
Azure E-book Series

Building cloud-
native applications
with Node.js
and Azure

PUBLISHED BY
Microsoft Press
A division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2018 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be
reproduced or transmitted in any form or by any means without the
written permission of the publisher.

Microsoft Press books are available through booksellers and distributors
worldwide. If you need support related to this book, email Microsoft
Press Support at mspinput@microsoft.com. Please tell us what you think
of this book at http://aka.ms/tellpress.

This book is provided “as-is” and expresses the author’s views and
opinions. The views, opinions and information expressed in this book,
including URL and other Internet website references, may change
without notice.

Some examples depicted herein are provided for illustration only and are
fictitious. No real association or connection is intended or should
be inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on
the “Trademarks” webpage are trademarks of the Microsoft group of
companies. All other marks are property of their respective owners.

ii

01
Introduction

04
Chapter 1 / The basics of cloud-native
applications and Node.js

06
Chapter 2 / The benefits of cloud native
for Node.js development

Pillars of cloud-native applications with Node.js

08
Chapter 3 / Principles for architecting
your cloud-native applications

Sample architecture
Before you get started

12
Chapter 4 / Build the app

Create a Node.js web app in Azure App Service on Linux
Before you begin
Get set up
Build and deploy
Update and manage
Manage your new Azure web app

Deploy an Azure Container Service (AKS) cluster
Get set up
Deploy and test
Finish up
Next steps

Table of contentsFebruary
2018

iii

31

32
34
38
39

40
40
41
46
47
48
54
55
58
63
67

09
11

Azure Cosmos DB: Migrate an existing
Node.js MongoDB web app

Get set up
Connect and migrate
Next steps

Azure Database for MySQL: Use Node.js to connect
and query data

Get set up
Prepare to connect
Connect and manipulate data
Next steps

How to use Azure Redis Cache with Node.js
Get set up
Next steps

How to use Blob storage from Node.js
Store and retrieve blobs
Manage blob access
Next steps

68
Summary

07

13
14
14
18
21
21
24
25
26
30
30

This e-book
presents a
structured
approach for
building
Node.js
cloud-native
applications

01 /
The basics of cloud-native applications and
Node.js

02 /
The benefits of cloud-native applications
for Node.js

03 /
Principles for architecting your cloud-native
application with Node.js

04 /
How to build a cloud-native application
with Node.js and Azure

IntroductionFebruary
2018

1

IntroductionFebruary
2018

2

Node.js and
cloud-native
applications are
changing the
way developers
build

Instead of
monoliths,
applications are
decomposed
into smaller,
decentralized
services

These services communicate through APIs
or by using asynchronous messaging.
Applications scale horizontally, adding new
instances as demand requires.

Node.js on the cloud
/ single threaded
/ event driven
/ increased execution speed
/ designed for elastic scale
automated self-management

Traditional web servers
/ multi-threaded
/ always-on
/ occassional bug updates
/ manual management
/ monolithic, centralized

These trends bring new challenges.
Application state is distributed. Operations
are done in parallel and asynchronously.
The system as a whole must be resilient
when failures occur. Deployments must
be automated and predictable. Monitoring
and telemetry are critical for gaining insight
into the system.

IntroductionFebruary
2018

3

Chapter 1 /

The basics of
cloud-native
applications and
Node.js

Cloud-native applications are ones that
are designed specifically for a cloud
computing architecture. These applications
are designed to take advantage of
cloud computing frameworks, which
are composed of loosely coupled cloud
services. Such applications are ones that
have a high degree of uptime and are
highly available, from wherever there’s an
internet connection. These applications are
extremely scalable.

The basics of cloud-native applications
and Node.js

February
2018

4

In the simplest way to describe it, Node.js
is server-side JavaScript. It’s non-blocking
and event-driven; thanks to its event
loop, it is optimized for handling
asynchronous I/O, such as calls to
databases or external services, two very
common operations in modern web
apps. And, because it’s JavaScript, it’s fast
and flexible to use with other types of
code. JavaScript was originally designed
as a language only for client-side web
applications, but Node.js allows for server-
side development, making it one of the
most popular programming languages.
Node.js allows web developers to expand
their creative potential by creating
servers, command-line tools, and desktop
applications. Using asynchronous I/O, the
server can do more than one thing at a
time, a key requirement for real-time apps
like chat, games and live statistics.

The basics of cloud-native applications
and Node.js

February
2018

5

This makes Node.js a natural for the
cloud, with its anywhere access and need
for speed. With Azure, which is built to
support many architectures (including
microservices), databases, and services,
as well as having support for containers,
Node.js is all the more powerful. For
example, on Azure it’s easy to add identity
and access management through Azure
Active Directory, vision and speech
capabilities with Azure Cognitive Services,
or data insights through Azure Data Lake
Analytics – just to name a few of the
many examples.

Chapter 2 /

The benefits
of cloud native
for Node.js
development

Application development and IT system
management is undergoing revolutionary
change driven by the cloud. Fast, agile,
inexpensive, and massively scalable
infrastructure is improving operational
efficiency and enabling faster-time-to-
value across industries. The emergence
of containers, with their fast startup,
standardized application packaging,
and isolation model, is further contributing
to efficiency and agility.

There are many ways businesses can take
advantage of the capabilities this brings.
Quick and reliable data processing, error
analysis, and quick code deployment can
enable a startup to grow faster than
larger companies. You can reduce build
times and user customization enabled by
using Node.js when streaming content.
Companies can also align dispersed
development teams onto a single language
with Node.js, which means significantly
less time is spent writing code. Azure cloud
services provide Node.js developers the
ability to quickly add new functionality to
their software while remaining stable and
secure in production. By using Azure cloud
services, you can develop, package, deploy
and scale powerful applications on many
of platforms.

The benefits of cloud-native for Node.js
development

February
2018

6

Pillars of
cloud-native
applications
with Node.js

As more and more applications are being
developed in the cloud, agile practices have
emerged. Agile development promotes
small, well planned, iterations by highly
collaborative teams, resulting in continuous
delivery. The pillars of agile methodology
likely fit well with why you chose to work
with Node.js in the first place.

Speed
Deliver the responsiveness users demand.
Because Node.js runs on the Chrome V8
engine, which is optimized for speed, and
because of its asynchronous processing,
Node.js apps are very fast. With Node.js,
speed is also about development agility,
which using JavaScript enables. Lastly,
with around half a million modules (and
counting) on NPM, the Node.js Package
Manager, developers can easily integrate
libraries for many common tasks.

Flexibility with components
Azure supports many architectures,
operating systems, tools, services, and
databases. Because of this, Node.js
developers can connect to the functionality
they need to support their applications:
databases, identity providers, cognitive
services, etc.

Reliability
Azure offers a large variety of hosting
options, including Linux and Kubernetes.
With containers like Docker you can
develop new features and functionality
within the production environment, but
isolate them so that you can test and roll
out new features or fixes with confidence.

Some of the greatest benefits of working
in the cloud are the monitoring and
analytics capabilities. By tracking costs
and efficiencies of your work, you can
understand what is working well, and make
better decisions. This will also allow you to
simplify your environment and free
up resources.

The benefits of cloud-native for Node.js
development

February
2018

7

Chapter 3 /

Principles for
architecting your
cloud-native
application

In this section, we will walk through
the process of creating, hosting, and
architecting your cloud-native application.
The architecture in this chapter includes
the core components available to you as
a Node.js developer using Azure to build
fast, reliable, and flexible applications in
the cloud. With the cloud you get to pick
and choose what services you use to build
your application. Depending on your
business logic you will probably use some
combination of the following; Web Apps
on Linux, Kubernetes, CosmosDB
(MongoDB), MySQL/PostgreSQL, Redis
Cache, Blob storage.

Principles for architecting your
cloud-native application

February
2018

8

Web apps on Linux
Modern cloud-native applications usually
separate the web-based frontend from
the backend, which often provides RESTful
APIs and/or GraphQL. Web Apps on Linux
is a Platform-as-a-Service offering on
Azure that allows serving web applications
from a completely managed environment.
Web Apps on Linux supports Node.js apps
and static websites (as well as many other
technologies), and it supports autoscaling,
Continuous Integration and Continuous
Delivery, and more.

Kubernetes on Azure Container Service
(AKS)
Azure Container Service (AKS) offers a fully-
managed Kubernetes cluster. You can pick
and choose the number and kind of worker
nodes you want, and Azure takes care
of provisioning, managing and updating
them, giving you access to a full Kubernetes
cluster that can be interacted with using the
web UI or kubectl.

Cosmos DB (MongoDB)
Cosmos DB is a managed, massively
scalable, NoSQL Database-as-a-Service
available on Azure, that offers full protocol
compatibility with MongoDB. Applications
that are designed for MongoDB can
connect to Cosmos DB using the
same libraries and tools. Cosmos DB
supports multiple performance tiers, and
allows geo-replication with selectable
consistency levels.

February
2018

9Principles for architecting your
cloud-native application

With the cloud
you get to pick
and choose what
services you use
to build your
application

Azure DB for MySQL and PostgreSQL
In addition to installing them on a Virtual
Machine, with Azure you can run MySQL
or PostgreSQL, two popular relational
databases, as fully-managed services too.

Redis Cache
Azure Redis Cache offers the popular Redis
in-memory key-value storage as a fully
managed service.

