

Building Embedded Linux Systems

Other Linux resources from O’Reilly

Related titles Designing Embedded
Hardware

Linux Device Drivers

Linux in a Nutshell

Linux Network Adminis-
trator’s Guide

Programming Embedded
Systems

Running Linux

Understanding the Linux
Kernel

Linux Books
Resource Center

linux.oreilly.com is a complete catalog of O’Reilly’s books on
Linux and Unix and related technologies, including sample
chapters and code examples.

ONLamp.com is the premier site for the open source web plat-
form: Linux, Apache, MySQL, and either Perl, Python, or PHP.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

,roadmap.18084 Page ii Wednesday, August 6, 2008 9:05 AM

SECOND EDITION

Building Embedded Linux Systems

Karim Yaghmour, Jon Masters, Gilad Ben-Yossef, and
Philippe Gerum

Tomcat ™

The Definitive Guide

Jason Brittain and Ian F. Darwin

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

main.title Page iii Monday, May 19, 2008 11:21 AM

Building Embedded Linux Systems, Second Edition
by Karim Yaghmour, Jon Masters, Gilad Ben-Yossef, and Philippe Gerum

Copyright © 2008 Karim Yaghmour and Jon Masters. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Loranah Dimant
Copyeditor: Genevieve d’Entremont
Proofreader: Loranah Dimant

Indexer: Joe Wizda
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Jessamyn Read

Printing History:
April 2003: First Edition.
August 2008: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Building Embedded Linux Systems, the image of a windmill, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-52968-0

[M]

1218037492

http://safari.oreilly.com

Table of Contents

Preface . ix

1. Introduction . 1
Definitions 2
Real Life and Embedded Linux Systems 5
Design and Implementation Methodology 27

2. Basic Concepts . 33
Types of Hosts 33
Types of Host/Target Development Setups 39
Types of Host/Target Debug Setups 41
Generic Architecture of an Embedded Linux System 43
System Startup 47
Types of Boot Configurations 48
System Memory Layout 51

3. Hardware Support . 55
Processor Architectures 56
Buses and Interfaces 64
I/O 72
Storage 79
General-Purpose Networking 81
Industrial-Grade Networking 83
System Monitoring 85

4. Development Tools . 87
A Practical Project Workspace 89
GNU Cross-Platform Development Toolchain 91
C Library Alternatives 115
Java 129
Perl 131
Python 134

v

Other Programming Languages 135
Eclipse: An Integrated Development Environment 135
Terminal Emulators 147

5. Kernel Considerations . 155
Selecting a Kernel 156
Configuring the Kernel 161
Compiling the Kernel 165
Installing the Kernel 167
In the Field 169

6. Root Filesystem Content . 173
Basic Root Filesystem Structure 173
Libraries 177
Kernel Modules 183
Kernel Images 183
Device Files 184
Main System Applications 193
Custom Applications 201
System Initialization 201

7. Storage Device Manipulation . 209
MTD-Supported Devices 209
Disk Devices 231
To Swap or Not To Swap 234

8. Root Filesystem Setup . 235
Filesystem Types for Embedded Devices 235
Writing a Filesystem Image to Flash Using an NFS-Mounted Root Filesystem

254
Placing a Disk Filesystem on a RAM Disk 254
Rootfs and Initramfs 255
Choosing a Filesystem’s Type and Layout 258
Handling Software Upgrades 261

9. Setting Up the Bootloader . 273
Embedded Bootloaders 274
Server Setup for Network Boot 278
Using the U-Boot Bootloader 285

10. Setting Up Networking Services . 301
Network Settings 302

vi | Table of Contents

Busybox 303
Dynamic Configuration Through DHCP 303
The Internet Super-Server 305
Remote Administration with SNMP 309
Network Login Through Telnet 312
Secure Communication with SSH 314
Serving Web Content Through HTTP 317
Provisioning 321

11. Debugging Tools . 325
Eclipse 326
Debugging Applications with gdb 328
Tracing 333
Performance Analysis 336
Memory Debugging 344
A Word on Hardware Tools 348

12. Introduction to Real-Time Linux . 351
What Is Real-Time Processing? 351
Should Your Linux Be Real-Time? 352
Common Real-Time Kernel Requirements 356
Some Typical Users of Real-Time Computing Technology 358
The Linux Paths to Real-Time 360

13. The Xenomai Real-Time System . 365
Porting Traditional RTOS Applications to Linux 366
The Xenomai Architecture 368
How Xenomai Works 375
The Real-Time Driver Model 379
Xenomai, Chameleon by Design 385

14. The RT Patch . 387
Interrupts As Threads 388
Priority Inheritance 398
Configuring the Kernel with the RT Patch 401
High-Resolution Timers 407
The Latency Tracer 410
Conclusion 417

Index . 419

Table of Contents | vii

When the author of this book’s first edition, Karim Yaghmour, first suggested using
Linux in an embedded system back in 1997 while working for a hardware manufacturer,
his suggestion was met with a certain degree of skepticism and surprise. Today, Linux
is either in use already or is being actively considered for most embedded systems.
Indeed, many industry giants and government agencies are increasingly relying on
Linux for their embedded software needs.

This book was very well received in its first edition, but a number of advances in the
Linux kernel and accompanying tools since the book’s appearance make Linux even
more attractive. Foremost among these are a number of real-time extensions and com-
panion environments, some of which are discussed in the last three chapters of this
edition.

Also, since the first edition of this book, enthusiastic open source and free software
programmers have simplified the building and installation of GNU/Linux components
(we use “GNU” here to acknowledge the centrality of tools from this free software
project in creating functional Linux systems). This second edition therefore introduces
you to a world of wonderful high-level tools, including Eclipse and various tools that
“build the build tools” for embedded Linux systems. But we preserve much of the low-
level information for those who need it, and to help you understand what the helper
tools are doing behind the scenes.

In keeping with the explosions of progress on various parts of Linux and accompanying
tools, it’s useful to get a variety of expert perspectives on topics in embedded and real-
time Linux. Therefore, for the second edition of this book the authors are joined by a
number of key participants in the GNU/Linux community, including those doing ker-
nel development or creating related projects.

Preface

ix

Focus on Self-Sufficiency
The widespread interest and enthusiasm generated by Linux’s successful use in a num-
ber of embedded applications has led to the creation of a plethora of articles, websites,
companies, and documents all pertaining to “embedded Linux.” Yet, beyond the flashy
announcements, the magazine articles, and the hundreds of projects and products that
claim to ease Linux’s use in embedded systems, professional developers seeking a useful
guide are still looking for answers to fundamental questions regarding the basic meth-
ods and techniques required to build embedded systems based on the Linux kernel.

Much of the documentation currently available relies heavily on the use of a number
of prepackaged, ready-to-use cross-platform development tools and target binaries. Yet
other documents cover only one very precise aspect of running Linux on an embedded
target.

The first edition of this book was a radical departure from the existing documentation
in that, other than your desire to use Linux, it makes no assumptions as to the tools
you have at hand or the scope of your project. All that is required for this book is an
Internet connection to download the necessary packages, browse specific online doc-
umentation, and benefit from other developers’ experiences, as well as share your own,
through project mailing lists. You still need a development host and documentation
regarding your target’s hardware, but the explanations we outline do not require the
purchasing of any product or service from any vendor.

Besides giving the greatest degree of freedom and control over your design, this ap-
proach is closest to that followed by the pioneers who have spearheaded the way for
Linux’s use in embedded systems. In essence, these pioneers have pulled on Linux to
fit their applications by stripping it down and customizing it to their purposes. Linux’s
penetration of the embedded world contrasts, therefore, with the approach followed
by many software vendors to push their products into new fields of applications. As an
embedded system developer, you are likely to find Linux much easier to pull toward
your design than to adapt the products being pushed by vendors to that same design.

This book’s approach is to allow you to pull Linux toward your design by providing
all the details and discussing many of the corner cases encountered when using Linux
in embedded systems. Although it is not possible to claim that this book covers all
embedded designs, the resources provided here allow you to easily obtain the rest of
the information required for you to customize and use Linux in your embedded system.

In writing this book, our intent was to bring the embedded system developers who use
open source and free software in their designs closer to the developers who create and
maintain these open source and free software packages. Though a lot of mainstream
embedded system developers—many of whom are high-caliber programmers—rely on
third-party offerings for their embedded Linux needs, there is a clear opportunity for
them to contribute to the open source and free software projects on which they rely.

x | Preface

Ultimately, this sort of dynamic will ensure that Linux continues to be the best oper-
ating system choice for embedded systems.

Audience for This Book
This book is intended first and foremost for the experienced embedded system designer
who wishes to use Linux in a current or future project. Such a reader is expected to be
familiar with all the techniques and technologies used in developing embedded systems,
such as cross-compiling, BDM or JTAG debugging, and the implications of dealing
with immature or incomplete hardware. If you are such a reader, you may want to skip
some of the background material about embedded system development presented early
in some sections. There are, however, many early sections (particularly in Chapter 2)
that you will need to read, because they cover the special implications of using the
Linux kernel in an embedded system.

This book is also intended for the beginning embedded system developer who would
like to become familiar with the tools and techniques used in developing embedded
systems based on Linux. This book is not an introduction to embedded systems, how-
ever, and you may need to research some of the issues discussed here in an introductory
textbook.

If you are a power user or a system administrator already familiar with Linux, this book
should help you produce highly customized Linux installations. If you find that distri-
butions install too many packages for your liking, for example, and would like to build
your own custom distribution from scratch, many parts of this book should come in
handy, particularly Chapter 6.

Finally, this book should be helpful to a programmer or a Linux enthusiast who wants
to understand how Linux systems are built and operated. Though the material in this
book does not cover how general-purpose distributions are created, many of the tech-
niques covered here apply, to a certain extent, as much to general purpose distributions
as they do to creating customized embedded Linux installations.

Scope and Background Information
To make the best of Linux’s capabilities in embedded systems, you need background
in all of the following topics (which are treated distinctly in many books):

Embedded systems
You need to be familiar with the development, programming, and debugging of
embedded systems in general, from both the software and hardware perspectives.

Unix system administration
You need to be able to tend to various system administration tasks such as hardware
configuration, system setup, maintenance, and using shell scripts to automate
tasks.

Preface | xi

Linux device drivers
You need to know how to develop and debug various kinds of Linux device drivers.

Linux kernel internals
You need to understand as much as possible how the kernel operates.

GNU software development tools
You need to be able to make efficient use of the GNU tools. This includes under-
standing many of the options and utilities often considered to be “arcane.”

We assume that you are familiar with at least the basic concepts of each topic. On the
other hand, you don’t need to know how to create Linux device drivers to read this
book, for example, or know everything about embedded system development. As you
read through this book and progress in your use of Linux in embedded systems, you
will likely feel the need to obtain more information regarding certain aspects of Linux’s
use.

Though this book discusses only the use of Linux in embedded systems, part of this
discussion can certainly be useful to developers who intend to use one of the BSD
variants in their embedded system. Many of the explanations included here will, how-
ever, need to be reinterpreted in light of the differences between BSD and Linux.

Organization of the Material
There are four major parts to this book. The first part is composed of Chapters 1
through 3. These chapters cover the preliminary background required for building any
sort of embedded Linux system. Though they describe no hands-on procedures, they
are essential to understand many aspects of building embedded Linux systems.

The second part spans Chapters 4 through 9. These important chapters lay out the
essential steps involved in building any embedded Linux system. Regardless of your
system’s purpose or functionality, these chapters are required reading.

The third part of the book, which ended the first edition, is made up of Chapters 10
and 11 and covers material that, athough very important, is not essential to building
embedded Linux systems.

The final part of the book, comprised of Chapters 12 through 14, is an in-depth dis-
cussion of real-time, including its different applications and when you should consider
the various implementations and varieties available. We are lucky and honored to have
chapters written by the implementors of the Xenomai cokernel and the RT patch to the
Linux kernel.

Chapter 1, Introduction, gives an in-depth introduction to the world of embedded Li-
nux. It lays out basic definitions and then introduces real-life issues about embedded
Linux systems, including a discussion of open source and free software licenses from
the embedded perspective. The chapter then introduces the example system used in
other parts of this book and the implementation method used throughout the book.

xii | Preface

Chapter 2, Basic Concepts, outlines the basic concepts that are common to building all
embedded Linux systems.

Chapter 3, Hardware Support, provides a thorough review of the embedded hardware
supported by Linux, and gives links to websites where the drivers and subsystems im-
plementing this support can be found. This chapter discusses processor architectures,
buses and interfaces, I/O, storage, general-purpose networking, industrial grade net-
working, and system monitoring.

Chapter 4, Development Tools, covers the installation and use of the various develop-
ment tools used in building embedded Linux systems. This includes a discussion of
Eclipse for embedded Linux development, and how to build and install the GNU tool-
chain components from scratch. It also includes sections discussing Java, Perl, Python,
and other languages, along with a section about the various terminal emulators that
can be used to interact with an embedded target.

Chapter 5, Kernel Considerations, discusses the selection, configuration, cross-
compiling, installation, and use of the Linux kernel in an embedded system.

Chapter 6, Root Filesystem Content, updated for the second edition by Michael
Opdenacker, explains how to build a root filesystem using the components introduced
earlier in the book, including the installation of the C library and the creation of the
appropriate /dev entries. More importantly, this chapter covers the installation and use
of BusyBox, embutils, and System V init.

Chapter 7, Storage Device Manipulation, updated for the second edition by kernel
developer David Woodhouse, covers the intricacies of manipulating and setting up
storage devices for embedded Linux systems. The chapter’s emphasis is on solid-state
storage devices, such as native flash and DiskOnChip devices, and the MTD subsystem.

Chapter 8, Root Filesystem Setup, explains how to set up the root filesystem created in
Chapter 6 for the embedded system’s storage device. This includes the creation of
filesystem images (based on JFFS2, CRAMFS, or other specialized filesystems), and the
use of disk-style filesystems over NFTL.

Chapter 9, Setting Up the Bootloader, discusses the various bootloaders available for
use in each embedded Linux architecture. Special emphasis is put on the use of GRUB
with DiskOnChip devices and U-Boot. Network booting using BOOTP/DHCP, TFTP,
and NFS is also covered.

Chapter 10, Setting Up Networking Services, focuses on the configuration, installation,
and use of software packages that offer networking services, such as SNMP, SSH, and
HTTP.

Chapter 11, Debugging Tools, updated for the second edition by Michael Boerner, cov-
ers the main debugging issues encountered in developing software for embedded Linux
systems. This includes the use of gdb in a cross-platform development environment,
Eclipse, tracing, performance analysis, and memory debugging.

Preface | xiii

Chapter 12, Introduction to Real-Time Linux, explains the value of real-time and offers
a candid discussion of when you need various real-time features, along with an intro-
duction to the various ways you can achieve real-time behaviors using Linux. This
chapter was written by the founder and maintainer of the Xenomai Real-Time System,
Philippe Gerum.

Chapter 13, The Xenomai Real-Time System, also written by Philippe Gerum, offers a
high-level view of how Xenomai achieves real-time goals and how it can be useful in
conjunction with embedded Linux.

Chapter 14, The RT Patch, performs a similar function for the RT patch to the Linux
kernel, explaining how to enable its features. The chapter was written by Steven Ros-
tedt, a key developer on the patch.

Although Chapters 7 through 9 are independent, note that their content is highly
interrelated. For example, setting up the target’s storage device, as discussed in Chap-
ter 7, requires a basic knowledge about the target filesystem organization as discussed
in Chapter 8, and vice versa. So, too, does setting up storage devices require a basic
knowledge of bootloader setup and operation as discussed in Chapter 9, and vice versa.
We therefore recommend that you read Chapters 7 through 9 in one breath a first time
before carrying out the instructions in any of them. When setting up your target there-
after, you will nevertheless follow the same sequence of operations outlined in these
chapters.

Hardware Used in This Book
As you’ll see in Chapter 3, Linux supports a very wide range of hardware. For this book,
we’ve used a number of embedded systems to test the various procedures. Some of
these systems, such as the OpenMoko-based NEO 1973, are commercial products
available in the mainstream market. We included these intentionally, to demonstrate
that any willing reader can find the materials to support learning how to build embed-
ded Linux systems. You can, of course, still use an old x86 PC for experimenting, but
you are likely to miss much of the fun, given the resemblance between such systems
and most development hosts.

To illustrate the range of target architectures on which Linux can be used, we varied
the target hardware we used in the examples between chapters. Though some chapters
are based on different architectures, the commands given in each chapter apply readily
to other architectures as well. If, for instance, an example in a chapter relies on the
arm-linux-gcc command, which is the gcc compiler for ARM, the same example would
work for a PPC target by using the powerpc-linux-gcc command instead. Whenever
more than one architecture is listed for a chapter, the main architecture discussed is
the first one listed. The example commands in Chapter 5, for instance, are mainly
centered around PowerPC, but there are also a few references to ARM commands.

xiv | Preface

Unless specific instructions are given to the contrary, the host’s architecture is always
different from the target’s. In Chapter 4, for example, we used a PPC host to build tools
for an x86 target. The same instructions could, nevertheless, be carried out on a SPARC
or an S/390 with little or no modification. Note that most of the content of the early
chapters is architecture- independent, so there is no need to provide any architecture-
specific commands.

Software Versions
The central software on which an embedded Linux system depends, of course, is the
Linux kernel. This book concentrates on version 2.6 of the Linux kernel, and 2.6.22 in
particular. Changes to the kernel will probably have only a benign effect on the infor-
mation in the book. That is, new releases will probably support more hardware than
Chapter 3 lists. But the essential tasks described in this book are unlikely to change.

In addition, this book discusses the configuration, installation, and use of over 40 dif-
ferent open source and free software packages. Each package is maintained independ-
ently and is developed at a different pace. Because these packages change over time, it
is likely that the package versions covered in this book may be outdated by the time
you read it. In an effort to minimize the effect of software updates on the text, we have
kept the text as version-independent as possible. The overall structure of the book and
the internal structure of each chapter, for example, are unlikely to vary regardless of
the various software changes. Also, many packages covered in this book have been
around for quite some time, so they are unlikely to change in any substantial way. For
instance, the commands to install, set up, and use the different components of the GNU
development toolchain, which is used throughout this book, have been relatively con-
stant for a number of years and are unlikely to change in any substantial way in the
future. This statement applies equally to most other software packages discussed.

Typographical Conventions
The following is a list of typographical conventions used in this book:

Constant width
Used to show the contents of code files or the output from commands, and to
indicate source code keywords that appear in code.

Constant width bold
Used to indicate user input.

Italic
Used for file and directory names, program and command names, command-line
options, URLs, and for emphasizing new terms.

Preface | xv

This icon indicates a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Building Embedded Linux Systems, by Kar-
im Yaghmour, Jon Masters, Gilad Ben-Yossef, and Philippe Gerum. Copyright 2008
Karim Yaghmour and Jon Masters, 978-0-596-52968-0.”

Contact Information
Please address comments and questions concerning this book to the publisher:

O’Reilly Media.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596529680

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

xvi | Preface

http://www.oreilly.com/catalog/9780596529680

http://www.oreilly.com

The authors also have a site for this book at:

http://www.embeddedlinuxbook.org/

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

Acknowledgments for the First Edition
E quindi uscimmo a riveder le stelle.* It is with these words that Dante ends Inferno, the
first part of his Divine Comedy. Though it would be misleading to suggest that writing
this book wasn’t enjoyable, Dante’s narrative clearly expresses the feeling of finishing
a first iteration of the book you now hold in your hands. In particular, I have to admit
that it has been a challenging task to pick up the bits and pieces of information available
on the use of Linux in embedded systems, to complete this information in as much as
possible, and put everything back together in a single, straightforward manuscript that
provides a practical method for building embedded Linux systems. Fortunately, I was
aided in this task by very competent and willing people.

First and foremost, I would like to thank Andy Oram, my editor. Much like Virgil
assisted Dante in his venture, Andy shepherded me throughout the various stages of
writing this book. Among many other things, he patiently corrected my nonidiomatic
phrases, made sure that my text actually conveyed the meaning I meant for it to convey,
and relentlessly pointed out the sections where I wasn’t providing enough detail. The
text you are about to read is all the much better, as it has profited from Andy’s input.
By the same token, I would like to thank Ellen Siever, with whom I initially started
working on this book. Though our collaboration ended earlier than I wished it had,
many of the ideas that have made their way into this final version of the book have
profited from her constructive feedback.

I have been extremely fortunate to have an outstanding team of reviewers go over this
book, and am very grateful for the many hours they poured into reading, correcting,
and pointing out problems with various aspects of this book. The review team was

* “And from there we emerged to see the stars once more.”

Preface | xvii

http://www.oreilly.com
http://www.embeddedlinuxbook.org/
http://safari.oreilly.com

made up of Erik Andersen, Wolfgang Denk, Bill Gatliff, Russell King, Paul Kinzelman,
Alessandro Rubini, David Schleef, and David Woodhouse. I’d like to especially thank
Alessandro for his dogged pursuit of perfection. Any remaining errors you may find in
the following pages are without a doubt all mine.

Writing about the use of Linux in embedded systems requires having access to a slew
of different hardware. Given that embedded hardware is often expensive, I would like
to thank all the companies and individuals who have stepped forward to provide me
with the appropriate equipment. In particular, I would like to thank Stéphane Martin
of Kontron for providing a Teknor VIPer 806 board, Wolfgang Denk of DENX Software
Engineering for providing a TQ components TQM860L PPC board, and Steve Papa-
charalambous and Stuart Hughes of Zee2 for providing a uCdimm system.

I have found much of the incentive and thrust for writing this book from being a very
satisfied open source and free software user and contributor who has profited time and
again from the knowledge and the work produced by other members of this commun-
ity. For this, I have many people to thank. Primarily, I’d like to thank Michel Dagenais
for his trust, his guidance, and for giving me the chance to freely explore uncharted
terrain. My work on developing the Linux Trace Toolkit, as part of my masters degree
with Michel, got me more and more involved in the open source and free software
community. As part of this involvement, I have met a lot of remarkable individuals
whose insight and help I greatly appreciate. Lots of thanks to Jacques Gélinas, Richard
Stallman, Jim Norton, Steve Papacharalambous, Stuart Hughes, Paolo Mantegazza,
Pierre Cloutier, David Schleef, Wolfgang Denk, Philippe Gerum, Loic Dachary, Daniel
Phillips, and Alessandro Rubini.

Last, but certainly not least, I owe a debt of gratitude to Sonia for her exceptional
patience as I spent countless hours testing, writing, testing some more, and writing
even more. Her support and care have made this endeavor all the more easy to carry
out. La main invisible qui a écrit les espaces entre les lignes est la sienne et je lui en suis
profondément reconnaissant.†

Acknowledgments for the Second Edition
When Karim first mentioned updating Building Embedded Linux Systems, I could not
have imagined what a fun and wild ride it would be. I was in the final stages of moving
from the U.K. to the U.S. at the time, and life was pretty hectic for quite a while. Along
the way, some great friends and coauthors have helped to turn an idea into the reality
of the book that you are now reading. And we collectively hope that we have served to
increase the range of documentation available on embedded Linux.

† “The invisible hand that wrote the spaces between each line is hers, and I am profoundly grateful to her for
this.”

xviii | Preface

First and foremost, I would like to thank my friend Karim Yaghmour for letting me run
amock with his original manuscript, Andy Oram for his patient advice and editorial
wizardry, and Isabel Kunkle for assisting Andy in putting up with a bunch of authors
with busy schedules. I would also like to thank Marlowe Shaeffer and the team at
O’Reilly for their steadfast attention to detail, especially near the end of the project.

I would like to thank my coauthors for stepping up to the plate and helping to see this
project through: Michael Boerner, Michael Opdenacker, Steven Rostedt, Gilad Ben-
Yossef (CTO, Codefidence Ltd.), Phillipe Gerum, and David Woodhouse. I’ve known
most of you for many years, even if we only get to meet once a year at the Linux Sym-
posium, and I am grateful that you have helped to improve the overall quality of this
book. In a similar vain, I am grateful to the review comments from Tim Rikers, Vince
Skahan, and Mark VandenBrink, as well as the many others I have occasionally spoken
with about this book. But all that said, any remaining mistakes and technical omissions
are entirely my responsibility, though we hope there are few.

Embedded Linux would mean nothing without the hard work of many thousands of
people all over the world. Some of those people have gotten involved in the first or
second editions of this book, while there are many, many more people out there helping
to make Linux the most valuable and viable choice for embedded developers. It would
be tricky to even attempt to list these people by name, and so I would like to instead
offer my most sincere thanks to everyone concerned—I’d also like to encourage readers
to thank those who provide the upstream for their development projects. Please do also
encourage your employers and customers to do the same through whatever means you
feel is most appropriate.

I would like to thank my friends and family for their never-ending support of my many
pursuits and random craziness. My mum and dad rarely see me these days (I live 3,000
miles away in another country, on an awkward time delay) but have always been the
best parents you could wish for, in spite of their son turning out to be a “traitor’s dog”
(thanks, dad, for your whimsical historical insight right there!) who joined the Amer-
icans. My sister Hannah and brother-in-law Joe Wrigley (another Red Hatter!) have
always been amazing, as has my youngest sister Holly. My grandmother keeps me
informed of family goings on with her letters, which I always look forward to reading
far away from a computer.

Many friends contributed to the overall success of this project without even realizing
it. They include Deepak Saxena, Hussein Jodiyawalla, Bill Weinberg, Alison Cornish,
Grace Mackell, Andrew Schliep, Ginger Diercks, Kristin Mattera and James Saunders,
Karen Hopkins, Andrew Hutton, and Emilie Moreau (and also Denali and Nihao),
Madeleine and Chris Ball, Tim Burke, Lon Hohberger, Chris Lumens, Jon Crowe, Ra-
chel Cox, Catherine Nolan, Toby Jaffey (and Sara and Milly), David Brailsford, Jeff and
Nicole Stern, Catherine Davis, Mary-Kay and Luke Jensen, Philippe De Swert, Matt
Domsch, Grant Likely (of Secret Lab), Hetal Patel, Mark Lord, Chris Saul, Dan Scrase,
and David Zeuthen. A special thanks to Sven-Thorsten Dietrich and Aaron Nielson for
their like-minded craziness at just the right moments.

Preface | xix

Finally, I am very grateful to my good friend David Brailsford of the University of Not-
tingham, and to Malcolm Buckingham and Jamie McKendry of Oxford Instruments
for believing in me and letting me experiment with Linux and superconducting mag-
nets, and to Ian Graham of MontaVista UK Ltd. for the opportunity to work on some
great projects during my time there. I also owe Andrew Hutton and Craig Ross of
Steamballoon (and organizers of Linux Symposium) thanks for their support of my
embedded endeavors over the years. I would especially like to thank Gary Lamb (Global
Engineering Services—our embedded team), Clark Williams, and Tim Burke of Red
Hat, Inc. for their continued support, as well as all of my friends at Red Hat and at
other great Linux companies.

—Jon Masters, Cambridge, Massachusetts

xx | Preface

Linux was first released into an unsuspecting world in the summer of 1991. Initially
the spare-time hobby of a Finnish computer scientist by the name of Linus Torvalds,
Linux was at first accessible only in software source code form to those with enough
expertise to build and install it. Early enthusiasts (most also developers themselves by
necessity) exploited the growth of the Internet in the early 1990s as a means to build
online communities and drive development forward. These communities helped to
build the first Linux software distributions, containing all the software components
needed to install and use a Linux system without requiring users to be technical experts.

Over the next decade, Linux grew into the mature Unix-like operating system it is today.
Linux now powers anything and everything from the smallest handheld gadget to the
largest supercomputing cluster, and a nearly infinite range of different devices in be-
tween. Examples of the wide range of Linux use abound all around: digital TV receivers
and recorders such as TiVo, cell phones from big names like Motorola, Hollywood’s
huge Linux “render farms” (used to generate many of the recent CGI movies we have
seen), and household name websites such as Google. In addition, a growing number
of multinational corporations have successfully built businesses selling Linux
software.

In many ways, Linux came along at the right moment in time. But it owes a lot of its
success to the work of projects that came before it. Without the hard work of Richard
Stallman and the Free Software Foundation (FSF) over the decade prior to Linux ar-
riving on the scene, many of the tools needed to actually build and use a Linux system
would not exist. The FSF produced the GNU C Compiler (GCC) and many of the other
tools and utilities necessary for building your own embedded Linux systems from
scratch, or at least from pre-built collections of these tools that are supplied by third-
party vendors. Software maintained by the Free Software Foundation comprises a col-
lection known as GNU, for “GNU’s Not UNIX,” also known (to some) as the GNU
system. This stemmed from the FSF’s stated goal to produce a free Unix-like system.

CHAPTER 1

Introduction

1

Embedded systems running Linux are the focus of this book. In many ways, these are
even more ubiquitous than their workstation and server counterparts—mostly due to
the sheer volume of devices and consumer gadgets that rely upon Linux for their
operation. The embedded space is constantly growing with time. It includes obvious
examples, such as cellular telephones, MP3 players, and a host of digital home enter-
tainment devices, but also less-obvious examples, such as bank ATMs, printers, cars,
traffic signals, medical equipment, technical diagnostic equipment, and many, many
more. Essentially, anything with a microprocessor that is not considered a “computer”
but performs some kind of function using computing is a form of embedded system.

If you are reading this book, you probably have a basic idea why one would want to
run an embedded system using Linux. Whether because of its flexibility, its robustness,
its price tag, the community developing it, or the large number of vendors supporting
it, there are many reasons for choosing to build an embedded system with Linux and
many ways to carry out the task. This chapter provides the background for the material
presented in the rest of the book by discussing definitions, real-life issues, generic em-
bedded Linux systems architecture, and methodology. This chapter sets the stage for
later chapters, which will build upon concepts introduced here.

Definitions
The words “Linux,” “embedded Linux,” and “real-time Linux” are often used with
little reference to what is actually being designated with such terminology. Sometimes,
the designations may mean something very precise, whereas other times, a broad range
or a category of application is meant. In this section, you will learn what the use of
these terms can mean in a variety of different situations—starting with the many mean-
ings of “Linux.”

What Is Linux?
Technically speaking, Linux refers only to an operating system kernel originally written
by Linus Torvalds. The Linux kernel provides a variety of core system facilities required
for any system based upon Linux to operate correctly. Application software relies upon
specific features of the Linux kernel, such as its handling of hardware devices and its
provision of a variety of fundamental abstractions, such as virtual memory, tasks
(known to users as processes), sockets, files, and the like. The Linux kernel is typically
started by a bootloader or system firmware, but once it is running, it is never shut down
(although the device itself might temporarily enter a low-powered suspended state).
You will learn more about the Linux kernel in Chapter 5.

These days, the term “Linux” has become somewhat overloaded in everyday commu-
nication. In large part, this is due to its growing popularity—people might not know
what an operating system kernel is or does, but they will have perhaps heard of the
term Linux. In fact, Linux is often used interchangeably in reference to the Linux kernel

2 | Chapter 1: Introduction

itself, a Linux system, or an entire prebuilt (or source) software distribution built upon
the Linux kernel and related software. Such widely varying usage can lead to difficulties
when providing technical explanations. For example, if you were to say, “Linux pro-
vides TCP/IP networking,” do you mean the TCP/IP stack implementation in the Linux
kernel itself, or the TCP/IP utilities provided by a Linux distribution using the Linux
kernel, or all of the above?

The broadness of the usage of the term has led to calls for a greater distinction between
uses of the term “Linux.” For example, Richard Stallman and the Free Software Foun-
dation often prefix “GNU/” (as in “GNU/Linux”) in order to refer to a complete system
running a Linux kernel and a wide variety of GNU software. But even terms such as
these can be misleading—it’s theoretically possible to build a complete Linux-based
system without GNU software (albeit with great difficulty), and most practical Linux
systems make use of a variety of both GNU and non-GNU software. Despite the con-
fusion, as more people continue to hear of Linux, the trend is toward a generalization
of the term as a reference to a complete system or distribution, running both GNU and
non-GNU software on a Linux kernel. If a friend mentions that her development team
is using Linux, she probably means a complete system, not a kernel.

A Linux system may be custom built, as you’ll see later, or it can be based on an already
available distribution. Despite a growth in both the availability of Linux distributions
targeted at embedded use, and their use in embedded Linux devices, your friend’s
development team may well have custom built their own system from scratch (for rea-
sons explained later in this book). Conversely, when an end user says she runs Linux
on the desktop, she most likely means that she installed one of the various distributions,
such as Red Hat Enterprise Linux (RHEL), SuSE Linux Enterprise Server (SLES),
Ubuntu Linux, or Debian GNU/Linux. The end user’s running Linux system is as much
a Linux system as that of your friend’s, but apart from the kernel, their systems most
likely have very different purposes, are built from very different software packages, and
run very different applications.

When people use the term Linux in everyday conversation, they usually are referring
to a Linux distribution, such as those just mentioned. Linux distributions vary in pur-
pose, size, and price, but they share a common goal: to provide the user with a pre-
packaged, shrinkwrapped set of files and an installation procedure to get the kernel
and various overlaid software installed on a certain type of hardware for a certain pur-
pose. In the embedded space, a variety of embedded Linux distributions are available,
such as those from MontaVista, Wind River, Timesys, Denx, and other specialist ven-
dors. These specialist embedded Linux distributions are generally not targeted at ge-
neric desktop, workstation, or server use like their “mainstream” counterparts. This
means that they typically won’t include software that is not suited for embedded use.

Beginning with the next chapter and throughout the remainder of this book, we will
frequently avoid referring to the word “Linux” on its own. Instead, we will generally
refer directly to the object of discussion, so rather than talking about the “Linux kernel,”
the “Linux system,” and the “Linux distribution,” we will generally refer only to the

Definitions | 3

“kernel,” the “system,” and the “distribution,” respectively. In each of these circum-
stances, “Linux” is obviously implied. We will use the term “Linux,” where appropri-
ate, to designate the broad range of software and resources surrounding the kernel.

What Is Embedded Linux?
Embedded Linux typically refers to a complete system, or in the context of an embedded
Linux vendor, to a distribution targeted at embedded devices. Although the term “em-
bedded” is often also used in kernel discussions (especially between developers who
have “embedded concerns”—words often used in the community), there is no special
form of the Linux kernel targeted at embedded applications. Instead, the same Linux
kernel source code is intended to be built for the widest range of devices, workstations,
and servers imaginable, although obviously it is possible to configure a variety of op-
tional features according to the intended use of the kernel. For example, it is unlikely
that your embedded device will feature 128 processors and terrabytes of memory, and
so it is possible to configure out support for certain features typically found only on
larger Linux systems. Chapter 5 covers the kernel in much greater detail, including
where to get source code, embedded concerns, and how to build it yourself.

In the context of embedded development, you will typically encounter embedded Linux
systems—devices that use the Linux kernel and a variety of other software—and em-
bedded Linux distributions—a prepackaged set of applications tailored for embedded
systems and development tools to build a complete system. It is the latter that you are
paying for when you go to an embedded Linux vendor. They provide development tools
such as cross-compilers, debuggers, project management software, boot image build-
ers, and so on. A growing number of vendors have chosen to integrate much of this
functionality into customized plug-ins for their own versions of the community-
developed Eclipse graphical IDE framework, which you will learn more about later in
this book.

Whether you use a vendor is entirely up to you—few of the examples mentioned in
this book will make any assumption as to your reliance or otherwise on a Linux vendor.
In fact, much of this book is intended to equip you to build your own tools and tailored
Linux distributions. This helps both those who want to use vendor supplied tools and
those who do not. Understanding is key in either case, since greater understanding will
help you to get more done faster. The bottom line is, of course, about time and resour-
ces. Even though this book will help you, should you wish to go it alone, you may
choose to buy into an embedded Linux vendor as a way to reduce your product time
to market (and to have someone to yell at if things don’t work out according to plan).

This book exclusively discusses embedded Linux systems, and therefore there is no
need to keep repeating “embedded Linux” in every name. In general, we will refer to
the host system used for developing the embedded Linux system as the “host system,”
or “host” for short. The target, which will be the embedded Linux system, will be
referred to as the “target system,” or “target.” Distributions providing development

4 | Chapter 1: Introduction

frameworks will be referred to as “development distributions” or something similar.
This kind of nomenclature should be familiar to anyone who has experience working
with embedded systems.* Distributions that provide tailored software packages will be
referred to as “target distributions.”

What Is Real-Time Linux?
Initially, “Real-Time Linux” uniquely designated the RTLinux project released in 1996
by Michael Barabanov under Victor Yodaiken’s supervision. The original goal of the
project was to provide a mechanism for deterministic response times under a Linux
environment. Later, the project was expanded to support much more than the originally
intended applications, and today supports a variety of non-embedded uses, such as
real-time stock market trading systems and other “enterprise” applications. RTLinux
was sold to Wind River in early 2007.

Today, there are several other big name real-time projects for Linux, including one that
is aiming to add real-time support to the official Linux kernel. You will learn much
more about these projects in the latter chapters of this book (Chapter 12 onward),
including coverage of some of the innovative concepts and development ideas being
worked on. Of course, by the time you read this book much of this technology may be
even more commonplace than it is now, especially once real-time capabilities are avail-
able in every kind of Linux system installed from here to Timbuktu.

Real Life and Embedded Linux Systems
What types of embedded systems are built with Linux? Why do people choose Linux?
What issues are specific to the use of Linux in embedded systems? How many people
actually use Linux in their embedded systems? How do they use it? All these questions
and many more come to mind when pondering the use of Linux in an embedded system.
Finding satisfactory answers to the fundamental questions is an important part of
building the system. This isn’t just a general statement. These answers will help you
convince management, assist you in marketing your product, and most of all, enable
you to evaluate whether your initial expectations have been met.

Types of Embedded Linux Systems
We could use the traditional segments of embedded systems such as aerospace, auto-
motive systems, consumer electronics, telecom, and so on to outline the types of em-
bedded Linux systems, but this would provide no additional information in regard to
the systems being designated, because embedded Linux systems may be similarly
structured regardless of the market segment. Rather, let us instead classify embedded

* It would be tempting to call these “host distributions,” but as you’ll see later, some developers choose to
develop directly on their target, hence the preference for “development distributions.”

Real Life and Embedded Linux Systems | 5

systems by the criteria that will provide actual information about the structure of the
system: size, time constraints, networkability, and degree of intended user interaction
with the final system. The following sections cover each of these issues in more depth.

Size

The size of an embedded Linux system is determined by a number of different factors.
First, there is physical size. Some systems can be fairly large, like the ones built out of
clusters, whereas others are fairly small, like the Linux wristwatches that have been
built in partnership with IBM. The physical size of an embedded system is often an
important determination of the hardware capabilities of that system (the size of the
physical components inside the finished device) and so secondly comes the size of the
components with the machine. These are very significant to embedded Linux devel-
opers and include the speed of the CPU, the size of the RAM, and the size of the per-
manent storage (which might be a hard disk, but is often a flash device—currently either
NOR or NAND, according to use).

In terms of size, we will use three broad categories of systems: small, medium, and
large. Small systems are characterized by a low-powered CPU with a minimum of 4 MB
of ROM (normally NOR or even NAND Flash rather than a real ROM) and between
8 and 16 MB of RAM. This isn’t to say Linux won’t run in smaller memory spaces, but
it will take you some effort to do so for very little gain, given the current memory market.
If you come from an embedded systems background, you may find that you could do
much more using something other than Linux in such a small system, especially if
you’re looking at “deeply embedded” options. Remember to factor in the speed at
which you could deploy Linux, though. You don’t need to reinvent the wheel, like you
might well end up doing for a “deeply embedded” design running without any kind of
real operating system underneath.

Medium-size systems are characterized by a medium-powered CPU with 32 MB or
more of ROM (almost always NOR flash, or even NAND Flash on some systems able
to execute code from block-addressable NAND FLASH memory devices) and 64–128
MB of RAM. Most consumer-oriented devices built with Linux belong to this category,
including various PDAs (for example, the Nokia Internet Tablets), MP3 players, en-
tertainment systems, and network appliances. Some of these devices may include sec-
ondary storage in the form of NAND Flash (as much as 4 GB NAND Flash parts are
available at the time of this writing; much larger size arrays are possible by combining
more than one part, and we have seen systems using over 32 GB of NAND, even at the
time that we are writing this), removable memory cards, or even conventional hard
drives. These types of devices have sufficient horsepower and storage to handle a variety
of small tasks, or they can serve a single purpose that requires a lot of resources.

Large systems are characterized by a powerful CPU or collection of CPUs combined
with large amounts of RAM and permanent storage. Usually these systems are used in
environments that require large amounts of calculations to carry out certain tasks. Large
telecom switches and flight simulators are prime examples of such systems, as are

6 | Chapter 1: Introduction

government research systems, defense projects, and many other applications that you
would be unlikely to read about. Typically, such systems are not bound by costs or
resources. Their design requirements are primarily based on functionality, while cost,
size, and complexity remain secondary issues.

In case you were wondering, Linux doesn’t run on any processor with a memory ar-
chitecture below 32 bits (certainly there’s no 8-bit microcontroller support!). This rules
out quite a number of processors traditionally used in embedded systems. Fortunately
though, with the passage of time, increasing numbers of embedded designs are able to
take advantage of Linux as processors become much more powerful (and integrate
increasing functionality), RAM and Flash prices fall, and other costs diminish. These
days, it often makes less economic sense to deploy a new 8051 microcontroller design
where for a small (but not insignificant) additional cost one can have all the power of
a full Linux system—especially true when using ucLinux-supported devices. The de-
creasing cost of System-On-Chip (SoC) parts combining CPU/peripheral functionality
into a single device is rapidly changing the cost metrics for designers of new systems.
Sure, you don’t need a 32-bit microprocessor in that microwave oven, but if it’s no
more expensive to use one, and have a built-in web server that can remotely update
itself with new features, why not?

16-Bit Linux?
Strictly speaking, the previous statement regarding Linux’s inability to run on any pro-
cessor below 32 bits is not entirely true. There have been Linux ports to a number of
odd processors. The Embeddable Linux Kernel Subset (ELKS) project found at http://
elks.sourceforge.net/, for example, was aimed at running Linux on 16-bit processors,
such as the Intel 8086 and 286. It has seen several attempts at revival over the past few
years, and even may well work for some users by the time you read this edition, but it
is really strictly a research project at this point—you won’t see a vendor offering support
for Linux on an 80286. The point here is that if you choose to use Linux on a processor
lower than 32 bits, it is absolutely certain that you will be on your own. Even if you get
the kernel to boot, the range of applications is limited.

Time constraints

There are two types of time constraints for embedded systems: stringent and mild.
Stringent time constraints require that the system react in a predefined time frame;
otherwise, ca tastrophic events happen. Take for instance a factory where workers have
to handle materials being cut by large equipment. As a safety precaution, optical de-
tectors are placed around the blades to detect the presence of the specially colored
gloves used by the workers. When the system is alerted that a worker’s hand is in
danger, it must stop the blades immediately. It can’t wait for some disk I/O operation
involving reading data in from a Linux swap device (for example, swapping back in the
memory storing safety management task code) or for some running task to relinquish
the CPU. This system has stringent time requirements; it is a hard real-time system. If

Real Life and Embedded Linux Systems | 7

http://elks.sourceforge.net/
http://elks.sourceforge.net/

it doesn’t respond, somebody might lose an arm. Device failure modes don’t get much
more painful than that.

Streaming audio systems and consumer devices such as MP3 players and cell phones
would also qualify as having stringent requirements, because any transient lagging in
audio is usually perceived as bothersome by the users, and failure to contact a cellular
tower within a certain time will result in an active call being dropped. Yet, these latter
systems would mostly qualify as having soft real-time requirements, because the failure
of the application to perform in a timely fashion all the time isn’t catastrophic, as it
would be for a hard real-time system. In other words, although infrequent failures will
be tolerated—a call being dropped once in a while is an annoying frustration users
already live with—the system should be designed to have stringent time requirements.
Soft real-time requirements are often the target of embedded Linux vendors that don’t
want the (potential) liability of guaranteeing hard real-time but are confident in the
abilities of their product to provide, for example, reliable cell phone base-band GSM
call management capabilities.

Mild time constraints vary a lot in requirements, but they generally apply to systems
where timely responsiveness isn’t necessarily critical. If an automated teller takes 10
more seconds to complete a transaction, it’s generally not problematic (of course, at
some point, the user is going to give up on the system and assume it’s never going to
respond). The same is true for a PDA that takes a certain number of seconds to start
an application. The extra time may make the system seem slow, but it won’t affect the
end result. Nonetheless, it’s important that the system make the user aware that it is,
in fact, doing something with this time and hasn’t gone out for lunch. Nothing is more
frustrating than not knowing whether a system is still working or has crashed.

Networkability

Networkability defines whether a system can be connected to a network. Nowadays,
we can expect everything to be accessible through the network, even the refrigerator,
toaster, and coffee machine (indeed, a disturbing number of coffee machines can now
download new coffee-making recipes online). This, in turn, places special requirements
on the systems being built. One factor pushing people to choose Linux as an embedded
OS is its proven networking capabilities. Falling prices and standardization of net-
working components are accelerating this trend. Most Linux devices have one form or
another of network capability, be it wired or wireless in nature. The Nokia N770, N800,
and N810 Internet Tablets are great examples of embedded Linux devices, complete
with 802.11g wireless networking and much more, while the One Laptop Per Child
(OLPC) project uses Linux and builds self-assembling, self-managing WiFi mesh net-
works using 802.11n on the fly.

Networking issues are discussed in detail in Chapter 10.

8 | Chapter 1: Introduction

User interaction

The degree of user interaction varies greatly from one system to another. Some systems,
such as PDAs and the Nokia Internet Tablet devices mentioned earlier, are centered
around user interaction, whereas others, such as industrial process control systems,
might only have LEDs and buttons for interaction (or perhaps even no apparent I/O of
any kind). Some other systems have no user interface whatsoever. For example, certain
components of an autopilot system in a modern airplane may take care of controlling
the wing ailerons but have no direct interaction with the human pilots (something you
probably don’t want to consider next time you’re flying).

Reasons for Choosing Linux
There are a wide range of motivations for choosing Linux over a traditional embedded
OS. Many of these are shared by those in the desktop, server, and enterprise spaces,
while others are more unique to the use of Linux in embedded devices.

Quality and reliability of code

Quality and reliability are subjective measures of the level of confidence in the code
that comprises software such as the kernel and the applications that are provided by
distributions. Although an exact definition of “quality code” would be hard to agree
upon, there are properties many programmers come to expect from such code:

Modularity and structure
Each separate functionality should be found in a separate module, and the file
layout of the project should reflect this. Within each module, complex function-
ality is subdivided in an adequate number of independent functions. These (sim-
pler) functions are used in combination to achieve the same complex end result.

Readability
The code should be readable and (more or less) easy to fix for those who understand
its internals.

Extensibility
Adding features to the code should be fairly straightforward. If structural or logical
modifications are needed, they should be easy to identify.

Configurability
It should be possible to select which features from the code should be part of the
final application. This selection should be easy to carry out.

The properties expected from reliable code are the following:

Predictability
Upon execution, the program’s behavior is supposed to be within a defined frame-
work and should not become erratic. Any internal state machine should be con-
sistent in its function, including its error handling.

Real Life and Embedded Linux Systems | 9

Error recovery
In case a problematic situation occurs, it is expected that the program will take
steps to recover cleanly from the problem condition and then alert the proper
authorities (perhaps a system administrator or the owner of the device running the
software in question) with a meaningful diagnostic message.

Longevity
The program will run unassisted for long periods of time and will conserve its
integrity, regardless of the situations it encounters. The program cannot fail simply
because a system logfile became too big (something one of the authors of this book
admits to having once learned the hard way).

Most programmers agree that the Linux kernel and other projects used in a Linux
system fit this description of quality and reliability. The reason is the open source
development model (see upcoming note), which invites many parties to contribute to
projects, identify existing problems, debate possible solutions, and fix problems effec-
tively. Poor design choices are made from time to time, but the nature of the develop-
ment model and the involvement of “many eyeballs” serve to more quickly identify and
correct such mistakes.

These days you can reasonably expect to run Linux for years unattended without prob-
lems, and people have effectively done so. You can also select which system compo-
nents you want to install and which you would like to avoid. With the kernel, too, you
can select which features you would like during build configuration. As a testament to
the quality of the code that makes up the various Linux components, you can follow
the various mailing lists and see how quickly problems are pointed out by the individ-
uals maintaining the various components of the software or how quickly features are
added. Few other OSes provide this level of quality and reliability.

Strictly speaking, there is no such thing as the “Open Source” develop-
ment model, or even “Free Software” development model. “Open
source” and “Free Software” correspond to a set of licenses under which
various software packages can be distributed. Nevertheless, it remains
that software packages distributed under “Open Source” and “Free
Software” licenses very often follow a similar development model. This
development model has been explained by Eric Raymond in his seminal
book, The Cathedral and the Bazaar (O’Reilly).

Availability of code

Code availability relates to the fact that Linux’s source code and all build tools are
available without any access restrictions. The most important Linux components, in-
cluding the kernel itself, are distributed under the GNU General Public License (GPL).
Access to these components’ source code is therefore compulsory (at least to those users
who have purchased any system running GPL-based software, and they have the right
to redistribute once they obtain the source in any case). Other components are

10 | Chapter 1: Introduction

distributed under similar licenses. Some of these licenses, such as the BSD license, for
instance, permit redistribution of binaries without the original source code or the re-
distribution of binaries based on modified sources without requiring publication of the
modifications. Nonetheless, the code for the majority of projects that contribute to the
makeup of Linux is readily available without restriction.

When source access problems arise, the open source and free software community seeks
to replace the “faulty” software with an open source version that provides similar
capabilities. This contrasts with traditional embedded OSes, where the source code
isn’t available or must be purchased for very large sums of money. The advantages of
having the code available are the possibility of fixing the code without exterior help
and the capability of digging into the code to understand its operation. Fixes for security
weaknesses and performance bottlenecks, for example, are often very quickly available
once the problem has been publicized. With traditional embedded OSes, you have to
contact the vendor, alert it of the problem, and await a fix. Most of the time, people
simply find workarounds instead of waiting for fixes. For sufficiently large projects,
managers even resort to purchasing access to the code to alleviate outside dependencies.
Again, this lack of dependence upon any one external entity adds to the value of Linux.

Code availability has implications for standardization and commoditization of com-
ponents, too. Since it is possible to build Linux systems based entirely upon software
for which source is available, there is a lot to be gained from adopting standardized
embedded software platforms. As an example, consider the growing numbers of cell
phone manufacturers who are working together on common reference software plat-
forms, to avoid re-inventing the same for each new project that comes along (bear in
mind that the cell phone market is incredibly volatile, and that a single design might
last a year or two if it’s very, very popular). The OpenMoko project is one such effort:
a standard Linux-based cell phone platform that allows vendors to concentrate on their
other value-adds rather than on the base platform.

Hardware support

Broad hardware support means that Linux supports different types of hardware plat-
forms and devices. Although a number of vendors still do not provide Linux drivers,
considerable progress has been made and more is expected. Because a large number of
drivers are maintained by the Linux community itself, you can confidently use hardware
components without fear that the vendor may one day discontinue driver support for
that product line. Broad hardware support also means that, at the time of this writing,
Linux runs on dozens of different hardware architectures. Again, no other OS provides
this level of portability. Given a CPU and a hardware platform based/built upon it, you
can reasonably expect that Linux runs on it or that someone else has gone through a
similar porting process and can assist you in your efforts. You can also expect that the
software you write on one Linux architecture can be easily ported to another architec-
ture Linux runs on. There are even device drivers that run on different hardware
architectures transparently.

Real Life and Embedded Linux Systems | 11

Communication protocol and software standards

Linux also provides broad communication protocol and software standards support,
as you’ll see throughout this book. This makes it easy to integrate Linux within existing
frameworks and port legacy software to Linux. As such, one can easily integrate a Linux
system within an existing Windows network and expect it to serve clients through
Samba (using Active Directory or NT-style Primary Domain Controller capabilities),
while clients see little difference between it and an NT/Windows 2000 server. You can
also use a Linux box to practice amateur radio by building this feature into the kernel,
interface with a Bluetooth-enabled cell phone, or roam transparently between a variety
of WiFi networks. The OLPC project uses a Linux-based device supporting the latest
WiFi mesh networking (yet to be formally standardized at the time of this writing) to
enable its laptop units to form self-assembling mesh networks on the fly.

Linux is also Unix-like, and as such, you can easily port traditional Unix programs to
it. In fact, many applications currently bundled with the various distributions were first
built and run on commercial Unixes and were later ported to Linux. This includes
almost all of the fundamental software provided by the FSF. These days, a lot more
software is written for Linux, but it’s still designed with portability in mind—even
portability to non-Unix systems, such as those from Microsoft, thanks to compatibility
libraries such as Cygwin. Traditional embedded OSes are often very limited when it
comes to application portability, providing support only for a limited subset of the
protocols and software standards available that were considered relevant at the time
the OS was conceived.

Available tools

The variety of tools existing for Linux make it very versatile. If you think of an appli-
cation you need, chances are others already felt the need for it. It is also likely that
someone took the time to write the tool and make it available on the Internet. This is
what Linus Torvalds did, after all. You can visit the popular websites Freshmeat (http://
www.freshmeat.net) and SourceForge (http://www.sourceforge.net) and browse around
to see the variety of tools available. Failing that, there’s always Google.

Community support

Community support is perhaps one of the biggest strengths of Linux. This is where the
spirit of the free software and open source community can be felt most. As with appli-
cation needs, it is likely that someone has encountered the same problems as you in
similar circumstances. Often, this person will gladly share his solution with you, pro-
vided you ask. The development and support mailing lists are the best place to find this
community support, and the level of expertise found there often surpasses what can be
found through expensive support phone calls with proprietary OS vendors. Usually,
when you call a technical support line, you never get to talk to the engineers who built
the software you are using. With Linux, an email to the appropriate mailing list will
often get you straight to the person who wrote the software. Pointing out a bug and

12 | Chapter 1: Introduction

http://www.freshmeat.net
http://www.freshmeat.net
http://www.sourceforge.net

obtaining a fix or suggestions is thereafter a rapid process. As many programmers ex-
perience, seldom is a justified plea for help ignored, provided the sender takes the care
to search through the archives to ensure that her question hasn’t already been answered.

Licensing

Licensing enables programmers to do with Linux what they could only dream of doing
with proprietary software. In essence, you can use, modify, and redistribute the soft-
ware with only the restriction of providing the same rights to your recipients. This,
though, is a simplification of the various licenses used with Linux (GPL, LGPL, BSD,
MPL, etc.) and does not imply that you lose control of the copyrights and patents
embodied in the software you generate. These considerations will be discussed later in
this chapter in “Copyright and Patent Issues.” Nonetheless, the degree of liberty avail-
able is actually quite large.

Vendor independence

Vendor independence means that you do not need to rely on any sole vendor to get
Linux or to use it. Furthermore, if you are displeased with a vendor, you can switch,
because the licenses under which Linux is distributed provide you the same rights as
the vendors. Some vendors, though, provide additional software in their distributions
that isn’t open source, and you might not be able to receive service for this type of
software from other vendors. Such issues must be taken into account when choosing
distribution. Mostly, though, you can do with Linux as you could do with a car. Since
the hood isn’t welded shut, as it is with proprietary software, you can decide to get
service from a mechanic other than the one provided by the dealership where you
purchased it.

Cost

The cost of Linux is a result of open source licensing and is different from what can be
found with traditional embedded OSes. There are three components of software cost
in building a traditional embedded system: initial development setup, additional tools,
and runtime royalties. The initial development setup cost comprises the purchase of
development licenses from the OS vendor. Often, these licenses are purchased for a
given number of “seats,” one for each developer. In addition, you may find the tools
provided with this basic development package to be insufficient and may want to pur-
chase additional tools from the vendor. This is another cost. Finally, when you deploy
your system, the vendor will ask for a per-unit royalty. This may be minimal or large,
depending on the type of device you produce and the quantities produced. Some mobile
phone manufacturers, for instance, choose to implement their own OSes to avoid pay-
ing any royalties. This makes sense for them, given the number of units sold and the
associated profit margins.

With Linux, this cost model is turned on its head. Most development tools and OS
components are available free of charge, and the licenses under which they are typically

Real Life and Embedded Linux Systems | 13

distributed prevent the collection of any royalties on these core components. Most
developers, though, may not want to go chasing down the various software tools and
components and figure out which versions are compatible and which aren’t. Most de-
velopers prefer to use a packaged distribution. This involves purchasing the distribu-
tion, or it may involve a simple download. In this scenario, vendors provide support
for their distribution for a fee and offer services for porting their distributions to new
architectures and developing new drivers, also for a fee. Vendors make their money
through provision of these services, as well as through additional proprietary software
packaged with their distributions. Some vendors do now have a variant of the per-unit
royalty (usually termed a “shared risk,” or similar approach), but it is not strictly the
same as for those proprietary embedded OSes mentioned before—there’s always a way
to use Linux without paying a runtime fee.

Players in the Embedded Linux Scene
Unlike proprietary OSes, Linux is not controlled by a single authority who dictates its
future, its philosophy, and its adoption of one technology or another. These issues and
others are taken care of by a broad ensemble of players with different but complemen-
tary vocations and goals.

Free software and open source community

The free software and open source community is the basis of all Linux development
and is the most important player in the embedded Linux arena. It is made up of all of
the developers who enhance, maintain, and support the various software components
that make up a Linux system. There is no central authority within this group (though
there are obvious figureheads). Rather, there is a loosely tied group of independent
individuals, each with his specialty. These folks can be found discussing technical issues
on the mailing lists concerning them or at gatherings such as the [Ottawa] Linux Sym-
posium. It would be hard to characterize these individuals as a homogeneous group,
because they come from different backgrounds and have different affiliations. Mostly,
though, they care a great deal about the technical quality of the software they produce.
The quality and reliability of Linux, as discussed earlier, are a result of this level of care.

Note that, although many of these developers are affiliated with a given company, their
involvement typically goes beyond company lines. They may move from one company
to another, but the core developers will always maintain their involvement, no matter
who is currently paying their salary. Throughout this book, we will describe quite a
few components that are used in Linux systems. Each maintainer of or contributor to
the components described herein is considered a player in the free software and open
source community.

14 | Chapter 1: Introduction

Industry

Having recognized the potential of Linux in the embedded market, many companies
have moved to embrace and promote Linux in this area. Industry players are important
because they are the ones pushing Linux as an end-user product. Often, they are the
first to receive feedback from those end users. Although postings on the various mailing
lists can tell the developer how the software is being used, not all users participate in
those mailing lists. Vendors must therefore strike an equilibrium between assisting their
users and helping in the development of the various projects making up Linux, without
falling into the trap of wanting to divert development to their own ends. In this regard,
many vendors have successfully positioned themselves in the embedded Linux market.

Here are some of the better known vendors.

The vendors listed here are mentioned for discussion purposes only.
Neither the authors nor the publisher have evaluated the services pro-
vided by any of these vendors for the purposes of this book, and there-
fore this list should not be interpreted as any form of endorsement.

MontaVista
Founded by Jim Ready, an embedded industry veteran, and named after a part of
the town in which he lived at the time, MontaVista has positioned itself as a leader
in the embedded Linux market through its products, services, and promotion of
Linux in industrial applications. It produces a variety of products bearing the
MontaVista name, including “Professional,” “Carrier Grade,” and “Mobile” var-
ients. MontaVista has contributed to some open source projects, including
scheduler enhancements and real-time extensions to the kernel, ViewML, Micro-
windows, and Linux Trace Toolkit (LTT). A little late converting from the 2.4
kernel over to the 2.6 kernel, MontaVista made up for this by being the first em-
bedded vendor to ship a product featuring the real-time patches to the Linux kernel
(this isn’t RTLinux; see Chapter 14). It also makes various claims about capability,
and have recently seen considerable success in the cell phone marketplace, espe-
cially with Motorola basing entire product families on their MontaVista
MobiLinux product.

MontaVista has suffered a little from being the poster child of the embedded Linux
revolution. It has seen a number of engineers splinter off and create smaller con-
sultancies—Embedded Alley is one classic example, founded by a number of ex-
tremely knowledgeable ex-MontaVista folks—and changes in corporate direction
as they decide where the market will take them. MontaVista does not maintain a
public repository of its community code contributions (obviously it has developers
who work on upstream projects), but it does have the http://source.mvista.com/
website with some public-facing information about projects, such as its real-time
initiatives. The primary MontaVista website lives at http://www.mvista.com/.

Real Life and Embedded Linux Systems | 15

http://source.mvista.com/
http://www.mvista.com/

Wind River
A relatively latecomer to the embedded Linux scene, Wind River has a long history
as author of the proprietary vxworks real-time OS. And this means it has a large
customer base behind it, ranging from set top box vendors, to automotive com-
panies, to “deeply embedded” applications (some very small-scale systems that
Linux isn’t suited for), to Mars rover robots launched by NASA. After a number
of years testing the waters, Wind River finally decided to take the plunge and re-
leased an Eclipse-based development product supporting either vxworks or Linux
as a target (a great migration tool for existing vxworks developers). The Wind River
Linux Center includes various downloads and information, including more detail
on its commitment to “Device Software Optimization” (DSO), a term it recently
helped to coin. Generally, this is a reference to embedded operating systems such
as Linux being more than just the sum of their (Free Software) components, and
instead systems that need careful tuning and knowledge to make them useful in a
given embedded product.

Wind recently acquired the technology of RTLinux from FSM Labs, and so it is
expected to have a number of real-time Linux product offerings by the time you
read this. You can find out more about Wind River at http://www.windriver.com/.

LynuxWorks
This used to be known as Lynx Real-Time Systems and is another one of the tra-
ditional embedded OS vendors. Contrary to other traditional embedded OS pro-
viders, Lynx decided to embrace Linux early and changed its name to reflect its
decision. That, combined with the later acquisition of BSDi by Wind River† and
QNX’s decision to make its OS available for free download, indicated that open
source in general, and Linux in particular, were making serious inroads in the
embedded arena. That said, LynuxWorks still develops, distributes, and supports
Lynx OS. In fact, LynuxWorks promotes a twofold solution. According to Lynux-
Works, programmers needing hard real-time performance should continue to use
Lynx, and those who want open source solutions should use BlueCat, its embedded
Linux distribution (indeed, they have drawn some criticism for using anti-GPL-like
tactics to advocate the use of Lynx OS over Linux in the past). LynuxWorks has
even modified its Lynx OS to enable unmodified Linux binaries to run as-is. The
fact that LynuxWorks was already a successful embedded OS vendor and that it
adopted Linux early confirms the importance of the move toward open source
OSes in the embedded market.

Timesys
Timesys has shifted away from producing a single one-size-fits-all embedded Linux
distribution toward a software service model (DSO-like), specializing in custom-
built, web-based, cross-compiled packages meeting a range of requirements. Its
LinuxLink subscription service is aimed at providing a simple online experience

† Wind River has since changed its mind, and its relationship with BSD seems to be a thing of the past.

16 | Chapter 1: Introduction

http://www.windriver.com/

for customizing a selection of required software, having it build automatically for
a wide range of targets, and providing a package that can be used on a target device.
It claims that it can remove the uncertainty and the hassle of figuring out patches,
versions, and dependencies by scripting and automating the process of building
custom distributions on the fly. You can find out more at http://www.timesys.com/.

There are also a vast number of smaller players (and more all the time) who provide a
variety of services around open source and free software for embedded device appli-
cation. In fact, many open source and free software contributions are made by indi-
viduals who are either independent or work for small-size vendors. As such, the services
provided by such small players are often on a par or sometimes surpass those provided
by larger players. For example, Wolfgang Denk’s DENX software is a small consultancy
based outside of Munich, Germany, yet almost everyone in the embedded Linux space
has heard of Wolfgang, his Das U-Boot firmware, or the extensive documentation pro-
vided as part of his company’s free Embedded Linux Development Kit (ELDK). Thanks
in part to the first edition of this book, vast numbers of embedded Linux developers
also know of Karim Yaghmour and his Opersys consultancy.

Resources

Most developers connect to the embedded Linux world through various resource sites
and publications. It is through these sites and publications that the Linux development
community, industry, and organizations publicize their work and learn about the work
of the other players. In essence, the resource sites and publications are the meeting
place for all the people concerned with embedded Linux. Two resources stand out:
LinuxDevices.com and magazines such as Linux Journal.

LinuxDevices.com was founded on Halloween day‡ 1999 by Rick Lehrbaum (related
to one of the MontaVista founders). LinuxDevices.com features news items, articles,
polls, forums, and many other links pertaining to embedded Linux. Many key
announcements regarding embedded Linux are made on this site, and it contains an
archive of actively maintained articles regarding embedded Linux. Though its vocation
is clearly commercial, we definitely recommend taking a peek at the site once in a while
to keep yourself up-to-date with the latest in embedded Linux (and with their weekly
email newsletter, it’s easy to do this). Among other things, LinuxDevices.com was in-
strumental in launching the Embedded Linux Consortium.

As part of the growing interest in the use of Linux in embedded systems, the Embedded
Linux Journal (ELJ) was launched by Specialized System Consultants, owners of Linux
Journal (LJ), in January 2001 with the aim of serving the embedded Linux community,
but was later discontinued. Though ELJ is no longer published as a separate magazine,
it was instrumental in encouraging other Linux magazines to get involved. Several

‡ The date was selected purposely in symbolic commemoration of the infamous Halloween Documents
uncovered by Eric Raymond. If you are not familiar with these documents and their meaning, have a look at
http://www.opensource.org/halloween/.

Real Life and Embedded Linux Systems | 17

http://www.timesys.com/
http://www.opensource.org/halloween/

Linux magazines now run embedded features on a regular basis. Indeed, one of the
authors of this book was responsible for such a column for a number of years and still
writes articles on occasion.

Copyright and Patent Issues
You may ask: what about using Linux in my design? Isn’t Linux distributed under some
crazy license that may endanger the copyrights and patents of my company? What are
all those licenses anyway? Is there more than one license to take care of? Are we allowed
to distribute binary-only kernel modules to protect our IP? What about all these articles
I read in the press, some even calling Linux’s license a “virus”?

These questions and many more have probably crossed your mind. You have probably
even discussed some of these issues with your coworkers. The issues can be confusing
and can come back to haunt you if they aren’t dealt with properly. We don’t say this
to scare you. The issues are real, but there are known ways to use Linux without any
fear of any sort of licensing contamination. With all the explanations provided next, it
is important to keep in mind that this isn’t legal counsel and we are not qualified law-
yers. If you have any doubts about your specific project, consult your company attor-
neys—that’s what they’re there for. Seriously, you want to figure this out now so that
it’s not a problem for you later; with a little understanding and forethought, it won’t be.

Textbook GPL

For most components making up a Linux system, there are two licenses involved, the
GPL and the LGPL, introduced earlier. Both licenses are available from the FSF’s web-
site at http://www.gnu.org/licenses/ and should be included with any package distrib-
uted under the terms of these licenses.§ The GPL is mainly used for applications,
whereas the LGPL is mainly used for libraries. The kernel, the binary utilities, the gcc
compiler, and the gdb debugger are all licensed under the GPL. The C library and the
GTK widget toolkit, on the other hand, are licensed under the LGPL.

Some programs may be licensed under BSD, Mozilla, or another, but the GPL and LGPL
are the main licenses used, but regardless of which one you use, common sense should
prevail. Make sure you know the licenses under which the components you use fall and
understand their implications. Also make sure you understand the “compatibility” of
the licenses for different components that you may wish to use within the same project.
Your attorney will be able to advise.

The GPL provides rights and imposes obligations very different from what may be
found in typical software licenses. In essence, the GPL is meant to provide a higher
degree of freedom to developers and users, enabling them to use, modify, and distribute

§ The licenses are often stored in a file called COPYING, for the GPL, and a file called COPYING.LIB, for the
LGPL. Copies of these files are likely to have been installed somewhere on your disk by your distribution.

18 | Chapter 1: Introduction

http://www.gnu.org/licenses/

software with few restrictions. It also makes provisions to ensure that these rights are
not abrogated or hijacked in any fashion. To do so, the GPL stipulates the following:

• You may make as many copies of the program as you like, as long as you keep the
license and copyright intact.

• Software licensed under the GPL comes with no warranty whatsoever, unless it is
offered by the distributor.

• You can charge for the act of copying and for warranty protection.

• You can distribute binary copies of the program, as long as you accompany them
with the source code used to create the binaries, often referred to as the “original”
source code.‖

• You cannot place further restrictions on your recipients than what is specified by
the GPL and the software’s original authors.

• You can modify the program and redistribute your modifications as long as you
provide to your recipients the same rights you received. In effect, any code that
modifies or includes GPL code, or any portion of a GPL’d program, cannot be
distributed outside your organization under any license other than the GPL. This
is the clause some PR folks refer to as being “virus”-like. Keep in mind, though,
that this restriction concerns source code only. Packaging the unmodified software
for the purpose of running it, as you’ll see, is not subject to this provision.

As you can see, the GPL protects authors’ copyrights while providing freedom of use.
This is fairly well accepted. The application of the modification and distribution clau-
ses, on the other hand, generates a fair amount of confusion. To c, two issues must be
explained: running GPL software and modifying GPL software. Running the software
is usually the reason why the original authors wrote it. The authors of gcc, for example,
wrote it for compiling software. As such, the software compiled by an unmodified gcc
is not covered by the GPL, since the person compiling the program is only running gcc.
In fact, you can compile proprietary software with gcc, and people have been doing
this for years, without any fear of GPL “contamination.” Modifying the software, in
contrast, creates a derived work that is based on the original software, and is therefore
subject to the licensing of that original software. If you take the gcc compiler and modify
it to compile a new programming language of your vintage, for example, your new
compiler is a derived work and all modifications you make cannot be distributed out-
side your organization under the terms of any license other than the GPL.

Most anti-GPL speeches or writings play on the confusion between running and mod-
ifying GPL software, to give the audience an impression that any software in contact
with GPL software is under threat of GPL “contamination.” This is not the case.

‖ The specific wording of the GPL to designate this code is the following: “The source code for a work means
the preferred form of the work for making modifications to it.” Delivering binaries of an obfuscated version
of the original source code to try circumventing the GPL is a trick that has been tried before, and it doesn’t
work.

Real Life and Embedded Linux Systems | 19

There is a clear difference between running and modifying software. As a developer,
you can safeguard yourself from any trouble by asking yourself whether you are simply
running the software as it is supposed to be run or modifying the software for your own
ends. As a developer, you should be fairly capable of making out the difference.

Note that the copyright law makes no difference between static and dynamic linking.
Even if your proprietary application is integrated to the GPL software during runtime
through dynamic linking, that doesn’t exclude it from falling under the GPL. A derived
work combining GPL software and non-GPL software through any form of linking still
cannot be distributed under any license other than the GPL. If you package gcc as a
dynamic linking library and write your new compiler using this library, you will still be
restricted from distributing your new compiler under any license other than the GPL.
Some people have attempted to work around dynamic linking restrictions through
cunning use of pipes, Unix IPC sockets, and other IPC/RPC protocols to integrate GPL
software with their non-GPL product. Depending upon how it is done, such use might
be acceptable, but it’s probably not worth the trouble to try working around the GPL
in this fashion within your own projects.

Whereas the GPL doesn’t allow you to include parts of the program in your own pro-
gram unless your program is distributed under the terms of the GPL, the LGPL allows
you to use unmodified portions of the LGPL program in your program without any
problem. If you modify the LGPL program, though, you fall under the same restrictions
as the GPL and cannot distribute your modifications outside your organization under
any license other than the LGPL. Linking a proprietary application, statically or dy-
namically, with the C library, which is distributed under the LGPL, is perfectly accept-
able. If you modify the C library, on the other hand, you are prohibited from distributing
all modifications (to the library itself) under any license other than the LGPL.

When you distribute a proprietary application that is linked against
LGPL software, you must allow for this LGPL software to be replaced.
If you are dynamically linking against a library, for example, this is fairly
simple, because the recipient of your software need only modify the
library to which your application is linked at startup. If you are statically
linking against LGPL software, however, you must also provide your
recipient with the object code of your application before it was linked
so that she can substitute the LGPL software.

Much like the running versus modifying GPL software discussion earlier, there is a clear
difference between linking against LGPL software and modifying LGPL software. You
are free to distribute your software under any license when it is linked against an LGPL
library. You are not allowed to distribute any modifications to an LGPL library under
any license other than LGPL.

20 | Chapter 1: Introduction

Pending issues

Up to now, we have discussed only textbook application of the GPL and LGPL. Some
areas of application are, unfortunately, less clearly defined. What about applications
that run using the Linux kernel? Aren’t they being linked, in a way, to the kernel’s own
code? And what about binary kernel modules, which are even more deeply integrated
to the kernel? Do they fall under the GPL? What about including GPL software in my
embedded system?

Let us start with the last question. Including a GPL application in your embedded
system is actually a textbook case of the GPL. Remember that you are allowed to re-
distribute binary copies of any GPL software as long as your recipients receive the
original source code. Distributing GPL software in an embedded system is a form of
binary distribution and is allowed, granted you respect the other provisions of the GPL
regarding running and modifying GPL software.

Some proprietary software vendors have tried to cast doubts about the use of GPL
software in embedded systems by claiming that the level of coupling found in embedded
systems makes it hard to differentiate between applications and, hence, between what
falls under GPL and what doesn’t. This is untrue. As we shall see in Chapters 6 and
8, there are known ways to package embedded Linux systems that uphold modularity
and the separation of software components.

To avoid any confusion regarding the use of user applications with the Linux kernel,
Linus Torvalds has added a preamble to the GPL found with the kernel’s source code.
This preamble stipulates that user applications running on the kernel are not subject
to the GPL. This means that you can run any sort of application on the Linux kernel
without fear of GPL “contamination.” A great number of vendors provide user appli-
cations that run on Linux and remain proprietary, including Oracle, IBM, and Adobe.

The area where things have been historically unclear is binary-only kernel modules.
Modules are software components that can be dynamically loaded and unloaded to
add functionality to the kernel. While they are mainly used for device drivers, they can
and have been used for other purposes (for example, for new filesystems, crypto library
support for cryptographic storage, and a whole multitude of other purposes). Many
components of the kernel can actually be built as loadable modules to reduce the kernel
image’s size. When needed, the various modules can be loaded during runtime (as
discussed in Chapter 5).

Although this was intended as a facilitating and customizing architecture, many ven-
dors and projects have come to use modules to provide capabilities to the kernel while
retaining control over the source code or distributing it under licenses different from
the GPL. Some hardware manufacturers, for instance, provide closed-source binary-
only module drivers to their users. This enables the use of the hardware with Linux
without requiring the vendor to provide details regarding the operation of its device.
This is especially true (in the consumer space) when it comes to graphics cards featuring
high-end 3D capabilities. In the embedded space, binary modules can range from

Real Life and Embedded Linux Systems | 21

NAND Flash drivers, to codec support modules, to almost anything else you can think
of that someone might consider a valuable piece of intellectual property that they wish
to prevent being distributed under the GPL. The authors of this book have seen it all
—and so has the Linux community.

The problem is that once a module is loaded in the kernel, it effectively becomes part
of the kernel’s address space and is highly coupled to it because of the functions it
invokes and the services it provides to the kernel. Because the kernel is itself under the
GPL, many contend that modules cannot be distributed under any other license than
the GPL because the resulting kernel is a derived work. Others contend that binary-
only modules are allowed as long as they use the standard services exported to modules
by the kernel. In fact, in response to this logic, the kernel community created wrapped
macros EXPORT_SYMBOL, EXPORT_SYMBOL_GPL, and EXPORT_SYM-
BOL_GPLFUTURE. The idea behind these is that over time, new symbols (kernel
functions and data structures) will be exported to the rest of the kernel via one of the
GPL macros and thus all symbols will ultimately transition toward being explicitly GPL-
only.

For modules already under the GPL, this is obviously a non-issue, but for non-GPL
modules, this is a serious issue. Linus has said more than once that he allows binary-
only modules as long as it can be shown that the functionality implemented is not
Linux-specific (for example, porting a pre-existing graphics driver from Windows to
Linux just to make it available for use on Linux systems). Others, however, including
Alan Cox and other leading members of the Linux kernel community, have come to
question his ability to allow or disallow such modules, because not all the code in the
kernel is copyrighted by him. Still others contend that because binary modules have
been tolerated for so long, they are part of standard practice.

There is also the case of binary-only modules that use no kernel API whatsoever. The
RTAI and RTLinux real-time tasks inserted in the kernel are prime examples. Although
it could be argued that these modules are a class of their own and should be treated
differently, they are still linked into kernel space and fall under the same rules as ordi-
nary modules, whichever you think them to be.

At the time of this writing, the legal status of binary-only modules has not been tested
in court, but there is a growing consensus amongst the Linux kernel community that
they are illegal and should not be tolerated. More than one attempt has been made to
ban them outright (through technological measures), but the developers involved poin-
ted out that such a technological restriction would make the kernel community no
better than those advocating other DRM solutions, which Linux users generally abhor.
This issue won’t go away any time soon. In fact, it generally comes up on a semi-annual
basis when it appears for a brief moment that binary modules will finally be killed off,
before the issue dies down once again. To save a great deal of headache, you are advised
to consider strongly whether you really need to have binary kernel modules in the first
place. Consult your legal counsel if you are in any way unsure of how to proceed; we
can’t tell you what the law says (only how the community will react to you).

22 | Chapter 1: Introduction

One final issue of concern to many is the GPL version 3, which is in the early stages of
adoption at the time of this writing. Version 3 updates the previous GPL version 2 from
more than a decade ago and includes (ominous-sounding) provisions concerning pat-
ents and intellectual property. The goal is, apparently, squarely aimed at embedded
developers in an effort to prevent GPL circumvention by means of patent or DRM.
Indeed, the phrase “anti-TiVoization” has been applied (TiVo is a set-top box running
a modified Linux kernel that uses cryptographic hashes in order to prevent users from
replacing the software with their own customized versions). To Richard Stallman, the
use of GPL software is undermined whenever an embedded developer introduces cryp-
tographic or DRM measures that effectively prevent users from changing the system,
even if the source code is available—a kind of loophole in version 2 that needs some
closure. Of course, many are very unhappy at the prospect of making the GPL more
militant in this fashion, and a large number of projects have already stated they have
no intention of making the switch to version 3. This includes the Linux kernel (which,
like many projects, could not convert anyway as it has too many contributors who
would need to agree, some of whom have died in the interim). Other projects, such as
BusyBox, have expressed discontentment.

We can’t advise you on how version 3 of the GPL might affect your own efforts, but
we do recommend, again, that you consult with your company attorney (or your ven-
dor) if you are unsure about its impact.

RTLinux patent

Perhaps one of the most restrictive and controversial licenses you will encounter in
deploying Linux in an embedded system is the license to the RTLinux patent held by
Victor Yodaiken, the RTLinux project leader. The patent covers the addition of real-
time support to general-purpose operating systems as implemented by RTLinux. This
patent was recently acquired as part of the Wind River’s purchase of RTLinux tech-
nology. At the time of this writing, its use and enforcement in the future is unclear.

Although many have questioned the patent’s viability, given prior art, and Victor’s
handling of the issue, it remains that both the patent and the license are currently legally
valid, at least in the United States, and have to be accounted for. The U.S. Patent Num-
ber for the RTLinux patent is 5,995,745, and you can obtain a copy of it through the
appropriate channels. You can read more about the impact of the RTLinux patent on
real-time Linux efforts and how they have changed direction in Chapter 12.

A Word on Distributions
Wouldn’t it be simpler and faster to use a distribution instead of setting up your own
development environment and building the whole target system from scratch? What’s
the best distribution? Unfortunately, there are no straightforward answers to these
questions. There are, however, some aspects of distribution use that might help you
find answers to these and similar questions.

Real Life and Embedded Linux Systems | 23

To use or not to use

First and foremost, you should be aware that it isn’t necessary to use any form of dis-
tribution to build an embedded Linux system. In fact, all the necessary software pack-
ages are readily available for download on the Internet, and it is these same packages
that distribution providers download and package for you to use. This approach pro-
vides you with the highest level of control over and understanding of the packages you
use and their interactions. Apart from this being the most thorough approach and the
one used within this book, it is also the most time-consuming, as you have to take the
time to find matching package versions and then set up each package one by one while
ensuring that you meet package interaction requirements.

Therefore, if you need a high degree of control over the content of your system, the “do
it yourself” method may be best. If, however, like most people, you need the project
ready yesterday or if you do not want to have to maintain your own packages, you
should seriously consider using both a development and a target distribution. In that
case, you will need to choose the development and target distributions most appropri-
ate for you.

How to choose a distribution

Every embedded Linux distribution has its own benefits, so it is difficult to make gen-
eralizations about the best one to use for your application. Depending on your project,
you may also have other criteria not discussed in this book. In any case, if you choose
commercial distributions, make sure you insist upon an evaluation and that you have
clear answers to your questions from the distribution vendor before you make any
subsequent purchasing decision. Know what kind of support is available to you, what
the terms of use and the various licenses are, and how this will affect you. Several
vendors (including MontaVista) have developed “shared risk” approaches where you
can get discounts in return for subsequent payments. These are not termed royalties
per se, but they have some similarities. Know what you are getting yourself into before
you commit to anything.

As in any situation, if you ask broad questions, you will get broad answers. Use detailed
questions and expect detailed answers. For example, don’t ask whether the Linux ker-
nel you are getting supports real-time applications; instead ask for precise figures, and
understand what exactly is being guaranteed to you ahead of time. Make yourself a
shopping list of features (and packages) that you would like to see from your chosen
distribution and ask to know precisely what is being provided. Do you need to pay
more to get additional packages and features? Unclear answers to precise questions are
usually a sign that something is amiss. If the vendor (that is trying to do a sale) is unable
to answer your questions before you buy the product, do you really expect it to be any
different afterward?

24 | Chapter 1: Introduction

Should you instead choose an open source distribution,# make sure you have as much
information as possible about it. The difference between choosing an open source dis-
tribution and a commercial distribution is the way you obtain answers to your questions
about the distribution. Whereas the commercial distribution vendor will provide you
with answers to your questions about its product, you may have to look for the answers
to those same questions about an open source distribution on your own.

An initial factor in the choice of a development or target distribution is the license or
licenses involved. Some commercial distributions are partly open source and distribute
value-added packages under conventional software licenses that prohibit copying and
impose royalties (a form of targeted lock-in). Make sure the distribution clearly states
the licenses governing the usage of the value-added software and their applicability. If
unsure, ask. Don’t leave licensing issues unclear. This will only serve to cause you undue
pain should you ever decide to migrate away to a different embedded Linux
distribution.

One thing that distinguishes commercial distributions from open source distributions
is the support provided by the vendor. Whereas the vendor supplying a commercial
distribution almost always provides support for its own distribution, the open source
community supplying an open source distribution does not necessarily provide the
same level of support that would be expected from a commercial vendor. This does not
preclude some vendors from providing commercial support for open source distribu-
tions. Through serving different customers with different needs in the embedded field,
the various vendors build a unique knowledge about the distributions they support and
the problems clients might encounter during their use, and are therefore best placed to
help you efficiently. Mainly, though, these vendors are the ones that keep up with the
latest and greatest in Linux and are therefore the best source of information regarding
possible bugs and interoperability problems that may show up.

Reputation can also come into play when choosing a distribution, but it has to be used
wisely, as a lot of information circulating may be presented as fact but instead be mere
interpretation. If you’ve heard something about one distribution or another, take the
time to verify the validity of the information. In the case of a commercial distribution,
contact the vendor. Chances are it knows where this information comes from and, most
importantly, the rational explanation for it. This verification process, though, isn’t
specific to embedded Linux distributions, but what is specific is the reputation com-
mercial distributions build when their vendors contribute to the open source com-
munity. A vendor that gives back by providing more open source software or by
financing development shows that it is in contact with the open source community and
therefore understands how the changes and developments of the various open source
projects will affect its future products and, ultimately, its clients. In short, this is a
critical link and a testament to the vendor’s understanding of the dynamics involved

An open source distribution is one that is maintained by the open source community, such as Debian.
Inherently, such distributions do not contain any proprietary software.

Real Life and Embedded Linux Systems | 25

in the development of the software it provides you. In the case of open source distri-
butions, this criterion is already met, as the distribution itself is an open source
contribution.

Another precious tool that commercial distributions might have to offer is documen-
tation. In this day and age where everything is ever-changing, up-to-date and accurate
documentation is a rare commodity. The documentation for the majority of open
source projects is often out-of-date, if available at all. Linus Torvalds’s words ring true
here: “Use the source, Luke,” meaning that if you need to understand the software you
should read the source code. Yet not everyone can invest the amount of time necessary
to achieve this level of mastery, hence the need for appropriate documentation. Because
the open source developers prefer to invest more time in writing code than in writing
documentation, it is up to the distribution vendors to provide appropriately packaged
documentation with their distributions. When evaluating a distribution, make sure to
know the type and extent of accompanying documentation. Although there is less
documentation for open source distributions in comparison with commercial distri-
butions, some open source distributions are remarkably well documented.

Given the complexity of some aspects of development and target setup, the installation
of a development and/or target distribution can be difficult. In this regard, you may be
looking for easy-to-install distributions. Although this is legitimate, keep in mind that
once you’ve installed the distributions, you should not need to reinstall them afterward.
Notice also that installation does not really apply for a target distribution as it was
defined earlier, because target distributions are used to facilitate the generation of target
setups and don’t have what is conventionally known as an “installation” process. The
three things you should look for in the installation process of a distribution are clear
explanations (whether textually during the installation, in a manual, or both), config-
urability, and automation. Configurability is a measure of how much control you have
over the packages being installed, whereas automation is the ability to automate the
process using files containing the selected configuration options.

With some CPU models and boards being broadly adopted for embedded systems
development, commercial distribution vendors have come to provide prepackaged de-
velopment and/or target distributions specifically tailored for those popular CPU mod-
els and boards. If you intend to use a specific CPU model or board, you may want to
look for a distribution that is already tested for your setup.

What to avoid doing with a distribution

There is one main course of action to avoid when using a distribution: using the dis-
tribution in a way that makes you dependent solely on this same distribution for all
future development. Remember that one of the main reasons to use Linux is that you
aren’t subject to anyone’s will or market decisions. If your development relies only on
proprietary tools and methods of the distribution you chose, you risk being locked into
continuous use of that same distribution for all future development. This does not
mean, though, that you shouldn’t use commercial distributions with value-added

26 | Chapter 1: Introduction

software that cannot be found on other distributions. It only means that you should
have a backup plan to achieve the same results with different tools from different dis-
tributions, just in case. Many embedded vendors have already standardized on devel-
opment tools such as Eclipse—with each vendor adding slightly different “value-add”
plug-ins—and use of such tools should serve to minimize the disruption to your engi-
neering efforts if you ever have to switch to a different Eclipse-based tool.

Design and Implementation Methodology
Designing and implementing an embedded Linux system can be carried out in a defined
manner. The process includes many tasks, some of which may be carried out in parallel,
thereby reducing overall development time. Some tasks can even be omitted if a dis-
tribution is being used. Regardless of the actual tools or methodology you use, Chap-
ter 2 is required reading for all tasks involved in building an embedded Linux system.

Creating a Target Linux System
A target Linux system is created by configuring and bundling together the appropriate
system components. Programming and development aspects are a separate subject, and
they are discussed later in this chapter.

There are four main steps to creating a target Linux system:

1. Determine system components.

2. Configure and build the kernel.

3. Build the root filesystem.

4. Set up boot software and configuration.

Determining system components is like making a shopping list before you go to the
grocery store. It is easy to go without a shopping list and wonder at all the choices you
have, as many do with Linux. This may result in “featurism,” whereby your system will
have lots and lots of features but won’t necessarily fulfill its primary purpose. Therefore,
before you go looking at all the latest Linux gizmos, sit down and write a list of what
you need. We find that this approach helps in focusing development and avoids dis-
tractions like “Look, honey, they actually have salami ice cream!” This doesn’t mean
that you shouldn’t change your list if you see something pertinent; it is just a warning
about the quantity of software available for Linux and the inherent abundance of
choices.

Chapter 3 discusses the hardware components that can be found as part of an embed-
ded Linux system. It should provide you with enough background and maybe even
ideas of what hardware you can find in an embedded Linux system. As Linux and
surrounding software are ever-evolving targets, use this and further research on the Net
to find out which design requirements Linux meets. In turn, this will provide you with

Design and Implementation Methodology | 27

a list of items you need to develop in order to complete your system. This step of
development is the only one that cannot be paralleled with other tasks. Determining
system requirements and Linux’s compliance to these requirements has to be comple-
ted before any other step.

Because of the evolving nature of Linux, you may feel the need to get the latest and
greatest pieces of software for your design. Avoid doing this, as new software often
needs testing and may require upgrades to other software because of the dependencies
involved between packages. Hence, you may find yourself locked in a frantic race to
keep up with the plethora of updates. Instead, fix the bugs with the current software
you have and keep track of other advances so that the next generation projects you
design can profit from these advances. If you have an important reason to upgrade a
software component, carefully analyze the consequences of such an upgrade on the rest
of your system before actually carrying it out. You may also want to try the upgrade on
a test system before applying it to your main system.

Having determined which features are pertinent to your design, you can select a kernel
version and relevant configuration. Chapter 5 covers the configuration and build proc-
ess of the kernel. Unlike other pieces of software, you may want to keep updating your
kernel to the latest stable version throughout your project’s development, up until the
beta stage. Though keeping the kernel version stable throughout the development cycle
may seem simple, you might find yourself trying to fix bugs that have been fixed in
more recent kernels. Keeping yourself up-to-date with recent kernel developments, as
we discuss in Chapter 5, will help you decide whether updating to the most recent
kernel is best for you. Also, you may want to try newer kernels and roll back to older
ones if you encounter any serious problems. Note that using kernels that are too old
may cut you off from community support, since contributors can rarely afford to keep
answering questions about old bugs.

While we do encourage you to keep up-to-date, it is worth mentioning major changes
to the kernel, the kind that happen every few years. Consider how the 2.4 series kernel
remains in use in embedded designs even after the 2.6 kernel has long since proven
itself. This isn’t an accident; it happened because engineers became comfortable with
the 2.4 kernel and felt no need to make the switch for their existing products and
embedded designs. This doesn’t mean you should use the 2.4 kernel in your new design,
but it does mean that you should carefully consider the impact of major version changes
of any software—including the Linux kernel. It’s one thing to upgrade from kernel
2.6.20 to 2.6.21, but quite another to migrate from one major release to the next. Treat
that kind of transition as you would any other major software component upgrade,
especially if you have a series of product-specific modifications to forward port over to
the newer kernel when you make the transition.

Regardless of whether you decide to follow kernel updates, we suggest you keep the
kernel configuration constant throughout the project. This will avoid completed parts
from breaking in the course of development. This involves studying the configuration
options closely, though, in light of system requirements. Although this task can be

28 | Chapter 1: Introduction

conducted in parallel with other tasks, it is important that developers involved in the
project be aware of the possible configuration options and agree with the options
chosen.

Once configuration is determined, it is time to build the kernel. Building the kernel
involves many steps and generates more than just a kernel image. Although the gener-
ated components are not necessary for some of the other development aspects of the
project, the other project components tend to become more and more dependent on
the availability of the kernel components as the project advances. It is therefore pref-
erable to have the kernel components fully configured and built as early as possible,
and kept up-to-date throughout the project.

In parallel to handling the kernel issues, you can start building the root filesystem of
the embedded system, as explained in Chapter 6. The root filesystem of an embedded
Linux system is similar to the one you find on a workstation or server running Linux,
except that it contains only the minimal set of applications, libraries, and related files
needed to run the system. Note that you should not have to remove any of the com-
ponents you previously chose at this stage to obtain a properly sized root filesystem.
In fact, if you have to do so, you probably did not determine system components ade-
quately. Remember that this earlier stage should include an analysis of all system re-
quirements, including the root filesystem size. You should therefore have as accurate
an estimate as possible of the size of each component you selected during the first step
of creating the target system.

If you are unable to predetermine the complete list of components you will need in your
embedded system and would rather build your target root filesystem iteratively by
adding the tools and libraries you need as you go along, then do so, but do not treat
the result as your final root filesystem. Instead, use the iterative method to explore
building root filesystems, and then apply your experience to building a clean root
filesystem for your target system. The reason behind this is that the trial-and-error
nature of the iterative method makes its completion time nondeterministic. The struc-
tured approach may require more forethought, but its results are known and can be
the basis for additional planning.

Setting up and configuring the storage devices and the bootloader software are the
remaining tasks in creating a target Linux system. Chapters 7, 8, and 9 discuss these
issues in full. It is during these steps that the different components of the target system
come together: the bootloader, the root filesystem, and the kernel. As booting is highly
dependent on the architecture, different bootloaders are involved. Within a single ar-
chitecture there are also variations in the degree of debugging and monitoring provided
by the bootloaders. The methodology to package and boot a system is fairly similar
among the different architectures, but varies according to the permanent storage device
from which the system is booted and which bootloader is used. Booting a system from
native flash, for instance, is different than booting a system from a SATA disk device
or CompactFlash device, and is even more different than booting from a network server.

Design and Implementation Methodology | 29

Setting Up and Using Development Tools
Software development for embedded systems is different from software development
for the workstation or server environments. Mainly, the target environment is often
dissimilar to the host on which the development is conducted. Hence the need for a
host/target setup whereby the developer develops his software on the host and down-
loads it onto the target for testing. There are two aspects to this setup: development
and debugging. Such a setup, however, does not preclude you from using Linux’s multi-
architecture advantage to test your target’s applications on your host with little or no
modification. Though not all applications can be tested in this way, testing target
applications on the host will generally save you a lot of time.

Embedded development is discussed in Chapter 4. Prior to testing any code on the
target system, it is necessary to establish a host/target connection. This will be the
umbilical cord by which the developer will be able to interact with the target system to
verify whether the applications he develops function as prescribed. As the applications
cannot typically run on bare hardware, there will have to be a functional embedded
Linux system on the target hardware. Since it is often impossible to wait for the final
target setup to be completed to test target applications, you can use a development
target setup. The latter will be packaged much more loosely and will not have to respect
the size requirements imposed on the final package. Hence, the development root
filesystem may include many more applications and libraries than will be found in the
final root filesystem. This also allows different and larger types of permanent storage
devices during development.

Obtaining such a setup necessitates compiling the target applications and libraries. This
is achieved by configuring or building the various compiler and binary utilities for cross-
development. Using these utilities, you can build applications for the target and there-
fore build the development target setup used for further development. With this done,
you can use various integrated development environments (IDEs) to ease development
of the project components, and use other tools such as CVS, Subversion, and GIT to
coordinate work among developers.

Given the horsepower found on some embedded systems, some developers even choose
to carry out all development directly on the target system. In this setup, the compiler
and related tools all run on the target. This, in effect, combines host and target in a
single machine and resembles a conventional workstation application development.
The main advantage of such a configuration is that you avoid the hassle of setting up
a host/target environment.

Whatever development setup you choose, you will need to debug and poke at your
software in many ways. You can do this with the debugging tools covered in Chap-
ter 11. For simple debugging operations, you may choose to use ad hoc methods such
as printing values using printf(). Some problems require more insight into the runtime
operations of the software being debugged; this may be provided by symbolic
debugging. gdb is the most common general-purpose debugger for Linux, but symbolic

30 | Chapter 1: Introduction

debugging on embedded systems may be more elaborate. It could involve such things
as remote serial debugging, kernel debugging, and BDM and JTAG debugging tools.
But even symbolic debugging may be inadequate in some situations. When system calls
made by an application are problematic or when synchronization problems need to be
solved, it is better to use tracing tools such as strace and LTT. For performance prob-
lems, there are other tools more adapted to the task, such as gprof and gcov. When all
else fails, you may even need to understand kernel crashes.

Developing for the Embedded
One of the main advantages of using Linux as an embedded OS is that the code devel-
oped for Linux should run identically on an embedded target and on a workstation,
right? Well, not quite. Although it is true that you can expect your Linux workstation
code to build and run the same on an embedded Linux system, embedded system
operations and requirements differ greatly from workstation or server environments.
Whereas you can expect errors to kill an application on a workstation, for instance,
leaving the responsibility to the user to restart the application, you can’t afford to have
this sort of behavior in an embedded system. Neither can you allow applications to
gobble up resources without end or behave in an untimely manner.* Therefore, even
though the APIs and OS used may be identical, there are fundamental differences in
programming philosophies.

Networking
Networking enables an embedded system to interact with and be accessible to the
outside world. In an embedded Linux environment, you have to choose networking
hardware, networking protocols, and the services to offer while accounting for network
security. Chapter 10 covers the setup and use of networking services such as HTTP,
Telnet, SSH, and/or SNMP. One interesting feature in a network-enabled embedded
system is the possibility of remote updating, whereby it is possible to update the system
via a network link without on-site intervention. (This is covered in Chapter 8.)

* Normal Linux workstation and server applications should not gobble up resources either. In fact, the most
important applications used on Linux servers are noteworthy for their stability, which is one reason Linux
is so successful as a server operating system.

Design and Implementation Methodology | 31

As we saw in the previous chapter, there is a rich variety of embedded Linux systems.
And as time moves forward, this diversity is increasing as new markets open up, be it
for the millions of Linux-based cell phones sold every year, or for experimental amateur
rockets with precise real-time requirements. In spite of such a variety, there are
nevertheless a few key characteristics that apply uniformly to most embedded Linux
systems. The purpose of this chapter is to present you with the basic concepts and issues
that you are likely to encounter when developing any sort of embedded Linux system.

Many of the subjects introduced here will be discussed in far greater detail in other
chapters. They are covered here briefly to give you an understanding of how the system
forms a cohesive whole, and to avoid so-called undeclared forward references (a pro-
gramming term for using something before it has been fully defined). The chapter starts
with a discussion of the types of hosts most commonly used for developing embedded
Linux systems, the types of host/target development setups, and the types of host/target
debug setups. These sections are meant to help you select the best environment for
developing embedded Linux systems or, if the environment is already specified, un-
derstand how your particular setup will influence the rest of your development effort.
We will then present details of the structure commonly found in most embedded Linux
systems, and the generic architecture of an embedded Linux system, explaining system
startup, types of boot configuration, and the typical system memory layout, in addition
to other related items.

If you are already broadly familiar with embedded systems concepts, you need only
skim this chapter for Linux-specific issues. In such cases, you will want to pay particular
attention to the latter parts of the chapter.

Types of Hosts
In the next chapter, we will cover the hardware most commonly found in modern
embedded Linux targets. But although the target hardware is very important to your
overall design, each possible target system can be developed using a wide variety of

CHAPTER 2

Basic Concepts

33

host systems. In the following section, we will discuss the types of hosts most commonly
used, their particulars, and how easy it is to develop embedded Linux systems using
them.

Linux Workstation
This is the most common type of development host for embedded Linux systems. It is
also the one that we recommend you use if you are not already constrained by the use
of a particular development environment. The reasoning behind this is simple: to gain
experience with Linux, there really is no substitute for actually using a Linux system
for your own development. Using Linux on a day-to-day basis, you will also become
familiar with diagnosing and solving certain problems that may similarly affect your
target embedded Linux system later on.*

A standard PC is your most likely Linux workstation. Do not forget, though, that Linux
runs on a variety of hardware and you are not limited to using a PC-like system. Several
of this book’s authors, for example, regularly use PowerPC-based Linux systems for
their embedded work.

You may use any of the standard Linux distributions on your host system. These in-
clude, but are by no means limited to, the following:

Debian GNU/Linux (http://www.debian.org)
A popular community-supported and developed Linux distribution, maintained
by an international team of developers and supported under the umbrella of the
“Software In The Public Interest” registered charity organization. Debian prides
itself on its high standards, but it is occasionally known to be a little more difficult
to install and to use for the novice user. It is not released on any kind of predictable
schedule.

Fedora (http://www.fedoraproject.org)
A modern day continuation of the famous “Red Hat Linux,” which no longer exists,
despite many references to the now long since obsolete Red Hat Linux 9.0 that
persist on the Internet. Fedora is developed internationally, but has traditionally
had a strong affiliation with the company Red Hat, which uses Fedora as the base
when creating its Red Hat Enterprise Linux distribution. Fedora is typically re-
leased on a 6–9 month semipredictable schedule. It has an unstable release, known
as “rawhide,” which is updated on a daily basis as individual components of the
distribution undergo modification.

OpenSusE (http://www.opensuse.org)
If Fedora is the modern day continuation of Red Hat Linux, OpenSuSE is the same
for what was once simply known as SuSE. After Novell acquired SuSE and began

* One of the authors learned the hard way about system logfiles filling up system disks—first on a production
server in a corporate environment, then on a target embedded Linux system. This was sufficient experience
to eventually predesign future systems with limited space set aside for ever-expanding logfiles.

34 | Chapter 2: Basic Concepts

http://www.debian.org
http://www.fedoraproject.org
http://www.opensuse.org

releasing SuSE Linux Enterprise Server (SLES), OpenSuSE became the new
incubator for future technology. It is released on a similar schedule to Fedora, and
it also has an unstable release, known as “Factory,” that is updated on a daily basis.

Red Hat Enterprise Linux (RHEL) (http://www.redhat.com)
This is a commercial distribution from Red Hat and a direct descendant of the Red
Hat Linux line. It is released on an 18-month schedule and is supported for many
years following its release. Support is in the form of a subscription model, although
several others have successfully repackaged RHEL into “free” Enterprise Linux
distributions (which come with no support, but are virtually binary-identical to
the official product) after removing all appropriate trademarks. Such practice is
possible thanks to the open source licenses under which most software is distrib-
uted.

SuSE Linux Enterprise Server (SLES) (http://www.suse.com)
This is a commercial distribution from Novell, which also produces SLED (SuSE
Linux Enterprise Desktop) and a variety of other products. One of these products
is an enterprise real-time product that makes use of the RT patchset discussed in
this book (in the case of Novell, this is intended for mission-critical trading and
similar situations, rather than for embedded use—a testament to the generic use-
fulness and reusability of such technology). SLES is released on a basis similar to
Red Hat Enterprise Linux and competes with it directly.

Ubuntu Linux (http://www.ubuntulinux.org)
This is a derivative of Debian GNU/Linux, but intended more for mass market use
and released under a more predictable 6–12 month schedule. It is backed by Can-
onical, a company formed by billionaire Mark Shuttleworth, who became rich
through a company he built that relied heavily upon Debian for its IT infrastruc-
ture. A number of popular PC makers are now considering supplying, or are already
supplying, PCs with Ubuntu Linux preinstalled, in addition to the other afore-
mentioned commercial Linux distributions.

Yellow Dog Linux (http://www.terrasoftsolutions.com)
This is a Red Hat Linux derivative for PowerPC systems, such as those from IBM
(based on POWER/OpenPOWER/PowerPC processors) and formerly those from
Apple Computer. Although not as common, it stands here as an example of a Linux
distribution intended specifically for non-PC architectures in the first instance, and
as an example of how you need not always choose one of the “big three” (Red Hat,
Novell, Canonical) for your Linux needs.

There are numerous other Linux distributions available, for example, Slackware
(famous for being one of the early Linux distributions still in widespread use), Gentoo
(source-based, intended for optimized performance, but not for novice users—despite
what you may hear to the contrary on this topic!), and even more obscure distributions,
such as Rock Linux and Tom’s Root Boot (a minimal Linux, with modern-day deriv-
atives). The authors have used all of these, and many more, in the course of their Linux
careers. And one thing is for sure: there will be many more, so don’t get too fixated on

Types of Hosts | 35

http://www.redhat.com
http://www.suse.com
http://www.ubuntulinux.org
http://www.terrasoftsolutions.com

one Linux distribution. Concern yourself more with understanding commonalities,
such as the RPM package format (used extensively, though not universally).

The Linux marketplace continues to evolve over time. In the first edition of this book,
the author made no reference to Ubuntu, or to Canonical, because neither existed.†

Today, it’s hard to go anywhere without hearing about Canonical at the same time as
the other two big players. And it is almost certain that there will be new players, new
transitions, and new concerns that will arise following the publication of this edition.
If you are really interested in keeping abreast of changes in the distribution space, you
are encouraged to read distrowatch.com on a semiregular basis. There you will find
major announcements, popularity statistics, and a wide variety of other useful infor-
mation. Throughout this book, we will assume you are running a common distribution,
and although we are certainly not going to recommend any one distribution for your
development efforts, we do nonetheless recommend that those inexperienced with Li-
nux choose one of the aforementioned mainstream distributions over a more obscure
and less easily supported one. At least for your first project!

Although we’ve made an effort to keep this text independent of host
distribution, the instructions in this book are slightly tilted toward Red
Hat–type distributions—after all, those are what we use on a daily basis
ourselves. You may therefore need to make minor modifications to a
few commands, depending on the distribution installed on your host.
Wherever possible, distribution-dependent commands are presented.

Of course, the latest and fastest hardware is every engineer’s dream. Having the fastest
machine around will certainly help you with your work, but you can still use a relatively
mild-powered machine with appropriate RAM for this type of development. Remember
that Linux is very good at making the best of the available hardware, and given a choice
between a faster processor or more RAM, you will generally want to opt for more RAM.
A fast processor is useless if your machine is spending its time constantly thrashing the
disks as it attempts to swap programs and data into and out of main memory. It is,
nonetheless, appropriate to set some minimum constraints upon what is a reasonable
development platform, especially for those who must convince their management what
to buy!

Generally speaking, you will want to ensure that any PC-based development platform
has the following:

• At least 1 to 2 GB of RAM. More than 4 GB starts to become self-limiting, in that
you can likely retain the entire Linux desktop, applications, and most of the Linux
source code you are compiling in the host system’s built-in kernel buffers (the “page

† For that matter, at the time of the first edition, none of the other Linux distributions in our list existed in the
form that they now do. During that period, Red Hat still actively developed Red Hat Linux, whereas Novell
and SuSE were distinct organizations (the former later purchased the latter).

36 | Chapter 2: Basic Concepts

cache”) at this point. Opt for more RAM only if you frequently perform many
kernel compilation sequences, build many applications in parallel, or will share
one central development machine resource with other programmers.

• At least a 2 GHz CPU. More than two dual-core CPUs is currently considered to
be on the high end.

• As much disk space as you can reasonably get away with.

A bit more about the last item: no matter what development work you are doing, one
thing you can always use plenty of is disk space. Fortunately, storage is cheap. As of
this writing, 500 GB (and even 1 TB) disks are not that uncommon (a far cry from the
“2 to 3 GB” recommendation from the first edition of this book!), and larger capacities
are likely to be available by the time you read this. 500 GB should be an order of
magnitude more than enough for your needs, but with such a large amount of space
available at such modest prices, you will be able to keep many redundant copies of your
work, as you experiment with scratch builds or try out ideas. (Of course, you should
additionally plan to back this up somewhere else, but that should be obvious.)

You are encouraged to consider RAID on any serious Linux development system. Linux
has long since had great support for RAID1, RAID0+1, and RAID5 (using RAID0 is
never advisable), and modern Linux distributions won’t even require you to configure
this for yourself. They’ll take care of it during installation, just as long as you let them
know you desire a RAID array configuration. Using RAID (especially RAID1—effec-
tively doubling your disk use with a redundant copy of all data) can often result in much
faster disk access, since many possible disks can be used for any given read and will
usually increase reliability.

For further information about the different Linux distributions, as well as their re-
quirements, and the kinds of hardware best suited to your environment, consult the
individual distribution websites, distrowatch.com, this book’s website (http://www.em
beddedlinuxbook.org/), and a weekly dose of LinuxDevices.com articles.

Unix Workstation
Depending on your circumstances, you may be required to use a traditional Unix
workstation, although you are strongly encouraged not to do this if Linux is available.
Solaris workstations, for instance, are very common among telecommunication solu-
tions developers. Although the use of such workstations is much less common than the
use of Linux workstations for developing embedded Linux systems, it is still feasible.
In fact, modern Solaris (and OpenSolaris) systems include a large amount of prebuilt
GNU software, such as gcc, that can make your life easier.

Because Linux itself is very much like Unix, most of what applies to Linux also applies
to Unix and other Unix-like systems, such as the various BSD flavors (OpenBSD,
FreeBSD, and so on). This is especially true when it comes to the GNU development
toolchain, since the main GNU tools—such as the compiler, the C library, and the

Types of Hosts | 37

http://www.embeddedlinuxbook.org/
http://www.embeddedlinuxbook.org/

binary utilities (more commonly known as binutils)—were developed and used on tra-
ditional Unix systems before Linux even existed. Although most of the recommenda-
tions given earlier for Linux systems will relate to traditional Unix systems, you are
nonetheless strongly recommended to use a Linux system. The day has long since
passed when you should encounter any significant resistance from your corporate IT/
IS department about using a Linux system in place of a traditional Unix one.

Windows (Vista, XP, 2000, NT, 98, etc.) Workstation
In the early 1990s, embedded system development shifted toward Microsoft Windows
workstations. This was largely due to the growth in graphical development tools avail-
able, which came just in time for a surge in demand for a shortened time-to-market on
embedded projects. Many developers have since become used to working on this plat-
form and many new developers have been initiated to embedded systems development
on it. For these and other reasons, some developers would like to continue using Win-
dows workstations to develop, ironically, embedded Linux systems.

Although we are encouraging you to use Linux for your development whenever possi-
ble, and in spite of the existence of cross-platform GUI development tools (such as
Eclipse), we are nonetheless aware of the growing need for software tools that exist
only for Windows. This includes a number of vendor-specific tools, such as debuggers,
hardware FPGA/PROM/Flash programmers, and the like. We know that not all
developers will want to retain two development systems—Linux for straightforward
program development and Windows for the use of third-party Windows-only tools—
and will opt to base themselves on Windows. But the beauty here is that you are free
to use Windows on your host system if that is what you want to do. In fact, several of
the authors have successfully developed shipping products using Windows host com-
puters and embedded Linux targets.

At first glance, it would seem that the main problem in using Windows to develop
programs for embedded Linux targets is the (seeming) lack of the GNU development
toolchain. This is actually not a problem, because Red Hat provides the Cygwin envi-
ronment, which is the Windows-compatible GNU toolchain. Many people have used
it to build cross-platform tools for Linux, including a number of third parties. For
example, Xilinx bases its development tools upon a modified Cygwin (formerly “Xyg-
win”), which allows it to produce tools for both Linux and Windows systems. You can
find out more about Cygwin online at http://www.cygwin.com.

If you opt to use an embedded Linux development environment from one of the popular
embedded Linux vendors, they will additionally be able to supply you with a version
of their (invariably Eclipse-based) graphical tools and development environment run-
ning on Windows.

38 | Chapter 2: Basic Concepts

http://www.cygwin.com

Types of Host/Target Development Setups
Three different host/target architectures are available for the development of embedded
Linux systems: the linked setup, the removable storage setup, and the standalone setup.
Your actual setup may belong to more than one category or may even change categories
over time, depending on your requirements and development methodology.

Linked Setup
In this setup, the target and the host are permanently linked together using a physical
cable. This link is typically a serial cable or an Ethernet link. The main property of this
setup is that no physical hardware storage device is being transferred between the target
and the host. All transfers occur via the link. Figure 2-1 illustrates this setup.

As illustrated, the host contains the cross-platform development environment (dis-
cussed in Chapter 4), while the target contains an appropriate bootloader, a functional
kernel, and a minimal root filesystem.

Alternatively, the target can use remote components to facilitate development. The
kernel could, for instance, be available via trivial file transfer protocol (TFTP). The root
filesystem could also be NFS-mounted instead of being on storage media in the target.
Using an NFS-mounted root filesystem is actually perfect during development, because
it avoids having to constantly copy program modifications between the host and the
target, as we’ll see later in “Types of Boot Configurations.”

The linked setup is the most common. Obviously, the physical link can also be used
for debugging purposes. It is, however, more common to have another link for debug-
ging purposes, as we shall see later in “Types of Host/Target Debug Setups.” Many
embedded systems, for instance, provide both Ethernet and RS232 link capabilities. In
such a setup, the Ethernet link is used for downloading the executable, the kernel, the
root filesystem, and other large items that benefit from rapid data transfers between
the host and the target, while the RS232 link is used for debugging.

Many modern “legacy free” PC systems, as well as PowerPC-based systems, lack an
RS232 serial port. This is easily fixed by adding a USB serial dongle (a USB device that
provides a serial port via a serial-like emulation). Note that you should never use these
on the target if you plan to perform true serial console debugging.

Host

*Cross-platform
development
environment

Target

*Bootloader
*Kernel
*Root

filesystem

Figure 2-1. Host/target linked setup

Types of Host/Target Development Setups | 39

Removable Storage Setup
In the removable setup, there are no direct physical links between the host and the
target. Instead, a storage device is written by the host, is then transferred into the target,
and is used to boot the device. Figure 2-2 illustrates this setup.

As with the previous setup, the host contains the cross-platform development envi-
ronment. The target, however, contains only a minimal bootloader. The rest of the
components are stored on a removable storage media, such as a CompactFlash IDE
device, MMC Card, or any other type of removable storage device (even floppies and
CD-ROM/DVDs have been used), which is programmed on the host and loaded by the
target’s minimal bootloader upon startup.

It is possible, in fact, for a target not to contain any form of persistent storage at all.
Instead of a fixed flash chip, for instance, the target could contain a socket where a
flash chip could be easily inserted and removed. The chip is then programmed by a
flash programmer on the host and inserted into the socket in the target for normal
operation.

This setup is mostly popular during the initial phases of embedded system develop-
ment. You may find it more practical to move on to a linked setup once the initial
development phase is over, so you can avoid the need to physically transfer a storage
device between the target and the host every time a change has to be made to the kernel
or the root filesystem.

Standalone Setup
Here, the target is a self-contained development system and includes all the required
software to boot, operate, and develop additional software. In essence, this setup is
similar to an actual workstation, except the underlying hardware is not a conventional
workstation but rather the embedded system itself. Figure 2-3 illustrates this setup.

In contrast to the other setups, this one does not require any cross-platform develop-
ment environment, since all development tools run in their native environments.
Furthermore, it does not require any transfer between the target and the host, because
all the required storage is local to the target.

Host

*Cross-platform
development
environment

Target

*Bootloader

*Secondary bootloader
*Kernel
*Root filesystem

Figure 2-2. Host/target removable storage setup

40 | Chapter 2: Basic Concepts

This type of setup is quite popular with developers building high-end PC-based em-
bedded systems, such as high-availability systems, since they can use standard off-the-
shelf Linux distributions on the embedded system. Once development is done, they
then invest time in trimming down the distribution and customizing it for their
purposes.

Although this gets developers around having to build their own root filesystems and
configure the systems’ startup, it requires that they know the particular distribution
they are using inside out. Fortunately, this is made easier by various distributor efforts
to create flexibility over the last few years. For example, the Fedora Project is actively
working on allowing developers to create “custom spins” of Fedora, with only the
packages they want installed. Nevertheless, if you are interested in this approach, you
may want to take a look at Matthias Dalheimer and Matt Welsh’s Running Linux
(O’Reilly).

Note that a certain amount of flexibility exists in the definition of “standalone.” For
systems that will eventually need to function standalone, but nonetheless do include a
network port, a serial port, or a similar device, there is value gained in a mixed stand-
alone/linked setup. In such a setup, although the system is designed to function on a
standalone basis, you might include an option to boot across a network, to mount a
networked filesystem, or to use a serial connection for debugging purposes. The net-
worked filesystem might in such cases be significantly larger than the target filesystem
(which often resides on a very limited flash MTD of some kind). Thus, this filesystem
may include many more optional binaries useful only during development, documen-
tation, and updates to system software that can easily be copied over to, and tested on,
the target system during various debugging sessions.

Types of Host/Target Debug Setups
There are basically three types of interfaces that developers use to link a target to a host
for debugging: a serial line, a networking interface, and special debugging hardware.
Each debugging interface has its own benefits and applications. We will discuss the

Target

*Bootloader
*Kernel
*Full root
 filesystem
*Native
 development
 environment

Figure 2-3. Host/target standalone setup

Types of Host/Target Debug Setups | 41

detailed use of some of these interfaces in Chapter 11. This section will briefly review
the benefits and characteristics of each type.

