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1
Introduction

1.1 Geometric Programming and Applications

Geometric Programming (GP) is a class of nonlinear optimization with
many useful theoretical and computational properties. Although GP
in standard form is apparently a non-convex optimization problem, it
can be readily turned into a convex optimization problem, hence a
local optimum is also a global optimum, the duality gap is zero under
mild conditions,1 and a global optimum can be computed very effi-
ciently. Convexity and duality properties of GP are well understood,
and large-scale, robust numerical solvers for GP are available. Further-
more, special structures in GP and its Lagrange dual problem lead to
computational acceleration, distributed algorithms, and physical inter-
pretations.

GP substantially broadens the scope of Linear Programming (LP)
applications, and is naturally suited to model several types of impor-
tant nonlinear systems in science and engineering. Since its inception

1 Consider the Lagrange dual problem of a given optimization problem. Duality gap is the
difference between the optimized primal objective value and the optimized dual objective
value.
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2 Introduction

in 1960s,2 GP has found applications in mechanical and civil engi-
neering, chemical engineering, probability and statistics, finance and
economics, control theory, circuit design, information theory, coding
and signal processing, wireless networking, etc. For areas not related
to communication systems, a very small sample of some of the GP
application papers include [1, 24, 29, 38, 43, 44, 53, 57, 64, 65, 58,
92, 93, 104, 107, 112, 123, 125, 128]. Detailed discussion of GP can
be found in the following books, book chapters, and survey articles:
[52, 133, 10, 6, 51, 103, 54, 20]. Most of the applications in the 1960s
and 1970s were in mechanical, civil, and chemical engineering. After a
relatively quiet period in GP research in the 1980s and early to mid-
1990s, GP has generated renewed interest since the late 1990s.

Over the last five years, GP has been applied to study a variety of
problems in the analysis and design of communication systems, across
many ‘layers’ in the layered architecture, from information theory and
queuing theory to signal processing and network protocols. We also
start to appreciate why, in addition to how, GP can be applied to a
surprisingly wide range of problems in communication systems. These
applications have in turn spurred new research activities on the theory
and algorithms of GP, especially generalizations of GP formulations
and distributed algorithms to solve GP in a network. This is a sys-
tematic survey of the applications of GP to the study of communica-
tion systems. It collects in one place various published results in this
area, which are currently scattered in several books and many research
papers, as well as a couple of unpublished results.

Although GP theory is already well-developed and very efficient
GP algorithms are currently available through user-friendly software
packages (e.g., MOSEK [129]), researchers interested in using GP still
need to acquire the non-trivial capability of modelling or approximating
engineering problems as GP. Therefore, in addition to the focus on the
application aspects in the context of communication systems, this sur-
vey also provides a rather in-depth tutorial on the theory, algorithms,
and modeling methods of GP.

2 Appendix A briefly describes the history of GP.
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1.2 Nonlinear Optimization of Communication Systems

LP and other classical optimization techniques have found important
applications in communication systems for several decades (e.g., as sur-
veyed in [15, 56]). Recently, there have been many research activities
that utilize the power of recent developments in nonlinear convex opti-
mization to tackle a much wider scope of problems in the analysis and
design of communication systems.

These research activities are driven by both new demands in the
study of communications and networking, and new tools emerging from
optimization theory. In particular, a major breakthrough in optimiza-
tion over the last two decades has been the development of powerful
theoretical tools, as well as highly efficient computational algorithms
like the interior-point methods (e.g., [12, 16, 17, 21, 97, 98, 111]), for
nonlinear convex optimization, i.e., minimizing a convex function sub-
ject to upper bound inequality constraints on other convex functions
and affine equality constraints:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, 2, . . . , m

Ax = c
variables x ∈ Rn.

(1.1)

The constant parameters are A ∈ Rl×n and c ∈ Rl. The objective
function f0 to be minimized and m constraint functions {fi} are convex
functions.

From basic results in convex analysis [109], it is well known that
for a convex optimization problem, a local minimum is also a global
minimum. The Lagrange duality theory is also well developed for con-
vex optimization. For example, the duality gap is zero under constraint
qualification conditions, such as Slater’s condition [21] that requires
the existence of a strictly feasible solution to nonlinear inequality con-
straints. When put in an appropriate form with the right data struc-
ture, a convex optimization problem is also easy to solve numerically
by efficient algorithms, such as the primal-dual interior-point methods
[21, 97], which has worst-case polynomial-time complexity for a large
class of functions and scales gracefully with problem size in practice.
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Special cases of convex optimization include convex Quadratic
Programming (QP), Second Order Cone Programming (SOCP), and
Semidefinite Programming (SDP), as well as seemingly non-convex
optimization problems that can be readily transformed into convex
problems, such as GP. Some of these are covered in recent books on
convex optimization, e.g., [12, 16, 17, 21, 97, 98]. While SDP and its
special cases of SOCP and convex QP are now well-known in many
engineering disciplines, GP is not yet as widely appreciated. This sur-
vey aims at enhancing the awareness of the tools available from GP in
the communications research community, so as to further strengthen
GP’s appreciation–application cycle, where more applications (and the
associated theoretical, algorithmic, and software developments) are
found by researchers as more people start to appreciate the capa-
bilities of GP in modeling, analyzing, and designing communication
systems.

There are three distinctive characteristics in the nonlinear optimiza-
tion framework for the study of communication systems:

• First, the watershed between efficiently solvable optimization
problems and intractable ones is being recognized as ‘convex-
ity’, instead of ‘linearity’ as was previously believed.3 This
has opened up opportunities on many nonlinear problems in
communications and networking based on more accurate or
robust modeling of channels and complex interdependency
in networks. Inherently nonlinear problems in information
theory may also be tackled.

• Second, the nonlinear optimization framework integrates var-
ious protocol layers into a coherent structure, providing a
unified view on many disparate problems, ranging from clas-
sical Shannon theory on channel capacity and rate distortion
[33] to Internet engineering such as inter-operability between
TCP Vegas and TCP Reno congestion control [119].

• Third, some of these theoretical insights are being put into
practice through field trials and industry adoption. Recent

3 In some cases, global solutions and systematic relaxation techniques for non-convex opti-
mization have also matured [101, 106].
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examples include optimization-theoretic improvements of
TCP congestion control [71] and DSL broadband access [118].

The phrase “nonlinear optimization of communication systems” in
fact carries three different meanings. In the most straightforward way,
an analysis or design problem in a communication system may be for-
mulated as either minimizing a cost or maximizing a utility function
over a set of variables confined within a constraint set. In a more subtle
and recent approach, a given network protocol may be interpreted as a
distributed algorithm solving an implicitly defined global optimization
problem. In yet another approach, the underlying theory of a network
control method or a communication strategy may be generalized using
nonlinear optimization techniques, thus extending the scope of appli-
cability of the theory. In Section 3, we will see that GP applications
cover all three categories.

1.3 Overview

There are three main sections in this survey. Section 2 is a tutorial of
GP: its basic formulations, convexity and duality properties, various
extensions that significantly broaden the scope of applicability of the
basic formulations, as well as numerical methods, robust solutions, and
distributed algorithms for GP. Although this section does not cover any
application topic, it is essential for modeling communication system
problems in terms of GP and its generalizations.4

Section 3 is the core of this survey, presenting many applications of
GP in the analysis and design of communication systems: the informa-
tion theoretic problems of channel capacity, rate distortion, and error
exponent in Subsection 3.1, construction of channel codes, relaxation
of source coding problems, and digital signal processing algorithms for
physical layer transceiver design in Subsection 3.2, network resource
allocation algorithms such as power control in wireless networks in Sub-
section 3.3, network congestion control protocols in TCP Vegas and its
cross-layer extensions in Subsection 3.4, and performance optimization
of simple queuing systems in Subsection 3.5.

4 For another very recent GP tutorial, readers are referred to a recent survey of GP for
circuit design problems [20].
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These applications generally fall into three categories: analysis (e.g.,
GP is used to characterize and bound information theoretic limits),
forward engineering (e.g., GP is used to control transmit powers in
wireless networks), and reverse engineering (e.g., GP is used to model
congestion control or Highly Optimized Tolerance systems).

Then Section 4 explains why, rather than just how, GP can be
applied to such a variety of problems in communication systems. As
shown in Subsection 4.1, for problems based on stochastic models, GP
is often applicable because large deviation bounds can be computed by
GPs. As shown in Subsection 4.2, for problems based on determinis-
tic models, reasons for applicability of GP is less well understood but
may be due to GP’s connections with proportional allocation, general
market equilibrium, and generalized coding problems.

In the area of GP applications for communication systems, there are
three most interesting directions of future research in author’s view:
distributed algorithms and heuristics for solving GP in a network, a
systematic theory of using a nested family of GP relaxations for non-
convex, generalized polynomial optimization, and the connections of
GP with the theories of large deviation and general market equilibrium.
These issues are discussed throughout the survey.

Some subsections in these three sections present unpublished results
while most subsections summarize known results. In particular, Sub-
section 2.1 is partially based on [10, 21, 30, 52, 132], Subsection 2.2 on
[6, 7, 10, 20, 51, 52, 103, 133], Subsection 2.3 on [21, 60, 67, 78, 37],
Subsection 3.1 on [30, 33, 42, 82, 84, 120, 121, 122], Subsection 3.2
on [25, 30, 69, 75, 91], Subsection 3.3 on [37, 34, 35, 72, 73], Subsec-
tion 3.4 on [31, 88], Subsection 3.5 on [36, 68, 76], Subsection 4.1 on
[30, 42, 45, 52, 108], and Subsection 4.2 on [28, 49, 70].

A brief historical account of the development of GP is provided in
Appendix A and selected proofs are provided in Appendix B.

1.4 Notation

We will use the following notation. Vectors and matrices are denoted in
boldface. Given two column vectors x and y of length n, we express the
sum

∑n
i=1 xiyi as an inner product xTy. Componentwise inequalities
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on a vector x with n entries are expressed using the � symbol: x � 0
denotes xi ≥ 0, i = 1, 2, . . . , n. A column vector with all entries being 1
is denoted as 1. We use Rn

+ and Rn
++ to denote the non-negative and

strictly positive quadrant of n-dimensional Euclidean space, respec-
tively, and Z+ to denote the set of non-negative integers.

Sometimes a symbol has different meanings in different sections,
because the same symbol is widely accepted as the standard notation
representing different quantities in more than one field. For example,
P denotes channel transition matrix in Subsection 3.1.1 on channel
capacity, and denotes transmit power vector in Subsections 3.3.1 and
3.4.2 on wireless network power control. Such notational reuse should
not cause any confusion since consistency is maintained within any
single subsection.

All constrained optimization problems are written in this survey
following a common format: objective function, constraints, and opti-
mization variables. Constant parameters are also explicitly stated after
the problem statement in cases where confusion may arise.





2
Geometric Programming

2.1 Formulations

2.1.1 Basic formulations and convexity property

There are two equivalent forms of GP: standard form and convex
form. The first is a constrained optimization of a type of function
called posynomial, and the second form is obtained from the first
through a logarithmic change of variable. Standard form GP is often
used in network resource allocation problems, and convex form GP
in problems based on stochastic models such as information theoretic
problems.

We first define a monomial as a function f : Rn
++ → R:1

f(x) = dxa(1)

1 xa(2)

2 · · ·xa(n)

n

1 Since the domain of monomials is the strictly positive quadrant of Rn, when a GP is
written in terms of monomials, it is implicitly assumed that the optimal variables cannot
be zero. In theory, there is a loss of generality in this assumption for some applications.
Numerically, this assumption may not introduce any difficulty since the interior-point
method solves a GP through a feasible path inside the constraint set.

9
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where the multiplicative constant d ≥ 0 and the exponential constants
a(j) ∈ R, j = 1, 2, . . . , n. A sum of monomials, indexed by k below, is
called a posynomial:

f(x) =
K∑

k=1

dkx
a
(1)
k

1 x
a
(2)
k

2 · · ·xa
(n)
k

n .

where dk ≥ 0, k = 1, 2, . . . , K, and a
(j)
k ∈ R, j = 1, 2, . . . , n, k =

1, 2, . . . , K. The key features about a posynomial, which will be
explained and utilized many places throughout this survey, are its pos-
itivity and convexity (in log domain).

For example, 2x−π
1 x0.5

2 + 3x1x
100
3 is a posynomial in x, x1 − x2 is

not a posynomial, and x1/x2 is a monomial, thus also a posynomial.
Minimizing a posynomial subject to posynomial upper bound

inequality constraints and monomial equality constraints is called a
geometric program in standard form:2

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, 2, . . . , m

hl(x) = 1, l = 1, 2, . . . , M

variables x

(2.1)

where fi, i = 0, 1, . . . , m, are posynomials:

fi(x) =
Ki∑
k=1

dikx
a
(1)
ik

1 x
a
(2)
ik

2 · · ·xa
(n)
ik

n ,

and hl, l = 1, 2, . . . , M are monomials:

hl(x) = dlx
a
(1)
l

1 x
a
(2)
l

2 · · ·xa
(n)
l

n .

Note that a monomial equality constraint can also be expressed as
two monomial inequality constraints: hl(x) ≥ 1 and 1/hl(x) ≤ 1. Thus
a standard form GP can be defined as the minimization of a posynomial
under upper bound inequality constraints on posynomials.

2 Another name that is often used is ‘posynomial form’.
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Given a GP in standard form, we can form a matrix A where each
row consists of the exponential constants associated with each mono-
mial term that appears in the objective and constraints, and a vector d
consisting of all the multiplicative constants. Each GP can be uniquely
represented by the following data structure: A, d, and an identification
of which rows in A and d belong to the objective function and which
to each of the constraint functions.

As a small example, consider the following GP in standard form,
with variables (x, y, z):3

minimize xy + xz

subject to 0.8
√

yz
x2 ≤ 1

0.5√
xy

≤ 1
1
x ≤ 1

variables x, y, z.

(2.2)

The constant parameters of this GP are:

A =




1 1 0
1 0 1

−2 1/2 1/2
−1/2 −1 0
−1 0 0




and

d = [1, 1, 0.8, 0.5, 1]T

where the first two rows in A and d correspond to the two monomial
terms in the objective function, and the last three rows each corre-
sponds to a constraint.

GP in standard form is not a convex optimization problem, because
posynomials are not convex functions. However, with a logarithmic
change of all the variables and multiplicative constants: yi = log xi,

3 We will show in Subsection 3.1.1 that this GP is in fact computing a channel capacity
with an input cost constraint.
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bik = log dik, bl = log dl, we can turn it into the following problem:

minimize
∑K0

k=1 exp(aT
0ky + b0k)

subject to
∑Ki

k=1 exp(aT
iky + bik) ≤ 1, i = 1, 2, . . . , m

aT
l y + bl = 0, l = 1, 2, . . . , M

variables y

where aik = [a(1)
ik , a

(2)
ik , . . . , a

(n)
lk ]T , which is obviously equivalent4 to the

following GP in convex form:

minimize p0(y) = log
∑K0

k=1 exp(aT
0ky + b0k)

subject to pi(y) = log
∑Ki

k=1 exp(aT
iky + bik) ≤ 0,

i = 1, 2, . . . , m

ql(y) = aT
l y + bl = 0, l = 1, 2, . . . , M

variable y.

(2.3)

For the small example (2.2) of GP in standard form, the following
problem is its convex form in x̃ = log x, ỹ = log y, z̃ = log z:

minimize log (exp(x̃ + ỹ) + exp(x̃ + z̃))
subject to 0.5ỹ + 0.5z̃ − 2x̃ + log 0.8 ≤ 0

0.5x̃ + ỹ + log 0.5 ≤ 0
−x̃ ≤ 0

variables x̃, ỹ, z̃.

To show that (2.3) is indeed a convex optimization problem, we
need to show that the objective and inequality constraint functions are
convex in y. This convexity property can be readily verified through a
positive-definiteness test of the Hessian. A more illuminating verifica-
tion uses a duality argument.

Lemma 2.1. The log-sum-exp function f(x) = log
∑n

i=1 exi is convex
in x.

4 Equivalence relationship between two optimization problems is used in a loose way
throughout this survey. If the optimized value of problem A is a simple (e.g., mono-
tonic and invertible) function of the optimized value of problem B, and an optimizer of
problem B can be easily computed from an optimizer of problem A (e.g., through a simple
mapping), then problems A and B are said to be equivalent.



2.1. Formulations 13

Proof. Consider the following log-sum inequality [42, 40] (readily
proved by the convexity of f(t) = t log t, t ≥ 0):

n∑
i=1

ai log
ai

bi
≥

(
n∑

i=1

ai

)
log

∑n
i=1 ai∑n
i=1 bi

(2.4)

where a,b � 0.5

Recall that, given a function f : Rn → R, the function f� : Rn →
R, defined as

f�(y) = sup
x∈dom f

(yTx − f(x)), (2.5)

is called the conjugate function of f . Since f� is the pointwise supremum
of a family of affine functions of y, it is always a convex function.6

Let b̂i = log bi and
∑n

i=1 ai = 1 in the log-sum inequality (2.4). We
obtain

log

(
n∑

i=1

eb̂i

)
≥ aT b̂ −

n∑
i=1

ai log ai,

with equality if and only if ai = eb̂i∑
j

eb̂j
. This by definition shows that

the log-sum-exp function is the conjugate function of negative entropy.
Since all conjugate functions are convex, the log-sum-exp function is
convex.

The composition of a convex function with an affine function is a
convex function, thus GP in convex form is indeed a convex optimiza-
tion: minimizing a convex function subject to upper bound inequality
constraints on convex functions and affine equality constraints.7

5 This inequality also readily shows the convexity of the Kullback-Leibler divergence, or
relative entropy, between two distributions p,q: D(p‖q) =

∑n

i=1 pi log pi
qi

in (p,q) [40],
which in turn shows that channel capacity and rate distortion problems, to be discussed
in Subsection 3.1, are convex optimization problems.

6 As a simple fact to be used in Subsection 4.1.1, it is easy to verify that, if f�(y) is the
conjugate of f(x), then for a given T > 0, the perspective function Tf�( y

T
) is the conjugate

of the scaled function Tf(x).
7 Sum-exp functions are also convex. In GP convex form, we further take the log of the
sum-exp functions in the objective and constraints, which turns monomials into affine
functions and also improves numerical stability of solution algorithms.
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Convexity of the log-sum-exp function can also be verified from the
following geometric inequality: the arithmetic mean is greater than or
equal to the geometric mean [52]. It is for this reason that the name
of geometric programming was used to describe the class of nonlinear
optimization problems in the form of (2.1) or (2.3).

It is interesting to notice that, in the special case where all the
posynomials in a GP in standard form are simply monomials, then this
GP in convex form reduces to a LP. Hence GP can be viewed an an
extension of LP.8

Examining GP in convex form, we appreciate why, in the defini-
tion of standard form GP, equality constraints can only be imposed on
monomials. If there were posynomial equality constraints (or, equiv-
alent, lower bound inequality constraints on posynomials), we would
have obtained, after the logarithmic change of variable, a non-convex
optimization problem, because the constraint set would not be convex
even after the transformation. We also appreciate why, in the definition
of posynomial, the exponential constants can be any real numbers (they
appear only in an affine transformation of y), but the multiplicative
constants must be positive numbers (they need to be logarithmically
transformed).

Note that although posynomial seems to be a non-convex function,
it becomes a convex function after the log transformation, as shown
in an example in Figure 2.1. Compared to the (constrained or uncon-
strained) minimization of a polynomial, the minimization of a posyno-
mial in GP relaxes the integer constraint on the exponential constants
but imposes a positivity constraint on the multiplicative constants and
variables. There is a sharp contrast between these two problems: poly-
nomial minimization is NP-hard, but GP can be turned into convex
optimization with provably polynomial-time algorithms for a global
optimum.

In an extension of GP called Signomial Programming, which will
be discussed in Subsection 2.2.5, the restriction of non-negative multi-
plicative constants is removed, resulting in a general class of nonlinear

8 This extension is different from the extension of LP to (convex) QP, which can be further
extended to SOCP and SDP. GP is not a special case of SDP.
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Fig. 2.1 A bi-variate posynomial before (left graph) and after (right graph) the log trans-
formation. A non-convex function is turned into a convex one.

and truly non-convex problems that is simultaneously a generalization
of GP and polynomial minimization over the positive quadrant, as sum-
marized in the comparison Table 2.1.

GP PMoP SP
c R+ R R

a(j) R Z+ R
xj R++ R++ R++

Table 2.1 Comparison of GP, constrained polynomial minimization over the positive quad-
rant (PMoP), and Signomial Programming (SP). All three types of problems minimize a
sum of monomials subject to upper bound inequality constraints on sums of monomials,
but have different definitions of monomial: c

∏
j

xa(j)

j . GP is known to be polynomial-time
solvable, but PMoP and SP are not.

The objective function of Signomial Programming can be formu-
lated as minimizing a ratio between two posynomials, which is not a
posynomial since posynomials are closed under positive multiplication
and addition but not division. As shown in Figure 2.2, a ratio between
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two posynomials is a non-convex function both before and after the
log transformation. Although it does not seem likely that Signomial
Programming can be turned into a convex optimization problem, there
are heuristics to solve it through a sequence of GP relaxations. Such
methods current lack and would benefit significantly from a theoretical
foundation similar to the sum-of-squares method [101, 102], which uses
a nested family of SDP relaxations to solve constrained polynomial
minimization problems.
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Fig. 2.2 Ratio between two bi-variate posynomials before (left graph) and after (right graph)
the log transformation. It is a non-convex function in both cases.

2.1.2 Lagrange duality

The last subsection shows that a GP is a nonlinear, seemingly non-
convex optimization problem that can be transformed into a nonlinear,
convex problem. Therefore, a local optimum for GP is also a global
optimum, and the duality gap is zero under mild technical conditions.
The Lagrange dual problem of GP has interesting structures. In par-
ticular, dual GP is linearly constrained and its objective function is a
generalized entropy function.
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Following the standard procedure of deriving the Lagrange dual
problem [21], it is readily verified that for the following GP with m

posynomial constraints,

minimize log
∑K0

k=1 exp(aT
0ky + b0k)

subject to log
∑Ki

k=1 exp(aT
iky + bik) ≤ 0, i = 1, . . . , m

variables y,

the Lagrange dual problem is

maximize bT
0 ν0 − ∑K0

j=1 ν0j log ν0j

+
∑m

i=1

(
bT

i νi − ∑Ki
j=1 νij log νij

1T νi

)
subject to νi � 0, i = 0, . . . , m

1T ν0 = 1∑m
i=0 AT

i νi = 0
variables νi, i = 0, 1, . . . , m.

(2.6)

The length of νi is Ki, i.e., the number of monomial terms in the ith
posynomial, i = 0, 1, . . . , m. Here, A0 is the matrix of the exponential
constants in the objective function, where each row corresponds to
each monomial term (i.e., aT

0k is the kth row in matrix A0), and
Ai, i = 1, 2, . . . , m, are the matrices of the exponential constants
in the constraint functions, again with each row corresponding to each
monomial term. The multiplicative constants in the objective function
are denoted as b0 and those in the ith constraint as bi, i = 1, 2, . . . , m.

For the example GP (2.2) in the last subsection, its Lagrange dual
problem is the following linearly constrained concave maximization:

maximize ν01 + ν02 − ν01 log ν01 − ν02 log ν02

+ 0.8ν1 + 0.5ν2 + ν3 − ν1 log ν1 − ν2 log ν2 − ν3 log ν3

subject to ν0j ≥ 0, j = 1, 2
νi ≥ 0, i = 1, 2, 3
ν01 + ν02 = 1
A0ν0 + A1ν1 + A2ν2 + A3ν3 = 0

variables ν01, ν02, ν1, ν2, ν3

where A0 = [1, 1, 0; 1, 0, 1],A1 = [−2, 1/2, 1/2],A2 =
[−1/2, −1, 0],A3 = [−1, 0, 0].
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A special case is unconstrained GP:

minimizey log
N∑

i=1

exp(aT
i y + bi).