Blob Storage
Lastly, Azure Blob Storage is a massively
scalable object storage. Your application
can use it to store static assets, images,
cached data, and anything unstructured, in
a simple and cost-effective way. Now that
we have introduced the components you
will be working with, let’s get familiar with
how to build and deploy a simple Node.js
web app in Azure.

Azure Region

Redis
Cache

MongoDB
via Cosmos DB

MySQL
or PostgresSQL

Azure Blob
Storage

Azure CDNVisitor

Node.js Cloud Native Application

Azure

Web Apps
on Linux

CDN

Kubernetes on Azure Container Service
(AKS) w/ Node.js microservices

Architecture Components
Web Apps on Linux
Modern cloud-native applications usually separate the
web-based frontend from the backend, which often provides
RESTful APIs and/or GraphQL. Web Apps on Linux is a
Platform-as-a-Service offering that allows serving web
applications from a completely managed environment. Web
Apps on Linux supports Node.js apps and static websites (as
well as many other technologies), and it supports
auto-scaling, Continuous Integration and Continuous
Delivery, and more.

Kubernetes on Azure Container Service (AKS)
Azure Container Service (AKS) offers a fully-managed
Kubernetes cluster. You can pick and choose the number and
kind of worker nodes you want, and Azure takes care of
provisioning, managing and updating them, giving you
access to a full Kubernetes cluster that can be interacted with
using the web UI or kubectl.

Cosmos DB (MongoDB)
Cosmos DB is a managed, massively scalable, NoSQL
Database-as-a-Service available on Azure, that offers full
protocol compatibility with MongoDB. Applications that are
designed for MongoDB can connect to Cosmos DB using the
same libraries and tools. Cosmos DB supports multiple
performance tiers, and allows geo-replication with selectable
consistency levels.

Azure DB for MySQL and PostgreSQL
In addition to installing them on a Virtual Machine, with
Azure you can run MySQL or PostgreSQL, two popular
relational databases, as fully-managed services too.

Redis Cache
Azure Redis Cache offers the popular Redis in-memory
key-value storage as a fully managed service.

Blob Storage
Lastly, Azure Blob Storage is a massively scalable object
storage. Your application can use it to store static assets,
images, cached data, and anything unstructured, in a simple
and cost-effective way.

This architecture includes the core components available to you as a Node.js developer using Azure to build fast, reliable, and flexible applications in the cloud. With the cloud you get to pick and
choose what services you use to build your application.

Download the full Cloud Native Application with Node.js and Azure Guide at aka.ms/architectureguide
Visit the https://docs.microsoft.com/en-us/javascript/azure to find the latest technical guidance, developer tools, code
samples and quickstart guides to help you build your next Node.js project on Azure.

Winter | 2017

Principles for architecting your
cloud-native application

February
2018

11

To complete the examples in this e-book,
you’ll need the following:

• Install Git
• Install Node.js
• An Azure free account

You will also need the Azure CLI 2.0, which
is Azure’s new command line experience
for managing Azure resources. You can use
it in your browser with Azure Cloud Shell,
or you can install it on macOS, Linux, and
Windows and run it from the command
line. After you’ve started Azure Cloud Shell
or installed the Azure CLI, see Get Started
with Azure CLI 2.0.

Before you
get started

https://git-scm.com/
https://nodejs.org/en/
https://azure.microsoft.com/en-us/free/
https://docs.microsoft.com/en-us/azure/cloud-shell/overview
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest

Chapter 4 /

Build the app

Build the appFebruary
2018

12

01 /
Create a Node.js web app in Azure App
Service on Linux

02 /
Deploy an Azure Container Service (AKS)
cluster

03 /
Azure Cosmos DB: Migrate an existing
Node.js Mongo DB web app

04 /
Azure Database for MySQL: Use Node.js to
connect and query data

05 /
How to use Azure Redis Cache with Node.js

06 /
How to use Blob storage from Node.js

Create a Node.js
web app in Azure
App Service on
Linux

In this section, we’ll create a Node.js web
app in Azure App Service on Linux using
a built-in image, using Azure CLI. We’ll
use Git to deploy the Node.js code to the
web app.

Web Apps is a service for hosting web
applications, REST APIs, and mobile back
ends. App Service on Linux provides
a highly scalable, self-patching web
hosting service using the Linux operating
system. App Service on Linux supports
Node.js as a built-in image, as well as PHP,
.NET Core, Ruby, and more to increase
developer productivity.

Customers can use App Service on Linux
to host web apps natively on Linux for
supported application stacks.

Build the app / Create a Node.js web app
in Azure App Service on Linux

February
2018

13

https://docs.microsoft.com/en-us/azure/app-service/containers/app-service-linux-intro

Before you begin

Build the app / Create a Node.js web app
in Azure App Service on Linux

February
2018

14

Use this terminal window to run all the commands in this example.
Change to the directory that contains the sample code.

Install the Azure CLI 2.0 software as described here and sign up for an Azure free account. You’ll also
need to download the sample code here below.

In a terminal window on your machine, clone the sample app repository to your local machine by
running the following command.

Get set up

Now that you have what you need, there are a few tasks to do before you build your app.

Run the app locally
Run the application locally by opening a terminal window and using the npm start script to launch
the built in Node.js HTTP server.

Open a web browser, and navigate to the sample app at http://localhost:1337 .

You’ll see the Hello World message from the sample app displayed in the page.

git clone https://github.com/Azure-Samples/nodejs-docs-hello-world

cd nodejs-docs-hello-world

npm start

In your terminal window, press Ctrl+C to exit the web server.

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://azure.microsoft.com/en-us/free/

Build the app / Create a Node.js web app
in Azure App Service on Linux

February
2018

15

Launch Azure Cloud Shell
The Azure Cloud Shell is a free Bash shell that you can run directly within the Azure portal. It has the
Azure CLI preinstalled and configured to use with your account. Click the Cloud Shell button on the
menu in the upper-right of the Azure portal.

This button launches an interactive shell that you can use to run the steps in this topic:

Create a deployment user
In the Cloud Shell, create deployment credentials with the az webapp deployment user set
command.

A deployment user is required for FTP and local Git deployment to a web app. The user name and
password are account level. They are different from your Azure subscription credentials.

https://portal.azure.com
https://docs.microsoft.com/en-us/cli/azure/webapp/deployment/user?view=azure-cli-latest#az_webapp_deployment_user_set

Build the app / Create a Node.js web app
in Azure App Service on Linux

February
2018

16

In the following command, replace <username> and <password> with a new user name and
password. The user name must be unique. The password must be at least eight characters long, with
two of the following three elements: letters, numbers, symbols.

az webapp deployment user set --user-name <username> --password <password>

You might get an error at this point. Use the following guidance:

If you get a ‘Conflict’. Details: 409 error, change the username.

If you get a ‘Bad Request’. Details: 400 error, use a stronger password.

You only need to create this deployment user once. You can use it for all your Azure deployments.

Create a resource group
In the Cloud Shell, create a resource group with the az group create command.

A resource group is a logical container into which Azure resources like web apps, databases, and
storage accounts are deployed and managed.

The following example creates a resource group named myResourceGroup in the West Europe
location.

As a best practice, create your resource group and the resources in a region near you. To see all
supported locations for App Service plans, run the az appservice list-locations command.

Record the user name and password. You need them to deploy the web app later.

az group create --name myResourceGroup --location "West Europe"

N
O

TE

https://docs.microsoft.com/en-us/cli/azure/group?view=azure-cli-latest#az_group_create
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview#terminology

Build the app / Create a Node.js web app
in Azure App Service on Linux

February
2018

17

Create an Azure App Service plan
In the Cloud Shell, create an App Service plan with the az appservice plan create command.

An App Service plan specifies the location, size, and features of the web server farm that hosts your
app. You can save money when hosting multiple apps by configuring the web apps to share a single
App Service plan.

An App Service plan defines:
• Region (for example: North Europe, East US, or Southeast Asia)
• Instance size (e.g: small, medium, or large)
• Scale count (1 to 10 instances)
• SKU (Basic, Standard)

The following example creates an App Service plan named myAppServicePlan in the Standard
pricing tier with one instance (S1), and in a Linux container:

When you have created the App Service plan, the Azure CLI shows information similar to the
following example:

{
 "adminSiteName": null,
 "appServicePlanName": "myAppServicePlan",
 "geoRegion": "West Europe",
 "hostingEnvironmentProfile": null,
 "id": "/subscriptions/0000-0000/resourceGroups/myResourceGroup/providers/Microsoft.Web/serverfarms/myAppServicePlan",
 "kind": "app",
 "location": "West Europe",
 "maximumNumberOfWorkers": 1,
 "name": "myAppServicePlan",
 < JSON data removed for brevity. >
 "targetWorkerSizeId": 0,
 "type": "Microsoft.Web/serverfarms",
 "workerTierName": null
}

az appservice plan create \
 --name myAppServicePlan \
 --resource-group myResourceGroup \
 --sku S1 \
 --is-linux

https://docs.microsoft.com/en-us/cli/azure/group?view=azure-cli-latest#az_group_create
https://docs.microsoft.com/en-us/azure/app-service/azure-web-sites-web-hosting-plans-in-depth-overview

Build the app / Create a Node.js web app
in Azure App Service on Linux

February
2018

18

Now you’re ready to build and deploy your app. Follow these steps.