Using a serial link is the simplest way to debug a target from a host, because serial
hardware is simple and is often found, in some form or another, in embedded systems.
There are two potential problems with using a serial link, however. First, the speed of
most serial links is rather limited. Second, if there’s only one serial port in the embedded
system or if the serial link is the embedded system’s only external interface, it becomes
impossible to simultaneously debug the system and interact with it using a terminal
emulator. The absence of terminal interaction is not a problem in some cases, however.
When debugging the startup of the kernel using a remote kernel debugger, for example,
no terminal emulator is required, since no shell actually runs on the target until the
kernel has finished booting.

Although it can seem expensive to include additional serial hardware in
your system design, note that you needn’t include a full logical-level
conversion (such as one of the popular MAXIM-TTL logic level con-
version parts on the market), or even actually have an additional exter-
nally visible connector of any kind. All that it requires is a little logic in
your design for the serial UART itself and some pads on the board, to
which you can connect a logic level converter and external serial port
connector during your debug sessions. Many manufacturers choose this
option.

The use of a networking interface, such as TCP/IP over Ethernet, provides much higher
bandwidth than a serial link. Moreover, the target and the host can use many network-
ing connections over the same physical network link. Hence, you can continue to
interact with the target while debugging applications on it. You can also debug over a
networking link while interacting with the target using a terminal emulator over the
embedded system’s serial port. However, the use of a networking interface implies the
presence of a networking stack. Since the networking stack is found in the Linux kernel,
a networking link cannot be easily used to debug the kernel itself (although, to a certain
extent, there are network diagnostics tools for the Linux kernel, such as kdump, which
are useful for remotely capturing a crash). In contrast, kernel debugging can be, and
often is, carried out over a serial link.

Both the use of a serial link and the use of a networking interface require some minimal
software that recognizes the possibly primitive I/O hardware on the target. In some
cases, such as when porting Linux to a new board or when debugging the kernel itself,
such software is not present. In those cases, it is necessary to use a debugging interface
that provides direct hardware control over the software. There are several ways to ach-
ieve this, but most are quite expensive.

Currently, the preferred way to obtain direct control over hardware for debugging pur-
poses is to use a BDM or JTAG interface. These interfaces rely on special BDM or JTAG

42 | Chapter 2: Basic Concepts

functionality embedded in the CPU. By connecting a special debugger (such as the
BDI2000 family of popular debugger hardware devices, used by several of the authors
in products that have been shipped) to the JTAG or BDM pins of the CPU, you can
take complete control of its behavior. For this reason, JTAG and BDM are often used
when bringing up new embedded boards or debugging the Linux kernel on such boards.

Though the BDM and JTAG debuggers are much less expensive and much less com-
plicated in terms of their technical operation than in-circuit emulators (ICEs), they still
require the purchase of special hardware and software. Often, this software and hard-
ware are still relatively expensive because CPU manufacturers are not keen to share the
detailed information regarding the use of the JTAG and BDM interfaces included in
their products. Obtaining this information often involves establishing a trust relation-
ship with the manufacturer and signing stringent NDAs. Consequently, you should not
expect much change back from $1,000 U.S. (even on eBay) for a hardware debugging
tool of this kind.

Though it would probably be too expensive to equip each member of an engineering
team with her own BDM or JTAG debugger, we do highly recommend that you have
at least one such debugger available throughout your project for debugging the very
difficult problems that a serial or networking debugger cannot deal with appropriately,
especially if you are porting Linux to an entirely new hardware platform. (If it’s simply
based on a standard reference platform, you might get away without the hardware-base
debugger.) When selecting such a debugger, however, you may want to evaluate its
compatibility with the GNU development toolchain. Some BDM and JTAG debuggers,
for instance, require the use of specially modified gdb debuggers. A good BDM or JTAG
debugger should be able to deal transparently with the standard GNU development
toolchain, and the binary files generated using it.

Generic Architecture of an Embedded Linux System
Since Linux systems are made up of many components, let us take a look at the overall
architecture of a generic Linux system. This will enable us to set each component in
context and will help you understand the interaction between them and how to best
take advantage of their assembly. Figure 2-4 presents the architecture of a generic Linux
system with all the components involved. Although the figure abstracts to a high degree
the content of the kernel and the other components, the abstractions presented are
sufficient for this discussion. Notice that there is little difference in the following de-
scription between an embedded system and a workstation or server system, since Linux
systems are all structured the same at this level of abstraction. In the rest of the book,
however, emphasis will be on the details of the application of this architecture in em-
bedded systems.

Hardware must meet some broad characteristics to run a Linux system:

Generic Architecture of an Embedded Linux System | 43

• Linux normally requires at least a 32-bit CPU containing a memory management
unit (MMU).‡

• A sufficient amount of RAM must be available to accommodate the system. Re-
quirements will be laid out in later chapters.

• Minimal I/O capabilities are required if any development is to be carried out on
the target with reasonable debugging facilities. This is also very important for any
later troubleshooting in the field.

• The kernel must be able to load a root filesystem through some form of permanent
storage, or access it over a network.

See “Types of Embedded Linux Systems” in Chapter 1 for a discussion of typical system
configurations.

Immediately above the hardware sits the kernel, the core component of the operating
system. Its purpose is to manage the hardware in a coherent manner while providing
familiar high-level abstractions to user-level software (such as the POSIX APIs and the
other de facto, industry-standard APIs against which applications are generally writ-
ten). As with other Unix-like kernels, Linux drives the devices, manages I/O access,
controls process scheduling, enforces memory sharing, handles the distribution of sig-
nals, and tends to other administrative tasks. It is expected that applications using the
APIs provided by a kernel will be portable among the various architectures supported
by this kernel with little or no changes. This is usually the case with Linux, as can be
seen by the body of applications uniformly available on all architectures it supports.

Low-level interfaces

High-level abstractions

File-
systems

Network
protocols

Linux kernel

Applications

Libraries

Hardware

Figure 2-4. Architecture of a generic Linux system

‡ As we’ll see, the official Linux kernel includes the fruits of a project known as uClinux which runs on some
CPUs that aren’t equipped with full MMUs. However, the development of applications for Linux on such
processors differs sufficiently from standard Linux application development to require a separate discussion.
Because of this, plus a relative lack of widely available software for such systems, we do not cover the use of
Linux on MMU-less architectures.

44 | Chapter 2: Basic Concepts

Within the kernel, two broad categories of layered services provide the functionality
required by applications. The low-level interfaces are specific to the hardware config-
uration on which the kernel runs and provide for the direct control of hardware re-
sources using a hardware-independent API. That is, handling registers or memory pages
will be done differently on a PowerPC system and on an ARM (Advanced RISC Ma-
chine) system (and perhaps even differently within the ARM and PowerPC families),
but will be accessible using a common API to higher-level components of the kernel,
with some rare exceptions. Typically, low-level services handle CPU-specific opera-
tions, architecture-specific memory operations, and basic interfaces to devices. These
are then abstracted to higher level code through headers, macros, and wrapper
functions.

Above the low-level services provided by the kernel, higher-level components provide
the abstractions common to all Unix systems, including processes, files, sockets, and
signals. Since the low-level APIs provided by the kernel are common among different
architectures, the code implementing the higher-level abstractions is almost constant,
regardless of the underlying architecture. There are some rare exceptions, as stated
earlier, where the higher-level kernel code will include special cases or different func-
tions for certain architectures.

Between these two levels of abstraction, the kernel sometimes needs what could be
called interpretation components to understand and interact with structured data com-
ing from or going to certain devices. Filesystem types and networking protocols are
prime examples of sources of structured data the kernel needs to understand and in-
teract with in order to provide access to data going to and coming from these sources.

Disk devices have been and still are the main storage media for computerized data. And
in the embedded world, flash-based devices tend to provide the same functionality—
even using compatible interfaces, in many cases. Yet disk devices, and all other storage
devices for that matter, themselves contain little structure. Their content may be
addressable by referencing the appropriate sector of a cylinder on a certain disk (or the
erase block number of the NAND flash, logical block number of the CompactFlash,
etc.), but this level of organization is quite insufficient to accommodate the ever-
changing content of files and directories. File-level access is achieved using a special
organization of the data on the disk where file and directory information is stored in a
particular fashion so that it can be recognized when it is read again. This is what file-
systems are all about.

During the evolution of operating systems, many different incompatible filesystems
have seen the light of day. To accommodate these existing filesystems as well as new
ones in development, the kernel has a number of filesystem engines that can recognize
a particular disk structure and retrieve or add files and directories from this structure.
The engines all provide the same API to the upper layers of the kernel through the Linux
Virtual File System (VFS) abstraction so that accesses to the various filesystems are
identical even though accesses to the lower-layer services vary according to the structure
of the filesystem. The same API is provided to the virtual filesystem layer of the kernel

Generic Architecture of an Embedded Linux System | 45

by, for instance, the FAT filesystem and the ext3 filesystems, but the operations the
filesystems conduct on the block device driver differ according to the respective struc-
tures used by FAT and ext3 to store data on disk (which are very different indeed!).

In fact, disk vendors are increasingly heading toward higher level ab-
straction, even at the “hardware” level. By the time you read this, it is
quite possible that disk devices will be on the market that deal solely
with logical extents—chunks of data (“files”), streams, and similar in-
formation—rather than the old-fashioned sector-based approach with
which you may be familiar. Linux will, at that point, use these new
capabilities within the modern “extent”-based filesystems to store large
amounts of data much more efficiently than ever before, with even less
logic needed within the kernel itself for controlling the disk. Nonethe-
less, this is tangential to the current topic of conversation.

During its normal operation, the kernel requires at least one properly structured file-
system, the root filesystem. From this filesystem, the kernel loads the first application
to run on the system. It also normally relies upon this filesystem for certain further
operations, such as loading modules and providing each process with a working di-
rectory (though these activities might take place on other filesystems mounted within
the tree that begins with the root filesystem). The root filesystem may be either stored
and operated on from a real hardware storage device, or loaded into RAM during system
startup and operated on from there. As we’ll see later, the former is becoming much
more popular than the latter with the advent of facilities such as the JFFS2, YAFFS2,
LogFS, and other journaled flash filesystems.

You might expect that right above the kernel you would find the regular applications
and utilities making up and running on the operating system. Yet the services exported
by the kernel are often unfit to be used directly by applications. Instead, applications
rely on libraries and special system daemons to provide familiar APIs and abstract
services that interact with the kernel on the application’s behalf to obtain the desired
functionality. The main library used by most Linux applications is the GNU C library,
glibc. For embedded Linux systems, substitutes to this library can be used (as we’ll see
later) to compensate for the GNU C library’s main deficiency: its size. Other than the
C library, libraries such as Qt, XML, or MD5 provide various utility and functionality
APIs serving all sorts of purposes. Meanwhile, important system processes (“daemons”)
provide services exploited by applications. For instance, the udev device filesystem
manager manages devices in /dev, such as when USB storage devices are added to and
removed from the system.

Libraries are typically linked dynamically with applications. That is, they are not part
of the application’s binary, but are rather loaded into the application’s memory space
during application startup. This allows many applications to use the same instance of
a library instead of each having its own copy. The C library found on a system’s

46 | Chapter 2: Basic Concepts

filesystem, for instance, is loaded only once in the system RAM, and this same copy is
usually shared among all applications that use this library.

But in some situations involving embedded systems, static linking, whereby libraries
are part of the application’s binary, is preferred to dynamic linking. When only part of
a library is used by one or two applications, for example, static linking helps avoid the
need to store the entire library on the embedded system’s storage device. This issue
becomes even more complex when linking proprietary applications with certain libra-
ries covered only by a strict GPL license rather than the LGPL. Licensing issues were
discussed in Chapter 1—for further information, consult your attorney.

System Startup
Three main software components participate in system startup: the bootloader, the
kernel, and the init process. The bootloader is the first software to run upon startup
and is highly dependent on the target’s hardware. As we’ll see in Chapter 9, many
bootloaders are available for Linux. The bootloader performs low-level hardware ini-
tialization and then jumps to the kernel’s startup code.

The early kernel startup code differs greatly between architectures and conducts initi-
alization of its own before setting up a proper environment for the running of C code.
Once this is done, the kernel jumps to the architecture-independent start_kernel()
function, which initializes the high-level kernel functionality, mounts the root filesys-
tem, and starts the init process. As part of the higher-level kernel initialization, various
callbacks are made into platform-specific code, which varies by supported architecture.
For example, some PowerPC systems take this opportunity to set up special memory
mappings and mimimal versions of serial diagnostic functions, prior to the kernel
bringing its usual memory and device management functionality online. This is useful
mainly for debugging.

We will not cover the details of the kernel’s internal startup and initialization, because
they have already been covered in detail in Linux Device Drivers by Jonathan Corbet
et al. (O’Reilly). Also, Appendix A of Daniel Bovet and Marco Cesati’s Understanding
the Linux Kernel (O’Reilly) provides a lengthy description of the startup of PC-based
systems from the initial power-on to the execution of the init process. That discussion
covers the kernel’s internal startup for the x86, which is similar in concept to that used
on other architectures, although the specifics do actually vary quite considerably. When
it comes down to it, you will learn more about this in reading through the code, ex-
perimenting, performing your own kernel ports, and keeping up with the Linux kernel
mailing lists than you will from any (quickly outdated) book.

The rest of the system startup is conducted in user space by the init program found on
the root filesystem. We will discuss the setup and configuration of the init process in
Chapter 6.

System Startup | 47

Types of Boot Configurations
The type of boot configuration chosen for a system greatly influences the selection of
a bootloader, its configuration, and the type of software and hardware found in the
host. A network boot configuration, for example, requires that the host provide some
types of network services to the target. In designing your system, you first need to
identify the boot configurations you are likely to use during development and in the
final product. Then, you need to choose a bootloader or a set of bootloaders that will
cater to the different types of boot setups you are likely to use. Not all bootloaders, for
example, can boot kernels from disk devices. In the following discussion, we will cover
the possible boot configurations. Let us start, nevertheless, by reviewing some boot
basics.

All CPUs fetch their first instruction from an address preassigned by their manufacturer
(occasionally with some design flexibility between a few alternative addresses—deter-
mined by strapping lines on the CPU). Any system built using a CPU has one form or
another of a solid-state storage device at that location. Traditionally, the storage device
was a masked ROM, but flash chips are increasingly the norm today. The software on
this storage device is responsible for bootstrapping the system. The level of sophisti-
cation of the boot software and the extent to which it is subsequently used as part of
the system’s operation greatly depend on the type of system involved.

Masked ROMs continue to be used when devices are produced in very
large quantities. Consumer gaming devices such as consoles, for exam-
ple, often use masked ROMs.

Some higher-end FPGA platforms running Linux don’t even use regular
memory at all. They create special block RAM devices with “hard-
wired” jump instructions at the regular CPU reset vector, designed to
force it to jump to bootloader code preloaded into RAM by the same
special hardware device that also loaded the FPGA configuration itself.
Such an approach is extremely popular in designs based upon the Xilinx
Virtex family of FPGAs. In this case, a mere five hardcoded PowerPC
instructions are all that are required to be “hard-wired” into synthetic
block RAM at the reset vector, sufficient to jump into a preloaded
bootloader.

On most workstations and servers, the boot software is responsible only for loading
the operating system from disk and for providing basic hardware configuration options
to the operator. In contrast, there are very few agreed upon purposes, if any, for boot
software in embedded systems, because of the diversity in purposes of embedded
applications. Sometimes, the boot software will run throughout the system’s lifetime.
The boot software may also be a simple monitor that loads the rest of the system soft-
ware. Such monitors can then provide enhanced debugging and upgrading facilities.

48 | Chapter 2: Basic Concepts

The boot software may even load additional bootloaders, as is often the case with x86
PCs.

Embedded Linux systems are as diverse as their non-Linux counterparts. They are
characterized, nevertheless, by the requirement to load a Linux kernel and its designa-
ted root filesystem. How these are loaded and operated largely depends on the system’s
requirements and sometimes on the state of its development, as described earlier in
“Types of Host/Target Development Setups.”

There are three different setups used to bootstrap an embedded Linux system: the solid-
state storage media setup, the disk setup, and the network setup. Each setup has its
own typical configurations and uses. The following subsections will discuss each setup
in detail.

In Chapter 9, we will discuss the setup and configuration of specific bootloaders for
each applicable setup.

Solid-State Storage Media
In this setup, a solid-state storage device holds the initial bootloader, its configuration
parameters, the kernel, and the root filesystem. Although the development of an em-
bedded Linux system may use other boot setups, depending on the development stage,
most production systems contain a solid-state storage media to hold all the system’s
components. Figure 2-5 shows the most common layout of a solid-state storage device
with all the system components.

No memory addresses are shown in Figure 2-5, because the ranges vary greatly. Intui-
tively, you may think that addresses are lower on the left and grow toward the right.
However, there are cases where it is the inverse, and the bootloader is at the top of the
storage device address range instead of the bottom. For this reason, many flash devices
are provided in both top- and bottom-boot configurations. Depending on the config-
uration, the flash region where the bootloader is found often has special protection
mechanisms to avoid damage to the bootloader if a memory write goes astray. In top-
boot flash devices, this protected region is located at the top of the device’s address
range, whereas in bottom-boot flash devices, it is located in the bottom of the device’s
address range.

Root filesystemKernel

Boot parameters

Bootloader

Figure 2-5. Typical solid-state storage device layout

Types of Boot Configurations | 49

Although Figure 2-5 shows the storage device separated into four different parts, it may
contain fewer parts. The boot parameters may be contained within the space reserved
for the bootloader. The kernel may also be on the root filesystem (as is the case in
popular devices, such as the OLPC “$100 laptop,” which uses an OpenFirmware
filesystem-aware bootloader). This, however, requires that the bootloader be able to
read the root filesystem. Also, the kernel and the root filesystem could be packaged as
a single image that is uncompressed in RAM before being used (in fact, 2.6 Linux kernels
make this process particularly easy, if desired).

Depending on the capabilities provided by your bootloader, there may even be other
possible configurations, each with its advantages and disadvantages. Usually, a setup
can be categorized along a set of four criteria: flash memory use, RAM use, ease of
upgrading, and bootup time.

Boot storage media are initially programmed using a device programmer—for example,
in mass-produced devices on a large yield production line—or the CPU’s integrated
debug capabilities, such as JTAG or BDM. Once the device is initially programmed, it
can be reprogrammed by the system designer using the bootloader, if it provides this
capability, or using Linux’s MTD subsystem (MTD stands for “memory technology
device”). The system may also contain software that enables the user to easily update
the storage device. We will discuss the programming of solid-state storage media in
Chapter 7.

Disk
This is the setup you are probably most familiar with because of its widespread use in
workstations and servers. Here, the kernel and the root filesystem are located on a disk
device. The initial bootloader (which is normally resource constrained; for example,
PC-based systems require that it fit into a 512-byte “boot sector”) either loads a larger
and more powerful secondary bootloader from the disk or fetches the kernel itself di-
rectly from the disk. One of the filesystems on the disk is then used as the root
filesystem.

During development, this setup is particularly attractive if you would like to have a
large number of kernel and root filesystem configurations for testing. If you plan to
develop your embedded system using a customized mainstream distribution, for in-
stance, this setup is convenient. If you are using a hard disk or a device mimicking a
hard disk, such as CompactFlash, in your production system, this boot setup is prob-
ably the best choice.

Because this is a well-known and well-documented scheme, we will discuss it only
briefly in Chapter 9. You will be able to find a wealth of documentation on this process
from various Linux vendors, as well as from online resources.

50 | Chapter 2: Basic Concepts

Network
In this setup, either the root filesystem or both the kernel and the root filesystem are
loaded via a network link. In the first case, the kernel resides on solid-state storage
media or a disk, and the root filesystem is mounted via NFS. In the second case, only
the bootloader (perhaps a very minimal bootloader, with just enough support to load
a kernel image over a local network connection) resides on a local storage media. The
kernel is then downloaded via TFTP, and the root filesystem is mounted via NFS. To
automate the location of the TFTP server, the bootloader may also use BOOTP/DHCP.
In that case, the target does not need any preset IP addresses to find either the TFTP
server or the NFS server.

This setup is ideal in early stages of development or during debugging because it enables
the developer to share data and software rapidly between his workstation and the target
without having to reprogram the target. Software updates can then be compiled on the
host and tested immediately on the target. In contrast, few production systems use this
setup, because it requires the presence of a server. In the case of the control systems
described in Chapter 1, however, this setup actually can be used for some of the devices,
because the SYSM module already provides network services.

Obviously, this setup involves configuring the server to provide the appropriate net-
work services. We discuss the configuration of these network services in Chapter 9.

System Memory Layout
To best use the available resources, it is important to understand the system’s memory
layout, and the differences between the physical address space and the kernel’s virtual
address space.§ Most importantly, many hardware peripherals are accessible within
the system’s physical address space, but have restricted access or are completely “in-
visible” in the virtual address space.

To best illustrate the difference between virtual and physical address spaces, let’s take
a look at an example. The venerable HP iPAQ remains popular with some embedded
Linux enthusiasts, and is now cheaply available on eBay. Since its memory layout is
fairly typical of many devices available, we’ll use it as an example in Figure 2-6.

The physical map of a system is usually available with the technical literature accom-
panying your hardware. In the case of the iPAQ, the SA-1110 Developer’s Manual is
available on Intel’s website.

The physical map is important because it provides you with information on how to
configure the kernel and how to develop custom drivers. During the kernel’s configu-
ration, for instance, you may need to specify the location of the flash devices in your

§ What we call here a “virtual address” is known in x86 jargon as a “logical address” and can have other names
on other architectures.

System Memory Layout | 51

system. During development, you may also need to write a driver for a memory-mapped
peripheral. You will also need to provide your bootloader with information regarding
the components it has to load. For these reasons, it is good practice to take the time to
establish your system’s physical memory map before starting software development.

On the iPAQ, the flash storage is divided in two. The first part contains the bootloader
and starts at the lowest memory address available. Given the bootloader’s size, this
region is rather small. The rest of the flash storage space is occupied by the system’s
root filesystem, which in the case of Familiar is a JFFS2 filesystem. In this case, the
kernel is actually on the root filesystem. This is possible because the bootloader has
enough understanding of JFFS2 to find the kernel on the filesystem.

Upon startup, the bootloader reads the kernel from the root filesystem into the system’s
RAM and jumps to the kernel’s start routines. From there on, the rest of the system
startup is carried out by Linux.

Once Linux is running,‖ the programs use virtual addresses. In contrast to the physical
memory map, the layout of the virtual memory map is of secondary importance for
kernel configuration or device driver development. For device driver development, for

Physical memory map

LCD and DMA registers

System RAM

0xFFFF FFFF

0xC200 0000

0x8C00 0000

Memory and
expansion registers

0x8800 0000

System control
module registers

0x8400 0000

iPAQ internal registers

0x4C00 0000
0x4800 0000

PCMCIA
sockets

0x2000 0000

Root filesystem
Bootloader

0xC000 0000

0x4000 0000

0x0100 0000
0x0004 0000
0x0000 0000

System flash

Virtual memory map
0xFFFF FFFF

0xC000 0000

0x4000 0000

0x0200 0000
0x0000 0000

Kernel

Application text

ld.so
Libraries

Peripheral control
module registers

0x8000 0000

0x8000 0000

User-space stack

Figure 2-6. Physical and virtual memory maps for the Compaq iPAQ

‖ As mentioned near the beginning of this chapter, we assume you are using MMU-equipped hardware.

52 | Chapter 2: Basic Concepts

instance, it is sufficient to know that some information is located in kernel space and
other information in user space, and that appropriate functions must be used to prop-
erly exchange data between the two.

The virtual memory layout is mostly important in helping you understand and debug
your applications. As you can see in Figure 2-6, the kernel occupies a quarter of the
virtual address space, starting from address 0xC0000000. This region is also known as
“kernel space.” The rest of the address space is occupied by application-specific text,
data, and library mappings. This is also known as “user space.” Whereas the kernel is
always located above the 0xC0000000 mark for all applications, the applications’
memory maps may differ even on the same system.

To reconstruct a process of the virtual memory map, you need to look at the maps file
in the process’s pid entry in the /proc filesystem. For more details on how to get this
information, see Understanding the Linux Kernel.

System Memory Layout | 53

Having covered the basics of embedded Linux systems, including generic system
architecture, we will now discuss the embedded hardware Linux supports. First, we’ll
cover the processor architectures Linux supports that are commonly used in embedded
systems. Next, we will cover the various hardware components involved, such as buses,
I/O, storage, general-purpose networking, industrial-grade networking, and system
monitoring. Although we will include many different components, we have omitted
those not typically used in embedded configurations.

Note that the following discussion will not attempt to analyze the pros and cons of one
hardware component or another. Hardware development is moving forward far too
quickly for us to be in the business of doing such things. Use this chapter, instead, as
a starting point for your research in either identifying the components to include in
your system or judging the amount of effort needed to get Linux to run on the hardware
you have already chosen.

A Word of Caution on the Use of Proprietary Device Drivers
Please note that the following sections will not cover the software made available by
the various hardware vendors to support their hardware (unless that software has been
made available through the upstream open source community). We will cover only
hardware supported by the open source and free software communities. Some vendors
may provide closed-source drivers for their hardware. If you intend to use such hard-
ware, keep in mind that you will have no support from the open source and free software
development community, members of which can be very vocal in their dislike of pro-
prietary drivers. You will have to refer to the component vendor directly for any prob-
lems related to or caused by their closed-source drivers. Open source and free software
developers have repeatedly refused to help anyone that has problems when using
closed-source drivers, so please do not be under any false expectation that your case
will be handled any differently.

CHAPTER 3

Hardware Support

55

Processor Architectures
Linux runs on a large and ever-growing number of machine architectures, but not all
these architectures are actually used in embedded configurations, as already men-
tioned. A quick look at the arch subdirectory of the Linux kernel sources shows 24
architectures supported in the official kernel at the time of this writing, with others
maintained by developers in separate development trees, possibly making it into a fu-
ture release of the official kernel. Of those 24 architectures, we will cover 8 that are
used in embedded Linux systems (in alphabetical order): ARM, AVR32, Intel x86,
M32R, MIPS, Motorola 68000, PowerPC, and Super-H. The following discussion will
look at each of these architectures in terms of the support provided by Linux to the
CPUs belonging to that architecture and the boards built around those CPUs. It will
also cover the intricacies of Linux’s support as well as some of the possible caveats.

MMU-Less Linux Systems Running uClinux
In addition to the eight architectures mentioned previously, Linux also runs on
uClinux-based systems—such as those based on the Blackfin from Analog Devices—
and the Microblaze soft-synthesizable IP core from Xilinx used in a growing number
of newer FPGA-based devices running Linux. These systems don’t feature a traditional
MMU (memory management unit), a defining characteristic of modern Unix-like sys-
tems and the hardware support for the operating system concept of virtual memory
abstraction. These processors are typically intended as an alternative to older 8-bit
microcontrollers in low-cost devices where cost sensitivity or FPGA fabric gate utiliza-
tion still precludes use of a processor with an MMU. uClinux-based systems have in-
cluded commercial printing solutions, home entertainment devices, and the original
iPodLinux port. (Modern iPhones and iPods are based around more powerful ARM
processors that include a full MMU and so eventually will be able to run the official
Linux kernel, once the port is complete.) uClinux is feature complete and is supported
in the official Linux kernel.

We will not cover the MMU-less architectures supported by uClinux in this chapter
(even though such support has now been integrated into the official 2.6 series Linux
kernel) because this book is primarily concerned with 32-bit (and higher) systems fea-
turing a full MMU, but also because more and more processors that you are likely to
encounter are now able to have an MMU. Few new architectures are being seriously
considered that don’t provide at least a basic MMU (and many are also now beginning
to feature complete virtualization technologies—even in the embedded space). The
bottom line: if you are interested in learning more about uClinux, we suggest that you
first read this section, and then investigate one of the texts available on that subject, or
consult http://www.uclinux.org.

56 | Chapter 3: Hardware Support

http://www.uclinux.org

ARM
ARM, which stands for Advanced RISC Machine, is a family of processors maintained
and promoted by ARM Holdings Ltd. In contrast to other chip manufacturers such as
IBM, Freescale, and Intel, ARM Holdings does not manufacture its own processors.
Instead, it designs complete CPU cores for its customers based on the ARM core,
charges customers licensing fees on the design, and lets them manufacture the chip
wherever they see fit. This offers various advantages to the parties involved, but it does
create a certain confusion to the developer approaching this architecture for the first
time, as there is no central producer of ARM chips. There is, though, one unifying
characteristic that is important to remember: all ARM processors share the same ARM
instruction set, which makes all variants supporting a particular revision of the ARM
instruction set fully software compatible.

This doesn’t mean that all ARM CPUs and boards can be programmed and set up in
the same way, only that the assembly language and resulting binary codes are identical
for all ARM processors meeting a certain revision of the architecture. Revisions of the
architecture in current use include ARMv4T (introduced the Thumb instruction set),
ARMv5TE (the basis for “Xscale” parts), ARMv6 (TI-OMAP-based devices from No-
kia, and the like, as well as the ARMv6KZ-based Apple iPhone), and ARMv7. Each of
these architectural revisions enhances features within a “family” of ARM processors—
ARM7TDMI, ARM9E, Xscale, ARM11, and so on. Naming gets slightly more complex
in reality, because revisions of the architecture include letters or “flags” indicating add-
ing features. For example, the ARMv4T introduced a condensed version of the in-
struction set (“Thumb”) that aims to use less memory for instruction storage, while
maintaining an adequate level of performance. There are also ARM processors with
enhanced DSP performance (“E”), Java bytecode support (“J”), virtualization capabil-
ities, and a growing number of other flags.

Currently, ARM CPUs are manufactured by Marvell (formerly Intel, under the “Xscale”
brand), Toshiba, Samsung, and many others. The ARM architecture is very popular in
many fields of application, from cell phones and PDAs to networking equipment, and
there are hundreds of vendors providing products and services around it. It is highly
likely that, as you read this, you are surrounded by devices featuring at least one (if not
several) ARM cores.

At the time of this writing, Linux supports 40 distinct ARM CPUs, and a total of 1,832
different machine types. Given the quantity and variety of information involved, as well
as the pace with which ARM Linux is developing, we refer you to the complete and up-
to-date list of ARM systems supported and their details at http://www.arm.linux.org.uk/
developer/machines. Suffice it to say that Linux supports most mainstream CPUs and
boards, such as the Texas Instruments OMAP CPUs used by Nokia in its well-known
Linux Internet Tablets, and the IXP network processors used in many different net-
working devices. In case you need it, there is a way to add support for new hardware,
although it is highly likely that support for your development reference board is already

Processor Architectures | 57

http://www.arm.linux.org.uk/developer/machines
http://www.arm.linux.org.uk/developer/machines

in the ARM Linux tree. Generally, for any information regarding the Linux ARM port,
consult the project’s website at http://www.arm.linux.org.uk.

For information regarding the ARM architecture itself and its instruction set, consult
the ARM Architecture Reference Manual edited by David Seal (Addison-Wesley), and
Steve Furber’s ARM System-on-Chip Architecture (Addison-Wesley), as well as the ma-
terials available on the ARM website at http://www.arm.com.

AVR32
AVR32 is a newcomer to the industry (2006). It is a 32-bit microprocessor architecture
designed by the Atmel corporation, which also produces the AVR 8-bit microcontroller
devices used in deeply embedded situations. Although AVR32 and AVR are similar in
name, they are unrelated except for sharing the same original design center. AVR32
comprises several subarchitectures and can additionally support the usual DSP and
Java acceleration instructions one has come to expect from recent embedded process-
ors. AVR32 provides for several modes of CPU operation; both fixed width 16-bit
instructions and “extended” 32-bit instructions are supported. In some ways, the con-
densed format 16-bit width instructions are similar in purpose to the ARM Thumb
instruction set mentioned in the previous section. Both processors compress instruction
memory usage without losing the benefit of being a 32-bit device, although it has been
suggested that AVR32 is actually more efficient in terms of code density (memory foot-
print used by code, etc.) and overall performance. AVR32 is exclusively used in Atmel’s
own products at the time of this writing.

The initial port of Linux to AVR32 was announced in a posting to the Linux Kernel
Mailing List in early 2006. At the time of this writing, a single machine type (at32ap)
is supported in the official Linux kernel, as well as several development boards. For
more information about AVR32 Linux, refer to the website at http://avr32linux.org, as
well as the community-maintained http://www.avrfreaks.net.

Intel x86
The x86 family starts with the 386 introduced by Intel in 1985 and goes on to include
all the descendants of this processor, including the 486, the Pentium family, the Net-
Burst (P6), Xeon, Core, and Core 2, along with compatible processors by other vendors
such as National Semiconductor and AMD (which first popularized the x86_64 64-bit
extensions of the x86 over Intel’s redesigned Itanium, often simply called the “Itanic”
by Linux developers for its lack of widespread adoption outside of a few niche markets).
Intel remains, though, the main reference in regards to the x86 family and is still the
largest distributor of processors of this family. Lately, a new trend is to group traditional
PC functionality with a CPU core from one of the 386 family processors to form a
System-on-Chip (SoC). AMD Geode family, which AMD bought from National
Semiconductor, is a prime example of this trend; it is used in the OLPC’s first generation
XO laptop. There are many more SoCs on the market.

58 | Chapter 3: Hardware Support

http://www.arm.linux.org.uk
http://www.arm.com
http://avr32linux.org
http://www.avrfreaks.net

Although x86 is the most popular and most publicized platform to run Linux, it rep-
resents a small fraction of the traditional embedded systems market. In most cases,
designers prefer ARM, MIPS, and PowerPC processors to i386 for reasons of complex-
ity, power utilization (though this is changing), and overall cost.

That said, i386 remains the most widely used and tested Linux platform. Thus, it profits
from the largest base of software available for Linux. Many applications and add-ons
start their lives on the i386 before being ported to the other architectures supported by
Linux. The kernel itself was in fact written for the i386 first before being ported to any
other architecture. After many years of high-profile resistance from Linus Torvalds, the
x86 architecture also finally has its own built-in debugger within the official Linux
kernel, as opposed to the debugger being an intrusive add-on.

Since most, if not all, i386 embedded systems are very similar, or identical to the work-
station and server counterparts in terms of functionality and programmability, the ker-
nel makes little or no difference between the various x86 CPUs and related boards.
When needed, a few #ifdef statements are used to accommodate the peculiarities of a
certain CPU or board, but these are rare.

One exception to this is Voyager support. Voyager is a long defunct platform that
ordinarily would have also long since ceased to be supported by mainstream Linux,
were it not for the efforts of one man. James Bottomley (Linux SCSI maintainer and
Voyager enthusiast) continues to keep this venerable platform alive. He even rewrote
various parts of the low-level x86 architectural support code to handle Voyager’s var-
ious oddities. Never say that Linux kernel engineers aren’t enthusiastic, determined,
or a even a little quirky from time to time.

The i386-based PC architecture is the most widely documented architecture around.
There are several books and online documents in many languages discussing the intri-
cacies of this architecture, in addition to the documents available from the various
processor vendors, some of which are very complete. To get an idea of the scope of the
existing documentation, try searching for “pc architecture” in the book section of
Amazon.com.

It would be hard to recommend a single source of information regarding the i386 and
PC architecture. Intel Architecture Software Developer’s Manual, Volume 1: Basic
Architecture, Volume 2: Instruction Set Reference, and Volume 3: System Programming
Guide, published by Intel, are traditional sources of information about how to program
the i386s and are quite rich, albeit limited to Intel’s products. The availability of these
documents may vary. At some point, hardcopies were not available from Intel’s
literature center. During that time, however, the documents were available in PDF
format online. At the time of this writing, the manuals are available in electronic PDF
downloadable form from Intel’s literature center.

Processor Architectures | 59

M32R
M32R is another recent (2003) 32-bit microprocessor architecture, designed by Renesas
Technology and implemented both in silicon and as an FPGA synthesized soft-logic
core. Unlike many other FPGA-based systems running Linux, the M32R actually
implements a full MMU and can therefore run a stock Linux kernel without using
uClinux’s user space utilities. M32R has been used in a variety of applications, ranging
from consumer electronics devices such as PDAs, cameras, and the like to engine con-
trol units. The Linux port supports nearly a dozen platforms based upon M32R.

For further information about the port, refer to the website at http://www.linux-
m32r.org.

MIPS
MIPS is the brain child of John Hennessey—mostly known by computer science stu-
dents all over the world for his books on computer architecture written with David
Patterson—and is the result of the Stanford Microprocessor without Interlocked Pipeline
Stages project (MIPS). MIPS is famed for once having been the basis of the workstations
and servers sold by SGI and of gaming consoles such as Nintendo’s 64-bit (N64) system
and the Sony Playstations 1 and 2. It was also used in the Series 2 TiVo and in countless
other consumer electronics devices. The company steering this processor, MIPS Tech-
nologies Inc., licenses CPU cores to third parties much like ARM. Unlike ARM, how-
ever, there are in fact many instruction set implementations, which differ from each
other to various degrees. 32-bit MIPS implementations are available from manufactur-
ers such as IDT, Toshiba, RMI (Alchemy), NXP (formerly Philips), and LSI. 64-bit
implementations are available from IDT, LSI, NEC, NXP (formerly Philips), Broadcom,
and Toshiba. There is also a growing market for synthesizable MIPS IP cores for use in
soft-logic FPGA devices, and the like. Just as with ARM, we can only touch the surface
of what is available based upon MIPS.

The initial port of Linux to MIPS was mainly done to support MIPS-based workstations,
although these are now largely defunct (there aren’t any MIPS workstations being made
any more). Eventually, the port also came to include development boards and embed-
ded systems that were based on MIPS. To accommodate the various CPUs and systems
built around them, the layout of the MIPS portion of the kernel is divided into direc-
tories based on the type of system the kernel will run on. Similarly, kernel configuration
for a given MIPS system is mainly influenced by the type of board being used. The actual
type of MIPS chip on the board is much less important than the type of environment
in which it is placed (the specifics of the board itself).

Support for Linux on MIPS is more limited than for other architectures such as the Intel
x86 or the PowerPC. In fact, few of the main distributions have actually been ported
to MIPS. When available, commercial vendor support for MIPS is mostly limited to
embedded architectures. Nevertheless, there is a Debian port to both big- and

60 | Chapter 3: Hardware Support

http://www.linux-m32r.org
http://www.linux-m32r.org

little-endian MIPS, several community embedded distributions can target MIPS, and
embedded Linux vendors such as MontaVista actively support MIPS, too. Also, many
PDA and development board manufacturers actively support Linux ports on their own
MIPS-based hardware. As with some other ports, MIPS lacks a few of the things you
might have come to expect from using a desktop Linux environment on an Intel-like
x86 system, but it is sufficient for many embedded Linux needs.

For more information regarding the MIPS port of Linux in general, take a look at the
official home of the Linux MIPS port at http://www.linux-mips.org. The website con-
tains a list of supported systems, documentation, links, and other useful resources.
Because MIPS is divided into multiple platforms, you will need to refer to the data
provided by your system’s manufacturer to evaluate or implement Linux support. One
general resource that is recommended on MIPS Technologies Inc.’s own website is See
MIPS Run by Dominic Sweetman (Morgan Kaufmann Publishers). You can also get
PDFs on MIPS’s website. MIPS provides 32- and 64-bit editions of its MIPS Architecture
for Programmers three-volume series, made up of Volume I: Introduction to the MIPS
Architecture, Volume II: The MIPS Instruction Set, and Volume III: The MIPS Privileged
Resource Architecture.

Motorola 68000
The Motorola 68000 family is known in Linux jargon as m68k. The MMU-equipped
varieties have been supported under Linux for quite some time, and the MMU-less
varieties have been supported starting with the 2.6 kernel.

m68k came in second only to the Intel x86 as a popular 1980s architecture. Apart from
being used in many mainstream systems by Atari, Apple, and Amiga, and in popular
workstation systems by HP, Sun, and Apollo, the m68k was also a platform of choice
for embedded systems development. Recently, though, interest has drifted away from
the m68k to newer architectures, such as ARM, MIPS, SH, and PowerPC, for embedded
systems design. Nonetheless, from time to time new boards appear that are based upon
this venerable architecture.

Linux supports many systems based on m68k, starting with the mainstream and work-
station systems already mentioned and including VME systems from Motorola and
BVM. Because these systems are completely different, the kernel tree is built to accom-
modate the variations and facilitate the addition of other m68k-based systems. Each
system has its own set of specific modules to interface with the hardware. An example
of this is the interrupt vector tables and related handling functions. Each system has a
different way of dealing with these, and the kernel source reflects this difference by
having a different set of functions to deal with interrupt setup and handling for each
type of system.

Since the MMU versions of m68k are seldom used nowadays in new, cutting-edge
designs, they lag behind in terms of software support. There is, for instance, no real
Java support (but this may change due to the open sourcing of Sun’s Java Virtual

Processor Architectures | 61

http://www.linux-mips.org

Machine), nor is the processor architecture listed among supported architectures for
some other user-level applications. For up-to-date information regarding the port, the
supported hardware, and related resources, refer to the m68k Linux port home page
at http://www.linux-m68k.org. One distribution that has done a lot work for m68k is
Debian, so check out its documentation and mailing lists if you plan to deploy an m68k
Linux system.

Since there is no standard m68k-based platform such as the PC for the Intel x86, there
is no single reference covering all m68k-based systems. There are, however, many text-
books and online resources that discuss the traditional use of the m68k and its pro-
gramming. Motorola provides the 68000 Family Programmer’s Reference Manual and
the M68000 8-/16-/32-Bit Microprocessors User’s Manual free through its literature
center. Other, more elaborate, texts that include examples and applications can be
found by searching for “68000” on any online bookstore.

PowerPC
PowerPC (PPC) architecture was the result of a collaboration between Apple, IBM, and
Motorola (now Freescale)—the “AIM alliance.” It inherited ideas from work done by
the three firms, especially IBM’s Performance Optimization With Enhanced RISC
(POWER) architecture, which still exists and is heavily used as a 64-bit workhorse in
IBM’s many server offerings. PowerPC is mostly known for its original use in Apple’s
Macs, but there are other PowerPC-based workstations from IBM and other vendors,
as well as many PowerPC-based embedded systems. The popular TiVo system, for
instance, was based on an embedded PowerPC processor, for which TiVo actually did
the original work required to get Linux running on such PowerPC variants. This was
not a trivial task, since the embedded variants can be quite different at the OS level—
including a replacement of the regular virtual memory implementation with a special
soft-programmable one that requires the kernel to do much more work.

Along with i386 and ARM, the PowerPC is the best supported architecture in Linux,
which is partly evident from the large number of PPC CPUs and systems on which
Linux runs. Although it is clear that PowerPC Linux has benefited from some big players
being behind it, it has also been successful because of a small but very dedicated number
of core PowerPC developers. Several of these (for example, Benjamin Herrenschmidt)
work for IBM. But others, notably Tom Rini and Matt Porter (along with others from
Embedded Alley) got into PowerPC as a sideline, personal interest and wound up
working at embedded Linux companies like MontaVista. Obviously, no description of
PowerPC Linux support would be complete without mentioning its maintainer, Paul
Mackerras, who originally started the “pmac” (Powermac, i.e. Apple) development
back in the last century and who now maintains overall coordination of Linux PowerPC
development, both 32- and 64-bit.

Thanks in part to sponsorship, bounties, and other, related development efforts of IBM
(and other players), a great number of applications that run on the Intel x86 are available

62 | Chapter 3: Hardware Support

http://www.linux-m68k.org

for PowerPC, including Java. The PPC Linux community is active in many areas of
development ranging from workstation to embedded systems. The main PPC Linux
site is http://penguinppc.org. Community members maintain it; is not affiliated with any
particular vendor. It contains valuable documentation and links and should be con-
sidered the starting point for any Linux development on PPC.

A number of distributions support PowerPC, some exclusively. Yellow Dog Linux, for
example, provides Linux only for PowerPC machines. There are also traditional main-
stream distributions that provide support for PowerPC as part of their support for other
architectures. These include Debian, OpenSuSE, Fedora, and Ubuntu. Note that
PowerPC is often considered a “secondary” (community-maintained) architecture.

If you intend to use PowerPC in your embedded application and want to be in touch
with other folks using this architecture in their systems, be sure to subscribe to the very
active linuxppc-embedded list. Most problems are recurring, so there is probably some-
one on that list who has had your problem before. If not, many people will be interested
in seeing your problem solved, as they may encounter it, too. The list is hosted on
linuxppc.org, which also hosts many other PPC-related lists.

SuperH
In an effort to enhance its 8- and 16-bit H8 line of microcontrollers, Hitachi introduced
the SuperH (SH) line of processors in the early 1990s. These manipulate 32-bit data
internally and offer various external bus widths. Later, Hitachi formed SuperH Inc.
(now Renesas Technology) with STMicroelectronics (formerly SGS-Thomson
Microelectronics). Renesas licenses and steers development of the SuperH much the
same way ARM Holdings Ltd. does for ARM and MIPS Technologies Inc. does for
MIPS. The early implementations of the SuperH, such as the SH-1, SH-2, and their
variants, did not have an MMU. Starting with the SH-3, however, all SuperH processors
include an MMU. The SuperH is used within Hitachi’s own products, in many con-
sumer-oriented embedded systems such as PDAs, and in some older game consoles,
too.

Because the early SuperH (SH) processors did not include MMUs, Linux does not
support them. Currently, Linux supports some SH-3, SH-4, and SH-5 systems, but not
all, because these chips have many variations with various capabilities. Support for the
SuperH outside the kernel is rather limited for the moment. There is no support for
Java, for instance. The architecture does have a kernel debugger. A few distributions
provide SH support, such as MontaVista and Debian, whereas others such as Fedora
have been recompiled successfully by community developers from time to time, but
not on a permanent basis. A complete list of all supported versions of SuperH, along
with links to distributions and the like, is available on the Linux SuperH community
maintained website at http://www.linux-sh.org.

As there is no standard SH architecture, you will need to refer to your hardware’s
documentation for details about the layout and functionality of the specific hardware

Processor Architectures | 63

http://penguinppc.org
http://www.linux-sh.org

devices available in any reference board design. There are, nonetheless, manuals that
describe the operations and instruction sets of the various processors.

Buses and Interfaces
The buses and interfaces are the fabric that connects the CPU to the peripherals on the
system. Each bus and interface has its own intricacies, and the level of support Linux
provides them varies accordingly. A rundown follows of some of the many different
buses and interfaces found in typical embedded systems, and the level of support Linux
provides them. Linux supports many other buses, and we couldn’t hope to cover all of
them in the space of just one chapter. Some of these other buses are used in older
systems, are workstation- or server-centric, or are just a little too quirky to go into here.
In addition, some buses are proprietary to a specific system vendor, or are not yet heavily
adopted. We won’t discuss buses that lack widespread adoption, nor will we cover so-
called third generation buses such as HyperTransport in any detail, since they are
usually used only semitransparently as a CPU-level root bus. But we will mention In-
finiBand (and the OpenIB stack in particular).

If you’re designing a new embedded system from scratch, you might have no enumera-
ble, higher-level bus structure for certain devices. Instead, these may sit solely within
the CPU’s memory map as memory-mapped devices. Linux provides explicit support
for just this kind of embedded situation, through the use of “platform devices.” This
abstraction allows the kernel to support devices that it cannot simply enumerate when
it scans the available bus topology during bootup. Such devices are detected either
through the use of special platform-specific code or may be mentioned in the system
bootloader/kernel interface—for example, the flattened device tree passed between the
bootloader and the kernel on PowerPC platforms.

For additional information about buses and device support, refer to Linux Device Driv-
ers by Jonathan Corbet et al. (O’Reilly).

PCI/PCI-X/PCIe
The Peripheral Component Interconnect (PCI) bus, managed by the PCI Special In-
terest Group (PCI-SIG), is the most popular bus currently available. Designed as a
replacement for the legacy Intel PC ISA bus, PCI is now available in two forms: the
traditional parallel slot form factor using 120 (32-bit PCI) or 184 (64-bit PCI-X) I/O
lines, and the newer (and also potentially much faster) PCI Express (commonly called
PCIe or PCI-E) packet-switched serial implementation as used in most recent designs.
Whether conventional PCI, 64-bit PCI-X, or serial PCI-Express, PCI remains software
compatible between the different implementations, because the physical interconnect
used underneath is generally abstracted by the standard itself. Linux support is very
good indeed, but for those times when special support quirks are needed, Linux offers
PCI “quirks” too.

64 | Chapter 3: Hardware Support

PCI requires software support in order for it to be used by device drivers. The first part
of this support is required to initialize and configure the PCI devices upon bootup
(called PCI enumeration). On PC systems, this is traditionally done by the BIOS, and
if the BIOS has carried out the initialization, the kernel will browse the BIOS’s table to
retrieve the PCI information. However, the kernel is capable of carrying out the initi-
alization and configuration itself. In both cases, the kernel provides an API to device
drivers, so they can access information regarding the devices on the PCI bus and act on
these devices. There are also a number of user tools for manipulating PCI devices (for
example, lspci lists all PCI buses and devices). In short, the level of support for PCI in
Linux is fairly complete and mature.

Linux Device Drivers provides very good insight into PCI development in Linux and
how the PCI bus operates in general. PCI System Architecture by Tom Shanely and Don
Anderson (Addison-Wesley) gives in-depth information on the PCI bus for software
developers. Of course, you can always get the official PCI specification from the PCI-
SIG. Official specifications, however, tend to make very dry reading material. Finally,
there is the Linux PCI-HOWTO, available from the Linux Documentation Project
(LDP) at http://www.tldp.org, which discusses the caveats of using certain PCI devices
with Linux and the support Linux provides to PCI devices in general.

ExpressCard (Replaces PCMCIA’s PC Card)
Modern laptop and embedded devices replace the legacy PC Card first standardized by
the Personal Computer Memory Card International Association (PCMCIA) with a
higher speed standard based upon more recent technology, known as ExpressCard.
Like the PC Card before it, ExpressCard is intended to allow for easy addition of internal
peripheral devices to embedded devices in situations where, perhaps, using another
bus such as USB is not desirable or practical. This can be true for laptops, where a given
device should be added permanently without needing to constantly attach and detach
it as the laptop is used or put away for safe storage. Unlike PC Card (which is based
around its own unique bus design), ExpressCard simply provides both PCI-Express
and USB 2.0 through a convenient interface card format. ExpressCard supports two
form factors: ExpressCard/34 (34 mm wide) and ExpressCard/54 (54 mm wide, sup-
ports also the ExpressCard/34). Both are used depending upon device application re-
quirements.

Since ExpressCard is functionally an implementation of both the PCI-Express and USB
2.0 standards (themselves well supported by Linux), ExpressCard already has good
Linux support, and a growing number of systems are beginning to deploy it. Of course,
at the same time, the legacy PCMCIA PC Card interface, which provides a modified
form of 32-bit, 33 MHz PCI known as CardBus, continues to be used in some designs.
Linux support for CardBus is (and has been for a long time) extremely good, in spite
of the standard’s various quirks and complexities. The Linux PCMCIA and hotplug
mechanisms underwent a complete overhaul during the development of the 2.6 series

Buses and Interfaces | 65

http://www.tldp.org

Linux kernel, and they continue to evolve. Still, we hope your designs won’t need to
make use of legacy PCMCIA.

There is extensive documentation available concerning the use and implementation of
PCMCIA in the 2.6 series Linux kernel at http://kernel.org/pub/linux/utils/kernel/
pcmcia/pcmcia.html. For more modern ExpressCard systems, your first point of call as
far as Linux is concerned should be the reference documentation on USB 2.0 or PCI-
Express, depending upon which ExpressCard devices you plan to use.

PC/104, PC/104-Plus, PCI-104, and PCI/104-Express
Although many embedded devices today make use of regular desktop and server buses
such as PCI and PCI Express, certain applications demand that they be hosted in a more
robust form. This is the raison d’etre for the PC/104 embedded computer standard. PC/
104 defines a form factor for stackable computer processor boards (and other boards)
and serves a similar purpose in the space of industrial-grade computing to that of the
ATX (and its variants) in the consumer and enterprise computing environment. In
addition to being a different size, PC/104 systems have differing electrical and me-
chanical tolerances intended to enhance extensibility and increase ruggedness. There
are several forms of PC/104 depending upon whether a PCI or PCI-Express bus is
provided for use by other components within the stack. These forms of the standard
are commonly known as PCI/104 and PCI/104-Express, and are managed by the PC/
104 Consortium. The original plain PCI/104 and PCI/104-Plus are seldom seen in new
designs, because they rely upon the long since defunct ISA bus used in the original Intel
PC.

Since the PCI/104 and PCI/104-Express standards both implement standard Linux-
supported buses such as PCI and PCI-Express, devices built using the PC/104 form
factor are supported by Linux. This does not, of course, mean that a given device will
have a driver available, nor does it mean that you may not encounter problems, only
that the potential for good support of your hardware is in place so long as the other
necessary driver components are available.

66 | Chapter 3: Hardware Support

http://kernel.org/pub/linux/utils/kernel/pcmcia/pcmcia.html
http://kernel.org/pub/linux/utils/kernel/pcmcia/pcmcia.html

CompactPCI/CompactPCIe
The CompactPCI specification was initiated by Ziatech and developed by members of
the PCI Industrial Computer Manufacturer’s Group (PICMG), which oversees the
specification and promotes the use of CompactPCI. The CompactPCI specification
provides an open and versatile platform for high-performance, high-availability appli-
cations. Its success is largely based on the technical choices its designers made. First,
they chose to reuse the Eurocard form-factor popularized by older standards, such as
VME. Second, they chose to make the bus PCI-compatible, hence enabling
CompactPCI board manufacturers to reuse low-cost PCI chips already available in the
mainstream market.

Technically, the CompactPCI bus is electrically identical to the PCI bus. Instead of
using slot connections, as found in most workstations and servers, pin connectors are
used to connect the vertically loaded CompactPCI boards to the CompactPCI back-
plane. As with PCI, CompactPCI requires a single bus master.* Consequently, Com-
pactPCI requires the permanent presence of a board in the system slot. It is this board
that arbitrates the CompactPCI backplane, just as a PCI chipset arbitrates a PCI bus in
a workstation or a server.

In addition, the CompactPCI specification allows for the implementation of the hot
swap specification, which describes methods and procedures for runtime insertion and
removal of CompactPCI boards. This specification defines three levels of hot swapping.
Each level implies a set of hardware and software capabilities. Here are the available
levels and their requirements:

Basic hot swap
This hot swap level involves console intervention by the system operator. When a
new card is inserted, she must manually inform the OS to power it up and then
configure and inform the software of its presence. To remove a card, she must tell
the OS that the board is about to be removed. The OS must then stop the tasks
that are interacting with the board and inform the board to shut down.

Full hot swap
In contrast to basic hot swap, full hot swap does not require console intervention
by the operator. Instead, the operator flips a microswitch attached to the card
injector/ejector to notify the OS of the impending removal. The OS then performs
the necessary operations to isolate the board and tell it to shut down. Finally, the
OS lights an LED to notify the operator that the board can now be removed. On
insertion, the OS receives an insertion signal and carries out the inverse operations.

* The term “bus master” can mean different things in different contexts. In this particular instance, “bus
master” designates the device that sets up and configures the PCI bus. There can be only one such device on
a PCI bus, though more than one may actually be able to access the memory regions exported by other PCI
devices.

Buses and Interfaces | 67

High availability
In this level, CompactPCI boards are under complete software control. A hot swap
controller software manages the state of all the boards in the system and can se-
lectively reverse these individual boards according to the system’s state. If a board
fails, for example, the controller can shut it down and power up a duplicate board
that is present within the same chassis for this very purpose. This hot swap level
is called “high availability,” because it is mostly useful in what are known as high-
availability applications,† such as telecommunications, where downtime must be
minimal.

In addition to the regular CompactPCI standard, which is widely used, an ongoing
standardization effort is leading up to the adoption of CompactPCIe, a PCI-Express
variant of CompactPCI. CompactPCIe provides many of the same features as Com-
pactPCI, including hot swap and high availability, while also offering increased
throughput and other benefits of the more modern PCI-Express.

Linux accommodates various levels of the CompactPCI standard, including hotplug-
ging, depending upon which tools are installed on your target embedded device. Several
of the embedded Linux vendors have also developed enhancements (especially via the
Carrier Grade Linux specification efforts) that allow for more complete control over
the high availability aspects of CompactPCI. Further information about the Carrier
Grade Linux specification and the level to which a given distribution supports the
standard is available at http://www.linuxfoundation.org/en/Carrier_Grade_Linux.

SCSI/iSCSI
Shugart Associates introduced the Small Computer Systems Interface (SCSI), which
eventually evolved into a series of standards developed and maintained by a series of
standard bodies, including ANSI, ITIC, NCITS, and T10. Although mainly thought of
as a high-throughput interface for hard drives for high-end workstations and servers,
SCSI is a both a general software interface and a set of electrical specifications that can
be used to connect various hardware peripherals. Only a small segment of embedded
systems ever use SCSI devices, though. These systems are typically high-end embedded
systems, such as ones providing an interface into NAS (network attached storage), and
usually implement iSCSI, where the SCSI protocol is used over regular TCP/IP rather
than as a traditional electrical bus within a machine.

Linux support for SCSI is extensive and well maintained, while iSCSI support varies
depending upon whether you wish to implement an initiator (client), target (device),
or both. Discussion of the kernel’s SCSI device drivers architecture can be found on the

† To avoid any confusion, we will refer to this hot swap level as “high availability hot swap level” and will
continue to use the “high-availability” adjective to refer to applications and systems that need to provide a
high level of availability, regardless of whether they use CompactPCI or implement the “high availability hot
swap level.”

68 | Chapter 3: Hardware Support

http://www.linuxfoundation.org/en/Carrier_Grade_Linux

Linux SCSI mailing list (linux-scsi) at http://vger.kernel.org. The Open-iSCSI project
provides a full implementation of an iSCSI Initiator for modern Linux kernels at http://
www.open-iscsi.org. For iSCSI Target support, several open source projects are under
development, as well as at least one proprietary implementation. You would be well
advised to refer to the Open-iSCSI project as a starting point when implementing a
Linux iSCSI target.

USB
The Universal Serial Bus (USB) was developed and is maintained by a group of com-
panies that form the USB Implementers Forum (USB-IF). Initially developed to replace
such fragmented and slow connection interfaces as the parallel and serial ports tradi-
tionally used to connect peripherals to PCs, USB has rapidly established itself as the
interface of choice for peripherals, because of its low cost, ease of use, and high-speed
throughput. Although mostly a mainstream device-oriented bus, USB is increasingly
appearing in hardware used in embedded systems, such as SBCs and SoCs from several
manufacturers, especially now that the USB On-The-Go (OTG) chipsets featuring both
client and device side support in a single chipset are available to system manufacturers.

USB devices are connected in a tree-like fashion. The root is called the root hub and is
usually the main board to which all USB devices and nonroot hubs are connected. The
root hub is in charge of all the devices connected to it, directly or through secondary
hubs. A limitation of this is that computers cannot be linked in any form of networking
using direct USB cabling.‡

Support within Linux for USB devices is very good, especially as a result of the ongoing
efforts of developers such as Greg Kroah-Hartman (Greg K-H) who is trying to actively
engage device vendors in supporting as many devices as possible. As with other hard-
ware components, many Linux drivers have instead been developed in spite of their
manufacturers’ unwillingness to provide the relevant specifications. The main compo-
nent of Linux’s USB support is provided by the USB stack in the kernel. The kernel also
includes drivers for the USB devices supported by Linux. User tools are available to
manage USB devices and they, along with a complete list of supported devices, are
available through the Linux USB project website at http://www.linux-usb.org.

Linux Device Drivers provides guidelines on how to write Linux USB drivers. There are
a number of books that discuss USB, which you can find at the various online book-
stores. However, the consensus among developers and online book critics seems to
indicate that the best place to start, as well as the best reference, is the original USB
specification available online from the USB-IF.

‡ Some manufacturers actually provide a form of host-to-host link via USB, but the standard was not intended
to accommodate this type of setup. There are also USB network adapters, including Ethernet adapters, that
can be used to connect the computers to a common network.

Buses and Interfaces | 69

http://vger.kernel.org
http://www.open-iscsi.org
http://www.open-iscsi.org
http://www.linux-usb.org

IEEE1394 (FireWire)
FireWire is a trademark owned by Apple for a technology they designed in the late
1980s and early 1990s. They later submitted their work to the IEEE and it formed the
basis of what eventually became IEEE standard 1394. Much like USB, IEEE1394 ena-
bles devices to be connected using simple and inexpensive hardware interfaces. Because
of their similarities, IEEE1394 and USB often used to be considered together, although
it seems that USB has won the popularity contest over time, perhaps also due to the
licensing terms involved in using Firewire. Even Apple is now shipping systems without
Firewire support, in favor of using high-speed USB 2.0 instead.

In contrast to USB, IEEE1394 connections do not require a root node. Rather, con-
nections can be made either in a daisy-chain fashion or using an IEEE1394 hub. Also,
unlike SCSI, connections do not need any termination. It is also possible to connect
two or more computers directly using an IEEE1394 link, which isn’t really possible
with USB. To take advantage of this capability, there is even an Internet RFC (Request
For Comment, a form of Internet “standard”) specifying how to implement IP over
IEEE1394.

Linux’s support for IEEE1394 used to be buggy and was certainly incomplete in com-
parison with other operating systems. IEEE1394 support was completely rewritten in
the 2.6 series Linux kernel and is now widely considered to be very good. For further
information, visit http://www.linux1394.org.

InfiniBand
InfiniBand is a high-performance switched fabric interface created as a result of merging
two competing designs: Future I/O (HP, and IBM) and Next Generation I/O (Intel,
Microsoft, and Sun). It is built upon a number (ranging from 1–12 or more) of high-
speed, point-to-point and bidirectional serial links, and in some ways is similar to other
newer buses such as PCI Express. Maximum data throughput ranges from 2 Gigabits
to 96 Gigabits for a 12X (12 bonded serial links) Quad Data Rate (QDR) configuration.
Two of InfiniBand’s main selling points are its very low end-to-end latency (around 1
microsecond) and its support for performance enhancing optimizations such as RDMA
(Remote DMA). These features have encouraged InifiniBand adoption for high-
performance computing, especially in supercomputers.

Linux support for InfiniBand comes thanks to Open Fabrics Alliance (OFA), an in-
dustry consortium created to address the lack of a standard InfiniBand API. OFA
maintains the OpenIB InfiniBand Driver Stack that is shipped with a growing number
of Linux distributions. Visit http://www.openfabrics.org for more information.

70 | Chapter 3: Hardware Support

http://www.linux1394.org
http://www.openfabrics.org

GPIB
The General-Purpose Interface Bus (GPIB) has its roots in HP’s HP-IB bus, which was
born at the end of the 1960s and is still being used in engineering and scientific appli-
cations. In the process of maturing, GPIB became the IEEE488 standard and was revised
as late as 1992. Many devices that are used for data acquisition and analysis are, in fact,
equipped with a GPIB interface. With the advent of mainstream hardware in this field
of application, many GPIB hardware adapters have been made available for such hard-
ware and for PCs in particular.

GPIB devices are connected together using a shielded cable that may have stackable
connectors at both ends. Connectors are “stackable” in the sense that a connector on
one end of a cable has the appropriate hardware interface to allow for another connector
to be attached to it, which itself allows another connector to be attached. If, for instance,
a cable is used to connect a computer to device A, the connector attached to A can be
used to attach the connector of another cable going from A to device B.

Linux support for GPIB is available thanks to the Linux GPIB kernel driver and library
maintained at http://linux-gpib.sourceforge.net. The maintainer has stated that he
doesn’t currently have any plans to add new features beyond ensuring that the existing
library continues to build and run against recent kernels. The package currently pro-
vides kernel drivers, a user space library compatible with National Instrument’s own
GPIB library, and language bindings for Perl and Python. The package supports hard-
ware from HP, Keithley, National Instruments, and other manufacturers. The complete
list of supported hardware is included in the devices.txt file found in the package’s
sources and on the project’s website.

I2C
Initially introduced by Philips (now NXP) to enable communication between compo-
nents inside TV sets, the Inter-Integrated Circuit (I2C) bus can be found in many em-
bedded devices of all sizes and purposes. As with other similar small-scale buses such
as SPI and MicroWire, I2C is a simple serial bus that enables the exchange of limited
amounts of data among the IC components of an embedded system. There is a broad
range of I2C-capable devices on the market, including LCD drivers, EEPROMs, and
DSPs. Because of its simplicity and its hardware requirements, I2C can be implemented
in both software and hardware.

Connecting devices using I2C requires only two wires, the serial clock line (SCL) with
the clock signal and the serial data line (SDA) with the data. All devices on an I2C bus
are connected using the same wire pair. The device initiating a transaction on the bus
becomes the bus master and communicates with slaves using an addressing scheme.
Although I2C supports multiple masters, most implementations have only one master.

Buses and Interfaces | 71

http://linux-gpib.sourceforge.net

The main kernel tree includes support for I2C, a number of devices that use I2C, and
the related System Management Bus (SMBus). Due to the heavy use of I2C by hardware
monitoring sensor devices, the I2C support pages are hosted on the Linux hardware
monitoring project website at http://www2.lm-sensors.org. The site includes a number
of links, documentation, and the most recent I2C development code. Most importantly,
it contains a list of the I2C devices supported, along with the appropriate driver to use
for each device.

Apart from the documentation included with the kernel about I2C and the links and
documentation available on the hardware sensors website, information regarding the
bus and related specification can be obtained from Philips’s website at http://
www.nxp.com/products/interface_control/i2c.

I/O
Input and output (I/O) are central to the role of any computerized device. As with other
OSes, Linux supports a wide range of I/O devices. The following does not pretend to
be a complete run-down of all of them. For such a compilation, you may want to read
through the Hardware Compatibility HOWTO available from LDP. Instead, this
section will concentrate on the way the different types of I/O devices are supported by
Linux, either by the kernel or by user applications.

Some of the I/O devices discussed are supported in two forms by the kernel, first by a
native driver that handles the device’s direct connection to the system, and second
through the USB layer to which the device may be attached. There are, for instance,
PS/2 keyboards and (older) parallel port printers along with USB keyboards and USB
printers. Because USB has already been discussed earlier, and an in-depth discussion
of Linux’s USB stack would require a lengthy text of its own, we will cover only the
support Linux provides to the devices directly attached to the system. Note, however,
that USB drivers for similar devices tend to rely on the infrastructure already available
in Linux to support the native devices. A USB serial adapter driver, for example, relies
on the same facilities as the traditional serial driver, in addition to the USB stack.

Serial Port
The serial port is arguably every embedded system developer’s best friend (or her worst
enemy, depending on her past experience with this ubiquitous interface). Many em-
bedded systems are developed and debugged using an RS232 serial link between the
host and the target. Sometimes, PCBs are laid out to accommodate a serial port, but
only development versions of the boards ever include the actual connector, while pro-
duction systems are shipped without it. The simplicity of the RS232 interface has en-
couraged its widespread use and adoption, even though its bandwidth is rather limited
compared to other means of transmission. Note that there are other serial interfaces
besides RS232, some of which are less noise-sensitive and therefore more adapted to

72 | Chapter 3: Hardware Support

http://www2.lm-sensors.org
http://www.nxp.com/products/interface_control/i2c
http://www.nxp.com/products/interface_control/i2c

industrial environments. The hardware serial protocol, however, isn’t as important as
the actual programming interface provided by the serial device’s hardware.

Since RS232 is a hardware interface, the kernel doesn’t need to support RS232 itself.
Rather, the kernel includes drivers to the chips that actually enact RS232 communica-
tion, Universal Asynchronous Receiver-Transmitters (UARTs). UARTs vary from one
architecture to another, although some UARTs, such as the 16550(A), are used on more
than one architecture.

The main serial (UART) driver in the kernel is drivers/char/serial.c. Some architectures,
such as the SuperH, have other serial drivers to accommodate their hardware. Some
architecture-independent peripheral cards also provide serial interfaces. Nonetheless,
serial devices in Linux are uniformly accessed as terminal devices, as in Unix systems,
regardless of the underlying hardware and related drivers. The corresponding device
entries start with /dev/ttyS0 and can go up to /dev/ttyS191. In most cases, however, there
is only a handful of serial device entries in a system’s /dev directory.

Serial port basics, setup, and configuration are discussed in the Serial HOWTO avail-
able from the LDP. Programming the serial port in Linux is discussed in the Serial
Programming HOWTO from the LDP. Since serial port programming is actually
terminal programming, any good reference on Unix systems programming would be a
good start. Worthy of note is Richard Stevens and Stephen Rago’s Advanced Program-
ming in the UNIX Environment (Addison-Wesley), which is one of the most widely
recognized works on the subject of Unix systems programming, including terminal I/O.

Parallel Port
In comparison to the serial port, the parallel port is seldom an important part of an
embedded system. Unless the embedded system is actually a PC-style SBC, the parallel
port is, in fact, rarely even part of the system’s hardware. In some cases, it is used
because the embedded system has to drive a printer or some sort of external device,
but with the widespread adoption of USB and IEEE1394, this need has almost com-
pletely disappeared.

One area of embedded systems development where the parallel port fits quite nicely,
however, is simple multibit I/O. When debugging, for instance, you can easily attach
a set of LEDs to the parallel port’s pins and use those LEDs to indicate a position in
the code. The trick is to insert a set of parallel port output commands in different
portions of the code and to use the LEDs to identify the last position reached prior to
machine lockup. This is possible because the parallel port’s hardware keeps the last
value output to it unchanged regardless of the state of the rest of the system. Linux
Device Drivers provides a more detailed description of how to use the parallel port as
a simple I/O interface.

I/O | 73

Modem
Embedded systems that use a modem to call a data center are quite common. Alarm
systems, bank machines, and remote-monitoring hardware are all examples of embed-
ded systems that need to communicate with a central system to fulfill their primary
purposes. The goals are different, but many of these systems still use conventional
modems to interface with the POTS (plain old telephone system) to access a remote
host. Of course, there are higher speed devices with greater bandwidth available, but
since modems work in a wide variety of environments—including very remote locations
that don’t have the latest cellular or computer networks—don’t count them out any
time soon.

Modems in Linux are seen as serial ports, which is very much the same way they are
seen across a variety of operating systems, including Unix. As such, they are accessible
through the appropriate /dev serial device entry and are controlled by the same driver
as the native serial UARTs, regardless of whether they are internal or external. This
support, however, applies only to real modems.

Many newer “modem” devices are actually very low-cost circuits containing little more
technology than the most basic sound card. These so called WinModems contain only
the bare minimal hardware that make up a modem, and they are capable of providing
real modem services only because of software that runs on the operating system. As the
name implies, these modems are mainly targeted to systems running Windows. They
work fine with that operating system, because their vendors provide the appropriate
drivers. With Linux, however, they do not always work, because they don’t contain
real modem hardware and the kernel can’t use its serial driver to operate them without
additional support.

To provide support for these types of (handicapped) devices, a number of projects have
sprung up to develop the necessary software packages. A central authority on these
projects is the Linmodems website at http://www.linmodems.org. The site provides
documentation, news, and links to the various WinModem support projects. At the
time of this writing, however, there is no body of code that provides uniform support
for the various WinModems.

Real modem setup and operation are described in the Modem HOWTO from the LDP.
Linmodem setup and operation are described in the Linmodem HOWTO from the
LDP. Since modems are serial ports, the documentation previously mentioned for serial
ports also applies to modems.

Data Acquisition
Data acquisition (DAQ) is at the basis of any process automation system. Any modern
factory or scientific lab is filled with DAQ equipment linked, in one way or another, to
computers running data analysis software. Typically, as described earlier, the events
occurring in the real world are measured by means of transducers, which convert a

74 | Chapter 3: Hardware Support

http://www.linmodems.org

physical phenomenon into an electrical value. These values are then sampled using
DAQ hardware and are thereafter accessible to software.

There is no standard interface in Unix, or any other operating system for that matter,
for interfacing with data acquisition hardware.§ Comedi, the Linux control and meas-
urement device interface, is the main package for interfacing with DAQ hardware.
Comedi is found at http://www.comedi.org and contains device drivers for a great num-
ber of DAQ boards. The complete list of boards supported is found in the Supported
hardware section of the website.

Along with providing drivers for DAQ hardware, the Comedi project includes Come-
dilib, a user space library that provides a unified API to interface with all DAQ hard-
ware, regardless of model or manufacturer. This is very useful, because it allows you
to develop the analysis software independently of the underlying hardware and avoid
being locked in to a particular vendor.

Similarly, Kcomedilib, a kernel module providing an API similar to Comedilib, provides
access to the DAQ hardware to other kernel modules, which could be real-time tasks.

No discussion about DAQ would be complete without covering some of the most well-
known commercial (proprietary) packages used along with it, such as LabVIEW, Mat-
lab, and Simulink. Given the popularity of Linux in this field, their respective vendors
have made all three packages available for Linux. Note, however, that a number of
packages are in development that aim to provide open source replacements for these
packages. Scilab and Octave, for instance, are Matlab replacements found at http://
www.scilab.org and http://www.octave.org, respectively.

Documentation regarding the installation and configuration of Comedi can be found
on the project’s website along with examples. The site also includes a number of useful
links to other Linux DAQ-related sites. Documentation regarding the closed-source
packages can be found on their vendors’ websites.

Although we haven’t covered them, some DAQ hardware vendors do provide drivers
for their hardware, either in open source form or under a proprietary license. When
evaluating whether to use such drivers, it is important to ponder future vendor support
so that you don’t find yourself trapped with dead and unmaintained code. Even when
source is available under an open source or free software license, be sure to evaluate its
quality to ensure that you can actually maintain it if the vendor decides to drop its
support.

§ DAQ hardware may actually take a number of forms. It can be an Ethernet-enabled device or PCI card, or
use some other type of connection. However, most DAQ devices used with workstations connect through
some standard interface such as ISA, PCI, or PCMCIA.

I/O | 75

http://www.comedi.org
http://www.scilab
http://www.scilab
http://www.octave.org

Keyboard
Most embedded systems are not equipped with keyboards. Some may have a limited
input interface, but keyboards are usually considered a luxury found only on traditional
workstation and server configurations. In fact, the idea that an embedded system may
have a keyboard would be viewed as awkward by most traditional embedded system
designers. Nonetheless, recent breeds of web-enabled and consumer-oriented embed-
ded systems have some form of keyboard attached to them (or perhaps a Bluetooth-
based cordless keyboard for entering data, surfing the web, and similar purposes).

As with other Unix-like systems, communication with the user in Linux is done by
means of a terminal, in the Unix tty sense, where a keyboard is used for input and a
console for output. (This description is, of course, a simplification of the very complex
world of Unix terminal I/O, but it will suffice for the current discussion.) Hence, all
keyboard input is considered by the kernel as input to a terminal. The conversion from
the actual data inputted by the user to terminal input seen by the operating system may
involve many different layers of kernel drivers, but all keyboard input is eventually fed
to the terminal I/O driver.

There are other ways to provide input to a terminal, apart from the use of a physically
connected keyboard. Terminal input is also possible through remote login, serial-
linking between computers, and—in the case of PDAs and Tablets—handwriting rec-
ognition software or the dasher predictive text graphical input utility, optimized for
use by those with all manners of disabilities. In each case, program access to character
input requires terminal I/O programming.

Mouse
Embedded systems that have a user interface often offer some form of touch-based
interaction. Whether it be a bank terminal or a PDA, the input generated by the user’s
touch of a screen area is treated the same way as input from a conventional workstation
mouse. In this sense, many embedded systems have a “mouse.” In fact, there are many
more embedded systems that provide a mouse-like pointer interface than there are that
provide a keyboard interface.

Since traditional Unix terminals do not account for mouse input, information about
the pointer device’s input doesn’t follow the same path as data about keyboard activity.
Instead, the pointer device is seen on most Linux systems via the Input events layer
located under /dev/input. There are several different files within /dev/input from which
one can determine current state, including /dev/input/mice. The device can be polled
and read to obtain information regarding the pointer device’s movements and events.
Any programming that involves a pointer device would require an understanding of
the protocol used by the device. Fortunately, a number of libraries and environments
already implement this level of decoding, and easy-to-use APIs are provided to obtain
and react to pointer input.

76 | Chapter 3: Hardware Support

Display
Blinking lights, LEDs, and alphanumeric LCDs are the traditional visual apparel of
embedded systems. With the growing incursion of embedded devices into many facets
of our daily lives, including service automation, there is a push to replace such
traditional display methods with visually rich interfaces. In other areas of embedded
systems deployment, such as factory automation, avionics, PDAs, and Web Tablets,
visually rich interfaces have been the norm for quite a while. With a visually rich
environment comes the (not unreasonable) user expectation that the device also be
easier to use, and have a range of graphical tools for configuration.

As mentioned earlier, traditional Unix systems provide output through terminal con-
soles. These are great if you’re living in the 1970s on a slow modem connection to a
central Unix server sitting some hundreds or even thousands of miles away from the
phosphorous green display in your darkened room, but not so useful if you’re interested
in creating the next multimillion user Web Tablet, cell phone, or many other kinds of
modern embedded Linux device. The standards behind Unix terminals have been up-
dated as recently as 1998 (still a decade ago, but surprisingly recent) but few modern
users are comfortable using a Unix terminal from the days of yore. Besides, such
interfaces are too rudimentary for today’s demands. If nothing else, consoles can output
only text, and even there can struggle with internationalization. Other more elaborate
interfaces are needed when building graphic interfaces, which may include some form
of windowing system.

With Linux there are many ways to control and program a display. Some of these
involve kernel support, but most rely mainly on code running in user space, which
enhances system stability and facilitates modularity. The most common way to provide
a graphical interface with Linux is, of course, the X Window System, but there are other
packages that may be preferable in certain circumstances. The X Window System pro-
vides only the basic graphical windowing environment, not the higher level libraries
and applications needed to create a visually rich user experience. For these, you will
want to look to the GNOME and QT projects that run on X, and embedded enviorn-
ments built upon their respective GUIs (QTopia, Maemo, etc.). Several popular
embedded Linux devices have implemented their own UI from scratch, but we don’t
recommend that you (needlessly) reinvent the wheel.

To find out more about the current state of the art in Linux graphics and windowing
systems, visit the Free Desktop Project at http://www.freedesktop.org.

Sound
Beep, Beep, Beep…that’s what Sputnik emitted and that’s pretty similar to what many
embedded systems still sound like. Even the very graphic-rich avionics and factory
automation systems don’t have more sound output, except maybe in terms of decibel
level.

I/O | 77

http://www.freedesktop.org

Sound-rich embedded systems are, however, becoming more and more popular with
the proliferation of consumer- and service-oriented devices. Consumer-oriented devi-
ces feature complex audio and video codec support—including MP3, Ogg Vorbis,
AAC, MPEG, MPEG4, and H264—and demand good support for audio. Good support
means the capability to multiplex multiple audio streams out to the same device
simultaneously, real-time performance free from substantive (and highly annoying)
jitter, and other requirements.

Unix, however, was never designed to accommodate sound. Over the years, a number
of schemes appeared to provide support for sound devices. These include the legacy
Open Sound System (OSS) and the Advanced Linux Sound Architecture (ALSA) that
has replaced it. In addition, various other projects provide sound servers: software that
conceptually sits above the device interface and supports multiplexing, remote audio,
and other fancy capabilities that aren’t really the domain of the sound device driver
itself. Two popular sound server daemons in use today are PulseAudio (PA), which is
used on Fedora, and JACK, which is enjoyed by many high-end audio enthusiasts,
especially in combination with the real-time patches that we will discuss later in this
book. These higher level audio services either have their own API or (much more likely)
support the standard ALSA API either directly, or through the use of a software wrap-
per. In the case of PulseAudio, once you have the PA libraries installed in place of the
stock ALSA user libraries, applications will automatically use PA instead of ALSA,
without any need to modify the application source code.

For further information about Linux audio, refer to the ALSA project website at http://
www.alsa-project.org, as well as the websites for specific sound daemons that you are
looking at, such as PulseAudio and JACK.

Printer
As with many mainstream peripherals, printers don’t usually grace embedded systems.
There are, however, exceptions. An embedded web server that supports printing is an
example of an embedded system that needs an operating system with printer support.
Traditional embedded system developers would usually consider “embedded web
server” to be an oxymoron, but devices that provide these types of packaged services
are more and more common and involve development methods similar to those of more
constrained embedded devices. In addition, home routers, office print servers, and even
PDAs these days require some capability to talk to a remote printer, even if they don’t
directly support attaching a regular printer to a port on the embedded device itself.

Conventional Unix printer support is rather outdated in comparison to the support
provided by many other operating systems. This also used to be largely true of Linux
(one of the authors recalls many hours as a teenager spent configuring LPD and APS
MagicFilter to print Postscript) but fortunately, a lot has changed since. These days,
most Linux systems handle device configuration, printer management, and actual
printing itself through Common Unix Printing System (CUPS), the same printing

78 | Chapter 3: Hardware Support

http://www.alsa-project.org
http://www.alsa-project.org

service Apple uses in its various shiny laptops and gadgets. CUPS is an extremely flex-
ible, modern alternative to the ancient Unix lpd printer daemon. You can find out more
about CUPS at the CUPS project website at http://www.cups.org, whereas more generic
Linux printing issues and most of your documentation needs are addressed at the Linux
Printing website, http://www.linuxprinting.org. Unless, of course, you want to dig out
a copy of MagicFilter and while away the evening.

Storage
All embedded systems require at least one form of persistent storage to start even the
earliest stages of the boot process. Most systems, including embedded Linux systems,
continue to use this same initial storage device for the rest of their operation, either to
execute code or to access data. In comparison to traditional embedded software, how-
ever, Linux’s use imposes greater requirements on the embedded system’s storage
hardware, both in terms of size and organization.

The size requirements for embedded Linux were discussed in Chapter 1, and an over-
view of the typical storage device configurations in Chapter 2. We will discuss the actual
organization further in Chapters 7 and 8. For the moment, let’s take a look at the
persistent storage devices supported by Linux. In particular, we’ll discuss the level of
support provided for these devices and their typical use with Linux.

Memory Technology Devices
In Linux terminology, memory technology devices (MTDs) include memory devices
such as conventional ROM as well as modern NOR/NAND flash parts. Such devices
have their own capabilities, particularities, and limitations. For example, although
some flash parts can be directly memory mapped (NOR flash and ROM devices), they
still use special out-of-band mechanisms to handle rewriting and other actions. In the
case of NAND flash, there is no direct memory mapping, and the Linux kernel must
use bounce buffers (copy data from the flash into RAM) before it is able to access the
data contained within the flash. Hence, to program and use an MTD device in their
systems, embedded system developers traditionally have had to use tools and methods
specific to that type of device.

To avoid, as much as possible, having different tools for different technologies and to
provide common capabilities among the various technologies, the Linux kernel in-
cludes the MTD subsystem. This provides a unified and uniform layer that enables a
seamless combination of low-level MTD chip drivers with higher-level interfaces called
user modules. These user modules should not be confused with kernel modules or any
sort of user space software abstraction. The term “MTD user module” refers to software
modules within the kernel that enable access to the low-level MTD chip drivers by
providing recognizable interfaces and abstractions to the higher levels of the kernel or,
in some cases, to user space.

Storage | 79

http://www.cups.org
http://www.linuxprinting.org

In Chapter 7, we will continue our discussion of the MTD subsystem and will detail
the setup and configuration instructions for using MTD devices in your embedded
system.

PATA, SATA, and ATAPI (IDE)
The AT Attachment (ATA)‖ was developed in 1986 by three companies: Imprimis,
Western Digital, and Compaq. It was initially used only by Compaq but eventually
became quite popular when Conner Peripherals began providing its IDE drives through
retail stores. By 1994, ATA was an ANSI standard. Different versions of the standard
have since been developed allowing faster transfer rates and enhanced capabilities.
Along the way, the ATA Packet Interface (ATAPI) was developed by CD-ROM man-
ufacturers with the help of Western Digital and Oak Technology. ATAPI allows access
to CD-ROM and tape devices through the ATA interface using SCSI-like command
packets. ATA exists in both parallel (PATA) and serial (SATA) forms. Today, a growing
number of systems use the newer, serial-based, SATA interface that supersedes (par-
allel) ATA.

In embedded Linux systems, IDE and most other types of disks are usually set up as in
a workstation or server. Typically, the disk holds the operating system bootloader, the
root filesystem, and possibly a swap partition. In contrast to most workstations and
servers, however, not all embedded system monitors and bootloaders are ATA-capable.
In fact, as we’ll see in Chapter 9, most bootloaders are not ATA/IDE-capable. If you
want to use an IDE disk in your system and an ATA-capable monitor or bootloader is
not present in your system’s flash, you need to have the kernel present in flash or in
ROM with the boot monitor so that it may be accessible at system startup. You then
have to configure your boot monitor to use this kernel on startup in order to have access
to the IDE disk. In this case, you can still configure your root filesystem and swap
partition to be on the IDE disk.

Linux’s support for the both the legacy PATA and newer SATA interfaces is quite ex-
tensive and mature. You are extremely unlikely to encounter fundamental problems in
getting a hard disk to work with Linux—but you might want to visit the Linux ATA
website anyway at http://linux-ata.org.

Non-MTD Flash-Based devices
In addition to the MTD flash-based devices we have previously discussed, a growing
number of embedded systems are making use of flash memory sticks, cards, and other
external peripherals that happen to contain flash memory but provide an alternative
interface to that flash. Examples of such devices include CompactFlash, Secure Digital
(SD, a replacement for older MMC), and all the popular USB sticks of various shapes,

‖ Although it is often referred to as “IDE,” which stands for Integrated Drive Electronics, “ATA” is the real
name of this interface.

80 | Chapter 3: Hardware Support

http://linux-ata.org

sizes, and even colors. These flash devices all share one thing: they all come in a pre-
packaged form factor and are presented as a disk device upon which sits a regular
(FAT16 or FAT32) filesystem.

Linux support for these add-on flash devices is very good, and the kernel, for example,
has built-in generic USB storage drivers for this purpose.

General-Purpose Networking
An increasing number of embedded systems is attached to general-purpose networks.
These devices, although more constrained than other computerized systems in many
ways, are often expected to provide the very same network services found in many
modern servers. Fortunately, Linux lends itself quite well to general-purpose networks,
since it is often used in mainstream servers.

The following discussion will cover the networking hardware most commonly found
in embedded systems. Linux supports a much wider range than we will discuss, but
many of these networking interfaces are not typically used in embedded systems and
are therefore omitted. Also, as many of these networking interfaces have been exten-
sively covered elsewhere, we will limit the discussion to the topics relevant to embedded
Linux systems and will refer you to other sources for further information.

Network services will be discussed further in Chapter 10.

Ethernet
Initially developed at Xerox’s PARC research center in Palo Alto, California, Ethernet
is currently the most pervasive, best documented, and least expensive type of network-
ing available. Its speed has kept up with the competition, growing geometrically over
the decades. Given Ethernet’s popularity and the increasing demand for embedded
systems to be network enabled, many embedded development boards and production
systems have been shipping with Ethernet hardware.

Linux supports a slew of 10 and 100 Megabit Ethernet devices and chips. It also sup-
ports a few Gigabit and even 10 Gigabit Ethernet devices. The kernel build configura-
tion menu is probably the best place to start to see whether your particular hardware
is supported, as it contains the latest drivers list.# At this point, there is almost certainly
good Linux support for almost any network device you may be considering.

IrDA
The Infrared Data Association (IrDA) was established in 1993 by 50 companies with
the mandate to create and promote a standard for low-cost, interoperable, infrared data

You may also want to use this list as the basis of your hardware design, as suggested earlier.

General-Purpose Networking | 81

interconnections. The first IrDA specification was released in 1994 and continues to
be maintained and developed by the association from which the specification takes its
name. Today, IrDA hardware and software can still be found in certain consumer
devices, although they have been largely displaced by other wireless communications
such as WiFi (IEEE802.11) and Bluetooth.

There are two main types of protocols within the IrDA specification: mandatory and
optional. A device must at least implement the mandatory protocols in order to be able
to interoperate properly with other IrDA devices. The mandatory protocols are the
physical signaling layer (IrPHY), the link access protocol (IrLAP), and the link man-
agement protocol (IrLMP). The last protocol also includes the Information Access
Service (IAS), which provides service discovery capabilities.

IrDA devices can exchange data at rates of up to 4 Mbps within a one meter range.
Unlike other wireless technologies, IrDA requires the devices involved in a communi-
cation to be directionally aligned (e.g., pointing a remote control device directly at the
target). An obvious advantage of such a scheme is the increased security resulting from
the requirement that IrDA users keep their devices pointing in each other’s direction
during the whole connection time: any intruder would have to be in direct view of the
users involved in the communication.

Linux supports all the mandatory IrDA protocols and many of the optional protocols.
In conjunction with the stack layers, you will need user space tools to operate Linux’s
IrDA capabilities. These tools are part of the IrDA Utils package, which is available,
along with many other IrDA-related resources, from the Linux-IrDA project website at
http://irda.sourceforge.net.

IEEE 802.11A/B/G/N (Wireless)
The 802.11 working group was set up by the IEEE 802 committee in 1990. The first
802.11 standard was published in 1997 and has been maintained and updated since
then by the same group. The standard provides for wireless communication between
computers using the 2.4 GHz (802.11b) and 5 GHz (802.11a) frequencies. Today,
802.11 (commonly refered to as “WiFi”) is the wireless equivalent of Ethernet in terms
of widespread adoption and mainstream support. It comes in the backward-compatible
higher speed “G” form running at 54 Mbps (as opposed to the original 11 Mbps of
802.11B) and the new “N” form that can run up to 248 Mbps. Everything from PDAs,
cell phones, and cameras to industrial automation, vehicles, and more use WiFi tech-
nology extensively to connect to the outside world.

Linux has strong support for 802.11B, G, and N hardware, as well as the various en-
cryption standards used: WEP, WPA, and WPA2 are all well supported. And although
WiFi network configuration in Linux is similar to configuring any other network device,
additional graphical configuration tools such as the GNOME Project’s NetworkMan-
ager help to make life much easier. It is also worth noting that the entire Linux softmac

82 | Chapter 3: Hardware Support

http://irda.sourceforge.net

stack was rewritten during the course of series 2.6 to make it much easier to support
the latest chipsets.

Bluetooth
Bluetooth was developed by Ericsson with help from Intel and was introduced in 1994.
Ericsson, IBM, Intel, Nokia, and Toshiba formed a Bluetooth SIG. Today, the SIG has
thousands of member companies, and a wide range of devices, such as PDAs and cell
phones, are already Bluetooth-enabled with many more on the way.

Bluetooth operates on the 2.4 GHz band and uses spread spectrum frequency hopping
to provide wireless connectivity to devices within the same piconet.* Some have called
it a “cable replacement” and others have called it “wireless USB.” In essence, it enables
seamless wireless communication between devices. Hence, Bluetooth devices do not
need any configuration to become part of a piconet. Rather, devices automatically
detect each other and advertise their services so that the other devices in the piconet
can in turn use these services.

The main Linux Bluetooth stack (the one present in the mainstream kernel source) is
BlueZ. BlueZ was originally written by Qualcomm and is now an open source project
available under the terms of the GPL from the project’s website at http://bluez.source
forge.net. The various BlueZ utilities are shipped in most Linux distributions, complete
with graphical configuration tools, and the like.

Industrial-Grade Networking
As with other computerized applications, industrial control and automation rely in-
creasingly on computerized networks. General-purpose networking or connectivity
solutions such as regular Ethernet are, however, ill-adapted to the harsh and demanding
environment (both electrically and otherwise) of industrial applications. Common
Ethernet, for instance, is too vulnerable to EMI (electromagnetic interference) and RFI
(radio frequency interference) to be used in many industrial environments with high
reliability. This doesn’t mean that Ethernet isn’t being used in the form of “Industrial
Ethernet,” but because it was never designed for such uses, many manufacturers still
choose to use one of the other available industrial networks instead.

Therefore, quite a few specialized, industrial-grade networking solutions have been
developed over the years. In addition to being more adapted to industrial environments,
these industrial networks, commonly known as fieldbuses, help reduce wiring, increase
modularity, provide diagnostics capabilities, enable self-configuration, and facilitate
the setup of enterprise-wide information systems.

* Piconets are wireless networks comprising Bluetooth devices. Since Bluetooth devices can belong to more
than one piconet, piconets can overlap.

Industrial-Grade Networking | 83

http://bluez.sourceforge.net
http://bluez.sourceforge.net

In the following sections, we will cover several industrial networks supported by Linux.

CAN
The Controller Area Network (CAN) is not only the most common fieldbus, but prob-
ably one of the most pervasive forms of networking ever used. CAN was introduced in
1986 by Robert Bosch GmbH. as a serial bus system for the automotive industry and
has since been put to use in many other industries. CAN’s development received early
contributions from engineers at Mercedes-Benz and Intel, which provided the first CAN
chip, the 82526. Today, more than 100 million new CAN devices are sold every year.
Application fields range from middle- to upper-class cars (allowing for the many dif-
ferent systems within the car to communicate effectively, and for diagnostics), to factory
automation networks.

CAN specifies a hardware interface and a communication mechanism. It is a multi-
master serial networking protocol with error detection capabilities, where message
identification is done through content rather than through identification of the receiver
node or the transmitter node. The CAN in Automation (CiA) group manages and
promotes CAN, which is subject to ISO standard 11898 published in 1993. It has been
supported in the official Linux kernel starting with release 2.6.25, which as of this
writing is a current release.

Since CAN is a low-level protocol, akin to Ethernet, many higher-level protocols have
been put forward to complete it, including protocols such as J1939, DeviceNet, Smart
Distributed System (SDS), and CANopen. J1939 was introduced and continues to be
maintained by the Society of Automotive Engineers (SAE) and is very popular in the
automotive industry, especially in diesel-powered applications. DeviceNet is another
popular CAN-based higher-level protocol and is managed by the Open DeviceNet
Vendor Association (ODVA). SDS was put forth by Honeywell and continues to be
promoted and managed by the same company. CANopen was introduced and is man-
aged by the same group that maintains CAN, the CiA. SDS has not been as popular as
DeviceNet and J1939, because it was never standardized, while J1939, DeviceNet, and
CANopen were.

For more information on CAN, CAN-related hardware, and CANopen, consult the
CiA’s website at http://www.can-cia.org. For more information about Linux kernel
support of CAN, consult the documentation within the kernel itself.

Modbus
The Modbus Protocol was introduced by Modicon in 1978 as a simple way to transfer
control data between controllers and sensors using RS232 in a master-slave fashion.
Modicon was later acquired by Schneider Electric, which owns the Modbus trademark
and continues to steer the development of the protocol and its descendants.

84 | Chapter 3: Hardware Support

http://www.can-cia.org

Since Modbus specifies a messaging structure, it is independent of the underlying
physical layer. There are two formats used to transmit information with Modbus: ASCII
and RTU. The first sends each byte as two ASCII characters, whereas the second sends
each byte as two 4-bit hexadecimal characters. Modbus is usually implemented on top
of a serial interface such as RS232, RS422, or RS485. In addition to Modbus, Schneider
specifies the Modbus TCP/IP protocol, which uses TCP/IP and Ethernet to transmit
Modbus messages.

Three open source projects provide Modbus capabilities to Linux:

jModbus
This project aims to provide a Java implementation of Modbus RTU, Modbus
ASCII, and Modbus TCP/IP. It resides at http://jmodbus.sourceforge.net and is dis-
tributed with documentation and examples under a BSD-style license.

libmodbus
This is an active, up-to-date project that develops a C-based shared library for use
in applications. Several existing projects use it, and it has the usual array of online
Bazaar-based source versioning† and the like. It is licensed under version 3.0 of the
GPL and is available at http://copyleft.free.fr/wordpress/index.php/libmodbus.

MAT LinuxPLC
This is the same automation project mentioned earlier in “I/O.” The MAT project
now contains code implementing Modbus RTU and Modbus TCP/IP in its CVS
repository. Although the source code is commented, there is little other
documentation.

For more information about Modbus, read the Modbus specifications, available at
http://www.modbus.org.

System Monitoring
Both hardware and software are prone to failure, sometimes drastically. Although the
occurrence of failures can be reduced through careful design and runtime testing, they
are sometimes unavoidable. It is the task of the embedded system designer to plan for
such a possibility and to provide means of recovery. Often, failure detection and
recovery is done by means of system monitoring hardware and software such as
watchdogs.

Linux supports two types of system monitoring facilities: watchdog timers and hard-
ware health monitoring. There are both hardware and software implementations of
watchdog timers, whereas health monitors always require appropriate hardware.
Watchdog timers depend on periodic reinitialization so as not to reboot the system. If
the system hangs, the timer eventually expires and causes a reboot. Hardware health

† Bazaar is a software configuration management tool originally used by the Ubuntu project, an implementation
and a fork of GNU Arch.

System Monitoring | 85

http://jmodbus.sourceforge.net
http://copyleft.free.fr/wordpress/index.php/libmodbus
http://www.modbus.org

monitors provide information regarding the system’s physical state. This information
can in turn be used to carry out appropriate actions to signal or solve actual physical
problems such as overheating or voltage irregularities.

The Linux kernel includes drivers for many watchdog timers. The complete list of sup-
ported watchdog devices can be found in the kernel build configuration menu in the
Watchdog Cards submenu. The list includes drivers for watchdog timer peripheral
cards, a software watchdog, and drivers for watchdog timers found in some CPUs such
as the MachZ and the SuperH. Although you may want to use the software watchdog
to avoid the cost of a real hardware watchdog, note that the software watchdog may
fail to reboot the system in some circumstances. Timer watchdogs are seen as /dev/
watchdog in Linux and have to be written to periodically to avoid system reboot. This
updating task is traditionally carried out by the watchdog daemon available from ftp://
metalab.unc.edu/pub/linux/system/daemons/watchdog. In an actual embedded system,
however, you may want to have the main application carry out the update instead of
using the watchdog daemon, since the latter may have no way of knowing whether the
main application has stopped functioning properly.

Finally, Linux supports quite a few hardware monitoring devices through the “Hard-
ware Monitoring by lm_sensors” project found at http://www.lm-sensors.org. The
project’s website contains a complete list of supported devices along with extensive
documentation on the installation and operation of the software. The lm_sensors
package available from the project’s website includes both device drivers and user-level
utilities to interface with the drivers. These utilities include sensord, a daemon that can
log sensor values and alert the system through the ALERT syslog level when an alarm
condition occurs. The site also provides links to external projects and resources related
to lm_sensors.

86 | Chapter 3: Hardware Support

ftp://metalab.unc.edu/pub/linux/system/daemons/watchdog
ftp://metalab.unc.edu/pub/linux/system/daemons/watchdog
http://www.lm-sensors.org

Embedded system developers, like other software developers, need compilers, linkers,
interpreters, integrated development environments (IDEs), and other such tools. The
embedded developer’s tools are different, however, in that they typically run on one
platform while building applications for another. This is why these tools are often called
cross-platform development tools, or cross-development tools for short.

Importance of a Dedicated Toolchain for Embedded Development
Even if you happen to be using the same architecture on both the development work-
station and target board (such as x86 or x86_64), we still recommend using a different
toolchain from the native one that comes with the Linux distribution you happen to
be running on the development workstation. It is valuable to create a separate toolchain,
thus providing a controlled development environment isolated from the workstation
environment.

If you don’t create a separate toolchain for the target, opting instead to use the native
workstation toolchain, you might find your embedded application broken in subtle
(and sometime not so subtle) ways by any future upgrade of the workstation software.

Furthermore, you’ll be prohibited from rebuilding the toolchain with various certain
configuration choices that could result in tools that are better optimized for use in
embedded environments, such as an alternative C library.

It is therefore highly recommended that you use a custom cross-platform toolchain for
building Linux embedded systems, even if the workstation architecture happens to
match that of the target.

There are two ways to acquire the tools for embedded development: download the
source code freely available on the Internet and build them yourself, or get binary ver-
sions compiled by another person, company, or project.

CHAPTER 4

Development Tools

87

As mentioned in “Reasons for Choosing Linux” in Chapter 1, several commercial ven-
dors distribute integrated embedded Linux packages, including development environ-
ments. Two such offerings are MontaVista DevRocket and Wind River WorkBench.
Some hardware and board vendors provide free compiled toolchains together with their
hardware offerings. In addition, several community projects provide compiled tool-
chains for download over the Web, such as the Denx ELDK package at http://
www.denx.de/wiki/DULG/ELDK.

Typically, such offerings include a ready-to-use toolchain, an Eclipse-based IDE, and
sometimes proprietary “added value” plug-ins that extend Eclipse abilities and inte-
grate them with hardware debuggers that are part of the offerings. Eclipse-based tools
may allow configuration of the root filesystem and kernel within the Eclipse IDE, using
a Java GUI that integrates well with the rest of the Eclipse IDE. This sample of
enhancements gives you an idea of what prebuilt environments offer.

The value of an integrated, tested, and debugged toolchain and other development
tools should not be taken lightly. Although all the development tools needed to build
and develop for embedded Linux system are freely available, the tasks of integrating,
building, and testing require time and come with a learning curve for the newly initiated
embedded Linux developer. Thus, a prebuilt offering that fits your project’s require-
ments can save time and help you and your team focus on their number-one priority:
getting a successful product out the door.

As you might guess, however, using a prebuilt suite comes with the cost of locking you
into the chosen suite. If you build the suite yourself—or at least understand what goes
into the build process, which we will discuss in this chapter—you preserve your inde-
pendence. An understanding of the process may let you have the best of both worlds:
a ready-made and vendor-supported offering that saves time and manages risk, along
with the ability to switch from one vendor to another or even migrate to a self-supported
embedded Linux development environment.

This chapter, therefore, discusses the setup, configuration, and use of cross-platform
development tools. First, we will suggest a layout for a practical project workspace.
Then, we’ll discuss the GNU cross-platform development toolchain, the C library
alternatives, Java, Perl, Python, Ada, and other programming languages, IDEs, the GDB
debugger, profilers, bounds checkers, terminal emulation programs, and system
emulators.

Even if you opt to buy or download a ready-made toolchain, we recommend that you
go through this chapter to get acquainted with the various terms and options involved
in the process.

Although debuggers, profilers, and bounds checkers may be be consid-
ered part of the development toolchain, these topics are large enough
to deserve their own chapter, and therefore are covered in Chapter 11.

88 | Chapter 4: Development Tools

http://www.denx.de/wiki/DULG/ELDK
http://www.denx.de/wiki/DULG/ELDK

Throughout this chapter, we assume that you are using a Linux (or at least Unix-
derived) development workstation. As previously mentioned in “Windows (Vista, XP,
2000, NT, 98, etc.) Workstation” in Chapter 2, you run many of the procedures in this
chapter to produce a working toolchain on the Windows platform as well, using the
Cygwin compatibility library mentioned in Chapter 2. In addition, because Eclipse is
a Java-based application, it can be deployed on a Windows platform just as easily as
on Linux. It is worth noting, however, that some Cygwin-specific issues might com-
plicate the effort of following this chapter’s instructions, and so it is generally not rec-
ommended for developers taking their first steps with embedded Linux to use Cygwin.

A Practical Project Workspace
In the course of developing and customizing software for your target, you need to
organize various software packages and project components in a comprehensive and
easy-to-use directory structure. Table 4-1 shows a suggested directory layout that you
may find useful. Of course, there is nothing special about the specific layout presented
here and, in fact, some of the automated toolchain and root filesystem build tools we
are about to describe use a different layout. Feel free to use whatever works for you.
However, we will assume the layout shown in Table 4-1 in examples throughout the
rest of this book.

The directory layout presented here is aimed to host third-party pack-
ages you download from the Net as part of your project. We recommend
highly that you separate your own code from the third-party code used
to build the system, and we even go so far as to recommend that the two
types of code reside in different source control modules. This will min-
imize any confusion regarding the source’s ownership and licensing
status and will make it easy to comply fully with the requirements of
some of the open source packages we will use.

Table 4-1. Suggested project directory layout

Directory Content

bootldr The bootloader or bootloaders for your target

build-tools The packages and directories needed to build the cross-platform development toolchain

debug The debugging tools and all related packages

doc All the documentation you will need for your project

images The binary images of the bootloader, the kernel, and the root filesystem ready to be used on the target

kernel The different kernel versions you are evaluating for your target

project Your configuration files and settings for this project

rootfs The root filesystem as seen by the target’s kernel at runtime

sysapps The system applications required for your target

A Practical Project Workspace | 89

Directory Content

tmp A temporary directory to experiment with and store transient files

tools The complete cross-platform development toolchain and C library

Of course, each of these directories contains many subdirectories. We will populate
the directories as we continue through the rest of the book.

The location of your project workspace is up to you, but we strongly encourage you
not to use a system-wide entry such as /usr or /usr/local. Instead, assume as a general
rule that the directory structure is being checked out of a source control system by each
member of your development group into his own home directory.

One common exception to this rule is the cross-platform development
toolchain and related files, which some system builders prefer to keep
in a system-wide (or even network-wide) location, as rebuilding them
from source is time consuming.

Should you work on a project that supports multiple systems, create a separate directory
layout for each component or board type.

For the example embedded control system, we will use the following layout:

$ ls -l ~/control-project
total 4
drwxr-xr-x 13 karim karim 1024 Mar 28 22:38 control-module
drwxr-xr-x 13 karim karim 1024 Mar 28 22:38 daq-module
drwxr-xr-x 13 karim karim 1024 Mar 28 22:38 sysmgnt-module
drwxr-xr-x 13 karim karim 1024 Mar 28 22:38 user-interface

Since they all run on different targets, each control system component has a separate
entry in the control-project directory. Each entry has its own project workspace as de-
scribed previously. Here is the daq-module workspace, for example:

$ ls -l ~/control-project/daq-module
total 11
drwxr-xr-x 2 karim karim 1024 Mar 28 22:38 bootldr
drwxr-xr-x 2 karim karim 1024 Mar 28 22:38 build-tools
drwxr-xr-x 2 karim karim 1024 Mar 28 22:38 debug
drwxr-xr-x 2 karim karim 1024 Mar 28 22:38 doc
drwxr-xr-x 2 karim karim 1024 Mar 28 22:38 images
drwxr-xr-x 2 karim karim 1024 Mar 28 22:38 kernel
drwxr-xr-x 2 karim karim 1024 Mar 28 22:38 project
drwxr-xr-x 2 karim karim 1024 Mar 28 22:38 rootfs
drwxr-xr-x 2 karim karim 1024 Mar 28 22:38 sysapps
drwxr-xr-x 2 karim karim 1024 Mar 28 22:38 tmp
drwxr-xr-x 2 karim karim 1024 Mar 28 22:38 tools

Because you may need to provide the paths of these directories to some of the utilities
you build and use, you may find it helpful to create a short script that sets appropriate
environment variables. Here is such a script called develdaq for the DAQ module:

90 | Chapter 4: Development Tools

export PROJECT=daq-module
export PRJROOT=/home/karim/control-project/${PROJECT}
cd $PRJROOT

In addition to setting environment variables, this script moves you to the directory
containing the project. You can remove the cd command if you would prefer not to be
moved to the project directory right away. To execute this script in the current shell so
that the environment variables are immediately visible, type:*

$. develdaq

Future explanations will rely on the existence of the PROJECT and PRJROOT environment
variables.

Because the distribution on your workstation has already installed many
of the same packages you will be building for your target, it is very im-
portant to clearly separate the two types of software. To ensure such
separation, we strongly encourage you not to carry out any of the in-
structions provided in the rest of this book while logged in as root, unless
we provide explicit instructions to the contrary. Among other things,
logging in as an unprivileged user will avoid any possible destruction of
the native GNU toolchain installed on your system and, most impor-
tantly, the C library most of your applications rely on. Therefore, instead
of logging in as root, log in using a normal user account with no par-
ticular privileges.

GNU Cross-Platform Development Toolchain
A toolchain is a set of software tools needed to build computer software. Traditionally,
these include a linker, assembler, archiver, C (and other languages) compiler, and the
C library and headers. This last component, the C library and its headers, is a shared
code library that acts as a wrapper around the raw Linux kernel API, and it is used by
practically any application running in a Linux system.

Additional components in some toolchains include extra code libraries (such as the zlib
library, which provides compression services) and more supplementary tools such as
a debugger, profiler, and memory checker.

Last but not least, you might choose to work within an IDE that provides a frontend
for these tools, although an IDE is not traditionally counted as part of the toolchain
itself.

A cross-platform toolchain—or as it is commonly abbreviated, a cross toolchain—is
built to run on one development platform (most commonly x86) but build programs
that run on another platform, as is customary when developing for embedded systems.

* All commands used in this book assume the use of the sh or bash shell, because these are the shells most
commonly used. If you use another shell, such as csh, you may need to modify some of the commands.

GNU Cross-Platform Development Toolchain | 91

The cross toolchain we will discuss in this chapter includes the binary utilities, such as
the ld linker, the gas assembler, gcc compilerthe ar archiver, the gcc compiler collection,
and either glibc or an alternative C library.

In addition, we will touch upon acquiring and building the GDB source-level symbolic
debugger, the Valgrind memory checker, and the Eclipse graphical integrated developer
environment.

Most of the components of the toolchain are part of the GNU project and can be
downloaded from the FSF’s FTP site, either at ftp://ftp.gnu.org/gnu or any of its mirrors.
The binutils package is in the binutils directory, the GCC package is in the gcc directory,
and the glibc package is in the glibc directory. For any components we discuss in this
chapter that are not part of the GNU project, we will describe their creators and how
to obtain them.

Note that all the targets discussed in Chapter 3 are supported by the GNU toolchain.

Introduction to Building a GNU Toolchain
Configuring and building an appropriate GNU toolchain is a complex and delicate
operation that requires a good understanding of the dependencies between the different
software packages and their respective roles, the status of different software packages
versions, and a lot of tedious work. The following section will provide a high-level walk-
through of the various components, terms, and choices involved in creating a cross
toolchain.

Terms and GNU configuration names

As our first step, we will introduce some terms describing the various systems that
participate in building and using a cross toolchain:

build
The build system is the one on which you build your toolchain.

host
The host system is the one on which you host your toolchain.

target
The target system is the one for which your cross toolchain will produce binaries.

92 | Chapter 4: Development Tools

ftp://ftp.gnu.org/gnu

For standard, nonembedded uses, all three are the same (although some people down-
load binaries and don’t care what the build system is). In most embedded scenarios,
the build and the host will be the same machine—the workstation on which the de-
velopers work—whereas the target will be the embedded board for which you are de-
veloping an application.†

When you build software using the GNU configure and build system, as we do here
for the various toolchain components, you specify the build, host, and target systems
through names in GNU configuration files, which follow a standardized format:

cpu-manufacturer-kernel-os

The kernel component, being a later addition, is optional. In fact, triplets containing
only the cpu, manufacturer, and os are still quite common. The various components
specify:

cpu
The system’s chip architecture. Where both a big-endian and little-endian variant
exists, it is customary to denote the little-endian variant by appending el to the
architecture name.

manufacturer
A specific maker or family of boards using the aforementioned CPU. As this rarely
has any effect on the toolchain itself, it is not uncommon to specify an unknown
machine type or simply to omit the machine description altogether.

kernel
Used mainly for GNU/Linux systems, and even in that case it is sometimes omitted
for brevity.

os
The name of the operating system (or ABI) used on the system. Configuration
names may be used to describe all sorts of systems, including embedded systems
that do not run any operating system; in those cases, this field indicates the object
file format, such as Elf or COFF.

Some examples of possible host, target, or build triplets follow:

i386-pc-linux-gnu
A PC-style x86 Linux system

powerpc-8540-linux-gnu
A Freescale 8540 PowerQuickIII Linux system

† It’s so rare to use a different build system and host system that the situation has earned its own informal
name: a “Canadian Cross” toolchain. A Canadian Cross build is most frequently used when building
programs to run on a non-Unix system, such as DOS or Windows. It may be simpler to configure and build
on a Unix system than to support the non-Unix system’s configuration machinery. The unusual name springs
from the historical coincidence that Canada had three national political parties at the time developers wanted
to invent a name for this procedure.

GNU Cross-Platform Development Toolchain | 93

mips-unknown-linux
A big-endian MIPS Linux system from an unspecified manufacturer

mipsel-linux
A little-endian MIPS Linux system from an unspecified manufacturer

xscale-unknown-linux
An XScale (formely StrongARM) Linux system from an unspecified manufacturer

Typically, cross toolchain component names are prefixed with the target triplet. Thus,
for example, a cross-compiler for a Freescale 8541 PowerQuickIII Linux system will be
called powerpc-8540-linux-gnu-gcc (gcc being the executable name for the GNU Com-
piler Collection), whereas the linker for a little-endian MIPS Linux system might be
named mipsel-linux-ld, (ld being the executable name of the GNU linker).

Linux kernel headers

The first component required for building a toolchain is the set of the Linux kernel
headers. Because the C library, which is part of the toolchain, is a wrapper that presents
a more palatable API to the application programmer for the raw Linux kernel system
calls, compiling the library requires a subset of the Linux kernel header files that de-
scribes the kernel API.

In theory, one should always build the toolchain using the Linux kernel headers from
the exact same Linux kernel version that will be used on the target. In practice, however,
this is rarely done. Because the ABI of the Linux kernel rarely changes (or more cor-
rectly, the parts of it described by the headers rarely changes), using the headers from
a different, but similar, kernel version is commonplace.

In Linux kernel releases prior to the 2.6 series, C library builds were based on a verbatim
copy of the headers found in the Linux kernel directories include/asm-architecture and
include/linux. Since the release of Linux 2.6, however, this is no longer supported, as
the kernel headers contain much code that is unsuitable for inclusion in user space
applications and can easily break the build of user programs, including the C library.
Instead, builds use a sanitized version of the Linux kernel headers, suitable for use by
user space code such as the C library. As of version 2.6.23 of the Linux kernel, the
kernel source is equipped with an automated Make target for building such a “sani-
tized” version of the Linux kernel headers.

For earlier versions, you can use the external utility available at http://
headers.cross-lfs.org to accomplish the same task.

From the kernel source directory, simply issue the following commands, replacing
ppc with your architecture and headers/ with the path to the directory where you would
like the sanitized headers installed:

94 | Chapter 4: Development Tools

http://headers.cross-lfs.org
http://headers.cross-lfs.org

$ make ARCH=ppc headers_check
$ make ARCH=ppc INSTALL_HDR_PATH=headers/ headers_instal;

Binutils

Another important component of the toolchain is the binutils package. This package
includes the utilities most often used to manipulate binary object files. The two most
important utilities in the package are the GNU assembler, as, and the linker, ld. Ta-
ble 4-2 contains the complete list of utilities found in the binutils package.

Table 4-2. Utilities found in the binutils package

Utility Use

as GNU assembler

ld GNU linker

gasp GNU assembler pre-processor

ar Creates and manipulates archive content

nmu Lists the symbols in an object file

objcopy Copies and translates object files

objdump Displays information about the content of object files

ranlib Generates an index to the content of an archive

readelf Displays information about an ELF format object file

size Lists the sizes of sections within an object file

strings Prints the strings of printable characters in object files

strip Strips symbols from object files

c++filt Converts low-level, mangled assembly labels resulting from overloaded C++ functions to their user-level names

addr2line Converts addresses into line numbers within original source files

Although as supports many processor architectures, it does not neces-
sarily recognize the same syntax as other assemblers available for a given
architecture. The syntax recognized by as is actually a machine-
independent syntax inspired by BSD 4.2 assembly language.

The C library

The standard C library most often used with current day Linux systems is thein GNU
C library, often abbreviated as glibc. glibc is a portable, high-performance C library
supporting all relevant standards (ISO C 99, POSIX.1c, POSIX.1j, POSIX.1d, Unix98,
and the Single Unix Specification). It also supports internationalization, sophisticated
name resolution, time zone information, and authentication through the use of the
NSS, the Name Service Switch, and PAM, the Pluggable Authentication Modules
architecture.