From (2.6), the Lagrange dual problem of unconstrained GP reduces
to

maximize bT ν − ∑N
i=1 νi log νi

subject to 1T ν = 1
ν � 0
AT ν = 0

variables ν.

(2.7)

The first two constraints imply that the dual variable ν must be a prob-
ability distribution. The dual problem (2.7) is a linearly constrained
maximization of the entropy of distribution ν plus a linear term bT ν.

The Lagrange dual problem (2.6) of a constrained GP can be inter-
preted as follows. Dual variable vector ν0 is normalized but other dual
variable vectors νi, i = 1, 2, . . . , m, are not, and the objective function
is a sum of linear terms and ‘generalized’ entropies of νi (which are
not normalized except when i = 0), to be maximized under a linear
equality constraint where the weights are the exponential constants in
the posynomials. The relationship between GP and free energy opti-
mization in statistical physics will be discussed in Subsection 4.1.1.

By weak duality, any feasible solution of the dual GP, which can be
easily computed by finding a solution to a system of linear inequalities,
lower bounds the primal GP’s optimal value. By strong duality, which
holds for any GP in convex form that has a strictly feasible solution,
the duality gap between a GP and its dual is zero. The optimal dual
variables, as often is the case for convex optimization problems, provide
very useful information about the sensitivity of the optimal solution to
data perturbation and the tightness of a constraint at optimality.

2.1.3 Feasibility and sensitivity analysis

Testing whether there is any x that satisfies a set of posynomial inequal-
ity and monomial equality constraints:

fi(x) ≤ 1, i = 1, . . . , m, hl(x) = 1, l = 1, . . . , M, (2.8)
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is called a GP feasibility problem. Solving a feasibility problem is
useful when we would like to determine whether the constraints are
too tight to allow any feasible solution, or when it is necessary to
generate a feasible solution as the initial point of a interior-point
algorithm.

Feasibility of the monomial equality constraints can be verified by
checking feasibility of the linear system of equations that the mono-
mial constraints get transformed into. Feasibility of the posynomial
inequality constraints can then be verified by solving the following GP,
introducing an auxiliary variable s ∈ R in addition to variables x ∈ Rn

[52, 20]:

minimize s

subject to fi(x) ≤ s, i = 1, . . . , m

s ≥ 1
variables x, s.

(2.9)

This GP always has a feasible solution: s = max{1, maxi{fi(x)}} for
any x that satisfies the monomial equality constraints. Now solve prob-
lem (2.9) and obtain the optimal (s∗,x∗). If s∗ = 1, then the set of
posynomial constraints fi(x) ≤ 1 is feasible, and the associated x∗ is
a feasible solution to the original feasibility problem (2.9). Otherwise,
the set of posynomial constraints is infeasible.

The constant parameters in a GP may be based on inaccurate esti-
mates or vary over time. As constant parameters change a little, we
may not want to solve the slightly perturbed GP from scratch. It is
useful to directly determine the impact of small perturbations of con-
stant parameters on the optimal solution. Suppose we loosen the 1th
inequality constraint (with u1 > 0) or tighten it (with ui < 0), and
shift the lth equality constraint (with vl ∈ R):

minimize f0(x)
subject to fi(x) ≤ eui , i = 1, . . . , m

hl(x) = evl , l = 1, . . . , M

variables x.

(2.10)
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Consider the optimal value of a GP p∗ as a function of the perturba-
tions (u,v). The sensitivities of a GP with respect to the ith inequality
constraint and lth equality constraint are defined as:

Si =
∂ log p∗(0, 0)

∂ui
=

∂p∗(0, 0)/∂ui

p∗(0, 0)
,

Tl =
∂ log p∗(0, 0)

∂vl
=

∂p∗(0, 0)/∂vl

p∗(0, 0)
.

A large sensitivity Si with respect to an inequality constraint means
that if the constraint is tightened (or loosened), the optimal value of
GP increases (or decreases) considerably. Sensitivity can be obtained
from the corresponding Lagrange dual variables of (2.10): Si = −λi and
Tl = −νl where λ and ν are the Lagrange multipliers of the inequality
and equality constraints in the convex form of (2.10), respectively.

There are also systematic procedures [52, 46, 48, 80] to obtain the
optimizer x∗ of the perturbed GP (2.10), without solving the perturbed
problem from scratch, based on the constant parameter perturbations
(u,v), and the exponent constant matrix A, and multiplicative con-
stant vector d.

2.2 Extensions

The scope of GP formulations can be substantially expanded beyond
the basic formulation in Section 2.1. We summarize these extensions in
five groups in this section:

• Simple transformations by term rearrangements and partial
change of variable.

• Generalized GP that allows compositions of posynomials
with other functions.

• Extended GP based on other geometric inequalities.
• GP formulations based on monomial and posynomial approx-

imations of nonlinear functions.
• Signomial Programming that allows posynomial equality

constraints.

It is important to note that, unlike the first four groups of exten-
sions, Signomial Programming cannot be transformed into convex
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optimization problems. The third and fourth groups of extensions
enlarge the scope of GP formulations so much that many convex opti-
mization problems can fit into the GP framework. In contrast, the
first and second groups of extensions transform a problem that already
‘looks like’ a GP into an equivalent GP in standard form. In the next
two sections on GP applications in communication systems, we will
primarily use the transformations in the first and second groups of
extensions.

Unless specified otherwise, f denotes posynomials and g, h denote
monomials in this subsection. When it is clear that x are the variables,
we omit the variables field in the data structure of the representation
of an optimization problem.

2.2.1 Simple transformations

It is trivial to realize that the following problems are GPs.
Extension 1: Maximize a monomial subject to posynomial upper

bound inequality constraints:

maximize h0(x)
subject to fi(x) ≤ 1, i = 1, . . . , m

hj(x) = 1, j = 1, . . . , M.

This is still a GP because maximizing a monomial is equivalent to min-
imizing its reciprocal, which is another monomial (thus a posynomial):

minimize 1
h0(x)

subject to fi(x) ≤ 1, i = 1, . . . , m

hj(x) = 1, j = 1, . . . , M.

Extension 2: The right hand side of poysnomial inequality and
monomial equality constraints can be monomials instead of 1:

minimize f0(x)
subject to fi(x) ≤ gi(x), i = 1, . . . , m

hj(x) = gj(x), j = 1, . . . , M.

This is still a GP because by dividing the right hand side monomial
on both sides of the constraints, we obtain upper bound inequality
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constraints on the ratio between a posynomial and a monomial (which
is another posynomial) and equality constraints on the ratio between
two monomials (which is another monomial):

minimize f0(x)
subject to fi(x)

gi(x) ≤ 1, i = 1, . . . , m
hj(x)
gj(x) = 1, j = 1, . . . , M.

In general, we define an inverted posynomial as the ratio between a
monomial and a posynomial. Lower bounding an inverted posynomial is
allowed in a GP since it is equivalent to upper bounding a posynomial.

Extension 3: Positive sums and products of posynomials are also
posynomials. For example,

(xy1/2 + z)(x−1/2 + yz) + xy = x1/2y1/2 + xy2/3z + x−1/2z + yz2 + xy.

Therefore, the objective function and inequality constraint functions in
a GP can be any positive sums and products of posynomials.

Suppose the variables of an optimization problem can be separated
into two sets, and no term in the problem involves variables from more
than one set. If the problem is convex in one set of log-transformed
variables and a convex optimization in the other set of variables, we
can use a log change of variables only for the first set and obtain a
convex optimization (although not a convex form GP). An example is
the following:

Extension 4: An optimization problem is called a Mixed Linear
Geometric Programming (MLGP) if with a log change of x vari-
ables, the following problem can be turned into a convex optimization:

minimize f0(x) + aT
0 y

subject to fi(x) + aT
i y + di ≤ 1, i = 1, . . . , m

hj(x) = 1, j = 1, . . . , M

variables x,y.

Extension 5: Consider the following unconstrained minimization
problem:

minimize
m∑

i=1

exp(fi(x)),
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where fi are posynomials with non-negative exponents. Introducing
auxiliary variables ti, we can transform the above problem into the
following equivalent problem:

minimize
∑m

i=1 exp(ti)
subject to fi(x) ≤ ti, i = 1, . . . , m

variables x, t.

At optimality, the inequality constraints will be tight. Now apply a log
change of variable from x to y, the above problem can be turned into
a convex optimization in (y, t). This method of utilizing monotonicity
of posynomials with non-negative exponents and introducing auxiliary
variables is a common one that will also be used in the next subsection.

There are other simple transformations that only require basic arith-
metics, such as the following:

Extension 6: Maximizing a sum of log of monomials:

m∑
i=1

log(hi(x))

is equivalent to a GP of minimizing the following monomial:

m∏
i=1

(h−1
i (x)).

2.2.2 Generalized GP

Generalized GP refers to minimizing a generalized posynomial subject
to upper bound inequality constraints on generalized posynomials. A
generalized posynomial is a composition of the following three func-
tions, each of which generalizes the posynomial function.9

Extension 7: Consider composing posynomials {fij(x)} with a
posynomial with non-negative exponents {aij}:

F1(x) =
∑

i

dj

∏
j

f
aij

ij (x).

9 The term ‘Generalized GP’ is also used by some authors to denote Signomial Programming,
which will be discussed in Subsection 2.2.5. In this survey, Generalized GP should not be
confused with Signomial Programming.
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Introducing auxiliary variables tij , we see that minimizing F1(x) is
equivalent to the following GP:

minimize
∑

i dj
∏

j t
aij

ij

subject to fij(x) ≤ tij , ∀i, j

variables x, {tij}.

This equivalence is due to the monotonicity of posynomials with non-
negative exponents. Similarly, an upper bound inequality constraint
on F1(x) can be turned into the following posynomial constraints in
variables (x, {tij}):

∑
i dj

∏
j t

aij

ij ≤ 1, fij(x) ≤ tij , ∀i, j. Composing
posynomials with a posynomial with non-negative exponents produces
a generalized posynomial F1. Posynomial objective and constraints in
a GP can be substituted with generalized posynomials in the form of
F1 while maintaining the GP form of the problem.

Extension 8: The maximum of a finite number of posynomials is
also a generalized posynomial, because

minimize F2(x) = max
i

{fi(x)}

is equivalent to the following GP:

minimize t

subject to fi(x) ≤ t, ∀i

variables x, t.

Extension 9: The following function is also a generalized posy-
nomial:

F3(x) =
f1(x)

h(x) − f2(x)

where f1 and f2 are posynomials and h is a monomial.
This is because minimizing F3(x) is equivalent to the following GP:

minimize t

subject to f2(x)
h(x) + f1(x)

th(x) ≤ 1
variables x, t.

Any combination of composition of F1, F2, F3 is also a generalized
posynomial. Minimizing a generalized posynomial subject to upper
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bound inequality constraints on generalized posynomials is a General-
ized GP, which can be turned into a standard form GP by introducing
auxiliary variables as shown above.

As an example, the following problem in x is a generalized GP:

minimize max{(x1 + x−1
2 )0.5, x1x3} + (x2 + x−2.9

3 )1.5

subject to (x2x3+x2/x1)π

x1x2−max{x2
1x3

3,x1+x3} ≤ 10

variables x1, x2, x3,

which is equivalent to the following GP:

minimize t1 + t1.5
2

subject to 0.1(tπ4 + t5)x−1
1 x−1

2 ≤ 1
t0.5
3 t−1

1 ≤ 1
x1x3t

−1
1 ≤ 1

(x1 + x−1
2 )t−1

3 ≤ 1
(x2 + x−2.9

3 )t−1
2 ≤ 1

(x2x3 + x2x
−1
1 )t−1

4 ≤ 1
x2

1x
2
3t

−1
5 ≤ 1

(x1 + x3)t−1
5 ≤ 1

variables x1, x2, x3, t1, t2, t3, t4, t5.

2.2.3 Extended GP

The theory of GP, including the convexity and duality properties, can
be developed from a basic geometric inequality: the arithmetic mean is
greater than or equal to the geometric mean. GP can be extended by
other geometric inequalities. This subsection provides a brief introduc-
tion to such Extended GP. Further details concerning Extended GP
and its refined duality theory can be found in e.g. [52, 6].

The following inequality

xTy ≤ λ(y)G(x) − F (y), (2.11)

for x in an open convex set and y in a cone, is called a geometric
inequality if λ(y) is non-negative, G(x) is differentiable, and for every
x there is a y for which the inequality becomes equality.
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Different geometric inequalities lead to different classes of Extended
GP. The following choice of functions leads to the basic version of
convex form GP:

G(x) = log
n∑

i=1

exp(xi)

λ(y) = 1Ty

F (y) = −
n∑

i=1

yi log yi − λ(y) log λ(y).

If y is a probability distribution, i.e., y � 0,1Ty = 1, the above geo-
metric inequality reduces to the conjugacy relationship between log-
sum-exp function and negative entropy. Indeed, it can be shown that
F (y) is simply the conjugate function of G(x) restricted to the set of
y such that there is an x for which ∇G(x) = y.

In general, geometric inequality and conjugate function are related
as follows [6]. By scaling the defining equation (2.5) of conjugacy rela-
tionship by λ > 0, we have:

xTy ≤ λG(x) + λG�(y/λ)

where G�(y) is the conjugate function of G(x). Now generalize the con-
stant λ to a homogeneous positive function λ(y) such that λ(∇G(x)) =
1, we have

xTy ≤ λ(y)G(x) + λ(y)G�(y/λ(y)).

Letting F (y) = λ(y)G�(y/λ(y)) recovers the geometric inequality
(2.11) from this generalization of the conjugacy relationship.

It can be readily verified [52] that G(x) in a geometric inequality is
always a convex function. Once a geometric inequality is obtained, min-
imizing an objective function in the form of G(x) subject to inequality
constraints on other functions in the form of G(x) is a convex optimiza-
tion, called the Extended GP derived from this geometric inequality.
In this sense, Extended GP covers a very wide range of convex opti-
mization problems. As long as the objective and constraint functions
can be obtained from some geometric inequality, the associated convex
optimization problem is an Extended GP.
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Not only there is always a convex function accompanying a geo-
metric inequality, geometric inequalities can also be constructed from
convex functions. Suppose a function g(x) is positive, convex, differen-
tiable, and homogeneous of degree p > 1. Restrict its domain to be an
open half space with a boundary containing the origin. Let h(y) be the
conjugate function of g(x) and let q be such that 1/p + 1/q = 1. Then
the following geometric inequality, which is an extension of Holder’s
inequality, can be constructed [52]:

yTx ≤ (pg(x))1/p(qh(y))1/q.

In particular, given a differentiable (except possibly at the origin)
norm, there is a positive, homogeneous function λ(y) such that

yTx ≤ λ(y)‖x‖,

which is a geometric inequality when x is confined to an open half space
whose boundary contains the origin. This leads to the following:

Extension 10: Minimizing a differentiable norm over an open half
space whose boundary contains the origin is an Extended GP.

As a more specific example of Extended GP, consider the following
geometric inequality:

G(x) =
N−1∑
i=1

exp(xi + log ci) + xN + log cN

λ(y) = yN

F (y) = log yN

(
N−1∑
i=1

yi

)
−

N−1∑
i=1

yi(log yi − 1) +
N∑

i=1

yi log ci

where c � 0 is a constant vector. This geometric inequality leads to
the following [52]:

Extension 11: Minimizing the sum of a posynomial and the log
of a monomial, subject to inequality posynomial constraints, is an
Extended GP.

2.2.4 Approximation and fitting

Sometimes an objective or constraint function in an optimization prob-
lem is not a posynomial, and we would like to use a monomial or a
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posynomial to approximate the given function so that optimizing or
constraining this function can be accommodated in a GP. Intuitively, a
function f(x) can be accurately approximated by a posynomial if the
function F (y) = log f(exp(y)) can be accurately approximated by a
convex function.

Consider the simple case of monomial approximation [6, 20]. We
are given a nonlinear function f : Rn → R that is differentiable at
x0 
 0 and f(x0) > 0. We would like to approximate f(x) with a
monomial f̂(x) = c

∏n
i=1 xai

i . We use the following log transformation:
yi = log xi, g(y) = log f(y), ĝ(y) = log f̂(y) = log c + aTy. Equating
the first order Taylor expansion of g at y0 with ĝ(y), we obtain:

g(y0) + ∇g(y0)T (y − y0) = log c + aTy,

which implies that
a = ∇g(y0),

i.e.,

ai =
xi

f(x)
∂f

∂xi

∣∣∣∣
x=x0

, ∀i,

and that

c = exp(g(y0) − ∇g(y0)Ty0) = f(x)
n∏

i=1

xai
i

∣∣∣∣∣
x=x0

.

Once a and c are computed, a monomial approximation f̂(x) to the
original nonlinear function f(x) is obtained.

Sometimes we are given a set of empirical data points, which we
would like to curve-fit using monomials, posynomials, or generalized
posynomials. Posynomials and generalized posynomials offer much flex-
ibility in fitting empirical data, which can then be used in modeling the
problem in a GP formulation. Methods for monomial and posynomial
data fitting are explained in [20].

A limiting argument can also be used to allow a GP to approximate
a nonlinear optimization problem.

Extension 12: Consider an unconstrained minimization of

f(x) + exp(g(x)).
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Since ez = limφ→∞
(
1 + z

φ

)φ
, the above minimization can be approx-

imated for a large, fixed φ through the following GP, where t is an
auxiliary variable:

minimize f(x) + tφ

subject to t−1 + t−1φ−1g(x) ≤ 1
variables x, t.

Nonlinear programs that involve both posynomials and exponentials
(or logarithms) of posynomials are called Transcendental GP. They are
in general not convex optimization problems and the Lagrange dual
problems may not be linearly constrained [6].

2.2.5 Signomial Programming

All of the GP extensions discussed so far (except Transcendental GP)
can be converted into convex optimization problems. This subsection
focuses on Signomial Programming (SP), which is an extension of GP
that in general cannot be turned into convex problems.

In standard form GP, only upper bound inequality constraints are
allowed on posynomials. Sometimes a posynomial represents a quality
of service that needs to be lower bounded. Equality constraints on
posynomials are also common in network modeling. In particular, flow
conservation equality constraints are linear equality constraints. It is a
limitation in GP modeling that lower bound inequalities (or equalities)
on posynomials are not allowed in standard form GP.

This issue can be tackled by extending GP to SP: minimizing a
signomial subject to upper bound inequality constraints on signomi-
als, where a signomial is a sum of monomials, possibly with negative
multiplicative coefficients:

s(x) =
N∑

i=1

ci

n∏
j=1

x
a
(j)
i

j

where c ∈ RN , a
(j)
i ∈ R, ∀i, j, x ∈ Rn

++.
As shown in Table 2.1, SP covers a wide range of constrained, gener-

alized polynomial minimization problems. Standard form GP is clearly
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a special case of SP. Problems with posynomial equality constraints is
a special case of problems with both upper and lower bound inequality
constraints on posynomials, which is in turn equivalent to SP. Poly-
nomial minimization with positive variables, which is NP-hard, is also
a special case of SP where the exponents in signomials are non-negative
integers.

The Lagrange dual problem of a SP also has the desired feature of
being linearly constrained as in the dual of GP. However, in sharp con-
trast to GP, SP in general cannot be turned into convex optimization
problems or be polynomial-time solved for global optimality, and the
duality gap is non-zero.

There are at least four major approaches to solve, or approximately
solve, a SP.

Approach 1: Branch and bound. The first approach is a stan-
dard branch and bound technique for general non-convex optimization,
which does not utilize the special structure of SP and will not be dis-
cussed here.

Approach 2: Relaxations that are provably tight. The second
approach is based on relaxations that do not incur any loss of generality
at the optimal solution for some special cases of SP. For example [20],
consider the following SP that is almost a standard form GP except an
equality constraint on a posynomial f̃(x):

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . , m

hj(x) = 1, j = 1, . . . , M

f̃(x) = 1.

(2.12)

We form a relaxation of the above problem by replacing the equality
constraint on f̃ with an upper bound inequality constraint:

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . , m

hj(x) = 1, j = 1, . . . , M

f̃(x) ≤ 1.

This is now a standard form GP in x, which can be efficiently solved
for a global optimizer x̃∗. If the following three conditions are satis-
fied: there is a variable xk such that it does not appear in any of the



2.2. Extensions 31

monomials, fi are decreasing functions of xk for i = 0, 1, . . . , m, and
f̃ is a strictly increasing function of xk, then we can increase the kth
component of x̃∗ until the f̃(x) ≤ 1 constraint becomes tight. The
monotonicity assumptions clearly show that the resulting x is an opti-
mizer x∗ of the original problem (2.12). This approximation technique
can be generalized to the case of multiple posynomial equality con-
straints [20]. It does not always apply to a general SP, but when it is
applicable, it generates a globally optimal solution in polynomial time
by using a GP solver.

Approach 3: Reversed GP. The third and fourth approaches
work for any SP but may take exponential time to compute an optimal
solution [7, 51]. The third approach converts a SP into a Reversed GP,
and then apply a monomial approximation iteratively [10]. Reversed
GP refers to minimizing a posynomial subject to both upper and lower
bound inequality constraints.

Consider the following SP, written in a form where the monomial
terms with negative multiplicative coefficients {fi2(x)} are separated
from those monomial terms with positive multiplicative coefficients
{fi1(x)}, i = 0, 1, . . . , m:

minimize f01(x) − f02(x)
subject to fi1(x) − fi2(x) ≤ 1, i = 1, . . . , m.

We first need to convert the signomial objective function into the form
required by Reversed GP. If the optimal objective function value is
positive, we introduce an auxiliary variable t and turn the objective to
the minimization of t, with an additional constraint:

f01(x) − f02(x) ≤ t,

which may be written as

f01(x) ≤ s ≤ f02(x) + t

where s ≥ 0 is another auxiliary variable. The above inequalities can
be written as two posynomial inequalities:

s−1f02(x) + s−1t ≥ 1 (2.13)

s−1f01(x) ≤ 1. (2.14)
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If instead the optimal objective function value is negative, we can
introduce auxiliary variables s and t and turn the objective into mini-
mizing t, subject to two additional posynomial constraints:

s−1f01(x) + s−1t ≤ 1 (2.15)

s−1f02(x) ≥ 1. (2.16)

We do not know which of the above two cases should be used a
priori. We can use one of them, and if the resulting optimal value is 0,
we should shift to the other case.

We then transform the SP constraint fi1(x) − fi2(x) ≤ 1 into the
form required by Reversed GP, introducing auxiliary variables ui:

fi1(x) ≤ ui ≤ fi2(x) + 1,

which can be written as two posynomial constraints:

u−1
i fi1(x) ≤ 1

u−1
i (fi2(x) + 1) ≥ 1.

After rewriting a SP as a Reversed GP, we use the following
approach for the lower bound inequality constraints on a posynomial
fi(x). Since fi(x) ≥ 1 is equivalent to 1/fi(x) ≤ 1, if we can approx-
imate the posynomial fi(x) with a monomial, then a lower bound on
fi(x) becomes an upper bound on a monomial, which is allowed in stan-
dard form GP.10 This monomial approximation can be computed using
the technique in Subsection 2.2.4. A simpler approximation is based
on the geometric inequality that lead to the development of GP: the
arithmetic mean is greater than or equal to the geometric mean, i.e.,∑

i

αivi ≥
∏
i

vαi
i

where v 
 0 and α � 0, 1T α = 1. Letting ui = αivi, we can write this
basic inequality as ∑

i

ui ≥
∏
i

(
ui

αi

)αi

.

10 Alternatively, we can approximate a posynomial with an inverted posynomial, e.g.,
through the arithmetic mean harmonic mean inequality.
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Let {ui(x)} be the monomial terms in a posynomial f(x) =
∑

i ui(x). A
lower bound inequality on posynomial f(x) can now be approximated
by an upper bound inequality on the following monomial:

∏
i

(
ui(x)
αi

)−αi

.