Create a web app with built-in image
In the Cloud Shell, create a web app in the myAppServicePlan App Service plan with the
az webapp create command. Don’t forget to replace <app_name> with a unique app name.

The runtime in the following command is set to NODE|6.9. To see all supported runtimes, run
az webapp list-runtimes.

Build and deploy

az webapp create \
 --resource-group myResourceGroup \
 --plan myAppServicePlan \
 --name <app_name> \
 --runtime "NODE|6.9" \
 --deployment-local-git

When you have created the web app, the Azure CLI shows output similar to the following example:

Local git is configured with url of 'https://<username>@<app_name>.scm.azurewebsites.net/<app_name>.git'
{
 "availabilityState": "Normal",
 "clientAffinityEnabled": true,
 "clientCertEnabled": false,
 "cloningInfo": null,
 "containerSize": 0,
 "dailyMemoryTimeQuota": 0,
 "defaultHostName": "<app_name>.azurewebsites.net",
 "deploymentLocalGitUrl": "https://<username>@<app_name>.scm.azurewebsites.net/<app_name>.git",
 "enabled": true,
 < JSON data removed for brevity. >
}

You’ve created an empty web app, with git deployment enabled.

The URL of the Git remote is shown in the deploymentLocalGitUrl property, with the format
https://<username>@<app_name>.scm.azurewebsites.net/<app_name>.git. Save this URL as you’ll need it later.N

O
TE

https://docs.microsoft.com/en-us/cli/azure/webapp?view=azure-cli-latest#az_webapp_create
https://docs.microsoft.com/en-us/cli/azure/webapp?view=azure-cli-latest#az_webapp_list_runtimes

Build the app / Create a Node.js web app
in Azure App Service on Linux

February
2018

19

Browse to your newly created web app. Replace <app name> with a unique app name.

http://<app name>.azurewebsites.net

Push to Azure from Git
In the local terminal window, add an Azure remote to your local Git repository. This Azure remote
was created for you in Create a web app.

git remote add azure <deploymentLocalGitUrl-from-create-step>

Push to the Azure remote to deploy your app with the following command. When prompted for a
password, make sure that you enter the password you created in Configure a deployment user, not
the password you use to log in to the Azure portal.

git push azure master

The preceding command displays information similar to the following example:

Build the app / Create a Node.js web app
in Azure App Service on Linux

February
2018

20

Counting objects: 23, done.
Delta compression using up to 4 threads.

Compressing objects: 100% (21/21), done.
Writing objects: 100% (23/23), 3.71 KiB | 0 bytes/s, done.
Total 23 (delta 8), reused 7 (delta 1)
remote: Updating branch 'master'.
remote: Updating submodules.

remote: Preparing deployment for commit id 'bf114df591'.
remote: Generating deployment script.

remote: Generating deployment script for node.js Web Site

remote: Generated deployment script files

remote: Running deployment command...

remote: Handling node.js deployment.

remote: Kudu sync from: '/home/site/repository' to: '/home/site/wwwroot'
remote: Copying file: '.gitignore'
remote: Copying file: 'LICENSE'
remote: Copying file: 'README.md'
remote: Copying file: 'index.js'
remote: Copying file: 'package.json'
remote: Copying file: 'process.json'
remote: Deleting file: 'hostingstart.html'
remote: Ignoring: .git

remote: Using start-up script index.js from package.json.

remote: Node.js versions available on the platform are: 4.4.7, 4.5.0, 6.2.2, 6.6.0, 6.9.1.
remote: Selected node.js version 6.9.1. Use package.json file to choose a different version.

remote: Selected npm version 3.10.8

remote: Finished successfully.

remote: Running post deployment command(s)...

remote: Deployment successful.

To https://<app_name>.scm.azurewebsites.net:443/<app_name>.git

 * [new branch] master -> master

Browse to the app
Browse to the deployed application using your web browser.

The Node.js sample code is running in a web app with built-in image.

http://<app_name>.azurewebsites.net

Congratulations! You've deployed your first Node.js app to App Service on Linux.

Now that you’ve deployed your app, here’s how to make updates and manage it.

Update and redeploy the code
Using a text editor, open the index.js file in the Node.js app, and make a small change to the text in
the call to response.en .

Build the app / Create a Node.js web app
in Azure App Service on Linux

February
2018

21

Commit your changes in Git, and then push the code changes to Azure.

Once deployment has completed, switch back to the browser window that opened in the Browse to
the app step, and hit refresh.

response.end("Hello Azure!");

Update and manage

Manage your new Azure web app

Go to the Azure portal to manage the web app you created. From the left menu, click App Services,
and then click the name of your Azure web app.

git commit -am "updated output"
git push azure master

https://portal.azure.com/

Build the app / Create a Node.js web app
in Azure App Service on Linux

February
2018

22

You see your web app’s Overview page. Here, you can perform basic management tasks like browse,
stop, start, restart, and delete.

In the left menu, there are different pages for configuring your app.

Build the app / Create a Node.js web app
in Azure App Service on Linux

February
2018

23

Clean up resources

To clean up your resources, run the following command:

az group delete --name myResourceGroup

Now that you have created the front end, we can look at the back end of your application.

Deploy an
Azure Container
Service (AKS)
cluster

Build the app / Deploy an Azure
Container Service (AKS) cluster

February
2018

24

Now that you are familiar with using
Node.js with Azure, you can now work with
more concepts and functionality that will
enhance your web apps.

Azure Container Service (AKS) manages
your hosted Kubernetes environment,
making it quick and easy to deploy and
manage containerized applications without
container orchestration expertise.

A Docker container is a lightweight, stand-
alone, executable, logical package of
software. It includes everything needed
to run the software: code, runtime, system
tools, system libraries, and settings so that
the software within is isolated from its
surroundings. Using containers eliminate
the problems created when there are
differences between development and
staging environment. This helps with
reducing conflicts and allows for more
predictable deployment of new features
and functionality to the production
environment. For more information
about containers, see the Docker info
page. Containers eliminate the burden
of ongoing operations and maintenance
by provisioning, upgrading, and scaling
resources on demand, without taking your
applications offline.

In this example, you will deploy an AKS cluster using the Azure CLI. You will then run a simple
Todo application written in Node.js, which stores data on the client using HTML5 local storage.
Once completed, you can access the application over the internet.

This example assumes a basic understanding of Kubernetes concepts, for detailed information on
Kubernetes see the Kubernetes documentation.

Launch Azure Cloud Shell
Click the Cloud Shell button on the menu in the upper-right of the Azure portal.

Get set up

Enabling AKS preview for your Azure subscription (temporary)
As of writing, AKS is still in a preview state. While AKS is in preview, you need a feature flag on your
subscription for creating new clusters. You can request this feature for any number of subscriptions
that you would like to use. Use the az provider register command to register the AKS provider:

Build the app / Deploy an Azure
Container Service (AKS) cluster

February
2018

25

az provider register -n Microsoft.ContainerService

After registering, you are now ready to create a Kubernetes cluster with AKS.

https://kubernetes.io/docs/home/
https://portal.azure.com/

Create AKS cluster
Use the following example to create a cluster named myK8sCluster with one node.

After several minutes, the command completes and returns JSON-formatted information about
the cluster.

Connect to the cluster
To manage a Kubernetes cluster, use kubectl, the Kubernetes command-line client.

If you're using Azure Cloud Shell, kubectl is already installed. If you want to install it locally, run the
following command.

Deploy and test

Build the app / Deploy an Azure
Container Service (AKS) cluster

February
2018

26

Create a resource group
Create a resource group with the az group create command.

Use the following example to create a resource group named myResourceGroup in the Central US
location.

{

 "id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/myResourceGroup",
 "location": "centralus",
 "managedBy": null,
 "name": "myResourceGroup",
 "properties": {
 "provisioningState": "Succeeded"
 },

 "tags": null
}

az aks create \

 --resource-group myResourceGroup \

 --name myK8sCluster \

 --node-count 1 \

 --generate-ssh-keys

https://kubernetes.io/docs/reference/generated/kubectl/kubectl-options/
https://docs.microsoft.com/en-us/cli/azure/group?view=azure-cli-latest#az_group_create

Run the application
A Kubernetes manifest file defines a desired state for the cluster, including what container images
should be running. For this example, a manifest is used to create all objects needed to run the Todo
application.

Create a Kubernetes manifest file, called todo-app.yaml , by copying in the following YAML code.
If you are working in Azure Cloud Shell, you can create this file using vi or nano as if working on a
virtual or physical system.

Run the following command to configure kubectl to connect to your Kubernetes cluster. This step
downloads credentials and configures the Kubernetes CLI to use them.

To verify the connection to your cluster, use the kubectl get command to return a list of the
cluster nodes.

