Making Context-sensitive Points-to Analysis with Heap Claing
Practical For The Real World *

Chris Lattner

Apple Inc.
clattner@apple.com

Abstract

Context-sensitive pointer analysis algorithms with futheap
cloning” are powerful but are widely considered to be tooesxp
sive to include in production compilers. This paper shows tlie
first time, that a context-sensitive, field-sensitive allgpon with
full heap cloning (by acyclic call paths) can indeed be bath-s
able and extremely fast in practice. Overall, the algorith@ble to
analyze programs in the range of 100K-200K lines of C code3n 1
seconds, takes less than 5% of the time it takes for GCC toit®@mp
the code (which includes no whole-program analysis), aatkesc
well across five orders of magnitude of code size. It is alde ab
to analyze the Linux kernel (about 355K lines of code) in &d-s
onds. The paper describes the major algorithmic and endginee
design choices that are required to achieve these resutisidi
ing (a) using flow-insensitive and unification-based aria)yghich
are essential to avoid exponential behavior in practicgséuri-
ficing context-sensitivity within strongly connected comnpnts
of the call graph; and (c) carefully eliminating several dsnof
O(N?) behaviors (largely without affecting precision). The tech
nigues used for (b) and (c) eliminated several major batttka
to scalability, and both are generalizable to other corgexisitive
algorithms. We show that the engineering choices colleltive-
duce analysis time by factors of up to 3x-21x in our ten larges
programs, and that the savings grow strongly with prograze. si
Finally, we briefly summarize results demonstrating thecigien

of the analysis.

Categories and Subject Descriptors D.3.4 [Processork Compil-
ers

General Terms Algorithms

Keywords Pointer analysis, context-sensitive, field-sensitive, in
terprocedural, static analysis, recursive data structure

* This work is supported in part by NSF under grant numbers @083426,
EIA-0103756, CCR-9988482 and CCF-0429561, and in partéythiver-
sity of lllinois.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI'07 June 11-13, 2007, San Diego, California, USA.
Copyright© 2007 ACM 978-1-59593-633-2/07/0006. . . $5.00

Andrew Lenharth

University of lllinois at
Urbana-Champaign

alenhar2@cs.uiuc.edu

Vikram Adve

University of lllinois at
Urbana-Champaign

vadve@cs.uiuc.edu

1. Introduction

Context-sensitive alias analysis algorithms have beeatiedtunten-
sively over the last two decades, with impressive improvema
algorithmic scalability [7, 10, 35, 14, 13, 22, 11, 12, 23].3®b
achieve true context-sensitivity, such algorithms mustiniguish
heap objects by (acyclic) call paths, not just by allocasite; this
property is sometimes referred to as “heap cloning” [26]aple
cloning is important because it allows analyses to disistydiffer-
entinstancef a logical data structure created at different places in
aprogram, even if the data structure is implemented withnangon
set of functions (e.g., a data structure library) that @teanemory
internally. Such programming patterns are increasinggvalent
particularly in object-oriented programs, where reusdibieries
are an important feature. For example, in the LLVM compiles-s
tem [19], which is written in C++, there are no less than 2%icta
occurrences of a single class¢tor<unsigned>). Heap cloning
also allows analyses to handle allocations that occur giramne
or more levels of wrappers in a simple, general manner idstéa
handling them as a special case (e.g., single-level wragfét).
More quantitatively, Nystrom et al. [26] show that for mampp
grams, haming heap objects only by allocation site (the st
mon alternative) significantly reduces analysis precisimmpared
with heap specialization by call paths, up to some threshold
Unfortunately, there is widespread skepticism that athors
with heap cloning can be scalable and fast enough to be iedlud
in production compilers. To date, this skepticism is ardyalsti-
fied: we know of no previous paper that demonstrates that an alias
analysis that uses heap cloning is scalable and fast encuglise
in production compilersSection 6 discusses the current state of
the art in more detail. Briefly, two recent algorithms that dgfer-
ent forms of cloning with a subset-based (rather than a atiifia-
based) analysis have been to shown to be scalable but hopigel
slow in absolute running times [34, 25]. At least for now, Isuc
algorithms appear too slow to be used in a production compile
although they may be reasonable for static analysis toaisth®
other hand, there are several algorithms that use unificédioon-
trol the exponential blow-up that can occur with contexisstvity
(with or without heap cloning). The MoPPA algorithm by Liang
and Harrold [23] uses heap cloning and is quite fast but estsau
available memory on a workstation with 640MB of memory for
their largest progranpovray. Their results (and many others) jus-
tify the common concern that, in practice, memory consuompti
can be a limiting factor in scaling context-sensitive ara, Many
other context-sensitive alias analysis papers either tos®heap
cloning [22, 11, 12] or (particularly in earlier papers) pmeport
results for relatively small programs of a few thousand diné
code or less and typically make limited or no claims about-sca
ability [7, 10, 35, 14, 13, 27].

In this paper, we describe an algorithm nanieata Struc-
ture Analysis (DSA), and use it to present strong evidence that
a context-sensitive, field-sensitive algorithm with fulldp cloning
(by acyclic call paths) can indeed be both scalable and rextye
fast in practice. DSA is able to analyze programs in the rasfge
100K-220K lines of C code in 1-3 seconds, taking less than 5% o
the time it takes GCC to compile the program at -O3 (which does
no whole-program analysis), and scaling well across fiversrdf
magnitude of code size in terms of both analysis time and mem-
ory usage. It is also able to analyze the Linux kernel (ab&6K3
lines of compiled code in our configuration) in 3.1 secondsese
analysis times and scaling behavior appear to be very rebion
for production compilers.

More specifically, DSA is a points-to analysis algorithmttha
is field-sensitive and context-sensitive with full heapnitg (by
acyclic call paths). Like several previous papers, we combiese
with a flow-insensitive and unification-based approach tprove
scalability [22, 11, 12, 23]. There are three novel featunesur
algorithm itself:

o First, DSA uses a new extension of Tarjan’s SCC finding algo-
rithm to incrementally construct a call graph during thelgsia
without any iteration even in the presence of function point-
ers and recursion. An algorithm by Fahndrich et al. [11jis t
only previous work we know that achieves the same property,
but they do it by using a constraint instantiation method tha
appears difficult to extend to incomplete programs, whiasis
sential for production compilers in practice.

Second, it uses a fine-grain “completeness” tracking teglani
for points-to sets as a unified solution for several diffiguib-
lems that have usually been solved via different technidpees
fore (or ignored): (a) supporting field-sensitivity for ntype-
safe languages; (b) correctly supporting incomplete pnogr
i.e., withunknowrexternal functions; and (c) constructing a call
graph incrementally during the analysis. This techniquelm
used in any alias analysis that explicitly tracks reaclitshif
objects (typically, analyses that use an explicit repregam of
memory rather than just “aliasing pairs” of references J17]

Third, DSA includes several essential engineering chailges
veloped over time to avoid®(N?) behaviors that were a ma-
jor bottleneck to scalability in practice. Two of these have
been described previously (the globals graph [28, 23] afid ef
cient inlining [28]) but no experimental results on theinbéts

have been reported. These choices are generalizable to otheint Global

context-sensitive algorithms. Our experiments show thahe
choice contributes substantial speedups, and they dobéct
achieve 3x—21x reduction in analysis time in our ten larpest
grams. furthermore this reduction increases strongly with
gram size, demonstrating that they eliminate significaatasc
bility bottlenecks.

In addition to speed and scalability, the algorithm has isdve
practical strengths that we consider valuable for real-world com-
pilers. Perhaps most important, DSA correctly handlesriete
programs (i.e., programs witinknownexternal functions): it pro-
duces conservative results while still trying to providiasihg in-
formation for as much of a program as possible. To our knowl-
edge,noneof the previous context-sensitive, unification-based al-
gorithms [22, 11, 12, 23] can correctly handle incomplete- pr
grams. The algorithm supports the full generality of C/C+®-p
grams, including type-unsafe code, function pointersunson,
setjmp/longjmp, C++ exceptions, etc. The algorithm does not
require a call graph as input, as noted earlier (even thatigmon-
iterative).

We compare the precision of our algorithm for alias analisis
Andersen’s algorithm [2] (a context-insensitive subsasdal algo-
rithm), showing that DSA is about as precise Andersen’s fanyn
cases, is significantly more precise for some programs, saodly
worse in rare cases. Further, other work [18] shows that thé-m
/ref information captured by DSA is significantly better nhitat
computed by non-context-sensitive algorithms.

In addition to alias analysis, DSA can also be used to extract
limited information about entire linked data structurekeritifying
instancesf these structures, bounding lifetimes of each instance,
and extracting available (flow-insensitive) structural &pe infor-
mation for each identified instance (this capability is tbarse of
the name Data Structure Analysis).

Although this information is significantly more limited tha
full-blown shape analysis [29, 4, 16], it is sufficient for nmyain-
teresting applications. One such application isAlwomatic Pool
Allocationtransformation [20], which segregates heap objects into
distinct pools if the points-to graph can distinguish sts&his
can improve spatial locality significantly for recursivetalatruc-
ture traversals, and can enable other compiler and run-écte
nigues that wish to modify (or measure) per-data-strudbeteav-
ior [21]. Another example is the SAFECode compiler for C [8],
which enforces safety properties (memory safety, corftol-in-
tegrity, type safety for a subset of objects, and analysisdoess)
automatically and with relatively low overhead for unmoeiifiC
programs. Type homogeneity of points-to sets enables reditioin
of run-time checks in SAFECode, reducing its overhead.

