
Making Context-sensitive Points-to Analysis with Heap Cloning
Practical For The Real World ∗

Chris Lattner
Apple Inc.

clattner@apple.com

Andrew Lenharth
University of Illinois at

Urbana-Champaign
alenhar2@cs.uiuc.edu

Vikram Adve
University of Illinois at

Urbana-Champaign
vadve@cs.uiuc.edu

Abstract
Context-sensitive pointer analysis algorithms with full “heap
cloning” are powerful but are widely considered to be too expen-
sive to include in production compilers. This paper shows, for the
first time, that a context-sensitive, field-sensitive algorithm with
full heap cloning (by acyclic call paths) can indeed be both scal-
able and extremely fast in practice. Overall, the algorithmis able to
analyze programs in the range of 100K-200K lines of C code in 1-3
seconds, takes less than 5% of the time it takes for GCC to compile
the code (which includes no whole-program analysis), and scales
well across five orders of magnitude of code size. It is also able
to analyze the Linux kernel (about 355K lines of code) in 3.1 sec-
onds. The paper describes the major algorithmic and engineering
design choices that are required to achieve these results, includ-
ing (a) using flow-insensitive and unification-based analysis, which
are essential to avoid exponential behavior in practice; (b) sacri-
ficing context-sensitivity within strongly connected components
of the call graph; and (c) carefully eliminating several kinds of
O(N2) behaviors (largely without affecting precision). The tech-
niques used for (b) and (c) eliminated several major bottlenecks
to scalability, and both are generalizable to other context-sensitive
algorithms. We show that the engineering choices collectively re-
duce analysis time by factors of up to 3x-21x in our ten largest
programs, and that the savings grow strongly with program size.
Finally, we briefly summarize results demonstrating the precision
of the analysis.

Categories and Subject Descriptors D.3.4 [Processors]: Compil-
ers

General Terms Algorithms

Keywords Pointer analysis, context-sensitive, field-sensitive, in-
terprocedural, static analysis, recursive data structure

∗ This work is supported in part by NSF under grant numbers EIA-0093426,
EIA-0103756, CCR-9988482 and CCF-0429561, and in part by the Univer-
sity of Illinois.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’07 June 11–13, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-633-2/07/0006. . . $5.00

1. Introduction
Context-sensitive alias analysis algorithms have been studied inten-
sively over the last two decades, with impressive improvements in
algorithmic scalability [7, 10, 35, 14, 13, 22, 11, 12, 23, 34]. To
achieve true context-sensitivity, such algorithms must distinguish
heap objects by (acyclic) call paths, not just by allocationsite; this
property is sometimes referred to as “heap cloning” [26]. Heap
cloning is important because it allows analyses to distinguish differ-
entinstancesof a logical data structure created at different places in
a program, even if the data structure is implemented with a common
set of functions (e.g., a data structure library) that allocate memory
internally. Such programming patterns are increasingly prevalent
particularly in object-oriented programs, where reusablelibraries
are an important feature. For example, in the LLVM compiler sys-
tem [19], which is written in C++, there are no less than 25 static
occurrences of a single class (vector<unsigned>). Heap cloning
also allows analyses to handle allocations that occur through one
or more levels of wrappers in a simple, general manner instead of
handling them as a special case (e.g., single-level wrappers [15]).
More quantitatively, Nystrom et al. [26] show that for many pro-
grams, naming heap objects only by allocation site (the mostcom-
mon alternative) significantly reduces analysis precisioncompared
with heap specialization by call paths, up to some threshold.

Unfortunately, there is widespread skepticism that algorithms
with heap cloning can be scalable and fast enough to be included
in production compilers. To date, this skepticism is arguably justi-
fied: we know of no previous paper that demonstrates that an alias
analysis that uses heap cloning is scalable and fast enough for use
in production compilers. Section 6 discusses the current state of
the art in more detail. Briefly, two recent algorithms that use differ-
ent forms of cloning with a subset-based (rather than a unification-
based) analysis have been to shown to be scalable but are still quite
slow in absolute running times [34, 25]. At least for now, such
algorithms appear too slow to be used in a production compiler,
although they may be reasonable for static analysis tools. On the
other hand, there are several algorithms that use unification to con-
trol the exponential blow-up that can occur with context-sensitivity
(with or without heap cloning). The MoPPA algorithm by Liang
and Harrold [23] uses heap cloning and is quite fast but exhausts
available memory on a workstation with 640MB of memory for
their largest program,povray. Their results (and many others) jus-
tify the common concern that, in practice, memory consumption
can be a limiting factor in scaling context-sensitive analyses. Many
other context-sensitive alias analysis papers either do not use heap
cloning [22, 11, 12] or (particularly in earlier papers) only report
results for relatively small programs of a few thousand lines of
code or less and typically make limited or no claims about scal-
ability [7, 10, 35, 14, 13, 27].

In this paper, we describe an algorithm namedData Struc-
ture Analysis (DSA), and use it to present strong evidence that
a context-sensitive, field-sensitive algorithm with full heap cloning
(by acyclic call paths) can indeed be both scalable and extremely
fast in practice. DSA is able to analyze programs in the rangeof
100K-220K lines of C code in 1-3 seconds, taking less than 5% of
the time it takes GCC to compile the program at -O3 (which does
no whole-program analysis), and scaling well across five orders of
magnitude of code size in terms of both analysis time and mem-
ory usage. It is also able to analyze the Linux kernel (about 355K
lines of compiled code in our configuration) in 3.1 seconds. These
analysis times and scaling behavior appear to be very reasonable
for production compilers.

More specifically, DSA is a points-to analysis algorithm that
is field-sensitive and context-sensitive with full heap cloning (by
acyclic call paths). Like several previous papers, we combine these
with a flow-insensitive and unification-based approach to improve
scalability [22, 11, 12, 23]. There are three novel featuresin our
algorithm itself:

• First, DSA uses a new extension of Tarjan’s SCC finding algo-
rithm to incrementally construct a call graph during the analysis
without any iteration, even in the presence of function point-
ers and recursion. An algorithm by Fähndrich et al. [11] is the
only previous work we know that achieves the same property,
but they do it by using a constraint instantiation method that
appears difficult to extend to incomplete programs, which ises-
sential for production compilers in practice.

• Second, it uses a fine-grain “completeness” tracking technique
for points-to sets as a unified solution for several difficultprob-
lems that have usually been solved via different techniquesbe-
fore (or ignored): (a) supporting field-sensitivity for non-type-
safe languages; (b) correctly supporting incomplete programs,
i.e., withunknownexternal functions; and (c) constructing a call
graph incrementally during the analysis. This technique can be
used in any alias analysis that explicitly tracks reachability of
objects (typically, analyses that use an explicit representation of
memory rather than just “aliasing pairs” of references [17]).

• Third, DSA includes several essential engineering choicesde-
veloped over time to avoidO(N2) behaviors that were a ma-
jor bottleneck to scalability in practice. Two of these have
been described previously (the globals graph [28, 23] and effi-
cient inlining [28]) but no experimental results on their benefits
have been reported. These choices are generalizable to other
context-sensitive algorithms. Our experiments show that each
choice contributes substantial speedups, and they collectively
achieve 3x–21x reduction in analysis time in our ten largestpro-
grams. furthermore this reduction increases strongly withpro-
gram size, demonstrating that they eliminate significant scala-
bility bottlenecks.

In addition to speed and scalability, the algorithm has several
practical strengths that we consider valuable for real-world com-
pilers. Perhaps most important, DSA correctly handles incomplete
programs (i.e., programs withunknownexternal functions): it pro-
duces conservative results while still trying to provide aliasing in-
formation for as much of a program as possible. To our knowl-
edge,noneof the previous context-sensitive, unification-based al-
gorithms [22, 11, 12, 23] can correctly handle incomplete pro-
grams. The algorithm supports the full generality of C/C++ pro-
grams, including type-unsafe code, function pointers, recursion,
setjmp/longjmp, C++ exceptions, etc. The algorithm does not
require a call graph as input, as noted earlier (even though it is non-
iterative).

We compare the precision of our algorithm for alias analysisto
Andersen’s algorithm [2] (a context-insensitive subset-based algo-
rithm), showing that DSA is about as precise Andersen’s for many
cases, is significantly more precise for some programs, and is only
worse in rare cases. Further, other work [18] shows that the mod-
/ref information captured by DSA is significantly better than that
computed by non-context-sensitive algorithms.

In addition to alias analysis, DSA can also be used to extract
limited information about entire linked data structures: identifying
instancesof these structures, bounding lifetimes of each instance,
and extracting available (flow-insensitive) structural and type infor-
mation for each identified instance (this capability is the source of
the name Data Structure Analysis).

Although this information is significantly more limited than
full-blown shape analysis [29, 4, 16], it is sufficient for many in-
teresting applications. One such application is theAutomatic Pool
Allocation transformation [20], which segregates heap objects into
distinct pools if the points-to graph can distinguish subsets. This
can improve spatial locality significantly for recursive data struc-
ture traversals, and can enable other compiler and run-timetech-
niques that wish to modify (or measure) per-data-structurebehav-
ior [21]. Another example is the SAFECode compiler for C [8],
which enforces safety properties (memory safety, control-flow in-
tegrity, type safety for a subset of objects, and analysis soundness)
automatically and with relatively low overhead for unmodified C
programs. Type homogeneity of points-to sets enables elimination
of run-time checks in SAFECode, reducing its overhead.

