
OCaml Cheat Sheet
by advitya via cheatography.com/20757/cs/3643/

The Enviro nment Model Semantics

env :: n || n

env :: e1 + e2 || n

 if env :: e1 || n1 and env ::
e2 || n2

 and n is the result of applying
 pri mitive operation + to n1 and
n2

env :: (e1, e2) || (v1, v2)

 if env :: e1 || v1 and env ::
e2 || v2

env :: fst e || v1

 if env :: e || (v1,v2)
env :: Left e || Left v

 if env :: e || v
env :: match e with Left x -> e1

 | Right y -> e2 || v1
 if env :: e || Left v and
 env +{x=v} :: e1 || v1
env :: let x = e1 in e2 || v2

 if env :: e1 || v1 and
 env +{x=v1} :: e2 || v2
env :: (fun x -> e) || <<fun x ->

e, env>>

env :: e1 e2 || v

 if env :: e1 || <<fun x -> e,
env'>>

 and env :: e2 || v2
 and env' + {x=v2} :: e || v
env :: let rec f x = e1 in e2 || v

 if env + {f = <<f, fun x -> e1,
env>>}

 :: e2 || v
env :: e1 e2 || v

 if env :: e1 || <<f, fun x -> e,
env'>>

 and env :: e2 || v2
 and env' + {x=v2, f=< <f, fun x ->
e, env'>>}

 :: e || v

Enviro nment Model Semantics Rule with
Lexical Scoping

Technique to Generalize Folding

1. Write a recursive fold function

that takes in one argument for each

variant of the datatype.

2. That fold function matches

against the datatype variants,

calling itself recurs ively on any
instance of the datatype that it

encoun ters.
3. When a variant carries data of a

type other than the datatype being

folded, use the approp riate
argument to fold to incorp orate
that data.

4. When a variant carries no data,

use the approp riate argument to
fold to produce an accumu lator.
let rec fold_left (f : 'a -> 'b -

>'a) (acc : 'a) (lst : 'b list): 'a

=

 match lst with
 [] -> acc
 | x :: xs -> fold_left f (f acc
x) xs

fold_left : 'a -> 'b -> 'a -> 'a -

> 'b list -> 'a

let rec fold_right (f : 'a -> 'b ->

'b) (l : 'a list) (acc : 'b) : 'b =

 match l with
 [] -> acc
 | x :: xs -> f x
(List.f ol d_right f xs acc)
fold_r ight: 'a -> 'b -> 'b -> 'a
list -> 'b ->'b

Example of Genera lized fold:
type

 'a exprTree =

| Val of 'a

| Unop of ('a -> 'a) * 'a exprTree

| Binop of ('a -> 'a -> 'a) 'a

exprTree 'a exprTree

let rec exprTr ee_fold (foldVal)
(foldUnop) (foldB inop) = function
 | Val x -> foldVal x

Technique to Generalize Folding (cont)

 | Unop (f, t) -> foldUnop f
(exprT ree _fold foldVal foldUnop
foldBinop t) | Binop (f, t1, t2) ->

foldBinop f (exprT ree _fold foldVal
foldUnop foldBinop t1)

(exprT ree _fold foldVal foldUnop
foldBinop t2)

 ;;

Genera lized fold and List folding functions

Function Type Inferrence

Infer the type of functions from operations
nested within the function. Start off by labeling
all of the bindings and parameters with a
random type Tn. And, then find out the type for
each of them. Use patterns like the branches of
an if and else statements are the same type
and same goes for match statem ents.
Points to note are that the failure ("bl ah") and
Exception Not_found have type 'a (just
something random), so they can be restricted
to whatever the other type is in a match
expres sion. Also, let rec f x= f x in f has type 'a -
> 'b

Docume nting Abstra ctions

A specif ication is a contract between an
implem enter of an abstra ction and a client of
an abstra ction. An implem ent ation satisfies a
specif ication if it provides the described
behavior.
Locality: abstra ction can be understood without
needing to examine implem ent ation
Modifi abi lity: abstra ction can be
reimpl emented without changing
implem ent ation of other abstra ctions
Good Specs:

By advitya
cheatography.com/advitya/

Published 9th March, 2015.
Last updated 15th May, 2015.
Page 1 of 4.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/advitya/
http://www.cheatography.com/advitya/cheat-sheets/ocaml
http://www.cheatography.com/advitya/
http://crosswordcheats.com

OCaml Cheat Sheet
by advitya via cheatography.com/20757/cs/3643/

Docume nting Abstra ctions (cont)

Suffic iently restri ctive: rule out
implem ent ations that wouldn’t be useful to
clients
Suffic iently general: do not rule out
implem ent ations that would be useful to clients
Suffic iently clear: easy for clients to understand
behavior
Abstra ction function (AF) captures designer’s
intent in choosing a particular repres ent ation of
a data abstra ction. Not actually OCaml function
but an abstract function. Maps concrete values
to abstract values. Think about Set example,
where implem enter sees Set as 'a list [1;2] but
user sees it as {1,2}.
Many-t o-one: many values of concrete type can
map to same value of abstract type. [1;2] &
[2;1] both map to {1,2}
Partial: some values of concrete type do not
map to any value of abstract type
[1;1;2] because no duplicates
opA(AF(c)) = AF(opC (c)). AF commutes with
op!
You might write:
– Abstra ction Function: comment – AF:
comment
– comment
Repres ent ation invariant charac terizes which
concrete values are valid and which are invalid.
-Valid concrete values will be mapped by AF to
abstract values
-Invalid concrete value will not be mapped by
AF to abstract values

Substi tution Model of Evaluation

e1 + e2 --> e1' + e2

 if e1 --> e1'
v1 + e2 --> v1 + e2'

 if e2 --> e2'
n1 + n2 --> n3

 where n3 is the result of
applying primitive operation +

 to n1 and n2
(e1, e2) --> (e1', e2)

 if e1 --> e1'
(v1, e2) --> (v1, e2')

 if e2 --> e2'
fst (v1,v2) --> v1

Left e --> Left e'

 if e --> e'
match e with Left x -> e1 | Right

y -> e2

--> match e' with Left x -> e1 |

Right y -> e2

 if e --> e'
match Left v with Left x -> e1 |

Right y -> e2

--> e1{v/x}

match Right v with Left x -> e1 |

Right y -> e2

--> e2{v/y}

let x = e1 in e2 --> let x = e1' in

e2

 if e1 --> e1'
let x = v in e2 --> e2{v/x}

e1 e2 --> e1' e2

 if e1 --> e1'
v e2 --> v e2'

 if e2 --> e2'
Capture Avoiding Substi tution
(fun x -> e) v2 --> e{v2/x}

(Left e'){e/x} = Left e'{e/x}

(Right e'){e/x} = Right e'{e/x}

Substi tution Model of Evaluation (cont)

(match e' with Left y -> e1 |

Right z -> e2){e/x}

 = match e'{e/x} with Left y ->

e1{e/x} | Right z -> e2{e/x}

(match e' with Left x -> e1 |

Right z -> e2){e/x}

 = match e'{e/x} with Left x -> e1

| Right z -> e2{e/x}

(match e' with Left y -> e1 |

Right x -> e2){e/x}

 = match e'{e/x} with Left y ->

e1{e/x} | Right x -> e2

(match e' with Left x -> e1 |

Right x -> e2){e/x}

 = match e'{e/x} with Left x -> e1

| Right x -> e2

(let x = e1 in e2){v/x} = let x =

e1{v/x} in e2

(let y = e1 in e2){v/x} = let y =

e1{v/x} in e2{v/x}

(e1,e2){e/x} = (e1{e/x}, e2{e/x})
(fst e'){e/x} = fst e'{e/x}

Substi tution Model Evalua tion- Captur e-
a voiding substi tution

Example Module & Functor example

Start off with this functor for

Intervals.

