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Abstract—Although definition of single-program benchmarks
is relatively straight-forward—a benchmark is a program plus a
specific input—definition of multi-program benchmarks is more
complex. Each program may have a different runtime and they
may have different interactions depending on how they align with
each other. While prior work has focused on sampling multi-
program benchmarks, little attention has been paid to defining
the benchmarks in their entirety.

In this work, we propose a four-tuple that formally defines
multi-program benchmarks in a well-defined way. We then
examine how four different classes of benchmarks created by
varying the elements of this tuple align with real-world use-cases.
We evaluate the impact of these variations on real hardware, and
see drastic variations in results between different benchmarks
constructed from the same programs. Notable differences include
significant speedups versus slowdowns (e.g., +57% vs -5% or
+26% vs -18%), and large differences in magnitude even when
the results are in the same direction (e.g., 67% versus 11%).

I. INTRODUCTION

With multi-core processors now ubiquitous and cloud com-
puting becoming more prevalent, architects are increasingly
evaluating their micro-architectural ideas using multi-program
workloads. To make fair and insightful comparisons between
systems, architects need appropriate multi-program bench-
marks for their experiments. That is, architects need a set
of individual programs and a methodology for running these
programs during experiments; taken together, these constitute
the benchmark definition.

Although benchmark definition is trivial for single-program
workloads—just run the single program to completion—
defining a multi-program benchmark is more complicated. The
reason for this complexity is that there are many ways in which
one can run multiple programs. For example, we could run
each program once on its own core and run until the first (or
last) program finishes. Instead, we could run each program on
its own core as many times as possible until a pre-specified
amount of time has elapsed. Another possibility is to run a
set of programs and launch them in FIFO order to the next
available core. There are numerous other possibilities, many
of which are reasonable representations of real-world systems.

Benchmark definition is crucial for multi-program experi-
ments because it can profoundly impact the results. Even with
the same program pairings, different multi-program benchmark
definitions can have qualitatively different experimental results,
leading to different conclusions. Section IV shows how dif-

ferent benchmark definitions with the same program pairings
affect whether we see a speedup or a slowdown between two
systems, or radically different speedups.

The experimental differences between benchmark defini-
tions arise due to the interactions between concurrently running
programs. One issue that arises in multi-program benchmarks
is load imbalance, in which different programs run for different
amounts of time. Assume program A runs for 1 second and
program B runs for 10 seconds. If the benchmark definition
is to run each program once until they both complete, then
90% of the experiment will measure program B running alone.
Benchmark designers must take care to ensure that the load
imbalance in their benchmarks accurately models the load
imbalance in the systems their work targets.

Interactions between programs running concurrently in a
multi-program benchmark include not just load imbalance but
also contention for shared resources. The resource usages of
the programs—and thus their contention patterns—vary across
the execution of a program, primarily as it transitions from
one phase of execution to another [19]. This phase-dependent
contention behavior means that the program alignment—
the relative position of the two programs in their dynamic
instruction streams—affects the performance characteristics
of the multi-program benchmark. Consequently, a benchmark
definition must account for the variety of alignments that occur
in the scenarios that the benchmark intends to model.

Given that benchmark definition is crucial for multi-program
experiments, it is perhaps surprising that there is no univer-
sally accepted way of precisely (i.e. formally) defining or
even describing multi-program benchmarks. Research papers
textually describe their multi-program benchmarks—although
often without sufficient detail for the reader to reproduce the
results. Table I presents a sample of multi-program benchmark
descriptions from a variety of research papers.

Examining these descriptions, it is apparent that benchmark
definition methodologies differ drastically between papers.
One issue that varies considerably is the benchmark duration.
Some papers define the benchmark duration by the number of
instructions executed [4], [6], [9], [12], [16], though some are
not clear whether that is instructions for each program, total
instructions between all programs, when one program reaches
a particular number of instructions, or some other condition.
Other papers define the benchmark duration by the number of
cycles executed [15], [17] or until the IPC converges [10].
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Paper Multiprogram Benchmark Description
“Balancing DRAM Locality and Parallelism in Shared Memory CMP
Systems” [6]

“. . . , we use SimPoint and determine a representative 200 million instruction region from each
application.”

“CPROB: Checkpoint Processing with Opportunistic Minimal Recovery” [4]
“Our multi-program workload metholodgy is FIESTA. From each program we choose 50 samples,
each of which runs for 5 million cycles when executed standalone. A multi-program run executes the
samples from the different programs pair-wise.”

“Effective Management of DRAM Bandwidth in Multicore Processors” [12] “. . . the workloads are simulated in detail for 100 million instructions.”

“Fair Queuing Memory Systems” [9] “We use twenty 100 million instruction SPEC benchmark sampled traces that have been verified to
be statistically representative of the entire SPEC application.”

“A Flexible Heterogeneous Multi-core Architecture” [10] “we use the methodology proposed in [FAME: FAirly MEasuring Multithreaded Architectures]. . . we
used a Maximum Allowable IPC Variance (MAIV) of 5%.”

“MISE: Providing performance predictability and improving fairness in
shared main memory systems” [17]

“We extract a representative phase of each benchmark using PinPoints and run that phase for 200
million cycles.”

“Symbiotic Jobscheduling for a Simultaneous Multithreading Processor” [15]
“Every 5 million cycles,. . . , the jobscheduler receives a clock pulse; if runnable jobs are available
that were not scheduled during the previous timeslice, it swaps out one or more of the jobs that ran
in the last timeslice, replacing these with jobs that did not.”