This approximation is in the conservative direction because the orig-
inal constraint is now tightened. There are many choices of α. One
possibility is to let

αi(x) = ui(x)/f(x), ∀i,

which obviously satisfies the condition that α 
 0 and 1T α = 1. Given
an α for each lower bound posynomial inequality, a standard form GP
can be obtained based on the above geometric mean approximation of
a Reversed GP.

Notice that what is important is to have a monomial approximation
of a posynomial. However, the geometric mean approximation and the
above choice of α may not lead to the best approximation in the sense
of minimizing the approximation error or facilitating the computation
of a global optimizer of SP.

An iterative procedure can now be used to solve the geometric mean
approximation of a Reversed GP. Start with any feasible xk and com-
pute α(xk). Then solve the resulting standard form GP to obtain xk+1.
If it is feasible in the original constraints of Reversed GP and makes
the approximation tight for (2.13,2.14,2.15,2.16), then stop. Otherwise
compute α(xk+1) and repeat the iterations of solving a GP based on
the geometric mean approximation using α(xk+1).

Approach 4: Complementary GP. The fourth approach to solve
SP is similar to the third approach. It first converts a SP into a Com-
plementary GP, which allows upper bound constraints on the ratio
between two posynomials, and then applies a monomial approximation
iteratively [10, 51]. This is called the condensation technique, which is
an instance of the cutting-plane method for nonlinear programming.

The conversion from a SP into a Complementary GP is trivial. An
inequality in SP of the following form

fi1(x) − fi2(x) ≤ 1,
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where fi1, fi2 are posynomials, is clearly equivalent to

fi1(x)
1 + fi2(x)

≤ 1.

Now we have two choices to make the monomial approximation.
One is to approximate the denominator 1+fi2(x) with a monomial but
leave the numerator fi1(x) as a posynomial. This is called the (single)
condensation method, and results in a GP approximation of a SP. An
iterative procedure can again be carried out: given a feasible xk, from
which a monomial approximations using α(xk) can be made and a GP
formed, from which an optimizer can be computed and used as xk+1,
the starting point for the next iteration. This sequence of computation
of x may converge to x∗, a global optimizer of the original SP, but may
also converge to a local optimum.

Another choice is to make the monomial approximation for both the
denominator posynomial 1 + fi2(x) and numerator posynomial fi2(x).
That turns all the constraints into monomials, and after the log trans-
formation, approximate SP as a LP. This is called the double conden-
sation method, and a similar iterative procedure can be carried out
as in the last paragraph. A key difference from the (single) condensa-
tion method is that this LP approximation always generate solutions
that are infeasible in the original SP. Therefore at the kth step of
the iteration, the most violated constraint is condensed at xk, i.e., the
monomial approximation is applied to this constraint inequality using
α(xk). The resulting new constraint is added to the LP approximation
for the (k + 1)th step of the iteration. The solution x∗ at which all
constraints in the original SP are satisfied is an optimum of the SP.

This iterative procedure of condensation uses a sequence of GP
relaxations for a wide class of nonlinear non-convex optimization
problems. Compared to the recently developed algebraic sum-of-
squares method using SDP relaxations [102, 101, 106] for constrained
polynomial minimization (which becomes a special case of SP when
the variables are restricted to the positive quadrant), this GP relax-
ation method still lacks a theoretical foundation that guarantees its
performance.

We conclude the quick tutorial on GP extensions in this subsec-
tion with the following comment. As evidenced through the exam-
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ples in Subsection 2.2.3 and this subsection, GP, with all these exten-
sions, in fact covers a surprisingly wide range of nonlinear (convex or
non-convex) problems that may not even resemble a GP in standard
form (2.1) or in convex form (2.3). Indeed, it is known [103] that any
optimization where the feasible set is the intersection of the domain
of objective and constraint functions and a cone can be turned into
a (most generalized version of) GP. Different cones lead to different
forms of GP in this most generalized sense, and different algebraic
descriptions of the cones lead to different separability structures of the
resulting GP.

2.3 Algorithms

2.3.1 Numerical methods for GP

During the 1960s and 1970s, a variety of numerical methods were pro-
posed for GP, ranging from the original one by Duffin, Peterson, and
Zener to ellipsoid methods. Some of them are based on primal GP while
others on dual GP, some start with standard form while others convex
form. Lists of representative GP problems for comparison of numerical
methods and performance evaluation of some solution packages were
published as well [6, 47].

A measure of how difficult is a GP was proposed in [52]. The
degree of difficulty of a GP is the difference between the total num-
ber of monomial terms in the objective and constraints, and one plus
the number of variables. When the degree of difficulty is zero, solv-
ing GP is equivalent to solving a system of linear equations. Modern
numerical methods seem to perform well independent of the degree of
difficulty.

There are at least two major approaches to solve a GP using modern
convex optimization techniques. One is the interior-point method as in
[97], and the other is an infeasible algorithm as in [78]. User-friendly
softwares for GP are available on the Internet, such as the MOSEK
package [129].

The standard barrier-based interior-point method for convex opti-
mization can be applied to GP in a straightforward way, with a worst-
case polynomial-time complexity and very efficient performance that
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scales gracefully with problem size in practice. Consider the following
GP in convex form with m inequality constraints:

minimize f0(x) = log
∑K0

k=1 exp(aT
0kx + b0k)

subject to fi(x) = log
∑Ki

k=1 exp(aT
ikx + bik) ≤ 0, i = 1, . . . , m

variables x.

The basic idea of the barrier-method is to solve a sequence of
unconstrained problems that absorb the constraints into a new
objective function, which is a weighted sum of the original objective
function and a barrier function φ of the constraints. As the weight t

on the original objective function becomes larger, the unconstrained
problem becomes a tighter approximation of the original problem.

Barrier-method algorithm for GP [21]:
Given a strictly feasible point x, which can be obtained either by
verifying a given x to be strictly feasible or by solving a feasibility
GP problem, and t := t(0) > 0, µ > 1, and error tolerance ε > 0.
Repeat
(1) Centering step: compute x∗(t) by minimizing tf0(x) + φ(x)

starting at x. This is an unconstrained, smooth, convex min-
imization that can be readily carried out by a variety of iter-
ative methods, such as gradient descent method or Newton’s
method.

(2) Update: x := x∗(t).
(3) Stopping criterion: Quit if m

t ≤ ε.
(4) Increase t: t := µt.

If a log barrier function φ is used in item (1), we have

φ(x) = −
m∑

i=1

log


− log

Ki∑
k=1

exp(aT
ikx + bik)


 .

A concise discussion on computational complexity and parame-
ter choices for the above algorithm can be found in [21].

We now turn to a more complicated infeasible algorithm follow-
ing Kortanek, Xu, and Ye [78], which solves both the primal and
dual GP simultaneously, starting with convex form, and is reported
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to produce very competitive numerical efficiency for a wide range
of GPs. The basic technique is to apply Newton’s method to the
perturbed Karush–Kuhn–Tucker (KKT) system with the help of
predictor-corrector, coupled with effective techniques for choosing
iterate directions and step lengths. Special structures of the Hes-
sian of convex form GP is utilized in sparse matrix factorizations to
accelerate the computation.

The infeasible primal-dual method generates subfeasible solu-
tions whose primal and dual objective function values converge to
the respective primal and dual optimal values. It is applied to the
dual GP and its Wolfe dual problem. From Subsection 2.1.2, we
know that the dual of a GP with n variables, (m − 1) monomial
terms, and p inequality posynomial constraints, can be written as
the following linearly constrained convex optimization:

minimize f(x)
subject to Ax = b

x � 0
variables x

where constant matrix A ∈ Rm×n and constant vector b ∈ Rm.11

The classical Wolfe dual problem to the above dual GP can be
written as:

maximize bTy − xT ∇f(x) + f(x)
subject to ATy − ∇f(x) + z = 0

where x ∈ Rn
++ are the primal variable, and (y ∈ Rm, z ∈ Rn

+) are
the dual variables.

The primal feasibility, dual feasibility, and complementarity fea-
sibility residuals are respectively defined by:

rP (x) = b − Ax

rD(x,y, z) = ∇f(x) − ATy − z

µ(x, z) =
xTz
n

.

11 Note that A in this subsection does not denote the exponent constant matrix used else-
where in the survey. It represents the linear constraints in dual GP. The constant vector
b is simply an n + 1-dimensional vector with the first entry being 1 and the rest 0.
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The duality gap is xT ∇f(x) − bTy. Let X = diag(x) and Z =
diag(z).

Infeasible primal-dual algorithm for GP and dual GP [78]:
Given the dual objective function f(x) and constants (A,b).
Initialize y0,x0 � 0, z0 � 0.

(1) Compute the Hessian H = ∇2f(x).
(2) Call Prediction Step Routine to compute γ ∈ [0, 1] and

η ∈ [0, 1].
(3) Solve the following system of linear equation for (δy, δx, δz):

 0 A 0
AT −H I
0 Z X





 δy

δx

δz


 =


 ηrP

ηrD

γµ1 − Xz


 . (2.17)

(4) Call Step Length Routine to compute α.
(5) Update primal-dual solution:

y = y + αδy

x = x + αδx

z = z + αδz.

(6) Call Dual Slack Reset Routine to reset z.
(7) Call Stopping Criterion Routine to determine if the iter-

ations can be stopped.

Prediction Step Routine

• Let η = 1 and γ = 0. Solve (2.17).
• Compute α = min (maxj {−xj/δx,j : δx,j < 0} ,

(maxj {−zj/δz,j : δz,j < 0}).
• Compute γ = 1

2µn(x + αδx)T (z + αδz) and η = 1 − γ.

Step Length Routine

• Compute αR = min (maxj {−xj/δx,j : δx,j < 0} ,
(maxj {−zj/δz,j : δz,j < 0}).
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• Choose αN such that (x(αN ),y(αN ), z(αN )) (updated
according to Step (5) in the algorithm) satisfy:

‖Xz‖ ≥ σµ

‖Xz − µ1‖ ≤ βµ

where σ ∈ (0, 1) and β > 0 are constant parameters.
• Choose αC such that (x(αC),y(αC), z(αC)) (updated

according to Step (5) in the algorithm) satisfy:

θPx(αC)Tz(αC) ≥ ‖rP ‖
θDx(αC)Tz(αC) ≥ ‖rD‖

x(αC)Tz(αC) ≤ θCxTz

where θP , θD, θC > 0 are constant parameters.
• Choose the step length as:

α = min{θ1αR, αN , αC}
where θ1 ∈ (0, 1) is a safety factor.

Dual Slack Reset Routine

• Let σ = ∇f(x) − ATy.
• For each i, if σi ≥ 0, then

zi =




σi, σi ∈ (zi/θ2, ziθ2)
zi/θ2, σi ≤ zi/θ2

ziθ2, σi ≥ ziθ2

where θ2 > 0 is a constant parameter.

Stopping Criterion Routine
If the following inequalities are satisfied, then stop the algorithm,
otherwise, return to Step (1).

‖rP ‖1

1 + ‖x‖1
< εP

‖rD‖1

1 + ‖z‖1
< εD

xTz
1 + ‖x‖1 + ‖z‖1

< εC

where εP , εD, εC are constant parameters.
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The following values for constant parameters are recommended
in [78]:

• x0 = 1,y0 = 0, z0 = 1 as initial points.
• σ = 10−8, β = 103, θP = 100 ‖r0

P ‖
x0T z0 , θD = 104 ‖r0

P ‖
x0T z0 , θC = 2

and θ1 = 0.9995 in Step Length Routine.
• θ2 = 100 in Dual Slack Reset Routine.
• εP = 10−8, εD = 10−8, εC = 10−12 in Stopping Criterion

Routine.

The most computationally intensive step in the algorithm is Step
3 that solves a KKT system of linear equations, which can be simpli-
fied as:(

−X−1Z − H AT

A 0

)(
δx

δy

)
=

(
ηrD − X−1(γµ1 − Xz)

ηrP

)
.

Solving this linear system of equations can be accomplished by com-
puting matrix K = A(X−1Z + H)AT . Because the Hessian H of dual
GP is a block diagonal matrix with sparse blocks, and X−1Z + H has
the same block diagonal structure with blocks H̄k, matrix K can be
written as

K =
p∑

j=0

AjH̄jAT
j .

This decomposition greatly simplifies the numerical solution in Step
(3) of the algorithm.

As reported in [78], this infeasible primal-dual algorithm is tested
on 19 typical GP problems, including 3 that are generally viewed as
the most difficult, and the computational time is orders of magnitude
faster than the earlier methods.

2.3.2 Numerical methods for robust GP

In the area of robust optimization [11, 13, 63, 62], we solve an opti-
mization problem by taking into account possible perturbations of the
problem parameters. A series of results on robust conic optimization,
especially robust SDP and robust SOCP, have been obtained over the
last decade in addition to the classical robust LP results.
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Recall that the constant parameters of a GP can be written as
a set of exponent constant matrices {Ai} and a set of multiplicative
constant vectors {bi}, i = 0, 1, . . . , m, where A0 and b0 correspond to
the objective posynomial, and the other Ai ∈ RKi×n and bi ∈ RKi

correspond to the m inequality constraints. In the worst-case robust
GP formulation, each log-sum-exp function in the original GP need to
be replaced by the supremum of the set of log-sum-exp functions whose
parameters Ãi and b̃i belong to the image of a set U in RL under an
affine mapping:

(Ãi, b̃i) =


A0

i +
L∑

j=1

ujA
j
i ,b

0
i +

L∑
j=1

ujb
j
i


 , ∀u ∈ U

where Aj
i ,b

j
i , j = 0, 1, . . . , L are given matrices and vectors describing

the uncertainty.
In some cases, a robust GP can be formulated as a GP [11]. A

method to approximately solve a general robust GP has recently been
proposed in [67]. This numerical method for robust GP is based on the
idea of approximating a posynomial with a piecewise linear function.

First a general robust GP is reduced to a two-term robust GP, where
each posynomial has only two monomial terms. This reduction can be
conducted in a numerically efficient way and decreases the computa-
tional load of approximating a general multi-variate function. After the
log transformation, a two-term posynomial is turned into a two-term
log-sum-exp function:

log(exp(y1) + exp(y2)),

which is then approximated by a r-term piecewise linear convex
function:

max
i=1,2,...,r

{cT
i y + di}

where ci, di are constants. Replacing the log-sum-exp functions with
the best piecewise linear approximations, a robust GP is turned into a
robust LP formulation.

When the set of uncertainty is polyhedral:

U = {u ∈ RL|Du � d}
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where (D,d) describe the finite number of hyperplanes that define the
uncertainly set, or ellipsoidal:

U = {ū + Dρ|ρ ∈ RL, ‖ρ‖2 ≤ 1}

where D describes the possible variations of GP parameters, the result-
ing robust LP becomes another LP or a Second Order Cone Program,
respectively. Thus efficiently solvable as a standard convex optimization
problem.

As the piecewise linear approximation becomes tighter, the approx-
imate robust GP (in the form of a robust LP) approaches the exact for-
mulation of the original robust GP. However, to maintain a given level
of approximation accuracy, the size of robust LP that approximates the
robust GP grows exponentially with the number of monomial terms.

2.3.3 Distributed algorithms

We present a systematic theory of distributed algorithms for GP, which
is particularly useful for networking applications. While efficient and
robust algorithms have been extensively studied for centralized solution
of GP, distributed solutions for GP have not been fully explored before.
This subsection shows how special structures of GP can be utilized for
distributed computation of a globally optimal solution.

Based on the sparsity pattern of the exponent matrix A, it is
sometimes natural to decompose a GP into several small decoupled
GPs. This is a straightforward application of the standard decomposi-
tion method for convex optimization with decoupled constraints (e.g.,
[18, 103]), and will not be further discussed here.

Special cases. We first present three special cases of GP where
simple distributed algorithms have been found, by dual decomposition,
or by linear system evolution using the Perron–Frobenius theory of
positive matrix, or by message-passing-based iteration of gradient algo-
rithms. These special cases include linearly constrained maximization
of a monomial, unconstrained minimization of a product of posynomi-
als, and feasibility problem with a special structure of the exponent
constant matrix A and multiplicative constant vector d. These cases
are motivated by networking problems to be covered in Section 3.
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Case 1. Consider the following linearly constrained monomial max-
imization:

maximize
∏

j x
aj

j

subject to
∑

j Rijx
bj

j ≤ 1, i = 1, . . . , m

variables x

where {Rij}, {aj} are non-negative constants, and {bj} are real con-
stants. It is important to note that in this case the exponent constants
{bj} do not depend on the constraint index i. A distributed algorithm
for this class of GP is described in Subsection 3.4.1 in the application
of TCP Vegas congestion control.

Case 2. Consider the following GP feasibility problem: find an x
such that the following posynomial inequalities are satisfied:∑

j �=i

Aijxjx
−1
i ≤ ρ, i = 1, . . . , m

where Aij are positive constants. This is a model of a wireless power
control problem. Define a matrix A where the off-diagonal entries are
Aij and diagonal entries zero. It is known [60] that if 1/ρ is smaller than
the Perron–Frobenius eigenvalue λmax(A) of A, the feasibility problem
has a solution, and the following simple, iterative update of x converges
geometrically to a feasible solution over iterations indexed by t:

x(t + 1) = Ax(t).

This update can be carried out distributively. Each xi is updated to
make the ith posynomial constraint be satisfied with equality, assuming
that the other {xj , j �= i} do not change.

Case 3. Consider the following unconstrained minimization of the
composition of a monomial and a posynomial of x:

minimize
∏
i


∑

j �=i

Aijxjx
−1
i




ai

where Aij , ai are positive constants. In an application to jointly optimal
congestion and power control in Subsection 3.4.2, a gradient method
to solve this GP will be turned into a distributed algorithm with the
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help of message passing among the network elements each controlling
an xi.

General approach. Based on recent results in [37], we show that,
by allowing message passing, a dual decomposition technique can be
used to distributively solve any standard form GP. Here, each term
or each constraint equation has a corresponding interpretation of a
network element (end user or intermediate nodes). This method can be
used to distributively solve all the GP problems formulated in Section 3
for various applications in information theory, coding, signal processing,
and networking, especially for power control problems. It can also be
used to decouple any convex optimization with additive objective and
constraint functions:

minimize
∑

s fs(x)
subject to

∑
j hij(x) ≤ 0, ∀i

where fs and hij are all convex functions.
Objective and constraint functions in GP are additive, with coup-

ling of variables across the monomial terms. Had there been no coup-
ling, the additive structure leads to an easy parallel computation. The
key approach to tackle the coupling problem is to introduce auxil-
iary variables and additional equality constraints, thus transferring
the coupling in the objective function to coupling in the constraints,
which can be decoupled by dual decomposition and solved by intro-
ducing ‘consistency pricing’. Updates of ‘consistency price’ can be con-
ducted via local communication channels among the variables that
are coupled with each other. This method is illustrated through an
unconstrained GP, and extensions to problems with constraints are
straightforward.

Suppose we have the following unconstrained standard form GP in
x 
 0:

minimize
∑

i fi(xi, {xj}j∈I(i)) (2.18)

where xi denotes the local variable of the ith user, I(i) denotes the
set of coupled variables from other users, and {fi} are posynomials.
Making a change of variable yi = log xi,∀i, in the original problem, we
obtain the following convex optimization problem in y:

minimize
∑

i fi(eyi , {eyj}j∈I(i)).
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We now rewrite the problem by introducing auxiliary variables
{yij} for the coupled arguments, and additional equality constraints
to enforce consistency between the original variables and the auxiliary
variables:

minimize
∑

i fi(eyi , {eyij}j∈I(i))
subject to yij = yj , ∀j ∈ I(i),∀i

variables {yi}, {yij}.

(2.19)

Each ith user controls the local variables (yi, {yij}j∈I(i)). Next, the
Lagrangian of (2.19) is formed as

L({yi}, {yij}, {γij}) =
∑

i

fi(eyi , {eyij}j∈I(i)) +
∑

i

∑
j∈I(i)

γij(yj − yij)

=
∑

i

Li(yi, {yij}, {γij})

where each partial Lagrangian term is

Li(yi, {yij}, {γij}) = fi(eyi , {eyij}j∈I(i)) +
( ∑

j:i∈I(j)

γji

)
yi −

∑
j∈I(i)

γijyij .

(2.20)
The minimization of the Lagrangian with respect to the primal vari-
ables ({yi}, {yij}) can be done simultaneously, in a parallel fashion, by
each user. In the more general case where the original problem (2.18)
is constrained, the additional constraints can be included in the mini-
mization of each Li.

The following master dual problem has to be solved to obtain the
optimal dual variables or consistency prices {γij}:

maximize{γij} g({γij}) (2.21)

where
g({γij}) =

∑
i

min
yi,{yij}

Li(yi, {yij}, {γij}).

Note that the transformed primal problem (2.19) is convex with zero
duality gap. Hence the Lagrange dual problem indeed solves the original
standard GP problem. A simple way to solve the maximization in (2.21)
is with the following update for the consistency prices:

γij(t + 1) = γij(t) + α(t)(yj(t) − yij(t)). (2.22)
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Appropriate choice of the stepsize α(t) > 0 leads to convergence of the
dual algorithm [16].

Summarizing, we have the following
Distributed Algorithm for Unconstrained GP [37]:
The ith user does the following:

(1) Minimize Li in (2.20) involving only local variables, upon
receiving the updated dual variables {γji, j : i ∈ I(j)} (note
that {γij , j ∈ I(i)} are local dual variables).

(2) Update the local consistency prices {γij , j ∈ I(i)} with
(2.22).

The amount of message passing overhead in the above distributed
algorithm can be substantially reduced using the structures of the cou-
pling variables. The general approach of distributed GP solution and
specific overhead reduction techniques will be illustrated in Subsection
3.3.1 through distributed GP-based power control.



3
Applications in Communication Systems

3.1 Information Theory

Materials in this subsection are in part based on recent publications
[30, 33, 82, 84], and some problems have been studied in the 1980s and
1990s [120, 121, 122].

We are concerned with two information theoretic limits on data
transmission and compression in this section, focusing on the single-
user, discrete memoryless system models: channel capacity as the max-
imum transmission rate so that the decoding error probability vanishes
as the codeword becomes long, and rate distortion function as the min-
imum rate required to describe a source so that the decoder’s average
distortion is no larger than a threshold distortion value.

We will show that the Lagrange dual problems of channel capac-
ity and rate distortion can be simplified into GPs.1 The struc-
tures of these GPs allow us to efficiently generate upper bounds
on channel capacity and lower bounds on rate distortion by solving

1 The Lagrange dual problem of a given primal problem may be represented in several
different but equivalent ways. It is important to reduce it the most illuminating and useful
form.

47
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systems of linear inequalities (Subsections 3.1.1 and 3.1.2), to charac-
terize Shannon duality between transmission and compression (Sub-
section 3.1.3), and to interpret channel capacity and rate distor-
tion problems as free energy optimization in statistical physics
(Subsection 4.1.1).

3.1.1 Channel capacity

First consider the problem of data transmission over a discrete mem-
oryless channel with input X ∈ X = {1, 2, . . . , N}, output Y ∈
Y = {1, 2, . . . , M}, and channel law Pij = Prob{Y = j|X = i}, i =
1, 2, . . . , N, j = 1, 2, . . . , M . The channel law forms a channel matrix
P ∈ RN×M , where the (i, j) entry of P is Pij ≥ 0 with P1 =
1. A distribution p ∈ RN×1 on the input, together with a given
channel matrix P, induces a distribution q ∈ RM×1 on the out-
put by q = PTp, and a joint distribution Q ∈ RN×M on the
input output pair by Qij = piPij . We also associate with each input
alphabet symbol i an input cost si ≥ 0, forming a cost vector
s ∈ RN×1.