GNU Cross-Platform Development Toolchain | 95

The main website for the glibc development project, containing links to the develop-
ment source tree, bug database, and many resources, can be found at http://
www.gnu.org/software/libc. A list of all platforms the library supports can be found at
http://www.gnu.org/software/libc/ports.html, and the library itself can be downloaded
from the mirrors found at http://ftp.gnu.org/gnu/glibc.

For recent glibc releases, supported architectures are separated into
those supported by the core maintainers (x86, PowerPC, SPARC,
SuperH, and their 64-bit counterparts are currently the most interesting
to embedded system developers) and those supported by volunteers
outside the main glibc core group (currently Arm and MIPS). Code for
the latter architectures is in a separate glibc-ports package, which can
be downloaded from the same location.

glibc is truly a robust, complete, and modern C library, and it can fit very well in many
system designs. Indeed, many embedded Linux systems, especially in the telephony
and networking market segments, are based on it. However, because it was never de-
signed to be used in an embedded system context, developers building embedded Linux
systems with more limited resources, such as consumer electronic devices, often find
its resource usage less compelling.

Being rich and full-featured, glibc is huge. To compound the problem for embedded
systems, it is not very modular: removing features is a cumbersome and sometimes even
impossible job. Additionally, glibc’s designers and implementors have traditionally
optimized for performance instead of resource use. For instance, they have optimized
for speedier operation at the expense of RAM utilization.

How much of a burden does the size of glibc impose? First of all, the various library
files in a minimal glibc take up as much as 2 MB of storage space. But this is by no
means the full extent of the problem. Keep in mind that almost every application is
compiled against the C library headers. So, the C library also affects the size of appli-
cation executable files and other libraries.

Executables built with alternative C libraries can be as little as one half the size as those
built with glibc, depending on the actual program code and the compiler version used.
Savings of 50 percent are quite rare, though; the difference varies widely and occasion-
ally executables end up just as large as they would with glibc.

A similar effect, although usually much less dramatic, can be seen on application run-
time RAM usage.

As a rule of thumb, glibc can be a good fit for projects with Flash storage sizes of 16
MB or more. If your project requires smaller RAM, however, you might want to con-
sider popular embedded alternatives such as uClibc and diet libc, which we will de-
scribe in the upcoming sections.

96 | Chapter 4: Development Tools

http://www.gnu.org/software/libc
http://www.gnu.org/software/libc
http://www.gnu.org/software/libc/ports.html
http://ftp.gnu.org/gnu/glibc

The first decision facing a builder of a new toolchain, therefore, is which C library to
use. Because the C library is a component in both the toolchain (both as part of the
compiler, for support of C++ and other languages, and in the form of library headers)
and the runtime image (the code library itself and the allocation code that is compiled
to use it), it is impossible to change this decision later without affecting the entire
system.

The threading library

Threads are a popular modern programming technique involving several independent,
asynchronous tasks residing in the same process address space. The Linux kernel, prior
to the 2.6 series, provided very little support for threads. To fill the gap, a few different
threading libraries were developed that implemented much of the required support in
user space with minimal kernel assistance. The most common was the LinuxThreads
library, which was an implementation of the POSIX Threads standard and was dis-
tributed as a glibc add-on until Linux version 2.5. LinuxThreads was a noble and useful
project, but it suffered from problems with scalability and adherence to standards, due
to limitations imposed by the weakness of support for threads in the Linux kernel at
that time. For example, both the getpid() system call and signal handling in LinuxTh-
reads are non-compliant vis-à-vis the POSIX standard, on account of kernel-imposed
limitations.

The release of the Linux 2.6 series was accompanied by a new thread implementation
called the New POSIX Threading Library (NPTL). NPTL relies on Linux kernel sup-
ports for threads. A key piece of the implementation, known as a fast user space mutex
(futex), provides a robust, POSIX-compliant threading implementation that scales up
to thousands of threads. NPTL is now the supported Linux threading library and is
distributed as part of recent versions of glibc.

For any new project making use of recent kernel versions and glibc releases, NPTL is
the threading library of choice. However, because all Linux kernel releases prior to
2.6.16 contain bugs affecting the threading library, and because it is not unheard of for
embedded system builders to base systems on older kernel and glibc releases (mainly
due to vendor support issues), LinuxThreads can still be a valid option, especially if
your system is only expected to make very limited use of threads.

You can also start off with LinuxThreads and migrate to NPTL, because both conform
(at least roughly) to the POSIX standard.

The confstr() function can be used to test which threading library im-
plemention is in use at runtime:

#define _XOPEN_SOURCE
#include <unistd.h>
#include <stdio.h>

int main(void)
{

GNU Cross-Platform Development Toolchain | 97

 char name[128];
 confstr (_CS_GNU_LIBPTHREAD_VERSION, name, sizeof(name));
 printf ("Pthreads lib is: %s\n", name);
 return 0;
}

Component versions

The first step in building the toolchain is to select the version of each component you
will use: GCC, glibc, and binutils. Because these packages are maintained and released
independently, not all versions of one package will build properly when combined with
different versions of the other packages. You can try using the latest versions of each,
but this combination is not guaranteed to work either.

To select the appropriate versions, you have to test a combination tailored to your host
and target. You may be lucky and find a previously tested combination. If not, start
with the most recent stable version of each package and replace it with successively
older versions if it fails to build.

In some cases, the version with the highest version number may not have
had the time to be tested enough to be considered “stable.” At the time
glibc 2.3 was released, for example, it may have been a better choice to
keep using glibc 2.2.5 until 2.3.1 became available.

At the time of this writing, for instance, the latest version of binutils is 2.18, the latest
version of GCC is 4.2.2, and the latest version of glibc is 2.7. Most often, binutils will
build successfully and you will not need to change it. Hence, let us assume that GCC
4.2.2 fails to build even though all the appropriate configuration flags have been pro-
vided. In that case, we would revert to GCC 4.2.1. If that failed, we would try 4.2, and
so on.

You must understand, however, that you cannot go back like this indefinitely, because
the most recent package versions expect the other packages to provide certain capa-
bilities. You may, therefore, have to go back to older versions of packages that you
successfully built if the other packages down the line fail to build. Using the versions
just mentioned, for example, if we had to go back to glibc 2.6.0, it might be appropriate
to change back to GCC 4.1 and binutils 2.17, even if the most recent GCC and most
recent binutils may have compiled perfectly.

In addition, it is quite common to apply patches to some versions to get them to build
correctly for your target. The websites and mailing lists provided for each processor
architecture in Chapter 3 are good places to find such patches and package versions
suggestions.

98 | Chapter 4: Development Tools

Locating Patches and Versions
The following are good places to look for patches and compatible version combinations
on the Internet:

• The Debian Linux distribution source packages (each package contains the patch-
es required for all the architectures supported by that package), available at http://
www.debian.org/distrib/packages.

• Cross Compiled Linux From Scratch, available online at http://cross-lfs.org/view/
1.0.0.

• The CrossTool build matrix, available at: http://www.kegel.com/crosstool/cross
tool-0.43/buildlogs.

Many other combinations will work just as well. Feel free to try versions that are newer
than the ones presented on these websites. Use the same technique discussed earlier:
start with the latest versions and back up one version at a time as needed.

At worst, you will have to revert to the combinations described on the websites.

Whenever you discover a new version combination that compiles successfully, make
sure you test the resulting toolchain to ensure that it is indeed functional. Some version
combinations may compile successfully and still fail when used. Version 2.2.3 of glibc,
for example, builds successfully for a PPC target on an x86 host using GCC 2.95.3. The
resulting library is, nevertheless, broken and will cause a core dump when used on the
target. In that particular setup, you can obtain a functional C library by reverting to
glibc 2.2.1.

There are also cases where a version combination was found to work properly on certain
processors within a processor family while failing to work on other processors of the
same family. Versions of glibc earlier than 2.2, for example, worked fine for most PPC
processors, except those that were part of the MPC8xx series. The problem was that
glibc assumed 32-byte cache lines for all PPC processors, whereas the processors in the
MPC8xx series have 16-byte cache lines. Version 2.2 fixed this problem by assuming
16-byte cache lines for all PPC processors.

Additional build requirements

To build a cross-platform development toolchain, you will need a functional native
toolchain. Most mainstream distributions provide this toolchain as part of their pack-
ages. If it was not installed on your workstation or if you chose not to install it to save
space, you will need to install it at this point, using the procedure appropriate to your
distribution. With a Red Hat distribution, for instance, you will need to install the
appropriate RPM packages.

GNU Cross-Platform Development Toolchain | 99

http://www.debian.org/distrib/packages
http://www.debian.org/distrib/packages
http://cross-lfs.org/view/1.0.0
http://cross-lfs.org/view/1.0.0
http://www.kegel.com/crosstool/crosstool-0.43/buildlogs
http://www.kegel.com/crosstool/crosstool-0.43/buildlogs

Build overview

With the appropriate tools in place, let’s take a look at the procedure used to build the
toolchain. The five main steps involve setting up:

1. Linux headers

2. Binary utilities

3. The bootstrap compiler

4. The C library

5. The full compiler

The first thing that you probably noticed is that the compiler seems to be built twice.
This is normal and required, because some languages supported by GCC, such as C+
+, require glibc support. Hence, a bootstrap compiler is built with support for C only,
and a full compiler is built once the C library is available.

Although we listed the Linux headers as the first step, the headers will not be used until
the C library setup. Hence, you could alter the steps and set up the Linux headers right
before the C library setup.

Each of the steps involves many iterations of its own. Nonetheless, the steps remain
similar in several ways. Most toolchain build steps involve carrying out the following
actions:

1. Unpack the package.

2. Configure the package for cross-platform development.

3. Build the package.

4. Install the package.

Some toolchain builds differ slightly from this sequence. The Linux headers, for in-
stance, do not require you to build or install the kernel, as we have already seen. Also,
because the compiler will have already been unpacked for the bootstrap compiler’s
setup, the full compiler setup does not require unpacking the GCC package again.

Workspace setup

According to the workspace directory layout suggested earlier, the toolchain will be
built in the ${PRJROOT}/build-tools directory, while the components built will be
installed in the ${PRJROOT}/tools directory. To this end, we need to define some ad-
ditional environment variables. They ease the build process and are based on the
environment variables already defined. Using the same example project as before, here
is the new develdaq script with the new variables:

export PROJECT=daq-module
export PRJROOT=/home/gby/bels/control-project/${PROJECT}
export TARGET=powerpc-unknown-linux
export HOST=i686-cross-linux-gnu
export PREFIX=${PRJROOT}/tools

100 | Chapter 4: Development Tools

export TARGET_PREFIX=${PREFIX}/${TARGET}
export PATH=${PREFIX}/bin:${PATH}
cd $PRJROOT

The TARGET variable defines the type of target for which your toolchain will be built. It
is expressed as a host/target/build triplet, as explained earlier.

The HOST variable defines the type of host on which the toolchain will run, namely your
workstation type. Note that we have slightly modified the host triplet and, instead of
using i686-pc-linux-gnu, actually use i686-cross-linux-gnu. The reason for this is that
it is possible and sometimes desirable to be able to build a cross toolchain for an x86-
based system, such as a PC104 platform. If that was done, the host and target triplets
could have been identical, which would have caused a regular toolchain to be created.
Although no such issue exists in our earlier example, because its toolchain runs on x86
but builds binaries for a PowerPC system, we still use this convention for good measure.

The PREFIX variable provides the component configuration scripts with a pointer to the
directory where you would like the target utilities to be installed. Conversely,
TARGET_PREFIX is used for the installation of target-dependent header files and libraries.
To have access to the newly installed utilities, you also need to modify the PATH variable
to point to the directory where the binaries will be installed.

Some people prefer to set PREFIX to /usr/local. This installs the tools and libraries within
the /usr/local directory, where any user can access them. We don’t find this approach
useful for most situations, however, because even projects using the same target archi-
tecture may require different toolchain configurations.

If you need to set up a toolchain for an entire development team, instead of sharing
tools and libraries via the /usr/local directory, we recommend that you build the tool-
chain within a directory shared by all project members, such as a subdirectory of /opt
or a directory on a shared network.

If you choose to set PREFIX to /usr/local, you will also have to issue the commands shown
later while logged in as the superuser, with all the risks this entails. You could instead
set the permission bits of the /usr/local directory to allow yourself or your user group
to issue the commands without requiring root privileges.

Notice that TARGET_PREFIX is set to ${PREFIX}/${TARGET}, which is a target-dependent
directory. Thus, successive installations of development toolchains for different targets
will place the libraries and header files of each installation in different subdirectories
of ${PREFIX}.

Regardless of the value you give to PREFIX, the ${PREFIX}/${TARGET} combination is
the configuration the GNU toolchain utilities expect to find during their configuration
and installation. Hence, we strongly suggest that you use this value for TARGET_PRE
FIX. The following explanations may require changes if you modify TARGET_PREFIX’s
value.

GNU Cross-Platform Development Toolchain | 101

Again, you can remove the cd command from the script if you would prefer not to move
directly to the project directory.

Resources

Before proceeding to the actual building of the toolchain, let’s look at some resources
you might find useful in case you run into problems during the build process.

First and foremost, each package comes with its own documentation. Although the
binutils package is the leanest in terms of installation documentation, it is also the least
likely to cause any problems. The GCC and glibc packages, however, are amply docu-
mented. Within the GCC package, you will find an FAQ file and an install directory
containing instructions about how to configure and install GCC. This includes an ex-
tensive explanation of the build configuration options. Similarly, the glibc package
contains FAQ and INSTALL files. The INSTALL file covers the build configuration
options and the installation process, and it provides recommendations for compilation
tool versions.

In addition, you may want to try using a general search engine such as Google to look
for reports by other developers who may have already encountered and solved problems
similar to yours. Often, this will be the most effective way to solve a build problem with
a GNU toolchain.

One extremely useful resource is the Cross-Compiled Linux From Scratch website
(http://trac.cross-lfs.org), mentioned earlier. The combination of component versions
used in the example toolchain build in the following section has been taken mostly
from this resource.

Finally, you can check the crosgcc mailing list, hosted by Red Hat, at http://sources.red
hat.com/ml/crossgcc. You will find this mailing list quite useful if you ever get stuck,
because many people on this list have a great deal of experience with the process of
building cross-platform development toolchains. Often, just searching or browsing the
archive will immediately help you locate answers to your questions.

Building the Toolchain
As must be obvious by now, building a cross toolchain is a delicate and complicated
process. It requires arcane knowledge concerning versions, patches, and tweaks of the
various toolchain components for various architectures—knowledge that is not only
scattered among many locations, but also changes from version to version of the com-
ponents. It is certainly not a task for the novice, or even intermediate, embedded Linux
system builder to tackle unassisted.

In fact, this is how Dan Kegel, the main author of Crosstool, described the process of
building a cross toolchain manually:

102 | Chapter 4: Development Tools

http://trac.cross-lfs.org
http://sources.redhat.com/ml/crossgcc
http://sources.redhat.com/ml/crossgcc

“Building a […] cross-toolchain for use in embedded systems development [is] a scary
prospect, requiring iron will, days if not weeks of effort, lots of Unix and Gnu lore, and
sometimes willingness to take dodgy shortcuts.”

Manually building a toolchain

If you are truly brave of heart or happen to have a lot of free time on your hands and
desire to learn the process of cross toolchain inside and out, the authors highly recom-
mend following the Cross Linux From Scratch project (http://trac.cross-lfs.org) as a
reference. Otherwise, skip to the next section, where we will describe Crosstool, an
automated cross toolchain build system.

Version 1.0.0 of the Cross LFS guide, covering the x86, PPC, MIPS, and Sparc V8
architectures, is available at http://cross-lfs.org/view/1.0.0.

The development branch of the guide—with more updated information
but possibly less reliable—can be found at http://cross-lfs.org/view/svn.

Automated cross toolchain build systems

Although it is certainly possible and educational to build a toolchain using a step-by-
step manual process, it is not the recommended way to build one for a production
system. Instead, we recommend an automated cross toolchain build system, which has
the following advantages:

Reproducible
Because the build is done in an automated fashion, it can be exactly repeated should
that be necessary to update a component or fix an error. There is no danger of
accidentally omitting an important step.

Documented
Practically all automated cross toolchain build systems use some sort of configu-
ration file to document the build components, versions, and other choices related
to producing the toolchain. This configuration file becomes a form of “executable
documentation” for the toolchain and its build process.

Sharable
This advantage follows from the previous two. Because the cross toolchain build
process can be reproduced from a configuration file, you can publish the configu-
ration file to share with other developers.

Indeed, all automated cross toolchain build systems that we will cover come bun-
dled with several pretested components and version combinations that are known
to produce working toolchains for specific architectures. This enables novice and
intermediate embedded Linux system builders to build working toolchains easily,

GNU Cross-Platform Development Toolchain | 103

http://trac.cross-lfs.org)
http://cross-lfs.org/view/1.0.0
http://cross-lfs.org/view/svn

without needing to become experts on the states of various toolchain components
versions.

We’ll describe several automated cross toolchain build systems later in this section.

Crosstool

Crosstool is a set of scripts that build and test several versions of GCC and glibc for
most architectures supported by glibc. Crosstool will even download and patch the
original tarballs for you. The resulting script and associated patches, and the latest
version of the documentation, are available at http://kegel.com/crosstool.

It originated as a script by Bill Gatliff called crossgcc, which Dan Kegel generalized and
hacked on until it took its current shape.

Crosstool comes with a set of patches for the toolchain components, which are required
to build cross toolchain combinations. It supports the Alpha, ARM, i686, ia64, MIPS,
PowerPC, PowerPC64, SH4, SPARC, SPARC64, s390, and x86_64 architectures. Sup-
ported software includes GCC versions gcc-2.95.3 through gcc-4.0.0 and glibc versions
glibc-2.1.3 through glibc-2.3.5.

It is portable and can be used to build cross toolchains that run on Linux, Mac OS X,
Solaris, and Cygwin for building Linux binaries.

Grab the Crosstool archive and unpack it as follows:

$ cd $PRJROOT/tools-build/
$ wget http://kegel.com/crosstool/crosstool-0.43.tar.gz
$ tar -xzvf crosstool-0.43.tar.gz
$ cd crosstool-0.43

Crosstool is comprised of a couple of shell scripts and data files used by those scripts.
The following are the major scripts:

crosstool.sh
The main script, containing the logic to compile GCC and glibc.

getandpatch.sh
This script is in charge of downloading, unpacking, and patching the various tool-
chain components’ source packages.

crosstest.sh
This script can run the GCC and glibc regression tests remotely on your target
machine. It can be very useful to verify that the toolchain you have just created is
indeed working.

testhello.sh
This script tries to build a trivial “Hello World” program using the newly generated
toolchain as a sanity check.

104 | Chapter 4: Development Tools

http://kegel.com/crosstool

mkdistcc.sh and mkdistcclinks.sh
These scripts contain Crosstool support for building DistCC-supported cross
toolchains.

DistCC achieves faster build times by distributing the build work
across a cluster of computers. It is outside the scope of this book,
but if you are interested, we recommend the DistCC website at
http://distcc.samba.org.

demo-cpu.sh
Example scripts that serve as starting points. One exists for each supported archi-
tecture (e.g., demo-i686.sh).

demo.sh
A big demo file that runs all the architecture demo files. Used mainly for testing
Crosstool itself.

clean.sh
As the name implies, a script that cleans up a Crosstool working directory.

all.sh
The script that actually generates a toolchain; an example of its use appears later
in this section. It is a general control script that has the logic to invoke all other
scripts in order, according to the parameters supplied. Parameters include:

--nounpack
Instructs the script not to run getandpatch.sh. Useful for quickly restarting a
build.

--nobuild
Instruct the script not to run crosstool.sh. Useful for downloading the sources
for a later build or for running the regression tests.

--notest
Instructs the script not to run crosstest.sh, thus skipping the regression suite
tests.

These scripts are mostly architecture- and version-generic. The information pertaining
to different architectures and tool versions is stored in separate data files:

cpu.dat
One such file exists for each supported architecture (e.g., arm.dat) or specific CPU
(e.g., ppc-8540.dat). The file contains the information needed to configure Cross-
tool for a specific architecture. It sets the GNU target name and additional related
options.

gcc-version-glibc-version.dat
One such file exists for each combination of GCC and GLibc versions (e.g.,
gcc-3.4.0-glibc-2.3.2.dat). The file contains the information needed to configure

GNU Cross-Platform Development Toolchain | 105

http://distcc.samba.org

Crosstool for that combination. It sets the binutils, GCC, glibc versions, and related
options.

patches/program/*.patch
These are patch files required to properly build various components’ versions. The
program is the name of the program and version the patch is intended for. Each
patch file header contains comments about what it is for and has links to any
associated discussion.

Using Crosstool is very simple and straightforward: create a shell script to set up some
important shell variables and invoke the build script. For the purpose of the following
example, we’ll assume we named the file mytoolchain.sh.

Use one of the example scripts included with Crosstool as a starting
point and adapt it to your needs.

Here are the first lines of our script:

TARBALLS_DIR=download # where it will save source tarballs
RESULT_TOP=$PRJROOT/tools/ # where it will install the tools
GCC_LANGUAGES="c,c++" # which languages it will make compilers for

To build the cross toolchain, create an architecture description file and a description
file for the GCC and glibc versions. Then invoke the build script.

For example, to build a toolchain based on gcc-3.4.0 and glibc-2.3.2 for i686, add the
following line to the mytoolchain.sh script:

eval `cat i686.dat gcc-3.4.0-glibc-2.3.2.dat` sh all.sh --notest

Then execute the script:

$ sh mytoolchain.sh

At this point, the script will run for quite some time as it downloads each and every
toolchain component, patches them, configures them, and builds them.

When the script finishes, the new toolchain will be ready and you can run the newly
created compiler from $PRJROOT/tools/gcc-3.4.0-glibc-2.3.2/i686-unknown-linux-
gnu/bin/i686-unknown-linux-gnu-gcc. Of course, you might need to replace gcc-3.4.0-
glibc-2.3.2 and i686-unknown-linux-gnu with your actual GCC and glibc versions and
architecture.

Your toolchain is ready for use now, but the long pathname of its location is not very
convenient to use. As our last step, therefore, we will create a shortcut by making a soft
link from the tools directory to the bin directory of the toolchain:

$ ln -s $PRJROOT/tools/gcc-3.4.0-glibc-2.3.2/i686-unknown-linux-gnu/bin \
 $PRJROOT/tools/bin

106 | Chapter 4: Development Tools

Henceforth, you can access the toolchain at $PRJROOT/tools/bin/i686-unknown-linux-
gnu-gcc, and if you have added this directory to your run path in your workspace setup
script, you can use simply 686-unknown-linux-gnu-gcc.

Ptxdist

Ptxdist is a build system for userlands started by the German company Pengutronix
e.K. It is maintained as an open source project under a GPL, with the active participation
of Pengutronix, which also sells commercial support for it under the brand name OSE-
LAS. The project website can be found at http://www.pengutronix.de/software/ptxdist/
index_en.html.

Much more then just an automated cross toolchain building frame-
work, Ptxdist can be considered “executable documentation.” It builds a cross
toolchain, then uses this toolchain to build a Linux kernel image and root filesystem
for the target, which it then packs as a binary image in one of many available formats.

In this section, however, we will cover Ptxdist just for use as an automated cross tool-
chain build system. Later in the chapter, we’ll use it as an automated build system for
an entire embedded Linux project.

The process for building a cross toolchain with Ptxdist has two phases. First, we’ll
download and install the core Ptxdist package and the Ptxdist patches packages. Then,
we’ll download an example Ptxdist project that can generate a few different cross tool-
chain variants.

First, grab the latest version of the project from its website and install
it. At the time of this writing, the latest version is 1.0.1:

$ wget http://www.pengutronix.de/software/ptxdist/download/v1.0/ptxdist-1.0.1.tgz
$ wget http://www.pengutronix.de/software/ptxdist/download/v1.0/ptxdist-1.0.1-
 patches.tgz

Next, unpack the compressed tar archives and move to the project’s directory:

$ tar zxvf ptxdist-1.0.1.tgz
$ tar zxvf ptxdist-1.0.1-patches.tgz
$ cd ptxdist-1.0.1

Now, configure Ptxdist for use on your system, build it, and install it:

$./configure --prefix=$PRJROOT/build-tools/
$ make
$ make install

After Ptxdist has been installed, you can set it up to build a toolchain.
Although the default configuration works quite well in most cases, local network and
security policies might require a good deal of configuration.

To set up your new Ptxdist installation, issue the following command:

$ ptxdist setup

Ptxdist overview.

Installing Ptxdist.

Setting up Ptxdist.

GNU Cross-Platform Development Toolchain | 107

http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html

It presents the Ptxdist setup menu, shown in Figure 4-1.

The setup menu allows you to configure many options. You can obtain information
regarding each option using the ? key. This displays a paragraph explaining how the
current option is used and provides its default values.

The following submenus are available:

Proxies
Set up HTTP and FTP proxy servers for Ptxdist to use when downloading source
packages from the Internet.

Project Searchpath
Choose a default project working directory. Set this to your project tools directory.

Source Directory
Choose a directory into which all source packages will be downloaded. Set this to
a subdirectory under your project build-tools directory.

Mirrors
Allows you to specify places to download Debian, GNU, and Xorg source packages.
Normally, there is no reason to change this, but if some source packages fail to
load due to an unavailable server, you may try to specify a different mirror for the
appropriate project.

Figure 4-1. Ptxdist setup menu

108 | Chapter 4: Development Tools

IPKG Repository
IPKG is a binary packaging format used in many Linux-based embedded system
distributions. Ptxdist can create a custom IPKG repository for you from the pack-
ages it builds. For a toolchain building project, leave this at the default value.

JAVA SDK
Ptxdist allows you to build some Java-based packages. This submenu can be used
to point to the relevant Java SDK required to build Java programs. You can leave
this as the default value for a toolchain building project.

If the configuration menu did not show up, make sure that your exe-
cutable path is set correctly (for example, by running the development
environment setup script described earlier) and that your terminal has
at least 19 lines by 80 columns.

When you finish, choose the < Exit > button and press Enter , and then choose the
< Yes > button to save your new configuration.

Ptxdist is organized around the concept of a project, a set of
configuration files and patches required to build a certain set of software. To start
building our cross toolchain using the Ptxdist framework, we’ll download an example
toolchain Ptxdist project from the Ptxdist website and uncompress the archive:

$ wget http://www.pengutronix.de/oselas/toolchain/download/OSELAS.Toolchain-1.1.1.tar.bz2
$ tar jxvf OSELAS.Toolchain-1.1.1.tar.bz2
$ cd OSELAS.Toolchain-1.1.1/

Now pick a sample toolchain to build from the included examples. Each toolchain
example is represented by a configuration file in the ptxconfigs directory:

$ ls ptxconfigs/
arm-1136jfs-linux-gnueabi_gcc-4.1.2_glibc-2.5_linux-2.6.18.ptxconfig
armeb-xscale-linux-gnueabi_gcc-4.1.2_glibc-2.5_linux-2.6.18.ptxconfig
armeb-xscale-linux-gnu_gcc-4.0.4_glibc-2.3.6_linux-2.6.17.ptxconfig
arm-ep93xx-linux-gnueabi_gcc-4.1.2_glibc-2.5_linux-2.6.18.ptxconfig
arm-iwmmx-linux-gnueabi_gcc-4.1.2_glibc-2.5_linux-2.6.18.ptxconfig
arm-v4t_hardfloat-linux-gnu_gcc-4.0.4_glibc-2.3.6_linux-2.6.18.ptxconfig
arm-v4t-linux-gnueabi_gcc-4.1.2_glibc-2.5_linux-2.6.18.ptxconfig
arm-v4t-linux-gnu_gcc-4.0.4_glibc-2.3.6_linux-2.6.18.ptxconfig
arm-xscale_hardfloat-linux-gnu_gcc-4.0.4_glibc-2.3.6_linux-2.6.17.ptxconfig
arm-xscale-linux-gnueabi_gcc-4.1.2_glibc-2.5_linux-2.6.18.ptxconfig
arm-xscale-linux-gnu_gcc-4.0.4_glibc-2.3.6_linux-2.6.17.ptxconfig
i586-unknown-linux-gnu_gcc-4.1.2_glibc-2.5_linux-2.6.18.ptxconfig
i686-unknown-linux-gnu_gcc-4.1.2_glibc-2.5_linux-2.6.18.ptxconfig
mips-r6000-linux-gnu_gcc-4.1.2_glibc-2.5_linux-2.6.18.ptxconfig
powerpc-603e-linux-gnu_gcc-4.1.2_glibc-2.5_linux-2.6.18.ptxconfig
powerpc64-970-linux-gnu_gcc-4.1.2_glibc-2.5_linux-2.6.18.ptxconfig

To build one of the example toolchains, you need to tell Ptxdist which configuration
file you want to use and then tell it to build the toolchain according to the instructions
in the configuration file.

Creating a toolchain project.

GNU Cross-Platform Development Toolchain | 109

As an example, let’s build a cross toolchain for the a ARM Xscale EABI, using GCC
4.1.2 and glibc 2.5 with kernel headers from version 2.6.18, including NPTL support.
The example file you will use will therefore be ptxconfigs/arm-xscale-linux-gnuea
bi_gcc-4.1.2_glibc-2.5_linux-2.6.18.ptxconfig.

Before you do so, however, you must make a small change in the example configuration
file in order to use it, because the example configuration files were generated using an
earlier version of the Ptxdist framework. The version number of that earlier version is
embedded in the configuration file, which will cause Ptxdist to fail with an error mes-
sage if you try to use the example configuration as is.

Luckily, the configuration files are simple text files. You can simply edit the configu-
ration file and update the version number to match the latest version you use. While
this can easily be done manually with a text editor, the following shell hackery does
the trick very well:

$ sed s/PTXCONF_CONFIGFILE_VERSION=.*/PTXCONF_CONFIGFILE_VERSION="1.0"/ \
 ptxconfigs/arm-xscale-linux-gnueabi_gcc-4.1.2_glibc-2.5_linux-2.6.18.ptxconfig > \
 ptxconfigs/arm-xscale-linux-gnueabi_gcc-4.1.2_glibc-2.5_linux-2.6.18.ptxconfig.tmp
$ mv ptxconfigs/arm-xscale-linux-gnueabi_gcc-4.1.2_glibc-2.5_linux-2.6.18.ptxconfig.tmp \
 ptxconfigs/arm-xscale-linux-gnueabi_gcc-4.1.2_glibc-2.5_linux-2.6.18.ptxconfig

After running this command, instruct Ptxdist to use your “patched” configuration file
through the following command:

$ $PRJROOT/build-tools/bin/ptxdist select \
 ptxconfigs/arm-xscale-linux-gnueabi_gcc-4.1.2_glibc-2.5_linux-2.6.18.ptxconfig

Now you can customize our chosen example toolchan project configuration. Issue the
following command:

$ ptxdist menuconfig

You will be presented with the Ptxdist toolchain project menu, shown in Figure 4-2.

The menu contains the following options and submenus:

Project Name
A text box to enter a long name for the project. Useful if you are maintaining several
different Ptxdist toolchain projects.

glibc
This submenu allows you to specify the glibc version, any extra configuration op-
tions you might wish to pass to the package configuration script, a file list, a series
of patches to apply to the library source before the build, the minimum supported
kernel version, extra environment variables you might want to pass to the glibc
configuration script, which threading library to use (NPTL or LinuxThreads), and
whether the resulting glibc will support thread-local storage.

glibc-ports
This submenu lets you list a series of patches to apply to glibc from the glibc-ports
archive, which contains patches for glibc originating outside the glibc core team.

110 | Chapter 4: Development Tools

binutils
This submenu lets you pick which binutils package version to include in the tool-
chain built.

kernel
This submenu sets the kernel version and the configuration file for the Linux kernel
headers required to build the toolchain. It also lets you specify whether or not to
use sanitized headers. For more on kernel configuration, see “Configuring the Ker-
nel” in Chapter 5.

gcc (first stage)
This submenu lets you specify the GCC version to use for the first stage (bootstrap)
compiler, as well as a patch series file and extra options to provide to the GCC
configuration script.

gcc (second stage)
This submenu allows you to choose which programming languages the newly cre-
ated toolchain will support. The languages supported depend on the GCC version,
but all versions support C and C++.

Figure 4-2. Ptxdist toolchain menu

GNU Cross-Platform Development Toolchain | 111

cross gdb
This checkbox can be checked to ask PTxdist to build a cross debugger as part of
the toolchain.

architecture
This drop-down box lets you specify the toolchain’s target architecture. Currently
ARM, MIPS, PowerPC, and x86 are supported.

toolchain target
This text box allows you to set your toolchain GNU configuration string (e.g.,
powerpc64-970-linux-gnu).

debuggable toolchain internals
This checkbox allows you to specify whether full debugging information should
be generated for the toolchain’s glibc and libstdc++ libraries. Selecting this check-
box lets you step into functions defined in these basic libraries, but it will make
your toolchain about 500 MB bigger. (It does not affect the target filesystem size,
though.)

misc
The misc submenu allows you to specify the version of Ptxdist that is compatible
with the current toolchain project, as well as set the filesystem prefixes into which
the generated filesystem will be installed. Set the first prefix to the tools directory
under the project root, and leave the second prefix field blank.

After you finish configuring these items, choose the < Exit > button and press Enter ,
then choose the < Yes > button to save your configuration.

Finally, you are ready to let Ptxdist build your toolchain. In the
process, Ptxdist will automatically download, configure, patch, build, and install all
required components. To start the build process, issue the following command:

$ ptxdist go

The build process can take from one to a few hours, depending on the
speed of your workstation and Internet connection.

When the build finishes, the new toolchain will be ready in the tools/bin directory of
your project root.

Using the Toolchain
The steps in the previous sections should have created a fully functional cross-
development toolchain, which you can use much as you would a native GNU toolchain;
you just need to prepend the target name to every command. For instance, instead of

Building the toolchain.

112 | Chapter 4: Development Tools

invoking gcc and objdump for your target, you will need to invoke something such as
i386-linux-gcc and i386-linux-objdump.

A Makefile for the control daemon on the DAQ module follows, which provides a good
example of the cross-development toolchain’s use:

Tool names
CROSS_COMPILE = ${TARGET}-
AS = $(CROSS_COMPILE)as
AR = $(CROSS_COMPILE)ar
CC = $(CROSS_COMPILE)gcc
CPP = $(CC) -E
LD = $(CROSS_COMPILE)ld
NM = $(CROSS_COMPILE)nm
OBJCOPY = $(CROSS_COMPILE)objcopy
OBJDUMP = $(CROSS_COMPILE)objdump
RANLIB = $(CROSS_COMPILE)ranlib
READELF = $(CROSS_COMPILE)readelf
SIZE = $(CROSS_COMPILE)size
STRINGS = $(CROSS_COMPILE)strings
STRIP = $(CROSS_COMPILE)strip

export AS AR CC CPP LD NM OBJCOPY OBJDUMP RANLIB READELF SIZE STRINGS \
 STRIP

Build settings
CFLAGS = -O2 -Wall
HEADER_OPS =
LDFLAGS =

Installation variables
EXEC_NAME = command-daemon
INSTALL = install
INSTALL_DIR = ${PRJROOT}/rootfs/bin

Files needed for the build
OBJS = daemon.o

Make rules
all: daemon

.c.o:
 $(CC) $(CFLAGS) $(HEADER_OPS) -c $<

daemon: ${OBJS}
 $(CC) -o $(EXEC_NAME) ${OBJS} $(LDFLAGS)

install: daemon
 test -d $(INSTALL_DIR) || $(INSTALL) -d -m 755 $(INSTALL_DIR)
 $(INSTALL) -m 755 $(EXEC_NAME) $(INSTALL_DIR)

clean:
 rm -f *.o $(EXEC_NAME) core

distclean:

GNU Cross-Platform Development Toolchain | 113

 rm -f *~
 rm -f *.o $(EXEC_NAME) core

The first part of the Makefile specifies the names of the toolchain utilities we are using
to build the program. The name of every utility is prepended with the target’s name.
Hence, the value of CC will be i386-linux-gcc, the cross-compiler we built earlier. In
addition to defining the name of the utilities, we also export these values so that sub-
sequent Makefiles called by this Makefile will use the same names. Such a build archi-
tecture is quite common in large projects that have one main directory containing many
subdirectories.

The second part of the Makefile defines the build settings. CFLAGS provides the flags to
be used during the build of any C file.

As we saw in the previous section, the compiler is already using the correct path to the
target’s libraries. The linker flags variable, LDFLAGS, is therefore empty. If the compiler
wasn’t pointing to the correct libraries or was using the host’s libraries (which shouldn’t
happen if you followed the instructions provided earlier), you would have to tell the
compiler which libraries to use by setting the link flags as follows:

LDFLAGS = -nostdlib -L${TARGET_PREFIX}/lib

If you wish to link your application statically, you need to add the -static option to
LDFLAGS. This generates an executable that does not rely on any shared library. But given
that the standard GNU C library is rather large, this will result in a very large binary.
A simple program that uses printf() to print “Hello World!”, for example, is less than
12 KB in size when linked dynamically and around 350 KB when linked statically, even
when stripped.

The variables in the installation section indicate what, where, and how to install the
resulting binary. In this case, the binary is being installed in the bin directory of the
target’s root filesystem.

In the case of the control daemon, we currently have only one file to build. Hence, the
program’s compilation requires only this single file, but had you used the -nostdlib
option in LDFLAGS (which you should not normally need to do) you would also need to
change the section describing the files required for the build and the rule for generating
the binary:

STARTUP_FILES = ${TARGET_PREFIX}/lib/crt1.o \
 ${TARGET_PREFIX}/lib/crti.o \
 ${PREFIX}/lib/gcc-lib/${TARGET}/2.95.3/crtbegin.o
END_FILES = ${PREFIX}/lib/gcc-lib/${TARGET}/2.95.3/crtend.o \
 ${TARGET_PREFIX}/lib/crtn.o
LIBS = -lc
OBJS = daemon.o
LINKED_FILES = ${STARTUP_FILES} ${OBJS} ${LIBS} ${END_FILES}
...
daemon: ${OBJS}
 $(CC) -o $(EXEC_NAME) ${LINKED_FILES} $(LDFLAGS)

114 | Chapter 4: Development Tools

The preceding Makefile excerpt adds five object files to the one it generates from our
own C file: crt1.o, crti.o, crtbegin.o, crtend.o, and crtn.o. These are special startup,
initialization, constructor, destructor, and finalization files, respectively, which are
usually automatically linked to your applications. It is through these files that your
application’s main() function is called, for example. Since we told the compiler not to
use standard linking in this case, we need to explicitly mention the files. If you disable
standard linking but forget to explicitly mention the files, the linker will complain about
a missing _start symbol and fail. The order in which the object files are provided to
the compiler is important because the GNU linker, which is automatically invoked by
the compiler to link the object files, is a one-pass linker.

The make rules themselves are very much the same ones you would find in a standard,
native Makefile. We added the install rule to automate the install process. You may
choose not to have such a rule but to copy the executable manually to the proper
directory.

With the Makefile and the source file in your local directory, all you need to do is type
make to build your program for your target. If you want to build your program for
native execution on your host to test your application, for example, you could use the
following command:

$ make CROSS_COMPILE=""

C Library Alternatives
Given the constraints and limitations of embedded systems, the size of the standard
GNU C library makes it an unlikely candidate for use on our target. Instead, we need
to look for a C library that will have sufficient functionality while being relatively small.

Over time, a number of libraries have been implemented with these priorities in mind.
In this section, we will discuss the two most important C library alternatives: uClibc
and diet libc. For each library, we’ll provide background information, instructions on
how to build the library for your target, and instructions on how to build your appli-
cations using the library.

uClibc
The uClibc library originates from the uClinux project, which provides a Linux that
runs on processors lacking a memory management unit (MMU).‡ The library, however,
has since become a project of its own and supports a number of processors, including
ones that have an MMU. In fact, at the time of this writing, uClibc supports all the
processor architectures discussed in-depth in Chapter 3.

‡ Processors without MMUs are low-end, and Linux is increasingly used on embedded systems with MMUs.
With special treatment, it can run on MMU-less systems, with the drawback that several features will not
work (such as memory protection).

C Library Alternatives | 115

Although it does not rely on the GNU C library, uClibc provides most of the same
functionality. It is, of course, not as complete as the GNU library and does not attempt
to comply with all the standards with which the GNU library complies. Functions and
function features that are seldom used, for instance, are omitted from uClibc. Even so,
most applications that can be compiled against the GNU C library will also compile
and run using uClibc. To this end, uClibc developers focus on maintaining compati-
bility with C89, C99, and SUSv3.§ They regularly run extensive test suites to ensure
that uClibc conforms to these standards.

uClibc is available for download as a tar-gzipped or tar-bzip2’d archive or by using CVS
from the project’s website at http://uclibc.org. The library is distributed under the terms
of the LGPL. An FAQ is available on the project’s website, and you can subscribe to
the uClibc mailing list or browse the mailing list archive if you need help. In the fol-
lowing description, we will use version 0.9.29 of uClibc, but the explanation should
apply to subsequent versions as well. Versions earlier than 0.9.16 depended on a dif-
ferent configuration system and are not covered in the following discussion.

Buildroot

Because the C library is one of the major components of a toolchain, and uClibc is an
alternative C library for embedded Linux systems, using it requires building a custom
cross toolchain. Just as with glibc cross toolchains, the best way to build a uClibc-based
cross toolchain is to use an automated build framework to do the heavy lifting. The
uClibc distribution includes its own framework called Buildroot.

Older versions of uClibc provided a wrapper around various toolchain
components that allowed you to build applications against uClibc with-
out the need for a custom toolchain.

Alas, this approach has been discontinued, as the wrappers have proved
to introduce more complications than assistance.

Download Buildroot from the http://buildroot.uclibc.org website and extract the com-
pressed tar archive:

$ cd $PRJROOT/build-tools/
$ wget http://buildroot.uclibc.org/downloads/snapshots/buildroot-snapshot.tar.bz2
$ tar jxvf buildroot-snapshot.tar.gz
$ cd buildroot/

Run the configuration menu utility:

$ make menuconfig

You will be presented with Buildroot configuration menu, shown in Figure 4-3. As in
the Ptxdist menu, you can obtain information regarding each option using the ? key.

§ Single UNIX Specification, version 3.

116 | Chapter 4: Development Tools

http://uclibc.org
http://buildroot.uclibc.org

Indeed, both Ptxdist and Buildroot share the same configuration system, which uClibc,
the Linux kernel, and many other projects also use.

The Buildroot main menu includes the following options:

Target Architecture
Lets you choose the target architecture for which the cross toolchain creates
binaries.

Target Architecture Variant (optional)
Configures a subarchitecture or generation to build for, such as 386, 486, or 686
for the x86 family, if applicable.

Target ABI (MIPS only)
The target ABI option, which is offered only for the MIPS architecture, controls
which of three available Application Binary Interfaces to use. Most embedded sys-
tems builders are likely to choose the new embedded targeted API, called EABI.

Target options
This submenu controls several settings of interest only to people using Buildroot
to build the entire root filesystems. They do not affect cross toolchain compilation.

Build options
This submenu allows you to set several different options concerning the cross
toolchain build process:

Figure 4-3. uClibc Buildroot main menu

C Library Alternatives | 117

• The commands used to perform such tasks as retrieving files from FTP and
websites, checking out source code from Subversion and Git source control
repositories, and uncompressing Gzip and Bzip2 archives, as well as any special
command-line options to pass to the tar command. The defaults provided are
quite sensible and will work out of the box for most modern Linux systems.

• Mirrors and download locations for components such as the Linux kernel, GNU
software (such as GCC, binutils, and GDB packages), and a Debian project
mirror (used to fetch additional packages). Leaving the defaults is safe, but if
you happen to know the URL of a nearby mirror, you may save considerable
time by configuring it here.

• The directory into which the cross toolchain and header files will be installed.
Change this to the directory we have configured as $PRJROOT/tools/.

Due to the way these configuration options are used, you cannot
actually use the $PRJROOT environment variable here and will
have to enter its value.

• The _nofpu suffix on the names of executables that support targets with no
hardware floating point.

• The custom prefix and suffix for build directories’ names to allow the building
of several architectures in a single location. Use of these options is not
recommended.

• An optional, custom GNU target suffix. You can use this to “brand” your cross
toolchain.

• A version of the strip utility. The traditional strip command is recommended,
rather then the newer sstrip.

• An option to configure the toolchain to use static libraries, rather then dynamic,
loadable ones. Not recommended for novice users.

• Several other options related to the use of Buildroot for building root filesystems,
which are not relevant for toolchains.

Toolchain
This submenu, shown in Figure 4-4, controls several key configuration options for
Buildroot-based toolchain builders:

• Select whether you wish to use an external toolchain or build a new one. Use
the default, called “Buildroot toolchain,” because you should have Buildroot
generate a toolchain and not rely on an externally supplied toolchain.

• Select a kernel headers version. Pick the version that most closely matches your
target kernel version.

• Choose a uClibc library version. Choosing one of the latest released versions
(rather than the daily snapshot) is recommended.

118 | Chapter 4: Development Tools

• Configure the location of the uClibc library configuration file. Leave it as the
default at the moment; we will describe how to customise uClibc configuration
in the next section.

• Support internationalization (i18n). Not normally useful for embedded systems.

• Pick a threading library implementation. NPTL is recommended.

• Control whether to build the threading library with debug symbols. Most people
will want to say “Yes” here.

• Set an option to support the GNU “program invocation name” extension, which
is used by some third-party programs (such as GNU tar) but not generally re-
quired. Choose “Yes” here.

• Pick the version of the binutils package. Pick the most recent version offered.

• Set additional options to pass when building the bintuils packages. Normally
this is left empty.

• Pick the GCC compiler version. Older versions usually produce smaller code
but support fewer features and have known issues.

• Enable your cross toolchain to use a custom sysroot, separate from the system’s.
It is important to enable this option to separate the cross toolchain cleanly from
the native toolchain and libraries that might be installed on your workstation.

• Implement exception handling using setjmp/longjmp, rather then the more
orthodox stack unwinding, to overcome issues with stack unwinding code.
Choose “No” unless exceptions do not work correctly.

• Set additional options to pass during the GCC build. Leave this empty.

• Configure whether to build C++, FORTRAN, and Objective-C compiler and
runtime support, in addition to C support.

• Build and install a shared library version of libgcc, the GCC runtime code library.
Most people will choose “Yes” here.

• Build a toolchain supporting the ccache compiler cache tool.

• Set options for building and installing GDB, the GNU debugger, as part of the
toolchain. See additional discussion of GDB in “Building and Installing gdb
Components” in Chapter 11.

• Support the FLT format, which is used with uClinux systems (Linux for systems
with no MMU support).

• Choose whether to build and install sstrip (an enhanced version of the strip
utility for editing ELF binary sections). As this is a useful tool, it is recommended
that you set this option.

• Choose whether to build and support libraries that support multiple target ABIs.
Not usually needed or recommended.

• Support files larger then 2 GB. Enabling this will require more runtime
resources.

C Library Alternatives | 119

• Enable support for the IPv6 and RPC network protocols in the uClibc library.

• Support wide characters, or WCHAR, which is needed by some third-party
software packages.

• Select whether to include software floating-point emulation in the toolchain.
Useful for targets with no FPU, and preferred over using Linux-kernel-based
emulation on these systems for performance reasons.

• Choose whether to install some useful target binaries (such as the debugger
agent) in the toolchain directory.

• Configure additional options related to the use of Buildroot to generate root
filesystems.

Package Selection for the target
As the name implies, this submenu allows one to ask Buildroot to fetch, build, and
package additional software packages for the target filesystem using the cross tool-
chain. Although this is a very useful option, it is of not interest to us at this time.
Unmark all the options in this menu. The next chapter discusses building the target
filesystem.

Target filesystem options
This submenu allows you to configure how Buildroot will package the root file-
system it builds. As explained in the previous entry, you should unmark all the
options in this submenu at this time.

Kernel
This submenu allows you to configure a Linux kernel version and configuration
file to be automatically fetched and built by Buildroot using the cross toolchain.
As before, leave all options unmarked at this time.

When finished, choose the < Exit > button and press Enter , then choose the < Yes >
button to save your configuration.

Next, run make to let Buildroot fetch, patch, configure, build, and install your new
uClibc-based cross toolchain:

$ make

This stage can take quite some time and requires a working Internet
connection.

The resulting toolchain will be installed in the $PRJROOT/tools/bin directory when the
build completes.

120 | Chapter 4: Development Tools

Figure 4-4. uClibc Buildroot toolchain menu

Customizing the uClibc configuration

The previous section used Buildroot to build a uClibc-based toolchain, using the default
uClibc options for our target architecture. These default options are very reasonable,
and it is recommended you stick with them, at least in your first attempt to build a
uClibc-based system.

Having said that, we recognize it is sometimes desirable to fine-tune and optimize cer-
tain options in the uClibc configuration itself. This can be done through Buildroot,
after it is configured using the procedure outlined in the previous section, by issuing
the following command:

$ make uclibc-menuconfig

You will be presented with the uClibc configuration menu, which includes the follow-
ing submenus and options:

• Target Architecture

• Target Architecture Features and Options

• General Library Settings

• Advanced Library Settings

• Networking Support

• String and Stdio Support

C Library Alternatives | 121

• Big and Tall

• Library Installation Options

• Security Options

• uClibc Development/Debugging Options

Note that many options in the uClibc configuration menu (such as the architecture
type and installation path) will already be set according to your previous choices in the
Buildroot configuration menu.

Let us now take a look at the options found in each configuration submenu. As men-
tioned earlier, you can use the ? key to obtain more information about each option
from the configuration system. Because some options depend on the settings of other
options, some of the options listed here may not be displayed in your configuration.
While most options are binary choices (either enabled or disabled), others are text
fields.

The Target Architecture option designates the target architecture for which uClibc will
be built. The Buildroot configuration menu we described earlier set this option already.

The Target Architecture Features and Options submenu includes the following
options:

Target Processor Type
Which model of the specific architecture to optimize for.

Target file format
Which executable file format to use. For targets using an MMU, the option is preset
to ELF. For non-MMU-based targets, a choice of binary file types is available. For
a discussion of the various formats and their relative weak and strong points, see
http://www.linuxdevices.com/articles/AT3186625227.html.

Target CPU has a memory management unit (MMU)
Specifies whether the specified target CPU has an MMU. If you chose a specific
target model in the Target Processor Type option, this field may be preset for you.

Do you want to utilize the MMU?
Even when hardware supports an MMU, you might want to conserve RAM and
CPU cycles by not using it.

Enable floating-point number support
This option allows you to omit all floating-point number support from uClibc.
This will cause floating-point functions such as strtod() to be omitted from uClibc.
Other floating-point functions, such as printf() and scanf(), will still be included
in the library, but will not contain support for floating-point numbers.

Target CPU has a floating-point unit (FPU)
If your target CPU does not have a floating-point unit (FPU) or a kernel FPU em-
ulator, but you still wish to support floating-point functions, uClibc can be

122 | Chapter 4: Development Tools

http://www.linuxdevices.com/articles/AT3186625227.html

compiled with soft floating-point support (using the -msoft-float option to the
GCC). Unsetting this option will turn this behavior on.

Enable full C99 math library support
If you want the uClibc math library to contain the full set of C99 math library
features, set this option. If you leave it unset, the math library will contain only the
math functions listed in the POSIX/IEEE 1003.1b-1993 standard, thus saving a
couple of tens of kilobytes from the library size, depending on your architecture.

Linux kernel header location
This field contains the kernel headers path and is preset by the Buildroot system.

The General Library Settings submenu includes the following options:

Generate position-independent code (PIC)
Build uClibc entirely as position-independent code, even the static parts (shared
library parts are always built as PIC code). This option is useful only if you want
to statically link uClibc inside a shared library, and is very rarely turned on.

Enable support for shared libraries
Unless you are building a static library only system, you should enable this option.

Only load shared libraries which can share their text segment
This option will prevent the shared library loader from loading shared libraries that
modify the program’s code section during the load in order to support relocations
(thus requiring additional memory for each user of the shared library). Such mod-
ifications normally take place when a shared library is been compiled without the -
fPIC or -fpic options, which enforce position-independent code.

Because building a shared library without position-independent code is rarely a
good idea, this option can trap build mistakes that would otherwise cause a need-
less waste of RAM.

Native ‘ldd’ support
Enables all the code needed to support the traditional ldd, which executes the
shared library loader to resolve all dependencies and then displays a list of shared
libraries that are required for an application to function. Disabling this option
makes uClibc’s shared library loader a little bit smaller, but makes debugging cer-
tain link problems harder.

Enable library loader cache (ld.so.conf)
Enable this to make use of /etc/ld.so.conf, the shared library loader cache configu-
ration file, to support nonstandard library paths, similar to the equivalent behavior
in glibc.

Enable library loader preload file (ld.so.preload)
Enable this to make use of /etc/ld.so.preload. This file contains a whitespace-
separated list of shared libraries to be loaded before the program. It also has an
equivalent in glibc.

C Library Alternatives | 123

Shared library loader naming prefix
Sets a custom prefix for all shared library loader files. Required only if you plan to
support glibc and uClibc on the same system, which should practically never hap-
pen in a production embedded system, so leaving the default is recommended.

Link ldconfig statically
Enable this option to statically link the ldconfig binary (thus making it a little bit
bigger), which is useful if you are trying to debug shared library linkage problems.
Otherwise, you might not be able to run the ldconfig tool, because it too is de-
pendent upon a shared library. If space requirements permit, you should enable
this option.

Enable ELF RUNPATH tag support
The ELF executable format supports a dynamic RPATH/RUNPATH tag that
allows it to dynamically override the default search path of shared libraries on an
executable-by-executable basis. Use of this feature is not very common, so disa-
bling support for it is a good way to lower the shared library’s loader size and the
load time of shared libraries.

Support global constructors and destructors
If you have no plan to use C++ or GNU extension constructor and destructor
attributes (using the __attribute__((constructor)) and __attribute__((destruc
tor)) syntax), you can leave out support for them entirely, making each executable
in the system a little smaller.

POSIX threading support
Enabling this option adds support for POSIX threads, which will increase the size
of uClibc as well as have a slight impact on runtime performance, because locking
primitives will be added to protect internal critical uClibc data structures. Enable
this option unless you never plan to make use of threads.

Build pthreads debugging support
Enabling this option will build the libthread_db shared library, which is necessary
to debug multithreaded applications. Unless you never plan to debug multithrea-
ded code on your target, you should enable this option.

GDB must also be built with uClibc to make multithreaded de-
bugging possible.

Use the older (stable) version of LinuxThreads
Currently, uClibc supports only the legacy (LinuxThreads) threading library,
although experimental support for NPTL is also available.

However, there are two versions of LinuxThreads supported by uClibc. The older
(stable) version has been in uClibc for quite a long time but hasn’t seen too many
updates other than bug fixes. The new version has not been tested much, and lacks

124 | Chapter 4: Development Tools

ports for architectures glibc does not support (such as Blackfin and FRV), but is
based on the latest code from glibc, so it may be the only choice for the newer ports
(such as Alpha, AMD64, and HPPA).

Large file support
Enabling this option allows uCLibc to support files larger then 2 GB, at the expense
of a bigger footprint.

Malloc implementation
This submenu allows a choice between three malloc() implementations, ranging
from a simplistic implementation suitable for systems with smaller RAM and
allocations up to a standard implementation equivalent to the one found in glibc.

Malloc returns live pointer for malloc(0)
This option controls the behavior of malloc() when asked to return an allocation
of zero size. Enable this option for full glibc compatibility.

Dynamic atexit() support
Controls whether to support multiple dynamic atext() callbacks. Required for
proper C++ support.

Old (visible) atexit support
An outdated option included for backward compatibility with older releases of
uClibc. Leave unset.

Enable SuSv3 LEGACY functions and enable SuSv3 LEGACY macros
Enable support for defunct functions and macros (bcopy, bzero, bcmp, index, and
rindex) that some software packages might still need.

Shadow password support
Enable support for keeping the user password in a shadow file, separate from the
master user database, for better security. This option is recommended.

Support for program_invocation_name and support for __progname
These options enable support for very rarely used aliases to the argv[0] argument
containing a program name. Some software packages (notably GNU tar and cor-
eutils) use these aliases to provide extra useful output. It is normally safe to leave
this option unset.

Supports only Unix 98 PTYs
Unsetting this option enables legacy support for non-Unix 98 PTYs. Unless you
are going to use older applications, it is safe to leave this set.

Assume that /dev/pts is a devpts or devfs filesystem
Enabling this option assumes that the devpts virtual filesystem is used to keep track
of pseudoterminal devices. This is normally true for modern Linux systems. But if
you choose this option, enable devpts support in the kernel configuration.

Various additional time related options
The last options in this menu control the handling of time and time zones in uClibc.
For full glibc compatibility and best performance, you should turn on all these
options.

C Library Alternatives | 125

The Advanced Library Settings submenu contains advanced options that allow expert
developers to tweak the sizes of various buffers used internally in uClibc.

The Networking Support submenu includes the following options:

IP version 6 support
Enables support for IPv6 in networking system calls.

Remote Procedure Call (RPC) support
Enables RPC support. Unless you plan to make use of NFS, it is safe to unset this
option.

Full RPC support
Full-featured RPC support. Not required for NFS. Unless you have a very specific
need for full RPC support, you can safely unset this option.

Reentrant RPC support
Provides reentrant versions of the RPC calls. Required for some programs (such as
exportfs).

Use netlink to query interfaces
Query network devices via the newer Netlink interface rather then the old ioctl
interface. Usually not recommended, as the newer Netlink interface requires a
larger footprint but can be turned on to resolve issues with newer network device
drivers that do not support the old interface.

Support res_close() (bsd-compat)
Turns on the BSD-compatible network API. Usually not required.

The String and Stdio Support submenu includes various options to tweak and configure
the behavior of functions related to strings and files. The major options are the follow-
ing:

Wide character support
Enables wide character support. This will make uClibc much larger. It is required
for locale support (the next option), so this option is recommended only if you
must support languages using characters greater than 8 bits in length.

Locale support
Turns on full ANSI/ISO C99 locale support (except for wcsftime() and collating
items in regular expressions).

Enabling this option will make uClibc much larger; used with the default set of
supported locales (169 UTF-8 locales and 144 locales for other codesets) will en-
large uClibc by around 300 KB. Use this only if internationalization support at the
system library level is a must.

Include the errno message text in the library, Include the signum message text in the library
Enable these options to display verbose error messages and signal descriptions at
the cost of about 3.5 KB in uClubc library size. These options alter the displays
shown by strerror() and strsignal(). Recommended for most systems.

126 | Chapter 4: Development Tools

Additional miscellaneous options and submenus allow you to change other, less critical
string and file handling in uClibc.

The Big and Tall submenu provides several options allowing you to drop rarely used
functionality from uClibc. As a general rule, the defaults are recommended.

The Library Installation Options submenu specifies several installation paths and pre-
fixes used by the uClibc installer. The Buildroot environment will have already chosen
the values of the options in this section; you shouldn’t change them.

The Security Options submenu provides options to turn on several security features,
allowing you to harden the uCLibc installation against security attacks at the cost of
runtime performance. It is safe to leave all these options unset.

The uClibc Development/Debugging Options submenu accesses some options that can
be useful when debugging uClibc and uClibc-based applications, such as debug sym-
bols for the library and runtime assertions in the uClibc library code for debugging
uClibc itself. You would not normally ship a finished product with these debug options
enabled, however.

After using the menus just described to adapt the uClibc configuration to your needs,
copy the .config file to toolchain/uClibc/uClibc.config or toolchain/uClibc/uClibc.config-
locale. The former is used if you haven’t selected locale support in the Buildroot con-
figuration, and the latter if you have selected it.

$ cp toolchain_build_arm/uClibc-0.9.29/.config toolchain/uClibc/uClibc.config

Now rebuild Buildroot:

$ make clean
$ make

Diet libc
The diet libc project was started and is maintained by Felix von Leitner. Its goals are
similar to uClibc. In contrast with uClibc, however, diet libc did not grow from previous
work on libraries but was written from scratch with an emphasis on minimizing size
and optimizing performance. Hence, diet libc compares quite favorably to glibc in terms
of footprint and speed. In comparison to uClibc, though, we have not noticed any
substantial difference.

Diet libc does not support all the processor architectures discussed in Chapter 3; it
supports the ARM, MIPS, x86, and PPC. Also, the authors of diet libc favor static linking
over dynamic linking. So, although diet libc can be used as a shared library on some
platforms, it is intended to be used as a static library.

One of the most important issues to keep in mind while evaluating diet libc is its li-
censing. In contrast to most other libraries, including uClibc, which are usually licensed
under the LGPL, diet libc is licensed under the terms of the GPL. As we explained in
Chapter 1, this means that by linking your code to diet libc, you make the resulting

C Library Alternatives | 127

binary a derived work and can distribute it only under the terms of the GPL. A com-
mercial license is available from the package’s main author if you wish to distribute
non-GPL code linked with diet libc.‖ If, however, you would prefer not to have to deal
with such licensing issues, you may want to use uClibc instead.

Diet libc is available for download both as a tar-bzip2’d archive or using CVS from the
project’s website at http://www.fefe.de/dietlibc/.# The package comes with an FAQ and
installation instructions. In the following examples, we will use version 0.21 of diet
libc, but the explanations should apply to other versions as well.

Library setup

As with uClibc, the first step to setting up diet libc is to download it into your
${PRJROOT}/build-tools directory. Here, too, you will build the library within the
package’s source directory and not in another directory, as was the case for the GNU
toolchain. No configuration is required for diet libc. Instead, you can proceed with the
build stage immediately.

Once the package is extracted, move into the diet libc directory for the setup:

$ cd ${PRJROOT}/build-tools/dietlibc-0.31

Before building the package for your target, build it for your host. This is necessary to
create the diet utility, which is required to build diet libc for the target and later to build
applications against diet libc:

$ make

In the setup used for this example, this command creates a bin-ppc directory containing
a PPC diet libc. You can now compile diet libc for your target:

$ make ARCH=i386 CROSS=i386-linux-

You will see even more warnings than with the other packages, but you can ignore
them. Here, you must tell the Makefile both the architecture for which diet libc is built
and the prefix of the cross-platform development tools.

With the package now built, you can install it:

$ make ARCH=i386 DESTDIR=${PREFIX}/dietlibc prefix="" install

This installs diet libc components in ${PREFIX}/dietlibc. Again, as when building the
package for your target, you must specify the architecture. Also specify the install des-
tination using the DESTDIR variable, and reset the Makefile’s internal prefix variable,
which is different from the capital PREFIX environment variable.

‖ It is not clear whether this license covers the contributions made to diet libc by developers other than the
main author.

Notice the final “/”. If you omit this slash, the web server will be unable to locate the web page.

128 | Chapter 4: Development Tools

http://www.fefe.de/dietlibc/

Diet libc has now been installed in the proper directory. There is, however, one cor-
rection you may need to make to the installation. Because the example shown here
installed the x86 version of diet libc, it also installed the x86 version of the diet utility
in ${PREFIX}/dietlibc/bin. Since we intend to compile our applications on the host, we
need to overwrite this with the native diet utility we built earlier:

$ cp bin-ppc/diet ${PREFIX}/dietlibc/bin

Usage

In order to use diet libc, you must first modify your system PATH variable, and then
make use of a special diet libc wrapper when making calls to the various build tools.

First, change your path to include the directory containing the diet libc binary:

$ export PATH=${PREFIX}/dietlibc/bin:${PATH}

Again, you will also want to change your development environment script. For exam-
ple, the path line in our develdaq script becomes:

export PATH=${PREFIX}/bin:${PREFIX}/dietlibc/bin:${PATH}

Notice that we assume you won’t be using both uClibc and diet libc at the same time.
Hence, the path line has only diet libc added. If you would like to have both diet libc
and uClibc on your system during development, you need to add both paths.

To compile the control daemon with diet libc, use the following command line:

$ make CROSS_COMPILE="diet i386-linux-"

Because diet libc is mainly a static library, this will result in a statically linked binary
by default and you don’t need to add LDFLAGS="-static" to the command line. Using
the same “Hello World!” program as earlier, we obtained a 24 KB binary when linked
with diet libc.

Java
Since Sun introduced it in 1995, Java has become one of the most important program-
ming languages around. Today, it is found in every category of computerized systems,
including embedded systems. Although still not as popular as C in the embedded pro-
gramming world, it is nonetheless turning up in an ever-increasing number of designs.

As Sun has released most of the source of Java under the GPL version 2 license, with a
clause excusing code using the Java runtime classes from the requirement to be licensed
under the GPL, the Sun Java reference implementation is now (mostly) a true open
source project. It can be downloaded and compiled like any other open source program,
making it the most natural candidate for a Java runtime for an embedded Linux system.

Having said that, before Sun elected to release Java under an open source license, several
other open source Java packages were created, and some of them were successfully
used in embedded Linux systems.

Java | 129

In this chapter, we will briefly review some of these options and provide pointers to the
various projects’ websites.

There also exist numerous commercial, proprietary Java VMs for Linux.
However, we will not cover them here.

Sun Java Micro Edition
Sun Java Micro Edition, also known as J2ME, is a subset of the Java platform that aims
to provide a certified collection of Java APIs for the development of software for em-
bedded and mobile devices, mostly mobile phones.

As of December 2006, the Sun reference specification of J2ME is available from Sun
under the GNU GPL, under the PhoneME moniker from the Mobile and Embedded
community web page on the Sun website at:

http://community.java.net/mobileandembedded

The source code for the latest releases and prebuilt binaries for Linux x86 and ARM-
platforms are available at https://phoneme.dev.java.net/downloads_page.html#feature.
A very detailed guide for building a current MR2 release of phoneME is available at
https://phoneme.dev.java.net/content/mr2/index_feature.html.

Because Sun PhoneME is the reference Java platform for mobile devices, it is most
compatible with the Java standard. However, it is not necessarily the one with the best
performance or smallest footprint. One can hope that, with its release under an open
source license, this might change in the future.

Non-Sun-Related Open Source Virtual Machines
Because Sun Java was released under an open source license only in late 2006, a number
of older projects exist that provide open source, fully functional JVMs without using
any of Sun’s source code. Since there isn’t any consensus on the feasibility of using any
of the various open source VMs as the main JVM in an embedded Linux project, we
will only mention the VMs briefly and will not provide any information regarding their
use. You are invited to look at each VM and follow the efforts of the individual teams.

The Kaffe Java Virtual Machine (http://www.kaffe.org) is based on KaffePro VM, a
product sold commercially by Transvirtual, Inc., and is a clean-room implementation
of the JVM.* Although no new releases of the project have been made since July 2000,
and although this VM is not 100 percent compatible with Sun’s VM (according to the
project’s website), it is still the main open source alternative to Sun’s VM.

* That is, it was written from scratch without using any of Sun’s Java source code.

130 | Chapter 4: Development Tools

http://community.java.net/mobileandembedded
https://phoneme.dev.java.net/downloads_page.html#feature
https://phoneme.dev.java.net/content/mr2/index_feature.html
http://www.kaffe.org

There are other projects that may eventually become more important, such as Japhar
(http://www.japhar.org), Kissme (http://kissme.sourceforge.net), Aegis (http://ae
gisvm.sourceforge.net), and Sable VM (http://www.sablevm.org). For a complete list of
open source VM projects, see the list provided by the Kaffe project at http://
www.kaffe.org/links.shtml.

See each project’s respective website and documentation for information on how to
install and operate the VM.

The GNU Java Compiler
As part of the GNU project, the GNU Compiler for the Java programming language
(GCJ) is an extension to GCC that can handle both Java source code and Java bytecode.
In particular, GCJ can compile either Java source code or Java bytecode into native
machine code. In addition, it can also compile Java source into Java bytecode. It is often
referred to as an ahead-of-time (AOT) compiler, because it can compile Java source
code directly into native code, in contrast with popular just-in-time (JIT) compilers
that convert Java bytecode into native code at runtime. GCJ does, nevertheless, include
a Java interpreter equivalent to the JDK’s java command.

GCJ is a fairly active project, and most core Java class libraries are already available as
part of the GCJ runtime libraries. Although most windowing components, such as
AWT, are still under development, the compiler and its runtime environment can al-
ready be used to compile and run most command-line applications.

As with other GNU projects, GCJ is fairly well documented. A good starting place is
the project’s website at http://gcc.gnu.org/java. In its documentation section, you will
find a compile HOWTO, a general FAQ, and instructions on how to debug Java ap-
plications with gdb. You should be able to use the compilation HOWTO in conjunction
with our earlier instructions regarding the GNU toolchain to build GCJ for your target.

Perl
Larry Wall introduced Perl in 1987, and it has since become a world of its own. If you
are interested in Perl, have a look at Programming Perl by Larry Wall, Tom Christiansen,
and Jon Orwant or Learning Perl by Randal Schwartz, Tom Phoenix, and brian d foy
(both O’Reilly). Briefly, Perl is an interpreted language whose compiler, tools, and
libraries are all available as open source under the terms of the Perl Artistic License and
the GNU GPL from the Comprehensive Perl Archive Network (CPAN) at http://
www.cpan.org. Because there is only one Perl toolset, you will not need to evaluate
different toolsets to figure out which one best suits your needs.

The main component you will need to run Perl programs on your target is a properly
compiled Perl interpreter. Unfortunately, at the time of this writing, Perl is not well

Perl | 131

http://www.japhar.org
http://kissme.sourceforge.net
http://aegisvm.sourceforge.net
http://aegisvm.sourceforge.net
http://www.sablevm.org
http://www.kaffe.org/links.shtml
http://www.kaffe.org/links.shtml
http://gcc.gnu.org/java
http://www.cpan.org
http://www.cpan.org

adapted to cross-compilation, and it is currently not possible to cross-compile a full
Perl package.

However, two build options for cross-compiling small versions of the full Perl package
do exist: microperl and miniperl. Note that both options are part of the same package,
available on CPAN, and you do not need to download any other package.

Microperl
Simon Cozens implemented the microperl build option, based on an idea by Ilya
Zakhareivh. It is the absolute bare minimum build of Perl, with no outside dependen-
cies other than ANSI C and the make utility. Unlike the other builds, microperl does
not require that you run the Configure script, which performs a great deal of tests on
the installation machine before generating the appropriate files for the package’s build.
Instead, microperl provides default configuration files with minimal settings that allow
the core Perl interpreter to build properly. None of the language’s core features is miss-
ing from this interpreter. Of course, it does not support all the features of the full
interpreter, but it is sufficient to run basic Perl applications. Because this code is con-
sidered “experimental,” for the moment you will need to evaluate most of microperl’s
capabilities on your own.

We have successfully built a microperl for our DAQ module using the toolchain set up
earlier, uClibc, and Perl 5.7.3. The resulting interpreter was able to adequately execute
all Perl programs that did not have any outside references. It failed, however, to run
programs that used any of the standard Perl modules.

To build microperl for your target, you must first download a Perl version from CPAN
and extract it into the ${PRJROOT}/sysapps directory. Place the package in the
sysapps directory, because it will run only on the target and will not be used to build
any of the other software packages for your target. After extracting the package, move
into its directory for the build (here, you cannot use a different build directory, as we
did for the GNU toolchain, because Perl does not support this build method):

$ cd ${PRJROOT}/sysapps/perl-5.10.0

Since microperl is a minimal build of Perl, you do not need to configure anything. Build
the package using the appropriate Makefile and instructing it to use the uClibc compiler
wrapper instead of the standard GCC compiler:

$ make -f Makefile.micro CC=i386-uclibc-gcc

This will generate a microperl binary in the package’s root directory. This binary does
not require any other Perl components and can be copied directly to the /bin directory
of your target’s root filesystem, ${PRJROOT}/rootfs.

When dynamically linked with either glibc or uClibc and stripped, the microperl binary
is about 1.5 MB in size.

132 | Chapter 4: Development Tools

For more information on how microperl is built, have a look at the Makefile.micro
Makefile and the uconfig.sh script. As work continues on microperl, it is expected that
more documentation will become available.

Miniperl
Miniperl is less minimalistic than microperl and provides most of what you would
expect from the standard Perl interpreter. The main component it lacks is the Dyna-
Loader XS module, which allows Perl subroutines to call C functions. It is therefore
incapable of loading XS modules dynamically. This is a minor issue, however, given
the type of system miniperl will be running on.

As with the main Perl build, miniperl requires that you run the Configure script to
determine the system’s capabilities. Since the system for which Perl must be built is
your target, the script requires you to specify information about how to communicate
with that target: a hostname, a remote username, and a target-mapped directory. The
script uses this information to run its tests on your target and generate the proper build
files.

The main caveat concerning this method is that it requires a direct network link between
the host and the target. In essence, if your target does not have some form of networking,
you will be unable to build miniperl for it.

The installation methodology for miniperl is explained well in the INSTALL file pro-
vided with the 5.10.0 Perl package, under the “Cross-compilation” heading.

Cross-Compiling the Impossible
As we’ve just seen with Perl, not all packages cross-compile easily. As a matter of fact,
a great number of packages have not been designed to allow cross-compilation. We’ve
mentioned a few of these, but certainly can’t list them all.

Besides trying to modify build scripts and using compilation tricks to force packages
to compile for another architecture, sometimes the only realistic solution is to actually
build the package on the target where it is supposed to run. At first, this may seem
unfeasible for most embedded systems because of their limited storage space. As we
shall see in Chapter 9, however, it is possible to mount a system’s root filesystem on a
server using NFS. By using an NFS-mounted root filesystem, the target can access as
much storage space as the server allows.

In such a setup, it is therefore possible to cross-compile the GCC compiler itself for the
target, and then use this compiler to natively compile any package directly on the target
in exactly the same way the package’s build scripts expect to operate. Once the package
has been compiled, the resulting binaries and libraries can thereafter be copied to a
small root filesystem tailored for the target’s internal storage device, and used in the
field like any other target application. Obviously, there is no need to package the cross-
compiled GCC with the rest of the system in the field.

Perl | 133

Python
Guido van Rossum introduced Python to the world in 1991. It has since gathered many
followers and, as with Perl, is a world of its own. If you are interested in Python, read
Mark Lutz’s Programming Python or his Learning Python (both O’Reilly). Python is
routinely compared to Perl, because it often serves the same purposes, but because this
is the subject of yet another “holy war,” we will not go any further. Instead, feel free to
browse the main Python website at http://www.python.org for more information. The
Python package, which includes the Python interpreter and the Python libraries, is
available from that website under the terms of a composite license called the Python
license, which is an approved open source license.

As with Perl, you will need a properly configured interpreter to run Python code on
your target. Although the main Python distribution does not support cross-
compilation, a patch by Christopher Lambacher that allows cross-compilation of Py-
thon 2.5 is available at http://whatschrisdoing.com/~lambacck/Python2.5_xcom
pile.patch. A blog post by Lambacher at http://whatschrisdoing.com/blog/2006/10/06/
howto-cross-compile-python-25 explains in detail how to get Python to cross-compile
with this patch.

Follow the instructions, substituting the appropriate names for your target in the place
of the arm-linux target used in the instructions. To follow the same project workspace
organization that we established earlier, download and extract the Python package into
the ${PRJROOT}/sysapps directory. Also, instead of building Python directly in its
source directory, you can use a build-python directory, as we did with the GNU tools,
because Python supports this build method. In addition, use the --prefix=${PREFIX}/
${TARGET}/usr option instead of the values provided by the HOWTO. All the Python
material will thereby be installed in the ${PREFIX}/${TARGET}/usr directory. You can
then customize this directory and copy it onto the target’s root filesystem.

There are a couple of observations to make about the resulting package. First, you will
not be able to build Python with diet libc; use either glibc or uClibc. This means that
glibc or uClibc will have to be on your target’s root filesystem. When storage space on
your target is limited, we recommend you use uClibc instead of glibc.

Second, Python has installed many libraries in the ${PREFIX}/${TARGET}/usr/lib/py
thon2.2 directory, and many of those are large. You may want to trim down the content
of this directory by deleting the components you are unlikely to use. By itself, the dy-
namically linked and stripped Python interpreter is 725 KB in size.

Nevertheless, Python’s size and dependencies have not stopped developers from using
it. A number of projects, including the OLPC’s entire “Sugar” environment, make heavy
use of Python. And a growing number of major Linux distributions are now even re-
quiring a minimal python interpreter in order to even boot normally.

Finally, you may see some warnings and failures during the build. This is because some
libraries and applications are missing from your target. The Tkinter interface to

134 | Chapter 4: Development Tools

http://www.python.org
http://whatschrisdoing.com/~lambacck/Python2.5_xcompile.patch
http://whatschrisdoing.com/~lambacck/Python2.5_xcompile.patch
http://whatschrisdoing.com/blog/2006/10/06/howto-cross-compile-python-25
http://whatschrisdoing.com/blog/2006/10/06/howto-cross-compile-python-25

libtk.a and libtcl.a will fail to build, for instance, unless you cross-compiled and installed
Tcl/Tk for your target. This doesn’t mean the Python build has failed. Rather, it is an
indication that one of the Python components has not built successfully. You will still
be able to install and use the Python interpreter and the modules that built properly on
your target.

Other Programming Languages
Linux, of course, supports many more programming languages. Whether you are look-
ing for programming in Ada, Forth, Lisp, or FORTRAN, a short search on the Net with
your favorite search engine should yield rapid results. A good starting point is the
“Other Languages” section in Chapter 13 of Running Linux by Matthias Dalheimer and
Matt Welsh (O’Reilly).

The cross-compiling and cross-development capabilities of the various language tools
will need to be evaluated on a tool-tool basis, since few compilers and interpreters lend
themselves well to cross-platform development.

Eclipse: An Integrated Development Environment
As we have seen in previous sections, the development tools for embedded Linux are
a collection of standalone command-line programs. It has long been the preference of
die-hard Unix and Linux developers to create software using a simple file editor and a
command-line shell to invoke the development tool. However, most embedded
software developers prefer to work in an IDE that provides a common graphical inter-
face to all the functions of the development tools.

The Eclipse project, which IBM originally created in November 2001, and which has
been an independent nonprofit corporation since 2004, provides an open development
platform comprised of extensible frameworks, tools, and runtimes for building, de-
ploying, and managing software. Its popularity, openness, and rich features make it an
excellent choice as an IDE for embedded Linux development. A typical display by
Eclipse appears in Figure 4-5.

Instead of a monolithic IDE, Eclipse provides a modular framework on which many
IDEs can be built by combining a common base and a plethora of plug-ins for various
functionalities, such as the CDT plug-in for C/C++ developers and the Remote System
Explorer for target management. You can read more about Eclipse on the project web-
site at http://www.eclipse.org.

Although several other IDEs exist for Linux, no other such tool enjoys the widespread
adoption of Eclipse, which is used by both commercial vendors (who base development
environments on Eclipse and provide many plug-ins and extensions) and the open
source community, which has extended Eclipse to support practically every need.

We will cover the installation, adaptation, and use of Eclipse in the following sections.

Other Programming Languages | 135

http://www.eclipse.org

Installing Eclipse
Eclipse is a Java application, which makes it cross-platform. However, that means you
need a Java runtime virtual machine (JVM) to run it. Most current Linux distributions
come with a preinstalled JVM called GCJ. Unfortunately, although Eclipse does run
on the GCJ, it is not one of the referenced JVMs on which it is regularly tested. We
therefore recommend that you first install a free JVM for Linux from the Sun Java
download website at http://www.java.com/en/download/manual.jsp.

The Sun Java JV can peacefully coexist with GCJ, so you should not
worry about trashing your current JVM installation.

After successfully installing the Sun JVM, proceed to download Eclipse from the project
download page at http://www.eclipse.org/downloads. You will want to download the
Eclipse IDE for C/C++ Developers edition, which integrates the basic common Eclipse
core with the CDT plug-in for C/C++ developers.

Figure 4-5. Typical Eclipse project workspace

136 | Chapter 4: Development Tools

http://www.java.com/en/download/manual.jsp
http://www.eclipse.org/downloads

After downloading the compressed tar archive, change into the directory to which you
wish to install Eclipse and decompress the tar archive.

You can install Eclipse in any location you wish, including your home
directory, but if you wish to share the Eclipse installation with others
using the same computer (such as a shared networked server), we rec-
ommend you open the archive in a location that is accessible to all users.
This may require you to uncompress the archive as the superuser.

$ cd $PRJROOT/tools
$ tar zxvf $PROJROOT/build-tools/eclipse-cpp-europa-fall2-linux-gtk-x86_64.tar.gz

Before you can run Eclipse, you need to configure the location of your alternative JVM.
To do so, find the text file named eclipse.ini in the $PRJROOT/tools/eclipse folder, and
make sure the following lines are present and point to the correct location where the
Sun JVM has been installed:

...
-vm
/usr/lib/jvm/java-6-sun/jre/bin/java
...

Do not try to put the path to the JVM in the same line as the -vm argu-
ment. The text must appear on two separate lines, as shown in the pre-
ceding excerpt.

Running Eclipse
Now you are ready to run Eclipse:

$ $PRJROOT/tools/eclipse/eclipse &

The first time you invoke it, you will be presented with a dialog box asking you to select
a workspace (Figure 4-6). An Eclipse workspace is the location where development
projects and Eclipse configuration information are saved. Either accept the default
workspace location of a directory named workspace in your home directory, or provide
an alternate location and click OK.

Eclipse: An Integrated Development Environment | 137

Figure 4-6. Eclipse Workspace Launcher

After Eclipse finishes loading, it presents you with a welcome screen.

Extending Eclipse
As we explained, Eclipse is a modular framework for building IDEs. Thus, apart from
the common core framework, most Eclipse-based IDE functionalities are provided by
plug-ins. Plug-ins allow Eclipse to support a wide range of languages, source control
systems, targets, debugging facilities, and more.

As we chose to install the Eclipse IDE for C/C++ Developers edition, one plug-in is
already installed in our new Eclipse installation: CDT, the C/C++ developer support
plug-in. In order to make Eclipse a more useful developer environment for embedded
Linux, we will add the the Target Management toolkit plug-in and the Subclipse Sub-
version source control integration plug-in.

You can find many more plug-ins (more than a thousand are listed at
the time of this writing) in the Eclipse Plugin Central website at http://
www.eclipseplugincentral.com.

Installing a plug-in

Eclipse contains a generic infrastructure for installing and updating plug-ins. Installa-
tion of practically all Eclipse plug-ins, therefore, follows the same procedure.

138 | Chapter 4: Development Tools

http://www.eclipseplugincentral.com
http://www.eclipseplugincentral.com

Figure 4-7. Eclipse Software Updates menu

Figure 4-8. Eclipse Install/Update dialog

Eclipse: An Integrated Development Environment | 139

First, locate the requested plug-in’s update site URL. This is a web URL (e.g., http://
download.eclipse.org/dsdp/tm/updates/2.0) that hosts a specific plug-in download and
future updates. The update site URL tells the Eclipse plug-in framework where to
download both the plug-in and future updates to it. The update site URL for a specific
plug-in version is usually published on the plug-in website.

Now configure the Eclipse plug-in framework to pull the plug-in from the update site
as follows:

1. From the Help menu, choose the Software Updates entry (Figure 4-7).

2. In the Install/Update dialog that appears, choose “Search for new features to in-
stall” and click Next (Figure 4-8).

3. In the Install dialog, click on the “New Remote Site…” button, which displays a
list of update sites (Figure 4-9).

4. Enter a descriptive name for the new update site (such as the plug-in name) and
the update site URL from the plug-in website. Click OK.

5. The new site will be added to the list of available update sites. Make sure the
checkbox next to the new site entry is marked and click Finish.

6. In the new Updates dialog that appears, check all the requested plug-ins from the
available list.

7. Click on the Select Required button to automatically add any additional plug-ins
that your chosen plug-ins depend upon.

Figure 4-9. Eclipse Install dialog with update sites

140 | Chapter 4: Development Tools

http://download.eclipse.org/dsdp/tm/updates/2.0
http://download.eclipse.org/dsdp/tm/updates/2.0

8. Click Finish.

The new plug-in will be now be installed.

Target Management toolkit

The Target Management project creates data models and frameworks to configure and
manage remote systems, their connections, and their services. It has been found useful
on all kinds of remote systems, from mainframes down to embedded devices. The base
toolkit includes a Remote Files subsystem, which allows you to work on remote
computers transparently, just as if you were on the local system. It also includes a shell
and processes subsystem, a lightweight terminal, and a Network Discovery framework.

You can read more about the Target Management project at the project website, http://
www.eclipse.org/dsdp/tm. An online tutorial for the Target Management toolkit is avail-
able at http://www.eclipse.org/dsdp/tm/tutorial.

You can find the update site URL for the latest version of the Target Management toolkit
on the project website and can install it using the procedure outlined earlier in “Instal-
ling a plug-in.”

Subclipse

Subclipse is an Eclipse Team Provider plug-in that provides support for Subversion
within the Eclipse IDE. You can read more about Subclipse at the project website,
http://subclipse.tigris.org. The update site for the latest version of the Subclipse plug-in
is available on the project website.

Working With Eclipse
Eclipse is a modern IDE supporting many types of languages and setups, and it is very
customizable. The following sections will walk you through the setup of a new em-
bedded software project.

Projects

Like many IDEs, Eclipse groups the development of related software in the context of
a project. To start a new project, choose “New entry” from the file menu, and you will
be presented with the New Project wizard dialog (Figure 4-10).

Choose a C (or C++) project and click on Next. You will be presented with the C Project
configuration dialog (Figure 4-11). Its options involve a choice between two basic ap-
proaches: letting Eclipse manage the project build (called a managed project) or man-
aging your own build system in the traditional fashion using your own Makefile.

In managed build projects, Eclipse automatically creates a set of Makefiles to build the
project based on project properties that you define (e.g., the toolchain to use) and the

Eclipse: An Integrated Development Environment | 141

http://www.eclipse.org/dsdp/tm
http://www.eclipse.org/dsdp/tm
http://www.eclipse.org/dsdp/tm/tutorial
http://subclipse.tigris.org

specific configuration (e.g., Debug versus Release). Eclipse builds the software by ex-
ecuting this automatically created Makefile.

Delegating the project build to Eclipse may seem very convenient, but it comes at a
price: henceforth, you will be tightly dependent on the Eclipse IDE to build your
project.

Indeed, such tasks as performing an automated nightly build may become much more
complicated, and optimizing your build process might become much more difficult, if
at all possible.

Consider carefully whether the time and effort saved by letting Eclipse create your
Makefiles automatically might cost you extra time and effort later on.

If you are like most embedded systems developers, you’ll prefer to have as much control
as you can over the build process of your projects. The best way to accomplish this is
to create your own custom Makefile. This also allows you to import software projects
that already have an existing build system. Finally, it frees you from depending on
Eclipse for building your project, which can come in handy under circumstances such
as implementing nightly builds.

Figure 4-10. Eclipse New Project wizard

142 | Chapter 4: Development Tools

If you wish to let Eclipse manage your project’s build process, you
must first tell Eclipse what kind of project you wish to create. The following are the
available options:

Executable
This project will produce an executable binary image.

Shared library
This project will produce a dynamically loaded, shared library whose code can be
shared between several processes at runtime.

Static library
This project will create a standard static code library, whose code is added to the
code of the executable that makes use of it at build time.

Managed build projects.

Figure 4-11. Eclipse C/C++ Project dialog

Eclipse: An Integrated Development Environment | 143

The same screen allows you to choose which toolchain you wish to work with. By
default, Eclipse offers just the Linux GCC toolchain, the native toolchain installed by
default on the host development machine. Choose this toolchain for now; we’ll edit
the configuration later to make use of our custom cross toolchain.

To continue, click on the Next button. You will be presented with the configuration
selection screen, which will let you define which configurations you wish to support.
By default, Eclipse offers the Debug and Release configurations.

By default, Eclipse will configure your project to use the native host toolchain. Since
you wish to use a cross toolchain, you need to make some changes to this default
configuration. Thus, in the same screen, choose the “Advanced settings…” button. In
the project properties screen that will open, choose the Settings entry from the C/C+
+ Build submenu and replace the command fields of both the “GCC C compiler” and
“GCC C linker” entries with the cross toolchain counterparts, such as arm-linux-gcc.
See Figure 4-12.

Figure 4-12. Eclipse Properties sheet

144 | Chapter 4: Development Tools

Eclipse Custom Toolchains
Tweaking the toolchain properties as described here is fine if you are installing only a
single instance of Eclipse. But if you plan to deploy Eclipse to a dozen developers or
more in an automated fashion, you might not find the process very scalable.

Instead of tweaking the setting for the Linux GNU toolchain by hand, you can create
an Eclipse plug-in that describes your custom toolchain and distribute it together with
Eclipse to your developers. This will make your toolchain show up in the toolchain list
in the C/C++ Project wizard menu alongside the default GNU toolchain, and is a much
more scalable option for large deployments.

This process is explained in an article on Dr. Dobb’s website, “Extending the Eclipse
CDT Managed Build System,” by Chris Recoskie and Leo Treggiari, available at http://
www.ddj.com/cpp/197002115.

To use your own Makefile, choose the “Hello World C++ Project” un-
der the “Makefile project” entry in the “C/C++ Project” wizard dialog and click on the
Finish button. Eclipse will create a template Makefile project for you with a single
C++ file and a Makefile that builds it. You can then customize the Makefile.

Development

From the point where your new project has been created, the rest of the development
cycle with Eclipse is no different from development with a native toolchain. Therefore,
instead of documenting it here, we refer you to the Eclipse CDT website, where various
Eclipse CDT functions and screens are documented: http://www.eclipse.org/cdt/.

Target management

One of the most convienient facilities Eclipse offers for embedded systems developers
is the Remote System Explorer (RSE) subsystem, which is part of the Target Manage-
ment toolkit plug-in we installed earlier. Features include:

Remote filesystems
Browse, upload, and download files on the target board and remote server using
SSH, FTP, or the dstore agent. dstore supports the seamless editing of remote files,
including remote searches and comparisons.

Remote shell access
Remote control of the target board.

Remote process control
View the remote board tasks and state (requires a dstore agent running on the
target).

Remote debugging
This is offered through CDT, GDB, and the GDBServer proxy.

Makefile projects.

Eclipse: An Integrated Development Environment | 145

http://www.ddj.com/cpp/197002115
http://www.ddj.com/cpp/197002115
http://www.eclipse.org/cdt/

To use all the features the RSE framework has to offer, you
must configure some remote machines or target boards to interact with. To do this,
open the Open Perspective submenu in the Window menu and choose Remote Systems
Prespective (Figure 4-13).

At the right of the screen, the Remote Systems list will open with a list of all previously
configured remote systems. To create a new connection, right-click in the Remote
Systems list window and choose New Connection. This displays a Remote System Type
wizard (Figure 4-14).

If autodiscovery via DNS-SD Service Discovery (previously known as Zeroconf) is
available, it will be automatically selected for you. Otherwise, you can manually con-
figure a new remote connection.

After a connection has been created, you can browse the resources it provides via the
Remote Systems view. Resources include remote files, remote shells, and views of
remote processes, if available. Not all types of connections provide all the functionality,
and some require the dstore agent to be running on the remote target.

In addition, once a connection has been defined in such a fashion, it will show up in
the list of available connections in the C/C++ Remote Application menu in both the

Defining remote connections.

Figure 4-13. Eclipse Remote System Explorer browser

146 | Chapter 4: Development Tools

Run and Debug menus, allowing you to run and debug your application remotely on
the target board.

For further discussion of debugging with Eclipse, see “Eclipse” in Chapter 11.

Terminal Emulators
The most common way to communicate with an embedded system is to use a terminal
emulation program on the host and communicate through an RS232 serial port with
the target. Although there are a few terminal emulation programs available for Linux,
not every one is fit for all uses. In the past, there have been well-know problems between
minicom and U-Boot, for instance, during file transfers over the serial port. Hence, we
recommend that you try more than one terminal application to communicate with your
target. If nothing else, you are likely to discover one that best fits your personal

Figure 4-14. Eclipse Remote System Type wizard

Terminal Emulators | 147

preferences. Also, see your bootloader’s documentation for any warnings regarding
terminal emulators.

Three main terminal emulators are available in Linux: minicom, cu, and kermit. The
following sections cover the setup and configuration of these tools, but not their uses.
Refer to each package’s documentation for its use.

Accessing the Serial Port
Before you can use any terminal emulator, you must ensure that you have the appro-
priate access rights to use the serial port on your host. In particular, you need read and
write access to the serial port device, which is /dev/ttyS0 for permanently connected
physical ports and /dev/ttyUSB0 for ports attached via USB. If you do not have these
rights, any terminal emulator you use will complain at startup.†

To give your user account permission to access the serial port, add your username to
the group of users with serial port access. The name of this group changes from one
Linux distribution to another, so the easiest way to find it is to check the ownership on
the serial port device file using the ls command:

$ ls -al /dev/ttyS0
crw------- 1 root tty 4, 64 May 5 1998 /dev/ttyS0

In this example, the /dev/ttyS0 serial port device file is owned by the root user and the
group named tty (the fourth field from the left). So, you will need to add your username
to this group.

In addition, some terminal emulation applications also require your user to have access
to the /var/lock directory, for the purpose of creating a lock file, to protect the serial
port from concurrent use. Although the use of lock files for this purpose is outdated,
some programs still make use of it for backward compatibility. For this reason, you
also need to check which group has access to the /var/lock file and add your user to that
group as well.

In similar fashion to our check with the serial port device file, you can examine the
permission on the /var/lock directory using the following command:

$ ls -ld /var/lock
drwxrwxr-x 5 root uucp 1024 Oct 2 17:14 /var/lock

As you can see in this example, the required group is called uucp.

You will need, therefore, to add your user to both the tty and the uucp groups. The
easiest way to add a user to a group is to use the appropriate graphical user interface
tool provided by your distribution. The following are a couple of popular distributions
that currently offer the commands described here:

† The actual changes required for your distribution may differ from those discussed in this section. Refer to
your distribution’s documentation in case of doubt.

148 | Chapter 4: Development Tools

Red Hat and Fedora
Systems based on these distributions can use the redhat-config-users tool:

$ redhat-config-users

Ubuntu
These distributions can use the users-admin tool with the gksu wrapper:

$ gksu users-admin

In addition, you can add a user to a group by editing the /etc/group file using the vigr
command. The command is tailored for editing that file and sets locks to ensure that
only one user is accessing the file at any time. Because the command requires superuser
access, you usually invoke it as follows:

Red Hat Enterprise Linux, Fedora, OpenSuSE, SLES, and Debian
Use the following command sequence:

$ su
Password:
vigr

Ubuntu
Use the following alternate syntax:

$ sudo vigr

Once in vigr, locate the line that starts with the group name (such as tty) and add your
username:

...
tty:x:5:karim
uucp:x:14:uucp,karim
...

See the vigr manpage for more information.

Finally, log out from superuser mode and from your own account, and log back into
your account:

exit
$ id
uid=501(karim) gid=501(karim) groups=501(karim)
$ exit

Teotihuacan login: karim
Password:
$ id
uid=501(karim) gid=501(karim) groups=501(karim),5(tty),14(uucp)

As you can see, you need to log out and then log back in for the changes to take effect.
Opening a new terminal window in your GUI may have similar effects, depending on
the GUI you are using and the way it starts new terminal windows. Even if it works,
however, only the new terminal window will be part of the appropriate groups, but any

Terminal Emulators | 149

other window opened before the changes will still be excluded. For this reason, it is
preferable to exit your GUI, completely log out, and then log back in.

For more information on the setup of the serial interface, have a look at the Serial
HOWTO available from the Linux Documentation Project and Chapter 3 of the Linux
Network Administrator’s Guide by Tony Bautts et al. (O’Reilly).

Eclipse Terminal
If you followed the instructions on the installation and configuration of the Eclipse IDE
provided earlier in this chapter, a simple terminal is already installed as part of the
Target Management toolkit plug-in. To use it, choose Show View from the Window
menu and then choose the Terminal view.

A new terminal tab will open at the bottom of the screen and allow you to connect to
any remote system via the Telnet protocol, the SSH protocol, or an RS232 serial con-
nection. To connect to a remote system, simply choose the Connect button at the top
of the tab.

The Telnet and SSH protocols do not require any additional installation. But to use a
serial connection, a free third-party Java library called RXTX needs to be downloaded
and installed.

The RXTX library is available at ftp://ftp.qbang.org/pub/rxtx/rxtx-2.1.-7-bins.zip. Install
it as follows, replacing the string x86_64-unknown-linux-gnu in the example with the
appropriate directory on your host system:

$ wget ftp://ftp.qbang.org/pub/rxtx/rxtx-2.1-7-bins.zip
$ cd rxtx-2.1-7-bins/
$ cp RXTXcomm.jar /usr/lib/jvm/java-6-sun/jre/lib/ext/
$ cp Linux/x86_64-unknown-linux-gnu/librxtxSerial.so /usr/lib/

Minicom
Minicom is the most commonly used terminal emulator for Linux. Most documenta-
tion about embedded Linux assumes that you are using minicom. However, as we said
earlier, there are known file transfer problems between minicom and at least one boot-
loader, so it may not be right for you.

Minicom is a GPL clone of the Telix DOS program and provides ANSI and VT102
terminals. Its project website is currently located at http://alioth.debian.org/projects/
minicom. Minicom is also likely to be available through your distribution’s software
package management tool. To install it, use yum install minicom if you are using a
distribution based on Red Hat or SUSE, and apt-get install minicom for a distribution
based on Debian or Ubuntu.

Use the minicom command to start it:

$ minicom

150 | Chapter 4: Development Tools

ftp://ftp.qbang.org/pub/rxtx/rxtx-2.1.-7-bins.zip
http://alioth.debian.org/projects/minicom
http://alioth.debian.org/projects/minicom

The utility starts in full-screen mode and displays the following at the top of the screen:

Welcome to minicom 1.83.0

OPTIONS: History Buffer, F-key Macros, Search History Buffer, I18n
Compiled on Mar 7 2000, 06:12:31.

Press CTRL-A Z for help on special keys

To enter commands to Minicom, press Ctrl-A and then the letter of the desired func-
tion. As Minicom’s welcome message states, use Ctrl-A Z to get help from Minicom.
Refer to the package’s manpage for more details about its use.

UUCP cu
Unix to Unix CoPy (UUCP) used to be one of the most popular ways to link Unix
systems. Though UUCP is rarely used today, the cu command in the UUCP package
can be used to “call up” other systems. The connection used to communicate to the
other system can take many forms. In our case, we are mostly interested in establishing
a terminal connection over a serial line to our target.

To this end, we must add the appropriate entries to the configuration files used by
UUCP. In particular, this means adding a port entry in /etc/uucp/port and a remote
system definition to /etc/uucp/sys. As the UUCP info page states, “a port is a particular
hardware connection on your computer,” whereas a system definition describes the
system to connect to and the port used to connect to it.

Although UUCP is available from the GNU FTP site under the terms of the GPL, it is
usually already installed on your system. On a system based on Red Hat or Fedora,
enter rpm -q uucp to verify that it is installed.

Here is an example /etc/uucp/port file:

/etc/uucp/port - UUCP ports
/dev/ttyS0
port ttyS0 # Port name
type direct # Direct connection to other system
device /dev/ttyS0 # Port device node
hardflow false # No hardware flow control
speed 115200 # Line speed

This entry states that there is a port called ttyS0 that uses direct 115200 bps connections
without hardware flow control to connect to remote systems through /dev/ttyS0. The
name of the port in this case, ttyS0, is used only to identify this port definition for the
rest of UUCP utilities and configuration files. If you’ve used UUCP before to connect
using a traditional modem, you will notice that this entry resembles modem definitions.
Unlike modem definitions, however, there is no need to provide a carrier field to
specify whether a carrier should be expected. Setting the connection type to direct
makes carrier default to false.

Here is an example /etc/uucp/sys file that complements the /etc/uucp/port file just shown:

Terminal Emulators | 151

/etc/uucp/sys - name UUCP neighbors
system: target
system target # Remote system name
port ttyS0 # Port name
time any # Access is possible at any time

Basically, this definition states that the system called target can be called up at any
time, using port ttyS0.

With those files in place, you can use cu to connect to the target:

$ cu target
Connected.

Once in a cu session, you can issue instructions using the ~ character, followed by
another character specifying the actual command. For a complete list of commands,
use ~?.

For more information on configuring and customizing UUCP for your system, look at
Chapter 16 of the Linux Network Administrator’s Guide, the UUCP HOWTO available
from the Linux Documentation Project (LDP), and the UUCP info page.

C-Kermit
C-Kermit is one of the packages maintained as part of Columbia University’s Kermit
project (http://www.columbia.edu/kermit). C-Kermit provides a unified interface for
network operations across a wide range of platforms. Although it features many capa-
bilities, terminal emulation is the one we are most interested in.

Though you are free to download it for personal and internal use, C-Kermit is not open
source software and its licensing makes it difficult for use in commercial distribu-
tions.‡ C-Kermit is available for download at http://www.columbia.edu/kermit/cker
mit.html. Follow the documentation in the ckuins.txt file included with the package to
compile and install C-Kermit. In contrast with most other tools we discuss in this book,
C-Kermit should be installed system-wide, not locally to your project workspace. Once
installed, C-Kermit is started using the kermit command.

In terms of usability, kermit compares quite favorably to both Minicom and UUCP.
Although it lacks the menus provided by Minicom, kermit’s interactive command lan-
guage provides a very intuitive and powerful way of interacting with the terminal em-
ulator. When you initiate a file transfer from the target’s bootloader, for example, the
bootloader starts waiting for the file. You can then switch to kermit’s interactive com-
mand line on the host using Ctrl-\ C and send the actual file using the send command.

Among other things, the interactive command line provides tab filename completion
similar to that provided by most shells in Linux. Also, the interactive command line is

‡ Although the license was changed lately to simplify inclusion in commercial distributions such as Red Hat,
C-Kermit has yet to be included in most mainstream distributions.

152 | Chapter 4: Development Tools

http://www.columbia.edu/kermit
http://www.columbia.edu/kermit/ckermit.html
http://www.columbia.edu/kermit/ckermit.html

capable of recognizing commands using the shortest unique character string that is part
of a command name. The set receive command, for example, can be shortened to set rec.

To use the kermit command, you must have a .kermrc configuration file in your home
directory. kermit runs this file at startup. Here is an example .kermrc file that one author
uses on his workstation:

; Line properties
set modem type none ; Direct connection
set line /dev/ttyS0 ; Device file
set speed 115200 ; Line speed
set carrier-watch off ; No carrier expected
set handshake none ; No handshaking
set flow-control none ; No flow control

; Communication properties
robust ; Most robust transfer settings macro
set receive packet-length 1000 ; Max pack len remote system should use
set send packet-length 1000 ; Max pack len local system should use
set window 10 ; Nbr of packets to send until ack

; File transfer properties
set file type binary ; All files transferred are binary
set file names literal ; Don't modify filenames during xfers

For more information about each of the settings, try the help command provided by
kermit’s interactive command line. For more information regarding the robust macro,
for example, enter help robust. In this case, robust must be used before set receive,
because robust sets the maximum packet length to be used by the remote system to 90
bytes, whereas we want it set to 1,000 bytes.

After creating your configuration file, you can start kermit:

$ kermit -c
Connecting to /dev/ttyS0, speed 115200
 Escape character: Ctrl-\ (ASCII 28, FS): enabled
Type the escape character followed by C to get back,
or followed by ? to see other options.
--

If you are looking for more information about the use of C-Kermit and intend to use it
more extensively, think about purchasing Using C-Kermit by Frank Da Cruz and Chris-
tine Gianone (Digital Press). Apart from providing information regarding the use of C-
Kermit, sales of the book help fund the project. Although the book covers version 6.0,
supplements for versions 7.0 and 8.0 are freely available on the project’s website.

Terminal Emulators | 153

The kernel is the most fundamental software component of all Linux systems. It is
responsible for managing the bare hardware within your chosen target system and
bringing order to what would otherwise be a chaotic struggle between each of the many
various software components on a typical system.

In essence, this means the kernel is a resource broker. It takes care of scheduling use
of (and mediating access to) the available hardware resources within a particular Linux
system. Resources managed by the kernel include system processor time given to pro-
grams, use of available RAM, and indirect access to a multitude of hardware devices—
including those custom to your chosen target. The kernel provides a variety of software
abstractions through which application programs can request access to system resour-
ces, without communicating with the hardware directly.

The precise capabilities provided by any particular build of the Linux kernel are con-
figurable when that kernel is built. Kernel configuration allows you to remove support
for unnecessary or obscure capabilities that will never be used. For example, it is pos-
sible to remove support for the many different networked filesystems from an embed-
ded device that has no networking support. Conversely, it is possible to add support
for a particular peripheral device unique to a chosen target system. Depending on their
function, many capabilities can also be built into optional, runtime-loadable, modular
components. These can be loaded later when the particular capability is required.

Most desktop or enterprise Linux vendors ship prebuilt Linux kernels as part of their
distributions. Such kernels include support for the wide range of generic hardware
devices typically available within modern consumer-grade or enterprise-level comput-
ing systems. Many of these capabilities are built into runtime-loadable modules, which
are demand loaded by a variety of automated tools as hardware devices are detected.
This one-size-fits-all approach allows Linux vendors to support a wide range of target
systems with a single prebuilt binary kernel package, at the cost of a certain amount of
generalization and the occasional performance impact that goes alongside it.

CHAPTER 5

Kernel Considerations

155

Unlike their desktop, server, or enterprise counterparts, embedded Linux systems usu-
ally do not make use of such all-encompassing prebuilt, vendor-supplied kernels. The
reasons for this are varied, but include an inability for generic kernels to handle certain
embedded, target-specific customizations, as well as a general underlying desire to keep
the kernel configuration as simple as possible. A simpler configuration is both easier
to debug and typically requires a reduced resource footprint when compared with its
more generic counterpart. Building an embedded system from scratch is tough enough
already without worrying about the many kernel capabilities you will never use.

This chapter will cover some of the many considerations you will face when choosing
a suitable Linux kernel for your target embedded system. Our discussion will include
issues surrounding Linux kernel configuration, compilation, and installation as it per-
tains to such embedded use. We will not discuss using the Linux kernel in typical user
systems at any considerable length. If you are interested in learning more about doing
the latter, have a look at Running Linux by Matthias Dalheimer and Matt Welsh and
Linux Kernel in a Nutshell by Greg Kroah-Hartman (both from O’Reilly).

Selecting a Kernel
As you begin to work more with Linux, you will quickly discover that more than one
kernel is available to you. The “official” (also known as the “upstream” or “mainline”)
Linux kernel is always available for download at http://www.kernel.org/. There are sev-
eral releases of the upstream kernel available for download. Those beginning 2.6.x or
2.6.x.y are the latest series at the time of this writing, and they are generally intended
to be used in new Linux system deployments. An older 2.4 series is still in use in many
devices and is occasionally updated with maintenance releases, but all new develop-
ment should happen with the 2.6 kernel.

The kernel available from kernel.org is blessed by Linux creator Linus Torvalds, and a
diverse assortment of volunteers spread across the globe are actively developing it. This
is known as upstream development, and those working directly on the upstream Linux
kernel are motivated by extending the state of the art. For a number of practical reasons,
upstream kernel developers are likely to show more interest in issues related to using
Linux on desktop and server class hardware with Intel or AMD x86 (i686) and x86_64
processors rather than on embedded devices, which few upstream developers have
access to. But embedded developers are not ignored.

Where you get your Linux kernel from is largely determined by the architecture of your
chosen target. Of course, this chapter will not address vendor-specific issues, but should
you be using a vendor-supplied kernel in place of the official release, then you will want
to contact your vendor for support. The kernel development community cannot be
expected to know what additional features (patches) were added to the kernel supplied
by another party.

156 | Chapter 5: Kernel Considerations

http://www.kernel.org/

Embedded Linux Kernels
Development of the Linux kernel for embedded devices tends to be split according to
the processor architecture involved. For example, Russell King leads a group of
developers who actively port Linux to ARM-based devices (via the http://www.arm.li
nux.org.uk/ website). The ARM developers base their work on the upstream Linux
kernel as published by Linus Torvalds and develop ARM-specific patches for it. These
source code patches enable new hardware support, fix existing bugs affecting the ARM
architecture in the upstream kernel, and do many other things besides. From time to
time, these patches are pushed back upstream; that is, Russell will ask Linus to merge
his changes into the official kernel. The process is automated using the git SCM tool
Linus wrote for just this purpose.

Historically, Linux kernel development for embedded devices was much more frag-
mented than it is today, and those who read the previous edition of this book will have
seen this firsthand. Many embedded Linux developers often maintained their own en-
tirely separate kernel source trees, only occasionally sending patches upstream to Linus
or one of the other key kernel developers for inclusion in an arbitrary future release of
the mainline kernel. The situation was so precarious that there were periods during 2.4
Linux kernel development when the official kernel wouldn’t even boot on a wide variety
of target platforms it allegedly supported. In fact, necessary support was typically in
place, but the fixes required to make it work were not always correctly synchronized
into the official Linux kernel.

During the development of the 2.6 series Linux kernel, various key failings of the 2.4
development process were identified and measures were put in place to address them.
Of course, there are still a number of different groups within the wider Linux kernel
development community maintaining their own patches to the official kernel, but these
days the process for getting these fixes upstream and into the mainline kernel is much
better defined. You will benefit directly from this enhanced development process be-
cause you will be able to track the official Linux kernel much more closely in your own
embedded development. Today, you can (and typically should) simply use the official
Linux kernel as much as possible in order to benefit from the collective strength of the
entire kernel community.

Your first point of call when building a Linux kernel for your chosen target will be the
website of the person (or group) that maintains the kernel on your chosen architecture
—for example, Russell’s ARM Linux website or Paul Mackerras’s PowerPC Linux
website. A list of such resources was given in Chapter 3. Even though you may not
require any special version of the kernel, it pays to know who is responsible for the
ongoing development of support for your architecture of choice and where to go for
those architecture-specific issues that are bound to arise sooner or later. At the very
least, you will want to join whatever developer mailing list is available to you.

Selecting a Kernel | 157

http://www.arm.linux.org.uk/
http://www.arm.linux.org.uk/

2.4 Series Kernels
The 2.4 series Linux kernel is arguably no longer relevant for new embedded designs,
as it has long since been replaced by the more recent (and much improved) 2.6 series.
Although the 2.6 series kernel is known mostly for its improvements in the area of
scalability—improvements aimed at large servers—it also adds a rich set of configura-
ble options for resource-constrained embedded devices. Despite the many advantages
of using a 2.6 kernel, it has taken much longer to reach a point where embedded
developers are comfortable using the 2.6 kernel than might have reasonably been ex-
pected. This was largely due to the time required to bring third-party kernel source
trees and drivers up-to-date.

At this point, you are extremely unlikely to begin a new project with the 2.4 Linux
kernel. In fact, you are discouraged from doing so due to the declining support for the
older kernel, coupled with the fact that ongoing development work exclusively involves
the newer 2.6 series kernel. This means that fixes for subtle bugs—for example, a
hardware vendor supplied workaround addressing an issue affecting a specific System
on Chip (SoC)—are much more likely to be available for a 2.6 kernel than the older
series. For this and other reasons, this chapter will not dwell on 2.4 kernel considera-
tions. If you need to use a 2.4 kernel, you may wish to consult the previous edition of
this book.

The 2.6 Series Linux Kernel
The mainstream, or official, 2.6 series Linux kernel is generally available from the
kernel.org website. There are two ways in which you will usually obtain source code
for this kernel:

• As a tarball, or archive, from which you can unpack a specific release of the kernel.
These releases are self-contained and released whenever Linus Torvalds deems the
current stage of development fit for release. For example, you might obtain the
2.6.20 release of the kernel in a file named linux-2.6.20.tar.bz2.

• Using the git kernel Software Configuration Management (SCM) tool to track day-
to-day development, as well as official releases of the kernel. You can also visualize
changes to the kernel using a variety of git add-on tools, such as the gtik graphical
changeset tracking tool that allows you to visually track daily kernel development.

158 | Chapter 5: Kernel Considerations

An official release of the kernel is generally preferred to a development snapshot when
it comes to new embedded device designs, although you are also encouraged to track
ongoing development and join the various community mailing lists in order to be aware
of any changes that might later affect your work. The general goal of any Linux kernel
developer is to have his modifications feed back into a later release of the official kernel
so that they are immediately available to future projects or later updates to the current
project.* Traditionally, embedded developers have chosen one specific release of the
Linux kernel and stuck with it throughout the lifetime (or at least initial release) of their
product. This is fine if you don’t make any modifications to the kernel for your em-
bedded project. However, if you find that you need to develop Linux kernel code for
yourself, you are advised to track ongoing development in order to ensure that your
modifications continue to work. This will prevent lengthy refactoring of existing code
when you later decide to rebase to a newer version of the kernel.

Using a stable release tarball

Stable Linux kernel releases tend to happen roughly every 1–2 months, following pha-
ses of active development and prerelease stabilization of new features and other
additions. Tarballs, or source archives, are made available on the kernel.org website.
For example, following the 2.6.20 release, the front page of the website contained a
link to this particular release, along with various changelog information and other re-
lated resources. You can always download the current release of the Linux kernel—
just follow the links on the main kernel.org webpage.

Unpacking the kernel is as easy as unpacking any other source archive. Using regular
GNU tar commands, you can extract the source tree, which will be in the form of either
a conventional .gz tarball or a slightly more heavily compressed .bz2 tarball. The
appropriate extraction command will vary depending upon the type of archive. To
extract a regular .gz tarball archive of the 2.6.20 kernel, you would run the following
command:

tar xvfz linux-2.6.20.tar.gz

Whereas, for a bz2-compressed kernel, the command changes to:

tar xvfj linux-2.6.20.tar.bz2

This instructs GNU tar to extract the given file in a verbose mode. You can find out
more about the available options for the tar command by referring to any standard
Linux administration reference or by reading the tar man or info page. Once the kernel
sources are unpacked, they are ready for configuration and compilation using the proc-
ess described in the following sections.

* There really is little commercial advantage to be gained from keeping your fixes, device drivers, and other
kernel code out of the official Linux kernel, especially as the GPL places a variety of legal obligations upon
you to distribute such source modifications along with your embedded product. However, it does appear to
be a common practice that certain patches are withheld until a product is released, for reasons of
confidentiality. If this is your plan, try to get these patches into the official kernel at the earliest opportunity.

Selecting a Kernel | 159

Tracking development with git

Day-to-day development of the Linux kernel is supported through extensive use of
Linus Torvald’s git SCM tool. git, the “stupid content tracker,” was written by Torvalds
in response to a sudden need to replace a proprietary version control system that had
previously been in use for some time. It works by tracking changesets—related groups
of changes to the kernel—rather than changes (patches) to individual source files. In
this way, it is possible to see modifications in terms of their collective impact upon the
kernel, rather than by wading through many patches. A variety of third-party tools,
such as gitk, can be used to provide a visual representation of the changing state of a
git repository. You can obtain a copy of git from your Linux distribution, or at http://
www.kernel.org/.

You can download a private copy of the kernel git repository using the clone command:

git clone git://git.kernel.org/pub/scm/linux/git/torvalds/linux-2.6.git linus_26

This clones, or copies, the upstream Linux kernel repository (which Linus Torvalds
maintains on the kernel.org site) and creates a local directory, in this case called li-
nus_26, that reflects the current state of the art. The upstream kernel repository is
frequently changing due to the many thousands of changesets that can make it into the
kernel from one release to the next. If you’re serious about tracking the Linux kernel,
you will want to get into a daily habit of updating your local copy of Linus’s repository.
You can do this using the following command, from within the local repository:

 git pull

Many more commands exist, along with a number of documents describing the kernel
development process and how it involves git. You can find out more about git or
download a copy (if your Linux distribution does not include it, or you are running
another operating system for which git has been ported) at http://git.or.cz/.