“Symbiotic Jobscheduling with priorities for a Simultaneous Multithreading
Processor” [16]

“The benchmarks were fast-forwarded to get out of the startup phase before being simulated for 250
million instructions times the number of threads being simulated.”

Table I: Selection of multiprogram benchmark descriptions used in recent work.

Another issue that varies across multi-program benchmark
definitions is the mapping of programs to cores. A benchmark
could assign all programs of a given type to a given set of
cores, or it could assign programs in a FIFO manner to the
next available core.

To enable better experimental evaluations and higher re-
producability of others’ work, we argue for a framework for
precisely defining multi-program benchmarks. With such a
framework, experimenters could clearly and concisely describe
their benchmarks, enabling peer-reviewers to assess the ap-
propriateness of the benchmarks and other researchers to re-
execute the benchmark exactly. However, we are not arguing
that there should be a single benchmark definition for all
experiments, because the benchmark must be appropriate for
the experiment. A multi-program benchmark appropriate to
a web-server would be inappropriate for a real-time control
system, even if the individual programs comprising it were
appropriate to both. None of the papers shown in Table I
(or any others that we know of) explicitly discuss how their
benchmark definitions align with the behavior of the systems
they target.

In this work, we develop a framework for precisely and
unambiguously defining multi-program benchmarks. A bench-
mark defined using our framework leaves no question as to
how the programs were co-executed, making it directly repro-
ducible. At the same time, our framework is flexible enough
to allow the wide variety of benchmark definitions required
to match the wide array of possible system usage models. We
show how to use our framework to define benchmarks for some
system usage models (e.g., highly-utilized servers, servers with
constrained scheduling, etc.). Although we obviously cannot
show all possible benchmark definitions that can be specified
in our framework, the examples provide a clear demonstration
of its usefulness and importance. Architects targetting other
systems can use our framework to define whatever benchmarks
are appropriate, and can succinctly describe them with enough
precision that others can fully understand them.

The primary contributions of this work are:

• A framework for precisely defining and unambiguously
describing multi-program benchmarks.

• Examples of how the framework can be applied to define
benchmarks appropriate to experimentation for some real
system usage models.

• Experimental demonstration of the impact that benchmark
definition has on experimental results.

II. THE ELEMENTS OF A MULTI-PROGRAM BENCHMARK
EXPERIMENT

Before we present our new framework for precisely defining
multi-program benchmarks, it is important and insightful to
clearly separate the elements of an experiment in order to
understand the critical role played by benchmark definition.
We now present the steps necessary to construct a rigorous
scientific experiment with multi-program benchmarks.

Step 1: Benchmark program selection. A multi-program
benchmark involves running multiple single-program bench-
marks (program + input), and we distinguish between the
selection of these single-program benchmarks (which is Step
#1) and how they are co-executed (Step #2). For Step #1,
an experimenter simply chooses how many programs to run,
which programs to run, and the appropriate input data-sets for
each.

Step 2: Multi-program benchmark definition. This step
is the focus of this paper and where our contribution lies. We
develop a framework for precisely specifying how to run the
programs that were selected in Step #1.

Step 3: Evaluation metric selection. Experimenters choose
a metric that is appropriate to the issue they are exploring.
There are metrics for performance, power, reliability, etc.
Metric selection is a very important issue that is the subject
of much debate [2], [3], [8], [13], but it is mostly orthogonal
to the focus of this paper. That is, a well-defined benchmark
could be used to evaluate whatever metric is chosen in Step
#3.

However, the choice of metric could become somewhat
entangled with benchmark definition (but orthogonal to the
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general formalism for benchmark definition that we present).
As we will see shortly, different multi-program benchmarks
may hold different aspects (e.g., programs executed, runtime,
energy consumed, etc.) constant. In a benchmark that holds
“programs executed” constant, simply measuring “runtime”
gives a meaningful performance metric; lower runtime equals
higher performance. However, in a benchmark that holds
“runtime” constant, measuring runtime is of course, silly.
Instead, higher performance comes from a higher number of
jobs executed in the fixed time. Of course, if the ratio of
the programs co-executed changes, then some system model
dependent notion of total work must be applied to combine
them.

Step 4 (optional): Benchmark sampling. To reduce the
time required for the experiment, the experimenter may choose
to sample the benchmark’s execution. Sampling methodology
is an active area of research (e.g., [5], [11], [13], [18], [19],
[22]), but it is largely orthogonal to the focus of this paper.
To sample a benchmark requires first defining the benchmark
to be sampled. (Put another way, to quantify sampling error,
one must compare the results of the sampled benchmark to
a baseline unsampled benchmark.) Some researchers have
developed sampling methodologies whereby they start with
the sampled benchmark and then they may or may not infer
the definition of the unsampled benchmark. We note that
sampling is not entirely orthogonal to benchmark definition
in that some sampling methodologies may not be applicable
to all benchmark definitions.

III. BENCHMARK DEFINITION

A benchmark’s definition must specify all of the parameters
required to ensure that the benchmark can be used to make
meaningful comparisons. Typically, these comparisons are in
terms of one or more metrics (e.g., time, or energy) on two
or more architectures. Executing a well-defined benchmark on
each architectures allows for direct comparison of the metrics
measured during the benchmark’s execution. By contrast, ill-
defined benchmarks may yield invalid comparisons.