The full source code for DSA can be downloaded via anony-
mous CVS atllvm.org. Because only the first (“local”) phase
of the algorithm directly inspects the program representation, the
implementation should be relatively straightforward to incorporate
into other mid-level or low-level compiler systems writtenin C++.

The next section precisely defines the points-to graph represen-
tation computed by our analysis. Section 3 describes the algorithm
and analyzes its complexity. Section 4 describes several important
engineering choices required for scalability. Section 5 describes our
experimental results for algorithm cost and very briefly summa-
rizes the results of two studies of algorithm precision. Section 6
discusses related work and Section 7 briefly summarizes the major
conclusions.

t ype de f s t r u c t l i s t { s t r u c t l i s t ∗Next ;
i n t Data ; } l i s t ;

i n t Globa l = 10 ;
vo id d o a l l (l i s t ∗L , vo id (∗FP) (i n t ∗)) {

do { FP(&L−>Data) ;
L = L−>Next ;

} whi le (L) ;
}
vo id addG (i n t ∗X) { (∗X) += Globa l ; }
vo id addGToLis t (l i s t ∗L) { d o a l l (L , addG) ; }
l i s t ∗makeL is t (i n t Num) {

l i s t ∗New = mal loc (s i z e o f(l i s t)) ;
New−>Next = Num ? makeL is t (Num−1) : 0 ;
New−>Data = Num; re turn New;

}
i n t main () { /∗ X & Y l i s t s are d i s j o i n t ∗ /

l i s t ∗X = makeL is t (1 0) ;
l i s t ∗Y = makeL is t (1 0 0) ;
addGToLis t (X) ;
G loba l = 20 ;
addGToLis t (Y) ;

}

Figure 1. C code for running example

2. The Data Structure Graph
Data Structure Analysis computes a graph we call the Data Struc-
ture Graph (DS graph) for each function in a program, summarizing
the memory objects accessible within the function along with their
connectivity patterns. Each DS graph node represents a (potentially
infinite) set of dynamic memory objects, and distinct nodes repre-
sent disjoint sets of objects, i.e., the graph is a finite, static parti-
tioning of the memory objects. All dynamic objects which maybe
pointed to by a single pointer variable or field are represented as a
single node in a graph.

In defining the DS graph, we assume that input programs have a
simple type system with structural equivalence, having primitive in-
teger and floating point types of predefined sizes, plus four derived
types: pointers, structures, arrays, and functions. The analysis ex-
plicitly tracks points-to properties only for pointer types and integer
types of the same size or larger; we call thesepointer-compatible
types (other values are treated very conservatively if converted into
a pointer-compatibletype). For any typeτ , fields(τ) returns a set
of field names ofτ . This is a single degenerate field name ifτ is a
scalar type or function type. An array type of known sizek may be
represented either as a structure withk fields (if all index expres-
sions into the array are compile-time constants) or by a single field;
an unknown-size array is always represented as the latter. We also
assume a load/store program representation in which virtual reg-
isters and memory locations are distinct, it is not possibleto take
the address of a virtual register, and virtual registers canonly rep-
resent scalar variables (i.e., integer, floating point, or pointer). Spe-
cific operations in the input program representation are described
in Section 3.2.

2.1 Graph Definition

The DS graph for a function is a finite directed graph represented
as a tupleDSG(F) = 〈N, E, EV , Ncall〉, where:

• N is a set of nodes, called “DS nodes”. DS nodes have several
attributes described in Section 2.2 below.

• E is a set of edges in the graph. Formally,E is a function of type
〈ns, fs〉 → 〈nd, fd〉, wherens, nd ∈ N , fs ∈ fields(T (ns))
andfd ∈ fields(T (nd)), andT (n) denotes type information
computed for the objects ofn as explained below. We refer
to a 〈node,field〉 pair as a “cell”. E is a function because
a source field can have only a single outgoing edge. Non-
pointer-compatible fields (and virtual registers) are mapped to
〈null, 0〉.

• EV is a partial function of typevars(f) → 〈n, f〉, where
vars(f) is the set of virtual registers in scope in functionf .
This includes global variables, which are treated as virtual reg-
isters of pointer type with global scope, pointing to an unnamed
global memory object. Conceptually,EV (v) is an edge from
registerv to the target field〈n, f〉 pointed to byv, if v is of
pointer-compatible type.

• Ncall ⊂ N is a set of “call nodes” in the graph, which represent
unresolved call sites within the current function or one of its
(immediate or transitive) callees. Each call nodec ∈ Ncall is a
k+2 tuple:(r, f, a1, . . . , ak), where every element of the tuple
is a node-field pair〈n, f〉. r denotes the value returned by the
call (if it is pointer-compatible), andf the set of possible callee
functions.a1 . . . ak denote the values passed as arguments to
the call. Conceptually, each tuple element can also be regarded
as a points-to edge in the graph.

To illustrate the DS graphs and the analysis algorithm, we use
the code in Figure 1 as a running example. This example creates
and traverses two disjoint linked lists, using iteration, recursion,
function pointers, a pointer to a subobject, and a global variable

<type>: <flags>

<field0> <field1>

DS node

name

Variable

call

r f

Return
Value

Called
Function

First
Argument

Second
Argument

Call Node

Figure 2. Graph Notation

reference. Despite the complexity of the example, Data Structure
Analysis is able to prove that the two listsX and Y are disjoint.
Naming heap objects by allocation site would prevent the twolists
from being disambiguatedbecause nodes of both are allocated at
the same site. The final DS graph computed formain is shown in
Figure 10.

To illustrate the DS graphs computed by various stages of our
algorithm, we render DS graphs using the graphical notationshown
in Figure 2. Figure 3 shows the initial (“local”) graphs computed for
thedo all andaddG functions, before any interprocedural infor-
mation is applied. The figure includes an example of a call node,
which (in this case) calls the function pointed to byFP, passing
the address of the field pointed to byL->data as an argument, and
ignores the return value of the call.

2.2 Graph Nodes and Fields

Each DS noden has three pieces of information describing the
memory objects corresponding to that node:

• T (n): a language-specific type for the memory objects repre-
sented byn. This type determines the number of fields and out-
going edges in a node. Note that fields are tracked separately
only for “type-homogeneous” nodes, as explained below.

• G(n): a set of global objects represented byn. Includes func-
tions, which represent the targets of function pointers andof the
f field in call nodes.

• flags(n): set of flags associated withn⊆ { H,S,G,U, A, M ,R,
C, O }. These flags are defined below.

void:
list: R

list* int

LFP &L->Data
call

r f

int: MR

int

X
int: R
Global

Figure 3. Local DSGraphs fordo all andaddG

Storage class flags (H, S, G, U): The ’H’ , ’S’ , ’G’ and ’U’ flags
in flags(n) are used to distinguishHeap,Stack,Global (including
functions), andUnknown objects. Multiple flags may be present in
a single DS node. TheUnknown flag is added to a DS node when a
constant integer value is cast to a pointer or when unanalyzable
address arithmetic is seen: the flag signifies that the instruction
creating the target object was not found (these cases are infrequent
in portable programs). A node marked’U’ must be treated as
potentially overlapping with (i.e., representing common memory
objects as)anyother node in the graph. Nodes representing objects
created in an external, unanalyzed function arenotmarked’U’ , but
are treated as “incomplete,” as described below.
Mod/Ref flags (M, R): These flags simply mark whether store or
load operations have been detected on a memory object at the node.
This directly provides context-sensitive Mod/Ref information for
memory objects, including global, stack and heap objects.
Completeness flag (C): The Complete flag denotes that all oper-
ations on objects at a node have been processed. For example,the

list node in the local graph for functiondo all (Figure 3) has no
C flag because the list is accessible in an unprocessed callee,but
both lists and the global in functionmain are markedComplete1.
A node may have noC flag even at the end of analysis if it is reach-
able from unavailable external functions (we find it is common to
have a few such nodes in large programs, because of unavailable
libraries). At any point, if a node is not marked complete, the in-
formation calculated for the DS node represents partial information
and must be treated conservatively. In particular, the nodemay later
be assigned extra edges, extra flags, a different type, or mayeven
end up merged with another incomplete node in the graph. For-
mally, two nodes with noC flag (e.g.,L and FP) may represent
common objects, i.e., a client (e.g., alias analysis queries) must as-
sume that pointers to the two nodes may alias. Nevertheless,other
nodes in such a graph may be complete and such nodes will never
be merged with any other node, providing useful partial informa-
tion for incomplete programs. (Of course, a pointer to node with
theU flag may alias a pointer toanyother node, even those withC
set). The algorithm for inferringC flags is described in Section 3.1.

