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Solutions 1.1-1.4 7

Introduction

11

14

Substituting (1.1) into (1.2) and then differentiating with resfpgtow; we obtain

N /M
Z ( wjrd — tn> i =0. Q)
j=0

n=1
Re-arranging terms then gives the required result.

We are often interested in finding the most probable value for sametdy. In
the case of probability distributions over discrete variales poses little problem.
However, for continuous variables there is a subtlety arising tl@mature of prob-
ability densities and the way they transform under non-lineangbs of variable.

Consider first the way a functiofixz) behaves when we change to a new variable
where the two variables are related by= g(y). This defines a new function of
given by

f) = flay))- )

Supposef (z) has a mode (i.e. a maximum)aso thatf’(z) = 0. The correspond-

ing mode of?(y) will occur for a valuey obtained by differentiating both sides of
(2) with respect ta,

@) =f'(9@)g' () = 0. ®)
Assumingg’(y) # 0 at the mode, therf’(¢(y)) = 0. However, we know that
f'(z) = 0, and so we see that the locations of the mode expressed in tégasto
of the variables: andy are related by = g(), as one would expect. Thus, finding
a mode with respect to the variahlds completely equivalent to first transforming

to the variabley, then finding a mode with respectgoand then transforming back
to z.

Now consider the behaviour of a probability dengity(z) under the change of vari-
ablesz = g(y), where the density with respect to the new variablg,ig/) and is
given by ((1.27)). Let us write’(y) = s|¢’(y)| wheres € {—1,+1}. Then ((1.27))
can be written

py(y) = p(9(y))sg' (y).
Differentiating both sides with respectgahen gives

Py (y) = spl.(9w){g' (W)} + sp=(9(v)g" (v). (4)

Due to the presence of the second term on the right hand side dig(4¢lationship

Z = ¢g(y) no longer holds. Thus the value efobtained by maximizing,, (x) will

not be the value obtained by transformingtdy) then maximizing with respect to

y and then transforming back to This causes modes of densities to be dependent
on the choice of variables. In the case of linear transformatimsécond term on



Solution 1.7

Figure 1

Example of the transformation of
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linear change of variables, illus- Y g ()
trating the different behaviour com- -0 0 =
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the right hand side of (4) vanishes, and so the location of thérman transforms
according tar = g(¥).

This effect can be illustrated with a simple example, as shawFigure 1.  We
begin by considering a Gaussian distributjor(x) over z with meany = 6 and
standard deviatiom = 1, shown by the red curve in Figure 1. Next we draw a
sample of N = 50,000 points from this distribution and plot a histogram of their
values, which as expected agrees with the distribysign).

Now consider a non-linear change of variables fromo y given by
z=g(y) =In(y) —In(l —y) +5. 5)
The inverse of this function is given by

1
~ 1+exp(—z+5)

y=g '(2) (6)

which is alogistic sigmoid function, and is shown in Figure 1 by the blue curve.

If we simply transfornp,.(z) as a function of: we obtain the green curye. (¢(v))
shown in Figure 1, and we see that the mode of the depsity) is transformed
via the sigmoid function to the mode of this curve. However, dieasity overy
transforms instead according to (1.27) and is shown by the magenta on the left
side of the diagram. Note that this has its mode shifted relatitbe mode of the
green curve.

To confirm this result we take our samplefof, 000 values ofz, evaluate the corre-
sponding values ajf using (6), and then plot a histogram of their values. We see that
this histogram matches the magenta curve in Figure 1 and noteke gurve!

1.7 The transformation from Cartesian to polar coordinates is defined by

= rcosf (7
= rsinf (8)
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and hence we have? + y? = r? where we have used the well-known trigonometric
result (2.177). Also the Jacobian of the change of variablessityeseen to be

or Ox
oz,y) or 00
6(T79> 8y 8y
or 06
| cosf® —rsinf |
o sinf rcosf

where again we have used (2.177). Thus the double integral in5)lbE2omes

I’ = /OQW/OOOeXp <—27;22)7“d7“d0 (9)
= 27 /000 exp (—;7) %du (10)
= 7 [exp (—%:2) (—202)}:} (11
— 92702 12)

where we have used the change of variabfes: u. Thus

I = (271'02)1/2.

Finally, using the transformatiopn= = — 1, the integral of the Gaussian distribution
becomes

[e%¢) 1 oo y2
2 —
[y = [ e () a

1

(27r02)1/2
as required.

From the definition (1.46) of the univariate Gaussian distrdnytive have

o) 1 1/2 1
E[z] = /_OO <27r02> exp {—W(x - u)Q} rdz. (13)
Now change variables using= = — u to give
o 1 \M2 L,
Elz] = /_oo <2mg) eXp{—QUQy }(y+u) dy. (14)

We now note that in the factdy + x) the first term iny corresponds to an odd
integrand and so this integral must vanish (to show this exiylieirite the integral
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Solution 1.9

1.9

as the sum of two integrals, one froarpo to 0 and the other fron to oo and then
show that these two integrals cancel). In the second terima constant and pulls
outside the integral, leaving a normalized Gaussian distabuwthich integrates to
1, and so we obtain (1.49).

To derive (1.50) we first substitute the expression (1.46) for thmabdistribution
into the normalization result (1.48) and re-arrange to obtain

/ exp {—%iz(x — /,L)Q} dx = (27r02)1/2 . (15)

— 00

We now differentiate both sides of (15) with respecibtoand then re-arrange to

obtain
1 \Y? e 1
o _ 2 _ 2 — 2
(5) [ eo{-gmte-wbe-wra-a a0

which directly shows that

E[(x — p)?] = var[z] = o2 17)
Now we expand the square on the left-hand side giving
E[z?] — 2uE[z] + p? = 0.

Making use of (1.49) then gives (1.50) as required.
Finally, (1.51) follows directly from (1.49) and (1.50)

El2’] — Elz]* = (p* + 0?) — p* = 0>
For the univariate case, we simply differentiate (1.46) with eespox to obtain

T —
o2

C%./\/' (z|p,0%) = =N (z|p, 0?)
Setting this to zero we obtain= .
Similarly, for the multivariate case we differentiate (1.52) witlspect tak to obtain
0 1 .
SV EE) = SN, D)V {(x = ) T2 (x - ) )
= —N(x[p, D)2 (x—p),

where we have used (C.19), (C.2@nd the fact thakE ' is symmetric. Setting this
derivative equal t®, and left-multiplying by, leads to the solutiog = .

INOTE: In the 1°* printing of PRML, there are mistakes in (C.20); all instances ¢¥ector)
in the denominators should he(scalar).
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1.10 Sincez andz are independent, their joint distribution factorizés, z) = p(z)p(2),

and so
Elz+2] = //(a; + 2)p(x)p(z) dz dz (18)
= /xp(x) dz + /zp(z) dz (29)
= E[z] +E[z]. (20)

Similarly for the variances, we first note that
(x4 2z —Elz +2))? = (z — E[2])* + (2 — E[2])* + 2(z — E[z])(z — E[z]) (21)

where the final term will integrate to zero with respect to the faz¢al distribution
p(z)p(z). Hence

varfz +z] = //(x + 2 —E[z + 2])*p(z)p(2) dz dz
— [ B s as+ [ B )
= var(x) + var(z). (22)

For discrete variables the integrals are replaced by summasiodshe same results
are again obtained.

1.12 If m = nthenz,x,, = 22 and using (1.50) we obtaif[z2] = u* + o2, whereas if
n # m then the two data points,, andz,, are independent and henEéc,,z,,| =

E[z,]E[z,,] = p? where we have used (1.49). Combining these two results we

obtain (1.130).
Next we have

N
Elin] = v > Elea] = s (23)

using (1.49).

Finally, considerE[c,; ]. From (1.55) and (1.56), and making use of (1.130), we

have
1 1 Y ’
Elofn] = E NZ (xn N Z LEm)
n=1 m=1
9 N 1 N N
2
PRI ST z]
m=1 m=1 [=1
1 1
02> + MZ + NOQ}

{
_ (N‘l) o (24)

=|
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Solution 1.15

1.15

as required.

The redundancy in the coefficients in (1.133) arises from integaymmetries
between the indices,. Such symmetries can therefore be removed by enforcing an
ordering on the indices, as in (1.134), so that only one membeadh group of
equivalent configurations occurs in the summation.

To derive (1.135) we note that the number of independent paessvetD, M)
which appear at ordev/ can be written as

IM—1

D iy
n(D,M)=>Y"Y "Y1 (25)

11=1125=1 v =1

which hasM terms. This can clearly also be written as

maMy{z{i}~Zp} (26)

11=1 io=1 v =1

where the term in braces has— 1 terms which, from (25), must equa(i,, M —1).
Thus we can write

D
n(D, M) =Y " n(is, M 1) (27)

which is equivalent to (1.135).

To prove (1.136) we first sdD = 1 on both sides of the equation, and make use of
0! = 1, which gives the valué on both sides, thus showing the equation is valid for
D = 1. Now we assume that it is true for a specific value of dimensitynal and
then show that it must be true for dimensionalidyt- 1. Thus consider the left-hand
side of (1.136) evaluated fdp + 1 which gives

D+1

(+M-21  (D+M-1) (D+M—1)
g%pqu—m = ooy T =)

D+ M-1ID+(D+ M- 1)M

= DIM!

- (DDTJ\?/{ ’ (28)

which equals the right hand side of (1.136) for dimensionality- 1. Thus, by
induction, (1.136) must hold true for all values.bf

Finally we use induction to prove (1.137). Fbf = 2 we find obtain the standard
resultn(D,2) = $D(D + 1), which is also proved in Exercise 1.14. Now assume
that (1.137) is correct for a specific ordief — 1 so that

(D+ M —2)!

DM =1 = -

(29)
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Substituting this into the right hand side of (1.135) we obtain

D
B (t+ M —2)!
”(D’M);(z—n!(M—n! (30)
which, making use of (1.136), gives
D+ M-1)!

and hence shows that (1.137) is true for polynomials of oideiThus by induction
(1.137) must be true for all values 61.

Using integration by parts we have

MNx+1) = /°° u’e " du
0
= [—efuux];o + /OC zu e " du = 0 + 2T (z). (32)
0
Forz = 1 we have
ra) = /00 e “du= [—e‘“]zo =1. (33)
0

If x is an integer we can apply proof by induction to relate the garfumetion to
the factorial function. Suppose th&fz + 1) = z! holds. Then from the result (32)
we havel'(z + 2) = (z + 1)['(x + 1) = (x + 1)!. Finally,I'(1) = 1 = 0!, which
completes the proof by induction.

On the right-hand side of (1.142) we make the change of variables? to give

%SD / e P2 du = %SDF(D/2) (34)
0

where we have used the definition (1.141) of the Gamma functiorth®left hand
side of (1.142) we can use (1.126) to obtaii/2. Equating these we obtain the
desired result (1.143).

The volume of a sphere of raditisn D-dimensions is obtained by integration

1
Vp = SD/ rP=ldr = Sj (35)
0 D

For D = 2 andD = 3 we obtain the following results

4
Sy = 2, S3 = 4, V, = ma?, Vs = gﬂag. (36)
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Solutions 1.20-1.24

1.20

1.22

1.24

Sincep(x) is radially symmetric it will be roughly constant over the sh#lkadius
r and thickness. This shell has volum&prP~'e and since|x||? = r? we have

/ p(x)dx ~ p(r)SprP e (37)
shell

from which we obtain (1.148). We can find the stationary points(of by differen-
tiation
2

%p(r) o [(D — 1)rP7 4P <_%)} P <_2TU2> =0 (38)

Solving forr, and usingD > 1, we obtain’ ~ v/Do.
Next we note that

~ ~ \D-1 _
p(r+e) o (F+e)~ "exp [ 552

T+ 6)2:|

o 2
= exp N Ghd) +(D—-1)In(r+e¢)| . (39)
202
We now expandy(r) around the point. Since this is a stationary point @fr)
we must keep terms up to second order. Making use of the expelngib+ =) =

x — 22/2 + O(2®), together withD >> 1, we obtain (1.149).

Finally, from (1.147) we see that the probability density at thigin is given by

1

p(XZO):W

while the density aljx|| = 7 is given from (1.147) by

PN 2\ 1 D
PUI=1= Gz P\ 207 ) = Gromyz P\ 72
where we have usetl~ \/Do. Thus the ratio of densities is given byp(D/2).

SubstitutingLy; = 1 — d;; into (1.81), and using the fact that the posterior proba-
bilities sum to one, we find that, for eaghwe should choose the clag$or which

1 — p(C;]x) is a minimum, which is equivalent to choosing théor which the pos-
terior probabilityp(C;|x) is a maximum. This loss matrix assigns a loss of one if
the example is misclassified, and a loss of zero if it is correxd#lgsified, and hence
minimizing the expected loss will minimize the misclassifion rate.

A vectorx belongs to clas§;, with probabilityp(Cx|x). If we decide to assigr to
classC; we will incur an expected loss of’, L ;p(Ck|x), whereas if we select the
reject option we will incur a loss of. Thus, if

j = argmin zk: Lyap(Cr|x) (40)



1.25

1.27

Solutions 1.25-1.27 15

then we minimize the expected loss if we take the followingosct

class j, if min; Y, Lip(Crlx) < A;
Choose{ reject, otherwise. (41)

For aloss matrixd.; = 1 — I,; we have) ", Lyp(Cr|x) = 1 — p(Ci|x) and so we
reject unless the smallest value lof- p(C;|x) is less tham\, or equivalently if the
largest value op(C;|x) is less tharl — A. In the standard reject criterion we reject
if the largest posterior probability is less th@nThus these two criteria for rejection
are equivalent providefl =1 — \.

The expected squared loss for a vectorial target variable is iye

BlL] = [ [ Iyeo) — et ) axe
Our goal is to choosg(x) so as to minimizéE[L]. We can do this formally using
the calculus of variations to give

SE[L]

dy(x)
Solving fory(x), and using the sum and product rules of probability, we obtain

= /Q(y(x) —t)p(t,x)dt = 0.

tp(t,x)dt
y(x) = / = /tp(t|x) dt

/p(t,x) dt

which is the conditional average ttonditioned orx. For the case of a scalar target
variable we have

y(x) = /tp(ﬂX) dt
which is equivalent to (1.89).

Since we can choosgx) independently for each value &f the minimum of the
expected., loss can be found by minimizing the integrand given by

/Mm—wmmw 42)

for each value ok. Setting the derivative of (42) with respectiy(x) to zero gives
the stationarity condition

/@mw—ﬂ“ﬁ@@uw%mmwm

y(x) o)
:q/’|mw—ﬂ%w@mw—q/ ly(x) — 7 p(t]x) dt = 0

—o0 y(x)
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Solutions 1.29-1.31

1.29

131

which can also be obtained directly by setting the functioeaiMdtive of (1.91) with
respect tqy(x) equal to zero. It follows thag(x) must satisfy

y(x) o
/ 1y(x) — 1] p(t}x) dt = /()y<x>—t|q—1p<tx>dt. 43)

For the case of = 1 this reduces to

y(x) o0
/ p(t|x)dt = / p(t|x) dt. (44)

—0o0 (x)

which says thay(x) must be the conditional median of

For ¢ — 0 we note that, as a function of the quantity|y(x) — ¢|? is close to 1
everywhere except in a small neighbourhood arouady(x) where it falls to zero.
The value of (42) will therefore be close to 1, since the densityis normalized, but
reduced slightly by the ‘notch’ close to= y(x). We obtain the biggest reduction in
(42) by choosing the location of the notch to coincide withltrgest value op(t),
i.e. with the (conditional) mode.

The entropy of an\/-state discrete variablecan be written in the form

Zp x;) Inp(z;) Zp x;) ln

The functionin(z) is concave~ and so we can apply Jensen'’s inequality in the form
(1.115) but with the inequality reversed, so that

M 1
z) <In Zp(xi)m =1InM. (46)

We first make use of the relatidiix; y) = H(y) — H(y|x) which we obtained in
(1.121), and note that the mutual information satisfi@sy) > 0 since itis a form
of Kullback-Leibler divergence. Finally we make use of thatieln (1.112) to obtain
the desired result (1.152).

To show that statistical independence is a sufficient cadfor the equality to be
satisfied, we substitutg(x, y) = p(x)p(y) into the definition of the entropy, giving

(45)

H(x,y) = //p(x,y)lnp(xay)dxdy
— [ ppty) (0 + 1mp(y)} axay

- / p(x) Inp(x) dx + / p(y)Inp(y)dy
= H(x) +H(y).
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To show that statistical independence is a necessary comdite combine the equal-
ity condition
H(x,y) = H(x) + H(y)

with the result (1.112) to give
H(y|x) = H(y).

We now note that the right-hand side is independertarfid hence the left-hand side
must also be constant with respecktaUsing (1.121) it then follows that the mutual
informationI|x, y| = 0. Finally, using (1.120) we see that the mutual information is
a form of KL divergence, and this vanishes only if the two disttibns are equal, so

thatp(x,y) = p(x)p(y) as required.

1.34 Obtaining the required functional derivative can be done sirhplyispection. How-
ever, if a more formal approach is required we can proceed as folloing tise
techniques set out in Appendix D. Consider first the functional

o) = [ pla) (o) d.
Under a small variatiop(z) — p(z) + en(x) we have
Ip(z) + en(z)] = /p(w)f(rﬂ) dw+e/77(w)f(w) dz

and hence from (D.3) we deduce that the functional derivativevengdy

ol

Similarly, if we define
Jpla)) = [ plo)tup(e) ds

then under a small variatignx) — p(x) + en(x) we have

Jiple) + en(z)] = / p(2) Inp(a) d
te { [tampta)ae+ [ po)—Lnte) dx} L 0@)
and hence 57
m =p(z) + 1.

Using these two results we obtain the following result for the fiomal derivative

—Inp(z) — 1+ A1 + Xoz + A3(x — p)2.
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Solutions 1.35-1.38

1.35

1.38

Re-arranging then gives (1.108).