For single-program experiments, benchmark definition is
well understood—a benchmark is the execution of a particular
program on a specific input. Running the same program on the
same input produces results that are directly comparable across
architectures. If lbm.ref takes 30 seconds on architecture α
and 60 seconds on architecture β, we can typically conclude
that architecture α is faster than architecture β on lbm.ref.
Of course, in doing this comparison, one must be cautious
of the broader experimental methodology—e.g., performing
multiple runs, determining significance of results relative to
experimental error, eliminating other interference—however,
these concerns are orthogonal to benchmark definition.

The challenge we address in this paper is the precise and un-
ambiguous definition of multi-program benchmarks. We have
developed a framework in which we define a multi-program
benchmark as a 4-tuple: 〈B, T ,F ,S0〉. The first element, B, is

the set of single-program benchmarks (programs plus specific
inputs) that are combined to make the multi-program bench-
mark. For example, B might be {lbm.train, gcc.ref}. In this
paper, we consider only single-threaded programs; defining
multi-program benchmarks consisting of multi-threaded pro-
grams is future work.

The second element of a multi-program benchmark defini-
tion is T , the terminating condition for the benchmark, which
specifies when the benchmark is complete. For single-program
benchmarks, the terminating condition for the benchmark is
implicit and simple: when the program of interest exits, the
benchmark ends. For multi-program benchmarks, however, the
terminating condition may take a variety of forms, such as “200
lbms and 100 gccs have completed” or “the benchmark has
executed for 20 minutes.”

The third element of the multi-program benchmark defini-
tion is F , the selection function, which decides which member
of B to run on a particular core when that core becomes idle.
This function may require some state (e.g., to behave as if
selecting jobs from a queue), and we denote this state as S. F
is a function of the current state and the core (specified as a
natural number) for which it is selecting. Given those inputs, F
then produces a new state (to be used in the next invocation
of F), as well as the single-program benchmark (if any) to
run on that core. The function may return ⊥, selecting no
member of B, and instead leaving that core idle. Formally, F
has type S ×N⇒ S ×B⊥. From a mathematical perspective,
whenever one or more cores are idle (including at the start
of the benchmark), F is evaluated on each idle core in order
from lowest to highest number. (Of course, actually running a
benchmark would involve a more efficient implementation.)

The fourth element of the multi-program benchmark defi-
nition, S0 is the initial state for F . The type of S0 is clearly
dependent on the way in which we specify the state used by
F . In this paper, we focus on state that is represented using
one or more queues, thus the initial state S0 is the initial state
of those queues.

A. Space of Multi-Program Benchmarks
Our framework for defining multi-program benchmarks

provides the flexibility to precisely describe a wide range
of benchmarks. In fact, the space of possible benchmarks is
unbounded, even if we fix B. However, not all benchmarks
are interesting or representative of real-world use cases. For
example, selecting T = “two programs execute a system call
within 10 cycles” is well-defined, but does not make intuitive
sense. Likewise, as F is an arbitrary function, it could be
illogical relative to typical ways to execute programs. While
our framework can be used to define such benchmarks, they
are uninteresting to examine.

We focus our explorations on options for three of the four
elements of the benchmark definition tuple: T , F , and S0. The
choice of set B is orthogonal to our work. For T , we explore
both work-based and time-based criteria for termination. For
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Figure 1: Four benchmarks which all have B = {A,B}, T =finish all jobs. Benchmarks (a) and (b) have F(q, n) = 〈tail(q), head(q)〉,
while benchmarks (c) and (d) have F(q, n) = 〈tail(q[n]), head(q[n])〉. Benchmark (a) has S0 = AABAABAABAAB, (b) has S0 =
ABBABBABBABBABB, (c) has S0 = [AAAAAAAA,BBBB] and (d) has S0 = [AAAA,BBBBBBBB].

F , we explore functions that use one or more queues as their
state. Thus S0 is the initial state of these queues.

Given our focus on queue-based S , the choices for T
and F suggest we should examine four classes from four
“quadrants”—formed by the cross-product of T ={work-based,
time-based} and F={one queue per core, one queue shared by
all cores}. We now examine each of these classes and, for each
one, describe what real-world use case it represents.

B. Work-Based / Single Queue
The first class we explore consists of benchmarks that run

a specified amount of work (e.g., 7 executions of program A
and 3 executions of program B) and use a single queue of jobs
that is shared among all cores. The initial state of the queue
is the set of all jobs (single-threaded programs) that must be
completed for the benchmark to be complete. The program
selection function dispatches jobs to cores in a FIFO fashion.
We refer to this class of benchmarks as JO (“Complete all
Jobs, One Queue”).

This benchmark class corresponds to highly-utilized servers.
We can choose the initial state of the queue to contain the ratio
of job types we expect to arrive at our server. For example,
we can initialize the queue to hold jobs of type A, type B, and
type C in a ratio of 2:1:3 or 2:5:1 or whatever is appropriate
for the system being studied. Importantly, in this class, the rate
at which the system completes jobs of a particular type does
not affect the ratio of work it must complete.

Benchmarks in this class may be precisely defined in our
benchmark definition framework by letting the state maintained
for F be a FIFO queue whose elements are members of B.
Specifically, F(q, n) = 〈tail(q), head(q)〉, where tail(q)
returns a queue just like q, except the first element is removed,
and head(q) returns the first element of q1. For this class of
benchmarks, T = “all jobs from the initial queue have been
executed.” Varying B and S0 produce different benchmarks
within this class.