module Make_i nterval :
 functor (Endpoint : Compar able)
->

 sig
 type t = Interval of
Endpoint.t * Endpoint.t | Empty

 val create : Endpoint.t ->
Endpoint.t -> t

 val is_empty : t -> bool
 val contains : t ->
Endpoint.t -> bool

 val intersect : t -> t -> t
 end

By advitya
cheatography.com/advitya/

Published 9th March, 2015.
Last updated 15th May, 2015.
Page 2 of 4.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/advitya/
http://www.cheatography.com/advitya/cheat-sheets/ocaml
http://www.cheatography.com/advitya/
http://crosswordcheats.com

OCaml Cheat Sheet
by advitya via cheatography.com/20757/cs/3643/

Example Module & Functor example (cont)

Now, the functor does not have an

abstract type. Because, the user

can see the type in the functor.

So, we have to hid that type t

impele men tation. There's a problem
with Make_i nte rval. The invariant
is enforced by the create function,

but because Interval.t is not

abstract, we can bypass the create

function. So you do something like

this with sharing constr aints: :
module Make_i nte rva l(E ndpoint :
Compar able) : Interv al_intf with
type endpoint = int struct

 type endpoint = Endpoint.t
 type t = | Interval of
Endpoint.t * Endpoint.t

 | Empty

Modules Signat ures, Structures and
Functors

Basically, signature is the interface that we
must follow for a certain module. The Structure
of a module is the implem ent ation of the given
signature of the module. Furthe rmore, the
functors go ahead and parame terize modules:
that is, they will take in a module or multiple
modules as inputs and return a new module
that is parame terized with the input module. So,
suppose you have a given Set module and you
want this module to applicable to all types not
only ints. So, you will need the notion of
equality in your module, but this notion of
equality is different between Ints and Strings, so
you can parame terize by having a functor that
has a type sig of EQUAL as its input. With
functors remember to do the sharing
constr aints..

Matching Mechanics & Type Declar ations

A type synonym is a new kind of declar ation.
The type and the name are interc han geable in
every way.
Matching: Given a pattern p and a value v,
decide
– Does pattern match value?
– If so, what variable bindings are introd uced?
If p is a variable x, the match succeeds and x is
bound to v.
If p is _, the match succeeds and no bindings
are introduced
If p is a constant c, the match succeeds if v is c.
No bindings are introduced
If p is C p1, the match succeeds if v is C v1
(i.e., the same constr uctor) and p1 matches v1.
The bindings are the bindings from the sub-
match.
If p is (p1,..., pn) and v is (v1,..., vn), the match
succeeds if p1 matches v1, and ..., and pn
matches vn. The bindings are the union of all
bindings from the sub-ma tches.
1. If Expres sions are just pattern matches
2. Lists and options are just datatypes
3. Let expres sions are also pattern matches.
4. A function argument can also be a pattern.

Type Checking Rules

Syntax:

e1 + e2

Type-c hec king:
If e1 and e2 have type int, then e1

+ e2 has type int

Syntax: e1 < e2

Type-c hec king: if e1 has type int
and e2 has type

int then e1<e2 has type bool

Syntax: if e1 then e2 else e3

Type Checking Rules (cont)

Type-c hec king: if e1 has type bool
and, for some type t, both e2 and

e3 have type t, then if e1 then e2

else e3 has type t

Simplified syntax:

let x = e1 in e2

Type-c hec king:
If e1:t1, and if e2:t2 under the

assumption that

x:t1, then let x = e1 in e2 : t2

Syntax: e0 (e1,...,en)

Type-c hec king:
If: e0 has some type (t1 ... tn) ->

t

and e1 has type t1, ..., en has

type tn

Then e0 (e1,...,en) has type t

Syntax: {f1=e1 ;...;f n=en}
Type-c hec king:
If e1:t1a nde2:t2 and ... en:tn, and
if t is a declared type of the form

