface rendering tools, are available at the top.
Moreover, output functions in the form of snapshot images and data can be
made to files and other formats.

14.4 A Practical Sense of Building Proper Models

It is now clear that all the selection entries in the preceding sections are for
providing the necessary information for solving PDE(s). Thus, another way
to get a sense of whether one has done all that is required to build a proper
computational model is to check if all the items listed in the procedural list
at the beginning of this chapter have been taken care of.
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(a) (b)

(c) (d)

FIGURE 14.10
Close look at the Settings window. Expanded views of the Solid Mechan-
ics node with the types of discretization highlighted (a), material property
setting (b), mesh setting (c), and stationary study settings (d).
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(a) (b)

FIGURE 14.11
Close look at the Graphics window. A 3D object (a) and graphics output
window (b) are shown.

14.5 Modeling Example: Tuning the Sound of Music

In Section 3.2, we developed the PDE for a vibrating string of length L fixed
at its two ends, A and B, as depicted in Figure 14.12 (see Equation 3.3):

ρl
∂2u

∂t2
(x, t) = T

∂2u

∂x2
(x, t)

where u is the transverse vibrational displacement, ρl is the linear density
(i.e., mass per unit length) of the string material, and T is the tension force in
the string. In this section, we relate this physics phenomenon and mathematic
equation to our daily life—the tuning of strings in string instruments—to high-
light some connections between modeling settings and the FEM fundamentals
discussed in Part II.

Consider the string shown in Figure 14.12 as a string in a violin or gaiter,
or any other kind of string instrument. With the above PDE, we can express

A B
x

u

T , ρ

L

FIGURE 14.12
Vibrating string in a string instrument.
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the propagation speed of sound waves in the string as

v =

√
T

ρl
= λf

in which λ is the wavelength (λ = 2L) and f is the resonant frequency, or
the first eigenfrequency in this case (see more discussion in Chapter 12). Let
ρ be the mass density of the string material and A the cross section area of
the string; we then express the resonant frequency as

f =
1

2L

√
T

ρA
(14.1)

Clearly, even with a fixed length, the resonant frequency of the string changes
as the tension in the string and the diameter of the string change. This is the
principle guiding the tuning of string instruments like violins and gaiters.

14.5.1 Tuning a string by adjusting string tension

We now use this fun phenomenon to learning some hands-on modeling skills
to do some tuning of the string, namely, to determine the first eigenfrequency
of the string as a function of the string tension. Considering a string of 50
cm in length and 1 mm in diameter made of nylon, we will use COMSOL
to adjust the tension from 100 to 250 N, and determine the value for the
eigenfrequency at each string tension. As a way to validate the modeling
results, we will compare the COMSOL results with the predictions based on
the analytical solution given in Equation 14.1. Below are the procedural steps
to perform this modeling analysis.

Step-by-Step Modeling Procedures

Launch COMSOL; if already in, from the File menu,
choose New.

Click the Model Wizard button.

1. In the Model Wizard window, click the 2D button.
Note that the eigenfrequency module is available only
to dimensions of 2D and above in COMSOL.

2. In the Select Physics window, select Structural
Mechanics → Truss (truss), and then click the
Add button. Here, we consider the string as a truss
structure instead of a beam structure by ignoring the
rotational constraints (see discussion in Section 5.7.2).
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3. Click the Study button, select Preset Studies →
Eigenfrequency, and then click the Done button.

Global Definitions → Parameters

1. In the Parameters settings window, enter the fol-
lowing (note that the value column will be resolved
by the program) to define three parameters for the
tension, diameter, and length of the string and assign
some initial values. Note that parameters defined here
will be available for parametric studies later on.

Name Expression Value Description

T 100 (N) — String tension

d 1 (mm) — String diameter

L 50 (cm) — String length

Component → Definitions → Variables

1. In the Variables settings window, enter the follow-
ing (note that the Units column will be resolved by
the program) to define three variables, namely, the
resonant frequency calculated using Equation 14.1 to
be used for results comparison, the cross section area
of the string calculated using the string diameter,
and the tension stress calculated based on the defi-
nition of stress, that is, tension force divided by cross
section area.

Name Expression Units Description

f0 sqrt(T/truss.rho*A)/(2*L) — String
resonant
frequency

A pi*d ˆ 2/4 — String cross
section area

sigma T/A — Initial stress
in string
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Geometry → Bezier Polygon

1. In the Bezier Polygon settings window, click Add
Linear and enter the following:

x y

1 L 0

2 0 0

Material → Add Material → Built In → Nylon

1. In the Add Material window, click Add to Com-
ponent to upload the material data.

Truss → Linear Elastic Material

1. Right-click Linear Elastic Material and select
Initial Stress and Strain.

2. In the Initial Stress and Strain settings window,
enter sigma in the Initial axial stress box.

3. Click Cross Section Data and in the Boundary
Selection settings window, enter A in the Area box.

4. Disable the Straight Edge Constraint to allow
transverse displacements.

5. Right-click Truss and add a Pinned boundary con-
dition.

6. Click Pinned and in the Point Selection settings
window, and select All points in the selection box.

Mesh

1. In the Mesh settings window, select Physics-
controlled mesh for the sequence type and Fine
for the element size; then click Build All.

Study → Step 1: Eigenfrequency

1. In the Eigenfrequency settings window, enter 1 for
the Desired number of eigenfrequencies, 300 for the
Search for eigenfrequency around, and make sure the
Include geometric nonlinearity box is checked to
allow large transverse deformation (see discussion in
Appendix A).
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2. Right-click Study and select Parametric Sweep.

3. In the Parametric Sweep settings window, click
the + button in the Study Settings section to add
a parameter to the list.

4. In the table, enter the following settings:

Parameter names Parameter value list

T range(100[N],10[N],250[N])

5. In the Eigenvalue Solver settings window, enter 1e-
3 in the Relative tolerance in the General section near
the top.

6. Click Study, and in the Study settings window click
= Compute to perform the analysis.

Figure 14.13 shows the outcome after the analysis is completed.

Results → Derived Values → Global Evaluation

1. In the Global Evaluation settings window, locate
the Data section and choose Solution 2 from the
Data set list, choose All from the Parameter selection
list, select First from the Eigenfrequency selection
list, and Inner Solutions from the Table column list.

FIGURE 14.13
First eigenmode of the vibrating string.
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2. Click Replace Expression → Truss → Frequency
(truss.freq).

3. Right-click Global Evaluation and choose Evaluate
→ New Table.

After copying the data in the table to a spreadsheet, we plot the vari-
ation of string resonant frequency as a function of string tension, as shown
in Figure 14.14. As a means to validate the modeling results, we also plot
the analytical solution based on Equation 14.1. Clearly, the COMSOL results
overlap with the analytical solution exactly, suggesting the validity of the
modeling results.

From Figure 14.14, we can see that the string resonant frequency increases
with the increase in string tension in a slightly nonlinear manner. Intuitively,
the results make sense, as we all know that the greater one tightens the string
tension, the higher pitch the string becomes—hence higher frequency. How-
ever, if we pay attention to the value of the induced frequency, we note that
such a drastic increase in the string tension from 100 to 250 N has only caused
it to increase from approximately 330–530 Hz. Knowing that the string could
easily break under a high tension, we may conclude that varying the pitch of
the string by tightening the string does not provide much flexibility.
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FIGURE 14.14
Variation of string resonant frequency with tension.
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14.5.2 Changing pitches using strings of different sizes

Now let us consider the same string to see if using strings of different sizes
will fare better in terms of proving more flexibility to having a wider range
of frequencies. So by fixing the string tension at 100 N, we will determine the
string resonant frequency as a function of the string diameter varying from
0.5 to 2 mm.

To model this problem, all we need to do is to set up another parametric
sweep. An easy way to do this without increasing the file size significantly is
to disable the previous sweep and enable the newly added parametric sweep
as follows.

Modeling Procedures

1. Right-click Parametric Sweep(param) and select
Disable.

2. Right-click Study and select Parametric Sweep
to add a new parametric sweep Parametric
Sweep(param2).

3. In the Parametric Sweep(param2) settings win-
dow, click the + button in the Study Settings section
to add a parameter to the list

Parameter names Parameter value list

d range(0.5[mm],0.1[mm],2.0[mm])

4. Click Study, and in the Study settings window click
= Compute to perform the analysis.

Again, after exporting the data in the table to a spreadsheet using the same
steps discussed earlier, we plot the variation of string resonant frequency as
a function of string diameter, as shown in Figure 14.15. As validation, the
analytical solution is also plotted. The COMSOL results overlap exactly with
the analytical solution, suggesting the validity of the modeling results.

From Figure 14.15, we can see that the string resonant frequency decreases
with the increase in string diameter in a nonlinear manner. Intuitively, the
results make sense, as we all know that the thicker the string is, the lower pitch
the string becomes (or lower frequency). With a close look at the value of the
induced frequency, we note that this time the range of frequency is much
wider, from approximately 660 to 170 Hz as the string diameter increases
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FIGURE 14.15
Variation of string resonant frequency with diameter.

from 0.5 to 2.0 mm. Knowing this fact, it is logical to use strings of several
different diameters to achieve a wider range of pitches in a string instrument.

14.5.3 Taking advantage of COMSOL tutorials

The COMSOL software package comes with numerous tutorials showing step-
by-step instructions for the modeler to gain hands-on skills and technical
proficiency. Some of these tutorials are examples that highlight the coupling
of multiple modules and will help set the reader on a path to integrative
engineering problem solving.

1. Fluid-Structure Interaction

2. Fluid-Structure Interaction in a Network of Blood Vessels

3. SAW Gas Sensor

4. Convective Cooling of a Busbar

5. Electrical Heating in a Busbar

6. Joule Heating of a Microactuator

Besides these examples, the reader is encouraged to go through other exer-
cises as well (the more the better) to become well versed with COMSOL
terminologies, interfaces, attributes, and so on.
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14.6 Taking Advantage of COMSOL’s Geometric
Parameterization Capability

In many design, analysis, and optimization practices, it is ideal to have a
means to quickly adjust the geometric domains so that different concepts and
designs can be tested and optimized. To meet this need, COMSOL software
has provided a useful feature allowing geometric parameterization. With this
capability, the modeler can define geometric dimensions in the forms of param-
eters that can be easily adjusted for the purpose of modifying the shape of
the geometric domains without going back to the geometry creation step. This
change of the value of the geometric parameters can be done either discretely,
one value at a time, or continuously in a parametric sweep manner.

FIGURE 14.16
Stent model built in COMSOL allowing easy modification to strut widths and
gaps.
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Here, let us have a look at an example to see how useful this geometric
parameterization capability is. Figure 14.16 shows an example in which a
model of a coronary stent is built in COMSOL. Note that a coronary stent
is a tube-shaped wire-mesh device (often made of memory alloy) used in the
coronary arteries to keep the arteries open for the blood flow to the heart in
the treatment of coronary heart disease.

With COMSOL’s geometric parameterization capability, the design of
the stent in terms of cylindrical dimensions, strut patterns, and dimensions,
including strut width and gap, can be easily adjusted by simply assigning dif-
ferent values to these parameters after the model is built. As shown in Figure
14.16, the strut widths and gaps can be modified easily by assigning different
values for these strut parameters. Figure 14.17 shows the stent model after
the meshing step in COMSOL, in which fine tetrahedral elements are used for
domain discretization.

Figure 14.18a shows the distribution of the obtained von Mises stress in
the stent, and Figure 14.18b shows the distribution of the first principal stress
in the stent. From these stresses, two interesting observations can be made.
On the one hand, the von Mises stress is high along all the circumference rings
of struts. This is true throughout the stent, as the high stresses are visible
from both the inside and outside surfaces of the stent. On the other hand,
the first principal stress is high at different regions on the inside and outside
surfaces of the stent. On the inside surface, the first principal stress is high
on the bridges of struts, and on the outside surface, it is high at the feet of
the bridges. Referring to the discussions in Section A.7, we know that the
mechanical stress states in the stent are quite complicated. Due to the phase
transition nature of memory alloy materials of which stents are often made,

(a) (b)

FIGURE 14.17
Stent model after meshing in an overall view (a) and a close-up view (b).
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ext_load(10) = 100 Surface: von Mises stress (N/m2) 

(a) (b)

ext_load(10) = 100 Surface: First principal stress (N/m2) 

FIGURE 14.18
(a) Induced von Mises and (b) first principal stresses in the stent subjected
to a radially inward pressure loading condition.

ext_load(10) = 100 Surface: First principal stress (N/m2) 

FIGURE 14.19
Longitudinal view of the induced deformation, along with the first principal
stresses in the stent.

all these regions of high von Mises and first principal stresses are of concern
in terms of failure analysis and prediction.

Figure 14.19 shows a longitudinal view of the induced deformation in the
stent, along with the first principal stress. Although the induced deformation
is exaggerated, it nevertheless indicates that all the high tensile stress (the
first principal stress) in this case is due to the inward bending of the strut
bridges caused by the inward pressure loading on the outer surface of the
stent. Note that because the actual in vitro loading conditions may different
from those applied in this study, the results presented here may not represent
an actual situation.
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A Glimpse of the ABAQUS and ANSYS
User Interfaces

We now take a look at the ABAQUS and ANSYS modeling environments to
gain a sense of how items such as physics, spacial dimension, time dependency,
model domain, coefficients, type of study, boundary and initial conditions, and
loading conditions, as well as type of elements and order of discretization, as
discussed in the procedural list in Chapter 14, are taken care of in these
software packages.

15.1 ABAQUS Modeling Environment

As shown in Figures 15.1 and 15.2, in a glance, the ABAQUS modeling envi-
ronment has a familiar look. It consists of a pull-down menu at the top for
handling File, Model, View, Part, and so forth, of the modeling needs; a Model
building tree on the left for accessing all the modeling features; a Results tree
that can be toggled back and forth with the Model tree; and a large Graphics
window in the center to the lower right for visualization purposes.

15.1.1 Model tree in ABAQUS

Figure 15.3 shows a close view of the ABAQUS Model building tree on the
left. The Model tree provides a visual description of the hierarchy of items in a
model, including, categorically, Part, Materials, Assembly, Steps, and Fields.
In parallel with the Model tree, an Annotations tab and an Analysis tab are
also provided at the bottom.

The items in the Model tree are also called containers. Obviously, the Part
container is where we define the spacial dimension and build (or import) the
geometry for the model domain of the underlying problem, and the Materials
container is where we assign proper material properties to the model domain.
Moreover, the Assembly container is for dealing with how multiple parts, if
any, in the model will be assembled, and the Step container is for defining
how the model will be analyzed, and so on. The arrangement of the items in
the Model tree reflects the order in which the modeler is expected to create
the model.

351
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FIGURE 15.1
ABAQUS modeling environment.

FIGURE 15.2
ABAQUS modeling environment.
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FIGURE 15.3
Close look at the ABAQUS modeling building tree.

15.1.2 Module in ABAQUS

While the Model tree provides most of the functions we would need to build a
model, there is another list tab in the upper middle part of the user interface
called Module, as also shown in Figure 15.3. In the Module list, we can select
from an assortment of Part, Property, Assembly, Step, Interactions, Load,
Mesh, Optimization, Job, Visualization, and Sketch. Note that ABAQUS’s
module is a different concept from that of COMSOL, where in the former,
various modules refer to the various modeling components, and in the lat-
ter, various modules refer to different subphysics engines for solving different
underlying differential equations.
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FIGURE 15.4
ABAQUS material selection window.