Output:

az aks install-cli

az aks get-credentials --resource-group myResourceGroup --name myK8sCluster

kubectl get nodes

Build the app / Deploy an Azure
Container Service (AKS) cluster

February
2018

27

NAME STATUS ROLES AGE VERSION

k8s-myk8scluster-36346190-0 Ready agent 2m v1.7.7

apiVersion: v1

kind: Service

metadata:

 name: web

 labels:

 name: web

spec:

 type: LoadBalancer

 ports:

 - port: 80

 targetPort: 3000

 protocol: TCP

 selector:

 name: web

apiVersion: v1

kind: ReplicationController

metadata:

 labels:

 name: web

 name: web-controller

spec:

 replicas: 2

 selector:

 name: web

 template:

 metadata:

 labels:

 name: web

 spec:

 containers:

 - image: nodeebookdemo/nodejs-todo-sample

 name: web

 ports:

 - containerPort: 3000

 name: http-server

Use the kubectl create command to run the application.

kubectl create -f todo-app.yaml

Build the app / Deploy an Azure
Container Service (AKS) cluster

February
2018

28

Output:

service "web" created
replicationcontroller "web-controller" created

https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#create

Initially the EXTERNAL-IP for the azure-vote-front service appears as pending.

Test the application
As the application is run, a Kubernetes service is created that exposes the application front end to
the internet. This process can take a few minutes to complete.

To monitor progress, use the kubectl get service command with the --watch argument.

Once the EXTERNAL-IP address has changed from pending to an IP address, use
 Ctrl+C to stop the kubectl watch process.

You can now browse to the external IP address to see the Todo App.

Build the app / Deploy an Azure
Container Service (AKS) cluster

February
2018

29

kubectl get service web --watch

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

web LoadBalancer 10.0.37.27 <pending> 80:30572/TCP 6s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

web LoadBalancer 10.0.37.27 52.179.23.131 80:30572/TCP 2m

https://kubernetes.io/docs/concepts/services-networking/service/
https://v1-8.docs.kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#get

Delete cluster
When you no longer need the cluster, you can use the az group delete command to remove the
resource group, container service, and all related resources.

Get the code

In this example, you used pre-created container images to create a Kubernetes deployment. You can
get the related application code, Dockerfile, and Kubernetes manifest file on GitHub.

https://github.com/NodeEbookDemo/nodejs-todo-sample

Finish up

Now that you know about applications let's talk about the data.

Next steps

Build the app / Deploy an Azure
Container Service (AKS) cluster

February
2018

30

az group delete --name myResourceGroup --yes --no-wait

https://docs.microsoft.com/en-us/cli/azure/group?view=azure-cli-latest#az_group_delete
https://github.com/NodeEbookDemo/nodejs-todo-sample

Azure Cosmos
DB: Migrate an
existing Node.js
Mongo DB
web app

Build the app / Azure Cosmos DB: Migrate
an existing Node.js Mongo DB web app

February
2018

Azure Cosmos DB is Microsoft’s globally
distributed multi-model database service,
and is compatible with MongoDB. You can
quickly create and query document, key/
value, and graph databases, all of which
benefit from the global distribution and
horizontal scale capabilities at the core of
Azure Cosmos DB.

31

https://azure.microsoft.com/en-us/services/cosmos-db/

This example demonstrates how to use an existing app written in Node.js and designed to use
MongoDB, and connect it to your Azure Cosmos DB database, which supports MongoDB client
connections. In other words, your Node.js application only knows that it's connecting to a database
using MongoDB APIs. It is transparent to the application that the data is stored in Azure Cosmos DB.

When you are done, you will have a MEAN application (MongoDB, Express, Angular, and Node.js)
running on Azure Cosmos DB.

Before you begin

Get the software you need
Install the software and get an Azure account as described here.

Launch Azure Cloud Shell
Click the Cloud Shell button on the menu in the upper-right of the Azure portal.

February
2018

32

Get set up

Clone the sample application
Open a git terminal window, such as git bash, and cd to a working directory.

Run the following commands to clone the sample repository. This sample repository contains the
default MEAN.js application.

Build the app / Azure Cosmos DB: Migrate
an existing Node.js Mongo DB web app

https://azure.microsoft.com/en-us/services/cosmos-db/
https://portal.azure.com/
http://meanjs.org/

Create an Azure Cosmos DB account
Create an Azure Cosmos DB account with the az cosmosdb create command.

In the following command, substitute your own unique Azure Cosmos DB account name where you
see the <cosmosdb-name> placeholder. This unique name will be used as part of your Azure
Cosmos DB endpoint (https://<cosmosdb-name>.documents.azure.com/), so the name needs to
be unique across all Azure Cosmos DB accounts in Azure.

The application will try to connect to a MongoDB source and fail. Exit the application when the
output returns "[MongoError: connect ECONNREFUSED 127.0.0.1:27017]".

Create a resource group
Create a resource group with the az group create.

The following example creates a resource group in the West Europe region. Choose a unique name
for the resource group.

Run the application
Install the required packages and start the application.

git clone https://github.com/prashanthmadi/mean

February
2018

33

cd mean

npm install

npm start

az group create --name myResourceGroup --location "West Europe"

az cosmosdb create --name <cosmosdb-name> --resource-group myResourceGroup --kind MongoDB

Use the --kind MongoDB parameter to enable MongoDB client connections.

Build the app / Azure Cosmos DB: Migrate
an existing Node.js Mongo DB web app

https://docs.microsoft.com/en-us/cli/azure/group?view=azure-cli-latest#az_group_create

When you have created the Azure Cosmos DB, the Azure CLI shows information similar to the
following example.

February
2018

34

Connect and migrate

In this step, you connect your MEAN.js sample application to an Azure Cosmos DB database you just
created, using a MongoDB connection string.

Configure the connection string in your Node.js application
Open config/env/local-development.js In your MEAN.js repository.

{

 "databaseAccountOfferType": "Standard",
 "documentEndpoint": "https://<cosmosdb-name>.documents.azure.com:443/",
 "id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/myResourceGroup/providers/Microsoft.Document
DB/databaseAccounts/<cosmosdb-name>",
 "kind": "MongoDB",
 "location": "West Europe",
 "name": "<cosmosdb-name>",
 "readLocations": [
 {

 "documentEndpoint": "https://<cosmosdb-name>-westeurope.documents.azure.com:443/",
 "failoverPriority": 0,
 "id": "<cosmosdb-name>-westeurope",
 "locationName": "West Europe",
 "provisioningState": "Succeeded"
 }

],

 "resourceGroup": "myResourceGroup",
 "type": "Microsoft.DocumentDB/databaseAccounts",
 "writeLocations": [
 {

 "documentEndpoint": "https://<cosmosdb-name>-westeurope.documents.azure.com:443/",
 "failoverPriority": 0,
 "id": "<cosmosdb-name>-westeurope",
 "locationName": "West Europe",
 "provisioningState": "Succeeded"
 }

]

}

Build the app / Azure Cosmos DB: Migrate
an existing Node.js Mongo DB web app

Copy the value of primaryMasterKey . Paste this over the <primary_master_key> in
 local-development.js .

Save your changes.

Replace the content of this file with the following code. Be sure to also replace the two
 <cosmosdb-name> placeholders with your Azure Cosmos DB account name.

Retrieve the key
In order to connect to an Azure Cosmos DB database, you need the database key. Use the
az cosmosdb list-keys command to retrieve the primary key.

The Azure CLI outputs information similar to the following example.

February
2018

35

Run the application again
Run npm start again.

A console message should indicate that the development environment is up and running.

Navigate to http://localhost:3000 in a browser. Click Sign Up in the top menu and try to create two
dummy users.

'use strict';

module.exports = {

 db: {

 uri: 'mongodb://<cosmosdb-name>:<primary_master_key>@<cosmosdb-name>.documents.azure.com:10255/

mean-dev?ssl=true&sslverifycertificate=false'

 }

};

az cosmosdb list-keys \

 --name <cosmosdb-name> \

 --resource-group myResourceGroup \

 --query "primaryMasterKey"

"RUayjYjixJDWG5xTqIiXjC..."

npm start

Build the app / Azure Cosmos DB: Migrate
an existing Node.js Mongo DB web app

https://docs.microsoft.com/en-us/cli/azure/cosmosdb?view=azure-cli-latest#az_cosmosdb_list_keys

The MEAN.js sample application stores user data in the database. If MEAN.js automatically signs into
the created user, then your Azure Cosmos DB connection is working.

View data in Data Explorer
You can view, query, and run business-logic on data stored by an Azure Cosmos DB in the Azure
portal. To view, query, and work with the user data created in the previous step, login to the
Azure portal in your web browser.

1. In the top Search box, type Azure Cosmos DB.

2. When your Cosmos DB account blade opens, select your Cosmos DB account.

3. In the left navigation, click Data Explorer,

4. Expand your collection in the Collections pane, and then you can view the documents in the
 collection, query the data, and even create and run stored procedures, triggers, and UDFs.

February
2018

36Build the app / Azure Cosmos DB: Migrate
an existing Node.js Mongo DB web app

https://portal.azure.com

Deploy the Node.js application to Azure
In this step, you will deploy your MongoDB-connected Node.js application to Azure Cosmos DB.

You may have noticed that the configuration file that you changed earlier is for the development
environment (/config/env/local-development.js). When you deploy your application to App
Service, it will run in the production environment by default. So now, you need to make the same
change to the respective configuration file.

In your MEAN.js repository, open config/env/production.js.

In the db object, replace the value of uri as show in the following example. Be sure to replace the
placeholders as before.

In the terminal, commit all your changes into Git.