Third-party kernel trees and patches

Rather than using the kernel available from the kernel.org website, you may also choose
to use a third-party-supplied 2.6 kernel. This will typically be the case whenever you
elect to use a specific embedded Linux distribution. Although these kernels are based
on the upstream 2.6 Linux kernel, they are typically patched with a variety of additional
features, bug fixes, and other modifications deemed useful by the vendor. Therefore,
you should not place too much stock in the version of the kernel they claim to provide
—you might think you have a 2.6.20 kernel, but in fact it may differ widely from the
2.6.20 kernel available from the kernel.org website. In any case, you should contact
your vendor for support in the first instance; the kernel community, in general, does
not support vendor kernels.

You may also want to try some of the various patches made available by some devel-
opers. Extra kernel functionality is often available as an independent patch before it is
integrated into the mainstream kernel. Robert Love’s kernel preemption patch, for

160 | Chapter 5: Kernel Considerations

http://www.kernel.org/
http://www.kernel.org/
http://git.or.cz/

instance, was maintained as a separate patch before Linus integrated it into the 2.5
development series. We will discuss a few kernel patches in Chapter 11. Have a look
at Running Linux if you are not familiar with patches.

Configuring the Kernel
Configuration is the initial step in the build of a kernel for your target. There are many
ways to configure the Linux kernel, and there are many options from which to choose.
Regardless of the configuration method you use or the actual configuration options
you choose, the kernel will generate a .config file at the end of the configuration and
will generate a number of symbolic links and file headers that will be used by the rest
of the build process.

We will limit our discussion to issues specifically affecting embedded systems. For
general advice on kernel configuration and compilation, consult one of the previously
mentioned texts on Linux kernel development or the documentation supplied inside
the Linux kernel source tree itself; see the Documentation subdirectory.

Linux Kernel in a Nutshell (published by O’Reilly and also available online at http://
www.kroah.com/lkn) provides a brief but thorough guide to configuring and building
a kernel, along with explanations of some of the most popular configuration options.
(It is not specially addressed to embedded systems developers, though.)

Configuration Options
It is during configuration that you will be able to select the options you want to see
included in the kernel. Depending on your target, the option menus available will
change, as will their content. Some options, however, will be available no matter which
embedded architecture you choose. The following is a list of the main menu options
available to all embedded Linux architectures:

• Code maturity level options

• General setup

• Loadable module support

• Block layer

• Networking

• Device drivers

• Filesystems

• Kernel hacking

• Security options

• Cryptographic options

• Library routines

Configuring the Kernel | 161

http://www.kroah.com/lkn
http://www.kroah.com/lkn

This section will not cover each option individually, as the kernel configuration menu
provides context-sensitive help that you can refer to as you perform the configuration.
Many of the options are self-explanatory—for example, which device drivers will be
built—while others are less obvious. For instance, the kernel can include a variety of
strong security options as part of the SELinux stack implemented by the U.S. Nation-
al Security Agency (NSA). Many of these options will make less sense to you if you are
not familiar with the design of SELinux. This isn’t a huge problem, however, since only
a few embedded devices choose to make use of the extensive SELinux functionality in
Linux.

One of the most important option menus is the one in which you choose the exact
instance of the processor architecture that best fits your target. The name of this menu
varies according to your architecture. Table 5-1 provides the system and processor
selection option menu name, along with the correct kernel architecture name for several
of the common architectures. When issuing make commands, you need to set the
ARCH variable to the architecture name recognized by the kernel Makefiles.

Table 5-1. System and processor selection option and kernel architecture name according to processor
architecture

Processor architecture System and processor selection option Kernel architecture name

x86 Processor type and features i386

ARM System Type arm

PPC Platform support powerpc (or ppc for older targets)

MIPS Machine selection/CPU selection mips

SH System type sh

M68k Platform-dependent support or processor type and features m68k or m68knommu

AVR32 System Type and features avr32

When browsing through the kernel configuration options for your target, bear in mind
that it is possible to enable support for hardware you do not have. Indeed, the config-
uration menus may allow you to enable many kernel features that have never been
tested for your target. There are many millions of possible kernel configuration com-
binations, and it is not possible for the kernel developers to test every configuration
choice you may make. Typically, selecting support for a device that is not present won’t
prevent a system from booting, especially if it’s simply a PCI device driver that won’t
be detected by the kernel anyway. But this isn’t always the case on embedded systems,
and it is still all too possible to create a kernel that will not boot on a particular target.
Therefore, you are advised to verify your selections against the published documenta-
tion for your chosen target before building your target kernel.

162 | Chapter 5: Kernel Considerations

Configuration Methods
The Linux kernel build system (Kbuild) includes support for a variety of configuration
methods, including the following:

make config
Provides a command-line interface where you are asked about each option one by
one. If a .config configuration file is already present, it uses that file to set the default
values of the options it asks you to set.

make oldconfig
Feeds config with an existing .config configuration file and prompts you to config-
ure only those options you have not previously configured. This contrasts with
make config, which asks you about all options, even those you have previously
configured. Developers often use this option to update their configuration as up-
stream configuration options change, without having to reconfigure the entire
kernel.

make menuconfig
Displays a curses-based terminal configuration menu. If a .config file is present, it
uses it to set default values, as with make config.

make xconfig
Displays a Tk-based X Window configuration menu. If a .config file is present, it
uses it to set default values, as with make config and make menuconfig.

Any of these can be used to configure the kernel. They all generate a .config file in the
root directory of the kernel sources. (This is the file that contains the full details of the
options you choose.)

Few developers actually use the make config command to configure the kernel. Instead,
most use make menuconfig to create an initial configuration or to tweak an existing one.
You can also use make xconfig. Keep in mind, however, that make xconfig may have
some broken menus in some architectures, as is the case for the PowerPC, for instance.

To view the kernel configuration menu, type the appropriate command at the com-
mand line with the proper parameters. For example, to cross compile the Linux kernel
for use on an embedded ARM system, you might use the following command line (the
exact cross-compiler name prefix may vary):

$ make ARCH=arm CROSS_COMPILE=arm-linux- menuconfig

Note that the CROSS_COMPILE prefix ends with a hyphen (this will be prepended to com-
mand names, such as “gcc”, forming “arm-linux-gcc”, and so on), and there is a space
between that and the menuconfig command itself.

This presents a graphical configuration menu from which available options can be
selected. Many features and drivers are available as modules, and it is possible to choose
whether to build features into the kernel or as modules at this stage. Once the kernel
has been configured, you can quit the kernel configuration menu via the Escape key or

Configuring the Kernel | 163

the Exit menu item. The kernel configuration system will ask whether to save the new
configuration. Choosing Yes saves the new configuration into a new .config file. In
addition to creating the .config file, a few header files and symbolic links are created. It
is also possible to exit the kernel configuration without making any changes, just answer
No to the question.

Apart from the main configuration options, the architecture support within the kernel
often includes standard template configurations for certain targets. This is especially
true for standard PowerPC and ARM targets. In those cases, the defaults provided with
the kernel will be used to generate the .config file. For example, here is how to configure
the kernel for a TQM860L ppc target:

$ make ARCH=ppc CROSS_COMPILE=powerpc-linux- TQM860L_config
$ make ARCH=ppc CROSS_COMPILE=powerpc-linux- oldconfig

Managing Multiple Configurations
It is often desirable to test different configurations using the same kernel sources.
Changing the kernel’s configuration, however, destroys the previous configuration,
because all the configuration files are overwritten by the kernel’s configuration utilities.
To save a configuration for future use, you need to save the .config files created by the
kernel’s configuration. These files can later be reused to restore a previous kernel
configuration.

The easiest way to back up and retrieve configurations is to use the kernel’s own con-
figuration procedures. The menus displayed by both the menuconfig and xconfig
Makefile targets allow you to save and restore configurations. In each case, you need
to provide an appropriate filename.

You can also save the .config files by hand. In that case, you need to copy the configu-
ration file created by the kernel configuration utilities to an alternative location for
future use. To use a saved configuration, you will need to copy the previously
saved .config file back into the kernel’s root directory and then use the make command
with the oldconfig Makefile target to configure the kernel using the newly cop-
ied .config file. As with the menuconfig Makefile target, the oldconfig Makefile target
creates a few headers files and symbolic links.

Whether you copy the files manually or use the menus provided by the various utilities,
store the configurations in an intuitive location and use a meaningful naming scheme
for saving your configurations. To identify each configuration file, prepend each file-
name with the kernel version it relates to, along with a small descriptive comment, a
date, or both. Leave the .config extension as-is, nevertheless, to identify the file as a
kernel configuration file.

164 | Chapter 5: Kernel Considerations

Using the EXTRAVERSION Variable
If you are using multiple variants of the same kernel version, you will find the
EXTRAVERSION variable to be quite useful in identifying each instance. The EXTRAVER
SION variable is appended to the kernel’s version number to give the kernel being built
its final name. For example, if you need to add an additional patch from Russell King
in order to add serial support for a given target to your 2.6.20 kernel, it might set
EXTRAVERSION to -rmk1. The end result would be a kernel version of 2.6.20-rmk1. EXTRA
VERSION is commonly used to identify prerelease kernels, too. For example, prior to the
release of 2.6.21, the EXTRAVERSION in Linus’s git repository was regularly set to -rc
followed by a number, indicating multiple release candidate kernels, not an official
release.

The final version number is also used to name the directory where the modules built
for the kernel are stored. Hence, modules built for two kernels based on the same initial
version but with different EXTRAVERSIONs will be stored in two different directories,
whereas modules built for two kernels based on the same initial version but that have
no EXTRAVERSION will be stored in the same directory.

You can also use EXTRAVERSION to identify variants based on the same kernel version.
To do so, edit the Makefile in the main kernel directory and set EXTRAVERSION to your
desired value. You will find it useful to rename the directory containing this modified
source code using this same value. If, for example, the EXTRAVERSION of a 2.6.20 kernel
is set to -motor-diff, the parent directory should be named 2.6.20-motor-diff. The
naming of the backup .config files should also reflect the use of EXTRAVERSION. The
configuration file for the kernel with disabled serial support should therefore be called
2.6.20-motor-diff-no-serial.config in this case.

Compiling the Kernel
Compiling the kernel involves a number of steps. These include building the kernel
image and building the kernel modules. Each step uses a different make command and
is described separately in this section. However, you could also carry out all these steps
using a single command line.

The kernel build process has changed in the 2.6 series kernel. Prior to 2.6, it was nec-
essary to carry out an additional dependency generation stage in which you would
explicitly invoke the kernel build system to calculate all the necessary Makefile de-
pendencies for a subsequent build. During the 2.6 development process, the entire
kernel build system was overhauled and replaced with a newer, improved build system
that does not require this additional step.

Compiling the Kernel | 165

Building the Kernel
Building the kernel requires little more than a simple call to GNU make. Depending
upon your chosen architecture, you might also need to specify what kind of image will
be produced. For example, in the case of an ARM platform, you could use the following
command to create a compressed image:

$ make ARCH=arm CROSS_COMPILE=arm-linux- zImage

The zImage target instructs the Makefile to build a kernel image that is compressed using
the gzip algorithm.† There are, nevertheless, other ways to build a kernel image. The
vmlinux target instructs the Makefile to build only the uncompressed image. Note that
this image is generated even when a compressed image is requested.

On the x86, there is also the bzImage target. The “bzImage” name stands for “big
zImage,” and has nothing to do with the bzip2 compression utility. In fact, both the
bzImage and zImage Makefile targets rely on the gzip algorithm. The difference between
the two Makefile targets is that the compressed kernel images generated using zImage
cannot be larger than 512 KB, whereas those generated using bzImage are not bound
by this limit. If you want more information regarding the differences between zImage
and bzImage, have a look at the Documentation/i386/boot.txt file included in the kernel
sources.

If you chose any options not supported by your architecture during the kernel config-
uration, or if some kernel option is broken, your build will fail at this stage. If all goes
well, you should have a newly built kernel image within five minutes, at most, on any
reasonably powerful development machine.

Verifying the Cross-Development Toolchain
Notice that the kernel build is the first real test for the cross-development tools we built
in the previous chapter. If the tools you built earlier compile a functional kernel suc-
cessfully, all the other software should build perfectly. Of course, you will need to
download the kernel you built to your target to verify its functionality, but the fact that
it builds properly is already a positive sign.

Building the Modules
With the kernel image properly built, you can now build the kernel modules:

$ make ARCH=arm CROSS_COMPILE=arm-linux- modules

The duration of this stage depends largely on the number of kernel options you chose
to build as modules instead of having been linked in as part of the main kernel image.

† Though zImage is a valid Makefile target for all the architectures we discussed in depth in Chapter 3, there
are other Linux architectures for which it isn’t valid.

166 | Chapter 5: Kernel Considerations

This stage is seldom longer than the build of the kernel image. As with the kernel image,
if your configuration is inadequate for your target or if a feature is broken, this stage of
the build may also fail.

With both the kernel image and the kernel modules now built, it is time to install them
onto the target system. Before you do so, note that if you needed to clean up the kernel’s
sources and return them to their initial state prior to any configuration, dependency
building, or compilation, you could use the following command:

$ make ARCH=arm CROSS_COMPILE=arm-linux- distclean

Be sure to back up your kernel configuration file prior to using this command, as make
distclean erases all the files generated during the previous stages, including the .config
file, all object files, and the kernel images.

Installing the Kernel
Ultimately, the kernel you just generated and its modules will have to be copied to your
target to be used. The actual copying of the kernel and its modules is covered in Chap-
ters 6 and 9. Meanwhile, the next few sections will discuss how to manage multiple
kernel images and corresponding module installations. The configuration of the target’s
boot layout and its root filesystem depends on what you do after reading the following
sections.

Managing Multiple Kernel Images
In addition to using separate directories for different kernel versions, you will find it
useful to have access to multiple kernel images to test on your target. Since these images
may be built using the same sources, you will need to copy them out of the kernel source
and into a directory where they can be properly identified. For example, you might
create an images directory containing each of the available kernel images for your em-
bedded project.

For each kernel configuration, you will need to copy four files: the uncompressed kernel
image, the compressed kernel image, the kernel symbol map, and the configuration
file. The last three are found within the kernel source’s root directory and are called
vmlinux, System.map, and .config, respectively. The compressed kernel image file is
found in the arch/your_arch/boot directory, where your_arch is the name of your target’s
architecture, and is called zImage or bzImage, depending on the Makefile target you
used earlier. For the example ARM-based target, the compressed kernel image would
be located in arch/arm/boot/zImage.

Some architectures, such as the PPC, have many boot directories. In those cases, the
kernel image to use is not necessarily the one located at arch/your_arch/boot/zImage.
In the case of the TQM board mentioned earlier, for example, the compressed kernel
image that should be used is arch/ppc/images/vmlinux.gz. Have a look at the arch/

Installing the Kernel | 167

your_arch/Makefile for a full description of all the Makefile boot image targets for your
architecture. In the case of the PPC, the type of boot image generated depends on the
processor model for which the kernel is compiled.

To identify the four files needed, you can use a naming scheme similar to that of the
kernel’s version. For example, for a kernel built from the 2.6.20 source release, you
might copy the kernel into a dedicated project directory:

$ cp arch/arm/boot/zImage ${PRJROOT}/images/zImage-2.6.20
$ cp System.map ${PRJROOT}/images/System.map-2.6.20
$ cp vmlinux ${PRJROOT}/images/vmlinux-2.6.20
$ cp .config ${PRJROOT}/images/2.6.20.config

where $PRJROOT represents the top directory of your embedded project.

You could also include the configuration name in the filenames. For example, suppose
that you decided it was worthwhile having a build without any serial support (for
whatever reason). To distinguish this special build of the kernel from any others, you
might dutifully decide upon the following names: zImage-2.6.20-no-serial,
System.map-2.6.20-no-serial, vmlinux-2.6.20-no-serial, and 2.6.20-no-serial.config.

Installing Kernel Modules
The kernel Makefile includes the modules_install target for installing the kernel mod-
ules. By default, the modules are installed in the /lib/modules directory. This is entirely
appropriate for most desktop and enterprise Linux environments, but doesn’t work so
well when you’re using a cross-development environment. In the case of cross-
compilation, you specifically don’t want to install the newly built kernel modules into
your host /lib/modules hierarchy (not unless you want to risk interfering with your host
development system, anyway). Instead, you need to instruct make to use an alternate
location.

Linux kernel modules are strongly dependent upon a particular build of the kernel—
a particular kernel image. Because this is the case, you will usually install kernel modules
in a directory similar in name to that of the corresponding prebuilt kernel image. In the
case of the 2.6.20 kernel, you might install the modules in a directory named
${PRJROOT}/images/modules-2.6.20. The content of this directory will later be copied
to the target’s /lib/modules directory within its root filesystem for use with the corre-
sponding kernel on the target.

To install the Linux kernel modules in an alternate directory, use this command:

$ make ARCH=arm CROSS_COMPILE=arm-linux- \
> INSTALL_MOD_PATH=${PRJROOT}/images/modules-2.6.20 \
> modules_install

The precise command will vary by target architecture, but the important part is that
the INSTALL_MOD_PATH variable is used to set the alternate path for module installation.
The kernel build system will take care of the rest, provided that it can write into the

168 | Chapter 5: Kernel Considerations

location that you have specified. The modules-2.6.20 subdirectory will be created if it
does not exist.

Once it is done copying the modules, the kernel build system will try to build the
module dependencies needed for the module utilities during runtime. Since depmod,
the utility that builds the module dependencies, is not designed to deal with cross-
compiled modules, it will fail.

To build the module dependencies for your modules, you will need to use another
module dependency builder provided with the BusyBox package. You will learn more
than you could ever want to know about BusyBox (well, almost) in Chapter 6. For now,
you can download, and then extract, a copy of the BusyBox archive from http://
www.busybox.net into a convenient location (for example, ${PRJROOT}/sysapps).‡

From the BusyBox directory, copy the scripts/depmod.pl Perl script into the ${PREFIX}/
bin directory.

You can now build the module dependencies for the target:

$ depmod.pl \
> -k ./vmlinux -F ./System.map \
> -b ${PRJROOT}/images/modules-2.6.20/lib/modules > \
> ${PRJROOT}/images/modules-2.6.20/lib/modules/2.6.20/modules.dep

The -k option is used to specify the uncompressed kernel image, the -F option is used
to specify the system map, and the -b option is used to specify the base directory con-
taining the modules for which you will need to build dependencies. Because the tool’s
output goes to the standard output, you will want to redirect it to the actual dependency
file, which is always called modules.dep.

In the Field
Let’s take a look at the kernel’s operation once it’s installed on your target and ready
to run. Because the algorithms and underlying source code are the same for embedded
and regular systems, the kernel will behave almost exactly the same as it would on a
workstation or a server. For this reason, other books and online material on the subject,
such as Linux Device Drivers by Jonathan Corbet et al. and Understanding the Linux
Kernel by Daniel Bovet and Marco Cesati (both from O’Reilly), are much more appro-
priate for finding in-depth explanations of the kernel. There are, nevertheless, aspects
particular to embedded Linux systems that warrant particular emphasis.

Dealing with Kernel Failure
The Linux kernel is a very stable and mature piece of software. This, however, does not
mean that it or the hardware it relies on never fails. Linux Device Drivers covers issues
such as “oops” messages and system hangs. In addition to keeping these issues in mind

‡ Download BusyBox version 0.60.5 or later.

In the Field | 169

http://www.busybox.net
http://www.busybox.net

during your design, you should think about the most common form of kernel failure:
kernel panic.

When a fatal error occurs and the kernel catches it, it will stop all processing and emit
a kernel panic message. There are many reasons a kernel panic can occur. One of the
most frequent reasons is that you forgot to specify to the kernel the location of its root
filesystem. In that case, the kernel will boot normally and will panic upon trying to
mount its root filesystem.

The only means of recovery in case of a kernel panic is a complete system reboot. For
this reason, the kernel accepts a boot parameter that indicates the number of seconds
it should wait after a kernel panic to reboot. If you would like the kernel to reboot one
second after a kernel panic, for instance, you would pass the following sequence as part
of the kernel’s boot parameters: panic=1.

Depending on your setup, however, a simple reboot may not be sufficient. In the case
of our control module, for instance, a simple reboot may even be dangerous, since the
chemical or mechanical process being controlled may get out of hand. For this reason,
we need to change the kernel’s panic function to notify a human operator who could
then use emergency manual procedures to control the process. Of course, the actual
panic behavior of your system depends on the type of application for which your system
is being used.

The code for the kernel’s panic function, panic(), is in the kernel/panic.c file in the
kernel’s sources. The first observation to be made is that the panic function’s default
output goes to the console.§ Since your system may not even have a terminal, you may
want to modify this function according to your particular hardware. An alternative to
the terminal, for example, would be to write the actual error string in a special section
of flash memory that is specifically set aside for this purpose. At the next reboot, you
would be able to retrieve the text information from that flash section and attempt to
solve the problem.

Whether you are interested in the actual text message or not, you can register your own
panic function with the kernel. This function will be called by the kernel’s panic func-
tion in the event of a kernel panic and can be used to carry out such things as signaling
an emergency.

The list that holds the functions called by the kernel’s own panic function is
panic_notifier_list. The notifier_chain_register function is used to add an item to
this list. Conversely, notifier_chain_unregister is used to remove an item from this list.

§ The console is the main terminal to which all system messages are sent.

170 | Chapter 5: Kernel Considerations

The location of your own panic function has little importance, but the registration of
this function must be done during system initialization. In our case, we add a
mypanic.c file in the kernel directory of the kernel sources and modify that directory’s
Makefile accordingly. Here is the mypanic.c for our control module:

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/notifier.h>

static int my_panic_event(struct notifier_block *,
 unsigned long,
 void *);

static struct notifier_block my_panic_block = {
 notifier_call: my_panic_event,
 next: NULL,
 priority: INT_MAX
};

int _ _init register_my_panic(void)
{
 printk("Registering buzzer notifier \n");

 notifier_chain_register(&panic_notifier_list,
 &my_panic_block);

 return 0;
}

void ring_big_buzzer(void)
{
 ...
}

static int my_panic_event(struct notifier_block *this,
 unsigned long event,
 void *ptr)
{
 ring_big_buzzer();

 return NOTIFY_DONE;
}

module_init(register_my_panic);

The module_init(register_my_panic); statement ensures that the register_my_panic
function is called during the kernel’s initialization without requiring any modification
of the kernel’s startup functions. The registration function adds my_panic_block to the
list of other blocks in the panic notifier list. The notifier_block structure has three
fields. The first field is the function to be called, the second is a pointer to the next
notifier block, and the third is the priority of this block. In our case, we want to have
the highest possible priority. Hence the use of INT_MAX.

In the Field | 171

In case of kernel panic, my_panic_event is called as part of the kernel’s notification of
all panic functions. In turn, this function calls on ring_big_buzzer, which contains code
to start a loud alarm to attract the human operator’s attention to the imminent problem.

172 | Chapter 5: Kernel Considerations

One of the last operations conducted by the Linux kernel during system startup is
mounting the root filesystem. The Linux kernel itself doesn’t dictate any filesystem
structure, but user space applications do expect to find files with specific names in
specific directory structures. Therefore, it is useful to follow the de facto standards that
have emerged in Linux systems.

In this chapter, we will start by discussing the basic root filesystem structure. Then, we
will explain how and where to install the system libraries, the kernel modules, kernel
images, device nodes, main system applications, and custom applications. Finally, we
will discuss how to configure the system initialization scripts.

At the end of this chapter, you will have a fully functional root filesystem for your target.
In the following chapters, we will talk about how you can place this root filesystem on
an actual filesystem type on a storage device for use in your target.

Basic Root Filesystem Structure
The “official” rules to build a root filesystem are contained in the Filesystem Hierarchy
Standard (FHS) introduced in Chapter 1. The document is less than 30 pages long and
is fairly easy to read. If you are looking for answers or clarifications regarding how to
build a root filesystem, the FHS, along with related standards documentation from the
Linux Foundation, are probably the best places to start.

Each of the top-level directories in the root filesystem has a specific purpose. Many of
these, however, are meaningful only in multiuser systems in which a system adminis-
trator is in charge of many servers or workstations employed by different users. In most
embedded Linux systems, where there are no users and no administrators, the rules for
building a root filesystem can be loosely interpreted. This doesn’t mean that all rules
can be violated, but it does mean that breaking some of them will have little to no effect
on the system’s proper operation. Interestingly, even mainstream commercial
distributions for workstations and servers sometimes deviate from the de facto rules
for root filesystems.

CHAPTER 6

Root Filesystem
Content

173

Table 6-1 provides the complete list of root filesystem top-level directories and their
content as specified by the FHS (note that /sys is not in the standard yet, and therefore
doesn’t appear in the table).

Table 6-1. Root filesystem top-level directories

Directory Content

bin Essential user command binaries

boot Static files used by the bootloader

dev Devices and other special files

etc System configuration files, including startup files

home User home directories

lib Essential libraries, such as the C library, and kernel modules

media Mount points for removable media

mnt Mount points for temporarily mounted filesystems

opt Add-on software packages

proc Virtual filesystem for kernel and process information

root Root user’s home directory

sbin Essential system administration binaries

sys Virtual filesystem for system information and control (buses, devices, and drivers)

tmp Temporary files

usr Secondary hierarchy containing most applications and documents useful to most users, including the X server

var Variable data stored by daemons and utilities

If you are using Linux for your day-to-day work, you are already familiar with some of
these directories. Nevertheless, let’s take a closer look at the content of a typical root
filesystem for use in an embedded Linux system.

First, all the directories that pertain to providing an extensible multiuser environment,
such as /home, /mnt, /opt, and /root, can be omitted. You could trim the root filesystem
even further by removing /tmp and /var, but these omissions may jeopardize the oper-
ation of certain programs. We do not encourage such a minimalistic approach.

This choice of what to include in your root filesystem should be based
on what’s actually useful, not on size considerations, because omitting
a directory entry has practically no effect on the resulting root filesys-
tem’s size. The reason we recommend the omission of /home, for
example, is that it would be left empty in an embedded Linux system
because its content, as prescribed by the FHS, is useful only in work-
station and server setups.

174 | Chapter 6: Root Filesystem Content

Depending on your bootloader and its configuration, you may not need to have
a /boot directory. This will depend on whether your bootloader can retrieve kernel
images from your root filesystem before your kernel is booted. You will be able to decide
whether you should use a /boot directory and how to use it for your target after you
read Chapter 9. Of course, you can redesign the root filesystem later if need be.

The remaining directories—/bin, /dev, /etc, /lib, /proc, /sbin, /sys, and /usr—are
essential.

At the extreme, you could decide to omit /proc and /sys, and configure the kernel with-
out support for the corresponding virtual filesystems. However, access to the proc
filesystem is required by very basic commands such as ps, mount, ifconfig, and modp-
robe. The sysfs filesystem is now also used by an increasing number of programs. So,
unless your system has a very limited scope, be prepared to replace scripts with custom
C programs directly accessing the kernel system call interface if you wish to do without
proc and sysfs.

Two of the root directories, /usr and /var, have a predefined hierarchy of their own,
much like that of the root directory. We will briefly discuss these hierarchies as we
populate both directories in the steps below.

Confusing Similarities
One of the most confusing aspects of the root filesystem is the apparent similarity in
purpose of some directories. In particular, newcomers often ask what difference there
is between the various directories containing binaries and the various directories con-
taining libraries.

There are four main directories for binaries in the root filesystem: /bin, /sbin, /usr/bin,
and /usr/sbin. The directory in which a binary is placed largely depends on its role in
the system. Binaries that are essential to both users and system administrators are
in /bin. Binaries that are essential to system administration, but will never be used by
ordinary users, are located in /sbin. In contrast, most nonessential user binaries are
located in /usr/bin and most nonessential system administration tools are in /usr/sbin.

The rationale is similar for the location of libraries. The ones required to boot the system
and run the most essential commands are located in /lib, while /usr/lib contains all the
other libraries. Often, packages will create subdirectories in /usr/lib to contain their
own libraries. The Perl 5.x packages, for instance, have a /usr/lib/perl5 directory that
contains all the Perl-related libraries and modules.

A look at your Linux workstation’s own root filesystem in these directories will show
you actual examples of the application of these criteria by your distribution’s designers.

To work on the root filesystem, let’s move into the directory we created for this purpose:

$ cd ${PRJROOT}/rootfs

Basic Root Filesystem Structure | 175

Now create the core root filesystem directories required for your system:

$ mkdir bin dev etc lib proc sbin sys tmp usr var
$ chmod 1777 tmp

Notice that we did not create /boot. We will come back to it later and create it if it
becomes necessary. Also, note that we changed the permissions for the /tmp directory
to turn the “sticky bit” on. This bit in the directory permissions field ensures that files
created in the /tmp directory can be deleted only by the user who created them. Though
most embedded Linux systems are single-user systems, as mentioned already, there are
cases in which embedded applications must not run with root privileges. The OpenSSH
package we discuss in Chapter 10, for example, is such an application. Hence the need
to follow some basic rules about root filesystem permission bits.

You can then proceed with the creation of the /usr hierarchy:

$ mkdir usr/bin usr/lib usr/sbin

On a fully featured root filesystem, the /usr directory usually contains many more en-
tries. You can easily demonstrate this by typing ls -al /usr (perhaps adding a -r for
recursive output) on your workstation. You will find directories that are useful on non-
embedded systems for routine user activity, such as man, src, and local. The FHS con-
tains a section addressing the layout of this directory in detail. For the purposes of most
embedded Linux systems, however, the three directories we created will suffice.

The last entries to create are in the /var directory:

$ mkdir var/lib var/lock var/log var/run var/tmp
$ chmod 1777 var/tmp

Here, too, this directory contains many more entries on nonembedded systems. Di-
rectories such as cache, mail, and spool are useful for a workstation or a server, but few
embedded systems need those directories. The directories we created are the bare min-
imum required for the normal operation of most applications found in an embedded
Linux system. Of course, if you need functionality such as serving web pages or printing,
you may want to add some of the additional directories required by the applications
providing this functionality. See the FHS and the documentation provided with your
application to find out your actual requirements.

With the root filesystem skeleton now ready, let’s place the various software compo-
nents in their appropriate locations.

Running Linux with a Different Root Filesystem Structure
As we said in the previous discussion, the rules for building a root filesystem are in the
FHS. Although most Linux applications and distributions depend on these rules, they
are not enforced by the Linux kernel itself. In fact, the kernel source code makes very
few assumptions regarding the structure of the root filesystem. It follows from this that
you could build an embedded Linux system with a very different root filesystem struc-
ture. You would then have to modify the defaults of most software packages to make

176 | Chapter 6: Root Filesystem Content

them comply with your new structure. Indeed, certain regular “desktop” oriented dis-
tributions have attempted to mimic the Apple filesystem layout. Some have taken an
even more extreme approach by building embedded Linux systems without any root
filesystem at all.

Needless to say, we don’t encourage you to go down this path. The root filesystem rules
we outlined earlier are recognized and agreed upon by all open source and free software
developers working on Linux systems. Building your embedded Linux system using
other rules would cut you off from most open source and free software packages and
their developers, and you would be needlessly ignoring a useful de facto standard in
the process.

Libraries
In Chapter 4, we discussed how to build, install, and use the GNU C library and its
alternatives for application development. Here, we will discuss how to install those
same libraries on the target’s root filesystem so that the applications you develop can
use them at runtime. We will not discuss diet libc, because it is mainly used as a static
library.

glibc
As we said earlier, the glibc package contains a number of libraries. Look in your
${TARGET_PREFIX}/lib directory for the entire list of libraries installed during the
package’s build process. This directory contains mainly four types of files:

Actual shared libraries
These files’ names are formatted as libLIBRARY_NAME-GLIBC_VERSION.so, where
LIBRARY_NAME is the name of the library and GLIBC_VERSION is the version of the glibc
package you are using. For instance, the name of the math library for glibc 2.3.6 is
libm-2.3.6.so (the name of the math library is simply “m”).

Many people do not know that .so files are also executable ELF binaries that can
return useful information. For example:

/lib/libc-2.5.so
GNU C Library stable release version 2.5, by Roland McGrath et al.
Copyright (C) 2006 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.
Compiled by GNU CC version 4.1.2 (Ubuntu 4.1.2-0ubuntu4).
Compiled on a Linux >>2.6.15.7<< system on 2007-04-04.
Available extensions:
 crypt add-on version 2.1 by Michael Glad and others
 GNU Libidn by Simon Josefsson
 GNU libio by Per Bothner
 NIS(YP)/NIS+ NSS modules 0.19 by Thorsten Kukuk

Libraries | 177

 Native POSIX Threads Library by Ulrich Drepper et al
 BIND-8.2.3-T5B
Thread-local storage support included.
For bug reporting instructions, please see:
<http://www.gnu.org/software/libc/bugs.html>.

Major revision version symbolic links
Major revision versions do not follow the same numbering as the actual glibc ver-
sion. The major revision version for the actual shared C library in glibc 2.3.6,
libc-2.3.6.so, is 6, not 2 as the name suggests. In contrast, the major revision version
for libdl-2.3.6.so truly is 2. The names of the symbolic links for the major revision
version are formatted as libLIBRARY_NAME.so.MAJOR_REVISION_VERSION, where
MAJOR_REVISION_VERSION is the major revision version of the library. For the actual
C library, for instance, the symbolic link is libc.so.6. For libdl, it is libdl.so.2. Once
a program has been linked to a library, it will refer to this symbolic link. At startup,
the loader will therefore look for this file before loading the program.

Version-independent symbolic links to the major revision version symbolic links
The role of these links is to provide a universal entry for all the programs that need
to link with a particular library, regardless of the actual major revision or the version
of glibc involved. These symbolic links are typically formatted as
libLIBRARY_NAME.so. For example, libm.so points to libm.so.6, which itself points to
the actual shared library, libm-2.3.6.so. The only exception to this is libc.so, which,
as we said in Chapter 4, is a link script. The version-independent symbolic link is
the one used when linking programs.

Static library archives
These archives are used by applications that choose to link statically with a library.
The names of these archives are formatted as libLIBRARY_NAME.a. The static archive
for libdl, for instance, is libdl.a.

You will also find some other types of files in ${TARGET_PREFIX}/lib, such as crti.o
and crt1.o, but you will not need to copy them to your target’s root filesystem. These
files are used by the GNU Linker ld when producing executable binaries that need to
“bootstrap” themselves (load themselves into memory and initialize). Thus, their role
is finished after linking, and they are not used at runtime.

Out of the four types of files just described, you need only two for each library: the
actual shared libraries and the major revision version symbolic links. The other two file
types are needed only when linking executables and are not required for the runtime
operation of your applications.

In addition to the library files, you need to copy the dynamic linker and its symbolic
link. The dynamic linker itself follows the naming convention of the various glibc li-
braries and is usually called ld-GLIBC_VERSION.so. In what is probably one of the most
bizarre aspects of the GNU toolchain, however, the name of the symbolic link to the
dynamic linker differs depending on the architecture for which the toolchain has been
built. If the toolchain is built for the i386, the ARM, the SuperH, or the m68k, the

178 | Chapter 6: Root Filesystem Content

symbolic link to the dynamic linker is usually called ld-linux.so.MAJOR_REVI-
SION_VERSION. If the toolchain is built for the MIPS or the PowerPC, the symbolic link
to the dynamic linker is usually called ld.so.MAJOR_REVISION_VERSION.

Before you actually copy any glibc component to the target’s root filesystem, however,
you need to select the glibc components required for your applications. Table 6-2 pro-
vides the description of all the components in glibc* and provides inclusion guidelines
for each component. In addition to our guidelines, you will need to evaluate which
components your programs need, depending on how they are linked.

Table 6-2. Library components in glibc and root filesystem inclusion guidelines

Library component Content Inclusion guidelines

ld Dynamic linker.a Compulsory. Needed to use any shared libraries.
Theoretically not necessary if using only a statically
built root filesystem—although this is quite rare,
unless you are only using BusyBox, for example.

libBrokenLocale Fixup routines to get applications that have
broken locale features to run. Overrides appli-
cation defaults through preloading. (Need to
use LD_PRELOAD.)

Rarely used.

libSegFault Routines for catching segmentation faults and
doing backtraces.

Rarely used.

libanl Asynchronous name lookup routines. Rarely used.

libbsd-compat Dummy library for certain BSD programs that
are compiled with -lbsd-compat.

Rarely used.

libc Main C library routines. Compulsory.

libcrypt Cryptography routines. Required for most applications involved in
authentication.

libdl Routines for loading shared objects
dynamically.

Required for applications that use functions such as
dlopen().

libm Math routines. Required for math functions.

libmemusage Routines for heap and stack memory profiling. Rarely used.

libnsl NIS network services library routines. Rarely used.

libnss_compat Name Switch Service (NSS) compatibility rou-
tines for NIS.

Loaded automatically by the glibc NSS.b

libnss_dns NSS routines for DNS. Loaded automatically by the glibc NSS.

libnss_files NSS routines for file lookups. Loaded automatically by the glibc NSS.

libnss_hesiod NSS routines for Hesiod name service. Loaded automatically by the glibc NSS.

libnss_nis NSS routines for NIS. Loaded automatically by the glibc NSS.

* See the glibc manual for a complete description of the facilities provided.

Libraries | 179

Library component Content Inclusion guidelines

libnss_nisplus NSS routines for NIS plus. Loaded automatically by the glibc NSS.

libpcprofile Program counter profiling routines. Rarely used.

libpthread POSIX 1003.1c threads routines for Linux. Required for threads programming.

libresolv Name resolver routines. Required for name resolution.

librt Asynchronous I/O routines. Rarely used.

libthread_db Thread debugging routines. Loaded automatically by gdb when debugging threa-
ded applications. Never actually linked to by any
application.

libutil Login routines, part of the user accounting
database.

Required for terminal connection management.

a This library component is not itself a library. Instead, ld.so is an executable invoked by the ELF binary
format loader to load the dynamically linked libraries into an application’s memory space.

b See Chapter 4 for details.

If you wish to find out which dynamic libraries a given application uses, the usual way
is with the ldd command. In a cross-platform development environment, however, your
host’s ldd command will fail when provided with target binaries. Instead, you could
use the cross-platform readelf command you installed in Chapter 4 to identify the dy-
namic libraries that your application depends on. Here is an example using readelf to
retrieve the BusyBox utility’s dependencies:

$ powerpc-linux-readelf -a ${PRJROOT}/rootfs/bin/busybox | \
> grep "Shared library"
 0x00000001 (NEEDED) Shared library: [libc.so.0]

Ideally, however, if you installed uClibc, you should use the ldd-like command installed
by uClibc, which has cross-platform capabilities. For our control module target, which
is based on a PowerPC board, the command’s name is powerpc-uclibc-ldd. This way,
you can build the list of libraries your target binaries depend on. Here are the depend-
encies of the BusyBox utility, for example (one line has been wrapped to fit the page):

$ powerpc-uclibc-ldd ${PRJROOT}/rootfs/bin/busybox
 libc.so.0 => /home/karim/control-project/control-module/tools/uclibc/lib/
 libc.so.0
/lib/ld-uClibc.so.0 => /lib/ld-uClibc.so.0

Having determined the library components you need, you can copy them and the rel-
evant symbolic links to the /lib directory of the target’s root filesystem. Here is a set of
commands that copy the essential glibc components:

$ cd ${TARGET_PREFIX}/lib
$ for file in libc libcrypt libdl libm \
> libpthread libresolv libutil
> do
> cp $file-*.so ${PRJROOT}/rootfs/lib
> cp -d $file.so.[*0-9] ${PRJROOT}/rootfs/lib

180 | Chapter 6: Root Filesystem Content

> done
$ cp -d ld*.so* ${PRJROOT}/rootfs/lib

The first cp command copies the actual shared libraries, the second one copies the major
revision version symbolic links, and the third one copies the dynamic linker and its
symbolic link. All three commands are based on the rules outlined earlier in this section
regarding the naming conventions of the different files in ${TARGET_PREFIX}/lib. The
-d option is used with the second and third cp commands to preserve the symbolic links
as-is. Otherwise, the files that the symbolic links point to are copied in their entirety.

Of course, you can remove the libraries that are not used by your applications from the
list in the set of commands shown. If you would rather have the complete set of libraries
included in glibc on your root filesystem, use the following commands:

$ cd ${TARGET_PREFIX}/lib
$ cp *-*.so ${PRJROOT}/rootfs/lib
$ cp -d *.so.[*0-9] ${PRJROOT}/rootfs/lib
$ cp libSegFault.so libmemusage.so libpcprofile.so \
> ${PRJROOT}/rootfs/lib

If you have applications that use the glibc NSS, don’t forget to copy the
libnss_SERVICE libraries you need to your target’s root filesystem. libnss_files and
libnss_dns are the ones most often used. You will also need to copy the sample
nsswitch.conf provided with glibc to your target’s /etc directory and customize it to your
setup:†

$ cp ${PRJROOT}/build-tools/glibc-2.2.1/nss/nsswitch.conf \
> ${PRJROOT}/rootfs/etc

Whether you copy all or part of the glibc libraries, you will notice that some of these
libraries are large. To reduce the size of the libraries installed, you can use the cross-
platform strip utility you built in Chapter 4. Be careful not to strip the original libraries,
because you would have to install them all over again. Strip the libraries only after you
copy them to the root filesystem:

$ powerpc-linux-strip ${PRJROOT}/rootfs/lib/*.so

On our control module, the ${PRJROOT}/rootfs/lib directory with all the glibc libraries
weighs around 10 MB before stripping. Stripping all the libraries reduces the directory
size to 2.5 MB.

The glibc components have now been installed on the target’s root filesystem and are
ready to be used at runtime by your applications.

† Have a look at Linux Network Administrator’s Guide by Tony Bautts, Terry Dawson, and Gregor Purdy
(O’Reilly) for details about the customization of the nsswitch.conf file.

Libraries | 181

uClibc
As with glibc, uClibc contains a number of libraries. Look in your ${PREFIX}/uclibc/
lib directory for the entire list. It contains the same four different types of files as the
glibc directory.

Because uClibc is meant to be a glibc replacement, the names and uses of the uClibc
components are identical to the glibc components. Hence, you can use Table 6-2
(shown previously) to research uClibc components. Note, however, that not all glibc
components are implemented by uClibc. uClibc implements only ld, libc, libcrypt, libdl,
libm, libpthread, libresolv, and libutil. Use the same method as described for glibc to
identify the uClibc components you will need on your target.

Having determined the list of components you need, you can now copy them and their
relevant symbolic links to the /lib directory of your target’s root filesystem. The fol-
lowing set of commands copies the essential uClibc components:

$ cd ${PREFIX}/uclibc/lib
$ for file in libuClibc ld-uClibc libc libdl \
> libcrypt libm libresolv libutil
> do
> cp $file-*.so ${PRJROOT}/rootfs/lib
> cp -d $file.so.[*0-9] ${PRJROOT}/rootfs/lib
> done

The commands are likely to report that two files haven’t been found:

cp: libuClibc.so.[*0-9]: No such file or directory
cp: libc-*.so: No such file or directory

This is not a problem, because these files are not supposed to exist. The set of
commands just shown is meant to be easy to type in, but you could add conditional
statements around the cp commands if you prefer not to see any errors.

As with glibc, you can modify the list of libraries you copy according to your require-
ments. Note that, in contrast to glibc, you will not save much space by copying only a
select few uClibc components. For the control module previously mentioned, for in-
stance, the root filesystem’s /lib directory weighs only around 300 KB when all the
uClibc components are copied. The following commands copy all uClibc’s components
to your target’s root filesystem:

$ cd ${PREFIX}/uclibc/lib
$ cp *-*.so ${PRJROOT}/rootfs/lib
$ cp -d *.so.[*0-9] ${PRJROOT}/rootfs/lib

There is no need to strip uClibc components, since they were already stripped by
uClibc’s own build scripts. You can verify this using the file command.

182 | Chapter 6: Root Filesystem Content

Kernel Modules
In Chapter 5, we built the kernel modules and installed them in a temporary directory,
${PRJROOT}/images. We are now ready to copy these modules to their final destination
in the target’s /lib directory.

Since you may have compiled many kernels to test for your target, you now need to
select which set of kernel modules to copy to the root filesystem. In the case of our
control module, for example, we chose a 2.6.20 kernel for the target. The following
command copies that kernel’s entire modules directory to the root filesystem:

$ cp -a ${PRJROOT}/images/modules-2.6.20/* ${PRJROOT}/rootfs

We use cp’s -a option here to copy the files and directories in archive mode. This has
the effect of preserving file attributes and links, and copying directories recursively.
Note that there is no need to explicitly append the /lib/modules path to ${PRJROOT}/
rootfs in the previous command because of the way we installed the modules in the
${PRJROOT}/images/modules-2.6.20 directory in Chapter 5.

That’s it; the kernel modules are now ready for use on your target. You may also need
to add a /etc/modprobe.conf file to specify special module parameter values, to manually
override modules, or to do anything else that alters modprobe’s default behavior. See
the modprobe.conf manpage for details.

Kernel Images
As we said earlier, the presence of the actual kernel image on your root filesystem largely
depends on your bootloader’s capabilities. If you anticipate that your bootloader’s set-
up will boot a kernel from the root filesystem, you may copy the kernel image to your
target’s root filesystem at this time:

$ mkdir ${PRJROOT}/rootfs/boot
$ cd ${PRJROOT}/images
$ cp zImage-2.6.20 ${PRJROOT}/rootfs/boot

In addition to the kernel image, you may want to make it a standard practice to copy
the configuration file used to create the kernel so that you can service units for which
the original project workspace may be lost:

$ cp 2.6.20.config ${PRJROOT}/rootfs/boot

Because we discuss the actual bootloader setup in Chapter 9, there is nothing more to
be done here about the kernel’s setup for now. We will continue the kernel image’s
setup later.

Kernel Modules | 183

Device Files
Following Unix tradition, every object in a Linux system is visible as a file, including
devices.‡ All the device files (a.k.a. device “nodes”) in a Linux root filesystem are located
in the /dev directory. Once more, having device files in /dev is not dictated by the kernel,
but by standard applications such as interactive shells that expect to find device files
there.

In generic Linux systems, managing device files is a complex task, because devices can
change from one computer to another, and external devices can also change at any
moment. Therefore, such systems need a way to keep track of connected devices to
make sure that the corresponding device files exist and that the corresponding drivers
are loaded. Fortunately, many custom embedded systems always run with the same
devices and just need fixed device files.

Static Device Files
These device files are called static because they just need to be created once in the
filesystem. They are special files characterized by a type, character or block, and a
major and minor number. Whereas user space applications distinguish device files by
their names, the kernel just relies on their type and their major and minor numbers to
find which driver manages each device. Therefore, two different device files with the
same type, major number, and minor number will be processed in the same way.

The official source of information for static device major and minor numbers is the
Documentation/devices.txt file in the kernel sources. You can consult this file whenever
you are uncertain about the name or numbering of a certain device. Another, easier
option is to read the numbers of device files on your Linux workstation.

For example, listing /dev/console shows that it is a character device (because the first
character on the line is c), with major number 5 and minor number 1:

$ ls -l /dev/console
crw------- 1 root root 5, 1 2007-05-10 07:05 /dev/console

Similarly, /dev/ram0 (the first ramdisk) is a block device, (listed with a b character),
with major number 1 and minor number 0:

$ ls -l /dev/ram0
brw-rw---- 1 root disk 1, 0 2007-05-04 13:20 /dev/ram0

Table 6-3 lists the essential entries you need in your /dev directory. Depending on your
particular setup, you will probably need to add a few extra entries. In some cases, you
may even need to use entries other than the ones listed in the table. On some systems,
for example, the first serial port is not ttyS0. Such is the case of SuperH-based systems,

‡ The notable exception to this is networking interfaces, such as Ethernet cards, for which there are no device
files.

184 | Chapter 6: Root Filesystem Content

for instance, where the first serial port is ttySC0 (major number: 204, minor number:
8), and StrongARM-based systems where the first serial port is ttySA0 (major number:
204, minor number: 5).

Table 6-3. Basic /dev entries

Filename Description Type Major number Minor number Permission bits

mem Physical memory access char 1 1 600

null Null device char 1 3 666

zero Null byte source char 1 5 666

random Nondeterministic random number genera-
tor

char 1 8 644

tty0 Current virtual console char 4 0 600

tty1 First virtual console char 4 1 600

ttyS0 First UART serial port char 4 64 600

tty Current TTY device char 5 0 666

console System console char 5 1 600

Matthias Dalheimer and Matt Welsh’s Running Linux (O’Reilly) explains how to create
device files. Essentially, you need to use the mknod command for each entry to be
created. In contrast to most other commands we have used up until now, you need to
be logged in as root to use this one. Remember to log out from the root user mode once
you are done creating the device files.

Here is a simple example showing the creation of the first few entries in Table 6-3:

$ cd ${PRJROOT}/rootfs/dev
$ su -m
Password:
mknod -m 600 mem c 1 1
mknod -m 666 null c 1 3
mknod -m 666 zero c 1 5
mknod -m 644 random c 1 8
...
exit

In addition to the basic device files, a few symbolic links, which are described in Ta-
ble 6-4, have to be part of your /dev directory. As with other symbolic links, you can
use the ln -s command to create these links.

Table 6-4. Compulsory /dev symbolic links

Link name Target

fd /proc/self/fd

stdin fd/0

stdout fd/1

Device Files | 185

Link name Target

stderr fd/2

We have now prepared a basic /dev directory for our target. We will come back to this
directory later to create some additional entries for some types of storage devices. You
can consult Linux Device Drivers by Jonathan Corbet et al. (O’Reilly) for a more com-
plete discussion about device files and device drivers in general.

Creation of /dev Entries Without Root Privileges
Creation tools for the EXT2 and JFFS2 filesystems have been extended by Erik Ander-
sen to allow the creation of /dev entries on the fly using a device table file. With such a
file, it is no longer necessary to log in as root, mount the newly created filesystem, and
use the mknod command to create the device files. Instead, the file creation tool parses
the device table file and creates the entries while it builds the rest of the filesystem,
without requiring root login.

The device_table.txt file in the MTD tools package explains how to write device tables.
Here is an example table for basic devices:

#<name> <type> <mode> <uid> <gid> <major> <minor> <start>
<inc> <count>
/dev d 755 0 0 - - - - -
/dev/mem c 640 0 0 1 1 0 0 -
/dev/kmem c 640 0 0 1 2 0 0 -
/dev/null c 640 0 0 1 3 0 0 -
/dev/zero c 640 0 0 1 5 0 0 -
/dev/random c 640 0 0 1 8 0 0 -
/dev/urandom c 640 0 0 1 9 0 0 -
/dev/tty c 666 0 0 5 0 0 0 -
/dev/tty c 666 0 0 4 0 0 1 6
/dev/console c 640 0 0 5 1 0 0 -
/dev/ram b 640 0 0 1 1 0 0 -
/dev/ram b 640 0 0 1 0 0 1 4
/dev/loop b 640 0 0 7 0 0 1 2

To create a JFFS2 filesystem using such a device table, you just need the standard
mkfs.jffs2 command, found in the MTD tools package. For EXT2, however, you need
to use genext2fs instead of mkfs.ext2. genext2fs supports the same specification table
format. You can find genext2fs at http://genext2fs.sourceforge.net.

udev
The first edition of this book and Red Hat 9.0 were released in the same year. Red Hat
9.0 had over 18,000 files in /dev. We were still in the Linux 2.4 days, and static device
files had reached their climax. The /dev directory in all distributions contained entries
for all the possible devices the system could support, and continued to grow, whenever
the need arose for some kind of new device—not such a rare occurrence!

186 | Chapter 6: Root Filesystem Content

http://genext2fs.sourceforge.net

Things are very different now, as we release the new edition of this book. We have been
using Linux 2.6 for four years, and newly installed Linux systems (for example, in this
case, an Ubuntu 7.04 system) might have only 700 device files in the /dev directory.
Indeed, if you were to mount the / directory from another system, /dev might even be
an empty directory, which means that there aren’t any static device files. We are now
entering what might be eventually described as “the golden days” of dynamic device
files. We’ve been here before, of course—with devfs—but this time, the solution seems
more practical, and built to last, too.

The rise and fall of static device files is easy to explain: it was difficult to implement
dynamic device files in the Linux 2.4 days. We’ll discuss how Linux 2.6 and udev made
dynamic device files easy to implement in today’s Linux systems. We will then look at
why you want to use udev if your embedded system has to support external devices
(and perhaps even just because it’s a better design decision, period).

The need for dynamic devices

Back in the Linux 2.4 days and the proliferation of /dev static device files, the main
problem for user space applications was that they couldn’t tell whether a device was
present on the system by looking at the contents of the /dev directory. All they could
do was try to open a particular device file, and if this operation failed, assume that the
corresponding device was not present.

This situation called for the use of dynamic device files, which cause /dev to contain
only devices files that are ready to use. This removes some unwanted complexity from
user space applications (of course, error handling is still needed, just in case!). As device
information is primarily managed by the kernel, the first dynamic device files were
implemented in Linux 2.3 with devfs.

Even though it had a long life, devfs was never fully adopted by the community, largely
because of major shortcomings. First, there was no flexibility in device names. For
example, the first IDE disk device had to be named either /dev/hda or /dev/ide/hd/
c0b0t0u0. Device driver developers also had to modify their code to add support for
devfs. Last but not least, devfs stored the device-naming policy in kernel memory. This
was a very serious offense, as kernel code usually stays in RAM forever, even if it is used
just once (for a kernel module, at least for the whole time the module is loaded; in
certain other cases, until the kernel specifically frees it—for example, at boot time when
the kernel frees unneeded “init” memory used during early kernel initialization). In
addition, in the common mechanism/policy design philosophy, the kernel is supposed
to implement only the mechanism, and it leaves policy up to user space.

In early Linux 2.6, Greg Kroah-Hartman created a new solution called udev. As sug-
gested by the u character in its name, udev is completely implemented in user space. It
doesn’t have the limitations and shortcomings that any in-kernel implementation
would have.

Device Files | 187

In the beginning, udev took advantage of new kernel services, namely sysfs and the
hotplug infrastructure. sysfs, usually mounted in /sys, makes device, system, and driver
information available to user space. For example, you can enumerate all devices on the
USB bus, and for each device, read its vendor and device ID. Hotplug was introduced
in Linux 2.4 to support USB devices. Whenever a device was inserted or removed, the
kernel executed the /sbin/hotplug program to notify user space programs. For each
subsystem (USB, PCI, etc.), /sbin/hotplug then ran scripts (agents) identifying the hard-
ware and inserting or removing the right driver modules. udev was just one of these
scripts.

The implementation of udev had to evolve because of limitations in the hotplug
infrastructure. First, hotplug processes sometimes executed in the wrong order. For
example, they might not realize that events for partitions in an inserted disk had to be
processed after the disk event itself.

Out-of-memory failures also happened when hotplug got too hot and ran too many
udev processes in a very short time. To overcome these issues, udev had to take over
several parts of the hotplug infrastructure, and eventually completely replaced it. To-
day, this means that udev manages not just device file creation and naming, but also
tasks previously handled by hotplug, such as loading or removing drivers, loading
firmware, and notifying user space programs of events.

Building udev

You can obtain udev sources from the project’s web page (http://kernel.org/pub/linux/
utils/kernel/hotplug/udev.html), and extract them into your ${PRJROOT}/sysapps di-
rectory. We tested this section of the chapter with udev version 110. Let’s start out in
the source directory:

$ cd ${PRJROOT}/sysapps/udev-110

You have to use variables in Guinea hensudev’s Makefile to configure udev features
and the way udev is built. Here are the most useful ones:

DESTDIR
Specifies the root directory in which to install the udev directory structure. Be sure
to set this variable, because udev installs itself by default in /. You may overwrite
the udev software and settings of your workstation distribution if you run
make install without specifying DESTDIR. This could make your workstation
stop working properly.

CROSS_COMPILE
Specifies a cross-compiler prefix, for use when you build udev for a different pro-
cessor architecture or C library. This variable has exactly the same usage as in Linux
kernel compilation.

188 | Chapter 6: Root Filesystem Content

http://kernel.org/pub/linux/utils/kernel/hotplug/udev.html
http://kernel.org/pub/linux/utils/kernel/hotplug/udev.html

USE_STATIC
Set this to true if you want to build udev without dynamic libraries. The default
value is false.

Now compile and install udev. The following command does this for a PowerPC target
with glibc:

$ make CROSS_COMPILE=powerpc-linux- DESTDIR=${PRJROOT}/rootfs install

Starting udev

Near the beginning of your system startup script, or in one of the first system services
that you start, mount /dev as a tmpfs filesystem (tmpfs is a kind of in-memory RAM-
based filesystem backed by kernel virtual memory):

$ mount -t tmpfs udev /dev

Then, populate /dev with static device files, contained in /lib/udev/devices:

$ cp -a -f /lib/udev/devices/* /dev

For example, here are static device files used in Ubuntu 6.10:

$ ls -la /lib/udev/devices
crw------- 1 root root 5, 1 2007-01-31 04:18 console
lrwxrwxrwx 1 root root 11 2007-01-31 04:18 core -> /proc/kcore
lrwxrwxrwx 1 root root 13 2007-01-31 04:18 fd -> /proc/self/fd
crw-r----- 1 root kmem 1, 2 2007-01-31 04:18 kmem
brw------- 1 root root 7, 0 2007-01-31 04:18 loop0
lrwxrwxrwx 1 root root 13 2007-01-31 04:18 MAKEDEV -> /sbin/MAKEDEV
drwxr-xr-x 2 root root 4096 2007-01-31 04:18 net
crw------- 1 root root 1, 3 2007-01-31 04:18 null
crw------- 1 root root 108, 0 2007-01-31 04:18 ppp
drwxr-xr-x 2 root root 4096 2006-10-16 14:39 pts
drwxr-xr-x 2 root root 4096 2006-10-16 14:39 shm
lrwxrwxrwx 1 root root 24 2007-01-31 04:18 sndstat -> /proc/asound/oss/sndstat
lrwxrwxrwx 1 root root 15 2007-01-31 04:18 stderr -> /proc/self/fd/2
lrwxrwxrwx 1 root root 15 2007-01-31 04:18 stdin -> /proc/self/fd/0
lrwxrwxrwx 1 root root 15 2007-01-31 04:18 stdout -> /proc/self/fd/1

The next thing to do is to start /sbin/udevd, the udev daemon. This daemon first reads
and parses all the rules found in /etc/udev/rules.d and keeps them in memory. Whenever
rules are added, removed, or modified, udevd receives an inotify§ event and updates
its ruleset in memory.

udev’s operation

udevd waits for uevents from the kernel core (such as the USB and PCI core drivers),
which are messages sent whenever a device is inserted or removed. When it receives
such an event, udevd starts a process to:

§ The inotify mechanism lets user space programs subscribe to notifications of filesystem changes. See http://
en.wikipedia.org/wiki/Inotify for details.

Device Files | 189

http://en.wikipedia.org/wiki/Inotify
http://en.wikipedia.org/wiki/Inotify

• Try to match an event against udev rules, using information found in the message
itself or extracting device information from /sys. Rules are processed in lexical
order.

• When a matching naming rule is found, create or remove device files.

• When a matching rule is found, execute a specified command, such as loading or
removing a driver module, or notifying user space programs.

The kernel uses netlink sockets to carry uevents. Unlike other means of communication
between kernelspace and user space (system calls, ioctls, /proc or /sys), these sockets
are asynchronous. They are queued and the receiver can choose to process the messages
at its convenience. This lets udevd limit the number of processes it starts, to avoid out-
of-memory issues. With netlink sockets, sending a message to multiple recipients is
also possible (multicasting in networking language).

You can use the udevmonitor command to visualize the driver core events and the
corresponding udev event processes. The following sequence was obtained after in-
serting a USB mouse:

UEVENT[1170452995.094476] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2
UEVENT[1170452995.094569] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2/4-3.2:1.0
UEVENT[1170452995.098337] add@/class/input/input28
UEVENT[1170452995.098618] add@/class/input/input28/mouse2
UEVENT[1170452995.098868] add@/class/input/input28/event4
UEVENT[1170452995.099110] add@/class/input/input28/ts2
UEVENT[1170452995.099353] add@/class/usb_device/usbdev4.30
UDEV [1170452995.165185] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2
UDEV [1170452995.274128] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2/4-3.2:1.0
UDEV [1170452995.375726] add@/class/usb_device/usbdev4.30
UDEV [1170452995.415638] add@/class/input/input28
UDEV [1170452995.504164] add@/class/input/input28/mouse2
UDEV [1170452995.525087] add@/class/input/input28/event4
UDEV [1170452995.568758] add@/class/input/input28/ts2

Each line gives time information measured in microseconds. By a simple subtraction
you can measure the elapsed time between a given uevent (a UEVENT line), and the
completion of the corresponding udev process (the matching UDEV line).

With udevmonitor --env, you can see the kind of information each event carries, which
can be matched against udev rules:

UDEV [1170453642.595297] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2/4-3.2:1.0
UDEV_LOG=3
ACTION=add
DEVPATH=/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2/4-3.2:1.0
SUBSYSTEM=usb
SEQNUM=3417
PHYSDEVBUS=usb
DEVICE=/proc/bus/usb/004/031
PRODUCT=46d/c03d/2000
TYPE=0/0/0
INTERFACE=3/1/2

190 | Chapter 6: Root Filesystem Content

MODALIAS=usb:v046DpC03Dd2000dc00dsc00dp00ic03isc01ip02
UDEVD_EVENT=1

udev rules

Rather than describing udev rules extensively, let’s just review typical rules that dem-
onstrate udev matching capabilities. A full reference is available at http://www.reacti
vated.net/writing_udev_rules.html. The udev manual page on your Linux workstation
is a good reference, too.

The first types of rules are naming rules. iSuch rules make it possible to choose a device
filename from a label or serial number, from a bus device number, from a location on
the bus topology, from a kernel driver name, or from the output of a program:

Naming testing the output of a program
BUS=="scsi", PROGRAM="/sbin/scsi_id", RESULT=="OEM 0815", NAME="disk1"

USB printer to be called lp_color
BUS=="usb", SYSFS{serial}=="W09090207101241330", NAME="lp_color"

SCSI disk with a specific vendor and model number will be called boot
BUS=="scsi", SYSFS{vendor}=="IBM", SYSFS{model}=="ST336", NAME="boot%n"

sound card with PCI bus id 00:0b.0 to be called dsp
BUS=="pci", ID=="00:0b.0", NAME="dsp"

USB mouse at third port of the second hub to be called mouse1
BUS=="usb", PLACE=="2.3", NAME="mouse1"

ttyUSB1 should always be called pda with two additional symlinks
KERNEL=="ttyUSB1", NAME="pda", SYMLINK="palmtop handheld"

As an example of a way to manipulate this data, you can use serial numbers to mark
the difference between two identical color printers, such as one with photo-quality
cartridges and one with regular cartridges for ordinary documents.

udev rules can also be used to control the group and permissions of the device files
created:

BUS=="usb", GROUP="plugdev"
SUBSYSTEM=="sound", GROUP="audio"
KERNEL=="ttyLTM[0-9]*", GROUP="dialout", MODE="0660"

Last but not least, udev rules can be used to identify the right driver module to load or
remove. Here are some example modprobe rules:

SUBSYSTEM!="ide", GOTO="ide_end"
IMPORT{program}="ide_media --export $devpath"
ENV{IDE_MEDIA}=="cdrom", RUN+="/sbin/modprobe -Qba ide-cd"
ENV{IDE_MEDIA}=="disk", RUN+="/sbin/modprobe -Qba ide-disk"
ENV{IDE_MEDIA}=="floppy", RUN+="/sbin/modprobe -Qba ide-floppy"
ENV{IDE_MEDIA}=="tape", RUN+="/sbin/modprobe -Qba ide-tape"
LABEL="ide_end"
SUBSYSTEM=="input", PROGRAM="/sbin/grepmap --udev", \
 RUN+="/sbin/modprobe -Qba $result"

Device Files | 191

http://www.reactivated.net/writing_udev_rules.html
http://www.reactivated.net/writing_udev_rules.html

Load drivers that match kernel-supplied alias
ENV{MODALIAS}=="?*", RUN+="/sbin/modprobe -Q $env{MODALIAS}"

In the case of our USB mouse, modprobe is run with the value of the MODALIAS environ-
ment variable. To identify the driver module to load, it tries to find a matching line in
the /lib/modules/kernel-version/modules.alias file.

How does it work? PCI or USB drivers announce the devices they support, denoting
them by vendor IDs, product IDs, or device classes. When modules are installed, such
information is stored in modules.alias. In this file, you can see that the line correspond-
ing to the USB mouse driver can match several product and vendor IDs:

alias usb:v*p*d*dc*dsc*dp*ic03isc01ip02* usbmouse

When our USB mouse is inserted, you can see from the output of udevmonitor --env
that the MODALIAS environment variable matches the previous line from the file:

MODALIAS=usb:v046DpC03Ed2000dc00dsc00dp00ic03isc01ip02

Coldplugging

What about device files for devices that were already present when the system was
started? udev offers an elegant solution to this scenario. After starting the udev daemon,
you can use the udevtrigger utility to have the kernel emit uevents for all devices present
in /sys.

Thanks to udevtrigger, legacy and removable devices are handled and named in exactly
the same way. Whether a device has been hotplugged or not is completely transparent
to user space.

Kernel configuration

udev’s operation requires a kernel compiled with several settings. Here are the ones
needed in a 2.6.20 kernel:

Hotplugging support

General setup
CONFIG_HOTPLUG=y

Networking support, for netlink sockets

Networking, networking options
CONFIG_NET=y
CONFIG_UNIX=y
CONFIG_NETFILTER_NETLINK=y
CONFIG_NETFILTER_NETLINK_QUEUE=y

Pseudofilesystems, to manage /dev

Pseudofilesystems
CONFIG_PROC_FS=y
CONFIG_SYSFS=y

192 | Chapter 6: Root Filesystem Content

CONFIG_TMPFS=y
CONFIG_RAMFS=y

Of course, support for kernel core subsystems (such as USB and PCI) and drivers should
be added, too.

Lightweight udev implementation: BusyBox mdev

Embedded system makers found that udev wasn’t always well suited for very small
systems. The main reason is that, although udev executables are small C executables,
the udevd daemon can consume more than 1 MB of RAM, probably because it keeps
its rules in memory.

The BusyBox toolset, covered in the next section, offers a lightweight implementation
of udev called mdev. You may be interested in mdev if saving 1 MB of RAM matters to
your system.

Here’s a typical system startup scheme using mdev:

1. Mount /sys:

mount -t sysfs none /sys

2. Mount a tmpfs filesystem on /dev:

mount -t tmpfs mdev /dev

3. Instruct the kernel to call /bin/mdev every time a hotplug event happens:

echo /bin/mdev > /proc/sys/kernel/hotplug

4. Populate /dev with devices already found in /sys:

mdev -s

Note that mdev relies on the original hotplug infrastructure, as udev used to do. Because
it doesn’t use netlink sockets, mdev doesn’t have to stay running, and therefore doesn’t
consume RAM permanently. This is another advantage for very small systems.

mdev doesn’t have the sophisticated naming capabilities of udev; it just uses raw device
information found in /sys to name device files. However, an /etc/mdev.conf file lets you
control the permissions and ownership of device files. For each entry in this file, a
dedicated script can also be specified, for example, to rename device files or to notify
user space processes.

Extra details about BusyBox mdev can be found in the docs/mdev.txt file in BusyBox
sources.

Main System Applications
Beyond the kernel’s functionality and the root filesystem’s structure, Linux inherits
Unix’s very rich command set. The problem is that a standard workstation or server
distribution comes equipped with thousands of command binaries, each providing its

Main System Applications | 193

own set of capabilities. Obviously, developers cannot be expected to cross-compile
such a large amount of binaries one by one, nor do most embedded systems require
such a large body of binaries.

There are, therefore, two possibilities: choose a few select standard commands, or try
to group as many commands as possible into a very few trimmed-down applications
that implement the essential overall functionality. We will start by discussing the first
approach, but we don’t favor it because it is tedious at best. Instead, we will mostly
focus on the second approach and the various projects that implement it. In particular,
we will discuss BusyBox (including TinyLogin) and embutils, which are the main pack-
ages used for this purpose.

Complete Standard Applications
If you would like to selectively include some of the standard applications found in
mainstream distributions, your best bet is to start with the Linux From Scratch project,
located at http://www.linuxfromscratch.org. This project aims to provide explanations
and links to packages to help you build your own custom distributions. Linux From
Scratch, available through the project’s website, is its main documentation. It includes
instructions and links to build each application one by one. For each package, the
instructions provide build-time and disk-space estimates.

Alternatively, you can download applications off the Net one by one and follow each
package’s instructions for compiling and cross-compiling. Because few packages in-
clude full cross-compilation instructions, you may need to look in the packages’ Make
files to determine the appropriate build flags or make the proper modifications for the
packages to cross-compile adequately.

BusyBox
The BusyBox project was initiated by Bruce Perens in 1996 to help build install disks
for the Debian distribution. In December 1999, Eric Andersen, the maintainer of
uClibc, revived the project, first as part of Lineo’s open source efforts and then as a
vendor-independent project. Since then, the embedded Linux market has exploded in
growth and the BusyBox project has grown dramatically in features and user base.
Busybox can now be found in most embedded Linux systems and in all embedded
Linux distributions, and it has a very active user community. The project’s location is
http://www.busybox.net. The website includes documentation, downloads, links, and
a mailing list archive. BusyBox is available under the GNU GPL.

Enthusiasm for BusyBox stems from the functionality it provides while still remaining
a very small-size application. BusyBox implements most Unix commands through a
single executable that is less than 1 MB (statically linked with glibc) or less than 500
KB (statically linked with uClibc). BusyBox even includes a DHCP client and server
(udhcpc and udhcpd), package managers (dpkg and rpm), a vi implementation with most

194 | Chapter 6: Root Filesystem Content

http://www.linuxfromscratch.org
http://www.busybox.net

of its features, and last but not least, a web server. This server should satisfy the typical
needs of many embedded systems, as it supports HTTP authentication, CGI scripts,
and external scripts (such as PHP). Configuring support for this server with all its fea-
tures adds only 9 KB to BusyBox 1.5.0 (dynamically linked to glibc on i386).

You can save an enormous amount of storage space—perhaps tens of megabytes—
using BusyBox instead of the standard versions of the utilities it contains. You’ll also
save a lot of time and find it easier to implement a simple system, because you don’t
have to configure and build the sources of each tool.‖

Although BusyBox does not support all the options provided by the commands it re-
places, the subset it provides is sufficient for most typical uses. The docs directory of
the BusyBox distribution contains its documentation in a number of different formats.

BusyBox supports all the architectures covered in Chapter 3. It can be linked both
statically and dynamically to glibc or uClibc.

Setup

First, you need to download a copy of the BusyBox package from the project’s website
and into your ${PRJROOT}/sysapps directory. We will be using BusyBox 1.4.2 for the
example in this section.

Once the package is extracted, move into its directory for the rest of the setup:

$ cd ${PRJROOT}/sysapps/busybox-1.4.2

Since version 1.3, BusyBox uses exactly the same configuration tools as the Linux 2.6
kernel. Hence, the Config.in files describing configuration parameters have the same
syntax as the kernel Kconfig ones. Likewise, all configuration settings are stored in
a .config file in the root source directory, which can be created with the same configu-
ration commands:

make xconfig
This command starts the qconf Qt-based graphical interface, used for configuring
the Linux kernel. However, the BusyBox releases do not include the qconf version
from the latest kernel releases. For example, BusyBox 1.4.2 qconf shipped without
the search functionality that appeared in the Linux version available at that time.

make gconfig
This command starts the GTK equivalent of qconf.

‖ Some people insist on using the term GNU/Linux instead of just Linux to stress the huge contribution of the
GNU project and insist on its core values. While the GNU development toolchains are still essential, many
embedded Linux systems using BusyBox and the uClibc library no longer include any GNU components at
all. Such systems could thus be called BusyBox/Linux.

Main System Applications | 195

make menuconfig
This text-based interface, based on the ncurses library, is the one most BusyBox
users are familiar with. It had been the friendliest configuration tool available in
the years before the kernel configuration interface was introduced.

make defconfig
This command gives a generic configuration to BusyBox. It enables most common
options and can be used as an initial configuration for people trying BusyBox for
the first time.

make allnoconfig
This command configures BusyBox with only a strict minimum of options enabled.
It is typically run before one of the configuration interfaces, because it helps build
an embedded system containing only the features the system needs.

make oldconfig
Do not be confused by the name of this command. It is not an old way of config-
uring BusyBox. Instead, it is meant to process an existing .config file, typically from
an older version. Whenever a new parameter is introduced, this command-line
interface asks the user to choose a value, rather than silently picking a default one,
as make xconfig, make gconfig, or make menuconfig do.

Using this command is also essential after making manual changes in the .config
file. Many configuration options have dependencies on others, so when you enable
a given option, it may require new ones. For example, once you enable support for
the ls command, you need to set each of the optional features for this command
to y or n. make oldconfig prompts you for values for undefined options, and there-
fore avoids failures in compilation.

make help
This is not a configuration command, but it explains all the available Makefile
targets, such as make clean, make mrproper, and make install. You can use this
command on newer versions of BusyBox to learn about new Makefile capabilities.

Because the .config file contains Makefile variable definitions included by the main
Makefile, it is also possible to define configuration settings on the make command line.

Compilation

BusyBox has several configuration options to control the way it is built. The main one
is CONFIG_STATIC. By default, BusyBox is dynamically linked with the C library. How-
ever, in small systems using only BusyBox and a few small extra binaries, it can make
sense to compile everything statically (by setting CONFIG_STATIC=y for BusyBox). This
way, the whole C library is no longer needed in the filesystem, making the system
simpler and often smaller because unused parts of the C library symbols are not
included.

196 | Chapter 6: Root Filesystem Content

Since version 1.3, the choice of a compiler or a cross-compiler is no longer made in the
configuration file, but instead in the same way as in the Linux kernel, with the same
ARCH and CROSS_COMPILE settings. This was explained in detail in Chapter 5.

Once BusyBox is configured, you can compile and install it. When linking with glibc,
use the following command:

$ make ARCH=ppc CROSS_COMPILE=powerpc-linux- \
> CONFIG_PREFIX=${PRJROOT}/rootfs install

CONFIG_PREFIX is set to the root filesystem base directory. The Makefile will install all
BusyBox’s components within this directory.

To build BusyBox with uClibc instead of the GNU C library, use the following
command:

$ make ARCH=ppc CROSS_COMPILE=powerpc-uclibc- \
> CONFIG_PREFIX=${PRJROOT}/rootfs install

BusyBox is now installed on your target’s root filesystem and ready to be used.

Usage

To understand how best to use BusyBox, let’s first take a look at the components
BusyBox’s build process installs on the target’s root filesystem. As expected, only one
executable was installed, /bin/busybox. This is the single binary with support for the
configured commands. This binary is never called directly, however; instead, symbolic
links bearing the original commands’ names have been created to /bin/busybox. Such
symbolic links have been created in all the directories in which the original commands
would be found, including /bin, /sbin, /usr/bin, and /usr/sbin.

When you type a command during the system’s normal operation, the busybox com-
mand is invoked via the symbolic link. In turn, busybox determines the actual command
you were invoking, using the name being used to run it. /bin/ls, for instance, points
to /bin/busybox. When you type ls, the busybox command is called and it determines
that you were trying to use the ls command, because ls is the first argument on the
command line.#

Although this scheme is simple and effective, it means you can’t use arbitrary names
for symbolic links. Creating a symbolic link called /bin/dir to either /bin/ls or /bin/busy
box will not work, because busybox does not recognize the dir command.

Note that, although symbolic links are the usual way of linking commands to /bin/
busybox, BusyBox can also be instructed to create hard links instead of symbolic ones
during its installation. Its behavior at runtime is the same, regardless of the type of links
used.

Like any other application, busybox’s main() function is passed to the command line used to invoke it.

Main System Applications | 197

The documentation on the project’s website, which is also provided with the package,
describes all the options available for each command supported. In most cases, the
options supported by BusyBox have the same functions as the options provided by the
original commands. For instance, using the -al options with BusyBox’s ls will have the
same effect as using the same options with the original ls.

When using one of the shells provided in BusyBox, such as ash, hush, lash, or msh, you
will find it convenient to use a /etc/profile file to define a few global variables for all shell
users. Here is a sample /etc/profile file for a single-user target:

Set path
PATH=/bin:/sbin:/usr/bin:/usr/sbin
export PATH

In addition to setting the path, you could set the LD_LIBRARY_PATH environment variable,
which is used during the startup of each application to locate the libraries it depends
on. Though the default location for libraries is /lib, your system may have libraries
located in other directories. If that is the case, you can force the dynamic linker to look
for the other libraries by adding the appropriate directory paths to LD_LIBRARY_PATH. As
with the PATH environment variable, you can add more directories to the library path
by placing colons between directory paths.

Note that on a workstation or a server, LD_LIBRARY_PATH would actually be used only
as a temporary holding place for new library paths. To permanently add another library
path, the administrator would edit /etc/ld.so.conf and run the ldconfig command to
consult that file and generate /etc/ld.so.cache, which is itself read by the dynamic linker
to find libraries for dynamically linked applications. Although ldconfig was generated
when we compiled glibc in Chapter 4, it is a target binary and cannot be run on the
host to generate a target ld.so.cache. So, you can expect many embedded systems to
have no /etc/ld.conf and instead rely on the LD_LIBRARY_PATH technique.

TinyLogin: BusyBox logging utilities

TinyLogin used to be another collection of utilities maintained by the developers of
BusyBox. A single binary like BusyBox, it implemented the following commands:
addgroup, adduser, delgroup, deluser, getty, login, passwd, su, sulogin, and vlock.

There were several reasons to keep the TinyLogin functionality separate from BusyBox.
The main one was that many of the commands implemented in TinyLogin had to run
with root privileges, which in turn required that the TinyLogin binary file belong to the
root user and have its “set user” permission bit enabled, a configuration commonly
known as “setuid root.” Since TinyLogin used symbolic links in the same way BusyBox
does, a single binary containing the functionality of both packages would also result in
having commands such as ls and cat run as root, which increased the likelihood that a
programming error in any one command could be exploited to gain root privileges.

198 | Chapter 6: Root Filesystem Content

However, as you can see from the original TinyLogin website, http://tinylogin.busy
box.net, the project hasn’t been updated since 2003. These logging utilities are now
actively maintained in BusyBox.

To address the setuid security issues, BusyBox drops its root privileges for applets that
don’t require root access. It can also be configured to check the /etc/busybox.conf con-
figuration file specifying those privileged applets. For the most paranoid users, the
safest solution is still to build two separate BusyBox binaries, one for privileged applets
and one for unprivileged applets.

Among the options you can configure, pay special attention to the
CONFIG_FEATURE_SHADOWPASSWD, CONFIG_USE_BB_SHADOW, and CONFIG_USE_BB_PWD_GRP con-
figuration options, which are documented in the configuration interface. The most
important one is CONFIG_FEATURE_SHADOWPASSWD, which adds support for passwords en-
crypted in a separate /etc/shadow file.

Traditionally, /etc/passwd could be read by anyone in the system, and this in turn be-
came a security risk as more and more programs for cracking passwords were available.
Hence, the use of so-called shadow passwords became the norm. When in use, the
password fields in /etc/passwd contain only filler characters. The real encrypted pass-
words are stored in /etc/shadow, which can be read only by a process running with root
privileges. Note that if you configure uClibc without shadow password support, ena-
bling CONFIG_FEATURE_SHADOWPASSWD and linking with uClibc will result in a failed build.

You should enable CONFIG_USE_BB_SHADOW to let BusyBox use its own shadow functions
for accessing shadow passwords, unless you plan to use glibc’s NSS libraries with a
properly configured /etc/nsswitch.conf file.

If you enable CONFIG_USE_BB_PWD_GRP, the logging utilities will directly use the /etc/
passwd and /etc/group files instead of using the password and group functions provided
by glibc. Otherwise, you will also need the C library NSS libraries and a /etc/
nsswitch.conf file.

Note that you will not need to create and manage the /etc/group, /etc/passwd, and /etc/
shadow files by hand, as the addgroup, adduser, delgroup, and deluser commands take
care of creating or updating these files.

For more information on the creation and manipulation of group, password, or shadow
password files, as well as system administration in general, see the Linux System Ad-
ministrator’s Guide (O’Reilly, also available from the Linux Documentation Project
[LDP]), Running Linux, and the Linux From Scratch book (mentioned earlier in “Com-
plete Standard Applications”).

embutils
embutils is another set of miniaturized and optimized replacements for mainstream
Unix commands. Although embutils groups some of the commands in a single binary,

Main System Applications | 199

http://tinylogin.busybox.net
http://tinylogin.busybox.net

its main approach is to provide one small binary for each command. embutils was
written and is maintained by Felix von Leitner, the author of diet libc, with goals very
similar to those of diet libc. embutils is available at http://www.fefe.de/embutils/.*

Though it supports many of the most common Unix commands, embutils is still far
from being as exhaustive as BusyBox. For example, at the time of this writing, version
0.18 still lacks fbset, find, grep, ifconfig, ps, and route. It doesn’t offer any shell command
either.

As with BusyBox, not all the options provided by the full commands are supported,
but the subset provided is sufficient for most system operations. In contrast to BusyBox,
however, embutils must be statically linked with diet libc. It can’t be linked to any other
library. Because diet libc is already very small, the resulting command binaries are
reasonably small, too. This can make embutils a better choice than BusyBox when just
a few binaries are needed, because the overall size is smaller.

Setup

Before you start the setup, you will need to have diet libc installed on your host system,
as described in Chapter 4. Then, download embutils and extract it into your
${PRJROOT}/sysapps directory. For this example, we use embutils 0.18. You can move
into the package’s directory for the rest of the setup:

$ cd ${PRJROOT}/sysapps/embutils-0.18

There is no configuration capability for embutils. You can, therefore, build the package
right away:

$ make ARCH=ppc CROSS=powerpc-linux- all

You can then install embutils:

$ make ARCH=ppc DESTDIR=${PRJROOT}/rootfs prefix="" install

The options and variables used in the build and installation of embutils have the same
meaning as those used for diet libc.

Usage

The embutils installation procedure copies quite a few statically linked binaries to your
target root filesystem’s /bin directory. In contrast to BusyBox, this is the only directory
where binaries are installed.

A BusyBox-like all-in-one binary has also been installed, allinone. This binary reacts
the same way as BusyBox when proper symbolic links are created to it. Note that unlike
BusyBox, you need to create these symbolic links manually, because they are not created
automatically by the installation scripts. allinone supports the following commands, as
revealed by the allinone.c file:

* As with diet libc, the trailing slash (“/”) is important.

200 | Chapter 6: Root Filesystem Content

http://www.fefe.de/embutils/

arch pwd

basename sleep

clear sync

chvt tee

dirname true

dmesg tty

domainname uname

echo which

env whoami

false yes

hostname

Custom Applications
There are many places in the root filesystem where you can put your own application,
depending on the number and types of components it has. Usually, it is preferable to
follow the FHS’s guidelines.

If your application consists of a relatively small number of binaries, placing them
in /bin is probably the best choice. This is the actual installation path used for the control
daemon in Chapter 4.

If your application consists of a complex set of binaries, and possibly datafiles, consider
adding an entry in the root filesystem for your project. You may either call this new
directory project or name it after your own project. In the case of our control module,
this directory could be control-module.

The custom directory can contain a hierarchy of its own that you can customize to best
suit your needs. You may have to set the PATH environment variable on your target to
include the custom directory if your binaries are placed there.

Note that the addition of a custom entry in the root filesystem is contrary to the FHS.
This is a forgivable violation of the standard, however, because your filesystem is cus-
tom built for your target and is unlikely to become a distribution of its own.

System Initialization
System initialization is yet another particularity of Unix systems. As explained in
Chapter 2, the kernel’s last action during initialization is to start the init program. This
program is in charge of finalizing system startup by spawning various applications and
starting some key software components. In most Linux systems, init mimics System V
init and is configured much the same way. In embedded Linux systems, the flexibility
of System V init is overkill, because they rarely run as multiuser systems.

Custom Applications | 201

There is no actual requirement for you to have a standard init program, such as System
V init, on your root filesystem. The kernel itself doesn’t really care. All it needs is an
application it can start once it’s done initializing the system. For instance, you can add
an init=path_to_your_init boot parameter to tell the kernel to use your main applica-
tion as its init. There are, however, drawbacks to this approach, because your applica-
tion will be the one and only application the kernel ever starts. Your application would
then be responsible for starting other applications on the system. Furthermore, if your
application unexpectedly dies, its exit will cause a kernel panic followed by a system
reboot, as would an unexpected exit of System V init. Though this may be the desired
behavior in some cases, it would usually render an embedded system useless. For these
reasons, generally it is much safer and useful to actually have a real init on your root
filesystem.

The following subsections cover the standard init package found in most Linux distri-
butions, the BusyBox init, and Minit, a miniature init provided by the author of embutils
and diet libc.

As with other issues in Unix, init is a broad subject. There are quite a few documents
that discuss Linux init at length. Running Linux describes the mainstream workstation
and server init setups. Alessandro Rubini wrote a very interesting piece about init that
goes into the nuances of the various initialization schemes, available at http://www.li
nux.it/kerneldocs/init.

Standard System V init
The standard init package found in most Linux distributions was written by Miquel
van Soorenburg and is available at ftp://ftp.cistron.nl/pub/people/miquels/sysvinit. Using
this package gives you the same flexibility to configure your target’s startup that you
would have configuring the startup of a workstation or a server. However, the extra
functionality and flexibility require additional space. Also, it requires that you keep
track of the development of yet another software package. The 2.86 version of the
package includes the following commands:

bootlogd poweroff

halt reboot

init runlevel

killall5 shutdown

last sulogin

mesg telinit

mountpoint utmpdump

pidof wall

202 | Chapter 6: Root Filesystem Content

http://www.linux.it/kerneldocs/init
http://www.linux.it/kerneldocs/init
ftp://ftp.cistron.nl/pub/people/miquels/sysvinit

The package can be cross-compiled easily. First, download the package and uncom-
press it into your ${PRJROOT}/sysapps directory. For our control module, we used
sysvinit version 2.86. Then, move into the package’s source directory and build it:

$ cd ${PRJROOT}/sysapps/sysvinit-2.86/src
$ make CC=powerpc-linux-gcc

Replace the value of CC to match the cross-compiler for your target. With the package
now built, you can install it on the target’s root filesystem:

$ make BIN_OWNER="$(id -un)" BIN_GROUP="$(id -gn)" \
> ROOT=${PRJROOT}/rootfs install

This command will install all the binaries in the target’s root filesystem, but it will fail
afterward because the Makefile tries to install the manpages on the root filesystem as
well. You can modify the Makefile to avoid this, but you can also ignore the failure
message.

The previous command sets the BIN_OWNER and BIN_GROUP variables to be that of your
own current user. By default, the Makefile attempts to install the various components
and set their ownership to the root user. Since you aren’t logged in as root, the
Makefile would fail. The ownership of the binaries matters little on the target, because
it generally isn’t a multiuser system. If it is, however, you need to log in as root and run
the make install command. Be very careful, in any case, to appropriately set the value
of ROOT to point to your target’s root filesystem. Otherwise, you may end up overwriting
your workstation’s init with a target binary. Alternatively, to avoid having to log in as
root, you could still run the installation command using your normal user privileges
and then use the chown command as root to change the privileges on each file installed.
This, however, involves going through the Makefile to find each installed file and its
destination.

With init installed on your target’s root filesystem, you will need to add the appropri-
ate /etc/inittab file and fill the /etc/rc.d directory with the appropriate files. In
essence, /etc/inittab defines the runlevels for your system, and the files in /etc/rc.d define
which services run on each runlevel. Table 6-5 lists init’s seven runlevels and their
typical uses in a workstation and server distribution.

Table 6-5. System V init runlevels

Runlevel Description

0 System is halted.

1 Only one user on system; no need for login.

2 Multiuser mode without NFS, command-line login.

3 Full multiuser mode, command-line login.

4 Unused.

5 X11, graphical user interface login.

6 Reboot the system.

System Initialization | 203

Each runlevel corresponds to a certain set of applications. When entering runlevel 5 on
a workstation, for example, init starts X11 and the user is prompted to enter his user-
name and password using a graphical login. When switching between runlevels, the
services started in the previous runlevel are shut down and the services of the new
runlevel are started.

In this scheme, runlevels 0 and 6 have a special meaning: they are used for stopping
the system safely. This may involve, for example, remounting the root filesystem in
read-only mode—to avoid filesystem corruption when the system is halted—and un-
mounting all the other filesystems.

On most workstations, the default runlevel at system startup is 5. For an embedded
system, it can be set to 1 if no access control is necessary. The system’s runlevel can be
changed after system startup using either init or telinit, which is a symbolic link to
init. In both cases, the newly issued init command communicates with the original
init through the /dev/initctl FIFO. To this end, we need to create a corresponding entry
in our target’s root filesystem:

$ mknod -m 600 ${PRJROOT}/rootfs/dev/initctl p

For more information on the format of /etc/inittab and the files found in /etc/rc.d, refer
to the resources mentioned earlier.

BusyBox init
Among the commands it supports by default, BusyBox provides init-like capabilities.
BusyBox init is particularly well adapted to embedded systems because it provides most
of the init functionality an embedded system typically needs without dragging the
weight of the extra features found in System V init. Also, because BusyBox is a single
package, there is no need to keep track of an additional software package when devel-
oping or maintaining your system. There are cases, however, where BusyBox init may
not be sufficient, for example, it does not support multiple runlevels.

Since we already described how to obtain, configure, and build BusyBox, we will limit
this discussion to the setup of the init configuration files.

Because /sbin/init is a symbolic link to /bin/busybox, BusyBox is the first application to
run on the target system. BusyBox identifies that the command being invoked is init
and immediately jumps to the init routine.

BusyBox’s init routine carries out the following main tasks in order. (Action types are
defined in the inittab file, described later in this section.)

1. Sets up signal handlers for init.

2. Initializes the console. By default, it uses the device specified with the kernel’s
console boot option. If no console was specified to the kernel, BusyBox tries to
use /dev/console.

3. Parses the inittab file, /etc/inittab.

204 | Chapter 6: Root Filesystem Content

4. Runs the system initialization script. (/etc/init.d/rcS is the default for BusyBox.)

5. Runs all the inittab commands that block (action type: wait).

6. Runs all the inittab commands that run only once (action type: once).

After completing these steps, the init routine loops forever, carrying out the following
tasks:

1. Runs all the inittab commands that have to be respawned (action type: respawn).

2. Runs all the inittab commands that have to be asked for first (action type: askfirst).

3. Waits for child processes to exit.

After having initialized the console, BusyBox checks for the existence of an /etc/init
tab file. If no such file exists, BusyBox uses a default inittab configuration. Mainly, it
sets up default actions for system reboot, system halt, and init restart. Also, it sets up
actions to start shells on the console and on the virtual consoles from /dev/tty2 to /dev/
tty4, although it will skip consoles without complaining if you haven’t created the
virtual console device entries.

If an /etc/inittab file is found, it is parsed, and the commands it contains are recorded
inside internal structures to be carried out at the appropriate time. The format of the
inittab file as recognized by BusyBox is well explained in the documentation included
in the BusyBox package, which also includes an elaborate example inittab file.

Each line in the inittab file follows this format:

id:runlevel:action:process

Although this format resembles that of traditional System V init, take note that the
meaning of id is different in BusyBox init. Mainly, the id is used to specify the con-
trolling tty for the process to be started. If you leave this entry empty, BusyBox init will
use the system console, which is fine when the process to be started isn’t an interactive
shell, or when you start a shell on the console. BusyBox completely ignores the
runlevel field, so you can leave it blank. The process field specifies the path of the
program to run, along with its command-line options. The action field is one of eight
recognized actions to be applied to process, as described in Table 6-6.

Table 6-6. Types of inittab actions recognized by BusyBox init

Action Effect

sysinit Provides init with the path to the initialization script.

respawn Restarts the process every time it terminates.

askfirst Similar to respawn, but is mainly useful for reducing the number of terminal applications running on the
system. It prompts init to display “Please press Enter to activate this console.” at the console and waits for the
user to press Enter before starting the process.

wait Tells init that it has to wait for the process to complete before continuing.

once Runs the process only once without waiting for its completion.

System Initialization | 205

Action Effect

ctrlaltdel Runs the process when the Ctrl-Alt-Delete key combination is pressed.

shutdown Runs the process before shutting the system down.

restart Runs the process when init restarts. Usually, the process to be run here is init itself.

The following is a simple inittab file for our control module:

::sysinit:/etc/init.d/rcS
::respawn:/sbin/getty 115200 ttyS0
::respawn:/control-module/bin/init
::restart:/sbin/init
::shutdown:/bin/umount -a -r

This inittab file does the following:

1. Sets /etc/init.d/rcS as the system initialization file.

2. Starts a login session on the serial port at 115200 bps.

3. Starts the control module’s custom software initialization script.

4. Sets /sbin/init as the program to execute if init restarts.

5. Tells init to run the umount command to unmount all filesystems it can at system
shutdown and set the others as read-only to preserve the filesystems.

However, none of these actions takes place until init runs the system initialization script.
This script can be quite elaborate and can actually call other scripts. Use it to set all the
basic settings and initialize the various components of the system that need special
handling. Particularly, this is a good place to:

• Remount the root filesystem in read-write mode.

• Mount additional filesystems.

• Initialize and start networking interfaces.

• Start system daemons.

Here is the initialization script for the control module:

#!/bin/sh

Remount the root filesystem in read-write (requires /etc/fstab)
mount -n -o remount,rw /

Mount /proc filesystem
mount /proc

Start the network interface
/sbin/ifconfig eth0 192.168.172.10

This initialization script depends on the existence of an /etc/fstab file in the target’s root
filesystem. We won’t discuss the contents and use of this file, because it is already
explained in many documentation sources, such as the fstab manpage and Running

206 | Chapter 6: Root Filesystem Content

Linux. Nevertheless, here’s the /etc/fstab file used for the development of my control
module:

/etc/fstab
device directory type options
#
/dev/nfs / nfs defaults
none /proc proc defaults

In this case, we mount the target’s root filesystem on NFS to simplify development.
Chapter 8 discusses filesystem types, and Chapter 9 discusses NFS mounts.

Minit
Minit is part of the miniaturized tools developed by Felix von Leitner, such as diet libc
and embutils, and is available at http://www.fefe.de/minit/.† As with the other tools
distributed by Felix, Minit requires a properly configured diet libc.

Minit’s initialization procedure is a complete departure from the traditional System V
init. Instead of using /etc/inittab, for instance, Minit relies on the existence of a properly
built /etc/minit directory. Firdtjof Busse provides a description of how Minit operates
at http://www.fbunet.de/minit.shtml. He also provides pointers to example /etc/minit
directories.

By default, Minit’s Makefile installs Minit components in the host’s root filesystem.
You can use the DESTDIR Makefile variable to install Minit in another directory:

$ make DESTDIR=${PRJROOT}/rootfs install

—Michael Opdenacker

† As with the other tools available from fefe.de, the last slash (“/”) is important.

System Initialization | 207

http://www.fefe.de/minit/
http://www.fbunet.de/minit.shtml

The storage devices used in embedded systems are often quite different from those used
in workstations and servers. Embedded systems tend to use solid-state storage devices,
such as flash chips and flash disks. As with any other component of the Linux system,
these devices must be properly set up and configured to be used by the kernel. Because
these storage devices differ greatly from typical workstation and server disks, the tools
to manipulate them (for partitioning, copying files, and erasing, for instance) are also
different. These tools are the subject of this chapter.

In this chapter, we will discuss the manipulation of embedded storage devices for use
with Linux. We will start with our primary topic: the manipulation of devices supported
by the memory technology device (MTD) subsystem. We’ll also briefly cover the ma-
nipulation of disk devices. If you intend to use a conventional disk device as part of
your system, however, we recommend that you look at one of the books that discusses
Linux system maintenance, such as O’Reilly’s Running Linux by Matthias Dalheimer
and Matt Welsh for more extensive coverage. The last section of this chapter will cover
the use of swap in embedded systems.

MTD-Supported Devices
As we saw in “Memory Technology Devices” in Chapter 3, the MTD subsystem is rich
and elaborate. To use it on your target, you will need a properly configured kernel and
the MTD tools available from the project’s website. We will discuss both of these issues.

As with other kernel subsystems, the development of the MTD subsystem is closely
linked with the upstream kernel, and the best way to ensure you have the latest func-
tionality and bug fixes is to make sure you run the latest Linux kernel. For bleeding-
edge requirements, there is a git repository at git://git.infradead.org/mtd-2.6.git that
contains the latest changes due for inclusion in the next development cycle of the Linux
kernel. It is also often helpful to follow the MTD mailing list or peruse its archive.

In the following sections, we will discuss the basic use of the MTD subsystem. We’ll
cover issues such as configuring the kernel, installing the required utilities, and creating

CHAPTER 7

Storage Device
Manipulation

209

git://git.infradead.org/mtd-2.6.git

appropriate entries in the /dev device directory. We will then focus on the use of the
MTD subsystem with the solid-state storage devices most commonly used in embedded
Linux systems: native common flash interface (CFI)-compliant NOR flash and NAND
flash. We will also briefly cover the popular DiskOnChip devices.

MTD Usage Basics
Having already covered the detailed architecture of the MTD subsystem, we can now
concentrate on the actual practical use of its components. First, we will discuss how
MTD storage devices are presented to user space, including the /dev entries required
for MTD abstractions. Second, we will discuss the basic MTD kernel configuration
options. Third, we will discuss the tools available to manipulate MTD storage devices
in Linux. Finally, we will describe how to install these tools both on the host and on
the target.

MTD /dev entries

Traditional Unix knows two types of devices: character and block. Memory technology
devices are not a perfect match for either of these abstractions, since they share char-
acteristics of both and have their own unique limitations.

The primary method of access to “raw” devices from user space is through a character
device, /dev/mtdN. This offers basic read and write functionality, along with ioctl access
to the erase function and other functionality, such as locking.

For compatibility with device node registration, which predates the MTD infrastruc-
ture, there are also read-only versions of the same devices, /dev/mtdrN. These devices
serve no particular purpose except to confuse users by ensuring that there is not a 1:1
mapping between the device name and the minor device number. Each mtdN device has
minor number N*2, while the corresponding read-only device mtdrN has minor number
N*2 + 1.

Additionally, there are various types of “translation layers” that allow flash devices to
be used as if they were standard block devices. These translation layers are forms of
pseudofilesystems that plays tricks to pretend to be a normal hard drive with individ-
ually overwritable 512-byte sectors. They are generally designed for compatibility with
existing devices in the field, and usually provide some form of wear levelling and power-
fail resilience, as well as mapping out bad blocks on NAND flash.

The most naïve implementation of a translation layer is the mtdblock driver, which
provides /dev/mtdblockN devices, with a 1:1 mapping between logical and physical sec-
tors. The illusion of being able to overwrite 512-byte sectors individually is provided
by reading an entire erase block into RAM, modifying the changed sectors, and then
erasing and rewriting the flash. This, obviously, provides no reliability in the face of
power loss or kernel crashes—and not only are the sectors being modified likely to be
lost, but also a large amount of data surrounding them. However, the mtdblock driver

210 | Chapter 7: Storage Device Manipulation

is useful for purely read-only access, in conjunction with “normal” filesystems such as
Cramfs.

When mounting a JFFS2 or other MTD-aware filesystem, it is also possible to refer to
MTD devices by number or name, in which case, the MTD user modules don’t have
to be loaded. For example:

mount -tjffs2 mtd0 /mnt
mount -tjffs2 mtd:jffs2 /mnt

Note that if you use this method with the root= option to mount the root filesystem,
you must also specify rootfstype=jffs2.

It is also possible to mount JFFS2 using the /dev/mtdblockN device, although in this case
the device is not actually used; it simply serves as a way to tell the kernel which internal
MTD device to use.

There are six types of MTD /dev entries and seven corresponding MTD user modules.
Table 7-1 describes each type of MTD /dev entry and the corresponding MTD user
modules, and Table 7-2 provides the minor number ranges and describes the naming
scheme used for each device type.

Note that there are two user modules that provide the /dev/mtdblockN devices: the
mtdblock driver and the mtdblock_ro driver. As the name implies, the latter driver
provides read-only access, lacking the read-modify-erase-write functionality of the
former.

Table 7-1. MTD /dev entries, corresponding MTD user modules, and relevant device major numbers

/dev entry Accessible MTD user module Device type Major number

mtdN char device char 90

mtdrN char device char 90

mtdblockN block device, read-only block device, JFFS, and JFFS2 block 31

ftlLN FTL block 44

nftlLN NFTL block 93

inftlLN INFTL block 96

rfdLN RFD FTL block 256

ssfdcLN SmartMedia FTL block 257

Table 7-2. MTD /dev entries, minor numbers, and naming schemes

/dev entry Minor number range Naming scheme

mtdN 0 to 32 per increments of 2 N = minor / 2

mtdrN 1 to 33 per increments of 2 N = (minor - 1) / 2

mtdblockN 0 to 16 per increments of 1 N = minor

MTD-Supported Devices | 211

/dev entry Minor number range Naming scheme

nftlLN 0 to 255 per sets of 16 L = set;a N = minor - (set - 1) × 16; N is not appended to the entry name if its
value is zero.

inftlLN 0 to 255 per sets of 16 Same as NFTL.

ftlLN 0 to 255 per sets of 16 Same as NFTL.

rfd_ftlLN 0 to 255 per sets of 16 Same as NFTL.

ssdfcLN 0 to 255 per sets of 8 N = minor - (set - 1) * 8

a As with other partitionable block device entries in /dev, device sets are identified by letters. The first set is
“a,” the second set is “b,” the third set is “c,” and so on.

The use of each type of MTD /dev entry is as follows:

mtdN
Each entry is a separate MTD device or partition. Remember that each MTD par-
tition acts as a separate MTD device.

mtdrN
Each entry is the read-only equivalent of the matching /dev/mtdN entry.

mtdblockN
Each entry is the block device equivalent of the matching /dev/mtdN entry.

nftlLN
Each set is a separate NFTL device, and each entry in a set is a partition on that
device. The first entry in a set is the entire device. /dev/nftlb, for instance, is the
second NFTL device in its entirety, while /dev/nftlb3 is the third partition on the
second NFTL device.

inftlLN, ftlLN, rfd_ftlLN, and ssfdcLN
Same as NFTL.

As we’ll see later, you don’t need to create all these entries manually on your host.
Unless you use udev, however, you will need to create some of these entries manually
on your target’s root filesystem to use the corresponding MTD user module.

Configuring the kernel

As mentioned in Chapter 5, the configuration of the MTD subsystem is part of the main
menu of the kernel configuration options. Whether you are configuring the kernel using
the curses-based terminal configuration menu or through the graphical X Window
configuration menu, you will need to enter the MTD submenu to configure the MTD
subsystem for your kernel.

The MTD submenu contains a list of configuration options that you can choose to
build as part of the kernel, build as separate modules, or disable completely. Here are
the main options you can configure in the MTD submenu:

212 | Chapter 7: Storage Device Manipulation

MTD support, CONFIG_MTD
Enable this option if you want to include core MTD subsystem support. If you
disable this option, this kernel will not have any MTD support. When this option
is set to be built as a module, the resulting functionality is found in the module
called mtdcore.ko.

MTD concatenating support, CONFIG_MTD_CONCAT
Enable this option if you want to combine multiple MTD devices or partitions into
a single logical device, for example, to combine space from two or more separate
devices into a single filesystem. If you compile this as a module, the module’s
filename will be mtdconcat.ko.

MTD partitioning support, CONFIG_MTD_PARTITIONS
Enable this option if you want to be able to divide your MTD devices into separate
partitions. If you compile this as a module, the module’s filename is mtdpart.ko.
Note that MTD partitioning does not apply to partitions within the “translation
layer” used on DiskOnChip devices. These devices are partitioned using conven-
tional disk partitioning tools.

Direct char device access to MTD devices, CONFIG_MTD_CHAR
This is the configuration option for the char device MTD user module that is visible
as /dev/mtdN and /dev/mtdrN. If you configure this as a module, the module’s
filename will be mtdchar.ko.

Caching block device access to MTD devices, CONFIG_MTD_BLOCK
This is the configuration option for the read-write block device MTD user module
that is visible as /dev/mtdblockN. If you configure this as a module, the module’s
filename will be mtdblock.ko.

Read-only block device access to MTD devices, CONFIG_MTD_BLOCK_RO
This is the configuration option for the read-only block device MTD user module
that is visible using the same /dev entries as the read-write block device. If you
configure the read-only block device user module as a module, the module’s file-
name will be mtdblock_ro.ko.

FTL (Flash Translation Layer) support, CONFIG_FTL
Set this option if you would like to include the FTL user module in your kernel.
When configured as a module, the module’s filename is ftl.ko. The FTL user mod-
ule is accessible through the /dev/ftlLN device entries.

NFTL (NAND Flash Translation Layer) support, CONFIG_NFTL
Set this option if you would like to include the NFTL user module in your kernel.
When configured as a module, the module’s filename is nftl.o. The NFTL user
module is accessible through the /dev/nftlLN device entries.

Write support for NFTL, CONFIG_NFTL_RW
You must enable this option if you want to be able to write to your NFTL-formatted
devices. This will only influence the way the NFTL user module is built and is not
a separate user module in itself.

MTD-Supported Devices | 213

Notice that only one of the two block device MTD user modules can be
built in the kernel, although both can be configured as modules
(mtdblock.ko and mtdblock_ro.ko). In other words, if you set the read-
write block device user module to be built into the kernel—not as a
module—you will not be able to configure the read-only block device
user module, either built-in or as a module. As we saw earlier, both block
device MTD user modules use the same /dev entry and cannot therefore
be active simultaneously.

The preceding list is primarily made up of the user modules described earlier. The
remaining MTD user modules, JFFS and JFFS2, are not configured as part of the MTD
subsystem configuration, rather, they are configured within the “Filesystems” subme-
nu. Nevertheless, you will need to enable MTD support to enable support for either
JFFS or JFFS2.

The MTD submenu also contains four submenus to configure support for the actual
MTD hardware device drivers. Here are the submenus found in the MTD submenu
and their descriptions:

RAM/ROM/Flash chip drivers
Contains configuration options for CFI-compliant flash, JEDEC-compliant flash,
old non-CFI flash, RAM, ROM, and absent chips.

Mapping drivers for chip access
Contains configuration options for mapping drivers. Includes one generic mapping
driver that can be configured by providing the physical start address of the device
and its size in hexadecimal notation, and its bus width in octets. This submenu
also contains one entry for each board for which there is an existing mapping driver
included in the kernel.

Self-contained MTD device drivers
Contains configuration options for standalone drivers that are not part of the NOR,
NAND, or OneNAND frameworks. This includes test drivers such as the memory-
backed test device, “loopback” block device driver, and legacy drivers for the
DiskOnChip devices.

NAND Flash Device Drivers
Contains configuration options for NAND flash devices, including the supported
DiskOnChip modules.

OneNAND Flash Device Drivers
Contains configuration options for Samsung OneNAND flash devices.

Before configuring your kernel’s MTD subsystem, make sure you have read the MTD
subsystem discussion in Chapter 3, since many of the options described here were
amply covered there.

When configuring the kernel for your host, you will find it useful to configure all the
MTD subsystem options as modules, since you will be able to test different device setup

214 | Chapter 7: Storage Device Manipulation

combinations. For your target, however, you will need to compile all the options re-
quired to support your solid-state storage device as part of your kernel, rather than as
modules. Otherwise, your target will not be able to mount its root filesystem from its
solid-state storage device. If you forget to configure your target’s kernel so that it can
mount its root filesystem from the MTD device, your kernel will panic during startup
and complain about its inability to mount its root filesystem with a message similar to
the following:

Kernel panic: VFS: unable to mount root fs on ...

The MTD utilities

Because the MTD subsystem’s functionality is different from that of other kernel sub-
systems, a special set of utilities is required to interact with it. We will see in the next
sections how to obtain and install these utilities. For now, let’s take a look at the avail-
able tools and their purposes.

The MTD utilities are powerful tools. Make sure you understand exactly
the operations a tool performs before using it. Also, make sure you un-
derstand the particularities of the device on which you are using the
tools. DiskOnChip devices, for example, require careful manipulation.
You can easily damage your DiskOnChip device if you do not use the
MTD tools appropriately.

Within the MTD tool set, there are different categories of tools, each serving a different
MTD subsystem component. Here are the different tool categories and the tools they
contain:

Generic tools
These are the tools that can be used with all types of MTD devices:

flash_info device
Provides information regarding a device’s erase regions.

flash_erase device start_address number_of_blocks
Erases a certain number of blocks from a device starting at a given address.

flash_eraseall [options] device
Erases the entire device. The -j option is often used to write JFFS2 “clean-
markers” to each erase block after erasing. This informs the JFFS2 filesystem
that the block was completely erased, and prevents JFFS2 from erasing each
block again for itself when first mounted.

flash_unlock device
Unlocks* all the sectors of a device.

* Some devices can be protected from accidental writes using write “locks.” Once a device, or some portion of
it, is locked, it cannot be written to until it is unlocked.

MTD-Supported Devices | 215

flash_lock device offset number_of_blocks
Locks a certain number of blocks on a device.

flashcp [options] filename flash_device
Copies a file to a flash device.

doc_loadbios device firmware_file
Writes a bootloader to the device’s boot region. Though this command is
usually used with DiskOnChip devices only, it is not DiskOnChip-specific.

mtd_debug operation [operation_parameters]
Provides useful MTD debugging operations.

Filesystem creation tools
These tools manipulate the filesystems that are later used by the corresponding
MTD user modules:

mkfs.jffs2 [options] -r directory -o output_file
Builds a JFFS2 filesystem image from a directory.

sumtool [options] -i input_file -o output_file
Processes a JFFS2 filesystem image, adding summary information to each
erase block. This works in conjunction with the CONFIG_JFFS2_SUMMARY support
in the kernel to speed up mounting JFFS2 filesystems. By storing a summary
at the end of each erase block, JFFS2 avoids the need to scan every node in the
block.

jffs2dump [options] image
Dumps the contents of a binary JFFS2 image, and also allows endian
conversion.

NFTL tools
These tools interact with NFTL partitions:

nftl_format device [start_address [size]]
Formats a DiskOnChip device for use with the NFTL or INFTL user module.

nftldump device [output_file]
Dumps the content of an NFTL partition to a file. This utility does not pres-
ently support INFTL.

FTL tools
These tools interact with FTL partitions:

ftl_format [options] device
Formats a NOR flash device with FTL.

ftl_check [options] device
Checks and provides information regarding an FTL device.

NAND chip tools
These tools are provided for manipulating NAND chips:

nandwrite device input_file start_address
Writes the content of a file to a NAND chip.

216 | Chapter 7: Storage Device Manipulation

nandtest device
Tests NAND chips, including those in DiskOnChip devices.

nanddump device output_file [offset] [number_of_bytes]
Dumps the content of a NAND chip to a file.

Most of these tools are used on /dev/mtdN devices, which are the char device interfaces
to the various MTD devices. I will describe the typical uses of the most important MTD
tools over the next few chapters, covering the actual MTD hardware in this chapter,
preparation of the root filesystem in Chapter 8, and the boot setup in Chapter 9.

Installing the MTD utilities for the host

The MTD utilities are maintained in the git tree at git://git.infradead.org/mtd-utils.git,
also viewable through gitweb at http://git.infradead.org/mtd-utils.git. Release tarballs
are downloadable from ftp://ftp.infradead.org/pub/mtd-utils, and distributions such as
Fedora include relatively recent versions of the tools. Therefore, it is likely that you will
need to build the tools for your host only if you need bleeding-edge features or bug fixes.

To build the latest MTD utilities for your host, first clone the GIT tree in your
${PRJROOT}/build-tools directory:

$ cd ${PRJROOT}/build-tools/
$ git-clone git://git.infradead.org/mtd-utils
Initialized empty Git repository in /tmp/mtd-utils/.git/
remote: Counting objects: 1838, done.
remote: Compressing objects: 100% (554/554), done.
remote: Total 1838 (delta 1254), reused 1828 (delta 1244)
Receiving objects: 100% (1838/1838), 809.16 KiB | 80 KiB/s, done.
Resolving deltas: 100% (1254/1254), done.
$ cd mtd-utils

The MTD utilities do not use autoconf; you simply use the provided Makefile to build
them:

$ make

To build the mkfs.jffs2 utility you will need to have the development packages for libacl,
lzo, and zlib installed. If you don’t need to build JFFS2 images, you can edit the Make
file and remove mkfs.jffs2 from the RAWTARGETS variable.

With the utilities built, you can now install them in your tools directory:

$ make DESTDIR=${PREFIX} install

This will install the utilities in ${PREFIX}/usr/sbin. You will need to add this directory
to your path if it’s not already part of it. See the earlier explanation in Chapter 4 about
installing uClibc’s utilities for a complete description of how to add a new directory to
your development path.

If your MTD devices are accessible on the host because you are using the removable
storage setup or the standalone setup we discussed in Chapter 2, you are ready to
manipulate your MTD devices immediately. If you are using the linked setup or want

MTD-Supported Devices | 217

git://git.infradead.org/mtd-utils.git
http://git.infradead.org/mtd-utils.git
ftp://ftp.infradead.org/pub/mtd-utils

to use the MTD utilities on your target in a removable storage setup, read the next
section for instructions on how to build the MTD utilities for your target.

Installing the MTD utilities for the target

To install the MTD utilities for your target, you need to first download and install zlib,
lzo, and libacl in the sys-root of your cross-compiler. Although you will need to build
libz and liblzo2, you need only the Zlib from http://www.gzip.org/zlib, LZO from http://
www.oberhumer.com/opensource/lzo, and libacl from http://oss.sgi.com/projects/xfs.
You need to build libz and liblzo, but we need only the <sys/acl.h> header file from
libacl.

Download the zlib tarball and extract it in your ${PRJROOT}/build-tools directory. You
can then move to the library’s directory to prepare its compilation:

$ cd ${PRJROOT}/build-tools/zlib-1.2.3
$ CC=i386-linux-gcc LDSHARED="i386-linux-ld -shared" \
> ./configure --shared

By default, the zlib build process generates a static library. To build zlib as a shared
library, you must set the LDSHARED variable and provide the - -shared option when in-
voking configure. With the Makefile created, you can compile and install the library:

$ make
$ make prefix=${TARGET_PREFIX} install

As with the other target libraries we installed earlier, we install zlib in ${TARGET_PRE
FIX}/lib. Once the library is installed, you can install it on your target’s root filesystem:

$ cd ${TARGET_PREFIX}/lib
$ cp -d libz.so* ${PRJROOT}/rootfs/lib

Next, build lzo in a similar fashion:

$ cd ${PRJROOT}/build-tools/lzo-2.03
$ CC=i386-linux-gcc ./configure --enable-shared
$ make
$ make prefix=${TARGET_PREFIX} install
$ cp -d ${TARGET_PREFIX}/lib/liblzo.so* ${PRJROOT}/rootfs/lib

Finally, extract the libacl tarball and simply copy its acl.h in place:

$ tar xfz acl_2.2.47-1.tar.gz
$ cp acl-2.2.47/include/acl.h ${TARGET_PREFIX}/usr/include/sys

As before, if you don’t need to build mkfs.jffs2, you can simply edit the Makefile and
remove it from the RAWTARGETS variable.

You are now ready to build the MTD utilities. Download the MTD snapshot into your
${PRJROOT}/sysapps and extract it, or use git to clone it there. Now move into the
utilities directory and build the tools:

$ cd ${PRJROOT}/sysapps/mtd-utils*
$ make CROSS=i386-linux-

218 | Chapter 7: Storage Device Manipulation

http://www.gzip.org/zlib
http://www.oberhumer.com/opensource/lzo
http://www.oberhumer.com/opensource/lzo
http://oss.sgi.com/projects/xfs

With the utilities built, you can now install them in your target’s root filesystem:

$ make DESTDIR=${PRJROOT}/rootfs install

This will install the utilities in ${PRJROOT}/rootfs/sbin. Unless your target is using
udev, you will also need to create appropriate device nodes. We will see in the following
sections how to create just the devices needed on the target’s root filesystem.