The Module list in ABAQUS pro-
vides not only quick access to var-
ious model-building components but
also lists of icons for the modeling
functions corresponding to each item
on the Module list. For example,
by selecting Part, all the functions
available for building a part will be
shown in a list of icons on the left,
and by selecting Property, all func-
tions for defining the material and
other related physical properties will
be listed. Once an icon is clicked, more
pop-up windows and dialog boxes will show up for further selections or data
entry. For example, Figure 15.4 shows a pop-up window listing the choices
of different types of materials for mechanical, thermal, and electrical or mag-
netic applications once the Create Material icon under Property is clicked.
So for building a model, we can either use the Model tree to add necessary
components to each container or go through the Module list.

Aside from building the geometry from Part, defining the materials from
Property, assembling parts from Assembly, and defining type of studies
and setup analysis procedures and output requests from Step, other functions
are also handily available here. For example, through Interaction we define
how different parts, if any, will interact in a multiple-part assembled model;
through Load we apply loads and boundary conditions; through Mesh we
select proper types of elements and orders of discretization for meshing the
geometric domain; through Job we create a job sequence for submission and
analysis; and through Visualization we perform postanalysis. Figure 15.5
shows a close view of the Graphics window, along with rendering tool tabs at
the top.

15.2 ANSYS Modeling Environment

Let us now move on to ANSYS user interfaces. As shown in Figure 15.6a
and b, the ANSYS modeling environment also has a familiar look, consisting
of a pull-down menu (or Utility Menu) at the top, a main menu on the left,
and a graphics window in the center region. Exceptions include an Input Field
allowing the user to enter programming commands directly and a Toolbar
section allowing quick access of some frequent file handling functions.

In the utility pull-down menu list, there are tabs for file handling; for selec-
tion of entities, components, assembly, and so forth; and others. Each of these
pull-down menus has more functions built with it. In the Toolbar, buttons
for saving the file (or database [DB] in ANSYS’s term inology), resuming,
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FIGURE 15.5
ABAQUS graphics window.

quitting, and so forth, are provided. In the Main Menu, there is a model
building tree with key modeling components listed, including Preferences, Pre-
processor, Solution, General Postproc, and TimeHist Postpro. In the Graphics
window, we can see the model in development and visualize results during
postprocessing.

15.2.1 Main Menu in ANSYS

We now take a close look at the Main Menu in ANSYS.
As shown in Figure 15.7a, once the Preferences tab in the Main Menu is

clicked, a pop-up dialog box appears where we need to decide which type of
physical problems to be solved among a set of choices of Structure, Thermal,
ANSYS Fluid, Magnetic-Nodal, Magnetic Edge, High Frequency, and Electric.
This is a like picking a physics module in COMSOL, except the choices are
fewer.

By expanding the Preprocessor tab, we will see many more functions, as
highlighted in Figure 15.7b–e. Here, we can pick the right type of elements and
discretization order through Element Type. Figure 15.8 shows the pop-up
window for selecting the type of elements. Moreover, we can apply boundary
conditions using Real Constraints, and select the right materials through
Material Props. Figure 15.7b shows some further choices once Material
Props is expanded.



T&F Cat #K16587 — K16587 C015 — page 356 — 1/21/2017 — 15:52

356 Introduction to Integrative Engineering

(a)

(b)

FIGURE 15.6
ANSYS modeling environment. An expanded view of the Plot function (a)
and an example model (b).
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(a)

(b) (c) (d) (e)

FIGURE 15.7
Close look at the ANSYS main menu. Expanded views of the Preferences set-
ting window (a), the Material properties setting (b), the Modeling setting (c),
the Meshing setting (d), and the Physics setting (e).
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FIGURE 15.8
ANSYS element selection window.

As shown in Figure 15.7c, once Preprocessor → Modeling is expanded,
we will have access to tools to create the geometry for the model, along with
other necessary capabilities. As shown in Figure 15.7d, once Preprocessor
→ Meshing is expanded, we will have access to tools to create and modify
mesh for the geometry. The Load tab down the list will allow us to apply
load and other constraints to the model. So to build a model, we just keep
moving down the list until all necessary steps are taken care of.

Figure 15.7e shows the choices once the Physics tab is expanded, where
we can activate the coupled solver for coupled physics problems, if neces-
sary. Of course, the choice available is the coupling of electric and structural
phenomena.

15.3 Practice, Practice, Practice

As we see from the discussions in the preceding sections, all the modeling pro-
cedural items, including physics, spacial dimension, time dependency, model
domain, coefficients, type of study, boundary and initial conditions, and load-
ing conditions, as well as type of elements and order of discretization, are
taken care of by going through the items in the Module list in ABAQUS and
in the Main Menu in ANSYS.
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While all three software packages can deal with problems governed by
multiple equations, one thing we may note is that the way they handle the
issue of multiple governing physics is different. While COMSOL explicitly
use numerous different modules in various combinations to model such prob-
lems, ABAQUS and ANSYS take a rather inexplicit approach, albeit to a
lesser extent. In the future, as the needs for integrative engineering expand,
I am hopeful that we will see further developments and expansions of all
finite element–based modeling software to allow modelers to couple all rele-
vant physical phenomena as situations demand in a single package such that
all real-world problems can be examined in a holistic manner.

Although it was argued in Chapter 1 that knowing the difference between
learning that and learning how may help us to speed up our learning curve,
when it comes to gaining hands-on skills, even after you know how, practice
still makes perfect. Thus, it is highly recommended that the reader go through
more tutorials that come with these software packages to gain hands-on expe-
riences and develop technical proficiency. It is also hoped that by keeping in
mind the list of model development procedural items discussed in the begin-
ning of Chapter 14, the modeler will not only know the purpose of each
modeling step, but also have a sense whether one has done all that is required
to build a proper computational model. Furthermore, with the knowledge
(including that and how) learned in Part II put in use, it is believed that the
modeler will be more capable of doing computational modeling the right way
and obtaining valid results.
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16

Dealing with Problems of Biomedical and
Regulatory Interest

As discussed in Chapter 1, bioengineering is a field in which biomedical
problems are solved based on myriad laws of physics, thermodynamics,
biochemistry, and biology, as well as probabilistic rules of statistics. A com-
putational modeling approach is well suited to dealing with such problems,
in which phenomena of mechanical, electrical, electrostatic, electrochemical,
chemical, biochemical, biological, thermal, and electromagnetic natures, as
well as mass, momentum, and energy concerns, either individually or com-
bined, under the governing laws of physics, thermodynamics, and biology, are
dealt with in an integrative way.

16.1 Computational Bioengineering

As we learned in Part II, in most deterministic problems, the physical phe-
nomena encountered can be described by partial differential equations (PDEs)
because these phenomena follow the laws of thermodynamics in terms of mass,
momentum, and energy conservation. Solutions to these partial differential
equations under certain initial and boundary conditions can shed in-depth
and systemic insights into the underlying mechanisms governing these physi-
cal phenomena. So solving a problem governed by multidisciplinary principles
is to solve a set of coupled PDEs simultaneously. Doing so can provide valuable
information toward the analysis of real-world problems, as well as the design
of engineering solutions to address the real-world problems. As we learned in
Chapters 14 and 15, solving coupled PDEs using a computational modeling
approach is relatively easy to implement with today’s finite element method
(FEM) software.

In a recent book entitled Computational Bioengineering published by
CRC Press/Taylor & Francis Group, I highlighted the capabilities of com-
putational bioengineering through discussions of a variety of bioengineering
problems, including orthopedic joint prostheses, bone remodeling, fixation
devices, degeneration of load-bearing soft connective tissues and interverte-
bral discs (IVDs), blood flow in the cardiovascular system and treatment
of heart valve disease, cancer metastases and photodynamic cancer therapy,
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cellular and ionic activities at solid–liquid interfaces, and operations of fluidic
biosensors. The following are some recaps of these biomedical problems that
are solved by a computational modeling approach.

16.1.1 Problems of musculoskeletal concerns

Although joint replacement is a common treatment for arthritis, a significant
number of total joint (hip and knee) replacement patients remain dissatisfied
with the outcome of their procedure. To change this, premarketing assessment
tools capable of predicting performance outcomes of joint prostheses, espe-
cially in younger and physically active patients, are needed. A computational
framework that combines both experimental and computational approaches,
describing subject-specific deterministic and probabilistic factors, has been
developed to generate functional performance assessments of joint prostheses.

Human bones constantly remodel. But when there is an imbalance between
bone resorption and bone formation within basic multicellular units (BMUs),
bone disorders such as osteoporosis and osteopetrosis can develop. While cou-
pling between osteoclasts and osteoblasts is known to occur, the mechanisms
of action for the involved molecules between spatially segregated populations
of osteoclasts and osteoblasts within BMUs are by no means clear. A com-
putational model has been developed to examine the functionalities of BMUs
and their roles in bone remodeling.

External fixation is useful for the treatment of unstable fractures, limb
lengthening, and congenital and pathological orthopedic deformities. The
functionality of an external fixation device relies mainly on the use of ten-
sioned wires to support bone fragments. One major problem with these wires
is their yielding. Once the wires yield, the fracture healing process will be com-
promised. Computational models have been developed to examine the cause
of the nonlinear behavior observed in these tensioned wires and illustrate how
material yielding can be minimized to enhance the functionality of such a
fixation device.

Soft tissue instability can cause and accelerate joint tissue degeneration,
especially in situations during accidental fall, high-speed sports, or traumatic
events. Understanding the viscoelastic mechanical behavior of connective
tissues is a crucial first step in developing treatment modalities for joint
instability. To address the limitations in current soft tissue viscoelastic char-
acterization paradigms, enhance our ability to predict the functional role of
soft connective tissues in whole joint mechanics, and develop future treat-
ment options, computational models have been developed to investigate the
nonlinear viscoelastic behavior of load-bearing soft tissues based on a consti-
tutive formulation along with a corresponding experimental characterization
technique.

Back pain is a major public health problem, and more than 70% of people
will have back pain at some time in their life. Back pain is strongly asso-
ciated with the degeneration of IVDs, which in the long run can lead to
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spinal stenosis. To help elucidate the etiology of human disc degeneration and
develop strategies for restoring tissue function or retarding further disc degen-
eration, a three-dimensional (3D) computational model has been developed
to analyze the mechanical, chemical, and electrical signals within the IVD
during axial unconfined compression and physiological loading conditions. By
considering the human IVD as an inhomogeneous composite consisting of a
charged elastic solid, water, ions (Na+ and Cl−), and nutrient solute (oxygen,
glucose, and lactate), and by accounting for the effects of the end-plate cal-
cification and cell injection, this model sheds many valuable insights into the
interplay among fluid pressurization, effective solid stress, and charge density,
as well as some new understanding toward disc biomechanics, pathology of
IVD degeneration, and possible cell-based therapies for low back pain.

16.1.2 Problems of circulatory concerns

Modeling of blood flow in the cardiovascular system offers investigative and
predictive capabilities to augment current clinical tools. Image-based patient-
specific 3D anatomical models coupled with associated hemodynamic and
electrodynamic behavior of the circulatory system have been developed to
demonstrate that relevant physiological parameters such as wall shear stress
and particle residence times can be estimated and correlated with clinical data
for treatment planning and device evaluation.

Computational fluid dynamics–based models have been developed to elu-
cidate the complex hemodynamics in the vicinity of the heart valve and the
time-varying stresses on the leaflets, and provide valuable information in
treating heart valve disease, as well as surgical planning and preoperative,
postoperative, and temporal longitudinal functional assessment.

16.1.3 Problems of cancer development and treatment

Most cancer types develop the ability to metastasize, leading to death among
most cancer patients. There is an immense clinical interest and societal value
to understand the underlying biological mechanisms and develop preventive
and therapeutic measures. Computational models can be developed to address
such important challenges for the study of cancer and cancer metastases.
Moreover, numerous photochemical-based computational models have been
developed to simulate the transport of light, photosensitizer drug, and oxy-
gen through vasculature in human tissues, as well as interactions among them
during photodynamic therapy with visible light.

16.1.4 Other types of bioengineering problems

In addition to addressing problems directly related to the hard and soft tis-
sues of the human musculoskeletal system, the flow dynamics and valves
of the circulatory system, and cancer development and treatment, com-
putational models have also been developed to address issues such as cell
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phenotyping, electrical double layer at a solid–liquid interface, biosensors,
and rapid alignment and patterning of particles and cells.

In the case of cell phenotyping, modeling can help scientists to characterize
and transform biological systems in various laboratory, industrial plant, and
clinic settings with impressive quantitative precision. At a solid–liquid inter-
face, the ubiquitous electrical double layer plays an important role in affecting
how the solid will interact with the surrounding liquid environment. Modeling
can provide an in-depth understanding of the structure, which is important
to many bioengineering problems, including implant–tissue interactions, ion
transport through charged channels of biological membranes, colloid stability
on the surface of a biomaterial, electrochemical processes (e.g., corrosion) of
a metallic implant, and electrokinetic phenomena within a biosensor channel,
to name just a few.

Development of biosensors is another active area of bioengineering. Solid-
state nanopore devices are regarded as one promising platform for future
biosensors. Computational models can be used to understand the inherent
complexity in the operations of a nanopore device. Moreover, computational
modeling of a nanopore-based DNA sequencing technique based on the
change in the recorded ionic current flowing through the nanopore has been
performed.

Dielectrophoresis (DEP) has been widely used in micro- and nanoflu-
idic systems for positioning, sorting, and separation of particles involved in
medical diagnostics, drug discovery, cell therapeutics, and biosensor devel-
opment. Computational models have been developed to reexamine the
dielectrophoretic phenomenon and address some of the problems in current
prevailing DEP theory.

The reader is encouraged to consult Computational Bioengineering for fur-
ther learning. It is believed that a systematic use of a computational modeling
approach to solve engineering and bioengineering problems will help address
many critical challenges facing the engineering fields in general and bioengi-
neering in particular, and set a new direction for advancing the fields. In the
following sections, we discuss some of the other practical issues encountered
in computational modeling of bioengineering interest that are not addressed
in the aforementioned book.

16.2 Some Practical Issues in Image-Based Modeling

Dealing with bioengineering problems is not like dealing with conventional
engineering problems. In some situations, patient-specific models of organs or
constructs are needed, and in others, design data from manufacturers, such
as in the cases of biomedical implant devices, are required. Patient-specific
models are often obtained from volumetric images like computer tomographic
(CT) scans. Here, we discuss a case of how a computational modeling approach
can be used to develop strategies to strengthen complete dentures.
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Dentures, either partial or complete, are removable appliances that serve
to fulfill the functionality of missing teeth. Common materials used for the
base of complete dentures are acrylic resins. Complete dentures made of these
materials are prone to breakage or fracture due to the brittle nature and
low strength of the materials. For this reason, denture damage is common in
maxillary complete dentures with a typical midline fracture.

To change this situation, reinforcements with wires or fibers are sometimes
used to strengthen the acrylic resin materials by taking advantage of the con-
cept of fiber-reinforced composites for structural strengthening. Since acrylic
materials under a rapid loading condition, such as during mastication, exhibit
brittle behavior, fracture under tension is of a greater concern than shearing
or other types of failure (see discussions in Section A.6 in Appendix A). Thus,
placement of wire or fibers should achieve the purpose of reducing tensile
stresses in dentures during mastication. A computational modeling approach
is well suited for developing a proper strategy on where to place the reinforcing
wires and fibers in order to achieve the denture strengthening purpose. Here,
we describe some crucial steps to demonstrate how such a modeling study can
be performed.