To eliminate the Lagrange multipliers we substitute (1.108) each of the three
constraints (1.105), (1.106) and (1.107) in turn. The solutiondstraasily obtained
by comparison with the standard form of the Gaussian, and ndtatghe results

1
Moo= 1= g (2m0%) (47)
Ay = 0 (48)
1
= — 4
A3 52 (49)

do indeed satisfy the three constraints.

Note that there is a typographical error in the question, whidulshread "Use
calculus of variations to show that the stationary point offthectional shown just
before (1.108) is given by (1.108)".

For the multivariate version of this derivation, see Exercidd 2.

NOTE: In PRML, there is a minus sign-’) missing on the |.h.s. of (1.103).

Substituting the right hand side of (1.109) in the argumenheflbgarithm on the
right hand side of (1.103), we obtain

Hal = — [ po)np(o)ds

- / p(z) (;m(zm?) <“T2_Uf)2> dz
- 2 <ln(27702) + % / p(@) (@ — p)? dx)

= % (In(270®) + 1),

where in the last step we used (1.107).

From (1.114) we know that the result (1.115) holds¥ér= 1. We now suppose that
it holds for some general value and show that it must therefore hold fbf + 1.
Consider the left hand side of (1.115)

M+1 M
f <Z Aﬂi) f (/\M+117M+1 + Z )\ixi> (50)

i=1

M

f </\M+11'M+1 + (1= Aprs1) Zm&) (51)
i=1

where we have defined \

= — 52
v (52)

i
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We now apply (1.114) to give

M+1
f (Z /\il’i> <A f(@as1) + (L= Apga) f (Z ThSCz) . (53)

We now note that the quantities by definition satisfy

d =1 (54)

and hence we have
M
Z N =1— A1 (55)
1=1

Then using (52) we see that the quantitipsatisfy the property

M

dai=1. (56)

1— >\
M+1 i

Zm—

Thus we can apply the result (1.115) at ordérand so (53) becomes

M+1

M+1 M
f (Z )\iﬂ?z') < )\M+1f($M+1)+(1—>\M+1)me(ﬂ?i) = Z Aif (zi) (57)

where we have made use of (52).

1.41 From the product rule we hayéx,y) = p(y|x)p(x), and so (1.120) can be written

as
I(x;y) = —//p(xvy) Inp(y) dxdy+//p(xay) Inp(y|x) dxdy

= —/p(y) Inp(y) dy+//p(xay) In p(y[x) dxdy

= H(y) - H(ylx). (58)
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Chapter 2 Probability Distributions

2.1 From the definition (2.2) of the Bernoulli distribution we have

> plaln) = pla=0lu) +plz =1|u)

z€{0,1}
= 0=-ptp=1
> ap(alp) = 0.p(a=0lp)+ Lp(z=1|u) = u
z€{0,1}
Y. @=p?palw) = pPpla=0lp) + (1 - p)*plr = 1)

z€{0,1}
= (1= p) + (1= p)p = p(l - p).

The entropy is given by

Hiz] = — Y plalw) npw|p)

ze{0,1}

= = > - {rnp+ (1 —2)n(l —p)}
z€{0,1}

= —(1=p)In(l —p) —pnp.

2.3 Using the definition (2.10) we have

N N\ NI NI
<n>+<n—l> N n!(N—n)!+(n—1)!(N+1—n)!
(N+1=n)N'4+nN! _ (N+1)!
n!(N +1—n)! (N +1-n)!
_ (Nrjl). (59)

To prove the binomial theorem (2.263) we note that the theoremivially true
for N = 0. We now assume that it holds for some general véluand prove its
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correctness foV + 1, which can be done as follows

L+2)" = (1+2)) (Z) "

= ({0 () ()
(B e
_ Nfc\f ;—1>x" (60)

which completes the inductive proof. Finally, using the bimartheorem, the nor-
malization condition (2.264) for the binomial distributiorvgs

fj (M- = a —manj_o (M) (1’ju>

- (1-pN <1+“>N—1 (61)
I—p

as required.

Making the change of variable= y + z in (2.266) we obtain

I'(a)T(b) = /Ooo 2! {/:o exp(—t)(t — a:)bldt} dz. (62)

We now exchange the order of integration, taking care over thigsliof integration

/ / Lexp(—t)(t — z)°~ dz dt. (63)

The change in the limits of integration in going from (62) to (63) & understood
by reference to Figure 2. Finally we change variables ircthigegral usinge = tu
to give

L(a)T(b) = /ooexp( t)t“ltbltdt/o pt 1 = )Pt dp

_ +b)/ 1>t dp. (64)
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Figure 2 Plot of the region of integration of (62)

Solution 2.9

in (z,t) space.

>

X

2.9 When we integrate ovet,; i the lower limit of integration i€, while the upper

limitis 1 — ij\if w; since the remaining probabilities must sum to one (see Fig-
ure 2.4). Thus we have

1=y
Pr—1 (1, -5 phar—2) =/ par(pas -y pnr—1) dpear—1
0

M—2 1_2;}4212 1 M—1 ap—1
11 u%’“_ll / pirs (1 -y uj> dpar—1.
k=1 0 j=1

In order to make the limits of integration equal @cand 1 we change integration
variable fromu ;1 to ¢ using

M—2
o=t (1350
=1

- Cu

which gives

pM—1(M17---7uM—2)

(M —2 T M—2 am—1tanp—1 1
= Ou | [ m (1—Zuj> /t“M1—1(1—t)aM—1dt
L k=1 J J 0
1

1
Mg -
= Cuy Hugk—l (
L k=1

M

9 ap —1+ap—1
3 M) Dloy-llow) g

- D(anr—1 + anr)

J

where we have used (2.265). The right hand side of (65) is seen totaralized
Dirichlet distribution overM/ —1 variables, with coefficients, ..., ap 2, apr—1+
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ay, (note that we have effectively combined the final two categdr@ed we can
identify its normalization coefficient using (2.38). Thus

o T(ag + ...+ an) _ C(anp—1 + anr)
M T(on) ... T(aar—2) (o1 + oar)  T(aar—1)T (o)
Tl +...+an)
 I'(av)...T(anr) (66)
as required.

We first of all write the Dirichlet distribution (2.38) in the form

M
Dir(pler) = K () [ ] g~
k=1

where
I'(ao)

P(aa) - Tlam)

K(a) =

Next we note the following relation

M M
0 o1 0
M et = & — 1)1
oo 1L el | R
k=1 k=1
M
= H Inpjexp{(ag —1)Inpy}
k=1

M
= Inpy, H ug’“_l
k=1

from which we obtain

1 1 M
Blag] = K@) [ [t T durdu
0 0 k=1
9 1 1 M .
P— —_— DY aki
= K(a)aaj/O /OHM’“ dpey ... dpg
0 1
= Ky, K
0
= —InhK(a).
a; (a)

Finally, using the expression fdt (), together with the definition of the digamma
function(-), we have

Elln ;] = (a;) — ¢(ao).
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2.14 As for the univariate Gaussian considered in Section 1.6, werede use of La-
grange multipliers to enforce the constraints on the maximum gysolution. Note
that we need a single Lagrange multiplier for the normalizationstraint (2.280),
a D-dimensional vectom of Lagrange multipliers for thé constraints given by
(2.281), and @ x D matrix L of Lagrange multipliers to enforce thie? constraints
represented by (2.282). Thus we maximize

ity - - [ p<x>1np<x>dx+x< [0 dx—1>

+m?® ( / p(x)xdx — u)
+Tr{L </p(X)(X—u)(X—u)TdX—E>}- (67)

By functional differentiation (Appendix D) the maximum of thisnfttional with
respect tg(x) occurs when

0=—1-Inp(x) +A+mTx+ Tr{L(x — p)(x — p)*}.

Solving forp(x) we obtain
p(x)=exp{A—1+m'x+ (x—p)"'L(x—p)}. (68)
We now find the values of the Lagrange multipliers by applyirggdbnstraints. First
we complete the square inside the exponential, which becomes
1 B 1 1
A—1+ <x —p+ 2L1m> L <x —p+ 2L1m> +pTm — ZmTLflm.
We now make the change of variable
1 —1
y=X—p+ §L m.

The constraint (2.281) then becomes

1 1
/exp {)\ —14+y"Ly+ p'm — 4mTL_lm} (y +p— 2L_lrn> dy = p.
In the final parentheses, the termyinvanishes by symmetry, while the term in
simply integrates tqu by virtue of the normalization constraint (2.280) which now
takes the form

1
/exp {)\ —14+y"Ly+ pTm — 4mTle} dy = 1.

and hence we have )
—~L 'm=0
2
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where again we have made use of the constraint (2.280). ithus 0 and so the
density becomes

p(x) =exp{A =1+ (x—p)"L(x - p)}.

Substituting this into the final constraint (2.282), and makhegchange of variable
x — p = z We obtain

/exp {)\ -1+ zTLz} zz' dx = 3.

Applying an analogous argument to that used to derive (2.64)ManL = —%E.
Finally, the value of\ is simply that value needed to ensure that the Gaussian distri-
bution is correctly normalized, as derived in Section 2.3, amt@és given by

1 1
Al ln{mwwz |2|1/2}'

2.16 We havep(zy) = N (z1|u1, 7 1) andp(zs) = N (22|, 75 1) Sincer = z; + xo
we also havep(z|zs) = N (z|p1 + 9,7, ). We now evaluate the convolution
integral given by (2.284) which takes the form

TI\Y2 o \/2 [ T T
p(z) = (i) (i) /OO €xp {—51(95 —p — @) — 52(332 - Mz)z} dx,.

(69)
Since the final result will be a Gaussian distribution#¢t) we need only evaluate
its precision, since, from (1.110), the entropy is determined byahance or equiv-
alently the precision, and is independent of the mean. Thae/alus to simplify the
calculation by ignoring such things as normalization cortstan

We begin by considering the terms in the exponent of (69) whiplede on:, which
are given by

1
—51’%(71 + 7o) + 2o {71 (2 — 1) + Topo}

2 2
1 —_ _
— (47 xg—ﬁ(x 1) + Topio +{7’1($ p1) + Tapo}
Tl+72 2(T1+T2)

where we have completed the square owger When we integrate out,, the first

term on the right hand side will simply give rise to a constantdamdependent
of z. The second term, when expanded out, will involve a term?n Since the
precision ofz is given directly in terms of the coefficient of in the exponent, it is
only such terms that we need to consider. There is one other tetfrarising from

the original exponent in (69). Combining these we have

2
T1 2 Ti 2 1 7nim 72

x5t ———x = -
2 2(7’1 +7'2) 27'1 +7'2
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Solutions 2.17-2.20

2.17

2.20

from which we see that has precision; 7, /(71 + 72).

We can also obtain this result for the precision directly by ajipgo the general
result (2.115) for the convolution of two linear-Gaussian disttions.

The entropy ofc is then given, from (1.110), by
Hlz] = ;111{2”(7'1""7—2)} .

T1T2

We can use an analogous argument to that used in the soldtiEreocise 1.14.
Consider a general square matfixwith elements\;;. Then we can always write

A = A* + AS where

A 4+ A Ao — A
S _ 1y J Aty gt
Ay == A= (70)
and it is easily verified thad® is symmetric so thaA% = AJSZ andA* is antisym-
metric so that\;; = —A%,;. The quadratic form in the exponent of &dimensional
multivariate Gaussian distribution can be written

1 D D

B SO @i — )iz — ) (71)

i=1 j=1

whereA = X! is the precision matrix. When we substittte= A* + AS into
(71) we see that the term involving”* vanishes since for every positive term there
is an equal and opposite negative term. Thus we can alwaytékée symmetric.

Sinceuy, ..., up constitute a basis fak”, we can write
a = &1u1 + d2u2 + ...+ dDuD,
wherea, ..., ap are coefficients obtained by projectia@nu, . .., up. Note that

they typically donot equal the elements af.
Using this we can write

a'Ya= (ajuj +...+apup) X (a;u; + ...+ apup)
and combining this result with (2.45) we get
(dlulT +... .+ lel%) (a1 \ug + ...+ apApup).
Now, sinceu]u; = 1 only if i = j, and0 otherwise, this becomes
a2+ ...+ abAp

and sincea is real, we see that this expression will be strictly positivedioy non-

zeroa, if all eigenvalues are strictly positive. It is also clear tHian eigenvalue,
i, IS zero or negative, there exist a vecigle.g.a = u;), for which this expression
will be less than or equal to zero. Thus, that a matrix has e&gtavs which are all
strictly positive is a sufficient and necessary condition fer tatrix to be positive
definite.
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2.22 Consider a matriXM which is symmetric, so tha¥I®™ = M. The inverse matrix
M ! satisfies
MM ! =1

Taking the transpose of both sides of this equation, and ubmgelation (C.1), we
obtain .
M) M'=I"=1I

since the identity matrix is symmetric. Making use of the syrimgneondition for
M we then have .
(M) M=1I

and hence, from the definition of the matrix inverse,
()" =t
and soM ! is also a symmetric matrix.

2.24 Multiplying the left hand side of (2.76) by the matrix (2.287) taily gives the iden-
tity matrix. On the right hand side consider the four blocks @ tasulting parti-
tioned matrix:

upper left

AM -BD !CM = (A -BD!C)(A-BD!C) ! =1
upper right

—~AMBD ' +BD ' +BD !CMBD!

- —(A-BD!C)(A-BD!C)"'BD!'+BD!
-BD '+BD !'=0
lower left
CM-DD 'CM=CM-CM=0

lower right

—~-CMBD '+DD !4+DD 'CMBD '=DD ' =1

Thus the right hand side also equals the identity matrix.

2.28 For the marginal distributiop(x) we see from (2.92) that the mean is given by the
upper partition of (2.108) which is simply. Similarly from (2.93) we see that the
covariance is given by the top left partition of (2.105) and isefare given byA —*.

Now consider the conditional distributigriy|x). Applying the result (2.81) for the
conditional mean we obtain

Hyix = Ap+b+ AAT'A(x —p) = Ax +b.
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2.32

Similarly applying the result (2.82) for the covariance of theditanal distribution
we have

covly|x] =L7' + AATTAT - AATTAA AT =L
as required.
The quadratic form in the exponential of the joint distributismiven by
1 1
—5 (=)A= p) — Sy — Ax—b)"L(y - Ax—b).  (72)

We now extract all of those terms involvingand assemble them into a standard
Gaussian quadratic form by completing the square

- _%XT(A +ATLA)x +x* [Au +A'L(y - b)] + const
= S0 m)T(A+ ATLA)(x — m)
+%mT(A + ATLA)m + const (73)
where
m=(A+ATLA)"' [Ap+ATL(y - b)].

We can now perform the integration ovemwhich eliminates the first term in (73).
Then we extract the terms i from the final term in (73) and combine these with
the remaining terms from the quadratic form (72) which depeng tmgive

1 _
= —§yT {L-LAA+ATLA)'A"L}y
+y" {L-LAA+A"LA)'A"L}Db
+LA(A+ATLA)'Ap]. (74)
We can identify the precision of the marginal distributjdiy ) from the second order
term iny. To find the corresponding covariance, we take the inverse ofreégion
and apply the Woodbury inversion formula (2.289) to give
{L-LA(A+A"LA) 'AL} =L+ AATIAT (75)

which corresponds to (2.110).

Next we identify the meaw of the marginal distribution. To do this we make use of

(75) in (74) and then complete the square to give
1 _
—i(y —v)T (L' + AATTAT) ' (y —v) + const

where

v=(L"+AATAT) [(L7'+ AAT'AT) 'b + LA(A + ATLA) 'Ap] .
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Now consider the two terms in the square brackets, the first onéving b and the
second involvingu. The first of these contribution simply givés while the term in
e can be written

= (LT'+AATTAT)LAA+A'LA) 'Ap
= AD+AT'ATLA) I+ A TATLA) A 'Ap = Ap

where we have used the general reglBC)~! = C~!B~!'. Hence we obtain
(2.109).

Differentiating (2.118) with respect &8 we obtain two terms:

(xp — ) TZ N (x, — ).

For the first term, we can apply (C.28) directly to get

N 0 N ,-\T_ N,
For the second term, we first re-write the sum
N
Z(Xn - N)Tﬁfl(xn —p)=NTr [2718} ,
n=1

where
N

S = Z(Xn —p)(xn — p)"
n=1

Using this together with (C.21), in which= ¥;; (element(i, j) in X), and proper-
ties of the trace we get

0
82,»j

ol 0
Zl(xn —W)TE  (xy — ) = N&Eij Tr[3's]

= NTr [ zls]

8Zij

= —NTr [2—1 ox

2—1

[)>
62ij
= —N(x7'sxz™)

= —NTr [ 2_182_1]

ij

where we have used (C.26). Note that in the last step we have djtierdact that
Yi; = i, so thatoX/0%;; has al in position (i, j) only and0 everywhere else.
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Treating this result as valid nevertheless, we get

0 N
o  \Ts—1 R 1
> nE 1(xn B E T (x, —p) = 5 XSy

N | —

Combining the derivatives of the two terms and setting the tésulero, we obtain

N N
—yl="_ylgyt
2 2

Re-arrangement then yields
=S

as required.

2.36 NOTE: In the 1%t printing of PRML, there are mistakes that affect this solutione T
sign in (2.129) is incorrect, and this equation should read

PN — g(N—1) g1y,

—an—12(
Then, in order to be consistent with the assumption fi{dy > 0 for 6 > 6* and
f(9) < 0foré < 6* in Figure 2.10, we should find the root of the expeateghtive
log likelihood. This lead to sign changes in (2.133) and (2),184t in (2.135), these
are cancelled against the change of sign in (2.129), so in eff2di35) remains
unchanged. Alsax,, should bez,, on the I.h.s. of (2.133). Finally, the labelsand
v in Figure 2.11 should be interchanged and there are corresporttmges to
the caption (see errata on the PRML web site for details).

Consider the expression fofN) and separate out the contribution from observation
xy to give

U(QN) (xn - M)Q

=z~
-

Z

(TN — M)2

o 2
(2 —p)* + w7

Il
N

-1, (xN - M)Q
B A R
1 (zn — p)?