The full source code for DSA can be downloaded via anony-
mous CVS atllvm.org. Because only the first (“local”) phase
of the algorithm directly inspects the program represé@nmathe
implementation should be relatively straightforward todmporate
into other mid-level or low-level compiler systems writt@nC++.

The next section precisely defines the points-to graph sepre
tation computed by our analysis. Section 3 describes thaitign
and analyzes its complexity. Section 4 describes severgaritant
engineering choices required for scalability. Sectiongcdees our
experimental results for algorithm cost and very briefly swan
rizes the results of two studies of algorithm precision.t®eac6
discusses related work and Section 7 briefly summarizes dj@m
conclusions.

typedef struct list { struct list xNext;
int Data; } list;
= 10;
void do.all(list =L,
do { FP(&L—>Data);
L = L—>Next;
} while(L);

void (xFP)(int %)) {

}

void addG(int *X) { (xX) += Global; }

void addGTolList(list xL) { do.all(L, addG); }

list xmakeList(int Num) {
list *New = malloc (sizeof(list));
New—>Next = Num ? makelList(Numl) :
New—>Data = Num; return New;

0;

int main() { /* X &Y lists are disjoint %/
list *X = makelList(10);
list *Y = makeList(100);
addGTolList(X);
Global = 20;
addGToList(Y);

Figure 1. C code for running example

2. The Data Structure Graph

Data Structure Analysis computes a graph we call the DatecStr
ture Graph (DS graph) for each function in a program, sunzimgyi
the memory objects accessible within the function alond wieir
connectivity patterns. Each DS graph node represents erjpaity
infinite) set of dynamic memory objects, and distinct nodgse-
sent disjoint sets of objects, i.e., the graph is a finitdjcsfzarti-
tioning of the memory objects. All dynamic objects which nimey
pointed to by a single pointer variable or field are represgtat a
single node in a graph.

T
Return Called First Second
Value Function Argument Argument
DS node Variable Call Node

Figure 2. Graph Notation

reference. Despite the complexity of the example, Datac8ira
Analysis is able to prove that the two listsand Y are disjoint.
Naming heap objects by allocation site would prevent theliste

In defining the DS graph, we assume that input programs have afrom peing disambiguatedecause nodes of both are allocated at

simple type system with structural equivalence, havingjiive in-
teger and floating point types of predefined sizes, plus fetived
types: pointers, structures, arrays, and functions. Tladysis ex-
plicitly tracks points-to properties only for pointer tygand integer
types of the same size or larger; we call thpsiter-compatible
types (other values are treated very conservatively if eded into
apointer-compatibleype). For any type, fields(r) returns a set
of field names ofr. This is a single degenerate field name it a
scalar type or function type. An array type of known sizenay be
represented either as a structure witfields (if all index expres-
sions into the array are compile-time constants) or by desifirgjd;
an unknown-size array is always represented as the lateeal¥
assume a load/store program representation in which Virgga
isters and memory locations are distinct, it is not posdibleake
the address of a virtual register, and virtual registersardn rep-
resent scalar variables (i.e., integer, floating point,anter). Spe-
cific operations in the input program representation areréssd
in Section 3.2.

2.1 Graph Definition

The DS graph for a function is a finite directed graph represen
as atupleDSG(F) = (N, E, Ev, Ncai), Where:

the same site. The final DS graph computedrfatn is shown in
Figure 10.

To illustrate the DS graphs computed by various stages of our
algorithm, we render DS graphs using the graphical notatarvn
in Figure 2. Figure 3 shows the initial (“local”) graphs cougd for
the do_all andaddG functions, before any interprocedural infor-
mation is applied. The figure includes an example of a calenod
which (in this case) calls the function pointed to by, passing
the address of the field pointed to by>data as an argument, and
ignores the return value of the call.

2.2 Graph Nodes and Fields

Each DS node: has three pieces of information describing the
memory objects corresponding to that node:

e T'(n): a language-specific type for the memory objects repre-
sented byn. This type determines the number of fields and out-
going edges in a node. Note that fields are tracked separately
only for “type-homogeneous” nodes, as explained below.

e G(n): a set of global objects representedshyincludes func-
tions, which represent the targets of function pointersafride
f field in call nodes.

e N is a set of nodes, called “DS nodes”. DS nodes have several , flags(n): set of flags associated withC { H,S,G,U,A,M R,

attributes described in Section 2.2 below.

Eis a set of edges in the graph. Formaliis a function of type
(ns, fs) — (na, fa), whereng,ng € N, fs € fields(T(ns))
and fy € fields(T(naq)), andT (n) denotes type information
computed for the objects af as explained below. We refer
to a (nodefield) pair as a tell’. E is a function because

a source field can have only a single outgoing edge. Non-
pointer-compatible fields (and virtual registers) are neapo
(null, 0).

Ey is a partial function of typevars(f) — (n, f), where
vars(f) is the set of virtual registers in scope in functign
This includes global variables, which are treated as ireg:

isters of pointer type with global scope, pointing to an umed

global memory object. Conceptuallfy (v) is an edge from
registerv to the target fieldn, f) pointed to byw, if v is of

pointer-compatible type.

N.qu C N is asetof “call nodes” in the graph, which represent
unresolved call sites within the current function or onetsf i
(immediate or transitive) callees. Each call nede N.q; is a
k+2tuple:(r, f,a1,...,ax), where every element of the tuple

is a node-field paikn, f). r denotes the value returned by the
call (if it is pointer-compatible), and the set of possible callee
functions.as . .. ax denote the values passed as arguments to
the call. Conceptually, each tuple element can also bededar
as a points-to edge in the graph.

To illustrate the DS graphs and the analysis algorithm, vee us
the code in Figure 1 as a running example. This example create
and traverses two disjoint linked lists, using iteratiogcursion,
function pointers, a pointer to a subobject, and a globabiste

C, O }. These flags are defined below.

int: R
Global

S

- list: R

int

Figure 3. Local DSGraphs fodo_all andaddG

Storage class flags (H, S, G, U)rhe'H’,’'S’,’G’ and’U’ flags

in flags(n) are used to distinguisieap,Stack,Global (including
functions), andJnknown objects. Multiple flags may be present in
a single DS node. Thenknown flag is added to a DS node when a
constant integer value is cast to a pointer or when unanallyza
address arithmetic is seen: the flag signifies that the ictsbru
creating the target object was not found (these cases aegirdnt

in portable programs). A node markéd’ must be treated as
potentially overlapping with (i.e., representing commoemory
objects asanyother node in the graph. Nodes representing objects
created in an external, unanalyzed functionraemarked'U’ , but
are treated as “incomplete,” as described below.

Mod/Ref flags (M, R): These flags simply mark whether store or
load operations have been detected on a memory object atdiee n
This directly provides context-sensitive Mod/Ref infortina for
memory objects, including global, stack and heap objects.
Completeness flag (C)The Complete flag denotes that all oper-
ations on objects at a node have been processed. For exahgple,

list node in the local graph for functiofio_a11 (Figure 3) hasno 3. Construction Algorithm

c flag because the list ig access.ible. in an unprocessed dailee, DS graphs are created and refined in a three step processrathe fi
both lists and the global in functiomin are markec.Cc.)mpIeté. phase constructs a DS graph for each function in the progrsimg
Anode may have nG flag even at the end of analysis if itis reach- o\ intraprocedural information (a “local” graph). Thisthe only
able from unavailable ex.ternal functions (we find it is conmo . phase that inspects the actual program representationgiiéwo
have a few such nodes in large programs, because of undeailab phases operate solely on DS graphs. Second, a “Bottom-Ufj-an

Iibrarigs). At any point, if a node is not marked com.ple.tea th' sis phase is used to eliminate incomplete information deallees
formation calculated for the DS node represents partiatmétion in a function, by incorporating information from callee gha into

and must be treated conservatively. In partjcular, the maoalelater the caller's graph (creating a “BU” graph). By the end of the B
be assigned extra edges, extra flags, a different type, orew&y ,paqe the call graph construction is also complete. The‘finp-
end up merged with another incomplete node in the graph. For- 5g,n phase eliminates incomplete information due to intrgm

mally, two nodes with ncC flag (e.g.,L andFP) may represent ,rqments by merging caller graphs into callees (creatifigd
common objects, i.e., aclient (e.g., alias analysis qepriwistas- g anh) ‘Both, the BU and TD phases operate on the known (i.e.,
sume that pointers to the two nodes may alias. Nevertheldes, partial or completed) Strongly Connected Components (3GCs
nodes in such a graph may be complete and such nodes will nevetihq g graph.

be merged with any other node, providing useful partial rimia- Two properties are important for understanding how theyanal
tion for incomplete programs. (Of course, a pointer to nod w gjs \yorks in the presence of incomplete programs, and hoanit ¢
theU flag may alias a pointer tany other node, even those with incrementally construct the call graph even though it ogsran

set). The algorithm for inferrin@ flags is described in Section 3.1. 0 scCs of the graph. First, the DS graph for a function isecor
An important benefit of th€omplete flag within the analysis o e it only a subset of its potential callers and potentidlees

itself is that it allows DS analysis to assume speculativit all have been incorporated into the graph (i.e., the informaiticthe