16.2.1 Image scanning and segmentation

Image-based modeling allows us to deal with highly complex geometry
of anatomic components. For example, by treating the denture shown in
Figure 16.1 as an anatomic part, we can use X-ray CT to scan the denture
and reconstruct it in a FEM software for further modeling analysis.

In this case, we consider the maxillary complete denture (i.e., the upper
part) shown in Figure 16.1b. Figure 16.2 shows some selected two-dimensional
(2D) slices, from bottom to top, of the scanned images of the maxillary denture
using an X-ray CT machine.

(a) (b)

FIGURE 16.1
(a) Set of complete dentures and (b) the maxillary part.
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FIGURE 16.2
Series of selected slices, from bottom to top, of CT scanned images of the
maxillary denture.

These slices of pixel images are subsequently converted to 3D volumetric
arrangements of voxels representing the geometric domain of the maxillary
denture after removing unwanted pixels in a process commonly known as
segmentation. Note that in the case of this denture, although it contains the
tooth and supporting soft tissue components, the same acrylic material is used
for both. Therefore, there is no material density difference between the tooth
and soft tissue components for the X-ray CT to discern in terms of image
intensity. For this reason, the segmentation process is simply to remove the
surrounding air space to extract the denture object.

The volumetric arrangement of voxels is further processed, rendered, and
exported as 3D geometry in various computer-aided design (CAD) file for-
mats. For example, the STL (Stereo Lithography) format is widely used to
describe arbitrarily complex surfaces and the IGES (Initial Graphics Exchange
Specification) format is exchangeable among various CAD software plat-
forms. In our case, the volumetric data are exported as a CAD file in STL
format.

16.2.2 Importing and meshing the CAD geometry

As shown in Figure 16.3, by right-clicking the Geometry tab in COMSOL,
we can add an Import tab, and in the corresponding Settings window, we
can then import STL files by selecting STL/VRML file from the list in the
Geometry import box. Note that selecting Any importable file or 3D
CAD file will allow us to import files in IGES and X T formats, as well as
many others; here, the X T format is a parasolid CAD file format.

After locating the desired CAD file and clicking the Import button, we
bring the geometry of the maxillary denture into COMSOL for modeling
processes. Figure 16.4a shows the imported denture geometry in COMSOL,
and Figure 16.4b shows the denture after applying the meshing step with
tetrahedral elements.
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FIGURE 16.3
COMSOL import function for CAD files.
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FIGURE 16.4
Upper denture model built based on CT scans. The denture model is meshed
with a coarse mesh (a) and with a fine mesh (b).

16.2.3 Further mechanical analysis

Next, we perform mechanical analysis of the maxillary denture through com-
putational modeling. By referring to the procedural list given at the beginning
of Chapter 14, we set the physics of the model to Solid Mechanics, the spa-
cial dimension to 3D, the study to time-independent Stationary, and the
material to Acrylic. Moreover, to the imported 3D geometry we select tetra-
hedral elements in quadratic order to mesh it with proper mesh density (see
Figure 16.4b).

For the loading and boundary conditions, we mimic the loading and
constraints experienced by the denture during mastication. Thus, for the
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boundary conditions, we place the denture with the tooth side down and
apply a fixed boundary condition to some selected surfaces near the tips of
teeth to constrain them from any motion. For the loading conditions, we apply
a downward force at the top of the dome of the denture base to mimic the
biting force from the upper jaw. Once all these steps are taken care of, we
just click Compute to analyze the model.

Before we examine the modeling results, let us first have a look at the set-
tings and outcomes of actual mechanical tests with which we will compare our
results. In each of these mechanical tests, a denture is placed with the tooth
side down on a platen and a point load is applied at the top of the dome of the
denture base to compress the denture until it fails. This loading and support
constraints situation is just like that used in the computational model.

In the upper part of Figure 16.5, we see photographs of two intact and two
fractured dentures. Of these four, two represent a denture without a reinforc-
ing wire (Figure 16.5a and b) and two with one (Figure 16.5c and d). In the
wire-reinforced denture, a curved metal wire is placed inside the denture base
near the teeth during the molding process of the denture. The two fractured

(a) (b) (c) (d)
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FIGURE 16.5
Photo images showing (a) the denture without wire reinforcement, (b) along
with its fracture mode, and (c) the denture that with wire reinforcement,
(d) along with its fracture mode. First principal stresses in the denture when
wire reinforcement is (e) absent and (f) present. (Courtesy of Professor Yutaka
Takahasi, Fukuoka Dental College, Fukuoka, Japan.)
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dentures (Figure 16.5b and d), although one is reinforced with a wire and one
is without, exhibit very similar failure modes. The one without wire reinforce-
ment failed down right at the midline of the denture base, and the one with
wire reinforcement failed in a slightly offset centerline.

Figure 16.5e and f shows some selected modeling results, in which the first
principal stress in the denture without and with wire reinforcement, respec-
tively, is shown. From the modeling results, it is clear that the first principal
stress is very high along the midline of the denture base. Referring to the
discussions on Mohr’s circle and principal stresses in Sections A.6 and A.7
in Appendix A, we know that the first principal stress is also the maximum
tensile stress in this case. Due to the brittle nature of the denture acrylic mate-
rial, tensile failure is of a great concern; thus, the first principal stress should
give us a good prediction on where the denture would likely fail. Looking at
the fact that the highest tensile stress is reached near the midline of the den-
ture base, it is no surprise the denture will break along the midline. The wire
reinforcement does not seem to contribute to any alteration of alleviation of
the maximum tensile stress; thus, a similar failure mode is expected, as is the
case in the mechanical loading tests. This fact suggests that a different wire
placement is necessary in order to achieve a structural strengthening effect in
the dentures. The reader is encouraged to explore this issue further.

16.3 Computational Modeling for Enhancing the
Test Standards and Regulatory Processes

According to the U.S. Food and Drug Administration (FDA), Class III devices
are those that support or sustain human life, are of substantial importance in
preventing impairment of human health, or which present a potential, unrea-
sonable risk of illness or injury. Due to the level of risks associated with
Class III devices, they require premarket approval (PMA) from the FDA,
in which the safety and effectiveness of these medical devices are scientifically
evaluated and regulatory reviewed.

Most of the medical implant devices are Class III devices, hence requiring
PMA from FDA. To gain PMA, these implants have to go through rigor-
ous tests per American Society for Testing and Materials (ASTM) standards
and sometimes, International Organization for Standardization (ISO) stan-
dards. An integrative computational modeling approach is poised to not only
enhance the standards development and improvement process but also elevate
the effectiveness of FDA’s PMA process.

16.3.1 Testing the femoral stem of a hip implant

In the case of partial and total hip joint prostheses, the ISO 7206-4:2010(E)
standard specifies a test method for determining the endurance properties
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FIGURE 16.6
Imported CAD model of the hip stem.

of stemmed femoral components of total hip joint prostheses and stemmed
femoral components used alone in partial hip joints under specified laboratory
conditions. It also defines the test conditions and describes how the specimen
is set up for the test.

In this section, we demonstrate the use of the computational modeling
technique to perform mechanical testing of a femoral stem of a hip implant
according to ISO 7206-4:2010(E) and compare the results with those of the
ASTM round-robin test. Note that a round-robin test is a test (including
measurement, analysis, and experiment) in which several participating labo-
ratories perform their independent tests by following the same set of conditions
and compare the interlaboratory testing results. The CAD geometric model
for the femoral stem used here is the one used for the ASTM round-robin test
that is available for download at http://www.astm.org /committee/F04.htm.
Figure 16.6 shows the hip stem model after being imported into COMSOL.

16.3.2 Setting up the round-robin test

To get the model ready for mechanical analysis in COMSOL, like in the case
for the denture model, we set the physics of the model to Solid Mechanics,
the spacial dimension to 3D, and the study to time-independent Stationary.
For the material, we use titanium with Young’s modulus E = 114 GPa and
Poisson’s ratio ν = 0.3.

For applying the loading and boundary conditions, we will follow the ISO
7206-4:2010(E) guidelines. Since the hip stem is oriented with its shaft axis
parallel to the x axis, we apply a point load in a direction that forms a 10◦

angle with the x axis in the x-z plane and a 9◦ angle with the x axis in
the x-y plane according to the ISO 7206-4:2010(E) standard. The point load
with a magnitude of P = 2300 N is applied at the lowest point of the circular
trunnion face at the neck end pointing toward the distal end of the hip stem.
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For the boundary conditions, per the ISO 7206-4:2010(E) guidelines, the
distal end of the hip stem is potted for movement constraints. To do so in
the model, we first create a cylinder with its top surface about 95 mm away
from the center of the position of the femoral head and oriented perpendicular
to the direction of the point load. This cylinder is then subtracted from the
hip stem geometry to result in a cut surface on the distal side, as shown in
Figure 16.7. A fixed constraint boundary condition is then applied to this cut
surface to secure the hip stem for mechanical loading.

Figure 16.8a shows the hip stem after the fixed boundary condition is
applied at the lower cut surface, and Figure 16.8b shows the model after mesh-
ing in which tetrahedral elements in quadratic order are used. After clicking
Compute, we analyze the model. Figure 16.8c shows some selected results.

In a close quantitative examination, we note that the highest first princi-
pal stress occurred at the bottom of the neck, as shown in Figure 16.9, with
a value of approximately 79 ksi, and the highest stress in the driver hole is
about 31 ksi. Note that the locations of the highest stress points are slightly
off-centered to the negative y axis side, or off the upper side in the figure.
The corresponding locations off to the lower side have stress values of about
57 and 25 ksi, respectively. The ASTM round-robin test reports an average
value of 59 and 25 ksi for the neck region and the driver hole region, respec-
tively, both occurring off to the lower side, indicating that the results obtained
here are consistent with those of the round-robin test. The slight differences
between the results shown here and from the round-robin test, however, may
be attributed to the different values used for the materials properties or to
the difference in the exact location where the load is applied.

(a) (b)

FIGURE 16.7
Cutting the distal end of the hip stem for boundary fixation. A cylinder is
added to the hip stem model (a) and then subtracted from it (b).
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FIGURE 16.8
Modeling the hip stem for the round-robin test. The part of the hip stem
modeled in the process (a), after meshing (b), and after analysis (c).
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FIGURE 16.9
Close look at the first principal stress in the hip stem. The distribution of the
first principal stress near the neck region in an overall view (a) and a closeup
view (b).

16.3.3 Testing the femoral component of a knee implant

Following the same steps, we now briefly go through a round-robin test for
a knee component. Figure 16.10 shows the imported model of the femoral
component of a knee implant. Figure 16.11a shows the model after further
manipulation through cutting for boundary condition application (note that
the bottom part of the original CAD model shown in Figure 16.10 has been cut
and removed), and Figure 16.11b shows the model after applying the mesh-
ing step with tetrahedral elements of the quadratic order. To get the model
ready for mechanical analysis, we set the physics of model to Solid Mechanics,
the spacial dimension to 3D, and the study to time-independent Stationary.
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FIGURE 16.10
Modeling of the femoral component of a knee implant. The femoral component
before sectioning in a front view (a) and a back view (b).
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FIGURE 16.11
Setting up for the round-robin test for the femoral knee implant. The femoral
component after sectioning (a) and after meshing (b).

For the material, we use titanium with Young’s modulus E = 105 GPa and
Poisson’s ratio ν = 0.33.

For the boundary condition, a fixed constraint is applied to the cut surface
(the bottom surface in Figure 16.11), and for the loading condition, a down-
ward (in the positive x axis direction) point load of 1 N is applied at a point
near the top of the medial condyle (the upper left point in Figure 16.11).
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FIGURE 16.12
First principal stress in the femoral knee implant. Distribution of the first
principal stress in an overall view (a) and a closeup view (b).

Figure 16.12 shows the obtained first principal stress in the femoral knee
component after the loading analysis. In a close quantitative examination
(see the two red regions in Figure 16.12b), we note that the highest stress is
approximately 0.139 MPa in the medial condyle region and about 0.138 MPa
in the anterior notch region. The ASTM round-robin test reports an average
value for the first principal stress of 0.119 and 0.103 MPa for the medial
condyle region and the notch region, respectively. The differences between
the results shown here and the round-robin ones may be attributed to the
different values used for the materials properties or to the difference in the
location where the load is applied.

16.3.4 Testing of a spinal implant assembly

ASTM 1717-14 is a standard guiding the test methods for static and fatigue
testing of spinal implant assemblies in a vertebrectomy model. These test
methods are intended to provide a basis for the mechanical comparison among
past, present, and future spinal implant assemblies and allow comparison of
spinal implant constructs with different intended spinal locations and methods
of application. These test methods may also apply to mechanical evalua-
tion of cervical spinal implant assemblies, and thoracolumbar, lumbar, and
lumbosacral spinal implant assemblies.

According to the ASTM 1717-14 standard, the entire test assembly
should simulate a vertebrectomy model via a large gap between two ultra-
high-molecular-weight polyethylene (UHMWPE) test blocks (simulating the
vertebra) to facilitate static mechanical tests such as compression bending,
tensile bending, and torsion and dynamic test. The spinal assembly may
include anterior vertebral body screws and rods, or posterior sacral screws,
hooks, rods, and transverse elements.

Here, let us briefly discuss a FEM-based computational model developed
per the ASTM 1717-14 standard for elucidating the mechanical details in such
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FIGURE 16.13
Modeling the test of a spinal implant assembly. 3D views of the geometry
of the spine implant assembly (a) and after meshing (b). 3D views of the
obtained von Mises stress (c) and first principal stress (d).

a test of the entire spinal implant assembly. Figure 16.13 shows the model
developed and some selected results after mechanical analysis. More specif-
ically, Figure 16.13a shows the imported CAD model initially developed in
SolidWorks, Figure 16.13b shows the meshed model, Figure 16.13c shows the
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deformed test assembly and the von Mises stress in the rods, and Figure 16.13d
shows the deformed assembly and the first principal stress in the rods.

This example illustrates that a computational modeling approach can shed
much insight into the intricate details of such a test by providing visualization
of deformations and stress distributions, and it may very well be in a position
to provide innovative ideas on strategies to improve such a test standard for
enhancing the test standardization and regulatory processes.

16.3.5 Calling for clinically relevant and
predictive modeling

The computational modeling examples of hip, knee, and spine implants
discussed in this section are of certain value in providing a reference for com-
parison between implants of different designs or from different manufacturers
in order to identify the worst-case scenario. However, the true value of com-
putational modeling should be in its predictive power of clinically relevant
failure modes.

Referring to the discussions given in Appendix A, there are many fac-
tors that could affect the failure mode of a material or a device. From
a mechanical and material perspective, these factors include the loading
conditions (types of loads and rates of loading), the stress states and tra-
jectories, the maximum stress values and stress types, and the material types
and their failure tendency. From a clinical and in vivo environment’s per-
spective, there are other combined factors, such as enzymatically induced
material degradations and environment-accelerated reactions between body
fluids and the implant materials. From a holistic perspective, the interplays
between the mechanical and material factors and the in vivo environmental
factors may lead to weakened material strengths causing compounded types
of failures.