Oln_1) — NU(QNA) T

= z2[=

1
= U(2N71) + N {(fEN —p)? — U(2N71)} : (76)

If we substitute the expression for a Gaussian distributiontimaesult (2.135) for
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the Robbins-Monro procedure applied to maximizing likelihowd,obtain

9 1 (rn — p)?
2 2
o(Ny = O(N—1) Tan-1 —Inoty_y) —
(V) ( 0%y, { N0 " 962 )
2 (xn — M)2
= O(ny—1) Tan-1
( { —1) 20?}\1—1) }
aN—
= O’(QN )—1—24 ! ZEN 0] —O'(N 1)} 77
-1
Comparison of (77) with (76) allows us to identify
. B 202‘]\,71)
N—-1— N .
2.40 The posterior distribution is proportional to the product of therand the likelihood

function
p(plX) o< p(p Hp Xp |, 3

Thus the posterior is proportional to an exponentlal of a quaxdiatm in . given
by

(Xn - :“)

N\H
HMZ

1
—5 (= 1o) 25 (1 = 1ao)

n=1

N
1
= _iuT (B + NS ) ptpt (201;1,0 +x! an> + const

where const.” denotes terms independent pf Using the discussion following
(2.71) we see that the mean and covariance of the posteriobdisbr are given by

_ —1\—1 _ _
By = (20 '+ NZ 1) (20 1“0 +X 1NMML) (78)
2y = S+ NET (79)
wherep,,; is the maximum likelihood solution for the mean given by

1
By = NZ:IXn-
n=

2.46 From (2.158), we have
o) bae(—b‘r)Ta—l T 1/2 T )
L rw (G) eo{femwf e

= rlz(;) <217r>1/2 /Ooo T exp {—T <b+ W)} dr.
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We now make the proposed change of variabte 7A, whereA = b+ (z — p)?/2,
yielding

b (1N vz [T e
— AT / 2972 exp(—z)dz
I'(a) (27") 0

b 1 e —a—1/2
- @) <2W> AT (a4 1/2)

where we have used the definition of the Gamma function (1.14halli we sub-
stituteb + (z — u)?/2 for A, v/2 for a andv /2 for b:

P(—a+1/2) 1\ caiifo
fo v (a) o

STl ey (L) (g ety

_ T+ 1)/2) (L)"/Q (;)1/2 (ﬁ)—(l”rl)/? <1 . /\(x—u)2>_("+1)/2

F((l;(ljr/f))ﬂ) 21 1/2 Az — p)2) Y2 ’
T (vr) (” >

2.47 Ignoring the normalization constant, we write (2.159) as

Az — M)Q} —(v=1)/2

v

= exp(—yglln[l—f—W]). (80)

For larger, we make use of the Taylor expansion for the logarithm in the form

St(xz|p, A, v) [1—!—

In(1+¢€) = e+ O(e?) (81)

to re-write (80) as

oo (5 [ =)

~ exp (-” - ! [A(‘” —n° 0(1/2)])

14

= exp (—W + O(u1)> :
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We see that in the limit — oc this becomes, up to an overall constant, the same as
a Gaussian distribution with meanand precision\. Since the Student distribution

is normalized to unity for all values ofit follows that it must remain normalized in
this limit. The normalization coefficient is given by the sland expression (2.42)
for a univariate Gaussian.

Using the relation (2.296) we have
1 = exp(iA) exp(—iA) = (cos A + isin A)(cos A —isin A) = cos® A + sin® A.
Similarly, we have

cos(A—B) = Rexp{i(A—B)}
= Rexp(iA)exp(—iB)
= R(cos A+ isin A)(cos B —isin B)
cos Acos B + sin Asin B.

Finally

sin(A—B) = Sexp{i(A— B)}
= exp(id)exp(—iB)
S(cos A+ isin A)(cos B — isin B)
= sinAcos B — cos Asin B.

We can most conveniently cast distributions into standardmeptial family form by
taking the exponential of the logarithm of the distributior Ehe Beta distribution
(2.13) we have

I'(a+b)

Beta(ula,b) = W

exp{(a—1)Inp+ (b—1)In(1 — p)}

which we can identify as being in standard exponential form (2. &8uh

M = 1 (62)
sad) = o) ®3)
u(p) = <1n(11nﬁ u)) (64)
n(a,b) = (Z:i) (85)

Applying the same approach to the gamma distribution (2.146)btain

Gam(Na, b) — I‘lza) exp {(a—1)InA—bA}.
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from which it follows that

h(A) = 1 (86)
ba
g(a,b) = m (87)
A
u()\) = <1n/\> (88)
—b
wan = () )
Finally, for the von Mises distribution (2.179) we make use efidrentity (2.178) to
give
1 . .
p(0]60y, m) = mexp {mcosfcosfy+ msinfsinby}
from which we find
hd) = 1 (90)
1
g(0o,m) = m (91)
cos 0
wo) = (i) ©2)
_ (mcosby
(0o, m) = (msin90>' (93)

2.60 The value of the density(x) at a pointx,, is given byh;,,), where the notatiofi(n)
denotes that data poist, falls within regionj. Thus the log likelihood function

takes the form
N N
Z Inp(x,) = Z In A
n=1 n=1

We now need to take account of the constraint tfig) must integrate to unity. Since
p(x) has the constant valug over regioni, which has volumé\;, the normalization
constraint become§ . h;A; = 1. Introducing a Lagrange multipliex we then
minimize the function

N
n=1 %

with respect taq, to give

ng
0=—4+2)A
I + k

wheren;, denotes the total number of data points falling within redgioMultiplying
both sides by:,, summing ovelk and making use of the normalization constraint,
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we obtainA\ = —N. Eliminating A then gives our final result for the maximum
likelihood solution forh,, in the form

ng 1

hy, = &
TN A

Note that, for equal sized bins, = A we obtain a bin height;, which is propor-
tional to the fraction of points falling within that bin, as eqted.

Linear Models for Regression

3.1

NOTE: In the 1% printing of PRML, there is & missing in the denominator of the
argument to thetanh’ function in equation (3.102).

Using (3.6), we have

2
2 1+e 2
1+e2¢ 14e 20
1 —e 2@
1+e 20

—a

e’ —e
et +e @
= tanh(a)

If we now takea; = (= — 11;)/2s, we can rewrite (3.101) as
Yo w) = wo+ ijo@aj)

- w0+z (20(2a;) —1+1)
M
= uo—i-Zujtanh(aj),

Jj=1

whereu; = w;/2,forj =1,..., M, andug = wy + Zj Lwj/2.
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3.4 Let

D
A?jn = wo+ Z wz(wnz + eni)

=1
D

= yn+§ Wi€n;q
=1

wherey,, = y(z,, w) ande,; ~ N(0,0?) and we have used (3.105). From (3.106)
we then define

E = (o — tn}?

DN | —
] =

3
Il
-

I
DO | —
M) =

{V2 — 2Gntn + 12}

S
I
-

M=

D D 2
Yn + 2yn Z Wi€ni + (Z wiem>
i—1 i=1

D
~2tpyn — 2tn Y Wicni + 17,

=1

1
2
1

3
Il

If we take the expectation df under the distribution of,,;, we see that the second
and fifth terms disappear, sin&,,;] = 0, while for the third term we get

D 2 D

2 2

E E W; € = E w;o
i=1 i=1

since the:,,; are all independent with varianeé.
From this and (3.106) we see that

D
- 1
E [E} =Ep+ Z;wf(ﬂ?
=

as required.

3.5 We can rewrite (3.30) as

1 M
(et -a) <o
j=1
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where we have incorporated th¢2 scaling factor for convenience. Clearly this does
not affect the constraint.

Employing the technique described in Appendix E, we can camtiiis with (3.12)
to obtain the Lagrangian function

1 N
:§Z{tn_WT Xn }2 <Z|w1|q_n>

and by comparing this with (3.29) we see immediately that tleydentical in their
dependence ow.

Now suppose we choose a specific value\af 0 and minimize (3.29). Denoting
the resulting value ofv by w* (), and using the KKT condition (E.11), we see that

the value ofy is given by
M
n=>_ [wj\)
j=1

3.6 We first write down the log likelihood function which is given by

N
In L(W, ) f% || — % S (b — W) TS (b, — WTh(x,.)).

n=1
First of all we set the derivative with respect¥d equal to zero, giving

N

0=— Z E_l(tn - WT¢(XR))¢(XR)T'

n=1

Multiplying through by and introducing the design matri and the target data
matrix T we have

dTOW =o' T
Solving forW then gives (3.15) as required.

The maximum likelihood solution faE is easily found by appealing to the standard
result from Chapter 2 giving

- N Z Wi d(xn)) (b — Wi o (xa)) "

as required. Since we are finding a joint maximum with respect to W andX
we see that it i3V, which appears in this expression, as in the standard result for
an unconditional Gaussian distribution.

3.8 Combining the prior
p(w) = N(wlmy,Sy)
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3.10

3.15

and the likelihood

AN s
PN ilXN1, W) = (277> exp <—2(tN+1 - WT¢N+1)2> (94)

whereg | = ¢(xn1), we obtain a posterior of the form

P(W[tN+1,XN4+1, My, Sy)

X exp (—;(w —my)"'Sy (W —mpy) — %5(tN+1 - WT¢N+1)2> :

We can expand the argument of the exponential, omitting-thé factors, as fol-
lows
(w —my) TS (W — ) + Bty 1 — W hy)?
= WTS;\,lw — 2WTSR,1mN
+ BwW N 1Py W — 20w P it + const
=w ' (Sy' + Bdns1On )W — 2w (Sy'my + Bd . tni1) + const,

whereconst denotes remaining terms independentwofFrom this we can read off
the desired result directly,

p(Wltns1, Xn+1, my, Sy) = N(wlmpyy1, Syi1),
with
SN =Sy + BdN 1 PN (95)
and

myg; = SN+1(S;\zlmN + BN i1tNt1)- (96)

Using (3.3), (3.8) and (3.49), we can re-write (3.57) as

pltlx.t, a, B) = / N (tb(x)"w, 5~ )N (wimy, Sy dw.

By matching the first factor of the integrand with (2.114) andgbeond factor with
(2.113), we obtain the desired result directly from (2.115).

This is easily shown by substituting the re-estimation form(3a@2) and (3.95) into
(3.82), giving
- B 2, @
E(my) = 5 It — 2mp||” + §mNmN
_N—~v ~v N

5 T3~ 9
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3.18 We can rewrite (3.79)

3.20

gHt— dw|’ + %WTW

(tTt —nATPw + WT'I'T'IZ'W) + %WTW

N =@

(ﬂtTt —26tTdw + WTAW>

where, in the last line, we have used (3.81). We now use the trickdding0 =
miAmy — m5Amy and usingl = A~ A, combined with (3.84), as follows:

% (Bt"t —2pt"dw + W Aw)

(BTt —28t" @A Aw + W Aw)

(ﬁtTt —2myAwW +w AW + myAmy — mNAmN)

l\J\i—‘l\D\HMM—‘

(BTt —myAmy) + %(w —my)TA(w — my).

Here the last term equals term the last term of (3.80) and so it renmshow that
the first term equals the r.h.s. of (3.82). To do this, we use the $acks again:

DO |

as required.

("t~ m} Amy) = J ("t~ 2m§ Amy + m Amy)

(bt"t —2myAAT RT3 + myy (al + fT @) my)
(ﬁtTt —2my®"t3 + fmy @ dmy + amNmN)
(

Bt —®mpy)"(t — Pmy) + amymy)

M\QI\DM—‘[\DM—W\JM—A

It — @mNH + 2mNmN

We only need to consider the terms of (3.86) that depend,omhich are the first,
third and fourth terms.

Following the sequence of steps in Section 3.5.2, we stahntthv last of these terms,

1

From (3.81), (3.87) and the fact that that eigenvectgrare orthonormal (see also
Appendix C), we find that the eigenvectorsto bea+ \;. We can then use (C.47)
and the properties of the logarithm to take us from the left to the sigle of (3.88).
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The derivatives for the first and third term of (3.86) are more easitginbd using
standard derivatives and (3.82), yielding

1 /M 4T
— [ — 4+ mym .
2\ « NTEN

We combine these results into (3.89), from which we get (3.92) vi@0}3. The
expression fory in (3.91) is obtained from (3.90) by substituting

M

N+«
;A + «

for M and re-arranging.

3.23 From (3.10), (3.112) and the properties of the Gaussian and Ganstndowtions
(see Appendix B), we get

pt) = / / p(t}w, B)p(w|5) dwp(5) 4

— // (éi)zm exp {g(t —dw)(t - @w)}

g\ 8
(27r) |So|1/2exp{—2(w—mO)TSal(w—mU)} dw

[(ag) 1630 g%t exp(—bo3) d3

T (en Mi(:|s E //e p{ (t=&w) (tq)w)}

exp {ﬁ(w —my) TSy H(w — mo)} dw

2
Bt N2 M2 exp(—by 3) d B

) ((27rMZVO|S|1/2// { (w—my)'Sy (w—mN)} dw

exp {—g (tTt +m;S; 'mg — m%SI_\,lmN)}

BN =1 aM/2 exp(—byB) A3
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where we have completed the square for the quadratic fomn unsing

my = SN [So_ll’l’lo + @Tt]
Sy = B(Sy'+e'e)
N
an = CloJr?
1 N
by = bo+ 3 (mgsolmo —mySy'my + Zti) .
n=1

Now we are ready to do the integration, first oveland thens, and re-arrange the
terms to obtain the desired result

bao
p(t) = 0 (2m)M/2[S | /2 / B exp(~byB) dB
((2m)M+N S |) 1/
1 |SN|1/2 bgo F(CLN)
(2m)N/2 [So[1/2 b3 T(ag)

Chapter 4 Linear Models for Classification

4.2 Forthe purpose of this exercise, we make the contribution diitkeweights explicit
in (4.15), giving

Ep(W) = %Tr {(XW + 1w — T)"(XW + 1w — T)}, (97)

wherewy is the column vector of bias weights (the top rOWADT transposed) antl
is a column vector of N ones.

We can take the derivative of (97) w.niy, giving
2Nwy + 2(XW — T)"1.
Setting this to zero, and solving fer,, we obtain
wo=t— WTx (98)
where

1 1
t=—T"1 and x= —XT1.
N TN

If we subsitute (98) into (97), we get

Ep(W) = %Tr{(XWjLT—XW—T)T(XWjLT—XW—T)},
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where

T=1tT and X =1x".

Setting the derivative of this w.r.¥W to zero we get
W = (XTX)"'XTT = X7,
where we have define = X — X andT = T — T.
Now consider the prediction for a new input vecior,
y(X*) = WTX* + Wy
Wix* +t - W'k
—~ ~\T
- -TT (XT) (x* — %). (99)

If we apply (4.157) tat, we get

_ 1
alt = NaTTTl = —b.

Therefore, applying (4.157) to (99), we obtain
—~ —~ T
aTy(x*) = a"t+alTT (XT) (x* — %)
= aTt=—b,
sincea™TT = aT(T - T)T = p(1 — 1)T = 0.

4.4 NOTE: In the 1%* printing of PRML, the text of the exercise refers equation (4.23)
where it should refer to (4.22).

From (4.22) we can construct the Lagrangian function
L=w"(my; —m;)+ A (WTW - 1) )

Taking the gradient of. we obtain

VL = ms—m; +2\w (100)
and setting this gradient to zero gives
= o (my - my)
W = 2)\ 194 5) m;

form which it follows thatw o« my — m;.
4.7 From (4.59) we have

1 _l—l—e_a—l
l4e@  14e@
B e ¢ B 1

1+e—a_e“+1:

1—0(a) = 1

o(—a).
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The inverse of the logistic sigmoid is easily found as follows

1
1+e @

4.9 The likelihood function is given by

p {bn ta}{mid) = [] [T {p(@nlCr)mi}™

n=1k=1

and taking the logarithm, we obtain

N K
lnp({¢na n}|{ﬂ-kz} - ZZ nk {lnp ¢n|ck) +In Wk} (101)

n=1 k=1

In order to maximize the log likelihood with respectip we need to preserve the
constrainty ", m, = 1. This can be done by introducing a Lagrange multiphend
maximizing

K
lnp({¢mtn}|{77k}) + A (Z Tk — 1) .

Setting the derivative with respect4q equal to zero, we obtain

Re-arranging then gives
N
~TEA =) tn = N (102)

Summing both sides ovérwe find that\ = — N, and using this to eliminat® we
obtain (4.159).
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4.12 Differentiating (4.59) we obtain

do e ®

da (1+e2)?

= o { 1 i_ea*a }

— o(a) l4e e 1
- o l4+e* 14e @
= o(a)(1—o(a)).

4.13 We start by computing the derivative of (4.90) w.y.t.

OF 1—t, t,
it - 103
OYn I —yn Yn ( )
_ yn<1_tn)_tn(1_yn)
yn(l - yn)
Yn — yntn - tn + yntn
= 104
yn(l - yn) ( )
Yn — tn
== 105
yn(l - yn) ( )
From (4.88), we see that
yn _ Oo(an)
a. = n 1- n)) = Yn 1- n)- 1
o = 2280 = 0(a,) (1= 0(a.) = (1 = 1) (106)
Finally, we have
Va, = ¢, (107)

whereV denotes the gradient with respectwo Combining (105), (106) and (107)
using the chain rule, we obtain

VE = —=—Va,

as required.
4.17 From (4.104) we have

Yy, ek et \?
a5 = < ) = k(1 — ),

Oay, > e >, e

o etk efi .

o = T 2T TYkYj J# k.
Oa; (3, eai)
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4.23
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Combining these results we obtain (4.106).
Using the cross-entropy error function (4.90), and following Exer4i48, we have

aE _ yn_tn

—_— = 108
ayn yn<1 - yn) ( )
Also
Va, = ¢,. (109)
From (4.115) and (4.116) we have
Oy 0®(an,) 1 .-
90, = da. Tﬂe . (110)
Combining (108), (109) and (110), we get
O 8y, Ny —tn 1
VE = "Va, =Y A g 111
nz:l 8yn 8an p— yn(l - yn) \/ﬂ6 (vbn ( )

In order to find the expression for the Hessian, it is is conven@&fitst determine

0 Yn — In _ yn(l - yn) . (yn - tn)(l - 2yn)
OYn yn(l - yn) yr%(l - yn)2 y%(l - yn)2
2 tn - 2 ntn
— Yalin— Sain (112)
yn(l - yn)

Then using (109)—(112) we have

N
8 Yn — tn 1 _ 2
VVE = — e, Vyn
Z {8yn |:yn(1 - yn):| vV 27’(6 d)n 4

n=1
Yn — tn 1

yn(1 = yn) V2rr

N
_ Z <y721 +tn — 2yntn 1 e_ai _ 2 ( )> —2a ¢n¢
Yn(l—yn) V21 nin V27my, (1 —yn)

+

e~ (—2a,)¢,Va, }

n=1

NOTE: In the 1 printing of PRML, the text of the exercise contains a typogreahi
error. Following the equation, it should say tli&is the matrix of second derivatives
of the negative log likelihood.

