Homework 24 Due Date: April 10

Problem 53. Below is a list of 10 ten-digit numbers made up of only 2's and 4's. Some digits are visible to you, while others are not. Find a ten-digit number made of only 2's and 4's that is not on the list, and give a clear explanation as to why your answer is not on the list.

$n_1 = x$	x	x	2	x	4	x	x	x	4
$n_2 = x$	x	x	x	4	x	2	x	4	x
$n_3 = x$	x	x	x	x	x	x	4	x	x
$n_4 = 4$	x	2	x	x	x	2	x	x	x
$n_5 = x$	2	x	x	x	2	x	x	x	x
$n_6 = x$	x	4	x	2	x	x	x	x	x
$n_7 = x$	x	x	4	x	x	x	x	x	x
$n_8 = x$	x	2	x	x	x	x	x	x	x
$n_9 = x$	2	x	x	4	x	2	x	x	x
$n_{10} = 4$	x	x	x	x	4	x	x	x	x

Problem 54. Prove the interval (0, 1) is an infinite set. (Hint: Think about Problem 2 on the in-class problem set from last week.)

Problem 55. Prove that $\mathbb{N} \times \mathbb{N}$ is countable.

(Hint: Think about the big theorem we proved in class on Monday the 8th.)