An important benefit of theComplete flag within the analysis
itself is that it allows DS analysis to assume speculativelythat all
accesses to a node are type-safe, until an access to the node is
found which conflicts with the other accesses. Because a nodeis
not marked complete as long as there are potentially unprocessed
accesses, this is safe. DSA uses this to provide field-sensitive in-
formation for the type-safe subsets of programs, while collapsing
fields for type-unsafe structure types because tracking fields for
such types can be expensive [30].
Collapsed flag (O): The collapsed flag (O) marks nodes represent-
ing multiple, incompatible types of objects. More precisely, if all
usesof objects in a node (or to a field of the node) follow a consis-
tent typeτ (or the field type withinτ), then DSA assignsT (n) = τ ;
we refer to such a node as “type-homogeneous.” Hereusesare de-
fined as operations on pointers to the node that interpret thetype,
viz., loads, stores, or structure and array indexing. In particular,
pointer casts (e.g., fromvoid*) are not counted as uses. If uses
with incompatible types (as defined in Section 3) are found, we no
longer track the type or fields of objects represented by the node.
We mark the node with theO flag (cOllapsed), setT (n) = char[],
i.e., an unsized array of bytes, and merge all outgoing edgesinto a
single edge. We do this using the following algorithm:

collapse(dsnoden)
cell e = 〈null, 0〉 // null target
∀f ∈ fields(T (n))

e = mergeCells(e, E(〈n, f〉)) // merge old target withe
remove fieldf // remove old edge

T (n) = char* // reset type information
E(〈n, 0〉) = e // new edge from field 0
flags(n) = flags(n) ∪ {′

O
′, A} // node is cOllapsed,Array

The function “mergeCells(c1, c2)” (described in the next sec-
tion) merges the cellsc1 andc2 and therefore the nodes pointed to
by those cells. This ensures that the targets of the two cellsare now
exactly equal. The result is the same as if the type information was
never speculatedfor noden.
Array flag (A) : This flag is added to a node if any array indexing
expresssion is applied to a pointer targeting that node. Note that this
does not eliminate type homogeneity for non-collapsed nodes: the
node may represent singleton objects and arrays of objects of type
τ . TheA flag is always set for Collapsed nodes since the degenerate
type they use is an array of bytes.

1 This is somewhat similar to the “inside nodes” of [33].

3. Construction Algorithm
DS graphs are created and refined in a three step process. The first
phase constructs a DS graph for each function in the program,using
only intraprocedural information (a “local” graph). This is the only
phase that inspects the actual program representation; thenext two
phases operate solely on DS graphs. Second, a “Bottom-Up” analy-
sis phase is used to eliminate incomplete information due tocallees
in a function, by incorporating information from callee graphs into
the caller’s graph (creating a “BU” graph). By the end of the BU
phase, the call graph construction is also complete. The final “Top-
Down” phase eliminates incomplete information due to incoming
arguments by merging caller graphs into callees (creating a“TD”
graph). Both, the BU and TD phases operate on the known (i.e.,
partial or completed) Strongly Connected Components (SCCs) in
the call graph.

Two properties are important for understanding how the analy-
sis works in the presence of incomplete programs, and how it can
incrementally construct the call graph even though it operates on
the SCCs of the graph. First, the DS graph for a function is correct
even if only a subset of its potential callers and potential callees
have been incorporated into the graph (i.e., the information in the
graph can be used safely so long as the limitations on nodes with-
out ‘C’ flags are respected, as described in Section 2). Intuitively,
the key to this property simply is that a node must not be marked
complete until it is known that all callers and callees potentially
affecting that node have been incorporated into the graph. Second,
the result of two graph inlining operations at one or two callsites is
independent of the order of those operations. This follows from a
more basic property that the order in which a set of nodes is merged
does not affect the final result.

3.1 Primitive Graph Operations

Data Structure Analysis is a flow-insensitive algorithm which uses
a unification-based memory model, similar to Steensgaard’salgo-
rithm [31]. The algorithm uses several primitive operations on DS
graphs, shown in Figure 4. These operations are used in the algo-
rithm to merge two cells (mergeCells), merge a callee’s graph into
a caller’s graph at a particular call site (resolveCallee) and vice
versa (resolveCaller), and compute the completeness property
(’C’ flag) for DS nodes (markComplete). The two graph-merging
operations are described later in this section.

The fundamental operation in the algorithm ismergeCells,
which merges two target nodes by merging the type information,
flags, globals and outgoing edges of the two nodes, and moving
the incoming edges to the resulting node. If the two fields have
incompatible types (e.g.,T (n1) = int, f1 = 0, T (n2) =
{int, short}, f2 = 1), or if the two node types are compatible but
the fields are misaligned (e.g.,T (n1) = T (n2) = {int, short},
f1 = 0, f2 = 1), the resulting node is first collapsed as described
earlier before the other information is merged. Merging outgoing
edges causes the target node of the edges to be merged as well;if
the node is collapsed, the resulting node forn2 will have only one
outgoing edge which is merged with all the out-edges ofn1. We use
Tarjan’s Union-Find algorithm [32] to make the merging efficient.

The routinemarkComplete uses an efficient traversal of a DS
graph, starting at formal arguments, the return node (π), and glob-
als, though the efficient traversal is now shown in Figure 4. In the
Top-Down phase, if a function is not visible to external code(i.e.,
all its callers have been identified), nodes reachable from formal
arguments, the return value, and globals that are not externally vis-
ible are marked Complete. Identifying which functions and glob-
als may be externally visible is done by the LLVM linker, which
can link both LLVM and native code files and can be much more
aggressive about marking symbols internal when linking complete
programs than libraries [1].

(Merge two cells of same or different nodes; updaten2, discardn1)
Cell mergeCells(Cell 〈n1, f1〉, Cell 〈n2, f2〉,)

if (IncompatibleForMerge(T (n1), T (n2), f1, f2))
collapsen2 (i.e., merge fields and out-edges)

union flags ofn1 into flags ofn2

union globals ofn1 into globals ofn2

merge target of each out-edge of〈n1, fj〉 with
target of corresponding field ofn2

move in-edges ofn1 to corresponding fields ofn2

destroyn1

return〈n2, 0〉 (if collapsed) or〈n2, f2〉 (otherwise)

(CloneG1 into G2; merge corresponding nodes for each global)
cloneGraphInto(G1, G2)

G1c = make a copy of graphG1

Add nodes and edges ofG1c to G2

for (each nodeN ∈ G1c)
for (each globalg ∈ G(N))

mergeN with the node containingg in G2

(Clone callee graph into caller and merge arguments and return)
resolveCallee(GraphGcallee, GraphGcaller ,

FunctionFcallee, CallSiteCS)
cloneGraphInto(Gcallee, Gcaller)
clear’S’ flags on cloned nodes
resolveArguments(Gcaller , Fcallee , CS)

(Clone caller graph into callee and merge arguments and return)
resolveCaller(GraphGcaller , GraphGcallee,

FunctionFcallee, CallSiteCS)
cloneGraphInto(Gcaller , Gcallee)
resolveArguments(Gcallee , Fcallee, CS)

(Merge arguments and return value for resolving a call site)
resolveArguments(GraphGmerged , FunctionFC , CallSiteCS)

mergeCells(target ofCS[1], target of return value ofFC)
for (1 ≤ i ≤ min(Numformals(FC), NumActualArgs(CS))

mergeCells(target of argi at CS, target of formali of FC)

(Mark nodesComplete if safe in Local, BU phases; see text for TD)
markComplete(GraphG)

for (each nodeN ∈ G), whereC /∈ flags(N)
if N is reachable from call nodes or other incomplete nodes, skipit
if N is reachable from formal arguments orEV (π), skip it
otherwise,flags(N) ∪ = ’C’

Figure 4. Primitive operations used in the algorithm

3.2 Local Analysis Phase

The goal of the local analysis phase is to compute aLocal DS
graph for each function, without information about callers and
callees (see Figure 5). We present this analysis in terms of amin-
imal language which is still as powerful as C. The assumptions
about the type system and memory model in this language were
described in Section 2. We assume that the functionsE(X) and
EV (X) return a new, empty node with the type ofX (by invoking
makeNode(typeof(X))), if no previous target node existed.

The “LocalAnalysis” first creates empty nodes for pointer-
compatible virtual registers and for globals, and then doesa lin-
ear scan to process each instruction of the function. We assume
that operand types in all instructions are strictly checked; any non-
matching operand in an operation must first be converted withan
explicit cast. Also, operations that produce non-pointer-compatible
values in variables or fields are simply ignored because those loca-
tions are always mapped to〈null, 0〉 in EV andE respectively.

We focus on a few, less obvious, cases of the local analysis here.
First, note that the type of a cell,EV (Y), is updated only whenY
is used in a load, store, or indexing operation. No type is inferred
at malloc, alloca and cast operations.return instructions are
handled by creating a specialπ virtual register which is used to
capture pointer-compatible return values. Function callsresult in a
new call node being added to the DS graph, such as the call node
for the call todo all in addGToList, in Figure 7(a). The node
gets entries for the value returned, the function pointer (for both
direct and indirect calls), and each pointer-compatible argument.