How NOR and NAND Flash Work
Flash devices, including NOR flash devices such as CFI flash chips and NAND flash
devices such as the DiskOnChip, are not like disk storage devices. They cannot be
written to and read from arbitrarily. To understand how to operate flash chips properly,
we must first look at how they operate internally. Flash devices are generally divided
into erase blocks. Initially, an empty block will have all its bits set to 1. Writing to this
block amounts to clearing bits to 0. Once all the bits in a block are cleared (set to 0),
the only possible way to erase this block is to set all of its bits to 1 simultaneously. With
NOR flash devices, bits can be set to 0 individually in an erase block until the entire
block is full of 0s. NAND flash devices, on the other hand, have their erase blocks
divided further into pages, typically of 512 bytes, which can be written only to a certain
number of times—typically fewer than 10 times—before their content becomes unde-
fined. Pages can then only be reused once the blocks they are part of are erased in their
entirety. Newer NAND flash chips known as MLC or Multi Level Cell flash reduce the
number of writes per page to only one.

Native CFI Flash
Most recent small- to medium-size non-x86 embedded Linux systems are equipped
with some form of CFI flash. Setting up CFI flash to be used with Linux is relatively
easy. In this section, we will discuss the setup and manipulation of CFI devices in Linux.
We will not discuss the use of filesystems on such devices, however, since these will be
covered in the next chapter. The order of the subsections follows the actual steps
involved in using CFI flash devices with Linux as much as possible. You can, never-
theless, use these instructions selectively according to your current manipulation.

Kernel configuration

You will need to enable kernel support for the following options to use your CFI flash
device:

• MTD support

• MTD partitioning support if you would like to partition your flash device

• Direct char device access to MTD devices

• Caching block device access to MTD devices

• In the “RAM/ROM/Flash chip drivers” submenu, detect flash chips by CFI probe

MTD-Supported Devices | 219

• In the “Mapping drivers for chip access” submenu, the CFI flash device-mapping
driver for your particular board

You may also choose to enable other options, but these are the bare minimum. Also,
remember to set the options to “y” instead of “m” if you intend to have the kernel
mount its root filesystem from the CFI device.

Partitioning

Unlike disk devices (or those that pretend to be a disk, such as a DiskOnChip using
NFTL), CFI flash cannot be partitioned using tools such as fdisk or pdisk. Those tools
are for block devices only. Instead, partition information is often hardcoded in the
mapping driver, or the board’s device tree, and registered with the MTD subsystem
during the driver’s initialization. In this case, the actual device does not contain any
partition information whatsoever. You will, therefore, have to edit the mapping driver’s
C source code or its OpenFirmware device tree to modify the partitions.

Take TQM8xxL PPC boards, for instance. Such boards can contain up to two 4 MiB
flash banks. Each 32-bit-wide memory-addressable flash bank is made of two 16-bit-
wide flash chips. To define the partitions on these boards, the boards’ mapping driver
contains the following structure initializations:

static struct mtd_partition tqm8xxl_partitions[] = {
 {
 name: "ppcboot", /* PPCBoot Firmware */
 offset: 0x00000000,
 size: 0x00040000, /* 256 KiB */
 },
 {
 name: "kernel", /* default kernel image */
 offset: 0x00040000,
 size: 0x000C0000,
 },
 {
 name: "user",
 offset: 0x00100000,
 size: 0x00100000,
 },
 {
 name: "initrd",
 offset: 0x00200000,
 size: 0x00200000,
 }
};

static struct mtd_partition tqm8xxl_fs_partitions[] = {
 {
 name: "cramfs",
 offset: 0x00000000,
 size: 0x00200000,
 },
 {

220 | Chapter 7: Storage Device Manipulation

 name: "jffs2",
 offset: 0x00200000,
 size: 0x00200000,
 }
};

In this case, tqm8xxl_partitions defines four partitions for the first 4 MiB flash bank,
and tqm8xxl_fs_partitions defines two partitions for the second 4 MiB flash bank.
Three attributes are defined for each partition: name, offset, and size.

A partition’s name is an arbitrary string meant only to facilitate human usability. Neither
the MTD subsystem nor the MTD utilities uses this name to enforce any sort of struc-
ture on said partition, although it can be used to mount MTD-based filesystems (such
as JFFS2) by name, as we saw earlier in this chapter.

The offset is used to provide the MTD subsystem with the start address of the partition,
while the size is self-explanatory. Notice that each partition on a device starts where
the previous one ended; no padding is necessary. Table 7-3 presents the actual physical
memory address ranges for these partitions on a TQM860L board where the two 4 MiB
banks are mapped consecutively starting at address 0x40000000.

Table 7-3. Flash device partition physical memory mapping for TQM860L board

Device Start address End address Partition name

0 0x40000000 0x40040000 ppcboot

0 0x40040000 0x40100000 kernel

0 0x40100000 0x40200000 user

0 0x40200000 0x40400000 initrd

1 0x40400000 0x40600000 cramfs

1 0x40600000 0x40800000 jffs2

During the registration of this device’s mapping, the kernel displays the following
message:

TQM flash bank 0: Using static image partition definition
Creating 4 MTD partitions on "TQM8xxL Bank 0":
0x00000000-0x00040000 : "ppcboot"
0x00040000-0x00100000 : "kernel"
0x00100000-0x00200000 : "user"
0x00200000-0x00400000 : "initrd"
TQM flash bank 1: Using static filesystem partition definition
Creating 2 MTD partitions on "TQM8xxL Bank 1":
0x00000000-0x00200000 : "cramfs"
0x00200000-0x00400000 : "jffs2"

You can also see the partitions by looking at /proc/mtd. Here is its content for my control
module:

cat /proc/mtd
dev: size erasesize name

MTD-Supported Devices | 221

mtd0: 00040000 00020000 "ppcboot"
mtd1: 000c0000 00020000 "kernel"
mtd2: 00100000 00020000 "user"
mtd3: 00200000 00020000 "initrd"
mtd4: 00200000 00020000 "cramfs"
mtd5: 00200000 00020000 "jffs2"

Notice that the partitions are on erase size boundaries. Because flash chips are erased
by block, not by byte, the size of the erase blocks must be taken into account when
creating partitions. In this case, erase blocks are 128 KB in size, and all partitions are
aligned on 128 KB (0x20000) boundaries.

Some types of boot firmware, such as RedBoot, AFS, and TI AR7, do store information
on the flash itself about how it is divided into separate images or regions. When ap-
propriately configured, the MTD subsystem is capable of interpreting such information
to provide an automatic partition of the flash.

As you see, the concept of MTD partitioning is not exposed to user space in the same
way that partitioning on block devices is. The separate partitions of a single flash chip
appear to user space as entirely separate MTD devices (mtd0, mtd1, etc.).

Another Way to Provide MTD Partition Information
For some time now, the MTD subsystem has been able to accept partition information
as part of the kernel boot options. The iPAQ’s Familiar distribution uses this capability
to provide the iPAQ’s kernel with the partition information for the device’s CFI flash
chips.

Here is an example boot option line used to provide the kernel with the same partition
information provided in the previous section for the TQM8xxL board (it must be writ-
ten as a single line):

mtdparts=0:256k(ppcboot)ro,768k(kernel),1m(user),-(initrd);1:2m(cramfs),-(jffs2)

Required /dev entries

You need to create /dev entries for the MTD character devices, and potentially also for
the block device MTD user modules, to access your CFI flash device. Create as many
entries for each type of user module as you have partitions on your device. For example,
the following commands create root filesystem entries for the six partitions of my
TQM860L board:

$ cd ${PRJROOT}/rootfs/dev
$ su -m
Password:
for i in $(seq 0 5)
> do
> mknod mtd$i c 90 $(expr $i + $i)
> mknod mtdblock$i b 31 $i
> done
exit

222 | Chapter 7: Storage Device Manipulation

Here are the resulting entries:

$ ls -al mtd*
crw-rw-r-- 1 root root 90, 0 Aug 23 17:19 mtd0
crw-rw-r-- 1 root root 90, 2 Aug 23 17:20 mtd1
crw-rw-r-- 1 root root 90, 4 Aug 23 17:20 mtd2
crw-rw-r-- 1 root root 90, 6 Aug 23 17:20 mtd3
crw-rw-r-- 1 root root 90, 8 Aug 23 17:20 mtd4
crw-rw-r-- 1 root root 90, 10 Aug 23 17:20 mtd5
brw-rw-r-- 1 root root 31, 0 Aug 23 17:17 mtdblock0
brw-rw-r-- 1 root root 31, 1 Aug 23 17:17 mtdblock1
brw-rw-r-- 1 root root 31, 2 Aug 23 17:17 mtdblock2
brw-rw-r-- 1 root root 31, 3 Aug 23 17:17 mtdblock3
brw-rw-r-- 1 root root 31, 4 Aug 23 17:17 mtdblock4
brw-rw-r-- 1 root root 31, 5 Aug 23 17:17 mtdblock5

Erasing

Before you can write to a CFI flash device, you need to erase its content. You can do
this with one of the two erase commands available as part of the MTD utilities,
flash_erase and flash_eraseall.

Before updating the initial RAM disk on my control module, for example, I need to
erase the “initrd” partition:

eraseall /dev/mtd3
Erased 2048 Kibyte @ 0 -- 100% complete.

Writing and reading

Whereas flash filesystems such as JFFS2 take advantage of their capability to continue
clearing bits to 0 in an erase block to allow transparent read and write access, you
cannot usually use user-level tools to write to an MTD device more than once. This is
mostly because the tools usually will want to replace an image wholesale, and thus
would want to set some bits from 0 to 1, which is not possible with erasing. If you want
to update the content of an MTD device or partition using its raw char /dev entry, for
example, you generally must erase this device or partition before you can write new
data to it.

Although writing to a raw flash device can be done using traditional filesystem com-
mands such as cat and dd, it is better to use the MTD utilities—flashcp for NOR flash
and nandwrite for NAND—because they are more suited to the task. The flashcp com-
mand will erase flash before writing, and will read back the contents afterward to verify
correct programming. The nandwrite command will detect bad blocks on a NAND
flash device, and skip over them as appropriate. To write a new initial RAM disk image
to the “initrd” partition on my control module, for example, I use the following
command:

flashcp /tmp/initrd.bin /dev/mtd3

MTD-Supported Devices | 223

In this case, my target’s root filesystem is mounted via NFS, and I am running the MTD
commands on my target.

Reading from a CFI MTD partition is no different from reading from any other device.
The following command on my control module, for instance, will copy the binary image
of the bootloader partition to a file:

dd if=/dev/mtd0 of=/tmp/ppcboot.img

Since the bootloader image itself may not fill the entire partition, the ppcboot.img file
may contain some extra unrelated data in addition to the bootloader image.

DiskOnChip
DiskOnChip devices used to be quite popular in x86-based embedded Linux systems,
and the MTD subsystem goes a long way in providing support for them. I use it, for
example, in my DAQ module. It remains that the DiskOnChip is a peculiar beast that
requires an attentive master. The reasons for such a statement will become evident
shortly.

The DiskOnChip is simply a NAND flash device with a clever ASIC that performs ECC
calculations in hardware. On that NAND flash, we use a special “translation layer”
called NFTL, which works as a kind of pseudofilesystem that is used to emulate a
normal hard drive. The underlying raw flash device is exposed as /dev/mtdN devices,
while the emulated disk is exposed as /dev/nftlX. It is this dichotomy that often causes
confusion.

Like all NAND flash devices, DiskOnChip devices can contain a certain number of
manufacturing defects that result in bad blocks. Before a DiskOnChip is shipped from
the factory, a Bad Block Table (BBT) is written on it. Although this table is not write-
protected, it is essential to the operation of all software that reads and writes to the
device. As such, M-Systems’s DiskOnChip software is capable of reading this table and
storing it to a file. Linux should manage to preserve this table, but the tools are not
particularly well tested.

There are two ways to install a bootloader on the DiskOnChip (DOC) and format it
for NFTL. The first, which is most recommended by the MTD maintainer because it
is guaranteed to preserve the Bad Block Table, is to use M-Systems’s dformat DOS
utility. The second, which gives you the greatest degree of control over your DOC device
from within Linux, is to use the doc_loadbios and nftl_format MTD utilities.

M-Systems’s DOS DOC tools and related documentation used to be available from the
company’s website at http://www.m-sys.com. However, Sandisk bought M-Systems,
and the website now redirects to the parent company. I have been unable to find the
DiskOnChip tools on the new site.

When experimenting with a DiskOnChip, it is useful to save the Bad Block Table before
you manage to destroy it. You can do this using the DOS dformat tool:

224 | Chapter 7: Storage Device Manipulation

http://www.m-sys.com

A:\>dformat /win:d000 /noformat /log:docbbt.txt
DFORMAT Version 5.1.0.25 for DOS
Copyright (C) M-Systems, 1992-2002

DiskOnChip 2000 found in 0xd0000.
32M media, 16K unit

OK

The dformat command is usually used to format the DOC for use with DOS. In this
case, we use the /noformat option to instruct dformat not to format the device. In ad-
dition, we instruct it to record the BBT of the device starting at segment 0xD000† to
the docbbt.txt file. Once dformat finishes retrieving the BBT, store a copy of
docbbt.txt in a safe repository, since you may have to restore it if you erase the entire
DOC device in Linux. Have a look at the M-Systems dformat documentation for in-
formation on how to restore a lost BBT.

Note that your DOC device may be free of bad blocks. In that case, the docbbt.txt will
be empty and you will not need to worry about restoring the BBT if you erase the device
completely.

Kernel configuration

You will need to enable kernel support for the following options to use your
DiskOnChip device:

• MTD support

• MTD partitioning support if you would like to partition your flash device

• Direct char device access to MTD devices

• NAFT (NAND Flash Translation Layer) support

• Write support for NFTL (BETA)

• NAND Device Support

• DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation)
(EXPERIMENTAL)

Although the DiskOnChip devices used to have a dedicated driver, we now make use
of the generic NAND flash infrastructure for DiskOnChip. It is even possible to use
JFFS2 on the DiskOnChip instead of NFTL, although it is harder to boot from it that
way.

As with CFI flash, you may choose to select other options. If you compile the options
just listed as modules, the DiskOnChip support will require a number of modules.
Issuing a modprobe diskonchip command should load all necessary modules

† “Real-mode” addresses on the PC are represented using a segment and offset couple in the following way:
segment:offset. It’s usually shorter to provide just the segment whenever the offset is null. In this case, for
example, segment 0xD000 starts at address 0xD0000, as is displayed by dformat in its output.

MTD-Supported Devices | 225

automatically. Whether it is part of the kernel or loaded as a module, the DiskOnChip
driver will probe all potential memory addresses for DOC devices. Here is an example
of output from the driver on my DAQ module:

DiskOnChip found at 0xd0000
DiskOnChip 2000 responds to DWORD access
NAND device: Manufacturer ID: 0x98, Chip ID: 0x73 (Toshiba NAND 16MiB 3,3V 8-bit)
Found DiskOnChip ANAND Media Header at 0x10000
Found DiskOnChip ANAND Media Header at 0x18000

The M-Systems DOC Driver
M-Systems provides a DOC driver for Linux as part of its Linux tools packages. This
driver, however, is not under the GPL, and you can use it only as a loadable kernel
module. Distributing a kernel with this driver built-in, or any combined or collective
work comprised of both this module and a Linux kernel, is a violation of the GPL.
Hence, if you want to boot from a DOC with a kernel that uses the M-Systems driver,
you need to use an init RAM disk to load the binary driver and ship it separately from
the kernel. Also, postings on the MTD mailing list suggest that the driver uses a lot of
system resources and can sometimes cause data loss on the serial port. For these rea-
sons, I recommend that you avoid using the M-Systems Linux DOC driver. Instead,
use the GPL MTD drivers, as I describe here.

Required /dev entries

You need to create /dev entries for the char device and the NFTL MTD user modules
in order to access your DOC device. Create as many char device entries and sets of
NFTL entries as you have DOC devices in your system. For each NFTL set, create as
many entries as you will create partitions on your device. For my DAQ module, for
instance, I have one DOC device with only one main partition. I use the following
commands to create the relevant entries:

$ cd ${PRJROOT}/rootfs/dev
$ su -m
Password:
mknod mtd0 c 90 0
mknod nftla b 93 0
mknod nftla1 b 93 1
exit

Here are the resulting entries:

$ ls -al mtd* nftl*
crw-rw-r-- 1 root root 90, 0 Aug 29 12:48 mtd0
brw-rw-r-- 1 root root 93, 0 Aug 29 12:48 nftla
brw-rw-r-- 1 root root 93, 1 Aug 29 12:48 nftla1

Erasing

Erasing a DOC device is done in very much the same way as other MTD devices, using
the erase and eraseall commands. Before using any such command on a DOC device,

226 | Chapter 7: Storage Device Manipulation

make sure you have a copy of the BBT, because an erase of the device will wipe out the
BBT it contains.

To erase the entire DOC device in my DAQ modules, for instance, I use the following
command on my DAQ module:

eraseall /dev/mtd0
Erased 32768 Kibyte @ 0 -- 100% complete.

Typically, you will need to erase a DOC device only if you want to erase the bootloader
and the current format on the device. If you installed a Linux bootloader, for example,
and would like to revert back to an M-Systems SPL, you will need to use the eraseall
command before you can install the M-Systems SPL with M-Systems tools. Whenever
you erase the entire device, however, you need to use the M-Systems tools to restore
the BBT.

Installing bootloader image

If your target does not boot from its DOC device, you can skip this step. Otherwise,
you need to build the bootloader, described in Chapter 9, before going any further. But
first, let’s see how a system boots from the DOC.

During system startup on x86 systems, the BIOS scans the memory for BIOS extensions.
When such an extension is found, it is executed by the BIOS. DOC devices contain a
ROM program called the Initial Program Loader (IPL) that takes advantage of this
characteristic to install another program called the Secondary Program Loader (SPL),
which acts as a bootloader during system startup. By default, the SPL is provided by
M-Systems’ own firmware. To boot Linux from a DOC device, however, the SPL must
be replaced with a bootloader able to recognize the format used by Linux on a DOC.
We will discuss the various DOC-capable Linux bootloaders in Chapter 9. For now,
let us take a look at how we can install our own SPL on a DOC.

Here is the command I use to install the GRUB bootloader image, grub_firmware, on
the DOC in Linux:

doc_loadbios /dev/mtd0 grub_firmware
Performing Flash Erase of length 16384 at offset 0
Performing Flash Erase of length 16384 at offset 16384
Performing Flash Erase of length 16384 at offset 32768
Performing Flash Erase of length 16384 at offset 49152
Performing Flash Erase of length 16384 at offset 65536
Performing Flash Erase of length 16384 at offset 81920
Writing the firmware of length 92752 at 0... Done.

Here is the command I use to install the GRUB bootloader image on the DOC in DOS:

A:\>dformat /win:d000 /bdkf0:grub_firmware
DFORMAT Version 5.1.0.25 for DOS
Copyright (C) M-Systems, 1992-2002
WARNING: All data on DiskOnChip will be destroyed. Continue ? (Y/N)y

DiskOnChip 2000 found in 0xd0000.

MTD-Supported Devices | 227

32M media, 16K unit

Formatting 2042
Writing file to BDK 0 92752
OK
Please reboot to let DiskOnChip install itself.

As with updating the firmware version earlier, you need to power cycle your system
after using doc_loadbios or dformat for the firmware to be installed properly. That said,
do not use doc_loadbios or dformat before reading the explanations in Chapter 9 per-
taining to its use with a bootloader.

NFTL formatting

Currently, the only way to use DOC devices in Linux is to format them for NFTL. Once
we format a DOC device for NFTL, we can use conventional block device tools and
filesystems in conjunction with the device.

If you would like to boot from the DOC, read the sections in Chapter 9 regarding x86
bootloaders before carrying out any further operations on your DOC.

If you used the dformat utility earlier to install GRUB on the DOC, your DOC is already
formatted for NFTL. If you used doc_loadbios in Linux, you must use the nftl_format
command to format the device for NFTL.

The following MTD command formats the entire DOC device for NFTL:

nftl_format /dev/mtd0
$Id: ch07.xml,v 1.5 2004/04/16 20:29:01 chodacki Exp $
Phase 1. Checking and erasing Erase Zones from 0x00000000 to 0x02000000
 Checking Zone #2047 @ 0x1ffc000
Phase 2.a Writing NFTL Media Header and Bad Unit Table
Phase 2.b Writing Spare NFTL Media Header and Spare Bad Unit Table
Phase 3. Writing Unit Control Information to each Erase Unit

This command takes some time to go through the various zones on the DOC. If
nftl_format encounter bad blocks on the DOC, it outputs the following message:

Skipping bad zone (factory marked) #BLOCK_NUM @ 0xADDRESS

The BLOCK_NUM and ADDR values output by nftl_format should match the values found
in the docbbt.txt file generated earlier.

A Word of Caution on Flash Translation Layers and Formatting
For the nftl_format command to operate properly, it needs to have total control and
exclusive access over the raw DOC device it is formatting. Total control is guaranteed
by the fact that the commands provided earlier use the /dev/mtdX device entries. Because
these entries are handled by the char device MTD user module, there is no conversion
layer between the operations conducted on these devices and the actual hardware.
Hence, any operation carried out by nftl_format has a direct effect on the hardware.

228 | Chapter 7: Storage Device Manipulation

Exclusive access to the raw DOC device is a little trickier, however, because of the NFTL
driver. Basically, once the NFTL driver recognizes a DOC device, it assumes that it has
total control over the device. Consequently, no other software, including nftl_format,
should attempt to manipulate a DOC device while the NFTL driver controls it. There
are a few ways to avoid this type of conflict, depending on the configuration of the
kernel you are using.

If the NFTL driver was configured as a module, unload the module before running
nftl_format. You can reload it once nftl_format is done formatting the device. If the
NFTL driver was built-in, you can either use another kernel or build one, if need be,
that doesn’t have the NFTL driver built-in. If you want to continue to use the same
kernel that has the NFTL driver built-in, you can use the eraseall command to erase
the device entirely. The next time you restart your system after the erase, the built-in
NFTL driver will not recognize the DOC and therefore will not interfere with the op-
erations of nftl_format. Finally, if you are carrying out these instructions for the first
time, because the NFTL driver should not be able to recognize any format on the DOC
device at this stage, it should not cause any problems.

If you have installed a Linux bootloader on the DOC using doc_loadbios, you need to
skip the region where the bootloader was written and start formatting at its end. To do
so, you need to provide an offset to nftl_format. Here is the command I use to format
my DOC for NFTL in the case where I had already installed GRUB as the SPL:

nftl_format /dev/mtd0 98304
$Id: ch07.xml,v 1.5 2004/04/16 20:29:01 chodacki Exp $
Phase 1. Checking and erasing Erase Zones from 0x00018000 to 0x02000000
 Checking Zone #2047 @ 0x1ffc000
Phase 2.a Writing NFTL Media Header and Bad Unit Table
Phase 2.b Writing Spare NFTL Media Header and Spare Bad Unit Table
Phase 3. Writing Unit Control Information to each Erase Unit

The 98304 offset is determined by the output of the doc_loadbios command shown
earlier. The last erase message output by the command reported erasing 16,384 bytes
at offset 81920. 98304 is therefore the first address following the last region erased for
the bootloader.

With the DOC device formatted for NFTL, reboot the system as a precautionary step.
When the NFTL driver is activated, either at kernel startup or when loading the
nftl.o module, it should output a message similar to the following:

NFTL driver: nftlcore.c $Revision: 1.5 $, nftlmount.c $Revision:...
Cannot calculate an NFTL geometry to match size of 0xfea0.
Using C:1018 H:16 S:4 (= = 0xfe80 sects)

If the NFTL driver can see a DOC device but is unable to recognize its format, it will
output this message instead:

Could not find valid boot record
Could not mount NFTL device

MTD-Supported Devices | 229

Although this message is normal if you have not yet used nftl_format on the DOC
device, it is a sign that an error occurred if you already used nftl_format on the DOC.

There are many reasons why you may encounter these messages. None of them is your
fault if you have followed the instructions here, as well as those in Chapter 9.

Whenever you encounter such a message, review your manipulations and make sure
you have faithfully followed the steps in the discussion. If it is not a manipulation error,
you can choose to dig deeper and use your hacking skills to figure out the problem on
your own. It is often a good idea to consult the MTD mailing list and search its archive,
because others may have encountered a similar problem and already solved it. When
sending a message to the MTD mailing list (or any other mailing list, for that matter),
try to be as verbose as possible. It is very frustrating for mailing list subscribers to receive
pleas for help that have little or no detail. Specifically, provide the versions of all the
software components involved, explain the exact steps you followed, and provide the
output of all the tools you used.

Partitioning

With the DOC device formatted for NFTL, you can now partition the device using
fdisk. Here is the transcript of an fdisk session in which I created one partition on my
NFTL device:

fdisk /dev/nftla
Device contains neither a valid DOS partition table, nor Sun or S...
Building a new DOS disklabel. Changes will remain in memory only,
until you decide to write them. After that, of course, the previous
content won't be recoverable.

Command (m for help): p

Disk /dev/nftla: 16 heads, 4 sectors, 1018 cylinders
Units = cylinders of 64 * 512 bytes

 Device Boot Start End Blocks Id System

Command (m for help): d
Partition number (1-4): 1

Command (m for help): n
 e extended
 p primary partition (1-4)
p
Partition number (1-4): 1
First cylinder (1-1018, default 1):
Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1-1018, default 1018):
Using default value 1018

Command (m for help): p

230 | Chapter 7: Storage Device Manipulation

Disk /dev/nftla: 16 heads, 4 sectors, 1018 cylinders
Units = cylinders of 64 * 512 bytes

 Device Boot Start End Blocks Id System
/dev/nftla1 1 1018 32574 83 Linux

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.

WARNING: If you have created or modified any DOS 6.x
partitions, please see the fdisk manual page for additional
information.
Syncing disks.

Note that we delete the first partition before creating it again. This is because the use
of dformat to install the bootloader and format the DOC also results in the creation of
a single FAT partition spanning the entire device. If you had used the Linux doc_load-
bios, fdisk would have displayed the following error message regarding the partition
deletion, which you can ignore:

Warning: partition 1 has empty type

Also, note that instead of using a single partition on the DOC, or any other storage
device for that matter, you could delete all partitions and store your filesystem on the
entire device.

See Chapter 3 of Running Linux for a full description of how to use fdisk. With the DOC
partitioning done, you can manipulate the newly created partitions like any conven-
tional disk partition. Among other things, you can format and mount the NFTL par-
titions. We will discuss these issues in detail in Chapter 8.

Disk Devices
Manipulating disk devices‡ for use in embedded Linux devices is similar to what you
do in Linux workstations or servers. In the following sections, we will concentrate only
on those aspects that differ from conventional disk manipulations. I encourage you to
consult other documents discussing Linux system maintenance in general, such as
Running Linux, to get the rest of the details.

CompactFlash
A CompactFlash (CF) card is accessible in Linux in two ways: either as an IDE disk,
when plugged in a CF-to-IDE or a CF-to-PCMCIA adapter, or as a SCSI disk when
accessed through a USB CF reader. In practice, it is often convenient to use a USB reader

‡ I use the term “disk devices” here to designate all devices that, in one way or another, appear as magnetic
disk devices to the Linux kernel. This includes CompactFlash devices, which appear as ATA (IDE) disks.

Disk Devices | 231

to program the CF card on the host while using a CF-to-IDE or a CF-to-PCMCIA
adapter in the target to access the device. Hence, the CF card is visible as a SCSI disk
on the host, but is seen by the target as an IDE disk. To complicate matters further,
recent kernels have started to access IDE (or “PATA”) disks through the SCSI subsystem
using libata, so IDE drives appear as /dev/sdX just as SCSI disks do.

The fact that the same CF card can be accessed through two very different kernel disk
subsystems can be problematic, however, as we’ll see during the configuration of LILO
for a CF card in Chapter 9. Of course, there would be no problem if a CF device were
always be accessed through the same disk subsystem.

To access the CF card through a USB CF reader on the host, you must have kernel
support for USB storage devices. Most distributions are shipped with USB device sup-
port built as modules, and should load them automatically. Therefore, all you need to
do is plug the USB device into your host.

When the device is attached, you can look at the appropriate entries in /proc to see your
CF reader. For example, this is how the SCSI subsystem sees the SanDisk SDDR-31
reader I have on my PC host:

cat /proc/scsi/scsi
Attached devices:
Host: scsi0 Channel: 00 Id: 00 Lun: 00
 Vendor: SanDisk Model: ImageMate II Rev: 1.30
 Type: Direct-Access ANSI SCSI revision: 02
cat /proc/scsi/usb-storage-0/0
 Host scsi0: usb-storage
 Vendor: SanDisk Corporation
 Product: ImageMate CompactFlash USB
Serial Number: None
 Protocol: Transparent SCSI
 Transport: Bulk
 GUID: 078100020000000000000000
 Attached: Yes

In this case, because the reader is the first device on the SCSI bus, it can be accessed
as /dev/sda. Therefore, I can partition, format, and mount the CF card the same way I
would partition, format, and mount a conventional SCSI disk:

fdisk /dev/sda
...
mkdir /mnt/cf
mke2fs /dev/sda1
mount -t ext2 /dev/sda1 /mnt/cf

Be careful, however; recent Linux distributions may automatically mount such remov-
able devices for you, and even ask if you want to import photos from them, assuming
that they come from a digital camera. You can disable this behavior in the GNOME or
KDE settings, or manually unmount the devices when they appear on your desktop. If
you attempt to repartition the device while it is mounted, fdisk will report an error:

232 | Chapter 7: Storage Device Manipulation

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.

WARNING: Re-reading the partition table failed with error 16: Device or resource busy.
The kernel still uses the old table.
The new table will be used at the next reboot.
Syncing disks.

The partitions you put on the CF card and the use of the various partitions depends
largely on your target. If your target is an x86 PC derivative, you can use a single par-
tition. If your target is PPC using the U-Boot bootloader, you need to have a few small
partitions to hold kernel images and one large partition to hold your root filesystem.
This is because U-Boot can read CF device partitions and the data on those partitions,
but it does not recognize any filesystem organization. Hence, kernel images must be
written to raw partitions to be loadable by U-Boot. We will discuss example uses of CF
cards as boot devices in Chapter 9.

Floppy Disk
If you intend to use a floppy disk as your main storage device for your embedded Linux
project, have a look at the “Putting them together: Making the diskette(s)” section of
Tom Fawcett’s Linux Bootdisk HOWTO, available from the Linux Documentation
Project (LDP). Tom explains in detail how to create a bootable floppy using either LILO
or the kernel alone. Although you do not need to read other sections of the HOWTO,
the instructions assume that you have created a RAM disk image containing your root
filesystem. See Chapter 8 for an explanation of how to create this RAM disk image.

We will not discuss the use of floppy disks in embedded Linux systems any further,
because they are very seldom used in production systems and also the Linux Bootdisk
HOWTO already covers the issues quite well.

Hard Disk
When configuring a hard disk for use in an embedded Linux system, the most con-
venient setup to bootstrap the target is to attach the hard disk destined for the target
to the host’s own disk interface. In this way, the target’s hard disk can be manipulated
directly on the host. If using a host that has the same CPU architecture as the target, it
is even possible to perform a normal installation of a standard Linux distribution, to
serve a base for the target filesystem.

If the host already has one IDE disk that is seen as /dev/hda, for example, the target’s
IDE disk may be seen as hdb or hdc, depending on the host’s setup. We can then format
and mount this drive as we would any other hard disk. The only difference, however,
is that the target’s disk, seen on the host as a secondary disk such as /dev/hdb or /dev/

Disk Devices | 233

hdc, will very likely be seen as hda on the target. This poses certain problems when
configuring bootloaders. We will discuss these issues further in Chapter 9.

To Swap or Not To Swap
Swapping is an essential component of most Linux workstation and server installations.
It enables the system to address more memory than is physically available by emulating
the additional memory on a storage device. Most embedded storage devices, such as
flash and DOC devices, however, are ill-adapted to this use, because they have limited
erase and write cycles. Since your application has little control over the kernel’s use of
swapping, it is possible to accelerate the wear on the storage device used for swapping.
With this in mind, I encourage you to find alternatives to swapping. Try reducing your
applications’ memory usage and having only the minimal set of binaries required for
your system’s proper behavior loaded at any time.

Of course, if your storage device is a real hard disk—not a CF card—swapping is a
viable option. Using swap may, however, result in slower response times.

—David Woodhouse

234 | Chapter 7: Storage Device Manipulation

Having built the files for our root filesystem and prepared the target’s storage device,
we are now ready to set up the root filesystem on the target as well as any additional
filesystems we may wish to use. First, we need to select a filesystem type for each of the
filesystems. Then, we need to pack the filesystem’s content (the files and directories)
in the selected format. Finally, we need to write those filesystems to a storage device
on the target.

Because Linux supports quite a few different filesystem types and an embedded-Linux-
based system typically uses several of them, we will need to understand what types exist
and how they can be put to use in our embedded device.

We shall begin, therefore, with a short overview of important properties that Linux
filesystems offer to embedded devices. Then, we will continue with a guide to deciding
on a filesystem type, and describe how they can be combined to fulfill different roles
in the embedded device. Last but not least, we’ll cover the issue of upgrading embedded
system software. As we shall see, this last topic ties in closely with the types and uses
of the filesystems you choose to employ.

Filesystem Types for Embedded Devices
This section will highlight the features and potential pitfalls to think about when se-
lecting a filesystem and how these play out in some of the more popular filesystems
used on Linux embedded devices.

Characterizing Filesystems
To select the best filesystem or best combination of filesystems for an embedded device,
it’s useful to compare them along a coherent set of characteristics. The following sec-
tions will present general filesystem properties that we will use later to characterize the
current filesystems that are appropriate for embedded systems.

CHAPTER 8

Root Filesystem Setup

235

Online write support

Most filesystems support online updates: adding, deleting, and altering files. However,
some filesystems lack the ability to do updates online while they are in use, usually for
the purpose of achieving a more compact storage device representation or allowing a
simpler implementation.

Such filesystems are useful for content that rarely, if ever, changes—which includes
most embedded system software. These filesystems can still be updated by rewriting
the whole filesystem image on the storage device. But this action is not only time-
consuming but also dangerous if not handled correctly, because a power failure during
such an update may corrupt the filesystem and render it unusable.

Persistence

Most filesystems have some sort of storage device representation, which enables the
content of the filesystem to be preserved between system reboots. However, some
filesystems keep all of their data or metadata in system RAM alone, which means it is
not persistent. Should the system be shut down or restarted, all the information stored
on the filesystem will be lost.

Nonpersistent filesystems are useful to store temporary runtime information that either
loses its meaning once the system is restarted (for instance, /proc and /sys) or can be
recreated or recomputed by some other means.

Don’t confuse the nonpersistent filesystems discussed here—which offer no facility to
store the filesystem content on a permanent storage device at all—with the storage of
a persistent filesystem on a nonpersistent storage device, such as a RAM disk. Although
the end result is the same, these are two different cases. Later we’ll explain more about
the effect of the storage device on the properties of the filesystem being stored.

Power-down reliability

One of the most salient characteristics of embedded systems, at least in our eyes, is that
they are not managed by a professional system administrator. Thus, it is prudent not
to expect that your embedded system will be shut down properly via an appropriate
system facility. In fact, the most common way of shutting down an embedded device
in the field is to simply yank out its power cord or battery.

In light of this, the programmer should take care to assure that the information and
metadata stored in a filesystem used in an embedded device will not become corrupted
in the event of this common scenario, even if the filesystem content is in the process of
being updated just as the power goes down.

Some filesystems employ special means to support power-down reliability of their data
and metadata. The most common means is journaling. A journaled filesystem maintains
some sort of a log of the modifications done as part of each transaction in the filesystem.
For instance, a transaction might include appending to a file, updating the file’s

236 | Chapter 8: Root Filesystem Setup

metadata to list the new blocks occupied by the file, and updating the modification and
access times of the file. The filesystem writes the log ahead of performing the modifi-
cation on the actual data and metadata, and the information about the transaction is
deleted from the log only when all of the transaction’s operations are complete.

Should the power fail in the middle of modification, the filesystem driver logic will
finalize or revert the transaction as a whole once power is back on. The last few writes
may be lost, but the filesystem as a whole is uncorrupted.

The journal or log of a journaled filesystem may either be kept on the same storage
device as the filesystem data or stored in a separate location. Some journaled filesystems
log all modifications to the filesystem content, whereas others log only changes to
metadata.

Another distinction that can be made between different types of journaled filesystems
is the nature of the transaction log they keep. A physical journal contains verbatim
copies of blocks that are later to be written to a permanent location on the storage
device, whereas a logical journal contains some information about the changes made
to the filesystem in a specialized, usually much more compact form. This distinction is
vitally important to builders of embedded devices because a physical journal requires
every block of data to be written to the storage device twice (once to the log and once
to the permanent location on the storage device). Because the number of writes to flash
storage devices is limited, the use of a such a filesystem can severely impact the lifetime
of the device. Note that even logical journals engender double writes of information in
many cases.

Another way to provide power-down reliability in a filesystem is to use a log-
structured filesystem. In a log-structured filesystem, all the data and metadata kept in
the filesystem are stored in a log structure that spans the entire storage device. Every
write to the filesystem is implemented as a transaction in the log that can be either
committed or reverted in an atomic fashion by invalidating previous log entries. (Note
that reverting need not involve writing to previous log entries, because revision numbers
can be used to mark the current log entries.)

A log-structured filesystem is somewhat similar to a journaled filesystem with a physical
journal, with the very important exception that because the log contains the filesystem
data itself, there is no double-write penalty.

Compression

A filesystem may automatically compress some or all of the data and metadata before
it is written to the storage device and decompress it when read from storage. If sup-
ported, compression and decompression happen under the filesystem control and do
not require any operation from the application layer, although some implementations
allow the filesystem’s user to tag specific files on the filesystem in order to recommend
or discourage their compression. Most common compressing filesystems compress and
decompress each block of data separately, instead of a whole file as a unit.

Filesystem Types for Embedded Devices | 237

Although compressing and decompressing may have significant impact on both file
access and write times and CPU consumption related to file access, whether this will
negatively impact system performance depends on many factors, such as the compres-
sion algorithm used and the specific target architecture.

In addition, because information read from the filesystem storage is normally cached
in the Linux page and buffer caches, the overhead of decompression will affect only the
first access to a specific file block. That is true so long as the file block is used sufficiently
often or enough system RAM is available for the kernel page and buffer caches to pre-
serve the block’s decompressed state.

Characteristics specific to storage device types

Different filesystems may be built for use with different types of storage devices. Some
filesystems support only specific device types; some are more flexible but are still more
suitable for certain types of storage devices than others.

It is important to note that the storage device type used may determine or influence the
characteristics of the filesystem on it. As a trivial example, consider a persistent file-
system that is built to work on top of a persistent block device, such as an IDE disk or
CompactFlash. When such a filesystem is used with underlying storage on a RAM disk,
which is also a type of a block device but does not maintain its information when
powered down, the information stored in the filesystem is obviously volatile, despite
the filesystem itself being nominally a persistent filesystem.

One particularly important characteristic specific to device types is whether a filesystem
performs wear leveling. This feature, which spreads data as evenly as possible across a
device, is crucial when the filesystem is stored on an on-board NOR or NAND flash,
because each block of this flash device can be written a limited, fixed number of times
(including flash updates) before it is no longer usable. Wear leveling can be implemen-
ted in firmware (as with CompactFlash devices), in an intermediate software layer be-
tween the filesystem and the storage device driver (such as through an FTL or NFTL
translation layer, described in Chapter 3), or in the filesystem itself.

Wear leveling suffers from some serious drawbacks if implemented at
any level other than the filesystem itself. The wear leveling algorithm
implemented by the firmware of some CompactFlash devices is low
quality and not to be trusted. Wear leveling in FTL or NFTL suffers from
redundant journaling, which is implemented at both the FTL or NFTL
layer and the filesystem layer in order to maintain reliability in case of
an abrupt power failure. In addition, because FTL and NFTL do not
actually know which filesystem blocks are currently in use, they must
keep the information from all filesystem blocks regardless of whether
they are used. This requires even more writes when moving around flash
blocks due to garbage collection of outdated log entries.

238 | Chapter 8: Root Filesystem Setup

Filesystem Types
Linux supports over 50 different filesystem types, but only a small subset are normally
used in embedded Linux systems. The following sections will classify these popular
filesystems according to the characteristics described in the previous sections and pro-
vide details about each filesystem’s creation.

The second extended filesystem (Ext2)

The second extended filesystem is writable and persistent, built for use with block
devices. It does not provide any power-down reliability or compression (unlike its fol-
low-on, the Ext3 filesystem, described in the next section). The filesystem is very fast
and supports up to 16 or 32 TB of storage.

Ext2 is one of the earliest filesystems to be used with Linux and is still a very suitable
choice when used with any of the following:

• RAM disks in read/write mode

• CompactFlash devices in IDE mode

• NAND or NOR flash in read-only (or mostly read-only) mode, implemented either
via MTD subsystem raw block device emulation or with an FTL/NFTL translation
layer

We don’t recommend using Ext2 when you have to write persistent data to the storage
device in production, because this filesystem doesn’t offer power-down reliability.

Creating an Ext2 filesystem and populating it is quite simple. First, you need to format
the storage partition. You can do this using the mke2fs command from the e2fsprogs
package, available at http://e2fsprogs.sourceforge.net.

Because the Ext2 and Ext3 filesystems are commonly used in Linux
desktop and server systems as well, this command is very likely already
installed on your development machine.

The following example formats a NAND flash using the NFTL translation layer to
present a block device to Ext2. Note, however, that any block device would have
worked just the same. The example assumes that you are issuing these commands from
your project’s ${PRJROOT} directory. It also assumes that the DOC device is accessible
on your host as /dev/nftla and you want to create an Ext2 filesystem on the first partition
of that device:

mke2fs /dev/nftla1
mke2fs 1.18, 11-Nov-1999 for EXT2 FS 0.5b, 95/08/09
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)

Filesystem Types for Embedded Devices | 239

http://e2fsprogs.sourceforge.net

8160 inodes, 32574 blocks
1628 blocks (5.00%) reserved for the super user
First data block=1
4 block groups
8192 blocks per group, 8192 fragments per group
2040 inodes per group
Superblock backups stored on blocks:
 8193, 24577

Writing inode tables: done
Writing superblocks and filesystem accounting information: done

Now, mount the partition and copy the filesystem data to it:

mkdir /mnt/doc
mount -t ext2 /dev/nftla1 /mnt/doc
cp -a rootfs/* /mnt/doc

If you cannot access the storage device from your host machine (such as over NFS),
you have two options:

• Mount an NFS root filesystem on the target, and then copy the contents of the root
filesystem onto your storage device. Using an NFS filesystem is described in Chap-
ter 9.

• Generate a binary image file of the filesystem data, and copy it onto the storage
device using an external device, such as a JTAG connector or a flash programmer.

Yet a third option is to create an empty file of the required filesystem
image size, format it using mke2fs with the -F flag, and then loopback
mount it using mount with the -o loop option. However, using
genext2fs is much better, so we mention this option only for the sake of
completeness.

To generate the binary image file containing the filesystem, use the genext2fs program.
As its name suggests, genext2fs generates an image file containing an Ext2 filesystem
that you can copy later to the target storage device. An additional advantage of using
genext2fs over mounting the storage device on the host (as suggested previously) is that
you don’t require root permissions to create the image. Therefore, it is both safer and
easier, and we recommend it.

genext2fs can be downloaded from the project website at http://genext2fs.source
forge.net; the latest version at the time of this writing is 1.4.1. The build and installation
procedure is straightforward:

$ tar zxvf genext2fs-1.4.1.tar.gz
$ cd genext2fs-1.4.1
$./configure
$ make
$ make check
$ make install

240 | Chapter 8: Root Filesystem Setup

http://genext2fs.sourceforge.net
http://genext2fs.sourceforge.net

Using genext2fs is also quite straightforward:

$ genext2fs -b 1024 -d src -D device_table.txt -e 0 flashdisk.img

This command will create a file called flashdisk.img in the current directory, 1024 KB
in size, that will contain an image of an Ext2 filesystem with all the files and directories
from the src directory. The -e option zeroes out all the unallocated space on the
filesystem.

The file device_table.txt, which is passed as a parameter to the -D option, contains a
list of regular and special files and directories that either need to be added to the file-
system image (in addition to the files and directories present in the src directory) or
need to have their ownership or permission changed. Each line in this file is of the form:

name type mode uid gid
 major minor start inc
 count

In each line, name is a relative or absolute path to the filename. type is one of the
following:

f
A regular file

d
A directory

c
A character device file

b
A block device file

p
A FIFO or named pipe

mode is the file permission, and uid and gid are the user ID and group ID (respectively)
that own the file or directory.

The rest of the entries (major, minor, etc.) apply only to device files. major and minor are
the device file major and minor numbers. start, inc, and count can be used to create
multiple device files in a single command, where a serial number is appended to the
device file name, starting from start and incremented by inc for each of the count device
files created. The minor number can also be incremented in the same fashion.

The following is an example device table file, written by Erik Andersen and taken from
the genext2fs manpage:

name type mode uid gid major minor start inc count

/dev d 755 0 0 - - - - -
/dev/mem c 640 0 0 1 1 0 0 -
/dev/tty c 666 0 0 5 0 0 0 -
/dev/tty c 666 0 0 4 0 0 1 6

Filesystem Types for Embedded Devices | 241

/dev/loop b 640 0 0 7 0 0 1 2
/dev/hda b 640 0 0 3 0 0 0 -
/dev/hda b 640 0 0 3 1 1 1 16
/dev/log s 666 0 0 - - - - -

This device table creates the /dev directory and the device nodes /dev/mem (major 1,
minor 1), and also /dev/tty, /dev/tty[0-5], /dev/loop[0-1], /dev/hda, /dev/hda[1-15],
and /dev/log socket.

Many other options for genext2fs are described in the command’s manpage; we rec-
ommend reading it.

The third extended filesystem (Ext3)

The third extended filesystem is an extension of the second extended filesystem that
adds reliability, via journaling, to Ext2’s writability and persistence.

By default, Ext3 will operate in ordered mode, meaning it will journal only filesystem
metadata, and only after all data updates have been written directly to storage. This
behavior is usually a good compromise that protects the filesystem metadata but does
not slow down writes by having any file data updates go through the filesystem journal.
You can change the behavior, at the cost of significantly slowing down writes, with the
data=journal mount option.

Another recommended mount option is noatime, which will disable the default behav-
ior of updating the last access time on files stored in the filesystem. This breaks the
filesystem’s POSIX compatibility, but can greatly improve the lifetime of flash devices,
as well as often providing better I/O throughout the system.

Here is an example showing both options used to mount an Ext3 filesystem from the
first partition of a CompactFlash in IDE mode (once again, the command would be
similar for any block device):

mount -t ext3 /dev/hda1 /media/cf -o noatime,data=journal

Ext3 is recommended for use with CompactFlash devices in IDE mode, provided that
their hardware provides wear level control (most do). It is also recommended for NAND
or NOR flashes via FTL/NFTL translation layers.

An Ext3 filesystem can be created using exactly the same methods described in the
previous section for Ext2, as they both share a common storage device format. The first
time an Ext2 filesystem is mounted as an Ext3 filesystem, the filesystem driver will
automatically create a journal entry and start using it. You can, however, create the
journal entry in advance when using the mke2fs program, by supplying it with the -f
option.

242 | Chapter 8: Root Filesystem Setup

Cramfs

Linus Torvalds wrote Cramfs as a filesystem with a bare-minimum feature set. It is a
very simple, and sometimes simplistic, compressed and read-only filesystem aimed at
embedded systems.

Cramfs can be used with any block device and is recommended for use in the following
situations:

• As a read-only filesystem on NOR and NAND flash via the “raw” MTD block
device emulation, in the common situation where updates of the filesystem image
are rare

• With NAND or NOR flash via FTL or NFTL translation layers

• On CompactFlash in IDE mode

• As a RAM disk image

Apart from being read-only, Cramfs has the following limitations:

• The maximum size of a file is 16 MB.

• There are no current (.) or parent (..) directory entries.

• The user-ID field for files is 16 bits wide, and the group-ID field is 8 bits wide.
Normal filesystems usually support either 16- or 32-bit uids and gids. On Cramfs,
gids are truncated to the lower 8 bits. In other words, you can have at most 255
groups on a root filesystem built on Cramfs.*

• All file timestamps are set to the Epoch (00:00:00 GMT, January 1, 1970). The
timestamps may be updated at runtime, but the updated values will last only as
long as the inode is cached in memory. Once the file is reloaded, its timestamp will
revert to the Epoch.

• Only kernels using 4096-byte page sizes (the value of PAGE_CACHE_SIZE must be
4096) can read Cramfs images.

• All files, whether they are linked or not, have a link count† of 1. Even when multiple
filesystem entries point to the same file, that file has a link count of only 1. This is
fine for most operations, however, because no files can actually be deleted from
Cramfs.

The limited number of gids is not a problem as long as your target’s root filesystem
contains no group with a gid above 255. For instance, if your target is a single-user
system, you don’t need to worry about this limitation. If your system must support a
multiuser environment, make sure the gids of all files and directories are below 255.

* See Chapter 5 in Running Linux by Matthias Dalheimer and Matt Welsh (O’Reilly) for a discussion of uids
and gids.

† Typically, filesystems maintain a count of the number of links made toward a file, and when this count reaches
0, the file is deleted.

Filesystem Types for Embedded Devices | 243

Otherwise, any gid above 255 will wrap around to a number below 255 and, possibly,
create a security risk.

In addition to Cramfs’s limitations, the tools provided for creating Cramfs filesystem
images used to be subject to the host’s byte ordering. Hence, you needed to use a host
that had the same byte ordering as your target to create a Cramfs image. At the time of
this writing, this limitation still applies to version 1.1 of this package, which is the latest
official Cramfs creation tools package found in the package website at http://source
forge.net/projects/cramfs/. But patches exists that enable filesystem creation independ-
ently of the host’s byte ordering. You can find these patches in the “Patches” section
of the website.

This same website offers several additional patches, enabling such things as using a
device table file in the same format genext2fs supports and using Execution In Place for
certain files in a Cramfs filesystem.

If your system can function with Cramfs’s limitations, it should probably be a serious
candidate for your project. If you are interested in Cramfs but chafe at its limitations,
look into Squashfs, described in the next section.

To create a Cramfs image of your root filesystem, you first need to create and install
the Cramfs tools, cramfsck and mkcramfs. Both of these utilities are part of the package
Cramfs tools package, which can be downloaded from the project website at http://
sourceforge.net/projects/cramfs.

To build the utilities, download the package, un-tar the archive, and issue the make
command:

$ tar zxvf cramfs-1.1.tar.gz
$ cd cramfs-1.1
$ make

Unfortunately, the package Makefile does not provide an install target. Therefore, copy
the tools to an appropriate directory:

$ cp cramfsck mkcramfs ${PREFIX}/bin/

You can now create a Cramfs image of your target’s root filesystem:

$ cd ${PRJROOT}
$ mkcramfs rootfs/ images/cramfs.img
 bin
 boot
 dev
 etc
 lib
 linuxrc
 proc
 sbin
 tmp
 usr
'bin':
 addgroup

244 | Chapter 8: Root Filesystem Setup

http://sourceforge.net/projects/cramfs/
http://sourceforge.net/projects/cramfs/
http://sourceforge.net/projects/cramfs
http://sourceforge.net/projects/cramfs

...
'boot':
 boot.b
...
'sbin':
 chroot
Directory data: 6484 bytes
166.67% (+15 bytes) addgroup
-31.46% (-2196 bytes) allinone
-40.27% (-240 bytes) arch
185.71% (+13 bytes) ash
...
-49.60% (-3700 bytes) wall
-49.54% (-695 bytes) include
Everything: 3560 kilobytes
Super block: 76 bytes
CRC: f18594b6
warning: gids truncated to 8 bits. (This may be a security concern).

In this case, rootfs contains 7840 KB, while the Cramfs image’s size is 3560 KB, a com-
pression ratio of approximately 50 percent. This ratio is consistent with Cramfs’s typ-
ical yields.

With the filesystem image ready, you can now write it to your storage device (note that
the following command requires root privileges):

dd if=rootfs/cramfs.img of=/dev/mtd4 bs=1024

This command assumes that the storage device is accessible on the host. The same
image file also can be copied to the storage device using alternative methods, such as
using a flash programmer via a JTAG port to copy the filesystem image unto the flash,
via a bootloader debug shell (the bootloader will be discussed further in the next chap-
ter), or by running from an NFS-mounted root filesystem on the target. To verify the
content of a Cramfs filesystem, use the cramfsck utility built earlier.

Squashfs

The Cramfs filesystem described in the previous section is quite useful for many em-
bedded system setups. However, it suffers from some serious limitations. Squashfs is
a compressed, read-only filesystem that enjoys many of Cramfs’s advantages without
its limitations. It is intended for general read-only filesystem use, for archival use (i.e.,
in cases where a .tar.gz file may be used), and in systems with constrained disk sizes
and memory (which includes most embedded systems) where low overhead is needed.
The filesystem is currently stable, and has been tested on PowerPC, i586, Sparc, and
ARM architectures.

The following are some of Squashfs’s features:

• Data, inodes, and directories are compressed.

• Squashfs stores full uid/gids (32 bits) and file creation time.

• Files up to 264 bytes in size are supported. Filesystems can be up to 264 bytes.

Filesystem Types for Embedded Devices | 245

• Inode and directory data are highly compacted, and packed on byte boundaries.
Each compressed inode is, on average, 8 bytes in length. (The exact length varies
by file type; that is, regular files, directories, symbolic links, and block or char
device inodes have different sizes.)

• Squashfs can use block sizes up to 64 KB (which is the default size). Using 64 KB
blocks achieves greater compression ratios than the normal 4 KB block size.

• File duplicates are detected and removed.

• Both big- and little-endian architectures are supported. The mksquashfs program
can generate filesystems for situations where the host byte ordering is different
from the target.

Despite all its advantages, Squashfs does suffer from one drawback: it is not part of the
Linux kernel tree. Using Squashfs requires applying a patch to the kernel, available
together with other tools from the project website at http://squashfs.sourceforge.net.

By itself, Squashfs supports only GZIP compression. However, external patches avail-
able at http://www.squashfs-lzma.org enable the use of the LZMA compression. There
are plans to integrate LZMA compression into the upcoming 2.6.24 Linux kernel
version.

After downloading the Squashfs tar archive of the latest version (3.2-r2 at the time of
this writing), unpack the archive:

$ tar zxvf squashfs3.2-r2.tar.gz
$ cd squashfs3.2-r2/

Next, locate the kernel patch for your kernel version from the kernel-patches directory:

$ cp kernel-patches/linux-2.6.20/ ${PRJROOT}/kernel

Now, apply the patch to your kernel source tree:

$ cd ${PRJROOT}/kernel/
$ patch -p1 < squashfs3.2-patch

If the patch you are using does not exactly fit the kernel version you are
using, or if earlier patches applied by you or a vendor made some
changes in related code, you might need to manually inspect the patch
command output and manually integrate the code where patch failed to
find a match.

Next, build the kernel as usual, but make sure to turn on the new “Squashed filesystem”
option in the “Miscellaneous filesystems” section of the “Filesystems” menu. If you do
not plan on using Squashfs on an initial RAM disk (described soon), you can opt to
build Squashfs as a kernel module instead of building it statically into the kernel image.

In addition to patching and rebuilding the target’s kernel, you need to build and install
the Squashfs tools package for the host:

246 | Chapter 8: Root Filesystem Setup

http://squashfs.sourceforge.net
http://www.squashfs-lzma.org

$ cd squashfs3.2-r2/squashfs-tools/
$ make
$ cp mksquashfs /usr/sbin

At last, you can use the mksqushfs tool you have just built to build a Squashfs filesystem:

mksqushfs source1 source2 ... destination [options]

where source1, source2, etc. are the pathnames of files or directories to be added to the
resulting filesystem image, and destination is the path of the Squashfs filesystem image
file to create.

Many additional options exist; we recommend that you consult the extensive Squashfs
how-to document available at http://www.artemio.net/projects/linuxdoc/squashfs.

JFFS2

JFFS2 is a writable, persistent, compressed, power-down-reliable filesystem that is well
suited for use on NOR or NAND on-board flashes or DoC devices. The filesystem uses
a log structure and provides wear leveling. We already described JFFS2’s features in
Chapter 3.

Because JFFS2 is an important component of the embedded Linux system builder’s
tool set, a few words regarding its design are in order. The following information is an
extremely high-level and not completely accurate description of JFFS2’s inner work-
ings, but it will hopefully serve to provide sufficient background for you to understand
the remainder of the section. Additional in-depth information regarding JFFS2’s design
and implementation can be found on its documentation page, http://www.linux-mtd.in
fradead.org/doc/jffs2.html.

Despite its name, JFFS2 is not in fact a journaling filesystem. Instead, JFFS2 keeps all
the filesystem information in a log structure that spans the entire flash storage space.
This log is comprised of nodes, each describing a single block of data or metadata. The
nodes are grouped together in chunks the size of erase blocks. Each node that carries
filesystem data has information identifying which part of which file it is describing, as
well as a serial number.

When the contents of part of a file need to be updated, JFFS2 simply writes a new node
with the changed information, giving the node a higher serial number than all previ-
ously written nodes describing the same file part. All these older log entries are subse-
quently ignored.

When the free space in the flash storage device drops down below a certain threshold,
or when additional storage space is needed, a background garbage-collection process
begins. It walks all the erase blocks, creates new copies of nodes that reside in erase
blocks with a significant number of stale nodes, and recycles each erase block it replaces
by erasing it. The process also writes clean blocks to insert special nodes called “clean
marker” nodes. This kind of node designates the block as a fresh erase block that is
ready to receive new nodes, thus allowing the filesystem code to quickly identify clean

Filesystem Types for Embedded Devices | 247

http://www.artemio.net/projects/linuxdoc/squashfs
http://www.linux-mtd.infradead.org/doc/jffs2.html
http://www.linux-mtd.infradead.org/doc/jffs2.html

blocks when the filesystem is mounted. When the last erase block at the end of the flash
device is full, the JFFS2 code simply wraps around and starts populating clean blocks
from the beginning of the flash device.

When a JFFS2 filesystem is mounted, the JFFS2 code scans the entire flash device and
builds a representation of the filesystem data by going over the log node by node and
identifying the most current node for each file part. One optimization recent versions
of JFFS2 has introduced is the use of erase block summary nodes, which are written to
the end of the erase block and contain a summary of the nodes present in the block. If
such an erase block summary is found, the JFFS2 code will use the summary informa-
tion instead of reading the entire erase block, which provides faster mount times.

One caveat that may be apparent now is JFFS2’s behavior when full. As described
previously, JFFS2 makes use of a garbage-collection technique on the MTD blocks that
contain stale information. This garbage collection takes place either in a background
task that is triggered whenever the free space in the filesystem drops below a
preconfigured threshold, or whenever a pending filesystem update requires more free
space then is currently available. This scheme works fine in most cases.

Under extreme conditions, however, such as when the filesystem is nearly full and a
large number of filesystem updates are required, the additional CPU consumption re-
quired to decompress and compress data as it is being moved from garbage-collected
MTD blocks to new ones, and the consequent delay in filesystem operations, may have
negative effects on time-sensitive parts of your device software that were not designed
to take this into consideration.

In addition, attempting to update or truncate a file’s content in a full JFFS2 filesystem
might fail with an error indicating that the filesystem is full, even though it might seem
that the action does not require additional storage blocks. Once again, this is expected
behavior for a log-structured filesystem, as every action in such a filesystem results in
an append to the log, but it may come as an unpleasant surprise to those who do not
understand how JFFS2 works.

Don’t interpret these side effects as indications that JFFS2 is not production-worthy.
Just take the constraints as well as the advantages of this filesystem design into account
when considering and coding around it in an embedded device. Make sure that suffi-
cient storage space is allocated to the JFFS2 filesystem in order to efficiently make use
of the storage device resources. Use the filesystem with applications that can tolerate
delays, as well as the previously mentioned error condition when the filesystem gets
close to being full.

JFFS2 Evolution
JFFS2 is a the second incarnation of the original JFFS filesystem. But JFFS2 itself is
beginning to show its age, especially with ever-bigger flash device sizes becoming com-
mon. It is not designed to handle the newest size of flash devices all that well.

248 | Chapter 8: Root Filesystem Setup

An effort is underway to redesign and rewrite the next generation of the JFFS2 filesystem
and its logical flash volume manager, under the names UBI (Latin for “Where?”) and
UBIFS. At the time of this writing, this project is not ready for use in a production
system, but it may very well be by the time you read this book. So, have a look at the
project’s websites, http://www.linux-mtd.infradead.org/doc/ubi.html and http://www.li
nux-mtd.infradead.org/doc/ubifs.html.

A second and very serious contender to the title of the “next JFFS2” is Logfs, whose
website can be found at http://logfs.org/logfs.

Leaving the characteristics of JFFS2 now and moving to practical details, let us now
concentrate on the creation and installation of a JFFS2 filesystem image. We will focus
on the mkfs.jffs2 utility installed in the previous chapter as part of the MTD utilities
installation.

Creating a JFFS2 image is fairly simple:

$ cd ${PRJROOT}
$ mkfs.jffs2 -r rootfs/ -o images/rootfs-jffs2.img -e 128KiB

Use the -r option to specify the location of the directory containing the root filesystem,
and the -o option to specify the name of the output file where the filesystem image
should be stored. The -e option provides the size of the erase block of the flash device
to which the filesystem will be written.

Importance of Using Correct Erase Block Size
JFFS2 is specifically designed to be used with NOR or NAND flashes, and its design is
tightly coupled to the concept of a flash erase block. It is therefore very important to
provide a correct erase block size when creating a JFFS2 filesystem image using
mkfs.jffs2.

JFFS2 treats each flash erase block as a separate storage block. The nodes that make
up the JFFS2 log structure will never cross an erase block boundary. Nodes that seem
to do so will be ignored as invalid by the JFFS2 code, with the result that all data stored
in it will be lost and the filesystem will be corrupted. This last scenario is exactly what
will happen if you specify a bigger erase block than the device’s actual erase block size
when creating an JFFS2 image.

Creating an image with a smaller erase block size than the true one is less catastrophic,
but still has some undesirable results.

If a node cannot be written in its entirety to free space in the current erase block, the
remainder of the current erase block will stay empty and the node will be written starting
from the beginning of the next erase block instead.

In addition, JFFS2 expects all nodes in an erase block to be consecutive. There should
never be empty, unused space between nodes in the same erase block. Should such a
condition be detected at runtime, the JFFS2 code will log a message similar to the
following in the kernel log buffer:

Filesystem Types for Embedded Devices | 249

http://www.linux-mtd.infradead.org/doc/ubi.html
http://www.linux-mtd.infradead.org/doc/ubifs.html
http://www.linux-mtd.infradead.org/doc/ubifs.html
http://logfs.org/logfs

jffs2_scan_empty(): Empty block at 0x0012fffc ends at
 0x00130000 (with 0xe0021985)! Marking dirty

Other than that, and aside from the waste of unused space between the end of the
logical erase block with which the filesystem was created and the true erase block in
the flash device, the situation is harmless in the sense that no data will be lost. It is still
recommended, however, that you recreate the filesystem image with the correct erase
block size.

In addition to the options just listed, you can use -l or -b to create little- or big-endian
images, respectively. Without such an option, the command uses the byte ordering of
the system on which it runs.

JFFS2 can achieve somewhat better compression than Cramfs: a little more than 50
percent. For a root filesystem containing 8484 KB, for example, the resulting JFFS2
image is 3844 KB in size. The LZMA compression algorithm mentioned earlier may
improve this ratio even more.

Before we proceed to write the JFFS2 image to flash itself, let’s look at one additional
procedure that is optional but highly recommended: adding erase block summary no-
des to the JFFS2 image mkfs.jffs2 created. This functionality is not yet implemented in
the mkfs.jffs2 command and is done using the separate sumtool command:

sumtool -i rootfs-jffs2.img -o rootfs-jffs2-summed.img -e 128KiB

Once you create the JFFS2 image, you can write it to its designated MTD device in one
of the following ways:

• If the device is accessible on the host, you can carry out the appropriate commands
directly on the host.

• You can follow the instructions in the upcoming section “Writing a Filesystem
Image to Flash Using an NFS-Mounted Root Filesystem”: boot your target with an
NFS-mounted root filesystem, place the JFFS2 image on that filesystem, and issue
the commands on the target to write the image to the designated MTD device.

• Use an external flash programmer or the bootloader debug shell to write the JFFS2
image to flash.

Regardless of your setup, you first need to erase the MTD device where the image will
be placed:

flash_eraseall -j /dev/mtd5
Erased 8192 Kibyte @ 0 -- 100% complete.

The -j option in the flash_eraseall command instructs it to place clean marker log nodes
in the erased blocks, indicating that they are truly erased. This may reduce mount time
dramatically when the partition is later mounted. The marker nodes go at the beginning
of the block for NOR flashes, and in the spare area of the first page for NAND.

250 | Chapter 8: Root Filesystem Setup

Obviously, the space available on the MTD storage device must be equal to or larger
than the JFFS2 image you are placing on it. With the MTD device erased, copy the
JFFS2 image to the MTD partition. For NOR flashes, you can use the dd command:

dd if=images/rootfs-jffs2-summed.img of=/dev/mtd5 bs=1024

For NAND flashes, you must use the nandwrite command, which takes into consider-
ation bad blocks that are part of a NAND flash:

nandwrite -j /dev/mtd5 rootfs-jffs2-summed.img

Now, mount the copied filesystem to take a look at it:

mount -t jffs2 /dev/mtdblock5 /mnt
mount
...
/dev/mtdblock5 on /mnt type jffs2 (rw)
ls mnt
bin etc linuxrc sbin usr
dev lib proc tmp var
umount mnt

The previous example shows the mtdblock device corresponding to the
MTD partition that is used as the mount device, /dev/mtdblock5, in this
case. Using the device name is not strictly needed, or even recommen-
ded. Instead, you can use the MTD minor number (e.g., mtd2) or even
the MTD partition name (e.g., mtd:my_root_fs) instead of the mtdblock
device file name.

Unfortunately, the version of the mount command that ships with Busy-
Box does not work with these more straightforward formats, and
because the BusyBox version of this command is used in almost all em-
bedded Linux systems, we chose to provide the example as-is.

Also, note that you cannot use the minor number or the MTD partition-
type-based naming format for specifying an MTD partition as a root
filesystem on the kernel command line.

Unlike disk filesystems, JFFS2 cannot be mounted on loopback using the mount -o
loop for you to view its content. Instead, it must be mounted from a real MTD device,
as done previously. If you have no real MTD device on your host, such as CFI flash,
you could use the virtual memory MTD device presented in Chapter 3. You could also
use the jffs2reader command, introduced in the previous chapter, to view the image’s
content.

If your target had previously been using an NFS-mounted root filesystem, you are now
ready to boot it using the JFFS2 filesystem as its root filesystem.

Filesystem Types for Embedded Devices | 251

YAFFS2

Yet Another Flash Filing System, version 2 (YAFFS2) is a writable, persistent, power-
down-reliable filesystem for NAND and NOR flash devices. It is widely used with Linux
and RTOSes in consumer devices. It provides wear leveling and is optimized for use
with NAND flash devices. YAFFS2 is dual-licensed under the GPL, but a separate li-
cense with different terms is available for a fee. The YAFFS2 website can be found at
http://www.yaffs.net.

YAFFS2 is not part of the mainline Linux kernel tree and therefore requires you to
obtain the sources from the project CVS repository and patch the target kernel source.
The latest kernel version supported at the time of this writing is 2.6.25, according to
the YAFFS2 website. Here is the procedure to patch your kernel source with YAFFS2
support:

$ export CVSROOT=:pserver:anonymous@cvs.aleph1.co.uk:/home/aleph1/cvs cvs logon
(Just press the Return key if you are asked for a password)
$ cvs checkout yaffs2
$ cd yaffs2
$./patch-ker.sh c ${PRJROOT}/kernel

Now rebuild the target kernel image. Do not forget to configure the kernel, turning on
CONFIG_YAFFS_FS and related options!

After the target kernel is ready, build and install the YAFFS2 tools used to create file-
system images:

$ cd yaffs2/utils
$ make
$ cp mkyaffsimage mkyaffs2image /usr/bin/

Creating a YAFFS2 filesystem image file is quite straightforward:

$ mkyaffs2image ${PROJROOT}/rootfs yaffs2.img

This creates the filesystem image file yaffs2.img with the content of the ${PROJROOT}/
rootfs directory. The convert option may also be specified on the command line in order
to create cross-endian filesystem images.

You can use the same methods described in the previous section on JFFS2 to install the
filesystem image on the target device flash.

Tmpfs

Tmpfs is a filesystem stored in virtual memory. As such, it is writable but not persistent:
its content is not saved across reboots. Because it can grow and shrink according to its
content, it is quite useful for storing temporary files. One common use for it is to mount
directories that do not require permanent storage, such as /tmp.

Tmpfs is unique in that it uses the Linux page and dentry caches for storing the file data
and metadata. The Linux page cache is the kernel’s internal data structure where the
kernel copies and caches pages of the data that is read, written, or executed from

252 | Chapter 8: Root Filesystem Setup

http://www.yaffs.net

filesystems on physical storage devices so that code running on the CPU can interact
with the pages. The Linux dentry cache is a similar construct that caches information
about directory entries in mounted filesystems. Please do not get confused by the use
of the term “cache” here, as there is no backing store involved when Tmpfs uses these
caches. Instead, the objects in the caches are the only copies of the data in the system.

A similar and related filesystem, called Ramfs, is also available. Just like
Tmpfs, it is writable but not persistent, and uses the Linux page and
dentry caches for storage.

In fact, Ramfs is an earlier and simpler version of the same code from
which Tmpfs was derived. The two biggest differences between them,
as far as functionality goes, is that data stored on a Tmpfs filesystem can
be swapped to disk, whereas data in Ramfs cannot. Because swap is
hardly ever used in embedded systems, this difference is of no impor-
tance. The second difference is that you can’t limit a Ramfs filesystem’s
size, and therefore you can’t limit its memory use, but you can with
Tmpfs.

In Linux kernel version 1.6.19, another functional difference has crop-
ped up between Tmpfs and Ramfs: files on a Tmpfs filesystem can now
be exported via the internal Linux NFS server, whereas no such support
is available to Ramfs filesystems.

Tmpfs should always be preferred to Ramfs, except for very special
circumstances.

To use Tmpfs, enable the “Virtual memory filesystem support (former shm fs)” item
in the “Filesystems” submenu of the kernel configuration menu.

With kernel support for Tmpfs enabled, you can mount a Tmpfs filesystem on /tmp,
which will use up to 4 MB of RAM; for example:

mount -t tmpfs none /tmp -o size=4m

Alternatively, you can add a line in your /etc/fstab file and modify your /etc/init.d/rcS
file to mount Tmpfs at boot time. If you do not provide a size limit, the filesystem will
grow in accordance with its content up to half of the available RAM. If maximum
filesystem size is exceeded, file operations requiring more storage space will fail with
an appropriate error.

In contrast with most other mount commands, Tmpfs does not require a device or file
to be mounted. Hence the use of none as the device in the previous example. mount
ignores the name of the device for Tmpfs, and replacing none with any other name
would have no effect on the command.

Filesystem Types for Embedded Devices | 253

Writing a Filesystem Image to Flash Using an NFS-Mounted
Root Filesystem
Although Chapter 9 will discuss the setup and configuration of the NFS server on the
host for providing a root filesystem to a target, let’s take a look at how this configuration
can be useful at this stage.

Exporting a root filesystem from the host to the target over NFS during early develop-
ment stages simplifies the development process by allowing quick modification of the
files the target used. Later, the target needs to have a filesystem stored in its flash in
order to be self-hosting. Although some bootloaders can be used to copy images to
flash, you can also use the MTD utilities running on the target to copy files available
on the NFS-mounted root filesystem. To do so, copy the designated filesystem image
to the directory on the host containing the NFS-mounted target root filesystem, boot
the target, and use MTD commands on the target to copy the filesystem image to flash.

To copy an initial RAM disk image to your target’s flash, for example:

1. Configure your target to mount its root filesystem from a directory exported by
your host using NFS.

2. On your host, copy the filesystem image to the directory exported to your target.
Though the filesystem image is not physically on your target, it will be visible on
its root filesystem once the kernel mounts it using NFS at startup.

3. Boot your target and use the MTD utilities on your target to copy the filesystem
image from the NFS-mounted root filesystem to the appropriate flash device entry
in your target’s /dev directory.

Placing a Disk Filesystem on a RAM Disk
RAM disks, as their name indicates, live in RAM and act like block devices. The kernel
can support many active RAM disks simultaneously. Because they act like block devi-
ces, any disk filesystem can be used with them. But because their content lasts only
until the system is rebooted, RAM disks are usually reserved for compressed images of
disk filesystems, such as Ext2 filesystems. These images are known as compressed RAM
disk images.

One instance where the use of such compressed RAM disk images is particularly at-
tractive for embedded Linux systems is during system initialization. Specifically, the
kernel can extract an initial RAM disk (initrd) image from a storage device for use as its
root filesystem.

At startup, the kernel verifies whether its boot options indicate the presence of an initrd.
If so, it extracts the filesystem image, whether or not it is compressed, from the desig-
nated storage media into a RAM disk, and mounts it as its root filesystem. Up to kernel
version 2.6, the initrd mechanism was, in fact, the simplest method to provide a kernel

254 | Chapter 8: Root Filesystem Setup

with a root filesystem in RAM. It is still in widely used today, which is why we cover it
here.

For new systems, however, we strongly recommend using the Initramfs mechanism
described in the next section. In this section, we discuss the creation of a compressed
RAM disk image for use as an initrd. We will explain how this image can actually be
used as an initrd in Chapter 9.

For our purposes, we will create an Ext2-based RAM disk image for use in our target.
Although Ext2 is the filesystem most commonly used with RAM disks, other disk
filesystems can also be used. Some developers, for instance, prefer Cramfs.

In this section, we’ll create and compress an initial RAM disk from an Ext2 filesystem.
If you use the Cramfs filesystem for the initial RAM disk, there is no point to com-
pressing the image file, because the filesystem format itself is compressed.

First, create a new filesystem image file using the genext2fs utility and the procedure
described earlier in “The second extended filesystem (Ext2)”:

$cd ${PRJROOT}
$ genext2fs -b 1024 -d rootfs -D device_table.txt -e 0 initrd.img

The -e option will zero out the unallocated space in the image. Initializing the filesystem
in this way achieves a maximum compression ratio for the unused portions of the
filesystem later when you use gzip to compress the entire image.

The images/initrd.img file now contains the filesystem. The final step is to compress
this filesystem to obtain a compressed RAM disk:

$ gzip -9 < images/initrd.img > images/initrd.bin
$ ls -al images/initrd*
-rw-rw-r-- 1 karim karim 3101646 Aug 16 14:47 images/initrd.bin
-rw-rw-r-- 1 karim karim 8388608 Aug 16 14:46 images/initrd.img

It is compressed using the gzip command. The -9 option tells the command to use the
highest compression algorithm available. In this case, the compression ratio is above
60 percent, which is comparable to JFFS2 and superior to Cramfs. Of course, JFFS2
and Cramfs have the advantage of being persistent, whereas a RAM disk is not.

You can place the RAM disk image created here, images/initrd.bin, on the appropriate
device on your target and configure your bootloader accordingly. See Chapter 9 for
more information on using RAM disks for initrd.

Rootfs and Initramfs
Linux 2.6 stores its startup init program in a compressed archive in CPIO (a somewhat
arcane Unix backup file compression format still widely used) format. The boot pro-
cedure extracts the archive into a special instance of a Tmpfs (or Ramfs, if Tmpfs is not
available) filesystem, which is always present in a 2.6 system.

Rootfs and Initramfs | 255

Rootfs cannot be unmounted, for more or less the same reason you can’t
kill the init process. Rather than having special code to check for and
handle an empty list, it’s simpler for the kernel to just make sure certain
lists can’t become empty.

Most systems just mount another filesystem over Rootfs and ignore it.
An empty instance of Ramfs takes up a tiny amount of space.

After extraction, the kernel will try to locate an init program in the Rootfs filesystem.
If present, Rootfs is used as the root filesystem, and the init program in it is responsible
for setting up the rest of the running system (and perhaps mounting a different root
filesystem on top of Rootfs). If no init program is in Rootfs, the 2.6 kernels fall back to
executing older code that looks for the root filesystem via the kernel command-line
root parameter or an initrd mechanism.

Populating such an Initramfs can be done via the CONFIG_INITRAMFS_SOURCE kernel con-
figuration option, which can be used to hardcode the location of the Initramfs archive
into the kernel binary. The option value can point to an existing gzipped CPIO archive,
a directory containing files to be compressed into a new archive, or a text file that
contains lines in the following syntax:

a comment
file name location mode uid gid
dir name mode uid gid
nod name mode uid gid dev_type maj min
slink name target mode uid gid
pipe name mode uid gid
sock name mode uid gid

where the parameters have the following meanings:

name
The name of the file, directory, etc. in the archive

location
The location of the file in the current filesystem

target
The target of a link

mode
The permissions of the file in octal notation (e.g., 777 denotes full permission)

uid
The user ID (0 for root)

gid
The group ID (0 for root)

dev_type
The device type (b for block or c for character)

256 | Chapter 8: Root Filesystem Setup

maj
The major number of the node

min
The minor number of the node

Here is a simple example:

 dir /dev 755 0 0
 nod /dev/console 644 0 0 c 5 1
 nod /dev/loop0 644 0 0 b 7 0
 dir /bin 755 1000 1000
 slink /bin/sh busybox 777 0 0
 file /bin/busybox initramfs/busybox 755 0 0
 dir /proc 755 0 0
 dir /sys 755 0 0
 dir /mnt 755 0 0
 file /init initramfs/init.sh 755 0 0

The Linux kernel build does not rely on any external utility to create or extract the
CPIO created; the code to do this is self-contained. However, should you want to create
an Initramfs CPIO archive yourself, run the cpio utility as follows:

$ cd ${PROJDIR}/rootfs
$ find . | cpio -o -H newc | gzip > ${PROJDIR}/initramfs.cpio.gz

For completeness, the following commands may be used to extract an already existing
GZIP-compressed CPIO archive:

$ gunzip initramfs.cpio.gz
$ cpio -i -d -H newc -F initramfs_data.cpio --no-absolute-filenames

The cpio manpage contains some bad advice that will break your
Initramfs archive if you follow it. It says: “A typical way to generate the
list of filenames is with the find command; you should give find the
-depth option to minimize problems with permissions on directories
that are unwritable or not searchable.” This will not work while creating
an Initramfs archive, because the Linux kernel CPIO extractor will re-
fuse to create files in a directory that does not exist. Therefore, directory
entries must precede the files that go in those directories. The example
shown in this section will produce a correct CPIO archive.

If the kernel is compiled with Initial RAM disk support (Initrd), an external compressed
CPIO archive can also be used by the Linux kernel in place of a RAM disk. The kernel
will detect that the type of the Initrd is an Initramfs archive and not a filesystem image,
and will extract the content of the archive into the Rootfs prior to attempting to locate
the init program (which by default is located in /sbin/init). The files in this external
archive will overwrite any file in the internal built-in archive in the kernel image file.

Because Initramfs uses the Linux dentry and page caches to store the file and metadata
content of the filesystem, an Initramfs can make much more efficient use of system

Rootfs and Initramfs | 257

memory then a RAM disk. This is why Initramfs should be used in preference to the
Initrd mechanism in all new systems.

Choosing a Filesystem’s Type and Layout
As must be obvious by now, the number of filesystem types and related options in Linux
can be a bit overwhelming at first, and it might not be obvious how to pick the right one.

The touchstone for making a correct choice is to list the types of data stored on the
filesystem in question and their intended uses: to cite a couple of examples, executable
binary files and libraries that form the software running the device versus XML files
holding variable configuration information. Then reduce this list to a set of require-
ments using the same (or similar) terms as those used earlier in this chapter to define
different embedded filesystems, characteristics (e.g., online writable, persistent, power-
down reliable, and compressed).

Next, find a combination of filesystem type and hardware storage medium, among
those available on your system, that best fits the requirements.

Keep in mind that developers commonly make use of not one but several different
filesystems of different types, dedicating different filesystems to different system
functions.

Using multiple filesystems does not require multiple storage devices.
Linux supports partitioning with practically any storage medium, and
different partitions on the same storage medium can contain different
filesystem types.

The upcoming sections will attempt to provide some guidelines to following the process
we recommend in this section for various common filesystem roles. These are general
rules of thumb that may or may not be suited for your specific design and circumstances.
As an example, if you need to carry out online updates of your embedded device’s
software, that may impose additional considerations to the ones outlined here, as dis-
cussed later in “Handling Software Upgrades.” However, these rules do provide a good
starting point for your own design process.

Applications, Libraries, and Static Data
Embedded systems store the application’s executable code, the code libraries, and static
data (such as read-only databases, XML files, etc.) in some sort of persistent storage.
After all, we would like our system to be able to load its software back in after a reboot.

Having said that, we actually require only a very specific kind of persistence for these
elements: we would like to get the device software loaded back in RAM after a reboot
in the form that it was stored during the last software update (or factory installation).

258 | Chapter 8: Root Filesystem Setup

However, we do not need to keep any changes made to the software or files in RAM,
except those specifically done for the purpose of upgrading the software. In fact, it is
actually a useful requirement to not keep any changes to the content of this filesystem,
except those made specifically to update the software.

One way to achieve this nuanced persistence requirement is to use a read-only
filesystem, either one that is does not support writing to the filesystem when the system
is online at all, or one that makes the filesystem read-only through mount options. In
other words, online writability is not a requirement for us.

The other way to achieve the desired safety is to use a writable but nonpersistent file-
system that is “seeded” from some persistent storage. As we shall see, the Initramfs
mechanism described earlier in “Rootfs and Initramfs“ provides an excellent way to
implement such a feature.

One additional requirement you may have, especially if your filesystem content is large
and your intended storage medium is small, is to use a compressed filesystem. This is
an optional requirement that depends on your specific device system properties.

Keeping the filesystem in RAM

The Tmpfs filesystem discussed earlier in “Tmpfs,” especially when used as a Rootfs
via the Initramfs mechanism, can fulfill the requirement of nonwritable persistence
nicely.

The compressed CPIO archive that is statically linked into the kernel image, or loaded
with it during system boot by the bootloader, provides the required persistence. The
CPIO is compressed, preserving precious storage space. Because Tmpfs is nonpersis-
tent, any accidental changes to the code and static data done on the filesystem in RAM
will be discarded upon system shutdown, and it will take a deliberate act of updating
the kernel image in the CPIO archive to affect the software. This update is generally
done only as part of a software upgrade.

Furthermore, because Tmpfs uses the Linux page and dentry caches as temporary stor-
age areas, and because the Linux kernel usually keeps data and executable code file
blocks in these caches for execution or access, using Tmpfs will save memory in the
common case where the embedded device frequently uses system software and static
data.

Using read-only persistent storage

If RAM is in short supply, and if system software and static data files are very big but
are not normally all used together at the same time, using Tmpfs may not be a viable
option. In this case, you could opt for a read-only compressed filesystem.

The two most suitable candidates are Cramfs and Squashfs. As noted in the sections
about them earlier in this chapter, we recommend using Cramfs if its limitations are
not an obstacle for your system, and otherwise recommend implementing Squashfs.

Choosing a Filesystem’s Type and Layout | 259

Because both filesystems are persistent, compressed, read-only filesystems, they meet
our requirement.

In this case, system software upgrades will be performed by updating the entire file-
system image on storage, which will be done either:

• When the system is offline. The update could be done from the bootloader, or by
replacing a removable storage device, such as a CompactFlash.

• By storing two (or more) such filesystems on different partitions or storage devices.
You can then update them in alternation: run the system from one partition or
device while updating the other one, and then switch roles in the next update.

The next section presents a slightly more complex variant of this scheme that offers
some advanced features and makes full use of Linux’s powers and filesystem
capabilities.

Using online writable persistent storage

As an alternative—but, we believe, less desirable—option to the previous choices, you
can use one of the other persistent filesystems that are appropriate for your chosen
storage device. Mount the filesystem in read-only mode (using the ro mount option)
during normal system usage, and switch to read/write mode on the fly (using the
remount mount option) to perform a software update. Then switch back to read-only
mode at the end of the update.

If your storage device is a CompactFlash or a NAND flash with an NFTL layer, such
as DoC, Ext3 is the recommended filesystem because it is both persistent and power-
down reliable. If NAND without NFTL is the storage medium, and if storage space is
not an issue (as one would expect, because NAND flashes are typically big), YAFFS2
is the recommended filesystem because it offers power-down reliability and wear-
leveling support in addition to persistence. Last but not least, use JFFS2 for either NOR
or small NAND flashes when NFTL is not in use, because it adds compression to per-
sistence and power-down reliability.

As will be explained in the next section, using this option requires special care and
attention due to the nonatomic nature of the update process. Due to this issue, and
others discussed in the next section, we do not recommend this option.

Dynamic Configuration Files and Data
Almost every embedded system has some dynamic configuration files or data, such as
the device’s IP networking information, logfiles, or license information.

The filesystem storing this kind of information must be persistent, writable online, and
power-down reliable. Because frequent file information updates are expected, wear
leveling must be supported at some level of hardware or software if NAND or NOR
flash is used. In many situations, compression may also be a requirement.

260 | Chapter 8: Root Filesystem Setup

Keeping this type of information on a separate partition or storage device from all other
information is highly recommended, because you should reserve a specific amount of
storage space to these files. Otherwise, you could find yourself blocked from updating
your configuration files, perhaps because a software update filled up the device or par-
tition, or even because logfiles grew too much.

As with previous types of filesystem roles, the best filesystem for the job depends on
the storage medium. If your storage device is either a Compact Flash or a NAND flash
with an NFTL layer, such as DoC, Ext3 is recommended because it is both persistent
and power-down reliable. If NAND with NFTL is the storage medium, assuming stor-
age space is not an issue, YAFFS2 is the recommended filesystem because it’s persistent
and has power-down reliability and wear-leveling support. Last but not least, use JFFS2
for either NOR or small NAND flashes when NFTL is not used, to add compression
to persistence and power-down reliability.

Temporary Files
Many embedded systems use various types of temporary files that are meaningful only
during the current system uptime and need not be kept when the system is taken offline.
One common example is temporary configuration files, which are kept in a volatile
storage and whose change affects the system behavior only until the next reboot, unless
a specific save command (e.g., copy running-config startup-config) is given to retain the
configuration changes across reboots.

The best place to store this kind of volatile information is in the Tmpfs filesystem (this
time not as an Initramfs). One thing to note is that it is important to limit the maximum
size of the Tmpfs filesystem used for this purpose via the size mount option, so as not
to drain system RAM because of a rogue task that creates many temporary files.

Layout Example
Figure 8-1 shows a simple but typical layout for an embedded system with a Compact-
Flash storage device. The root filesystem with the system software is placed in a read-
only, compressed Squashfs filesystem. Configuration files are stored in a read/write
Ext3 filesystem on a separate partition. Temporary files are stored only in RAM using
Tmpfs.

Handling Software Upgrades
One of the most critical tasks you need to take into consideration when designing your
filesystem layout, and your embedded devices in general, is how to do software up-
grades in the field.

Handling Software Upgrades | 261

For some embedded systems, you can plan on having their software updated only by
a qualified technician in a controlled lab environment. Perhaps their function is not
critical, or the costs of implementing a truly fail-safe software upgrade mechanism are
prohibitive. In the next section, we’ll present three simple methods for such situations,
where you upgrade the software in your development environment.

Many other systems, however, need to support upgrades in the field, over a network
connection, with no competent manual intervention available if something goes wrong.
The key to achieving this upgradability is to design the system to support a software
upgrade in an atomic fashion. This means putting in place a process that moves the
device from one working state (the old version) to another (the new version) in a single,
uninterruptible operation. You should not allow any intermediate state in which the
device will be left nonfunctional if disaster, such as an unplanned power outage, strikes
as the upgrade procedure is being run. We will show how to accomplish this using
Linux, in the last section of this chapter.

Software Upgrades in Controlled Environments (Non-Fail-Safe)
Here we’ll present three simple ways to upgrade your software: replace a filesystem in
place in RAM, file-level upgrades use the rsync utility for file-level upgrades, and how
to use package management tools.

Replacing a filesystem in-place in RAM

This simple and efficient upgrade procedure is common in many consumer electronic
devices that are not considered critical systems and whose design tends to be highly
influenced by cost considerations.

SquashFS
read-only

compressed
root

filesystem

Ext3
read-write

user and
configuration

data

TmpFS
read-write

volatile
data

CompactFlash

RAM

Figure 8-1. Simple filesystem layout example

262 | Chapter 8: Root Filesystem Setup

The method assumes that the device, when running, keeps the kernel and the other
critical software that runs the system in temporary memory, as described earlier in
“Keeping the filesystem in RAM.” During boot, the bootloader copies the system soft-
ware from the root filesystem to RAM. To install new software, therefore, you can
simply rewrite the compressed CPIO archive storing the software with a new version,
and then reboot the system.

So long as power is not lost during the critical moments of writing the new software to
the storage, and so long as the new software is functional, the system works fine. How-
ever, losing power during an upgrade cycle, or loading a corrupt or simply buggy image,
can turn a $200 consumer electronic product into a worthless plastic brick. In other
words, you need minimally functional software in order to upgrade the system.

rsync

A different upgrade approach involves updating individual files on the root filesystem
while it is online. This kind of method works only when the software runs directly from
a writable, persistent root filesystem, as described earlier in “Using online writable
persistent storage.”

rsync is a remote updating utility that allows you to synchronize a local directory tree
with a remote server. Its algorithm optimizes the transfer by transferring only the dif-
ferences between the local and remote files. Run with the appropriate options, rsync
can preserve file permissions, file ownership, symbolic links, access times, and device
entries. It can use either rsh or ssh to communicate with the remote server. All these
features make rsync a good candidate for updating network-enabled embedded
systems.

rsync is available from its project website at http://samba.anu.edu.au/rsync. The site also
hosts its documentation and a mailing list. A good introductory tutorial by Michael
Holve is available at http://everythinglinux.org/rsync.

To use rsync, you must have the rsync executable running as a daemon on your server,
and you must invoke the executable as a client on the embedded system. We will not
cover installation of the server or details about the use of the client, because the tutorial
and rsync documentation mentioned earlier cover them well. We’ll just explain how
to cross-compile and install rsync for use on your target. The examples in this section
install rsync version 2.6.9.

To begin, download and extract a copy of the rsync package to your ${PRJROOT}/
sysapps directory. With the package extracted, move to its directory for the rest of the
procedure:

$ cd ${PRJROOT}/sysapps/rsync-2.6.9/

Now, configure and compile the package:

$ CC=arm-linux-gcc ./configure --host=$TARGET --prefix=${TARGET_PREFIX}
$ make

Handling Software Upgrades | 263

http://samba.anu.edu.au/rsync
http://everythinglinux.org/rsync

With the compilation complete, install the rsync binary on your target’s root filesystem
and strip it:

$ cp rsync ${PRJROOT}/rootfs/bin
$ arm-linux-strip ${PRJROOT}/rootfs/bin/rsync

The stripped binary is 291 KB in size when dynamically linked with glibc, and 286 KB
when dynamically linked with uClibc.

The same binary can be used both on the command line and as a daemon. Run it on
the server by including the --daemon option. We will be using rsync on the command
line only.

To use rsync, you need to have either rsh or ssh installed on your target. rsh is available
as part of the netkit-rsh package at ftp://ftp.uk.linux.org/pub/linux/Networking/netkit.
ssh is available as part of the OpenSSH package, which is discussed in depth in Chap-
ter 10. Although that discussion concentrates on the use of the SSH daemon generated
by Dropbear (sshd), the SSH client (ssh) can also be generated during the compilation
of the Dropbear package. The following procedure assumes you are using ssh, not
rsh, because ssh provides a secure transfer channel and is therefore considered superior
by most administrators.

Once rsync is installed on your target, you can use a command such as the following
on your target to update its root filesystem:

rsync -e "ssh -l root" -r -l -p -t -D -v --progress \
> 192.168.172.50:/home/karim/control-project/user-interface/rootfs/* /
root@192.168.172.50's password: Enter your password
receiving file list ... done
bin/
dev/
etc/
lib/
sbin/
tmp/
usr/bin/
usr/sbin/
bin/busybox
750756 (100%)
bin/tinylogin
39528 (100%)
etc/inittab
377 (100%)
etc/profile
58 (100%)
lib/ld-2.2.1.so
111160 (100%)
lib/libc-2.2.1.so
1242208 (100%)
...
sbin/nftl_format
8288 (100%)
sbin/nftldump

264 | Chapter 8: Root Filesystem Setup

ftp://ftp.uk.linux.org/pub/linux/Networking/netkit

7308 (100%)
sbin/unlock
3648 (100%)
bin/
dev/
etc/
lib/
sbin/
wrote 32540 bytes read 2144597 bytes 150147.38 bytes/sec
total size is 3478029 speedup is 1.60

This command copies the contents of your user interface module project from the
rootfs directory on the host, whose IP address is 192.168.172.50, to the target’s root
directory. For this command to run successfully, the host must be running both sshd
and the rsync daemon.

The following are the options you need:

-e
Passes to rsync the name of the application to use to connect to the remote server.
(In this case, we use ssh -l root to connect as root to the server. You could replace
root with whatever username is appropriate. If no username is provided, ssh tries
to connect using the same username as the session’s owner.)

-r
Recursively copies directories.

-l
Preserves symbolic links.

-p
Preserves file permissions.

-t
Preserves timestamps.

-D
Preserves device nodes.

-v
Provides verbose output.

--progress
Reports progress of the transfer.

While running, rsync provides a list of each file or directory copied and maintains a
counter displaying the percentage of the transfer already completed. When done,
rsync will have replicated the remote directory locally, and the target’s root filesystem
will be synchronized with the up-to-date directory on the server.

If you would like to check which files would be updated without carrying out the actual
update, you can use the -n option to do a “dry run” of rsync:

Handling Software Upgrades | 265

rsync -e "ssh -l root" -r -l -p -t -D -v --progress -n \
> 192.168.172.50:/home/karim/control-project/user-interface/rootfs/* /
root@192.168.172.50's password:
receiving file list ... done
bin/busybox
bin/tinylogin
etc/inittab
etc/profile
lib/ld-2.2.1.so
lib/libc-2.2.1.so
...
sbin/nftl_format
sbin/nftldump
sbin/unlock
wrote 176 bytes read 5198 bytes 716.53 bytes/sec
total size is 3478029 speedup is 647.20

For more information on the use of rsync, as both a client and a server, have a look at
the command’s manpage and the documentation available from the project’s website.

Upgrading files through rsync suffers from the same reliability problem as the single-
file update described in the previous section. A power outage during the upgrade can
render the system unusable, although the the failure mode would be slightly different:
a halted update may have one file updated but fail to update other files on which it
depends. If, for example, the upgrade process has upgraded an executable in the system
to a newer version, but has not managed to update the dynamic shared library required
by the executable, the system may not even be able to boot when the power is restored.

An update method that involves multiple files leaves open another, less obvious, source
of problems. Support staff and professional services may update particular files to de-
liver “hot fixes” to users as they deal with daily issues, leaving any number of slightly
different software versions in the field.

Only a clearly stated policy and organizational discipline will protect you from being
confronted with the maintenance headache of systems you don’t fully know. Careful
records must be kept of when and how all systems are updated, because it may be hard
to tell exactly which files have been replaced after the fact. The technique in the next
section can also help you avoid the chaos of multiple versions.

Package management tools

Updating all the software packages that make up a root filesystem simultaneously, as
we did in the previous section using rsync, is not always possible or desirable. Also, as
we have already stated, it is quite difficult to track. Sometimes, the best approach is to
upgrade each package separately using a package management system such as those
commonly used in workstation and server distributions. If you are using Linux on your
workstation, for example, you are probably already familiar with one of the two main
package management systems used with Linux, the RPM Package Manager (RPM) or
Debian package (dpkg), whichever your distribution is based on. Because of these sys-
tems’ good track records at helping users and system administrators keep their systems

266 | Chapter 8: Root Filesystem Setup

up-to-date and in perfect working condition, it may be tempting to try to cross-compile
the tools that power these systems for use in an embedded system. Both systems are,
however, demanding in terms of system resources, and are not well adapted for direct
use in embedded systems.

Fortunately, there are tools aimed at embedded systems that provide much of the func-
tionality provided by more powerful packaging tools, without requiring as much system
resources. Two such tools are BusyBox’s dpkg command and the Itsy Package Man-
agement System (iPKG).

The dpkg BusyBox command allows us to install packages in the dpkg format on an
embedded system. Much like other BusyBox commands, it can be optionally config-
ured as part of the busybox binary. It is explained in the BusyBox documentation. For
instructions on how to build dpkg packages, see Debian New Maintainers’ Guide and
Dpkg Internals Manual, both available at http://www.debian.org/doc/devel-manuals.

iPKG is the package management system Familiar distribution uses. It is available from
its project website at http://www.handhelds.org/z/wiki/iPKG, along with usage docu-
mentation. iPKG relies on its own package format, but can also handle dpkg packages.

Instructions for building iPKG packages are available at http://www.handhelds.org/z/
wiki/BuildingIpkgs, and the use of the ipkg tool, part of the iPKG package management
system, is explained on the project’s website.

Note that using a package management tool such as these is still not a fail-safe method
to upgrade a device’s software. Thus, we will turn to a truly robust solution in the next
section.

Fail-Safe Software Upgrades
As mentioned before, a fail-safe software upgrade system must change the system in
an atomic fashion from a state where the old software is used to a state where the new
software is operational, with no other state possible even if power is lost in the middle
of the upgrade. Like a database transaction, you always end up booting either a valid
new version (when the upgrade succeeds) or a valid old version (when the upgrade fails).

Because Linux software is comprised of several files containing executable files, shared
code libraries, device files, kernel modules, and the kernel image itself—all of them
potentially interdependent—we cannot perform the upgrade file by file. We must work
on a whole filesystem.

Architecture of a fail-safe solution

In essence, the procedure used in this section is very simple: set aside two (or more)
filesystems for system software. At boot time, the bootloader chooses one filesystem
by consulting a control data structure, such as a file on a power-down-reliable
filesystem, or a structure in battery-backed RAM.

Handling Software Upgrades | 267

http://www.debian.org/doc/devel-manuals
http://www.handhelds.org/z/wiki/iPKG
http://www.handhelds.org/z/wiki/BuildingIpkgs
http://www.handhelds.org/z/wiki/BuildingIpkgs

To perform a fail-safe update:

• Download the new filesystem image to the storage location that is not currently in
use by the running system.

• Inspect the image (e.g., by checking a CRC or cryptographic signature) to make
sure it has been transferred without corruption.

• Atomically change the data structure that tells the bootloader which software stor-
age to use during boot.

• Reboot the system.

The data structure that tells the bootloader which software storage to use is, of course,
bootloader-specific, and so does the method that can be used to update it atomically.
As an example, assuming the bootloader reads a configuration file from the filesystem,
as would be the case with the GRUB and LILO bootloaders, atomically replacing the
data structure may be implemented by creating a temporary file with the changed con-
figuration on the same filesystem where the original configuration file resides. Then,
use the rename system call to rename it over the original configuration, relying on the
Linux guaranteed behavior that such a rename is atomic, under certain conditions (see
the rename system call manpage for additional details).

Additional fail-safe measures can also be added. As an example only, the bootloader
may create a special record in the control data structure before it loads the system and
transfers control to it. After the boot process has completed successfully and the device
is functioning, the device’s software will erase this record—again in an atomic fashion.
The bootloader will look for the existence of this special marker in the control data
structure at each boot and, if it is found, will deduce that someone tried to update the
system software during the previous boot but did not succeed in bringing it to a state
that allows the device to boot. By tracking the number of such occurrences (in the same
control data structure), the bootloader can be programmed to, for example, boot the
system software image in the other storage position instead of the image that the control
data structure points to. Thus, a corrupted upgrade just causes the bootloader to fall
back on the older, still operational version of the software.

Other operating systems have used the scheme in this section. This section demon-
strates how to implement it using the tools and filesystems we have learned thus far.
The bootloader on which it relies will be discussed in the next chapter.

The simplest type of root filesystem to support with the upgrade method in this chapter
is Initramfs, described earlier in “Rootfs and Initramfs.” But instead of placing the
kernel and associated compressed CPIO archive directly on a storage partition in the
flash, use a writable, persistent, power-down-reliable filesystem to store several such
kernel and embedded CPIO archive files. Then have the bootloader pick the right file
according to either a file on the same filesystem or a record in the internal bootloader
configuration.

268 | Chapter 8: Root Filesystem Setup

The following text shows just one example of how to implement the
scheme. Many other methods exist.

As an example of this kind of setup, consider a system containing a JFFS2 filesystem
on top of a NOR flash device, and the U-Boot bootloader. For our root filesystem, we
will use an compressed CPIO archive, loaded into an Initramfs filesystem and separate
from the Linux kernel. We shall load this compressed CPIO archive as part of an initrd
image, as described earlier in “Placing a Disk Filesystem on a RAM Disk.” The process
is shown in Figure 8-2.

Example procedure for a fail-safe solution

This section will guide you step by step through a procedure that works with the sample
system layout described in the previous section. First, create a U-Boot image from the
kernel and the compressed CPIO archive, by wrapping the files with a U-Boot header
using the mkimage command supplied with the U-Boot source package:

mkimage -A mips -O Linux -T multi -C gzip \
> -n 'Linux with Initramfs' \
> -d vmlinux.gz:initramfs_data.cpio.gz runtime.img

The command creates a file named runtime.img, which is a U-Boot image file containing
the kernel and the compressed CPIO archive. Next, create a directory (on the host)
called jffs2_image, and put the image file there:

mkdir jffs2_image
cp runtime.img jffs2_image/

Filesystem

Root
(/)

/flash

/tmp
/var

InitRAMFS

TmpFS

TmpFS

RAMFlash

uboot

cfg

JFFS2

During boot, the root file
system in RAM is populated
from the archive file stored

in the JFFS2 partition on flash

Figure 8-2. Fail-safe upgrade of a RAM-based root filesystem

Handling Software Upgrades | 269

Create a JFFS2 image, which you will later put onto the flash device:

mkfs.jffs2 --big-endian --eraseblock=0x100 --root jffs2_image --output image.jffs2

This command assumes you are building the filesystem for a big-endian
host and are going to use a NOR flash device with an erase block size
of 0x100 KB (specified in hexadecimal), or 256 KB in decimal. This
setting may need to be adjusted according to the target hardware and
flash used.

In our next step, we will build the U-Boot bootloader binary. The configuration and
build of U-Boot is described in the next chapter.

Make sure you compile U-Boot with JFFS2 support, because the U-Boot configuration
considers it an optional feature. In addition, set the default values of the default boot
command to boot the version image file in your U-boot config file:

#define CONFIG_BOOTCOMMAND "fsload a2000000 runtime.img; bootm a2000000"
#define CONFIG_BOOTDELAY 3

Now write to the NOR flash (using a JTAG, a flash programmer, or an NFS root file-
system, as explained previously in this chapter) both the U-Boot binary and the
image.jffs2 file created earlier.

When the board boots up, U-Boot will wait three seconds (the number is specified via
the CONFIG_BOOTDELAY option), and it will then load the kernel image from the
JFFS2 partition on the flash and boot it. After the boot has completed and the Linux
system is up and running, the files on the JFFS2 partition on the flash can be accessed
by mounting the JFFS2 flash partition using the mount command:

mount -t jffs2 /dev/mtdblock0 /flash

To upgrade the device’s software, create an updated image of the runtime.img file using
the same procedure you did before. Download the image to the JFFS2 flash partition
as runtiem2.img, either from U-Boot (using the tftpboot command) or from Linux (us-
ing, for example, the wget command to retrieve the file from an FTP server).

After verifying that the new image is correctly saved to the JFFS2 partition on the flash,
change the bootcmd U-Boot environment variable to boot the newer image. This can be
done either from the U-Boot shell using the setenv command, or from the running Linux
system using the fw_setenv command supplied with U-Boot:

fw_setenv bootcmd "fsload a2000000 runtime2.img; bootm a2000000"

270 | Chapter 8: Root Filesystem Setup

Using the fw_setenv command requires a valid /etc/fwenv.config file with
the correct offsets in the flash partition where the U-Boot environment
is stored. Read the next chapter for details on U-Boot, and consult its
documentation for information on how to set up this file.

Finally, note that the update of the bootcmd environment variable on the
flash is not atomic in itself. However, a higher-level integrity check en-
sures that the whole upgrade is fail-safe. A CRC checksum is computed
and written as part of the new environment. U-Boot will ignore an
environment with a bad CRC, and instead use the default command
that you have set up to boot the original version. Thus, the worst that
can happen in case of a power failure during the upgrade is that the
system ends up booting into the older version of the software, assuming
it is still available in storage, of course.

Handling Software Upgrades | 271

Although a bootloader runs for a very short time during the system’s startup and is
mainly responsible for loading the kernel, it is nevertheless a very important system
component. Almost any system running a Linux kernel needs a bootloader, but em-
bedded systems typically have further constraints that make the process somewhat
different from that used by a typical desktop Linux development system. In this chapter,
we will examine some of these differences in detail, and explain how to set up and
configure some examples, including a server providing dynamic host configuration
protocol (DHCP) and NFS services for network booting. By the end of this chapter,
you will have installed all of the components discussed earlier, configured your target
with an appropriate bootloader, and will be finally ready to boot your embedded Linux
system.

A bootloader is responsible for loading an operating system kernel and its supporting
infrastructure into memory, and beginning the kernel’s execution. Typical tasks per-
formed by bootloaders include kernel selection (your desktop Linux system likely offers
an optional list of kernels to choose from if you press a key early during boot) and
loading an initial RAM-based filesystem (whether initrd, initramfs, or something dif-
ferent). The RAM-based filesystem contains enough of an environment to mount the
root filesystem and begin the normal bootup process (starting system daemons and the
like).

Most regular desktop and server systems have extensive system firmware (a BIOS,
UEFI, OpenFirmware, etc.) that provides information such as the configuration of
hardware devices, interrupt routing details, and other information Linux will need to
make use of later. Embedded Linux systems, however, usually don’t have such exten-
sive firmware. Instead, they perform these tasks through the bootloader, which con-
tains the functionality of the firmwares used in larger systems.

Embedded Linux systems, therefore, have somewhat unique bootloader requirements.
Not only must the firmware load the kernel image into system memory, but it must
also program the system memory controllers, initialize processor caches, enable various
hardware devices, directly implement support for network booting infrastructure, and

CHAPTER 9

Setting Up the
Bootloader

273

do a myriad of other activities. If you’ve never heard of most of the software discussed
in this chapter, even if you are an avid convert to Linux, don’t be at all surprised (or
disheartened)!

There are a slew of bootloaders available for Linux, thousands upon thousands of em-
bedded boards, and many possible boot configurations for a single board. It is, there-
fore, inconceivable to cover all the possible combinations within a single chapter. Nor
is it possible to give an in-depth description of the use of each of the bootloaders cov-
ered. Many existing bootloaders for Linux already have an entire book describing their
use. Also, the number and quality of bootloaders vary greatly between architectures.
Some architectures have well-known, established bootloaders providing support for a
range of hardware. Others have few or no standard bootloaders and mainly use boot-
loaders provided by the hardware manufacturer (with highly varying quality).

A Word on Vendor Support
If you are using a bootloader provided by the manufacturer of your embedded target
board, make sure that you have all the binaries and documentation that you need. If
possible, obtain the source code as well so that you can build, modify, and reprogram
your target board freely without the assistance of the board vendor. This extra step may
not seem all that important initially, but hardware design changes will occasionally
necessitate small tweaks to underlying bootloader and kernel code. Besides, your em-
bedded project may live a lot longer than the interest of any given vendor in providing
technical assistance and support.

This chapter will concentrate on the bootloader/boot setup combinations most com-
monly used in embedded systems to load Linux. We will concentrate on one bootloader
in particular: U-Boot. Unless you have worked with embedded Linux systems, you
probably haven’t heard of U-Boot, the “Universal” bootloader, but it is widely used in
embedded systems that need a combination of bootloader, system firmware, and other
features not provided by a more desktop/server-oriented bootloader such as GRUB.
Don’t worry, the differences will soon become apparent.

Embedded Bootloaders
As we said before, most typical IA32/X86_64 (x86) desktop or server Linux systems
use a bootloader such as LILO or GRUB. The system contains a firmware (also known
as a BIOS) whose job it is to program various core system components (initialize the
RAM controllers, ensure the CPU is in a particular state, etc.) and to provide various
information for use by the OS (legacy BIOS calls, ACPI tables, and so forth). Since the
firmware supplied by the manufacturer already does most of the heavy lifting, a regular
Linux bootloader need only concentrate on loading a kernel image (and perhaps an
initrd/initramfs image) from some kind of storage and starting its exection. GRUB
doesn’t need to worry about interrupt-routing arrangements on a particular system

274 | Chapter 9: Setting Up the Bootloader

board, since the “PC BIOS” provided by the system manufacturer has already taken
care of initial configuration and published this information via ACPI tables that the
operating system (Linux) can normally understand.

Embedded systems typically don’t come with handy, prewritten system vendor firm-
ware. After all, you’re likely building the embedded system yourself, and you probably
are looking to use Linux precisely because you want to cut down the number of oper-
ating system components you write. Because your system won’t have preexisting firm-
ware, it will need some of the heavy lifting to be done in the bootloader itself. The
embedded bootloader will therefore need to initialize the RAM timings in the memory
controller circuitry, flush the processor caches, and program up the CPU registers with
sane default values. It will also need to determine precisely what hardware is installed
within the system and supply this to the Linux kernel in the form of architectural-
dependent software tables. On the x86, these might be similar to those provided by a
BIOS, whereas on a PowerPC, they might be in FDT form (flattened device tree—refer
to the U-Boot documentation for more examples).

Because many embedded systems don’t come with prewritten firmware, those firmware
implementations that are available often require additional features. After all, your
embedded project’s first task is likely to be porting U-Boot, or a similar bootloader, to
your board. You will require debugging support, various built-in diagnostic routines,
and a whole host of configurable options to tailor your configuration to the specific
hardware at hand. With any luck, getting the bootloader up and running will be the
hardest task, as your embedded device is likely to be based upon a standard reference
design that otherwise can already run a Linux kernel. Recent developments, such as
the flattened device tree support on PowerPC, allow the Linux kernel to automatically
receive information about the system it is running on from the embedded bootloader,
without that data having to be precompiled into the kernel. So, even though data such
as the physical addresses of nondiscoverable bus devices (so-called platform device
components) can vary from one board to the next, the same kernel image might be
usable on both boards, even without recompilation.

LILO
Werner Almesberger introduced the LInux LOader (LILO) very early in Linux’s history,
and some x86 systems still use it to boot the kernel. Whereas LILO historically required
a special command to be run whenever the filesystem was updated with a new kernel
image, this is no longer true. LILO is maintained by John Coffman, and the latest
releases are available at http://lilo.go.dyndns.org.

LILO is very well documented. The LILO package, for instance, includes a user manual
and an internals manual. The LILO mini-HOWTO, available from the Linux Docu-
mentation Project (LDP), answers some of the most common questions about LILO’s
use. In addition, Running Linux by Matthias Dalheimer and Matt Welsh (O’Reilly)
contains a “Using LILO” section in Chapter 5.

Embedded Bootloaders | 275

http://lilo.go.dyndns.org

We will not cover LILO in detail, because it is already well documented, is no longer
the de facto bootloader of choice, and is intended only for x86 PC-type systems with a
PC BIOS.

GRUB
The GRand Unified Bootloader (GRUB) is the main bootloader for the GNU project,
and it is also the most popular Linux bootloader on x86 systems these days. It is used
by all the major “Enterprise Linux” distributions on the server and is fairly common
on embedded x86 “PC” based boards, too. If you are developing an embedded Linux
system that is based substantially upon standard PC hardware (and is perhaps, there-
fore, also already running a major distribution), GRUB is your friend, not U-Boot.

Erich Boleyn originally wrote GRUB in the course of finding an appropriate bootloader
for what would later be known as GNU Mach. Erich’s work was later picked up by
Gordon Matzigkeit and Okuji Yoshinori, who continue to maintain and develop
GRUB. The project’s website is located at http://www.gnu.org/software/grub. There you
will find the GRUB manual, which discusses the package’s use extensively. Though
GRUB’s code can be retrieved using CVS, the latest stable releases are also tar-gzipped
and made available for download through the project’s website.

One aspect of GRUB’s capabilities you may find helpful during development is its
ability to boot over the network using TFTP and BOOTP or DHCP. You will also find
that its ability to recognize several standard filesystems (including tab completion of
filename paths) simplifies testing without making persistent configuration changes.

You can find out more about GRUB by visiting the website and by experimenting with
any x86 desktop or server Linux system.

loadlin
loadlin, maintained by Hans Lermen, is a Microsoft MS-DOS-compatible utility that
can load Linux from an already running MSDOS, Windows 3.x, Windows 95, 98, or
ME system (but not from NT, XP, Windows 2000, Windows 2003, VISTA, or others
based upon the Microsoft NT kernel). We mention it for completeness, but strongly
discourage using loadlin in any new designs, because it has not been updated in many
years and is not compatible with newer Microsoft operating systems. However, you
may find loadlin useful in very limited circumstances.

Coreboot (Formerly the LinuxBIOS)
Coreboot is a complete PC BIOS replacement, also available on PowerPC systems.
Coreboot boots Linux from ROM, which requires that Linux then perform the initial
system bringup, interrupt-routing assignments, device initialization, and so forth.
When Linux takes over these roles, the software used is called LinuxBIOS.

276 | Chapter 9: Setting Up the Bootloader

http://www.gnu.org/software/grub

Coreboot was originally created to provide speed and efficiency, because booting large
clusters of machines necessitates high reliability and the speed benefits gained through
running Linux directly from ROM. A typical LinuxBIOS-based system might boot en-
tirely within a mere couple of seconds, whereas a traditional desktop or server Linux
distribution typically can take several minutes from power-on to system login prompt.

LinuxBIOS was developed as part of clustering research conducted at the Los Alamos
National Laboratory and has gathered support from many hardware manufacturers. It
may be particularly useful if you are building an x86 system and need to provide your
own BIOS replacement, require very fast boot times on “standard” PC hardware, or for
some other uses. The Coreboot package and documentation are available at http://
www.coreboot.org.

U-Boot
Although there are many bootloaders, as we have just seen, “Das U-Boot” is arguably
the richest, most flexible, and most actively developed open source embedded boot-
loader available. Wolfgang Denk of DENX Software Engineering (based just outside
Munich, Germany) wrote and currently maintains U-Boot, and a wide range of devel-
opers contribute to it.

U-Boot is based on the earlier PPCBoot project (written for PowerPC systems) and the
ARMBoot projects. PPCBoot was itself based on 8xxrom sources, and ARMBoot was
an ARM port of PPCBoot created by Sysgo GmbH. At the time of this writing, U-Boot
supports many standard development boards based upon ARM, AVR32, Blackfin, x86,
Motorola 68K, Xilinx Microblaze, MIPS, Alterra NIOS, NIOS2, PowerPC, Super-H,
and other processors. If you have a standard reference board for which there is already
“Linux support,” the odds are extremely high that it’s utilizing U-Boot. This is certainly
true of the GTA01 hardware reference platform and software for an OpenMoko open
source cell phone, which we use as an example in this chapter.