To demonstrate how the results of computational modeling can be used to
predict material failure (in a mechanical and material perspective), we take a
close look at the wisdom of a Brazilian tensile test using a compressive test
setup. The Brazilian tensile test is designed to evaluate the tensile strength
of brittle materials such as rocks and concrete, in which a specimen made of
a circular disc (or cylinder) is subject to a compressive loading along one of
its diameter lines. Under this test, the specimen is expected to crack into
two pieces along the line of loading and the tensile strength is evaluated as
σt = P/(πRt), in which P is the compressive load applied to the point of
failure, R is the diameter of the disc (or cylinder), and t is the thickness (or
length) of the specimen.

Figure 16.14 shows modeling results in which a 2D circular disc (with
R = t = 1 m) is subject to a vertical compressive load (P = 1 N) in a plane
stress analysis. From the distribution of the max tensile stress in the disc,
shown in Figure 16.14a, it is clear that the max tensile stress indeed occurs
near the vertical centerline. Note that since a brittle material tends to fail first
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FIGURE 16.14
Modeling the Brazilian tensile test. Distribution of von Mises stress (a) and
stress trajectories (b).

due to tensile breakage, it is prudent to examine the max tensile stress, its
distribution and trajectories, instead of the von Mises stress. To see the ori-
entations of the tensile stresses throughout the disc, we obtained the induced
stress trajectories, that is, the tension and compression lines (see Appendix A
for more discussions). As shown in Figure 16.14b, the arrangements of the ten-
sion lines (light gray) and compression lines (dark gray) show a stress state
in which tensile stresses are pulling the disc along the vertical centerline on
both sides, indicating that the specimen is likely to be pulled apart along its
vertical centerline into two half pieces.

In a more quantitative examination, Figure 16.15 shows the distribution of
the max tensile stress along the vertical centerline (Figure 16.15a) and along
the horizontal centerline (Figure 16.15b), respectively. These results show that
aside from the vicinity of the two loading points where stress concentration is
expected to occur, the max tensile stress is fairly uniform along the vertical
centerline. Figure 16.15b shows the distribution of the max stress along the
horizontal centerline in which the stress peaks at the center. These results
indicate that the max tensile stress reaches its highest value along the vertical
centerline, with a stress value close to 0.318 N/m2. Plugging the parameters
(i.e., R = t = 1 m and P = 1 N) into the given formula, σt = P/(πRt), we
have σt = 0.318 N/m2, agreeing very well with the modeling prediction.

This example shows that computational modeling, when performed cor-
rectly with sufficient details on the induced stress states, is capable of
predicting the anticipated failure mode and failure strength of the material
under testing. Along this line of argument, computational modeling of implant
devices should be performed under conditions that closely resemble the actual
in vivo situations with the goal of revealing the induced stress states of all
intricate components to shed useful insight into the potential failure modes
and fracture surfaces. Of course, as I argued throughout this book, the need
for closely representing the actual situations calls for integrative considera-
tion of the problems. Fortunately, it can be accomplished through integrative
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FIGURE 16.15
Max tensile stress along the vertical and horizontal centerlines (a) after vertical
and (b) after horizontal.

computational modeling. Once realized, the predictive power of the compu-
tational modeling approach is expected to unleash biomedical innovation and
promote the quality of life in a speedy and economical manner.

16.4 Examining the Transient Hypoxia Condition in
Cornea due to Contact Lens Wear

Contact lenses have brought people of myopia or hyperopia normal
vision without the inconvenience associated with wearing corrective glasses.
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Wearing contact lenses is of course not without any side effects. From a phys-
iological standpoint, contact lens wear has the potential to cause significant
epithelial and stromal acidosis because the lens acts as a barrier to oxygen
diffusion into the cornea, leading to corneal hypoxia, which plays an impor-
tant role in affecting corneal health. The side effects of corneal hypoxia range
from corneal acidosis, swelling, microcysts, and vascularization, to decreased
resistance, to bacterial infection, depending on the severity. It is thus impor-
tant to have a reliable metric to refer to when assessing the possible impact
of contact lens wear on the oxygenation and health of corneas.

Over the years, metrics such as the oxygen transmissibility of the lens,
equivalent oxygen percentage, anterior corneal oxygen flux, and total corneal
consumption have been used for gaging the impact of contact lenses on corneal
oxygenation. Among these metrics, transmissibility (i.e., Dk/t, where D is
the oxygen diffusion coefficient in the lens, k the Henry constant of oxygen
solubility, and t the thickness of the lens) is the only quantity that can be
measured directly, and the rest are all indirect quantities estimated based on
the Dk/t value. For this reason, Dk/t has been used extensively throughout
the contact lens community.

While Dk/t is a physical property of the lens that can be measured and
has made the comparison of lenses from different manufacturers possible, it
is not sufficient to rely on the Dk/t value to quantify oxygen tension and
flux at the posterior surface of the lens, or the distribution of the oxygen
partial pressure throughout the cornea. For example, clinical data suggest
that corneal swelling can occur even with silicone hydrogel lenses having very
high oxygen transmissibility (Dk/t > 175).

A computational modeling approach is perfectly suited to providing bet-
ter insight into the situation of corneal oxygenation with contact lens wear.
Figure 16.16 shows a case in which oxygen diffusion into a cornea through a
contact lens is investigated. Due to the axial symmetric nature in the corneal
and lens geometry, we can simplify the problem by performing a 2D axisym-
metric study (see more discussion on axisymmetry in Chapter 9) without
losing the ability to capture the actual 3D structures of the cornea and the
contact lens.

The 2D views in Figure 16.17 show the results of this 2D axisymmetric
computational model of the cornea with contact lens wear. Comparing the 2D
and 3D views, we can tell that the left upper edge of the 2D axisymmetric
model is where the center of the contact lens and cornea is located.

In this analysis, diffusion of oxygen from the ambient environment into
the cornea through the contact lens in a time-transient manner is examined.
The entire model consists of a contact lens with a Dk value of 100 and diopter
numbers of about −3.0 D, a thin tear-film layer, and the corneal epithelial,
stromal, and endothelial tissue layers. These tissues consume oxygen at their
respective rates for metabolic purposes. To consider proper constraints for the
model, a partial pressure of oxygen at mmHg is applied to the lower boundary
of the endothelium that borders the aqueous humor, and 55 mmHg is applied
to the lower boundary of the sclera that borders the blood capillaries. For the
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FIGURE 16.16
Oxygen diffusion into a cornea through a contact lens in 3D views at (a) time
0, the moment the eye opens after reaching the close-eye steady state, and (b)
100 seconds afterwards.

ambient oxygen partial pressure, values of 61.4 and 155 mmHg are used as
the close-eye and open-eye conditions, respectively.

In this time-dependent transient diffusion analysis, the distribution of
oxygen partial pressure throughout the entire cornea over time between
the close-eye steady state and the open-eye steady state is determined and
visualized as shown in Figure 16.17. For example, Figure 16.17a shows the oxy-
genation state of the cornea with contact lens wear at time 0, or the moment
the eye opens after reaching the close-eye steady state. As time progresses from
time 0 to 2 seconds (Figure 16.17b), 20 seconds (Figure 16.17c), 40 seconds
(Figure 16.17d), 80 seconds (Figure 16.17e), and 100 seconds (Figure 16.17f)
afterwards, it is clear that more oxygen reaches the corneal tissues, especially
in the first 20 seconds. The change in oxygen level becomes smaller as time
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FIGURE 16.17
Oxygen diffusion into the cornea through contact lens in 2D views at times
(a) 0, (b) 2, (c) 20, (d) 40, (e) 80, and (f) 100 seconds afterwards.

passes 80 seconds, an indication that the cornea is reaching its open-eye steady
state in terms of oxygen diffusion. However, even in an open-eye steady-state
situation, a large portion of the cornea is still under an oxygenation state,
with the level of partial pressure for oxygen under 60 mmHg.

To get a different perspective of the change in corneal oxygenation with
time, the transient response of the oxygen partial pressure from the close-
eye to open-eye steady states at two cross sections can be closely examined.
The first section cut is through the center of the cornea and contact lens,
where both the contact lens and the stromal layer are the thinnest, and the



T&F Cat #K16587 — K16587 C016 — page 382 — 1/21/2017 — 15:52

382 Introduction to Integrative Engineering

second section cut is at the edge of the cornea near the limbus, where both
the contact lens and the stromal layer are the thickest.

Figure 16.18 shows the results through the center (Figure 16.18a) and edge
(Figure 16.18b) cuts, respectively, in which the oxygen profiles throughout
the cornea and contact lens at times 0, 2, 4, 6, 8, 10, 20, 40, 60, 80, and
100 seconds, respectively, during the transition from the close-eye to open-eye
steady states are plotted. The left end of the graphs marks the side of the
endothelium, and the right end of the graphs marks the outer surface of the
contact lens (for this reason, the distance spans of the two plots are different
due to the difference in the thicknesses of the cornea and contact lens). From
these profiles of oxygen partial pressure, we can clearly see that the oxygen
level increases rather rapidly in the first several seconds until about 40 seconds.
After that, changes slow down, and after some 60 seconds, changes are only
slightly visible, indicating that oxygen diffusion into the cornea is approaching
its open-eye steady state.

In the center cut (Figure 16.18a), all regions of the corneal tissues have
above zero oxygen partial pressure, but overall, it is below 24 mmHg over a
large span of the stromal tissue within the first 20 seconds after the eye opens.
However, in the edge cut (Figure 16.18b), some span of the stroma is under
a state of hypoxia, with zero oxygen partial pressure in the first 20 seconds.
Even after reaching the open-eye steady state, almost two-thirds of the stroma
is experiencing a partial oxygen pressure below 24 mmHg.

16.5 Examining the pH Drop in a Titanium Crevice
due to Corrosion

To allow maximum flexibility during surgery for surgeons to pick and choose
different combinations of parts, implant modularity has been a common prac-
tice over the years. Modular metallic implants consist of not only different
parts but also different alloys. While implant modularity indeed provides
great flexibility to improve personalized fits for patients, different parts coming
together will create small gaps (or crevices) between parts and different alloys
will cause galvanic potential differences. More and more evidence from the
clinical retrieved implants shows that corrosion in the crevices of these mod-
ular implants is one major contributing factor leading to the failure of them.
While crevice corrosion has been studied for many years, both experimentally
and computationally, the true cause for modular implant failure remains elu-
sive, thus hindering not only the clinical successes of these modular implants
but also the regulatory approval processes.

A computational approach can be used to examine this corrosive pro-
cess. Let us have a look at a computer model analyzing the corrosion process
in a crevice of a commercial pure titanium based on thermodynamics by
considering simultaneously electrode reactions, equilibrium reactions, and
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FIGURE 16.18
The changing profile of corneal oxygenation over time in a section, (a) cut
through the center of the cornea and (b) cut near the limbus. Shown are
graphs 1 through 12 at 0, 2, 4, 6, 8, 10, 20, 40, 60, 80, and 100 seconds during
a transition from close-eye to open-eye steady states. Note that the shaded
regions on the left represent the span of stromal tissue, the shaded region on
the right is the span of the contact lens, and the gap in between is the span
of epithelial tissue having a uniform thickness of 0.5 mm.
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mass transport, coupled with electrochemical polarization, and evaluate the
pH profile along the depth of a crevice with various crevice widths.

To simplify matters, a crevice is considered to be 10 mm in length with
various widths from 0.5 to 50 μm. The corrosive environment is induced by
experimental polarization of commercial pure titanium. Figure 16.19 shows
the measured polarization curve, in which the anodic current is mainly
attributed to the dissolution of titanium (or oxidation) and the cathodic
current to oxygen reduction under an acid environment with pH = 6.3.

The involved oxidative and reductive electrode reactions are as follows:

Oxidation: Ti → Ti(IV)+ 4e−

Reduction: O2 + 4H+ + 4e− → 2H2O

The nonelectrode equilibrium reactions occurring during the corrosive and
mass transport processes include

Ti(IV)+ H2O ↔ Ti(OH)3+ + H+, log(K) = −1.4

Ti(OH)3+ + H2O ↔ Ti(OH)2+2 + H+, log(K) = −1.7

Ti(OH)2+2 + H2O ↔ Ti(OH)+3 + H+, log(K) = −2.0

Ti(OH)+3 + H2O ↔ Ti(OH)4 + H+, log(K) = −4.0

H2O ↔ OH− + H+, log(K) = −13.6
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FIGURE 16.19
Polarization curve for commercial pure titanium.
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In this corrosive process, while the electrode reactions are controlled by
the kinetics of electrode polarization, all the reactant and product species are
governed by the generalized Nernst–Planck equation in terms of transport. In
the computational analysis, the polarization potential is swept from −0.7 to
−0.1 V, and the resulting pH profile inside the crevice along the depth of the
crevice is evaluated.

Figure 16.20 shows some selected results for the pH profiles at −0.1 V
along the crevice depth, where the left end of the graphs is the crevice mouth
at a solution of pH 6.3 and the right end the bottom of the crevice.

In all cases, a general trend is that pH deceases gradually in an exponential
decaying pattern from the mouth to the bottom of the crevice. Comparisons
between the cases show that the narrower the crevice is, the lower the pH
level becomes. For example, in the case of 50 μm crevice width, the pH drops
to approximately 4.4 at the bottom from 6.3 at the mouth, while in the case
of 0.5 μm crevice width, it drops to about 2.6 at the bottom.

Although the corrosive environment considered here is under forced polar-
ization, rather than a spontaneous process, the results shown should pose
a warning that the thermodynamics in a tight space with poor mass trans-
port could lead to severe pH drop. This in turn can accelerate the corrosive
process, leading to possible compounded device failure and tissue damage.
The obtained modeling results shed some insight into the mechanisms and
consequences of crevice corrosion in commercial pure titanium driven by
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FIGURE 16.20
pH profiles along the crevice depth for crevices with various widths. Cases 1
through 5 are for widths of 50, 10, 5, 1, and 0.5 μm, respectively.
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thermodynamics. The pH value in a crevice can drop very severely, espe-
cially when the width of the crevice is small. Such a significant drop in pH
will only accelerate the corrosive process, leading to compounded device fail-
ure and tissue damage. For improving the clinical successes of these modular
implants and their regulatory approval processes, it is necessary to quanti-
tatively analyze the crevice environment in terms of reaction kinetics, mass
transport, and the concentration of various relevant ions.

16.6 What to Expect in Future Editions

The examples given in this book (the first edition) and those in Computational
Bioengineering are to serve as simple demonstrations that a computational
approach can not only help solve biomedical problems of real-world relevance
but also provide visualization of obtained results to assist the modeler to gain
better scientific and engineering insights into the design or analysis problems
undertaken. In future editions, I envisage that more advanced and integrated
examples will be presented and discussed to help the reader see more benefits
of computational modeling in advancing health care and improving quality of
life, as well as general engineering for stimulating innovation.



Part IV

Useful Knowledge

T&F Cat #K16587 — K16587 S004 — page 387 — 1/21/2017 — 15:52



T&F Cat #K23501 — K23501_C000 — page vi — 1/10/2017 — 13:13

http://taylorandfrancis.com/


A

Mechanics of Materials

A.1 Terms: Linear, Nonlinear, Elastic, and Plastic

In most design and analysis problems entailing the use of materials, a designer
often needs to consider the mechanical properties of the materials used or to
be used. In dealing with materials’ mechanical properties, we often encounter
terms like linear and nonlinear relationship, and elastic and plastic behavior,
as if a linear relationship were always associated with elastic behavior and
a nonlinear relationship with plastic behavior. In this section, we take a close
look at these terms with the goal of helping the reader develop a clear under-
standing of them and be able to make right decisions in either selecting a
material or analyzing one.