{f1:t1, ..., fn:tn} , then{f1 =

e1; ...; fn = en}:t

Syntax: e.f

Type-c hec king:
If e:t1 and if t1 is a declared

type of the form {f:t2, ...} , then

e.f: t2

None has type ‘a option

– much like [] has type ‘a list –

None is a value

Some e :t option ife:t

– much like e::[] has type t list

if e:t – If e-->v then Some e--

>Some v

Note- Datatype VS Records Table

Type Checking Rules part of Semantics

By advitya
cheatography.com/advitya/

Published 9th March, 2015.
Last updated 15th May, 2015.
Page 3 of 4.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/advitya/
http://www.cheatography.com/advitya/cheat-sheets/ocaml
http://www.cheatography.com/advitya/
http://crosswordcheats.com

OCaml Cheat Sheet
by advitya via cheatography.com/20757/cs/3643/

Key Points about Modules

Other key points with modules:
1. Difference between include and open is that
include just sort of extends a module/ signature
when its called. In general, opening a module
adds the contents of that module to the
enviro nment that the compiler looks at to find
the definition of various identi fie rs.W hile
opening a module affects the enviro nment used
to search for identi fiers, including a module is a
way of actually adding new identi fiers to a
module proper. The difference between include
and open is that we've done more than change
how identi fiers are searched for: we've changed
what's in the module. Opening modules is
usuallly not a good thing in top level as you are
getting rid of the advantage of a new
namespace and if you want to do it, do it
locally.. 2. Don't expose the type of module
especially in the signature, it is smart to hid from
your user as they may abuse your invariant and
don't have any idea on the implem ent ation. So,
you can also change the implem ent ation
without them knowing.
3. We can also use sharing constr aints in the
context of a functor. The most common use
case is where you want to expose that some of
the types of the module being generated by the
functor are related to the types in the module
fed to the functor

Data Types VS Record VS Tuple

 Declare Build/ Con st
ruct

Access/
Destruct

DataType type Constr ucto
r name

Pattern
matching
with
match

Record type Record
expression
with {...}

Pattern
matching
with let
OR field
selection
with dot
operator .

Tuple N/A Tuple
expression
with (...)

Pattern
matching
with let
OR fst or
snd

Records are used to store this AND that.
Datatypes represent this OR that. Also, a tuple
is just a record with its fields referred to by
position, where as with records it is by name.

Algebraic Dataypes of form <Da tatype: Name
Studen t> of String

Dynamic VS Lexical Scoping

Rule of dynamic scope: The body of a function
is evaluated in the current dynamic
enviro nment at the time the function is called,
not the old dynamic enviro nment that existed at
the time the function was defined.
Rule of lexical scope: The body of a function is
evaluated in the old dynamic enviro nment that
existed at the time the function was defined, not
the current enviro nment when the function is
called.

Functions as First Class Citizens

Functions are values
Can use them anywhere we use values
First- class citizens of language, afforded all the
“rights” of any other values

Functions as First Class Citizens (cont)

– Functions can take functions as arguments –
Functions can return functions as results
...fun ctions can be higher -order
Map: let rec map f xs = match xs with
[] -> []
| x::xs’ -> (f x)::(map f xs’)
map: ('a->' b)- >'a lis t-> 'blist
Filter, Map, folds are iterators basically. They
can iterate through structures just like normal
loops can.

By advitya
cheatography.com/advitya/

Published 9th March, 2015.
Last updated 15th May, 2015.
Page 4 of 4.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/advitya/
http://www.cheatography.com/advitya/cheat-sheets/ocaml
http://www.cheatography.com/advitya/
http://crosswordcheats.com

	OCaml Cheat Sheet - Page 1
	The Environment Model Semantics
	Technique to Generalize Folding
	Function Type Inferrence
	Documenting Abstractions

	OCaml Cheat Sheet - Page 2
	Substitution Model of Evaluation
	Example Module & Functor example

	OCaml Cheat Sheet - Page 3
	Matching Mechanics & Type Declarations
	Modules Signatures, Structures and Functors
	Type Checking Rules

	OCaml Cheat Sheet - Page 4
	Key Points about Modules
	Data Types VS Record VS Tuple
	Dynamic VS Lexical Scoping
	Functions as First Class Citizens