?ccessers],_ tﬁ a ng_de ar_ehtyﬁe-sage, until an access to the_snc()jde lgraph can be used safely so long as the limitations on nodés wi
ound which conflicts with the other accesses. Because asode ,ic’ flags are respected, as described in Section 2). Intuitively

not marked complete as long as there are potentially unpsede 6 ey to this property simply is that a node must not be ntarke
accesses, this is safe. DSA uses this to provide field-sensit complete until it is known that all callers and callees ptgly

formationfor the type-safe subsets of programshile collapsing affecting that node have been incorporated into the graptor®i,
fields for type-unsafe structure types because trackingsfitdr the result of two graph inlining operations at one or two si#s is

such types can be expensive [30]. inde ; ;

pendent of the order of those operations. This follawmfa
Collapsed flag (O) The collapsed flag (O) marks nodes represent- e pasic property that the order in which a set of nodes igede
ing multiple, incompatible types of objects. More precisd all does not affect the final result.

usesof objects in a node (or to a field of the node) follow a consis-
tent typer (or the field type withinr), then DSA assign$'(n) = ; 3.1 Primitive Graph Operations
we refer to such a node as “type-homogeneous.” lsesare de-
fined as operations on pointers to the node that interpretytres
viz., loads, stores, or structure and array indexing. Ini@aar,
pointer casts (e.g., fromoid*) are not counted as uses. If uses
with incompatible types (as defined in Section 3) are foure na
longer track the type or fields of objects represented by tuen
We mark the node with th@ flag (Ollapsed), sef’(n) = char[],
i.e., an unsized array of bytes, and merge all outgoing eiges
single edge. We do this using the following algorithm:

Data Structure Analysis is a flow-insensitive algorithm ethuses
a unification-based memory model, similar to Steensgaatdis-
rithm [31]. The algorithm uses several primitive operasiam DS
graphs, shown in Figure 4. These operations are used ingbe al
rithm to merge two cellsfergeCells), merge a callee’s graph into
a caller’s graph at a particular call siteegolveCallee) and vice
versa fesolveCaller), and compute the completeness property
('C’ flag) for DS nodes flarkComplete). The two graph-merging
operations are described later in this section.

The fundamental operation in the algorithmrigsergeCells,

collapsgdsnoden) which merges two target nodes by merging the type informatio
celle = (null, 0) /I'mull target flags, globals and outgoing edges of the two nodes, and moving
Weféfrgfc(g”éZ%«mﬂ)) J/ merge old target with the incoming edges to the resulting node. If the two fieldsehav
remove fieldf Il remove old edge incompatible types (e.97'(n1) = int, fi = 0, T'(n2) =
T(n) = char* Il reset type information {int, short}, fo = 1), or if the two node types are compatible but
E({n,0)) =e L /I'mew edge from field 0 the fields are misaligned (e.g’(n1) = T'(n2) = {int, short},
flags(n) = flags(n) U {"O’, A} /I node is ©llapsed Array

f1 =0, fo = 1), the resulting node is first collapsed as described
earlier before the other information is merged. Merginggoirg
edges causes the target node of the edges to be merged ai well;
the node is collapsed, the resulting nodesierwill have only one
outgoing edge which is merged with all the out-edges,ofWe use
Tarjan’s Union-Find algorithm [32] to make the merging &#it.
The routinemarkComplete uses an efficient traversal of a DS

graph, starting at formal arguments, the return negednd glob-

als, though the efficient traversal is now shown in Figurendhke
Top-Down phase, if a function is not visible to external cdde.,

The function ‘mergeCells{;, ¢2)” (described in the next sec-
tion) merges the cells; andce and therefore the nodes pointed to
by those cells. This ensures that the targets of the two @aedlaow
exactly equal. The result is the same as if the type infoonatias
never speculatetbr noden.

Array flag (A) : This flag is added to a node if any array indexing
expresssion is applied to a pointer targeting that nodee Nhait this

does not eliminate type homogeneity for non-collapsed swothe all its callers have been identified), nodes reachable framdl

node may represent singleton objects and arrays of objé .
y rep 9) Y 1E0Ipe arguments, the return value, and globals that are not ettewis-

z;thglAejlﬁgésig I;\:gfrz;a/t;?[);zlfpsed nodes since the degenerateible are marked Complete. Identifying which functions arobg

als may be externally visible is done by the LLVM linker, whic
can link both LLVM and native code files and can be much more
aggressive about marking symbols internal when linking mete

1 This is somewhat similar to the “inside nodes” of [33]. programs than libraries [1].

(Merge two cells of same or different nodes; update discardrn)
Cell mergeCell{Cell (n1, f1), Cell (n2, f2),)
if (IncompatibleForMerg€T’ (n1), T'(n2), f1, f2))
collapsens (i.e., merge fields and out-edges)
union flags ofn; into flags ofns
union globals ofr; into globals ofng
merge target of each out-edge(of: , f;) with
target of corresponding field of>
move in-edges of; to corresponding fields of2
destroyny
return(n2, 0) (if collapsed) or(n2, f2) (otherwise)

(CloneG; into G2; merge corresponding nodes for each glgbal
cloneGraphinto(G1, G2)
G = make a copy of grapti;
Add nodes and edges 6f;. to G2
for (each nodeV € G1.)
for (each globah € G(N))
mergeN with the node containing in G2

(Clone callee graph into caller and merge arguments and rgtur
resolveCalle¢GraphG .qiicc, GraphGeaiier,
FunctionF,,;jee, CallSiteC'S)
CloneGraphlnthcallee-, Gcallew‘)
clear's’ flags on cloned nodes
resolveArguments cqiiers Featlee, CS)

(Clone caller graph into callee and merge arguments and rgtur
resolveCalle(GraphG qi1er, GraphGeaiice,
FunctionF.,;;., CallSiteC'S)
cloneGraphinta@ carier, Geatlee)
resolveArgument$f cqiiee, Fealice, CS)

(Merge arguments and return value for resolving a call site
resolveArgument{GraphG.,,crgeq, FunctionF¢, CallSiteC'S)
mergeCells(target of’ S[1], target of return value aof'c)
for (1 < i < min(Numformals¢c), NumActualArgsC'S))
mergeCells(target of argat CS, target of formal of F)

(Mark nodesComplete if safe in Local, BU phases; see text fo) TD
markComplete(GraphG)
for (each nodeV € G), whereC ¢ flags(N)
if N is reachable from call nodes or other incomplete nodes,iskip
if NV is reachable from formal arguments B, (), skip it
otherwise,flags(N) U ='C’

Figure 4. Primitive operations used in the algorithm

3.2 Local Analysis Phase

The goal of the local analysis phase is to computeoaal DS
graph for each function, without information about callers and
callees (see Figure 5). We present this analysis in termsmiha
imal language which is still as powerful as C. The assumption

(Compute the local DS Graph for functidr)
LocalAnalysis(function F)
Create an empty graph
V virtual registersk, Ev (R) = makeNodéT'(R))
V globalsX (variables and functions) used in
N =makeNode('(X))); G(N) U = X; flags(N) U ='G’

VinstructionI € F : casel in:

X = malloc ...: (heap allocation)
Ev (X) = makeNode(void)
flags(node(Ey (X))) U ="H

X = alloca ...: (stack allocation)
Ev (X) = makeNode(void)
flags(node(Ey (X))) U ="S

X = *Y: (load)
mergeCell§Ev (X)), E(Ev(Y)))
flags(node(Evy (X)) U ="R’

*Y = X: (store)
mergeCell§Ev (X)), E(Ev(Y)))
flags(node(Ey (X)) U ="M’

X = &Y->Z: (address of struct field)
(n, f) = updateTypéEv (Y), typeof(+Y))
f' =0, if nis collapsedifield(field(n, f), Z) otherwise
mergeCell§Ey (X), (n, f'))

X = &Y[idx]: (address of array element)
(n, f) = updateTypeEy (Y), typeof (+Y))
mergeCell§Eyv (X), (n, f))
flags(node(Evy (X)) U ="A

return X: (return pointer-compatible value)
mergeCell§Ev (), Ev (X))

X=(n Y (value-preserving cast)
mergeCell§Ev (X)), Ev (Y))

X =Y(Z1, 22, ... Zpn): (function call)
callnodec = new callnode
Nealis U=c

mergeCell§Ey (X), c[1]) (return value)
mergeCell§Eyv (Y'), ¢[2]) (callee function)
Vi € {1...n}: mergeCell§Ev (Z;), c[i + 2])

(OtherwiseX = Y op Z: (all other instructions)
mergeCell$Eyv (X)), Ev(Y))
mergeCell$Eyv (X)), Ev (Z))
flags(node(Ey (X))) U ="U
collapsénode(Ev (X)))

MarkCompleteNodes()

Figure 5. The LocalAnalysis function

UsingmergeCelldor each entry correctly merges type information

about the type system and memory model in this language werein the case when the argument type does not match the type of

described in Section 2. We assume that the functiB(X’) and
Eyv (X) return a new, empty node with the type %f(by invoking
makeNodelypeo f (X))), if no previous target node existed.