The BIC approximation can be viewed as a laig@pproximation to the log model
evidence. From (4.138), we have

A = —VVinp(D|Onap)p(Onap)
= H—VVlnp(eMAp)
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Chapter 5

and ifp(@) = N(6|m, V), this becomes
A=H+V;%

If we assume that the prior is broad, or equivalently that thebmmof data points
is large, we can neglect the tei¥fj, ' compared tdd. Using this result, (4.137) can
be rewritten in the form

1

_ 1
Inp(D) =~ Inp(D|Onap) — i(OMAp —m)V, 1(9MAP —m) — 3 In [H| + const

(113)
as required. Note that the phrasing of the question is mislgadince the assump-
tion of a broad prior, or of largéV, is required in order to derive this form, as well
as in the subsequent simplification.

We now again invoke the broad prior assumption, allowing ustglett the second
term on the right hand side of (113) relative to the first term.

Since we assume i.i.d. datH, = —VV In p(D|Oyap) consists of a sum of terms,
one term for each datum, and we can consider the following appedion:

N
H:ZHn:Nﬁ

n=1

whereH,, is the contribution from the'® data point and

~ 1 N
H= - nz_:l H,.
Combining this with the properties of the determinant, we have
hﬂﬂ:mWﬁbm%NWﬁD:MMN+mﬁ|

whereM is the dimensionality of. Note that we are assuming tHathas full rank

M. Finally, using this result together (113), we obtain (4.139lkppping thén |ﬁ|
since thisO(1) compared tdn N.

Neural Networks

5.2

The likelihood function for an i.i.d. data sef(x;,t;),..., (xn,tx)}, under the
conditional distribution (5.16) is given by

N
[TV (taly(xn, w), 37'T) .
n=1



5.5

5.6
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If we take the logarithm of this, using (2.43), we get

N
Zln/\f (tnly (x5, w),37'T)

n=1

y(xp, w )) (BT) (t,, — y(xn,wW)) + const

I.\D\H

v (Xn, w)H + const

i

I\D\Q

where ‘const’ comprises terms which are independent ofThe first term on the
right hand side is proportional to the negative of (5.11) and éenaximizing the
log-likelihood is equivalent to minimizing the sum-of-square®e

For the given interpretation afx(x, w), the conditional distribution of the target
vector for a multiclass neural network is

K
p(tlwy, ..., wg) = Hy,tj
k=1

Thus, for a data set a¥ points, the likelihood function will be

N K
p(T‘Wl, R ,WK) = H Hyf;lbck

n=1k=1

Taking the negative logarithm in order to derive an error functi@nobtain (5.24)
as required. Note that this is the same result as for the mukitdgsstic regression
model, given by (4.108) .

Differentiating (5.21) with respect to the activatiap corresponding to a particular
data pointz, we obtain

OF 1 9y 1 Oyn
gy = 1—t)—— . 114
aan yn 80% * ( ) 1- Yn aan ( )
From (4.88), we have
Iyn,
= yn(1 —yn).
Sa. = Un(1 =) (115)
Substituting (115) into (114), we get
OF yn(l - yn) yn(l - yn)
— = —tp—+ 1 —ty)—F—
aan YUn ( ) (1 - yn)
= Yn —tyn

as required.
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5.9

5.10

This simply corresponds to a scaling and shifting of the binatputs, which di-
rectly gives the activation function, using the notation fromi @), in the form

y =20(a) — 1.

The corresponding error function can be constructed from (5.21) blyiagphe
inverse transform tgn andt,,, yielding

14+t, 1 n 1+, T+uyn
E(w) = + +y +<1— J; >ln<1— J;y>

—_

N
= 52 {Q+t) 1 +y,)+ (1 —t)In(l —yn)} + NIn2

where the last term can be dropped, since it is independamt of
To find the corresponding activation function we simply appblthear transforma-
tion to the logistic sigmoid given by (5.19), which gives

2
yla) = 20(a)—1= T

1—e @ ea/2 _ e—a/Q

l+e e a/2 4 e=a/2
= tanh(a/2).

From (5.33) and (5.35) we have
uiTHui = u;F)\iui = /\z

Assume thaH is positive definite, so that (5.37) holds. Then by setting u; it
follows that
A = u;FHui >0 (116)

for all values ofi. Thus, if H is positive definite, all of its eigenvalues will be
positive.

Conversely, assume that (116) holds. Then, for any veetore can make use of
(5.38) to give

vIHv = (Zciui>TH<zcjuj>

i J

— (chm) (Zchuj>
= Z)\C >0

where we have used (5.33) and (5.34) along with (116). Thus, if #lbeigenvalues
are positive, the Hessian matrix will be positive definite.
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5.11 NOTE: In PRML, Equation (5.32) contains a typographical eresrshould be~.

We start by making the change of variable given by (5.35) whitdwal the error
function to be written in the form (5.36). Setting the value of the refumction
E(w) to a constant valu€’ we obtain

+%Z)\ia§:(}

Re-arranging gives
> hie? =20 -2B(w*)=C

whereC is also a constant. This is the equation for an ellipse whoss are aligned
with the coordinates described by the variables}. The length of axig is found
by settinge; = 0 for all i # j, and solving for; giving

which is inversely proportional to the square root of the corresimgneigenvalue.

5.12 NOTE: See note in Solution 5.11.

From (5.37) we see that, H is positive definite, then the second term in (5.32) will
be positive whenevefw — w*) is non-zero. Thus the smallest value whi€lw)
can take isF(w*), and sow* is the minimum ofE'(w).

Conversely, ifw* is the minimum ofE(w), then, for any vectow # w*, E(w) >

E(w™). This will only be the case if the second term of (5.32) is pusifor all

values ofw # w* (since the first term is independentw). Sincew — w* can be
set to any vector of real numbers, it follows from the definition d.BatH must
be positive definite.

5.19 If we take the gradient of (5.21) with respectwg we obtain

N N

VE(w) = S—EVan = Z(yn —tn)Van,

n=1

where we have used the result proved earlier in the solution tecEee5.6. Taking
the second derivatives we have

N
VVE(wW) = {gzn VanVan + (yn — tn)vwn} .

n=1

Dropping the last term and using the result (4.88) for the derigaiivthe logistic
sigmoid function, proved in the solution to Exercise 4.12, walfjnget

VVE Z yn yn vanvan = Z yn yn)bnb;l;
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5.25

whereb,, = Va,,.

The gradient of (5.195) is given
VE =H(w —w")
and hence update formula (5.196) becomes

w(™ = w(™ D — pH(w™D — w*).

Pre-multiplying both sides with} we get

w” = ufwl? (117)
= u;-FW(T_l) — puJTH(W(T_l) —w")
= w;T_l) — pnjuJT(W —w")
— w;T_l) — pn; (w§-7_1) — w;), (118)

where we have used (5.198). To show that
wl = {1~ (1~ pny) "}

forT =1,2,..., we can use proof by induction. For= 1, we recall thatv(®) = 0
and insert this into (118), giving

1 0 0
wi = Wl — gy (w” — w)
= pnjwj
{1—= (1= pny)} w}.

Now we assume that the result holds foe N — 1 and then make use of (118)

N N-—-1 N-1 *
wi™ = W™ — oy (Y — )

= w1 = pny) + pnjw}
{1= @ =)™} wi (1 = pnj) + pnjuw;
= {1 =pny) = (1= pn) N} wi + pnjw;
= {1-Q-pp)"}w;
as required.

Provided thatl — pn;| < 1 then we havel — pn;)” — 0 asT — oo, and hence
{1-(1—-p)"} — 1andw™ — w*.

If 7 is finite butn; > (p7)~!, 7~ must still be large, sincg;pr > 1, even though
|1 — pn;| < 1. If 7is large, it follows from the argument above thaf’ ~ w?.
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If, on the other handy; < (pr)~!, this means thatn; must be small, sincen; 7 <
1 andr is an integer greater than or equal to one. If we expand,

(1= pny)" =1 —71pn; + O(pn3)
and insert this into (5.197), we get

g

= [{1—=(1—pn)" }wj|
{1 = =7pn + O(pn})) } wi|

Tpmlw | < wj]

12

Recall thatin Section 3.5.3 we showed that when the regutayizparameter (called
ain that section) is much larger than one of the eigenvalude(ta; in that section)
then the corresponding parameter valyewill be close to zero. Conversely, when
« is much smaller than; thenw; will be close to its maximum likelihood value.
Thusa is playing an analogous role to-.

527 If s(x,€) =x+ &, then
0sp . Os
= I, 1.e.,— =1,
o6 T og
and since the first order derivative is constant, there are no higter derivatives.
We now make use of this result to obtain the derivativeg wfr.t. &;:

Z Oy Os _
851 sy 0; 637 !

aaafj a@ aSk 0@ &sj v

Using these results, we can write the expansioR @fs follows:
B = g [[[ w60 - orpeimeane) dgaxar
[ [ - owTep@nteinpi agaxar
g [ € (i - 0B+ b7 n@pteipi ag axa.

The middle term will again disappear, sin&&] = 0 and thus we can writé& on
the form of (5.131) with

- % / / €' ({y(x) — t}B + bbT) £p(&)p(t|x)p(x) d€ dx dt.
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5.28

5.29

5.34

Again the first term within the parenthesis vanishes to leadidgran& and we are
left with

Q

12

: / / €7 (bbT) £p(€)p() d€ dx

— 5 [ Tracel(g€”) (bbT)] p€)pi) de
= % / Trace[I (bb™")] p(x) dx

= 5 [ v ax=; [ I9yGolpee dx

where we used the fact thaf¢e"] = 1.

The modifications only affect derivatives with respect to wesgh the convolutional
layer. The units within a feature map (indexed have different inputs, but all share
a common weight vectory (™. Thus, errorsi™ from all units within a feature
map will contribute to the derivatives of the corresponding Weigector. In this
situation, (5.50) becomes

()

OFn _ 3 OE, 0a; $ gz

aw(m) aa(.m) 8w(m) J et
j i

i J J

Here ag.m) denotes the activation of thg" unit in them'® feature map, whereas

wEm) denotes theé'™™ element of the corresponding feature vector and, finajﬁ},)

denotes the'" input for thej*" unit in them'" feature map; the latter may be an
actual input or the output of a preceding layer.

Note thatégm) = J0E, /6a§m) will typically be computed recursively from thés
of the units in the following layer, using (5.55). If there are layppi®ceding the
convolutional layer, the standard backward propagation emgawill apply; the
weights in the convolutional layer can be treated as if thesewsdependent param-
eters, for the purpose of computing thefor the preceding layer’s units.

This is easily verified by taking the derivative of (5.138), usfhgl6) and standard
derivatives, yielding

o _ 1
ow; > TN (wilp, o)

3w g ) 1)
J

Combining this with (5.139) and (5.140), we immediately obthmsecond term of
(5.141).

NOTE: In the 1%* printing of PRML, the L.h.s. of (5.154) should be replaced with
Yk = Yk(tn|xn). Accordingly, in (5.155) and (5.156); should be replaced by
Yk @and in (5.156)¢; should be.,,;.
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We start by using the chain rule to write

OE, <~ 0E, 0m;

) 119
daj; Om; Oaf, (119)

j=1
Note that because of the coupling between outputs causdtklsoftmax activation

function, the dependence on the activation of a single outpiitinvolves all the
output units.

For the first factor inside the sum on the r.h.s. of (119), standeridatives applied
to then'® term of (5.153) gives

0E, _ KNnj — _nj (120)
aﬂ-j Zl:l 7Tl-/\/’nl 7Tj
For the for the second factor, we have from (4.106) that
on;
aT;Zr =Lk — 7). (121)

Combining (119), (120) and (121), we get

K
oE, Tnj
D e O
J=1
K K
= - Z’an(fjk - 7Tk:) = —Vnk T Z%ﬂrk = Tk — Tnk,
Jj=1 Jj=1

where we have used the fact that, by (5.1@5,(:1 Tn; = 1 forall n.
Using (4.135), we can approximate (5.174) as
p(Dlev, B) 2 p(D|wwmap, B)p(Wuap|)
/exp {—; (W - WMAP)T A (W - WMAP)} dw,

whereA is given by (5.166), ag(D|w, 3)p(w|«) is proportional tap(w|D, v, 3).
Using (4.135), (5.162) and (5.163), we can rewrite this as

(27T)W/2

N
p(Dla, B) ~ HN(tn|y(XmWMAP)a5_1)N(WMAP|0>Q_1UW-

Taking the logarithm of both sides and then using (2.42) andBj2we obtain the
desired result.
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5.40

Chapter 6

For a K -class neural network, the likelihood function is given by

N K
H H Ui (X, W)tn,k:
n k

and the corresponding error function is given by (5.24).

Again we would use a Laplace approximation for the posteridritigion over the
weights, but the corresponding Hessian maiidx,n (5.166), would now be derived
from (5.24). Similarly, (5.24), would replace the binary cross entrapyréerm in
the regularized error function (5.184).

The predictive distribution for a new pattern would again havee@pproximated,
since the resulting marginalization cannot be done analjyic However, in con-
trast to the two-class problem, there is no obvious candidatdieapproximation,
although Gibbs (1997) discusses various alternatives.

Kernel Methods

6.1

We first of all note that/ (a) depends on only through the fornKa. Since typically
the numberN of data points is greater than the numBérof basis functions, the
matrix K = ®®7 will be rank deficient. There will then b2/ eigenvectors oK
having non-zero eigenvalues, aNd- M eigenvectors with eigenvalue zero. We can
then decompose = a| +a WhereaﬁaL = 0 andKa; = 0. Thus the value of

a, is not determined by (a). We can remove the ambiguity by settiag = 0, or
equivalently by adding a regularizer term

€. T
2aj_al
to J(a) wheree is a small positive constant. Then= a wherea, lies in the span

of K = ®&T and hence can be written as a linear combination of the colwhns
®, so that in component notation

NE

ui¢z‘(Xn)

Ay =

1

Il
_

or equivalently in vector notation

a= du. (122)
Substituting (122) into (6.7) we obtain
1
J(u) = B (K®u —t)" (K®u —t) + guTQTK{)u
1
= 5 (2T Pu- t)" (@@ ®u—t) + %uTq»ch@Tq»u (123)
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Since the matrix®* ® has full rank we can define an equivalent parametrization
given by
w=&"®u

and substituting this into (123) we recover the original rega&tierror function
(6.2).

The results (6.13) and (6.14) are easily proved by using (6.1) veidihes the kernel
in terms of the scalar product between the feature vectors for tput wectors. If
k1 (x,x’) is a valid kernel then there must exist a feature vegtor) such that

ki (x,x') = ¢(x) " $(x').

It follows that
cky (x,x") = u(x)Tu(x’)

where

u(x) = ¢'?¢(x)
and sack; (x,x") can be expressed as the scalar product of feature vectors, ared henc
is a valid kernel.

Similarly, for (6.14) we can write

F)E (%, %) f(x') = v(x)Tv(x)

where we have defined

v(x) = f(x)p(x).
Again, we see thaf (x)k;(x,x’) f(x') can be expressed as the scalar product of
feature vectors, and hence is a valid kernel.

Alternatively, these results can be proved be appealing to ¢émergl result that
the Gram matrixK, whose elements are given Byx,, x,,), should be positive
semidefinite for all possible choices of the $&t,}, by following a similar argu-
ment to Solution 6.7 below.

(6.17) is most easily proved by making use of the result, digzlies page 295, that
a necessary and sufficient condition for a functigix, x’) to be a valid kernel is
that the Gram matri¥X, whose elements are given byx,,, x,,,), should be positive
semidefinite for all possible choices of the $&t,}. A matrix K is positive semi-
definite if, and only if,

a’Ka >0

for any choice of the vectas. Let K; be the Gram matrix fok; (x,x’) and letK,
be the Gram matrix fok,(x,x’). Then
aT(K1 +Ky)a= a’Kja+aTKya >0

where we have used the fact tHdt and K, are positive semi-definite matrices,
together with the fact that the sum of two non-negative numiwitstself be non-
negative. Thus, (6.17) defines a valid kernel.
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To prove (6.18), we take the approach adopted in Solution 6.5eSue know that
k1 (x,x") andkq(x,x’) are valid kernels, we know that there exist mappigds)
and(x) such that

ki(x,x) = d(x)To(x)  and  ka(x,x') = P (x) T (x).
Hence

k(x,x') = ki(x,x")ka(x,x)

whereK = M N and

or(x) = ¢((k71)®N)+1(X)w((kfl)QN)+1(X)7
where in turn? and® denote integer division and remainder, respectively.

6.12 NOTE: In the 1* printing of PRML, there is an error in the text relating to this
exercise. Immediately following (6.27), it sayisi| denotes the number sfibsets
in A; it should have said:A| denotes the number efementsin A.

Since A may be equal td (the subset relation was not defined to be strigt)D)
must be defined. This will map to a vector®P! 1s, one for each possible subset
of D, including D itself as well as the empty set. FdrcC D, ¢(A) will have 1s in

all positions that correspond to subsetsdodnd Os in all other positions. Therefore,
@(A1)" p(As) will count the number of subsets sharedAyandA,. However, this
can just as well be obtained by counting the number of elesnarthe intersection
of A; and A, and then raising 2 to this number, which is exactly what (6d08s.