It is a key result in information theory (e.g., [40, 94]) that the capac-
ity C(S) of a discrete memoryless channel, under the input cost con-
straint Ep[s] = pT s ≤ S for a given total cost S ≥ 0, is

C(S) = max
p:pT s≤S

I(X; Y ) (3.1)

where the mutual information I between input X and output Y is
defined as

I(X; Y ) =
N∑

i=1

M∑
j=1

Qij log
Qij

piqj
= H(Y )−H(Y |X) = −

M∑
j=1

qj log qj−pT r

where r ∈ RN×1 and ri = −∑M
j=1 Pij log Pij is the conditional entropy

of Y given X = i.
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Therefore we view channel capacity as the optimal objective value of
the following maximization problem, referred to as the channel capacity
problem with input cost:2

maximize −pT r − ∑M
j=1 qj log qj

subject to PTp = q
pT s ≤ S

1Tp = 1
p � 0

variables p,q.

(3.2)

The constant parameters are P, the channel matrix, and ri =
−∑M

j=1 Pij log Pij , ∀i. In the special case of no input cost constraint,
the channel capacity problem becomes:

maximize −pT r − ∑M
j=1 qj log qj

subject to PTp = q
1Tp = 1
p � 0

variables p,q.

(3.3)

If we substituted q = PTp in the objective function of (3.2), we
would later find that the Lagrange dual problem can only be implicitly
expressed through the solution of a system of linear equations. Keeping
two sets of optimization variables, p and q, and introducing the equal-
ity constraint PTp = q in the primal problem is a key step to derive
an explicit and simple Lagrange dual problem of the channel capacity
problem.

Theorem 3.1. The Lagrange dual of the channel capacity problem
with input cost (3.2) is the following GP (in convex form):

minimize log
∑M

j=1 exp(αj + γS)
subject to Pα + γs � −r

γ ≥ 0
variables α, γ

(3.4)

The constant parameters are P, s and S.

2 Showing that channel capacity can be obtained as a maximized mutual information
requires achievability and converse proofs, which are not discussed in this subsection.
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An equivalent version of the Lagrange dual problem is the following
GP (in standard form):

minimize wS ∑M
j=1 zj

subject to wsi
∏M

j=1 z
Pij

j ≥ e−H(P(i)), i = 1, 2, . . . , N

w ≥ 1, zj ≥ 0, j = 1, 2, . . . , M

variables z, w

(3.5)

where P(i) is the ith row of P.
Lagrange duality between problems (3.2) and (3.4) means the

following:

• Weak duality. Any feasible (α, γ) of the Lagrange dual prob-
lem (3.4) produces an upper bound on channel capacity with
input cost: log

∑M
j=1 exp(αj + γS) ≥ C(S).

• Strong duality. The optimal value of the Lagrange dual prob-
lem (3.4) is C(S).

The proof can be found in Appendix B.1.

Corollary 3.1. The Lagrange dual of the channel capacity problem
without input cost (3.3) is the following GP (in convex form)

minimize log
∑M

j=1 eαj

subject to Pα � −r
variables α.

(3.6)

The constant parameters are P.
An equivalent version of the Lagrange dual problem is the following

GP (in standard form):

minimize
∑M

j=1 zj

subject to
∏M

j=1 z
Pij

j ≥ e−H(P(i)), i = 1, 2, . . . , N

zj ≥ 0, j = 1, 2, . . . , M

variables z.

(3.7)

The constant parameters are P, and P(i) is the ith row of P.
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Lagrange duality between problems (3.3) and (3.6) means the
following:

• Weak duality. log
(∑M

j=1 eαj

)
≥ C, for all α that satisfy Pα+

r � 0.
• Strong duality. log

(∑M
j=1 eα∗

j

)
= C, where α∗ are the opti-

mal dual variables.

We can also prove the weak duality result in Corollary 3.1 on channel
capacity upper bound in a simple way without using the machinery of
Lagrange duality. This short proof is shown in Appendix B.2.

Note that the Lagrange dual (3.7) of the channel capacity problem
is a simple GP with a linear objective function and only monomial
inequality constraints. Also, dual problem (3.5) is a generalized version
of dual problem (3.7), weighing the objective function by wS and each
constraint by wsi , where w is the Lagrange multiplier associated with
the input cost constraint. If the costs for all alphabet symbols are 0,
we can analytically minimize the objective function over w by simply
letting w = 0, indeed recovering the dual problem (3.7) for channels
without the input cost constraint.

We can interpret the Lagrange dual problem (3.6) as follows. Let
Λ : {1, . . . , M} → R be a real-valued function on the output space,
with Λ(j) = αj . We can think of the variables α as parameteriz-
ing all real-valued functions on the output space, so the dual prob-
lem is one over all real-valued functions on the output space. Since
(Pα)i =

∑M
j=1 αjPij = E(Λ|X = i), the inequality constraint in the

dual states that for each i, E(Λ|X = i) exceeds −ri = −H(Y |X = i).
Since maxj αj ≤ log

(∑M
j=1 eαj

)
≤ maxj αj + log M , the objective

function in the dual is a smooth approximation of the maximum func-
tion. Thus, the Lagrange dual problem asks us to consider all real-
valued functions Λ on the output space, for which E(Λ|X = i) exceeds
−H(Y |X = i) for each i. Among all such Λ, we are to find the one that
minimizes a smoothed approximation of the maximum value of Λ.

Suppose we have solved the GP dual3 (3.4) of channel capacity.
By strong duality, we obtain C(S). We can also recover the optimal

3 GP dual refers to the Lagrange dual problem (of some primal problem) that is a GP, not
to be confused with the Lagrange dual problem of GP.
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primal variables, i.e., the capacity achieving input distribution, from
the optimal dual variables. For example, we can recover a least-norm
capacity-achieving input distribution for a channel as follows. First, the
optimal output distribution q∗ can be recovered from the optimal dual
variable α∗:

q∗
j = exp

(
α∗

j − C
)

, j = 1, 2, . . . , M (3.8)

where C = log
∑M

j=1 eα∗
j , and the optimal input distribution p∗ is a

vector that satisfies the linear equations:

−pT r = C + e−C


 M∑

j=1

α∗
je

α∗
j − C

M∑
j=1

eα∗
j


 ,

PTp = q∗,

1Tp = 1.

The primal and dual problems of C(S) can be simultaneously and
efficiently solved through a primal-dual interior point algorithm [97,
21], which scales smoothly for different channels and alphabet sizes
and provides an alternative to the classical Blahut–Arimoto algorithm
[3, 19]. Due to the structure and sparsity of the exponent constant
matrix A of the GP dual for channel capacity, standard GP algorithms
like the ones in Subsection 2.3.1 can be further accelerated.

Complementary slackness between (3.2) and (3.4) states that p∗
i = 0

if ri + (Pα∗)i + γ∗si > 0 in the Lagrange dual of channel capacity.
Therefore, from the optimal dual variables (α∗, γ∗), we immediately
obtain the support of the capacity achieving input distribution as the
following set:

{i|ri + (Pα∗)i + γ∗si = 0}.

From the primal and dual problems of channel capacity, we obtain
the following optimality conditions. If there are λ and α satisfying the
following KKT conditions [21] for a given P:

λ � 0,

r + Pα � 0,
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eαj∑M
j′=1 eαj′ +

N∑
i=1

λiPij = 0, j = 1, 2, . . . , M,

λi(ri +
M∑

j=1

Pijαj) = 0, i = 1, 2, . . . , N,

then the resulting log
∑M

j=1 eαj is the channel capacity C.
Because the inequality constraints in the dual problem (3.4) are

affine, it is easy to find a dual feasible α, and the resulting value of
the dual objective function provides an easily-derived upper bound
on channel capacity. Based on the sparsity pattern of a given channel
matrix, tight analytic bounds may also be obtained from an appropriate
selection of dual variables.

As a simple example, it is easy to verify that αj = log maxi Pij , ∀j,

satisfy the dual constraints and give the following

Corollary 3.2. Channel capacity is upper bounded in terms of a max-
imum likelihood receiver selecting argmaxi Pij for each output alphabet
symbol j:

C ≤ log
M∑

j=1

max
i

Pij , (3.9)

which is tight if and only if the optimal output distribution q∗ is

q∗
j =

maxi Pij∑M
k=1 maxi Pik

, j = 1, 2, . . . , M.

When there is an input cost constraint pT s ≤ S, the above upper
bound becomes

C(S) ≤ log
M∑

j=1

max
i

(e−siPij) + S (3.10)

where each maximum likelihood decision is modified by the cost vector s.

Of course, it is trivial to find a primal feasible point satisfying the
linear inequality constraints of the primal problem (3.3), which gives a
lower bound on channel capacity. This pair of bounds provides an esti-
mate of C(S). Therefore, given a dual feasible variable, by generating



54 Applications in Communication Systems

the corresponding primal feasible variable, both an upper and a lower
bound on channel capacity are obtained. The worst case difference
between the true value of channel capacity and the estimate based
on either bound is the gap between these two bounds. This is a com-
putationally easy method to generate an estimate of channel capacity
with bounded error. For example, for channel capacity without input
cost, find any dual feasible α, from which we generate

qj =
eαj∑M

k=1 eαk
.

If there is a p such that PTp = q, then the estimated channel capacity
C̃ = log

∑M
j=1 eαj can only be Γ away from the true capacity C, where

Γ = pT r +
∑M

j=1 αje
αj∑M

j=1 eαj
.

There is a minmax Kullback–Leibler divergence (minmaxKL) char-
acterization of discrete memoryless channel capacity with input cost
in [42]:

C(S) = min
q

min
γ≥0

max
i

[
D(P(i)‖q) + γ(S − si)

]
(3.11)

where the minimization over q is over all possible output distributions.
This characterization of C obviously leads to the following known

class of upper bounds on channel capacity: for any output distribution q,

C ≤ max
i

M∑
j=1

Pij log
Pij

qj
, (3.12)

which is shown in [42, 61], and has recently been used for simulating
finite state channels in [124] and bounding the capacity of non-coherent
multiple antenna fading channels in [83].

Since the Lagrange dual (3.4) and minmaxKL (3.11) characteriza-
tions both give C(S), they must be equivalent. This equivalence can also
be established directly. Let the dual variables zj = eαj = βqj where
β > 0 and q is any distribution. Then the dual constraints become∑M

j=1 Pij log Pij

qj
−γsi ≤ log β, i = 1, 2, . . . , N . Since the case of C(S) =

0 is trivial, assume C(S) > 0. By complementary slackness, if at opti-
mality all the dual constraints are satisfied with strict inequalities, then
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the optimal Lagrange multipliers (readily seen to be the optimal input
distribution) of this GP must all be zero, contradicting our assumption

that C(S) > 0. Therefore, maxi

[∑M
j=1 Pij log Pij

q∗
j

− γ∗si

]
= log β∗. By

the strong duality part of Theorem 3.1,

C(S) = log
M∑

j=1

β∗q∗
j + γ∗S = log β∗ + γ∗S

= max
i


 M∑

j=1

Pij log
Pij

q∗
j

− γ∗si


 + γ∗S.

Since at optimality, q∗ must correspond to the output distribution
induced by an optimal input distribution, restricting the minimization
of dual variables z to a scaled version of an output distribution incurs
no loss of generality. Thus the minmaxKL characterization (3.11) is
recovered.

The above argument shows that the GP Lagrange dual (3.4) gen-
erates a broader class of upper bounds on C(S), including the class of
bounds from (3.12) as a special case. Specifically, the following bounds,
readily extended from (3.12) and parameterized by output distributions
q and γ ≥ 0:

C(S) ≤ max
i


 M∑

j=1

Pij log
Pij

qj
− γsi


 + γS,

can be obtained from the GP dual by restricting the dual variables (z, γ)
to be such that maxi

[∑M
j=1 Pij log Pij

zj
− γsi

]
= 0, and by restricting z

to be a scaled output distribution.
For a memoryless channel with continuous alphabets, where the

channel is a family of conditional distributions P (y|x) and input cost
constraint is

∫
p(x)s(x)dx ≤ S, a derivation similar to the discrete case

shows that the Lagrange dual of the channel capacity problem is the
following continuous analog of GP:

minimize log
∫

z(y)dy + γS

subject to
∫

P (y|x) log z(y)
P (y|x)dy + γs(x) ≥ 0, ∀x

z(y) ≥ 0,∀y, γ ≥ 0
variables z(y), γ.

(3.13)
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Although, in general, the KKT optimality condition can be compli-
cated in the infinite dimensional case, weak duality and the Lagrange
dual problem (3.13) readily lead to the following class of bounds [83, 33]:
for any distribution q(y) and γ ≥ 0,

C(S) ≤ max
x

[∫
P (y|x) log

P (y|x)
q(y)

dy − γs(x)
]

+ γS.

3.1.2 Rate distortion

Consider the following information theoretic problem of data compres-
sion. Assume a source that produces a sequence of i.i.d. random vari-
ables X1, X2, . . . , Xn ∼ p, where the state space of Xi is a discrete
source alphabet X with N alphabet symbols and p ∈ RN×1 is the
source distribution. The encoder describes the source sequence Xn by
an index fn(xn) ∈ {1, 2, . . . , 2nR}, where xn is a realization of Xn.
The decoder reconstructs Xn by an estimate X̂n = gn(fn(Xn)) in a
finite reconstruction alphabet X̂ . Given a bounded distortion measure
d : X × X̂ → R+, the distortion d(xn, x̂n) between sequences xn and
x̂n is the average distortion of these two n letter blocks.

It is another key result in information theory that the rate distortion
function R(D) of a discrete source can be evaluated as the minimum
mutual information I(X; X̂) between the source and the reconstruction
under the distortion constraint:

R(D) = min
P:E[d(X,X̂)]≤D

I(X; X̂) (3.14)

where Pij = Prob{X̂ = j|X = i}, i = 1, 2, . . . , N, j = 1, 2, . . . , M are
the reconstruction probabilities.

Writing out the minimization problem (3.14) explicitly, we have the
following rate distortion problem:

minimize
∑N

i=1
∑M

j=1 piPij log Pij∑
k

Pkjpk

subject to
∑N

i=1
∑M

j=1 piPijdij ≤ D∑M
j=1 Pij = 1, i = 1, 2, . . . , N

Pij ≥ 0, i = 1, 2, . . . , N, j = 1, 2, . . . , M

variables P.

(3.15)
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The constant parameters are the source distribution p, the distortion
measures dij = d(X = i, X̂ = j), and the distortion constraint D.

Theorem 3.2. The Lagrange dual of the rate distortion problem
(3.15) is the following GP (in convex form):

maximize pT α − γD

subject to log
∑N

i=1 exp(log pi + αi − γdij) ≤ 0,

j = 1, 2, . . . , M γ ≥ 0
variables α, γ.

(3.16)

The constant parameters are p, dij and D.
An equivalent version of the Lagrange dual problem is the following

GP (in standard form):

maximize w−D ∏N
i=1 zpi

i

subject to
∑N

i=1 piziw
−dij ≤ 1, j = 1, 2, . . . , M

w ≥ 1, zi ≥ 0, i = 1, 2, . . . , N

variables z, w.

(3.17)

Lagrange duality between problems (3.14) and (3.16) means the
following

• Weak duality. Any feasible (α, γ) of the Lagrange dual prob-
lem (3.16) produce a lower bound on the rate distortion
function:

pT α − γD ≤ R(D).

• Strong duality. The optimal value of the Lagrange dual prob-
lem (3.16) is R(D).

In [14] Berger proved an equivalent formulation as (3.16). The proof
in Appendix B.3 is simpler by directly using the Lagrange duality argu-
ment.

The Lagrange dual (3.17) of the rate distortion problem (3.15) is
a simple GP: maximizing a monomial over posynomial constraints, in
the form of maximizing a geometric mean

∏N
i=1 zpi

i weighted by w−D,
under constraints on arithmetic means

∑N
i=1 pizi weighted by w−dij .
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A smaller shadow price w would reduce the objective value but also
loosen each constraint, allowing larger dual variables zi and possibly a
higher objective value.

Similar to the case for channel capacity, we can now efficiently lower
bound the rate distortion function from the dual problem in the GP
form. In particular, due to the structure of the constraints in (3.17),
for any given w, finding a dual feasible z reduces to the easy task of
solving a system of linear inequalities. For example, with the Hamming
distortion measure, it is easy to verify that αi = log

(
1−D
pi

)
, ∀i, and

γ = log
(

(1−D)(N−1)
D

)
satisfy the Lagrange dual constraints in (3.16),

and give the following lower bound:

R(D) ≥ H(X) − H0(D) − D log(N − 1) (3.18)

where H0(x) = −x log x − (1 − x) log(1 − x) is the binary entropy
function.

Now consider guessing a random variable X based on another ran-
dom variable X̂. If we replace D by the probability of estimation error
Pe and use the fact that R(D) = min I(X; X̂) ≤ H(X) − H(X|X̂),
then the lower bound (3.18) recovers Fano’s inequality:

H(X|X̂) ≤ H0(Pe) + Pe log(N − 1) (3.19)

that helps prove the converse theorem for channel capacity [40].
The problem of rate distortion with state information [39, 130]

also has a Lagrange dual problem in the form of GP [33], and the
Lagrange duality bounding technique leads to a generalization of Fano’s
inequality. The Lagrange dual problems for channel capacity and rate
distortion with generalized information measures were also derived in
[120, 121].

3.1.3 Shannon duality

Lagrange duality is often loosely stated as follows. Given an optimiza-
tion problem called the primal problem, the objective and constraint
functions in the dual problem can be obtained from those in the primal
problem by some simple mappings of signs, variables, constant param-
eters and mathematical operations. This ‘duality by mapping’ that
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turns one optimization problem into its Lagrange dual is also found
in other duality relationships [90], such as that between controllability
and observability. However, as can be easily verified, ‘duality by map-
ping’ does not hold between the primal problems of channel capacity
(3.2) and rate distortion (3.15). It turns out that their Lagrange dual
problems exhibit a precise ‘duality by mapping’. Due to strong dual-
ity, this induces a ‘duality by mapping’ between the primal problems
through the GP duals, as shown in Figure 3.1. Note that Lagrange
duality is different from Shannon duality. Indeed, while channel capac-
ity and rate distortion are ‘somewhat dual’ as commented by Shannon
[114], their Lagrange dual problems are both GPs.

Shannon

Lagrange

C(S) R(D)

Dual C(S) Dual R(D)

Fig. 3.1 Shannon duality characterized through the Lagrange dual problems of channel
capacity and rate distortion.

We first summarize two versions of the Lagrange dual problems for
C(S) and R(D) in Table 3.1, where the GP dual problems in standard
form better illustrate the ‘duality by mapping’ relationships. The objec-
tive functions, constraint functions, variables, and constant parameters
in the Lagrange dual problems of C(S) and R(D) can be obtained from
one another through the following simple mappings:

Shannon Duality Correspondence

Channel capacity C(S) Rate distortion R(D)

monomial ↔ posynomial

posynomial ↔ monomial
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minimization ↔ maximization

≥ constraints ↔ ≤ constraints

j(receiver side index) ↔ i(sender side index)

i(sender side index) ↔ j(receiver side index)

wS ↔ w−D

wsi ↔ w−dij

zj ↔ zpi
i

z
Pij

j ↔ zi

H(P(i)) ↔ − log
1
pi

Lagrange duality gives a detailed analysis of the structures in
Shannon duality:

• It resolves the apparent asymmetry between maximizing over
a vector p in the channel capacity problem and minimiz-
ing over a matrix P in the rate distortion problem. In the
Lagrange dual of C(S), there are as many optimization vari-
ables as output alphabet symbols, plus a shadow price for
the cost constraint. In the Lagrange dual of R(D), there are
as many optimization variables as input alphabet symbols,
plus a shadow price for the distortion constraint.

• It answers the following question: since a vector p (the source
distribution) is given in the rate distortion problem, and a
matrix P (the channel matrix) is given in the channel capac-
ity problem, what is the proper analog of pi (the ith entry
in p) in the channel capacity problem? The last pair in the
Shannon duality correspondence shows that the proper ana-
log of log 1

pi
in rate distortion is H(P(i)) in channel capacity:

log 1
pi

is the number of bits to describe an alphabet symbol
with probability pi in the Shannon code for lossless compres-
sion, and H(P(i)) is the number of bits needed to describe
without loss a source whose distribution follows the ith row
of channel matrix. This correspondence can be interpreted in
the context of universal source coding, where each row P(i)
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of the channel matrix represents a possible distribution of a
source.

• It confirms Shannon’s remark in [114] on introducing input
costs to enhance duality. From the Lagrange dual problems in
standard form GP, it is easy to see that input costs s and cost
constraint S in the C(S) dual problem are complementary
to distortion measures dij and distortion constraint D in the
R(D) dual problem.

• The dual variable w ≥ 1 can be interpreted as the shadow
price associated with the input cost constraint S and with the
reconstruction distortion constraint D, respectively. From
local sensitivity analysis [21], the optimal −w∗ tells us
approximately how much increase in capacity C(S) or reduc-
tion in rate R(D) would result if the cost or distortion
constraint can be relaxed by a small amount. From global
sensitivity analysis [21], if w∗ is large, then tightening the
cost or distortion constraint will greatly decrease capacity
(in the channel capacity problem) or increase rate (in the
rate distortion problem). If w∗ is small, then loosening the
cost or distortion constraint will not significantly increase
capacity or decrease rate.

In addition to the above Lagrange duality based characteriza-
tion, Shannon duality has also been characterized for single-user
and multiple-user models through functional duality and operational
duality.4

3.1.4 Error exponent

Channel capacity is the x-intercept of an exponential decay curve
of the decoding error probability: when the transmission rate R is
below capacity C, the average decoding error probability P̄

(N)
e (R)

decreases exponentially as the codebook length N tends to infinity, and

4 The functional duality [105] and Lagrange duality approach together imply that solving a
GP in the form of (3.4) induces a set of problem parameters for another GP in the form
of (3.16), whose optimal value equals that of the first GP.
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the corresponding exponent is called the reliability function E(R) =
limN→∞ − 1

N log P̄
(N)
e (R).

Reliability function is usually approximated by the following ran-
dom coding upper bound on error probability [61]:

P̄ (N)
e (R) ≤ exp(−NEr(R)). (3.20)

The random coding exponent Er(R) is the maximized value of the
objective function in the following optimization problem:

maximize E0(ρ,p) − ρR

subject to 1Tp = 1
p � 0
ρ ∈ [0, 1]

variables p, ρ

(3.21)

where

E0(ρ,p) = − log
∑
j

(∑
i

pi (Pij)
1

1+ρ

)1+ρ

. (3.22)

The constant parameters are the channel P and a given rate R.
To upper bound the decoding error probability, we can solve prob-

lem (3.21), by first maximizing over p and then ρ. Properties of such
optimization have been analytically studied, e.g., in [61]. Here we show
that the problem of maximizing over p for a given ρ is a Reversed GP,
and indeed a special one that can be turned into a convex optimization
and has an unconstrained optimization as its Lagrange dual problem,
thus leading to efficient upper bounds on the rate achievable for a finite
block length and a desired error probability.

First, we show that maximizing E0(ρ,p) over p for a given ρ can
be turned into a Reversed GP in convex form: minimizing a log-sum-
exp objective function with equality constraints on other log-sum-exp
functions. Let Aij = P

1/(1+ρ)
ij . Maximizing E0 over p for a given ρ can

be written as:

minimize log
∑

j (
∑

i piAij)
1+ρ

subject to 1Tp = 1
p � 0

variables p.

