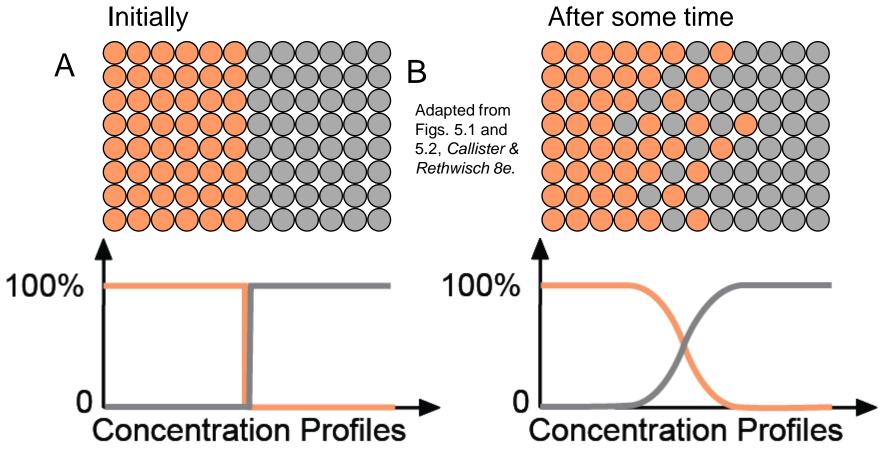
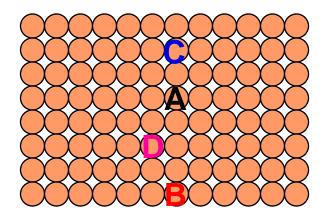
Chapter 5: Diffusion (1)

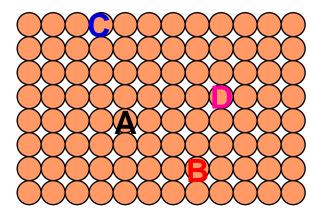

Diffusion - Mass transport by <u>random</u>, atomic (or molecular-scale) motion

ISSUES TO ADDRESS...

- How does diffusion occur?
- Why is it an important part of processing?
- How can the rate of diffusion be predicted for some simple cases?
- How does diffusion depend on structure and temperature?

Diffusion


• Interdiffusion: when joining <u>different</u> metals (or in other materials system), atoms (or other species) tend to migrate from regions of high conc. to regions of low conc.


Diffusion

• Self-diffusion: Even in an pure elemental solid, atoms also migrate randomly via self-diffusion process.

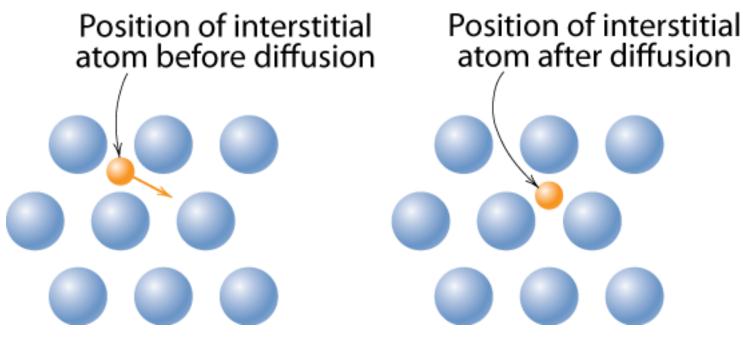
Label some atoms

After some time

Examples of (Inhibiting) Diffusion

- Different packaging for food to preserve freshness, e.g.,
 - CO₂ diffuses out from bottles
 - O₂ diffuses into the bottles

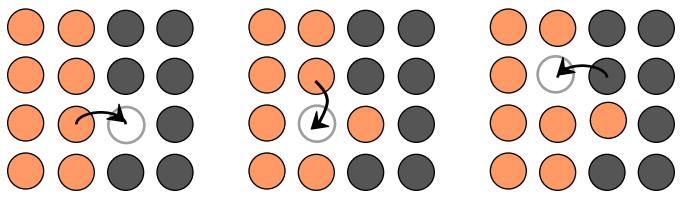
Paints applied to metal surface to prevent corrosion


