August 10, 2017 Problem Set 2 Galois Theory, MTH410

Submit problems 3, 9, 10 by Thursday, August 17. Concepts covered: Irreducible polynomi-
als, Field extensions, Characteristic of a field. Reading: Rotman section on Prime and Maximal ideals.

1.

10.

Let R be an integral domain then associated to it is a field called its field of fractions Q(R). As a
set

Q(R) = {(a,b) e RX R|b# 0}/ ~

where (a,b) ~ (c,d) if ad = be. We denote the equivalence classes by %.

(a) Show that under the operations a/b+ c¢/d = (ad 4 bc)/(bd) and (a/b) - (¢/d) = (ac)/(bd) Q(R)
is a field. What are the additive and multiplicative identities?

(b) Show that the map 2 : R — Q(r) given by i(a) = a/1 is an injective ring homomorphism. Hence
we can consider R as a subring of Q(R) under this homomorphism.

(c) Let ¢ : R — F be a ring homomorphism where F' is a field then show that ¢ extends to a ring
homomorphism ¢ : Q(R) — F' if and only if ¢ is injective. Infer that Q(Z) = Q.

(d) If R is a field what is Q(R).

. If Fis a field we denote Q(F[z]) be F(x). This is the field of rational functions in over F' in one

variable. Describe F'(x). If E D F is a field extension and a € E, there is a ring homomorphism
¢a : Flz] = E given by ¢q(p) = p(a). When does ¢, extend to F(z)?

. Let F be a field and G C F* a finite multiplicative sub-group of the group of units.

(a) Show that G' can not be isomorphic to Z/pZ x Z/pZ for any p € Z prime.
(b) (Bonus) Show that G is cyclic.

. Problem 52, page 37 Rotman.
. Problem 55, page 38 Rotman.

. Problem 56, Rotman.

Problem 57, Rotman.

. Problem 58, Rotman.

. Problem 59.

Find irreducible polynomials of degree 2 and 3 over Z/2Z[z]. Construct fields Fy and Fg of order
4 and 8 respectively.
(a) Write down the multiplication table of Fj.

(b) Show that in Fj all elements are roots of z* — z and in Fy all elements elements are roots of

CL‘S*.’E.

(c) Show that Fy does not embed in Fg.
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We claim that F is a field, which will complete the proof. If a,b € F,
then a? = a and b? = b. Therefore, (ab)? = a?b? = ab,and ab € F. By
Lemma 32(iii), replacing b by —b, we have (a — b)? = a? — b? = a — b,
sothata—b € F. Finally,ifa # 0,thena?™! = 1sothata™ ! = a9 2 ¢ F
(because F is closed under multiplication). e

In Corollary 53 we shall see that any two fields of order p” are isomor-
phic. It will follow that there are no finite fields other than those just con-
structed.

Exercises

49.

50.

51.

52.

A polynomial p(x) € F[x]of degree 2 or 3 is irreducible over F if and only
if F contains no root of p(x). (This is false for degree 4: the polynomial
(x2 + 1)2 factors in R[x], but it has no real roots.)

Let p(x) € F|x]be irreducible. If g(x) € F[x] is not constant, then either
(p(x), g(x)) = lor p(x) | gx).

(i) Every nonzero polynomial f(x) in F[x] has a factorization of the
form

f&x) =api(x) - p(x),

where a is a nonzero constant and the p; (x) are (not necessarily dis-
tinct) monic irreducible polynomials;

(1) the factors and their multiplicities in this factorization are uniquely
determined.

(This analogue of the fundamental theorem of arithmetic has the same proof
as that theorem: if also f(x) = bq1(x)...gs(x), where b is constant and
the g; (x) are monic and irreducible, then uniqueness is proved by Euclid’s
lemma and induction on max{z, s}. One calls F[x] a unique factorization
domain when one wishes to call attention to this property of it.)

Let f(x) = api(x)* --- p;(x)* and g(x) = bp (x)™ --- p;(x)™, where
ki > 0,n; > 0, a, b are nonzero constants, and the p; (x) are distinct monic
irreducible polynomials (zero exponents allow one to have the same p;(x)
in both factorizations). Prove that

ged(f, 8) = pr(x)™ - -- p(x)™

and
lem(f, &) = p1()M' - - p ()™,

where m; = min{k;, n;} and M; = max|{k;, n;}.
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53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

GALOIS THEORY
(i) Prove that the zero ideal in a ring R is a prime ideal if and only if R
is a domain.

(ii) Prove that the zero ideal in a ring R is a maximal ideal if and only if
R is afield.

The ideal I in Z[x] consisting of all polynomials having even constant term
is a maximal ideal.

Let f(x), g(x) € F|x]. Then (f, g) # 1 if and only if there is a field E
containing both F and a common root of f(x) and g(x).

(i) Prove that if f(x) € Zp[x], then (f(x))? = f(xP). (Hint: Use
Fermat’s theorem: a” = a mod p.)

(i1) Show that the first part of this exercise may be false if Z, is replaced
by an infinite field of characteristic p.

Exhibit an infinite field of characteristic p. (Hint: Exercise 20.)

If F is a field, prove that the kernel of any evaluation map F[x] — F isa
maximal ideal.

If F is a ficld of characteristic 0 and p(x) € F[x]is irreducible, then p(x)
has no repeated roots. (Hint: Consider (p(x), p'(x)).)

Use Kronecker’s theorem to construct a field with four elements by adjoin-
ing a suitable root of x* — x to Z;.

Give the addition and multiplication tables of a field having eight elements.
(Hint: Factor x3 — x overZ,.)

Show that a field with four elements is not (isomorphic to) a subfield of a
field with eight elements.

Irreducible Polynomials

Our next project is to find some criteria for irreducibility of polynomials;
this is usually difficult, and it is unsolved in general.

We begin with an elementary result, using Exercise 29: If 6 : R — S'is
aring map, then o* : R[x] — S[x], defined by

o*: Zr,-xi > Za(ri)xi,

is also a map of rings.