(3.23)
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Introducing the following variables:

rj = log
∑

i

piAji, ∀j,

ti = log pi, ∀i,

we can rewrite (3.23) as the following problem:

minimize log
∑

j exp(rj(1 + ρ))
subject to log

∑
i exp(ti)Aij = rj , ∀j

log
∑

i exp(ti) = 0
variables r, t,

which is equivalent to the following Reversed GP in variables r, t, where
the constraints are written as equalities on log-sum-exp functions:

minimize log
∑

j exp(rj(1 + ρ))
subject to log

∑
i exp(ti − rj + log Aij) = 0 ∀j

log
∑

i exp(ti) = 0
variables r, t.

While in general Reversed GP cannot be turned into convex opti-
mization problems and the duality gap is strictly positive, in this case
the error exponent problem (3.23) can be transformed into a convex
problem through a different change of variable, as shown in Appendix
B.4 that proves the following theorem:

Theorem 3.3. The Lagrange dual problem of (3.23) is the following
unconstrained concave maximization over α:

maximize


θ(ρ)

∑
j

α
(1+ρ)/ρ
j − max

i



∑
j

Aijαi




 . (3.24)

where θ(ρ) = ρ(−1)1/ρ

(1+ρ)1+1/ρ and Aij = P
1/(1+ρ)
ij .

By weak duality, the dual problem (3.24) gives the following bound
parameterized by α:

E0(ρ) ≤ max
i



∑
j

Aijαi


 − θ(ρ)

∑
j

α
(1+ρ)/ρ
j

By strong duality, the optimized value of (3.24) equals −E0(ρ).
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Equivalent forms of the above dual characterization of the random
coding error exponent have been obtained in [42], as recently pointed
out by [82].

A converse proof of channel capacity was given [4] by providing a
lower bound on error probability through optimizing E0 over a different
range of ρ:

P̄ (N)
e (R) ≤ exp(−NÊr(R))

where

Êr(R) = max
ρ∈[−1,0]

[
−ρR + min

p
(E0(ρ,p))

]
.

The Lagrange dual problem of minimizing E0(ρ,p) over p for a given
ρ ∈ [−1, 0] has also been derived into a form similar to (3.24) [84].

Finally, we consider the problem of maximizing the rate R under a
given constraint P̄e,N on the decoding error probability for codewords
with blocklength N . This problem appears in the ‘achievability’ part
of Shannon’s channel capacity theorem [113]. Again we restrict to the
relaxed case where a ρ ∈ [0, 1] is given, and the optimization variables
are (R,p):

maximize R

subject to Er(R) ≤ P̄e,N

R ≥ 0
1Tp = 1
p � 0

variables p, R.

(3.25)

Substituting the definition of Er(R) into the above problem, we can
rewrite (3.25) as:

maximize R

subject to E0(p) − ρR ≥ − log P̄e,N

N

R ≥ 0
1Tp = 1
p � 0

variables p, R,
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which is in turn equivalent to

maximize 1
ρ

[
E0(p) + log P̄e,N

N

]
subject to 1Tp = 1

p � 0
variables p,

since at optimality R = 1
ρ

[
E0(p) + log Pe,N

N

]
. Up to a constant scaling

and shift, problems (3.25) and (3.23) are equivalent. Therefore, Theo-
rem 3.3 leads to the following

Corollary 3.3. The maximum achievable rate R with codeword block-
length N under a decoding error probability P̄e,N is upper bounded by

R ≤ 1
ρ


max

i



∑
j

Aijαi


 − θ(ρ)

∑
j

α
(1+ρ)/ρ
j +

log P̄e,N

N


 (3.26)

where ρ ∈ [0, 1].

3.2 Coding and Signal Processing

Materials in this subsection are in part based on [25, 30, 69, 75, 91].

3.2.1 Channel coding: group code for gaussian channel

Consider an additive Gaussian channel:

y = x + z

where x ∈ Rn is the transmitted signal, z is additive Gaussian noise
with zero mean and variance N , and y is the received signal. GP, or
more precisely, SP, can be used to solve the initial vector problem in
the theory of group codes for Gaussian channels.

Let G be a finite group of real orthogonal n×n matrices and x a unit
vector in Rn. The group code generated by G and x is Gx = {Gx|G ∈
G}. The optimal initial vector x maximizes the minimum distance d of
the group code generated by G:

x = argmax
z∈Rn

,‖z‖=1
min

G∈G,G �=id
{d(z,Gz)}.

We will focus on codes generated by primitive permutation groups.
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This problem was first formulated in [116]. Using a feasible direc-
tions algorithm, [74] presents a table of the optimal codes for well-
known primitive permutation groups of degree less than or equal to 12.
A GP-based algorithm in [75] finds the optimal minimum distances for
all the named groups of degree less than or equal to 20 listed in [115].

For a unit vector z, we have d2(Gz, z) = 2 − 2zTGz. Therefore,
maximizing the minimum distance is equivalent to minimizing the max-
imum inner product between Gz and z. It has been shown [74] that a
necessary condition for z to be an optimal initial vector for a permu-
tation group of degree n is 1Tz = 0. Together with the condition that
z is a unit vector, the following optimization formulation of the initial
vector problem is formed:

minimize maxG∈S zTGz
subject to 1Tz = 0

zTz = 1
variables z

where S denotes the set of primitive permutation groups. Introduc-
ing an auxiliary variable t, this minmax problem is equivalent to the
following optimization problem:

minimize t

subject to 1Tz = 0
zTz = 1
zTGz ≤ t, ∀G ∈ S

variables z, t.

(3.27)

Now we apply another standard method of GP modeling: turn z into
two vectors of variables z+ and z−, consisting of the non-negative and
negative entries of z, respectively. Then problem (3.27) is equivalent to
the following optimization problem:

minimize t

subject to 1Tz+ − 1Tz− = 0
z+Tz+ + z−Tz− − 2z+z− = 1
z+TGz+ + z−TGz− − z+TGz− − z−TGz+ ≤ t,

∀G ∈ S
z+, z− � 0, t > 0

variables z+, z−, t.

(3.28)
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While this is not a GP due to the posynomial equality constraints,
it is a SP, and can be solved using the double condensation method in
Subsection 2.2.5 through an iterative procedure [75]:

(1) Find a feasible point of problem (3.28).
(2) Use the double condensation method to convert (3.28) into

an LP and compute its optimal solution.
(3) If the optimal solution is not feasible in (3.28), recondense

the most violated constraint and solve the new problem.
Repeat this until the resulting optimal solution is feasible in
(3.28).

(4) If the change in t over the last iteration is smaller than a
stopping criterion threshold ε, stop the iteration. Otherwise
repeat from Step 2.

This method significantly improves the earlier numerical techniques.
The order of the largest permutation group for which the initial vector
problem is solved increases from 7920 to 322560, which corresponds to
the largest group found in the table in [115]. A complete list of optimal
permutation group codes’ properties can be found in [75].

3.2.2 Source coding: relaxation of lossless code

Lossless source coding is a data compression problem and a special
case of the rate distortion problem treated in Subsection 3.1.2. A
source code C for a random variable X is a mapping from the range
of X to the set of finite length strings of symbols from a W -ary
alphabet. When W = 2, C is a binary source code. Let C(i) denote
the codeword corresponding to X = i and li denote the length of
C(i), i = 1, 2, . . . , N . We are primarily interested in the class of source
codes called the prefix code, which means no codeword is a prefix
of any other codeword, and, consequently, the codes can be instan-
taneously decoded. Kraft inequality states that for any prefix code∑N

i=1 W−li ≤ 1. Conversely, for a set of codeword lengths satisfying
the Kraft inequality, there exits a prefix code with these codeword
lengths [40].
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In lossless source coding using prefix codes over W -ary alphabet, we
would like to minimize the the expected codeword length L =

∑
i pili

subject to the Kraft inequality. This is an integer optimization problem:

minimize
∑

i pili
subject to

∑
i W

−li ≤ 1
l ∈ ZN

+
variables l.

(3.29)

The constant parameters are p and W . We show that relaxed versions
of lossless source coding problems without the integer constraints are
GPs. Let zi = W−li , we rewrite the problem of expected codeword
length minimization as the following GP:

minimize
∏

i z
−pi
i

subject to 1Tz ≤ 1
z � 0

variables z.

(3.30)

The constant parameters are p.
Interestingly, the lossless source coding problem (3.30) is indeed

a special case of the GP dual of the lossy data compression problem
(3.17), with D = 0, d = 0 and p = 1. Problem (3.30) is a simple
relative entropy minimization with an analytic solution. Indeed, it is
readily shown [40] that letting

li = − logW pi, ∀i,

solves problem (3.29), and the minimized L∗ is H(p). However, since li
must be an integer, we let li = �− log pi� as in the Shannon–Fano code
[40], and the resulting L is close to the optimum without the integer
constraint:

H(p) ≤ L ≤ H(p) + 1.

In general, we have the following source coding problem:

minimize
∑

i f(li)
subject to

∑
i W

−li ≤ 1
g(l) ≤ 0
l � 0

variables l.

(3.31)
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where the objective function to be minimized is the sum of some convex
function f of li over i, g in the constraint can be any convex function
of l, and the other constraints are Kraft’s inequality and nonnegativity
constraint.

Among all the possible choices of f , Huffman coding is known to
be optimal only when f is a linear or exponential function [69]. For
the linear case when f(li) = pili, we have shown that the source cod-
ing problem is equivalent to the following GP where a monomial is
minimized:

minimize
∏

i z
−pi
i

subject to 1Tz ≤ 1
z � 0

variables z.

Recall that the objective function of a GP can be a posynomial
rather than just a monomial as above. We may ask which special case
of problem (3.31) would the following GP corresponds to:

minimize
∑

i piz
−β
i

subject to 1Tz ≤ 1
z � 0

variables z.

It is easy to verify, by a logarithmic change of variable li = − logW zi,
that the above GP is equivalent to the following problem, where f

in (3.31) is an exponential function of the optimization variables l:

minimize
∑

i pib
li

subject to
∑

i W
−li ≤ 1

l � 0
variables l.

(3.32)

where b = W β.
Similar to the case with a linear f , where the optimal value of the

objective function is H(p), the optimal value of the objective function
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for the case with an exponential f is also known in closed form [25] as
bHγ(p), where γ = 1

1+β and Hγ is the Renyi entropy of order γ:5

Hγ(p) =
1

γ − 1
log

∑
i

pγ
i . (3.33)

This result can again be readily derived through Lagrange duality.
Since W ≥ 2, the constraint l � 0 in (3.32) is redundant. Now we find
the Lagrange dual problem of (3.32), by first forming the Lagrangian:

L(l, λ) =
∑

i

pib
li + λ

(∑
i

W−li − 1

)
.

Differentiating L(l, λ) with respect to li and equating with zero gives

l∗i =
1

1 + β
logW

(
λ

βpi

)
, ∀i.

Therefore, the Lagrange dual of the source coding problem with expo-
nential penalty is the following unconstrained maximization with a
scalar variable λ ≥ 0:

maximize
∑

i

(
pi(βpi)

− β
1+β + (βpi)

1
1+β

)
λ

β
1+β − λ,

which can be analytically solved to give the optimal value bHγ(p), γ =
1

1+β . By strong duality, this is also the optimal value of the primal
problem (3.32).

3.2.3 Signal processing: multi-access transmitter design

GP can be used to optimize a special case of linear transceiver design
in m-user multiple access communication systems. For notational sim-
plicity, consider a two-user multiple access channel (MAC) as shown in
Figure 3.2. The n-user case is a straightforward extension.

The received signal y is

y = H1F1x1 + H2F2x2 + ρn (3.34)

where xi, i = 1, 2, are the message signals, linearly preprocessed
by Fi, transmitted through channels Hi, and corrupted by additive

5 The Renyi entropy Hγ(p) is a generalization of the Shannon entropy H(p) with
limγ→1 Hγ(p) = H(p).
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Fig. 3.2 A two-user multiple access communication system.

noise n with noise variance ρ > 0. The received signal y will be lin-
early equalized by Gi: the decoded signal is given by x̂i = sign(Giy),
i = 1, 2.

The problem is to design the transceivers for both users:
F1,F2,G1,G2, for given channel matrices H1,H2. In [91], a special
case of this multi-access joint transmitter and receiver design problem
is examined for zero-forcing equalizers and MMSE transmitters. This
case is applicable, for example, to multiple adjacent CDMA cells where
each base station is constrained to use a decorrelating detector for its
own cell.

Let ei be the error vector for user i, i = 1, 2. Consider the error
vector and Mean Squared Error (MSE) for a zero-forcing equalizer for
user 1. The error vector is

e1 = G1y − x1 = (G1H1F1 − I)x1 + G1H2F2x2 + ρG1n,

the zero-forcing equalizer is

G1 = (H1F1)−1,

and the resulting MSE is

MSE = Tr
(
(G1H2F2)(G1H2F2)T

)
+ ρ2 Tr

(
G1GT

1

)
.
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Introducing new matrix variables U1 = F1FT
1 and V1 = GT

1 G1,
the MSE can be written as

MSE = Tr(V1H2U2HT
2 ) + ρ2 Tr(V1).

The zero-forcing condition becomes

V−1
1 = H1U1HT

1 .

Adding the power constraint Tr(Ui) ≤ Pi, i = 1, 2, we have the fol-
lowing formulation of zero-forcing MMSE transceiver design problem:

minimize Tr(V1H2U2HT
2 ) + ρ2 Tr(V1)

+Tr(V2H1U1HT
1 ) + ρ2 Tr(V2)

subject to V−1
i = HiUiHT

i , i = 1, 2
Tr(Ui) ≤ Pi, i = 1, 2
Vi � 0, Ui � 0, i = 1, 2

variables V1,V2,U1,U2.

(3.35)

An alternating optimization method can be applied to (3.35), where
U1,V1 are fixed and U2,V2 optimized in one iteration, and in the next
iteration, U2,V2 are fixed and U1,V1 optimized. In each iteration,
(3.35) is reduced to a SDP.

Suppose the channel matrices Hi are diagonal with n indepen-
dent tones indexed by j. If V1,U1 are given positive definite diagonal
matrices, then the alternating optimization procedure can be shown
to lead to diagonal Vi,Ui for both users in all iterations. It is conjec-
tured [91] that the optimal transceiver matrices are indeed diagonal. In
this case, the non-convex optimization (3.35) reduces to the following
problem:

minimize
∑n

j=1
(|h2(j)|2u2(j)v1(j) + |h1(j)|2u1(j)v2(j)

)
+ ρ2 ∑n

j=1(v1(j) + v2(j))
subject to

∑n
j=1 ui(j) ≤ Pi, i = 1, 2

|hi(j)|2ui(j) ≥ v−1
i (j), i = 1, 2, j = 1, . . . , n

vi � 0, i = 1, 2
variables v1,v2,u1,u2,
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which, by eliminating variables u1,u2, is in turn equivalent to the
following GP in variables v1 and v2, which are the diagonal vectors of
V1 and V2, respectively:

minimize
∑n

j=1

(
v−1
1 (j)v2(j) + v1(j)v−1

2 (j)
)

+ρ2 ∑n
j=1(v1(j) + v2(j))

subject to
∑n

j=1 h−2
i (j)v−1

i (j) ≤ Pi, i = 1, 2
vi � 0, i = 1, 2

variables v1,v2

(3.36)

where j are the independent tones in the channels, and vi(j) denotes
the jth component of vector vi, i = 1, 2.

After solving GP (3.36) to obtain the (squared) optimal receivers
vi, we can recover the (squared) optimal transmitters: u∗

i (j) =
|hi(j)|−2(v∗

i (j))
−1, i = 1, 2, j = 1, . . . , n.

3.3 Network Resource Allocation

Materials in this subsection are in part based on [37, 34, 35, 72, 73].
GP in standard form can be used to efficiently optimize network

resource allocations for nonlinear objectives under nonlinear Qual-
ity of Service (QoS) constraints. The key idea is that resources are
often allocated proportional to some parameters, and when resource
allocations is optimized over these parameters, we are maximizing an
inverted posynomial subject to lower bounds on other inverted posyno-
mials, which are equivalent to GP in standard form. As this subsection
will illustrate through examples in wireless power control and admis-
sion control, this idea can be further extended to provide a GP-based
method of resource allocation. Specific examples in wireless power con-
trol are first presented in Subsection 3.3.1 before the general method
is discussed in Subsection 3.3.2.

3.3.1 Wireless network power control

Due to the broadcast nature of radio transmission, data rates and other
qualities of service in a wireless network are affected by interference.
This is particularly important in CDMA systems where users transmit
at the same time over the same frequency bands and their spreading
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codes are not perfectly orthogonal. Transmit power control is often used
to tackle this problem of signal interference. In this subsection, we study
how to optimize over the transmit powers to create the optimal set of
Signal-to-Interference Ratios (SIR) on wireless links. Optimality here
may be referring to maximizing a system-wide efficiency metric (e.g.,
the total system throughput), or maximizing a QoS metric for a user
in the highest QoS class, or maximizing a QoS metric for the user with
the minimum QoS metric value (i.e., a maxmin optimization).

While the objective represents a system-wide goal to be optimized,
individual users’ QoS requirements also need to be satisfied. Any power
allocation must therefore be constrained by a feasible set formed by
these minimum requirements from the users. Such a constrained opti-
mization captures the tradeoff between user-centric constraints and
some network-centric objective. Because a higher power level from one
transmitter increases the interference levels at other receivers, there
may not be any feasible power allocation to satisfy the requirements
from all the users. Sometimes an existing set of requirements can be
satisfied, but when a new user is admitted into the system, there exists
no more feasible power control solutions, or the maximized objective is
reduced due to the tightening of the constraint set, leading to the need
for admission control and admission pricing, respectively.

Because many QoS metrics are nonlinear functions of SIR, which is
in turn a nonlinear (and neither convex nor concave) function of trans-
mit powers, the above power control optimization or feasibility prob-
lems are difficult nonlinear optimization problems that may appear to
be not efficiently solvable. This subsection shows that, when SIR is
much larger than 0dB, GP can be used to efficiently compute the glob-
ally optimal power control in many of these problems, and efficiently
determine the feasibility of user requirements by returning either a
feasible (and indeed optimal) set of powers or a certificate of infeasibil-
ity. This leads to an effective admission control and admission pricing
method. When SIR is comparable to or below 0dB, the power con-
trol problems are truly non-convex with no efficient and global solution
methods. In this case, we present a heuristic based on SP condensation
that empirically performs well in computing the globally optimal power
allocation by solving a sequence of GPs.
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The GP approach reveals the hidden convexity structure, thus
efficient solution methods, in power control problems with nonlinear
objective functions, and clearly differentiates the tractable formulations
in high-SIR regime from the intractable ones in low-SIR regime. Power
control by GP is applicable to formulations in both cellular networks
with single-hop transmission between mobile users and base stations,
and ad hoc networks with mulithop transmission among the nodes, as
illustrated through four numerical examples in this subsection.

Basic model. Consider a wireless (cellular or multihop) network
with n logical transmitter/receiver pairs. Transmit powers are denoted
as P1, . . . , Pn. In the cellular uplink case, all logical receivers may reside
in the same physical receiver, i.e., the base station. In the multihop
case, since the transmission environment can be different on the links
comprising an end-to-end path, power control schemes must consider
each link along a flow’s path.

Under Rayleigh fading, the power received from transmitter j at
receiver i is given by GijFijPj where Gij ≥ 0 represents the path gain
and is often modeled as proportional to d−γ

ij where dij is distance and γ

is the power fall-off factor. We also let Gij encompass antenna gain and
coding gain. The numbers Fij model Rayleigh fading and are indepen-
dent and exponentially distributed with unit mean. The distribution of
the received power from transmitter j at receiver i is then exponential
with mean value E [GijFijPj ] = GijPj . The SIR for the receiver on
logical link i is:

SIRi =
PiGiiFii∑N

j �=i PjGijFij + ni

(3.37)

where ni is the noise for receiver i.
The constellation size M used by a link can be closely approximated

for MQAM modulations as follows: M = 1+ −φ1
ln(φ2BER)

SIR where BER
is the bit error rate and φ1, φ2 are constants that depend on the modu-
lation type. Defining K = −φ1

ln(φ2BER)
leads to an expression of the data

rate Ri on the ith link as a function of SIR: Ri = 1
T log2(1 + KSIRi),

which will be approximated as

Ri =
1
T

log2(KSIRi) (3.38)
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when KSIR is much larger than 1. This approximation is reasonable
either when the signal level is much higher than the interference level
or, in CDMA systems, when the spreading gain is large. This approxi-
mation is the watershed between convexity and non-convexity in power
control problems, and later this subsection we will discuss how to solve
truly non-convex power control problems when SIR is not high. For
notational simplicity in the rest of this subsection, we redefine Gii as
K times the original Gii, thus absorbing constant K into the definition
of SIR.

The aggregate data rate for the system can then be written as the
sum

Rsystem =
∑

i

Ri =
1
T

log2

[∏
i

SIRi

]
.

So in the high SIR regime, aggregate data rate maximization is equiv-
alent to maximizing a product of SIR. The system throughput is the
aggregate data rate supportable by the system given a set of users with
specified QoS requirements.

Outage probability is another important QoS parameter for reliable
communication in wireless networks. A channel outage is declared and
packets lost when the received SIR falls below a given threshold SIRth,
often computed from the BER requirement. Most systems are interfer-
ence dominated and the thermal noise is relatively small, thus the ith
link outage probability is

Po,i = Prob{SIRi ≤ SIRth}
= Prob{GiiFiiPi ≤ SIRth

∑
j �=i

GijFijPj}.

The outage probability can be expressed as [73]

Po,i = 1 −
∏
j �=i

1

1 + SIRthGijPj

GiiPi

,

which means that an upper bound on Po,i ≤ Po,i,maxcan be written as
an upper bound on a posynomial in P:

∏
j �=i

(
1 +

SIRthGijPj

GiiPi

)
≤ 1

1 − Po,i,max
. (3.39)
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Cellular wireless networks. We first present how GP-based
power control applies to cellular wireless networks with one-hop trans-
mission from N users to a base station. We start the discussion on the
suite of power control problem formulations with a simple objective
function and simple constraints.

Proposition 3.1. The following nonlinear problem of maximizing the
SIR of a particular user i∗ is a GP:

maximize SIRi∗(P)
subject to SIRi(P) ≥ SIRi,min, ∀i

Pi1Gi1 = Pi2Gi2

0 ≤ Pi ≤ Pi,max, ∀i

variables P.

The first constraint, equivalent to Ri ≥ Ri,min, sets a floor on the
SIR of other users and protects these users from user i∗ increasing her
transmit power excessively. The second constraint reflects the classical
power control criterion in solving the near-far problem in CDMA sys-
tems: the expected received power from one transmitter i1 must equal
that from another i2. The third constraint is regulatory or system limi-
tations on transmit powers. All constraints are verified to be inequality
upper bounds on posynomials.

Alternatively, we can use GP to maximize the minimum SIR among
all users. The maxmin fairness objective:

maximizeP min
k

{SIRk}

can be accommodated in GP-based power control because it can
be turned into equivalently maximizing an auxiliary variable t such
that SIRk ≥ t, ∀k, which has posynomial objective and constraints
in (P, t).

Power control example 1. A simple system comprised of five
users is employed for a numerical example. The five users are spaced
at distances d of 1, 5, 10, 15, and 20 units from the base station. The
power fall-off factor γ = 4. Each user has a maximum power constraint
of Pmax = 0.5mW. The noise power is 0.5µW for all users. The SIR
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of all users, other than the user we are optimizing for, must be greater
than a common threshold SIR level β. In different experiments, β is
varied to observe the effect on the optimized user’s SIR. This is done
independently for the near user at d = 1, a medium distance user
at d = 15, and the far user at d = 20. The results are plotted in
Figure 3.3.
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Fig. 3.3 Constrained optimization of power control in a cellular network (Example 1).