6.14 In order to evaluate the Fisher kernel for the Gaussian we firstthatehe covari-
ance is assumed to be fixed, and hence the parameters compyiiesoelements of
the meanu. The first step is to evaluate the Fisher score defined by (6.32n e
definition (2.43) of the Gaussian we have

g(p,x) =V, InN (x|u,S) = S7!(x — p).
Next we evaluate the Fisher information matrix using the défimif6.34), giving

F = E, [g(p,x)g(n,x)"] = S7'Ex [(x — p)(x —p) "] ST
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Here the expectation is with respect to the original Gaussistnilolition, and so we
can use the standard result

Ey [(x — p)(x - )] =

from which we obtain
F=S""'.

Thus the Fisher kernel is given by
k(x,x) = (x — ) "S 7 (x — ),
which we note is just the squared Mahalanobis distance.

6.17 NOTE: Inthel®* printing of PRML, there are typographical errors in the text relating
to this exercise. In the sentence following immediately afte839%.f (x) should be
replaced byy(x). Also, on the I.h.s. of (6.40)(x,,) should be replaced by(x).
There were also errors in Appendix D, which might cause confusieasp consult
the errata on the PRML website.

Following the discussion in Appendix D we give a first-princgptierivation of the
solution. First consider a variation in the functigfx) of the form

y(x) = y(x) + en(x).
Substituting into (6.39) we obtain

1 N
Bly el =5 3 [ {uloca+ )+, + ) — ) v(€) de.

n=1

Now we expand in powers efand set the coefficient ef which corresponds to the
functional first derivative, equal to zero, giving

3 / (o +€) — ) nlxn + E)0(E) dE = 0. (124)

This must hold for every choice of the variation functigfx). Thus we can choose

n(x) = 6(x - 2)

whered( - ) is the Dirac delta function. This allows us to evaluate thegrakover
giving
N N
> / {y(xn +€) = tn} 5(xn + € —2)0(€) d€ = Y {y(z) — tn} v(z — xn).
n=1 n=1

Substituting this back into (124) and rearranging we then olttenmequired result
(6.40).
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6.20 Given the joint distribution (6.64), we can identify;,; with x, andt with x; in
(2.65). Note that this means that we are prepending rather thamding? v, ; to't
andC ., therefore gets redefined as

kT
CN+1:<IC( CN)

It then follows that
u, =0 uy =0 xp =t
Sw=c Ip=Cy Tup=%_ =kT
in (2.81) and (2.82), from which (6.66) and (6.67) follows directly.

6.21 Both the Gaussian process and the linear regression model gevéoriGaussian
predictive distribution (. 1|xx.1) SO we simply need to show that these have
the same mean and variance. To do this we make use of the eppré$i4) for the
kernel function defined in terms of the basis functions. Using2(Gtide covariance
matrix C  then takes the form

Cy = lopr + 67y (125)
«

where ® is the design matrix with element®,, = ¢,(x,), andIy denotes the
N x N unit matrix. Consider first the mean of the Gaussian process gpirai
distribution, which from (125), (6.54), (6.66) and the definitionthiatext preceding
(6.66) is given by
myi1 = ' P(xng) @ (a_l‘I"I’T + 5_111\1)71 t.

We now make use of the matrix identity (C.6) to give

3T (' ®®T + 7' Iy) = af (87D +aly) T = afSydT.
Thus the mean becomes

Mmy+y1 = ﬂ(b(XNH)TSN‘I'Tt

which we recognize as the mean of the predictive distributiothf®tinear regression
model given by (3.58) withn 5 defined by (3.53) anl v defined by (3.54).

For the variance we similarly substitute the expression (125jHerkernel func-
tion into the Gaussian process variance given by (6.67) anduse(6.54) and the
definitions in the text preceding (6.66) to obtain

o (xng1) = o lo(xng) d(xNg) + 67
—a%p(xn 1) @ (a1 BBT + 5 IN) Bd(xni1)
= B+ d(xni)" (a Ty
—a?@T (a7'98T + 57 Iy) ®)p(xny1).  (126)
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We now make use of the matrix identity (C.7) to give

a 'y — o Ty ®T (B Ta)@T + 87 y) T Ba Ty
= (oI +3®7®) " =Sy,
where we have also used (3.54). Substituting this in (126), werobta
o (Xn41) = ; + d(xn11) " SNP(xN41)

as derived for the linear regression model in Section 3.3.2.

NOTE: In the 1%* printing of PRML, a typographical mistake appears in the text
of the exercise at line three, where it should say. ‘a training set of input vectors

X1,y XN .

If we assume that the target variables,. .., tp, are independent given the input
vector,x, this extension is straightforward.

Using analogous notation to the univariate case,
p(tn11|T) = N(tnpim(xn 1), o(xng1)T),
whereT is aN x D matrix with the vectors, ..., t}, as its rows,
m(xN+1)T =kTCyNT

ando(xy.1) is given by (6.67). Note thaf , which only depend on the input
vectors, is the same in the uni- and multivariate models.

Substituting the gradient and the Hessian into the Newtorh&apformula we ob-
tain

ay"’ = aN—I-(C]T]l—l-WN)_l [tN —O’N—ijlaN]
= (Cy' +Wn) 'ty —on + Wyay]
= Cy(I+WxCy) 'ty —on + Wxay]

Sparse Kernel Machines

7.1

From Bayes’ theorem we have

p(t[x) o< p(x[t)p(t)
where, from (2.249),

1L
p(x|t) = ﬁt Z Zkk(x,xn)é(t,tn).

n=
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7.4

Here N, is the number of input vectors with labef+1 or —1) andN = N, 1+ N_;.
o(t,t,) equalsl if ¢ = t,, and0 otherwise. Z;, is the normalisation constant for
the kernel. The minimum misclassification-rate is achieved if efach new input
vector,x, we chose to maximisep(t|x). With equal class priors, this is equivalent
to maximizingp(x|t) and thus

1
. +1 iff k(x,x;) > — k(x,x;)
t= +1 i:tlz_;l N_y j:t]z_:_ ’

—1 otherwise.

Here we have dropped the factiotZ;, since it only acts as a common scaling factor.
Using the encoding scheme for the label, this classificatittnaan be written in the

more compact form
Ay’
t = sign (Z N—"k(i{, xn)> :

n=1 tn

Now we takek(x, x,,) = x"x,, which results in the kernel density

Here, the sum in the middle experssion runs over all vestgror whicht,, = +1
andx™ denotes the mean of these vectors, with the correspondingtitefifor the
negative class. Note that this density is improper, sinceainot be normalized.
However, we can still compare likelihoods under this densétgulting in the classi-

fication rule
s L+t xTxt > xTx~,
) —1 otherwise.

The same argument would of course also apply in the feature ggage

From Figure 4.1 and (7.4), we see that the value of the margin

[wl| p?

From (7.16) we see that, for the maximum margin solution, thersgterm of (7.7)
vanishes and so we have

1
L(W7 bv a) = §||WH2

Using this together with (7.8), the dual (7.10) can be written as

from which the desired result follows.
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This follows from (7.67) and (7.68), which in turn follow from the KKT atitions,
(E.9)—(E.11), fonu,,, &,, 11, and&,, and the results obtained in (7.59) and (7.60).

For example, fog,, and¢,,, the KKT conditions are

& =2 0
pn = 0
pnkn = 0 (227)
and from (7.59) we have that

Combining (127) and (128), we get (7.67); similar reasoning?tpandfn lead to
(7.68).

We first note that this result is given immediately from (2.113)-42)1but the task
set in the exercise was to practice the technique of compl#tiagquare. In this

solution and that of Exercise 7.12, we broadly follow the prestésm in Section
3.5.1. Using (7.79) and (7.80), we can write (7.84) in a form simdg3t78)

3 N/2 1 M
p(t|X, o, B) = (27T) Wnai/exp{—E(w)} dw (129)

where
_B o 1o
E(w) = §||t—<I)WH +ow Aw

andA = diag(a).
Completing the square over, we get

B(w) = %(w —m) S (w —m) + B(t) (130)
wherem andX are given by (7.82) and (7.83), respectively, and

Eft)=-(At't—m"S"'m). (131)

DN | —

Using (130), we can evaluate the integral in (129) to obtain
/exp {—E(w)} dw = exp {—E(t)} (2m)M/?|x|/2, (132)

Considering this as a function ofwe see from (7.83), that we only need to deal
with the factorexp {—E(t)}. Using (7.82), (7.83), (C.7) and (7.86), we can re-write
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7.12

(131) as follows

E(t) = Attt —m"Y 'm)

(
(pt't—ptTeEE 'R tp)
th (81— peEP )t

th (B - BR(A + 52" ®) '@ Bt

RN RN RN RN -

I
|
—
|

(B 1+ ®A D7) 't

=N

= —tTc't.
2

This gives us the last term on the r.h.s. of (7.85); the two prege@irms are given
implicitly, as they form the normalization constant for the jpoistr Gaussian distri-
butionp(t|X, v, ).

Using the results (129)—(132) from Solution 7.10, we can write (7r88)e form of
(3.86):

N 1 1 N
Inp(t|X,a,f) = S nf+ o > na; - B(t) - 5[]~ 5 In(2r). (133)

By making use of (131) and (7.83) together with (C.22), we can tia&e&lerivatives

of this w.r.te;, yielding
0 1 1 1

In p(t|X = — =¥ — =m?2. 134
Ba. np(t|X, e, 5) 20 2 57 (134)

Setting this to zero and re-arranging, we obtain

o T—adiy v
17727 2’
m; m;

where we have used (7.89). Similarly, féwe see that
5?/5 Inp(t|X, o, §) = % (g — It = ®m||> — Tr [z&%]) . (135)
Using (7.83), we can rewrite the argument of the trace operator as
>3T® = Z@T® 3 'ZA-[IZA
= X(®'®3+A)-3'BA
= (A+p2"®) (@B +A)B I -3IZA
(I-AX)p~ . (136)

Here the first factor on the r.h.s. of the last line equals (7.88)em in matrix form.
We can use this to set (135) equal to zero and then re-arrange to 0h&8).



Solutions 7.15-8.1 63

7.15 Using (7.94), (7.95) and (7.97)—(7.99), we can rewrite (7.85) as follows

1
p(t|X,a,f) = 2{N1n<2w>+1n|c A1+ a7 Ty,

C~ TCZ;
Oél + P, qu, Pi
1 _
= —5{¥m@m) +m|C_i|+t"Clt)

ClipipiCo t]

1
+- |=In[1+a; 'l Cjp;| +1T
5 [ | ¢; Ci il ot pTC g

1 -
= L(a_;)+ 5 [lnai —In(a; + ;) + q’}

a; + S5
= L(a—;) + M)

7.18 As the RVM can be regarded as a regularized logistic regressionimedecan

Chapter 8

follow the sequence of steps used to derive (4.91) in Exercisetd.derive the first
term of the r.h.s. of (7.110), whereas the second term follows frondatd matrix
derivatives (see Appendix C). Note however, that in Exercis8 wé are dealing
with the negative log-likelhood.

To derive (7.111), we make use of (106) and (107) from Exercise 4.13e {irite
the first term of the r.h.s. of (7.110) in component form we get

N
0 o ayn Oay,
(9710]- nz_l(tn - y7L)¢7Li - Z 8an ¢TLL

= _Zyn —Yn ¢n]¢nza

which, written in matrix form, equals the first term inside the paresis on the r.h.s.
of (7.111). The second term again follows from standard matrix dar@st

Graphical Models

8.1

We want to show that, for (8.5),
Z~--ZP Z ZHpIklpak )=1
x TK T k=1

We assume that the nodes in the graph has been numbered such ith#te root
node and no arrows lead from a higher numbered node to a lower nuinede.
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8.2

8.5

Figure 3

8.8

8.9

We can then marginalize over the nodes in reverse order, stariting: x

K—-1
ZZp(x) = Z...Zp(xK\paK) Hp($k|pak)
T T T T o k=1

T -1 k=1

since each of the conditional distributions is assumed tmb®ctly normalized and
none of the other variables depend:on. Repeating this proceds — 2 times we

are left with
Z p(z1]0) = 1.

Consider a directed graph in which the nodes of the graph are machbach that
are no edges going from a node to a lower numbered node. If thers exd#tected
cycle in the graph then the subset of nodes belonging to tresteid cycle must also
satisfy the same numbering property. If we traverse the cycle inithetin of the
edges the node numbers cannot be monotonically increasiog si@ must end up
back at the starting node. It follows that the cycle cannot beextéid cycle.

NOTE: In PRML, Equation (7.79) contains a typographical erygt;, |x,,, w, 37 !)
should bep(t,, |x,,, w, 3). This correction is provided for completeness only; it does
not affect this solution.

The solution is given in Figure 3.

The graphical representation of the relevance  x, )
vector machine (RVM); Solution 8.5.

a 1L b, ¢ | d can be written as
p(a, b, c|d) = p(ald)p(b, c|d).
Summing (or integrating) both sides with respect,tave obtain
p(a,bld) = p(ald)p(bld) ~ or  albld,
as desired.

Consider Figure 8.26. In order to apply the d-separation criteriemeed to con-
sider all possible paths from the central nogedo all possible nodes external to the
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Figure 4

8.15
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Markov blanket. There are three possible categories of such.paiits$, consider
paths via the parent nodes. Since the link from the parent notie twodex; has its
tail connected to the parent node, it follows that for any sudh g& parent node
must be either tail-to-tail or head-to-tail with respect to ththpd@hus the observa-
tion of the parent node will block any such path. Second cemgdths via one of
the child nodes of node; which do not pass directly through any of the co-parents.
By definition such paths must pass to a child of the child nau leence will be
head-to-tail with respect to the child node and so will be bldck&he third and
final category of path passes via a child nod&pénd then a co-parent node. This
path will be head-to-head with respect to the observed child aodehence will
not be blocked by the observed child node. However, this pdtreither tail-to-
tail or head-to-tail with respect to the co-parent node and hebsereation of the
co-parent will block this path. We therefore see that all possibtbs leaving node
x; Will be blocked and so the distribution a&f, conditioned on the variables in the
Markov blanket, will be independent of all of the remaining ahies in the graph.

In an undirected graph a¥/ nodes there could potentially be a link between each
pair of nodes. The number of distinct graphs is then 2 raisetiegower of the
number of potential links. To evaluate the number of digtlimks, note that there
are M nodes each of which could have a link to any of the othér— 1 nodes,
making a total ofM (M — 1) links. However, each link is counted twice since, in
an undirected graph, a link from noddo nodeb is equivalent to a link from node

b to nodea. The number of distinct potential links is therefav&( M — 1)/2 and so
the number of distinct graphs 287 (»-1)/2_ The set of 8 possible graphs over three
nodes is shown in Figure 4.

oo do ob oo
Lo o 4%

The set of 8 distinct undirected graphs which can be constructed over M = 3 nodes.

The marginal distributiom(z,,_1, z,,) is obtained by marginalizing the joint distri-
butionp(x) over all variables except,_; andz,,

Panton) =3 e 2, D e 2 px)

Tn—2 Tn+1

This is analogous to the marginal distribution for a singlealalg, given by (8.50).
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8.18

8.20

Following the same steps as in the single variable case dedadribSection 8.4.1,
we arrive at a modified form of (8.52),

p(en) = %
D Unzn1(@noayTaa) - [Z%z(iﬁawz)] | Unein (T, )
: fia(Tn—1)
D Ynntt (s ) - [Z%bN—LN(fEN—th)] S E
_ 1 (Tn)

from which (8.58) immediately follows.

The joint probability distribution over the variables in a gexdelirected graphical
model is given by (8.5). In the particular case of a tree, each nasla kingle parent,
sopa;, Will be a singleton for each nodg, except for the root node for which it will
empty. Thus, the joint probability distribution for a tree wik lsimilar to the joint
probability distribution over a chain, (8.44), with the differertbat the same vari-
able may occur to the right of the conditioning bar in severaditional probability
distributions, rather than just one (in other words, althougtheede can only have
one parent, it can have several children). Hence, the argum&edtion 8.3.4, by
which (8.44) is re-written as (8.45), can also be applied to proibakblilstributions
over trees. The result is a Markov random field model where eachtgdtiinction
corresponds to one conditional probability distribution indivected tree. The prior
for the root node, e.gu(x1) in (8.44), can again be incorporated in one of the poten-
tial functions associated with the root node or, alternatjvey be incorporated as a
single node potential.

This transformation can also be applied in the other directidaerGan undirected
tree, we pick a node arbitrarily as the root. Since the graph is attiees is a
unique path between every pair of nodes, so, starting at rootvaridng outwards,
we can direct all the edges in the graph to point from the root toebénodes.
An example is given in Figure 5. Since every edge in the tree carnesm a two-
node potential function, by normalizing this appropriately, atain a conditional
probability distribution for the child given the parent.

Since there is a unique path beween every pair of nodes in arecteti tree, once
we have chosen the root node, the remainder of the resultingeliréee is given.
Hence, from an undirected tree with nodes, we can construst different directed

trees, one for each choice of root node.

We do the induction over the size of the tree and we grow the tre@ode at a time
while, at the same time, we update the message passing sehBdte that we can
build up any tree this way.
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The graph on the left is an T T2 T T2
undirected tree. If we pick

x4 to be the root node and

direct all the edges in the

graph to point from the root - T

to the leaf nodes (z1, z» and 3 3
x5), we obtain the directed

tree shown on the right. Tq L5 T4 Ts5

For a single root node, the required condition holds triviallgtrsince there are no
messages to be passed. We then assume that it holds for a tne¥ witdes. In the
induction step we add a new leaf node to such a tree. This néwdel® need not
to wait for any messages from other nodes in order to send its iogtgessage and
so it can be scheduled to send it first, before any other messegssra. Its parent
node will receive this message, whereafter the message prapagait follow the
schedule for the original tree witN nodes, for which the condition is assumed to
hold.