Experimenters may devise the S0s for their benchmarks in
a variety of ways (randomly, from real system traces, etc.). In
this work, we do not propose a specific technique for construct-
ing S0 (especially as there is no one right answer). Instead, the
important consideration from our perspective is that S0 must

1Note that head(∅) = ⊥ and tail(∅) = ∅.

be precisely defined, and remain fixed across architectures
being compared. Changing S0 results in a different benchmark.
Sections IV-C and IV-D evaluate the impact of the program
ratio and ordering in S0 respectively.

Figure 1 illustrates four different benchmarks, all of which
have B = {A,B} (where A and B are single program
benchmarks), and T =finish all jobs. Of these, the left two
benchmarks, (a) and (b), fall into this JO class of benchmarks.
These two benchmarks differ in their values of S0. The two
different values of S0 give the two benchmarks different ratios
of jobs of type A to jobs of type B, possibly resulting in
drastically different performance characteristics. The distinc-
tion between the benchmarks shown in Figure 1 (a) and
(b) illustrates a point of caution in designing multi-program
benchmarks—even though they may appear quite similar, they
are two distinct benchmarks.

C. Work-Based / Per-Core Queues
In this class of benchmarks, we still have a fixed amount

of work to perform but now have an array of per-core queues,
indexed by core number, instead of a single queue. Specifically,
we fix F(q, n) = 〈tail(q[n]),head(q[n])〉, and T = “all jobs
from the initial queues have been executed.” We refer to this
class of benchmarks as JM (“Complete all Jobs, Multiple
Queues”).

This class of benchmarks represents server workloads in
which there are constraints on how jobs may be scheduled onto
the cores. One such constraint may arise from heterogeneity
in the cores’ ISAs (e.g., Cell [7]); only jobs whose ISA
match a particular core may be scheduled to it. Another
scheduling constraint may arise due to quality-of-service (QoS)
requirements (e.g. Paragon [1]), possibly where one type of
jobs belongs to a datacenter customer paying a premium for
dedicated use of some set of cores.

Figure 1 (c) and (d) depict two benchmarks in this class that
have different S0. In both of these benchmarks, Core 0 runs
only As, and Core 1 runs only Bs. These two benchmarks will
primarily differ in their load imbalance—when one core has
finished all of its jobs, but the other has not.

Even though benchmarks (a) and (c) have the same A-
to-B ratio (as do (b) and (d)), they will exhibit different
characteristics. Notably, (c) and (d) will never run A one on
core with A on the other core also nor B with B (both of which
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Figure 2: Three benchmarks which all have B = {A,B}, T =run for X minutes. Benchmarks (a) and (b) have F(q, n) = 〈tail(q), head(q)〉,
while benchmark (c) has F(q, n) = 〈tail(q[n]),head(q[n])〉. Here, the queues are infinite, and benchmark (a) has S0 = . . .AABAAB, (b)
has S0 = ...ABBABB, and (c) has S0 = [. . .AAAA, . . .BBBB].

can occur in (a) and (b)). Such pairings may exhibit different
performance characteristics than A/B pairings. For example,
suppose the two cores share a cache and A has a large cache
footprint, but B has a small one. A/B pairings may fit entirely
in the cache, whereas A/A pairings may exhibit a significant
number of cache misses. The (a) and (b) benchmarks will also
exhibit different load imbalance from their (c)/(d) counterparts.

D. Time-Based / Per-Core Queues
A third class of benchmarks arises when particular

job types are pinned to particular cores (F(q, n) =
〈tail(q[n]),head(q[n])〉, as in JM), for a fixed amount of time
(T = “run for X minutes”). We refer to this class as TM (“Run
for a fixed Time, Multiple Queues”). Unlike the previous
classes, the queues for this class of benchmarks have infinite
length, so that the jobs never run out; instead, the benchmark
ends when a certain amount of time expires. Figure 2 part
(c) illustrates benchmarks in this class. Unlike the previous
class of benchmarks, there is no notion of altering the ratio
of the benchmarks by changing S0. Instead, the ratio of the
benchmarks is defined by the relative rate at which the cores
execute them. This distinction is important because it means
that the A-to-B ratio is architecturally determined—the ratio
on architecture α may be different than the ratio for the same
benchmark on architecture β.

This class of benchmarks aligns with systems that run the
same jobs continuously on the same cores. Here, performance
improvements typically translate into better answers rather than
finishing sooner. Systems modeled by this class of benchmarks
include embedded control systems and some scientific simu-
lations. For example, a robot might continuously run a vision
analysis program on one core and a motion planning program
on a second core. If an architectural change improves the vision
analysis performance but not the motion planning performance,
the robot will run more iterations of the vision analysis relative
to the iterations of the motion planning.

E. Time-Base / Single Queue
The fourth class of benchmark is TO “Run for a fixed Time,

One Queue”). This class has a single FIFO queue, F(q, n) =
〈tail(q),head(q)〉, and runs for a fixed time (T =“run for
X minutes”). Figure 2 parts (a) and (b) show two different

benchmarks from this class, which have similar S0s to the
benchmarks shown in Figure 1 parts (a) and (b) respectively.

The TO benchmark class is similar to the JO class presented
first. The major differences are that in TO the job ratio is
not controlled precisely, and jobs may be partially executed
when time experires. TO’s similarity to JO suggests that it
is unlikely to capture any new classes of system behavior.
The combination of these factors it unappealing from an
experimental perspective.