Several interesting effects are illustrated. First, when the required
threshold SIR in the constraints is sufficiently high, there are no feasible
power control solutions. At moderate threshold SIR, as β is decreased,
the optimized SIR initially increases rapidly. This is because it is
allowed to increase its own power by the sum of the power reductions
in the four other users, and the noise is relatively insignificant. At low
threshold SIR, the noise becomes more significant and the power trade-
off from the other users less significant, so the curve starts to bend over.
Eventually, the optimized user reaches its upper bound on power and
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cannot utilize the excess power allowed by the lower threshold SIR for
other users. Therefore, during this stage, the only gain in the optimized
SIR is the lower power transmitted by the other users. This is exhibited
by the transition from a sharp bend in the curve to a much shallower
sloped curve. We also note that the most distant user in the constraint
set dictates feasibility.

GP can also be applied to the problem formulations with an overall
system objective of total system throughput, under both user data rate
constraints and outage probability constraints.

Proposition 3.2. The following nonlinear problem of maximizing sys-
tem throughput is a GP:

maximize Rsystem(P)
subject to Ri(P) ≥ Ri,min, ∀i

Po,i(P) ≤ Po,i,max, ∀i

0 ≤ Pi ≤ Pi,max, ∀i

variables P.

(3.40)

The objective is equivalent to minimizing the posynomial
∏

i ISRi,
where ISR is 1

SIR. Each ISR is a posynomial in P and the product
of posynomials is again a posynomial. The first constraint is from the
data rate demand Ri,min by each user. The second constraint repre-
sents the outage probability upper bounds Po,i,max. These inequality
constraints put upper bounds on posynomials of P, as can be readily
verified through (3.38,3.39).

There are several obvious variations of problem (3.40) that can be
solved by GP, e.g., we can lower bound Rsystem as a constraint and
maximize Ri∗ for a particular user i∗, or have a total power

∑
i Pi

constraint or objective function.
The objective function to be maximized can also be generalized to a

weighted sum of data rates:
∑

i wiRi where w � 0 is a given weight vec-
tor. This is still a GP because maximizing

∑
i wi log SIRi is equivalent

to maximizing log
∏

i SIRwi
i , which is in turn equivalent to minimizing∏

i ISRwi
i . Now use auxiliary variables ti, and minimize

∏
i t

wi
i over the

original constraints in (3.40) plus the additional constraints ISRi ≤ ti
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for all i. This is readily verified to be a GP, and is equivalent to the
original problem.

In addition to efficient computation of the globally optimal power
allocation with nonlinear objectives and constraints, GP can be used
for admission control based on GP feasibility study, and for determining
which QoS constraint is a performance bottleneck, i.e., meet tightly at
the optimal power allocation, based on GP sensitivity analysis.

Extension: Multihop wireless networks. In wireless multihop
networks, system throughput may be measured either by end-to-end
transport layer utilities or by link layer aggregate throughput. GP
application to the first approach will be explained in Subsection 3.4.2,
and we focus on the second approach in this subsection, by extending
problem formulations, such as (3.40), to the multihop case as in the
following example.

Power control example 2. Consider a simple four node multihop
network shown in Figure 3.4. There are two connections A → B → D

and A → C → D. Nodes A and D, as well as B and C, are sepa-
rated by a distance of 20m. Power fall-off factor is −4. Each link has
a maximum transmit power of 1mW. All nodes use MQAM modula-
tion. The minimum data rate for each connection is 100bps, and the
target BER is 10−3. Assuming Rayleigh fading, we require outage prob-
ability be smaller than 0.1 on all links for an SIR threshold of 10dB.
Spreading gain is 200. Using GP formulation (3.40), we find the maxi-
mized system throughput R∗ = 216.8kbps, R∗

i = 54.2kbps for each link,
P ∗

1 = P ∗
3 = 0.709mW and P ∗

2 = P ∗
4 = 1mW. The resulting optimized

SIR is 21.7dB on each link.
For this simple network, we also consider an illustrative example

of admission control and pricing. Three new users U1, U2, and U3 are
going to arrive to the network in order. U1 and U2 require 30kbps
sent along the upper path A → B → D, while U3 requires 10kbps
sent from A → B. All three users require the outage probability to be
less than 0.1. When U1 arrives at the system, her price is the base-
line price. Next, U2 arrives, and her QoS demands decrease the maxi-
mum system throughput from 216.82kbps to 116.63kbps, so her price
is the baseline price plus an amount proportional to the reduction in
system throughput. Finally, U3 arrives, and her QoS demands produce



82 Applications in Communication Systems

20m

20mA

C

B

D

1 2

3 4

Fig. 3.4 A small wireless multihop network (Example 2).

no feasible power allocation solution, so she is not admitted to the
system.

Extension: Queuing models. We now turn to delay and buffer
overflow properties to be included in constraints or objective function
of power control optimization. The average delay a packet experiences
traversing a network is an important design consideration in some appli-
cations. Queuing delay is often the primary source of delay, particularly
for bursty data traffic. A node i first buffers the received packets in a
queue and then transmits these packets at a rate R set by the SIR
on the egress link, which is in turn determined by the transmit pow-
ers P. A FIFO queuing discipline is used here for simplicity. Routing
is assumed to be fixed, and is feed-forward with all packets visiting a
node at most once.

Packet traffic entering the multihop network at the transmitter of
link i is assumed to be Poisson with parameter λi and to have an expo-
nentially distributed length with parameter Γ. Using the model of an
M/M/1 queue, the probability of transmitter i having a backlog of
Ni = k packets to transmit is well known to be Prob{Ni = k} =
(1−ρ)ρk where ρ = λi

ΓRi(P) , and the expected delay is 1
ΓRi(P)−λi

. Under
the feed-forward routing and Poisson input assumptions, Burke’s the-
orem can be applied. Thus the total packet arrival rate at node i is
Λi =

∑
j∈I(i) λj where I(i) is the set of connections traversing node i.
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The expected delay D̄i can be written as

D̄i =
1

ΓRi(P) − Λi
. (3.41)

A bound D̄i,max on D̄i can thus be written as

1
Γ
T log2(SIRi) − Λi

≤ D̄i,max,

or equivalently,
ISRi(P) ≤ 2− T

Γ (D̄−1
max+Λi),

which is an upper bound on a posynomial ISR of P.
The probability PBO of dropping a packet due to buffer overflow at

a node is also important in several applications. It is again a function
of P and can be written as PBO,i = Prob{Ni > B} = ρB+1 where B

is the buffer size and ρ = Λi
ΓRi(P) . Setting an upper bound PBO,i,max

on the buffer overflow probability also gives a posynomial lower bound
constraint in P: ISRi(P) ≤ 2−Ψ where Ψ = TΛi

Γ(PBO,i,max)
1

B+1
.

Proposition 3.3. The following nonlinear problem of optimizing pow-
ers to maximize system throughput, subject to constraints on outage
probability, expected delay, and the probability of buffer overflow, is a
GP:

maximize Rsystem(P)
subject to D̄i(P) ≤ D̄i,max, ∀i

PBO,i(P) ≤ PBO,i,max, ∀i

Same constraints as in problem (3.40)
variables P.

(3.42)

Power control example 3. Consider a numerical example of
the optimal tradeoff between maximizing the system throughput and
bounding the expected delay for the network shown in Figure 3.5. There
are six nodes, eight links, and five multihop connections. All sources
are Poisson with intensity λi = 200 packets per second, and exponen-
tially distributed packet lengths with an expectation of of 100 bits.
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The nodes use CDMA transmission scheme with a symbol rate of 10k
symbols per second and the spreading gain is 200. Transmit powers are
limited to 1mW and the target BER is 10−3. The path loss matrix is
calculated based on a power falloff of d−4 with the distance d, and a sep-
aration of 10m between any adjacent nodes along the perimeter of the
network.

A

B C

D

E F

1

2

3

4

5

6

7 8

Fig. 3.5 Topology and flows in a multihop wireless network (Example 3).

Figure 3.6 shows the maximized system throughput for differ-
ent upper bound numerical values in the expected delay constraints,
obtained by solving a sequence of GPs, one for each point on the curve.
There is no feasible power allocation to achieve a delay smaller than
0.036s. As the delay bound is relaxed, the maximized system through-
put increases sharply first, then more slowly until the delay constraints
are no longer active. GP efficiently returns the globally optimal tradeoff
between system throughput and queuing delay.

SP formulations and solutions for the medium to low SIR
case. There are two main limitations in the GP-based power con-
trol methods discussed so far: high-SIR assumption and centralized
computation. Both can be overcome as discussed in the rest of this
subsection.

The first limitation is the assumption that SIR is much larger than
0dB, which can be removed by the condensation method for SP as
introduced in Subsection 2.2.5. When SIR is not much larger than 0dB,
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Fig. 3.6 Optimal tradeoff between maximized system throughput and average delay con-
straint (Example 3).

the approximation of log(1+SIR) as log SIR does not hold. Unlike SIR,
1+SIR is not an inverted posynomial. Instead, 1

1+SIR is a ratio between
two posynomials: ∑

j �=i GijPj + ni∑
j GijPj + ni

.

Minimizing or upper-bounding a ratio between two posynomials is a
non-convex problem that is intrinsically intractable.

Figure 3.7 shows the approach of GP-based power control for general
SIR regime. In the high SIR regime, we solve only one GP. In the
medium to low SIR regimes, we solve truly non-convex power control
problems that cannot be turned into convex formulations through a
series of GPs.

GP-based power control problems in the medium to low SIR regimes
become SPs, which can be solved by the single or double conden-
sation method. We focus on the single condensation method here.
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Fig. 3.7 GP-based power control for general SIR regime.

Consider a representative problem formulation of maximizing total sys-
tem throughput in a cellular wireless network subject to user rate and
outage probability constraints from Proposition 3.2, which is explicitly
written out as:

minimize
∏N

i=1
1

1+SIRi

subject to (2TRi,min − 1) 1
SIRi

≤ 1, i = 1, . . . , N

(SIRth)N−1(1 − Po,i,max)
∏N

j �=i
GijPj

GiiPi
≤ 1,

i = 1, . . . , N

Pi(Pi,max)−1 ≤ 1, i = 1, . . . , N

variables P.

(3.43)

All the constraints are posynomials. However, the objective is not a
posynomial, but a ratio between two posynomials. This power control
problem is a SP (equivalently, a Complementary GP), and can be solved
by the condensation method by solving a series of GPs. Specifically, we
have an algorithm consisting of the following steps:

(0): Choose an initial power vector: a feasible P.
(1): Evaluate the denominator posynomial of the (3.43) objective

function with the given P.
(2): Compute for each term i in this posynomial,

αi =
value of ith term in posynomial

value of posynomial
.

(3): Condense the denominator posynomial of the (3.43) objective
function into a monomial with weights αi (Subsection 2.2.5).
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(4): Solve the resulting GP e.g., using an interior-point method.
(5): Go to STEP 1 using P from step (4).
(6): Terminate the kth loop if ‖ P(k) − P(k−1) ‖≤ ε where ε is the

error tolerance.
As condensing the objective in the above problem gives us an under-

estimate of the objective value, each GP in the condensation iteration
loop tries to improve the accuracy of the approximation to a particular
minimum in the original feasible region.

Power control example 4. We consider a wireless cellular network
with 3 users. Let T = 10−6s, Gii = 1.5, and generate Gij , i �= j, as
independent random variables uniformly distributed between 0 and 0.3.
Threshold SIR is SIRth = −10dB, and minimal data rate requirements
are 100 kbps, 600 kbps and 1000 kbps for logical links 1, 2, and 3,
respectively. Maximal outage probabilities are 0.01 for all links, and
maximal transmit powers are 3mW, 4mW and 5mW for link 1, 2, and
3, respectively.

For each instance of SP power control (3.43), we pick a ran-
dom initial feasible power vector P uniformly between 0 and Pmax.
We compare the maximized total network throughput achieved over
five hundred sets of experiments with different initial vectors. With the
(single) condensation method, SP converges to different optima over
the entire set of experiments, achieving (or coming very close to) the
global optimum at 5290 bps (96% of the time) and a local optimum
at 5060 bps (4% of the time). The average number of GP iterations
required by the condensation method over the same set of experiments
is 15 if an extremely tight exit condition is picked for SP condensation
iteration: ε = 1 × 10−10. This average can be substantially reduced by
using a larger ε, e.g., increasing ε to 1 × 10−2 requires on average only
4 GPs.

We have thus far discussed a power control problem (3.43) where
the objective function needs to be condensed. The method is also
applicable if some constraint functions are signomials and need to be
condensed [37].

The optimum of power control produced by the condensation
method may be a local one. The following new heuristic of solving
a series of SPs (each solved through a series of GPs) can be further
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applied to help find the global optimum. After the original SP (3.43)
is solved, a slightly modified SP is formulated and solved:

minimize t

subject to
∏N

i=1
1

1+SIRi
≤ t

t ≤ t0
α

Same set of constraints as problem (3.43)
variables P, t.

(3.44)

where α is a constant slightly larger than 1. At each iteration of a
modified SP, the previous computed optimum value is set to constant
t0 and the modified problem (3.44) is solved to yield an objective value
that is better than the objective value of the previous SP by at least
α. The auxiliary variable t is introduced so as to turn the problem
formulation into a SP in (P, t). The starting feasible P for each modified
SP is picked at random from the feasible set, if any, of the modified
SP. If we already obtained the global optimal solution in (3.43), then
(3.44) would be infeasible, and the iteration of SPs stops.

The above heuristic is applied to the rare instances of power control
example 4 where solving SP returns a locally optimal power allocation,
and is found to obtain the globally optimal solution within 1 or 2 rounds
of solving additional SPs (3.44).

Distributed algorithms. As an application of the distributed
algorithm for GP, we maximize the total system throughput in the high
SIR regime, assuming the same Pmax at each transmitter. If we directly
applied the distributed approach described in Subsection 2.3.3, the
resulting algorithm would require knowledge by each user of the inter-
fering channels and interfering transmit powers, which would trans-
late into a large amount of message passing. To obtain a practical dis-
tributed solution, we can leverage the structures of the power control
problems at hand, and instead keep a local copy of each of the effective
received powers PR

ij = GijPj and write the problem as follows (after
the log change of variables to {P̃R

ij , P̃j}):

minimize
∑

i log
(
G−1

ii exp(−P̃i)
(∑

j �=i exp(P̃R
ij ) + ni

))
subject to P̃R

ij = G̃ij + P̃j , ∀i, j

Constraints local to each user
variables {P̃R

ij }, {P̃j}.

(3.45)
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The partial Lagrangian is

L =
∑

i

log


G−1

ii exp(−P̃i)


∑

j �=i

exp(P̃R
ij ) + ni






+
∑

i

∑
j �=i

γij

(
P̃R

ij −
(
G̃ij + P̃j

))
,

from which the dual variable update is found as

γij (t + 1) = γij (t) + α(t)
(
P̃R

ij −
(
G̃ij + P̃j

))
= γij (t) + α(t)

(
P̃R

ij − log GijPj

)
,

(3.46)

with stepsizes α(t).
Each user has to minimize the following partial Lagrangian over(

P̃i,
{
P̃R

ij

}
j

)
for given {γij}j , subject to its own local constraints:

Li

(
P̃i,

{
P̃R

ij

}
j
, {γij}j

)
= log


G−1

ii exp(−P̃i)


∑

j �=i

exp(P̃R
ij ) + ni






+
∑
j �=i

γijP̃
R
ij −


∑

j �=i

γji


 P̃i.

Two practical observations are in order:

• For the minimization of the above local Lagrangian term,
each user only needs to know the term

(∑
j �=i γji

)
involving

the dual variables from the interfering users, which requires
some message passing.

• For the dual variable update (3.46), each user needs to know
the effective received power from each of the interfering users
PR

ij = GijPj for j �= i, which in practice may be estimated
from the received messages. Hence no explicit message pass-
ing is required for this.

With this approach we have avoided the need to know all the inter-
fering channels Gij and the powers used by the interfering users Pj .
However, each user still needs to know the consistency prices from the
interfering users via some message passing. This message passing can
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be reduced in practice by ignoring the messages from links that are
physically far apart, leading to suboptimal distributed heuristics.

To conclude this subsection, we outline several research issues that
remain to be further explored for GP-based power control: reduction of
SP solution complexity by using high-SIR approximation to obtain the
initial power vector and by solving the series of GPs only approximately
(except the last GP), combination of SP solution and distributed algo-
rithm for distributed power control in low SIR regime, and application
to optimal spectrum management in DSL broadband access systems
with interference-limited performance across the tones and among com-
peting users sharing a cable binder.

3.3.2 General structure

The applications of standard form GP to power control problems
can be generalized to other constrained optimization of resource allo-
cation, and the associated problems of feasibility study, sensitivity
analysis, admission control, and admission pricing, as long as the
QoS metrics can be simplified and reduced to the form of inverted
posynomials.

Consider n users indexed by i sharing a common pool of communi-
cation resource X, such as bandwidth or buffer. The amount of resource
allocated to connection i is denoted by xi. Consider the following Gen-
eralized Proportional Allocation (GPA) form, where the total resource
X is allocated to connection i in proportion to some pi and normalized
by a sum of parameters

∑
j γji + ανi:

xi =
pi∑

j γji + ανi
X, ∀i (3.47)

where the allocation parameters pi, νi, γji ≥ 0 belong to a fixed range
of values for each user i (different ranges for different QoS classes), and
α ≥ 0 is a given weight. Usually, there is a tradeoff among the users in
resource allocation, i.e., γji are increasing functions of pj .

This form of resource allocation appears in many applications, with
power control being an important special case. A possible explanation
of the source from which this form arises can be found in Subsection
4.2.1. As a simple example of (3.47), recall the Generalized Processor



3.3. Network Resource Allocation 91

Sharing scheme [100] where an egress link with a total rate of R is
shared among multiple connections each receiving rate Ri:

Ri =
φi∑
j φj

R, ∀i

where {φi} are the parameters that can be directly varied in the system
design to produce a desirable R.

As another example, [87] shows that rate control on a single link
through the congestion control protocol of TCP Reno produces the
following rate allocation proportional to the inverse of round trip delay
Di:

Ri =
1

Di∑
j

1
Dj

R, ∀i.

These allocation parameters {pi, νi, γji} can be optimized, within
certain ranges, to maximize the resource received by a particular user
i∗ in the highest QoS class, subject to constraints that lower bound
the resources received by each of the other users. Alternatively, for
maxmin fairness, allocation parameters can be optimized to maximize
the resource received by the user with the minimum received resource.
GP can be used to solve them globally and efficiently.

maximize xi∗ (or maximize minixi)
subject to xi ≥ xi,min, ∀i

variables (pi, γji, νi) ≥ lower bounds
variables (pi, γji, νi) ≤ upper bounds.

(3.48)

Theorem 3.4. The optimization problem (3.48) for resource alloca-
tion in the GPA form (3.47) is a GP.

The proof is very simple as shown in Appendix B.5, where the key
observation is that the GPA form is an inverted posynomial. The gen-
eral method of distributed solution for GP in Subsection 2.3.3 can also
be applied to such network resource allocation problems.

As shown in the power control examples in the last subsection, the
scope of GP method of efficient resource allocation can be extended
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to accommodate several types of nonlinear functions of the GPA form
(which are in turn nonlinear functions of the underlying design vari-
ables) in the objective and constraints.

Optimization (3.48) may not have any feasible solution. Indeed, if
the QoS constraints xi ≥ xi,min,∀i, are too strict, there may exist no
resource allocation that simultaneously meets all the constraints. Due
to the GP form of the problem, feasibility of resource allocation in the
GPA form can also be efficiently determined, and used for admission
control and pricing in a network: a new user is admitted into the system
only if the resulted new problem (3.48) is still feasible, and the user is
charged in proportion to the resulting reduction in the objective value
of (3.48).

Furthermore, bottlenecks of resource allocation constraints are read-
ily detected, so that if additional resources becomes available, we know
where to allocate them to alleviate the bottlenecks of resource demands.
Associate a Lagrange dual variable σi ≥ 0 for each resource demand
constraint xi ≥ xi,min. By complementary slackness, if an optimal dual
variable σ∗

1 > 0, then we know that the QoS requirement constraint for
user 1 is tight at optimality, i.e., x∗

1 = x1,min.
If the objective is instead to maximize the total resources obtained

by a group of users, then the objective cannot be turned into min-
imization of a posynomial, but a ratio between two posynomials. In
that case, the problem becomes a SP and the condensation or double
condensation method needs to be applied to solve the problem.

As another example in addition to the power control examples, we
show a simple application of the GP method of resource allocation
for Connection Admission Control (CAC). Consider the ingress of a
switch or a network as shown in Figure 3.8. There are K connections
trying to get admitted into the system. They first pass through a traf-
fic shaping mechanism, such as leaky buckets, to conform the con-
nections to their respective provisioned rates λi specified in the QoS
service level agreement. Due to limitation in the available resource, the
CAC controller has to enforce admission control among the contending
connections.

Consider the following simple CAC algorithm where the CAC con-
troller has an exponential service time with rate µ. If the first service
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Fig. 3.8 Flows contending for admission into the system through traffic shapers and a
connection admission controller.

time of the CAC controller occurs before any packet from the contend-
ing connections arrive at the controller, no connection will be admitted
to the system. However, if packets from some connections arrive before
the first service time of the CAC controller, then the connection whose
packet arrives first will be admitted and the other connections will not
be admitted.

Lemma 3.1. The total rate of admission Ra and the rate of admission
for each connection Ri (normalized by the maximum total rate) are of
the following GPA forms:

Ra =
∑K

k=1 λk∑K
k=1 λk + µ

,

Ri =
λi∑K

k=1 λk + µ
, ∀i.

Intuitively, the relative magnitudes of µ and
∑K

i=1 λi determine the
admission rate. The relative magnitudes among λi determine the allo-
cation among the connections. Using GP we show how the parameters
µ and λ can be dynamically optimized to provide a flexible control of
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both the total admission rate and a constrained rate allocation among
the contending connections.

Proposition 3.4. The following nonlinear problem of maximizing the
admission rate for a particular connection i∗, subject to the total admis-
sion rate constraint Ra,max, the QoS constraints of guaranteed rate
Ri,min for each connection i, and the range constraints on variables λ

and µ, is a GP:

maximize Ri∗(λ, µ)
subject to Ra(λ, µ) ≤ Ra,max

Ri(λ, µ) ≥ Ri,min, ∀i

λi,max ≥ λi ≥ λi,min, ∀i

µmax ≥ µ ≥ µmin

variables λ, µ.

(3.49)

Although the first constraint in problem (3.49) is an upper
bound instead of the lower bounds on inverted posynomials
as in (3.48), it is still equivalent to a posynomial upper bound
(1 − Ra,max)

(∑K
j=1 λjµ

−1 + 1
)

≤ 1 due to the specific GPA structure
in this case.

Proposition 3.5. The following nonlinear problem of maximizing the
admission rate for the worst-case connection is a GP:

maximize mini Ri(λ, µ)
subject to Same constraints as in problem (3.49)
variables λ, µ.

(3.50)

Note that that the parameters λi,min, λi,min, µmax and µmax deter-
mine the ranges over which λi and µ can vary. Larger the λi,max, higher
the rate connection i could be allowed to receive under the constrained
optimization. The parameters λi,min and λi,max can be found through
a lookup table that maps the QoS class of connection i to the range of
λi allowed. The rate Ri,min guaranteed for each connection can be read
from the traffic descriptor of the connection.
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As a numerical example, we consider a scenario where there are
five connections contending to get admitted into the system. Problem
parameter Ra,max is determined based on the congestion condition of
the network, and is periodically updated. The connection character-
istics and minimum admission requirements are shown in Table 3.2.
The connection admission controller varies µ : 0 ≤ µ ≤ 1 and the
traffic shapers vary λ : λi,min ≤ λi ≤ λi,max to control the total sys-
tem admission rate and each individual connection’s admission rate by
solving a GP.