'mongodb://<cosmosdb-name>:<primary_master_key>@<cosmosdb-name>.documents.azure.com:10255/

mean?ssl=true&sslverifycertificate=false',

February
2018

37

Clean up resources
If you're not going to continue to use this app, delete all resources created by this example in the
Azure portal with the following steps:

1. From the left-hand menu in the Azure portal, click Resource groups and click the name of
the resource you created.

2. On your resource group page, click Delete. Type the name of the resource to delete in the text
box, and click Delete.

The ssl=true option is important because Azure Cosmos DB requires SSL.

git add .

git commit -m "configured MongoDB connection string"

N
O

TE
Build the app / Azure Cosmos DB: Migrate
an existing Node.js Mongo DB web app

https://docs.microsoft.com/en-us/azure/cosmos-db/connect-mongodb-account#connection-string-requirements

Next steps

In this example, you've learned how to create an Azure Cosmos DB account and create a MongoDB
collection using the Data Explorer. You can now migrate your MongoDB data to Azure Cosmos DB.

If your application uses a relational database you can look at using MySQL. The same instructions
discussed below will also be applicable to PostgreSQL with some minor changes.

February
2018

38Build the app / Azure Cosmos DB: Migrate
an existing Node.js Mongo DB web app

Azure Database
for MySQL:
Use Node.js to
connect and
query data

Build the app / Azure Database MySQL:
Use Node.js to connect and query data

February
2018

This example demonstrates how to
connect to an Azure Database for MySQL
using Node.js. It shows how to use SQL
statements to query, insert, update, and
delete data in the database.

39

Get set up

This quickstart uses the resources created in either of these guides as a starting point:

• Create an Azure Database for MySQL server using Azure portal
• Create an Azure Database for MySQL server using Azure CLI

Add the mysql2 NPM package

In the folder containing an existing Node.js app, add the mysql2 NPM package:

Prepare to connect

Get connection information
Get the connection information needed to connect to the Azure Database for MySQL. You need the
fully qualified server name and login credentials.

1. Log in to the Azure portal.
2. In the left pane, click All resources, and then search for the server you have created (for

example, myserver4demo).
3. Click the server name myserver4demo.
4. Select the server’s Properties page, and then make a note of the Server name and Server

admin login name.
5. If you forget your server login information, navigate to the Overview page to view the Server

admin login name, and reset the password.

Build the app / Azure Database MySQL:
Use Node.js to connect and query data

February
2018

40

npm install --save mysql2

https://docs.microsoft.com/en-us/azure/mysql/quickstart-create-mysql-server-database-using-azure-portal
https://docs.microsoft.com/en-us/azure/mysql/quickstart-create-mysql-server-database-using-azure-cli
https://portal.azure.com

Running the JavaScript code in Node.js

1. Paste the JavaScript code into text files, and then save it into a project folder with file extension .js
such as C:\nodejsmysql\createtable.js or /home/username/nodejsmysql/createtable.js.

2. Launch the command prompt or bash shell, and then change directory into your project folder
 cd nodejsmysql.

3. To run the application, type the node command followed by the file name, such as node
 createtable.js.

4. On Windows, if the node application is not in your environment variable path, you may need to
use the full path to launch the node application, such as node createtable.js.

Connect and manipulate data

Connect, create table, and insert data
Use the following code to connect and load the data by using CREATE TABLE and INSERT INTO
SQL statements.

Build the app / Azure Database MySQL:
Use Node.js to connect and query data

February
2018

41

Replace the host , user , password , and database parameters with the values that you
specified when you created the server and database.

• Use the mysql.createConnection() method to interface with the MySQL server
• Use the connect() function to establish the connection to the server
• Use the query() function to execute the SQL query against MySQL database

Build the app / Azure Database MySQL:
Use Node.js to connect and query data

February
2018

42

const mysql = require('mysql2');

var config =
{
 host: 'myserver4demo.mysql.database.azure.com',
 user: 'myadmin@myserver4demo',
 password: 'your_password',
 database: 'quickstartdb',
 port: 3306,
 ssl: true
};

const conn = new mysql.createConnection(config);

conn.connect(
 function (err) {
 if (err) {
 console.log("!!! Cannot connect !!! Error:");
 throw err;
 }
 else
 {
 console.log("Connection established.");
 queryDatabase();
 }
});

function queryDatabase(){
 conn.query('DROP TABLE IF EXISTS inventory;', function (err, results, fields) {
 if (err) throw err;
 console.log('Dropped inventory table if existed.');
 })
 conn.query('CREATE TABLE inventory (id serial PRIMARY KEY, name VARCHAR(50), quantity INTEGER);',
 function (err, results, fields) {
 if (err) throw err;
 console.log('Created inventory table.');
 })
 conn.query('INSERT INTO inventory (name, quantity) VALUES (?, ?);', ['banana', 150],
 function (err, results, fields) {
 if (err) throw err;
 else console.log('Inserted ' + results.affectedRows + ' row(s).');
 })
 conn.query('INSERT INTO inventory (name, quantity) VALUES (?, ?);', ['orange', 154],
 function (err, results, fields) {
 if (err) throw err;
 console.log('Inserted ' + results.affectedRows + ' row(s).');
 })
 conn.query('INSERT INTO inventory (name, quantity) VALUES (?, ?);', ['apple', 100],
 function (err, results, fields) {
 if (err) throw err;
 console.log('Inserted ' + results.affectedRows + ' row(s).');
 })
 conn.end(function (err) {
 if (err) throw err;
 else console.log('Done.')
 });
};

https://github.com/mysqljs/mysql#establishing-connections
https://github.com/mysqljs/mysql#establishing-connections
https://github.com/mysqljs/mysql#performing-queries

Replace the host , user , password , and database parameters with the values that you
specified when you created the server and database.

Read data
Use the following code to connect and read the data by using a SELECT SQL statement.

• Use the mysql.createConnection() method to interface with the MySQL server
• Use the connect() function to establish the connection to the server
• Use the query() function to execute the SQL query against MySQL database
• Use the results array to hold the results of the query

const mysql = require('mysql2');

var config =

{

 host: 'myserver4demo.mysql.database.azure.com',
 user: 'myadmin@myserver4demo',
 password: 'your_password',
 database: 'quickstartdb',
 port: 3306,
 ssl: true

};

const conn = new mysql.createConnection(config);

conn.connect(

 function (err) {

 if (err) {

 console.log("!!! Cannot connect !!! Error:");
 throw err;

 }

 else {

 console.log("Connection established.");
 readData();

 }

 });

function readData(){

 conn.query('SELECT * FROM inventory',
 function (err, results, fields) {

 if (err) throw err;

 else console.log('Selected ' + results.length + ' row(s).');
 for (i = 0; i < results.length; i++) {

 console.log('Row: ' + JSON.stringify(results[i]));
 }

 console.log('Done.');
 })

 conn.end(

 function (err) {

 if (err) throw err;

 else console.log('Closing connection.')
 });

};

Build the app / Azure Database MySQL:
Use Node.js to connect and query data

February
2018

43

https://github.com/mysqljs/mysql#establishing-connections
https://github.com/mysqljs/mysql#establishing-connections
https://github.com/mysqljs/mysql#performing-queries

Update data
Use the following code to connect and read the data by using an UPDATE SQL statement.

• Use the mysql.createConnection() method to interface with the MySQL server
• Use the connect() function to establish the connection to the server
• Use the query() function to execute the SQL query against MySQL database
• Use the results array to hold the results of the query

Replace the host , user , password , and database parameters with the values that you
specified when you created the server and database.

Build the app / Azure Database MySQL:
Use Node.js to connect and query data

February
2018

44

const mysql = require('mysql2');

var config =

{

 host: 'myserver4demo.mysql.database.azure.com',
 user: 'myadmin@myserver4demo',
 password: 'your_password',
 database: 'quickstartdb',
 port: 3306,
 ssl: true

};

const conn = new mysql.createConnection(config);

conn.connect(

 function (err) {

 if (err) {

 console.log("!!! Cannot connect !!! Error:");
 throw err;

 }

 else {

 console.log("Connection established.");
 updateData();

 }

 });

function updateData(){

 conn.query('UPDATE inventory SET quantity = ? WHERE name = ?', [200, 'banana'],
 function (err, results, fields) {

 if (err) throw err;

 else console.log('Updated ' + results.affectedRows + ' row(s).');
 })

 conn.end(

 function (err) {

 if (err) throw err;

 else console.log('Done.')
 });

};

https://github.com/mysqljs/mysql#establishing-connections
https://github.com/mysqljs/mysql#establishing-connections
https://github.com/mysqljs/mysql#performing-queries

Replace the host , user , password , and database parameters with the values that you
specified when you created the server and database.

Delete data
Use the following code to connect and read the data by using an DELETE SQL statement.

• Use the mysql.createConnection() method to interface with the MySQL server
• Use the connect() function to establish the connection to the server
• Use the query() function to execute the SQL query against MySQL database
• Use the results array to hold the results of the query

Build the app / Azure Database MySQL:
Use Node.js to connect and query data

February
2018

45

const mysql = require('mysql2');

var config =

{

 host: 'myserver4demo.mysql.database.azure.com',
 user: 'myadmin@myserver4demo',
 password: 'your_password',
 database: 'quickstartdb',
 port: 3306,
 ssl: true

};

const conn = new mysql.createConnection(config);

conn.connect(

 function (err) {

 if (err) {

 console.log("!!! Cannot connect !!! Error:");
 throw err;

 }

 else {

 console.log("Connection established.");
 deleteData();

 }

 });

function deleteData(){

 conn.query('DELETE FROM inventory WHERE name = ?', ['orange'],
 function (err, results, fields) {
 if (err) throw err;

 else console.log('Deleted ' + results.affectedRows + ' row(s).');
 })

 conn.end(

 function (err) {

 if (err) throw err;

 else console.log('Done.')
 });

};

https://github.com/mysqljs/mysql#establishing-connections
https://github.com/mysqljs/mysql#establishing-connections
https://github.com/mysqljs/mysql#performing-queries

Next steps

Now that we've implemented databases in our applications, we can include Redis Cache to improve
the performance of our services. Redis Cache is based on the open source Redis project. It's a fast,
in-memory, key-value store that can be used to cache data from the database or from other sources.