(Compute the local DS Graph for functionF)
LocalAnalysis(functionF)

Create an empty graph
∀ virtual registersR, EV (R) = makeNode(T (R))
∀ globalsX (variables and functions) used inF

N = makeNode(T (X))); G(N) ∪ = X; flags(N) ∪ = ′
G

′

∀ instructionI ∈ F : caseI in:

X = malloc ...: (heap allocation)
EV (X) = makeNode(void)
flags(node(EV (X))) ∪ = ’H’

X = alloca ...: (stack allocation)
EV (X) = makeNode(void)
flags(node(EV (X))) ∪ = ’S’

X = *Y: (load)
mergeCells(EV (X), E(EV (Y)))
flags(node(EV (X)) ∪ = ’R’

*Y = X: (store)
mergeCells(EV (X), E(EV (Y)))
flags(node(EV (X)) ∪ = ’M’

X = &Y->Z: (address of struct field)
〈n, f〉 = updateType(EV (Y), typeof(∗Y))
f ′ = 0, if n is collapsed;field(field(n, f), Z) otherwise
mergeCells(EV (X), 〈n, f ′〉)

X = &Y[idx]: (address of array element)
〈n, f〉 = updateType(EV (Y), typeof(∗Y))
mergeCells(EV (X), 〈n, f〉)
flags(node(EV (X)) ∪ = ’A’

return X: (return pointer-compatible value)
mergeCells(EV (π), EV (X))

X = (τ) Y: (value-preserving cast)
mergeCells(EV (X), EV (Y))

X = Y(Z1, Z2, ... Zn): (function call)
callnodec = new callnode
Ncalls ∪ = c
mergeCells(EV (X), c[1]) (return value)
mergeCells(EV (Y), c[2]) (callee function)
∀i ∈ {1...n}: mergeCells(EV (Zi), c[i + 2])

(Otherwise)X = Y op Z: (all other instructions)
mergeCells(EV (X), EV (Y))
mergeCells(EV (X), EV (Z))
flags(node(EV (X))) ∪ = ’U’
collapse(node(EV (X)))

MarkCompleteNodes()

Figure 5. The LocalAnalysis function

UsingmergeCellsfor each entry correctly merges type information
in the case when the argument type does not match the type of
the formal Finally, if any other instruction is applied to a pointer-
compatible value, or used to compute such a value (e.g., a cast from
a pointer to an integer smaller than the pointer and vice versa), any
nodes pointed to by operands and the result are collapsed andthe
Unknown flag is set on the node.

The final step in the Local graph construction is to calculate
which DS nodes areComplete, which is done as described in
Section 3.1. For a Local graph, nodes reachable from a formal
argument, a global, passed as an argument to a call site, or returned
by a function call may not be marked complete. For example, in
Figure 7(a), neither of the nodes for the arguments todo all are
marked‘C’ .

3.3 Bottom-Up Analysis Phase

The Bottom-Up (BU) analysis phase refines the local graph for
each function by incorporating interprocedural information from
the callees of each function. The result of the BU analysis isa graph
for each function summarizing the total effect of calling that func-
tion (imposed aliases and mod/ref information) without anycall-
ing context information. It computes this graph by cloning the BU
graphs of allknowncallees into the caller’s Local graph, merging

nodes pointed to by corresponding formal and actual arguments and
by common globals. We first describe a single graph inlining oper-
ation, then explain how the call graph is discovered and traversed.

Consider a call to a functionF with formal arguments
f1,. . ., fn, where the actual arguments passed area1,. . ., an. The
procedureresolveCalleein Figure 4 shows how such a call is pro-
cessed in the BU phase. We describe a simple, naı̈ve, versionhere;
a better approach is described in Section 4. We first copy the BU
graph forF using cloneGraphInto, which also merges targets of
common globals in the caller’s graph with those in the cloned
graph. We then clear allStack flags since stack objects of a callee
are not legally accessible in a caller. Note that we cannot delete
reachable nodes withStack flags: the nodes may escape (making
them incomplete), so we cannot tell whether other flags will be
included in such a node later. We then merge the node pointed to
by each actual argumentai of pointer-compatible type with the
copy of the node pointed to byfi. If applicable, we also merge
the return value in the call node with the copy of the return value
node from the callee. Note that any unresolved call nodes inF ’s
BU graph are copied into the caller’s graph, and all the objects rep-
resenting arguments of the unresolved call in the callee’s graph are
now represented in the caller as well.

(Create a new, empty node of typeτ)
makeNode(typeτ)

n = new Node(type =τ , flags =φ, globals =φ)
∀ f ∈ fields(τ), E(n, f) =< null, 0 >
returnn

(Merge type of field〈n, f〉 with typeτ . This may
collapse fields and update in/out edges viamergeCells())
updateType(cell 〈n, f〉, typeτ)

if (τ 6= void ∧ τ 6= typeof(〈n, f〉))
m = makeNode(τ)
return mergeCells(〈m, 0〉, 〈n, f〉))

else return〈n, f〉

Figure 6. makeNode and updateType operations

3.3.1 Basic Analysis Without Recursion

The complete Bottom-Up algorithm for traversing calls is shown
in Figure 8. We explain it for four different cases. In the simplest
case of a program with only direct calls to non-external functions,
no recursion, and no function pointers, the call nodes in each DS
graph implicitly define the entire call graph. The BU phase simply
has to traverse this acyclic call graph in post-order (visiting callees
before callers), cloning and inlining graphs as described above.

To support programs that have function pointers and external
functions (but no recursion), we restrict our post-order traversal to
only process a call-site if its function pointer targets aComplete
node (i.e, its targets are fully resolved, as explained in§2.2),andall
potential callees are non-external functions (Line (1) in Figure 8).

Such a call site may become resolved if the function passed to
a function pointer argument becomes known (typically, in some
caller of the function containing the indirect call). For example,
the call toFP cannot be resolved within the functiondo all, but
will be resolved in the BU graph for the functionaddGToList,
where we conclude that it is a call toaddG. Then, we clone and
merge the indirect callee’s BU graph into the graph of the function
where the call site became resolved, usingresolveCalleejust as
before (Line (2) in Figure 8). This technique of resolving call
nodes as their function pointer targets are completed effectively
discovers the call-graph on the fly, and preserves context-sensitivity
of the analysis because the different function pointer may resolve
to different callees in different contexts. We record the call graph
as it is discovered for use in the TD pass.

Note that the function containing the original call still has the
unresolved call node in its BU graph (and so do intervening func-
tions into which the call node was inlined). We do not re-visit these

void:
void (list*, void (int*)*): GC

do_all
void (int*): G

addG

L
call

r f

(a) LocaladdGToList graph

void (int*): GC
addG

list: R

list* int

L
call

r f

(b) After inlining do all

list: MR

list* int

L
int: GR
Global

(c) Final BU graph

Figure 7. Construction of the BU DS graph foraddGToList

functions to resolve the call node because that would lose context-
sensitivity of the BU graph information; those call nodes will even-
tually be resolved in the top-down phase. Conceptually, theBU
graph for a function acts like a procedure-summary that is used to
resolve the effects of the function in different calling contexts. The
BU graph for the function where the call was resolved now fully
incorporates the effect of the call. For example, inlining the BU
graph ofaddG into that ofaddGToList yields the finished graph
shown in Figure 7(c). TheModified flag in the node pointed to by
L is obtained from the nodeEV (X) from addG (Figure 3). This
graph foraddGToList is identical to that which would have been
obtained ifaddG was first inlined intodo all (eliminating the call
node) and the resulting graph was then inlined intoaddGToList.

After the cloning and merging for a function is done, we identify
newly complete nodes (Line (5)) and remove unreachable nodes
from the graph (Line (6)).

3.3.2 Recursion without Function Pointers

To handle recursion, we essentially apply the bottom-up process
described above but on Strongly Connected Components (SCCs)
of the call graph, handling each multi-node SCC separately.The
overall Bottom-Up analysis algorithm is shown in Figure 8. DSA
uses Tarjan’s linear-time algorithm to find and visit Strongly Con-
nected Components (SCCs) in the call graph in postorder.

For each SCC, all calls to functions outside the SCC are first
cloned and resolved as before, as shown on lines (1) and (2) in
Figure 8 (these functions will already have been visited because of
the postorder traversal over SCCs). Once this step is complete, the
only call nodes in the functions in the SCC are for intra-SCC calls
and calls to external functions (the latter are ignored throughout,
because they can never be resolved). Within an SCC, each function
will eventually need to inline the graphs of all other functions in the
SCC at least once (either directly or through the graph of a callee).
A naı̈ve algorithm can produce anO(n2) and even exponential
number of inlining operations. To avoid this cost, we build asingle
BU DS Graph for an SCC (instead of each function), giving up
context sensitivity within an SCC. This is accomplished by lines
(3) and (4) of Figure 8, which merges BU graphs, then resolvesall
intra-SCC call sites (exactly once each) in the context of this single
merged graph. The speed benefits of this approach are evaluated in
Section 5.2.