For the propagation of the outward messages from the root bacle tedles, we
first follow the propagation schedule for the original tree wihnodes, for which
the condition is assumed to hold. When this has completedpdnent of the new
leaf node will be ready to send its outgoing message to the eafwnbde, thereby
completing the propagation for the tree with+ 1 nodes.

NOTE: In the1®* printing of PRML, this exercise contains a typographical errar. O
line 2, f,(xs) should bef,(xs).

To computep(xs), we marginalizep(x) over all other variables, analogously to

(8.61),
x) = 3 p(x)

x\xs

Using (8.59) and the defintion df,(z, X) that followed (8.62), we can write this

as
rxd [T II Fenxi)

x\xs i€ne(fs) jene(zi)\fs

) I > 11 B xy)

i€ne(fs) x\xs j€ne(z;)\ fs

H Pz, — fo (ml)a

i€ne(fs)

p(xs)

where in the last step, we used (8.67) and (8.68). Note that thgimaéization over
the different sub-trees rooted in the neighbourgofvould only run over variables
in the respective sub-trees.
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8.23

8.28

8.29

Chapter 9

This follows from the fact that the message that a nadgwill send to a factorf,,
consists of the product of all other messages received biyrom (8.63) and (8.69),
we have

pae) = J] @)

s€ne(x;)

= ppe(@) ] (@)

t€ne(x;)\ fs
= Hfi—ua; (xl) Ha;— f (xl)

If a graph has one or more cycles, there exists at least one sete$ amd edges
such that, starting from an arbitrary node in the set, we can vigh@hodes in the
set and return to the starting node, without traversing any edge tinan once.

Consider one particular such cycle. When one of the naedés the cycle sends a
message to one of its neighboursin the cycle, this causes a pending messages on
the edge to the next nodg in that cycle. Thus sending a pending message along an
edge in the cycle always generates a pending message on tredgexn that cycle.
Since this is true for every node in the cycle it follows that theilbalways exist at
least one pending message in the graph.

We show this by induction over the number of nodes in the tnaetstred factor
graph.

First consider a graph with two nodes, in which case only twosagss will be sent
across the single edge, one in each direction. None of thessagesswill induce
any pending messages and so the algorithm terminates.

We then assume that for a factor graph withnodes, there will be no pending
messages after a finite number of messages have been semt.sGivea graph, we
can construct a new graph wit¥i + 1 nodes by adding a new node. This new node
will have a single edge to the original graph (since the graph mamstin a tree)
and so if this new node receives a message on this edge, ingilce no pending
messages. A message sent from the new node will trigger propagdtmessages
in the original graph withV nodes, but by assumption, after a finite number of
messages have been sent, there will be no pending messagiee atgorithm will
terminate.

Mixture Models and EM

9.1

Since both the E- and the M-step minimise the distortion meg8ut} the algorithm
will never change from a particular assignment of data poinfgatotypes, unless
the new assignment has a lower value for (9.1).

Since there is a finite number of possible assignments, eathandorresponding
unique minimum of (9.1) w.r.t. the prototypegy, }, the K-means algorithm will
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converge after a finite number of steps, when no re-assignmeaataf points to
prototypes will result in a decrease of (9.1). When no-reassignta&et place,
there also will not be any change fm, }.

From (9.10) and (9.11), we have

K
=D o)) = Y [] el (xlpy, 2i)™

z k=1

Exploiting the 1-of# representation faz, we can re-write the r.h.s. as

ZH 7rkN X|uk,2k Ik] _Zﬂ-j Xl.u’]: )

wherel;,; = 1if k = j and O otherwise.

Consider first the optimization with respect to the parametggs X }. For this we
can ignore the terms in (9.36) which dependlom,. We note that, for each data
pointn, the quantities:,,;, are all zero except for a particular element which equals
one. We can therefore partition the data set itgroups, denote&X, such that all
the data pointx,, assigned to componehtare in groupX,. The complete-data log
likelihood function can then be written

K
lnp(X,Z | ”’72’7‘-) = Z{ Z lnN(Xn“l’kka)} :

k=1 \(neXy

This represents the sum & independent terms, one for each component in the
mixture. When we maximize this term with respectp and X, we will simply

be fitting thek'™ component to the data sX;,, for which we will obtain the usual
maximum likelihood results for a single Gaussian, as discliss€hapter 2.

For the mixing coefficients we need only consider the termis iy, in (9.36), but
we must introduce a Lagrange multiplier to handle the constdajpm;, = 1. Thus

we maximize
ZZznklnﬂk + A <Z’/Tk — 1)
n=1 k=1

which gives

Multiplying through by, and summing ovek we obtain\ = — N, from which we

have v
| N,
SN TN

n=1

where Ny, is the number of data points in gro{. .
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Solutions 9.8-9.15

9.8

9.12

9.15

Using (2.43), we can write the r.h.s. of (9.40) as

N K
1 J—
9 Z Z’Y(an)(xn - H’j)TE 1(Xn - uj) + const.,

n=1 j=1

where ‘const.” summarizes terms independent pffor all j). Taking the derivative
of this w.r.t. ., we get

N

- Z’Y(znk) (E_IHk; - 2_1Xn) )

n=1
and setting this to zero and rearranging, we obtain (9.17).

Since the expectation of a sum is the sum of the expectatiertsawe

ZmEk Zﬂkuk

whereE, [x]| denotes the expectation ®funder the distributiop(x|k). To find the
covariance we use the general relation

cov[x] = E[xx"] — E[x]E[x]"
to give

covlx] = E[xx']-E[xE[x]"

= Zﬂ'kEk [xx'] — Ex]E[x]*

K

= Zﬂ'k {Z + e} — EXERX]".
k=1

This is easily shown by calculating the derivatives of (9.58}tisg them to zero and
solve foruyg;. Using standard derivatives, we get

0 Tng 1— oy
Ezlnp(X,Z|p, ™) = Zn _—
Opuki 2l .70 ZV * (Mkz 1- l%i)
Z ’7 an Tni — Z Y an),ukz
Mlcz(l /“w)

Setting this to zero and solving fai,;, we get

g = 2oV k) Tni

which equals (9.59) when written in vector form.
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9.20

9.23

9.25

Solutions 9.17-9.25 71

This follows directly from the equation for the incomplete logelikood, (9.51).
The largest value that the argument to the logarithm on the o (9.51) can have

is 1, sincevn, k : 0 < p(xp|py) < 1,0 < < 1 andeK 7, = 1. Therefore, the
maximum value foin p(X|u, 7) equals 0.

If we take the derivatives of (9.62) w.rd, we get

5 M1l .4
%E Inp(t,w|a, B)] = oo §E [w w] .

Setting this equal to zero and re-arranging, we obtain (9.63).

NOTE: In the 1 printing of PRML, the task set in this exercise is to show that th
two sets of re-estimation equations are formally equivalentawit any restriction.
However, it really should be restricted to stationary point$efdbjective function.

Considering the case when the optimization has convergedawstart withv;, as
defined by (7.87), and use (7.89) to re-write this as

*
Oz’-(: l—aiZii

2 m?\f )

wherea; = a}°V = «; is the value reached at convergence. We can re-write this as
al*(mf + E”) =1

which is easily re-written as (9.67).

For 3, we start from (9.68), which we re-write as

1 - emal? |, X
B* N BN

As in the a-case,* = g"*% = ( is the value reached at convergence. We can

re-write this as
1
g~ (N_ > ’Yi) = [t — @my|?,

which can easily be re-written as (7.88).

This follows from the fact that the Kullback-Leibler divergen&d.(q||p), is at its
minimum, 0, whenry andp are identical. This means that

0

—KL =0

59 L(dllp) =0,

sincep(Z|X, 8) depends o®. Therefore, if we compute the gradient of both sides
of (9.70) w.r.t.8, the contribution from the second term on the r.h.s. willthend

so the gradient of the first term must equal that of the I.h.s.



72 Solutions 9.26-10.1

9.26 From (9.18) we get

N}gld _ Z 'YOld(an)- (137)
We getN; " by recomputing the responsibilities(z,, ), for a specific data point,
X, Yielding
NP = 37 k) + 9" (k) (138)
n#m

Combining this with (137), we get (9.79).
Similarly, from (9.17) we have

1
Nzld = Nrold Z ’YOId (an)Xn
k n

and recomputing the responsibilitieg 2, ), we get

1
Hzew = N]?ew ( Z ’YOld (an)xn + ,ynew <ka)xm>

n#m
1
— A (Nlcc)ld/'lfild _ ,Yold (ka:)xm + ,Ynew<zmk)xm)
k
1 new new o o
= new <(Nk — 7" (2mk) + 77 (2mk)) B2
k

_701d (ka)xm + 'YHeW (ka )Xm>

new ( __ ~old 2
= (7 ( mkaznewv ( mk)) (Xm — B2),
k

where we have used (9.79).

Chapter 10 Approximate Inference

10.1 Starting from (10.3), we use the product rule together with (10.4¢to g

L(q) = /Q(Z)ln{pé)((é)z)} dz

_ X2 p(X)
= /q(Z)l { . (Z) }dZ
_ NELIEIN
- /q(z)<1 { 7 }+1 p(X)) 1z
= —KL(q|[|p)+np(X).
Rearranging this, we immediately get (10.2).
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10.3 Starting from (10.16) and optimizing w.rd; (Z;), we get

M
KL(p|q) = —/p<Z> [Zlnq¢<zi>

= —/ <P (Z)Ing; (Z;)+p(Z) Zln i (Zl)) dZ + const.

i#j

dZ + const.

= - /p(z)ln% (Z;) dZ + const.
- —/lnqj (Z;) [/P(Z)H dZi] dZ; + const.

i#j

= _/Fj(zy‘)ln% (Z;) dZ; + const.,
where terms independent gf (Z,) have been absorbed into the constant term and
we have defined
£(@) = [r@]] iz
i

We use a Lagrange multiplier to ensure thatZ ;) integrates to one, yielding

—/Fj<zj)1nqj (Z;) dZ; + A (/qj (Z;) dZ; — 1).

Using the results from Appendix D, we then take the functionalvdévie of this
w.r.t. ¢; and set this to zero, to obtain

From this, we see that
Agj (Z;) = Fy(Z;).

Integrating both sides ové#;, we see that, sincg (Z;) must intgrate to one,

A—/Fj(zj)dzj—/ [/p(Z)H dZi] dz; =1,

i£]
and thus

0(2) = £2) = [0@]] az.

i#j
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Solutions 10.5-10.10

10.5 We assume that(Z) = ¢(z)q(@) and so we can optimize w.r¢(z) andq(8) inde-

10.10

pendently.

For ¢(z), this is equivalent to minimizing the Kullback-Leibler digence, (10.4),
which here becomes

p(z,0|X)
L(q| p) dz deé.
9= [[a@ummere
For the particular chosen form @), this is equivalent to

KL(q|lp) = —/q(Z)andz+con5t.

_ ” np(z\Go,X)p(Oo\X) 7 1 cons
= /q( )1 7 (2) dz + t.

= —/q(z)lnp(z(90’X)dz+const.7
q(2)

where const accumulates all terms independentof. This KL divergence is min-
imized whery(z) = p(z|60y, X), which corresponds exactly to the E-step of the EM
algorithm.

To determine; (@), we consider
p(X,0,2)
(7] z)In —————dzdf
[o@ [ewmiGl
= /q(@)Eq(z) np(X,0,z)] dO — /q(@) Ing (@) dO + const.
where the last term summarizes terms independent(6§. Sinceq(@) is con-
strained to be a point density, the contribution from the entrepy {which formally

diverges) will be constant and independen@gf Thus, the optimization problem is
reduced to maximizing expected complete log posterior digidh

Eqg(z) [Inp (X, 60,2)],

w.r.t. 8¢, which is equivalent to the M-step of the EM algorithm.

NOTE: In the 1% printing of PRML, there are errors that affect this exercigg,
used in (10.34) and (10.35) should reallybewhereas’,,, used in (10.36) is given
in Solution 10.11 below.

This completely analogous to Solution 10.1. Starting from &)).®e can use the
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product rule to get,

L= Y > qZm)gm)in {m}

Rearranging this, we obtain (10.34).

10.11 NOTE: Consult note preceding Solution 10.10 for some relevant cooret
We start by rewriting the lower bound as follows

= m)q(m) In P(Z,X,m)
£o= 22 a@mam)] {q<Z|m>q<m>}
= > > a(Zm)g(m) {ln p(Z, X|m) + Inp(m) — Ing(Z|m) — Ing(m)}

Y gm) <lnp(m) ~Ing(m)

m

+ 3 @) (1p(2.Xe) ~ ma(zim)

V4

= 3 q(m) {In (p(m) exp{Lon}) — Ing(m)}, (139)

m

where _—
Loy = ;q(Z|m) IH{W} .

We recognize (139) as the negative KL divergence betwéer) and the (not nec-
essarily normalized) distributiop(m) exp{L,, }. This will be maximized when the
KL divergence is minimized, which will be the case when

q(m) o< p(m) exp{Lon}.
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10.13 In order to derive the optimal solution fof ., A ) we start with the result (10.54)
and keep only those term which dependwgnor A, to give

In¢*(py, Ak) = N (g, Jmo, (BoAx) ™) + In W(AL[Wo, 1)

N
+ ZE[an] In N (x| g, A ') + const.

n=1
1 1 _
= _%(H‘k —myg) " Ag(py, —mo) + 5 InfAg| - §Tr (AW )
N
vo—D—1 1
+% InfAr] =5 D Elenr] (60 — 1) " Ak (60 — p1i)
n=1

N
1
+§ (Z:l ]E[znk]> In |Ag| + const. (140)

Using the product rule of probability, we can expresg* (i, Aj) asin ¢* (p,,|Ax)
+ Ing*(Ayg). Let us first of all identify the distribution fog,. To do this we need
only consider terms on the right hand side of (140) which depend,0 giving

Ing*(per,|Ar)

N N
1
= *5“5 Bo + ZE[an] App + pi Ay | Bomo + ZE[Z”k]X"]
n=1 n=1
“+const.

1
= —iﬂ;f (B0 + Ni| Appay, + gy Ay [Bomg + NiXy| + const.

where we have made use of (10.51) and (10.52). Thus we se&tfidi, |Ax)
depends quadratically qm, and hence*(u,,|Ax) is a Gaussian distribution. Com-
pleting the square in the usual way allows us to determine tteraed precision of
this Gaussian, giving

0" (| Ar) = N (py,|my, GrAyg) (141)

where

Br = Po+ Ni
1
B

Next we determine the form @f (A;) by making use of the relation
Ing*(Ax) = Inq* (g, Ax) — Ing* (g |A).

On the right hand side of this relation we substitutelfog* (u,,, Ax) using (140),
and we substitute fdn ¢* (p;,| A ) using the result (141). Keeping only those terms

my (ﬁomo + Nkik) .
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which depend o\ ; we obtain

1 1 _
Ing*(Ag) = —@(uk —mg) A (py, — mg) + B In |Ag| — §Tr (AW )

2
N
vo—D—1 1
+ % In|Ax| - 3 ;E[znkkxn = ) A (X — )
1 [ B
k
t3 (gE[znkO In [Ag|+ ?(Mk —my) " Ay (py, — my)

1
-5 In |Aj| + const.

(I/k — D — 1) 1 _
= In|Ag| — §Tr (Aka 1) + const.
Here we have defined
N
Wit = Wi+ Go(py, —mo)(py, —mg)" + ZE[an](Xn — ) (% — )
n=1
— B (g, — M) (py, — mk>T
_ N _
= Wy'+ NSk + ﬁfl ]Ii[k (X, —myg) (X, —mg)" (142)
N
vV = Uy—+ Z]E[an]
n=1
= Vp+ Nk:v
where we have made use of the result
N N
D Elenilxaxn = > Elzng](xn — %) (X — Ke) "+ NiRiX,
n=1 n=1
= NS + Nkikig (143)

and we have made use of (10.53). Note that the terms invojvjngave cancelled
out in (142) as we expect singé(Ay) is independent ofi,,.

Thus we see that*(Ay) is a Wishart distribution of the form
" (Ax) = WAL Wi, v).

10.16 To derive (10.71) we make use of (10.38) to give

- - Bl {ElIn |A]] — E[(x0 — 1) Ax(x0 — )] — DIn(2)}
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We now use€E|[z,,x| = r, together with (10.64) and the definition af, given by
(10.65) to give

| NK N
E[lnp(D|z, u, A)] = 3 ZZrnk{lnAk

n=1 k=1
~DB " = v — M) "Wi(x, — my) — DIn(2m)}.

Now we use the definitions (10.51) to (10.53) together with tisellt€143) to give
(10.72).

We can derive (10.72) simply by taking the logarithnmp¢£| ) given by (10.37)

Ellnp(zlm)] = > Y Elzni]E[lnmy]

n=1 k=1

and then making use @[z,;] = r.x together with the definition of; given by
(10.65).

10.20 Consider first the posterior distribution over the precisionahponent: given by
q"(Ak) = WAL Wi, v).

From (10.63) we see that for largé we havev, — Ny, and similarly from (10.62)

we see thaW,, — N, 'S, . Thus the mean of the distribution ovAy;, given by
E[A;] = vy W, — S,;l which is the maximum likelihood value (this assumes that
the quantities,,;, reduce to the corresponding EM values, which is indeed the case
as we shall show shortly). In order to show that this posteriorsis sharply peaked,

we consider the differential entropyf{A ] given by (B.82), and show that, a5, —

oo, H[Ax] — 0, corresponding to the density collapsing to a spike. Firstidens

the normalizing constan® (W, v;) given by (B.79). SincéV, — N, 'S, " and

v — N,

D
N,
—In B(Wp, ) — —7’“ (DIn Ny +1In[Sk| — DIn2)+) "InT <

=1

N, +1—1
5 .