The “LocalAnalysi$ first creates empty nodes for pointer-
compatible virtual registers and for globals, and then dodis-
ear scan to process each instruction of the function. Wenassu
that operand types in all instructions are strictly checlkery non-
matching operand in an operation must first be converted avith
explicit cast. Also, operations that produce non-poicmpatible
values in variables or fields are simply ighored becauseetiurs-
tions are always mapped {eull, 0) in E'v and E respectively.

We focus on a few, less obvious, cases of the local analysis he
First, note that the type of a celjy ("), is updated only whel
is used in a load, store, or indexing operation. No type isried
atmalloc, alloca and cast operationseturn instructions are
handled by creating a special virtual register which is used to
capture pointer-compatible return values. Function caksilt in a

the formal Finally, if any other instruction is applied to aifter-
compatible value, or used to compute such a value (e.g.t &rcas

a pointer to an integer smaller than the pointer and viceayeesy
nodes pointed to by operands and the result are collapsethand
Unknown flag is set on the node.

The final step in the Local graph construction is to calculate
which DS nodes ar€€omplete, which is done as described in
Section 3.1. For a Local graph, nodes reachable from a formal
argument, a global, passed as an argument to a call sit¢poned
by a function call may not be marked complete. For example, in
Figure 7(a), neither of the nodes for the argument&dall are
marked'C’.

3.3 Bottom-Up Analysis Phase

The Bottom-Up (BU) analysis phase refines the local graph for
each function by incorporating interprocedural inforroatifrom
the callees of each function. The result of the BU analysigjisaph

new call node being added to the DS graph, such as the call nodefor each function summarizing the total effect of callingttfunc-

for the call todo_all in addGToList, in Figure 7(a). The node
gets entries for the value returned, the function pointer Koth
direct and indirect calls), and each pointer-compatibguarent.

tion (imposed aliases and mod/ref information) without aajl-
ing context information. It computes this graph by clonihg BU
graphs of alknowncallees into the caller's Local graph, merging

nodes pointed to by corresponding formal and actual argtswer
by common globals. We first describe a single graph inlinipgre
ation, then explain how the call graph is discovered andetsed.

Consider a call to a functionF” with formal arguments
fi,--., fn, where the actual arguments passedare. ., a,. The
procedureresolveCalleeén Figure 4 shows how such a call is pro-
cessed in the BU phase. We describe a simple, naive, vdrsien
a better approach is described in Section 4. We first copy the B
graph for F' using cloneGraphinto which also merges targets of
common globals in the caller's graph with those in the cloned
graph. We then clear atack flags since stack objects of a callee
are not legally accessible in a caller. Note that we canntdtele
reachable nodes witBtack flags: the nodes may escape (making
them incomplete), so we cannot tell whether other flags véll b
included in such a node later. We then merge the node poioted t
by each actual argument; of pointer-compatible type with the
copy of the node pointed to by;. If applicable, we also merge
the return value in the call node with the copy of the returluea
node from the callee. Note that any unresolved call nodeS'sn
BU graph are copied into the caller’s graph, and all the dbjesp-
resenting arguments of the unresolved call in the calla@plgare
now represented in the caller as well.

(Create a new, empty node of typg
makeNodégtype 7)
n = new Node(type =, flags =¢, globals =¢)

vV f € fields(t), E(n, f) =< null,0 >
returnn

(Merge type of fieldn, f) with typer. This may
collapse fields and update in/out edges wiargeCells())
updateType(cell (n, f), typer)
if (1 #Zvoid A T # typeof({(n, f)))
m = makeNodef)
return mergeCellgm, 0), (n, f)))
else return(n, f)

Figure 6. makeNode and updateType operations

3.3.1 Basic Analysis Without Recursion

The complete Bottom-Up algorithm for traversing calls iewh
in Figure 8. We explain it for four different cases. In the plast
case of a program with only direct calls to non-external fioms,
no recursion, and no function pointers, the call nodes i €28
graph implicitly define the entire call graph. The BU phase@y
has to traverse this acyclic call graph in post-order (wigitallees
before callers), cloning and inlining graphs as descrilize.

To support programs that have function pointers and externa
functions (but no recursion), we restrict our post-ordavérsal to
only process a call-site if its function pointer target€amplete
node (i.e, its targets are fully resolved, as explaine§2i),andall
potential callees are non-external functions (Line (1)iguFe 8).

Such a call site may become resolved if the function passed to
a function pointer argument becomes known (typically, imeo
caller of the function containing the indirect call). Foraexple,
the call toFP cannot be resolved within the functi@e_all, but
will be resolved in the BU graph for the functiosddGToList,
where we conclude that it is a call amldG Then, we clone and
merge the indirect callee’s BU graph into the graph of thefiom
where the call site became resolved, usiagolveCallegust as
before (Line (2) in Figure 8). This technique of resolvingl ca
nodes as their function pointer targets are completed tefédyg
discovers the call-graph on the fly, and preserves contmgisvity
of the analysis because the different function pointer nesplve
to different callees in different contexts. We record thé geaph
as itis discovered for use in the TD pass.

Note that the function containing the original call stillshtne
unresolved call node in its BU graph (and so do intervenimg{fu
tions into which the call node was inlined). We do not retisese

rLf

[void (ist*, void (int)*): GCJ C/oid (int):

©
I

(a) LocaladdGToList graph
O
@ Tl] Global
ia (n); o (st MR)

(b) After inlining do_all (c) Final BU graph
Figure 7. Construction of the BU DS graph faddGToList

do_all addG

functions to resolve the call node because that would los&egt
sensitivity of the BU graph information; those call noded exwen-
tually be resolved in the top-down phase. Conceptually,Bbe
graph for a function acts like a procedure-summary thatésius
resolve the effects of the function in different calling texts. The
BU graph for the function where the call was resolved nowyfull
incorporates the effect of the call. For example, inlinihg BU
graph ofaddG into that ofaddGToList yields the finished graph
shown in Figure 7(c). Th#&l odified flag in the node pointed to by
L is obtained from the nod&y (X) from addG (Figure 3). This
graph foraddGToList is identical to that which would have been
obtained ifaddG was first inlined intado_all (eliminating the call
node) and the resulting graph was then inlined iktaGToList.

After the cloning and merging for a function is done, we idfgnt
newly complete nodes (Line (5)) and remove unreachable sode
from the graph (Line (6)).

3.3.2 Recursion without Function Pointers

To handle recursion, we essentially apply the bottom-ugess
described above but on Strongly Connected Components (SCCs
of the call graph, handling each multi-node SCC separaidig.
overall Bottom-Up analysis algorithm is shown in Figure &M
uses Tarjan’s linear-time algorithm to find and visit Strigngon-
nected Components (SCCs) in the call graph in postorder.

For each SCC, all calls to functions outside the SCC are first
cloned and resolved as before, as shown on lines (1) and (2) in
Figure 8 (these functions will already have been visitedabee of
the postorder traversal over SCCs). Once this step is coenphe
only call nodes in the functions in the SCC are for intra-S@{lsc
and calls to external functions (the latter are ignoreduphmut,
because they can never be resolved). Within an SCC, eactidunc
will eventually need to inline the graphs of all other fuocts in the
SCC at least once (either directly or through the graph oflaega
A naive algorithm can produce aB(n?) and even exponential
number of inlining operations. To avoid this cost, we builsirzgle
BU DS Graph for an SCC (instead of each function), giving up
context sensitivity within an SCC. This is accomplished ing$
(3) and (4) of Figure 8, which merges BU graphs, then resddlles
intra-SCC call sites (exactly once each) in the contextisfgimgle
merged graph. The speed benefits of this approach are exchinat
Section 5.2.

3.3.3 Recursion with Function Pointers

The final case is a recursive program with indirect calls. Kéne
difficulty here is that call edges are not known before-haschise

they are discovered incrementally by the algorithm, butesah
these call edges may induce new cycles, and hence new SCCs, in
the call graph. We make a key observation, based on the proper
ties described earlier, that yields a simple strategy talleasuch
situations: some call edges of an SCC can be resdieéare dis-

BottomUpAnalysis(ProgramP)
V FunctionF' € P
BUGraph{F} = LocalGraph{F}
Val[F] = 0; NextID =0
while (3 unvisited functionsF” € P) (visitmain firstif available)
TarjanVisitNodef’', new Stack)

TarjanVisitNode (Function F', Stack Stk)
NextID++; Val[F] = NextID; MinVisit = NextID; Stk.push(F)
vV call sitesC € BUGraph{F}
V known non-external calleeB- atC'
if (Val[Fc] == 0) (Fc unvisited
TarjanVisitNodef'c, S)
else MinVisit = min(MinVisit, Val[F'¢])
if (MinVisit==Val[F']) (entire SCC is on the Stark
SCCS={ N: N = F Vv N appears abové on stack}
V F € S: Val[F] = MAXINT; Stk.pop(F’)
ProcessSCC(S, Stk)

ProcessSCESCC.S, Stack Stk)

V FunctionF’ € S
V resolvable call site€’ € BUGraph{F}
V known calleesF¢ atC'
if (Fc ¢ S) (Process funcs not in SGC
ResolveCallee(BUGraglf'¢ }, BUGraph F'}, Fc, C9

SCCGraph = BUGraphFy }, for someF, € S
V FunctionF’ € S, F # Fy (Merge all BUGraphs of SCC
cloneGraphinto(BUGrap{f}, SCCGraph)
BUGraph{F} = SCCGraph
V resolvable call site€ € SCCGraph (see text
Vv known calleesF'c atC' (Note: F € S)
ResolveArguments(SCCGraphc, C'S)
MarkCompleteNodes() - Section 3.2
remove unreachable nodes
if (SCCGraph contains new resolvable call sites)
VF eS: Val[F] =0 (mark unvisite)l
TarjanVisitNodefy, Stk), for someFy € S (Re-visit SC§

1) (see text

@
®

4)

(5)
6)
U]

Figure 8. Bottom-Up Closure Algorithm

covering that they form part of an SC@/hen the call site “closing
the cycle” is discovered (say in the context of a functigy), the
effect of the complete SCC will be incorporated into the BEpir

for Fy though not the graphs for functions in the SCC that were
handled earlier.