Let us first define these terms. On the one hand, linear and nonlinear are
geometric terms often used to refer to a relationship between two variables,
such as in a load–displacement curve or in a stress–strain curve. When these
relationships are straight lines, we call them linear, and when they are curved
lines, we call them nonlinear. On the other hand, the terms elastic and plastic
refer to material or structural deformational behavior, specifically the ability
to regain the original shape after the removal of loads. When a material or
structure regains its original shape (all deformations vanish) after the removal
of loads, we consider it deforming with elastic behavior, and when it does not
regain its original shape, we call it deforming with plastic behavior.

Knowing the meanings of these different terms, we should now have a
sense that a linear relationship is not necessarily always associated with elastic
behavior and a nonlinear relationship with plastic behavior. In the following
section, we will see that a material can behave linear elastically and nonlinear
elastically, and it can also exhibit elastic yielding and plastic yielding behavior.

A.2 Describing Materials’ Various Properties

Indeed, these terms are often used in combinations to describe a certain
mechanical property or behavior. For example, a material or structure
can exhibit elastic behavior with either a linear or nonlinear relationship

389
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FIGURE A.1
Four types of load–displacement curves representing linear elastic (a), nonlin-
ear elastic (b), partial plastic (c), and full plastic (d) behavior of materials.

between load and displacement or between stress and strain. As illustrated
in Figure A.1a, linear elastic behavior is one in which the load–displacement
curve is a straight line (hence linear) and the loading and unloading curves
follow the same trace such that the displacement will vanish (hence elas-
tic) when the applied load is removed. Nonlinear elastic behavior describes
a curved (hence nonlinear) load–displacement relationship, but the displace-
ment induced by loading will vanish (hence elastic) after the removal of the
load, as illustrated in Figure A.1b.

While these two cases show elastic behavior, the difference between linear
and nonlinear elastic behavior, in a practical sense, is that the former occurs
when the deformation is very small (often invisible) and the latter occurs when
the deformation is slightly larger (sometime visible). For instance, when one
gently uses fingers to pinch an aluminum can and then let go of it without
causing any permanent shape change, the deformation in the can before letting
go of the fingers is nonlinear elastic deformation.

When a material is loaded to yielding, the load–displacement curve will be
nonlinear. Here, yielding means that the slope of the load–displacement curve
or stress–strain curve, or modulus of elasticity, decreases. Material yielding
can be regarded as partial or full. Partial yielding behavior is one in which
the material, although exhibiting reduced modulus of elasticity, can still carry
increased loading. However, due to the endured yielding in the materials, when
the applied load is gradually removed during unloading, the load–displacement
curve will follow a different path. After the applied load is totally removed,
part of the induced displacement will vanish due to its elastic nature, but
part will remain in the form of permanent deformation. This permanent defor-
mation is called plastic deformation, or sometimes residual deformation. The
resulting load–displacement curve is a partial plastic load–displacement curve,
as illustrated in Figure A.1c. If we refer to the aluminum can example, this
partial plastic behavior can be observed when we pinch the fingers just a bit
harder such that after letting go of the fingers, the can will recover most of
the pinching deformation but with a small dent remaining in the can.
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A full plastic load–displacement curve is one in which a material is loaded
into the state of full yielding, where the displacement will increase continu-
ously even without any additional loading. In such a state, the material will
keep deforming plastically. This is the stage often referred to as full yielding,
and once it occurs, even with the quick removal of all loads, all the induced
deformation will remain (hence full plastic deformation). In most situations,
this kind of full yielding will lead to material failure (e.g., breaking if under
tension) quickly, as depicted in Figure A.1c. To picture this behavior, we
may think of stretching a piece of plastic sheet or rod until it breaks.

A.3 Linear, Nonlinear, Elastic, and Plastic Behavior
in a Single Material

It is worth noting that these four types of load–displacement curves do not
necessarily originate from four different materials. They may appear in a single
material at different stages of loading. Figure A.2a shows a load–displacement
curve for a material undergoing linear elastic, nonlinear elastic, elastic yield-
ing, and plastic yielding deformations. Here, elastic yielding describes the
same situation as the partial yielding discussed earlier in which the elastic
part of the deformation vanishes and the plastic part remains after unloading,
and plastic yielding describes the same full plastic deformation behavior.

If we look closely at the curve shown in Figure A.2a, we can note that the
linear elastic behavior of a material occurs at the beginning of the loading
stage when the induced displacement is very small. When the displacement
increases slightly, the material may exhibit nonlinear but elastic behavior.
This behavior is sometimes referred to as large-deformation nonlinearity, or
geometric nonlinearity. When the displacement increases further, the material
will reach an elastic yielding zone in which it still exhibits elastic behavior but
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Elastic yielding

Plastic yielding

(a)
Strain (є)
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FIGURE A.2
Load–displacement curve (a) along with its corresponding stress–strain
curve (b) for a given material.
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with reduced modulus of elasticity (or Young’s modulus). As the displacement
continues to increase, the material will enter a plastic yielding zone in which
the displacement or deformation keeps increasing without needing any further
increase in loads.

Figure A.2b shows the corresponding stress–strain curve derived from the
load–displacement curve shown in Figure A.2a. It presents another look at
these mechanical properties from a pure material’s perspective by eliminating
all geometric-related influences. When the material behaves elastically, in both
the linear and nonlinear manner, it has Young’s modulus E1. When the stress
in the material reaches its elastic yielding point (σy), it will start to exhibit
reduced elastic property with Young’s modulus E2, where E2 < E1. As the
strain in the material further increases, the material will reach its plastic
yielding point (σp), after which full plastic deformation will occur and the
stress in the material will remain the same until the material breaks.

A.4 Example of Nonlinear Elastic Behavior

As we learned in the preceding section, nonlinear elastic behavior is often
the result of large geometric deformation. Thus, it is sometimes referred
to as large-deformation-induced nonlinearity or geometric nonlinearity. To
demonstrate this geometric nonlinearity, we take a look at a wire with fixed
constraints at its two ends and subjected to a transverse load (P ) at its
midspan, as illustrated in Figure A.3. For a thin wire, with a very small
cross section area, under the given loading and constraint conditions, the wire
can be assumed (in a simplified view) to deform into a triangle configuration,
as depicted by the dash lines. According to the free-body diagram shown on
the right in the figure, to remain in equilibrium, the tension (T ) in the wire
and the transverse load (P ) should satisfy

P = 2T cos θ = 2T
δ√

δ2 + (L/2)2
(A.1)

P

L/2 L/2

δ θ

T T

P

θ

FIGURE A.3
A wire with fixed constraints at two ends is subject to a transverse load
undergoing deformation simplified as a triangle shape (a) and along with a
free-body diagram (b).
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in which δ is the transverse deflection at the midspan and L is the length of the
wire. The induced tension in the wire can be determined by multiplying the
stress (σ = Eε) with the cross section area (A) as T = Aσ = AEε, in which E is
the Young’s modulus of the wire material and ε is the mechanical strain in the
wire, which can be determined as ε = [

√
δ2 + (L/2)2 −L/2]/(L/2). With sub-

stitution of these relationships into Equation A.1, we establish the following
load–deflection relationship:

P =
4EA

L

δ(
√

4δ2 + L2 −L)√
4δ2 + L2

(A.2)

Clearly, Equation A.2 describes a nonlinear relationship between the
applied load (P ) and the resulting deflection (δ) at the midspan. As long as
the induced stress and strain in the wire are small such that the wire exhibits
elastic behavior, this type of nonlinearity will be of elastic nature as well.
Therefore, this type of nonlinearity is geometric. It is worth cautioning that
because a simplified wire deformation of a triangle configuration is assumed,
this example only serves to illustrate geometric nonlinearity and it should not
be used to predict the wire performance. Recalling the discussion in Chapter
14 on a vibrating string, because such a large geometric deformation is neces-
sary for producing sound, geometric nonlinearity needs to be activated in the
software in order to capture its actual behavior.

Figure A.4 shows the load–deflection curve plotted based on Equation A.2
with constants E, A, and L all set to unity (1). Interestingly, not only the
load–deflection relationship is a nonlinear curve, but the nonlinear behavior
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FIGURE A.4
Load–deflection curve based on Equation A.2 with E, A, and L all set to
unity (1).
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appears when the deflection is small. Since when the deflection of the wire is
small, the induced stress and strain in the wire are also small, the observed
large-deformation-induced nonlinear relationship can and will occur when the
wire is still in its elastic nature.

A.5 Pseudoelastic, Hyperelastic, and Viscoelastic

The mechanical properties discussed in the preceding sections are associated
with materials when they do not go through any intrinsic structural changes
due to mechanical loading or other factors, like temperature variation. To
provide an overview, let us also briefly get a sense of what the other elastic
words, like pseudoelastic, hyperelastic, and viscoelastic, mean.

Some materials, like memory alloys, will undergo phase transition due to
temperature changes, thereby exhibiting recoverable or reversible deformation
behavior (hence elastic) as temperature changes back and forth. This type of
elastic behavior is sometimes called pseudoelastic or superelastic.

Other materials, like many polymeric materials and biological tissues, will
undergo polymer chain or collagen fiber reorientation under stretching, leading
to the stiffening of the materials (i.e., increasing in the slope of the load–
displacement curve)—a type of nonlinear relationship. When the material is
in its elastic nature, the observed nonlinear stiffening behavior is called hyper-
elastic. A hyperelastic load–displacement curve may resemble the geometric
nonlinear elastic curve shown in Figure A.4.

Viscoelastic is a term used to describe a material that possesses time (or
rate)-dependent behavior, meaning that the material may exhibit different
load–displacement or stress–strain curves when the loading rates are different.
The main reason for this behavior is that viscoelastic materials are regarded as
made of solid components that follow Hooke’s law and fluidic components that
follow Newton’s law. Thus, for viscoelastic materials, a combined Hookean and
Newtonian method is often used to evaluate these combined solid- and fluid-
like characteristics with equivalent models made of springs (representing the
elastic part) and dashpots (representing the viscous part). Load–displacement
or stress–strain relationships of viscoelastic materials are always nonlinear,
with loading and unloading curves following two different paths, known as hys-
teresis. But after the removal of all loads, deformations in the material will
vanish (hence elastic), albeit slowly, due to the viscous components. Com-
mon viscoelastic materials include paint, catchup sauce, rubber, and many
biological materials.

A.6 Loading Modes, Stress States, and Mohr’s Circle

I often see that people have a tendency to associate the loading mode
in a mechanical test with the failure mode of the material to be tested.
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Yielding-induced failure
(a)

Breakage-induced failure
(b)

FIGURE A.5
Two fractured rods after torsional tests under yielding-induced failure (a) and
breakage-induced failure (b). (Reproduced with permission from Beer F. P.
et al., Mechanics of Materials, 6th edition, McGraw Hill, 2012.)

For example, if a material is expected to fail in tension, a tensile test is to be
conducted, and if a material is expected to fail in shear, a shearing test should
be performed. Although this belief is not totally incorrect, it ignores the con-
sideration of the actual stress state induced in the material and its causal
relationship with the failure modes influenced by the types of materials.

To help understand this statement better, let us take a look at the two
images show in Figure A.5, in which two cylindrical rods failed in two different
modes under the same torsional loading. The rod on the left has a fracture
surface that resembles a perpendicular cross section cut, and the rod on the
right has a fracture surface of a helical cut. The fact that these two rods,
having the same geometric shape and subjected to the same type of loading,
fail in two different modes indicates that the failure mode of a material is not
directly related to its loading mode. Something else is at work.

This something else turns out to be one of the most important factors—the
type of materials that these two rods are made of. If we look more closely at
the fracture surfaces, we can note that the textures of the two fracture surfaces
are also different. The one on the left shows the sign of material yielding, and
the one on the right the sign of tensile breakage. So then, why will yielding
and breakage failure modes cause the two rods to fracture in two different cut
surfaces? To answer this question, we will need to know the stress states in
these rods with the help of Mohr’s circle.

Mohr’s circle is a two-dimensional (2D) graphical representation of the
stress state of a given point in a material using a circle (for a 2D stress state;
three circles will be needed for a three-dimensional [3D] stress state) in a σ-τ
coordinate system, with a pair of opposite points on the circle representing
the stress state of a stress element in a given direction. To visualize this, let us
look at Figure A.6, where a Mohr’s circle and two stress elements in a plane
stress situation (see discussion in Section 8.2.1) are sketched.

For the stress element shown in the middle, representing a viewing angle
through the x-y orientation, we consider a normal stress σx and a shear stress
τxy in the x-cut plane, and a normal stress σy and a shear stress τxy in the
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FIGURE A.6
Mohr’s circle and stress elements for depicting the stress state of a given point.

y-cut plane. By using these paired stress values in each cut plane as coordi-
nates, we mark two points, X(σx,−τxy) and Y (σy, τxy), in the σ-τ coordinate
system shown on the left, with σ as the abscissa and τ as the ordinate. A sign
convention is followed in this process in which tensile normal stresses (σx and
σy) are considered positive and compressive normal stresses negative, and
clockwise shear stresses (τxy) are positive and counterclockwise shear stresses
negative. By linking the two points, X and Y , with a line, we find an inter-
section with the abscissa (the σ axis) at point C. Then, using point C as
the center point, we construct a circle passing through both points X and Y .
This is the so-called Mohr’s circle, honoring its creator, Christian Otto Mohr
(1835–1918), a German civil engineer.

On a Mohr’s circle, any pair of opposite points (with respect to the center
point C), like the X-Y pair, represent the stress state of the given point in
a certain viewing orientation. This means that the stress state of the given
point can be represented by countless different combinations of stress com-
ponents depending on our viewing orientations. For the A-B pair, while still
representing the same stress state of the point, because τxy is zero, it describes
an orientation in which a stress element only has normal stresses acting on
it. This orientation is called the principal directions, and the corresponding
stresses (i.e., σmax and σmin) are called principal stresses.

From the Mohr’s circle, we can see that a counterclockwise rotation by
an angle of 2θp will transform the X-Y pair to the A-B pair. For the
stress element, a counterclockwise rotation by θp (half of the rotation in
the Mohr’s circle) will transform the element in the x-y orientation to the
one in the principal a-b orientation, as shown on the right in Figure A.6.
With a further 90◦ counterclockwise rotation from the A-B orientation, we
will reach the E-F orientation, where the shear stress reaches its maximum,
τmax = (σmax − σmin)/2. This also means that with a 45◦ counterclockwise
rotation from the a-b stress element, we will obtain a stress element, having
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FIGURE A.7
Mohr’s circle for torsional rods and two important stress elements.

maximum shear stresses. However, in this stress element both normal stresses
are not only present but also equal, that is, σx = σy = (σmax + σmin)/2.

Equipped with the knowledge of Mohr’s circle, let us now return to the
two torsional rods discussed earlier and analyze the cause for fracture by
examining the stress states in them. Figure A.7 shows the Mohr’s circle for
a surface point on a cylindrical rod undergoing pure torsional loading. From
this Mohr’s circle, we can see that in the x-y orientation (corresponding to
the X, Y points on the circle), the stress element has only shear stresses act-
ing on it with no normal stresses. This means that the x-y stress element
experiences the maximum shear stresses. On the other hand, the principal
stress element, the a-b stress element (corresponding to the A, B points on
the circle), is a 45◦ counterclockwise rotation away, because the X-Y and
A-B lines are 90◦ apart in the Mohr’s circle. In the principal stress element,
the maximum principal stress is maximum tension and the minimum princi-
pal stress is maximum compression. Put together, when the two rods undergo
a torsion loading test, the x-cut plane (as well as the y-cut plane) endures
maximum shearing, the 45◦-cut plane experiences the maximum tension, and
the 135◦-cut plane experiences the maximum compression.