F. Other Possibilities
We underscore the fact that while these four classes of

benchmarks demonstrate the utility of our model, they are
not the only types of benchmarks it can describe. One could
define benchmarks with other types of state (e.g., multi-level
queues, a list of job/arrival time pairs, . . . ), or other terminating
conditions (e.g., end when X joules have been expended—
which might be useful for research targetting mobile plat-
forms). Experimenters should determine how to best construct
benchmarks appropriate to the real-world system(s) their work
targets, then describe them formally.

Furthermore, this formalism is applicable to any number
of cores—not just two. As the number of cores grows, new
possibilities also arise. For example, with four cores, even if
one only considered queue-based definitions, new possibilites
include two queues each of which is shared by a pair of cores,
one core with a dedicated queue with three sharing another,
and many others.

If architects desire to perform experiments where different
numbers of cores are compared—e.g., performance scalability
from two to four to eight cores—they can still use this
formalism. We note that some benchmark definitions (e.g.,
our JO class) lend themselves naturally to such experiments,
while others (e.g., our JM class) are illogical in this context.
Of course, as always, the experimenter should think carefully
about what the real system behavior is, and define an appro-
priate benchmark, then formally describe it.

IV. BENCHMARK DEFINITION EVALUATION

Using our benchmark definition framework, benchmarks
that differ in any of their four components—B, T , F , or S0—
are different, raising the question of the significance of these
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JO TO JM TM

B Pairs of SPEC2006 programs run on their train inputs. The programs were compiled with gcc-4.7 (Except
for dealII which was compiled with gcc-4.4, as it would not compile with 4.7.) at optimization level -O3.

T All (100) jobs 20 minutes All (100) jobs 20 minutes
F As described in Section III

S0 Length 100 jobs (50 of each) ∞ 2 queues of 50 jobs each ∞
Ratio of programs in S0 1:1 —

S0 Order Alternating — —

Table II: Details of benchmarks.

differences on experimental results. As architects generally
understand that different single-program benchmarks exhibit
different experimental characteristics, we focus on the multi-
program-specific portions: T , F , or S0.

Typical experimental evaluations use benchmarks to com-
pare techniques to each other. In contrast, our experimental
evaluation seeks to show the importance of the benchmarks
themselves. When we compare two systems, we are not trying
to show which system is better; rather, we are trying to
show that the benchmark definition affects the outcome of
the experiment. In fact, we find that an architect can come to
different conclusions regarding two systems (e.g., A is faster
than B vs. B is faster than A) depending on the benchmark
definition.

A. Methodology
We conduct experiments on real hardware using two sys-

tems. The first is an Intelr Sandy Bridge i7-3930k with 16GB
of DRAM, and a quad-channel memory system. The second
is an AMDr Bulldozer FX-8150 with 16GB of DRAM, and
a dual-channel memory system. We denote the Sandy Bridge
and Bulldozer as SB and BD, respectively. Both systems run
Debian 7.1 with Linux kernel 3.10.10. We focus exclusively
on benchmarks with two programs, so we use exactly two
logical cores—the two SMT contexts on one physical core for
Sandy Bridge, and the two cores in a “module” for Bulldozer—
in any experiment. While our framework can be applied
to benchmarks with more than two programs, we limit our
evaluation to two program benchmarks in the interest of space.
If anything, having more programs would make benchmark
definition even more important.

For all experiments, we took many steps to minimize
interference and external effects. First, all non-essential system
daemons except SSH were disabled. Second, we fixed the
cores’ frequencies at their nominal values, disabling DVFS
completely. Third, we disabled the Watchdog hang timer as
well as Address Space Layout Randomization. Fourth, pro-
cesses were pinned to CPUs, and memory was partitioned
using Linux’s NUMA emulation. Fifth, we used “real time”
scheduling priority. Finally, ran each benchmark three times
and used the median runtime (for JO and JM) or job execution
count (for TM).

Our multi-program benchmarks use a variety of possible
2-program Bs, constructed from pairs of SPEC2006 single-
program benchmarks. The choice of Bs is not critical to our
evaluation because, unlike many experimental evaluations, we

are not attempting to show that a proposed technique provides
broad improvement over a representative set of benchmarks.
Instead, we are showing the pitfalls and dangers of ill-defined
multi-program benchmarks, so we need not concern ourselves
with whether or not the Bs give comprehensive coverage;
highlighting specific examples of problems is sufficient to
show the need for complete definitions.

Table II shows the details of the benchmarks. While ref are
typically used with real hardware, we used the train inputs
to achieve reasonable execution times with large numbers of
re-executions of the programs. We explore variations on some
of these details in Sections IV-C and IV-D.

B. Comparison of Benchmark Classes
The top half of Figure 3 shows the results of a performance

experiment using benchmarks from three of the four classes
described in Section III. The fourth class, TO, behaves very
similarly to JO for the reasons previously described, so we
omit it in the interest of space. The graph plots the percent
speedup (in terms of system throughput) of the Sandy Bridge
system over the Bulldozer system.

For JO and JM benchmarks, percent speedup is quite
simple—as the benchmarks hold the work constant, the percent
speedup can be calculated simply as the percent reduction in
runtime. For TM, time is held constant, so the performance
improvement is in terms of increase in work done during this
time. As we discussed earlier, the formula to combine the
number of As and the number of Bs into on “total work” metric
is system dependent. However, we are not as concerned with
the particular details of that issue here (we are not trying to
show one system is better than another for a specific task—
instead, just showing that the benchmarks themselves behave
quite different), allowing us to do anything reasonable. For
TM, we compute the total work as the sum of the number of
As executed and the number of Bs execute. We note that we
have examined a variety of different metrics, and none of them
change the key conclusions of this work.