Based on this observation, we extended Tarjan’s algorithm t
revisit the functions in an SCC when it is discovered (buitivig
only unresolved call sites in it). After the current SCC idlyfu
processed (i.e., after step (6) in Figure 8), we check winetie
SCC graph contains any newly inlined call nodes that are now
resolvable. If so, we reset théal entries for all functions in the
SCC, which are used iarjanVisitNodeto check if a node has
been visited. This causes all the functions in terent SCC to
be revisited, but only the new call sites are processedédsittver
resolvable call sites have already been resolved, and wilbe
included in steps (1) and (4)).

For example, consider the recursive call graph shown in Fig-
ure 9(a), where the call fron’ to C' is an indirect call. Assume
this call is resolved in functio®, e.g., becaus® passes’ explic-
itly to FE as a function pointer argument. Since the edge- C
is unknown when visitingz, Tarjan’s algorithm will first discover
the SCCS{ F }, { E }, and then{ D } (Figure 9(c)). Now, it will
find a new call node in the graph far, find it is resolvable as a call
to C, and markD as unvisited (Figure 9(b)). This causes Tarjan’s
algorithm to visit the “phantom” edg® — C, and therefore to
discover the partial SC¢ B, D, C }. After processing this SCC,
no new call nodes are discovered. At this point, the BU grdphs
B, D andC will all correctly reflect the effect of the call frorfy to

C, but the graph foZ will not?. The TD pass will resolve the call
from E to C (within E) by merging the graph fob into E. Note
that even in this case, the algorithm only resolves eacleeat
each call site once: no iteration is required, even for S@@sded
by indirect calls.

Figure 10 shows the BU graph calculated for tlein func-
tion of our example. This graph has disjoint subgraphs fer th
lists pointed to byX and Y. These were proved disjoint be-
cause we cloned and then inlined the BU graph for each call
to addGToList (). This shows how context sensitivity with heap
cloning can identify disjoint data structures, even whemplex
pointer manipulation, indirect calls and recursion are@ined (and
despite unification and flow-insensitivity).

int: GMRC
Global

list: HMRC list: HMRC
list* | int list* | int

Figure 10. Finished BU graph fomain

3.4 Top-Down Analysis Phase

The Top-Down construction phase is very similar to the Buatto

Up construction phase, and the detailed pseudo-code igeainit
here but shown in [18]. The BU phase has already identified the
call graph, so the TD phase can traverse the SCCs of the call
graph directly using Tarjan’s algorithm; it does not need'res

visit” SCCs as the BU phase does. Note that some SCCs may have
been visited only partially in the BU phase, so the TD phase is
responsible for merging their graphs.

Overall, the TD phase differs from the BU phase in only 4
ways: First, the TD phase never marks an SCC as unvisited as
explained above: it uses the call edges discovered anddextdry
the BU phase. Second, the TD phase visits SCCs of the calhgrap
in reverse postorder instead of postorder. Third, the TopaDpass
merges each function’s graph into that of each of its caliesther
than the reverse), and it does so directly: it never needdetet”
this inlining operation since the potential callees at ecalh site
are known. The final difference is that formal argument naates
marked complete if all callers of a function have been ideti
by the analysis, i.e., the function is not accessible to atgreal
functions. Similarly, global variables are marked complehless
they are accessible to external functions.

3.5 Bounding Graph Size

In the common case, the merging behavior of the unificatign-al
rithm we use prevents individual data structure graphs fiobow-

ing up, and in fact, keeps them very compact. This occurs exden

a data structure is processed by a loop or recursion bedause,
ther case, a common variable must point to instances of tsbjec
in successive iterations or successive calls. Unificatiem forces
these objects to be merged. In contrast, subset-basedsasalgn
easily generate exponentially large graphs [34].

Nevertheless, the combination of field sensitivity and itign
makes it theoretically possible for our algorithm to buittalstruc-
ture graphs that are exponential in the size of the inputrarag
Such cases can only occur if the program builds and processes
data structure usingon-loop, non-recursive codand are thugx-
tremelyunlikely to occur in practice.

2Nor should it. A different caller ofz may cause the edge to be resolved to a different
function, thus the BU graph fofZ does not include information about a call edge
which is not necessarily present in all calling contexts.

(@) Recursive Call Graph (indirect(b) Call Node Edges, After

call E — C'is dotted) inlining F & E

O 1.{F}
2.{E
(2 3.% D}}: mark unvisited
4.{B,D,C
0, 5. E A} J

(c) SCC visitation order

Figure 9. Handling recursion due to an indirect call in the Bottom-Uage

Using a technique liké-limiting [17] to guard against such
unlikely cases is unattractive because it could reduceigioec
for reasonable data structures with paths more thandes long.
Instead, we propose that implementations either simplyosam
hard limit on graph size (e.g., 10,000 nodes, which is lathan
real programs are likely to need), or use a smarter heuridtich
monitors and limits the growth of graphs due to cloning. i$ thmit

applicable to other interprocedural heap or pointer atmalgkyo-
rithms. The speedups achieved by these techniques arewain
Section 5.2.

The Globals Graph: In the algorithm so far, global variables
accessed anywhere in the program would propagate bottor-up
main, then top-down to all functions in the program, ballooning
graph size by a factor that grows @&N?). A key optimization

is exceeded, node merging can be used to reduce the size of theve add to DSA is to use a separate “Globals Graph” to hold

graph. Our results in Section 5 show that the maximum functio

information about global nodes and all nodes reachable dlobal

graph size we have observed in practice across a wide range ofnodes. We can then remove global variables from a function’s

programs is only 3196 nodes, and this maximum is only weakly
correlated to program size (in fact, in our benchmarks, soigly
determined by one large call-graph SCC, because the graphs f
functions in the SCC are merged). Maximum DS graph size ig onl
278 in the Linux kernel and only 401 iper1bmk which had the
next-largest call-graph SCC after the two versiong@f.

3.6 Complexity Analysis

The local phase adds at most one new nafle, entry, and/or
edge for each instruction in a procedure (before node mgrgin
Furthermore, node merging or collapsing only reduces timetben

graph if they are not used in the current function (even thahey
may be used in callers or callees of that function). For examp
this eliminates th& nodes in graphs of all functions exceptdG
(and main). Both Ruf [28] and Liang and Harrold [23] use a
somewhat similar technique, but they do not motivate it prifg
as an optimization and do not evaluate its impact on speedei#fe
the reader to [18] for the detailed steps we use.

Shrinking Ev with Global Equivalence ClassesEven with
the above refinement, programs that use large global arrlys o
pointers to globals can be problematic (e.g. an array oftpmsn
to strings). TheEy entries for the target globals are replicated in

of nodes and edges in the graphs. We have implemented nodeevery function that accesses any one of those globals. Si6ée

merging using Tarjan’s union-find algorithm [32], which ares
that this phase requirg3(na(n,n)) time andO(n) space for a
program containing instructions in all [31]c(n, n) is the inverse
Ackerman’s function.

The BU and TD phases operate on DS graphs directly, so their
performance depends on the size of the graphs being cloried an
the time to clone and merge each graph. We denote the&ednd
[respectively, wheré is O(K«a(K, K)) in the worst case. They
also depend on the average number of out-edges in the cph gra
per function, denoted. If there aref functions, there = fc is
simply the total number of edges in the call graph.

For the BU phase, each function must inline the graphs for
c callee functions, on average. Because each inlining aparat
required time, the time required igcl = Ka(K)e. The call sites
within an SCC do not introduce additional complexity, sievery
potential callee is again inlined only once into its calléthin or
outside the SCC (in fact, these are slightly faster becanse @
single graph is built, causing common nodes to be mergedjs,Th
the time to compute the BU graph 8(K«(K)e). The space
required to represent the Bottom-Up graph®i§f K'). The TD
phase is identical in complexity to the BU phase.

Putting these together, the worst case time and memory com-
plexity are®(na(n) + Ka(K)e), andO(fK),

4. Major Engineering Choices

Through our experience scaling to increasingly larger o
over time, we have repeatedly found that severaN€)(aspects
of the algorithm were the main bottlenecks to scalabilitycon-
trast, we have never seen any significant combinatorial tjrénem
cloning: unification has been successful at preventingatttiblem.

To scale DSA to large programs, we have devised engineening s
lutions to improve thes&V? problems, many of which should be

can never disambiguate these globals, we solved this byirigeep
only one representative global in each DS node (and remdtimg

rest from each graphE+v as well). In programs with many globals,
this replace)(N?) entries withO(N) in Ev-.

