EE-0001 PEEE Refresher Course

Week 1: Engineering Fundamentals

Engineering Fundamentals

- Bentley Chapters 1 & 2
- Camara Chapters 1, 2, & 3
- Electrical Quantities
 - Energy (work), power, charge, current
 - Electrostatic pressure, resistance
- Circuit Elements
 - Resistor, Inductor, Capacitor
- Circuit Equations
 - Series, Parallel, Wye-Delta Conversions
 - Norton Equivalent
 - Thevenin Equivalent
 - Kirchhoff's Laws
 - Loop and Node equations
- Complex Algebra
- Transients & Resonance
- 7• R, C, RC, RLC

Fundamental Electrical Units

	Quantity	<u>Units</u>	<u>Symbol</u>	<u>Formula</u>	Equivalent Units		
	energy (work)	joule	W	$W = \int Pdt$	watt-second		
	power	watt	P	$P = \frac{dW}{dt}$	volt-ampere or joule/second		
	charge	coulomb	Q	Q = CV	ampere-second		
	current	ampere	I	$I = \frac{V}{R}$	coulomb/second		
	electrostatic pressure	volt	V	V = IR	joule/coulomb		
	resistance	ohm	R	$R = \frac{V}{I}$	volt/ampere		

DEXXELT Power Warring E V= CV V= Q+0

Voltage

- Energy gained or lost when a charge is moved from one point to another.
- Potential difference

$$V_{ab} = \frac{W}{Q} \left[\frac{\text{joule}}{\text{coulomb}} \right]$$
$$= \frac{dw}{dq}$$

EMF

$$E = \frac{dw}{dq} = \frac{P}{I} = V$$

 $E = \frac{dw}{dq} = \frac{P}{I} = V$ E = energy given up or generated V = potential difference between two terminals

- Time rate of doing work
 - BTU/second
 - Joule/second
 - watts 🧩
 - horsepower

$$P = VI$$
 [watts]
$$V = \text{voltage}$$

$$I = \text{current}$$

$$\frac{1}{t} \int_{0}^{t} vi \, dt \quad [\text{watts}]$$

$$\text{EVERLY}$$

Energy (work)

$$W = \int_{t_1}^{t_2} P \, dt \, [\text{watt-sec}]$$

$$\text{where } P = \text{watts}$$

$$\text{-or -}$$

$$W = Pt \quad \text{if power is constant}$$

Ohm's Law

Resistance

The resistance of a section of conductor of uniform cross section is:

$$R = \frac{\rho l}{A}$$
where
$$R = \frac{\rho l}{A}$$

$$R = \frac{\rho l}{A}$$

A=cross-sectional area (square meters or circular mils)

1 = length (meters or feet)

R = resistance (ohms)

 ρ = resistivity of material (ohm-meters) = 1/conductivity

Resistivity for Typical Conductive Materials

Material	Resistivity, ohm-meters	Resistivity, ohm-circular mills per foot
aluminum	2.6 x 10 ⁻⁸	17
copper	1.7 x 10 ⁻⁸	10
cast iron	9.7 x 10 ⁻⁸	58
lead	22 x 10 ⁻⁸	132
silver	1.6 x 10 ⁻⁸	9.9
steel	(11-90) x 10 ⁻⁸	66-540
tin	11 x 10 ⁻⁸	69
nichrome	100 x 10 ⁻⁸	602

Note: The area of a circle one mill (0.001 inch) in diameter is one circular mil; the area of any circle in circular mils equals the square of its diameter in mils.

-Circuit Element Characteristics

		<u> </u>	<u></u>			
Element	Schematic Symbol	Current Through	Voltage Drop	Power Dissipation	Stored Energy	Units
				_		
resistor	I _V +V	$I = \frac{V}{R}$	V = IR	$\frac{V^2}{R}$ or I^2R	zero	ohm $\Omega_{ m ,~K}\Omega_{ m ,}$ M Ω
inductor	<u>I</u> +	$I = \frac{\phi}{L}$ $= \frac{1}{L} \int V dt$	$V = L \frac{dI}{dt}$	zero		henry h, mh, µh
capacitor	I V	$I = C \frac{dV}{dt}$	$V = \frac{1}{C} \int I dt$	zero	4	farad f, µf, pf

Metric Prefixes

Multiplier	Prefix	Symbol		
10 ⁻¹⁸	atto	a 🗥		
10 ⁻¹⁵	/- femto	f		
10 ⁻¹²	y pico	р		
10 ⁻⁹	nano	n		
10 ⁻⁶		μ		
10 ⁻³	🛖 milli	m		
10 ⁻²	centi	С		
10 ⁻¹	deci	d		
$10^0 = 1$				
10 ¹	deka	da		
10 ²	hecto	h		
10 ³	★ kilo	k		
10 ⁶	₹ mega	M		
10 ⁹	👆 giga	G		
10 ¹²		Т		
10 ¹⁵	peta	Р		
10 ¹⁸	exa	E 🗘		

Note the use of lower case letters for multipliers less than one and the use of upper case letters for multipliers greater than 10^6 .

Inconsistent usage on "kilo".

Commonly used multipliers shown in **bold**.

Inductance

The inductance of a coil is:

where

N = number of turns

L =inductance in henries

K = a constant dependent upon geometry and material