The most important result from Figure 3 is that for bench-
marks comprised of the same underlying single programs,
constructing them in different classes produces significantly
different experimental results; they are quantitatively and
qualitatively different benchmarks. In fact, of the 21 single-
program pairings in Figure 3, only cactus/dealII and milc/bzip2
exhibit similar (within 3%) speedups across all three bench-
mark classes. The different results between classes mean that
improperly or imprecisely defined multi-program benchmarks
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Figure 3: Top: Speedup of Sandy Bridge over Bulldozer for benchmarks from three classes. Bottom: Co-execution breakdown.

can lead to the wrong conclusion about an architectural design.
The bottom half of Figure 3 provides insights into the

differences between these benchmarks by showing the co-
execution breakdown of each benchmark on Bulldozer, i.e.,
the percentage of execution time where different combinations
of programs were executing together. The Sandy Bridge co-
execution breakdown has the same high-level trends—even
though the specific percentages change—so we elide it in the
interest of space. Here, AA means that the first program in
the pair executed in parallel with another instance of itself.
BB is similar for the other program. A and B are where the
respective programs executed by themselves, with the other
“slot” idle (load imbalance). AB indicates that the two different
programs co-executed. While TM benchmarks are 100% AB—
by definition—the other classes exhibit different co-execution
patterns, resulting in different behaviors. We now examine a
few of the more interesting pairings in-depth.

cactus/dealII. One of the pairings where all three classes
are similar is cactus/dealII. Here, the co-execution breakdowns
are almost identical—more than 98% AB for all classes.
This similarity arises because cactus and dealII have almost
identical runtimes when run together.

milc/bzip2. The other pairing where all three classes are
similar is milc/bzip2. Unlike cactus/dealII, the co-execution
breakdowns are not similar across the three classes. Instead,
this similarity is a matter of coincidence—much like one could
observe similar speedups on two single-program benchmarks
in a given experiment, but they would still clearly be two
different benchmarks.

cactus/libquantum. The JM execution shows a 26%
speedup for Sandy Bridge over Bulldozer, whereas the other
classes exhibit slowdowns. The JM benchmark’s behavior is

dominated by load imbalance; it primarily executes cactus by
itself, on which Sandy Bridge outperforms Bulldozer by a
significant amount. The JO benchmark, however, exhibits an
18% slowdown. For JO, most of the execution is cactus paired
with itself (as opposed to alone). The difference in memory
hierarchies accounts for this difference; Bulldozer has a larger
(2MB versus 256KB) L2 cache. Compared to a single-program
execution, a multi-program execution of cactus paired with
itself on Bulldozer exhibits almost no increase in L2 cache
misses (< 1%), whereas Sandy Bridge sees 36% more. The TM
benchmark co-executes cactus with libquantum all the time,
which Sandy Bridge executes 2% slower than Bulldozer—a
different result than either of the previous two.

lbm/libquantum. Here, the JO and JM classes show signifi-
cant (though significantly different) speedups of 75% and 41%.
Here, lbm runs for significantly longer than libquantum. In
the JO benchmark, this disparity results in significant lbm/lbm
pairings, which Sandy Bridge executes 78% faster than Bull-
dozer. For JM, the difference between lbm’s and libquantum’s
runtimes manifests as load imbalance, where one core is idle
and the other executes lbm for most of the benchmark. The
JM benchmark primarily measures the single program speedup
of lbm run alone. Experimenting with a TM benchmark yields
an even more drastically different answer: Sandy Bridge is
5% slower than Bulldozer. TM—by definition—executes lbm
with libquantum the entire time, which requires it to execute
significantly more libquantums than lbms: a 16.9:1 ratio on
Sandy Bridge and a 24.4:1 ratio on Bulldozer.

C. Impact of Program Ratios in S0
The benchmark classes evaluated in the previous section

are defined by varying F ; however, even within one class,
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Figure 4: Top: Performance impact of varying the ratio of each program in S0 for JO benchmarks. Bottom: Corresponding co-execution
breakdowns.

the specific value of S0 can also have significant impact
on the experimental results. One characteristic of S0 that is
particularly important to JO (and TO) benchmarks is the ratio
of the two single-program benchmarks within the single queue.

The top graph in Figure 4 evaluates the impact on speedups
of the ratio of the underlying single-program benchmarks in
S0. Here, the A-to-B ratio is varied from 6A:1B (left) to
1A:6Bs (right), with 3A:1B, 1A:1B, and 1A:3B in the middle.
For each benchmark, the duration is 50 of the program on
the “1” side of the ratio, and an appropriate number (300,
150, or 50) of the other program. The bottom graph shows the
corresponding co-execution breakdown.

The most important observation from this experiment is
that the ratio of the underlying single-program benchmarks
makes a significant difference. The most pronounced example
is cactus/lbm where we observe a 1% slowdown at 6:1 and
a 71% speedup at 1:6. Other program pairs also exhibit a
significant range of results, including a mix of slowdowns
and speedups depending on their ratios. Although these results
are not surprising in light of the results of the prior sections,
they highlight another important consideration in benchmark
design; even if the other aspects of the benchmark (B, T , and
F) are selected properly for an experiment, the ratio between
the single-program benchmarks must align with the system
that the experimenter hopes to model. If the system executes
the programs in a variety of ratios, altering the ratios of S0 is
not just a minor concern, but rather definition of completely
different benchmarks with distinct behaviors.