Efficient Graph Inlining: The version of function “clone-
Graphlinto” shown in Figure 4 sometimes proved very slow acpr
tice because it allocates and copies many nodes, only tardisc
them soon after creation. To solve this issue, we now inlhaplags
using a recursive traversal (of both graphs) from the compuwamt-
ers, only visiting nodes that will actually be reflected itite target
graph. This is possible because unification ensures a 1-pintap
of paths in the two graphs, though there may be a many-to-one
mapping of nodes from source to target. Ruf used a simildr-tec
nique, although the benefit wasn't evaluated [28].

5. Experimental Results

We implemented the DSA algorithm in the LLVM Compiler Infras
tructure [19]. The analysis is performed at link-time, @sBtubs

for C library functions while treating unknown external @fions
conservatively. We have successfully used DSA for optitions
and/or memory safety for a wide range of programs and for the
Linux kernel [18, 20, 21, 9, 8], and LLVM is used by several com
mercial organizations.

We present results evaluating DSA on several benchmamssuit
the “ptrdist” 1.1 benchmarks, the SPEC 1995 and SPEC 2060 int
ger and floating point benchmarks (for those Fortran progrtnat
we were able to convert successful to C using f2¢), a few udilean
programs, and the Linux 2.4.22 kerngbvray31 includes sources
for thezlib andlibpng libraries. The Linux kernel includes only
afew drivers, but includes many other modules that wouldadiy
be separately compiled and loaded, including many file systed

Code Size Analysis Time (sec) Mem (KB) # of Nodes Coll

max oll-

Benchmark LOC ‘ MInsts ‘ |SCC| || Local | BU | TD | Total BU TD Total | Max | apsed
ptrdistanagram 647 271 1 0.00 | 0.00 | 0.00 | 0.01 111 89 163 18 11
ptrdistks 684 546 1 0.00 | 0.00 | 0.00 | 0.01 97 68 207 24 0
ptrdistft 1301 433 1 0.00 | 0.00 | 0.00 | 0.01 112 86 150 14 0
ptrdistyacr2 3212 1621 1 0.01 | 0.01| 0.01 | 0.02 222 212 369 17 0
ptrdistbc 6627 3729 1 0.01 | 0.02 | 0.02 | 0.05 591 408 738 29 16
130.1i 7598 7894 24 0.03 | 0.09 | 0.04 | 0.16 1948 933 806 33 328
124.m88ksim 19233 7951 2 0.03 | 0.03 | 0.02 | 0.08 1334 774 1796 56 195
132.ijpeg 28178 | 12507 1 0.03 | 0.02 | 0.02 | 0.07 1453 935 1531 65 62
099.go 29246 20543 1 0.04 | 0.02 | 0.04 | 0.10 1299 906 2298 131 0
134.perl 26870 | 29940 19 0.08 | 0.12 | 0.06 | 0.26 2038 | 1201 1463 | 232 136
147.vortex 67211 | 37632 23 0.09 | 0.14 | 0.07 | 0.30 2785 | 1678 3529 | 355 242
126.gcc 205085 | 129083 255 0.44 | 1.87 | 0.37 | 2.68 10982 6586 || 12226 | 3046 1109
145 .fpppp 2784 4447 2 0.01 | 0.01 | 0.01| 0.03 472 261 623 48 43
104.hydro2d 4292 5773 2 0.02 | 0.02| 0.01 | 0.05 672 384 688 48 88
110.applu 3868 5854 2 0.01 | 0.02 | 0.00 | 0.03 518 289 583 57 19
103.su2cor 2332 6450 2 0.02 | 0.02 | 0.01 | 0.05 759 437 1080 160 49
146.wave5 7764 | 11333 2 0.03 | 0.01| 0.01 | 0.05 908 521 1171 70 164
181.mcf 2412 991 1 0.00 | 0.00 | 0.01 | 0.01 76 53 103 49 0
256.bzip2 4647 1315 1 0.01 | 0.00 | 0.00 | 0.01 131 80 205 76 3
164.gzip 8616 1785 1 0.00 | 0.01 | 0.00 | 0.01 217 127 290 60 1
175.vpr 17728 8972 1 0.03 | 0.02 | 0.01 | 0.06 969 614 2106 | 366 118
197.parser 11391 10086 3 0.04 | 0.03 | 0.03 0.1 1301 758 1291 109 121
186.crafty 20650 | 14035 2 0.05 | 0.03| 0.04 | 0.12 1344 817 2890 | 701 45
300.twolf 20459 | 19686 1 0.05 | 0.01| 0.03| 0.09 1179 807 2022 | 411 37
255.vortex 67220 37601 23 0.07 | 0.10 | 0.09 | 0.26 2765 1669 3515 392 241
254.gap 71363 | 47389 9 0.17 | 0.41| 0.19 | 0.77 8040 | 3837 5889 | 370 728
252.eon 35819 | 51897 6 0.24 | 0.18 | 0.14 | 0.56 7818 | 4450 6936 | 411 511
253.perlbmk 85055 98386 250 031 | 211 | 0.24 | 2.65 8785 3517 2038 401 510
176.gcc 222208 | 139790 337 0.44 | 2.38 | 0.42 | 3.24 || 11628 | 7101 || 12736 | 3196 | 1000
168.wupwise 2184 5087 2 0.01 [0.01] 0.01| 0.03 523 302 608 64 33
173.applu 3980 5966 2 0.02 | 0.01 | 0.01 | 0.04 523 291 593 68 19
188.ammp 13483 10551 1 0.00 | 0.00 | 0.01 | 0.01 865 546 897 281 69
177.mesa 58724 | 43352 1 0.10 | 0.06 | 0.07 | 0.23 4115 | 2476 3038 98 857
fpgrowth 634 544 1 0.01 | 0.00| 0.01| 0.02 58 37 108 49 0
boxed-sim 11641 12287 1 0.02 | 0.03 | 0.01 | 0.06 693 442 480 65 61
NAMD 5312 | 19002 1 0.05 | 0.02 | 0.02 | 0.09 1042 761 1539 | 224 276
povray31 108273 | 62734 56 0.18 | 0.23 | 0.13 | 0.54 5582 | 3389 5278 | 318 732
linux 355384 | 305073 28 135 | 1.00 | 0.76 | 3.10 14498 | 31232 || 47348 278 9666

Table 1. Program information, analysis time, memory consumptioi, graph statistics.

networking modules. It is complete enough for us to use it as a piled the 176.gcc, 253.perlbmk, and povray31 benchmarks wi

standard configuration on a modern workstation.

Table 1 describes relevant properties of the benchmarkgeks
as the experimental results. “LOC” is the raw number of linés
C code for each benchmark, “MInsts” is the number of memory
instructiong for each program in the LLVM internal representation,
and “SCC" is the size of the largest SCC in the call-graph ler t
program. We omitted eight SPEC programs of less than 20@8 lin
(101, 102, 107, 129, 171, 172, 179, 183) for lack of spacetHamirt
results are available in [18].

5.1 Analysis Time & Memory Consumption

We evaluated the time and space usage of our analysis on & Linu
workstation with an AMD Athlon MP 2100+ processor, whichsun
at 1733MHz. We compiled LLVM with GCC 3.4.2 at thed3
level of optimization. Table 1 shows the running times andoey
usage, and graph node statistics for DSA (the Local phasdittee
memory and is not shown).

The six largest programs in our studyplinux, 176.gcc,
126.gcc, povray31, 253.perlbmk and254.gap are both fairly
large and contain non-trivial SCCsin the call graph. Nehnalgss, it
takes only between 0.54 and 3.24 seconds to perform the etenpl
algorithm on these programs. To put this into perspectieecom-

3Memory instructions ar@oad, store, malloc, alloca, call, and structure or
array indexing instructions. Analysis time and memory esegrrelate better with
this number than with LOC, as shown in [18].

our system GCC compiler at the -O3 level of optimization. GCC
takes 94.7s, 47.4s, and 38.5s to compile and link these goregyr
even though it does not perforamy cross-file optimization®SA's
times are only3.4%, 5.6%, and1.4% of the total GCC compile
times for these cases, which we consider low enough to beiprac
cal for production optimizing compilers.

The table shows that memory consumption of DSA is also
quite small. The peak memory (which is almost exactly eqoal t
BU+TD) consumed for the largest coddéss than 46MB which
seems very reasonable for a modern compiler. These numigers a
noteworthy because the algorithm is performing a contersiive
whole-program analysiwith cloning and memory use can often
be the bottleneck in scaling such analyses to large programs

The “# of Nodes” columns show information about the DS
graph nodes. We excludgy entries since those are simple map
entries, not actual nodes. “Total” is thggregatenumber of nodes
in the TD graphs for all functions and “Max” is the maximumesiz
of any particular function’s graph (the terhd in the notation of
Section 3.6). Most importantly, the table shows that Tosaall
as K both grow quite slowly with total program size, indicating
that context-sensitive analysis and heap cloning do naecany
blowup in the points-to graphs; this would not have been tse=c
with a subset-based analysis [34]. “Collapsed” is the totahber
of TD graph nodes collapsed, which happens due to inconipatib
types on merged nodes. In most of the largest programs, kpugh
about 7-15% of the nodes are collapsed, and the most comraen re

son appears to be merging of Global nodes, which in some cases

causes other nodes to be merged. In some cases, howerezrog-
nizedcustom memory allocators produce significantly higher-frac
tions of Collapsed nodes, e.g., 25% in 253.perlbmk and 20% in
linux.