Build the app / Azure Database MySQL:
Use Node.js to connect and query data

February
2018

46

How to use
Azure Redis
Cache with
Node.js

Build the app / How to use Azure Redis
Cache with Node.js

February
2018

Azure Redis Cache gives you access to a
secure, dedicated Redis cache, managed
by Microsoft. Redis is an open source,
advanced key-value store, that can contain
strings, hashes, lists, sets and sorted
sets. Your cache is accessible from any
application within Microsoft Azure.

This topic shows you how to get started
with Azure Redis Cache using Node.js.

47

This example uses node_redis. For examples of using other Node.js clients, see the individual
documentation for the Node.js clients listed at Node.js Redis clients.

Create a Redis cache on Azure
To create a cache, first sign in to the Azure portal, and click New > Databases > Redis Cache.

Install node_redis:

npm install redis

Build the app / How to use Azure Redis
Cache with Node.js

February
2018

48

Get set up

https://github.com/NodeRedis/node_redis
https://redis.io/clients#nodejs
https://portal.azure.com/
https://github.com/NodeRedis/node_redis

In the New Redis Cache blade, specify the desired configuration for the cache.

Build the app / How to use Azure Redis
Cache with Node.js

February
2018

49

• In DNS name, enter a unique cache name to use for the cache endpoint. The cache name
must be a string between 1 and 63 characters and contain only numbers, letters, and the
 - character. The cache name cannot start or end with the - character, and consecutive -
characters are not valid.

• For Subscription, select the Azure subscription that you want to use for the cache. If your
account has only one subscription, it will be automatically selected and the Subscription
drop-down will not be displayed.

• In Resource group, select or create a resource group for your cache.

• Use Location to specify the geographic location in which your cache is hosted. For the best
performance, Microsoft strongly recommends that you create the cache in the same region
where yourapplication is deployed.

• Use Pricing tier to select the desired cache size and features.

• Redis cluster allows you to create caches larger than 53 GB and to shard data across multiple
Redis nodes. For more information, see How to configure clustering for a Premium Azure
Redis Cache.

• Redis persistence offers the ability to persist your cache to an Azure Storage account. For
instructions on configuring persistence, see How to configure persistence for a Premium
Azure Redis Cache.

• Virtual Network provides enhanced security and isolation by restricting access to your cache
to only those clients within the specified Azure Virtual Network. You can use all the features
of VNet such as subnets, access control policies, and other features to further restrict access
to Redis. For more information, see How to configure Virtual Network support for a Premium
Azure Redis Cache.

• By default, non-SSL access is disabled for new caches. To enable the non-SSL port, check
Unblock port 6379 (not SSL encrypted); this is optional.

Build the app / How to use Azure Redis
Cache with Node.js

February
2018

50

https://docs.microsoft.com/en-us/azure/redis-cache/cache-how-to-premium-clustering
https://docs.microsoft.com/en-us/azure/redis-cache/cache-how-to-premium-clustering
https://docs.microsoft.com/en-us/azure/redis-cache/cache-how-to-premium-persistence
https://docs.microsoft.com/en-us/azure/redis-cache/cache-how-to-premium-persistence
https://docs.microsoft.com/en-us/azure/redis-cache/cache-how-to-premium-persistence
https://docs.microsoft.com/en-us/azure/redis-cache/cache-how-to-premium-vnet
https://docs.microsoft.com/en-us/azure/redis-cache/cache-how-to-premium-vnet

Once the new cache options are configured, click Create. It can take a few minutes for the cache to
be created. To check the status, you can monitor the progress on the startboard. After the cache has
been created, your new cache has a Running status and is ready for use with default settings.

Build the app / How to use Azure Redis
Cache with Node.js

February
2018

51

Retrieve the host name and access keys
To connect to an Azure Redis Cache instance, cache clients need the host name, ports, and keys of
the cache. Some clients may refer to these items by slightly different names. You can retrieve this
information in the Azure portal or by using command-line tools such as Azure CLI.

Retrieve host name, ports, and access keys using the Azure Portal
To retrieve host name, ports, and access keys using the Azure Portal, browse to your cache in the
Azure portal and click Access keys and Properties in the Resource menu.

https://docs.microsoft.com/en-us/azure/redis-cache/cache-configure#default-redis-server-configuration
https://docs.microsoft.com/en-us/azure/redis-cache/cache-configure#configure-redis-cache-settings
https://portal.azure.com/

Retrieve host name, ports, and access keys using Azure CLI
To retrieve the host name and ports using Azure CLI 2.0 you can call az redis show, and to retrieve
the keys you can call az redis list-keys. The following script calls these two commands and prints the
hostname, ports, and keys to the console.

Build the app / How to use Azure Redis
Cache with Node.js

February
2018

52

https://docs.microsoft.com/en-us/cli/azure/redis?view=azure-cli-latest#az_redis_show
https://docs.microsoft.com/en-us/cli/azure/redis?view=azure-cli-latest#az_redis_list_keys

For more information about this script, see Get the hostname, ports, and keys for Azure Redis Cache.

Connect to the cache securely using SSL
The latest builds of node_redis provide support for connecting to Azure Redis Cache using SSL. The
following example shows how to connect to Azure Redis Cache using the SSL endpoint of 6380.
Replace <name> with the name of your cache and <key> with either your primary or secondary
key as described in the previous Retrieve the host name and access keys section.

#!/bin/bash

Retrieve the hostname, ports, and keys for contosoCache located in contosoGroup

Retrieve the hostname and ports for an Azure Redis Cache instance

redis=($(az redis show --name contosoCache --resource-group contosoGroup --query [hostName,enableNonSslPort,port,sslPort] --output tsv))

Retrieve the keys for an Azure Redis Cache instance

keys=($(az redis list-keys --name contosoCache --resource-group contosoGroup --query [primaryKey,secondaryKey] --output tsv))

Display the retrieved hostname, keys, and ports

echo "Hostname:" ${redis[0]}

echo "Non SSL Port:" ${redis[2]}

echo "Non SSL Port Enabled:" ${redis[1]}

echo "SSL Port:" ${redis[3]}

echo "Primary Key:" ${keys[0]}

echo "Secondary Key:" ${keys[1]}

var redis = require("redis");

 // Add your cache name and access key.

var client = redis.createClient(6380,'<name>.redis.cache.windows.net', {auth_pass: '<key>', tls:

{servername: '<name>.redis.cache.windows.net'}});

Build the app / How to use Azure Redis
Cache with Node.js

February
2018

53

The non-SSL port is disabled for new Azure Redis Cache instances. If you are using a different client that
doesn't support SSL, see How to enable the non-SSL port.N

O
TE

https://docs.microsoft.com/en-us/azure/redis-cache/scripts/cache-keys-ports
https://github.com/NodeRedis/node_redis
https://docs.microsoft.com/en-us/azure/redis-cache/cache-configure#access-ports

var redis = require("redis");

 // Add your cache name and access key.

var client = redis.createClient(6380,'<name>.redis.cache.windows.net', {auth_pass: '<key>', tls:

{servername: '<name>.redis.cache.windows.net'}});

client.set("key1", "value", function(err, reply) {

 console.log(reply);

 });

client.get("key1", function(err, reply) {

 console.log(reply);

 });

Add something to the cache and retrieve it
The following example shows you how to connect to an Azure Redis Cache instance, and store and
retrieve an item from the cache. For more examples of using Redis with the node_redis client, see
http://redis.js.org/.

Output:

OK

value

Next steps

• Enable cache diagnostics so you can monitor the health of your cache
• Read the official Redis documentation

Finally, let's explore how we can use Azure Blob Storage. Many applications need an object storage
where they can store any kind of unstructured data, including documents, photos, and attachments.
Using the Azure Storage SDK for Node.js developers can use Azure Blob Storage to store these files
quickly and in a cost-effective way, using the Azure Storage SDK for Node.js.

Build the app / How to use Azure Redis
Cache with Node.js

February
2018

54

https://github.com/NodeRedis/node_redis
http://redis.js.org/
https://docs.microsoft.com/en-us/azure/redis-cache/cache-how-to-monitor#enable-cache-diagnostics
https://docs.microsoft.com/en-us/azure/redis-cache/cache-how-to-monitor
https://redis.io/documentation

How to use
Blob storage
from Node.js

Build the app / How to use Blob storage
from Node.js

February
2018

In this section, you will perform common
scenarios using Blob storage. The samples
are written via the Node.js API. The
scenarios covered include how to upload,
list, download, and delete blobs.

Azure Blob storage is a service for storing
large amounts of unstructured object data,
such as text or binary data, that can be
accessed from anywhere in the world via
HTTP or HTTPS. You can use Blob storage
to expose data publicly to the world, or to
store application data privately.