Connection λi,min λi,max Ri,min

1 0.21875 0.37500 0.15625
2 0.18750 0.31250 0.09375
3 0.25000 0.40625 0.15625
4 0.28125 0.43750 0.21875
5 0.09375 0.18750 0.06250

Table 3.2 Arrival traffic bounds and minimum rate requirements.

Figures 3.9 and 3.10 present simulation results illustrating how
(λ, µ) are dynamically optimized. The data points for each time
instance in the graphs are obtained by solving a corresponding GP.
In Figure 3.9, (λ, µ) are chosen such that connection 1 admission rate
is the largest possible while ensuring that the minimum admission rate
requirements Ri,min are met for all other connections, and that the total
admission rate does not exceed the maximum rate Ra,max allowed by
the system. Connection 1 is always favored over the other connections
whenever possible under the QoS constraints. For instance, although
connection 4 has a higher minimum admission rate requirement than
connection 1, connection 1 is admitted more often.

In Figure 3.10, (λ, µ) are chosen to maximize the minimum admis-
sion rate among all connections, using the same set of Ra,max constraint
values as in Figure 3.9. With this objective, if there were no minimum
admission rate requirements, all connections would have been admit-
ted equally. However, because different connections have different char-
acteristics and requirements, admission rates will vary. Connections
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Fig. 3.9 Optimized CAC: Maximize the admission rate for connection 1.

that have relatively small minimum admission rate requirements (e.g.,
connections 2 and 5) are usually admitted at rates higher than
requested. Intuitively, in Figure 3.10 all connections are treated as
equally as possible, resulting in a narrower band of admission rate
curves.

3.4 Network Congestion Control

Materials in this subsection are in part based on [31, 88].

3.4.1 TCP Vegas congestion control

Transmission Control Protocol (TCP) is one of the two widely-used
transport layer protocols in the Internet. A main function performed
by TCP is network congestion control and end-to-end rate allocation.
Roughly speaking, there are two phases of TCP congestion control:



3.4. Network Congestion Control 97

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Flow Admission Rate Over Time

A
dm

is
io

n 
R

at
e

Time

Flow 1 admission rate
Flow 2 admission rate
Flow 3 admission rate
Flow 4 admission rate
Flow 5 admission rate
Total admission rate allowed

Fig. 3.10 Optimized CAC: Maximize the minimum admission rate among all connections.

slow start and congestion avoidance. Long-lived flows usually spend
most of the time in congestion avoidance. Similar to recent work on
utility maximization models of TCP, we assume a deterministic flow
model for the average, equilibrium behavior of the congestion avoid-
ance phase. TCP uses sliding windows to adjust the allowed trans-
mission rate at each source based on implicit or explicit feedback
of the congestion signals generated by Active Queue Management
(AQM) at the routers. Among the variants of TCP, such as Tahoe,
Reno, Vegas, and FAST, some use loss as the congestion signal and
others use delay. Delay-based congestion signals, like those in TCP
Vegas, have more desirable properties on convergence, stability, and
fairness [87].

The basic rate allocation mechanism of TCP Vegas is as follows.
Let ds be the propagation delay along the path originating from source
s, and Ds be the propagation plus congestion-induced queuing delay.
Obviously ds = Ds when there is no congestion on all the links used
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by source s. The window size ws is updated at each source s according
to whether the difference between the expected rate ws

ds
and the actual

rate ws
Ds

, where Ds is estimated by the timing of ACK packets, is smaller
than a parameter αs:

ws(t + 1) =




ws(t) + 1
Ds(t) if ws(t)

ds
− ws(t)

Ds(t) < αs

ws(t) − 1
Ds(t) if ws(t)

ds
− ws(t)

Ds(t) > αs

ws(t) else.

The end-to-end throughput for each path is the allowed source rate xs,
which is proportional to the window size: xs(t) = ws(t)

Ds(t) .
Since the seminal work by Kelly et al. [77] that analyzes network

rate allocation as a distributed solution of utility maximization, TCP
congestion control mechanisms have been shown as approximated dis-
tributed algorithms solving appropriately formulated utility maximiza-
tion problems (e.g., [79, 81, 85, 86, 87, 88, 89, 95, 96, 117]). A central
approach in this series of work is to interpret source rates as primal
variables, link congestion measures as dual variables, and a TCP–AQM
protocol as a distributed algorithm over the Internet implicitly to solve
the following network utility maximization.

Consider a wired communication network with L links, each with a
fixed capacity of cl bps,6 and S sources, each transmitting at a source
rate of xs bps. Each source emits one flow, using a fixed set L(s) of
connected links in its path, and has an increasing, strictly concave, and
twice differentiable utility function Us(xs). Network utility maximiza-
tion is the problem of maximizing the total utility

∑
s Us(xs) over the

source rates x, subject to linear flow constraints
∑

s:l∈L(s) xs ≤ cl for
all links l:

maximize
∑

s Us(xs)
subject to

∑
s:l∈L(s) xs ≤ cl, ∀l

x � 0
variables x.

(3.51)

Different TCP-AQM protocols solve for different strictly concave
utility functions using different types of congestion signals. For exam-
ple, TCP Vegas is shown [88] to be implicitly solving (3.51) for weighted

6 Capacity in terms of attainable throughput with a given code and modulation, not the
information theoretic limit of channel capacity.
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logarithmic utility functions: Us(xs) = αsds log xs, using queuing delays
as congestion signals. Although TCP and AQM protocols were designed
and implemented without regard to utility maximization, now they can
be reverse-engineered to determine the underlying utility functions and
to rigorously characterize many important equilibrium and dynamic
properties.

In particular, TCP Vegas has been reverse-engineered as a dis-
tributed algorithm implicitly solving the following logarithmic network
utility maximization problem:

maximize
∑

s αsds log xs

subject to
∑

s:l∈L(s) xs ≤ cl, ∀l

x � 0
variables x.

(3.52)

This Vegas problem is readily seen to be a GP as in Extension 6 in Sub-
section 2.2.1. As discussed in Subsection 2.3.3 and the next subsection,
this GP can be distributively solved by a Lagrangian decomposition
of the coupling (flow conservation) constraint. TCP Vegas congestion
control solves this GP using queuing delay as the dual variables, i.e.,
the link congestion prices.

It is also known [77] that the weighted log utility functions implic-
itly maximized by TCP Vegas lead to a weighted proportionally fair
allocation of link capacities, i.e., given the optimizer x∗ to (3.52),
the following inequality holds for any x that satisfies the constraint
of (3.52): ∑

s

αsds
xs − x∗

s

x∗
s

≤ 0.

3.4.2 Jointly optimal congestion and power control

Consider a wireless network with multihop transmission and
interference-limited link rates. Congestion control mechanisms, such
as those in TCP, regulate the allowed source rates so that the total
traffic load on any link does not exceed the available capacity. At the
same time, the attainable data rates on wireless links depend on the
interference levels, which in turn depend on the power control policy.
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This subsection describes a distributed algorithm for jointly optimal
end-to-end congestion control and per-link power control. The algo-
rithm utilizes the coupling between the transport and physical layers
to increase end-to-end throughput and to enhance energy efficiency in
a wireless multihop network.

This presents a step towards understanding ‘layering’ as ‘opti-
mization decomposition’, where the overall communication network
is modeled by a generalized utility maximization problem, each layer
corresponds to a decomposed subproblem, and the interfaces among
layers are quantified as functions of primal or dual variables coor-
dinating the subproblems. In the case of the transport and physi-
cal layers, link congestion prices turn out to be the optimal ‘layering
prices’.

Network utility maximization problems are linearly constrained by
link capacities that are assumed to be fixed quantities. However, net-
work resources can sometimes be allocated to change link capacities.
This formulation of network utility maximization with ‘elastic’ link
capacities [31, 99, 131] leads to a new approach of congestion avoid-
ance in wireless multihop networks. The current approach of congestion
control in the Internet is to avoid the development of a bottleneck link
by reducing the allowed transmission rates from all the sources using
this link. Intuitively, an alternative approach is to build, in real time,
a larger transmission ‘pipe’ and ‘drain’ the queued packets faster on a
bottleneck link. Indeed, a smart power control algorithm would allo-
cate just the ‘right’ amount of power to the ‘right’ nodes to alleviate
the bottlenecks, which may then induce an increase in end-to-end TCP
throughput. But there are two major difficulties in making this idea
work: defining which link constitutes a ‘bottleneck’ a priori is diffi-
cult, and changing the transmit power on one link also affects the data
rates available on other links. Due to interference in wireless networks,
increasing the capacity on one link reduces those on other links. We
need to find an algorithm that distributively and adaptively detects
the ‘bottleneck’ links and optimally ‘shuffles’ them around in the
network.

Consider a wireless multihop network with N nodes and an estab-
lished logical topology and routing, where some nodes are sources of
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transmission and some nodes act as ‘voluntary’ relay nodes. A seq-
uence of connected links l ∈ L(s) forms a route originating from
source s. Let xs be the transmission rate of source s, and cl be the
capacity on logical link l. Revisiting the utility maximization formula-
tion (3.51), for which TCP congestion control solves, we observe that
in an interference-limited wireless network, data rates attainable on
wireless links are not fixed numbers c as in (3.51), and instead can
be written, in the high SIR regime, as a global and nonlinear func-
tion of the transmit power vector P and channel conditions: cl(P) =
1
T log(KSIRl(P)).

With the above model, we have specified the following network
utility maximization with ‘elastic’ link capacities and logarithmic
utilities:

maximize
∑

s αsds log xs

subject to
∑

s:l∈L(s) xs ≤ cl(P), ∀l

x,P � 0
variables x,P.

(3.53)

The key difference from the standard utility maximization (3.51) is that
each link capacity cl is now a function of the new optimization variables:
the transmit powers P. The design space is enlarged from x to both x
and P, which are clearly coupled in (3.53). Linear flow constraints on
x become nonlinear constraints on (x,P). In practice, problem (3.53)
is also constrained by the maximum and minimum transmit powers
allowed at each transmitter on link l: Pl,min ≤ Pl ≤ Pl,max, ∀l.

In the context of wireless ad hoc networks, new distributed algo-
rithms are needed to solve (3.53). Thus the major challenges are the
two global dependencies:

• Source rates x and link capacities c are globally coupled
across the network, as reflected in the range of summation
{s : l ∈ L(S)} in the constraints in (3.53).

• Each link capacity cl(P) is a global function of all the inter-
fering powers.

The following distributive algorithm converges to the joint and
global optimum of (3.53).
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Jointly Optimal Congestion-control and Power-control
(JOCP) Algorithm [31]:
During each time slot t, the following four updates are carried out
simultaneously until convergence:

(1) At each intermediate node, a weighted queuing delay λl is
implicitly updated,7 where γ > 0 is a constant weight:

λl(t + 1) =


λl(t) +

γ

cl(t)


 ∑

s:l∈L(s)

xs(t) − cl(t)






+

. (3.54)

(2) At each source, total delay Ds is measured and used to
update the TCP window size ws. Consequently, the source
rate xs is updated:

ws(t + 1) =




ws(t) + 1
Ds(t) if ws(t)

ds
− ws(t)

Ds(t) < αs

ws(t) − 1
Ds(t) if ws(t)

ds
− ws(t)

Ds(t) > αs

ws(t) else.

(3.55)

xs(t + 1) =
ws(t + 1)

Ds(t)
.

(3) Each transmitter j calculates a message mj(t) ∈ R+ based
on locally measurable quantities, and passes the message to
all other transmitters by a flooding protocol:

mj(t) =
λj(t)SIRj(t)

Pj(t)Gjj
.

(4) Each transmitter updates its power based on locally measur-
able quantities and the received messages, where κ > 0 is a
constant weight:

Pl(t + 1) = Pl(t) +
κλl(t)
Pl(t)

− κ
∑
j �=l

Gljmj(t). (3.56)

7 This is using an average model for deterministic fluids. The difference between the total
ingress flow intensity and the egress link capacity, divided by the egress link capacity, gives
the average time that a packet needs to wait before being sent out on the egress link.
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With the maximum and minimum transmit power constraint
(Pl,max, Pl,min) on each transmitter, the updated power is
projected onto the interval [Pl,max, Pl,min].

We first present some intuitive arguments on this algorithm before
proving the convergence theorem and discussing the practical imple-
mentation issues. Item (2) is simply the TCP Vegas window update
[23]. Item (1) is a modified version of queuing delay price update [88]
(and the original update [23] is an approximation of item (1)). Items
(3) and (4) describe a new power control using message passing [32].

Taking in the current values of λj(t)SIRj(t)
Pj(t)Gjj

as the messages from other
transmitters indexed by j, the transmitter on link l adjusts its power
level in the next time slot in two ways: first increase power directly
proportional to the current price (e.g., queuing delay in TCP Vegas)
and inversely proportional to the current power level, then decrease
power by a weighted sum of the messages from all the other transmit-
ters, where the weights are the path losses Glj . Intuitively, if the local
queuing delay is high, transmit power should increase, with more mod-
erate increase when the current power level is already high. If queuing
delays on other links are high, transmit power should decrease in order
to reduce interference on those links.

Note that to compute mj , the values of queuing delay λj , signal-
interference-ratio SIRj , and received power level PjGjj can be directly
measured by node j locally. This algorithm only uses the resulting
message mj but not the individual values of λj , SIRj , Pj and Gjj . Each
message is simply a real number.

The known source algorithm (3.55) and queue algorithm (3.54) of
TCP-AQM, together with the new power control algorithm (3.56),
form a set of distributed, joint congestion control and resource allo-
cation in wireless multihop networks. As the transmit powers change,
SIR and thus data rate also change on each link, which in turn
change the congestion control dynamics. At the same time, conges-
tion control dynamics change the dual variables λ(t), which in turn
change the transmit powers. Figure 3.11 shows this nonlinear cou-
pling of ‘supply’ (regulated by power control) and ‘demand’ (regu-
lated by congestion control), through the same shadow prices λ that
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are currently used by TCP to regulate distributed demand. Now λ

serves the second function of cross-layer coordination in the JOCP
Algorithm.

Shadow Price

(Supply)(Demand)

  Shadow Price     Shadow Price

P

cx

x

Power Control
Transmit Node

TCP 
Source Node

Node Queue
Intermediate

Fig. 3.11 Nonlinearly coupled dynamics of joint congestion and power control.

Notice that there is no need to change the existing TCP conges-
tion control and queue management algorithms. All that is needed to
achieve the joint and global optimum of (3.53) is to utilize the values
of weighted queuing delay in designing power control algorithm in the
physical layer.8

The advantage of such a joint control can be captured in a small
illustrative example, where the logical topology and routes for four
multi-hop connections are shown in Figure 3.12. Sources at each of the
four flows use TCP Vegas window updates with αs ranging from 3 to 5.
The path losses Gij are determined by the relative physical distances
dij , which we vary in different experiments, by Gij = d−4

ij . The target
BER is 10−3 on each logical link.

4

3
2

  1

Fig. 3.12 The logical topology and routes in an illustrative example.

Transmit powers, as regulated by the proposed distributed power
control, and source rates, as regulated through TCP Vegas window

8 This approach is complementary to some recent suggestions in the Internet community
to pass physical layer information for a better control of routing and congestion in upper
layers.
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update, are shown in Figure 3.13. The initial conditions of the graphs
are based on the equilibrium states of TCP Vegas with fixed power
levels of 2.5mW. With power control, the transmit powers P distribu-
tively adapt to induce a ‘smart’ capacity c and queuing delay λ con-
figuration in the network, which in turn lead to increases in end-to-end
throughput as indicated by the rise in all the allowed source rates.
Notice that some link capacities actually decrease while the capaci-
ties on the bottleneck links rise to maximize the total network utility.
This is achieved through a distributive adaptation of power, which
lowers the power levels that cause most interference on the links that
are becoming a bottleneck in the dynamic demand-supply balancing
process. Confirming our intuition, such a ‘smart’ allocation of power
tends to reduce the spread of queuing delays, thus preventing any
link from becoming a bottleneck. Queuing delays on the four links do
not become the same though, due to the asymmetry in traffic load
on the links and different weights in the logarithmic utility objec-
tive functions. The end-to-end throughput per watt of power trans-
mitted, i.e., the throughput-power ratio, is 82% higher with power
control.

We can associate a Lagrange multiplier λl for each of the constraints∑
s:l∈L(s) xs ≤ cl(P). To find the stationary points of the Lagrangian,

we need to solve the following Lagrangian maximization problems:
Isystem(x,P,λ) = (

∑
s αsds log xs − ∑

l λl
∑

s:l∈L(s) xs) + (
∑

l λlcl(P)).
By linearity of the differentiation operator, this can be decomposed
into two separate maximization problems:

maximizex
0
∑
s

αsds log xs −
∑
s

∑
l∈L(s)

λlxs

maximizeP
0
∑

l

λlcl(P).

Both maximization problems are readily verified to be GPs, one in
x and another in P. The first maximization is already implicitly solved
by the TCP Vegas congestion control mechanism. But we still need to
solve the second maximization, using the Lagrange multipliers λ as the
shadow prices to allocate exactly the right power to each transmitter.
Since the data rate on each wireless link is a global function of all the
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Fig. 3.13 A typical numerical example of joint TCP Vegas congestion control and power
control. The top left graph shows the primal variables P. The lower left graph shows the
dual variables λ. The lower right graph shows the primal variables x, i.e., the end-to-end
throughput. In order of their y-axis values after convergence, the curves in the top left, top
right, and bottom left graphs are indexed by the third, first, second, and fourth links in
Figure 2. The curves in the bottom right graph are indexed by flows 1, 4, 3, 2.

transmit powers, the power control problem cannot be nicely decoupled
into local problems for each link as in [131]. More message passing in
needed.

Convergence of the nonlinearly coupled system, formed by the
JOCP Algorithm and illustrated in Figure 3.11, is guaranteed under
two mild assumptions. First, Pl are within a range between Pl,min > 0
and Pl,max < ∞ for each link l. Second, when link prices are high
enough, source rates can be made very small: for any ε > 0, there
exists a λmax such that if λl > λmax, then xs(λ) < ε for all sources s

that use link l. Appendix B.6 proves the following
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Theorem 3.5. For small enough constants γ and κ, the distributed
JOCP Algorithm (3.54,3.55,3.56) converges to the global optimum of
the joint congestion control and power control problem (3.53).

Extensions to other TCP variants and multi-commodity flow rout-
ing are discussed in [31]. Other properties of this distributed algorithm
of GP are shown: the convergence is geometric, can be maintained under
finite asynchronism, is robust to estimation error of path loss and to
packet loss due to channel fading, and can be accelerated by passing
slightly more information among the nodes. Simplified heuristics for
partial messaging are also possible.

3.5 Queuing Theory

Materials in this subsection are in part based on [36, 68, 76].
Queuing systems form a fundamental part for different types of

communication systems, such as computer multiprocessor networks
and communications data networks. Queuing systems are also an inte-
gral part of various network elements, such as the input and output
buffers of a packet switch. We often would like to optimize some per-
formance metrics of queuing systems, for example, buffer occupancy,
overall delay, jittering, workload, and probabilities of certain states.
However, optimizing the performance of even simple queues like the
M/M/m/m queue is in general a difficult problem because of the non-
linearity of the performance metrics as functions of the arrival and
service rates.

We show how convexity properties of queuing systems, in the form of
posynomials (that appear as product form distributions) and log-sum-
exp functions (that appear in effective bandwidth formulations), can
be used to turn some of these problems into polynomial time solvable
ones. We provide a suite of GP formulations to efficiently and globally
optimize the performance of queuing systems under QoS constraints,
first for single Markovian queues, then for blocking probability mini-
mization and service rate allocation through the effective bandwidth
approach, and finally for closed networks of queues.

First consider a simple example of minimizing the service load of
an M/M/1 queue, over the arrival rate λ and service rate µ, with
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constraints on average queuing delay W , total delay D, and queue
occupancy Q. The following proposition can be readily verified through
basic formulas of M/M/1 queues [15]:

Proposition 3.6. The following nonlinear optimization of service load
minimization is a GP:

minimize µ
λ

subject to W ≤ Wmax

D ≤ Dmax

Q ≤ Qmax

λ ≥ λmin

µ ≤ µmax

variables λ, µ.

(3.57)

The constant parameters are the performance upper bounds Wmax,
Dmax and Qmax, and practical constraints on the maximum service
rate µmax of the queue that cannot be exceeded, and the minimum
incoming traffic rate λmin that must be supported.

The above formulation can be extended to a Markovian queuing
system with N queues sharing a pool of service rate bounded by µmax

(for example, connected to a common egress link). The arrival rate to
be supported for each individual queue i is bounded by λi,min. There
are delay and queue occupancy bounds Wi,max, Di,max and Qi,max for
each queue i. The objective now becomes minimizing a weighted sum
of the service loads for all the queues, with constant weights α:

Corollary 3.4. The following nonlinear minimization of a weighted
sum of service loads is a GP:

minimize
∑N

i=1 αi
µi
λi

subject to Wi ≤ Wi,max, ∀i

Di ≤ Di,max, ∀i

Qi ≤ Qi,max, ∀i

λi ≥ λi,min, ∀i∑N
i=1 µi ≤ µmax

variables λ,µ.

(3.58)
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We now optimize specific queue occupancy probabilities of an
M/M/m/m queue. The steady state probability of state k is given by

pk =
(λ

µ)k 1
k!∑m

i=0(
λ
µ)i 1

i!

.

In many applications of queuing systems to network design, we would
like to maximize the probability of a particular desirable state, without
making the probabilities of other states too small. For example, we may
want to design a telephone call service center so as to maximize the
probability that a particular number of telephone lines (e.g., 90%) are
in use at any given time.

Proposition 3.7. The following nonlinear optimization of
M/M/m/m queues is a GP:

maximize pk(λ, µ)
subject to pj(λ, µ) ≥ Cj , ∀j

λ ≥ λmin

µ ≤ µmax

variables λ, µ.

(3.59)

The constant parameters are λmin, µmax and Cj , j = 1, 2, . . . , m.

One approach to study the buffer overflow probability is through
the blocking probability of an M/M/1/B queue with a fixed buffer of
size B:

pB =
(λ

µ)B 1
B!∑B

i=0(
λ
µ)i 1

i!

.

Minimizing pB is equivalent to maximizing a posynomial of λ and µ,
which is in turn equivalent to maximizing a convex function. There-
fore, minimizing blocking probability cannot be turned into a GP. One
possible heuristic is to use GP to maximize the probability of some
state k, k < B, subject to lower bounds on pj for all other j < B. Since
pB = 1 − ∑B−1

i=0 pi, this heuristic essentially minimizes the blocking
probability.
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An alternative way to characterize buffer overflow is through the
large deviation approach, where the blocking probability is guaranteed
statistically: for a connection X with a prescribed service rate R in the
queue, we would like to ensure that the probability of overflow (receiv-
ing more than R bps from X) over a time scale of t is exponentially
small:

Prob

{
t∑

i=1

X(i) ≥ R

}
≤ exp(−sR) (3.60)

where s ≥ 0 is the under-subscription factor. Smaller s implies more
aggressive statistical multiplexing of multiple connections to one queue.
This number R is called the effective bandwidth EB of X (as first
proposed in [68], used in many papers since, and nicely reviewed in [76]).

Using the Chernoff bound, the effective bandwidth is given by

EB(X) =
1
st

log E [exp(sX)] . (3.61)

In practice, the expectation is replaced by the empirical average of
traffic data over a time period of t̃ that is much larger than the time
scale factor t:

EB(X) =
1
st

log


 t

t̃

t̃
t∑

i=1

exp(sX(i))




where X(i) is the number of bits sent by connection X during the ith
time slot.