Among other things, U-Boot is capable of booting a kernel through TFTP over a net-
work connection, from an IDE or SCSI disk, from USB, and from a wide variety of flash
devices. It supports a range of filesystems, including Cramfs (Linux), ext2 (Linux), FAT
(Microsoft), and JFFS2 (Linux). Besides having an extremely extensive, configurable
command set and quite a few capabilities, it is also fairly well documented. The Man
ual file included with the package provides an in-depth discussion of how to use U-
Boot. There is extensive documentation, information about the project mailing lists,
discussion archives, and much, much more on the DENX wiki (including links to the
latest project source code, maintained in a Linux-kernel-style “git” repository) at http://
www.denx.de/wiki/UBoot.

We will concentrate on U-Boot in this chapter because it supports a wide variety of
systems and is designed from the ground up for embedded use. Additionally, you are
very likely to encounter U-Boot as you begin to work with Linux on your own designs.

Embedded Bootloaders | 277

http://www.coreboot.org
http://www.coreboot.org
http://www.denx.de/wiki/UBoot
http://www.denx.de/wiki/UBoot

RedBoot
RedBoot is a bootloader based upon the Embedded Configurable Operating System
(eCos), originally written by Cygnus Solutions and later acquired by Red Hat. eCos
itself remains quite popular on some embedded devices that are too small to run a full
Linux kernel, but RedBoot has been extended to boot other operating systems, such
as Linux. RedBoot is extremely flexible and still preferred by some developers, although
we strongly recommend that you investigate U-Boot for your new embedded designs.

You can find out more about RedBoot by visiting http://sourceware.org/redboot.

Server Setup for Network Boot
As we saw in Chapter 2, setting up a target for network boot is ideal during the early
stages of development, because you can gradually modify the kernel and the root file-
system without having to update the target’s storage devices every time you make a
modification. Although not all bootloaders can use this setup to boot (especially when
no network hardware is present in the hardware design to begin with!), we recommend
that you use such a setup whenever possible, at least initially. Once you successfully
have a working base system, you should then customize it to be fully self-hosting, but
retain an optional network filesystem for ease of additional development and testing
as your embedded project progresses. Some systems make use of a special “flag” file,
environment variable, or other indicator that instructs the system whether to boot via
the network or the local filesystem. For example, one of the authors once designed a
system whose startup scripts would check for a file called /nfsboot and then attempt to
mount an NFS filesystem during bootup if this file was present.

As we said earlier, the simplest way to boot your target device from a network is to use
BOOTP/DHCP (DHCP replaces BOOTP, but most DHCP servers also contain support
for the legacy BOOTP protocol), TFTP (Trivial FTP), and NFS.

DHCP is the standard way to provide a network host with basic boot information,
including the location of other servers such as TFTP and NFS. But DHCP does not
actually transfer the kernel image to the target. This is the job of TFTP, the simplest
network protocol for downloading remote files. In the case of an embedded Linux
system, the target uses TFTP to obtain a kernel image from a TFTP server.

As for NFS, it’s the simplest protocol, and the standard on Unix-style systems, for
sharing entire directory trees between a client and a server. An embedded Linux target
can use NFS to mount its root filesystem from an NFS server. NFS cannot be used for
any earlier activity, because it requires a booted Linux kernel to operate.

Together, these three protocols provide a very efficient host/target development setup,
one that has not changed substantially in almost a decade of building embedded Linux
systems.

278 | Chapter 9: Setting Up the Bootloader

http://sourceware.org/redboot

To enable network booting of the target, you must set up the development host’s net-
work services so that the target can access the components it needs. In particular, you
need to set up a host to respond to BOOTP/DHCP requests, provide a kernel using a
TFTP server, and enable NFS mounts. The following subsections will discuss each issue
separately.

Setting Up the DHCP Daemon
Unlike other network services, DHCP cannot be invoked from the Internet super-
server, inetd or xinetd. Instead, the DHCP daemon is a service of its own, and you need
to start it manually. First, make sure that the DHCP server is installed on your host
system. Download it if necessary from http://www.isc.org.

If you are using an RPM-based distribution—such as Fedora, OpenSuSE, or something
similar—use the following command to check for the presence of the DHCP daemon:

$ rpm -q dhcp
dhcp-3.0.6-12.fc8

In this case, DHCP 3.0.6 is already installed. If it is not already installed on your system
(typically, DHCP is no longer installed by default with many of the more popular Linux
distributions), use the appropriate tools for your distribution to install the DHCP serv-
er. On a Debian GNU/Linux or Ubuntu Linux system, use apt, aptitude, or a similar
package management utility to select the DHCP server for installation, and then per-
form the installation. Note that most distributions include two DHCP packages, a client
and a server. The package containing the client is sometimes called dhcpc-version (or
dhclient, or a variety of other names). In this case, the additional “c” after “dhcp” iden-
tifies the package as the client. Your mileage may vary, depending upon the distribution.

Don’t Break Your Network!
Many modern networks (including almost all corporate IT networks, most academic
networks, and even the average home at this point) are already highly reliant on DHCP
service for their operation. If you are installing your own DHCP server for development
use within your organization, be sure to check with your IT department (if one exists)
beforehand. Many companies restrict installation of services such as DHCP, may re-
quire that they run it centrally (something to be avoided, especially if “central” means
Microsoft’s DHCP services), etc. In order to avoid confrontation, it may be easier to
run your own network segment inside a lab environment, complete with a Linux de-
velopment host attached to its own miniature network that includes your target sys-
tems. Consult your company’s IT department for advice before installing any services
that may violate its policies.

Finally, note that this is one area where company IT departments can be forgiven for
having aggressive, even counterproductive, network policies. One of the authors recalls
horror stories of badly configured DHCP servers appearing on networks (especially in
academia) and handing out addresses to other regular users of the network, resulting
in a denial of service and general upset. This is also another reason to make sure you

Server Setup for Network Boot | 279

http://www.isc.org

confine your DHCP configuration to the minimal IP addresses necessary for your
project. Even if your DHCP server is on a private network segment, don’t tell it to hand
out addresses to every machine on your company network, or your coworkers will be
extremely unhappy with you, very quickly.

To operate properly, the kernel on which the DHCP server runs has to be configured
with the CONFIG_PACKET and CONFIG_FILTER options. The kernels shipped by
default in most distributions almost always have these enabled. If you are in the habit
of building your own kernels for your workstation, as we often do, watch out for those
options when configuring the kernel. If the kernel wasn’t built properly, the DHCP
daemon will output a message similar to the following when it tries to start:

socket: Protocol not available - make sure CONFIG_PACKET and CONFIG_FILTER are
defined in your kernel configuration!
exiting.

With the package installed and the kernel properly configured, create or edit the /etc/
dhcpd.conf file and add an entry for your target. Here’s an example based on a home
development network:

subnet 192.168.1.0 netmask 255.255.255.0 {
 option routers 192.168.1.254;
 option subnet-mask 255.255.255.0;

 host virtex4 {
 hardware ethernet 00:C0:FF:EE:01:02;
 fixed-address 192.168.1.201;
 option host-name "virtex4";
 next-server 192.168.1.3;
 filename "/data/kernel/virtex4-vmlinuz-2.6.24.img";
 option root-path "/data/root/virtex4";
 }
}

Essentially, this entry states that the host and target are on the 192.168.1.0 network,
the TFTP server is located at 192.168.1.254, and the address allocated to the target
when it issues its DHCP or BOOTP request is 192.168.1.201. In the host entry, the
fields have the following meanings:

hardware ethernet
Uniquely identifies the target through its MAC address, which in this case is the
fictitious (yet valid) example 00:C0:FF:EE:01:02.

fixed-address
Tells the DHCP server which IP address should be allocated to the target device
with the designated MAC address.

option host-name
Specifies the hostname to the target so that it can use it internally.

next-sever
Tells the target where the TFTP server is located.

280 | Chapter 9: Setting Up the Bootloader

filename
The filename of the image that has to be loaded by the target. According to RFC
2131, which specifies DHCP, the filename length is limited to 128 bytes.

option root-path
Provides the path to the target’s root filesystem on the NFS server. If your target
does not need to load its root filesystem from an NFS server, you can omit this last
field. Because the host is the only network link to the target in this case, option
routers points to the host’s address. If the target was linked to an entire network
with a real router, option routers should point to that network’s default router.

This example configuration should be easy to adapt to your own target. If you need
more information about the configuration of the DHCP server, have a look at the man-
page for dhcpd.conf and the sample configuration file your distribution installed, if one
is present.

With the DHCP server configured to serve the target, you are almost ready to start the
server. Before you do so, however, you need to make sure the /var/state/dhcp/
dhcpd.leases file exists. (All recent Linux distributions will take care of this step for you
when you first install the DHCP server package(s), so this is mainly a word of warning
to those building the ISC DHCP daemon from source.) If that file does not exist, create
it using the touch command. If the file doesn’t exist, the DHCP daemon will refuse to
start.

Finally, start the DHCP server. On RPM-based distributions, such as those from Red
Hat and Novell, enter:

/etc/init.d/dhcpd start

On Debian GNU/Linux and Ubuntu Linux systems, you can use a similar command,
or the service command to start the DHCP service.

Setting Up the TFTP Daemon
The first step in setting up the TFTP daemon is to make sure the TFTP package is
installed. If you are using an RPM-based distribution, use the following command to
check for the presence of the TFTP daemon:

$ rpm -q tftp
tftp-0.42-5.fc8

In this case, TFTP 0.42 is already installed. If it is not available on your system, install
the TFTP package using the appropriate tool for your distribution. Alternatively, if your
system doesn’t rely on a package manager or if some components have been installed
without a package manager, you can also check for the presence of the actual TFTP
daemon binary using the whereis command, just in case.

Server Setup for Network Boot | 281

If you need to install TFTP and don’t have a package available for your distribution,
the latest version of the daemon is available for download as part of the NetKit package
at ftp://ftp.uk.linux.org/pub/linux/Networking/netkit.

With the package installed, enable the TFTP service by modifying the appropriate In-
ternet super-server configuration file. In brief, the super-server listens on designated
ports on behalf of the various network services. When a request for a certain service is
received, the super-server spawns the appropriate daemon and hands it the request.
Hence, only the minimal number of daemons run at any time. TFTP is one of the
daemons normally handled by the super-server.

To enable the TFTP service in a system based on the inetd super-server, edit /etc/in
etd.conf, uncomment the line for the TFTP service by removing the # character at the
beginning, and send a SIGHUP signal to the inetd process so that it rereads its configu-
ration file.

To enable the TFTP service in a system based on the xinetd super-server, edit /etc/
xinetd.d/tftp and comment out the line containing disable = yes by adding a # character
at the beginning. As with inetd, you must send a SIGHUP to xinetd.

Finally, you must provide the TFTP server with a list of directories containing files that
should be made available to TFTP clients. In a system based on the inetd super-server,
append the list of directories to the TFTP line in /etc/inetd.conf. In a system based on
the xinetd super-server, edit the /etc/xinetd.d/tftp file and append the list of directories
to the server_args = line. The default directory for TFTP is /tftpboot. You may choose
to modify this to match your setup. Whichever directory you choose, make sure its
access permissions include read and execute permissions for “other.”

For example, here is a TFTP line in /etc/inetd.conf for a host using the inetd super-server:

tftp dgram udp wait root /usr/sbin/tcpd in.tftpd /data/kernel/

In this case, kernel images are placed in the /data/kernel directory, which has the fol-
lowing permissions:

$ ls -ld /data/kernel/
drwxr-xr-x 2 jcm jcm 4096 2008-02-24 03:52 /data/kernel/

Here is a modified /etc/xinetd.d/tftp file from a Fedora-based installation providing the
same functionality for a host using the xinetd super-server:

service tftp
{
 socket_type = dgram
 protocol = udp
 wait = yes
 user = root
 server = /usr/sbin/in.tftpd
 server_args = /data/kernel
disable = yes
 per_source = 11

282 | Chapter 9: Setting Up the Bootloader

ftp://ftp.uk.linux.org/pub/linux/Networking/netkit

 cps = 100 2
}

Regardless of the super-server in use on a host, the TFTP service is usually disabled by
default. Hence, even if you use the default /tftpboot directory, you need to modify the
super-server’s configuration files to enable TFTP.

Mounting a Root Filesystem on an NFS Server
As we explained in Chapter 2, although the bootloader and Linux kernel must be stored
locally or retrieved to local storage through one of the methods shown earlier, the
target’s kernel can subsequently mount its root filesystem from a remote NFS server.
To this end, the NFS server must be properly installed and configured. Chapter 6
showed how to build your target’s root filesystem. If this filesystem is retrieved from
an NFS server, the filesystem does not need any of the preparations described in Chap-
ter 8.

The NFS server daemon is available in two flavors: as a standalone user application or
as a part of the kernel. Besides being faster, the latter is also the standard configuration
in most distributions. In addition to the NFS server itself, you need to have the NFS
utilities installed. Usually, an nfs-utils package is part of your distribution. On an RPM-
based distribution, use the following command to identify whether nfs-utils is installed:

$ rpm -q nfs-utils
nfs-utils-1.1.0-6.fc8

With the nfs-utils package installed, you need to make sure that the appropriate con-
figuration files are present and the corresponding services are started.

The main file we need to configure for the NFS server is /etc/exports. Entries in this file
describe the directories that each host or set of hosts can access. Here’s an example:

/data/root/virtex4 192.168.1.201(rw,no_root_squash)

This entry states that the machine with address 192.168.1.201 has read and write (rw)
access to the /data/root/virtex4 directory, which is the path to a root filesystem similar
to that which we built for the target in Chapter 6. In addition, the no_root_squash
argument indicates that the server should allow the remote system to access the direc-
tory with its root privileges.

These are very powerful rights that we are granting to the target. If we have total control
over access to the device, as is the case in most development setups, there is obviously
no security risk. If, however, the target’s location is less secure or if it is directly con-
nected to the Internet (a configuration you really want to avoid with any NSF server),
for example, you may prefer to use the default root_squash instead. Otherwise, it is
trivial for others to forge access from the 192.168.1.201 address and trash, or otherwise
compromise, your exported data. With root_squash in effect, the target will not be able
to write to most of its own root filesystem, though it will still be able to read and write

Server Setup for Network Boot | 283

to all directories and files that are readable and writable by anybody. In practical terms,
however, the target’s operation will be very limited.

Because offering the NFS service also involves the risk of network abuse, it is often
pertinent to use some minimal protection mechanisms to avoid intrusions. One simple
way to do this is to customize the /etc/hosts.deny and /etc/hosts.allow files to restrict
access to network services. The following is an example /etc/hosts.deny file:

#
hosts.deny
#

portmap: ALL
lockd: ALL
mountd: ALL
rquotad: ALL
statd: ALL

And an example /etc/hosts.allow file is:

#
hosts.allow
#

portmap: 192.168.1.201
lockd: 192.168.1.201
mountd: 192.168.1.201
rquotad: 192.168.1.201
statd: 192.168.1.201

The rules specified in these files restrict the access that users on remote systems have
to the various file-sharing services. Together, these files indicate that only the machine
with address 192.168.1.201 can use the NFS services. This is fine in the case of our
sample setup, since we don’t want to share the development workstation in these ex-
amples with anyone else just now. Even if you do not customize /etc/hosts.deny
and /etc/hosts.allow, we still encourage you to take security issues to heart and use
reasonable measures, such as backups, to protect your work.

Once the configuration files are created, you can start the portmapper service, which
the NFS server requires:

/etc/init.d/portmap start

Finally, you can start the NFS server itself:

/etc/init.d/nfs start

If you would like more information on the configuration of remote boot using NFS,
see the two Diskless root NFS HOWTOs on the issue at the LDP. Additionally, you
may be interested in the NFS HOWTO, also at the LDP.

284 | Chapter 9: Setting Up the Bootloader

Using the U-Boot Bootloader
A growing majority of embedded Linux devices is now using Das U-Boot (also infor-
mally known as “U-boot,” “u-boot,” and “uboot”) to handle system bringup, initial
development, and debugging, as well as the bootloader needs of the finished system.
U-Boot is a richly documented bootloader. Not only does it come with extensive doc-
umentation detailing its use and development on a wide variety of systems, but the
website also houses an extensive wiki (http://www.denx.de/wiki/UBoot) that is main-
tained by many contributors to the project. In addition to the official versions, docu-
mentation, mailing lists, and so forth, the website has pointers to “custodian” source
code development trees that contributors have made to specific parts of U-Boot. These
are often where support for new boards is first added, before appearing in the official
releases.

The README file included with U-Boot covers the use of U-Boot extensively. Among
other things, it discusses the package’s source code layout, the available build options,
U-Boot’s command set, and the typical environment variables used in U-Boot. The
following discussion will cover the essential aspects of U-Boot and provide practical
examples of its use. An in-depth discussion of U-Boot would, however, require a book
of its own. For this reason, we encourage you to print a copy of the documentation file
provided with U-Boot and spend some time reading through the wiki at your leisure.

Compiling and Installing
Start by downloading and extracting the latest version of U-Boot from the project web-
site, either a snapshot release or (if you will be performing development of your own)
the project’s GIT source code repository. As of this writing, the latest U-Boot version
is 1.3.3. Here’s how to retrieve the latest GIT development repository sources using the
git command (you may need to install the git utility on your host system):

$ git clone git://git.denx.de/u-boot.git

OpenMoko (GTA01) Hardware
The following sections are based on the OpenMoko revision 1 hardware (GTA01
“neo1973”) platform, as was mentioned at the end of Chapter 2. The board runs on a
Samsung S3C442 B54 ARM-based SoC at 400Mhz, has 256 MB of NAND flash (for
the bootloader, kernel, and root filesystem), and 128 MB of RAM. The U-Boot con-
figuration file specifies the Physical Memory Map, where the RAM is mapped from the
physical address 0x30000000 to address 0x38000000 (128 MB), and the NAND flash
is accessed via commands issued to the interface at physical address 0x4e000000. The
documentation provided with U-Boot explains how it uses the physical memory on
targets.

In this book, we have occasionally used the OpenMoko hardware as a reference, in part
because a fully functional emulator (based on the QEMU sources) exists that is also
capable of running U-Boot. Therefore, you can experiment with the information

Using the U-Boot Bootloader | 285

http://www.denx.de/wiki/UBoot

contained within this chapter even if you don’t own one of these devices. On this book’s
website (http://www.embeddedlinuxbook.org/), you will find a snapshot of the emulator
and U-Boot sources used for this book, and some scripts that will assist you in exper-
imenting with U-Boot “upgrades” on emulated hardware. You will also find some ad-
ditional documentation. Please do visit the book’s website for further information.

You can find further information about running U-Boot on the GTA01 at the Open-
Moko website (the wiki is at http://openmoko.org/wiki/Bootloader). There you will find
detailed instructions as well as references to the available Toolchains needed to build
U-Boot and other applications software for the OpenMoko reference hardware. These
will save you much time and effort.

Before you can build U-Boot, you need to configure it for your target. The package
includes a number of preset configurations for quite a few boards, so a configuration
may very well exist for your target already. Check the README file to see whether your
board is supported. For each supported board, U-Boot’s Makefile typically includes a
boardname_config target, which is used to configure U-Boot’s build for the designated
board. (If you don’t see one for your board, refer to the wiki and to the custodian trees
to see whether there is a work in progress that you can help test on your development
system.) The configuration target for the GTA01 board we use in this chapter, for
example, is gta01_config. Once you have determined the proper Makefile target to use,
configure U-Boot’s build process:

$ make gta01_config

Now build U-Boot by following the build process covered in the U-Boot
documentation:

$ make ARCH=arm CROSS_COMPILE=arm-angstrom-linux-gnueabi- u-boot.udfu

As you can see, in this case, the OpenMoko development board is ARM-based and
requires the use of a cross-compiler. The arm-angstrom-linux-gnueabi- reference refers
to the ARM cross-compiler released by the OpenMoko project, while the .udfu exten-
sion on the U-Boot binary target instructs the build process to produce a binary in a
special format known as “USB Device Firmware Update.” This binary format can also
be used for field upgrades to the version of U-Boot running on an OpenMoko device,
using the existing U-Boot as a bootstrap. Further information about the precise me-
chanics of using U-Boot on the OpenMoko reference hardware is provided at the
project website referenced previously.

In addition to generating bootloader images, the build process will compile a few tools
to be used on the host for conditioning binary images before downloading them off to
the target to a running U-Boot. Table 9-1 lists the files generated during an example of
U-Boot’s compilation. (These can vary depending upon the target in question and the
image formats supported.)

286 | Chapter 9: Setting Up the Bootloader

http://www.embeddedlinuxbook.org/
http://openmoko.org/wiki/Bootloader

Table 9-1. Files generated during U-Boot’s compilation

Filename Description

u-boot.map The symbol map

u-boot U-Boot executable in ELF binary format

u-boot.bin U-Boot raw binary image, which can be written to the boot storage device

u-boot.udfu U-Boot image in the special U-Boot Device Firmware Upgrade (DFU) file format used by the OpenMoko devices

You can now download the U-Boot image onto your target’s boot storage device using
the appropriate procedure. If you already have U-Boot or one of its ancestors (PPCBoot
or ARMBoot) installed on your target, you can use the installed copy to update U-Boot
to a new version, as we shall see later in “Updating U-Boot.” If you have another boot-
loader installed, follow the procedures described in its documentation. If you have the
OpenMoko reference hardware, used in this example, follow the wiki documentation.
Finally, if you have no bootloader whatsoever installed on your target, you need to use
a hardware programming device, such as a flash programmer or a BDM/JTAG debug-
ger, to copy U-Boot to your target at the configured flash address. This may require
extra steps if your new project board is booting from NAND flash, as is the case in this
example, because the flash cannot be accessed directly, unlike a NOR flash.

Booting with U-Boot
Once U-Boot is properly installed on your target, you can boot it while being connected
to the target through a serial line and using a terminal emulator to interface with the
target. You will need to ensure that you have set your terminal emulator to use the serial
port at the correct baud rate and with the correct flow control settings, which will be
documented for your development board. As we said in Chapter 4, not all terminal
emulators interact cleanly with all bootloaders. HyperTerminal on Microsoft Windows
actually works surprisingly well (most of the time), as do most of the Linux terminal
emulators (such as Minicom), although you might want to look for problem reports
concerning your terminal emulator of choice if it is not one of the major ones used by
other developers.

Here is a sample boot output from the OpenMoko GTA01 reference hardware:

U-Boot 1.3.2-rc2-dirty-moko12 (Mar 30 2008 - 23:40:43)

I2C: ready
DRAM: 128 MB
NAND: 64 MiB
Found Environment offset in OOB..
Video: 640x480x8 31kHz 59Hz

NAND read: device 0 offset 0x25c000, size 0x5000

Reading data from 0x260e00 -- 100% complete.
 20480 bytes read: OK

Using the U-Boot Bootloader | 287

USB: S3C2410 USB Deviced
In: serial
Out: serial
Err: serial

As you can see, U-Boot prints version information and then provides some detail re-
garding the hardware it is running on. As soon as it boots, a configurable timer starts
ticking at the last output line. If you do not press a key during those seconds, U-Boot
boots its default configuration. After pressing a key, you get a prompt:

GTA01Bv4 #

One of the first things you probably want to try is to obtain help from U-Boot:

GTA01Bv4 # help
? - alias for 'help'
askenv - get environment variables from stdin
autoscr - run script from memory
base - print or set address offset
bdinfo - print Board Info structure
bmp - manipulate BMP image data
boot - boot default, i.e., run 'bootcmd'
...

As the output will show you, U-Boot has a lot of commands. These will vary based
upon the architecture, platform, development board, configuration, and release of U-
Boot. Fortunately, U-Boot also provides per-command help:

GTA01Bv4 # help cp
cp [.b, .w, .l] source target count
 - copy memory

When U-Boot appends the [.b, .w, .l] expression to a command, this means that
you need to append one of the indicated strings to the command to invoke the desired
version of the command. In the case of cp, for example, there are three versions: cp.b,
cp.w, and cp.l, for copying bytes, words, and longs, respectively.

U-Boot is strict in its argument parsing. It expects most values to be provided in
hexadecimal form. In the case of the cp command, for example, this means that the
source address, the target address, and the byte count must be provided as hexadecimal
values. You don’t need to prepend or append those values with any sort of special
characters, such as “0x” or “h.” If your source address is 0x40000000, for example,
simply type 40000000.

U-Boot accepts any unique subset of characters that starts a command name. If you
want to use the base command, for example, you can type just the first two letters,
ba, because ba is the only command to start with those two letters in this particular
configuration. On the other hand, you can’t type lo and expect U-Boot to understand
it, because there are four commands that start with those letters: loadb, loads, loady,
and loop.

288 | Chapter 9: Setting Up the Bootloader

Using U-Boot’s Environment Variables
Once U-Boot is up and running, you can configure it by setting the appropriate envi-
ronment variables. The use of U-Boot environment variables is very similar to the use
of environment variables in Unix shells such as bash. To view the current values of the
environment variables on your target, use the printenv command. Here is a subset of
the environment variables found on the OpenMoko GTA01 development hardware:

GTA01Bv4 # printenv
bootargs=
bootdelay=3
baudrate=115200
usbtty=cdc_acm
bootargs_base=rootfstype=jffs2 root=/dev/mtdblock4 console=ttySAC0,115200 console=tty0
 loglevel=8
stdin=serial
stdout=serial
stderr=serial
dontask=y
bootcmd=setenv bootargs ${bootargs_base} ${mtdparts}; bootm 0x30100000
menu_1=Set console to USB: setenv stdin usbtty; setenv stdout usbtty; se
menu_2=Set console to serial: setenv stdin serial; setenv stdout serial; \
 setenv stderr serial
menu_3=Power off: neo1973 power-off
splashimage=nand read.e 0x36000000 splash 0x5000; unzip 0x36000000 0x33d00000 0x96000
mtdids=nand0=neo1973-nand
mtdparts=mtdparts=neo1973-nand:0x00050000(u-boot),0x00004000(u-boot_env),
 0x00208000(kernel),0x00010000(splash),0x039a4000(rootfs)
partition=nand0,0
mtddevnum=0
mtddevname=u-boot

Environment size: 766/16380 bytes

You can see, for example, that the bootargs_base environment variable, when passed
to the kernel on boot, will instruct it that a JFFS2 root filesystem is present on the MTD
device (refer to Chapter 7) named /dev/mtdblock4, and that a serial console should be
established, running at a baud rate of 115200 bps. See the README file for a complete
discussion of U-Boot’s environment variables and their meanings.

As with Unix shells, you can add environment variables in U-Boot. To do so, you must
use the setenv command. Here is an example session where we add a few environment
variables to the GTA01 configuration (the commands must always be entered as a single
line and are wrapped here only for printing purposes):

setenv bootcmd 'setenv bootargs \${bootargs_base} \${mtdparts}; bootm $kernel_addr'
setenv menu_1 'Set console to USB: setenv stdin usbtty; setenv stdout usbtty; \
 setenv stderr usbtty'
setenv menu_2 'Set console to serial: setenv stdin serial; setenv stdout serial; \
 setenv stderr serial'
setenv menu_3 'Power off: neo1973 power-off'
setenv splashimage 'nand read.e $splash_addr splash $splash_size; \
 unzip $splash_addr 0x33d00000 0x96000'

Using the U-Boot Bootloader | 289

setenv mtdids nand0=neo1973-nand
setenv mtdparts mtdparts=neo1973-nand:0x00050000(u-boot),0x00004000(u-boot_env),
 0x00208000(kernel),0x00010000(splash),0x039a4000(rootfs)nand
 write.e $kernel_addr u-boot $uboot_size

In this case, we set U-Boot to boot from the kernel found at the address $kernel_addr
(which was hardwired into the build of U-Boot for the GTA01) and to mount its root
filesystem from flash memory. The remaining commands configure menu choices dis-
played to the user on the GTA01’s screen (not shown on the serial console), as well as
a fancy splash image that will be used as a background graphical image on the screen
shown to the user of the device during the bootloader process.

The setenv command adds the environment variables to the current session only.
Hence, if you reset the system (either through software, or with the reset command),
any environment variable you set only with setenv will be lost. For the environment
variables to survive reboots in a persistent fashion, they must be saved to flash, which
is done using the saveenv command:

=> saveenv
Saving Environment to NAND...
Erasing Nand...Writing to Nand... done

Be careful when using saveenv, because it will save all the environment variables cur-
rently defined, even those that you have intended to use temporarily. Before using
saveenv, use printenv to take a look at the currently defined environment variables and
delete any that you don’t need to save. Deleting a variable can be done simply by issuing
setenv on the variable without providing any values. Here’s an example that defines
and deletes an arbitrarily chosen variable name called RAMDisk_addr:

=> setenv RAMDisk_addr 40500000
=> printenv RAMDisk_addr
RAMDisk_addr=40500000
=> setenv RAMDisk_addr
=> printenv RAMDisk_addr
Error: "RAMDisk_addr" not defined

Note that the setenv does not require an equals sign between the variable and its value.
Thus, equals signs can be entered as part of the string making up the environment
variable, as we saw earlier in this section. The following command, for example, has
poor syntax (notice the extra = displayed by printenv compared to the same printenv
shown in the previous capture):

=> setenv RAMDisk_addr = 40500000
=> printenv RAMDisk_addr
RAMDisk_addr= = 40500000

Creating Boot Scripts
U-Boot environment variables can be used to create boot scripts. Such “scripts” are
actually just U-Boot environment variables containing a set of U-Boot command se-
quences. Using a combination of the run command and the ; (semicolon) operator

290 | Chapter 9: Setting Up the Bootloader

allows you to make U-Boot run boot scripts. (The semicolons must be escaped because
they have meaning to the shell and you want the shell to ignore them, so they are entered
as part of the string in the environment variable.)

The environment variables we set in the previous section, for instance, are actually part
of a boot script, bootcmd. It sets the special variable bootargs using other environment
variables before calling the bootm command to “boot from memory” the kernel at the
predefined flash memory address configured for the GTA01 hardware.

Rather than setting bootcmd directly (which limits you to only one boot command at a
time), you can set it to “run” another boot script. This is useful, for example, if you will
need to switch between network booting and direct flash booting on your embedded
device. Here is an example:

=> setenv bootcmd run other_boot_script

Or you can run boot scripts directly from the command line without changing the value
of the bootcmd environment variable:

=> run other_boot_script

Scripts are a very useful feature of U-Boot, and you should use them whenever you need
to automate a certain task. You can find much more information about their use and
several examples on the U-Boot wiki pages, as well as on this book’s website.

Preparing Binary Images
Since the raw flash within your embedded device (the partitions on your flash not
already devoted to a filesystem such as JFFS2) is not structured like a filesystem and
does not contain any sort of file headers, binary images downloaded to the target must
carry headers for U-Boot to recognize their content and understand how to load them.
The mkimage utility we installed earlier was packaged with U-Boot for this purpose. It
adds the information U-Boot needs to recognize binary images while also attaching a
checksum for verification purposes.

Although the use of image headers is not a technical requirement for a
bootloader, such headers are very convenient both during development
and in the field. Hence U-Boot’s use of them.

To see the typical use of mkimage, type the command without any parameters:

$ mkimage
Usage: mkimage -l image
 -l = => list image header information
 mkimage -A arch -O os -T type -C comp -a addr -e ep -n name -d
 data_file[:data_file...] image
 -A = => set architecture to 'arch'
 -O = => set operating system to 'os'
 -T = => set image type to 'type'

Using the U-Boot Bootloader | 291

 -C = => set compression type 'comp'
 -a = => set load address to 'addr' (hex)
 -e = => set entry point to 'ep' (hex)
 -n = => set image name to 'name'
 -d = => use image data from 'datafile'
 -x = => set XIP (execute in place)

For example, here is how we create a U-Boot image of the 2.6.24 kernel for the GTA01
reference hardware (normally entered as a single line, but printed here on two lines
using shell’s input continuation backslash in order to fit on the page):

$ mkimage -A arm -O linux -T kernel -C gzip -a 30008000 -e 30008000
\ -n "Kernel Image QT2410" -d
linux.bin.gz uImage-2.6.24+svnr4301-r4251-r5-om-gta01.bin

The command takes quite a few options, but their meanings are easily understood by
looking at the usage message provided by mkimage. Note that the name of the image,
provided in the -n option, cannot be more than 32 characters. mkimage will ignore any
excess characters. The rest of the command line tells mkimage that the input file is a
gzip-compressed ARM Linux kernel image that should be loaded at address
0x30008000, and started from that same address. The image being provided as input
is linux.bin.gz (which is in fact a compressed kernel image that is produced by the
OpenMoko build scripts), and the U-Boot-formatted image will be output to
uImage-2.6.24+svnr4301-r4251-r5-om-gta01.bin.

RAM disk images can be processed in a similar fashion:

$ mkimage -n 'RAM disk' \
> -A arm -O linux -T ramdisk -C gzip \
> -d initrd.bin initrd.boot
Image Name: RAM disk
Created: Sun Mar 30 14:20:35 2008
Image Type: ARM Linux RAMDisk Image (gzip compressed)
Data Size: 4000000 Bytes = 3906.25 kB = 3.81 MB
Load Address: 0x00000000
Entry Point: 0x00000000

In this case, the number of parameters is shorter because a RAM disk is not executable
code and therefore you don’t specify start and load addresses. Note that the image type
has changed to ramdisk.

Once you have prepared an image with mkimage, it is ready to be used by U-Boot and
can be downloaded to the target. As we’ll see later in “Downloading Binary Images to
Flash,” U-Boot can receive binary images in a number of different ways. One way is to
use images formatted in Motorola’s S-Record format. If you intend to use this format,
you need to further process the images mkimage generated by converting them to the
S-Record format. Here is an example conversion of the multi-type image generated
previously, using the objcopy command from the binutils package:

$ arm-angstrom-linux-gnueabi-objcopy -I binary -O srec \
> uImage-2.6.24+svnr4301-r4251-r5-om-gta01.bin \
> uImage-2.6.25+svrn4301-r4251-r5-om-gta01.srec

292 | Chapter 9: Setting Up the Bootloader

Booting Using BOOTP/DHCP, TFTP, and NFS
If you have properly configured a server to provide the target with DHCP, TFTP, and
NFS services, as we explained earlier, you can boot your target remotely. This allows
you to quickly make changes to the root filesystem without lengthy reflashing cycles
to the device. It also allows you to share the root filesystem between the device itself
(usually not an ideal development environment) and a fully featured development host
that can mount the same filesystem (on a different mountpoint) at the same time.

A Note About Networking and the GTA01
The OpenMoko GT01 reference hardware used in this chapter doesn’t have a real
Ethernet adapter, so it cannot boot directly over a network from within U-Boot iself.
This means that U-Boot on the GTA01 does not contain built-in support for commands
such as bootp. Instead, GTA01 developers have created a special fake network interface
built upon support already present within Linux kernels for USB “gadgets.” This allows
OpenMoko developers to instruct the Linux kernel to mount its root filesystem over
the special emulated network running over USB, but only once the kernel itself has
booted. As a consequence of this, the network boot examples in this section are actually
based upon another reference hardware platform from Xilinx, the ML403. Further in-
formation about configuring this board and examples of its use are also included on
this book’s website.

U-Boot contains a variety of commands (depending upon its build-time configuration)
that are useful for booting over a network. One of these is the bootp command. It no
longer actually uses the original BOOTP protocol but instead supports the modern
DHCP alternative. The following output was taken from a development board that
does have a built-in network interface, performing a bootp command:

=> bootp
BOOTP broadcast 1
DHCP client bound to address 192.168.1.202
TFTP from server 192.168.1.3; our IP address is 192.168.1.202
Filename '/tftpboot/uImage-2.6.24.img'.
Load address: 0x100000
Loading: ###
 ##
 ##
 ##
done

The bootp command issues a request that is answered by the DHCP server. Using the
DHCP server’s answer, U-Boot contacts the TFTP server and obtains the Linux kernel
image file, which it places at the configured load address in the target RAM.

After an image has been loaded (either over the network, serial console, or via any other
means), you can verify the image’s header information using the iminfo command. For
example, on our GTA01 reference hardware:

Using the U-Boot Bootloader | 293

=> GTA01Bv4 # imi 30100000

Checking Image at 30100000 ...
 Image Name: Openmoko/2.6.24+svnr4301-r4251/o
 Created: 2008-04-03 0:26:48 UTC
 Image Type: ARM Linux Kernel Image (uncompressed)
 Data Size: 1763108 Bytes = 1.7 MB
 Load Address: 30008000
 Entry Point: 30008000
 Verifying Checksum ... OK

As you can see, the information printed by iminfo on the target is very similar to that
printed out on the host by mkinfo. The OK string reported for the checksum means that
the image has been downloaded properly and we can boot it:

=> bootm 30100000
Booting image at 30100000 ...
 Image Name: Openmoko/2.6.24+svnr4301-r4251/o
 Created: 2008-04-03 0:26:48 UTC
 Image Type: ARM Linux Kernel Image (uncompressed)
 Data Size: 1763108 Bytes = 1.7 MB
 Load Address: 30008000
 Entry Point: 30008000
 Verifying Checksum ... OK
OK

Starting kernel ...

Uncompressing Linux...
done,
booting the kernel.
Linux version 2.6.24 (oe@buildhost.openmoko.org) (gcc version 4.1.2)
#1 PREEMPT Thu Apr 3 00:20:41 UTC 2008
CPU: ARM920T [41129200] revision 0 (ARMv4T), cr=c0007177
Machine: GTA01
Memory policy: ECC disabled, Data cache writeback
On node 0 totalpages: 32768
 DMA zone: 256 pages used for memmap
 DMA zone: 0 pages reserved
 DMA zone: 32512 pages, LIFO batch:7
 Normal zone: 0 pages used for memmap
 Movable zone: 0 pages used for memmap
CPU S3C2410A (id 0x32410002)
S3C2410: core 266.000 MHz, memory 133.000 MHz, peripheral 66.500 MHz
S3C24XX Clocks, (c) 2004 Simtec Electronics
CLOCK: Slow mode (1.500 MHz), fast, MPLL on, UPLL on
CPU0: D VIVT write-back cache
CPU0: I cache: 16384 bytes, associativity 64, 32 byte lines, 8 sets
CPU0: D cache: 16384 bytes, associativity 64, 32 byte lines, 8 sets
Built 1 zonelists in Zone order, mobility grouping on. Total pages: 32512
Kernel command line: console=ttySAC0,115200 console=tty0 loglevel=8
mtdparts=neo1973-nand:0x00050000(u-boot),
0x00004000(u-boot_env),0x00208000(kernel),0x00010000(splash),0x039a4000(rootfs)
Calibrating delay loop... 255.59 BogoMIPS (lpj=638976)

294 | Chapter 9: Setting Up the Bootloader

...
Root-NFS: No NFS server available, giving up.
VFS: Unable to mount root fs via NFS, trying floppy.
VFS: Cannot open root device "<NULL>" or unknown-block(2,0)
Please append a correct "root=" boot option; here are the available partitions:
1f00 320 mtdblock0 (driver?)
1f01 16 mtdblock1 (driver?)
1f02 2080 mtdblock2 (driver?)
1f03 64 mtdblock3 (driver?)
1f04 59024 mtdblock4 (driver?)
Kernel panic - not syncing: VFS: Unable to mount root fs on unknown-block(2,0)

In this case, the kernel eventually panics because it is unable to find any root filesystem.
To solve this problem, we must use U-Boot environment variables to create a boot
script for passing appropriate boot options to the kernel. The following commands
create a new boot script in an environment variable named bootnfs and modify the
special bootcmd script (as we did earlier in “Using U-Boot’s Environment Variables”) in
order for the system to boot and mount its root filesystem over NFS (several of the lines
in this example are wrapped but should be entered on the same command line):

GTA01Bv4 # setenv bootargs_nfs root=/dev/nfs nfsroot=192.168.1.3:/data/root/openmoko
ip=192.168.1.201:192.168.1.3:192.168.1.3:255.255.255.0:ezx:usb0:off
rootdelay=5 console=ttySAC0,115200 console=tty0 loglevel=8
GTA01Bv4 # setenv bootnfs setenv bootargs \${bootargs_nfs} \${mtdparts}\;
nand read.e 0x32000000 kernel\; bootm 0x32000000
GTA01Bv4 # printenv bootnfs
bootnfs=setenv bootargs ${bootargs_nfs} ${mtdparts}; nand read.e 0x32000000 kernel;
bootm 0x32000000
GTA01Bv4 # setenv bootcmd run bootnfs
GTA01Bv4 # printenv bootcmd
GTA01Bv4 # bootcmd=run bootnfs

In this case, the bootnfs script configures the boot arguments for the Linux kernel so
that it will attempt to boot using the remote NFS server 192.168.1.3 and the local IP
address 192.168.1.201. It will also mount the remote exported directory /data/root/
openmoko as the root filesystem. We are not using the bootp command in this case
because the GTA01 device does not support this operation from within U-Boot. The
kernel will be loaded from flash instead. If you have a regular Ethernet device on your
hardware and instead want to perform a boot entirely over the network (that is, load
the kernel as well as use an NFS root device), you need to prepend the bootnfs command
with a call to the U-Boot bootp command. For example, on a non-GTA01 hardware
platform, you might enter:

=> setenv bootnfs setenv bootargs \${bootargs_nfs} \${mtdparts}\; nand bootp\;
 bootm 0x32000000

If you use the boot command now, U-Boot will boot entirely from the network. It will
download the kernel through TFTP and mount its root filesystem on NFS. If you would
like to save the environment variables you just set, use the saveenv command before
rebooting the system. Otherwise, you will have set the same variables again at the next
reboot.

Using the U-Boot Bootloader | 295

Downloading Binary Images to Flash
Booting from the network is fine for early development and testing. For production
use, the target must have its kernel stored in flash. As we will see shortly, there are a
few ways to copy a kernel from the host to the target and store it to flash. Before you
can copy any kernel image, however, you must first choose a flash region to store it and
erase that region for the incoming kernel. Depending upon your development board,
the flash might be partitioned (simply a logical concept—no physical separation exists)
into several regions, as in the case of the GTA01 development board. The flash memory
might also be one of two types, as explained in Chapter 7. For NOR flash, it is pretty
trivial to erase and program regions of the flash, because it is directly mapped into
memory. For example, to erase a NOR flash region, you might enter:

=> erase 40100000 401FFFFF
Erase Flash from 0x40100000 to 0x401fffff
........ done
Erased 8 sectors

Erasing NAND flash requires use of the special U-Boot nand command, which can erase
NAND memory regions. The NAND read and write commands actually include a form
with a postfixed .e that also performs an erase cycle. Here is an example session writing
a new release of U-Boot to NAND flash memory on the GTA01 reference hardware:

GTA01Bv4 # nand write.e 0x30100000 u-boot 0x35724

NAND write: device 0 offset 0x0, size 0x35724

Writing data at 0x35600 -- 100% complete.
 218916 bytes written: OK

The simplest way to install a kernel in the target’s flash is to download it first into RAM
and then copy it to the flash. On a network-attached device, such as the Xilinx ML403
development board, you can use the tftpboot command to download a kernel from the
host to RAM:

=> tftpboot 00100000 /data/kernel/virtex4-vmlinux-2.6.24.img
ARP broadcast 1
TFTP from server 192.168.1.3; our IP address is 192.168.1.202
Filename '/data/kernel/virtex4-vmlinux-2.6.24.img'.
Load address: 0x100000
Loading: ### ...
done

When tftpboot runs, it adds the filesize environment variable to the existing environ-
ment variables and sets it to the size of the file downloaded. For example:

=> printenv filesize
filesize=819a6

You can use this environment variable in subsequent commands to avoid typing in the
file size by hand. Don’t forget to erase this environment variable before saving the other
ones, or it, too, will be saved.

296 | Chapter 9: Setting Up the Bootloader

In addition to tftpboot, you can use the loadb command to download images to the
target:

=> loadb 00100000
Ready for binary (kermit) download ...

At this point, U-Boot suspends and you must use the terminal emulator on the host to
send the image file to the target. In this case, U-Boot expects to download the data
according to the Kermit binary protocol, and you must therefore use Kermit (or another
terminal emulator program that supports the protocol) to download a binary image to
U-Boot. Once the transfer is done, U-Boot will acknowledge the transfer with output
similar to the following:

Total Size = 0x000819a6 = 530854 Bytes
Start Addr = 0x00100000

Here, too, U-Boot will set the filesize environment variable to the size of the file
downloaded. As we did earlier, you may want to use the iminfo command to verify that
the image has been properly downloaded.

Once the image is in RAM, you can copy it to flash. In the case of NAND flash, you
might use this command:

=> cp.b 00100000 40100000 $(filesize)
Copy to Flash... done
=> imi 30100000

Checking Image at 30100000 ...
 Image Name: Openmoko/2.6.24+svnr4301-r4251/o
 Created: 2008-04-03 0:26:48 UTC
 Image Type: ARM Linux Kernel Image (uncompressed)
 Data Size: 1763108 Bytes = 1.7 MB
 Load Address: 30008000
 Entry Point: 30008000
 Verifying Checksum ... OK

Alternatively, instead of downloading the image to RAM first using tfptboot or loadb
and then writing it to flash, you can download the image directly to flash using loads.
In this case, the host sends the image to the target in S-Record format. In comparison
to the two previous methods, however, downloading an S-Record file is extremely slow.
In most cases, it is preferable to use tftpboot or loadb.

The loadb command and, by default, the tftpboot command can’t be used to download
directly to flash. U-Boot can be configured at compile time, however, to allow direct
flash download using tftpboot. Direct flash download using loadb is not supported at all.

Updating U-Boot
U-Boot is like any other open source project: it continues to evolve over time as con-
tributions are made and bug fixes are integrated into the codebase. And although we
generally caution against updating U-Boot on production systems without strong

Using the U-Boot Bootloader | 297

justification, there will be times during design or testing, and even perhaps after even-
tual deployment, when such updates may be necessary. Fortunately, because U-Boot
loads into and runs itself from RAM and not from flash memory, it can be used to
update itself (updating the copy stored in persistent flash storage). Essentially, we have
to download a new version to the target, erase the old firmware version, and copy the
new version over it.

There are obvious dangers to this operation, because a mistake or a
power failure will render the target unbootable. Hence, utmost caution
must be used when carrying out the steps below. Make sure you have a
copy of the original U-Boot (or other bootloader) you are about to re-
place so that you can at least fall back to a known working version. Also,
seriously consider avoiding the replacement of your firmware if you have
no hardware method to reprogram the target’s flash in case the upgrade
fails. If you do not have access to a BDM/JTAG hardware debugger or
a flash programmer, for example, there is a great risk that you will be
left with a broken system if one of the steps below fails. Dealing with a
buggy release of a software program is one thing; ending up with unus-
able hardware is another. You might prefer to experiment with a hard-
ware emulator for the following section—for example, the GTA01 em-
ulator, as referenced on this book’s website.

Once you have taken the necessary precautions, download the U-Boot image into RAM
using TFTP:

=> tftp 00100000 /data/u-boot/u-boot.bin-1.3.2
TFTP from server 192.168.1.3; our IP address is 192.168.1.202
Filename '/data/u-boot/u-boot.bin-1.3.2'.
Load address: 0x100000
Loading: #################################
done

If you do not have a TFTP server set up, you can also use the terminal emulator to send
the image:

=> loadb 00100000
Ready for binary (kermit) download ...

Start Addr = 0x00100000

Unlike other images we have downloaded to the target, you cannot use the imi com-
mand to check the image, because the U-Boot image downloaded was not packaged
on the host using the mkimage command. You can, however, use crc32 before and after
copying the image to flash to verify that it was copied accurately.

298 | Chapter 9: Setting Up the Bootloader

The next step will vary depending upon whether your board uses NOR
or NAND flash for U-Boot. As we have previously mentioned, NOR
flash is the widely used standard for boot firmware because it is directly
executable, but U-Boot now supports modern devices that are capable
of booting indirectly from NAND flash alone. This is the case, for in-
stance, with the GTA01 reference hardware used by the OpenMoko
project. If you have such a board, you will need to replace the following
commands with appropriate calls to the nand commands, as documen-
ted in U-Boot’s help and documentation and in the OpenMoko online
wiki documentation. Here we will document the more common situa-
tion in which you are likely to use a board based on NOR flash, at least
for the bootloader itself.

To actually write the updated U-Boot image to flash, you will first need to unprotect
the region of flash that it is occupying. This will vary depending upon the specific board
in use. The following example assumes a board storing U-Boot in flash within the area
covered by a physical address space of 40000000–4003FFFF:

=> protect off 40000000 4003FFFF
Un-Protected 5 sectors

Next, you’ll need to actually erase the previous bootloader image:

=> erase 40000000 4003FFFF
Erase Flash from 0x40000000 to 0x4003ffff
... done
Erased 5 sectors

Copy the new bootloader to its final destination:

=> cp.b 00100000 40000000 $(filesize)
Copy to Flash... done

And now you can erase the filesize environment variable set during the download (so
that the following step will not store it persistently to the U-Boot environment data):

=> setenv filesize

Since you’ve just replaced U-Boot, you’ll need to resave its environment variables:

=> saveenv
Saving Enviroment to Flash...
Un-Protected 1 sectors
Erasing Flash...
. done
Erased 1 sectors
Writing to Flash... done
Protected 1 sectors

Using the U-Boot Bootloader | 299

At this stage, the new bootloader image has been installed and is ready to be used. Until
you issue the reset command, however, you can still use the old U-Boot currently run-
ning to fix any problems that may have occurred during the update. Once you are
satisfied that every step of the update has gone through cleanly, you can go ahead and
restart the system:

=> reset

If you can see the U-Boot boot message again, U-Boot has been successfully updated.
Otherwise, there is a problem with the replacement of the firmware and you need to
reprogram the flash device using the appropriate hardware tools.

300 | Chapter 9: Setting Up the Bootloader

Increasingly, embedded systems are called upon to include networking capabilities. An
embedded system may, for example, provide a web server to enable web-based con-
figuration. It may also enable remote login for maintenance and upgrading purposes.
Because the Linux kernel and the networking software that runs on it are often the
preferred software for running networking services that require high reliability and high
availability, you will find Linux particularly well suited for networking applications.

In this chapter, we will discuss the setup and configuration of the networking services
most commonly found in embedded Linux systems. This discussion includes instruc-
tions on how to cross-compile each networking package and how to modify the target’s
root filesystem to run the services each package provides. In particular, we will cover:

• Use of the Internet super-server (inetd)

• Remote administration with SNMP

• Network login through Telnet

• Secure communications with SSH

• Serving web content through HTTP

• Dynamic configuration through dynamic host configuration protocol (DHCP)

There are, of course, many other networking services that can run on top of Linux.
Though we couldn’t realistically cover all of them in a single chapter, the explanations
included here should provide you with some hints as to how to install and use other
networking packages. Also, we won’t cover the setup, configuration, and use of actual
networking hardware, nor many of the Linux advanced networking options—such as
IPv6, source-based routing, firewalling and network address translation support—as
most are not specific to embedded systems. If you need information regarding these
issues, have a look at Running Linux by Matthias Dalheimer and Matt Welsh and Linux
Network Administrator’s Guide by Tony Bautts et al. (both from O’Reilly). We also will
not provide in-depth coverage of the configuration and use of the various networking
packages, since many already have entire books dedicated to them. For more informa-

CHAPTER 10

Setting Up Networking
Services

301

tion regarding Linux networking in general, look at books such as the ones previously
mentioned that discuss the issue from the perspective of a server or a workstation.

This chapter builds on the material presented in Chapter 6. The operations presented
here are supplemental to the procedure for building the target’s root filesystem, and
are discussed in this chapter because they are essential if network services are used, but
otherwise not always required.

Throughout this chapter, we will use an ARM-based system as our system management
(SYSM) module* to present the operations you need to carry out.

Network Settings
The first order of business in enabling most network services (the DHCP client being
the major exception) is the correct configuration of network settings. At minimum, this
includes the target IP address and routing table; if the target will use DNS, a domain
name server IP address needs to be configured.

A full and detailed configuration of Linux’s extensive networking stack is beyond the
scope of this book. The following script sets up the most basic setting required for a
machine with a fixed IP address that will allow most network services to work and be
accessible over the network. Example values that you need to replace with the values
for your site are shown in italics:

#!/bin/sh

HOSTNAME=shu
DOMAINNAME=codefidence.com
IP=192.168.1.2
NETMASK=255.255.255.0
GATEWAY=192.168.1.1
NS1=192.168.1.200

This sets the hostname and FQDN
echo 127.0.0.1 $HOSTNAME.$DOMAINNAME $HOSTNAME > /etc/hosts
/bin/hostname $HOSTNAME

This sets up the loopback interface
/sbin/ifconfig lo 127.0.0.1 up
/sbin/route add -net 127.0.0.0 netmask 255.0.0.0 lo

This sets up our IP and default gateway
/sbin/ifconfig eth0 $IP up
/sbin/route add -net $GATEWAY netmask $NETMASK eth0

echo nameserver $NS1 > /etc/resolv.conf

* See “Design and Implementation Methodology” in Chapter 1 for details about the components in the example
system used by the author of this chapter.

302 | Chapter 10: Setting Up Networking Services

Edit the script to modify the first few lines and run it from /etc/inittab during boot, as
explained in Chapter 6. This will set up a basic, static IP configuration that’s sufficient
for supporting the network services described in this chapter.

For a dynamic configuration using the DHCP protocol, see the upcoming section
“Dynamic Configuration Through DHCP.”

The network setup example provided previously is minimalist at best
and uses the deprecated, but more commonly encountered, ifconfig and
route commands, as opposed to the current and more powerful ip com-
mand from the iproute2 package. The sole purpose of this example is
to assist you in setting up in the quickest and most hassle-free way pos-
sible the most rudimentary network configuration that will allow you
to experiment with the network services and packages described ahead.
You are encouraged to consult the references at the beginning of the
chapter for a more in-depth look at Linux network configuration
options.

Busybox
As described in Chapter 6, Busybox is an “all-in-one” application suite for embedded
systems. Many network services are now implemented as BusyBox applets, including
a DHCP client and server, a minimal web server, and a Telnet server program. In fact,
Busybox applets make excellent network services, especially for low-key services that
do not require any level of high performance or advanced features.

Refer to Chapter 6 to configure, build, and install Busybox.

Dynamic Configuration Through DHCP
The DHCP allows for the automatic network configuration of hosts. Automatic con-
figuration usually involves assigning IP addresses, but it can include other configuration
parameters, as we saw in Chapter 9. A network that uses DHCP hosts two sorts of
entities: clients that request a configuration and servers that provide the clients with
functional configurations. The configuration information that the server gives to the
client is called a lease, a term that reflects its temporary assignment. If a client is dormant
for a certain amount of time (which can be configured on the server), the IP address
and other information might become invalid and be given to another client.

An embedded Linux system can easily be used as a DHCP server. In our example sys-
tem, for instance, the SYSM module can provide dynamic configurations to the UI
modules. Conversely, an embedded Linux system may need to obtain its own
configuration from a DHCP server. Our UI modules, for example, may obtain their
configurations from the SYSM module.

Busybox | 303

The standard DHCP package used in most Linux distributions is the one distributed
by the Internet Software Consortium (ISC). Although the package may seem to be a
good candidate for use in embedded Linux systems because of its widespread use and
the fact that it includes both the client and the server, it’s actually not suitable, because
its Makefiles and configuration scripts cannot easily be adapted to cross-compilation.

There is, nevertheless, another open source package that provides both a DHCP server
and a DHCP client, and it can be used in an embedded Linux system: udhcp. The udhcp
project is maintained as part of the BusyBox project, and its website is located at http://
udhcp.busybox.net/. The package is available on that website and is distributed under
the GPL. udhcp depends only on the C library and can be compiled with both glibc and
uClibc.

Begin by downloading and extracting the udhcp package in your ${PRJROOT}/sy
sapps directory. For our SYSM module, for example, we used udhcp 0.9.8. Move to the
package’s directory for the rest of the operations:

$ cd ${PRJROOT}/sysapps/udhcp-0.9.8

The package needs no configuration. The only important option is CROSS_COM-
PILE, which should contain the prefix to the cross toolchain, for example, arm-
uclibc- (you need the trailing hyphen) if using uClibc on ARM, or arm-linux- if glibc
is preferred.

Compile and link the package:

$ make CROSS_COMPILE=arm-uclibc-

Compilation time is short. When linked against glibc and stripped,† the server and the
client are around 16 KB in size. When linked against uClibc and stripped, the server
and the client are around 15 KB in size.

The file sizes provided throughout this chapter correspond to one au-
thor’s setup, and you are likely to obtain slightly different sizes. Use the
numbers provided here as an indication only. ARM code, for instance,
and RISC code in general, is usually larger than x86 code.

If you are using the server in your system, copy it to your target’s /usr/sbin directory:

$ cp udhcpd ${PRJROOT}/rootfs/usr/sbin

If you are using the client, copy it to your target’s /sbin directory:

$ cp udhcpc ${PRJROOT}/rootfs/sbin

Both server and client need configuration files and runtime files to store information
regarding lease status. As you can see in the commands in this section, the server (dae-
mon) is named udhcpd and the client is named udhcpc.

† The udhcp Makefile automatically strips the binaries once they are built.

304 | Chapter 10: Setting Up Networking Services

http://udhcp.busybox.net/
http://udhcp.busybox.net/

For the server, create a /var/lib/misc directory and a lease file, and copy the sample
configuration file to your target’s root filesystem:

$ mkdir -p ${PRJROOT}/rootfs/var/lib/misc
$ touch ${PRJROOT}/rootfs/var/lib/misc/udhcpd.leases
$ cp samples/udhcpd.conf ${PRJROOT}/rootfs/etc

If you forget to create the lease file, the server will refuse to start.

For the client, create a /etc/udhcpc directory and a /usr/share/udhcpc directory, and copy
one of the sample configuration files to /usr/share/udhcpc/default.script:

$ mkdir -p ${PRJROOT}/rootfs/etc/udhcpc
$ mkdir -p ${PRJROOT}/rootfs/usr/share/udhcpc
$ cp samples/sample.renew \
> ${PRJROOT}/rootfs/usr/share/udhcpc/default.script

Also, edit your target’s /etc/inittab file to start the daemon you need. For instance, here
is the line for the DHCP server used in our SYSM module:

::respawn:/usr/sbin/udhcpd

For a complete discussion of the configuration and use of udhcpd and udhcpc, read the
manpages included with the package and look at the project’s website.

The Internet Super-Server
As in most Unix systems, networking services are implemented as daemons in Linux.
Each networking daemon responds to requests on a particular port. The Telnet service,
for example, operates on port 23, whereas the more secure SSH service uses port 22.
For networking services to function properly, some process must be alive and listening
on each corresponding port. Instead of starting all the networking daemons so that
each listens to its own port, however, some systems make use of an Internet “super-
server.” This super-server is a special daemon that listens to the ports of all the enabled
networking services. When a request comes in from a particular port, the corresponding
networking daemon is started, and the request is passed on to it for service.

There are two main benefits to this scheme. First, only the minimal set of needed dae-
mons is active at all times, and therefore no system resources are wasted. Second, there
is a centralized mechanism for managing and monitoring network services.

Although many networking services can be managed by the Internet super-server, some
services—such as an HTTP server or an SNMP agent—are almost always set up to have
direct control of their ports for reasons of scalability and reliability.

There are two main Internet super-servers available for Linux, inetd and xinetd. Though
inetd used to be the standard super-server for most Linux distributions, it is gradually
being replaced by xinetd, which contains more features. But because inetd contains
fewer features than xinetd, it is also smaller and may be better for an embedded Linux
system.

The Internet Super-Server | 305

inetd
inetd is part of one of the netkit packages available at ftp://ftp.uk.linux.org/pub/linux/
Networking/netkit. Netkit is a set of packages that provide various networking capa-
bilities. inetd is part of the netkit-base package (which also contains other useful net-
work programs, such as ping). Like other netkit packages, netkit-base is distributed
under a BSD license.

First, download netkit-base and extract it into your ${PRJROOT}/sysapps directory.
For our SYSM module, we used netkit-base version 0.17. Now, move to the directory
from which netkit-base was extracted:

$ cd ${PRJROOT}/sysapps/netkit-base-0.17

Before you begin configuring netkit-base, you need to modify the configure script to
prevent it from trying to run test programs on your host. Because you are instructing
it to use the compiler you built for the target, the test programs it compiles will be fit
only for your target. Hence, these test programs will fail to run on the host, and the
configure script fails to complete if it is not modified. To avoid these problems, edit the
configure script and comment out all the lines that attempt to execute the compiled
binary (adding a # symbol at the beginning of each line). The actual test programs that
configure tries to run are all called __conftest. Here is an example commented line:

./__conftest || exit 1;

Under most circumstances, editing the configure script of a package to
overcome a build problem or to skip a test in the manner described is
ill-advised. The configure script is normally autogenerated using the
GNU autoconf tools, and thus editing it in such a fashion is a futile and
error-prone endeavor. The right thing to do is either find the correct
options to the configure script to make it behave properly, or in lieu of
appropriate options, edit the configure.in from which the configure file
is automatically built and regenerate the configure script using the
autoconf tools.

In this specific case, however, the configure script was not created using
the GNU autoconf tools and, after close examination, one of the authors
has established that editing the script in this manner is the only valid
option here.

inetd can be built with either glibc or uClibc. To link it against uClibc, however, you
need to make sure that RPC support was enabled in uClibc. If uClibc was built with
RPC disabled, which is the default, you must reinstall uClibc.

Once the configure script has been properly edited, configure and compile netkit-base:

$ CC=arm-linux-gcc ./configure --prefix=${TARGET_PREFIX}
$ make

306 | Chapter 10: Setting Up Networking Services

ftp://ftp.uk.linux.org/pub/linux/Networking/netkit
ftp://ftp.uk.linux.org/pub/linux/Networking/netkit

Netkit-base builds quite rapidly. The binary generated is 24 KB in size when built with
glibc and stripped. With uClibc, the stripped binary is 23 KB. Regardless of the actual
link method you choose, the resulting inetd binary is much smaller than the xinetd
binary, as we shall see in the next section.

In contrast with other packages we’ve built in other chapters, don’t use make install to
install inetd, because the Makefiles were not properly built for cross-platform develop-
ment. Among other things, they attempt to use the host’s strip command to strip the
binaries of their symbol tables.

Instead, copy the inetd binary and the sample configuration file manually to your tar-
get’s root filesystem:

$ cp inetd/inetd ${PRJROOT}/rootfs/usr/sbin
$ cp etc.sample/inetd.conf ${PRJROOT}/rootfs/etc

Edit the inetd.conf file according to your own setup. In addition to inetd.conf, the
etc.sample directory contains other file samples that may be used in your target’s /etc
directory, such as resolv.conf and services. For our SYSM module, here’s the
inetd.conf entry for the Telnet daemon discussed later in “Network Login Through
Telnet”:

telnet stream tcp nowait root /usr/sbin/telnetd

Once inetd is copied and configured, edit your target’s /etc/inittab file to add a line for
inetd. Here is an example line for our SYSM module that uses BusyBox’s init:

::respawn:/usr/sbin/inetd -i

The -i option instructs inetd not to start as a daemon. Hence, init can respawn inetd if
it dies for some unexpected reason.‡

Because netkit-base also includes ping, you will find a ping binary in the ping directory.
You don’t need to use this binary if you are already using BusyBox, however, because
BusyBox includes a ping command.

For more information regarding the use of inetd, have a look at the manpages included
in the netkit-base package under the inetd directory.

xinetd
xinetd is preferable to inetd on some systems because it allows some secure authoriza-
tion, provides extensive logging abilities, and can prevent denial-of-access attacks,
among other things. Although the FAQ on the xinetd project website contains a
complete list of advantages it has over inetd, suffice it to say that you should use the
xinetd super-server only if your embedded system is designed to provide extensive net-
working services or live in a hostile networking environment, such as the Internet.

‡ The super-server doesn’t crash often. The reliance on init is therefore just an extra precaution.

The Internet Super-Server | 307

xinetd is distributed at http://www.xinetd.org/ under a BSD-like license. For our SYSM
module, we used xinetd version 2.3.14. Download and extract the xinetd package into
your ${PRJROOT}/sysapps directory, and move into the package’s directory for the rest
of the procedure:

$ cd ${PRJROOT}/sysapps/xinetd-2.3.14

As with inetd, xinetd can’t be compiled with uClibc if it lacks certain features. In par-
ticular, xinetd will fail to build with uClibc if it doesn’t support RPC and C99. In ad-
dition to the C library, xinetd depends on the math library (libm) and the cryptography
library (libcrypt).

Configure, compile, and install xinetd:

$ CC=arm-linux-gcc ./configure --host=$TARGET --prefix=${TARGET_PREFIX}
$ make
$ make install

xinetd builds quite rapidly. The dynamically linked, stripped binary itself is quite large
at 126 KB in size with either uClibc or glibc. When statically linked and stripped, the
binary’s size is 650 KB with glibc and 210 KB with uClibc. The xinetd package installs
its components in the ${TARGET_PREFIX} directory. The build also installs
manpages. The xinetd binary itself is installed in ${TARGET_PREFIX}. Copy it from
that directory to your target’s root filesystem and strip it:

$ cp ${TARGET_PREFIX}/sbin/xinetd ${PRJROOT}/rootfs/usr/sbin
$ arm-linux-strip ${PRJROOT}/rootfs/usr/sbin/xinetd

A sample configuration file is provided with xinetd, named xinetd/sample.conf. Use this
sample as the basis for configuring your target. Copy it to your target’s root filesystem
and edit it according to your needs:

$ cp xinetd/sample.conf ${PRJROOT}/rootfs/etc/xinetd.conf

Here is the entry in our SYSM module’s xinetd.conf for the Telnet daemon discussed
later in “Network Login Through Telnet”:

service telnet
{
 socket_type = stream
 wait = no
 user = root
 server = /usr/sbin/telnetd
 bind = 127.0.0.1
 log_on_failure += USERID
}

308 | Chapter 10: Setting Up Networking Services

http://www.xinetd.org/

Note that the example here instructs xinetd to bind the Telnet service
to the loopback address 127.0.0.1, making the service accessible only
from the target board itself. This was done to assure readers wouldn’t
accidentally copy and paste themselves into a security breach. If you
wish to allow Telnet access from outside the target board, you can re-
place the bind field with one of the machine IP addresses, or simply
0.0.0.0 to request binding to all available IP addresses.

Before doing so, however, please make sure to read and understand the
Telnet service security considerations, as discussed in “Network Login
Through Telnet,” later in this chapter.

Finally, edit your target’s /etc/inittab file to add a line for xinetd. As for inetd, I had to
add a line for xinetd in our SYSM module’s inittab:

::once:/usr/sbin/xinetd

Unlike inetd, xinetd can be started only as a daemon. Therefore, it cannot be respawned
by init if it dies.

For more information regarding the use and configuration of xinetd, look at the man-
pages included in the xinetd directory of the xinetd package. The project’s website also
includes an FAQ and a mailing list.

Remote Administration with SNMP
The Simple Network Management Protocol (SNMP) allows the remote management
of devices on TCP/IP networks. Though networking equipment such as routers and
switches are the most likely to be SNMP-enabled, almost any device that connects to
a TCP/IP network can be managed through SNMP.

Your embedded device will most likely be an SNMP agent, which is the SNMP software
component that runs in the networked device to enable remote management. In con-
trast, an SNMP manager is the SNMP software component that runs on a normal
workstation or server and that is responsible for monitoring remote systems running
SNMP agents.

Thus, an SNMP agent allows you to monitor the target remotely and automatically. In
other words, you don’t need to have an operator stand by the system to make sure it’s
still alive and watch over its current performance. The agent running in your target can
also be configured to send SNMP traps to the SNMP manager to inform it of software
or hardware failure. If your target is part of a complex network or if you need to be able
to constantly monitor its status remotely, you should think about including an SNMP
agent in it.

A negative factor, however, is the large size of the agent: the SNMP MIB information
weighs in at around 1.3 MB. Added to the stripped binary, this brings the minimum

Remote Administration with SNMP | 309

cost of the total SNMP package to a little over 2 MB in storage. This is a fairly large
package for most embedded Linux systems.

There are quite a few SNMP agents and packages that enable interaction with SNMP-
enabled devices, many of them quite expensive. In the open source world, Net-SNMP
is the standard package for building and managing SNMP-enabled systems. It is dis-
tributed at http://net-snmp.sourceforge.net/ under a composite license similar to the BSD
license.§

The Net-SNMP package is relatively large and contains many software components.
For most targets, however, we will be interested only in the SNMP agent, since this is
the software component that will allow our device to be remotely managed. Start by
downloading and extracting the Net-SNMP package to your ${PRJROOT}/sysapps di-
rectory. For our SYSM module, for example, we used Net-SNMP version 5.4. Now
move to the package’s directory for the rest of the manipulations:

$ cd ${PRJROOT}/sysapps/net-snmp-5.3.1

The Net-SNMP package can be compiled with either uClibc or glibc. There are a few
requirements when using uClibc, however, as we’ll see. In addition to the C library,
Net-SNMP depends on the shared object dynamic loading library (libdl) and the math
library (libm).

To configure Net-SNMP for building with glibc, enter:

$./configure --host=$TARGET --with-endianness=little --with-cc=arm-linux-gcc
 --with-install-prefix=${TARGET_PREFIX}

If used with uClibc, Net-SNMP expects uClibc to be configured with IPv6 support. If
it isn’t, you can add the --disable-ipv6 option to Net-SNMP’s configuration command
line to disable IPv6 support within Net-SNMP. Then, issue the configure command
using arm-uclibc-gcc instead of arm-linux-gcc.

Note that we avoid using the --prefix option when configuring Net-SNMP. If we used
it, the resulting SNMP agent would always look for its files in the directory provided
in the option. Instead, we want the SNMP agent to take its configuration from the
default /usr/local/share/snmp directory. Luckily, the Net-SNMP configure script sup-
ports the --with-install-prefix option, which sets the place where the install make target
will copy the binaries and files but does not affect the runtime paths.

During its execution, the configuration script will prompt you for certain information
about the functionality of the SNMP agent, including the SNMP version to use, the
contact information for the device, and the system’s location. The instructions provided
by the configuration script are usually sufficient to understand the purpose of the in-
formation requested. If you need more information regarding the configuration process
of the Net-SNMP agent, see Essential SNMP by Douglas Mauro and Kevin Schmidt
(O’Reilly).

§ See the COPYING file in the Net-SNMP package for complete details about the license.

310 | Chapter 10: Setting Up Networking Services

http://net-snmp.sourceforge.net/

Once the configuration script has completed, build and install the Net-SNMP
components:

$ make
$ make install

The SNMP agent executable built by default by Net-SNMP seems like a rather small
binary. If you compile it against glibc and strip it, it will measure a measly 24 KB when
linked dynamically. However, much of the code resides in dynamic libraries that are
built together with the executable and are needed for its proper operation at runtime.
Together with these libraries, the total space taken by the SNMP agent is a whopping
1276 KB. If you compile it against uClibc and strip it, it will measure 625 KB. Because
the figures for the unstripped binaries all exceed 1.7 MB, we strongly encourage you
to strip the agent binary.

The complete build and installation will take around 10 minutes, depending on your
hardware, because Net-SNMP is quite a large package. In addition to copying binaries,
the installation copies manpages and headers into the ${TARGET_PREFIX} directory.
The SNMP daemon (snmpd), which is the actual SNMP agent, is installed in ${TAR
GET_PREFIX}/sbin. The dynamic libraries built during the build and required by the
binary reside in ${TARGET_PREFIX}/libs. The other SNMP utilities, such as
snmpget, are installed in ${TARGET_PREFIX}/bin. The SNMP trap daemon is also
installed in ${TARGET_PREFIX}/sbin (this daemon is used to monitor incoming traps).
The MIB information required by the SNMP daemon is installed in ${TARGET_PRE
FIX}/share/snmp.

With all the Net-SNMP components installed in your development workspace on the
host, copy the SNMP daemon, and dynamic libraries to your target’s root filesystem:

$ cp ${TARGET_PREFIX}/sbin/snmpd ${PRJROOT}/rootfs/usr/sbin
$ cp -a ${TARGET_PREFIX}/libs/libnetsnmp*.so* ${PRJROOT}/rootfs/usr/lib

Copy the relevant components found in ${TARGET_PREFIX}/share/snmp to the /usr/
local/share/snmp directory of your target’s root filesystem:

$ mkdir -p ${PRJROOT}/rootfs/usr/local/share
$ cp -r ${TARGET_PREFIX}/share/snmp ${PRJROOT}/rootfs/usr/local/share

To run properly, the SNMP agent requires a configuration file. An example configu-
ration (EXAMPLE.conf) was created during the build of the Net-SNMP package in the
package’s root directory. Customize that file and copy it to your ${PRJROOT}/rootfs/
usr/local/share/snmp directory:

$ cp EXAMPLE.conf ${PRJROOT}/rootfs/usr/local/share/snmp/snmpd.conf

Finally, edit your target’s /etc/inittab file to add a line for snmpd. Here is the line we
added for snmpd in our SYSM module’s inittab:

::respawn:/usr/sbin/snmpd -f

The -f option instructs snmpd not to fork from the calling shell. In other words,
snmpd will not become a daemon and init will respawn it if it dies.

Remote Administration with SNMP | 311

For more information regarding SNMP, including the configuration and use of Net-
SNMP, look at Essential SNMP, mentioned earlier. The Net-SNMP project’s website
contains quite a few resources, including an FAQ, various documents, and a mailing
list. The manpages installed by Net-SNMP are also informative.

Network Login Through Telnet
The Telnet protocol is one of the simplest ways to log into a remote network host.
Consequently, it’s the easiest way to access your target system once it is connected to
a network. To enable remote login, your target must run a Telnet daemon. There are
two main Telnet daemons available for use in embedded Linux systems: telnetd, which
is part of the netkit packages mentioned earlier, and utelnetd, which is maintained by
Robert Schwebel of Pengutronix.

In terms of size, the binary generated by the utelnetd package is clearly smaller than the
one generated by the netkit Telnet package. In addition, utelnetd does not require an
Internet super-server, while telnetd does. If your system has very limited resources and
does not include other network services managed by an Internet super-server, use
utelnetd.

Though Telnet is a convenient, lightweight communications mechanism for managing
your device on a dedicated network, it’s not a secure protocol and therefore not fit for
use on the Internet. If you need to remotely log into a device that resides on the Internet,
use SSH instead. We will discuss SSH in detail later in “Secure Communication with
SSH.”

netkit-telnetd
As with other netkit packages, the netkit-telnet package that contains telnetd is dis-
tributed at ftp://ftp.uk.linux.org/pub/linux/Networking/netkit under a BSD license. For
our SYSM module, we used netkit-telnet version 0.17.

Download and extract the netkit-telnet package into your ${PRJROOT}/sysapps direc-
tory and move to the package’s directory for the rest of the procedure:

$ cd ${PRJROOT}/sysapps/netkit-telnet-0.17

As with the netkit-base package described earlier, the configure script included in the
netkit-telnet package attempts to run some test programs. Because these test programs
are compiled using the target’s compiler, they will fail. To avoid this, edit the config-
ure script and comment out all the lines that attempt to execute test binaries. As earlier,
here is an example commented line:

./_ _conftest || exit 1;

After modifying the script, you are ready to configure and compile the Telnet daemon.
To link with glibc, type:

312 | Chapter 10: Setting Up Networking Services

ftp://ftp.uk.linux.org/pub/linux/Networking/netkit

$ CC=arm-linux-gcc ./configure --prefix=${TARGET_PREFIX}
$ touch ${TARGET_PREFIX}/include/termcap.h
$ make -C telnetd

To build with uClibc, type:

$ CC=arm-uclibc-gcc ./configure --prefix=${TARGET_PREFIX}
$ touch ${PREFIX}/uclibc/include/termcap.h
$ make -C telnetd

As you can see, we compile only telnetd. The package also includes the telnet client,
but the Makefile for that client doesn’t allow cross-compilation. Even if it did, you’ll
find it better to use the miniature telnet client included in BusyBox. We used touch to
create a termcap.h file in the appropriate header directory because telnetd’s source files
include this header file. We don’t need the termcap library, however. The build process
requires only the termcap header file to be present, and the file can be empty.

The complete build process for telnetd is fairly short, and the resulting binary is quite
small. When built with uClibc and stripped, the binary is 30 KB if linked dynamically
and 65 KB if linked statically. When built with glibc and stripped, the binary is 30 KB
if linked dynamically and 430 KB if linked statically.

Don’t use make install, because the Makefile was not properly built for cross-platform
development and attempts to use the host’s strip command instead of the version we
built earlier for the target. Instead, copy the telnetd binary by hand to your target’s root
filesystem:

$ cp telnetd/telnetd ${PRJROOT}/rootfs/usr/sbin

You need to have a properly configured copy of either inetd or xinetd, the Internet super-
server that allows Telnet connections to your target. Alternatively, you could edit your
target’s /etc/inittab to start the Telnet daemon using the -debug option so that it doesn’t
need to rely on any super-server. However, telnetd wasn’t meant to be used this way.

Common Pitfalls
The Telnet daemon uses pseudoterminal devices, called pty for short, to provide a
terminal for the shell and other programs to run in, when invoked from the network
via this daemon.

One of the most common pitfalls for novice embedded Linux system builders regarding
the Telnet service is to neglect some configuration detail related to ptys that prevents
users from logging in to the system via Telnet.

If the Telnet daemon is running and networking is otherwise working (you can, for
example, ping other hosts), make sure of the following:

• The /dev/ptmx exists and that it is a character device file with a major number of
5 and a minor of 2; if not, create it using the command:

$ mknod /dev/ptmx c 5 2

Network Login Through Telnet | 313

• Support for the devpts pseudofilesystem is enabled in the kernel by looking for the
devpts entry in the /proc/filesystems file, or add the support by turning on the
CONFIG_UNIX98_PTYS Linux kernel build option.

• The /dev/pts directory exists and that the devpts pseudofilesystem is mounted on
it correctly, either by issuing the mount command and looking for the devpts entry
or mounting it using the command:

$ mkdir /dev/pts && mount -t devpts none /dev/pts

In addition to the C library, telnetd depends on the login routines library (libutil). Hence,
do not forget to copy this library to your target’s /lib directory if you link telnetd
dynamically.

For further information regarding the use of telnetd, have a look at the manpage inclu-
ded in the telnetd directory of the netkit-telnet package, or look at the manpage installed
on your host for your workstation’s native telnetd.

Secure Communication with SSH
Although you can easily communicate with your target using Telnet, it is a very insecure
protocol and its vulnerabilities are widely documented. The user password, for in-
stance, is transmitted in clear text from the client to the server. It would therefore be
rather unprudent, and in most cases downright dangerous, to include a Telnet daemon
in your product in the hopes of being able to remotely fix problems once the product
is at the client’s site. Instead, it would be preferable to use a protocol that relies on
strong encryption and other mechanisms to ensure the communication’s confidential-
ity. Currently the best way to do this is to use the SSH protocol and related tool suite.
SSH uses public-key cryptography to guarantee end-to-end communication encryp-
tion, and it is fairly easy to use and deploy.

Because SSH is an IETF standard, there are a few competing implementations, some
of which are proprietary commercial products. The canonical open source implemen-
tation is OpenSSH. However, it is not for the faint of heart to try and cross compile this
program. It is dependent on the separate OpenSSL library, and the resulting binary is
over 1MB in size. Luckily, an open source SSH server (and client) for embedded systems
called Dropbear, written by Matt Johnston, has proved in recent years to be a good fit
for embedded systems. It is this implementation that we will cover here.

314 | Chapter 10: Setting Up Networking Services

The security of any network service depends not only on the crypto-
graphic properties of the algorithms used to implement the protocol,
but also—and some would say mainly—on the details of the specific
implementation used.

Choosing an SSH service implementation is therefore a delicate balance
between achieving secure communication with the target at the least
possible cost and lulling ourselves into a false sense of security.

OpenSSH and the OpenSSL library it relies on comprise a much more
tested and mature implementation of the SSH protocol and are therefore
more secure. Having said that, the author of this chapter considers
choosing Dropbear over OpenSSH as an acceptable risk in this regard,
but you should be aware of the choice that is being made here.

If you are seriously considering using an SSH package in your target, we suggest you
take a look at SSH, The Secure Shell: The Definitive Guide by Daniel Barrett and Richard
Silverman (O’Reilly). It provides the in-depth coverage we cannot undertake here.

Dropbear can be downloaded from the author’s website at http://matt.ucc.asn.au/drop
bear/dropbear.html. The version used in the examples is 0.49, the current version at the
time of this writing. We recommend you use the most recent version available, due to
the security implications of this package.

Download and extract the Dropbear package into your ${PRJROOT}/sysapps directory,
and move to the package’s directory for the rest of the procedure:

$ cd ${PRJROOT}/sysapps/dropbear-0.49

Proceed to configure the package using the following command:

$ STRIP=arm-linux-strip CC=arm-linux-gcc ./configure --host=${TARGET}

If you’re compiling for a 386-class CPU, you will probably need to add
CFLAGS=-DLTC_NO_BSWAP so that libtomcrypt doesn’t use 486+
instructions.

To link against uClibc, simply use the uClibc compiler:

$ STRIP=arm-linux-strip CC=arm-linux-gcc ./configure --host=${TARGET}

Note that we are providing the location of the cross-toolchain strip executable as well
as the compiler. This is not strictly needed, but it will allow us to easily strip the result
binary later using the convenience build target supplied by the Dropbear Makefile.

The configure script offers several addtional options, which can be used to customize
the program further to your needs. As an example, you can remove support for the zlib
compression library using the switch --disable-zlib.

Secure Communication with SSH | 315

http://matt.ucc.asn.au/dropbear/dropbear.html
http://matt.ucc.asn.au/dropbear/dropbear.html

In addition to using the options offered by the configure script, you can also edit the
options.h include file directly, removing some uneeded ciphers and check codes (such
as MD5) as a way to produce a smaller runtime binary.

If you disable zlib support, you must explicitly disable compression
support in the client side. Certain versions of the commonly used
OpenSSH client are possibly buggy in this regard, so disable compres-
sions support globally (not just for the particular host) in ~/.ssh/config
by adding the 'Compression off' keyword.

In addition, you may want to disable lastlog recording when using
uClibc if uClibc was not built with lastlog support. This can be done by
providing the --disable-lastlog switch to the configure script.

Last but not least, note that the tips regarding the pseudoterminal
interface presented in the section about the netkit-telnetd daemon apply
also to the SSH service and Dropbear.

Next, we’ll build the package, which combines the SSH server itself, the scp utility
(which performs secure file transfer on top of the SSH secure channel), and the drop-
bearkey utility, (which allows you to compute a unique key for your target during its
first boot). (The DESTDIR build variable denotes the location to which the install target
will copy the generated binary.) We will use a nice feature that the Dropbear package
offers that lets us build a single binary executable for all three programs, which will
produce a smaller footprint for the SSH server. In addition, we will strip the binary.

$ make PROGRAMS="dropbear dropbearkey scp" --prefix=/usr/
 MULTI=1 DESTDIR=${TARGET_PREFIX} strip install

The generated multiprogram binary, called dropbearmulti (241 KB in size) needs to be
copied to its location on the root filesystem. We will need to create symbolic links that
link the names of the three different programs we have created to the actual binary:

$ cp ${TARGET_PREFIX}/usr/bin/dropbearmulti \
 ${PRJROOT}/rootfs/usr/sbin/dropbear
$ ln -s ../sbin/dropbear ${PRJROOT}/rootfs/usr/bin/dropbearkey
$ ln -s ../sbin/dropbear ${PRJROOT}/rootfs/usr/bin/scp

Now, edit your target’s /etc/inittab file to add a line for starting the dropbear daemon
at boot. Here is the line we added for Dropbear in our SYSM module’s inittab. As you
might recall, the respawn directive tells init to run the specified program (dropbear, in
our case) and restart it if it ever terminates:

::respawn:/usr/sbin/dropbear -F -d /etc/dropbear_dsa_host_key
 -r /etc/dropbear_rsa_hos_key

We are not done yet, however. When the dropbear daemon starts, it will look for two
files: one containing an RSA cryptographic key, the other a DSA key. The keys are used
to identify the target to SSH clients connecting to it and are part of the SSH protocol

316 | Chapter 10: Setting Up Networking Services

defense against what is known as “Man in the Middle” attacks. We will need to create
these keys, by running the dropbearkey program twice, once for each key type.

In theory, we could compile the dropbearkey utility as a native executable on our de-
velopment host, create the files containing the keys there, and copy them to our target
filesystem just like any other file. That, however, would not be a good idea as it will
mean the keys will not be unique to each system.

One of the most practical ways to create different keys for each unit is to generate them
on the first boot. For this purpose, we will create a small shell script that will create
these key files on the target machine, but only if they do not exist already (as would be
the case when starting from the second run of the script, at least in most
circumstances):

#!/bin/sh

RSA_KEY=/etc/dropbear_rsa_host_key
DSA_KEY=/etc/dropbear_dsa_host_key

if ! test -f $RSA_KEY; then
 /usr/bin/dropbearkey -t rsa -f $RSA_KEY;

fi;

if ! test -f $DSA_KEY; then
 /usr/bin/dropbearkey -t dsa -f $DSA_KEY;

fi;

We are relying on the root filesystem not being read-only or volatile, as
would be the case with a cramfs image, an initrd RAM disk, or an
initramfs filesystem. If this is not the case with your system, you can
simply create the files at a different path and point the dropbear daemon
program to this alternate location.

Name the file create_dropbear_keys.sh, and copy it to the target filesystem:

$ cp create_dropbear_keys.sh ${PRJROOT}/rootfs/usr/sbin/

Finally, all we have to do is get the script to run at target system startup. Add the
following line to the target’s /etc/inittab to accomplish this:

::sysinit:/usr/sbin/create_dropbear_keys.sh

Serving Web Content Through HTTP
One of the biggest trends in network-enabled embedded systems is the inclusion of a
web (HTTP) server. The added HTTP server can then be used for enabling remote
administration or remote data viewing. In the case of our SYSM module, for example,
the HTTP server lets users configure and monitor various aspects of the control system.

Serving Web Content Through HTTP | 317

Although the open source Apache HTTP server is the most widely used HTTP server
in the world, it is not necessarily fit for embedded systems. The main reasons are that
it is very difficult to cross-compile, and it tends to demand a rather large amount of
storage. There are other open source HTTP servers that are much better adapted to
embedded systems. In particular, Boa and thttpd are small, lightweight, fast, and a
perfect fit for embedded Linux systems.

There does not seem to be a clear set of characteristics to help you choose between Boa
and thttpd. The only really notable difference is that Boa is distributed under the GPL,
whereas thttpd is distributed under a BSD-like license. The sizes of the resulting binaries
are, however, comparable. Both packages also support CGI scripting. Therefore, we
suggest you have a look at both to decide which one you prefer.

Boa
Boa is available at http://www.boa.org/ and is distributed under the GPL. Boa requires
only a C library and can be compiled against both glibc and uClibc. For our SYSM
module, we used Boa 0.94.13.

Download and extract Boa in your ${PRJROOT}/sysapps directory. With the package
extracted, move to the appropriate directory:

$ cd ${PRJROOT}/sysapps/boa-0.94.13/src

Configure and compile Boa:

$ ac_cv_func_setvbuf_reversed=no CC=arm-linux-gcc ./configure \
> --host=$TARGET
$ make

The compilation time is short. When linked against either uClibc or glibc and stripped,
the resulting binary is 60 KB in size, at least for the toolchain version used by one of
the authors.

Once the binary is ready, copy it to your target’s root filesystem and strip it:

$ cp boa ${PRJROOT}/rootfs/usr/sbin
$ arm-linux-strip ${PRJROOT}/rootfs/usr/sbin/boa

For Boa to run, it needs a boa subdirectory in the target’s /etc directory and a configu-
ration file in the new /etc/boa directory. Create Boa’s directory and copy the sample
configuration file to it:

$ mkdir -p ${PRJROOT}/rootfs/etc/boa
$ cp ../boa.conf ${PRJROOT}/rootfs/etc/boa

At runtime, Boa will need a user account to run. This user account is specified in the
boa.conf file. Edit this file, as well as your target’s /etc/passwd and /etc/groups files, to
add a user for Boa. Boa also needs a /var/log/boa directory on your target’s root file-
system to log accesses and errors:

$ mkdir -p ${PRJROOT}/rootfs/var/log/boa

318 | Chapter 10: Setting Up Networking Services

http://www.boa.org/

Remember that logfiles can be a problem in an embedded system if their
growth is not restricted. Having a script that runs periodically to clean
out such files is a simple way to ensure they don’t use up the available
storage space.

When running, Boa finds its web content from the target’s /var/www directory. This is
where you should put any HTML files, including index.html. Create the directory and
copy your content to it:

$ mkdir -p ${PRJROOT}/rootfs/var/www
$ cp ... ${PRJROOT}/rootfs/var/www

Finally, add a line in your target’s /etc/inittab for Boa. On our SYSM module, for ex-
ample, here is the line we added:

::respawn:/usr/sbin/boa

For more information on how to use Boa, see the documentation included in the Boa
package and on the project’s website.

thttpd
thttpd is available at http://www.acme.com/software/thttpd/ and is distributed under a
BSD-like license. In addition to the C library, thttpd also depends on the cryptography
library (libcrypt). Download and extract thttpd in your ${PRJROOT}/sysapps directory.
The current version is 2.25b. Move to the package’s directory for the rest of the
instructions:

$ cd ${PRJROOT}/sysapps/thttpd-2.25b

Now, configure and compile thttpd:

$ CC=arm-linux-gcc ./configure --host=$TARGET
$ make

The compilation ends quickly. When linked against uClibc and stripped, the resulting
binary is 72 KB in size. When linked against glibc and stripped, the resulting binary is
73 KB.

Copy the resulting binary to the target’s root filesystem and strip it:

$ cp thttpd ${PRJROOT}/rootfs/usr/sbin
$ arm-linux-strip ${PRJROOT}/rootfs/usr/sbin/thttpd

Unlike Boa, you can configure thttpd either using a configuration file or by passing the
appropriate command-line options. Use the -C option to provide a configuration file
to thttpd. A sample configuration file is provided in contrib/redhat-rpm/thttpd.conf. If
you wish to use a configuration file, edit this sample file to fit your target’s configuration
after copying it to your target’s root filesystem:

$ cp contrib/redhat-rpm/thttpd.conf ${PRJROOT}/rootfs/etc

Serving Web Content Through HTTP | 319

http://www.acme.com/software/thttpd/

Like Boa, thttpd operates with a special user account, the nobody account, by default.
Create this account using the procedures outlined earlier, or set thttpd to use an account
of your choice. The configuration file copied earlier specifies the use of the httpd user.
It also identifies the target’s /home/httpd/html directory as the location for source HTML
files:

$ mkdir -p ${PRJROOT}/rootfs/home/httpd/html

Finally, edit your target’s /etc/inittab file. Here is the line we added for thttpd in our
SYSM module’s inittab:

::respawn:/usr/sbin/thttpd -C /etc/thttpd.conf

For more information on how to install and run thttpd, see the manpage included in
the package and the project’s website.

A Word on Apache
Apache is available from http://www.apache.org/ and is distributed under the Apache
license.‖ As we said earlier, Apache does not lend itself well to cross-compiling. If you
are not deterred by this warning and are still interested in attempting to cross-compile
Apache, have a look at the procedure outlined by David McCreedy in his posting to
the Apache development mailing list: http://hypermail.linklord.com/new-httpd/2000/
May/0175.html. If you succeed, you’ll probably want to take peek at Apache: The
Definitive Guide by Ben Laurie and Peter Laurie (O’Reilly) for more information re-
garding the configuration and use of Apache.

Dynamically Generated Web Content
Since the most common use for an HTTP server on an embedded system is providing
a graphical management interface, your embedded system would most likely make use
of dynamically generated web pages.

With the exception of Apache, none of the web servers mentioned earlier provides any
internal scripting engine or plugin interface that would allow creation of dynamic web
content, at least by themselves. Not all is lost, however, because all of them definitely
do support the standard CGI interface that is used to delegate this task to some external
program.

The idea behind CGI is a very simple and a very powerful one: when the client web
browser requests a certain URL from the web server, the server, according to some
internal logic, will locate a program in the target filesystem and run it, providing some
needed information (such as request headers) in environment variables. The CGI pro-
gram will then compute whatever dynamic page content its programmer had in mind,

‖ This license is similar to the BSD license. See the LICENSE file included with the package for the complete
licensing details.

320 | Chapter 10: Setting Up Networking Services

http://www.apache.org/
http://hypermail.linklord.com/new-httpd/2000/May/0175.html
http://hypermail.linklord.com/new-httpd/2000/May/0175.html

complete with HTTP headers, and write this to its standard output, which the web
server in turn will send happily to the user.

Through the CGI interface, therefore, creating dynamic web content boils down to
writing the dynamic web page-generating program itself and configuring the web server
to run that program in response to certain URL requests.

Using PHP As a CGI Engine
While somewhat unorthodox, one of the authors has had very good results supporting
the generation of dynamic web pages for embedded systems using the interpreter of
the PHP scripting language, which supports a mode in which it is run as a CGI program
by a web server.

For more information about doing this, see http://www.php.net/manual/en/in
stall.unix.commandline.php.

While the science and art of writing CGI programs is a general topic which lies outside
the scope of this book, the configuration of web servers to run CGI programs is a less
general matter.

For Boa, add the ScriptAlias directive to map a URL path to the directory containing
CGI programs:

ScriptAlias /cgi-bin/ /usr/local/boa/cgi-bin/

For thttpd, you can specify a pattern that when matched by thttpd in a URL request will
cause it to run the specified file rather than send its content to the client. You can use
either the -c command-line option, the cgipat keyword in the thttpd configuration file,
or the CGI_PATTERN build-time define option in the thttpd source code’s config.h file:

thttpd ... -c /cgi-bin/*

The pattern is a simple shell-style filename pattern. You can use * to match any string
not including a slash, or ** to match any string including slashes, or ? to match any
single character. You can also use multiple patterns separated by |. The patterns get
checked against the filename part of the incoming URL. Don’t forget to quote any
wildcard characters so that the shell doesn’t mess with them.

With both thttpd and Boa, and indeed with any web server, you also need to make sure
that your CGI program file permissions allow the user running the web server to execute
it.

Provisioning
One of the most important aspects of building embedded systems is provisioning ad-
equate resources to each of the system services and prioritizing the access to these
resources. This is not different with Linux and network services, such as those described
earlier.

Provisioning | 321

http://www.php.net/manual/en/install.unix.commandline.php
http://www.php.net/manual/en/install.unix.commandline.php

Indeed, choosing packages whose resource consumption and footprint match those of
the typical embedded device was one of the major considerations behind describing
certain implementations and not others in this chapter.

Unfortunately, describing the resources required for each of these services in anything
but the most general terms (other than the executable sizes), without specific details
about networking hardware, service usage, and other important factors, is an extremely
difficult and risky endeavor.

Keep in mind that none of the packages described is a heavy memory consumer, even
in embedded systems terms. Using the early allocation and locking the memory of other
real-time-critical tasks using the mlockall() system call would guarantee that even an
occasional non typical burst will not harm the system as a whole—even if a network
service will be temporarily rendered unresponsive due to memory constraints—so long
as it will keep running and return to normal operation once this abnormal peak usage
has ended. Using a software watchdog, such as the init program’s respawn directive, is
a good safety measure in this regard.

Regarding CPU consumption, network services such as those described in this chapter
tend to be I/O rather then CPU-bound. Thus, their CPU consumption tends to be
characterized by periods of inactivity followed by bursts of activity as incoming network
traffic requires processing, parsing of protocols, and work performed as a result of the
former.

The Linux kernel scheduler implementation ,up until Linux version 2.6.22.1, allots
extra “priority points” to tasks which are I/O bound, thus allowing them to run past
their fair share of CPU time in order to complete a pending I/O transaction, as these
are typically short.

In Linux version 2.6.23, a new scheduler was introduced, dubbed com-
pletely Fair Scheduler, which only takes into account the latency of the
task, regardless of whether it is I/O bound.

However, the generic network packages presented in this chapter have not been written
with real-time requirements in mind, and so running them under any scheduling do-
main other than SCHED_NORMAL (called SCHED_OTHER in POSIX) is ill-advised. Bursts of
CPU activity during peak usage may very well starve any lower-priority task for a long
time if the scheduling domain allows it to. Therefore, using the “nice” command to set
a priority under the SCHED_NORMAL scheduling command for these applications is rec-
ommended instead.

Real-time tasks should be scheduled using either the SCHED_FIFO or SCHED_RR scheduling
domain. Since such tasks always have higher priority with regard to scheduling than
any SCHED_NORMAL task, the worst-case scenario would then be that our network services

322 | Chapter 10: Setting Up Networking Services

would be starved during peak workloads by the real-time tasks, but not the other way
around.

This may render our network-embedded device nonresponsive to management func-
tions, such as a command-line interface accessed via SSH or a web interface. However,
at least a web GUI user repeatedly clicking the browser Reload button will not cause
our system to lose important real-time deadlines due to CPU bursts of the CGI program
that generates the management interface web pages.

The most problematic application is the NET-SNMP agent. The SNMP MIB wire pro-
tocol parsing and assembling, as well as the context switches, copying, and lock oper-
ations involved in acquiring SNMP MIB information from the Linux kernel may
amount to a significant overhead if many repeated queries for many MIBs are performed
in short succession.

As an example, repeatedly reading the network interface usage counter and routing
tables of a busy router in short period of time may require significant CPU resources,
despite the mitigation factors in both the Linux kernel and the SNMP daemon itself.

On the other hand, we would not like our SNMP agent to linger at the end of the
scheduler run queue while it is needed to report a critical condition of the system via
the SNMP protocol trap mechanism. Finding the correct priority can be a delicate bal-
ancing act.

Except for logfiles, which should be taken care of by log rotating programs and dedi-
cated RAM backed filesystems, the network services described in this chapter do not
normally raise any significant concerns regarding filesystem and storage usage.

The BusyBox suite comes with a nifty little applet called logrotate,
which can be used to trim old logfiles.

Provisioning | 323

In this chapter, we will discuss the installation and use of software debugging tools in
the development of embedded Linux systems. We will discuss several applications—
including the classic GDB and the spiffier Eclipse with its graphical interface—along
with tracing applications, system behavior monitors, performance analysis, and mem-
ory debugging. We will finish with a brief review of some of the hardware tools often
used in developing embedded Linux systems. Because the operating system on the
target makes little difference in the way the hardware debugging tools are used, we
won’t discuss how to use them. However, we will discuss ways that you can use hard-
ware tools to facilitate debugging software running in your embedded Linux system.

Most of the packages discussed in this chapter were not developed for
cross-platform work. Many of them have Makefiles and sample code
designed to test the tools to make sure they are working. These are likely
to generate a severe problem, such as a segmentation fault on a target
system, except in the unlikely situations where you are developing on
your target board or have a binary-compatible host. It’s hard to tell
whether the binary is actually broken for the tool you are using, or
whether the tests simply don’t understand that there is a difference be-
tween the host and target. The solution is to allow the build process to
generate the test suite, if there is one, but then remember to copy it to
your target and run it there.

To best use the tools discussed in this chapter, the authors strongly recommend using
an NFS-mounted root filesystem for your target. In essence, an NFS-mounted root
filesystem simplifies the updating and debugging process and therefore reduces devel-
opment time. Its primary advantage is that you can rapidly update your software once
you’ve identified and corrected a bug. In turn, this speeds up debugging because you
can continue debugging the updated software much sooner than if you had to transfer
the updated binary manually to your target first. In addition, NFS allows performance
data generated on the target to be available immediately on the host.

CHAPTER 11

Debugging Tools

325

This chapter will cover the most important free and open source debugging tools for
Linux, but it certainly is not exhaustive. A great diversity and variety exists among these
tools, many of which are simply modifications or tools built on top of the ones we
discuss. Consequently, the material covered in this chapter should help you make the
best use of any additional Linux debugging tools you may find on the Web or in your
distribution. Among the debugging tools we do not discuss are all the tools used for
kernel debugging. If you need to debug a kernel, have a look at Chapter 4 of Linux
Device Drivers by Jonathan Corbet et al. (O’Reilly).

Several significant changes have occurred in the embedded Linux world
since the first edition of this book was published. Principally among
these has been the proliferation of target processors, along with the de-
cline of some processors, as well as the emergence of powerful software
development tools. For example, the author of the first edition relied on
a PPC-based target board, whereas the authors of the second edition
used a Gumstix (http://www.gumstix.com) board based on the Intel
XScale processor family. Although PPC is still available, the XScale
boards are more widely available and generally cheaper for the average
hobbyist and developer.

The implication of the dynamism is that any over-reliance on one par-
ticular processor or software package would call the longevity of this
chapter into question. Therefore, the author has chosen to discuss tech-
niques and approaches that should apply to all processors, and to more
fully explore foundational tools, such as GDB, upon which higher-level
tools are often built.

Eclipse
One of the most fundamental changes in embedded Linux has been the advent of the
award-winning development platform, Eclipse (http://www.eclipse.com). IBM original-
ly developed the foundations of the open source Eclipse as a follow-on to another
successful but proprietary IDE called Visual Age, but Eclipse has now been spun off
and is run by an independent foundation.

In truth, Eclipse is more of a platform than a monolithic IDE. The advantage of a
modular system like Eclipse is that any number of problems can be addressed by simply
developing or acquiring the appropriate plug-ins. Although Eclipse is most often as-
sociated with Java, a set of plug-ins gives much of the benefits of Java Development
Tools (JDT) to the C/C++ developer, namely the C/C++ Development Tools (CDT).
Although not as mature as the JDT, the CDT is very capable and is closing the gap
quickly. This is due primarily to the efforts of third-party vendors that have taken
advantage of the modular nature of Eclipse and have developed plug-ins of their own
to support their products.

326 | Chapter 11: Debugging Tools

http://www.gumstix.com
http://www.eclipse.com

Eclipse supports many features that improve the embedded system development
process for both single-developer and team development efforts, notably the use of
revision control and centralized repository support via native support for CVS reposi-
tories. Unlike broad audience applications such as word processors, embedded appli-
cation development is historically done by a single engineer or a small team of devel-
opers who divide different aspects of the project among themselves. This isolation all
too often makes it easy to bypass the use of revision control and repositories—but
don’t. As many other authors can attest, revision control will save you one day, and
you will be glad of it.

All these tools are well and good, but without the ability to generate binaries that run
on the target, we are essentially just wasting paper and ink discussing Eclipse. Obvi-
ously, it is necessary to make Eclipse support different processors and boards with
customized toolchains. The process of customization depends on which toolchain is
used and how it is packaged. In an admittedly brief survey, the author found that some
processor/target board vendors provided Eclipse plug-ins for their toolchains, others
relied on GNU toolchains such as GNU/ARM (www.gnuarm.com), and still others
provided customized toolchains for each revision of each design of target board. The
type of toolchain and the condition of its development determine how easy it makes
embedded systems development. The best case is that you use a plug-in and off you
go. In the worst case, you have to manually tell the build tools where to find the required
utilities. Either way, it is just a matter of knowing how your toolchain works and how
to modify the project preferences as needed.

If a plug-in for your toolchain is not available and you plan to use the same toolchain
regularly, or if you are working with a group of developers who need to be doing all
the same things, it’s worthwhile creating your own plug-in. All you need is a modicum
of Java skills. There are tutorials on how to build a plug-in and lots of books on the
subject. If you do, be kind and share the plug-in with everyone else.

One major advantage JDT had over CDT was the JUnit project, which facilitated the
development of automated unit testing suites. As we all know, regular unit testing is
critical for rapid development, because it substantially improves the reliability of soft-
ware and generally improves its quality by indirectly enforcing the “first do no harm”
approach to software development. With the advent of projects such as C++ Unit
Testing Easier (CUTE), many of the greatest weaknesses in C and C++ K have been
addressed, but there is still room for improvement.

By this time, you should see that Eclipse/CDT is an extremely flexible and valuable tool
for embedded systems development. Now for the bad news. Like almost every other
Java application, Eclipse is a resource hog, and if you are not careful, you could retire
from the field while waiting for it to launch and operate. Among the factors controlling
Eclipse’s efficiency are the resources on the system; the version and flavor of JVM you
are using; and the distance between the source repository, development host, and target
host. Although using Eclipse can be very worthwhile, you should take the time to be-
come familiar with your application and do some performance tuning.

Eclipse | 327

Many functions and capabilities that you get with a complete install of Eclipse are not
needed and add substantially to the launch and compile times. Other “features” are
annoying and cause no end of confusion and frustration.

The bottom line is that if you are unfamiliar with Eclipse, you will have a learning curve.
If you are developing a small project completely alone, you can use CVS independently,
and there are other ways to approach the unit testing issue, so you might consider
skipping Eclipse.

However, given the rapid rise and seeming dominance of Eclipse, if you want a career
in embedded system development, you will need learn how to configure and use it
sometime. And there’s no time like the present. Luckily, there are any number of re-
sources available to you, from the printed page to online sites and tutorials as well as
forums. Unfortunately, the very flexibility of Eclipse makes it difficult to discuss any
further, and so we’ll stop here.

Debugging Applications with gdb
The GNU debugger (GDB) is the symbolic debugger (started in 1986 by Richard Stall-
man) of the GNU project and is arguably the most important debugging tool for any
Linux system. GDB has been available for long enough that many non-Linux embedded
systems already use it in conjunction with what is known as GDB stubs to debug a
target remotely. GDB has evolved in several ways since the publication of the first
edition of this book, most notably the ability to handle target core files has been inte-
grated into its functionality.* Because the Linux kernel implements the ptrace() system
call, however, you don’t need GDB stubs to debug embedded applications remotely.
Instead, a GDB server is provided with the GDB package. This server is a very small
application that runs on the target and executes the commands it receives from the
GDB debugger running on the host. Hence, any application can be debugged on the
target without having the GDB debugger actually running on the target. This is very
important because, as we shall see, the actual gdb binary is fairly large.

This section will discuss the installation and use of GDB in a host/target configuration,
not the actual use of GDB to debug an application. To learn how to set breakpoints,
view variables, and view backtraces, for example, read one of the books or manuals
that discusses the use of GDB. In particular, have a look at Chapter 21 of Matthias
Dalheimer and Matt Welsh’s Running Linux, Fifth Edition (O’Reilly) and the GDB
manual, which is available both within the GDB package and online at http://
www.gnu.org/manual.

* GDB stubs are a set of hooks and handlers placed in a target’s firmware or operating system kernel to allow
interaction with a remote debugger. The GDB manual explains the use of GDB stubs.

328 | Chapter 11: Debugging Tools

http://www.gnu.org/manual
http://www.gnu.org/manual

Building and Installing gdb Components
The GDB package is available at ftp://ftp.gnu.org/gnu/gdb under the terms of the GPL.
Download and extract the GDB package in your ${PRJROOT}/debug directory. For our
test module, for example, we used GDB version 6.6. As with the other GNU toolset
components described in previous chapters, it is preferable not to use the package’s
directory to build the actual debugger. Instead, create a build directory, move to it, and
build GDB as follows:

$ mkdir ${PRJROOT}/debug/build-gdb
$ cd ${PRJROOT}/debug/build-gdb
$../gdb-6.6.xx/configure --target=$TARGET --prefix=${PREFIX}
$ make
$ make install

These commands build the GDB debugger to handle target applications. As with other
GNU toolset components, the name of the binary depends on the target. For our test
module, for example, the debugger is architecture-linux-gdb. This binary and the other
debugger files are installed within the $PREFIX directory. The build process proper
takes only a few minutes on my hardware, and the binary generated is fairly large. For
a PPC target, for example, the stripped binary is 4 MB in size when linked dynamically.
This is why the gdb binary can’t be used as-is on the target and the GDB server is used
instead.

We didn’t build the GDB server until now because it has to be cross-compiled for the
target using the appropriate tools. To do so, create a directory to build the GDB server,
move to it, and build the GDB server:

$ mkdir ${PRJROOT}/debug/build-gdbserver
$ cd ${PRJROOT}/debug/build-gdbserver
$ chmod +x ../gdb-6.6/gdb/gdbserver/configure
$ CC=powerpc-linux-gcc ../gdb-6.6/gdb/gdbserver/configure \
> --host=$TARGET --prefix=${TARGET_PREFIX}
$ make
$ make install

The GDB server binary, gdbserver, has now been installed in your ${TARGET_PRE
FIX}/bin directory. Compared to gdb, the size of gdbserver is much more palatable.

Once built, copy gdbserver to your target’s root filesystem:

$ cp ${TARGET_PREFIX}/bin/gdbserver ${PRJROOT}/rootfs/usr/bin

There are no additional steps required to configure the use of the GDB server on your
target. The next section will cover its use.

Using the gdb Components to Debug Target Applications
Before you can debug an application using GDB, you need to compile your application
using the appropriate flags. Mainly, you need to add the -g option to the gcc command
line. This option adds the debugging information to the object files generated by the

Debugging Applications with gdb | 329

ftp://ftp.gnu.org/gnu/gdb

compiler. To add even more debugging information, use the -ggdb option. The final
binary’s size will grow, sometimes substantially, because the required debugging in-
formation will be embedded within the binary. But you can still use a stripped binary
on your target, assuming you have the original unstripped version with the debugging
information on your host. To do so, build your application on your host with complete
debugging information. Copy the resulting binary to your target’s root filesystem and
use strip to reduce the size of the binary you just copied by removing all symbolic
information, including debugging information. On the target, use the stripped binary
with gdbserver. On the host, use the original unstripped binary with gdb. Although the
two gdb components use different binary images, the target gdb running on the host is
able to find and use the appropriate debugging symbols for your application, because
it has access to the unstripped binary.

Here are the relevant portions that are required in a Makefile:

...
DEBUG = -g
CFLAGS = -O2 -Wall $(DEBUG)
...

Although gcc allows us to use both the -g and -O options at the same time, it is often
preferable not to use the -O option when generating a binary for debugging, because
the optimized binary may contain some subtle differences from your application’s
original source code. For instance, some unused variables may not be incorporated into
the binary, and the sequence of instructions actually executed in the binary may differ
in order from those contained in your original source code.

There are two ways for the GDB server running on the target to communicate with the
GDB debugger running on the host: using a crossover serial link or a TCP/IP connec-
tion. Although these communication interfaces differ in many respects, the syntax of
the commands you need to issue is very similar. Starting a debug session using a GDB
server involves two steps: starting the GDB server on the target and connecting to it
from the GDB debugger on the host.

Once you are ready to debug your application, start the GDB server on your target with
the means of communication and your application name as parameters. If your target
has a configured TCP/IP interface available, you can start the GDB server and configure
it to run over TCP/IP:

gdbserver
 host_ip_address:2345 application

For example:

gdbserver 192.168.172.50:2345 command-daemon

In this example, the host’s IP address is 192.168.172.50 and the port number used
locally to listen to GDB connections is 2345. Note that the protocol used by GDB to
communicate between the host and the target doesn’t include any form of authentica-
tion or security. Therefore, we don’t recommend that you debug applications in this

330 | Chapter 11: Debugging Tools

way over unsecured channels, such as the public Internet, but if you must, you may
want to consider using SSH port forwarding to encrypt the GDB session. SSH, The
Secure Shell: The Definitive Guide by Daniel Barrett and Richard Silverman (O’Reilly)
explains how to implement SSH port forwarding.

As mentioned earlier, the command-daemon being passed to gdbserver can be a stripped
copy of the original command-daemon built on the host.

If you are using a serial link to debug your target, use the following command line on
that target:

gdbserver /dev/ttyS0 command-daemon

In this example, the target’s serial link to the host is the first serial port, /dev/ttyS0.

After the GDB server is started on the target, you can connect to it from the GDB
debugger on the host using the target remote command. If you are connected to the
target using a TCP/IP network, use the following command:

$ architecture-linux-gdb command-daemon
(gdb) target remote 192.168.172.10:2345
Remote debugging using 192.168.172.10:2345
0x10000074 in _start ()

In this case, the target is located at IP 192.168.172.10, and the port number specified
is the same one we used earlier to start the GDB server on the target. Unlike the GDB
server on the target, the command-daemon used here has to be the unstripped copy of
the binary. Otherwise, you will have no debugging information and GDB will be of
little use.

If the program exits on the target or is restarted, you do not need to restart GDB on the
host. Just reissue the target remote command after gdbserver is restarted on the target.

If your host is connected to your target through a serial link, use the following com-
mand, specifying the target’s serial port in the target remote:

$ architecture-linux-gdb progname
(gdb) target remote /dev/ttyS0
Remote debugging using /dev/ttyS0
0x10000074 in _start ()

Although this example uses /dev/ttyS0 on both the target and the host, this is only a
coincidence. The target and the host can use different serial ports to link to each other.
The device to specify in each command is the local serial port where the serial cable is
connected.

With the target and the host connected, you can now set breakpoints and do anything
you would normally do in a symbolic debugger.

A few GDB commands are likely to be particularly useful when debugging an embedded
target. Here are some of them and summaries of their purposes:

Debugging Applications with gdb | 331

file
Sets the filename of the binary being debugged. Debug symbols are loaded from
that file.

dir
Adds a directory to the search path for the application’s source code files.

target
Sets the parameters for connecting to the remote target, as we did earlier. This is
actually not a single command, but rather a complete set of commands. Use help
target for more details.

set remotebaud
Sets the speed of the serial port when debugging remote applications through a
serial cable.

set solib-absolute-prefix
Sets the path for finding the shared libraries used with the binary being debugged.

The last command is likely to be the most useful when your binaries are linked
dynamically. Although the binary running on your target finds its shared libraries start-
ing from / (the root directory), the GDB running on the host doesn’t know how to locate
these shared libraries. You need to use the following command to tell GDB where to
find the correct target libraries on the host:

(gdb) set solib-absolute-prefix ../../tools/architecture-linux/

Unlike the normal shell, the gdb command line doesn’t recognize environment variables
such as ${TARGET_PREFIX}. Hence, the complete path must be provided. In this case,
the path is provided relative to the directory where GDB is running, but we could use
an absolute path, too.

If you want to have GDB execute a number of commands each time it starts, you may
want to use a .gdbinit file. For an explanation of the file, have a look at the “Command
files” subsection in the “Canned Sequences of Commands” section of the GDB manual.

To get information regarding the use of the various debugger commands, you can use
the help command within the GDB environment or look in the GDB manual.

Interfacing with a Graphical Frontend
In the years since the first edition of this book, the growth of excellent IDEs and other
GUI interfaces has in many ways made using the command line passé. They are so
pervasive that many young developers, and even a large portion of seasoned ones, have
never done any significant development outside the warm confines of a GUI. Fortu-
nately, there are quite a few graphical interfaces that hide much of GDB’s complexity
by providing user-friendly mechanisms for setting breakpoints, viewing variables, and
tending to other common debugging tasks. The most common interface used today is
Eclipse, but other seasoned examples include DDD (http://www.gnu.org/software/

332 | Chapter 11: Debugging Tools

http://www.gnu.org/software/ddd

ddd) and KDevelop. Much like your host’s debugger, your favorite debugging interface
can very likely use the cross-platform GDB we built earlier for your target to do the
actual grunt work.

The widespread support among GUIs for GDB should not be taken as a justification
for ignoring the command line, especially in embedded development. The wise devel-
oper learns how the command line works, because many GUIs cannot handle all of the
available capabilities.

Each frontend has its own way for letting you specify the name of the debugger binary.
Have a look at your frontend’s documentation for this information. Using the example
of our test module, we would need to configure the frontend to use the architecture-
linux-gdb debugger.

Tracing
Symbolic debugging is fine for finding and correcting program errors. However, it offers
little help in finding any sort of problem that involves an application’s interaction with
other applications or with the kernel. These sorts of behavioral problems necessitate
tracing the interactions between your application and other software components.

The simplest form of tracing is monitoring the interactions between a single application
and the Linux kernel. This allows you to easily observe any problems that result from
the passing of parameters or the wrong sequence of system calls.