3.3.3 Recursion with Function Pointers

The final case is a recursive program with indirect calls. Thekey
difficulty here is that call edges are not known before-hand because
they are discovered incrementally by the algorithm, but some of
these call edges may induce new cycles, and hence new SCCs, in
the call graph. We make a key observation, based on the proper-
ties described earlier, that yields a simple strategy to handle such
situations: some call edges of an SCC can be resolvedbefore dis-

BottomUpAnalysis(ProgramP)
∀ FunctionF ∈ P

. BUGraph{F} = LocalGraph{F}

. Val[F] = 0; NextID = 0
while (∃ unvisited functionsF ∈ P) (visit main first if available)

TarjanVisitNode(F , new Stack)

TarjanVisitNode (FunctionF , Stack Stk)
NextID++; Val[F] = NextID; MinVisit = NextID; Stk.push(F)
∀ call sitesC ∈ BUGraph{F}
∀ known non-external calleesFC atC

if (Val[FC] == 0) (FC unvisited)
TarjanVisitNode(FC , S)

else MinVisit = min(MinVisit, Val[FC])
if (MinVisit == Val[F]) (entire SCC is on the Stack)

SCC S ={ N : N = F ∨ N appears aboveF on stack}
∀ F ∈ S: Val[F] = MAXINT; Stk.pop(F)
ProcessSCC(S, Stk)

ProcessSCC(SCCS, Stack Stk)

∀ FunctionF ∈ S
(1) ∀ resolvable call sitesC ∈ BUGraph{F} (see text)

∀ known calleesFC atC
if (FC /∈ S) (Process funcs not in SCC)

(2) ResolveCallee(BUGraph{FC}, BUGraph{F}, FC , CS)

(3) SCCGraph = BUGraph{F0}, for someF0 ∈ S
∀ FunctionF ∈ S, F 6= F0 (Merge all BUGraphs of SCC)

cloneGraphInto(BUGraph{F}, SCCGraph)
BUGraph{F} = SCCGraph

(4) ∀ resolvable call sitesC ∈ SCCGraph (see text)
∀ known calleesFC atC (Note:FC ∈ S)

ResolveArguments(SCCGraph,FC , CS)

(5) MarkCompleteNodes() - Section 3.2
(6) remove unreachable nodes

(7) if (SCCGraph contains new resolvable call sites)
∀ F ∈ S: V al[F] = 0 (mark unvisited)
TarjanVisitNode(F0, Stk), for someF0 ∈ S (Re-visit SCC)

Figure 8. Bottom-Up Closure Algorithm

covering that they form part of an SCC. When the call site “closing
the cycle” is discovered (say in the context of a functionF0), the
effect of the complete SCC will be incorporated into the BU graph
for F0 though not the graphs for functions in the SCC that were
handled earlier.

Based on this observation, we extended Tarjan’s algorithm to
revisit the functions in an SCC when it is discovered (but visiting
only unresolved call sites in it). After the current SCC is fully
processed (i.e., after step (6) in Figure 8), we check whether the
SCC graph contains any newly inlined call nodes that are now
resolvable. If so, we reset theVal entries for all functions in the
SCC, which are used inTarjanVisitNodeto check if a node has
been visited. This causes all the functions in thecurrent SCC to
be revisited, but only the new call sites are processed (since other
resolvable call sites have already been resolved, and will not be
included in steps (1) and (4)).

For example, consider the recursive call graph shown in Fig-
ure 9(a), where the call fromE to C is an indirect call. Assume
this call is resolved in functionD, e.g., becauseD passesC explic-
itly to E as a function pointer argument. Since the edgeE → C
is unknown when visitingE, Tarjan’s algorithm will first discover
the SCCs{ F }, { E }, and then{ D } (Figure 9(c)). Now, it will
find a new call node in the graph forD, find it is resolvable as a call
to C, and markD as unvisited (Figure 9(b)). This causes Tarjan’s
algorithm to visit the “phantom” edgeD → C, and therefore to
discover the partial SCC{ B, D, C }. After processing this SCC,
no new call nodes are discovered. At this point, the BU graphsfor
B, D andC will all correctly reflect the effect of the call fromE to

C, but the graph forE will not2. The TD pass will resolve the call
from E to C (within E) by merging the graph forD into E. Note
that even in this case, the algorithm only resolves each callee at
each call site once: no iteration is required, even for SCCs induced
by indirect calls.

Figure 10 shows the BU graph calculated for themain func-
tion of our example. This graph has disjoint subgraphs for the
lists pointed to byX and Y . These were proved disjoint be-
cause we cloned and then inlined the BU graph for each call
to addGToList(). This shows how context sensitivity with heap
cloning can identify disjoint data structures, even when complex
pointer manipulation, indirect calls and recursion are involved (and
despite unification and flow-insensitivity).

list: HMRC

list* int

list: HMRC

list* int

X Y
int: GMRC

Global

Figure 10. Finished BU graph formain

3.4 Top-Down Analysis Phase

The Top-Down construction phase is very similar to the Bottom-
Up construction phase, and the detailed pseudo-code is omitted
here but shown in [18]. The BU phase has already identified the
call graph, so the TD phase can traverse the SCCs of the call
graph directly using Tarjan’s algorithm; it does not need to“re-
visit” SCCs as the BU phase does. Note that some SCCs may have
been visited only partially in the BU phase, so the TD phase is
responsible for merging their graphs.

Overall, the TD phase differs from the BU phase in only 4
ways: First, the TD phase never marks an SCC as unvisited as
explained above: it uses the call edges discovered and recorded by
the BU phase. Second, the TD phase visits SCCs of the call graph
in reverse postorder instead of postorder. Third, the Top-Down pass
merges each function’s graph into that of each of its callees(rather
than the reverse), and it does so directly: it never needs to “defer”
this inlining operation since the potential callees at eachcall site
are known. The final difference is that formal argument nodesare
marked complete if all callers of a function have been identified
by the analysis, i.e., the function is not accessible to any external
functions. Similarly, global variables are marked complete unless
they are accessible to external functions.

3.5 Bounding Graph Size

In the common case, the merging behavior of the unification algo-
rithm we use prevents individual data structure graphs fromblow-
ing up, and in fact, keeps them very compact. This occurs whenever
a data structure is processed by a loop or recursion because,in ei-
ther case, a common variable must point to instances of objects
in successive iterations or successive calls. Unification then forces
these objects to be merged. In contrast, subset-based analyses can
easily generate exponentially large graphs [34].

Nevertheless, the combination of field sensitivity and cloning
makes it theoretically possible for our algorithm to build data struc-
ture graphs that are exponential in the size of the input program.
Such cases can only occur if the program builds and processesa
data structure usingnon-loop, non-recursive code, and are thusex-
tremelyunlikely to occur in practice.

2 Nor should it. A different caller ofE may cause the edge to be resolved to a different
function, thus the BU graph forE does not include information about a call edge
which is not necessarily present in all calling contexts.

(a) Recursive Call Graph (indirect
call E → C is dotted)

(b) Call Node Edges, After
inlining F & E

1. { F }
2. { E }
3. { D }: mark unvisited
4. { B, D, C}
5. { A }

(c) SCC visitation order

Figure 9. Handling recursion due to an indirect call in the Bottom-Up phase

Using a technique likek-limiting [17] to guard against such
unlikely cases is unattractive because it could reduce precision
for reasonable data structures with paths more thank nodes long.
Instead, we propose that implementations either simply impose a
hard limit on graph size (e.g., 10,000 nodes, which is largerthan
real programs are likely to need), or use a smarter heuristicwhich
monitors and limits the growth of graphs due to cloning. If this limit
is exceeded, node merging can be used to reduce the size of the
graph. Our results in Section 5 show that the maximum function
graph size we have observed in practice across a wide range of
programs is only 3196 nodes, and this maximum is only weakly
correlated to program size (in fact, in our benchmarks, it issolely
determined by one large call-graph SCC, because the graphs for
functions in the SCC are merged). Maximum DS graph size is only
278 in the Linux kernel and only 401 inperlbmk which had the
next-largest call-graph SCC after the two versions ofgcc.

3.6 Complexity Analysis

The local phase adds at most one new node,EV entry, and/or
edge for each instruction in a procedure (before node merging).
Furthermore, node merging or collapsing only reduces the number
of nodes and edges in the graphs. We have implemented node
merging using Tarjan’s union-find algorithm [32], which ensures
that this phase requiresO(nα(n, n)) time andO(n) space for a
program containingn instructions in all [31].α(n, n) is the inverse
Ackerman’s function.

The BU and TD phases operate on DS graphs directly, so their
performance depends on the size of the graphs being cloned and
the time to clone and merge each graph. We denote these byK and
l respectively, wherel is O(Kα(K, K)) in the worst case. They
also depend on the average number of out-edges in the call graph
per function, denotedc. If there aref functions, thene = fc is
simply the total number of edges in the call graph.

For the BU phase, each function must inline the graphs for
c callee functions, on average. Because each inlining operation
requiresl time, the time required isfcl = Kα(K)e. The call sites
within an SCC do not introduce additional complexity, sinceevery
potential callee is again inlined only once into its caller within or
outside the SCC (in fact, these are slightly faster because only a
single graph is built, causing common nodes to be merged). Thus,
the time to compute the BU graph isΘ(Kα(K)e). The space
required to represent the Bottom-Up graphs isΘ(fK). The TD
phase is identical in complexity to the BU phase.

Putting these together, the worst case time and memory com-
plexity areΘ(nα(n) + Kα(K)e), andΘ(fK),

4. Major Engineering Choices
Through our experience scaling to increasingly larger programs
over time, we have repeatedly found that several O(N2) aspects
of the algorithm were the main bottlenecks to scalability. In con-
trast, we have never seen any significant combinatorial growth from
cloning: unification has been successful at preventing thisproblem.
To scale DSA to large programs, we have devised engineering so-
lutions to improve theseN2 problems, many of which should be

applicable to other interprocedural heap or pointer analysis algo-
rithms. The speedups achieved by these techniques are evaluated in
Section 5.2.