We then make use of Stirling’s approximation (1.146) to obtain

Ne+1-d\ N
InT <’”’21> ~ SE Ny —n2 - 1)

which leads to the approximate limit

Ny D

N,
—InB(Wg, ) — (lnNk—ln2—lnNk+ln2+1)—7k1n|Sk|

N,
~— (n|Sy[+ D). (144)
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Next, we use (10.241) and (B.81) in combination Wiy, — N, 'S, ' andy; —
N, to obtain the limit

N,
Efn|A] — D1n7’“ +DIn2— DIn Ny, — In[Sy]
= —1H|Sk‘,

where we approximated the argument to the digamma functiaW;p{2. Substitut-
ing this and (144) into (B.82), we get

H[A] — 0

whenN, — oo.

Next consider the posterior distribution over the mparof thek*™® component given
by
q* (e Ak) = N (. my, BeAr).

From (10.61) we see that for largé the meanm,, of this distribution reduces to
X Which is the corresponding maximum likelihood value. From (QPve see that

0B — N and Thus the precisiofi, Ay — Gy Wy — Nks,gl which is large for
large N and hence this distribution is sharply peaked around its mean.

Now consider the posterior distributiof(7) given by (10.57). For large&v we
havea, — N and so from (B.17) and (B.19) we see that the posterior distribution

becomes sharply peaked around its m&ém,] = «r/a — N /N which is the
maximum likelihood solution.

For the distribution;*(z) we consider the responsibilities given by (10.67). Using
(10.65) and (10.66), together with the asymptotic result for igardma function,
we again obtain the maximum likelihood expression for the resindities for large
N.

Finally, for the predictive distribution we first perform the inteiipa overs, as in
the solution to Exercise 10.19, to give

K
p&ID) = Y0 % [ [N Rl Audaliag, M) dpg dA
k=1

The integrations oveg,;, and A, are then trivial for largeV since these are sharply
peaked and hence approximate delta functions. We thereforenobtai

N
PRID) = Y | TN (X%, W)
k=1

which is a mixture of Gaussians, with mixing coefficients gy Ny /N .

When we are treatingr as a parameter, there is neither a prior, nor a variational
posterior distribution, overr. Therefore, the only term remaining from the lower



80 Solution 10.24

bound, (10.70), that involves is the second term, (10.72). Note however, that
(10.72) involves thexpectations of In 7, underg(=), whereas here, we operate
directly with 7, yielding

N K
Eq(z) [Inp(Z|m)] ZZT”’“ In 7.
n=1 k=1

Adding a Langrange term, as in (9.20), taking the derivative.wt.tind setting the

result to zero we get

M a—o, (145)

Tk
where we have used (10.51). By re-arranging this to

Nk = *)\Wk

and summing both sides ovkrwe see that-\ = Zk N, = N, which we can use
to eliminateX from (145) to get (10.83).

10.24 The singularities that may arise in maximum likelihood estioraare caused by a
mixture componentk, collapsing on a data poink,,, i.e.,rx, = 1, p;, = x, and
However, the prior distributiom(u, A) defined in (10.40) will prevent this from
happening, also in the case of MAP estimation. Considerribayzt of the expected
complete log-likelihood and(u, A) as a function ofA:

q(z) [ <X|Z,M,A)p(M,A)}
N
_ % D i (I | Ak] = (= ) Ak (0 — 111)
+

| Bo(pey, — mo) " Ay (g, — my)
+(wo—D —1)In|Ag| —Tr [Wo_lAk] + const.

where we have used (10.38), (10.40) and (10.50), together withetfiitebns for
the Gaussian and Wishart distributions; the last term sumnsatiézes independent
of Ag. Using (10.51)—(10.53), we can rewrite this as

(vo+ Np — D) In |Ag| — Tr [(Wg + Bo(py, — mo)(py, — mo)" + NiSp)Ay]

where we have dropped the constant term. Using (C.24) and (C.28gm@mpute
the derivative of this w.r.tA; and setting the result equal to zero, we find the MAP
estimate forA, to be
_ 1 _
A= m(wo b Bo(py, — mo)(py, — mg) " + NiSp).
From this we see thd\;'| can never become 0, because of the presend¥ pf
(which we must chose to be positive definite) in the expressiothe r.h.s.
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NOTE: In the 1* printing of PRML, the use of\ to denote the varitional param-
eter leads to inconsistencies w.r.t. exisiting literature.rdmedy this\ should be
replaced by, from the beginning of Section 10.5 up to and including the lest |
before equation (10.141). For further details, please consuRRML Errata.

Standard rules of differentiation give

dln(z) 1

dr  x
d’In(x) 1
dz?2 a?

Since its second derivative is negative for all valuerpin(z) is concave fol) <
xr < 00.

From (10.133) we have

g(n) = min{nz — f(z)}
= mrln {nz —In(x)}.

We can minimize this w.r.tz by setting the corresponding derivative to zero and
solving forz:

d 1 1

79 = T] —_— = 0 — €r = —.

dx x i

Substituting this in (10.133), we see that

gn)=1-In <717> :

If we substitute this into (10.132), we get

(&) = min {n:c— 1+ 1o (;) }

Again, we can minimize this w.r.y by setting the corresponding derivative to zero

and solving fom:

d

dn 7 x
and substituting this into (10.132), we find that

f@) = te-14m <1> — In(z).

x 1/z

We can see this from the lower bound (10.154), which is simply aaitine prior
and indepedent contributions from the data points, all of warghquadratic irv. A
new data point would simply add another term to this sum andameregard terms
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Solution 10.37

10.37

from the previously arrived data points and the original prior ctiNely as a revised
prior, which should be combined with the contributions from tee/ata point.

The corresponding sufficient statistics, (10.157) and (10.1¢&8),be rewritten di-
rectly in the corresponding sequential form,

N
my =Sy (S_lmo + Z (tn — 1/2)¢n>

= Sy |[S; mo+zt —1/2)¢n+(tN_1/2)¢N>

(72
o (s

(S m0+Zt —1/2)¢ ) (N—1/2)¢N>

= Sy (SyLimy-1+ (ty - 1/2)¢N)
and

Sy

N
So' +2) A& b
n=1

N—1
So' 2 A&t + 2MEn) PN DN

n=1
Sy +2MEN) PN

The update formula for the variational parameters, (10.163), rerhaisame, but
each parameter is updated only once, although this upddteenplart of an iterative
scheme, alternating between updating: andS y with £ kept fixed, and updating
&nv with mpy andSyy kept fixed. Note that updatingy will not affectmy_; and
Sny_1. Note also that this updating policy differs from that of the balarning
scheme, where all variational parameters are updated usingtistatiased on all
data points.

Here we use the general expectation-propagation equation®4)9(20.207). The
initial ¢(@) takes the form

G (0) = fo(0) [ | £:(0)
i#£0
where}o(e) = fo(@). Thus
°0) < [[ £:(0)
i#£0
andq¢™*¥(0) is determined by matching moments (sufficient statisticsirstja

7\°(0) fo(6) = ginic ().
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Solution 11.1 83

Since by definition this belongs to the same exponentiallfaform as¢™*v () it

follows that
qnew<9) = Qinit(e) = q\o(e)fo(a)-
Thus Zo " (0)
~ q w
f0(0> = O(J\OT = ZOfO(o)
where

Z= [d©1n0)80 = [ 0120~ 1.

Sampling Methods

111

Since the samples are independent, for the mean, we have

s[7]= 13 [ 10w = 15 Rl =0

Using this together with (1.38) and (1.39), for the variance, weha

wlf] - s[5 [)]
- E[F?|-EUT.

B[] = { TR e

E[f?] otherwise,
= E[f*] + mrvar[f],

where we again exploited the fact that the samples are independ
Hence

var[J| = E [i Zf(z(m))iZf(z(k))] —~ E[f]?
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11.5 SinceE [z] = Ely] = L]
yl=E[p+Lz]=p

Similarly, sinceE [zz"] =1,

covlyl] = Elyy']| —E[y]E[y"]
= E [(u +Laz) (p + LZ)T] —
LLT
.

11.6 The probability of acceptance follows directly from the mechanised to accept or
reject the sample. The probability of a sampleeing accepted equals the probability
of a sample., drawn uniformly from the intervaD, kq(z)], being less than or equal
to a valuep(z) < kq(z), and is given by is given by

p(z) 1 n
p(2)
acceptance|z) = du = .
placaptancls) = [ s =
Therefore, the probability of drawing a sampiejs
q(z)p(acceptance|z) = ¢(z) p(z) = @ (146)
kq(z) k

Integrating both sides w.rz, we see thakp(acceptance) = Z,, where

Zy = /}5(z) dz.
Combining this with (146) and (11.13), we obtain

q(z)p(acceptance|z) _ iﬁ(z) — p(2)

p(acceptance) Zy,

as required.

11.11 This follows from the fact that in Gibbs sampling, we sample glgivariable,zy,
at the time, while all other variable$z; };.1, remain unchanged. Thu§;.}; ., =

{zi }izr @and we get

P (2)T(2,2") = p*(en, {zitin)p" (21 {zi }in)
= p(zkl{zitizr)p"({zitizn)p" (2 {2 izn)
p*(zl{~i }#k)p*({z Vi)D" (21 {71 Fize)

P (2l {2 iz ) 0™ (2, {21 }inen)

p’(z

*

NT(2,2),

where we have used the product rule together ®ith, z') = p* (2 [{z: }izx)-
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Chapter 12
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Using (11.56), we can differentiate (11.57), yielding
OH 0K
87‘1‘ a 07“1‘ i
and thus (11.53) and (11.58) are equivalent.
Similarly, differentiating (11.57) w.r.tz; we get

OH OF
821- - 62/

and from this, it is immediately clear that (11.55) and (11.59)apgvalent.

NOTE: In the 1% printing of PRML, there are sign errors in equations (11.68) and
(11.69). In both cases, the sign of the argument to the exp@hésmining the second
argument to thenin-function should be changed.

First we note that, iff (R) = H(R'), then the detailed balance clearly holds, since
in this case, (11.68) and (11.69) are identical.

Otherwise, we either havE (R) > H(R') or H(R) < H(R'). We consider the
former case, for which (11.68) becomes

1 1
Z7H exp(—H(R))5V§,

since themin-function will return1. (11.69) in this case becomes

71,{ exp(—H(R/))(SV% exp(H(R) — H(R)) = % exp(—H(R))éV%.

In the same way it can be shown that both (11.68) and (11.69) equal

1 1

whenH(R) < H(R').

Continuous Latent Variables

121

Suppose that the result holds for projection spaces of dimeaigip M. The M +

1 dimensional principal subspace will be defined by Meprincipal eigenvectors
uy, ..., uy together with an additional direction vectey; . ; whose value we wish

to determine. We must constraity,; such that it cannot be linearly related to
uy, ..., uys (otherwise it will lie in theA-dimensional projection space instead of
defining anM + 1 independent direction). This can easily be achieved by re@uirin
thatu,, 1 be orthogonal tau,, . . ., u,, and these constraints can be enforced using
Lagrange multipliersy,, ..., 7.
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Solutions 12.4-12.6

12.4

12.6

Following the argument given in section 12.1.1 fgrwe see that the variance in the
directionuy,, 1 is given byuLHSuMH. We now maximize this using a Lagrange
multiplier A;.1 to enforce the normalization constraim}4+1uM+1 = 1. Thus we
seek a maximum of the function

M

T T T
uM+1SuM+1 + At (1 —uM+1uM+1) + E Ny ;.
=1

with respect taiy, ;. The stationary points occur when

M
0=2Sunry1 — 2 pm41up41 + Zniui-
i=1

Left multiplying with ujT, and using the orthogonality constraints, we seerthat 0
forj=1,..., M. We therefore obtain

Suy = A1 upm

and souy,; must be an eigenvector & with eigenvalueu,;.,. The variance
in the directionuy, . is given byu]TWHSuMH = Aup+1 and so is maximized by
choosingu,, . to be the eigenvector having the largest eigenvalue amahgse

not previously selected. Thus the result holds also for prajecpaces of dimen-
sionality M + 1, which completes the inductive step. Since we have alreaolyrsh
this result explicitly forAM = 1 if follows that the result must hold for any/ < D.

Using the results of Section 8.1.4, the marginal distribufarthis modified proba-
bilistic PCA model can be written

p(x) = N(x|Wm + p,0’ I+ WIS™'W).

If we now define new parameters

W = 32w

po= Wm+p
then we obtain a marginal distribution having the form
p(x) = N(x|fi, 0T+ WTW).

Thus any Gaussian form for the latent distribution therefore gisesta a predictive
distribution having the same functional form, and so for convereeve choose the
simplest form, namely one with zero mean and unit covariance.

Omitting the parameterd¥v, p ando, leaving only the stochastic variablesand
x, the graphical model for probabilistic PCA is identical witke tthe ‘naive Bayes’
model shown in Figure 8.24 in Section 8.2.2. Hence these twaetsexhibit the
same independence structure.
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12.8 NOTE: In the 15! printing of PRML, equation (12.42) contains a mistake; the co-
variance on the r.h.s. should b&M .

By matching (12.31) with (2.113) and (12.32) with (2.114), we hiwen (2.116)
and (2.117) that

p(zlx) = N (z|I+0*W'W)"'"WoI(x — p), T+ 0 >W W)™ )
= N(zZM'W"(x - p), M),

where we have also used (12.41).

12.11 Takingo? — 0in (12.41) and substituting into (12.48) we obtain the postariean
for probabilistic PCA in the form

(WlaLWML)ilwlr\F/[L(X - X).

Now substitute foWy;, using (12.45) in which we tak® = I for compatibility
with conventional PCA. Using the orthogonality propetff, U,, = I and setting
0% = 0, this reduces to

L~'/?U%,(x — X)

which is the orthogonal projection is given by the conventi®?@A result (12.24).
12.15 NOTE: In PRML, a termM /21n(27) is missing from the summand on the r.h.s. of

(12.53). However, this is only stated here for completenessadltlly does not
affect this solution.

Using standard derivatives together with the rules for matrifeddhtiation from
Appendix C, we can compute the derivatives of (12.53) viWtando?:

N
iE[lnp (X, Z|p, W,0%)] = Z {012()(" —X)E[z,]" — ;WE[ZHZ};]}
n=1

OW
and
9 Yo
2 o T T
553 Elnp (X, Z|p, W,0?%)] = Zl {M]E[znzn]w W
1 1 S D
JrT‘4||Xn - x| - ;E[Zn] Wi (x, —X) — 292

Setting these equal to zero and re-arranging we obtain (12.56) arkrjlrespec-
tively.
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Solutions 12.17-12.25

12.17

12.19

12.23

NOTE: In PRML, there are errors in equation (12.58) and the preceding text.

(12.58),X should beX™ and in the preceding text we defifeto be a matrix of size
M x N whosen'! columnis given by the vectoE|z,,].

Setting the derivative of with respect tqu to zero gives

OZ—Z(xn—u—Wzn)

n=1

from which we obtain

Wz, =x — Wz.

-

1 N
Sy
Back-substituting inta/ we obtain

N
Z n—X—Wi(z, —7)|

We now defineX to be a matrix of sizéV x D whosen'™ row is given by the vector
x,, — X and similarly we definé to be a matrix of sizéD x M whosen'™ row is
given by the vectot,, — z. We can then write/ in the form

J=Tr{X-ZW")(X-ZW")"}.

Differentiating with respect t& keepingW fixed gives rise to the PCA E-step
(12.58). Similarly setting the derivative of with respect toW to zero with{z,, }
fixed gives rise to the PCA M-step (12.59).

To see this we define a rotated latent space vacteiRz whereR is anM x M or-

thogonal matrix, and similarly defining a modified factor Ioagzl'matrixVNV = WR.
Then we note that the latent space distributign) depends only oz'z = z'z,
where we have useR™R = I. Similarly, the conditional distribution of the ob-

served variable)(x|z) depends only oWz = Wz. Thus the joint distribution
takes the same form for any choiceRf This is reflected in the predictive distri-
butionp(x) which depends oW only through the quantitftvw?™ = WW™ and
hence is also invariant to different choiceshof

The solution is given in figure 6. The model in which all pararretre shared (left)
is not particularly useful, since all mixture components wiléadentical param-
eters and the resulting density model will not be any differerdrte offered by a
single PPCA model. Different models would have arisen if oniys®f the param-
eters, e.g. the meam, would have been shared.



Figure 6

12.25

Solution 12.25 89

The left plot shows the ™ (— ) ™
graphical model correspond- Z

ing to the general mixture of

probabilistic PCA. The right s ]
plot shows the correspond-

ing model were the param- |~ W, w
eter of all probabilist PCA
models (u, W and o°) are 5

— M X n
shared across components.
In both plots, s denotes
the K-nomial latent variable ™~ U;% o?
that selects mixture compo- K

nents; it is governed by the
parameter, .

Following the discussion of section 12.2, the log likeliddanction for this model
can be written as

ND N
L, W, ®) = ——— 1n(27r) - n [WWT + @

—*Z{ )T WWT 4+ &)~ (x, — )}

where we have used (12.43).
If we consider the log likelihood function for the transformed dsgwe obtain

ND N
La(p, W,®) = ———1n(27) — — 5 I IWWT 4 &|

”Z{ (Ax, — )" (WWT + &) (Ax, — )} .

Solving for the maximum likelihood estimator farin the usual way we obtain

N
1 -
Ha = E Ax, = AX = Apyy,.

n=1

Back-substituting into the log likelihood function, and wugithe definition of the
sample covariance matrix (12.3), we obtain

ND N
La(p, W, ®) = - In(27) — 5 In [(WWT' + &|
1 N
T — T
—§§ Tr{(WW"+ &) 'ASA™}.
n=1

We can cast the final term into the same form as the correspondingnénenorigi-
nal log likelihood function if we first define

®,=AP AT, Wa = AW.
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12.28

12.29

With these definitions the log likelihood function for the triorened data set takes
the form

ND N
La(na, Wa, ®a) = 5 In(27) — 0 In[WAW7} + @,

N
1 —
b Z {0 = 1a) " (WaAWR + @a) 7 (xn — pa)} — NIn|Al.
n=1

This takes the same form as the original log likelihood functiparafrom an addi-
tive constant- In |A|. Thus the maximum likelihood solution in the new variables
for the transformed data set will be identical to that in the oldaldes.