 O₂, H₂O, and salt diffuse through the paint layer (even undamaged) to corrode metals underneath

Diffusion Mechanisms (1)

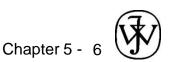
Interstitial diffusion

Smaller atoms/molecules can diffuse through the interstitial sites between larger atoms/molecules.


Adapted from Fig. 5.3(b), Callister & Rethwisch 8e.

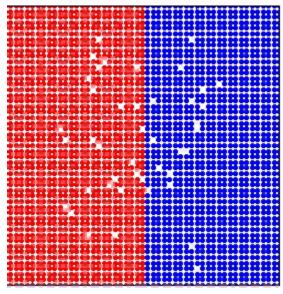
Diffusion Mechanisms (2)

Substitutional Diffusion via vacancy exchange


For pure elements or alloys with similar sized atoms (e.g., Ni-Cu)

- atoms exchange with vacancies
- applies to substitutional impurities atoms and also self diffusion
- rate depends on:
 - -- vacancies concentration
 - -- activation energy to exchange.

increasing elapsed time


Substitutional diffusion via exchange with vacancy usually much slower than interstitial diffusion

Simulation of Vacancy Diffusion

- Simulation of interdiffusion across an interface:
- Rate of substitutional diffusion depends on:
 - -- vacancy concentration
 - -- frequency of jumping.

This slide contains an animation that requires Quicktime and a Cinepak decompressor. Click on the message or image below to activate the animation.

(Courtesy P.M. Anderson)

Materials Processing Using Diffusion (1)

Example of Case Hardening:
The surface of a metal gear
needs to be hard (for wear
resistance) while the inside
needs to be tough (not brittle)

Approach:

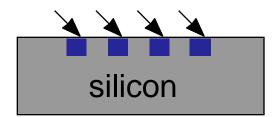
- Diffuse carbon (atoms) into the surface of the steel (iron) gear via heat treatment in an carbonrich atmosphere
- Carbon atoms are much smaller than Fe atoms – interstitial diffusion mechanism

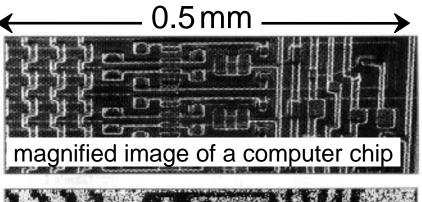
Adapted from chapter-opening photograph, Chapter 5, Callister & Rethwisch 8e. (Courtesy of Surface Division, Midland-Ross.)

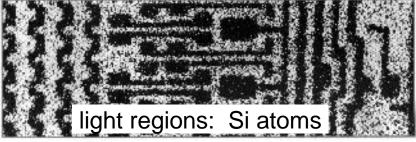
Result: The presence of C atoms in the surface makes the surface of steel (iron) harder and wear resistant while inside remains low in carbon content and tough (not brittle) Chapter 5 - 8



Materials Processing Using Diffusion (2)


Doping silicon with phosphorus for n-type semiconductors:


Process:


1. Deposit P rich layers on surface.

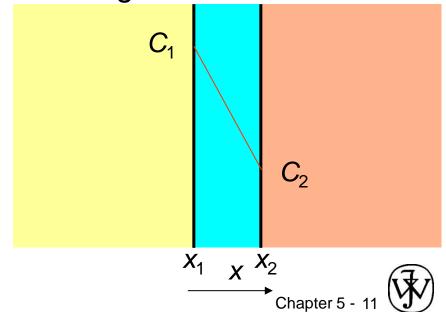
- 2. Heat it.
- 3. Result: Doped semiconductor regions for functional micro-chips