The Globals Graph: In the algorithm so far, global variables
accessed anywhere in the program would propagate bottom-upto
main, then top-down to all functions in the program, ballooning
graph size by a factor that grows asO(N2). A key optimization
we add to DSA is to use a separate “Globals Graph” to hold
information about global nodes and all nodes reachable fromglobal
nodes. We can then remove global variables from a function’s
graph if they are not used in the current function (even though they
may be used in callers or callees of that function). For example,
this eliminates theG nodes in graphs of all functions exceptaddG
(and main). Both Ruf [28] and Liang and Harrold [23] use a
somewhat similar technique, but they do not motivate it primarily
as an optimization and do not evaluate its impact on speed. Werefer
the reader to [18] for the detailed steps we use.

Shrinking EV with Global Equivalence Classes:Even with
the above refinement, programs that use large global arrays of
pointers to globals can be problematic (e.g. an array of pointers
to strings). TheEV entries for the target globals are replicated in
every function that accesses any one of those globals. SinceDSA
can never disambiguate these globals, we solved this by keeping
only one representative global in each DS node (and removingthe
rest from each graph’sEV as well). In programs with many globals,
this replacesO(N2) entries withO(N) in EV .

Efficient Graph Inlining: The version of function “clone-
GraphInto” shown in Figure 4 sometimes proved very slow in prac-
tice because it allocates and copies many nodes, only to discard
them soon after creation. To solve this issue, we now inline graphs
using a recursive traversal (of both graphs) from the commonpoint-
ers, only visiting nodes that will actually be reflected intothe target
graph. This is possible because unification ensures a 1-1 mapping
of paths in the two graphs, though there may be a many-to-one
mapping of nodes from source to target. Ruf used a similar tech-
nique, although the benefit wasn’t evaluated [28].

5. Experimental Results
We implemented the DSA algorithm in the LLVM Compiler Infras-
tructure [19]. The analysis is performed at link-time, using stubs
for C library functions while treating unknown external functions
conservatively. We have successfully used DSA for optimizations
and/or memory safety for a wide range of programs and for the
Linux kernel [18, 20, 21, 9, 8], and LLVM is used by several com-
mercial organizations.

We present results evaluating DSA on several benchmark suites:
the “ptrdist” 1.1 benchmarks, the SPEC 1995 and SPEC 2000 inte-
ger and floating point benchmarks (for those Fortran programs that
we were able to convert successful to C using f2c), a few unbundled
programs, and the Linux 2.4.22 kernel.povray31 includes sources
for thezlib andlibpng libraries. The Linux kernel includes only
a few drivers, but includes many other modules that would normally
be separately compiled and loaded, including many file system and

Code Size Analysis Time (sec) Mem (KB) # of Nodes
max Coll-

Benchmark LOC MInsts |SCC| Local BU TD Total BU TD Total Max apsed
ptrdistanagram 647 271 1 0.00 0.00 0.00 0.01 111 89 163 18 11
ptrdistks 684 546 1 0.00 0.00 0.00 0.01 97 68 207 24 0
ptrdistft 1301 433 1 0.00 0.00 0.00 0.01 112 86 150 14 0
ptrdistyacr2 3212 1621 1 0.01 0.01 0.01 0.02 222 212 369 17 0
ptrdistbc 6627 3729 1 0.01 0.02 0.02 0.05 591 408 738 29 16
130.li 7598 7894 24 0.03 0.09 0.04 0.16 1948 933 806 33 328
124.m88ksim 19233 7951 2 0.03 0.03 0.02 0.08 1334 774 1796 56 195
132.ijpeg 28178 12507 1 0.03 0.02 0.02 0.07 1453 935 1531 65 62
099.go 29246 20543 1 0.04 0.02 0.04 0.10 1299 906 2298 131 0
134.perl 26870 29940 19 0.08 0.12 0.06 0.26 2038 1201 1463 232 136
147.vortex 67211 37632 23 0.09 0.14 0.07 0.30 2785 1678 3529 355 242
126.gcc 205085 129083 255 0.44 1.87 0.37 2.68 10982 6586 12226 3046 1109
145.fpppp 2784 4447 2 0.01 0.01 0.01 0.03 472 261 623 48 43
104.hydro2d 4292 5773 2 0.02 0.02 0.01 0.05 672 384 688 48 88
110.applu 3868 5854 2 0.01 0.02 0.00 0.03 518 289 583 57 19
103.su2cor 2332 6450 2 0.02 0.02 0.01 0.05 759 437 1080 160 49
146.wave5 7764 11333 2 0.03 0.01 0.01 0.05 908 521 1171 70 164
181.mcf 2412 991 1 0.00 0.00 0.01 0.01 76 53 103 49 0
256.bzip2 4647 1315 1 0.01 0.00 0.00 0.01 131 80 205 76 3
164.gzip 8616 1785 1 0.00 0.01 0.00 0.01 217 127 290 60 1
175.vpr 17728 8972 1 0.03 0.02 0.01 0.06 969 614 2106 366 118
197.parser 11391 10086 3 0.04 0.03 0.03 0.1 1301 758 1291 109 121
186.crafty 20650 14035 2 0.05 0.03 0.04 0.12 1344 817 2890 701 45
300.twolf 20459 19686 1 0.05 0.01 0.03 0.09 1179 807 2022 411 37
255.vortex 67220 37601 23 0.07 0.10 0.09 0.26 2765 1669 3515 392 241
254.gap 71363 47389 9 0.17 0.41 0.19 0.77 8040 3837 5889 370 728
252.eon 35819 51897 6 0.24 0.18 0.14 0.56 7818 4450 6936 411 511
253.perlbmk 85055 98386 250 0.31 2.11 0.24 2.65 8785 3517 2038 401 510
176.gcc 222208 139790 337 0.44 2.38 0.42 3.24 11628 7101 12736 3196 1000
168.wupwise 2184 5087 2 0.01 0.01 0.01 0.03 523 302 608 64 33
173.applu 3980 5966 2 0.02 0.01 0.01 0.04 523 291 593 68 19
188.ammp 13483 10551 1 0.00 0.00 0.01 0.01 865 546 897 281 69
177.mesa 58724 43352 1 0.10 0.06 0.07 0.23 4115 2476 3038 98 857
fpgrowth 634 544 1 0.01 0.00 0.01 0.02 58 37 108 49 0
boxed-sim 11641 12287 1 0.02 0.03 0.01 0.06 693 442 480 65 61
NAMD 5312 19002 1 0.05 0.02 0.02 0.09 1042 761 1539 224 276
povray31 108273 62734 56 0.18 0.23 0.13 0.54 5582 3389 5278 318 732
linux 355384 305073 28 1.35 1.00 0.76 3.10 14498 31232 47348 278 9666

Table 1. Program information, analysis time, memory consumption, and graph statistics.

networking modules. It is complete enough for us to use it as a
standard configuration on a modern workstation.

Table 1 describes relevant properties of the benchmarks, aswell
as the experimental results. “LOC” is the raw number of linesof
C code for each benchmark, “MInsts” is the number of memory
instructions3 for each program in the LLVM internal representation,
and “SCC” is the size of the largest SCC in the call-graph for the
program. We omitted eight SPEC programs of less than 2000 lines
(101, 102, 107, 129, 171, 172, 179, 183) for lack of space, buttheir
results are available in [18].

5.1 Analysis Time & Memory Consumption

We evaluated the time and space usage of our analysis on a Linux
workstation with an AMD Athlon MP 2100+ processor, which runs
at 1733MHz. We compiled LLVM with GCC 3.4.2 at the-O3
level of optimization. Table 1 shows the running times and memory
usage, and graph node statistics for DSA (the Local phase uses little
memory and is not shown).

The six largest programs in our study,vmlinux, 176.gcc,
126.gcc, povray31, 253.perlbmk and254.gap are both fairly
large and contain non-trivial SCCs in the call graph. Nevertheless, it
takes only between 0.54 and 3.24 seconds to perform the complete
algorithm on these programs. To put this into perspective, we com-

3 Memory instructions areload, store, malloc, alloca, call, and structure or
array indexing instructions. Analysis time and memory usage correlate better with
this number than with LOC, as shown in [18].

piled the 176.gcc, 253.perlbmk, and povray31 benchmarks with
our system GCC compiler at the -O3 level of optimization. GCC
takes 94.7s, 47.4s, and 38.5s to compile and link these programs,
even though it does not performany cross-file optimizations. DSA’s
times are only3.4%, 5.6%, and1.4% of the total GCC compile
times for these cases, which we consider low enough to be practi-
cal for production optimizing compilers.

The table shows that memory consumption of DSA is also
quite small. The peak memory (which is almost exactly equal to
BU+TD) consumed for the largest code isless than 46MB, which
seems very reasonable for a modern compiler. These numbers are
noteworthy because the algorithm is performing a context-sensitive
whole-program analysiswith cloning, and memory use can often
be the bottleneck in scaling such analyses to large programs.

The “# of Nodes” columns show information about the DS
graph nodes. We excludeEV entries since those are simple map
entries, not actual nodes. “Total” is theaggregatenumber of nodes
in the TD graphs for all functions and “Max” is the maximum size
of any particular function’s graph (the termK in the notation of
Section 3.6). Most importantly, the table shows that Total as well
asK both grow quite slowly with total program size, indicating
that context-sensitive analysis and heap cloning do not cause any
blowup in the points-to graphs; this would not have been the case
with a subset-based analysis [34]. “Collapsed” is the totalnumber
of TD graph nodes collapsed, which happens due to incompatible
types on merged nodes. In most of the largest programs, roughly
about 7-15% of the nodes are collapsed, and the most common rea-

son appears to be merging of Global nodes, which in some cases
causes other nodes to be merged. In some cases, however,unrecog-
nizedcustom memory allocators produce significantly higher frac-
tions of Collapsed nodes, e.g., 25% in 253.perlbmk and 20% in
linux.