We have also examined the scaling behavior of the analysis
(these graphs are omitted here for lack of space but areabieil
in [18]). Across programs spanning five orders of magnitige@
gram size, the Local and TD passes téke:) time, wheren is the
number of memory operations in the program (coluMinsts
in the table). The BU phase is slightly worse, but mainly foo-p
grams with large numbers of globals such as 254.gap, 238mpler
and 176.gcc (in other words, number of memory operations doe
not fully capture the analysis complexity). We believe théhav-
ior can be further improved with more sophisticated hamglof
global equivalence classes.

5.2 Importance of Optimizations .
Bl No equivalence classes
@ No globals graph
B Unoptimized graph merging
[Direct Call
[l No SCC collapsing
10.2x 21.8x 9.7x 10.7x [J No optimizations
8x T T T T T T T T T
R S L | e ERIERIEEE 1
N
£
g ¥t N
O -
> 5x [B
=}
[
G X -
>
E n
S
= 2X[7
o
@ Ix 7
0x O =
o g
© <
S 3

vmlinux
253.perlbmk
255.vortex
147 .vortex

Figure 11. Relative Performance Impact of Optimizations

To investigate the effectiveness of the major optimizagjon-
cluding the engineering ones described in Section 4 andilegps-
ing of SCCs described in Section 3.3.2, we measured thesisaly
times with each optimization turned off individually andalwith
all these optimizations off. This shows the incrementalesio@
each optimization providea the presence of all the otherss well
as the overall speedup.

In Figure 11, we show results for the 10 longest-running henc
marks in terms of unoptimized analysis time, and the avesiagess
these 10 benchmarks. The data for each program are norch&dize
the runtime of the fully optimized analysis, i.e, a numbegéa than
1.0 is a slowdown.

Overall, the speedups range from 2x to almost 16x in most
cases. The two most important optimizations, on average, ar
equivalence classes of globals, and inlining only nodestraale in
the result graph. The former reduces the size of the nodethand
size of the lookup tables mapping IR variables to nodes. atterl
reduces the number of nodes allocated during inlining as$ agel
nodes walked during unreachable node elimination. Eachexfet
optimizations individually produces speedups of abouk-1L8x,
and on average just over 3x.

Using a separate globals graph is second best for several pro
grams; it reduces the size of each graph, and makes grapmali
faster. It gives speedups ranging from 1.0x to 3.5x, and ensae
over 2x. The two optimizations related to globals reduce orym
usage considerably, e.g., by 67% and 55% respectively fagte.

Note that the Linux kernel is substantially different fromter
large programs. It has a very large number of globals, which e
plains the over 10x improvement with global equivalencesds.
The globals graph gives a smaller speedup of about 2.3xapsrh
because of shallow call depths (but we have not verified.thart)ix
also has significantly smaller graphs compared with othegnams
of similar size. This helps explain the speed of the analysithe
kernel, and also the unusually small improvement from effici
inlining.

Perhaps most importantly, these results show that the benefi
of the optimizations is correlated with program size. Tovelibis
trend, the Table 2 below lists the benefits for the 12 largest p
grams by LOC, averaged across groups of four. The benefitg gro
strongly with program size, reflecting thi¥ N?) nature of the bot-
tlenecks eliminated. Both the use of many globals and hattng
inline large graphs (due to large SCCs and more indirecs)caik
more common in complex, larger programs.

Avg. LOC Total opt. speedug
Largest 4 programg 280k 10.8x
Second largest 4 72k 4.37x
Third largest 4 52k 2.74x

Table 2. Speedup trend for 12 largest programs

5.3 Analysis of DSA Precision

DSA is powerful in some respects (context sensitivity witap
cloning and field-sensitivity) but weak in others (unificatiand
flow insensitivity). We compared the precision of DSA witlvasel
other standard pointer analysis algorithms, for seveiahtd, in-
cluding alias analysis, interprocedural mod/ref analyeigl a few
dataflow optimizations [18]. We present results for an aiaalysis
client here and briefly summarize the mod/ref results.

Figure 12 compares the alias analysis precision of DSA again
four other pointer analysis algorithmtocal: a simple/fast lo-
cal analysis that traverses SSA edges intraprocedurallyimn
cludes base-offset analyssdeens-fandsteens-famplementations
of Steensgaard’s [31] unification-based, context-insimasalgo-
rithm, in field-insensitive and field-sensitive versionsdanders
Andersen’s [2] context-insensitive, field-insensitivgaithm. Ev-
ery other algorithm "falls back” (if it answers “may aliagqlocal,
ensuring that any query resolvable by the local algorithrh lvé
resolved by all analyses. This means that comparing aghiese-
sults forlocal alone isolates the actual benefit each of the more
aggressive analyses would provide in a realistic comp#eictq
chaining of alias analyses has been shown to be importamaa: p
tice [15]). Note thatocal can provide more precise answers than
the interprocedural queries in some cases, because it tsefinefin
simple flow sensitivity by traversing SSA edges within a jpchare.

In fact, local can return “must alias” on some queries whereas the
flow-insensitive algorithms (all the others) cannot.

The evaluation performs a set of alias queries of all pairs of
pointer variables (which include intermediate pointertaoted by
indexing into a struct or array) within each function in agnam
and counts the number of queries that return “may alias’, Gan-
not be proven to be “no alias” or “must alias”). A lower pertzge
therefore corresponds to a more precise analysis. Bedasigsyal-
uates alias pairs within a function, it approximates the afsan
abstract intraprocedural optimization client. Figure b2uses on
the C/C++ SPEC CPU2000 benchmarks, which have been widely
studied by other work, including [15].

Briefly, the major findings are:

e The alias disambiguation precision of DSA is comparable
to Andersens algorithm in many cases (256.bzip2, 164.gzip,
183.equake, 176.gcc, etc). As expected, there are cases whe
unification reduces precision (197.parser, 255.vortex),tihe

100 T
L T |
so- 10y r WY
" B
Ko M-8k 8 B ""F - -F 80 808600} ¥ o+« ¥R H local
< H [steens-fi
FSECU i | IR B | i S B | B EA 10 A I A D D (DR R Bl steens—fs
= o) | RN RN | | Y RN TR BN) BN R)| R AN S NN NN | B SRR (VR PR [J anders
g M ds-aa
o OB o8 B0e B B0 REIRE REGEBECEE B ® & Q0 R 4B/ RRI R
[}
- (N T IR E IR | | R s
20
10F [[I 1 B
0 - TN o = > = X 9 c X o c R
S 2 § & 2 € % & § § E & & & @ - 2 3
- N o] < © = =)) o g Q o] 2 Q
4 9 g v 8§ 5 & g & o T © = R © 2 «©
© © o N - © O T I = 9 S o
s 1w a4 <5 & 9 v & A Q o =) E
i 2 % ° & g £ 8 g -
R ©
-
Figure 12. Percentage of alias queries that return “May Alias” (lovgemiore precise)

difference is quite small in both cadesThere are many
more cases (181.mcf, 175.vpr, 186.crafty, 254.gap, 300 tw
188.ammp, 177.mesa, etc) where the combination of context
sensitivity and unification are significantly more precibart
non-context-sensitive subset-based analysis. This ity dze-
cause (as other researchers [5, 11] have shown) bidirettion
argument binding is the leading cause of precision loss in a
unification-based analysis. This problem can be solved imgus
either context sensitivity or a subset-based analysisv€realy,

the context sensitivity can help precision significantlysome
cases that are not handled well by subset-based analyses.

Using a cloning-based context-sensitive analysis car \ael
more accurate points-to results than using a static naming
scheme for heap and stack objects. The effect is most pro-

nounced in programs that use a large amount of heap allocated

data and have few static allocation sites. For example vp7,5.
300.twolf, and 252.eon have simple wrapper functions atoun
malloc that would prevent ordinary context-insensitivgoal
rithms from disambiguating many pairs of heap referencass. F
ther experiments are needed to determine how deep the tontex
sensitivity must go to achieve these results [26].

Comparingsteens-fito steens-fs we see that field sensitivity
substantially improves the precision of unification-basedly-

sis only in rare cases (188.ammp), but generally has onlyya ve
small effect. The most important reason is thatltl analy-

sis captures many common cases of field sensitivity with sim-
ple base/offset disambiguation, e.qg., two referencesffiereit
fields off the same pointer. Field sensitivity may be more im-
portant when combined with context-sensitivity, becalmsze

is greater likelihood of disambiguating pointers to heajects,

but we have not evaluated that hypothesis.

In our study of precision for interprocedural mod/ref asiy
the results show that DSA (like any context-sensitive atgor)
produces significantly better mod/ref information than Arsgn’s
algorithm. For example, in 24 of the 40 programs in that study
DSA returns NoModRef 40% more often than Andersen’s [18].

Finally, we have also evaluated how effective DSA is in iden-
tifying linked data structure instances and their propsrtiWe did
this by manually inspecting the DS graphs and correlatirgmth

4Note that this compares a field-sensitive algorithm (DSAthvé field-insensitive
one (Andersen’s) and so we cannot draw any definite conelssiomparing context-
sensitive with subset-based analysis. Our goal here islgitopshow that DSA is
reasonably precise compared with state-of-the-art imbegzural analyses.

with source code information for a few of our benchmarks [Z4e
results showed that the algorithm is usually successfudentify-
ing different kinds of linked data structures as well asrthgie and
lifetime information, and is sometimes successful at dgtishing
instances of such structures. The most common reason forefai
in the latter is due to lack of flow-sensitivity.