Diffusional Flux

How do we quantify the amount or rate of diffusion?

$$J = \text{Flux} = \frac{\text{moles (or mass) diffusing}}{(\text{cross-section area)(time)}} = \frac{\text{mol}}{\text{cm}^2 \text{s}} \text{ or } \frac{\text{kg}}{\text{m}^2 \text{s}}$$

$$J = \frac{1}{A} \frac{dM}{dt}$$


Fick's 1st Law about Diffusion

Fick's first law of diffusion for 1D: Flux

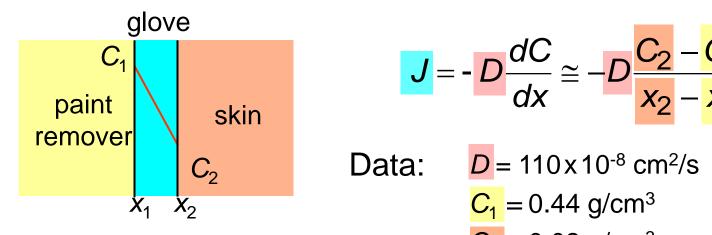
$$J = -D\frac{dC}{dx}$$

 $D \equiv$ diffusion coefficient, in unit of cm²/sec or similar $C \equiv$ concentration, in unit of mole/cm³ or similar $x \equiv$ distance, in unit of cm or similar dC/dx concentration gradient along x direction

if linear
$$\frac{dC}{dx} \cong \frac{\Delta C}{\Delta x} = \frac{C_2 - C_1}{x_2 - x_1}$$

Other Example: Chemical Protective Clothing (CPC)

- Methylene chloride is a common ingredient of paint removers. Besides being an irritant, it also may be absorbed through skin. When using this paint remover, protective gloves should be worn.
- If butyl rubber gloves (0.04 cm thick) are used, what is the **diffusive flux** of methylene chloride through the glove if assuming linear concentration distribution?
- Given:
 - diffusion coefficient in butyl rubber:


$$D = 110 \times 10^{-8} \text{ cm}^2/\text{s}$$

- surface concentrations: C_1 (outside glove) = 0.44 g/cm³

 C_2 (inside glove) = 0.02 g/cm³

Example: Chemical Protective Clothing (CPC) (cont).

Solution –linear conc. gradient

$$J = -D\frac{dC}{dx} \cong -D\frac{C_2 - C_1}{x_2 - x_1}$$

Data:
$$D = 110 \times 10^{-8} \text{ cm}^2/\text{s}$$

 $C_1 = 0.44 \text{ g/cm}^3$
 $C_2 = 0.02 \text{ g/cm}^3$
 $x_2 - x_1 = 0.04 \text{ cm (thickness of glove)}$

$$J = -(110 \times 10^{-8} \text{ cm}^2/\text{s}) \frac{(0.02 \text{ g/cm}^3 - 0.44 \text{ g/cm}^3)}{(0.04 \text{ cm})} = 1.16 \times 10^{-5} \frac{\text{g}}{\text{cm}^2 \text{s}}$$

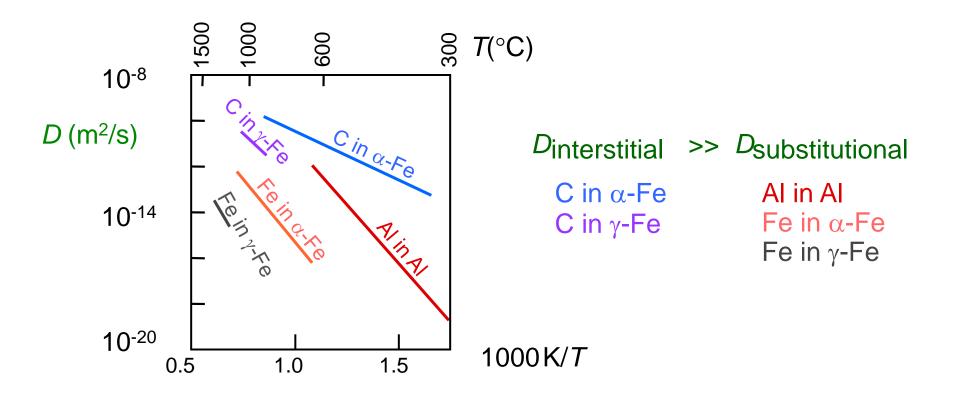
Diffusion Coefficient and Temperature (1)