Knowing that a ductile material tends to fail due to shear-induced material
yielding and a brittle material due to tension-induced breakage, we can now
say that the rod on the left failed in a shear mode due to its ductile material
nature because the shear stress is the highest in the x-cut plane (incidentally,
this cut plane has the smallest cross section area). It should be expected to fail
in the x-cut plane due to shear-induced material yielding. For the rod on the
right, it failed in a tension mode due to its brittle nature because the tensile
stress reaches its maximum along a plane oriented 45◦. It is thus not surprising
that the fracture surface caused by tension-induced breakage is oriented at a
135◦ angle from the x-cut plane, perpendicular to the direction of the max-
imum tension. In short, the failure mode of a material is not determined by
the loading mode but by the induced stress state (i.e., the maximum stresses
and their orientations) and the type of materials. If the material is of the



T&F Cat #K16587 — K16587 A001 — page 398 — 1/21/2017 — 15:52

398 Introduction to Integrative Engineering

ductile type, shearing-induced yielding failure should be concerned, and if the
material is of the brittle type, tension-induced breakage should be avoided.

A.7 von Mises Stress or Principal Stress?

In many design problems concerning the strength of a selected material, one
of the most important questions we have to ask is how to make sure the
material will not fail under the intended application. Recalling the discussions
in Sections A.3 and A.6, we may ask, more pointedly, how to ensure the
material does not fail due to shear-induced yielding if it is of the ductile type,
or tension-induced breakage if it is of the brittle type.

To answer to this question, we can set up computational modeling to
conduct a solid mechanics analysis of the designed structure or device, as
demonstrated in the several cases in Chapter 16. Once the analysis is properly
done, we will have access to many different types of stresses. This leads to
a new question: Of all these available stresses, which one should we examine
in order not to let the material fail? In most finite element method (FEM)
software packages, the default setting for viewing mechanical stresses is von
Mises stress. However, in Section A.6 we learned from the concept of Mohr’s
circle that the principal stresses are the extrema. So a simpler question then
is, von Mises stress or principal stress, which one should we refer to in our
design process?

To answer this question, we need to know what von Mises stress is. But
before that, let us first look at the principal stresses in both 2D and 3D
situations. For the principal stresses, σmax and σmin, shown in the Mohr’s
circle of a 2D plane stress situation (Figure A.6), we often call σmax the first
principal stress and σmin the second principal stress and denote them as σ1

and σ2, respectively, as illustrated in Figure A.8. The maximum shear stresses
are at the top and bottom of the Mohr’s circle with τmax = (σ1 − σ2)/2.

By expanding this concept further to a 3D situation, we use three Mohr’s
circles, as shown in Figure A.9, each representing the 2D situation of one of
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FIGURE A.8
A 2D Mohr’s circle and the first and second principal stresses.
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FIGURE A.9
Three-dimensional Mohr’s circles and the first, second, and third principal
stresses.

the three orthogonal plans, namely, the x-y, y-z, and x-z planes. For example,
the circle between points A and B represents the stress state in the x-y plane
with σ1 and σ2 as the two principal stresses, the circle between points B and C
represents the stress state in the y-z plane with σ2 and σ3 as the two principal
stresses, and the circle between points A and C represents the stress state in
the x-z plane with σ1 and σ3 as the two principal stresses. In each of the three
planes, the corresponding maximum shear stress is, respectively,

τmax(xy) =
(σ1 − σ2)

2
, τmax(yz) =

(σ2 − σ3)
2

, and τmax(xz) =
(σ1 − σ3)

2

With this knowledge of principal and maximum shear stresses, we can
now define von Mises stress. Strictly speaking, von Mises stress is not stress
in a vector sense. Instead, it is a scalar representation of the distortion
energy within a material using a quantity that carries the units of stresses.
Mathematically, von Mises stress is calculated with the following expression:

σvM =

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2

2
(A.3)

Looking at Equation A.3, we can immediately tell that von Mises stress is
actually determined based on the sum of the three maximum shear stresses.
Indeed, von Mises stress is formulated as a criterion to capture the maximum
shearing-induced distortion energy in a material under mechanical loading.
This criterion states that for safe use of a material, its maximum von Mises
stress should not exceed the yield strength of the material. Recalling the
discussions in the preceding sections, we now know that von Mises stress
should be examined as a quantitative guide in the design process when the
material to be used is of the ductile type (metals and most polymers, etc.),
because the shear-induced yielding of the material is of great concern.
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(a)

(b)

FIGURE A.10
(a) von Mises and (b) first principal stresses in a simply supported beam
structure sustaining a downward distributed load at the upper edge.

On the other hand, as we can see in Figure A.9, the first principal stress
σ1 represents the maximum tensile stress in the material for almost all cases
except when all these principal stresses are compressive (negative in values),
like an underwater situation in which the material is under a hydrostatic
compressive pressure all around. So if the material to be used is of the brittle
type (ceramics, concrete, glass, etc.), the first principal stress should be used
as a quantitative guide to ensure that the maximum value of the first principal
stress in the material is smaller than the tensile strength of the material.

To help visualize these arguments, Figure A.10 shows the stresses in a
simply supported beam structure sustaining a downward load at the upper
edge, with Figure A.10a showing the distribution of von Mises stress and
Figure A.10b showing that of the first principal stress. If steel is to be used for
the beam, the upper edge and lower corners will be the regions of concern due
to presence of the high von Mises stress (Figure A.10a). However, if concrete
is to be used, the lower edge should be of grave concern because of the highest
first principal tensile stress (Figure A.10b). This also explains why in practice
engineers often put more reinforcing metal bars (or rebars for short) in the
lower part of concrete beam structures.

A.8 Trajectories of Tension and Compression Lines

As we learned in Sections A.6 and A.7, at any given point in a structure under
mechanical loading we can identify the principal directions for the stresses
by constructing Mohr’s circles and determining the orientation of the stress
element that corresponds to the pairs of extrema with zero shear stresses, that
is, the A-B, B-C, or A-C pairs on the Mohr’s circles in Figure A.9.
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Let us now consider a plane stress situation (see more discussion in Section
8.2.1). Referring to Figure A.9, we assume that the first principal stress (σ1)
is positive (tensile), the second one (σ2) zero, and the third one (σ3) negative
(compressive), which is likely the case for most plane stress situations. After
identifying the directions of the first (tension) and third (compression) prin-
cipal stresses at some selected points across the plane structure, we mark the
two directions using perpendicular crosses at these points (note that these two
principal stresses are always perpendicular to each other). To distinguish the
two stresses, we use red for the stroke representing the tensile direction and
blue for the stroke representing the compressive direction. Finally, we link
the red strokes into red lines and blue strokes into blue lines by following the
orientations of these strokes. The outcome is two sets of lines representing
the directions of maximum tensile stress (red lines) and maximum compres-
sive stress (blue lines), which sometimes are also referred to as the stress
trajectories. Figure A.11 shows the trajectories of tension and compression
lines in the same simply supported beam structure discussed in the preced-
ing section. With a close inspection, we note that these two sets of lines are
orthogonal, meaning that at each intersection, a red line is perpendicular to
a blue line, as expected.

An intuitive way to picture these stress trajectories is to superimpose a
principal stress element, shown in Figure A.12, onto any of these intersection
points. Assuming the beam structure is made of concrete, we should expect

FIGURE A.11
Trajectories of tension (red) and compression (blue) lines in the beam.

(a)

σ1

σ1

σ3

σ3

(b) (c)

FIGURE A.12
(a) Principal stress element with a marking cross at the center, and (b, c)
two images of fracture lines in concrete beams. (Courtesy of Jeff R. Filler,
http://reinforced-concrete.blogspot.com.)
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FIGURE A.13
Cross section image of a human femoral head showing the architectures of
the trabecular (or cancellous, spongy) bone. (Courtesy of http://etc.usf.edu/
clipart/50500/50502/50502 femur.htm)

tension-induced breakage as the failure mode. Referring to the principal stress
element, a breaking line caused by tensile stresses should be perpendicular
to the tensile stress, meaning that the breaking lines in the concrete will
coincide with the compression lines. By comparing the images of the actual
fracture lines near the corner and at the bottom shown in Figure A.12 with
the stress trajectories shown in Figure A.11, we can see clearly that these
fracture lines follow exactly the compression lines in these regions (caused by
tensile breakage). In return, these stress trajectories also give civil engineers
ideas and ways to reinforce concrete structures.

Not only civil engineers know how to take advantage of the stress trajec-
tory information for strengthening concrete structures and other composites;
nature knows it well, too. The structure of the human femoral head is one such
example. Inside a thin layer of strong cortical (or compact) bone is coarsely
structured trabecular (or cancellous, spongy) bony structure. Interestingly, as
shown in Figure A.13, the architecture of the spongy bony structure is not ran-
dom. In fact, it resembles the stress trajectories of the femoral head. According
to Wolff’s law, named after Julius Wolff (1836–1902), bones in a healthy per-
son or animal will remodel in adaptation to the loads they are experiencing.
Therefore, the architecture of the spongy bone is likely the result of the bone
remodeling process in meeting the strengthening needs of human growth and
daily activities, guided by the stress trajectories inside the femoral head. The
reader is encouraged to explore this further using the computational modeling
approach discussed in this book.
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Useful Mathematic Knowledge

B.1 Dot Product

Here, we provide the mathematic derivation for the calculation of the dot
product. For the two vectors

u = ux
�i + uy

�j + uz
�k and v = vx

�i + vy
�j + vz

�k

intersecting at an angle (θ), as illustrated in Figure B.1, let us consider the
triangle formed by the vectors. By vector algebra, we express the length of
the side opposite of θ:

w = u− v = (ux − vx)�i + (uy − vy)�j + (uz − vz)�k

By the law of cosines, we can write the following relationship in terms
of the lengths of the three sides of the triangle and the angle (θ) between u
and v:

|w|2 = |u|2 + |v|2 − 2|u||v| cos θ

in which

|u|2 =
(√

u2
x + u2

y + u2
z

)2
= u2

x + u2
y + u2

z

|v|2 =
(√

v2
x + v2

y + v2
z

)2
= v2

x + v2
y + v2

z

[w|2 =
(√

(ux − vx)2 + (uy − vy)2 + (uz − vz)2
)2

= (ux − vx)2 + (uy − vy)2 + (uz − vz)2

= u2
x + v2

x + u2
y + v2

y + u2
z + v2

z − 2uxvx − 2uyvy − 2uzvz

Thus,
2|u||v| cos θ = |u|2 + |v|2 − |w|2 = 2(uxvx + uyvy + uzvz)

and therefore,

cos θ =
uzvz + uyvy + uzvz

|u||v|
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u

v

w = u − v

θ
|v|cosθ

FIGURE B.1
Dot product of two vectors.

Since 0 ≤ θ < π, we have

θ = cos−1

(
uxvx + uyvy + uzvz

|u||v|
)

By definition, the product of two vectors equals the length of the first
vector (e.g., |u|) multiplying the projection length of the second vector on the
first (e.g., |v| cos θ), as illustrated in Figure B.1. Thus, the dot product of two
vectors can be expressed as

u · v = |u||v| cos θ = uxvx + uyvy + uzvz (B.1)

Here are some properties of the dot product, given that u, v, and w are
vectors and c is a scalar:

1. u · v = v ·u
2. (cu) · v = u · (cv) = c(u · v)

3. u · (v + w) = u · v + u ·w
4. u ·u = |u|2

5. 0 ·u = 0

B.2 Cross Product

If two vectors, u = ux
�i + uy

�j + uz
�k and v = vx

�i + vy
�j + vz

�k, are not parallel
but intersect with each other at an angle (θ), they determine a plane (P ), as
illustrated in Figure B.2. We select a unit vector �n perpendicular to the plane
by the right-hand rule, which is the direction the right thumb points when
the fingers curl around the angle θ from u to v.
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u

v

θ

u × v
n

P

FIGURE B.2
Cross product of two vectors.

By definition, the cross product of the two vectors can be expressed as

u× v = (|u||v| sin θ) �n

Note that |u||v| sin θ equals the area of the parallelogram formed by vectors u
and v in the P plane.

Unlike the dot product, the cross product is a vector, and its direction is
represented by the unit vector �n. According to this definition, when vectors u
and v are parallel, that is, θ = 0, then u× v = 0. Furthermore, we can arrive
at the following properties for the cross product, given that u, v, and w are
vectors and r and s are scalars:

1. (ru)× (sv) = (rs)(u× v)

2. u× (v + w) = u× v + u×w

3. v × u = −(u× v)

4. (v + w)× u = v× u + w× u

5. 0× u = 0

Knowing these properties, we can express

u× v = (ux
�i + uy

�j + uz
�k)× (vx

�i + vy
�j + vz

�k)

= uxvx
�i×�i + uxvy

�i×�j + uxvz
�i×�k

+ uyvx
�j ×�i + uyvy

�j ×�j + uyvz
�j ×�k

+ uzvx
�k×�i + uzvy

�k×�j + uzvz
�k×�k

By substituting the following relationships,

�i×�j = −�j ×�i = �k

�j ×�k = −�k×�j =�i

�k×�i = −�i×�k = �j

�i×�i = �j ×�j = �k×�k = 0
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into the above expression, we have

u× v = (uyvz − uzvy)�i− (uxvz − uzvx)�j + (uxvy − uyvx)�k

The term on the right-hand side of this equation is actually the determi-
nant of the following square matrix:

det

⎡
⎢⎣

�i �j �k

ux uy uz

vx vy vz

⎤
⎥⎦ = (uyvz − uzvy)�i− (uxvz − uzvx)�j + (uxvy − uyvx)�k

Therefore, we can express

u× v = det

⎡
⎢⎣

�i �j �k

ux uy uz

vx vy vz

⎤
⎥⎦ (B.2)

B.3 Taylor and Maclaurin Series

A Taylor series expands a function into a series with an infinite sum of terms
determined at a specified point from the values of the function’s derivatives.
For example, for a one-dimensional function, f(x), its Taylor series can be
expressed as a series expansion about a point x = a as

f(x) = f(a)+ f ′(a)(x− a)+
f ′′(a)

2!
(x− a)2 +

f (3)(a)
3!