The second observation is that the performance impacts of
ratio alterations do not lend themselves well to simple extrap-
olation. Some pairings (e.g., cactus/dealII) exhibit monotonic

trends, however, many other pairings (e.g., cactus/milc) flatten
off, or even exhibit U-shaped behavior. The exact behavior
depends on the relative performance characteristics of the
different co-execution phases, as well as how the co-execution
breakdown differs between systems. The important takeaway
is that one cannot simply extrapolate the behavior of all ratios
from a few data points.

D. Impact of S0 Ordering
Another important consideration in the design of a JO-

style benchmark is the ordering of the programs in S0.
Different orderings here result in different benchmarks which
can have significantly different performance characteris-
tics. Considering the extreme case of S0 =ABAB. . . vs.
S0 =AAA. . . BBB. . . yields two benchmarks that intuitively
behave quite differently, even when they have the same B, F ,
T , and A-to-B ratio in S0. The first S0, would typically exhibit
a significant AB component in the co-execution breakdown.
The second, should be exclusively AA and BB.

Figure 5 shows the impact of varying the ordering in S0
for benchmarks in the JO class. Here, we experiment with
four different queue orderings, all of which maintain 50 of
each program. The first ordering alternates between the two
programs, which is the same ordering used in Figure 3. We
denote this ordering as (AB)∗. The second ordering places 5
consecutive instances of program A followed by 5 consecutive
instances of program B, denoted (5A5B)∗, and repeats this
pattern. The next ordering, (10A10B)∗, has groups of 10. The
final ordering, (50A50B), has groups of 50.

Varying the ordering of the programs in S0 can have
noticeable impact on the performance results. For namd/cactus,
alternating namd and cactus results in Sandy Bridge under-
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Figure 5: Top: Performance impact of program ordering in S0 within the JO class of benchmarks. Bottom: Corresponding co-execution
breakdowns on Bulldozer.

performing Bulldozer by only 5.5%. However, when the
programs are clustered in the queue, Bulldozer’s performance
advantage increases to 11.4% for (5A5B)∗, and 13.3% for
(50A50B). The gobmk/milc pairing exhibits the opposite
trend—as the queue ordering becomes more clustered, Sandy
Bridge performs better relative to Bulldozer. In all pairings,
the more clustered ordering leads to a higher probability of
AA and BB co-executions—shifting the overall performance
towards those behaviors, and away from the AB behavior.

Interestingly, the groups-of-10 and the groups-of-50 or-
derings exhibit very similar—all within 1% of each other—
behavior across all of the program pairings we experimented
with. In fact, for any group-of-X ordering where X is even,
one would expect similar behavior, as pairs of As run together
(forming AA co-executions). These As then end at the same
time, resulting in pairs of Bs starting and running together
(forming BB co-executions). The results are not identical, as
slight perturbations in the execution of one program may result
in them not ending at the same time, leading to brief AB co-
execution, followed by the Bs executing slightly out of phase.

Although the results in Figure 5 show that benchmarks with
different S0 orderings have different performance behavior,
the experiments suffer from the fact that a few hand-picked
queue orderings were used to generate them; it is not clear
how representative these orderings are. To further explore the
impact of the ordering of the programs in S0, Figure 6 shows
the PDFs of speedups for 150 randomly selected orderings of
S0 on each of four program pairings, as well as where the
(AB)∗ pairing falls on that distribution.

There are two interesting observations to make from Fig-
ure 6. First, the distributions are basically Gaussian, but with
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Figure 6: Variation in performance for 150 uniformly randomly
chosen S0 orderings for 4 program pairings.

rather different variances for the program pairings. The most
narrow distribution of these three is cactus/soplex, with a
standard deviation (σ) of 0.32 percent speedup. This standard
deviation means we would expect to find 99.7% of all speedups
within ±3σ = 0.96 percent of the mean—less than a 2%
range. By contrast, mcf /milc has a much wider distribution,
with σ = 1.16. Here, the ±3σ range spans almost 7% speedup.

The second interesting observation from this data is that
the (AB)∗ orderings used in the previous experiments (shown
by the circles) fall at different points in the distribution—for
some pairings (e.g., cactus/soplex), the speedup obtained with
the (AB)∗ ordering is quite close to the mean. By contrast,
namd/cactus’s (AB)∗ results are well outside the randomly
generated results.

The important take-away point from this experiment is
that S0 ordering is a significant experimental concern. If an
experimenter cannot say with certainty what S0 accurately
models reality, multi-program results for JO-style benchmarks
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are only meaningful if they evaluate multiple S0 orderings
which align with the orderings that occur in the real world
situations they intend to model.

V. RELATED WORK

Prior work has explored aspects of multi-program bench-
marking, but no prior work has precisely and clearly defined
multi-program benchmarks as we have.

A. Multi-program Benchmark Definition
FAME [21] constructs multi-program benchmarks by re-

peating the executions of the single programs enough times
to ensure that a steady-state behavior is achieved. In our
benchmark definition terminology, FAME proposes setting T
to be “steady state behavior is obtained.” The FAME work does
not consider the F or S0 aspects of benchmark definition. In
those regards, the FAME benchmarks are related to the TM
class of benchmarks that we have proposed here, but without
the benefit of precisely defined F or S0.

Other work [20] examines the methods for selecting the
single-program benchmark pairings—in our terminology, B—
from which to define representative workloads. Selecting ap-
propriate values of B is important, but it is orthogonal to our
work.