Common uses of Blob storage include:

• Serving images or documents directly
to a browser

• Storing files for distributed access
• Streaming video and audio
• Storing data for backup and restore,

disaster recovery, and archiving
• Storing data for analysis by an on-

premises or Azure-hosted service

55

The Blob service contains the following components:

Build the app / How to use Blob storage
from Node.js

February
2018

56

• Storage Account: Use a storage account for All access to Azure Storage. You can use a General-
purpose storage account or a Blob storage account, which is specialized for storing objects/
blobs. See About Azure storage accounts for more information.

• Container: A container provides a grouping of a set of blobs. All blobs must be in a container.
An account can contain an unlimited number of containers. A container can store an unlimited
number of blobs. (The container name must be lowercase.)

• Blob: A file of any type and size. Azure Storage offers three types of blobs: block blobs, page
blobs, and append blobs. For this exercise we are concerned only with block and append blobs.

• Block blobs are ideal for storing text or binary files, such as documents and media files. A
single block blob can contain up to 50,000 blocks of up to 100 MB each, for a total size of
slightly more than 4.75 TB (100 MB X 50,000).

• Append blobs are similar to block blobs in that they are made up of blocks, but they
are optimized for append operations, so they are useful for logging scenarios. A single
append blob can contain up to 50,000 blocks of up to 4 MB each, for a total size of
slightly more than 195 GB (4 MB X 50,000).

• Page blobs can be up to 8 TB in size, and are more efficient for frequent read/write
operations. Azure Virtual Machines use page blobs as OS and data disks.

https://docs.microsoft.com/en-us/azure/storage/common/storage-create-storage-account

Build the app / How to use Blob storage
from Node.js

February
2018

57

For details about naming containers and blobs, see Naming and Referencing Containers, Blobs, and
Metadata.

Configure your application to access storage
To use Azure storage, you need the Azure Storage SDK for Node.js, which includes a set of
convenience libraries that communicate with the storage REST services.

Use Node Package Manager (NPM) to obtain the package

1. Use a command-line interface to navigate to the folder where you created your sample
application.

2. Type npm install --save azure-storage in the command window. Output from the command is
similar to the following code example.

azure-storage@0.5.0 node_modules\azure-storage

 +-- extend@1.2.1

 +-- xmlbuilder@0.4.3

 +-- mime@1.2.11

 +-- node-uuid@1.4.3

 +-- validator@3.22.2

 +-- underscore@1.4.4

 +-- readable-stream@1.0.33 (string_decoder@0.10.31, isarray@0.0.1, inherits@2.0.1, core-util-is@1.0.1)

 +-- xml2js@0.2.7 (sax@0.5.2)

 +-- request@2.57.0 (caseless@0.10.0, aws-sign2@0.5.0, forever-agent@0.6.1, stringstream@0.0.4, oauth-sign@0.8.0, tun-

nel-agent@0.4.1, isstream@0.1.2, json-stringify-safe@5.0.1, bl@0.9.4, combined-stream@1.0.5, qs@3.1.0, mime-types@2.0.14,

form-data@0.2.0, http-signature@0.11.0, tough-cookie@2.0.0, hawk@2.3.1, har-validator@1.8.0)

Import the package

Using Notepad or another text editor, add the following to the top of the file of the application
where you intend to use storage:

var azure = require('azure-storage');

https://docs.microsoft.com/en-us/rest/api/storageservices/Naming-and-Referencing-Containers--Blobs--and-Metadata
https://docs.microsoft.com/en-us/rest/api/storageservices/Naming-and-Referencing-Containers--Blobs--and-Metadata

Every blob in Azure storage must reside in a container. The container forms part of the blob name.
For example, mycontainer is the name of the container in these sample blob URIs:

Set up an Azure Storage connection
The Azure module will read the environment variables AZURE_STORAGE_ACCOUNT and
 AZURE_STORAGE_ACCESS_KEY , or AZURE_STORAGE_CONNECTION_STRING , for information required to
connect to your Azure storage account. If these environment variables are not set, you must specify
the account information when calling createBlobService.

Create a container
The BlobService object lets you work with containers and blobs. The following code creates a
BlobService object. Add the following near the top of your code:

A container name must be a valid DNS name, conforming to the following naming rules:

1. Container names must start with a letter or number, and can contain only letters, numbers, and
the dash (-) character.

2. Every dash (-) character must be immediately preceded and followed by a letter or number;
consecutive dashes are not permitted in container names.

3. All letters in a container name must be lowercase.

4. Container names must be from 3 through 63 characters long.

Store and retrieve blobs

Build the app / How to use Blob storage
from Node.js

February
2018

58

var blobSvc = azure.createBlobService();

You can access a blob anonymously by using createBlobServiceAnonymous and providing the host address.
For example, use var blobSvc = azure.
 createBlobServiceAnonymous(‘https://myblob.blob.core.windows.net/’);.

https://storagesample.blob.core.windows.net/mycontainer/blob1.txt

https://storagesample.blob.core.windows.net/mycontainer/photos/myphoto.jpg

N
O

TE

If the container is newly created, result.created is true. If the container already exists,
 result.created is false. response contains information about the operation, including the ETag
information for the container.

To create a new container, use createContainerIfNotExists. The following code example creates a
new container named 'mycontainer':

Container security
By default, new containers are private and you cannot access them anonymously. To make the
container public so that you can access it anonymously, you can set the container’s access level to
blob or container.

• Blob - allows anonymous read access to blob content and metadata within this container, but
not to container metadata such as listing all blobs within a container

• Container - allows anonymous read access to blob content and metadata as well as
container metadata

The following code example demonstrates setting the access level to blob:

blobSvc.createContainerIfNotExists('mycontainer', {publicAccessLevel : 'blob'}, function(error, result, response){
 if(!error){

 // Container exists and allows

 // anonymous read access to blob

 // content and metadata within this container

 }

});

Build the app / How to use Blob storage
from Node.js

February
2018

59

Important: the name of a container must always be lowercase. If you include an upper-case letter in a
container name, or otherwise violate the container naming rules, you may receive a 400 error (Bad Request).

blobSvc.createContainerIfNotExists('mycontainer', function(error, result, response){
 if(!error){

 // Container exists and is private

 }

});

N
O

TE

Alternatively, you can modify the access level of a container by using setContainerAcl to specify the
access level. The following code example changes the access level to container:

The result contains information about the operation, including the current ETag for the container.

Filters
You can apply optional filtering operations to operations performed using BlobService. Filtering
operations can include logging, automatically retrying, etc. Filters are objects that implement a
method with the signature:

After doing its preprocessing on the request options, the method needs to call "next", passing a
callback with the following signature:

In this callback, and after processing the returnObject (the response from the request to the server),
the callback needs to either invoke next if it exists to continue processing other filters or simply
invoke finalCallback to end the service invocation.

Two filters that implement retry logic are included with the Azure SDK for Node.js,
ExponentialRetryPolicyFilter and LinearRetryPolicyFilter. The following creates a BlobService
object that uses the ExponentialRetryPolicyFilter:

function handle (requestOptions, next)

function (returnObject, finalCallback, next)

Build the app / How to use Blob storage
from Node.js

February
2018

60

blobSvc.setContainerAcl('mycontainer', null /* signedIdentifiers */, {publicAccessLevel : 'container'} /* publicAc-
cessLevel*/, function(error, result, response){

 if(!error){

 // Container access level set to 'container'
 }

});

var retryOperations = new azure.ExponentialRetryPolicyFilter();

var blobSvc = azure.createBlobService().withFilter(retryOperations);

Append blobs
Use the following to upload data to a new append blob:

• createAppendBlobFromLocalFile - creates a new append blob and uploads the
contents of a file

• createAppendBlobFromStream - creates a new append blob and uploads the
contents of a stream

• createAppendBlobFromText - creates a new append blob and uploads the contents
of a string

• createWriteStreamToNewApendBlob - creates a new append blob and then
provides a stream to write to it

Build the app / How to use Blob storage
from Node.js

February
2018

61

Upload a blob into a container
There are three types of blobs: block blobs, append blobs and page blobs. Block blobs allow you to
more efficiently upload large data. Append blobs are optimized for append operations. Page blobs
are optimized for Virtual Machine disk storage, and are not covered here.

Block blobs
Use the following to upload data to a block blob:

• createBlockBlobFromLocalFile - creates a new block blob and uploads the contents of a file
• createBlockBlobFromStream - creates a new block blob and uploads the contents of a

stream
• createBlockBlobFromText - creates a new block blob and uploads the contents of a string
• createWriteStreamToBlockBlob - creates a new block blob and then provides a stream to

write to it

The following code example uploads the contents of the test.txt file into myblob.

blobSvc.createBlockBlobFromLocalFile('mycontainer', 'myblob', 'test.txt', function(error, result, response){
 if(!error){

 // file uploaded

 }

});

Use the following to upload data to a new append blob:

• appendFromLocalFile - creates a new append blob and uploads the contents of a file
• appendFromStream - creates a new append blob and uploads the contents of a stream
• appendFromText - creates a new append blob and uploads the contents of a string
• appendBlockFromStream - creates a new append blob and then provides a stream to

write to it
• createWriteStreamToNewApendBlob - creates a new append blob and then provides a

stream to write to it

The following code example uploads the contents of the test.txt file into myappendblob.