Observing a single process in isolation is, however, not always sufficient. If you are
attempting to debug interprocess synchronization problems or time-sensitive issues,
for example, you will need a system-wide tracing mechanism that provides you with
the exact sequence and timing of events that occur throughout the system. For instance,
when trying to understand why the Mars Pathfinder constantly rebooted while on Mars,
the Jet Propulsion Laboratory engineers resorted to a system tracing tool for the
VxWorks operating system.†

Both single-process tracing and system tracing are available in Linux. The following
sections will discuss each one.

Single-Process Tracing
The main tool for tracing a single process is strace. strace uses the ptrace() system call
to intercept all system calls made by an application. Hence, it can extract all the system
call information and display it in a human-readable format for you to analyze. Because
strace is a widely used Linux tool, we will not explain how to use it, just how to install

† For a very informative and entertaining account of what happened to the Mars Pathfinder on Mars, read
Glenn Reeves’s account at http://research.microsoft.com/~mbj/Mars_Pathfinder/Authoritative_Account.html.
Mr. Reeves was the lead developer for the Mars Pathfinder software.

Tracing | 333

http://www.gnu.org/software/ddd
http://research.microsoft.com/~mbj/Mars_Pathfinder/Authoritative_Account.html

it for your target. The use of strace on the target is identical to its use on a normal Linux
workstation. For details on using strace, see Chapter 21 of Running Linux, Fifth Edition.

strace is available at http://www.sourceforge.net/projects/strace under a BSD license. For
our target application, we used strace version 4.5. Download the package and extract
it in your ${PRJROOT}/debug directory. Move to the package’s directory, and then
configure and build strace:

$ cd ${PRJROOT}/debug/strace-4.5
$ architecture-linux-gcc ./configure --host=$TARGET
$ make

If you wish to statically link against uClibc, add LDFLAGS="-static" to the make com-
mand line. Because strace uses NSS, you need to use a special command line if you wish
to link it statically to glibc, as we did previously for other packages:

$ make \
> LDLIBS="-static -Wl --start-group -lc -lnss_files -lnss_dns \
> -lresolv -Wl --end-group"

When linked against glibc and stripped, strace is 145 KB in size if linked dynamically
and 605 KB if linked statically. When linked against uClibc and stripped, strace is 140
KB in size if linked dynamically and 170 KB if linked statically.

After compiling the binary, copy it to your target’s root filesystem:

$ cp strace ${PRJROOT}/rootfs/usr/sbin

No additional steps are required to configure strace for use on the target.

System Tracing
One of the main system tracing utilities available for Linux is the next generation Linux
Trace Toolkit (LTTng) created and maintained by Mathieu Desnoyers (also author of
the kernel markers infrastructure), inspired by Karim Yaghmour’s original LTT tool.
LTTng is available under the GPL, along with various other tools and utilities such as
the LTTV viewer. You can download LTTng and sign up to the user or developer
mailing lists for these tools at the LTTng website: http://ltt.polymtl.ca.

In contrast to other tracing utilities, such as strace, LTTng does not use the ptrace()
mechanism to intercept applications’ behaviors. Instead, it includes a kernel patch that
instruments key kernel subsystems. The data generated by this instrumentation is then
collected by the trace subsystem and forwarded to a trace daemon to be written to disk.
The entire process has very little impact on the system’s behavior and performance.
Extensive tests have shown that the tracing infrastructure has marginal impact when
not in use, and an impact lower than 2.5 percent under some of the most stressful
conditions.

In addition to reconstructing the system’s behavior using the data generated during a
trace run, the user utilities provided with LTTng allow you to extract performance data

334 | Chapter 11: Debugging Tools

http://www.sourceforge.net/projects/strace
http://ltt.polymtl.ca

regarding the system’s behavior during the trace interval. Here’s a list of some of the
tasks for which LTTng can be used:

• Debugging interprocess synchronization problems

• Understanding the interaction between your application, the other applications in
the system, and the kernel

• Measuring the time it takes for the kernel to service your application’s requests

• Measuring the time your application spends waiting because other processes have
a higher priority

• Measuring the time it takes for effects of interrupts to propagate throughout the
system

• Understanding the exact reaction the system has to outside input

To achieve this, LTTng’s operation is subdivided into four components:

• The kernel instrumentation that generates the events being traced (runs on target)

• The tracing subsystem that collects the data generated by the kernel instrumenta-
tion into a single buffer (runs on target)

• The trace daemon that writes the tracing subsystem’s buffers to disk (runs on
target)

• The visualization tool that post-processes the system trace and displays it in a
human-readable form (runs on target and host)

With the advent of LTTng, the version numbering has become somewhat confusing.
So, be diligent when reviewing the version comparison chart on the LTTng website,
which compares the compatibility of the various components, support modules, kernel
revisions, and processors that make up an entire system.

Historically, the first two software components are implemented as a kernel patch, and
the last two are separate user space tools. Although the first three software components
must run on the target, the last one—the visualization tool—can run on the host.

In early versions of LTT, the tracing subsystem was accessed from user space as a device
through the appropriate /dev entries. But later versions have dropped this abstraction,
following the recommendations of the kernel developers. The next generation of LTT,
called LTTng, has implemented several improvements, along with support for many
more target processors and capabilities.

A very helpful feature of LTTng is it detects and handles traces that have different byte
ordering. This allows you to generate and read traces on systems with incompatible
byte orderings. The traces generated for a PPC-based test module, for example, can be
read transparently on an x86 host.

In addition to tracing a predefined set of events, LTTng enables you to create and log
your own custom events from both user space and kernel space. Have a look at the
Examples directory in the package for practical examples of such custom events.

Tracing | 335

The change in complexity and nuance of the LTTng over the LTT tool was so profound
that a discussion of its installation and use is simply beyond the scope of a single chap-
ter. We recommend that you join the mailing list and contact the maintainers of the
code to fully utilize this powerful and versatile tool. Further, there are several white
papers available that will provide substantially more detail than we could include in
this chapter.

Performance Analysis
In order to make optimal use of the resources of your target board and maximize the
performance of your application on that board, it is crucial to obtain an in-depth
understanding of the capabilities of your target board, the operating system you are
using, and detailed data about the performance of your application and operating sys-
tem on your target board. For example, some boards have lots of registers and others
have relatively few. This has a performance impact on the operating system, which has
to deal with registers during context switches and function calls. If your application
has lots of functions that put heavy demands on the registers, you might find your
compiler changing your programs and operations without your knowledge, affecting
performance and behavior. It is beyond the scope of this book to fully explore per-
formance analysis, but in the following sections we will touch on some of the highlights,
including process profiling, code coverage, system profiling, kernel profiling, and
measuring interrupt latency.

Process Profiling
The essence of profiling is gathering and analyzing the actual behavior of the machine
code created by the compiler. The machine code generated from source code will differ
depending on the compiler suite used, the options chosen for the compiler and linker,
and the architecture of the target. The information process profiling gathers includes
the time spent in a given function, the time spent entering and leaving a function, how
much time a called function spends on behalf of the calling function, and how much
time is spent in each of its children, if any.

In Linux, a single process is usually profiled using a combination of special compiler
options and the gprof utility. Basically, source files are compiled with a compiler option
(-pg in the case of gcc and most other traditional Unix compilers) that results in profiling
data being written to file upon the application’s exit. You can then run the generated
data through gprof, which displays a call graph showing profiling data. The use of
gprof and the interpretation of its output are standard Unix and Linux lore and are
thoroughly covered in the GNU gprof manual. We will cover cross-platform aspects
here.

First, you must ensure that your applications’ Makefiles include appropriate compiler
and linker options, either manually or through the build process in an IDE such as

336 | Chapter 11: Debugging Tools

Eclipse. Here are the portions of the Makefile provided earlier that must be changed to
build a program that will generate profiling data:

CFLAGS = -Wall -pg
...
LDFLAGS = -pg

The -pg option appears for the compiler and the linker. As a compiler option, -pg tells
the compiler to include the code for generating the performance data into the object
code. As a linker option, it tells the linker to link the special version of the object file
for profiling.

Also note we aren’t using the -O2 compiler optimization option. Omitting the option
ensures that the application generated executes exactly the same way as we specified
in the source file. We can then measure the performance of our own algorithms instead
of measuring those optimized by the compiler.

Once your application has been recompiled, copy it to your target and run it. The
program must run for quite a while to generate meaningful results. Provide your ap-
plication with as wide a range of input as you can to exercise as much of its code as
possible. Upon the application’s exit, a gmon.out output file is generated with the
profiling data. This file is cross-platform readable, and you can therefore use your host’s
gprof to analyze it. After having copied the gmon.out file back to your application’s
source directory, use gprof to retrieve the call graph profile data:

$ gprof command-daemon

This command prints the call graph profile data to the standard output. Redirect this
output using the > operator to a file if you like. You don’t need to specify the
gmon.out file specifically; it is automatically loaded. For more information regarding
the use of gprof, see the GNU gprof manual.

Code Coverage
In addition to identifying the time spent in the different parts of your application, it is
interesting to count how many times each statement in your application is being exe-
cuted. This sort of coverage analysis can bring to light code that is never called or code
that is called so often that it merits special attention.

The most common way to perform coverage analysis is to use a combination of compiler
options and the gcov utility. This functionality relies on the gcc library, libgcc, which is
compiled along with the gcc compiler.

Versions of gcc earlier than 3.0 don’t allow the coverage functions to be compiled into
libgcc when they detect that a cross-compiler is being built. In a compiler of that vintage,
libgcc doesn’t include the appropriate code to generate data about code coverage. It is
therefore impossible to analyze the coverage of a program built against unmodified
gcc sources.

Performance Analysis | 337

To circumvent the same problem in gcc versions earlier than 3.0, edit the gcc-2.95.3/
gcc/libgcc2.c file (or the equivalent file for your compiler version) and disable the fol-
lowing definition:

/* In a cross-compilation situation, default to inhibiting compilation
 of routines that use libc. */

#if defined(CROSS_COMPILE) && !defined(inhibit_libc)
#define inhibit_libc
#endif

To disable the definition, add #if 0 and #endif around the code so that it looks like this:

/* gcc makes the assumption that we don't have glibc for the target,
 which is wrong in the case of embedded Linux. */
#if 0

/* In a cross-compilation situation, default to inhibiting compilation
 of routines that use libc. */

#if defined(CROSS_COMPILE) && !defined(inhibit_libc)
#define inhibit_libc
#endif

#endif /* #if 0 */

Now recompile and reinstall gcc. You don’t need to rebuild the bootstrap compiler,
because you’ve already built and installed glibc. Build only the final compiler.

To build the code needed for coverage analysis in versions of gcc later than 3.0, just
configure them with the - -with-headers= option.

Next, modify your applications’ Makefiles to use the appropriate compiler options.
Here are the portions of the Makefile that must be changed to build a program that will
generate code coverage data:

CFLAGS = -Wall -fprofile-arcs -ftest-coverage

As we did before, omit the -O optimization options when compiling the application to
generate profiling data to obtain the code coverage data that corresponds exactly to
your source code.

For each source file compiled, you should now have a .bb and .bbg file in the source
directory. Copy the program to your target and run it as you would normally. When
you run the program, a .da file will be generated for each source file. Unfortunately,
however, the .da files are generated using the absolute path to the original source files.
Hence, you must create a copy of this path on your target’s root filesystem. Though
you may not run the binary from that directory, this is where the .da files for your
application will be placed. Our command daemon, for example, is located in /home/
karim/control-project/control-module/project/command-daemon on our host. We had
to create that complete path on our target’s root filesystem so that the daemon’s .da
files would be properly created. The -p option of mkdir was quite useful in this case.

338 | Chapter 11: Debugging Tools

Once the program is done executing, copy the .da files back to your host and run gcov:

$ gcov daemon.c
 71.08% of 837 source lines executed in file daemon.c
Creating daemon.c.gcov.

The .gcov file generated contains the coverage information in a human-readable form.
The .da files are architecture-independent, so there’s no problem using the host’s
gcov to process them. For more information regarding the use of gcov or the output it
generates, look at the gcov section of the gcc manual.

System Profiling
Linux systems always have multiple processes competing for system resources. Being
able to quantify the impact each process has on the system’s load is important in trying
to build a balanced and responsive system. This is particularly important for embedded
systems because of their limited resources and frequently critical response require-
ments. Such quantification is often interchangeably called performance, kernel, or sys-
tem tuning. We will focus on just two of these kinds of tuning: extracting information
from /proc and using LTTng.

Basic /proc figures

The /proc filesystem contains virtual entries, whereas the kernel provides information
regarding its own internal data structures and the system in general. Some of this in-
formation, such as process times, is based on samples collected by the kernel at each
clock tick. The traditional package for extracting information from the /proc directory
is procps, which includes utilities such as ps and top. The first edition of this book
discussed what was then a forked development of procps; now there is essentially one
version, available at http://procps.sourceforge.com. Further, the author felt that neither
flavor lends itself well to embedded systems. Currently, in direct response to inquiries
by one of this book’s authors, the maintainer of the http://procps.sourceforge.com ver-
sion states that, if these issues indeed existed, they have been resolved, as long as one
uses the proper libraries and compilers and follows the instructions with the distribu-
tion. Be that as it may, for consistency, we will continue to focus on the ps replacement
found in BusyBox, because BusyBox is so commonly available. Although it doesn’t
output process statistics, as the ps in procps does, the BusyBox version does provide
you with basic information regarding the software running on your target:

ps
 PID Uid VmSize Stat Command
 1 0 820 S init
 2 0 S [keventd]
 3 0 S [kswapd]
 4 0 S [kreclaimd]
 5 0 S [bdflush]
 6 0 S [kupdated]
 7 0 S [mtdblockd]

Performance Analysis | 339

http://procps.sourceforge.com
http://procps.sourceforge.com

 8 0 S [rpciod]
 16 0 816 S -sh
 17 0 816 R ps aux

If you find this information insufficient, you are encouraged to explore the aforemen-
tioned procps package or browse /proc manually to retrieve the information you need
regarding each process.

Complete profile using LTTng

Because LTTng records crucial system information, it can extract very detailed infor-
mation regarding the system’s behavior. Unlike the information found in /proc, the
statistics LTTng generates are not sampled. Rather, they are based on an exact ac-
counting of the time spent by processes inside the kernel. LTTng provides two types
of statistics: per-process and system. This allows a developer a level of fidelity that is
either not available or much less direct than any other method.

Kernel Profiling
Sometimes the applications are not the root of performance degradation, but are rather
suffering from the kernel’s own performance problems. In that case, it is necessary to
use the right tools to identify the reasons for the kernel’s behavior.

There are quite a few tools for measuring the kernel’s performance. However, most are
designed for conventional computing and are not suitable for embedded applications.
There remains the sample-based profiling functionality built into the kernel. This
profiling system works by sampling the instruction pointer on every timer interrupt. It
then increments a counter according to the instruction pointer. Over a long period of
time, it is expected that the functions where the kernel spends the greatest amount of
time will have a higher number of hits than other functions. Though this is a crude
kernel profiling method, it is the one of the best free tools at this time for most embedded
Linux systems. There are several commercial products available for embedded systems
profiling, but they are outside our focus.

To activate kernel profiling, you must use the profile= boot parameter. The number
you provide as a parameter sets the number of bits by which the instruction pointer is
shifted to the right before being used as an index into the sample table. The smaller the
number, the higher the precision of the samples, but this also necessitates more memory
for the sample table. The value most often used is 2.

The sampling activity itself doesn’t slow the kernel down, because it occurs only at each
clock tick and because the counter to be incremented is easily obtained from the value
of the instruction pointer at the time of the timer interrupt.

Once you’ve booted a kernel to which you passed the profile= parameter, you will find
a new entry in your target’s /proc directory, /proc/profile. The kernel’s sample table is
exported to this /proc entry.

340 | Chapter 11: Debugging Tools

To read the profile samples available from /proc/profile, you must use the readprofile
command. Version 2.0 is usually included in most Linux distributions, but for our
purposes we need the source code. Therefore, we can use either version 3.0, which is
available as an independent package at http://sourceforge.net/projects/minilop, or ver-
sion 2.0, which is part of the util-linux package at http://www.kernel.org/pub/linux/utils/
util-linux. In the following explanations, we will cover only the independent package,
because util-linux includes a lot more utilities than just readprofile.

Download the readprofile package and extract it in your ${PRJROOT}/debug directory.
Move to the package’s directory and compile the utility:

$ cd ${PRJROOT}/debug/readprofile-3.0
$ make CC=architecture-uclibc-gcc

To compile the utility statically, add LDFLAGS="-static" to the make command line.
The binary generated is fairly small. When statically linked with uClibc and stripped,
for example, it is 30 KB in size.

Once readprofile is built, copy it to your target’s /usr/bin directory:

$ cp readprofile ${PRJROOT}/rootfs/usr/bin

For readprofile to operate adequately, you must also copy the appropriate
System.map kernel map file to your target’s root filesystem:

$ cp ${PRJROOT}/images/System.map-2.6.18 ${PRJROOT}/rootfs/etc

Now your target root filesystem is ready. Change the kernel boot parameters and add
the profile=2 boot parameter. After the system boots, you can run readprofile:

readprofile -m /etc/System.map-2.6.18 > profile.out

The resulting profile.out file contains the profiling information in text form. At any
time, you can erase the sample table collected on your target by writing to your tar-
get’s /proc/profile:‡

echo > /proc/profile

When done profiling, copy the profile.out file back to your host and have a look at its
contents:

$ cat profile.out
 ...
 30 _ _save_flags_ptr_end 0.3000
 10 _ _sti 0.1250
 8 _ _flush_page_to_ram 0.1053
 7 clear_page 0.1750
 3 copy_page 0.0500
 1 m8xx_mask_and_ack 0.0179
 2 iopa 0.0263
 1 map_page 0.0089
 ...

‡ It doesn’t matter what you write; a blank echo is fine. Just the action of writing erases the profiling information.

Performance Analysis | 341

http://sourceforge.net/projects/minilop
http://www.kernel.org/pub/linux/utils/util-linux
http://www.kernel.org/pub/linux/utils/util-linux

 1 do_xprt_transmit 0.0010
 1 rpc_add_wait_queue 0.0035
 1 _ _rpc_sleep_on 0.0016
 1 rpc_wake_up_next 0.0068
 1 _ _rpc_execute 0.0013
 2 rpciod_down 0.0043
 15 exit_devpts_fs 0.2885
 73678 total 0.0618 0.04%

The left column indicates the number of samples taken at that location, followed by
the name of the function where the sample was taken. The third column indicates a
number that provides an approximation of the function’s load, which is calculated as
a ratio between the number of ticks that occurred in the function and the function’s
length. See the readprofile manpage included with the package for in-depth details
about the utility’s output.

Measuring Interrupt Latency
Arguably the most important metric for real-time embedded systems is the time it takes
for them to respond to outside events. Failure to handle such events efficiently can
cause catastrophic results.

There are ad hoc techniques for measuring a system’s response time to interrupts (more
commonly known as interrupt latency and explained in Chapter 12). These measure-
ment techniques can be roughly divided into two categories:

Self-contained
The system itself triggers the interrupts. To use this technique, you must connect
one of your system’s output pins to an interrupt-generating input pin. On a PC-
based system, this is easily achieved by connecting the appropriate parallel port
pins together, as is detailed in Linux Device Drivers. For other types of systems,
this may require more elaborate setups.

Induced
The interrupts are triggered by an outside source, such as a frequency generator,
by connecting it to an interrupt-generating input pin on the target.

In the case of the self-contained method, you must write a small software driver that
initiates and handles the interrupt. To initiate the interrupt, the driver does two things:

• Records the current time. This is often done using the do_gettimeofday() kernel
function, which provides microsecond resolution. Alternatively, to obtain greater
accuracy, you can read the machine’s hardware cycles using the get_cycles()
function. On Pentium-class x86 systems, for example, this function will return the
content of the TSC register.

• Toggles the output bit to trigger the interrupt. On a PC-based system, just write
the appropriate byte to the parallel port’s data register.

The driver’s interrupt handler, on the other hand, must do the following:

342 | Chapter 11: Debugging Tools

• Record the current time.

• Toggle the output pin.

Subtracting the time at which the interrupt was triggered from the time at which the
interrupt handler is invoked gives you a figure that is very close to the actual interrupt
latency. The reason this figure is not the actual interrupt latency is that you are partly
measuring the time it takes for do_gettimeofday() and other software to run. Have your
driver repeat the operation a number of times to quantify the variations in interrupt
latency.

To get a better measure of the interrupt latency using the self-contained method, plug
an oscilloscope on the output pin toggled by your driver and observe the time it takes
for it to be toggled. This number should be slightly smaller than that obtained using
do_gettimeofday(), because the execution of the first call to this function is not included
in the oscilloscope output. To get an even better measure of the interrupt latency,
remove the calls to do_gettimeofday() completely and use only the oscilloscope to
measure the time between bit toggles. This is particularly easy with high-speed digital
oscilloscopes that have trace recall. However, as we will discuss later, this solution costs
a great deal.

Although the self-contained method is fine for simple measurements on systems that
can actually trigger and handle interrupts simultaneously, the induced method is usu-
ally the most trusted way to measure interrupt latency, and is closest to the way in
which interrupts are actually delivered to the system. If you have a driver that has high
latency and contains code that changes the interrupt mask, for example, the interrupt
driver for the self-contained method may have to wait until the high-latency driver
finishes before it can even trigger interrupts. Because the delay for triggering interrupts
isn’t measured, the self-contained method may fail to measure the worst-case impact
of the high-latency driver. The induced method, however, does not suffer from this
shortcoming, because the interrupts’ trigger source does not depend on the system
being measured.

It’s much simpler to write a software driver for the induced method than for the self-
contained method. Basically, your driver has to implement an interrupt handler to
toggle the state of one of the system’s output pins. By plotting the system’s response
along with the square wave generated by the frequency generator, you can measure the
exact time it takes for the system to respond to interrupts. Instead of an oscilloscope,
you can use a simple counter circuit that counts the difference between the interrupt
trigger and the target’s response. The circuit would be reset by the interrupt trigger and
would stop counting when receiving the target’s response. You could also use another
system whose only task is to measure the time difference between the interrupt trigger
and the target’s response.

However efficient the self-contained and the induced methods and their variants may
be, Linux is not a real-time operating system out-of-the-box, although, as described in
Chapter 12, the 2.6 kernel brings it closer to this than ever before. In Linux’s standard

Performance Analysis | 343

configuration, even in version 2.6, you may observe steady interrupt latencies when the
system is idle, but the response time will vary greatly whenever its processing load
increases. A useful exercise is to type ls -R / on your target while conducting interrupt
latency tests to increase your target’s processing load and look at the flickering oscil-
loscope output to observe this effect on latency.

To decide whether you need more consistency and faster response times, carefully
analyze your applications’ requirements. If you find that interrupt latency is a critical
issue, you have two options. First, measure the latency of your target under load as
described earlier. If that is not adequate for your needs, try rebuilding the kernel with
support for kernel interrupts and remeasure. If that is not good enough either, you will
have to look through the kernel documentation for more narrowly defined optimiza-
tions or consider purchasing third-party commercial real-time Linux distributions.

Memory Debugging
Unlike desktop Linux systems, embedded Linux systems cannot afford to let applica-
tions eat up memory as they go or generate dumps because of illegal memory references.
Among other things, there is no user to stop the offending applications and restart
them. In developing applications for your embedded Linux system, you can employ
special debugging libraries to ensure their correct behavior in terms of memory use.
The following sections will discuss two such libraries: Electric Fence/DUMA and
MEMWATCH.

Production systems should not include these libraries. First, both libraries substitute
the C library’s memory allocation functions with their own versions of these functions,
which are designed for debugging, not performance. Second, both libraries are distrib-
uted under the terms of the GPL. Hence, though you can use MEMWATCH and Elec-
tric Fence/DUMA internally to test your applications, you cannot distribute them as
part of your applications outside your organization unless you distribute your appli-
cations under the terms of the GPL.

Electric Fence and DUMA
Electric Fence is a library that replaces the C library’s memory allocation functions,
such as malloc() and free(), with equivalent functions that implement limit testing. It
is, therefore, very effective at detecting out-of-bounds memory references. In essence,
linking with the Electric Fence library will cause your applications to fault and dump
core upon any out-of-bounds reference. By running your application within GDB, you
can identify the faulty instruction immediately.

Electric Fence is still available in most distributions at the time of this writing. But its
development has essentially ceased in favor of DUMA, which has all the capabilities of
Electric Fence and adds several enhancements:

344 | Chapter 11: Debugging Tools

• It detects read violations as well as writes.

• It pinpoints the exact instruction that causes an error.

• It overloads all standard memory allocation functions, such as malloc(), calloc(),
memalign(), strdup(), and the C++ new and new[] operators, along with their deal-
location counterparts functions, such as free(), and the delete and delete[]
operators.

• Utilizing the memory management unit of the CPU, it allocates and protects an
extra memory page to detect any illegal access beyond the top of the buffer (or
bottom, at the user’s option).

• It stops the program at the exact instruction that requested an erroneous access to
the protected memory page, allowing you to locate the defective source code in a
debugger.

• It detects erroneous writes at the nonprotected end of the memory block during
deallocation of the memory block.

• It detects mismatched allocation and deallocation functions; for instance, alloca-
tion with malloc() matched with deallocation by delete.

• It detects leaks: memory blocks that are not deallocated until the program exits.

• It preloads its library on Linux (and some Unix) systems, allowing tests without
the necessity of changing the source code or recompilation.

Electric Fence

As we mentioned, Electric Fence is still widely available, so we will include the discus-
sion from the first edition for version 2.1, which the author found easier to use although
the source code was a bit of a challenge. At the time of this writing, the author’s Fedora
7 distribution was 2.2.2-23, and the author found that it required significant modifi-
cations before it could be compiled. This is left as an exercise for the reader.

Download the package and extract it into your ${PRJROOT}/debug directory. Move to
the package’s directory for the rest of the installation:

$ cd ${PRJROOT}/debug/ElectricFence-2.1

Before you can compile Electric Fence for your target, you must edit the page.c source
file and comment out the following code segment by adding #if 0 and #endif around
it:

#if (!defined(sgi) && !defined(_AIX))
extern int sys_nerr;
extern char * sys_errlist[];
#endif

If you do not modify the code in this way, Electric Fence fails to compile. With the code
changed, compile and install Electric Fence for your target:

Memory Debugging | 345

$ make CC=architecture-linux-gcc AR=architecture-linux-ar
$ make LIB_INSTALL_DIR=${TARGET_PREFIX}/lib \
> MAN_INSTALL_DIR=${TARGET_PREFIX}/man install

The Electric Fence library, libefence.a, which contains the memory allocation replace-
ment functions, has now been installed in ${TARGET_PREFIX}/lib. To link your
applications with Electric Fence, you must add the -lefence option to your linker’s
command line. Here are the modifications we made to our command module’s
Makefile:

CFLAGS = -g -Wall
...
LDFLAGS = -lefence

The -g option is necessary if you want GDB to be able to print the line causing the
problem. The Electric Fence library adds about 30 KB to your binary when compiled
and stripped. After building it, copy the binary to your target for execution as you would
usually.

If the program runs without core dumping—congratulations! You have managed to
write a program without faulty memory accesses. But almost always, when you run the
program on the target, you will get something similar to:

command-daemon

 Electric Fence 2.0.5 Copyright (C) 1987-1998 Bruce Perens.
Segmentation fault (core dumped)

You can’t copy the core file back to the host for analysis, because it was generated on
a system of a different architecture. Therefore, start the GDB server on the target and
connect to it from the host using the target GDB. As an example, here’s how we start
our command daemon on the target for Electric Fence debugging:

gdbserver
 host_ip_address:2345 command-daemon

And on the host we enter:

$ architecture-linux-gcc command-daemon
(gdb) target remote 192.168.172.10:2345
Remote debugging using 192.168.172.10:2345
0x10000074 in _start ()
(gdb) continue
Continuing.

Program received signal SIGSEGV, Segmentation fault.
0x10000384 in main (argc=2, argv=0x7ffff794) at daemon.c:126
126 input_buf[input_index] = value_read;

In this case, the illegal reference was caused by an out-of-bounds write to an array at
line 126 of file daemon.c. For more information on the use of Electric Fence, look at
the ample manpage included in the package.

346 | Chapter 11: Debugging Tools

DUMA

The DUMA package lives at http://duma.sourceforge.com. It is clearly more powerful
than Electric Fence, but with that power comes complexity. The author found, after
experimenting with the build procedure, that it was easier and simpler to move the
package to the build partition shared with the target board. Then, use the native gcc,
g++, and ar to build the package on the target board. If you export an NFS partition
to the target, DUMA is not difficult to build and does not take long. Always keep in
mind that it is often a better solution to “go native” than spend hours trying to figure
out why a Makefile or some other peculiarity of cross-compilation does not produce a
binary you can port from the host to the target.

DUMA can be operated similar to Electric Fence and has its own documentation.

MEMWATCH
Like Electric Fence and DUMA, MEMWATCH replaces the usual memory allocation
functions, such as malloc() and free(), with versions that keep track of allocations and
deallocations. MEMWATCH is very effective at detecting memory leaks and violations,
such as when you forget to free a memory region or try to free a memory region more
than once. MEMWATCH isn’t as efficient as Electric Fence, however, at detecting
pointers that go astray. It was unable, for example, to detect the faulty array write
presented in the previous section.

MEMWATCH is available on its project site at http://www.linkdata.se/source
code.html. Download the package and extract it in your ${PRJROOT}/debug directory.

MEMWATCH consists of a header file and a C file, both of which must be compiled
with your application. To use MEMWATCH, start by copying the files to your appli-
cation’s source directory:

$ cd ${PRJROOT}/debug/memwatch-2.71
$ cp memwatch.c memwatch.h ${PRJROOT}/project/command-daemon

Modify the Makefile to add the new C file as part of the objects to compile and link.
For my command daemon, for example, I used the following Makefile modifications:

CFLAGS = -O2 -Wall -DMEMWATCH -DMW_STDIO
...
OBJS = daemon.o memwatch.o

You must also add the MEMWATCH header to your source files:

#ifdef MEMWATCH
#include "memwatch.h"
#endif /* #ifdef MEMWATCH */

You can now cross-compile the binary as you normally would; there are no special
installation instructions for MEMWATCH. The memwatch.c and memwatch.h files add
about 30 KB to your binary, once built and stripped.

Memory Debugging | 347

http://duma.sourceforge.com
http://www.linkdata.se/sourcecode.html
http://www.linkdata.se/sourcecode.html

When the program runs, it generates a report on the behavior of the program, which
it puts in the memwatch.log file in the directory where the binary runs. Here’s an excerpt
of the memwatch.log generated by the test program on the target machine:

============= MEMWATCH 2.71 Copyright (C) 1992-1999 Johan Lindh =============

Started at Sun Jan 11 12:55:04 1970

Modes: __STDC__ 32-bit mwDWORD==(unsigned long)
mwROUNDALLOC==4 sizeof(mwData)==32 mwDataSize==32

statistics: now collecting on a line basis
Hello world!
underflow: <5> test.c(62), 200 bytes alloc'd at <4> test.c(60)
relink: <7> test.c(66) attempting to repair MW-0x1b2c8...
relink: MW-0x1b2c8 is the head (first) allocation
relink: successful, no allocations lost
assert trap: <8> test.c(69), 1==2
breakout: MEMWATCH: assert trap: test.c(69), 1==2

Stopped at Sun Jan 11 12:58:22 1970

unfreed: <3> test.c(59), 20 bytes at 0x1b194 {FE FE FE FE FE FE FE FE FE FE F

- memwatch.log 1/89 1%

The unfreed line tells you which line in your source code allocated memory that was
never freed later. In this case, 20 bytes are allocated at line 59 of test.c and are never
freed.

Look at the FAQ, README, and USING files included in the package for more infor-
mation on using MEMWATCH and the output it provides.

A Word on Hardware Tools
The first edition of this book touched on the use of hardware in debugging and noted
the wealth of tools. This is no less true today. A cursory Google search on the subject
produces over 36,000 hits, and by the time you read this book, it will be more. Hardware
and software tools are available at costs that range from nothing to several thousands
of dollars.

Board developers have realized that ease of debugging is a real asset and have made
great strides to provide access to hardware and support for hardware debugging. Many
boards, particularly JTAG ones, have connectors or schematics showing how to con-
nect to the board for debugging purposes. The best place to start is your hardware
vendor’s website and tech support. More than likely, they have a low-cost option for
supporting hardware debugging tools.

A discussion of the tools here would be hampered by the speed at which things change
in embedded systems, which particularly affects debugging. For example, many of the

348 | Chapter 11: Debugging Tools

projects and links from the first edition of this book are dead now. The first edition
discussed the use of a 100 MHz oscilloscope that the author quoted as costing over a
thousand dollars. As of this writing, you can buy that same scope for under $100 on
eBay.

The reason for the shift in the market is that embedded applications, which used to be
the poor stepchildren of desktop processors, are now are on a par with them in per-
formance and capability. Therefore, a simple 100 MHz analog oscope will be of little
use, and this obsolescence is reflected in their prices. Currently, a 1 GHz or higher-
speed digital scope is required. They cost thousands of dollars today, with good-quality
used equipment easily exceeding $10,000 at the time of this writing.

This does not diminish the desirability of oscilloscopes—far from it. But given the
tremendous cost of truly effective diagnostic hardware, such as digital oscopes and
high-performance logic analyzers, we will not discuss them further.

The first edition recommends the following books for further research: Arnold Berger’s
Embedded Systems Design (CMP Books) and Jack Ganssle’s The Art of Designing
Embedded Systems (Newnes). If you are actively involved in designing or changing your
target’s hardware, you are likely to also be interested in John Catsoulis’s Designing
Embedded Hardware (O’Reilly). There are numerous other excellent titles on the sub-
ject, so spend liberally. We also recommend Programming Embedded Systems by
Michael Barr and Anthony Massa (O’Reilly).

—Michael Boerner

A Word on Hardware Tools | 349

Many developers, sometimes in open competition, have been trying to add real-time
support to Linux and thereby fill the major gap in its capabilities as an embedded
system. But although real-time is critical to some applications, most embedded systems
can get by without it. Some programmers who assume they need real-time (for stream-
ing media, for instance) may not need it, whereas real-time may prove valuable in
industries where one wouldn’t expect it, such as finance.

In this chapter, we will explain the kinds of situations where you will want real-time,
define real-time requirements, and summarize how Linux can be enhanced to support
those requirements. Chapters 13 and 14 will describe two particular real-time
solutions.

What Is Real-Time Processing?
The canonical definition of a real-time system is as follows: “A real-time system is one
in which the correctness of the computations not only depends upon the logical cor-
rectness of the computation but also upon the time at which the result is produced. If
the timing constraints are not met, system failure is said to have occurred,” (see http://
www.faqs.org/faqs/realtime-computing/faq). In other words, whatever task the real-
time application carries out, it must do it not only properly but on time.

Real-time doesn’t mean fast. Some programmers who assume they need a real-time
system can actually get the performance they need just by choosing a suitably fast
hardware platform (processor, memory subsystem, and so on). In contrast, a true real-
time application may get by with slower and cheaper hardware and an operating system
that controls processing so that critical operations get done by guaranteed times. Real-
time deals with guarantees, not with raw speed.

CHAPTER 12

Introduction to
Real-Time Linux

351

http://www.faqs.org/faqs/realtime-computing/faq
http://www.faqs.org/faqs/realtime-computing/faq

Basically, real-time systems are characterized by their ability to process events in a
timely manner. In other words, real-time applications do not impose their own sched-
ules on the environment they run in; rather, it is the environment—the physical world
—that imposes its schedule on the real-time application by sending it events through
device interrupts. The application has to process these events within a specified time.

Therefore, real-time processing requires some form of predictability from the system
software that supports it. The point of all real-time systems is to guarantee timely be-
havior when interacting with the physical world (provided there is no hardware failure).
In practice, real-time may even involve sacrificing throughput, because the salient issue
is not how many jobs may be carried on in a given period of time, but rather the timely
manner in which each job is finished.

To illustrate the point of real time, let’s imagine you own a factory that makes donuts.
The donuts in their initial shape don’t have a hole, so your factory has a machine with
a conveyor belt, a sensor, and a hole puncher to make donuts that look like donuts.

The embedded software detects the donut moving on the conveyor belt and triggers
the hole puncher to punch the hole in the donut. Knowing the speed of the conveyor
belt and the distance of the sensor to the hole puncher, the software has been given a
precise time to trigger that hole puncher. Because more donuts means more money,
you want to run this conveyor belt as fast as possible. In effect, you end up having a
very short interval from the time the sensor detects the donut to the time that the
software triggers the hole puncher.

If the computer were doing nothing but punching holes, you’d have little to worry
about. But on the same machine that runs the hole puncher, you also have other tasks
to carry out, such as reading data from optical sensors measuring donuts for quality
control purposes. If any of those tasks takes too much time, and your hole puncher is
triggered late, you end up with missed donut holes or lopsided donuts.

Obviously, missing deadlines in a real-time application is going to be even more wor-
risome if the software is aimed at controlling the fly-by-wire system of an aircraft rather
than a bakery. Therefore, when choosing Linux to support an application, you need to
determine whether the application has real-time requirements.

Linux does not come natively with any real-time guarantee. Fortunately, it is possible
to enhance the standard Linux implementation to address this limitation.

Should Your Linux Be Real-Time?
Should you bother to enhance the Linux kernel for real-time capabilities in the context
of your application? Adding real-time requirements to the software specifications with-
out the need for it would make the overall system needlessly complex, and its per-
formance might even be suboptimal. On the other hand, if your application does have

352 | Chapter 12: Introduction to Real-Time Linux

real-time requirements, the inability of a vanilla Linux kernel to meet the requirements
reliably could be an inescapable showstopper.

Answer a few basic questions to determine the need for predictability and accuracy that
is typical of a real-time system:

• Do my requirements include deadlines? Would my application still produce val-
uable results if it is late completing its work? As a corollary, would such misses be
harmful to anyone’s safety or unacceptable with respect to the quality of the pro-
vided service?

Predictability need not be absolute for a system to be considered real-time. For
instance, an absolute requirement might be, “the function must finish within 3
ms,” whereas a more relaxed real-time system might specify, “there should be an
80 percent probability that the function finishes within 3 ms and a 99.9 percent
probability that it finishes within 5 ms.” The absolute requirement is called hard
real-time, while the more relaxed requirement is called soft real-time.

A system that normally has hard requirements but still tolerates a low probability
of error falls into the intermediate category called firm real-time. A measure of this
probability gives us the Quality of Service (QoS) one may expect from such a sys-
tem. For instance, a system that misses only 1 percent of its deadlines over a given
period of time may still provide an acceptable quality of service if that degradation
does not make it unsafe or unusable.

• Does any external device that interacts with my application software place any
time-bound requirement on the handling of its messages?

• Could some of my application tasks have higher priority in my design than, say,
Linux’s own networking code or filesystem services?

Remember that Linux runs many background daemons and threads along with
user applications, and that any of these things can interfere with the operation of
your application.

• Is fine-time granularity needed to express delays and timeouts?

For instance, your application might express delays coarsely, as hundreds of
milliseconds and beyond, or use fine-grained microsecond ranges. This said, hav-
ing only coarse timings does not preclude also having strict real-time requirements,
but honoring fine-grained timings accurately certainly requires a real-time capable
Linux.

If any of the previous questions matches your requirements, you should consider using
a real-time-capable Linux kernel.

Should Your Linux Be Real-Time? | 353

Why Does the Kernel Need to Be Real-Time Aware?
Is real-time still a relevant consideration? Aren’t the processors fast enough these days,
and other hardware, such as timers, precise enough to provide the system with the
required level of responsiveness and accuracy? The answer is no, because real-time
behavior is also a software issue. As this is being written, the standard Linux kernel *

does not provide the required guarantees that all the deadlines you set for your appli-
cation will be effectively met. To understand where real-time comes in, let’s first define
the notion of latency, then illustrate some of the current Linux kernel limitations re-
garding the basic requirements listed earlier.

What Is Latency?
Because real-time systems are about timeliness, we want to measure the delay that
might take place between the triggering of an event and the time the application actually
processes it. Such delay is commonly called “latency.” For instance, the amount of time
that elapses between an interrupt and the execution of the associated interrupt handler
is called the interrupt latency.

Many things could delay interrupt handling, including system bus contention, DMA
operations, cache misses, or simply interrupt masking. The latter is requested by the
kernel software during periods when it is processing critical pieces of code, so no in-
terrupt handler can change a particular data structure while the kernel is working on it.

Similarly, the interrupt handler may place a task on a queue to run later and process
any pending data received from the device in a less time-critical context. After the
interrupt handler has returned, it may take some time for the kernel to complete its
current duties before yielding the CPU to the task. This delay is called the dispatch
latency or scheduling latency. The bad thing is that the Linux kernel might resume from
the interrupt on behalf of a task that has a lower priority than the one just awakened.
The kernel will realize that it has moved from a high-priority task to a lower-priority
one but cannot just immediately stop and switch its attention to the high-priority task.
That task has to wait for the kernel to reach a safe rescheduling point where it can switch
context, after all of the nonpreemptible code has exited. In that case, we have a common
problem called priority inversion, which is one of the hardest technical issues to solve
because it has a deep impact on the internal design.

Let’s illustrate the previous issue with an analogy about a road junction suffering from
sporadic traffic jams. Suppose your car arrives at the junction (a low-priority task en-
tering a critical section). You think that you can cross it immediately, but you find out
at just the last second that you’re wrong: all the traffic in front of you suddenly stops

* By “standard” kernel, we mean the mainline Linux 2.6 development tree, as well as any previous branch
leading to it. There is development going on to produce preemption technology called PREEMPT_RT (see
Chapter 14), which definitely has real-time characteristics, but it is not mainline yet.

354 | Chapter 12: Introduction to Real-Time Linux

(some unexpected resource contention happens), and you remain blocked in the middle
of the crossroads.

Then you hear a dreaded siren and see a huge, red, shiny firetruck (a high-priority task)
roaring down the side road in your direction to cross the junction. Your vehicle is stuck
in the traffic jam and simply cannot move in any direction, so the firetruck has to stop
too, possibly causing a house to burn to ashes.

Unlike real life’s transport infrastructure, a kernel can be implemented so that it creates
new roads on-the-fly for high-priority tasks to bypass the less urgent traffic; the sched-
uler is in charge of creating such roads. Those bypasses are provided by the previously
mentioned rescheduling points, which obey the rules of priority when electing the next
task to run. What makes real-time kernels different from others is the existence of
enough rescheduling points along all of their execution paths to guarantee a bounded
dispatch latency. To this end, the scheduler may temporarily adjust task priorities in
order to avoid the kinds of issues we just illustrated with the road junction analogy.
Later, we will discuss a common OS technique used to solve such matters, called “pri-
ority inheritance.”

When talking about latency, real-time researchers are usually talking about worst-case
latency. This means the longest time that could elapse before the desired event can
occur. It’s useful because it measures the ability of the system to perform in a timely
and predictable manner.

The worst-case latency can be calculated by listing all the activities that could poten-
tially intervene between the request for an event and the event itself, and adding to-
gether the longest time each of those activities could take.

This said, the notion of “deadline” should always be defined in the context of the
application. For instance, which operations are subject to real-time response? A task
that opens some I/O channels before running a real-time acquisition loop over them
might not care how long it takes to establish the connection.

Sometimes, one even has to mitigate the definition of how “hard” real-time should be.
For instance, how resilient must the system be to hardware failures that cause latencies?
Would one consider defective hardware causing interrupt storms, which in turn slow
the system down to a crawl, part of the equation? For this reason, as Paul McKenney
puts it, “[hard] real time is the start of a conversation rather than a complete require-
ment” (see http://www.linuxjournal.com/article/9361).

Figure 12-1 illustrates the two kinds of latency, from the moment an interrupt is marked
pending—waiting to be handled by the interrupt service routine (the ISR or IRQ han-
dler)—to the moment the task in charge of processing the corresponding event actually
resumes.

Should Your Linux Be Real-Time? | 355

http://www.linuxjournal.com/article/9361

Common Real-Time Kernel Requirements
By now you understand what real-time means and what role it plays in processing
external events. Now we can look at more detailed requirements a software system
must meet in order to qualify as real-time. There are many types of real-time, as we
have seen, and therefore many types of systems that qualify in different ways as real-
time systems. But certain concepts run through all of them.

A Fine-Grained Preemptible Kernel
Because real-time behavior is a matter of reacting early enough and properly to internal
and external events, a real-time kernel has to be able to switch as soon as possible from
a low-priority context to a high-priority task that needs attention. The time this takes
is called the preemption granularity, and the longest time that could be spent waiting
for a pending rescheduling to take place defines the worst-case dispatch latency of a
kernel.

This issue has already been addressed by different patches to the Linux 2.4 series, which
introduce opportunities for task scheduling in the kernel code. Previously, a new task
could be scheduled only upon exit from the kernel context—that is, as long as the
kernel was handling activities required by a system call or another user space request,
the kernel wouldn’t stop in order to allow a new task to run.

Probably the best-known approach to a preemptible kernel, called the preemptible ker-
nel support, was instituted by Robert Love while he was at Montavista. This was merged
into the mainline kernel during the 2.5 development phase and is now available as a
standard feature of Linux 2.6. It offers significantly better preemptability on average.
On the other hand, the concurrency between tasks is still suboptimal, because kernel
preemption remains globally disabled as long as any task on the system holds any
exclusive resource, even if no other task could compete for the same resource. As a
consequence of this, only the average latency shows some improvement, but

Task 1

ISR

Task 2

IRQ occurs Task resumes

Figure 12-1. Latency

356 | Chapter 12: Introduction to Real-Time Linux

unfortunately, the worst-case latency still remains incompatible with hard real-time
requirements.

A simple way to illustrate the limitation this approach raises is with another traffic
analogy. Imagine a rather absurd situation in which a single traffic light (the preemption
disabling lock) for an entire city (the Linux kernel) blocks all cars (the tasks) each time
one crosses an intersection anywhere in town (the exclusive resource). A way to get rid
of this restriction is to make the acquisition and release of each exclusive resource truly
independent from the others. Not surprisingly, this is a fundamental aspect of the
PREEMPT_RT effort, which we will discuss later.

Strictly Enforced Task Priorities
Even with a fine-grained preemptible kernel, a preempted low-priority task could hold
an exclusive resource long enough for a high-priority task requesting the same resource
to be delayed catastrophically; after all, it is just a matter of something unexpectedly
delaying the low-priority task while it holds the resource. This is an example of priority
inversion, discussed earlier. Because exclusive resources are spread all over the Linux
kernel, the odds of encountering this priority inversion are pretty high. This issue must
be addressed by specific operating system techniques, such as priority inheritance or
priority ceiling (http://lwn.net/Articles/178253/), which guarantee that such an inver-
sion would remain short and time-bounded, or would not even happen.

Handling External Events in a Bounded Time Frame
A real-time application frequently reacts to device interrupts in order to handle normal
processing input or receive out-of-band information about the state of the physical
world. The latter may be quite important, such as sensors sending critical alerts about
hardware overheating or warning the controller for an automated chainsaw about some
unexpected obstacle on its course. The longest time needed for the kernel to dispatch
a pending interrupt to the appropriate software handler is the worst-case interrupt
latency. We definitely want our target platform to have a known, predictable value for
this latency before designing any real-time software to run over it.

Unfortunately, the standard Linux kernel may mask external interrupts when entering
critical sections, sometimes for an unbounded amount of time. The kernel does this
not only to prevent concurrent tasks on the same processor from wrongly accessing
some nonshareable resource at the same moment, but also to reduce the opportunity
for unrelated activities to disturb the current task. Yet another advantage of cutting
down on interrupts is that the kernel does not have to flush and reload its cache as
often. On this issue, the standard kernel favors throughput over responsiveness.

In particular, regular subsystems such as the virtual memory management code, the
virtual filesystem layer, and the networking stack enforce long critical sections of this
sort. The time that elapses without being able to handle any external interrupt usually

Common Real-Time Kernel Requirements | 357

http://lwn.net/Articles/178253/

depends on the pressure imposed onto those subsystems, so the odds for delaying some
critical event processing is often a function of the overall system load. This situation is
likely the best deal available for a throughput-oriented, general-purpose operating sys-
tem. But because a real-time system must be predictable regardless of the current load,
the potential interrupt latency in the standard Linux kernel is not acceptable.

As a corollary, we should also stress the issue introduced by delayed timer interrupts.
Naturally, timing—and specifically the accurate delivery of timed events—is a funda-
mental resource upon which real-time systems depend. For instance, real-time appli-
cations often acquire data at a fixed frequency from some dedicated hardware on behalf
of a periodically scheduled task. Because the timing services, which support periodic
scheduling, depend on the accurate delivery of interrupts sent by the timer hardware,
interrupt latency in general must be kept within acceptable bounds for the application
to work properly.

It should be pointed out that data acquisition, as just described, is quite different from
typical computer I/O, where one can assume that a dropped network packet (for in-
stance) will eventually be resent and the application on the other end can wait. In the
case of a real-time system performing I/O operations for data acquisition purposes,
timeliness and reliability are most often fundamental.

Similar requirements for bounded latencies apply all along the line to any activity that
could hold up a critical task. It’s little help to a critical task if interrupt latencies are
kept low but it takes the kernel a long time to start up the critical task.

Some Typical Users of Real-Time Computing Technology
Real-time computing technology has become pervasive over the years, and a number
of applications are now based on the critical assumption that timeliness may be pro-
vided by the kernel software. It would be too long a list to enumerate all of them, if
even possible, but still, let’s discuss a few industries that heavily depend on real-time
systems.

The measurement and control industry
People in this industry who implement real-time applications want their systems
to interact with the physical world. The donut hole example cited near the begin-
ning of this chapter illustrated the concept. Another example is software used to
control a robot, such as those that operate conveyor belts in industrial plants.

As a typical example for applications that perform cyclic data acquisition, the time
required to process each sample must be less than the time in between samples.
The reason to rely on a real-time operating system here is to make sure incoming
samples will be processed on-the-fly at the right pace, keeping the input and output
processes perfectly synchronized.

358 | Chapter 12: Introduction to Real-Time Linux

Other applications may need to react to external events; for instance, they may
send requests to some of their devices in response to information they have received
from others. An illustration is the overheat detection sensor mentioned earlier: the
application really needs to get the alarm notification from the heat sensor on time
and react within the appropriate time frame to shut down the malfunctioning de-
vice, or the latter is likely going to be toast.

The aerospace industry
This industry is a large consumer of real-time technology at various levels of its
product development process, from the early design stage to its exploitation. For
instance, Integrated Modular Avionics (IMA) is a blanket term used to describe a
distributed real-time computer network aboard an aircraft. This network consists
of a number of computing modules capable of supporting numerous applications
involving various safety criticality levels.

Another typical use of real-time capabilities in this industry involves simulation
systems with real hardware attached to it, an approach called hardware-in-the-
loop (HIL) simulation. Real-time is needed here because portions of this software
have to interact with the physical world. By making it possible to test new, actual
devices in a virtual environment, this solution allows the designers to predict
whether the overall airborne system will meet initial performance specifications,
without actually having to build it for real in its entirety.

The financial services industry
It is particularly interesting that even high-level online financial services could de-
pend on basic real-time technology issues. As a matter of fact, some of the complex
distributed applications that are critical to this business may have requirements for
exchanging messages reliably and in a timely fashion.

For instance, when it comes to connecting trading systems to stock exchanges
around the world, with hundreds of financial transactions taking place every mi-
nute, too much delay in processing trading opportunities within a handful of sec-
onds could mean significant losses.

For this reason, trading systems are increasingly dependent on real-time response.
The fact that such applications operate on a millisecond timescale, instead of the
microsecond one used by measurement and control systems, does not change their
basic requirement for always being on time (i.e., for being real-time).

The multimedia business
Generally speaking, multimedia systems have to process visual and auditive infor-
mation in a time frame short enough for the audience not to perceive visible or
audible artifacts. Such applications can allow some deadlines to be missed once in
a while, but this should remain a rare case so that they maintain an overall good
quality of service.

Some Typical Users of Real-Time Computing Technology | 359

The Linux Paths to Real-Time
In contrast to traditional real-time operating systems (RTOSes) that have been designed
from the ground up to provide for predictable response time, Linux is a general-purpose
operating system (GPOS) that was initially designed around fairness (sharing resources
fairly among its users) and good average performance under sustained load conditions.
This history changes our perspective on real-time a lot. The Linux solution boils down
to adding real-time hooks or special cases to a general-purpose multitasking core.

As the hardware available to real-time applications—including those in the embedded
space—follows Moore’s law, people implementing the applications that interact with
the hardware want to make the applications richer and more featureful, which in turn
requires a sophisticated operating system such as Linux.

The days are almost gone when real-time applications single-mindedly processed real-
time events. Nowadays, real-time software is often interacting with other non-real-time
components within the same system. For this reason, designers do not choose an op-
erating system solely because it has predictable response time, but also because it has,
for instance, good networking capabilities, a wealth of device drivers for off-the-shelf
hardware, and sometimes rich graphic support. Additionally, the pressure for produc-
ing cost-effective computing platforms dictates a set of requirements, which may be
summarized as: “you shall follow the standards.” This is because standards means inter-
operability, off-the-shelf hardware, and common skill sets shared by more engineers
who may enter into product development.

It is interesting to notice how Linux fits well into this current trend. It outperforms
proprietary operating systems in the number of device drivers supporting all kinds of
off-the-shelf hardware; it provides a reliable and efficient networking stack that actually
runs a significant part of the Internet nowadays; and it provides various graphical
environments with characteristics ranging from embedded-compatible footprints to
rich desktop systems.

Generally speaking, Linux benefits from the richness of a successful GPOS in terms of
software and hardware support. Conversely, traditional RTOSes most often had to
build ad hoc and proprietary solutions to meet those general-purpose requirements as
best they could, suffering from the tininess and rigidity of their initial real-time cores
that were specifically aimed at fitting in low-end embedded systems.

On the other hand, as a GPOS, Linux was not designed to provide real-time capabilities
to its applications, therefore, a cornerstone was missing in the edifice for anyone with
such a requirement.

With this point in mind, we can now explain the two major real-time approaches Linux
supports and the reasons behind their respective designs.

360 | Chapter 12: Introduction to Real-Time Linux

The Co-Kernel Approach
The earliest solution found for adding real-time capabilities to Linux was to place a
small real-time kernel running side-by-side with Linux on the same hardware, instead
of turning the standard kernel into an RTOS. Clearly, nothing was new in this technical
path. Similar implementations already existed, for instance, in the Windows world,
based on proprietary software such as Intel’s iRMX back in 1992 and its INTime de-
rivatives or RTX from Venturcom (now Ardence).

Put bluntly, the basic argument leading to a co-kernel design is that one should not
trust the standard Linux kernel to honor real-time duties under any circumstances,
because a GPOS kernel is inherently complex, and real-time people usually don’t trust
what they cannot specify in detail with clear bounds. As a matter of fact, more code
usually leads to more uncertainty, which in turn barely fits with the need for
predictability. Add in the extremely fast development cycle of the Linux kernel, which
brings in a lot of changes in a short time frame.

Therefore, in order to get the best of both the GPOS and RTOS worlds, the real-time
processes are handed over to the small co-kernel, which schedules them appropriately,
and the usual GPOS business continues to be carried over to the standard Linux kernel.
Practically speaking, a co-kernel is usually available as a set of dynamically loadable
modules, or may be directly compiled inside the Linux source tree just like any regular
subsystem. Some co-kernel implementations (notably RTAI and Xenomai) support the
running of real-time programs in user space with MMU protection just like any regular
Linux application. Others (notably RTLinux/GPL) require real-time applications to be
embodied in kernel modules.

For this approach to work, all device interrupts must go through the co-kernel before
they are processed by the standard kernel so that Linux may never defer them, thus
ensuring predictable response time on the real-time side. A co-kernel should operate
as transparently as possible; for this reason, the Linux kernel is barely aware of its
presence and does not actually know that interrupts may be dispatched to the co-kernel
before it has a chance to handle them.

Several methods have been developed over time to share interrupts between the two
kernels. They basically all boil down to interposing a software-based interrupt masking
mechanism between the Linux kernel and the programmable interrupt controller (PIC)
hardware. Because this software mechanism mimics the basic interrupt control oper-
ations the real hardware performs, it is often described as a virtual PIC. It ultimately
allows the RTOS to maintain a separate interrupt-masking state from the one controlled
by the Linux kernel.

The net effect is that interrupts are barely masked at the hardware level and get delivered
almost immediately to the co-kernel—which has the highest priority in terms of inter-
rupt delivery—regardless of whether the Linux kernel would accept them or not. If the
interrupts are actually associated with Linux processes, the virtual PIC has the effect

The Linux Paths to Real-Time | 361

of simply deferring the invocation of the interrupt handlers until Linux eventually takes
control of a processor and accepts the interrupts.

To sum up, a virtual PIC scheme almost always works as follows: it accepts hardware
interrupts, records them into an internal log, and checks a per-OS software flag in a
prioritized manner to see whether the logged interrupts may be delivered to the OS for
processing.

Such a design brings a great advantage: regardless of the ongoing Linux activity, the
real-time processes always benefit from extremely low interrupt and dispatch latencies,
because they’re never adversely affected by any regular Linux code. Meanwhile, the
isolation between the two kernels simplifies maintenance of the RTOS itself. The RTOS
developer usually has to worry only about adapting the interrupt virtualization layer to
new Linux kernel releases, regardless of how many significant changes went into them.

However, this design also holds a significant drawback: because the Linux kernel still
has no real-time capabilities, one must stick exclusively to co-kernel services in order
to keep predictable latencies for the real-time processes, regardless of whether the ap-
plication may run in user space or not. In other words, the whole set of regular Linux
drivers and libraries that rely on the standard kernel do not benefit from any real-time
guarantee. For instance, device drivers that are standard and immediately available in
the regular Linux kernel still need to be forked and ported to work over a co-kernel
predictably. For the same reason, services from the standard C library (glibc) may cause
unexpected latencies whenever they call into the Linux kernel. This fact affects the
programming model, and unfortunately may add complexity to the development and
maintenance tasks, at least for applications that do not exhibit a straightforward design,
functionally split between real-time and non-real-time activities.

The Fully Preemptible Kernel Approach
The other approach deals with converting Linux itself into a full RTOS. This implies
that changes are made to the Linux kernel that allow for real-time processes to run
without experiencing interference from unpredictable or unbounded activities by non-
real-time processes. The main criticism of combining a GPOS and an RTOS boils down
to this: it is very difficult to be 100 percent sure that the GPOS code will never hinder
the real-time behavior of the RTOS, in any circumstance. Development of the RT patch
(see Chapter 14) focuses on the parts of the Linux kernel that allow non-real-time tasks
to affect real-time tasks.

The Linux kernel is indeed very large. It contains several million lines of code, but most
of that lies in drivers, as well as all the different architectures that it supports. No one
has a machine that contains all the devices that the Linux kernel supports. When
choosing to use the RT patch for an embedded real-time platform, one only needs to
audit the drivers that are used for that platform. Drivers must be inspected by a trained
RT kernel programmer to search for areas that might disable preemption or interrupts
for long periods of time.

362 | Chapter 12: Introduction to Real-Time Linux

The core part of the Linux kernel is only a fraction of the entire kernel. The core contains
the code that controls the scheduling of processes, interrupt handling, internal locking,
creation, and destruction of new threads, memory management, filesystems, and
timers. Parts of the core are also modular, supporting different filesystems and memory
management. The core kernel code implements the same things that a microkernel
would need to implement. Thus, the conversion of the Linux kernel into a RTOS can
be isolated to changing these core parts of the kernel. This greatly simplifies the effort
to convert Linux into a full RTOS.

The main areas in the Linux kernel that cause problems for real-time tasks are even
smaller than the ones listed in the previous paragraph: they essentially concern locking
and interrupts. The mainline Linux kernel (as of 2.6.23) contains large areas where
preemption is disabled, as well as mutexes that can cause priority inversion within the
kernel. The mainline Linux kernel also has interrupt service routines that can preempt
any process (real-time included) to do work for the lowest-priority process. The RT
patch addresses these issues and converts the Linux kernel into an RTOS.

By converting Linux itself into a full RTOS, the user gets the benefits of the wide range
of devices that Linux supports, as well as all the different architectures. Applications
for embedded devices can be tested on a PC desktop without any changes. All the
utilities to control the real-time processes, as well as the OS in general, come with every
major distribution.

Although all the drivers Linux provides are available to the real-time applications, they
still need to be verified as real-time safe. Some companies are willing to provide this
service. A developer will be needed to look at the source code of the device driver and
verify that it does not disable preemption or interrupts for large amounts of time. This
is uncommon for a driver to do. In fact, it is considered a bug even in a GPOS if a driver
disables preemption or interrupts for a substantial amount of time. But few users of the
mainline kernel would report a 10-millisecond delay caused by a device driver, so this
bug may go unreported.

As more multimedia users (both audio and video) start using the RT-patched Linux
kernel, more device drivers will be verified, because these are the types of users who
can notice and report long latency delays caused by these devices.

The RT patch strives to covert the Linux kernel into a full RTOS system, but it is still
a GPOS as well. This means that it is harder to verify a lack of bugs. For most applica-
tions that need real-time determinism, the RT-patched Linux kernel provides adequate
service. But for those real-time applications that need more than low latencies and
actually have a system that can be vigorously audited against bugs, the Linux kernel,
with or without the RT patch, is not sufficient. These applications are those that would
put people’s lives at stake; for example, an aircraft engine control system. But the RT-
patched Linux kernel is sufficient for most other real-time embedded activities (such
as robotics).

The Linux Paths to Real-Time | 363

To sum up, there is no “one-size-fits-it-all” approach to real-time, but rather there are
varying degrees of real-time requirements that have an impact on the overall system
design.

364 | Chapter 12: Introduction to Real-Time Linux

Xenomai is a real-time subsystem that can be tightly integrated with the Linux kernel
to guarantee predictable response times to applications. Its current incarnation is based
on a dual kernel approach, with a small co-kernel running side-by-side with Linux on
the same hardware. Xenomai supports the running of real-time programs in user space
with memory management unit (MMU) protection when it is available from the host
kernel, just like any regular Linux application. Real-time tasks are exclusively controlled
by the co-kernel during the course of their time-critical operations so that very low
latencies are achieved for their code running inside a standard Linux kernel.

Xenomai was created in 2001 to facilitate the migration of industrial applications com-
ing from the proprietary world to a GNU/Linux-based environment, while keeping
stringent real-time guarantees. To allow porting traditional RTOS APIs to Linux-based
real-time frameworks, the Xenomai core provides generic building blocks for imple-
menting real-time APIs, also known as skins. This way, a skin can mimic proprietary/
in-house APIs efficiently, based on reusable objects supplied by the real-time
framework.

The Xenomai core running in kernel space is offered under the GPL 2. User space
interface libraries are released under the LGPL 2.1.

Today, it runs over several architectures (PowerPC32 and PowerPC64, Blackfin, ARM,
x86, x86_64, and ia64) in a variety of embedded and server platforms, and it can be
coupled to two major Linux kernel versions (2.4 and 2.6), for MMU-enabled and
MMU-less systems. Supported real-time APIs include VxWorks, pSOS+, VRTX,
uITRON, and POSIX 1003.1b.

The official Xenomai project website, offering source code, documentation, technical
articles, and other resources, is http://www.xenomai.org.

CHAPTER 13

The Xenomai
Real-Time System

365

http://www.xenomai.org

Porting Traditional RTOS Applications to Linux
A growing number of industrial applications are being ported to Linux, which translates
into large amounts of legacy source code that projects need to accommodate. As of
early 2007, most applications that relied on an operating system were based on tradi-
tional real-time operating systems controlled by software vendors
or some home-brewed solution (http://www.embedded.com/columns/showArti
cle.jhtml?articleID=187203732). A number of those RTOSes came with their own non-
POSIX, proprietary API.

Because real-time applications are most often embedded ones, a significant debugging
and tuning effort usually takes place before they are fully stable in the field. Such efforts
likely require very specific knowledge from experienced people who may not always
be involved in the porting process. For this reason, embedded product teams are not
keen on changing the pillars of their software, such as the real-time API being used. As
a matter of fact, a real-time API carries particular semantics and exhibits well-defined
behaviors that the entire application can depend upon to work.

Let’s look at a few examples of features that make porting to Linux a daunting task:

• Most traditional embedded RTOS APIs provide a service to forcibly suspend a
particular task; for instance, VxWorks calls this feature taskSuspend(), whereas
pSOS+ exports t_suspend() for the same purpose. A number of existing embedded
applications still rely on such system calls, although they are a bit dangerous be-
cause they could stop execution in the middle of a critical section if used
improperly.

It would superficially seem that the way to mimic this behavior through POSIX-
compatible calls would be to issue pthread_kill() to send a SIGSTOP signal to the
task to be suspended. Unfortunately, doing so would also suspend all the POSIX
threads belonging to the same process, because the POSIX specification requires
pthread_kill() to affect the process as a whole, even if the signal is directed at a
particular thread.

In other words, in a system following the POSIX specification, there is no way for
a thread to forcibly suspend another thread without disturbing others.

• Traditional RTOS APIs export a wealth of task synchronization services, and often
allow the developer to specify whether waiting tasks should be restarted by priority
or in FIFO order. For instance, on a uITRON-compliant RTOS, a FIFO/PRIO
parameter may be passed to the system call creating an IPC semaphore by calling
cre_sem(). The equivalent on VRTX is sc_screate(). Many RTOSes offer similar
fine-grained control over synchronization for such IPC mechanisms as message
queues and mailboxes.

366 | Chapter 13: The Xenomai Real-Time System

http://www.embedded.com/columns/showArticle.jhtml?articleID=187203732
http://www.embedded.com/columns/showArticle.jhtml?articleID=187203732

Once again, unfortunately, the POSIX specification states that implementations
supporting the priority scheduling option may always use a priority-based queuing
order. Otherwise, the order remains unspecified, leaving the POSIX implementa-
tion to do whatever it sees fit with no recourse by the application programmer. The
POSIX specification even goes on to say: “Synchronization primitives that attempt
to interfere with scheduling policy by specifying an ordering rule are considered
undesirable.” And as a matter of fact, the POSIX interface does not allow it.

Because it has a direct impact on the scheduling order, this disparity between
POSIX and other popular RTOSes can raise subtle bugs whenever the application
strictly depends on the behavior depicted in another vendor’s specification. In
modern Linux kernels, most POSIX IPC services are based on the Fast Userspace
Mutex (futex) support, which always uses a priority-based queueing order for all
tasks belonging to the real-time scheduling class. Therefore, no FIFO queuing or-
der could be available for those IPCs anyway.

• Traditional RTOSes allow an application to lock the scheduler, effectively pre-
venting the current task from being preempted by any other, regardless of their
respective priorities. Even if the rationale for using such a feature is questionable,
since this basically boils down to asking a real-time system to ignore task priorities,
a number of legacy applications still use it. We think it fortunate that, in this case,
POSIX does not define any such option, but the drawback is that legacy code is
left with a missing feature. The scheduler lock may often be replaced by recursive
mutexes, properly set to protect the same section of code from preemption. How-
ever, in some cases, the original code is so entangled that removing the giant lock
could have unexpected and unfortunate side effects. It all depends on how much
of the original implementation has to change, and how much time is available to
fix the potential regression errors.

To sum up, two real-time APIs may be similar, but still have subtle differences that
could change the way applications actually behave if the original system calls were
simply mapped to their closest equivalents in the target environment. Therefore, mov-
ing from a non-POSIX interface to Linux’s POSIX-based one may introduce unexpected
issues, particularly in stable applications that one wants to change only in small steps,
and very carefully.

At the same time, the similarities among the traditional RTOSes are obvious, so build-
ing a common software framework for developing these emulators makes sense.

For instance, what are the actual differences among VxWorks, pSOS+, Virtuoso,
VRTX, and Chorus O/S semaphores? VxWorks may support mutexes as part of its
semaphore API, whereas other RTOSes may implement mutexes separately or not at
all, but the basic semaphore model they all use must behave identically in all
implementations.

In the same vein, all traditional RTOSes offer, at the very least, a preemptive, fixed-
priority task scheduler, and most support round-robin scheduling, too. They all offer

Porting Traditional RTOS Applications to Linux | 367

familiar IPC mechanisms, such as event flag groups, mailboxes, and message queues.
Memory management features, such as fixed-size or dynamic block allocators, can be
found with little core differences among a variety of embedded real-time systems, re-
gardless of whether one calls them partitions, regions, or heaps.

In other words, a significant number of commonalities among traditional RTOSes may
be abstracted into a framework so that only the proper window-dressing has to be
provided on top in order to mimic each RTOS’s interface properly.

The Xenomai Architecture
Xenomai eases the porting process from traditional embedded environments to Linux
by providing real-time API emulators that mimic the system calls exactly as described
by RTOS vendor specifications. Thus, Xenomai preserves the real-time guarantees that
applications rely on. Because all Xenomai emulators are built from a common set of
building blocks, leveraging the commonalities found among RTOSes, each of those
emulators benefits, at no cost, from improvements made to the Xenomai core.

Figure 13-1 shows the overall architecture of Xenomai.

SAL/HAL

I-Pipe

Abstract RTOS core

. . .POSIXVRTXpSOSVxWorks

Linux syscall interface

Portability
layers

Userspace applications

Kernel-based applications

Emulators/real-time skins

Figure 13-1. Xenomai architecture

368 | Chapter 13: The Xenomai Real-Time System

The Interrupt Pipeline
In order to keep latency predictable for real-time tasks, we must ensure that the regular
Linux kernel never defers external interrupts. The interrupts should be blocked or
masked for minimal times at the hardware level and be delivered as quickly as possible
to Xenomai, regardless of whether the Linux kernel would accept them. At the same
time, interrupts directed at the Linux kernel should never trigger a handler when the
kernel is in a section where it blocks interrupts.

Therefore, we need an additional piece of software between the hardware, Linux, and
Xenomai, to act as a virtual programmable interrupt controller. This allows Linux and
Xenomai to maintain separate masks for interrupts and policies for handling interrupts.
The software layer Xenomai uses for that purpose is called the interrupt pipeline, or I-
pipe. It is based on a technical proposal for a system called Adeos,* by the author of
this book’s first edition, Karim Yaghmour. The I-pipe is a simplified implementation
of his proposal that relies on a modification of the Linux kernel sources for virtualizing
the interrupt mask, instead of depending on features of the x86 chip.

The I-pipe organizes the system as a set of domains connected through a software
pipeline. In the I-pipe implementation, these domains share a single address space,
which proves useful when a thread needs to invoke services at one point from Linux
and at another point from Xenomai.

At the Linux kernel level, a domain is usually a kernel module that calls some I-pipe
service to register itself. The I-pipe implementation is available as patches against a
number of Linux 2.4 and 2.6 versions, because it has to be specifically adapted to each
version of the core kernel code.

Within an I-pipe-enabled kernel, Xenomai is the highest priority domain, ahead of the
Linux kernel itself. The I-pipe dispatches events such as interrupts, system calls, pro-
cessor faults, and other exceptions to domains according to each domain’s static
priority.

Xenomai registers a set of handlers for various I-pipe events. These handlers notify
Xenomai of any noteworthy event before Linux can handle it. This way, Xenomai can
preprocess the event in order to have both the real-time system and the regular Linux
kernel share it properly.

For instance, when a processor exception is caught on behalf of a real-time task con-
trolled by the Xenomai co-kernel, the co-kernel usually lets the regular kernel handle
the fault, because there’s no point in duplicating the exception-handling code that
Linux already provides. However, the faulting task has to re-enter a normal Linux
context before doing so. The exception handler allows Xenomai to intervene during
processor faults and exceptions so that it can switch faulting tasks back to a normal
Linux context when required.

* http://www.opersys.com/adeos

The Xenomai Architecture | 369

http://www.opersys.com/adeos

One of the most important aspects of the I-pipe is that it exposes an architecture-neutral
API, which has been ported to a variety of CPUs. This way, client domains such as
Xenomai require changes to only a small amount of architecture-dependent code when
developers port the domains to other CPUs, and they may rely on a normalized interface
to hook onto the host hardware platform.

Figure 13-2 shows the main characteristics of an I-pipe-enabled Linux kernel, with a
number of domains receiving external events in sequence, and a per-domain virtual
interrupt mask that preserves the ability to lock out interrupts when the domain code
requires it. In essence, the I-pipe replaces the hardware interrupt mask provided by the
CPU with multiple virtual masks so that domains may run unaffected by another do-
main’s action on their own interrupt state.

The way Xenomai puts the interrupt pipeline into action is described in detail at http://
www.xenomai.org/documentation/branches/v2.3.x/Life-with-Adeos-rev_B.pdf.

The Hardware and System Abstraction Layers
The Xenomai hardware abstraction layer (HAL) gathers all the CPU and platform-
dependent code needed to implement a particular Xenomai port so that every layer
starting from the nucleus and higher is free from machine-dependent code.

The Xenomai HAL is combined with a system abstraction layer (SAL), which makes
the bulk of the nucleus and skins more portable as well. Xenomai uses HAL and SAL
to place its core services on top of an event-driver simulator. This tool is heavily used
in testing and debugging new RTOS skins so that developers can run them in a fully
sandboxed environment in the context of a regular Linux process.

i-log

i-log

i-log

i-log

Real IRQ
mask

Virtual IRQ
mask

CPU #0

CPU #1

CPU #n

Interrupts

Xenomai
domain

Linux
domain

Figure 13-2. The interrupt pipeline

370 | Chapter 13: The Xenomai Real-Time System

http://www.xenomai.org/documentation/branches/v2.3.x/Life-with-Adeos-rev_B.pdf
http://www.xenomai.org/documentation/branches/v2.3.x/Life-with-Adeos-rev_B.pdf

The Xenomai Core and Nucleus
The Xenomai core is in charge of supplying all the operating system resources that skins
may require to properly mimic traditional RTOS APIs. This requirement is a direct
consequence of the underlying co-kernel design: because Xenomai runs on non-real-
time Linux kernels, real-time processes must stick exclusively to calling Xenomai serv-
ices in order to keep predictable latencies. Therefore, the Xenomai core has to provide
all of the basic RTOS resources; skins cannot rely on regular Linux services.

The Xenomai core is best described as an abstract RTOS because it defines generic
building blocks. These can be specialized to implement any kind of real-time API that
fits the generic model. The building blocks are gathered into a single loadable module
called the Xenomai nucleus (which is in no way related to the component of ATI called
the nucleus). The following are the main components that the Xenomai nucleus
provides:

• A real-time thread object controlled by the Xenomai scheduler. The scheduler is a
preemptive and fixed-priority, supporting a number of thread priority levels. FIFO
ordering applies within a priority level. This scheduler also enables round-robin
scheduling on a per-thread basis.

Each RTOS emulator bases its task or thread implementation on the Xenomai
thread abstraction so that basic scheduling operations—such as priority manage-
ment, preemption control, and eager suspension/resumption requests—are
already available through the nucleus interface.

• A generic interrupt object that connects the RTOS skin to any number of IRQ lines
provided by the underlying hardware. Because interrupt handling is one of the least
well-defined areas in RTOS design, the nucleus focuses on providing a simple
mechanism with sufficient hooks for each skin to emulate the specific behavior of
its RTOS. Xenomai’s support for interrupts includes nested and shared interrupts.

• A memory allocator with predictable latencies that RTOS skins can specialize to
support the dynamic allocation of variable-size memory blocks.

• An extendable synchronization object. This is one of the most important features
of the Xenomai core. This object implements thread blocking on any kind of
resource for all RTOS services. Xenomai supports timeouts, priority inheritance,
and priority-based or FIFO queuing order when multiple threads have to block on
a single resource. For instance, all kinds of semaphores, mutexes, condition vari-
ables, message queues, and mailboxes defined by the RTOSes are based on this
core abstraction.

• Timer management, allowing any time-related service to create any number of
software timers. Xenomai also implements the notion of a time base, by which
software timers that belong to different RTOS skins can be clocked separately and
concurrently, according to distinct frequencies, or even in a tickless fashion. A lot
of traditional RTOSes are tick-based, expressing delays and timeouts as counts of

The Xenomai Architecture | 371

ticks (what the Linux kernel calls jiffies). However, Linux and Xenomai also sup-
port tickless timing so that RTOS emulators may ask for nanosecond-level clock
resolutions that are too fine-grained to depend on periodic operating system ticks.

To illustrate a typical use of Xenomai building blocks, let’s look at the actual imple-
mentation of the t_suspend() call from the pSOS+ emulator module, which forcibly
puts a given task on hold:

u_long t_suspend(u_long tid)
{
 u_long ret = SUCCESS;
 psostask_t *task;
 spl_t s;

 if (tid == 0) { /* Is this a self-suspension call? */
 if (xnpod_unblockable_p())
 /* E.g. we can't block on behalf on an ISR. */
 return -EPERM;

 /* Ok, ask the nucleus to schedule us out. */
 xnpod_suspend_self();

 /*
 * We woke up due to a Linux signal. We need to tell
 * the caller about this, so that regular signal
 * handling is carried out properly on the Linux side.
 */
 if (xnthread_test_info(&psos_current_task()->threadbase, XNBREAK))
 return -EINTR;

 /*
 * Someone must have fired t_resume() upon us. Let's
 * go back to our caller to resume running.
 */
 return SUCCESS;
 }

 /* Protect from preemption in the Xenomai domain. */
 xnlock_get_irqsave(&nklock, s);

 /* Let's check first whether the task identifier is valid. */
 task = psos_h2obj_active(tid, PSOS_TASK_MAGIC, psostask_t);

 if (!task) {
 ret = psos_handle_error(tid, PSOS_TASK_MAGIC, psostask_t);
 goto unlock_and_exit;
 }

 /* Is the target task already suspended? Ask the nucleus about this. */
 if (xnthread_test_state(&ask->threadbase, XNSUSP)) {
 ret = ERR_SUSP; /* Task already suspended. */
 goto unlock_and_exit;
 }

 /* Ok, let's ask the nucleus to hold on execution for that task. */

372 | Chapter 13: The Xenomai Real-Time System

 xnpod_suspend_thread(&task->threadbase, XNSUSP, XN_INFINITE, XN_RELATIVE, NULL);

 if (task == psos_current_task() &&
 xnthread_test_info(&task->threadbase, XNBREAK))
 ret = -EINTR;

unlock_and_exit:

 xnlock_put_irqrestore(&nklock, s);

 return ret;
}

As the code sample shows, the Xenomai nucleus handles the most complex part of the
system call by carrying out the actual suspension and maintaining task state informa-
tion so that the pSOS emulator can decide what has to be done next. The rest of the
code is just window-dressing around the threadbase anchor object, which is the thread-
specific data structure exported by the nucleus to model real-time tasks.

The example that follows was taken from the VRTX emulator. It implements the
sc_pend() call from the mailbox IPC, which makes the caller wait on a memory cell
until some nonzero data has been written to it (this is a timed service, so the caller may
specify a timeout value):

char *sc_pend(char **mboxp, long timeout, int *errp)
{
 char *msg = NULL;
 vrtxtask_t *task;
 vrtxmb_t *mb;
 spl_t s;

 /* Protect from preemption in the Xenomai domain. */
 xnlock_get_irqsave(&nklock, s);

 /* Find out our control block for this mailbox. */
 mb = mb_map(mboxp);

 if (!mb) {
 *errp = ER_NOCB;
 goto unlock_and_exit;
 }

 if (mb->msg != NULL)
 /*
 * Something has been written in there already, return
 * that value without blocking the caller.
 */
 goto done;

 /* May we block the calling context? */
 if (xnpod_unblockable_p()) {
 *errp = -EPERM;
 goto unlock_and_exit;
 }

The Xenomai Architecture | 373

 task = vrtx_current_task();
 /*
 * Set up a few status bits the VRTX way, so that inquiries
 * about the task state will return proper information.
 */
 task->vrtxtcb.TCBSTAT = TBSMBOX;

 if (timeout)
 task->vrtxtcb.TCBSTAT |= TBSDELAY;

 /* We have to wait for a message now. */
 xnsynch_sleep_on(&mb->synchbase, timeout, XN_RELATIVE);

 /* Are we waking up due to a Linux signal, or some unblocking call? */
 if (xnthread_test_info(&task->threadbase, XNBREAK)) {
 *errp = -EINTR;
 goto unlock_and_exit;
 }

 /* Did we reach the timeout limit? */
 if (xnthread_test_info(&task->threadbase, XNTIMEO)) {
 *errp = ER_TMO;
 goto unlock_and_exit;
 }

 done:

 /*
 * Ok, we got a message, let's reset the mailbox before passing
 * it on to the caller.
 */
 msg = mb->msg;
 mb->msg = NULL;
 *errp = RET_OK;

 unlock_and_exit:

 xnlock_put_irqrestore(&nklock, s);

 return msg;
}

Once again, the nucleus did most of the job of implementing the core activities. The
main anchor object used here is the synch building block, which the Xenomai core
exports to model a variety of IPC features.

The Xenomai Skins
When looking at the Xenomai system, one is most struck by the lack of any central or
master API for application development, not even a preferred API based on one of the
popular RTOSes. In fact, the Xenomai core considers all RTOS APIs equal. Developers

374 | Chapter 13: The Xenomai Real-Time System

can pick any skin that fits the extremely flexible Xenomai model, or even develop a new
skin in order to port applications from an RTOS that isn’t yet supported.

RTOS emulators, and more generally any kind of real-time API, are built on the Xen-
omai nucleus using the set of common building blocks described earlier. In practical
terms, the skin representing an API is embodied in a loadable kernel module, just like
the nucleus, and simply appears as a specialized Linux driver that the programmer may
enable statically or as a module when building the target kernel image.

Xenomai comes with several canned real-time APIs:

• A POSIX interface maintained by Gilles Chanteperdrix, aiming at 1003.1b stand-
ard conformance. It acts as a drop-in replacement for the glibc services it reimple-
ments over the Xenomai co-kernel. The POSIX interface works on top of both the
LinuxThreads and NPTL-enabled Glibc.

• A VxWorks emulator, which mimics the WIND kernel 5.x API.

• A pSOS+ emulator based on the pSOS 2.x core API definition.

• A VRTX emulator, supporting both the VRTX32 and VRTX/sa system call
interfaces.

• An uITRON-compliant skin, based on specification rev. 3.02 (E-level).

• A RTAI 3.x emulator for porting legacy applications embodied into kernel modules
over Xenomai.

• A so-called native API, in the sense that it has been designed as part of the Xenomai
development effort. This API is reminiscent of traditional RTOS APIs. Even if it
has no particular preeminence over any other skin, it allows people with a non-
POSIX RTOS culture to easily develop applications, based on a feature-full but still
reasonably compact API.

• Last but not least, the Real-Time Driver Model (RTDM), which provides a unified
interface to both users and developers of real-time device drivers. Specifically, it
addresses the constraints of dual kernel–based systems like Xenomai, where ap-
plications exhibit both real-time and non-real-time runtime phases, depending on
which kernel is controlling their tasks at any point in time. RTDM conforms to
POSIX semantics (IEEE Std 1003.1) where available and applicable.

How Xenomai Works
The fundamental difference between Xenomai and other dual kernel systems available
for Linux (e.g., RTAI or RTLinux) is a higher level of integration with the native Linux
environment. For the Xenomai project, keeping the regular Linux programming model
available for real-time applications has always been considered just as important as
guaranteeing the lowest latency figures achievable on any given hardware.

This said, using a co-kernel technology raises several significant usability issues when
programmers try to benefit from Linux’s rich POSIX environment. Sometimes real-time

How Xenomai Works | 375

applications may need to call Linux services with unpredictable latencies, such as ac-
cessing disk files to log data or establishing communication over the network.

More fundamentally, you may ask how one could call into regular Linux services from
a real-time program if both kernels are operating in full independence, with Linux
barely knowing about the co-kernel. For instance, how could the real-time tasks con-
trolled by the co-kernel properly receive and process POSIX signals, which the Linux
kernel relies on heavily to provide debugger support via the ptrace() system call?
Without ptrace() access to the Xenomai thread, a real-time program could not be
traced by GDB.

This section will explain how Xenomai makes cross-platform access possible in a dual
kernel environment.

The Real-Time Shadow
Xenomai derives its own real-time threads from regular Linux tasks created through
the standard POSIX API. Therefore, Xenomai threads inherit Linux tasks’ ability to
invoke regular Linux services when operating in non-time-critical mode.

When promoted to the real-time application domain, a Linux task is attached to a
Xenomai-specific extension called the real-time shadow. A real-time shadow allows the
mated Linux task to be scheduled by the Xenomai co-kernel when running in real-time
mode. Figure 13-3 illustrates how the Linux and Xenomai schedulers share a Linux
task context. Each scheduler uses its own data structures to denote tasks, but has access
to particular fields in the other scheduler’s data structure.

New Sets of System Calls
Xenomai expands the target’s operating system by adding several sets of new system
calls, which the skins implement. Each time a skin module is loaded, it exports the set

Linux
scheduler

Xenomai
scheduler

Internal backlinks

struct
task_struct

struct
xnthread

Figure 13-3. Xenomai real-time shadow

376 | Chapter 13: The Xenomai Real-Time System

of services it brings to the Xenomai nucleus, which will in turn dispatch application
requests to the proper skin.

To this end, Xenomai uses the I-pipe capability to intercept the regular Linux system
call dispatcher and direct the extra system calls to the skin module that implements
them.

In user space, system call wrappers are embodied into libraries as a set of C functions.
Real-time applications must be linked against those libraries. Those Xenomai libraries
are the equivalent of glibc, but they call into the Xenomai system instead of the Linux
kernel.

Figure 13-4 depicts how a system call flows from a VxWorks-based application to the
proper Xenomai emulator.

Sharing Kernel Features and Domain Migration
Looking at the previous example again, you may notice that a real-time thread can
invoke both the standard glibc services and the set of additional system calls brought
in by Xenomai. As a matter of fact, application threads may be satisfied with best-effort
latencies the Linux kernel can bring when it comes to setup and cleanup tasks, such as
accessing the filesystem or setting up communications with some device driver. In be-
tween setup and cleanup, however, during the course of their main processing work,
the same threads might require stringent real-time guarantees, with low and bounded
latencies.

User space

Kernel space

Xenomai
nucleus

VxWorks skin
Regular Linux

sub-system
(I/O, VM, ...)

VxWorks syscalls Linux syscalls

VxWorks application

libvxworks glibc
I-pipe

interposition

Figure 13-4. Dispatching a real-time call to a Xenomai skin

How Xenomai Works | 377

Therefore, it’s desirable to reuse the rich POSIX environment Linux provides with the
glibc when predictability and responsiveness are not critical. However, this requires
the dual kernel system to specifically allow for it.

In a co-kernel environment, two kernels run concurrently without synchronizing their
activities. In the Xenomai case, one of these kernels even has absolute priority over the
other one, and as such may preempt it with no delay to serve a real-time event. There-
fore, extreme care must be taken to prevent real-time threads from calling into the
regular Linux kernel code when they are controlled by the Xenomai core. Otherwise,
we would allow unsafe reentrance that would terminally harm the entire system.

Figure 13-5 illustrates a typical case of bad reentrance, caused by a real-time thread
calling into a Linux kernel service from an unsafe context. A regular Linux task enters
a critical section and then gets preempted by a real-time thread in the middle of that
section. Remember that domains connected through the interrupt pipeline (e.g., Xen-
omai and Linux) are totally independent, so the high-priority Xenomai domain can
never be delayed by the activity of a lower-priority domain. Therefore, regular Linux
spinlocks and local interrupt disabling won’t protect the Linux kernel from preemption
by the Xenomai core. If the real-time task then changes or reads data that the critical
section is in the middle of changing, application and operating system errors can result.

The solution to such conflicts is two-fold:

• A Xenomai thread may be exclusively controlled either by the Xenomai co-kernel
or the Linux kernel at any given time. When the co-kernel is managing the real-
time thread, it may use Xenomai’s deterministic system calls. When the Linux
kernel is in control, the thread may enter regular Linux system calls—but with no
real-time guarantees. Xenomai calls these contexts the primary (i.e., Xenomai-
controlled) and secondary (i.e., Linux-controlled) modes.

A

B

B

A

Preemption

Critical
section entry

Critical
section exit

A

B

A

Critical
section entry

Unsafe Linux
reentry

Linux activity

Xenomai activity

Figure 13-5. The dual kernel issue

378 | Chapter 13: The Xenomai Real-Time System

• Xenomai automatically put its threads in the right mode as needed when system
calls are issued, so that the mechanism remains transparent from the application’s
point of view. Switching modes boils down to moving a Xenomai thread from one
kernel’s scheduler to the other. This mechanism is called domain migration.

Figure 13-6 sums up the relationships between the interrupt pipeline (I-pipe), the Xen-
omai and Linux domains, and the real-time applications that move between them as
various interrupts, system calls, and other events require their services.

The Real-Time Driver Model
Developing real-time device drivers for a dual kernel architecture has certainly been
one of the most painful tasks in real-time programming, at least when the driver has to
do more than sending a few bytes polled from a wire over a FIFO to a user space process.
The issues one had to face often led to reinventing the Linux driver framework wheel
on a driver-by-driver basis.

The key requirement is that we must stick exclusively to calling co-kernel services
within real-time drivers in order to keep predictable latencies, as well as reliability. But
it is impossible for the standard character device interface in glibc, such as open(),
read(), write(), and ioctl(), to provide predictable latencies. In other words, the ker-
nel split between Linux and the real-time extension implies a driver interface split as
well.

This situation has led too often to the following issues:

• Device driver developers had to devise an ad hoc solution for their application to
call into the driver in order to submit their requests and get results back. One
example of such kluges provides a real-time safe FIFO. Another is a piece of system
memory coupled to some common IPC, shared between a real-time helper that did
the job in kernel space and the user space process.

Interrupts

Syscalls

Exceptions

Xenomai domain (primary)

Linux domain (secondary)

Xenomai
threadsIRQ control

IRQ control

Figure 13-6. Dual kernel support for real-time tasks

The Real-Time Driver Model | 379

In all these cases, an entirely nonstandard protocol had to be designed just to im-
plement a driver. Obviously, such an interface had little chance for reuse when
porting the driver to another real-time extension.

• Because the regular Linux kernel API was unsuited to implementing the driver, one
had to base it on a specific API provided by the underlying real-time extension. For
instance, a co-kernel-based device driver may not use a plain Linux mutex or wait
in the queue to perform its duty; it ought to obtain the equivalent resources from
the real-time kernel instead. Therefore, changing to another Linux real-time ex-
tension could require porting the driver code to a new API as well.

To sum up, developers of real-time device drivers have been confronted by the lack of
a common framework that would define a normalized interface between the real-time
kernel and the device driver, as well as between the user space process and the device
driver.

The nightmare is now over, because a common framework is now available in the form
of the Real-Time Driver Model (RTDM) by Jan Kiszka and Jörg Langenberg.† RTDM
has been supported by Xenomai since its early stages.

Major contributions based on RTDM include the following:

• The well-known Comedi framework (http://www.comedi.org), used to develop
drivers and various tools for data acquisition, is currently being ported to Xenomai
over the RTDM layer by Alexis Berlemont.

• A real-time protocol stack for Controller Area Network (CAN) devices, imple-
mented by Sebastian Smolorz and Wolfgang Grandegger and named RT-Socket-
CAN, is based on the BSD-like socket interface supplied by RTDM. It is available
from the standard Xenomai distribution.

In addition to Xenomai, RTDM has been ported to the native preemption technology
(PREEMPT_RT) and RTAI as well, therefore delivering on its promise to unify the
interfaces for developing device drivers and their applications under real-time Linux.

RTDM Mediation
RTDM acts as a mediation layer connecting a real-time application process to the serv-
ices exported by a device driver. Each device driver may belong to one of two classes:

Protocol drivers
These expose a socket interface, and are therefore well suited to managing message-
oriented communication with real-time devices. A userland library wraps the
standard socket calls (e.g., socket(), send()/sendto(), recv()/recvfrom(), etc.)
around Xenomai system calls that invoke callbacks in the device driver that oper-
ates the requested protocol family.

† http://www.xenomai.org/documentation/branches/v2.4.x/pdf/RTDM-and-Applications.pdf

380 | Chapter 13: The Xenomai Real-Time System

http://www.comedi.org
http://www.xenomai.org/documentation/branches/v2.4.x/pdf/RTDM-and-Applications.pdf

Named devices
These are comparable to character devices in the Linux device driver model. They
are named with an arbitrary text label defined by the driver. The named device has
no counterpart whatsoever within the standard Linux device hierarchy; it exists
only within the RTDM layer, in parallel with the regular Linux device namespace.
Here again, the userland library wraps the standard POSIX 1003.1 routines for
I/O communication (e.g., open(), read()/write(), ioctl(), etc.) into Xenomai
system calls that invoke the device driver that matches the name originally passed
to open().

Figure 13-7 shows the role RTDM plays in relation to Xenomai and the two device
classes.

The following code illustrates an RTDM-based named device driver. It implements a
simple hardware polling loop performed by a real-time task in kernel space, which
periodically wakes up a userland process waiting for some event to be signaled.

Because we want low and strictly bounded latencies, we cannot rely on the regular
kernel_thread() function to run the polling task; similarly, we need the userland proc-
ess to resume execution within a short and bounded delay once the event flag it waits
for has been signaled. Therefore, we will use the RTDM driver API to provide both the
task and the event flag, which are based exclusively on the Xenomai core, not on the
host kernel services.

However, the implementation of real-time device drivers should be based on a driver
framework that remains as close as possible to the Linux one:

struct rtdev_context {
 rtdm_task_t task;
 rtdm_event_t event;
};

static void task_body(void *arg)

Device Driver

RTDM skin

Xenomai nucleus

Linux syscall interface

Application

I/O request

Figure 13-7. RTDM mediation

The Real-Time Driver Model | 381

{
 struct rtdev_context *ctx = (struct rtdev_context *)arg;

 /*
 * Tell RTDM that we want to be scheduled periodically, with a
 * 100 microsecond base period.
 */
 rtdm_task_set_period(&ctx->task, 100000);

 while (1) {
 /* Wait for the next release point in the timeline. */
 rtdm_task_wait_period();
 poll_hardware();
 /* Signal the event userland waits for. */
 rtdm_event_pulse(&ctx->event);
 }
}

int rtdev_open(struct rtdm_dev_context *context,
 rtdm_user_info_t *user_info, int oflags)
{
 struct rtdev_context *ctx = context->dev_private;

 /*
 * Userland just called open("/dev/rtdev", ...); so set up a
 * driver context for the new channel. We first initialize the
 * event flag, then tell RTDM to start the polling task, with
 * priority 72.
 */

 rtdm_event_init(&ctx->event, 0);

 return rtdm_task_init(&ctx->task, "rtdev", &task_body, ctx, 72, 0);
}

int rtdev_close(struct rtdm_dev_context *context,
 rtdm_user_info_t *user_info)
{
 struct rtdev_context *ctx = context->dev_private;

 /* Userland just closed the file; do some housekeeping here. */
 rtdm_event_destroy(&ctx->event);
 rtdm_task_destroy(&ctx->task);

 return 0;
}

int rtdev_ioctl_rt(struct rtdm_dev_context *context,
 rtdm_user_info_t * user_info, unsigned int request, void *arg)
{
 struct rtdev_context *ctx = context->dev_private;
 int ret;

 /*
 * The only request this driver honors is to wait for the next

382 | Chapter 13: The Xenomai Real-Time System

 * pulse sent by the polling task, then copy back some data
 * received from the hardware. We won't specify what this data
 * may be here.
 */

 switch (request) {

 case DEMO_RTIOC_RTDEV_WAIT:
 /* Wait for task_body() to wake us up. */
 ret = rtdm_event_wait(&ctx->event);
 if (!ret)
 ret = rtdm_safe_copy_to_user(user_info, arg,
 &hwdata, sizeof(hwdata));
 break;

 default:
 ret = -EINVAL;
 }

 return ret;
}

static struct rtdm_device device = {
 struct_version:RTDM_DEVICE_STRUCT_VER,

 .device_flags = RTDM_NAMED_DEVICE,
 .context_size = sizeof(struct rtdev_context),
 .device_name = "rtdev",

 .open_rt = NULL,
 .open_nrt = rtdev_open,

 .ops = {
 .close_rt = NULL,
 .close_nrt = rtdev_close,
 .ioctl_rt = rtdev_ioctl_rt,
 .ioctl_nrt = NULL,
 },

 .device_class = RTDM_CLASS_DEMO,
 .device_sub_class = RTDM_SUBCLASS_RTDEV,
 .driver_name = "rtdev",
 .driver_version = RTDM_DRIVER_VER(0, 0, 0),
 .peripheral_name = "RTDM-compliant demo device driver",
 .proc_name: device.device_name,
};

int __init __rtdev_init(void)
{
 /* Make this driver known to RTDM. */
 return rtdm_dev_register(&device);
}

void __rtdev_exit(void)
{

The Real-Time Driver Model | 383

 rtdm_dev_unregister(&device, 1000);
}

In the rtdm_device structure, you can see an entry for each of the interface routines the
driver implements, such as open_rt() and open_nrt(). As their suffixes tells us, those
routines are invoked by RTDM depending on the calling context. It calls open_rt() for
a real-time operation controlled by the Xenomai scheduler and open_nrt() for a
standard operation controlled by the Linux scheduler.

For instance, if opening the device should be a time-bounded real-time operation,
RTDM must call the real-time entry point, which in turn may only use co-kernel serv-
ices. On the other hand, if the operation is not time-critical or needs services from the
Linux kernel API, then RTDM should call the non-real-time entry point. It is up to the
developer to provide only one entry point, or both of them, depending on the desired
behavior.

RTDM over Xenomai will pick the best context matching routine depending on the
calling context and available entry points. For instance, our previous example does not
define any real-time entry point for the open() operation. Therefore, real-time callers
will be downgraded to a plain Linux mode before the open_nrt callback is invoked.
Conversely, a Xenomai thread currently controlled by the Linux scheduler will be
switched back to its primary mode—i.e., real-time—before the open_rt callback is fired.

A typical application process using the driver we previously sketched out may be as
follows. This code would have to link against a Xenomai library that wraps RTDM
calls. Xenomai’s POSIX interface provides such a wrapping, and can be used to create
a real-time thread (running the test_thread() function in the following example) that
communicates with the driver through the RTDM-wrapped open() and ioctl() calls:

void *test_thread(void *arg)
{
 int ret;

 for (;;) {
 ret = ioctl(fd, DEMO_RTIOC_RTDEV_WAIT, &hwdata);

 if (ret) {
 perror("ioctl failed");
 pthread_exit(EXIT_FAILURE);
 }
 }
}

int main(int argc, char *const argv[])
{
 struct sched_param param = { .sched_priority = 70 };
 pthread_attr_t attr;
 pthread_t tid;
 int fd;

 mlockall(MCL_CURRENT | MCL_FUTURE);

384 | Chapter 13: The Xenomai Real-Time System

 fd = open("/dev/rtdev", O_RDWR);

 if (fd < 0)
 error(1, errno, "open failed");

 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
 pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
 pthread_attr_setschedpolicy(&attr, SCHED_FIFO);
 pthread_attr_setschedparam(&attr, ¶m);
 pthread_create(&tid, &attr, &test_thread, NULL);

 pthread_join(&tid, NULL);

 return 0;
}

This code snippet also illustrates an interesting aspect of Xenomai’s POSIX skin, which
comes as close as possible to the regular Linux programming model. The POSIX skin
is a drop-in replacement for a number of services normally available from the Linux
kernel through glibc. Xenomai implements real-time counterparts that ensure short
and predictable response times. In the previous example, we actually used the Xenomai
implementation of pthread_create(), pthread_join(), open(), and ioctl(). All other
POSIX services invoked from this code are still obtained from the standard glibc.

Thus, calls from Xenomai’s POSIX implementation can be mixed with a standard
RTOS POSIX implementation such as Linux in a single application. Xenomai threads
are allowed to invoke both kinds, although only the Xenomai-provided ones guarantee
real-time behavior. The Xenomai interface library will automatically relay the requests
it cannot handle to the regular glibc, such as when opening a non-RTDM device.

Xenomai, Chameleon by Design
Xenomai currently exhibits a dual kernel architecture based on the lightweight and
mature Adeos/I-pipe virtualization layer. It is available for various platforms at low
engineering and maintenance costs. This approach has the following key advantages:

• It decouples Xenomai from the development cycle of mainline Linux, which gives
the developer more freedom in selecting the kernel base and reduces the impact
that potential regression failures in the standard kernel may have on the real-time
subsystem.

• It protects Xenomai applications from regular applications that behave badly, be-
cause Xenomai applications are not controlled by the same kernel when they run
in real-time mode.

• Xenomai developers and embedded developers alike can track real-time problems,
such as unexpected latencies, by looking for causes in the co-kernel domain. This
involves auditing much less code than the regular kernel.

Xenomai, Chameleon by Design | 385

• Co-kernels are inherently lightweight, because they rely on the host kernel to pro-
vide non-time-critical services, which represent most of the feature set. Conse-
quently, the price of implementing real-time guarantees in the system is paid only
by the applications that require them. In other words, the Linux host kernel does
not have to deal with real-time issues at all, aside from virtualizing the interrupt
mask, which is a cheap operation.

However, this design excludes all the regular Linux drivers and libraries that rely on
the standard kernel from the real-time domain, because they are not served by the co-
kernel. In a number of application cases, this requirement may be a significant draw-
back, particularly when the implementation entangles non-real-time and time-critical
activities, or simply because having regular drivers with bounded response times would
fit the system’s need at a lower engineering cost.

Additionally, Xenomai is primarily about supporting traditional RTOS APIs over a
Linux-based real-time framework so that projects can migrate legacy applications to
Linux at a lower cost. In some cases, the dual kernel approach is the right one; in other
cases, a fully native real-time Linux framework would deliver a better port. In any case,
getting the best possible trade-off between Linux integration and real-time predicta-
bility should be the decisive factor in picking the right base technology.

As a matter of fact, the PREEMPT_RT effort‡ opens up a promising path to getting
short, bounded latencies within a single kernel system for a variety of real-time appli-
cation profiles and platforms.

Because the goal of the Xenomai project is to ease the porting of applications from
traditional RTOSes to Linux, PREEMPT_RT creates opportunities to extend its rele-
vance as a migration tool, provided the emulation technology is fully ported to a single-
image real-time kernel.

At the time of this writing, as of Linux kernel 2.6.24, the Xenomai emulators are being
ported to PREEMPT_RT-enabled kernels. This effort, codenamed Xenomai/SOLO, is
taking place in parallel with the normal development of the dual kernel version. It is
cosponsored by the Open Source Automation Development Lab (http://
www.osadl.org), DENX Software Engineering (http://www.denx.de), and the Xenomai
project. This purely native implementation, coupled with the already existing native
version of the RTDM layer, will complete the jigsaw puzzle.§ Traditional real-time
applications will be ported more easily to Linux, keeping all options open for selecting
the underlying kernel technology used to support them, and taking advantage of a
growing base of drivers for industrial devices.

‡ http://people.redhat.com/mingo/realtime-preempt

§ http://www.osadl.org/RTDM-native.howto-rtdm-native.0.html#introduction

386 | Chapter 13: The Xenomai Real-Time System

http://www.osadl.org
http://www.osadl.org
http://www.denx.de
http://people.redhat.com/mingo/realtime-preempt
http://www.osadl.org/RTDM-native.howto-rtdm-native.0.html#introduction

Over the past few years, there has been a large effort in the Linux community to convert
the Linux kernel into a true real-time operating system (RTOS), without the help of a
microkernel. In order to achieve this, several changes to the kernel were necessary. For
Linux to behave properly in a real-time environment, interrupt service routines must
not be able to unconditionally preempt any process running on the CPU, protection
for critical sections needs to be narrowed to block only those processes that might access
them, and unbounded priority inversion must not be allowed. The pros and cons of
native Linux real-time versus an accompanying microkernel were covered in Chap-
ter 12.

In the past, several people have tried to implement a full real-time Linux kernel. Some
have even built their businesses around it. In the 2.2 and 2.4 Linux time frame, TimeSys,
a small real-time Linux company, branched off from the mainline kernel (the kernel
provided by kernel.org), to create and support its own kernel that implemented the
changes just mentioned. But maintaining a kernel outside the mainline Linux tree has
proven to be very difficult.

Ingo Molnar, a major contributor to the Linux kernel, showed up on the real-time scene
after watching others work on their efforts to turn the Linux kernel into an RTOS.
Seeing some of the benefits of having real-time capabilities in Linux, Molnar started his
own patch against the mainline kernel to add real-time features.

Molnar’s approach was slightly different from others because his viewpoint was not
that of real-time developers trying to convert Linux to their environment, but rather
that of a long-term Linux kernel hacker giving the system some real-time features that
would improve the user’s experience. Soon after Molnar started his RT patch, several
other kernel developers joined him on his quest, and it evolved from Molnar’s experi-
ment to a robust real-time alternative. Many of the features that were developed in the
RT patch have already made it into the mainline kernel. Some of these features include
high-resolution timers, kernel lock validation, generic interrupts for all architectures,
robust futexes, and even priority inheritance. We’ll explain some of these features, and
others that are being developed, in the following sections.

CHAPTER 14

The RT Patch

387

Interrupts As Threads
The current Linux kernel* has several methods of handling the work of devices. When
a device performs an asynchronous event that requires action by the CPU and interrupts
are enabled, the device sends an interrupt signal that preempts the CPU from whatever
it was doing to perform the interrupt service routine (ISR) for the device that issued the
interrupt. The ISR is executed at a higher priority than any user task, and with interrupts
disabled on the CPU or, at the bare minimum, with the current interrupt line masked
off. So, the only thing that can preempt an ISR is another interrupt, and only if the ISR
is nice enough to turn interrupts back on.

A well-written device driver puts as little work as possible into the ISR and pushes other
work to a kernel thread, a tasklet, or a softirq. These are the other methods that Linux
provides for devices to finish the work needed by asynchronous events, such as device
activity.

A softirq is a service routine that is performed after the return of an ISR and before
resuming the process that was interrupted. If too many softirqs are queued, the kernel
wakes up a high-priority kernel thread (ksoftirqd) to finish them. There’s been debate
in the kernel development as to what qualifies as “too many softirqs.” The ksoftirqd
thread is started whenever a softirq is started with interrupts disabled, or if a softirq
routine is processed more than once before returning back to the process that was
preempted.

A tasklet is similar to a softirq in that it also occurs after an ISR and before resuming
the interrupted process. The difference between a softirq and a tasklet is that the same
softirq can run simultaneously on two separate CPUs, whereas a tasklet cannot. A
softirq therefore has to use locks to protect against concurrent accesses to any nonlocal
data or other resources, whereas a tasklet does not; in other words, a tasklet need not
be reentrant.

Another difference between tasklets and softirqs is that a tasklet function may run on
a different CPU from the one that raised (triggered) the tasklet. Tasklets are in fact
implemented by a softirq. The softirq function that implements tasklets just makes sure
that two tasklet functions are not running at the same time. This also means that tasklets
can be executed by the ksoftirqd thread.

A kernel thread is a thread that runs only within the kernel, and can be awakened by
an ISR to handle any work left to be completed by an interrupt service routine, so that
the ISR can return quickly and allow whatever process or kernel activity was preempted
to resume. A kernel thread acts much like other threads in Linux. It can be scheduled,
have its priority changed, run on given CPUs, and be manipulated by the system
administrator like any other thread in the system.

* 2.6.22 as of this writing.

388 | Chapter 14: The RT Patch

In this case, the ISR would usually utilize a work queue. A work queue is a kernel utility
that, like its name suggests, queues up work to be run in a worker kernel thread. There
is a generic worker kernel thread called keventd that will execute work functions by the
kernel if the kernel did not allocate a specific work queue. Any work queued to the
generic keventd thread needs to wait for all the previous work functions that were
queued ahead of it, because a queue handles work in a FIFO order.

A kernel thread entails a bit more overhead than a softirq or tasklet but is much more
flexible. A softirq and tasklet under the non-RT Linux kernel cannot be preempted by
any process at any priority. Conversely, a softirq and tasklet can preempt any process.
So, even though the overhead of a kernel thread is slightly more than a softirq and
tasklet, it allows the kernel scheduler to be more flexible and gives more control to the
system administrator. (However, kernel threads may ignore signals.) This flexibility is
especially important to running a real-time environment.

When a routine is performed by an ISR, softirq, or tasklet, any process that is running
on the CPU will be preempted by it. They will even preempt kernel threads that are
doing work for other devices. This Linux behavior effectively creates a policy that makes
ISRs, softirqs, and tasklets the highest-priority events in the system. In order to lower
latencies that these routines impose on the system, the RT patch transforms them all
into kernel threads.

Hard IRQs As Threads
A hard interrupt request (IRQ) is a sort of envelope around an ISR, lasting from the
time the interrupt preempts the CPU to the time the ISR returns the CPU back to normal
processing. This can lead to interrupt inversion, where an interrupt service routine takes
time away from a high-priority process in order to perform work that is of lower priority.
Figure 14-1 illustrates the latency caused by an ISR that takes away processing time
from a high-priority process. The latency consists of both arrows labeled “context
switch,” in addition to the ISR running time.

Obviously, we cannot keep the hardware interrupt from preempting the CPU. But the
RT patch shortens the time of interrupt inversion to a bare minimum. It does this by
converting the interrupt handlers into threads. When an interrupt is triggered, the ISR
just wakes up a kernel thread that will run the function registered by the device driver,
instead of the ISR running the interrupt handler itself. Figure 14-2 illustrates the RT
patch’s handling of interrupts.

When an interrupt is triggered, whatever is currently executing on the CPU will still be
preempted. But this time, the only activity performed before returning to the previous
process or thread is the masking of the interrupt line and the waking of the interrupt
service thread. If the interrupt service thread is of a higher priority than the currently
running thread, it will be immediately scheduled and preempt the process that the
interrupt preempted. If the original thread was of a higher priority than the interrupt
service thread, processing continues with the original thread, and the interrupt service

Interrupts As Threads | 389

thread is either scheduled on another CPU or has to wait for the higher-priority thread
to voluntarily give up the CPU.

A few interrupt handlers still run as normal interrupt service routines
instead of waiting to run in another thread; the most notable example
is the timer interrupt. The RT patch tries to make the timer interrupt
return as fast as possible to limit latencies that it can cause.

Hi Prio Task

Interrupt
Handler

Interrupt

Figure 14-1. Interrupt inversion

Hi Prio Task

Interrupt

wake_up(thread);

schedule()
Interrupt
Handler

Figure 14-2. Threaded interrupt handling

390 | Chapter 14: The RT Patch

The threads that are created to service the interrupts are named IRQ_n, where n is the
number of the interrupt vector. One can see these threads in the ps command:

$ ps -e -o pid,rtprio,comm | grep IRQ
 41 50 IRQ-9
 769 50 IRQ-14
 771 50 IRQ-15
 784 50 IRQ-12
 785 50 IRQ-1
 1714 50 IRQ-8
 1722 50 IRQ-20
 1730 50 IRQ-21
 1751 50 IRQ-19
 1762 50 IRQ-22
 1772 50 IRQ-16
 1774 50 IRQ-7
 1839 50 IRQ-17
 1918 50 IRQ-18
$ cat /proc/interrupts
 CPU0
 0: 91 IO-APIC-edge timer
 1: 31336 IO-APIC-edge i8042
 7: 0 IO-APIC-edge parport0
 8: 0 IO-APIC-edge rtc
 9: 517591 IO-APIC-fasteoi acpi
 12: 368 IO-APIC-edge i8042
 14: 257832 IO-APIC-edge ide0
 15: 950323 IO-APIC-edge ide1
 16: 1 IO-APIC-fasteoi yenta
 17: 1 IO-APIC-fasteoi yenta
 18: 27 IO-APIC-fasteoi Intel 82801DB-ICH4 Modem, Intel 82801DB-ICH4
 19: 1288060 IO-APIC-fasteoi uhci_hcd:usb3, wifi0
 20: 163173 IO-APIC-fasteoi uhci_hcd:usb1, eth0
 21: 0 IO-APIC-fasteoi uhci_hcd:usb2
 22: 2 IO-APIC-fasteoi ehci_hcd:usb4
NMI: 0
LOC: 32797885
ERR: 0
MIS: 0

The previous listing shows how all the interrupts besides the timer interrupt have their
service routines handled by threads. The default priority of all IRQ threads is 50, but
it is easy to change them. In the following example, run as the root user, we modify the
priority of the interrupt service thread for the Ethernet NIC to a priority of 80. The
chrt utility is supplied with most distributions in an auxiliary package:

chrt -p -f 80 1722
ps -e -o pid,rtprio,comm | grep IRQ
 41 50 IRQ-9
 769 50 IRQ-14
 771 50 IRQ-15
 784 50 IRQ-12
 785 50 IRQ-1
 1714 50 IRQ-8
 1722 80 IRQ-20

Interrupts As Threads | 391

 1730 50 IRQ-21
 1751 50 IRQ-19
 1762 50 IRQ-22
 1772 50 IRQ-16
 1774 50 IRQ-7
 1839 50 IRQ-17
 1918 50 IRQ-18

On this system, the interrupt vector number for eth0 is 20. (This can be determined by
examining /proc/interrupts.) The ps command after the change of priority shows that
that IRQ-20 (pid 1722) now has a priority of 80. Now this interrupt service thread will
have a higher priority than any of the other interrupt service threads. Thus, having
interrupts handled via threads gives the system administrator the ability to prioritize
interrupts even when the hardware does not support prioritized interrupts.

The system administrator must understand how threaded interrupts affect the system.
The RT patch allows for user processes to run at a higher priority than interrupt han-
dlers. This can have dire results if a process goes into an infinite loop waiting to be
preempted by an event that is running at a lower priority than the process doing the
loop.

We’ll use the following code for an example (but you don’t need to understand the
code to follow the explanation of the problem):

int signal_me;

int do_listen(in_port_t port) {
 int sockfd;
 struct sockaddr_in sin;

 if ((sockfd = socket(PF_INET, SOCK_STREAM, 0)) < 0)
 return -1;

 memset(&sin, 0, sizeof(sin));
 sin.sin_family = AF_INET;
 sin.sin_port = htons(port);
 sin.sin_addr.s_addr = htonl(INADDR_ANY);

 if (bind(sockfd, (struct sockaddr*)&sin, sizeof(sin)) < 0)
 goto out_err;

 if (listen(sockfd, 5) < 0)
 goto out_err;

 return sockfd;

 out_err:
 close(sockfd);
 return -1;
}

void *run_listener(void *unused)
{
 int fd;

392 | Chapter 14: The RT Patch

 fd = do_listen(4321);
 if (fd < 0) {
 perror("bad listen");
 exit(-1);
 }

 while (1) {
 int cfd;
 struct sockaddr_in in;
 socklen_t len;

 cfd = accept(fd, (struct sockaddr*)&in, &len);
 if (cfd < 0) {
 perror("can't accept");
 exit(-1);
 }
 signal_me = cfd + 1;
 }
 close (fd);
 return NULL;
}

void *run_worker(void *unused)
{
 while (1) {
 /*
 * [...]
 * doing some work
 * [...]
 */
 if (signal_me) {
 signal_me = 0;
 printf("handle the single!\n");
 sleep(100);
 }
 }
 return NULL;
}

Two threads are created to run the functions: run_listener and run_worker. The worker
thread is off doing some algorithm and is expecting to receive a packet from some other
machine. When the packet is received, the listener thread will accept it and signal the
worker thread to stop its loop and handle the packet. The signaling is achieved by a
global shared variable, signal_me, that both threads have access to.

Now, let’s assume that the listener thread is of higher priority than the worker thread,
since it needs to preempt the worker thread to signal it. If the system administrator did
not have a good understanding of the system and set both these threads at a higher
priority than the network interrupt thread or the softirq thread, then he will have a little
surprise when none of this actually works. For an external network packet to make it
to the listener thread, both the interrupt thread that services the network interface card
and the network softirqs will need to be of higher priority than the worker thread.

Interrupts As Threads | 393

Otherwise, the worker thread will not be preempted by the packet being received, and
the work done by the worker thread will continue to run and prevent anything of lower
priority from running on that CPU. The end result would appear to be a system hang.
If all other threads are of lower priority than the worker thread, no other threads will
be able to capture control of the CPU.