(x− a)3 + · · ·

+
f (n)(a)

n!
(x− a)n + · · ·

where n! is the factorial of n: n! = n× (n− 1)× (n− 2)× · · ·× 2× 1.
When a = 0, the expansion is known as a Maclaurin series:

f(x) = f(0)+ f ′(0)x+
f ′′(0)

2!
x2 +

f (3)(0)
3!

x3 + · · ·+ f (n)(0)
n!

xn + · · ·

B.4 Proof of dA = det[J ]dξdη

In transforming two-dimensional (2D) elements in coordinates (x, y) to
coordinates (ξ, η), we use the following mapping functions:

x = x(ξ, η), y = y(ξ, η)
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This indicates that x and y are now functions of ξ and η. By the chain rule
of differentiation, we express

dx =
∂x

∂ξ
dξ�i +

∂x

∂η
dη�j, dy =

∂y

∂ξ
dξ�i +

∂y

∂η
dη�j

where �i,�j are unit vectors in the ξ, η directions, respectively.
By the definition of the cross product, we can calculate the area formed

by dx and dy in coordinates x and y using the following formula:

dA = |dx× dy|
By expanding the dx and dy expressions into

dx =
∂x

∂ξ
dξ�i +

∂x

∂η
dη�j + 0�k and dy =

∂y

∂ξ
dξ�i +

∂y

∂η
dη�j + 0�k

and applying Equation B.2, we obtain

dA =

∣∣∣∣∣∣∣∣∣∣∣

⎡
⎢⎢⎢⎢⎢⎣

�i �j �k

∂x

∂ξ
dξ

∂x

∂η
dη 0

∂y

∂ξ
dξ

∂y

∂η
dη 0

⎤
⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣
=
(

∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ

)
dξdη

= det

⎡
⎢⎢⎣

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

⎤
⎥⎥⎦ dξdη

Let

[J ] =

⎡
⎢⎢⎣

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

⎤
⎥⎥⎦

be the Jacobian matrix of transformation in a 2D space; then we have

dA = det
[
J
]
dξdη (B.3)

B.5 Proof of dV = det[J ]dξdηdζ

In transforming three-dimensional (3D) elements in coordinates (x, y, z) to
coordinates (ξ, η, ζ), we use the following mapping functions:

x = x(ξ, η, ζ), y = y(ξ, η, ζ), z = z(ξ, η, ζ)
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which make x, y, and z functions of ξ, η, and ζ. By the chain rule of differ-
entiation, we express

dx =
∂x

∂ξ
dξ�i +

∂x

∂η
dη�j +

∂x

∂ζ
dζ�k

dy =
∂y

∂ξ
dξ�i +

∂y

∂η
dη�j +

∂y

∂ζ
dζ�k

dz =
∂z

∂ξ
dξ�i +

∂z

∂η
dη�j +

∂z

∂ζ
dζ�k

where �i,�j,�k are unit vectors in the ξ, η, ζ directions, respectively.
Using the dot and cross product expressions, we can calculate a volume

formed by dx, dy, and dz in coordinates x, y, and z by the following formula:

dV = |dz · (dx× dy)|

By the cross product formula, we know

dx× dy =

⎡
⎢⎢⎢⎢⎢⎣

�i �j �k

∂x

∂ξ
dξ

∂x

∂η
dη

∂x

∂ζ
dζ

∂y

∂ξ
dξ

∂y

∂η
dη

∂y

∂ζ
dζ

⎤
⎥⎥⎥⎥⎥⎦

Multiplying it out, we obtain

dx× dy =
(

∂x

∂η

∂y

∂ζ
dηdζ− ∂x

∂ζ

∂y

∂η
dηdζ

)
�i−
(

∂x

∂ξ

∂y

∂ζ
dξdζ− ∂x

∂ζ

∂y

∂ξ
dξdζ

)
�j

+
(

∂x

∂ξ

∂y

∂η
dξdη− ∂x

∂η

∂y

∂ξ
dξdη

)
�k

Then, by the dot product formula we calculate

dV = |dz · (dx× dy)| =
(

∂x

∂η

∂y

∂ζ
− ∂x

∂ζ

∂y

∂η

)
∂z

∂ξ
dξdηdζ

−
(

∂x

∂ξ

∂y

∂ζ
− ∂x

∂ζ

∂y

∂ξ

)
∂z

∂η
dξdηdζ +

(
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ

)
∂z

∂ζ
dξdηdζ

which is equivalent to

dV = det

⎡
⎢⎢⎢⎢⎢⎢⎣

∂x

∂ξ

∂y

∂ξ

∂z

∂ξ

∂x

∂η

∂y

∂η

∂z

∂η

∂x

∂ζ

∂y

∂ζ

∂z

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎦

dξdηdζ
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Let

[J ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂x

∂ξ

∂y

∂ξ

∂z

∂ξ

∂x

∂η

∂y

∂η

∂z

∂η

∂x

∂ζ

∂y

∂ζ

∂z

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎦

be the Jacobian matrix of transformation in a 3D space; then we have

dV = det
[
J
]
dξdηdζ (B.4)

B.6 Lagrange Multipliers

Lagrange multipliers are often used for imposing constraints when seeking
conditional extrema (maximal or minimal values) of a given variable or
function.

To see how it is done, let us examine a situation in which we wish to find
the points on a hyperbolic cylinder x2 − z2 = 1 that are closest to the origin.

x

y

z
x2 − z2 = 1

FIGURE B.3
Single-condition extrema.

As illustrated in Figure B.3, since
the points having an equal distance
to the origin in a 3D space form
a sphere, let us imagine a small
sphere of radius a centered at the
origin: x2 + y2 + z2 − a2 = 0. To find
the closest points on the hyperbolic
cylinder to the origin, all we need to
do is expand the radius of the sphere
until the spheric surface touches the
hyperbolic cylindrical surface. To
express this mathematically, we first
express these two surfaces in the
following functions:

g(x, y, z) = x2 − z2 − 1 = 0

f(x, y, z) = x2 + y2 + z2 − a2 = 0

and then find the points where the two surfaces touch.
By the definition of gradient (Section 2.2.1), ∇g(x, y, z) and ∇f(x, y, z)

are the normal vectors of the tangent planes at a given point (x, y, z) in each
case. Thus, when the two surfaces touch each other, they will have a com-
mon tangent plane and their normal vectors will be parallel to each other.
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Thus, we have
∇f = λ∇g

where λ is a positive constant (a scalar variable) that is known as the Lagrange
multiplier. Referring to Equation 2.9, along with the two functions given
above, we calculate

2x�i + 2y�j + 2z�k = λ(2x�i− 2z�k)

This leads to the following three algebra equations:

x(2− 2λ) = 0
2y = 0

2z(1 + λ) = 0

Since the point at which the two functions touch cannot be x = 0, we have

x �= 0, λ = 1; y = 0; z = 0

This means that the points where the two surfaces touch will have the coordi-
nates of (x, 0, 0). By substituting this condition into the hyperbolic function,
we find x = ±1. Therefore, there are two points on the hyperbolic cylinder
that are closest to the origin (see the marked circles in Figure B.3), and they
are located at

(1, 0, 0) and (−1, 0, 0)

This example shows that to find the extrema of function f(x, y, z) = 0 under
the constraint of g(x, y, z) = 0, we introduce a Lagrange multiplier, λ, to
construct the following function,

f(x, y, z)−λg(x, y, z)

y

x

z

x2 + y2 = 9

x + y + z = 3

FIGURE B.4
Multicondition extrema.

and find its extrema by setting its gradient
to zero:

∇f(x, y, z)−λ∇g(x, y, z) = 0

The solutions to this equation are the
extrema of f(x, y, z) = 0 under the constraint
of g(x, y, z) = 0.

Next, we examine a situation in which
two Lagrange multipliers are used.

As shown in Figure B.4, the plane x+
y + z = 3 cuts the cylinder x2 + y2 = 9 in an
ellipse. Find the points on the ellipse that lie
closest to and farthest from the origin.
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Using a similar approach, we construct a sphere that captures all points
with equal distance a to the origin using the following function,

f(x, y, z) = x2 + y2 + z2 − a2 = 0

and rephrase this problem as to find the extrema of f(x, y, z) under the
constraints of

g1(x, y, z) = x2 + y2 − 9 = 0 and g2(x, y, z) = x+ y + z− 3 = 0

To solve this problem, we introduce two Lagrange multipliers, λ and μ, and
use them to construct the following function:

f(x, y, z)−λg1(x, y, z)−μg2(x, y, z)

To the find its extrema we set its gradient to zero:

∇f(x, y, z)−λ∇g1(x, y, z)−μ∇g2(x, y, z) = 0

By using Equation 2.9, along with the g1(x, y, z), g2(x, y, z) functions given
above, we obtain

2x�i + 2y�j + 2z�k = λ(2x�i + 2y�j)+ μ(1�i + 1�k+ 1�k)

which can be simplified to the following three algebra equations:

2x(1−λ) = μ

2y(1−λ) = μ

2z = μ

Of these three equations, when λ = 1 we have

λ = 1, μ = 0, z = 0

Substituting these conditions into the g1(x, y, z), g2(x, y, z) functions, we have

x2 + y2 = 9, x+ y = 1

which leads to
x = 3, y = 0; or x = 0, y = 3

So the first set of extrema is located at

(3, 0, 0) and (0, 3, 0)

as marked by the two red circles in Figure B.4. The distance of both these
two points to the origin is 3.
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When λ �= 1, we have

λ �= 1, x = y =
z

1−λ

Applying this condition to the cylinder function (g1(x, y, z)), we obtain

x = ±3
√

2
2

Then, with the plane function (g2(x, y, z)), we find

z = 3∓ 3
√

2

So the second set of extrema is found at(
3
√

2
2

,
3
√

2
2

, 3− 3
√

2

)
and

(
−3

√
2

2
,−3

√
2

2
, 3 + 3

√
2

)

Unlike the first set of extrema, these two points have different distances to the
origin. They are 3.247 and 7.839, respectively. So only one of these points is
located farthest from the origin, which is marked by the circle in the upper-left
corner in Figure B.4.

Putting it all together, we find two points on the ellipse that are closest
to the origin, and they are located at

(3, 0, 0) and (0, 3, 0)

and one point that is farthest from the origin, located at(
−3

√
2

2
,−3

√
2

2
, 3 + 3

√
2

)

In this case, because there are two constraining conditions, two Lagrange
multipliers are used. As a general observation based on these two examples,
it is clear that the number of Lagrange multipliers needed to determine the
conditional extrema should equal the number of constraining conditions.
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problems, 363–364
Computer-aided design (CAD) file

formats, 366
COMSOL modeling environment,

329–349
changing pitches using strings of

different sizes, 345–346
geometric parameterization

capability, 347–349
getting familiar with the

modeling environment,
333–337

413
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Graphics window, 337
making initial selections

step-by-step, 330–333
Model Builder window, 334
modeling example (tuning the

sound of music), 339–346
practical sense of building

proper models, 337
selecting proper physics

modules, 332
selecting proper type of

study, 332
selecting spacial dimension,

330–331
Settings window, 334–336
starting screen, 330
tuning a string by adjusting

string tension, 340–344
tutorials, 346

Consistent mass matrices, 301
Contact lens wear, transient

hypoxia condition in cornea
due to, 378

Cross product, 404–406

D
Damping matrix, 302–303
Degrees of freedom (DOF)

elementary vector, 122
nodal, 65–67
3D solid mechanics

problems, 187
vector, FEM formulation for 2D

scalar field problems, 165
Diagonal matrix, 30
Differential equations, 15–19

constant versus nonconstant
coefficients, 16–17

dependent variables, 18
dimension of, 17
Dirichlet boundary

conditions, 18
initial and boundary conditions,

18–19

linear versus nonlinear
differential equations, 16

Neumann boundary
conditions, 18

order of differential
equations, 16

ordinary versus partial
differential equations, 15–16

Robins boundary conditions, 18
time-dependent and

-independent, 17–18
unknowns, 15

Differential equations, approximate
solutions to, 51–61

approximate solutions, 51–53
approximate solutions by

weighted integral, 53–54
exercises, 59–61
Galerkin method, 57
how good approximate solutions

are, 54–56
influence of weight functions,

57–59
Petrov–Galerkin (P–G)

method, 57
Differential equations, computational

solving of, 119–162
bar elements for 1D problems,

129–135
bar elements for 2D and 3D

truss structures, 135–147
differential equations in strong

and weak forms, 120–121
elementary [Ke] matrix, 122–124
exercises, 154–162
FEM, essence of, 153
FEM formulation for beams,

147–153
FEM formulation using the

Galerkin method, 121–126
from elementary to global

through assembly, 127–129
global [K] matrix, 128
single-element structure,

126–127
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stiffness matrix, 122
test functions, 120
volumetric and point loads or

constraints, 124–126
Differential equations, development

of, 39–50
commonality in PDEs for

different problems, 49
exercises, 49
flexure rigidity, 48
heat equation, 44
Hooke’s law, 40
modulus of elasticity, 40
PDE for beam structures, 46–48
PDE for hanging bar, 39–41
PDE for heat transfer, 43–44
PDE for mass diffusion, 44–45
PDE for vibrating string, 41–42
Poisson’s equation, 48
Young’s modulus, 40

Dirichlet boundary conditions, 18
Discretization of physical domains,

63–117
dividing physical domains into

small elements, 63–65
exercises, 113–117
Hermite interpolation, 104–110
interpolation of field quantities

in a matrix form, 110–113
Lagrange interpolation

formulas, 81–103
linking nodal DOF to

polynomial functions, 67–71
mesh density, 66
nodal connectivity and degrees

of freedom, 65–67
order of element

discretization, 69
Pascal pyramid and 3D

elements, 73–75
Pascal triangle, 72–73
polynomial terms, choice of,

71–75
shape functions, 75–81
single-variable problems, 67

DOF, see Degrees of freedom
Domain approximation error, 314
Dot product, 21–22, 403–404

E
Eigenvalues and eigenvectors,

305–306
Elementary damping matrix,

302–303
Elementary mass matrix, 298–302
Elementary [Ke] matrix

for bar elements, 224–226
for beam elements, 227–228
differential equations,

computational solving of,
122–124

Galerkin method, FEM
formulation using, 122–124

matrix, differential equations in
strong and weak forms,
122–124

scalar field problems, 166–169,
172–176

solid mechanics problems,
189–193

Elementary [Ke] matrix
(2D structures)

for scalar field problems,
231–238

for vector field problems,
238–247

Elementary [Ke] matrix
(3D structures)

for scalar field problems,
250–256

for vector field problems,
256–262

Element discretization order, 322–323
Engineering problems and partial

differential equations, 15–37
addition and subtraction, 27–28
connecting PDEs to the

engineering world, 19–27
constant versus nonconstant

coefficients, 16–17
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cross product and curl of a field,
22–23

∇ operator, 19–20
dependent variables, 18
determinant, 30–31
diagonal matrix, 30
differential notations, 19–24
differentiation and

integration, 29
Dirichlet boundary

conditions, 18
divergence theorem, 22
dot product and divergence of a

field, 21–22
exercises, 33–37
gradient of a field, 20–21
identity matrix, 30
initial and boundary conditions,

18–19
Laplacian operator, 24
linear versus nonlinear

differential equations, 16
making plots using

MATLAB, 33
matrix algebra, review of, 27–33
matrix calculation using

MATLAB, 31–32
matrix inversion, 31
matrix–matrix

multiplication, 28
matrix partition, 31
multiplication by a scalar, 28
Neumann boundary

conditions, 18
order of differential

equations, 16
ordinary versus partial

differential equations, 15–16
Robins boundary conditions, 18
row and column vectors, 27
square matrix, 29
symmetric matrix, 30
transposition, 29
unknowns, 15