We have also examined the scaling behavior of the analysis
(these graphs are omitted here for lack of space but are available
in [18]). Across programs spanning five orders of magnitude of pro-
gram size, the Local and TD passes takeO(n) time, wheren is the
number of memory operations in the program (columnMInsts
in the table). The BU phase is slightly worse, but mainly for pro-
grams with large numbers of globals such as 254.gap, 253.perlbmk
and 176.gcc (in other words, number of memory operations does
not fully capture the analysis complexity). We believe thisbehav-
ior can be further improved with more sophisticated handling of
global equivalence classes.

5.2 Importance of Optimizations
 No equivalence classes
 No globals graph
 Unoptimized graph merging
 Direct Call
 No SCC collapsing
 No optimizations

 0x

 1x

 2x

 3x

 4x

 5x

 6x

 7x

 8x

m
ea

n

13
4.

pe
rl

14
7.

vo
rt

ex

25
5.

vo
rt

ex

si
od

25
3.

pe
rlb

m
k

25
2.

eo
n

po
vr

ay

17
6.

gc
c

25
4.

ga
p

vm
lin

ux

S
lo

w
do

w
n

v.
s.

 F
ul

ly
 O

pt
im

iz
ed

10.2x 21.8x 9.7x 10.7x

Figure 11. Relative Performance Impact of Optimizations

To investigate the effectiveness of the major optimizations, in-
cluding the engineering ones described in Section 4 and the collaps-
ing of SCCs described in Section 3.3.2, we measured the analysis
times with each optimization turned off individually and also with
all these optimizations off. This shows the incremental speedup
each optimization providesin the presence of all the others, as well
as the overall speedup.

In Figure 11, we show results for the 10 longest-running bench-
marks in terms of unoptimized analysis time, and the averageacross
these 10 benchmarks. The data for each program are normalized to
the runtime of the fully optimized analysis, i.e, a number larger than
1.0 is a slowdown.

Overall, the speedups range from 2x to almost 16x in most
cases. The two most important optimizations, on average, are
equivalence classes of globals, and inlining only nodes reachable in
the result graph. The former reduces the size of the nodes andthe
size of the lookup tables mapping IR variables to nodes. The latter
reduces the number of nodes allocated during inlining as well as
nodes walked during unreachable node elimination. Each of these
optimizations individually produces speedups of about 1.5x-10x,
and on average just over 3x.

Using a separate globals graph is second best for several pro-
grams; it reduces the size of each graph, and makes graph inlining
faster. It gives speedups ranging from 1.0x to 3.5x, and on average
over 2x. The two optimizations related to globals reduce memory
usage considerably, e.g., by 67% and 55% respectively for 176.gcc.

Note that the Linux kernel is substantially different from other
large programs. It has a very large number of globals, which ex-
plains the over 10x improvement with global equivalence classes.
The globals graph gives a smaller speedup of about 2.3x, perhaps
because of shallow call depths (but we have not verified that). Linux
also has significantly smaller graphs compared with other programs
of similar size. This helps explain the speed of the analysison the
kernel, and also the unusually small improvement from efficient
inlining.

Perhaps most importantly, these results show that the benefit
of the optimizations is correlated with program size. To show this
trend, the Table 2 below lists the benefits for the 12 largest pro-
grams by LOC, averaged across groups of four. The benefits grow
strongly with program size, reflecting theO(N2) nature of the bot-
tlenecks eliminated. Both the use of many globals and havingto
inline large graphs (due to large SCCs and more indirect calls) are
more common in complex, larger programs.

Avg. LOC Total opt. speedup
Largest 4 programs 280k 10.8x
Second largest 4 72k 4.37x
Third largest 4 52k 2.74x

Table 2. Speedup trend for 12 largest programs

5.3 Analysis of DSA Precision

DSA is powerful in some respects (context sensitivity with heap
cloning and field-sensitivity) but weak in others (unification and
flow insensitivity). We compared the precision of DSA with several
other standard pointer analysis algorithms, for several clients, in-
cluding alias analysis, interprocedural mod/ref analysis, and a few
dataflow optimizations [18]. We present results for an aliasanalysis
client here and briefly summarize the mod/ref results.

Figure 12 compares the alias analysis precision of DSA against
four other pointer analysis algorithms:local: a simple/fast lo-
cal analysis that traverses SSA edges intraprocedurally and in-
cludes base-offset analysis;steens-fiandsteens-fs: implementations
of Steensgaard’s [31] unification-based, context-insensitive algo-
rithm, in field-insensitive and field-sensitive versions; and anders:
Andersen’s [2] context-insensitive, field-insensitive algorithm. Ev-
ery other algorithm ”falls back” (if it answers “may alias”)to local,
ensuring that any query resolvable by the local algorithm will be
resolved by all analyses. This means that comparing againstthe re-
sults for local alone isolates the actual benefit each of the more
aggressive analyses would provide in a realistic compiler (such
chaining of alias analyses has been shown to be important in prac-
tice [15]). Note thatlocal can provide more precise answers than
the interprocedural queries in some cases, because it benefits from
simple flow sensitivity by traversing SSA edges within a procedure.
In fact, local can return “must alias” on some queries whereas the
flow-insensitive algorithms (all the others) cannot.

The evaluation performs a set of alias queries of all pairs of
pointer variables (which include intermediate pointers obtained by
indexing into a struct or array) within each function in a program
and counts the number of queries that return “may alias” (i.e., can-
not be proven to be “no alias” or “must alias”). A lower percentage
therefore corresponds to a more precise analysis. Because this eval-
uates alias pairs within a function, it approximates the useof an
abstract intraprocedural optimization client. Figure 12 focuses on
the C/C++ SPEC CPU2000 benchmarks, which have been widely
studied by other work, including [15].

Briefly, the major findings are:

• The alias disambiguation precision of DSA is comparable
to Andersens algorithm in many cases (256.bzip2, 164.gzip,
183.equake, 176.gcc, etc). As expected, there are cases where
unification reduces precision (197.parser, 255.vortex), but the

local
steens−fi
steens−fs
anders
ds−aa

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

F
P

_M
ea

n

17
7.

m
es

a

18
8.

am
m

p

17
3.

ap
pl

u

16
8.

w
up

w
is

e

17
2.

m
gr

id

17
1.

sw
im

18
3.

eq
ua

ke

17
9.

ar
t

In
t_

M
ea

n

17
6.

gc
c

25
3.

pe
rlb

m
k

25
2.

eo
n

25
4.

ga
p

25
5.

vo
rt

ex

30
0.

tw
ol

f

18
6.

cr
af

ty

19
7.

pa
rs

er

17
5.

vp
r

16
4.

gz
ip

25
6.

bz
ip

2

18
1.

m
cf

P
er

ce
nt

 M
ay

 A
lia

s

Figure 12. Percentage of alias queries that return “May Alias” (lower is more precise)

difference is quite small in both cases4. There are many
more cases (181.mcf, 175.vpr, 186.crafty, 254.gap, 300.twolf,
188.ammp, 177.mesa, etc) where the combination of context
sensitivity and unification are significantly more precise than
non-context-sensitive subset-based analysis. This is partly be-
cause (as other researchers [5, 11] have shown) bidirectional
argument binding is the leading cause of precision loss in a
unification-based analysis. This problem can be solved by using
either context sensitivity or a subset-based analysis. Conversely,
the context sensitivity can help precision significantly insome
cases that are not handled well by subset-based analyses.

• Using a cloning-based context-sensitive analysis can yield far
more accurate points-to results than using a static naming
scheme for heap and stack objects. The effect is most pro-
nounced in programs that use a large amount of heap allocated
data and have few static allocation sites. For example, 175.vpr,
300.twolf, and 252.eon have simple wrapper functions around
malloc that would prevent ordinary context-insensitive algo-
rithms from disambiguating many pairs of heap references. Fur-
ther experiments are needed to determine how deep the context-
sensitivity must go to achieve these results [26].

• Comparingsteens-fito steens-fs, we see that field sensitivity
substantially improves the precision of unification-basedanaly-
sis only in rare cases (188.ammp), but generally has only a very
small effect. The most important reason is that thelocal analy-
sis captures many common cases of field sensitivity with sim-
ple base/offset disambiguation, e.g., two references to different
fields off the same pointer. Field sensitivity may be more im-
portant when combined with context-sensitivity, because there
is greater likelihood of disambiguating pointers to heap objects,
but we have not evaluated that hypothesis.

In our study of precision for interprocedural mod/ref analysis,
the results show that DSA (like any context-sensitive algorithm)
produces significantly better mod/ref information than Andersen’s
algorithm. For example, in 24 of the 40 programs in that study,
DSA returns NoModRef 40% more often than Andersen’s [18].