Build the app / How to use Blob storage
from Node.js

February
2018

62

The following code example uploads the contents of the test.txt file into myappendblob.

blobSvc.createAppendBlobFromLocalFile('mycontainer', 'myappendblob', 'test.txt', function(error, result, response){
 if(!error){

 // file uploaded

 }

});

appendFromXXX APIs will do some client-side validation to fail fast to avoid unnecessary server calls.
appendBlockFromXXX won’t.

blobSvc.appendFromText('mycontainer', 'myappendblob', 'text to be appended', function(error, result, response){
 if(!error){

 // text appended

 }

});

Download blobs
Use the following to download data from a blob:

• getBlobToLocalFile - writes the blob contents to file
• getBlobToStream - writes the blob contents to a stream
• getBlobToText - writes the blob contents to a string
• createReadStream - provides a stream to read from the blob

N
O

TE

The result contains information about the blob, including ETag information.

Delete a blob
Finally, to delete a blob, call deleteBlob. The following code example deletes the blob named
myblob.

Concurrent access
To support concurrent access to a blob from multiple clients or multiple process instances, you can
use ETags or leases.

• Etag - provides a way to detect that the blob or container has been modified by another
process

• Lease - provides a way to obtain exclusive, renewable, write or delete access to a blob for a
period of time.

Manage blob access

var fs = require('fs');
blobSvc.getBlobToStream('mycontainer', 'myblob', fs.createWriteStream('output.txt'), function(error, result, response){
 if(!error){

 // blob retrieved

 }

});

Build the app / How to use Blob storage
from Node.js

February
2018

63

The following code example demonstrates using getBlobToStream to download the contents of
the myblob blob and store it to the output.txt file by using a stream:

blobSvc.deleteBlob(containerName, 'myblob', function(error, response){
 if(!error){

 // Blob has been deleted

 }

});

ETags
Use ETags if you need to allow multiple clients or instances to write to the block Blob or page Blob
simultaneously. The ETag allows you to determine if the container or blob was modified since you
initially read or created it, which allows you to avoid overwriting changes committed by another
client or process.

Subsequent operations on myblob must provide the options.leaseId parameter. The lease ID is
returned as result.id from acquireLease.

You can set ETag conditions by using the optional options.accessConditions parameter. The
following code example only uploads the test.txt file if the blob already exists and has the ETag value
contained by etagToMatch.

When you're using ETags, the general pattern is:

1. Obtain the ETag as the result of a create, list, or get operation.
2. Perform an action, checking that the ETag value has not been modified.

If the value was modified, it indicates that another client or instance modified the blob or container
since you obtained the ETag value.

Lease
You can acquire a new lease by using the acquireLease method, specifying the blob or container
that you wish to obtain a lease on. For example, the following code acquires a lease on myblob.

blobSvc.createBlockBlobFromLocalFile('mycontainer', 'myblob', 'test.txt', { accessConditions: { EtagMatch: etagToMatch} },
function(error, result, response){
 if(!error){

 // file uploaded

 }

});

blobSvc.acquireLease('mycontainer', 'myblob', function(error, result, response){
 if(!error) {

 console.log('leaseId: ' + result.id);
 }

});

Build the app / How to use Blob storage
from Node.js

February
2018

64

By default, the lease duration is infinite. You can specify a non-infinite duration (between 15 and 60 seconds)
by providing the options.leaseDuration parameter.

To remove a lease, use releaseLease. To break a lease, but prevent others from obtaining a new
lease until the original duration has expired, use breakLease.

N
O

TE

Work with shared access signatures
Shared access signatures (SAS) are a secure way to provide granular access to blobs and containers
without providing your storage account name or keys. You can use shared access signatures to
provide limited access to your data, such as allowing a mobile app to access blobs.

A trusted application such as a cloud-based service generates shared access signatures using the
generateSharedAccessSignature of the BlobService, and provides it to an untrusted or
semi-trusted application such as a mobile app. Shared access signatures are generated using a
policy, which describes the start and end dates during which the shared access signatures are valid,
as well as the access level granted to the shared access signatures holder.

The following code example generates a new shared access policy that allows the shared access
signatures holder to perform read operations on the myblob blob, and expires 100 minutes after the
time it is created.

A trusted application such as a cloud-based service generates shared access signatures using the
generateSharedAccessSignature of the BlobService, and provides it to an untrusted or
semi-trusted application such as a mobile app. Shared access signatures are generated using a
policy, which describes the start and end dates during which the shared access signatures are valid,
as well as the access level granted to the shared access signatures holder.

The following code example generates a new shared access policy that allows the shared access
signatures holder to perform read operations on the myblob blob, and expires 100 minutes after the
time it is created.

var startDate = new Date();
var expiryDate = new Date(startDate);
expiryDate.setMinutes(startDate.getMinutes() + 100);
startDate.setMinutes(startDate.getMinutes() - 100);

var sharedAccessPolicy = {
 AccessPolicy: {
 Permissions: azure.BlobUtilities.SharedAccessPermissions.READ,
 Start: startDate,
 Expiry: expiryDate
 },
};

var blobSAS = blobSvc.generateSharedAccessSignature('mycontainer', 'myblob', sharedAccessPolicy);
var host = blobSvc.host;

Build the app / How to use Blob storage
from Node.js

February
2018

65

While you can also allow anonymous access to blobs, shared access signatures allow you to provide more
controlled access, as you must generate the SAS.N

O
TE

Since the shared access signatures were generated with read-only access, if an attempt is made to
modify the blob, an error will be returned.

Access control lists
You can also use an access control list (ACL) to set the access policy for SAS. This is useful if you wish
to allow multiple clients to access a container but provide different access policies for each client.

An ACL is implemented using an array of access policies, with an ID associated with each policy. The
following code example defines two policies, one for ‘user1’ and one for ‘user2’:

var sharedBlobSvc = azure.createBlobServiceWithSas(host, blobSAS);

sharedBlobSvc.getBlobProperties('mycontainer', 'myblob', function (error, result, response) {

 if(!error) {

 // retrieved info

 }

});

var sharedAccessPolicy = {

 user1: {

 Permissions: azure.BlobUtilities.SharedAccessPermissions.READ,

 Start: startDate,

 Expiry: expiryDate

 },

 user2: {

 Permissions: azure.BlobUtilities.SharedAccessPermissions.WRITE,

 Start: startDate,

 Expiry: expiryDate

 }

};

Build the app / How to use Blob storage
from Node.js

February
2018

66

You must also provide the host information, as it is required when the shared access signatures
holder attempts to access the container.

The client application then uses shared access signatures with BlobServiceWithSAS to perform
operations against the blob. The following gets information about myblob.

Next steps

For more information related to this chapter, see the following resources.

• Azure Storage SDK for Node API Reference
• Azure Storage SDK for Node repository on GitHub
• Transfer data with the AzCopy command-line utility
• For easy-to-use end-to-end Azure Storage code samples that you can download and run,

check out our list of Azure Storage Samples

Once the ACL is set, you can then create shared access signatures based on the ID for a policy. The
following code example creates new shared access signatures for 'user2':

blobSAS = blobSvc.generateSharedAccessSignature('mycontainer', { Id: 'user2' });

Build the app / How to use Blob storage
from Node.js

February
2018

67

The following code example gets the current ACL for mycontainer, and then adds the new policies
using setBlobAcl. This approach allows:

var extend = require('extend');

blobSvc.getBlobAcl('mycontainer', function(error, result, response) {

 if(!error){

 var newSignedIdentifiers = extend(true, result.signedIdentifiers, sharedAccessPolicy);

 blobSvc.setBlobAcl('mycontainer', newSignedIdentifiers, function(error, result, response){

 if(!error){

 // ACL set

 }

 });

 }

});

https://docs.microsoft.com/en-us/javascript/api/overview/azure/?view=azure-node-latest
https://github.com/Azure/azure-storage-node
https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azcopy?toc=%2fazure%2fstorage%2fblobs%2ftoc.json
https://azure.microsoft.com/en-us/resources/samples/?service=storage&sort=0

In this e-book
you have learned
how to deploy
a cloud-native
application
using Node.js.

In the future, new trends, user demands
and capabilities will continue to create
even more opportunities to enhance
your applications. Take advantage of the
resources and guidance below to stay up
to date on what you can do with Azure and
Node.js:

Documentation
Visit the Azure for Node.js Developers
documentation center to find the latest
technical guidance, developer tools, code
samples and quickstart guides to help you
build your next Node.js project on Azure.

Free Training
Explore our selection of free online training
courses for Node.js development on Azure
from Pluralsight.

Free Training
Subscribe to our Microsoft+Open Source
blog and follow @OpenAtMicrosoft on
Twitter to keep in touch and stay up to date
on the latest open source news and updates
at Microsoft.

https://azure.microsoft.com

SummaryFebruary
2018

68

https://docs.microsoft.com/en-us/javascript/azure/?view=azure-node-2.2.0
https://azure.microsoft.com/en-us/training/learning-paths/node-js-developer/
https://azure.microsoft.com/en-us/training/learning-paths/node-js-developer/
https://open.microsoft.com/
https://open.microsoft.com/
https://twitter.com/OpenAtMicrosoft
https://azure.microsoft.com
https://azure.microsoft.com