We now ask whether specific constraints®mill be preserved by this re-scaling. In
the case of probabilistic PCA the noise covariafices proportional to the unit ma-
trix and takes the formI. For this constraint to be preserved we reqirA™ = I

so thatA is an orthogonal matrix. This corresponds to a rotation of the ¢oatel
system. For factor analys@® is a diagonal matrix, and this property will be pre-
served ifA is also diagonal since the product of diagonal matrices iswatjagonal.
This corresponds to an independent re-scaling of the coordiystiens. Note that in
general probabilistic PCA is not invariant under componenewgsscaling and fac-
tor analysis is not invariant under rotation. These resultsllaistrated in Figure 7.

If we assume that the function= f(z) is strictly monotonic, which is necessary to
exclude the possibility for spikes of infinite densityjify), we are guaranteed that
the inverse function = f~!(y) exists. We can then use (1.27) to write

df—t
dy |

p(y) =a(f~' () ‘ (147)

Since the only restriction ofiis that it is monotonic, it can distribute the probability
mass over arbitrarily overy. This is illustrated in Figure 1 on page 8, as a part of
Solution 1.4. From (147) we see directly that

NOTE: In the 1%* printing of PRML, this exercise contains two mistakes. In the
second half of the exercise, we require tiats symmetrically distributed arourtd
not just that-1 < y; < 1. Moreover,y, = y? (Noty, = y3).
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Figure 7 Factor analysis is covariant under a componentwise re-scaling of the data variables (top plots), while
PCA and probabilistic PCA are covariant under rotations of the data space coordinates (lower plots).
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Solutions 13.1-13.4

If z; andz, are independent, then

cov|z1, zo] //(21 — z1)(22 — 2Z2)p(21, 22) dz1 d2o
[ =200 - zpeaptea) ds d

_ / (21 — 2)p(z1) 2 / (22 — 22)p(2) d2s
— 0,

where

% =Elx] = / zip(z1) da.

Fory, we have
p(y2lyr) = 6(y2 — i),

i.e., a spike of probability mass onewgt, which is clearly dependent @n. With g;
defined analogously te; above, we get

covlyi,yo] = //(yl — 1) (Y2 — y2)p(y1, y2) Ay dys
= // y1(y2 — 92)p(y2|y1)p(y1) dys dys

= /(yf —y192)p(y1) dys

where we have used the fact that all odd momentg,ofvill be zero, since it is
symmetric around zero.

Chapter 13 Sequential Data
13.1 Since the arrows on the path from, to x,,, with m < n — 1, will meet head-to-tail
at z,,_1, which is in the conditioning set, all such paths are blocked:h_; and
hence (13.3) holds.
The same argument applies in the case depicted in Figurevtidnahe modification
thatm < n — 2 and that paths are blocked by_; or x,,_».
13.4 The learning ofw would follow the scheme for maximum learning described in

Section 13.2.1, witkw replacinge. As discussed towards the end of Section 13.2.1,
the precise update formulae would depend on the form of regressidel msed and
how it is being used.
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The most obvious situation where this would occur is in a HMMhikr to that
depicted in Figure 13.18, where the emmission densities ngtdepends on the
latent variablez, but also on some input variable The regression model could
then be used to mapto x, depending on the state of the latent variable

Note that when a nonlinear regression model, such as a newainkets used, the
M-step forw may not have closed form.

Only the final term ofQ (@, 6°'® given by (13.17) depends on the parameters of the
emission model. For the multinomial variablewhoseD components are all zero
except for a single entry of 1,

N K N K b
ZZ zZnk) Inp(Xn|dy) = ZZW(an)ZﬂUm In foes.-
i=1

n=1 k=1 n=1 k=1

Now when we maximize with respect jg,; we have to take account of the con-
straints that, for each value éfthe components gf,; must sum to one. We there-
fore introduce Lagrange multipliefs\; } and maximize the modified function given

by
N K
) SREH zxmmumzxk <Zum—1>
=1 k=1

Setting the derivative with respect tq; to zero we obtain

N

‘:L.nl
0= ZW(an)Mm + A

n=1

Multiplying through byu,;, summing over, and making use of the constraint on
(i together with the resuly, z,,; = 1 we have

N

A = — Z ¥(Znk)-

n=1

Finally, back-substituting fok; and solving foru; we again obtain (13.23).

Similarly, for the case of a multivariate Bernoulli observed Valéx whoseD com-
ponents independently take the value 0 or 1, using the star@ression for the
multivariate Bernoulli distribution we have

Z Z ¥(znk) In p(xn|Py)

n=1 k=1
N K
= Z Z’y Znk Z {J;nz In i + (1 - xnz) ln(l - :ukz)} .

n=1 k=1
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Solutions 13.9-13.13

13.9

13.13

Maximizing with respect tq.; we obtain

N
> (znk)ani
_ n=1

HPki = —x
Z Y(znk)
n=1

which is equivalent to (13.23).
We can verify all these independence properties using d-sepalatioefering to
Figure 13.5.

(13.24) follows from the fact that arrows on paths from ankgf. . . , x,, to any of
Xni1,-- -, XN Meet head-to-tail or tail-to-tail at,, which is in the conditioning set.

(13.25) follows from the fact that arrows on paths from ankef. .., x, 1 tox,
meet head-to-tail at,,, which is in the conditioning set.

(13.26) follows from the fact that arrows on paths from ankef. .., x,_; to z,
meet head-to-tail or tail-to-tail at, 1, which is in the conditioning set.

(13.27) follows from the fact that arrows on paths framto any ofx,, 1, ..., Xy
meet head-to-tail at,,, ;, which is in the conditioning set.
(13.28) follows from the fact that arrows on paths fram, ; to any ofx,,2,..., Xy

to meet tail-to-tail ak,,. 1, which is in the conditioning set.

(13.29) follows from (13.24) and the fact that arrows on paths from &ny; 0 . .,
x,_1 10 x,, meet head-to-tail or tail-to-tail at, ;, which is in the conditioning set.

(13.30) follows from the fact that arrows on paths from ankgf. .., xy to xx11
meet head-to-tail atx 1, which is in the conditioning set.

(13.31) follows from the fact that arrows on paths from anxof. .., xy t0 zy 11
meet head-to-tail or tail-to-tail aty, which is in the conditioning set.

Using (8.64), we can rewrite (13.50) as
a(zn) = Y Fulzn, {21, .., 20 1}), (148)

whereF,, (-) is the product of all factors connected#p via f,,, including f,, itself
(see Figure 13.15), so that

Fo(2n, {21, 20 1}) = h(z) [ | fi(zi,2i0), (149)

1=2

where we have introducddz,) and f;(z;,z;,—,) from (13.45) and (13.46), respec-
tively. Using the corresponding r.h.s. definitions and reptatepplying the product
rule, we can rewrite (149) as

Fn(zna{zla- . 7zn—1}) :p(xla sy Xy 2y ,Zn).
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Applying the sum rule, summing ovexr, ..., z,_; as on the r.h.s. of (148), we
obtain (13.34).

13.17 The emission probabilities over observed variabigsare absorbed into the corre-
sponding factorsf,,, analogously to the way in which Figure 13.14 was transformed
into Figure 13.15. The factors then take the form

h(z1) = p(zi|lw)p(xi|z1, 1) (150)
fn(Zn—1,2n) = p(znlznflaun)p(xn|zmun)~ (151)
13.19 Since the joint distribution over all variables, latent andeved, is Gaussian, we
can maximize w.r.t. any chosen set of variables. In particwlar,can maximize
w.r.t. all the latent variables jointly or maximize each oé timarginal distributions
separately. However, from (2.98), we see that the resulting meillitevthe same in

both cases and since the mean and the mode coincide for thei@gusaximizing
w.r.t. to latent variables jointly and individually will yie the same result.

13.20 Making the following substitions from the |.h.s. of (13.87),
X=2,1 =, , A=V,
y=2z, A=A b=0 L '=T,
in (2.113) and (2.114), (2.115) becomes
P(2n) = N (20| Ap,_y, T + AV, AT),
as desired.
13.22 Using (13.76), (13.77) and (13.84), we can write (13.93), for the gasel, as
AN (zi1|py, Vi) = N(z1|pg, Vo) N (x1|Cz, X).

The r.h.s. define the joint probability distribution ower andz; in terms of a con-
ditional distribution overx; givenz; and a distribution ovez,, corresponding to
(2.114) and (2.113), respectively. What we need to do is to rewnigerito a con-
ditional distribution overz, givenx; and a distribution ovek,, corresponding to
(2.116) and (2.115), respectively.

If we make the substitutions
x=z p=p, A=V,

y=x, A=C b=0 L '=13
in (2.113) and (2.114), (2.115) directly gives us the r.h.s. of9@g.

13.24 This extension can be embedded in the existing framework bytmgpe following
modifications:

I _ Mo ! VOO /I r o
o] vl 8] e
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A’:[‘g‘ ﬂ c=[C c].

This will ensure that the constant termsandc are included in the corresponding
Gaussian means far, andx,, forn =1,..., N.

Note that the resulting covariances fay, V,,, will be singular, as will the corre-

sponding prior covariance®,,_;. This will, however, only be a problem where
these matrices need to be inverted, such as in (13.102). Thesseroast be handled
separately, using the ‘inversion’ formula

_ P' 0
/ 1 _ n—1
(Pnfl) - |: 0 0 :| )

nullifying the contribution from the (non-existent) variance ¢ #lement irg,, that
accounts for the constant termsndc.

13.27 NOTE: In the 1%* printing of PRML, this exercise should have made explicit the
assumption tha = Iin (13.86).

From (13.86), it is easily seen thatdf goes ta0, the posterior ovez,, will become
completely determined by,,, since the first factor on the r.h.s. of (13.86), and hence
also the I.h.s., will collapse to a spikesat = Cz,,.

13.32 NOTE: In PRML, V, should be replaced R, in the text of the exercise; see also
the PRML errata.

We can write the expected complete log-likelihood, given by ¢guation after
(13.109), as a function gf, andP,, as follows:

1
Q(6,6°%) = — 5 In [Py
1 _ _ _ _
_§Ez\6°ld [ZlTPo ‘21 — 2 Py g — po Pyl zn + g Py 1#0} (152)

1 _ _
= 5 (PG = 70|25 B foaad 2~ ol + o] ). 159

where we have used (C.13) and omitted terms independgnf ahdP,.
From (152), we can calculate the derivative wgf.using (C.19), to get

) B _
99 _ opotp, — 2P 'Elzy].

Oty
Setting this to zero and rearranging, we immediately obtain (19.1

Using (153), (C.24) and (C.28), we can evaluate the derivatives Rij",
oQ

1
oP;t 2

(Po — Elzaz}] — Ela)uf — moElad] + momd) -

Setting this to zero, rearrangning and making use of (13.110), i@ g§4.11).
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Chapter 14 Combining Models
14.1 The required predictive distribution is given by
p(t|x, X, T) =
S 00 Y p(an) [ 00,2, 10p(0,/X. T.1) 40, (150
h Zh
where
0,X,T,h) =
N
o p(Oh) [ | p(tnlxn, 6, h)
n=1
N
= p0n) [] (Zp(tn,znhxn,ﬂ,h)> (155)
n=1 Znh
The integrals and summations in (154) are examples of Bayegaaging, account-
ing for the uncertainty about which modél, is the correct one, the value of the cor-
responding parameter8;,, and the state of the latent variabig, The summation
in (155), on the other hand, is an example of the use of laterdhlas, where dif-
ferent data points correspond to different latent variable staltimugh all the data
are assumed to have been generated by a single niodel,
14.3 We start by rearranging the r.h.s. of (14.10), by moving the fattdr inside the
sum and the expectation operator outside the sum, yielding
M 1
E, [Z Mem(x)z] .
If we then identifye,,, (x) and1/M with z; and; in (1.115), respectively, and take
f(z) = z%, we see from (1.115) that
Mo 2 M ]
2
<z:1 Mem(x)) < Z:l Mem(x) )
Since this holds for all values of, it must also hold for the expectation over
proving (14.54).
14.5 To prove that (14.57) is a sufficient condition for (14.56) we havs&how that (14.56)

follows from (14.57). To do this, consider a fixed setpf(x) and imagine varying
the a,,, over all possible values allowed by (14.57) and consider éhees taken by
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Solutions 14.6-14.9

14.6

14.9

ycom(x) as a result. The maximum value @fon (x) occurs wheny, = 1 where
Yk (X) = ym(x) for m # k, and hence altv,,, = 0 for m # k. An analogous result
holds for the minimum value. For other settingsoaf

ymin(X) < yCOM(X) < ymax(X);

sinceycowm(x) is a convex combination of pointg,, (x), such that

Vm > Ymin (X) g Ym (X) g ymax(x)-

Thus, (14.57) is a sufficient condition for (14.56).

Showing that (14.57) is a necessary condition for (14.56) isvetgnt to show-
ing that (14.56) is a sufficient condition for (14.57). The imation here is that
if (14.56) holds for any choice of values of the committee merlg,,(x)} then
(14.57) will be satisfied. Suppose, without loss of generdligt ;. is the smallest
of theaw values, i.e.o;, < vy, for k # m. Then considey;(x) = 1, together with
ym(x) = 0 for all m # k. Thenyy,(x) = 0 while ycom(x) = af and hence
from (14.56) we obtaimy, > 0. Sinceqy is the smallest of ther values it follows
that all of the coefficients must satisfy, > 0. Similarly, consider the case in which
Ym (x) = 1for all m. Thenymin(x) = Ymax(x) = 1, While ycom(x) = >, m-
From (14.56) it then follows tha}t | = «.,,, = 1, as required.

If we differentiate (14.23) w.r.k,,, we obtain

or _1 (( am/2 | gmam/2) iw T (Y (Xp) # 1) — e~ Om/2 Zw(m ) .
ooy, 2
Setting this equal to zero and rearranging, we get
S (Y (X)) # 1) eom/2
> wh™ eom/2 4 emom/2  gom 417

Using (14.16), we can rewrite this as

1
= € y
edm + 1 m
which can be further rewritten as
em — 1 —ém
€m ’

from which (14.17) follows directly.
The sum-of-squares error for the additive model of (14.21) is defised a

N

1 2
= 5 Z(tn - fm(Xn)) .

n=1
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Using (14.21), we can rewrite this as

1 1 ,
EZ t _fm 1 Xn)_§amym(x)) s

where we recognize the two first terms inside the square as the ak&idmn the
(m — 1)-th model. Minimizing this error w.r.ty,,(x) will be equivalent to fitting
ym(x) to the (scaled) residuals.

Starting from the mixture distribution in (14.34), we follow the sasteps as for
mixtures of Gaussians, presented in Section 9.2. We introdu€enamial latent
variable,z, such that the joint distribution overandt¢ equals

K

p(t,z) = p(tlz)p H (twie, 57") )™

Given a set of observation$(t,,, ¢,,)}\_,, we can write the complete likelihood
over these observations and the corresponding. . , zy, as

N K
HH (M (bl Wik by, 571) "

Taking the logarithm, we obtain (14.36).

The predictive distribution from the mixture of linear regressioodels for a new

input feature vectorgiA), is obtained from (14.34), witkh replaced by%. Calculating
the expectation of under this distribution, we obtain

Elt|e, 0] Zmﬁ: tlp, wi, ).

k=1

Depending on the parameters, this expectation is potentiéliyjodal, with one
mode for each mixture component. However, the weighted caatibim of these
modes output by the mixture model may not be close to any singie. For exam-
ple, the combination of the two modes in the left panel of Fidi#® will end up in

between the two modes, a region with no signicant probabilégsn

If we defineyy, (t|x) in (14.58) as

t|X Z >\mk¢mk t|X)
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Figure 8

Left: an illustration of a
hierarchical mixture model,
where the input depen-
dent mixing coefficients
are determined by linear
logistic models associated
with interior nodes; the
leaf nodes correspond to
local (conditional) density
models. Right: a possi-
ble division of the input Ya(t|x)  s(tx)
space into regions where

different mixing coefficients

dominate, under the model

illustrated left.

2

1

we can rewrite (14.58) as

M
Tk Z )\mk(bmk t|X

1 m=1

M

Z Z T Amk Omik (E]X).

k=1 m=1

By changing the indexation, we can write this as

Mw

p(tx)

i

p(t[x) = Z mei(tx),

whereL. = KM, = (k— 1)M +m, gy = 7pAmr andé(-) = dmi(-). B
constructiony; > 0 andY ) m; = 1.

Note that this would work just as well if, and A, were to be dependent oq as
long as they both respect the constraints of being non-negattyesumming td for
every possible value of.

Finally, consider a tree-structured, hierarchical mixture moakel/lustrated in the
left panel of Figure 8. On the top (root) level, this is a mixturehwito components.
The mixing coefficients are given by a linear logistic regressimdel and hence are
input dependent. The left sub-tree correspond to a local conditaensity model,
¥1(t]x). In the right sub-tree, the structure from the root is replicated, wheh t
difference that both sub-trees contain local conditional dgmsodels,i, (¢|x) and
We can write the resulting mixture model on the form (14.58) withingxcoeffi-
cients

m(x) = o(vix)
m(x) = (1-o(vix))o(vyx)
m(x) = (1-o(vix))(l-o(vsx)),
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whereo (+) is defined in (4.59) and, andv, are the parameter vectors of the logistic
regression models. Note thaf(x) is independent of the value &f. This would
not be the case if the mixing coefficients were modelled usisiggle level softmax
model,

pulx

Wk(X) = —F

23 eu}x’
J

where the parametets,, corresponding tar;(x), will also affect the other mixing
coeffiecientsy;.;(x), through the denominator. This gives the hierarchical model
different properties in the modelling of the mixture coefficiemtsr the input space,
as compared to a linear softmax model. An example is shown inghepanel of
Figure 8, where the red lines represent borders of equal mixing cieetf in the
input space. These borders are formed from two straight lines, corrdisigoto

the two logistic units in the left panel of 8. A correspondingision of the input
space by a softmax model would involve three straight lineepbat a single point,
looking, e.g., something like the red lines in Figure 4.3 in RRMote that a linear

three-class softmax model could not implement the borders shoighihpanel of
Figure 8.