Finally, we have also evaluated how effective DSA is in iden-
tifying linked data structure instances and their properties. We did
this by manually inspecting the DS graphs and correlating them

4 Note that this compares a field-sensitive algorithm (DSA) with a field-insensitive
one (Andersen’s) and so we cannot draw any definite conclusions comparing context-
sensitive with subset-based analysis. Our goal here is simply to show that DSA is
reasonably precise compared with state-of-the-art interprocedural analyses.

with source code information for a few of our benchmarks [24]. The
results showed that the algorithm is usually successful in identify-
ing different kinds of linked data structures as well as their type and
lifetime information, and is sometimes successful at distinguishing
instances of such structures. The most common reason for failure
in the latter is due to lack of flow-sensitivity.

6. Related Work
There is a vast literature on pointer analysis (e.g., see thesurvey
by Hind [17]), but the majority of that work focuses on context-
insensitive analyses. We focus here on context-sensitive techniques.

Several algorithms are context-sensitive in the analysis but not
the heap naming: they name heap objects by allocation site and
not by call path. Liang and Harrold’s FICS algorithm processes
programs up to 25K lines of code in a few seconds each [22].
Fahndrich et al [11] analyze programs as large as 200K lines of
code (the Spec95 version of gcc) in about 3 minutes. The Whaley-
Lam algorithm takes up to 19 minutes for one program and over 10
minutes for four out of twenty programs [34]. It also potentially
considers all possible acyclic call paths (e.g., they report 1024

paths in one program). Both of these raise concerns for production
compilers. Conversely, the GOLF algorithm [6], which is both fast
and scalable, uses only one level of context-sensitivity. The key
question is whether full cloning of heap objects, which we term
“full context sensitivity,” can achieve similar speed and scalability.

The most similar algorithm to ours is called MoPPA [23]. It is
also flow-insensitive and context-sensitive, uses unification, and its
structure is similar to our algorithm, including Local, Bottom-Up,
and Top-Down phases, and uses a separate Globals Graph. MoPPA
seems to require much higher memory than our algorithm: it runs
out of memory analyzingpovray3 with field-sensitivity on a ma-
chine with 640M of memory. It has several other practical limita-
tions: it can only use field-sensitivity forcompletelytype-safe pro-
grams, requires a complete program, and requires a precomputed
call-graph. We avoid these limitations via fine-grain completeness
tracking and the use of call nodes for incompletely resolvedcalls.

Ruf’s synchronization removal algorithm for Java [28] also
shares several important properties with ours and with MoPPA,
including combining context-sensitivity with unification, a non-
iterative analysis with local, bottom-up and top-down phases, and
node flags to mark global nodes. Unlike our algorithm, his work
requires a call graph to be specified, it is limited to type-safe pro-
grams, and does not appear to handle incomplete programs.

A few papers describe context-sensitive algorithms with full
heap cloningwithout using unification [3, 25]. Although the lat-
ter [25] has been shown to scale to quite large programs, which is
an impressive result for a non-unification-based context-sensitive
analysis, it does not provide convincing evidence that the technique
could be used in production compilers. The work of Nystrom etal.
is about 2 orders of magnitude slower than ours in absolute compile
time, e.g., 192 s. for 176.gcc compared with 3.24 seconds forours,
measured on similar systems.

7. Conclusion
The experimental results in this paper provide strong evidence that
a context-sensitive points-to analysis with full heap cloning (by
acyclic call paths) can be made efficient and practical for use in pro-
duction compilers. Our algorithm requires only a few seconds for
programs of 100-350K lines of code and scales well across fiveor-
ders of magnitude of program size. Some of the key technical ideas
emerging from this work are the careful design choices to con-
struct the call graph incrementally during the analysis, toeliminate
O(N2) behaviors, and to track fine-grained completeness informa-
tion as a unified solution for several difficult algorithmic problems.

Despite important simplifications for scalability (unification and
flow-insensitivity), the analysis is powerful enough to provide bet-
ter alias analysis precision than Andersen’s algorithm in several
programs. DSA can distinguish instances of logical data structures
in programs and provide useful compile-time information about
such data structures, without an expensive shape analysis.In fact,
DSA, in combination with Automatic Pool Allocation [20], enables
novel analyses and transformations that can operateon entire recur-
sive data structuresinstead of individual loads and stores or data
elements [18].

References
[1] LLVM Link Time Optimization: Design and Implementation.

http://llvm.org/docs/LinkTimeOptimization.html.

[2] L. O. Andersen. Program Analysis and Specialization for the
C Programming Language. PhD thesis, DIKU, University of
Copenhagen, May 1994.

[3] B.-C. Cheng and W. mei Hwu. Modular interprocedural pointer
analysis using access paths: Design, implementation, and evaluation.
In PLDI, Vancouver, British Columbia, Canada, June 2000.

[4] S. Chong and R. Rugina. Static analysis of accessed regions in
recursive data structures. InSAS, 2003.

[5] M. Das. Unification-based pointer analysis with directional assign-
ments. InPLDI, pages 35–46, 2000.

[6] M. Das, B. Liblit, M. Fähndrich, and J. Rehof. Estimating the impact
of scalable pointer analysis on optimization. InSAS, 2001.

[7] A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond
k-limiting. In PLDI, pages 230–241, June 1994.

[8] D. Dhurjati, S. Kowshik, and V. Adve. SAFECode: Enforcing alias
analysis for weakly typed languages. InPLDI, June 2006.

[9] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory safety
without garbage collection for embedded applications.ACM Trans.
on Embedded Computing Systems, Feb. 2005.

[10] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function pointers.
In PLDI, pages 242–256, Orlando, FL, June 1994.

[11] M. Fähndrich, J. Rehof, and M. Das. Scalable context-sensitive flow
analysis using instantiation constraints. InPLDI, 2000.

[12] J. S. Foster, M. Fähndrich, and A. Aiken. Polymorphic versus
monomorphic flow-insensitive points-to analysis for c. InProc.
Int’l Symp. on Static Analysis (SAS), London, UK, 2000.

[13] R. Ghiya and L. J. Hendren. Connection analysis: A practical
interprocedural heap analysis for C.International Journal of Parallel
Programming, 24(6):547–578, 1996.

[14] R. Ghiya and L. J. Hendren. Is it a tree, a DAG, or a cyclic graph? A
shape analysis for heap-directed pointers in C. InPOPL, 1996.

[15] R. Ghiya, D. Lavery, and D. Sehr. On the importance of points-to
analysis and other memory disambiguation methods for C programs.
In PLDI, 2001.

[16] B. Hackett and R. Rugina. Region-based shape analysis with tracked
locations. InPOPL, pages 310–323, New York, NY, USA, 2005.

[17] M. Hind. Pointer analysis: Haven’t we solved this problem yet? In
PASTE, 2001.

[18] C. Lattner. Macroscopic Data Structure Analysis and Optimization.
PhD thesis, Comp. Sci. Dept., Univ. of Illinois, Urbana, IL,May 2005.

[19] C. Lattner and V. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis and Transformation. InInt’l Symp. on
Code Generation and Optimization, Mar 2004.

[20] C. Lattner and V. Adve. Automatic pool allocation: Improving
performance by controlling data structure layout in the heap. In
PLDI, Chicago, IL, Jun 2005.

[21] C. Lattner and V. Adve. Transparent Pointer Compression for Linked
Data Structures. InMSP, Chicago, IL, Jun 2005.

[22] D. Liang and M. J. Harrold. Efficient points-to analysisfor whole-
program analysis. InESEC, 1999.

[23] D. Liang and M. J. Harrold. Efficient computation of parameterized
pointer information for interprocedural analysis. InSAS 2001, July
2001.

[24] P. Meredith, B. Pankaj, S. Sahoo, C. Lattner, and V. Adve. How
successful is data structure analysis in isolating and analyzing linked
data structures? Tech. Report UIUCDCS-R-2005-2658, Computer
Science Dept., Univ. of Illinois at Urbana-Champaign, Nov 2005.

[25] E. M. Nystrom, H.-S. Kim, and W. mei W. Hwu. Bottom-up and
top-down context-sensitive summary-based pointer analysis. In SAS
2004, 2004.

[26] E. M. Nystrom, H.-S. Kim, and W. mei W. Hwu. Importance ofheap
specialization in pointer analysis. InProc. ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering
(PASTE), pages 43–48, New York, NY, USA, 2004.

[27] R. O’Callahan and D. Jackson. Lackwit: a program understanding
tool based on type inference. InICSE ’97: Proceedings of the 19th
international conference on Software engineering, pages 338–348,
New York, NY, USA, 1997. ACM Press.

[28] E. Ruf. Effective synchronization removal for java. InPLDI, pages
208–218, 2000.

[29] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems
in languages with destructive updating.TOPLAS, 20(1), Jan. 1998.

[30] B. Steensgaard. Points-to analysis by type inference of programs with
structures and unions. InCompiler Construction, pages 136–150,
London, UK, 1996.

[31] B. Steensgaard. Points-to analysis in almost linear time. InPOPL,
1996.

[32] R. E. Tarjan. Efficiency of a good but not linear set unionalgorithm.
J. ACM, 22(2):215–225, 1975.

[33] F. Vivien and M. Rinard. Incrementalized pointer and escape analysis.
In PLDI, pages 35–46, 2001.

[34] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams. InPLDI, 2004.

[35] R. P. Wilson and M. S. Lam. Effective context sensitive pointer
analysis for C programs. InPLDI, pages 1–12, June 1995.