B. Sampling Multi-program Benchmarks
Much prior multi-program work has explored sampling

methodologies [5], [11], [13], [18], [19], [22]. This work
explores how to select sub-sets of multi-program benchmarks
to execute so as to obtain representative results. This work
on sampling has focused on the sampling aspect rather than
on the benchmarks from which they are sampling. Instead of
formalizing the entire benchmarks that the samples represent,
which is our focus, this prior work has let the sampling
methodologies implicitly define the complete benchmarks—
the benchmark is whatever the samples happen to represent.

Variable Instruction Count Sampling. A variety of sam-
pling methodologies define their samples by executing both
programs together until some condition is reached, then termi-
nating both programs. These methodologies are often referred
to as variable instruction count because they allow architec-
tural differences to result in changes in the number of instruc-
tions executed from each program. Approaches to variable in-
struction count sampling include “run both programs, possibly
starting from checkpoints, until the sum of their committed
instruction counts reaches a specified target” (e.g., [16]), “run
until both programs reach a minimum number of instructions
or until one program reaches a maximum number of completed
instructions” (e.g. [11]), and “run until each program has
reached a minimum number of instructions, restarting the faster
program as needed” (i.e., FAME [21]). The samples from these
methodologies represent benchmarks similar to those in the
TM category; the ratios of their constituent programs vary
depending on the underlying micro-architecture.

A notable approach to variable instruction count sampling is
the Co-Phase Matrix methodology [19]. This approach is based
on determining the behavior of two programs in a co-phase:
a period during which their behaviors and contention exhibit
a consistent pattern. Assuming two programs paired together,
such that the first program has M phases and the second has
N phases, one can construct a M × N co-phase matrix that
represents the performance behavior of all co-phases of the two
programs. For more than two programs, the dimensionality
of the co-phase matrix increases; K programs form a K-
dimensional matrix. Each entry in the co-phase matrix is
the performance of that co-phase, and it is obtained with
detailed simulation. The overall behavior of the multi-program
execution is then estimated by a fast analytical simulation
which tracks what phase each program is in, looks up the
performance characteristics of that co-phase in the co-phase
matrix, and then determines how long the co-phase will last
(i.e., how long until either program changes phase behavior).
The process repeats until the end of the sample of one program
is reached, which means this approach is a variable instruction
count methodology. Later work describes how to use a cluster
analysis (somewhat similar to SimPoint [14]) to determine
representative co-phases of programs [18].

While Co-Phase Matrix, as proposed, implicitly samples
from TM-style benchmarks, we observe that it can be adapted
to sample any of our proposed benchmark classes. First, for
single-queue benchmark classes (JO and TO), the co-phase
matrix for programs A and B may need to be expanded
to include A/A and B/B pairings, whereas the original co-
phase matrix needs only A/B pairings. Second, the analytical
simulation needs to be extended to track the state of the
queue(s), and to “run” (selecting elements from B to assign to
cores according to F) until T indicates termination. We note
that extending co-phase matrix is not limited to the queue-
based classes we proposed, but should be feasible for any
multi-program benchmark.

Fixed Instruction Count Sampling. Other sampling
methodologies (e.g., FIESTA [5]) construct their samples to
ensure that the same subsets of the dynamic instruction stream
will be executed regardless of micro-architectural differences.
Accordingly, these methodologies are called fixed instruction
count, because they ensure that the instruction counts from
each program (and thus ratios) remain fixed. These method-
ologies mostly correspond to benchmarks in the JM category,
however they may do a poor job of modeling the load-
imbalance behavior in JM benchmarks. Specifically, an actual
JM benchmark will experience all of its load imbalance at
the end; one program may execute (possibly for multiple
iterations) by itself while the other core remains idle. However,
these sampling methodologies experience load imbalance at
the end of each sampling epoch. The load imbalance expe-
rienced during the sampling may not correspond to the load
imbalance in the full execution; in fact, it may not even have
the correct program running longer. FIESTA [5] attempts to
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reduce sample imbalance—load imbalance arising from con-
structing samples with uneven stand-alone execution time—
which is appropriate to the specific subset of JM benchmarks
where S0 has a program ratio balanced to match stand-alone
execution times.

VI. WHAT SHOULD EXPERIMENTERS DO?
Having seen the impact of benchmark definition on experi-

mental results, the natural question to ask is “So what should
an experimenter do to perform multi-program experiments that
are meaningful and reproducible?” We advise experimenters to
follow the steps outlined in Section II while making choices at
each step that are sensible for the expected use of the system
being evaluated. For Step 1 (benchmark selection), the exper-
imenter must choose appropriate benchmark programs for the
target use case. For Step 2 (benchmark definition), which is
the focus of this paper, the experimenter must precisely define
the multi-program benchmark in a way that is appropriate
for the target use case. For Step 3 (metric selection), the
experimenter must choose metrics that are appropriate for the
target use case. For Step 4 (benchmark sampling), the key is
to first define the complete benchmark (in Step 2) and then
choose a statistically sound sampling methodology. This 4-
step procedure is intuitive and perhaps obvious (at least in
retrospect), yet it is not the standard practice in the field.

Another possible response to this paper is a desire for a sin-
gle universal multi-program benchmark definition. However,
as we have stated before, there is no single universal answer
of this form. We have posed three benchmark classes—JO,
JM, and TM—which each represent different characteristics,
modelling different real system behaviors. An experimenter
may find one of these classes appropriate to one research idea.
For another experiment, the research may find none of these
classes to be appropriate in which case, our formalism provides
the experimenter with the tools to precisely define and describe
the benchmarks they need.
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