Interrupts and CPU Affinities
An operating system scheduler on a multiprocessor system tries to keep each thread on
the CPU where it started in order to prevent expensive cache flushes. This tendency is
called CPU affinity. It is very important to note that the CPU affinity of an IRQ thread
is determined by the CPU affinity of the interrupt itself. Every time the interrupt handler
executes, it compares the thread CPU affinity to that of the interrupt affinity. If they
are different, the interrupt service thread affinity is updated to that of the interrupt
affinity. So, if you want to set the affinity of the interrupt service thread, simply set the
affinity of the interrupt. We’ll show the impact of this rule with an example that plays
with the affinity of the interrupt service thread, as well as the interrupt itself:

 # cat /proc/interrupts | grep ide0
 14: 13602 1720 IO-APIC-edge ide0
 # ps ax | grep IRQ-14
 790 ? S< 0:00 [IRQ-14]

The system used two CPUs, as can be seen in the first output. The IDE0 controller with
interrupt 14 went off 13,602 times on CPU 0 and 1,720 times on CPU 1. The ps
command helped the pid (790) of the interrupt service thread for IRQ 14.

In the commands that follow, a simple check of the /proc filesystem reveals the affinity
of the interrupt: it’s bound to CPU 0 (which is represented by the affinity mask of 1).
We then try to manipulate the affinity:

 # cat /proc/irq/14/smp_affinity
 1
 # taskset -p 790
 pid 790's current affinity mask: 1
 # taskset -p 2 790
 pid 790's current affinity mask: 1
 pid 790's new affinity mask: 2
 # taskset -p 790
 pid 790's current affinity mask: 2
 # cat /proc/irq/14/smp_affinity
 1

The first taskset command just shows the affinity of the IRQ 14 interrupt service thread
(pid 790). It also has the affinity of CPU 0. Next, we try an incorrect way of changing
the interrupt service thread’s CPU affinity mask by using taskset to set the thread’s
affinity to CPU 1 (the CPU affinity bitmask of 2 corresponds to CPU 1). A recheck of
the /proc/irq/14/smp_affinity file shows that changing the CPU affinity of the interrupt
service thread had no effect on the affinity of the IRQ. Furthermore, the scheduler will

394 | Chapter 14: The RT Patch

reset the affinity of the interrupt service thread when it runs so that it matches the IRQ,
so our taskset command was wasted.

Now for the correct approach:

 # echo 2 > /proc/irq/14/smp_affinity
 # cat /proc/irq/14/smp_affinity
 2

We echo the new bitmask of 2 (corresponding to CPU 1) into the proc file to set the
affinity of the IRQ to CPU 1. Let’s change it back to CPU 0 and see the effect on the
interrupt service thread:

taskset -p 790
 pid 790's current affinity mask: 2
 # echo 1 > /proc/irq/14/smp_affinity
 # taskset -p 790
 pid 790's current affinity mask: 2
 # ls -lR / > /dev/null
 # taskset -p 790
 pid 790's current affinity mask: 1

We had previously set the affinity of the interrupt service thread to CPU 1, shown by
the first taskset command in the previous output. Changing the CPU affinity of the IRQ
back to CPU 0 in the echo command seems at first not to change the affinity of the
interrupt service thread. But the thread’s affinity doesn’t update to the interrupt’s af-
finity until an interrupt is triggered. So, we enter ls -lR / to trigger some IDE interrupts.
After that, we can see the interrupt service thread’s affinity went back to CPU 0.

With the latest RT patch the interrupt service thread’s affinity (this may change in the
future) follows that of the IRQ affinity. Changes don’t take place on the thread’s affinity
until after the first interrupt has occurred since the change was made to the IRQ affinity.

Softirqs As Threads
Softirqs can also create priority inversion. A softirq runs with interrupts enabled so that
other interrupts may come in, but they still preempt all threads, including kernel
threads. Softirqs can actually cause more harm than kernel threads, because they usu-
ally run the routines for the device that take longer to handle. This means that a softirq
will cause a longer latency than an interrupt.

Originally, the RT patch simply made all softirqs run under the ksoftirqd thread. This
gives the system administrator the ability to place high-priority threads at a higher
priority than softirqs. The problem with this approach is that all softirqs are grouped
as one priority and handled by a single thread per CPU. If the system administrator
wanted to give a process that was accessing the network a higher priority than a process
that was accessing the disk drive, the end result would not be the desired one, as the
disk drive softirq routines would run at the same priority as the network softirq rou-
tines. Any work done by a process doing disk I/O could cause long latencies for the
high-priority process accessing the network.

Interrupts As Threads | 395

Currently, the RT patch separates each softirq routine to run as a separate thread. A
softirq thread is created for each CPU, and that thread is bound to the CPU to which
it was assigned. This is to maintain consistency with the semantics of the mainline
kernel, which always runs a softirq routine on the CPU where it was initiated, and
allows the softirq routine to run on multiple CPUs at the same time.† These softirq
threads are visible by the user the same way the interrupt service threads are, through ps:

$ ps -e -o pid,rtprio,comm | grep sirq
 5 50 sirq-high/0
 6 50 sirq-timer/0
 7 50 sirq-net-tx/
 8 50 sirq-net-rx/
 9 50 sirq-block/0
 10 50 sirq-tasklet
 11 50 sirq-sched/0
 12 50 sirq-hrtimer
 13 50 sirq-rcu/0
 17 50 sirq-high/1
 18 50 sirq-timer/1
 19 50 sirq-net-tx/
 20 50 sirq-net-rx/
 21 50 sirq-block/1
 22 50 sirq-tasklet
 23 50 sirq-sched/1
 24 50 sirq-hrtimer
 25 50 sirq-rcu/1

The names of the softirq threads are defined as softirq-name/n, where name is the name
assigned to the softirq and n is the number of the CPU. Since the name field is only 16
characters long, and 1 character is needed to hold the end-of-string character, the names
shown are truncated at 15 characters. The CPU affinitity of these threads can be viewed
using the taskset command:

$ taskset -p -c 10
pid 10's current affinity list: 0
$ taskset -p -c 22
pid 22's current affinity list: 1

Even though the CPU number part of the softirq thread for tasklets has been truncated,
you can still see the CPU that it was bound to using taskset. These kernel threads for
softirqs must remain on the CPU to which they were assigned. Forcing them onto other
CPUs will have undefined results, and may lock up the system. These threads stay in
a sleep state until something on that CPU triggers them, so if you do not have processes
that will wake them up on a given CPU, they will never interfere with the processes on
that CPU.

† Remember that the same softirq routine may run on separate CPUs at the same time, but tasklet routines
cannot.

396 | Chapter 14: The RT Patch

Softirq Optimization During Interrupt Handling
Like interrupt service threads, the priorities of the softirqs are also set at 50 by default.
Since scheduling of interrupt service threads and softirq threads requires a context
switch, the RT patch performs a slight optimization. The interrupt service threads are
the most common threads to trigger a softirq. As mentioned earlier, in the mainline
kernel, softirqs are performed upon return from an interrupt. The RT patch has a check
in the interrupt service routine loop, after the call to the driver’s handler, to see whether
there are any pending softirqs on the current CPU that have the same priority as the
interrupt service thread. If so, the interrupt service thread runs the softirq functions
and eliminates the need to context switch to the softirq thread.

This optimization makes it slightly advantageous to keep the interrupt service threads
at the same priority as the corresponding softirq threads. The main users of this opti-
mization are probably the NIC interrupt service thread matching the softirq-net-rx and
softirq-net-tx threads, and the disk drive interrupt service threads matching the softirq-
block threads.

But there also comes a risk with letting the interrupt service thread run the function of
a softirq. A softirq function must always stay on the CPU it was assigned. So, while the
interrupt executes the softirq function, it too must be bounded to the CPU. If a higher-
priority process on that CPU preempts the interrupt service thread while it is bound to
a single CPU, that interrupt line will no longer run the interrupts handlers until the
higher-priority process releases the CPU back to the interrupt service thread. Due to
this problem, this feature may either go away, or will most likely be redesigned in the
future.

Softirq Timer Threads
The timer softirq threads are generally the most important for an RT system adminis-
trator to understand. These are the threads that control timing events. The softirq-timer
thread handles most timeouts in the system, including the networking layer timeouts.
Usually, it is not crucial for these to be executed on time, even for RT systems.

The softirq-hrtimer thread is a bit more important. It thread handles the POSIX timer
implementations. If your RT application is using POSIX timer calls, such as
timer_create, you must be aware of the impact of the softirq-hrtimer thread’s priority.

Timing events that happen through the timer_create POSIX system call register a
function to be called by the hrtimer subsystem, which uses the softirq-hrtimer thread
to handle the functions that are registered to it. A high-priority process that expects an
interrupt from POSIX timers must be of lower priority than the softirq-hrtimer thread.
Otherwise, when the timer goes off, the function to signal the high-priority process may
be starved by the high-priority process itself. If this signal is used to inform the high-
priority process to stop some sort of loop, the system may hang, because the high-
priority process may never give up the CPU.

Interrupts As Threads | 397

There is development going on that will allow the hrtimer thread to take
on a dynamic priority. What this means is that the hrtimer-softirq thread
will take on the priority of the timer that it will execute, which in turn
is derived from the priority of the the task that requested the timer. This
feature has been included on various versions of the RT patch, but be-
cause of the way Linux is currently designed, it has caused some tech-
nical difficulties. A future version of the RT patch will eventually include
this feature again, and at that point there will be no need to worry about
the priority of the hrtimer-softirq thread because it will automatically
change its priority to that of the process that requested the timer.

An RT application must be aware of its use of POSIX timers. If all parts of the appli-
cation, from low-priority to high-priority processes, use POSIX timers, the lower-
priority processes may cause latencies within the higher-priority process when their
timers are triggered. These latencies are not particularly critical as long as they are
accounted for. A lower-priority process still cannot cause much harm to a higher-
priority process by using POSIX timers, even when the higher-priority process is lower
in priority than the softirq-hrtimer thread. The only thing that preempts the higher-
priority process through the softirq-hrtimer thread is the processing of the timer to send
a signal to the lower-priority process.

At the time of this writing, the RT patch’s handling of POSIX timers forces each timer
intervals to be at least one jiffie, promoting it to a jiffie if a shorter time is requested.‡

This is to keep the softirq-hrtimer thread from starving if the signal process ignores the
signal it is supposed to receive from the timer. Ignored signals cause a re-triggering of
the softirq-hrtimer thread. This also prevents lower-priority processes from doing more
than one timer event per jiffy that would preempt a higher-priority process, and thus
would allow the latency caused by lower-priority processes to overrun the system.

The nanosleep system call is not affected by the softirq-hrtimer. As men-
tioned earlier, timer interrupts are not handled by threads but are per-
formed at the time the ISR runs. Processes that are sleeping with
nanosleep will be woken up directly from the interrupt. So, processes
that are of higher priority than the sofitrq-hrtimer interrupt will still
work fine using nanosleep, and even sleep for that matter.

Priority Inheritance
In Linux kernel version 2.6.18, priority inheritance was, for the first time, part of the
mainline Linux kernel. Although this priority inheritance applied only to userland fast
mutexes (futex), the infrastructure was in the kernel. This code was developed in the

‡ Jiffies are an arbitrary measurement of time in Linux and are defined as a HZ value in the kernel configuration.
Distributions usually default this value to 100, 250, or 1,000.

398 | Chapter 14: The RT Patch

RT patch, and the algorithm used to implement the futex priority inheritance is the
same algorithm that the RT patch uses for internal locks. To take advantage of the
priority inheritance futex in 2.6.18, you must have the right glibc version. Version 2.5
and up have support for the priority inheritance mutexes.

Before going further and explaining how to take advantage of priority inheritance fu-
texes, we’ll quickly go over what priority inheritance offers and why the kernel has it.
It helps to address the classic problem of priority inversion, described in Chapter 12.

Priority inversion itself is not a problem and is sometimes unavoidable. Priority inver-
sion becomes a problem when it is unbounded: when there’s no predictable way to
calculate the time the higher-priority process must wait for the resource.

The classic example of unbounded priority inversion involves three separate processes,
A, B, and C, where A is the highest priority and C is the lowest. C starts out and grabs
a lock and then is preempted by A. A tries to take the same lock that C has but must
block and wait for C to release it. A gives the CPU back to C so that C can finish the
thing it was doing that needed the lock. But B comes along, preempting C, and runs
for some undetermined amount of time. The problem is that B is not only preempting
the lower-priority process C but also the higher-priority process A, since A was waiting
on C. This is unbounded priority inversion, and it is illustrated in Figure 14-3.

As mentioned in Chapter 12, there are various methods to address priority inversion.
The RT patch takes the priority inheritance approach. Locks from within the kernel
can also suffer from unbounded priority inversion. The RT patch brings priority in-
heritance to locks within the kernel to prevent unbounded priority inversions from
happening there. The code that does this is the same code that works with the light-
weight user mutex, also known as a futex.

The futex was initially introduced into the Linux kernel by Rusty Russell as a way to
perform locking in user space without having to enter the kernel, except for cases of
contention. The idea is to use shared memory addresses between two threads along
with atomic operations provided by the hardware to create, lock, and unlock a mutex.

A
Blocked

C

B

Preempted Preempted

Figure 14-3. Unbounded priority inversion

Priority Inheritance | 399

Most of the time a mutex is taken and released with no contention, so any need to enter
the kernel would cause unneeded overhead. Using shared memory and hardware
atomic operations, the futex is able to grab and release mutex locks without the over-
head of a system call. The only time a system call is needed is when contention takes
place, because the blocking thread needs to sleep. When the thread that holds the
mutex goes to release it, it will notice that there are waiting threads on that mutex. The
thread will then make a system call to wake up the waiters.

One problem with this original approach is what to do if the thread that holds the
mutex comes to an unexpected end. That is, what happens when the holder of the
mutex hits a bug or crashes? The thread will never release the mutex. Now, when other
threads come to take the mutex, they will block, and since the owner is no longer
running, the waiters will never be awakened. This can cause a system lockup if this
happens to a critical application.

The solution to handling an orphaned futex is called robust futex. A robust futex (de-
signed by Thomas Gleixner, Ingo Molnar, and others) has a given layout in the user
space that the kernel can use to read what futexes a thread may have on exit. The kernel
checks the thread of futexes that it holds very carefully.§ Any futex that was held by
the terminated thread is unlocked, and any waiters are woken up. This way, an appli-
cation does not need to worry about a thread dying while holding a futex and thus
locking up the rest of the application.

As of this writing, the only user of the futex functionality in Linux is the pthread mutex.
Futexes themselves are not required to be used between threads, but have only the
requirement of shared memory.‖ POSIX mutexes implement futexes with all the latest
distributions. Currently, as of this writing, the major embedded libc libraries (uClibc
and newlib) do not include the futex features.#

If futexes and priority inheritance are implemented by the pthread library, a thread can
turn on priority inheritance for a mutex by specifing PTHREAD_PRIO_INHERIT as a mutex
attribute. The following sample code snippet implements a pthread mutex that uses
priority inheritance:

 extern pthread_mutex_t mutex;
 pthread_mutexattr_t attr;

 if (pthread_mutexattr_init(&attr))
 perr("pthread_mutexattr_init");

 if (pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_INHERIT))
 perr("pthread_mutexattr_setprotocol");

§ The kernel cannot trust anything that comes from user space.

‖ Rusty Russell implemented a futex library that does not need to be used between threads but can be used
between processes. See http://www.kernel.org/pub/linux/kernel/people/rusty/futex-2.2.tar.gz.

uClibc and newlib developers would always appreciate new patches. So expect them to be using futexes them
in the near future.

400 | Chapter 14: The RT Patch

http://www.kernel.org/pub/linux/kernel/people/rusty/futex-2.2.tar.gz

 if (pthread_mutex_init(&mutex, &attr))
 perr("ptherad_mutex_init");

The code initializes a pthread mutex attribute name attr and then sets its
PTHREAD_PRIO_INHERIT flag. Finally, the mutex is initialized with the priority inheritance
attribute.

Since the futex priority inheritance code uses the same code as the RT patch in kernel
priority inheritance, the two work well together. That means priority inheritance works
the same way whether a high-priority process is blocked by either a kernel mutex or a
lower-priority process that is blocked on a user futex. The boosting of priority inheri-
tance will still go up the chain of blocked processes.

Configuring the Kernel with the RT Patch
Download the RT patch at http://people.redhat.com/mingo/realtime-preempt/. If you are
unfamiliar with applying kernel patches, read http://www.linuxheadquarters.com/how
to/tuning/kernelpatch.shtml. Running Linux by Matthias Dalheimer and Matt Welsh
and Linux Kernel in a Nutshell by Greg Kroah-Hartman (both O’Reilly) also contain
sections on applying kernel patches and rebuilding a kernel.

Another method for patching is to use the tool ketchup, written by Matt Mackall. It is
available as a package in most distributions, but can also be downloaded from http://
www.selenic.com/ketchup/, and it is described in Linux Kernel in a Nutshell. ketchup is
a very handy tool that allows you to update a directory to the latest kernels, including
Andrew Morton’s -mm development branch and the latest stable kernels. But most im-
portantly, at least for this discussion, it also works for the RT patch. Here’s how you
can get the RT patch just by being connected to the Internet, and having the ketchup
tool (ketchup expects wget and patch to already be installed on your system):

~$ mkdir tmp
~$ cd tmp
~/tmp$ ketchup -G 2.6.22
None -> 2.6.22
Downloading linux-2.6.22.tar.bz2
--22:13:47-- http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.22.tar.bz2
 => `/home/rostedt/.ketchup/linux-2.6.22.tar.bz2.partial'
Resolving www.kernel.org... 204.152.191.5, 204.152.191.37
Connecting to www.kernel.org|204.152.191.5|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 45,119,878 (43M) [application/x-bzip2]

100%[====================================>] 45,119,878 596.37K/s ETA 00:00

22:15:01 (591.74 KB/s) - `/home/rostedt/.ketchup/linux-2.6.22.tar.bz2.partial' saved
[45119878/45119878]

Unpacking linux-2.6.22.tar.bz2
~/tmp$ ketchup -r -G 2.6.22.1-rt9

Configuring the Kernel with the RT Patch | 401

http://people.redhat.com/mingo/realtime-preempt/
http://www.linuxheadquarters.com/howto/tuning/kernelpatch.shtml
http://www.linuxheadquarters.com/howto/tuning/kernelpatch.shtml
http://www.selenic.com/ketchup/
http://www.selenic.com/ketchup/

2.6.22 -> 2.6.22.1-rt9
Downloading patch-2.6.22.1.bz2
--22:16:39-- http://www.kernel.org/pub/linux/kernel/v2.6/patch-2.6.22.1.bz2
 => `/home/rostedt/.ketchup/patch-2.6.22.1.bz2.partial'
Resolving www.kernel.org... 204.152.191.37, 204.152.191.5
Connecting to www.kernel.org|204.152.191.37|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 538 [application/x-bzip2]

100%[====================================>] 538 --.--K/s

22:16:39 (38.95 MB/s) - `/home/rostedt/.ketchup/patch-2.6.22.1.bz2.partial' saved
[538/538]

Applying patch-2.6.22.1.bz2
Downloading patch-2.6.22.1-rt9
--22:16:39-- http://people.redhat.com/mingo/realtime-preempt/patch-2.6.22.1-rt9
 => `/home/rostedt/.ketchup/patch-2.6.22.1-rt9.partial'
Resolving people.redhat.com... 66.187.233.237
Connecting to people.redhat.com|66.187.233.237|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 1,779,906 (1.7M) [text/plain]

100%[====================================>] 1,779,906 382.30K/s ETA 00:00

22:16:44 (381.23 KB/s) - `/home/rostedt/.ketchup/patch-2.6.22.1-rt9.partial' saved
[1779906/1779906]

Applying patch-2.6.22.1-rt9
Current directory renamed to /home/rostedt/linux-2.6.22.1-rt9
~/tmp$ cd .
~/linux-2.6.22.1-rt9$

The first two commands made an empty directory and changed into it. Then, we ran
ketchup -G 2.6.22. The -G option caused the command to ignore GPG checksums, and
was used because we did not download any checksums. This command automatically
downloaded the Linux kernel tarball from the kernel.org site and installed the Linux
tree in the current directory.

The next command was ketchup -r -G 2.6.22.1-rt9. The -r has ketchup rename the
current directory to the Linux version that is installed at completion. You can see from
the output that the command first downloaded and installed the .1 stable patch, then
the -rt9 version of the RT patch.* Finally, we entered cd . to display the current directory
and show that ketchup renamed it to linux-2.6.22.1-rt9. We could have skipped the
ketchup -G 2.6.22 command and simply entered ketchup -r -G 2.6.22.1-rt9, but that
would have downloaded the 2.6.22.1 stable tarball, and we wanted to show how
ketchup can do multiple patches in a single step.

* All the patches and tarballs that ketchup downloads are stored in a ~/.ketchup directory and will be used for
subsequent ketchup executions.

402 | Chapter 14: The RT Patch

Now that you have the kernel downloaded and patched with the RT patch, it is time
to configure it. The make menuconfig build environment is particularly flexible, but you
may use the other configuration methods that come with the Linux kernel.

The RT patch adds several options, of which the biggest and most influential is the
addition of CONFIG_PREEMPT_RT. It can be found under Processor type and fea-
tures → Preemption Mode in the configuration menu. Figure 14-4 illustrates the dif-
ferent preemption modes offered by the Linux kernel. The RT patch adds just the mode
selected in the figure, Complete Preemption (Real-Time), which specifies CON-
FIG_PREEMPT_RT. Before explaining this mode, it’s a good idea to understand the
evolution of preemption. We’ll explain the various modes, which increase in sophisti-
cation, in the following sections.

No Forced Preemption
When the No Forced Preemption option is set, the Linux kernel runs as it did back in
the 2.4 kernel series and earlier. No preemption takes place while the CPU is in kernel
mode. This means that when a high-priority process is woken up, it must wait until the
current process makes the switch back to user mode or needs to wait on some I/O,
before the kernel scheduler runs and the high-priority process can get a hold of the CPU.

The advantage of this option is that it has the lowest amount of context switches, and
thus leads to the least overhead. The less scheduling that takes place, the more each

Figure 14-4. Menuconfig preemption mode selection

Configuring the Kernel with the RT Patch | 403

process gets to run on the CPU, and the more that process will use the full cache as
well as the same translation lookaside buffers (TLBs).†

The disadvantage of this option is that it has lower reaction times. This option is best
for servers that are doing large batch jobs: applications that just need throughput and
are run serially, without the need for fast process switching. Any application that re-
quires low latencies and interaction between applications or users would not be well
suited to this option. It is known to give a poor “desktop experience” because it can
cause jitter during mouse movements and poor audio playback and recording.

Voluntary Kernel Preemption
This preemption mode is more flexible than no preemption. It relies upon the insertion
of points of voluntary preemption into the kernel where such preemption is known to
be safe. A slight historical digression can explain how these preemption points are
chosen.

The Linux kernel code is not allowed to call for a rescheduling of processes (done by
calling the schedule() function) while interrupts are disabled. This is because the kernel
code disables interrupts when some atomic operation is taking place on a CPU-specific
variable or some lock is being taken that might also be used by an interrupt. With the
Linux kernel being so complex, there are several areas of code that can cause a re-
schedule, because they might allocate memory pages, access user space, or do a number
of other things.

It is also a bug to reschedule while a spin lock is held,‡ because it can cause a large
latency if a process is scheduled on a CPU that is currently waiting on a spin lock. Under
the right conditions, a deadlock could even occur.

These bugs are hard to find because rescheduling can happen at so many places. Any
access to user space may cause a reschedule if the user memory was previously swapped
out. Some areas of the kernel that allocate memory may cause a reschedule if memory
is tight and pages need to be swapped out to accommodate the newly allocated memory.
Just simply testing code was not enough to detect areas that have a spin lock held or
interrupts disabled at the time of rescheduling, since the code that actually does the
schedule may not be hit during testing. For example, if the user-space memory that is
accessed happens to still be in memory or there is plenty of memory available when an
allocation takes place, no scheduling will occur. Thus, during code testing, kernel de-
velopers may never see the scenario where interrupts are disabled and a reschedule
takes place. As soon as this code is out in the public and used by thousands of others,
they encounter the bug. The Linux scheduler checks for this scenario and prints out
nasty messages when it is detected.

† TLBs cache page tables and are associated with individual processes by the kernel’s paging system.

‡ See the upcoming section “Preemptible Kernel.”

404 | Chapter 14: The RT Patch

In order to help debug these cases, functions containing any code that can cause a
reschedule had a function call to might_sleep. The might_sleep function performs
checks and prints out error messages if it detects that interrupts are disabled or a spin
lock is held.§

This talk about the might_sleep function may seem off-topic, but in fact it is the core
of the Voluntary Kernel Preemption option. The kernel developers realized that this
check to catch areas that should not cause a reschedule also identifies areas that can
cause one. When the Voluntary Kernel Preemption option is set, instead of having a
high-priority process wait until the current process switches to user mode or goes to
sleep, when a might_sleep function is hit, a check is made to see whether a schedule
should take place, and if so, causes a reschedule. If a high-priority process that is woken
up while the lower-priority current process is in kernel mode performing some system
call, the higher-priority process gets the CPU when the current process comes across a
call to might_sleep.

With the Voluntary Kernel Preemption option set, all the places that call might_sleep
now become preemption points. This greatly improves the feel and interaction of the
kernel, and it is considered very safe, because all the places that are preemption points
are the same places that must not prevent preemption.

Preemptible Kernel
During the Linux kernel version 2.4 era, Robert Love developed an external patch called
preempt-kernel. This patch was maintained very much like the RT patch is today, as a
separate patch that needed to be applied against the stable Linux 2.4 kernel. In the 2.5
development, the preempt-kernel patch was incorporated into mainline Linux, giving
Linux the ability to be a preemptible kernel. This means that a high-priority process
no longer needed to wait for the current process to enter user space or schedule itself
(either to simply go to sleep or because of a might_sleep call). Instead, the current
process may be scheduled out almost anywhere in the kernel.

The trick behind the preempt-kernel patch was the conversion of Linux to work on a
symmetric multiprocessor (SMP) system. In an SMP environment, critical sections must
be protected from concurrent access of processes running on separate CPUs. To add
this protection, a spin lock is usually held. A spin lock is a busy lock, which means that
on contention, one CPU will spin in a busy loop waiting for another CPU to release the
lock.

Spin locks protect areas of the kernel that must not be accessed concurrently. These
areas are also the same places that must be protected from reentrancy. In other words,
protecting the kernel in an SMP system (where data access must be atomic in respect
to two threads running on two different CPUs) also allows full preemption of processes

§ The actual checks involve disabled are on interrupts and a preempt count that is nonzero when spin locks
are held. See the later section “Preemptible Kernel.”

Configuring the Kernel with the RT Patch | 405

(where data access must be atomic in respect to a thread running on a single CPU and
being preempted, after which the CPU runs a second thread that accesses the same
data). Love realized that the areas that must be protected from concurrent access in an
SMP system must also be protected from reentrancy in a preemptible kernel.

Love’s patch introduced a kernel thread variable called a preempt count. Normally a
thread’s preempt count is set to zero. Every time a thread acquires a spin lock, its
preempt count increments, and every time it releases a spin lock, its preempt count
decrements. The kernel does not preempt the current task when its preempt count is
nonzero. If a high-priority process is awakened and the current task is in the kernel but
its preempt count is zero, a reschedule takes place and the high-priority process takes
over the CPU. If the current task’s preempt count is nonzero, the high-priority process
would have to wait until the preempt count reached zero for the current task, where-
upon a check would be done to see whether a reschedule is needed, and the high-
priority process is given the CPU.

The addition of the Preemptible Kernel option significantly reduced the latency of the
Linux kernel. This made for an even better desktop user experience, with better reaction
times to user events and smoother mouse movements and audio.

Complete Preemption
Love’s patch was a great improvement to the Linux desktop experience, but it was far
from attaining the requirements of a real-time system. The places to preempt in the
kernel were still very limited, as spin locks are attained often. Grabbing a spin lock was
like taking a global lock with respect to preemption. Anytime a spin lock was held, no
process could preempt the current task, even if the new process was not going to access
the critical section the spin lock was protecting.

The preempt-kernel patch departed here from the protection given by spin locks to an
SMP system. An SMP lock protects only a certain critical section of the kernel. Each
critical section of the kernel is protected by its own spin lock. But the preempt-kernel
patch disabled preemption for all tasks, regardless of whether a task would access the
critical section the spin lock was protecting.

The RT patch adds the Complete Preemption option to address this issue. The Complete
Preemption converts spin locks from busy loops into mutexes. Instead of spinning in a
busy loop on a CPU, a process that tries to get a spin lock just goes to sleep and lets
the kernel schedule other processes on the CPU. When the spin lock is released, the
blocked process is awakened. If it is currently the highest-priority running process, it
will preempt the current thread and take over the CPU. By eliminating the disabling of
preemption at the acquisition of a spin lock, the Linux kernel becomes tremendously
more responsive and latencies are reduced to a few microseconds.

Unfortunately, there’s a cost to this new feature. Spin locks were introduced to protect
small areas from concurrent access on SMP systems. Since a spin lock has the potential

406 | Chapter 14: The RT Patch

of keeping another CPU busy spinning, it was intended to be held for small amounts
of code that would execute in a short amount of time. In practice, some of these critical
sections that were protected by spin locks were not that small and could indeed keep
other CPUs spinning for a good amount of time. But a large number of these spin locks
did serve their purpose and kept the spin lock held for a short amount of time. These
correctly used spin locks may suffer a larger overhead in scheduling out than they would
if they just spun. But, as with most systems, one must weigh the importance of con-
sistency (deterministic latency) with that of high general throughput. Locks that protect
small amounts of code in a critical section in one place may also protect a large amount
of code (which could be longer to execute) in another.

The purpose of converting spin locks to mutexes was to lower the reaction time of a
high-priority process. Even though the cost of contention goes up with the conversion
of a spin lock from a busy lock to a mutex, the latency that this conversion retrieves
goes down by magnitudes. Luckily, if the critical section is very small, the chances of
having contention on that location is also small.

Since interrupts and softirqs must not schedule out unless they are converted into
threads, the selection of Complete Preemption automatically selects the kernel feature
that converts interrupts and softirqs into threads. Interrupt handlers and softirqs use
spin locks quite often, so converting spin locks into mutexes (which can schedule)
requires interrupt handlers and softirqs to be converted to threads. But the reverse is
not true. As Figure 14-5 illustrates, you can select interrupt handlers and softirqs as
threads (the Thread Softirqs and Thread Hardirqs options) under any of the preemption
modes; you don’t have to select Complete Preemption.

One can experiment with these various options. Having interrupts as threads with just
the Preemptible Kernel option might be enough to satisfy some requirements. It gives
the kernel the ability to prioritize interrupts and softirqs, as well as letting user processes
have greater priority than interrupts and softirqs. The RT patch is designed to add the
control over the operating system that is needed to satisfy most real-time environments

High-Resolution Timers
One thing that is crucial to a real-time system is the ability to trigger an event at a specific
time (otherwise there’s no sense in calling the system real-time). In the early 2.6 versions
of Linux and earlier, the smallest unit of time was called a jiffy. A jiffy started out as
one 100th of a second. A global variable called HZ represented the hertz of jiffies, and
with the one 100th frequency, the HZ was defined as 100. This was all very simple and
suited the needs of Linux at the time, but as machines became faster and people ran
more applications on Linux, the 100 HZ setting started to show its age. Under a heavy
load, applications were not smooth with the low HZ frequency. To get better reaction
times, the HZ value became 1,000.

High-Resolution Timers | 407

With the 1,000 HZ value for jiffies, the best reaction time that could be set was 1
millisecond. This is still very poor for any serious application that needs the slightest
bit of real-time. But for every jiffy, a timer interrupt was needed to update the jiffy
variable. So a balance was needed where one could choose to suffer increased overhead
(more timer interrupts) in order to gain a finer timer resolution.

To make things more difficult, the design of the timer had a large latency built-in. The
timer accounting was designed under what is known as a timer wheel. When a user
application wanted to be notified when a time was reached (an alarm), the event would
be recorded into the timer wheel. The timer wheel was split up into a number of
“buckets.” The first set of buckets (256 buckets) represented the next 256 jiffies into
the future. So if one needed to be notified 20 jiffies into the future, that event would be
recorded into the 20th bucket of the timer wheel. If the event was further into the future,
it wou,ld need to go into the next level of buckets, where each bucket represented 256
jiffies. If the time was greater than 65,536 (256×256), it would be placed in the next
layer. This was a neat idea and worked well.

But for a deterministic system, the design was flawed. Eventually the time will reach
the 256, jiffy into the future, and all the events in the second layer need to be rehashed
into the lower layer. All the events scheduled from 256 jiffies to 511 jiffies into the future
would have been placed in the same bucket in the second level. When it was time to
move these events into the single jiffy buckets, each one needed to be hashed. This

Figure 14-5. Menuconfig Threaded Interrupt Selection

408 | Chapter 14: The RT Patch

event was done with interrupts disabled and took O(n) time (where n is the number of
items in the bucket to rehash).

After the release of the 2.6 kernel, Thomas Gleixner started working on a way to solve
this issue with a new design timer called hrtimers.‖ This work was developed in the RT
patch. The base infrastructure made it into mainline Linux in 2.6.16, and the high-
resolution timers were incorporated into i386 architecture in 2.6.20.

What Gleixner realized was that two kinds of timers are placed into the timer wheel:
action timers and timeout timers. Action timers are timers that are expected to expire.
User applications add action timers frequently to be notified of events. So, when an
action timer is added into the timer wheel, it will go through the rehashing every time
it’s added far enough in the future. The timing wheel is very fast at adding and removing
a timer (O(1) for addition and deletion), and each rehash takes O(n) time. So, for an
action timer, the timer wheel is very inefficient. It will hit the O(n) rehash more often
than the O(1) deletion.

Timeout timers, on the other hand, are perfect for the timer wheel. A timeout timer
goes off only if an event does not happen. The networking code, in particular, is loaded
with timeout timers. For packets that do not arrive in time, the timeout timer will go
off and tell the kernel that it is time to send another acknowledgment. These timers are
added and removed constantly, and it is very important that the addition and removal
of these timers have as low overhead as possible. In this case, the timer wheel is a good
match.

The problem is that previous kernels didn’t differentiate between the two types of
timers and could experience unpredictable latencies when a large amount of timers
needed to be rehashed. This is where hrtimers came into play. They are specifically
designed for action timers. The hrtimer complements the timer wheel by handling the
action timers and letting the timeout timers stay on the timer wheel. Instead of using
hashes, the hrtimer infrastructure uses a red/black tree, which is a binary tree that one
can learn about in almost any first-year college data structures course book. It takes
O(log n) time to add and remove nodes. The algorithm also has hooks into the tree to
find the first node in O(1) time. But the major advantage is that the nodes in the tree
are sorted, so there is no cost of a rehash, as happens with the timer wheel. In Linux
2.6.18, this infrastructure was put into the mainline Linux kernel.

But timer resolution was still only at the value of jiffies. The next step was to get a clock
source infrastructure in place where the timers were no longer bound to the resolution
of jiffies. With the clock event/source infrastructure, a specified hardware clock may
be used if present. The hrtimer value for an event takes the value of nanoseconds. This
is converted into the clock source resolution (and rounded up to avoid early expiration),
and the clock is set to trigger at the next timer event that is scheduled. So, the actual
resolution of the timer is dependent on the underlying hardware and no longer on a

‖ Originally called ktimers.

High-Resolution Timers | 409

software variable like HZ. When the timer expires and the clock source sends an in-
terrupt to the CPU, the hrtimer interrupts handles the event. The next event is queried
in the red/black tree, and the clock source is set to go off at the next required event.
Jiffies no longer need to be counted, which prepares us for the next enhancement.

Once hrtimers removed the requirement for a timer interrupt to go off just for the sake
of updating the jiffy variable, kernel developers could eliminate the overhead of un-
needed interrupts going off when the system is idle. This is extremely important in the
embedded world because removing interrupts from an idle system lets the CPU go into
a better power-saving state. This translates to longer battery life for the device on which
the operating system is loaded. Dynamic ticks, when enabled, trigger the timer interrupt
only when it is requested.

With dynamic ticks, the timer interrupt need only fire on demand. However, a caveat
to this is that the underlying clock source counter must not be allowed to wrap around
in between. To address this, the timer interrupt must be set to fire at least as often as
half the time taken for the underlying counter to wrap around. A separate monotonic
variable is updated by the timer to keep track of the system time.

Several jiffies can go by while the system is idle, but nothing will suffer as a result. (An
idle system doesn’t do anything.) The dynamic ticks code keeps track of this time that
has elapsed, and updates the jiffies accordingly, bringing the jiffies value back up to
where it would have been if interrupts had been going off once a jiffy.

When the system is not idle, the timer interrupt is set to go off once a jiffy, because the
jiffy variable is used for schedule accounting of non-real-time tasks.

Not all of the high-resolution timers and dynamic ticks have made it
into the mainline kernel. Some architectures have yet to embrace it (as
of this writing). But the RT patch is still the development ground of these
new features that will soon be incorporated into mainline Linux.

The Latency Tracer
The RT patch comes with a feature, called latency tracer, that helps developers find
areas of large latencies in the kernel. When an application misses a deadline (hopefully
only during testing), the developers need to determine whether the latency was due to
the application itself (a design flaw or bug) or came from inside the Linux kernel. The
latency tracer was created to find latencies caused by the kernel. There are several
options to the latency tracer:

410 | Chapter 14: The RT Patch

• Event tracing

• Kernel function call tracing

• Wakeup latency timing

• Kernel latency tracing

• Non-preemptible critical section latency timing

• Interrupts-off critical section latency timing

As this book goes to print, a new feature has replaced the latency tracer
in the upstream kernel: Ftrace. It is very similar in many respects to the
latency tracer, as it was written by the same people, and is documented
within the kernel’s Documentation directory.

Figure 14-6 illustrates the menu options in the Linux kernel configuration under the
“Kernel hacking” menu. Some of these options are supersets of others, and when you
select them they automatically force those subset options to be enabled. The latency
tracer is still under development and may soon be going into the mainline kernel. This
section will describe the latency tracer as it operates in the 2.6.22.1-rt9 version of the
Linux kernel.

Figure 14-6. Latency tracing kernel config options

The Latency Tracer | 411

The interrupts-off critical section latency histogram option is obsolete, is
not being maintained, and will soon be removed, so do not bother using
that option unless you want an unstable kernel.

Event Trace
The Event trace option is probably the most useful for real-time application developers.
It lets you record the latencies of system calls, and other activities as well, if other
options are enabled (those activities are explained with the other options). When Event
trace is enabled, several entries are added to the /proc filesystem. Here are a few im-
portant ones:

/proc/sys/kernel/trace_enabled
/proc/sys/kernel/trace_user_triggered
/proc/sys/kernel/trace_freerunning
/proc/sys/kernel/trace_print_on_crash
/proc/sys/kernel/trace_verbose
/proc/sys/kernel/mcount_enabled
/proc/sys/kernel/preempt_max_latency
/proc/sys/kernel/preempt_thresh
proc/sys/kernel/preempt_mark_thresh

These settings can be viewed and set by normal shell commands, such as cat and echo:

cat /proc/sys/kernel/preempt_mark_thresh
100
echo 200 > /proc/sys/kernel/preempt_mark_thresh
cat /proc/sys/kernel/preempt_mark_thresh
200

You can also use the sysctl utility that comes with most distributions:

sysctl kernel.preempt_mark_thresh
kernel.preempt_mark_thresh = 200
sysctl kernel.preempt_mark_thresh=100
kernel.preempt_mark_thresh = 100

Another entry in the /proc filesystem that is associated with the latency tracer is /proc/
latency_trace. This file contains the output of the longest latency that has exceeded the
threshold defined by preempt_thresh.

The Event trace option has a very small overhead and is well worth keeping enabled
even in production environments. The other, “heavier” latency tracer options (ex-
plained later) are also more useful with this option enabled, because it creates the user
interface into the kernel’s latency tracer variables.

The following is an example use of the event tracer:

 /* start tracing */
 ret = prctl(0, 1, 0, 0, 0);
 if (ret < 0) {
 perror("prctl");
 exit(-1);

412 | Chapter 14: The RT Patch

 }

 /* do some syscalls */
 fd = open("/etc/passwd", O_RDONLY);
 if (fd < 0) {
 perror("open");
 goto out;
 }

 while (read(fd, buf, BUFSIZ) > 0)
 ;

 close(fd);

out:
 /* stop tracing */
 prctl(0, 0, 0, 0, 0);

The prctl function is a Linux-specific system call that allows a program to modify its
process’s internal state. The latency tracer uses this call to allow a running process to
enable and disable user tracing. prctl always takes five parameters, but only the first
two are important for enabling tracing. The other three are ignored. The first parameter
is zero (or PR_SET_TRACING if you include the RT-patched Linux kernel header file
linux/prctl.h). The second parameter is either 1 to enable tracing or 0 to disable it.

Before you start the tracer, you need to set various /proc variables. Any of these can be
enabled by echoing 1 into them, and disabled by echoing 0 (or using sysctl):

• trace_enabled needs to be enabled to allow tracing.

• trace_user_triggered needs to be enabled to allow the user (not the kernel) to turn
tracing on and off.

• preempt_threshold needs to be set to 0. The latency will not be recorded if it is
under this threshold. If it is greater than or equal to 0, all latencies above or equal
to it will be recorded.

• preempt_max_latency needs to be set to 0. This keeps track of the highest latency
that has been recorded. New latencies are recorded only if they are greater than
this value latency. The value can also be read to see what the greatest latency of
the system was. On bootup, this is set to a high value, so latencies are not recorded
unless this is reset back to a reasonable value.

After running the previously shown program on the RT-patched Linux kernel and set-
ting the proper proc variables (as explained earlier), you can see the trace output
in /proc/latency_tracer:

cat /proc/latency_trace
preemption latency trace v1.1.5 on 2.6.22.1-rt9-et
--
 latency: 48 us, #11/11, CPU#0 | (M:rt VP:0, KP:0, SP:1 HP:1 #P:2)

 | task: eventtrace-7776 (uid:0 nice:0 policy:0 rt_prio:0)

The Latency Tracer | 413

 _------=> CPU#
 / _-----=> irqs-off
 | / _----=> need-resched
 || / _---=> hardirq/softirq
 ||| / _--=> preempt-depth
 |||| /
 ||||| delay
 cmd pid ||||| time | caller
 \ / ||||| \ | /
eventtra-7776 0D... 1us < (0)
eventtra-7776 0.... 2us+> sys_open+0x0/0x1e (000000d8 00000000 00000005)
eventtra-7776 0D... 13us < (3)
eventtra-7776 0.... 14us+> sys_read+0x0/0x64 (000000d8 bfd6e5cc 00000003)
eventtra-7776 0D... 37us < (1639)
eventtra-7776 0.... 39us > sys_read+0x0/0x64 (000000d8 bfd6e5cc 00000003)
eventtra-7776 0D... 40us < (0)
eventtra-7776 0.... 41us+> sys_close+0x0/0xb6 (000000d8 bfd6e5cc 00000006)
eventtra-7776 0D... 46us < (0)
eventtra-7776 0.... 47us > sys_prctl+0x0/0x19f (000000d8 00000000 000000ac)

vim:ft=help

The line beginning with latency in the output shows that the trace took 48 microsec-
onds from the time we called the first prctl to when we called the second one. The
trace output 11 of 11 entries (we didn’t overrun the buffer) and took place on CPU 0.
The preemption mode, shown after the M: string, can be one of the following:

preempt
Low-latency desktop configuration.

desktop
Voluntary preemption.

rt
Full preemption was compiled in (PREEMPT_RT). This is the mode shown in this
trace.

server
No preemption.

The VP and KP fields are always 0. The SP field is 1 if softirqs can be preempted (run as
threads), and HP is 1 if interrupts themselves can be preempted (also run as threads).

A typical trace event appears as follows:

eventtra-7776 0D... 1us < (0)

The eventtra field is the name of the thread. The actual program name we used was
eventrace, but the kernel saves only eight characters of the name. 7776 is the process

414 | Chapter 14: The RT Patch

ID (pid). The CPU that this trace entry occurred on was 0. The next four characters are
flags and counters:

1. Are interrupts disabled?

2. Is a context switch (potential reschedule) needed?

3. Is the system in a hard or soft interrupt context?

4. The depth of disabling of preemption (number of spin locks held by this process).

A dot means off or 0. Sometimes the first dot is replaced with a D. That shows that
interrupts were disabled when the trace occurred.

The 1us field shows the time since the trace started. The < field means the process is
exiting a system call (remember that the trace started within the prctl system call, so
the first event you always see is that the process is leaving a system call). The (0) is the
return code for the system call (the value that would end up in errno).

Now let’s look at the next event, which has more complex information:

eventtra-7776 0.... 2us+> sys_open+0x0/0x1e (000000d8 00000000 00000005)

The first part is the same as the previous line. A plus sign (+) appears after the trace
time if the trace is greater than 1 microsecond from the previous trace. The > shows
that the process is entering a system call. The following field shows the system call
name from the kernel’s perspective (open is implemented by the sys_open function in-
side the kernel). The numbers in parentheses are the values of the parameters to the
system call.

With only the Event Trace feature enabled, the latency tracer can produce very useful
information. It is easy to track the system calls of an RT application without the over-
head of a ptrace tool such as strace. The event trace option has practically no overhead:
it does just a single check when entering and exiting a system call, which would be lost
in the noise of any benchmarks.

Function Call Trace
The Function call trace is much more verbose and is best used for debugging latencies
within the kernel. This option is recommended only for debugging the RT system, since
it applies a large overhead on the system.

This option asks the gcc compiler to put in a hook to every function call in the kernel.
This hook will call a function to trace the function calls when tracing is enabled. With
this option on, the same program that we just ran will produce the following output:

preemption latency trace v1.1.5 on 2.6.22.1-rt9-fn
--
 latency: 432 us, #541/541, CPU#0 | (M:rt VP:0, KP:0, SP:1 HP:1 #P:2)

 | task: eventtrace-4207 (uid:0 nice:0 policy:0 rt_prio:0)

The Latency Tracer | 415

 _------=> CPU#
 / _-----=> irqs-off
 | / _----=> need-resched
 || / _---=> hardirq/softirq
 ||| / _--=> preempt-depth
 |||| /
 ||||| delay
 cmd pid ||||| time | caller
 \ / ||||| \ | /
eventtra-4207 0D... 0us : user_trace_start+0xe6/0x1a9 (sys_prctl+0x21/0x1c4)
eventtra-4207 0.... 1us : rt_up+0xc/0x5e (user_trace_start+0x10a/0x1a9)
eventtra-4207 0...1 2us : rt_mutex_unlock+0xb/0x32 (rt_up+0x32/0x5e)
eventtra-4207 0D... 3us < (0)
eventtra-4207 0.... 4us > sys_open+0x0/0x2e (08048fea 00000000 000000d8)
eventtra-4207 0.... 5us : sys_open+0xb/0x2e (sysenter_past_esp+0x6c/0xad)
eventtra-4207 0.... 5us : do_sys_open+0xe/0xfc (sys_open+0x2c/0x2e)
eventtra-4207 0.... 6us : getname+0xe/0xc2 (do_sys_open+0x19/0xfc)
eventtra-4207 0.... 7us : kmem_cache_alloc+0xe/0xa0 (getname+0x23/0xc2)
eventtra-4207 0.... 8us : __might_sleep+0xb/0x11f (kmem_cache_alloc+0x87/0xa0)
eventtra-4207 0.... 9us : rt_spin_lock+0xd/0x72 (kmem_cache_alloc+0x36/0xa0)
eventtra-4207 0D... 9us : __lock_acquire+0xe/0x6fe (lock_acquire+0x6f/0x87)
eventtra-4207 0.... 10us : rt_mutex_trylock+0xb/0x35 (rt_spin_lock+0x49/0x72)
eventtra-4207 0.... 11us : lock_acquired+0xe/0x1e4 (rt_spin_lock+0x6b/0x72)

[...]

eventtra-4207 0.... 423us : rt_spin_unlock+0xc/0x56 (dput+0xd7/0x125)
eventtra-4207 0.... 424us : rt_spin_unlock+0xc/0x56 (dput+0xe1/0x125)
eventtra-4207 0.... 425us : mntput_no_expire+0xd/0x8a (__fput+0x185/0x1bb)
eventtra-4207 0.... 426us : _atomic_dec_and_spin_lock+0x9/0x56
 (mntput_no_expire+0x23/0x8a)
eventtra-4207 0D... 427us < (0)
eventtra-4207 0.... 428us > sys_prctl+0x0/0x1c4 (00000000 00000000 000000d8)
eventtra-4207 0.... 429us : sys_prctl+0xe/0x1c4 (sysenter_past_esp+0x6c/0xad)
eventtra-4207 0.... 429us : user_trace_stop+0xe/0x21b (sys_prctl+0x2e/0x1c4)
eventtra-4207 0D... 430us : user_trace_stop+0x45/0x21b (sys_prctl+0x2e/0x1c4)

As you can see, the Function call trace adds a much larger number of entries. We cut
out 517 entries just to avoid filling up the rest of this book with entries. Also, this trace
took almost 10 times longer to run than the Event trace alone. For tracing code within
the kernel itself, this turns out to be a very valuable tool. It gives useful information
when a large latency is discovered in the kernel and one must contact the kernel
developers to get it solved. Sending the information in this trace can help the kernel
developers pinpoint the problem area. We won’t try to explain the output here.

Wakeup Latency Timing
The idea behind the wakeup latency is to measure the time it takes for a high-priority
process to be scheduled after it has been awakened. This measures scheduling latency.
Times are measured in microseconds.

416 | Chapter 14: The RT Patch

This option can be turned on by itself, and will override other options when enabled.
The results are placed in /proc/sys/kernel/preempt_max_latency. To disable wakeup la-
tency timing and let other configured options be available, just set /proc/sys/kernel/
wakeup_timing to zero.

Here is a brief view of what the wakeup latency timer shows:

cat /proc/latency_trace
preemption latency trace v1.1.5 on 2.6.22.1-rt9-lt-w
--
 latency: 275 us, #2/2, CPU#1 | (M:rt VP:0, KP:0, SP:1 HP:1 #P:2)

 | task: Xorg-3983 (uid:0 nice:-10 policy:0 rt_prio:0)

 _------=> CPU#
 / _-----=> irqs-off
 | / _----=> need-resched
 || / _---=> hardirq/softirq
 ||| / _--=> preempt-depth
 |||| /
 ||||| delay
 cmd pid ||||| time | caller
 \ / ||||| \ | /
 <...>-3983 1D..1 276us : __sched_text_start+0x2b8/0xc60
 (__sched_text_start+0x2b8/0xc60)

vim:ft=help

The line starting with task in this output shows that the program Xorg with the pid of
3983 is running as root (uid: 0) with a nice value of –10 under no real-time policy or
priority. The latency lines shows that the system took 275 microseconds to start the
program after it was awakened.

In order to get accurate readings, it is very important that the /proc
interface is set up properly. To reset the latency timings, just write 0
(using echo) into the /proc/sys/kernel/preempt_max_latency file.

Be warned, though, that until recently the latency tracer has been con-
sidered a debug tool only for the RT patch developers. It is now starting
to be used more by RT patch users, and will likely change as the focus
of the latency tracer changes. New documentation will also be written,
so there will be a section that explains the latest features and interfaces.

Conclusion
People will always argue that the Linux kernel will never be a hard real-time operating
system. The problem with this statement is that there’s no concrete definition of a hard
real-time operating system. The argument that comes up most is: “Would you run this
on a nuclear power plant?” My answer would be no—not because I don’t think that

Conclusion | 417

Linux can be a hard real-time operating system. But because of its size, it will never be
bug-free enough to run a nuclear power plant.

I find that those who argue about hard real-time seem to base their ideas on the quality
of the code, and not the design of the overall system. But to me, the real-time aspect of
Linux is based on the design. If we can prove that the code inside Linux is bug-free, it
most certainly can run aircraft engine controls and nuclear power plants. But that is
unrealistic.

The main difference between desktop Linux and the RT-patched Linux is that the latter
considers it a bug to have long latencies and missed deadlines. The infrastructure of
the system with the RT patch is in place to satisfy most hard real-time needs, but the
size of the Linux kernel is just too large to use it in life-critical situations.

When using Linux with the RT patch for mission-critical systems, you should remove
as many of the unknowns as possible. This means that only the necessary drivers should
be loaded, and they must be audited to see that they do not disable interrupts for long
periods of time. All kernel configuration options that you set need to be understood.
There is no easy way out of thoroughly researching your software when setting up a
real-time mission-critical system. The RT patch made Linux much more real-time
friendly, but Linux is still itself focused on being a general-purpose operating system.
A real-time administrator needs to focus on Linux as a tool for the system and try to
understand it as much as possible.

So, it seems that one of the best things going for Linux is also its biggest flaw: the size
of the kernel. Most of this bulk is normally drivers, and each system uses only a small
fraction of them. The ones you use must be understood and not taken for granted.

The RT patch is still very much under development and will most likely go through
more large changes. This is also true for the Linux kernel itself. But rest assured that
there are companies out there that are taking the RT patch and creating a stable version.
When incorporating the RT patch into a stable environment, it is best not to download
it from Ingo Molnar’s development repository, because it is always in a state of flux;
instead, purchase a service agreement with someone you can trust who will provide
service and support and offer a stable release of the RT patch.

For more information about current development on real-time patches, please visit
rt.wiki.kernel.org.

—Steven Rostedt

418 | Chapter 14: The RT Patch

Index

Symbols
; (semicolon), 290
\ (slash), 128, 199, 207
16-bit Linux, 7
2000 (Windows), 38
“Enterprise” applications, 5

A
A32R architecture, 60
access rights, 148
action timers, 409
addr2line utility, 95
Advanced RISC Machine (see ARM)
Aegis project, 131
agents, 310

SNMP, 309
ahead-of-time (AOT) Java compiler, 131
ALERT syslog level, 86
all.sh (Crosstool), 105
allinone binary (embutils), 200
allnoconfig (make) command, 196
Andersen, Eric, 194
AOT (ahead-of-time) Java compiler, 131
Apache servers, 318, 320
APIs

DAQ hardware interfaces, 75
low-level services, 45
PCI bus, 65
portability, 44

Apple, 62
(see also PowerPC)

FireWire trademark, 70
applications

coverage analysis, 337–339
debugging with gdb, 329–332
dynamically linking libraries, 46
filesystems, choosing, 258–260
GNU C library usage, 46
GPL and, 18
linking proprietary, 20
linking with diet libc, 129
root filesystem and, 201
root privileges and, 176

ar archiver, 92, 95
arch subdirecotry, 56
ARCH variable (make command), 162
architecture Ptxdist submenu, 112
ARM (Advanced RISC Machine) processor

architecture overview, 57, 58
diet libc support, 127
embutils, 199
kernel considerations, 162, 164, 167

ARMBoot project, 277
as GNU assembler, 95
ASCII

Modbus messaging format, 85
ATA (AT Attachment), 80
ATA-ATAPI (IDE) hardware support, 80
ATAPI (ATA Packet Interface), 80
atext() function, 125
Atmel corporation, 58
authentication, 330
authorization, secure, 307

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

419

AVR32 architecture, 58

B
Barabanov, Michael, 5
basic hot swapping, 67
.bb files, 338
.bbg files, 338
BBT (Bad Block Table), 224, 226
BDM debugger, 30, 42
“Big and Tall” uClibc submenu, 127
\bin directory, 175, 176, 201
binaries

downloading to flash, 296–297
sections for debugging, 329
strip command, 330
U-Boot, 291

binary-only modules, allowing with GPL
licenses, 22

binutils (binary utilities)
GPL license, 18
resources, 102
Unix systems and, 37
version considerations, 98

binutils package, 95
binutils Ptxdist submenu, 111
BIN_GROUP variable (make command), 203
BIN_OWNER variable (make command), 203
BIOS, 274

system startup process, 227
block devices, 210, 254
BlueCat (LynuxWorks), 16
Bluetooth

hardware support, 83
BlueZ stack, 83
Boa, 318–319
Boleyn, Erich, 276
boot configuration, 48–51
\boot directory, 175
boot scripts, 290, 291
booting

basics of, 48
BOOTP/DHCP, TFTP, NFS, 293–295
from DOC, 228
hard disks and, 233
network boot, 278–283
from ROM, 276
system reboot, 170, 205
U-Boot and, 287–288

bootloaders

ATA-IDE limitations, 80
boot configurations, 48–51
embedded, 274–278
example, 51, 52
installing, 227, 228
minicom constraints, 150
mounting filesystem, 283–284
partitions and, 224
server setup for network boot, 278–283
setting up, 27, 29, 273–300
SPL as, 227
system startup component, 47

BOOTP
booting with, 293–295
network boot, 51, 278, 279

bootp command, 293
BSD license

inetd, 306
strace, 334
thttpd, 318
xinetd, 308

.bss section (ELF binary), 329
buckets, splitting up timer wheels, 408
build process

compiling kernel image, 166
configuring kernel, 161–165
overview, 100

build system (GUI configuration name), 92
Buildroot, 116–121
bus master, 67
buses

CompactPCI support, 67
ExpressCard, 65
GPIB support, 71
I2C, 72
I2C support, 71
PC/104 support, 66
PCI support, 64, 65
PCMCIA support, 65
support overview, 64–72

BusyBox
compilation, 196
dpkg command, 267
features, 194–198
init program, 204–207
mdev, 193
module dependencies, 169
networking, 303
ping command, 307

420 | Index

ps replacement, 339
readelf command, 180
setup, 195
shells, 205
udhcp project, 304
usage, 197

byte ordering, 244
bzImage file, 167

C
C library, 95
C++ Unit Testing Easier (CUTE), 327
c++filt utility, 95
C-Kermit terminal emulator, 152, 153
C/C++ Development Tools (CDT), 326
C99 support, 308

Buildroot system and, 123
caching block device, 213, 219
CAN (Controller Area Network), 84
CAN in Automation (CiA) group, 84
Canonical, 36
CANopen protocol, 84
cat command, 223, 224
CDT (C/C++ Development Tools), 326
CF (CompactFlash)

features, 231, 233
CFI (Common Flash Interface)

functionality, 219
kernel configuration, 219
mapping drivers, 220
MTD support, 214
partitioning, 220–222
writing and reading, 223, 224

CFLAGS variable (make command), 114, 132
CGI scripting, 318, 320
Chanteperdrix, Gilles, 375
char devices, 213, 219
character devices, 210
chrt utility, 391
CiA (CAN in Automation) group, 84
“clean marker” nodes, 247
clean.sh (Crosstool), 105
co-kernel approach (see dual-kernel)
code (see applications software)
Comedi package, 75
Comedilib library, 75
command line

kermit, 152, 153
viewing kernel configuration menu, 163

command-daemon (gdb server and), 331
Common Unix Printing System (CUPS), 78
CompactFlash (see CF)
CompactPCI bus, 67
compilation, 134

(see also cross-compilation Makefiles)
ahead-of-time compilers, 131
diet libc, 128
Electric Fence cautions, 345
just-in-time compilers, 131
kernel considerations, 165–167
MTD utilities, 217
Perl cautions, 131
rsync utility, 263
_start symbol, 115
telnetd, 312
U-Boot, 285–300
udhcp, 304

complete preemption, 406–407
Comprehensive Perl Archive Network (CPAN),

131, 132
compression

Filesystems, 254
gzip command, 255
JFFS2, 250
kernel configuration, 166

compression (filesystems), 237
concatenation

MTD subsystem, 213
.config file

backing up, 167
generated by kernel, 161
kernel configuration, 163
multiple images, 167
naming recommendations, 164

.config file
saving manually, 164

configurability, 9, 26
configuration

backing up, 167
cautions enabling options, 162
kernel-supported methods, 163, 164
managing multiple, 164
microperl, 132
miniperl, 133
netkit-base and modifications, 306
rsync utility, 263
saving/restoring, 164
setting up, 27

Index | 421

configuration files, 260
CONFIG_FEATURE_SHADOWPASSWD

setting, 199
CONFIG_FILTER option, 280
CONFIG_FTL option, 213
CONFIG_INITRAMPFS_SOURCE kernel

configuration option, 256
CONFIG_MTD option, 213
CONFIG_MTD_BLOCK option, 213
CONFIG_MTD_BLOCK_RO option, 213
CONFIG_MTD_CHAR option, 213
CONFIG_MTD_CONCAT option, 213
CONFIG_MTD_PARTITIONS option, 213
CONFIG_NFTL option, 213
CONFIG_NFTL_RW option, 213
CONFIG_PACKET option, 280
CONFIG_USE_BB_PWD_GRP setting, 199
CONFIG_USE_BB_SHADOW setting, 199
confstr() function, 97
control daemon

DAQ module example, 113–115
diet libc, 129

control module
gdb package, 329
project workspace, 90

Controller Area Network (CAN), 84
copyright issues, 18
Coreboot bootloader, 276
Cox, Alan, 22
Cozens, Simon, 132
cp command, 181, 183
CPAN (Comprehensive Perl Archive Network),

131, 132
CPU affinity, 394
Cramfs filesystem, 243–245, 259

automatic creation \dev entries, 186
compression, 255
link count and, 243
RAM disks, 255

cramfsck tool, 244
crc32 command, 298
cross gdb Ptxdist submenu, 112
Cross Linux From Scratch project, 103
cross toolchains, 91
cross-compilation

Apache and, 318, 320
DHCP package and, 304
gdb server, 329
libgcc constraints, 337

Perl and, 131
Python, 134
System V init program, 203

cross-platform development tools, 87
crossgcc, 104
crosstest.sh (Crosstool), 104
Crosstool, 104–107
crosstool.sh (Crosstool), 104
CROSS_COMPILE variable (make command),

304
cryptography, 314
cu terminal emulator, 148, 151, 152
CUPS (Common Unix Printing System), 78
CUTE (C++ Unit Testin Easier), 327
CVS

coordinating development, 30
Cygwin, 12

GNU development toolchains and, 38

D
.da files, 338, 339
daemons, 309

(see also specific daemons)
networking services as, 305
xinetd as, 309

DAQ (data acquisition)
control daemon, 113
erasing DOC devices, 227
GPIB interface and, 71
hardware support, 74, 75
project workspace, 90

.data section (ELF binary), 329
dd command, 223, 224, 255
DDD (IDE), 332
Debian, 3, 34, 61, 149
debuggable toolchain internals Ptxdist

submenu, 112
debugging

ad hoc methods, 30
BDM and JTAG interfaces, 42
filesystem recommendations, 325
gdb tool, 328–333
hardware tools, 348, 349
memory debugging, 344–348
multibit I/O and, 73
networking interface, 42
performance analysis, 336–344
serial lines, 42
tools, 325–349

422 | Index

tracing, 333
virtual memory layout, 53

dedicated toochains, 87
defconfig (make) command, 196
demo-cpu.sh (Crosstool), 105
demo.sh (Crosstool), 105
denial-of-access attacks, 307
Denx ELDK package, 88
depmod utility, 169
design methodology, 27–31
DESTDIR variable (make command), 128
\dev directory, 175, 184, 185
/dev entries

CFI flash devices and, 222
DOC, 226
MTD subsystem, 210, 212

development
diet libc library, 127–129
differences for embedded systems, 31
Eclipse, 135–147
GNU Java Compiler, 131
Java, 129–131
Linux costs, 13
memory debugging cautions, 344
open source virtual machines, 130
Perl, 131–134
project workspace, 89–91
Python, 134
setting up host/target systems, 39–41
terminal emulators, 147
tool setup, 30
tools, 87–153
uClibc, 115–129

devfs, 187
device drivers

CFI flash and, 220
DAQ vendor caveats, 75
mapping, 214
PCI and, 65
SCSI interface, 68
self-contained MTD, 214

DeviceNet protocol, 84
dformat DOS utility, 224, 225, 228, 230, 231
DHCP (Dynamic Host Configuration

Protocol), 302
booting with, 293–295
functionality, 303–305
network boot, 51, 278, 279
setting up daemon, 279–281

diet libc
features, 127–129
minit, 207
Python constraints, 134

dir command (gdb), 332
directories

confusing similarities, 176
GNU toolchain, 100
organizing for project, 89–91
root filesystem, 174
sharing directory trees, 278
version numbers and, 165

disk devices
embedded systems, 231–234

disk filesystem
over NFTL, 240
over RAM disk, 254–255

DiskOnChip (see DOC)
dispatch latency, 354
distributions

criteria for choosing, 24–26
defined, 3
Linux workstations, 34
PowerPC support, 62
things to avoid, 26
using, 24

distributions (Linux), 4
DOC (DiskOnChip)

cautions using MTD utilities, 215
features, 224–231
functionality, 219

docbbt.txt file, 225, 228
documentation (see resources)
doc_loadbios utility (MTD), 216, 224, 229
DOS installation

DOC and, 224
GRUB bootloader image, 227
loadlin utility, 276

do_gettimeofday() function, 342, 343
dpkg (Debian package), 266
drivers (see device drivers)
Dropbear, 315
dropbearkey utility, 316
dual kernels, 379
dual-kernels, 361–362
DUMA package, 347
DynaLoader XS module, 133
dynamic configuration, 303–305

files, 260

Index | 423

dynamic linking
Boa, 318
BusyBox, 195
copyright laws and, 20
gdb command, 332
glibc package, 178
libraries, 46
Python, 134
rsync, 264
udhcp, 304
xinetd, 308

dynamic priorities, 398
dynamic ticks, 410

E
e2fsprogs package, creating Ext2 filesystems,

239
Eclipse, 135–147

terminal, 150
working with, 141

Eclipse (IDE), 4, 326–328, 332
eCos (Embedded Configurable Operating

System), 278
ELC (Embedded Linux Consortium), 17
Electric Fence library, 344, 346
Electromagnetic Interference (EMI), 83
ELF binary, 124, 329, 330

readelf utility and, 95
ELJ (Embedded LInux Journal), 17
ELKS (Linux Kernel Subset) project, 7
Embedded Configurable Operating System

(eCos), 278
embedded Linux, 14
Embedded Linux Consortium (ELC), 17
Embedded Linux Journal (ELJ), 17
embedded systems, 4

(see also host systems target systems)
booting requirements, 49
generic architecture, 43–47
log file cleanup, 318
networking and, 8, 31
size determination, 6
time constraints, 7, 8
ubiquity of, 2

embutils, 200
EMI (Electromagnetic Interference), 83
encryption, 314, 330
environment variables

filesize, 296, 297, 299

gdb constraints, 332
LD_LIBRARY_PATH, 198
PATH, 198, 201
saving for U-Boot, 299
setting with script, 90
TARGET, 101
U-Boot, 289, 290

Erase Block Summary nodes, 248
erase blocks, 219, 222, 223
erase command, 215, 223, 226
eraseall command, 215, 226, 227, 230
erasing

DOC devices, 226
DOC install considerations, 229
MTD devices, 250
U-Boot bootloader image, 299

error messages
bad blocks, 228
kernel panic, 215
partition deletion, 231
unrecognizable format, 229

\etc directory, 175
Ethernet

802.11 as equivalent, 82
EMI and RFI vulnerability, 83
hardware support, 81
linked setup, 39
Modbus protocol and, 85

event trace, 412
ExpressCard bus, 65
Ext2 filesystem, 239–242

RAM disks, 255
Ext3 filesystem, 242
EXTRAVERSION variable, 165

F
fail-safe software upgrades, 267–270
Familiar distribution, 134, 267
Fast Userspace Mutex (futex), 367
FAT filesystem, 231
fcp utility (MTD), 216
fdisk utility, 230, 231
FDT (flattened device tree), 275
Fedora, 34, 149
FHS (Filesystem Hierarchy Standard), 173,

176
fieldbuses, 84
file command, 332
files

424 | Index

header files, 163
log file recommendations, 318
maps file, 53
transfer constraints, 150, 287

filesize environment variable, 296, 297, 299
Filesystem Hierarchy Standard (see FHS)
filesystems, 235–270

kernel functions, 45
MTD utilities, 216
software upgrades, handling, 261–270
type/layout, choosing, 258–261
writing images to flash, 254

Filesystems
compression, 254

FireWire (see IEEE1394 standard)
firm real-time, 353
flash chips, 214, 222
flash devices

bootstrapping and, 49
downloading binary images, 296
erase blocks, 219
RAM location and, 286
system memory layout, 51
writing filesystem image, 254

Flash Translation Layer (FTL), 213, 216
flash_eraseall command, 223
flash_info utility (MTD), 215
floppy disks, 233
“forward reference” in programming, 33
FPU (Floating Point Unit), 122
free software community (see open source)
Free Software Foundation (FSF), 1, 12
free() function, 344, 347
Freshmeat website, 12
FSF (Free Software Foundation), 1, 12
FTL (Flash Translation Layer), 213, 216
ftl_check utility (MTD), 216
ftl_format utility (MTD), 216
full hot swapping, 67
function call trace, 415
futex (Fast Userspace Mutex), 367, 398

G
gasp GNU assembler pre-processor, 95
Gatliff, Bill, 104
gcc (GNU C Compiler), 1
gcc (GNU C compiler)

code coverage recommendations, 338
debugging options, 330

function call traces, 415
gdb and, 329
GPL license, 18
resources, 102
versions, 98, 99

GCC Ptxdist submenu, 111
.gcov files, 338
.gcov files, 338
.gcov files, 338
gcov utility, 30, 337, 339
gdb (GNU debugger)

BDM and JTAG debuggers, 43
building/installing components, 329
debugging applications, 329–332
Electric Fence, 346
GPL license, 18
popularity of, 30

gdb stubs, 328
.gdbinit file, 332
General-Purpose Interface Bus (GPIB), 71
genext2fs program, 240
genext2fs utility, 255
Gentoo, 35
getandpatch.sh (Crosstool), 104
get_cycles() function, 342
GID field, 243
git utility, 285
git, tracking development with, 160
gitk graphical tool, 158
gjc (GNU Java Compiler), 131

Eclipse, installing, 136
Gleixner, Thomas, 400
glibc (GNU C library), 95

alternatives, 115
applications and, 46
Boa, 318
BusyBox and, 197
components in, 179–180
inetd support, 306
LGPL license, 18
microperl and, 132
Net-SNMP and, 310, 311
package download, 92
Python considerations, 134
resources, 102
root filesystem, 177–181
strace and, 334
telnetd, 312, 314
udhcp and, 304

Index | 425

Unix systems and, 37
version considerations, 98, 99
xinetd support, 308

glibc Ptxdist submenu, 110
glibc-encrypt, 92
glibc-ports Ptxdist submenu, 110
GNU C Compiler (see gcc)
GNU C library (see C library) (see glibc)
GNU GPL (General Public License)

Boa and, 318
BusyBox package, 194–199
diet libc licensing, 127
licensing, 18–20
Linux code availability, 10
M-Systems DOC driver, 226
udhcp project, 304
“contamination”, 19, 21

GNU Mach, 276
GNU toolchain, 91–115

BDM/JTAG debuggers and, 43
build overview, 100
component versions, 92–102
Cygwin environment, 38
GCC setup, 102
resources, 102
sharing tools, 101
Unix systems and, 37
using, 112–115
workspace setup, 100–102

“GNU’s Not UNIX”, 1
GPIB (General-Purpose Interface Bus), 71
GPL (see GNU GPL)
gprof utility, 30, 336, 337, 340
graphical interface (X Window System), 77
GRUB (GRand Unified Bootloader), 274, 276

bootloader image, 227
version considerations, 230

GTK widget toolkit, 18
GUI development tools, 38
gzip command, 166, 255

H
HAL (hardware abstraction layer), 370
hard real-time, 7, 353
hardware, 55–86
hardware abstraction layer (HAL), 370
hardware support

ARM processor, 57, 58
buses and interfaces, 64–72

debugging tools, 43, 348, 349
IBM/Motorola PowerPC, 62
industrial grade networking, 84
input/output, 72
kernel considerations and, 155
kernprof and, 340
Linux and, 11, 34
MIPS processor, 60
Motorola 68000, 61
networking, 81
processor architectures, 56
storage, 79
SuperH, 63
U-Boot, 277
x86 processor, 58

Hartman, Greg Kroah, 187
header files, 163
headers (Linux kernel), 94, 123
hexadecimal format, 288
high-availability (hot swap specification), 68
high-resolution timers, 407–410
Hitachi SuperH (see SuperH processor)
\home directory, 174
host system (GUI configuration name), 92
host systems

automatic network configuration, 303
byte ordering considerations, 244
debug setups, 41, 43
defined, 4
development setups, 39–41
GNU toolchain, 98
installing MTD utilities, 217–218
testing connections, 30
types of, 33–39

“host systems”, developing Linux systems, 4
Hot Swap specification (CompactPCI), 67
Hotplug, 188
hrtimers design timers, 409
HTTP, 320

web content and, 317–320

I
I-pipe (Interrupt Pipeline), 369, 377
I/O (input/output)

generic requirements, 43
hardware support, 72

I2C (Inter-Integrated Circuit) bus, 71, 72
i386 platform

embutils, 199

426 | Index

hardware support, 59
IAS (Information Access Service), 82
IBM/Motorola PowerPC (see PowerPC)
ICE (In-Circuit Emulator), 43
id linker, 92
IDE drives (see ATA-ATAPI)

CF cards and, 231
U-Boot and, 277

IDEs (integrated development environments)
Eclipse, 135
using, 30

IEEE 1394 (Firewire) standard, 70
IEEE 488 (GPIB) standard, 71
IEEE 802.11 (wireless) standard, 82
IETF standard, 314
iminfo command, 293, 294, 297
implementation methodology, 27–31
In-Circuit Emulator (ICE), 43
index.html files, 319
inetd super-server, 282, 306–307, 313
InfiniBand bus, 70
init program

BusyBox init, 204–207
kernel and, 201
Minit, 207
Rootfs and Initramfs, 255
standard System V init, 202, 204
start_kernel() function, 47
system startup component, 47

Initial Program Loader (IPL), 227
initial RAM disk (initrd), 254
initialization (see system initialization)
Initramfs (init Ramfs), 253
Initramfs filesystem, 255–258
initrd (initial RAM disk), 254
initrd mechanism, 253, 254
installation

bootloader image, 227, 228
distribution considerations, 26
DOS method for DOC, 224
embutils, 200
gdb, 329
inetd, 307
kernel considerations, 167
MTD utilities, 217–219
rsync utility, 264
strace tool, 334
U-Boot, 285–300
udhcp, 304, 305

INSTALL_MOD_PATH variable (make
command), 168

integrated development environments (see
IDEs)

Intel (see x86 processors)
interfaces

DAQ hardware, 75
hardware support, 68

Internet Software Consortium (ISC), 304
internet super-servers

DHCP and, 279
enabling TFTP service, 282

Internet super-servers
inetd, 306–307
special daemon, 305
xinetd, 307, 309

interpreters
microperl, 132
miniperl, 133
Perl, 131
Python, 134

interrupt handlers, 342
threads and, 388

interrupt inversions, 389
interrupt latency, 342–344, 354
Interrupt Pipeline (I-pipe), 369, 377
interrupt requests (IRQs), 389–394
Interrupt Service Routine (ISR), 388
intrusions, NFS service and, 284
IP addresses, using automatic configuration

and, 303
iPKG (Itsy Package Management System), 267
IPL (Initial Program Loader), 227
IrDA (Infrared Data Association)

hardware support, 81
IrLAP (link access protocol), 82
IrLMP (link management protocol), 82
IrPHY (physical signaling layer), 82
IRQ (interrupt request), 389–394
ISC (Internet Software Consortium), 304
ISO 11898 standard (CAN), 84
ISR (Interrupt Service Routine), 388
Itsy Package Management System (iPKG), 267

J
J1939 protocol, 84
J2ME (Java Micro Edition), 130
Japhar project, 131
Java programming language

Index | 427

background, 129–131
Eclipse and, 136
Motorola 68000 processors and, 61
PowerPC support, 62
SuperH processors and, 63

Java Virtual Machine (JVM), 130
Eclipse, installing, 136

JDK (just-in-time) Java compiler, 131
JFFS (MTD), 214
JFFS2 filesystem, 247

automatic creation \dev entries, 186
compression, 255
erase blocks and, 223
features, 251
mounting, 211
MTD support, 214
storage support, 46
U-Boot and, 277

jffs2dump utility (MTD), 216
jiffies, 371, 398, 407
jModbus project, 85
joeq VM project, 131
journaling, supporting filesystem power-

downs, 236
JTAG debugger, 30, 42
just-in-time (JIT) Java compiler, 131
JVM (Java Virtual Machine), 130

Eclipse, installing, 136

K
Kbuild, 163
Kcomedilib, 75
KDevelop (IDE), 332
Kegel, Dan, 102
kermit utility, 148, 152, 297
.kermrc configuration file, 153
kernel

architecture name selection, 162
ATA/IDE support, 80
bootstrapping requirements, 49
building, 29
compiling, 165–167
dealing with failure, 169
debugging, 30, 42, 63
display support, 77
DOC driver, 226
documentation, 156
filesystem engines, 45
generic requirements, 43

GPL, 18, 21
I/O device support, 72
I2C, 72
importance of, 155–172
initrd images, 254
installing, 167–169, 183
Kcomedilib, 75
layered services, 45
modules, building, 166
MontaVista contributions, 15
Motorola 68000 processors, 61
MTD and, 79, 209–231, 209
OS functions, 44
pointer devices and, 76
\proc filesystem, 339
RAM and, 254, 296
root filesystem requirements, 46
selecting, 28, 156–161
series, 158
system startup component, 47
virtual address space, 51
watchdog timers, 86

kernel configuration
building and, 27
CFI flash, 219
considerations, 161–165
DOC, 225
kernel selection and, 28
MIPS, 60
MTD subsystem, 212–215

kernel headers, 94
setup, 100

kernel panic
code location, 170
example, 295
MTD and, 214
premature exit and, 202
reasons for, 170
sample process, 171
system reboot and, 170

kernel profiling, 340–342
kernel Ptxdist submenu, 111
kernels

embedding, 157
kernprof tool, 340
ketchup tool, 401
keventd kernel thread, 389
keyboards, 76
keys, 314

428 | Index

Kissme project, 131
Kroah-Hartmans, Greg, 161
ksoftirqd kernel thread, 388, 395

L
Lambacher, Christopher, 134
large systems, embedding, 6
latency, 354
latency tracer, 410–417
ld GNU linker, 95
ld utility, 182
ldd command, 123, 180
LDFLAGS option (make command)

Makefile example, 114
strace, 334
udhcp, 304

LDP (Linux Documentation Project), using
LILO, 275

LDSHARED variable (configure), 218
LD_LIBRARY_PATH environment variable,

198
Lehrbaum, Rick, 17
LGPL, 18–20
\lib directory, 180, 182
libc library, 400
libcrypt (cryptography library), 182, 308, 319
libdl (dynamic loading library), 182, 310
libgcc (gcc library), 337
libm (math library), 182, 308, 310
libraries, 177–183

(see also system libraries)
filesystems, choosing, 258–260
installing on root filesystem, 177–182
LGPL and, 18
linking of, 46
stripping, 181

“Library Installation Options” uClibc
submenu, 127

libutil (login routines library), 182, 314
licensing, 334

(see also BSD license GNU GPL)
Apache, 320
C-Kermit, 152
diet libc and, 127
distribution considerations, 25
GPL and LGPL, 18–20
inetd, 306
Linux and, 13
Net-SNMP, 310

thttpd, 318
xinetd, 308

LILO (LInux LOader), 274, 275
linking

considerations for libraries, 46
diet libc with applications, 129
miniperl and, 133
proprietary applications and, 20

Linux, 2–4, 9
Linux distributions (see distributions)
Linux Documentation Project (LDP), using

LILO, 275
Linux From Scratch project, 194
Linux Journal

resource, 17
Linux kernel headers, 94

Buildroot system and, 123
Linux Kernel Subset (ELKS) project, 7
Linux systems (see systems)
Linux Trace Toolkit (see LTT)
Linux workstations, 34, 37
LinuxBIOS, 276
LinuxDevices.com, 17
LinuxPPC support, 62
LMbench tool, 340
lm_sensors package, 86
loadb command, 297
loadlin utility (DOS), 276
loads command, 297
lock utility (MTD), 216
log files, 318
log-structured filesystems, 237
logical address (see virtual address)
logical journal filesystems, 237
loopback constraints, 251
Love, Robert, 356, 405
lpd printer daemon, 79
LTT (Linux Trace Toolkit)

MontaVista contributions, 15
LTTng (Linux Trace Toolkit - next generation)

features, 334
LynuxWorks, 16

M
M-Systems, 227, 276

(see also DOC loadlin utility)
M68k processors

architecture overview, 61
kernel architecture name, 162

Index | 429

Machine Automation Tools LinuxPLC (MAT
LPLC), 85

main() function, 115
make command

ARCH variable, 162
CFLAGS variable, 114, 132
CROSS_COMPILE variable, 304
DESTDIR variable, 128
INSTALL_MOD_PATH variable, 168
PREFIX variable, 101

make config command, 163
make install command

inetd cautions, 307
telnetd cautions, 313

make menuconfig command, 163, 164
make oldconfig command, 163, 164
make xconfig command, 163, 164
MAKEDEV script (MTD), 219
Makefiles, 336

(see also compilation)
DHCP and cross-compilation, 304
diet libc compilation, 128
Eclipse, building, 141
example, 113–115
gcc modifications for code coverage, 338
installing MTD utilities, 217
modifying for process profiling, 336
modules_install target, 168
System V init program, 203
udev, 188
vmlinux target, 166
zImage target, 166

malloc() function, 125, 344, 347
mapping drivers, 214, 220
maps file, 53
MAT LPLC (Machine Automation Tools

LinuxPLC), 85
Matzigkeit, 276
McKenney, Paul, 355
measuring interrupt latency, 342
medium systems, embedding, 6
memory, 43

(see also RAM)
debugging, 344–348
kernel functions, 45
layout considerations, 51–53
memory devices, 79
physical memory map, 51
swapping, 234

memory management unit (see MMU)
memory technology device (see MTD)
MEMWATCH library, 347–348
menuconfig (make) command, 196
messaging (Modbus formats), 85
microperl build option, 132, 133
Microwindows, 15
mild time constraints, 8
minicom terminal emulator, 147, 148, 150,

287
miniperl build option, 131, 133
Minit program, 207
MIPS processor

architecture overview, 60
diet libc support, 127
embutils, 199
kernel and, 162

misc Ptxdist submenu, 112
mkcramfs tool, 244
mkdistcc.sh (Crosstool), 105
mkdistcclinks.sh (Crosstool), 105
mke2fs command, 239

Ext3 filesystem and, 242
mkfs.jffs2 utility (MTD), 216, 249
mkimage utility, 291, 292
mknod command, 185
mksquashfs program, 246
mlockall() system call, 322
MMU (memory management unit), 43, 56, 61,

63, 115
Xenomai Real-Time system and, 365

\mnt directory, 174
Modbus protocol, 84, 85
modems, hardware support, 74
modules (kernel), building, 166
modules_install target, 168
Molnar, Ingo, 387, 400
monitoring, systems, 85, 86
MontaVista, 15
MontaVista DevRocket, 88
Motorola (see M68k processors PowerPC)
mounting

constraints using loopback, 251
JFFS2 filesystem, 251
partitions, 240
root filesystem, 214

mouse, hardware support, 76
MTD (memory technology device)

DiskOnChip and, 224–231

430 | Index

hardware support, 79–80
installing utilities, 217–219
kernel and, 209–231
Native CFI Flash and, 219–224
Non-MTD Flash based devices and, 80
reprogramming boot storage media, 50
usage basics, 210–219
writing JFFS2 to, 250

mtd_debug utility (MTD), 216
multibit I/O, 73

N
Name Switch Service (see NSS)
named devices, 381
naming conventions, 112, 164
naming rules (udev), 191
NAND flash

functionality, 219
MTD support, 214, 216

nanddump utility (MTD), 217
nandtest utility (MTD), 217
nandwrite utility (MTD), 216
nanosleep system, 398
National Security Agency (NSA), 162
ncurses library, 196
Net-SNMP package, 310
netkit package, 306, 312
netkit-base package, 306
netkit-rsh package, 264
netkit-telnet package, 312
netlink sockets, 190
network boot, 51, 278–283
network login, 308, 312–314
networking, 81–83
networks

debugging using, 42
dynamic configuration, 303–305
embedded systems and, 8, 31
fieldbuses, 84
hardware support, 81
industrial grade, 84
Internet super-servers, 305–309
kernel functions and protocols, 45
remote administration, 309–312
secure communication, 314–317
setting up, 301–323
web content and HTTP, 317–320

New POSIX Threading Library (NPTL), 97
newlib library, 400

NFS
booting with, 293–295
debugging recommendations, 325
debugging tools and, 325
mounting root filesystem, 283–284
network boot, 278, 279
writing to flash, 254

NFTL (NAND Flash Translation Layer)
disk filesystem, 240
DOC devices, 226, 228–230
MTD support, 213, 216

nftldump utility (MTD), 216
nftl_format command, 216, 224, 228, 230
nmu utility, 95
non-fail-safe software upgrades, 262–267
Non-MTD Flash based devices, 80
NOR flash devices, 219
notifier_chain_register function, 170
notifier_chain_unregister function, 170
NPTL (New POSIX Threading Library), 97
NSA (National Security Agency), 162
NSS (Name Service Switch), 95, 199

glibc, 181
strace, 334
udhcp, 304

NT (Windows), 38
nucleus (Xenomai), 371

O
objcopy utility, 95
objdump utility (binutils), 329
odjdump utility, 95
ODVA (Open DeviceNet Vendor Association),

84
oldconfig (make) command, 196
OLPC (One Laptop Per Child) project, 8
On-The-Go (OTG) chipset, 69
One Laptop Per Child (OLPC) project, 8
OneNAND flash

MTD support, 214
online writable persistent storage, using, 260
online write support (filesystems), 236
Open Fabrics Alliance, 70
open source

Apache HTTP servers, 318
BlueZ project, 83
development model, 10
distribution considerations, 25
embedded Linux, 14

Index | 431

industry players and, 15
licensing and, 13
Modbus projects, 85
Net-SNMP, 310
OpenSSH, 314
PPC support, 62
support restrictions, 55
U-Boot, 277
virtual machines, 130

OpenIB InfiniBand Driver Stack, 70
OpenMoko project, 11
OpenOffice, 61, 62
OpenSSH, 176, 264
OpenSusE, 34
\opt directory, 174
oscilloscopes, 343, 348
OSELAS, 107
OTG (On-The-Go) chipset, 69
Ottawa Linux Symposium, 14

P
PAGE_CACHE_SIZE, 243
PAM (Pluggable Authentication Modules), 95
panic() function, 170
panic_notifier_list, 170
parallel ports

hardware support, 73
partitions

bootloader image, 224
CF devices, 233
CFI flash and, 220–222
DOC, 226, 230, 231
erase blocks, 222
mounting, 240
MTD subsystem, 213

patches
kernel considerations, 160

patent issues, 18
PATH environment variable, 198, 201
PC-based platforms, 36
PC/104 bus, 66
PCI (Peripheral Component Interconnect) bus,

64, 65, 67
PCI Industrial Computer Manufacturer’s

Group (PCIMG), 67
PCIe

PCI-Express, 64
PCMCIA bus

802.11 cards, 82

CF cards and, 231
hardware support, 65

PDA (Personal Digital Assistant), 63
Pengutronix, 107
Perens, Bruce, 194
performance analysis

code coverage, 337–339
interrupt latency, 342–344
kernel profiling, 340–342
process profiling, 336, 337
system monitoring, 85, 86
system profiling, 339–340

Peripheral Component Interconnect (see PCI)
Perl programming language, 131–134, 340
permissions (see security)
persistence (filesystems), 236
Personal Digital Assistant (PDA), 63
PhoneMe (Sun), 130
PHP programing language, 321
physical address space, 51
physical journal filesystems, 237
PIC (position-independent code), 123
piconets, 83
ping utility, 306, 307
plug-ins (Eclipse), 138
Pluggable Authentication Modules (PAM), 95
pointer devices, 76
portmapper service, 284
position-independent code (PIC), 123
POSIX 1003.1b real-time API, 365, 375
POTS (plain old telephone system), 74
POWER (Performance Optimization With

Enhanced RISC), 62
power-down reliablity (filesystems), 236
PowerPC (PPC)

architecture overview, 62
diet libc support, 127
embutils, 199
kernel, 162, 164, 167

prctl function, 413
preemptible kernel, 405
preemption granularity, 356
PREFIX variable (make command), 101
printenv command, 289, 290
printf() function, 30, 122
printing

hardware support, 78
priority inheritance, 398–401
priority inversion, 354

432 | Index

priority scheduling, 367
\proc filesystem, 175
\proc filesystem, 53, 339
process automation, 74
process profiling, 336
processors

architecture overview, 56–64
constraints below 32 bits, 7
kernel name selection and, 162
uClibc support, 115–127

procps package, 339
profile= boot parameter, 340
Project Name Ptxdist submenu, 110
project workspace, 89–91
projects (Ptxdist), 109
protocol drivers, 380
protocols (see specific protocols)
provisioning, 321–323
ps command, 392
ps utility, 339
pSoS+, 365, 367, 375
pthread_kill() function, 366
ptrace() system call, 328, 333
Ptxdist, 107–112
public-key cryptography, 314
Python programming language, 134–135

Q
qconf interface, 195
QoS (Quality Of Service), 353

R
Radio Frequency Interference (RFI), 83
RAID, 37
RAM (random access memory), 43

(see also memory)
CFI flash and, 219
flash location and, 286
generic requirements, 43
MTD support, 214
root filesystem and, 46

RAM disks
copying image to flash, 254
Filesystems and, 254–255

Ramfs filesystem, 253
ranlib utility, 95
Raymond, Eric, 10
read-only block, 213

read-only persistent storage, using, 259
read/write access rights, 148
readelf utility, 95

binutils, 180, 329
readprofile utility, 341
Real-Time Driver Model (RTDM), 375
real-time Linux, 5
real-time operation system (see RTOS)
Real-Time processing, 351–364

Real-Time Shadow, 376
requirements, 356–358
Xenomai, 365–386

real-time show, 376
Red Hat, 35, 149

crosgcc mailing list, 102
Cygwin environment, 38

RedBoot, 278
remote administration, 309–312, 317
Remote System Explorer (RSE), 145
rename system call, 268
rescheduling point, 354
reset command, 300
resources

GNU toolchain, 102
RFI (Radio Frequency Interference), 83
RHEL (see Red Hat)
robust futex, 400
Rock Linux, 35
ROM

booting from, 276
CFI flash and, 219
MTD support, 214

\root directory, 174
root filesystem, 173–207

basic structure, 173
bootloaders, 50
building, 27, 29
custom applications, 201
debugging, 325
development/production differences, 30
device files, 184–186
disk filesystem

over NFTL, 240
over RAM disk, 254–255

generic requirements, 44
init program and, 202
JFFS2, 251
kernel and, 46, 183
libraries, 177–182

Index | 433

NFS-mounted, 39, 51, 283–284
setup, 235–270
software upgrades, handling, 261–270
start_kernel() function, 47
system applications, 193–201
system initialization, 201–207
System V init program, 203
top-level directories, 174
type/layout, choosing, 258–261
writing image to flash, 254

root hub (USB), 69
root privileges, 176, 198, 199
Rootfs filesystem, 256–261, 259
RPC

inetd and uClibc, 306
xinetd and, 308

RPM (RPM Package Manager), 36, 266
RS232 interface

I/O support, 73
linked setup, 39
Modbus protocol and, 84
terminal emulation and, 147

RSE (Remote System Explorer), 145
rsh shell, 264
rsync utility, 263
RT Patch, 387–418

complete preemption, 406–407
kernel, configuring, 401–407

RTAI project, 375
GPL licensing and, 22
MIPS support, 60
PowerPC support, 62

RTDM (Real-Time Driver Model), 375, 380–
385

RTLinux
licensing, 23
PowerPC support, 62
project, 5
SuperH support, 63

RTOS (real-time operation system), 387
applications, 366–368

RTU (Modbus messaging format), 85
run command, 290
Russell, Rusty, 399
RXTX library, 150

S
S-Record format (Motorola), 292, 297
SAE (Society of Automotive Engineers), 84

SAL (system abstraction layer), 370
Samba, 12
saveenv command, 290
SBC (single board computer), 69
\sbin directory, 175
scanf() function, 122
schedule() function, 404
scheduling latency, 354, 416
SCHED_FIFO, 322
SCHED_NORMAL, 322
SCHED_OTHER, 322
SCHED_RR, 322
SCM (Software Configuration Management),

158
scp utiltiy, 316
scripts

CGI scripting, 318
creating boot, 290, 291

SCSI (Small Computer Systems Interface)
CF cards and, 231
hardware support, 68
IEEE1394 differences, 70
U-Boot and, 277

sc_screate() function, 366
SDS (Smart Distributed System) protocol, 84
second extended filesystem (see Ext2

filesystem)
Secondary Program Loader (SPL), 227
security

changing permissions, 176
gdb cautions, 330
root login cautions, 91
secure authorization, 307
secure communication, 314

“Security options” uClibc submenu, 127
Sega game console, 63
sensord daemon, 86
serial ports

data loss, 226
debugging host/target systems, 42
gdb, 330, 331
hardware support, 72, 73
modems as, 74
terminal emulators, 148–150

series kernels, 158
set remotebaud command (gdb), 332
set solib-absolute-prefix command (gdb), 332
setenv command, 289
SH project, 162

434 | Index

shells
BusyBox, 198, 205
rsh shell, 264
ssh shell, 264

.shstrtab section (ELF binary), 330
Shuttleworth, Mark, 35
Simple Network Management Protocol

(SNMP), 309–312
size utility, 95
skins (Xenomai), 365, 371, 374
Slackware, 35
SLES (SuSE Linux Enterprise), 3, 35
small systems, embedding, 6
SMBus (System Management Bus), 72
SMP (Symmetric Multiprocessor), 405, 406
SNMP (Simple Network Management

Protocol), 309–312
snmpd utility, 311
snmpget utility, 311
SoC (System-on-Chip), 7, 58, 69, 158
Society of Automotive Engineers (SAE), 84
soft real-time, 353

system/requirements, 8
Softirqs, 395

timer threads, 397–398
software

availability for i386, 59
controlled environments (Non-Fail-Safe),

upgrading in, 262–267
distribution considerations, 21
Linux and, 9, 10, 12
package management tools, 266
running vs. modifying, 19, 20
upgrades, handling, 261–270

Software Configuration Management (SCM),
158

solid state storage media, 49, 50, 51
sound, hardware support, 77
SourceForge project, 12
spin locks, 406
SPL (Secondary Program Loader), 227
spread spectrum frequency hopping, 83
Squashfs filesystem, 245–247, 259
SSH protocol, 314
ssh shell, 150, 264, 330
stab (symbol table), 329
.stab section (ELF binary), 329, 330
.stabstr section (ELF binary), 329, 330
Stallman, Richard, 1, 3

GPL software and, 23
_start symbol, 115
start_kernel() function, 47
static device files, 184–186
static library archives, glibc package, 178
static linking

Boa, 318
BusyBox, 195
copyright laws, 20
diet libc, 129
libraries and, 46
microperl, 132
rsync, 264
strace and uClibc, 334
udhcp, 304
xinetd, 308

-static option, 114
statistics, 340
STMicroelectronics (SGS-Thomson

Microelectronics), 63
storage devices, 49

(see also solid state storage media)
boot configuration setups, 50
disk devices, 231–234
DiskOnChip, 224–231
embedded systems and, 209–234
filesystems, 238
generic requirements, 44
hardware support, 79–80
initrd images, 254
linked setup and, 39
Linux workstations, 37
log files and, 318
MTD subsystem, 210–219
Native CFI Flash, 219–224
removable storage setup, 40
root filesystem, 46
setting up, 29
structure for access, 45
swapping, 234
writing Cramfs image, 245

strace tool, 333
strerror() function, 126
stringent time constraints, 7
strings utility, 95
strip utility, 95

Builtroot, 118
ELF binary and, 330
libraries, 181

Index | 435

reducing binary sizes, 329
telnetd cautions, 313

strsignal() function, 126
.strtab section (ELF binary), 330
strtod() function, 122
sumtool command, 250

JFFS2 (MTD), 216
Sun Java Micro Edition (J2mE), 130
SuperH processor

architecture overview, 63
watchdog timers for, 86

SuSE Linux Enterprise (SLES), 3, 35
swapping,/ storage devices and, 234
symbolic debugging (see debugging tools)
symbolic links

BusyBox, 197, 204
\dev directory, 185
embutils, 200
glibc package, 178
kernel configuration, 163
rsync updating utility, 263
TinyLogin, 198

Symmetric Multiprocessor (SMP), 405, 406
.symtab section (ELF binary), 330
sysctl utility, 412
SYSM (system management) module

Boa, 318–319
dynamic configurations, 303
HTTP and, 317
Net-SNMP package, 310–312
netkit-base example, 306–307
netkit-telnet, 312, 314
thttpd, 319, 320
udhcp, 304, 305
xinetd build, 308, 309

system abstraction layer (SAL), 370
system applications, 193–201
system initialization

panic function registration, 171
RAM disks and, 254
root filesystem and, 201–207

system libraries, installing on root filesystem,
177–182

System Management Bus (SMBus), 72
system startup, 47, 227
System V init program, 201, 202, 204
System-On-Chip (SoC), 7
System-on-Chip (SoC), 58, 69, 158
System.map file, 167

systems
component determination, 27, 29
defined, 3
monitoring, 85, 86
rebooting, 170, 205

systems (Linux), 4

T
Target Architecture uClibc option, 122
target command (gdb), 332
TARGET environment variable, 101
target management toolkit (Eclipse), 141
target remote command, 331
target system (GUI configuration name), 92
target systems, 39

(see also host systems)
creating, 27–29
debugging, 41, 43, 328
defined, 4
developing, 39–41
Eclipse, 326–328
gdb constraints, 329
GNU toolchain, 98
installing MTD utilities, 218, 219
network login, 312
self-hosting, 254
TARGET variable, 101
testing connections, 30

“target systems” (Linux system), 4
TARGET_PREFIX variable, 101
taskset command, 394
taskSuspend() function, 366
TCP/IP

gdb servers, 330, 331
host/target debugging setups, 42
Modbus protocol, 85
remote management with SNMP, 309

Telnet protocol, 150, 308, 312–314
telnetd daemon, 312, 314
temporary file, 261
terminal emulators

background, 147–153
C-Kermit, 152–153
Eclipse, 150
minicom, 147, 150
sending image file to target, 297
U-Boot and, 287, 298
UUCP cu, 148, 151, 152

testhello.sh (Crosstool), 104

436 | Index

testing
disabling netkit-base, 306
host/target connection, 30

.text section (ELF binary), 329
TFTP (Trivial File Transfer Protocol)

booting with, 293–295
linked setup, 39
network boot, 51, 278, 279
setting up daemon, 281–283
U-Boot image into RAM, 298

tftpboot command, 296
third extended filesystem (Ext3), 242
threading library, 97
threads, 389–394
thttpd, 318, 319, 320
time bases (Xenomai), 371
time constraints, 7, 8
timeout timers, 409
timer wheels, 408
timer_create POSIX system, 397
timestamps, 243
Timesys, 16
TinyLogin, 198–199
TiVo system, 62
Tkinter interface, 134
TLBs (Translation Lookaside Buffers), 404
\tmp directory, 174, 176, 253
Tmpfs filesystem, 252, 259
Tom's Root Boot, 35
toolchain target Ptxdist submenu, 112
toolchains, 88, 91

(see also GNU toolchain)
building, 102–112
dedicated, 87
using the, 112–115

tools (development), 87–153
debugging tools, 325–349

top utility, 339
Torvalds, Linus, 1, 2

Cramfs filesystem and, 243
GPL license and, 21

Torvals, Linus
kernel, selecting, 156

TQM860L board, 221, 222
tracing, 333
transducers, 74
Translatioln Lookaside Buffers (TLBs), 404
trap daemon (SNMP), 311
Trivial File Transfer Protocol (see TFTP)

t_suspend() function, 366

U
U-Boot bootloader

binary images, 291–292, 296–297
booting, 287–288, 293–295
CF device partitions, 233
command help, 288
compiling and installing, 285–300
emulation constraints, 147
environment variables, 289
features, 277
update cautions, 298
updating, 297–300

U-Boot environment variables, 289
UARTs (Universal Asynchronous Receiver-

Transmitters), 73, 74
Ubuntu, 3, 35, 36, 149
“uClibc development/debugging options”

submenu, 127
uClibc library, 182, 400

Boa, 318
BusyBox and, 197
features, 115–127
inetd support, 306
ldd command and, 180
microperl and, 132
Net-SNMP and, 310, 311
Python considerations, 134
strace static link, 334
telnetd, 313
udhcp, 304
xinetd constraints, 308

uClinux
MMU, MMU-less, 56

uClinux project, 56
udev, 186–193
udevd, 189
udevmonitor command, 190
udevtrigger utility, 192
udhcp project (BusyBox), 304
uevents (udevd), 189
UI (user interface) module

dynamic configurations to, 303
system memory layout, 51

UID field, 243
ulTRON real time API, 375
Universal Asynchronous Receiver-Transmitters

(UARTs), 73, 74

Index | 437

Unix workstations, 37
unlock utility (MTD), 215
updating

U-Boot, 297–300
USB (Universal Serial Bus) interface

CF cards and, 231
hardware support, 69
IEEE1394 differences, 70
Linux I/O device support, 72

USB-IF (USB Implementers Forum), 69
user accounts, 318, 320
user interaction, 9
\usr directory, 175
util-linux package, 341
UUCP (Unix to Unix CoPy) cu, 148, 151, 152

V
value-added packages, 25
van Rossum, Guido, 134
\var directory, 174, 175, 176
vendor support

ARM, 58
CAN, 84
DAQ packages, 75
distributions and, 25
I2C bus, 71
independence, 13
IrDA, 81
MIPS, 60
Motorola 68000 processors, 61
PowerPC architecture, 62

versions
EXTRAVERSION variable, 165
kernels, 156
naming conventions, 164
NTFL formatting, 230

ViewML, 15
virtual addresses, 51, 52
virtual machines, 130
Virtuoso real-time API, 367
Vista (Windows), 38
VME bus, 61
vmlinux file, 167
voluntary kernel preemption, 404–405
VRTX real time API, 375
VRTX real-time API, 365
VxWorks, 333, 365, 375
VxWorksI, 367

W
wakeup latency, 416
Wall, Larry, 131
watchdog timers, 85
wcsftime() function, 126
wear leveling, 238
web content, 317–320
Wind River, 16
Wind River systems, 5
Wind River WorkBench, 88
Windows workstations, 38
WinModem, 74
wireless technologies (see Bluetooth, IEEE

802.11, IrDA)
work queue kernel utilities, 389
workspace, 89–91, 100–102
workstations, 34, 37, 38
worst-case latency, 355

X
X Window System

graphical interface, 77
kernel configuration, 163

x86 processor
architecture overview, 58
bzImage target, 166
diet libc support, 127
DiskOnChip devices, 224
kernel, 162
system startup process, 227

Xenomai, 365–386
HAL (Hardware Abstraction Layer), 370
interrupt pipeline, 369
real-rime shadow, 376

xinetd super-server
features, 307, 309
Red Hat-based, 282
telnetd and, 313
TFTP service, 282

XP (Windows), 38

Y
YAFFS2 filesystem, 252
Yellow Dog Linux, 35, 62
Yet Another Flash Filing System, version 2

(YAFFS2) filesystem, 252
Yodaiken, Victor, 5
Yoshinori, Okuji, 276

438 | Index

Z
Zakhareivh, Ilya, 132
zImage file, 167
zlib compression library, 218

Index | 439

About the Authors
Karim Yaghmour is the founder and president of Opersys, a company providing ex-
pertise and courses on the use of open source and free software in embedded systems,
and Kryptiva, a provider of email security services. As an active member of the open
source and free software community, Karim has firmly established Opersys’s services
around the core values of knowledge sharing and technical quality promoted by this
community. As part of his community involvement, Karim is the maintainer of the
Linux Trace Toolkit and the author of a series of white papers that led to the imple-
mentation of the Adeos nanokernel, which allows multiple operating systems to exist
side by side. Karim’s quest for understanding how things work started at a very young
age when he took it upon himself to break open all the radios and cassette players he
could lay his hands on in order to “fix” them. Very early, he developed a keen interest
in operating system internals and embedded systems. He now holds a B.Eng. and an
M.A.Sc. from the École Polytechnique de Montréal. While everyone was hacking away
at Linux, Karim even took a detour to write his own distributed microkernel in order
to get to the bottom of operating system design and implementation.

When not working on software, Karim indulges in his passion for history, philosophy,
sociology, and humanities in general. He’s especially addicted to essays and novels by
Umberto Eco and Gerald Messadi.

Jonathan Masters is a British Linux kernel engineer working for Red Hat, where he
works on the real-time kernel team, and on a variety of other projects. Jon made U.K.
history by beginning his first college degree at the tender age of 13. He has been using
and has been involved with Linux for most of his life. He has worked on a diverse variety
of embedded Linux projects in different capacities—as an independent contractor, an
employee of a large scientific research company, and at a well-known embedded Linux
vendor. Jon has written several books, many technical articles, and maintains the
module-init-tools package used by the Linux kernel.

Jon lives in Cambridge, Massachusetts, and enjoys travel, hacking embedded devices,
hiking, U.S. history, obscure legal texts, and any opportunity for random craziness.

Gilad Ben-Yossef is the cofounder and CTO of Codefidence Ltd. and has been as-
sisting OEMs make use of free and open source software in commercial products and
services since 1998. He is also cofounder of Hamakor, an NPO devoted to the promo-
tion of FOSS in Israel, and a founding organizer of “August Penguin,” an Israeli com-
munity FOSS conference.

Gilad is a member of the Israeli chapter of Mensa, the Israeli Information Technology
Association, and the Israeli chapter of the Internet Society. He holds a B.A. in computer
science from Tel-Aviv Jaffa Academic College.

When not trying to make FOSS software do something the authors never intended,
Gilad likes to scuba dive, read science fiction, and spend time with his wife, Limor, and
his two adorable girls, Almog and Yael.

Philippe Gerum is the founder and lead maintainer of the Adeos and Xenomai projects.

Colophon
The image on the cover of Building Embedded Linux Systems, Second Edition, is a
windmill.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The
cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading font
is Adobe Myriad Condensed; and the code font is LucasFont’s TheSansMo-
noCondensed.

	Table of Contents
	Preface
	Focus on Self-Sufficiency
	Audience for This Book
	Scope and Background Information
	Organization of the Material
	Hardware Used in This Book
	Software Versions
	Typographical Conventions
	Using Code Examples
	Contact Information
	Safari® Books Online
	Acknowledgments for the First Edition
	Acknowledgments for the Second Edition

	Chapter 1. Introduction
	Definitions
	What Is Linux?
	What Is Embedded Linux?
	What Is Real-Time Linux?

	Real Life and Embedded Linux Systems
	Types of Embedded Linux Systems
	Size
	Time constraints
	Networkability
	User interaction

	Reasons for Choosing Linux
	Quality and reliability of code
	Availability of code
	Hardware support
	Communication protocol and software standards
	Available tools
	Community support
	Licensing
	Vendor independence
	Cost

	Players in the Embedded Linux Scene
	Free software and open source community
	Industry
	Resources

	Copyright and Patent Issues
	Textbook GPL
	Pending issues
	RTLinux patent

	A Word on Distributions
	To use or not to use
	How to choose a distribution
	What to avoid doing with a distribution

	Design and Implementation Methodology
	Creating a Target Linux System
	Setting Up and Using Development Tools
	Developing for the Embedded
	Networking

	Types of Hosts

	Chapter 2. Basic Concepts
	Types of Host/Target Development Setups
	Linked Setup
	Removable Storage Setup
	Standalone Setup

	Types of Host/Target Debug Setups
	Generic Architecture of an Embedded Linux System
	System Startup
	Types of Boot Configurations
	Solid-State Storage Media
	Disk
	Network

	System Memory Layout

	Chapter 3. Hardware Support
	Processor Architectures
	ARM
	AVR32
	Intel x86
	M32R
	MIPS
	Motorola 68000
	PowerPC
	SuperH

	Buses and Interfaces
	PCI/PCI-X/PCIe
	ExpressCard (Replaces PCMCIA’s PC Card)
	PC/104, PC/104-Plus, PCI-104, and PCI/104-Express
	CompactPCI/CompactPCIe
	SCSI/iSCSI
	USB
	IEEE1394 (FireWire)
	InfiniBand
	GPIB
	I2C

	I/O
	Serial Port
	Parallel Port
	Modem
	Data Acquisition
	Keyboard
	Mouse
	Display
	Sound
	Printer

	Storage
	Memory Technology Devices
	PATA, SATA, and ATAPI (IDE)
	Non-MTD Flash-Based devices

	General-Purpose Networking
	Ethernet
	IrDA
	IEEE 802.11A/B/G/N (Wireless)
	Bluetooth

	Industrial-Grade Networking
	CAN
	Modbus

	System Monitoring

	Chapter 4. Development Tools
	A Practical Project Workspace
	GNU Cross-Platform Development Toolchain
	Introduction to Building a GNU Toolchain
	Terms and GNU configuration names
	Linux kernel headers
	Binutils
	The C library
	The threading library
	Component versions
	Additional build requirements
	Build overview
	Workspace setup
	Resources

	Building the Toolchain
	Manually building a toolchain
	Automated cross toolchain build systems
	Crosstool
	Ptxdist

	Using the Toolchain

	C Library Alternatives
	uClibc
	Buildroot
	Customizing the uClibc configuration

	Diet libc
	Library setup
	Usage

	Java
	Sun Java Micro Edition
	Non-Sun-Related Open Source Virtual Machines
	The GNU Java Compiler

	Perl
	Microperl
	Miniperl

	Python
	Other Programming Languages
	Eclipse: An Integrated Development Environment
	Installing Eclipse
	Running Eclipse
	Extending Eclipse
	Installing a plug-in
	Target Management toolkit
	Subclipse

	Working With Eclipse
	Projects
	Development
	Target management

	Terminal Emulators
	Accessing the Serial Port
	Eclipse Terminal
	Minicom
	UUCP cu
	C-Kermit

	Chapter 5. Kernel Considerations
	Selecting a Kernel
	Embedded Linux Kernels
	2.4 Series Kernels
	The 2.6 Series Linux Kernel
	Using a stable release tarball
	Tracking development with git
	Third-party kernel trees and patches

	Configuring the Kernel
	Configuration Options
	Configuration Methods
	Managing Multiple Configurations
	Using the EXTRAVERSION Variable

	Compiling the Kernel
	Building the Kernel
	Building the Modules

	Installing the Kernel
	Managing Multiple Kernel Images
	Installing Kernel Modules

	In the Field
	Dealing with Kernel Failure

	Basic Root Filesystem Structure

	Chapter 6. Root Filesystem Content
	Libraries
	glibc
	uClibc

	Kernel Modules
	Kernel Images
	Device Files
	Static Device Files
	udev
	The need for dynamic devices
	Building udev
	Starting udev
	udev’s operation
	udev rules
	Coldplugging
	Kernel configuration
	Lightweight udev implementation: BusyBox mdev

	Main System Applications
	Complete Standard Applications
	BusyBox
	Setup
	Compilation
	Usage
	TinyLogin: BusyBox logging utilities

	embutils
	Setup
	Usage

	Custom Applications
	System Initialization
	Standard System V init
	BusyBox init
	Minit

	MTD-Supported Devices

	Chapter 7. Storage Device Manipulation
	Disk Devices
	CompactFlash
	Floppy Disk
	Hard Disk

	To Swap or Not To Swap
	Filesystem Types for Embedded Devices
	Characterizing Filesystems

	Chapter 8. Root Filesystem Setup
	Writing a Filesystem Image to Flash Using an NFS-Mounted Root Filesystem
	Placing a Disk Filesystem on a RAM Disk
	Rootfs and Initramfs
	Choosing a Filesystem’s Type and Layout
	Applications, Libraries, and Static Data
	Keeping the filesystem in RAM
	Using read-only persistent storage
	Using online writable persistent storage

	Dynamic Configuration Files and Data
	Temporary Files
	Layout Example

	Handling Software Upgrades
	Software Upgrades in Controlled Environments (Non-Fail-Safe)
	Replacing a filesystem in-place in RAM
	rsync
	Package management tools

	Fail-Safe Software Upgrades
	Architecture of a fail-safe solution
	Example procedure for a fail-safe solution

	Chapter 9. Setting Up the Bootloader
	Embedded Bootloaders
	LILO
	GRUB
	loadlin
	Coreboot (Formerly the LinuxBIOS)
	U-Boot
	RedBoot

	Server Setup for Network Boot
	Setting Up the DHCP Daemon
	Setting Up the TFTP Daemon
	Mounting a Root Filesystem on an NFS Server

	Using the U-Boot Bootloader
	Compiling and Installing
	Booting with U-Boot
	Using U-Boot’s Environment Variables
	Creating Boot Scripts
	Preparing Binary Images
	Booting Using BOOTP/DHCP, TFTP, and NFS
	Downloading Binary Images to Flash
	Updating U-Boot

	Chapter 10. Setting Up Networking Services
	Network Settings
	Busybox
	Dynamic Configuration Through DHCP
	The Internet Super-Server
	inetd
	xinetd

	Remote Administration with SNMP
	Network Login Through Telnet
	netkit-telnetd

	Secure Communication with SSH
	Serving Web Content Through HTTP
	Boa
	thttpd
	A Word on Apache
	Dynamically Generated Web Content

	Provisioning

	Chapter 11. Debugging Tools
	Eclipse
	Debugging Applications with gdb
	Building and Installing gdb Components
	Using the gdb Components to Debug Target Applications
	Interfacing with a Graphical Frontend

	Tracing
	Single-Process Tracing
	System Tracing

	Performance Analysis
	Process Profiling
	Code Coverage
	System Profiling
	Basic /proc figures
	Complete profile using LTTng

	Kernel Profiling
	Measuring Interrupt Latency

	Memory Debugging
	Electric Fence and DUMA
	Electric Fence
	DUMA

	MEMWATCH

	A Word on Hardware Tools
	What Is Real-Time Processing?

	Chapter 12. Introduction to Real-Time
 Linux
	Should Your Linux Be Real-Time?
	Why Does the Kernel Need to Be Real-Time Aware?
	What Is Latency?

	Common Real-Time Kernel Requirements
	A Fine-Grained Preemptible Kernel
	Strictly Enforced Task Priorities
	Handling External Events in a Bounded Time Frame

	Some Typical Users of Real-Time Computing Technology
	The Linux Paths to Real-Time
	The Co-Kernel Approach
	The Fully Preemptible Kernel Approach

	Chapter 13. The Xenomai Real-Time
 System
	Porting Traditional RTOS Applications to Linux
	The Xenomai Architecture
	The Interrupt Pipeline
	The Hardware and System Abstraction Layers
	The Xenomai Core and Nucleus
	The Xenomai Skins

	How Xenomai Works
	The Real-Time Shadow
	New Sets of System Calls
	Sharing Kernel Features and Domain Migration

	The Real-Time Driver Model
	RTDM Mediation

	Xenomai, Chameleon by Design

	Chapter 14. The RT Patch
	Interrupts As Threads
	Hard IRQs As Threads
	Interrupts and CPU Affinities
	Softirqs As Threads
	Softirq Timer Threads

	Priority Inheritance
	Configuring the Kernel with the RT Patch
	No Forced Preemption
	Voluntary Kernel Preemption
	Preemptible Kernel
	Complete Preemption

	High-Resolution Timers
	The Latency Tracer
	Event Trace
	Function Call Trace
	Wakeup Latency Timing

	Conclusion

	Index