 Diffusion coefficient increases "exponentially" with increasing temperature T.

$$D = D_o \exp\left(-\frac{Q_d}{RT}\right)$$

 $D = \text{diffusion coefficient } [\text{m}^2/\text{s}]$

 $D_o = \text{pre-exponential } [\text{m}^2/\text{s}]$


 Q_d = activation energy [J/mol]

R = gas constant [8.314 J/mol-K]

T = absolute temperature [K]

Diffusion Coefficient and Temperature (2)

D has "exponential" dependence on T: higher $T \rightarrow much$ higher D

Adapted from Fig. 5.7, *Callister & Rethwisch 8e.* (Date for Fig. 5.7 taken from E.A. Brandes and G.B. Brook (Ed.) *Smithells Metals Reference Book*, 7th ed., Butterworth-Heinemann, Oxford, 1992.)

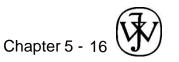
Example: At 300°C the diffusion coefficient and activation energy for Cu in Si are

$$D_1(300^{\circ}\text{C}) = 7.8 \times 10^{-11} \text{ m}^2/\text{s}$$

 $Q_d = 41.5 \times 10^3 \text{ J/mol}$

What is the diffusion coefficient at 350°C?

Solution


$$D = D_0 \exp\left(-\frac{Q_d}{RT}\right)$$

Knowing

$$D_1 = D_0 \exp\left(-\frac{Q_d}{RT_1}\right)$$

Wanting to know

$$D_2 = D_0 \exp\left(-\frac{Q_d}{RT_2}\right)$$

Example (cont.)

$$\frac{D_2}{D_1} = \frac{\exp\left(-\frac{Q_d}{RT_2}\right)}{\exp\left(-\frac{Q_d}{RT_1}\right)}$$

$$\frac{D_2}{D_1} = \frac{\exp\left(-\frac{Q_d}{RT_2}\right)}{\exp\left(-\frac{Q_d}{RT_1}\right)}$$

$$\frac{D_2}{\exp\left(-\frac{Q_d}{RT_1}\right)} = \frac{D_1 \exp\left[-\frac{Q_d}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)\right]}{\exp\left(-\frac{Q_d}{RT_1}\right)}$$

$$T_1 = 273 + 300 = 573 K$$

$$T_2 = 273 + 350 = 623 K$$

$$\frac{D_2}{D_2} = (7.8 \times 10^{-11} \,\text{m}^2/\text{s}) \exp \left[\frac{-41,500 \,\text{J/mol}}{8.314 \,\text{J/mol-K}} \left(\frac{1}{623 \,\text{K}} - \frac{1}{573 \,\text{K}} \right) \right]$$

$$D_2 = 15.7 \times 10^{-11} \,\text{m}^2/\text{s}$$

Summary

Diffusion is mass transport by random walking Of atoms/molecules

Mechanism of diffusion include interstitial diffusion mechanism and vacancy diffusion mechanism

For 1D, Fick's 1st Law gives
$$J = -D \frac{dC}{dx}$$
 that relates

diffusion flux *J* and concentration gradient *dC/dx* via a material/system property of diffusion coefficient *D*

Diffusion coefficient *D* increases "exponentially" with temperature *T* following

$$D = D_0 \exp\left(-\frac{Q_d}{RT}\right)$$