6. Related Work

There is a vast literature on pointer analysis (e.g., seesuthneey
by Hind [17]), but the majority of that work focuses on coritex
insensitive analyses. We focus here on context-sensédliques.
Several algorithms are context-sensitive in the analysisibt
the heap naming: they name heap objects by allocation site an
not by call path. Liang and Harrold's FICS algorithm proesss
programs up to 25K lines of code in a few seconds each [22].
Fahndrich et al [11] analyze programs as large as 200K lifies o
code (the Spec95 version of gcc) in about 3 minutes. The Whale
Lam algorithm takes up to 19 minutes for one program and over 1
minutes for four out of twenty programs [34]. It also potefiyi
considers all possible acyclic call paths (e.g., they repor*
paths in one program). Both of these raise concerns for ptamu
compilers. Conversely, the GOLF algorithm [6], which istbast
and scalable, uses only one level of context-sensitivitye Key
question is whether full cloning of heap objects, which wenrte
“full context sensitivity,” can achieve similar speed amdlsbility.
The most similar algorithm to ours is called MoPPA [23]. It is
also flow-insensitive and context-sensitive, uses uniioaaind its
structure is similar to our algorithm, including Local, Banh-Up,
and Top-Down phases, and uses a separate Globals GraphAMoPP
seems to require much higher memory than our algorithm:nig ru
out of memory analyzingovray3 with field-sensitivity on a ma-
chine with 640M of memory. It has several other practicalitém
tions: it can only use field-sensitivity fmompletelytype-safe pro-
grams, requires a complete program, and requires a pret¢ethpu
call-graph. We avoid these limitations via fine-grain coetghess
tracking and the use of call nodes for incompletely resobagts.
Ruf’s synchronization removal algorithm for Java [28] also
shares several important properties with ours and with MoPP
including combining context-sensitivity with unificatipa non-
iterative analysis with local, bottom-up and top-down mgsasnd
node flags to mark global nodes. Unlike our algorithm, hiskwor
requires a call graph to be specified, it is limited to typfegao-
grams, and does not appear to handle incomplete programs.

A few papers describe context-sensitive algorithms with fu
heap cloningwithout using unification [3, 25]. Although the lat-
ter [25] has been shown to scale to quite large programs,hwkic
an impressive result for a non-unification-based contersitive
analysis, it does not provide convincing evidence thatébbriique
could be used in production compilers. The work of Nystroralet
is about 2 orders of magnitude slower than ours in absolutgide
time, e.g., 192 s. for 176.gcc compared with 3.24 secondstii,
measured on similar systems

7. Conclusion

The experimental results in this paper provide strong exddahat
a context-sensitive points-to analysis with full heap @ign(by
acyclic call paths) can be made efficient and practical feriugro-
duction compilers. Our algorithm requires only a few secofwt
programs of 100-350K lines of code and scales well acrosofive
ders of magnitude of program size. Some of the key techrdeals

emerging from this work are the careful design choices to con

struct the call graph incrementally during the analysigliminate

O(N?) behaviors, and to track fine-grained completeness informa-

tion as a unified solution for several difficult algorithmimplems.

Despite important simplifications for scalability (unifizan and
flow-insensitivity), the analysis is powerful enough toade bet-
ter alias analysis precision than Andersen’s algorithmevegal
programs. DSA can distinguish instances of logical datactires
in programs and provide useful compile-time informatiorouth
such data structures, without an expensive shape andlydact,
DSA, in combination with Automatic Pool Allocation [20], ables
novel analyses and transformations that can operagstire recur-
sive data structurefnstead of individual loads and stores or data
elements [18].

References

[1] LLVM Link Time Optimization: Design and Implementation
http://llvm.org/docs/LinkTimeOptimization.html.

[2] L. O. Andersen. Program Analysis and Specialization for the
C Programming Language PhD thesis, DIKU, University of
Copenhagen, May 1994.

[3] B.-C. Cheng and W. mei Hwu. Modular interprocedural pein
analysis using access paths: Design, implementation, \aidagion.
In PLDI, Vancouver, British Columbia, Canada, June 2000.

[4] S. Chong and R. Rugina. Static analysis of accessednegio
recursive data structures. 8AS 2003.

[5] M. Das. Unification-based pointer analysis with direotl assign-
ments. InPLDI, pages 35-46, 2000.

[6] M. Das, B. Liblit, M. Fahndrich, and J. Rehof. Estimafithe impact
of scalable pointer analysis on optimization.SAS 2001.

[7] A. Deutsch. Interprocedural may-alias analysis fompeis: Beyond
k-limiting. In PLDI, pages 230-241, June 1994.

[8] D. Dhurjati, S. Kowshik, and V. Adve. SAFECode: Enforgialias
analysis for weakly typed languages.RaDI, June 2006.

[9] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memorgfsty
without garbage collection for embedded applicatioA€M Trans.
on Embedded Computing Systefsb. 2005.

[10] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitiv
interprocedural points-to analysis in the presence oftfangointers.
In PLDI, pages 242-256, Orlando, FL, June 1994.

[11] M. Fahndrich, J. Rehof, and M. Das. Scalable contexisgive flow
analysis using instantiation constraints.AbDI, 2000.

[12] J. S. Foster, M. Fahndrich, and A. Aiken. Polymorph&rsus
monomorphic flow-insensitive points-to analysis for c. Rroc.
Int'l Symp. on Static Analysis (SA%pndon, UK, 2000.

[13] R. Ghiya and L. J. Hendren. Connection analysis: A fcatt
interprocedural heap analysis for ternational Journal of Parallel
Programming 24(6):547-578, 1996.

[14] R. Ghiya and L. J. Hendren. Is it a tree, a DAG, or a cycliapih? A
shape analysis for heap-directed pointers in CPQPL, 1996.

[15] R. Ghiya, D. Lavery, and D. Sehr. On the importance ohpmto
analysis and other memory disambiguation methods for Cranog,
In PLDI, 2001.

[16] B. Hackett and R. Rugina. Region-based shape analysisnacked
locations. INPOPL, pages 310-323, New York, NY, USA, 2005.

[17] M. Hind. Pointer analysis: Haven't we solved this prbl yet? In
PASTE 2001.

[18] C. Lattner. Macroscopic Data Structure Analysis and Optimization
PhD thesis, Comp. Sci. Dept., Univ. of lllinois, Urbana, May 2005.

[19] C. Lattner and V. Adve. LLVM: A Compilation Framework rfo
Lifelong Program Analysis and Transformation. Iht'l Symp. on
Code Generation and OptimizatipMar 2004.

[20] C. Lattner and V. Adve. Automatic pool allocation: Inoping
performance by controlling data structure layout in thephedn
PLDI, Chicago, IL, Jun 2005.

[21] C. Lattner and V. Adve. Transparent Pointer Compresfio Linked
Data Structures. IMSP, Chicago, IL, Jun 2005.

[22] D. Liang and M. J. Harrold. Efficient points-to analy$os whole-
program analysis. IESEG 1999.

[23] D. Liang and M. J. Harrold. Efficient computation of paraterized
pointer information for interprocedural analysis. S!S 200,LJuly
2001.

[24] P. Meredith, B. Pankaj, S. Sahoo, C. Lattner, and V. Adt#ow
successful is data structure analysis in isolating andyaimgj linked
data structures? Tech. Report UIUCDCS-R-2005-2658, Ctenpu
Science Dept., Univ. of lllinois at Urbana-Champaign, N6@2.

[25] E. M. Nystrom, H.-S. Kim, and W. mei W. Hwu. Bottom-up and
top-down context-sensitive summary-based pointer aisalys SAS
2004 2004.

[26] E. M. Nystrom, H.-S. Kim, and W. mei W. Hwu. Importancelaap
specialization in pointer analysis. Rroc. ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Enginge
(PASTE) pages 43-48, New York, NY, USA, 2004.

[27] R. O'Callahan and D. Jackson. Lackwit: a program urndeiding
tool based on type inference. I8SE '97: Proceedings of the 19th
international conference on Software engineeripgges 338-348,
New York, NY, USA, 1997. ACM Press.

[28] E. Ruf. Effective synchronization removal for java. Pb.DI, pages
208-218, 2000.

[29] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-arialpsoblems
in languages with destructive updatinfOPLAS 20(1), Jan. 1998.

[30] B. Steensgaard. Points-to analysis by type inferefipeagrams with
structures and unions. I@ompiler Constructionpages 136-150,
London, UK, 1996.

[31] B. Steensgaard. Points-to analysis in almost lineaeti INPOPL,
1996.

[32] R. E. Tarjan. Efficiency of a good but not linear set un&gorithm.
J. ACM 22(2):215-225, 1975.

[33] F. Vivien and M. Rinard. Incrementalized pointer andagse analysis.
In PLDI, pages 35-46, 2001.

[34] J. Whaley and M. S. Lam. Cloning-based context-semsitiointer
alias analysis using binary decision diagramsPLDI, 2004.

[35] R. P. Wilson and M. S. Lam. Effective context sensitiv@rper
analysis for C programs. IRALDI, pages 1-12, June 1995.