Errors in FEM results, 313–326
convergence of FEM solutions,

315–324
domain approximation error,

314
effect of element discretization

order, 322–323
effect of mesh refinement,

319–321
effect of quadrature points,

323–324
exercises, 324–326
field variable approximation

error, 314
modeling errors, 314–315
quadrature and arithmetic

error, 315
stress concentration, 319

Exercises
axisymmetric scalar and vector

field problems, 218–220
differential equations,

approximate solutions to,
59–61

differential equations,
computational solving of,
154–162

differential equations,
development of, 49

engineering problems and
partial differential
equations, 33–37

errors in FEM results,
324–326

Gauss quadrature and numerical
integration, 289–295

generalized PDEs, 310–312
isoparametric elements,

263–267
physical domains, discretization

of, 113–117
scalar field problems in higher

dimensions, 176–179



T&F Cat #K16587 — K16587 IDX — page 417 — 1/21/2017 — 15:52

Index 417

transdiscipline, from
compartmentalized
disciplines to, 10–11

vector field problems in higher
dimensions, 201–204

F
Field variable approximation error,

314
Finite element analysis (FEA), 63
Finite element method (FEM), 63;

see also Errors in FEM
results

essence of, 153
nodes in, 66

Finite element method (FEM)
formulation

for axisymmetric solid
mechanics, 214–218

for beams, 147–153
2D scalar field problems,

163–169
2D solid mechanics problems,

196–201
3D solid mechanics problems,

187–188
using the Galerkin method,

121–126
Finite element method (FEM)

results, errors in, 313–326
convergence of FEM solutions,

315–324
domain approximation

error, 314
effect of element discretization

order, 322–323
effect of mesh refinement,

319–321
effect of quadrature points,

323–324
exercises, 324–326
field variable approximation

error, 314
modeling errors, 314–315

quadrature and arithmetic
error, 315

stress concentration, 319
Finite element method (FEM)

solutions, convergence of,
315–324

effect of element discretization
order, 322–323

effect of mesh refinement,
319–321

effect of quadrature points,
323–324

mesh refinement, 317
rate of convergence, 317
stress concentration, 319

Flexure rigidity, 48
Free vibration, 306–310

dynamic stiffness matrix, 307
fundamental frequency, 307
vibration modes, 306

Full yielding, 391

G
Galerkin method, 57

elementary [Ke] matrix, 122–124
FEM formulation using,

121–126
2D scalar field problems, 165
2D solid mechanics

problems, 197
volumetric and point loads or

constraints, 124–126
Gauss quadrature and numerical

integration, 269–295
1-point Gauss quadrature,

270–271
2D quadrilateral elements,

Gauss quadrature for,
275–280

2D triangular elements, Gauss
quadrature for, 280–284

2-point Gauss quadrature,
271–272

3D hexahedral elements, Gauss
quadrature for, 285–286
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3D tetrahedral elements, Gauss
quadrature for, 286–289

3-point Gauss quadrature,
272–275

exercises, 289
Gauss quadrature, 270–275
locations and weights of Gauss

points, 275
Generalized PDEs, 297–312

characteristic vectors, 305
consistent mass matrices, 301
dynamic stiffness matrix, 307
eigenvalues and eigenvectors,

305–306
elementary absorption

matrix, 303
elementary convection matrix,

303–304
elementary damping matrix,

302–303
elementary mass matrix

(consistent and lumped),
298–302

exercises, 310–312
free vibration, 306–310
fundamental frequency, 307
general form PDE and its

matrix equation, 297–305
mass proportional damping, 302
solving the general matrix

equation, 304–305
vibration modes, 306

H
Hanging bar, PDE for, 39–41

Hooke’s law, 40
modulus of elasticity, 40
Young’s modulus, 40

Heat equation, 44
Heat transfer, PDE for, 43–44
Hermite interpolation, 104–110

Hermite interpolation formulas,
104–106

membrane elements, 110
plate and shell elements, 110

shape functions for beam
elements, 106–110

truss elements, 110
Hip implant, testing the femoral

stem of, 369–370
Hooke’s law, 40, 48
Hyperelastic behavior, 394
Hysteresis, 394

I
Identity matrix, 30
IGES (Initial Graphics Exchange

Specification) format, 366
Image-based modeling, 364–369

CAD file formats, 366
further mechanical analysis,

367–369
IGES format, 366
image scanning and

segmentation, 365–366
importing and meshing the

CAD geometry, 366
segmentation, 366
STL format, 366

Innovation, disappearing of
“low-hanging fruits” in, 4

Isoparametric elements, 221–267
exercises, 263–267
for slender structures, 221–228
for 2D structures, 228–247
for 3D structures, 247–262

J
Jack of all trades, master of

none, 5–6
Jacobian of transformation, 224

K
Knee implant, testing the femoral

component of, 372–374

L
Lagrange interpolation formulas,

81–103
for 1D elements, 82–84
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for 2D quadrilateral elements,
84–87

for 2D triangular elements,
90–97

3D hexahedral elements, 97–99
3D tetrahedral elements, 99–103
shape functions for serendipity

elements, 87–89
Lagrange multipliers, 409–412
“Land grants,” 9
Laplacian operator, 24
Large-deformation nonlinearity, 391

M
Maclaurin series, 406
Mass diffusion, PDE for, 44–45
Mass proportional damping, 302
Materials, mechanics of, see

Mechanics of materials
Mathematic knowledge, see Useful

mathematic knowledge
MATLAB, 31–32, 33
Matrix algebra, 27–33

addition and subtraction, 27–28
determinant, 30–31
diagonal matrix, 30
differentiation and

integration, 29
identity matrix, 30
making plots using

MATLAB, 33
matrix calculation using

MATLAB, 31–32
matrix inversion, 31
matrix–matrix

multiplication, 28
matrix partition, 31
multiplication by a scalar, 28
row and column vectors, 27
square matrix, 29
symmetric matrix, 30
transposition, 29

Mechanics of materials, 389–402
describing materials’ various

properties, 389–391

example of nonlinear elastic
behavior, 392–394

full yielding, 391
hysteresis, 394
large-deformation

nonlinearity, 391
linear, nonlinear, elastic, and

plastic behavior in a single
material, 391–392

loading modes, stress states,
and Mohr’s circle, 394–398

plastic deformation, 390
pseudoelastic, hyperelastic, and

viscoelastic, 394
superelastic behavior, 394
terms (linear, nonlinear, elastic,

and plastic), 389
trajectories of tension and

compression lines, 400–402
von Mises stress or principal

stress, 398–400
Membrane elements, 110
Memory alloys, 394
Mesh density, 66
Mesh refinement, 317, 319–321
Modeling errors, 314–315

domain approximation error,
314

field variable approximation
error, 314

quadrature and arithmetic
error, 315

Modulus of elasticity, 40
Mohr’s circle, 395
Morrill Act, 9
Musculoskeletal concerns, problems

of, 362–363

N
Neumann boundary conditions, 18
Nonlinear elastic behavior, 392–394

O
One-dimensional (1D) elements,

Lagrange interpolation
formulas, 82–84
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One-dimensional (1D) problems, bar
elements for, 129–135

Order of element discretization, 69
Ordinary differential equation

(ODE), 15

P
Partial differential equation

(PDE), 15
for beam structures, 46–48
commonality for different

problems, 49
for hanging bar, 39–41
for heat transfer, 43–44
for mass diffusion, 44–45
strong-form, 120
for vibrating string, 41–42

Partial differential equations,
engineering problems and,
15–37

addition and subtraction, 27–28
connecting PDEs to the

engineering world, 19–27
constant versus nonconstant

coefficients, 16–17
cross product and curl of a field,

22–23
∇ operator, 19–20
dependent variables, 18
determinant, 30–31
diagonal matrix, 30
differential notations, 19–24
differentiation and

integration, 29
Dirichlet boundary

conditions, 18
divergence theorem, 22
dot product and divergence of a

field, 21–22
exercises, 33–37
gradient of a field, 20–21
identity matrix, 30
initial and boundary conditions,

18–19
Laplacian operator, 24

linear versus nonlinear
differential equations, 16

making plots using
MATLAB, 33

matrix algebra, review of, 27–33
matrix calculation using

MATLAB, 31–32
matrix inversion, 31
matrix–matrix

multiplication, 28
matrix partition, 31
multiplication by a scalar, 28
Neumann boundary

conditions, 18
order of differential

equations, 16
ordinary versus partial

differential equations, 15–16
Robins boundary conditions, 18
row and column vectors, 27
square matrix, 29
symmetric matrix, 30
transposition, 29
unknowns, 15

Partial differential equations,
generalized, 297–312

characteristic vectors, 305
consistent mass matrices, 301
dynamic stiffness matrix, 307
eigenvalues and eigenvectors,

305–306
elementary absorption

matrix, 303
elementary convection matrix,

303–304
elementary damping matrix,

302–303
elementary mass matrix

(consistent and lumped),
298–302

exercises, 310–312
free vibration, 306–310
fundamental frequency, 307
general form PDE and its

matrix equation, 297–305
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mass proportional damping, 302
solving the general matrix

equation, 304–305
vibration modes, 306

Pascal triangle, 72–73
Petrov–Galerkin (P–G) method, 57
Physical domains, discretization of,

63–117
dividing physical domains into

small elements, 63–65
exercises, 113–117
Hermite interpolation, 104–110
interpolation of field quantities

in a matrix form, 110–113
Lagrange interpolation

formulas, 81–103
linking nodal DOF to

polynomial functions, 67–71
mesh density, 66
nodal connectivity and degrees

of freedom, 65–67
order of element

discretization, 69
Pascal pyramid and 3D

elements, 73–75
Pascal triangle, 72–73
polynomial terms, choice of,

71–75
shape functions, 75–81
single-variable problems, 67

Plane stress situation, 193–194
Poisson’s equation 48
Polynomial functions, linking nodal

DOF to, 67–71
Premarket approval (PMA), 369
Principal stress, 398–400
Problems of biomedical and

regulatory interest, dealing
with, 361–386

bioengineering problems, other
types of, 363–364

CAD file formats, 366
calling for clinically relevant and

predictive modeling,
376–378

cancer development and
treatment, problems of, 363

circulatory concerns, problems
of, 363

computational bioengineering,
361–364

examining the pH drop in a
titanium crevice due to
corrosion, 382–386

hip implant, testing the femoral
stem of, 369–370

IGES format, 366
image-based modeling, 364–369
importing and meshing the

CAD geometry, 366
knee implant, testing the

femoral component of,
372–374

musculoskeletal concerns,
problems of, 362–363

round-robin test, 370–371
spinal implant assembly, testing

of, 374–376
STL format, 366
test standards and regulatory

processes, computational
modeling for enhancing,
369–378

transient hypoxia condition in
cornea due to contact lens
wear, 378–382

Pseudoelastic behavior, 394

Q
Quadrature and arithmetic

error, 315

R
Rate of convergence, 317
Regulatory interest, problems of, see

Problems of biomedical and
regulatory interest, dealing
with

Robins boundary conditions, 18
Round-robin test, 370–371
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S
Scalar field problems

(axisymmetric), 205–210
axisymmetry and FEM

formulation, 206–210
PDE in cylindrical coordinates,

205–206
Scalar field problems in higher

dimensions, 163–179
exercises, 176–179
FEM formulation for 2D scalar

field problems, 163–169
FEM formulation for 3D scalar

field problems, 170–176
types of 2D scalar field

problems, 169–170
types of 3D scalar field

problems, 176
Scalar field problems (2D

structures), elementary
[Ke] matrix for, 231–238

Scalar field problems (3D
structures), elementary
[Ke] matrix for, 250–256

Serendipity elements, 87–89
Shell elements, 110
Singular matrix, 31
Slender structures, isoparametric

elements for, 221–228
elementary [Ke] matrix for bar

elements, 224–226
elementary [Ke] matrix for

beam elements, 227–228
Jacobian of transformation, 224
shape and mapping functions

for bar elements, 221–224
shape and mapping functions

for beam elements, 226–227
Spinal implant assembly, testing of,

374–376
Square matrix, 29
Stiffness matrix, 122
STL (Stereo Lithography)

format, 366
Stress concentration, 319

Stress trajectories, 401
Superelastic behavior, 394
Symmetric matrix, 30

T
Taylor series, 406
Test standards and regulatory

processes, computational
modeling for enhancing,
369–378

calling for clinically relevant and
predictive modeling,
376–378

setting up the round-robin test,
370–371

testing the femoral component
of a knee implant, 372–374

testing the femoral stem of a
hip implant, 369–370

testing of a spinal implant
assembly, 374–376

Three-dimensional (3D) hexahedral
elements

Gauss quadrature for, 285–286
serendipity elements, 97–99

Three-dimensional (3D) solid
mechanics problems,
181–193

elementary [Ke] matrix for solid
mechanics problems,
189–193

FEM formulation, 187–188
free-body diagram and PDEs of

equilibrium, 181–183
weighted integral of residual,

183–187
Three-dimensional (3D) structures,

isoparametric elements for,
247–262

elementary [Ke] matrix for
scalar field problems,
250–256

elementary [Ke] matrix for
vector field problems,
256–262
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shape and mapping functions,
248–250

Three-dimensional (3D) tetrahedral
elements

Gauss quadrature for,
286–289

serendipity elements,
99–103

Three-dimensional (3D) truss
structures, bar elements
for, 141–147

Titanium crevice, pH drop in (due
to corrosion), 382–386

Transdiscipline, from
compartmentalized
disciplines to, 3–11

connecting the dots, 8
difference in learning that and

learning how, 7–8
exercises, 10–11
innovation, disappearing of

“low-hanging fruits” in, 4
integrative problem solving for

the twenty-first century,
4–5

jack of all trades, master of
none, 5–6

“land grants,” 9
reductive specialization for the

twentieth century, 3–4
seeking convergence beyond

engineering, 9–10
venturing out of our comfort

zones, 6
Zen’s way of seeing the world

(computational modeling
and), 8–9

Truss elements, 110
Two-dimensional (2D) quadrilateral

elements, Gauss quadrature
for, 275–280

2-point Gauss quadrature, 276
3-point Gauss quadrature,

277–280

Two-dimensional (2D) quadrilateral
elements, Lagrange
interpolation formulas,
84–87

Two-dimensional (2D) scalar field
problems, FEM formulation
for, 163–169

Two-dimensional (2D) solid
mechanics problems,
193–201

FEM formulation, 196–201
plane strain situation, 194–196
plane stress situation, 193–194

Two-dimensional (2D) structures,
isoparametric elements for,
228–247

elementary [Ke] matrix for
scalar field problems,
231–238

elementary [Ke] matrix for
vector field problems,
238–247

shape and mapping functions,
229–231

Two-dimensional (2D) triangular
elements Gauss quadrature
for, 280–284

integration in area coordinates,
283–284

locations and weights of Gauss
points, 281–283

Two-dimensional (2D) triangular
elements, serendipity
elements, 90–97

Two-dimensional (2D) truss
structures, bar elements
for, 135–141

U
Unknowns, 15
Useful mathematic knowledge,

403–412
cross product, 404–406
dot product, 403–404
Lagrange multipliers, 409–412
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proof of dA = det[J ]dξdη,
406–407

proof of dV = det[J ]dξdηdζ,
407–409

stress trajectories, 401
Taylor and Maclaurin series, 406

U.S. Food and Drug Administration
(FDA), 369

V
Vector field problems

(axisymmetric), 211–218
FEM formulation for

axisymmetric solid
mechanics, 214–218

PDEs of equilibrium in
cylindrical coordinates,
211–214

Vector field problems in higher
dimensions, 181–204

2D solid mechanics problems,
193–201

3D solid mechanics problems,
181–193

exercises, 201–204
Vector field problems (2D

structures), elementary
[Ke] matrix for,
238–247

Vector field problems (3D
structures), elementary
[Ke] matrix for,
256–262

Vibrating string, PDE for, 41–42
Vibration modes, 306
Viscoelastic material, 394
von Mises stress, 398–400

Y
Young’s modulus, 40, 122

Z
Zen philosophy, 9
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