In traffic engineering, we want to either minimize the assigned ser-
vice rate EB(X) subject to constraints that lower bound the traffic
intensity {X(i)} to be supported (i.e., exponentially small probability
of overflow or blocking), or maximize the traffic intensity subject to
constraints upper bounding the service rate that can be assigned to X.
Both problems can be formulated as GPs, and we focus on the first for-
mulation here. Constraints on the minimal level of traffic intensity to be
supported by EB(X) are indexed by j and induced by the stochasticity
of other connections sharing the queue buffer.
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Proposition 3.8. The following nonlinear problem of constrained
buffer allocation is a GP:

minimize EB(X)
subject to

∑
i PijX(i) ≥ Xmin,j , ∀j

variables X(i), ∀i.

(3.62)

The constant parameters are Pij and Xmin,j .

A numerical example is summarized as follows. With s = 0.5, t =
5ms, we impose a set of 10 different constraints to specify the type of an
arrival curve a queue should be able to support without blocking. The
GP solution returns the minimized effective bandwidth as EB∗(X) =
1.7627Mbps, and the envelope of supportable arrival curves is shown
in Figure 3.14. Connections with arrival curves below this envelope
will not cause buffer overflow or queue blocking with a probabilistic
guarantee as in (3.60).
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Fig. 3.14 The envelope of arrival curves supportable by EB∗(X) = 1.7627.

In some queuing problems, a fixed number of customers or tasks
circulate indefinitely in a closed network of queues. For example, some
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computer system models assume that at any given time a fixed number
of programs occupy the resource. Such problems can be modeled by a
closed queuing network consisting of K nodes, where each node k con-
sists of mk identical exponential servers, each with an average service
rate µk. There are always exactly N customers in the system. Once
served at node k, a customer goes to node j with probability pkj . Then
for each node k, the average arrival rate to the node, λk, is given by
λk =

∑K
j=1 pkjλj .

The steady state probability that there are nk customers in node k,
for k = 1, 2, . . . , K, is given by a closed network Jackson’s theorem:

Prob(n1, n2, . . . , nK) =
1

G(K)

K∏
k=1

(
λk
µk

)nk

βk(nk)
,

where

βk(nk) =

{
nk! nk ≤ mk

mk!m
nk−mk
k nk > mk,

and the normalization constant G(K) is given by

G(K) =
∑
s

K∏
k=1

(
λk
µk

)nk

βk(nk)

where the summation over s is taken over all state vectors s =
(n1, n2, . . . , nK) satisfying

∑K
k=1 nk = N .

Proposition 3.9. The following nonlinear problem of maximizing the
probability of state (n1 = n∗

1, . . . , nK = n∗
K) with

∑K
k=1 nk = N , sub-

ject to constraints on other states, is a GP:

maximize Prob(n1 = n∗
1, . . . , nK = n∗

K)
subject to Prob(n1, . . . , nK) ≥ Constant

µk,min ≤ µk ≤ µk,max, ∀k∑K
k=1 mkµk ≤ µtotal

variables µ

(3.63)

where there is a constraint of the first type for each steady
state probability Prob(n1, . . . , nK). The constant parameters are
µk,min, µk,max, mk, k = 1, 2, . . . , K, and µtotal.
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The above optimization problem can be viewed as a problem of
resource (i.e., service capacity µ) allocation in a closed queuing net-
work. The goal is to maximize the probability that the system is in a
particular state subject to constraints on other states and the limited
system resource µtotal.





4
Why Is Geometric Programming Useful for

Communication Systems

The last section summarizes GP’s applications to information theory
and queuing theory, coding and signal processing, network resource
allocation and protocols. This section initiates an exploration of the
plausible reasons why GP is useful to such a variety of topics in the anal-
ysis and design of communication systems.

4.1 Stochastic Models

Materials in this subsection are in part based on [30, 42, 45, 52, 108].
Many problems in information theory, queuing theory, and coding

are based on stochastic models of communication systems, where the
probability of an undesirable event is to be bounded or minimized. For
example, given a family of conditional distributions describing a channel,
we would like the probability of decoding error to vanish exponentially as
the codeword length goes to infinity. Or given a queuing discipline and
arrival and departure statistics, we would like the probability of buffer
overflow to vanish exponentially as the buffer size increases.

Large deviation principles govern such exponential behavior in
stochastic systems. It is well known that convex analysis is closely
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related to large deviation principles [45, 127]. In Subsection 4.1.2 we
will sharpen this general connection by showing that several important
large deviation bounds can be computed by GP. It is this connection
between GP and large deviation characterizations that is the underly-
ing reason for GP’s applicability to communication system problems
based on stochastic models.

This discussion is first motivated in Subsection 4.1.1 by examin-
ing the relationship between GP and classical statistical physics. Such
relationships were recognized since the 1960s [52] and is not surprising
as one can easily realize that the log-sum-exp function, which can be
the objective or constraint functions of a convex form GP, is the log
partition function of the Boltzmann distribution. A posynomial can
be transformed into not just a convex function, but also one in the
‘right’ convexity structure with interesting interpretations from statis-
tical physics.

4.1.1 Interpretations from statistical physics

Consider a system governed by classical statistical physics with n

states at temperature T , where each state i has energy ei and prob-
ability pi of occurring. Given an energy vector e and a probability
vector p, the average energy is U(p, e) = pTe and the entropy is
H(p) = −∑n

i=1 pi log pi. The Gibbs free energy is defined as a weighted
difference between the two:

G(p, e) = U(p, e) − TH(p) = pTe + T
n∑

i=1

pi log pi.

Solving the problem of Gibbs free energy minimization:

minimize pTe + T
∑n

i=1 pi log pi

subject to 1Tp = 1
p � 0

variables p

(4.1)

with constant parameters e, is important in statistical physics with sev-
eral interpretations, e.g., (4.1) strikes a balance between energy mini-
mization and entropy maximization.
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Following the argument in the discussion of the conjugacy relation-
ship between log-sum-exp and negative entropy in Subsection 2.1.1, it is
easy to see that the Boltzmann distribution, denoted by b̃, minimizes
G(p, e) over p for a given energy vector e, where b̃i is proportional
to exp(− ei

T ). The proportionality constant needed for normalization is
called the partition function Z(e) =

∑n
i=1 exp(−ei

T ). The Gibbs free
energy G(p, e) induced by the Boltzmann distribution p = b̃ is called
the Helmholtz free energy F (e), which is the negative logarithm of Z(e)
scaled by T :1

F (e) = G(b̃, e) = −T log
n∑

i=1

exp(−ei

T
).

Due to the convexity of the Gibbs free energy in p and the con-
cavity of the Helmholtz free energy in e, maxe minp G(p, e) =
minp maxe G(p, e). Therefore, maximizing the Helmholtz free energy
is equivalent to finding the minimum Gibbs free energy for the worst-
case energy vector.

The Gibbs free energy can also be generalized as follows [108]. Con-
sider a multiple phase chemical system with K phases and J types of
substances. Let njk be the number of atomic weights of substance j

that are in phase k, and let ejk be the energy of substance j in phase k,
j = 1, 2, . . . , J, k = 1, 2, . . . , K. The multiphase equilibrium problem
is to minimize the following generalized Gibbs free energy with unit
temperature over {njk}:

∑
j,k

njkejk +
∑
j,k

njk log

(
njk∑
j′ nj′k

)
. (4.2)

Now suppose the distribution on the states is not the Boltzmann
distribution b̃, but some general distribution q. In this case, we will
get a corresponding value for the Gibbs free energy G(q, e), and the

1 With a logarithmic transformation of variables: ẽi = − log pi, ∀i, it is easy to see that the
Renyi entropy (3.33) is a log-sum-exp function. If the order of the Renyi entropy is 1/T ,
the Renyi entropy is a scaled Helmholtz free energy:

Hγ(p) =
1

T − 1
F (ẽ).
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difference between this value and the Helmholtz free energy, normalized
by the temperature T , is given by:

1
T

(
G(q, e) − G(b̃, e)

)
=

qTe
T

−H(q)− F (e)
T

=
n∑

i=1

qi log
qi

b̃i

= D(q‖b̃).

(4.3)
Therefore, another way to derive the Boltzmann distribution is

through minimizing the difference between a general Gibbs free energy
and the Helmholtz free energy, expressed as a KL divergence (rela-
tive entropy), over the probability simplex. Minimizing KL divergence
D(q‖b̃) over q is precisely the dual objective function of an uncon-
strained GP. Indeed, we can rewrite the dual objective in (2.7) as a KL
divergence minimization: minimizeνD(ν‖d), or in the exponentiated
form: maximizeν

∏
i

(
di
νi

)νi
where bi = log di, ∀i.

In general, the KL divergence D(q1‖q2) between q1 and q2 is the
Gibbs free energy G(q1, e) where the energy vector is the negative
log likelihood of q2: ei = − log q2,i, ∀i. And the dual objective of an
unconstrained GP (2.7) over ν is equivalent to minimizing the Gibbs
free energy G(ν,−b) at unit temperature.

In summary, GP in convex form is equivalent to a constrained
Helmholtz free energy maximization problem, the dual problem of GP
is equivalent to a linearly-constrained generalized Gibbs free energy
minimization problem, and the dual problem of unconstrained GP is
equivalent to the Gibbs free energy minimization.

Now recall some of the GP applications to information theory. Shan-
non [113] considered communication as a problem of reproducing an
i.i.d. stochastic source (with N alphabet symbols) at the destination.
If each alphabet symbol in the source has probability pi of appear-
ing, and the string is n symbols long, then for large n, the proba-
bility of a typical string is approximately

∏N
i=1 pnpi

i = e−nH(p), and
to the first order in the exponent, the number of typical sequences is
K = enH(p) =

∏N
i=1 p−npi

i , ∀i. It turns out that K is also the expo-
nentiated objective function of the dual problem of an unconstrained
GP: if we let the constants xi = n, ∀i, and the variables zi = npi,
then K =

∏N
i=1

(
xi
zi

)zi
. Therefore, maximizing the number of typical

sequences is Lagrange dual to this unconstrained GP.
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For the primal problem of rate distortion (3.14), [14] shows that min-
imizing the Lagrangian of rate distortion is a Gibbs free energy mini-
mization problem. Furthermore, as can be readily verified, the Lagrange
dual problem (3.16) of R(D) is minimizing an average energy under the
Helmholtz free energy constraints, where the energy of state i in the
jth constraint is eij = γdij − αi − log pi.

For channel capacity problems in Subsection 3.1.1, we note that the
primal problem of channel capacity without input cost is a general-
ized Gibbs free energy minimization, where each state i has energy
ri, temperature is unity, average energy U = pT r is on the input
distribution, but entropy is on the output distribution q induced by
the input distribution and the channel. Minimizing the Lagrangian
pT (r + s) +

∑M
j=1 qj log qj of channel capacity with input cost is still

a Gibbs free energy minimization problem, with the energy for each
state i increased by the input cost si. The Lagrange dual problem (3.6)
of C(S) is a Helmholtz free energy maximization problem under aver-
age energy constraints: energy for each state is −αi, the objective is to
maximize the Helmholtz free energy F (−α), and the average energy
constraints are

∑M
j=1 Pij(−αj) ≤ ri, i = 1, 2, . . . , N .

Turning to lossless source coding problems in Subsection 3.2.2,
the Huffman code is known to be optimal for the following family of
problems with exponential codeword length penalty parameterized by
β ≥ 0 [25]:

minimize

[
1
β

log
∑

i

pi2βli

]
. (4.4)

As β → ∞, this problem reduces to a minmax redundancy problem
[50]. The Huffman code gives the maximizing energy vector for all tilted
Helmholtz free energy minimization problems of the form (4.4).

4.1.2 Large deviation bounds

Large deviation principles [45] characterize the limiting behavior of
a family of probability measures {µε} on a probability space S and
the associated Borel field B in terms of rate functions. A family of
probability measures {µε} satisfies the large deviation principle with a
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rate function I if, for all Γ ∈ B such that the closure of Γ is its interior,
we have:

lim
ε→0

ε log µε(Γ) = inf
z∈Γ

I(z). (4.5)

Large deviation principles have been used in bandwidth allocation
and admission control algorithms (e.g., [127]) for communication sys-
tems, and their relationship with the method of types is also well under-
stood [41, 42].

Continuing with the discussion on statistical physics, we would
like to bound the probability that the n-sample average energy ē

exceeds a given threshold τ , for τ > U(b̃, e). This probability is upper
bounded by

Prob{ē ≥ τ} ≤ exp(−n(λτ − Λ(λ))) (4.6)

where Λ(λ), λ ≥ 0, is the log moment generating func-
tion:

Λ(λ) = log
∑

i

b̃i exp(λei).

We can define a tilted Boltzmann distribution b̃(λ) parameterized
by λ:

b̃i(λ) =
1

Z(λ, e)
b̃i exp(λei), ∀i

where Z(λ, e) = exp(Λ(λ)) is the partition function.
Optimizing the bound (4.6) over λ ≥ 0, we obtain the Chernoff

exponent Ec(τ):2

Ec(τ) = max
λ≥0

[λτ − Λ(λ)], (4.7)

and the Chernoff bound:

Prob{ē ≥ τ} ≤ exp(−nEc(τ)).

The optimization problem (4.7) is a dual problem of GP: KL diver-
gence minimization under a linear constraint. Specifically, we can form
the Lagrangian of the problem of minimizeq:qT e≥τD(q||b̃) as:

L(q, λ) = D(q||b̃) + λ(τ − qTe),

2 This function Ec(τ) can be viewed as the conjugate function of Λ(λ).
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and then minimize L over q to obtain the optimal q∗ as a tilted Boltz-
mann distribution with a tilted inverse temperature 1 − λ. This gives
the Lagrange dual function

g(λ) = min
q

L(q, λ) = λτ + F (λ, e)

where F (λ, e) is a tilted Helmholtz free energy.3 Since F (λ, e) = −Λ(λ),
it follows that the dual problem is maxλ≥0[λτ − Λ(λ)].

Therefore, by strong duality for GP in convex form, we have

max
λ≥0

[λτ − Λ(λ)] = min
q:qT e≥τ

D(q||b̃). (4.8)

Note that Prob{ē ≥ τ} is also lower bounded by the probability of
an n-tuple of type q:

Prob{ē ≥ τ} ≥ min
q:qT e≥τ

Prob{q|b̃},

and recall the following simple result from the method of types. Let
q be an arbitrary distribution on a discrete alphabet {1, 2, . . . , M}.
As n → ∞, the probability of all sequences of type q4 under a given
distribution p on the source is known to be:

Prob{q|p} = exp(−nD(q||p)). (4.9)

The Chernoff bound (4.6) can now be seen to be exponentially tight,
because (4.6) and (4.9) imply that

min
q:eT q≥τ

D(q||b̃) ≥ lim
n→∞ − 1

n
log Prob{ē ≥ τ} ≥ max

λ≥0
[λτ − Λ(λ)],

which, together with (4.8), implies that

lim
n→∞ − 1

n
log Prob{ē ≥ τ} = Ec(τ).

3 A tilted Helmholtz free energy F
(
λ, e

1−λ

)
also covers Gallager’s function E0(ρ) [61]:

E0(ρ) = − log
∑

i

(∑
j

xj (Pij)
1

1+ρ

)1+ρ

in the random coding error exponent as a special case, by substituting λ = ρ
1+ρ

.
4 An n-tuple vector x is called of type q if the number of appearances of xi is equal to
nqi, ∀i.
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Next, consider random variables X1, X2, . . . , Xn, with a finite alpha-
bet size |X | = N and i.i.d. ∼ q. Let Γ be a set of probability measures
such that it is the closure of its interior. Applying the method of types
bound as above, the following Sanov’s theorem can be readily proved
[40]:

lim
n→∞ − 1

n
log q(Γ) = min

p∈Γ
D(p||q).

If the set Γ can be represented through linear constraints on p,
the asymptotics minp∈Γ D(p||q) is a dual problem of GP (in the
form of Gibbs free energy minimization). For some special Γ, ana-
lytic closed form solutions can also be obtained. For example, let
Γ = {p :

∑
i pig(xi) ≥ α} where g is a given deterministic function

and α a given scalar. It can be verified that the p∗ that minimizes
D(p||q) over p ∈ Γ is the tilted Boltzmann distribution:

p∗
i = b̃i(λ) =

1
Z(λ,x)

qi exp(λg(xi)), ∀i

where Z(λ,x) is the partition function, and λ is the Lagrange multiplier
that makes p∗ satisfy the inequality in the definition of Γ.

Now consider n i.i.d. random variables {Yj} with a probability mea-
sure µ ∈ Rm

+ . Let Xj = g(Yj) for a deterministic scalar-valued func-
tion g, and consider the empirical mean X̄n = 1

n

∑n
j=1 Xj . By applying

Sanov’s theorem, the following Cramer’s theorem is obtained for finite
subsets of R [45]:

lim
n→∞

1
n

log
(
Prob

µ
{X̄n ∈ Γ}

)
= − inf

z∈Γ
I(z)

where the rate function is

I(z) = sup
λ∈R

[λz − Λ(λ)],

Λ(λ) is the log moment generating function:

Λ(λ) = log
m∑

i=1

µi exp(λg(yi)),

and {yi} are the values taken by each random variable Yj .
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Cramer’s theorem can be interpreted as giving an exponentially
tight bound I(z) on the deviation of the empirical mean of i.i.d. random
variables through the following GP (in the form of minimizing a KL
divergence, or the conjugate of a tilted Helmholtz free energy):

I(z) = min
ν :gT ν=z

D(ν||µ),

where g = [g(y1), . . . , g(ym)].
This connection can also be illustrated by rewriting the exponential

bound as

lim
n→∞

1
n

log
(
Prob

µ
{X̄n ∈ Γ}

)
= − inf

z∈Γ

[
sup
λ∈R

[λz − Λ(λ)]

]

= − sup
λ∈R

[
inf
z∈Γ

[λz] − Λ(λ)
]

= inf
z∈Γ,λ∈R

[Λ(λ) − λz] ,

where the last expression shows the symmetry in minimizing over both
z and λ through a GP.

The approach of using exponential asymptotics usually relies on
the assumption that the underlying random variables are i.i.d. How-
ever, this assumption can be relaxed to a Markovity assumption. This
is useful for problems in communication systems where the events or
traffic may not be i.i.d. but can be adequately modeled as systems
with finite memory, since a random process with finite memory can
be turned into a Markov process by exponentially increasing the state
space size.

Let {Yl} be a finite state Markov chain with m states and an irre-
ducible transition matrix A, Xl = g(Yl) for a deterministic d-valued
function g, and X̄n = 1

n

∑n
l=1 Xl. For every z ∈ Rd, define

I(z) = sup
λ∈Rd

[
λTz − log ρ(Aλ)

]
(4.10)

where ρ(Aλ) is the Perron–Frobenius eigenvalue of matrix Aλ with the
(i, j)th entry being Aij exp(λT g(yj)). It is known [45] that X̄n satisfies
the large deviation principle with rate function I.
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It is apparent that log ρ(Aλ) in the Markov case plays the role of
Λ(λ) in the i.i.d. case. More precisely, the following proposition [30] can
be proved as in Appendix B.7:

Proposition 4.1. The rate function I(z) in (4.10) can be evaluated
at any given z as the optimized value of the following GP:

minimize ρ
∏d

k=1 λ̃−zk
k

subject to
∑m

j=1(ρνi)−1(Aij)νj
∏d

k=1 λ̃
gk(yj)
k ≤ 1, ∀i

variables λ̃,ν, ρ

(4.11)

where λ̃k = eλk . The constant parameters include the arguments of
the rate function z, the transition matrix A, and the values of the
deterministic functions {gk(yj)}, j = 1, . . . , m, k = 1, . . . , d.

Additional constraints of the form f(λ̃) ≤ 1 can be added to prob-
lem (4.11), where f is a posynomial function to be specified depending
on the application of this large deviation principle. For example, if f is
a monomial, then f(λ̃) = 1 is equivalent to a linear constraint on λ.

4.2 Deterministic Models

Materials in this subsection are in part based on [28, 49, 30, 70].
Unlike in the case of problems based on stochastic models, there is

not a single most convincing explanation of why GP has been found to
be useful for problems in communication systems based on determin-
istic models. Three plausible explanations are provided in this subsec-
tion: GP is useful for deterministic models when network resources are
allocated to competing users in a proportional way, or when there is a
general market equilibrium with linear utilities, or when the system is
designed according to the Highly Optimized Tolerance theory.

4.2.1 Proportional allocation

In Subsection 3.3.2 we have seen that GP in standard form can be used
to solve network resource allocation problems when the objective func-
tion to be maximized, and the constraint functions to be lower bounded,
can be written as inverted posynomials in the Generalized Proportional
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Allocation (GPA) form (3.47). GPA form allocation includes various
examples as special cases, including power control in the high SIR
regime and some admission control, rate control, and queuing system
optimization problems. It turns out that the GPA form of allocation
can be interpreted as the solution to an implicit optimization of an
information theoretic quantity.

Relative Entropy Minimization (REM) is a convex optimization
problem in the following form:5

minimize D(p‖x) + α(νTx)
subject to Ax � v

x � 0
variables x.

(4.12)

The constant parameters are p,A,v,ν, α � 0. Both x and p are non-
negative vectors that may not be normalized.

As can be easily verified, REM can also be written as an Extended
GP (Extension 11 in Subsection 2.2.3) of minimizing a posynomial and
the log of a monomial in variables x:

minimize α(νTx) + log
∏

i x
−pi
i

subject to Ax � v
x � 0

variables x.

(4.13)

Proposition 4.2. The solution of a REM problem (4.12) is in the
GPA form (3.47).

This proposition can be readily proved as in Appendix B.8. For
every REM problem (4.12), there corresponds a proportional allocation
in the parameterized form of (3.47). However, there can be many REM
problems whose solutions are in the form of a given proportional
allocation.

5 The network utility model in Kelly [77] is a special case of REM where α = 0 and A is a
0 − 1 matrix denoting the routing decisions.
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4.2.2 General market equilibrium

Many network resource allocation methods, especially the network util-
ity maximization formulation of congestion control, are closely related
with the economics theory of general market equilibrium. It has recently
been shown that in the case of linear utility, the Arrow–Debreu market
equilibrium can be obtained by a Mixed Linear Geometric Program as
introduced in Subsection 2.2.1, with implications to the set of equilibria
and to the complexity of computing a market equilibrium.

In 1874, Walras [126] introduced the following problem. Consider a
model of market where every person has an initial endowment of divisi-
ble goods. If there exits a price vector, which assigns every good a price,
such that it is possible for every person to sell the initial endowment
and buy an optimal bundle of goods with the entire revenue, then such
a price vector is called a general market equilibrium. A special case
was independently proposed by Fischer [22] in 1891, where there are
two kinds of people, producers who have initial endowments of goods
and want to earn money, and consumers who have money and want
to maximize utilities for goods. A market equilibrium is set of prices
assigned to the goods so that when every consumer buys an optimal
bundle then the market clears, i.e., all the money is spent and all the
goods are sold.

Arrow and Debreu [5] in 1954 showed that, when the utility func-
tions are concave, a general market equilibrium exists. Since then, many
researchers have studied numerical methods for computing a market
equilibrium in polynomial time. For the case of linear utilities in the
Fischer model, Eisenberg and Gale [55] provided a convex optimiza-
tion formulation to obtain a market equilibrium, which was solved by
an ellipsoid method together with diophantine approximation. Alterna-
tively, the convex optimization problem can be solved by interior-point
methods and the result be extended to nonlinear concave utilities in
the Fischer model. For the more general Walras model, there was no
polynomial time algorithm and many approximation heuristics were
developed for various special cases. A recent paper [70] provides the
first polynomial time algorithm for linear utilities in the Walras model.
The key idea is to show the equivalence between the set of general
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market equilibria and the feasible set of a nonconvex optimization
problem, which turns out to be a MLGP and can be turned into a
convex problem. We follow the development in [70] in the rest of this
subsection.

There are n people and m goods. We index a person by i and a good
by j. Without loss of generality, assume that each person is endowed
with one unit of good, and has a utility function that is assumed to
be linear in the Walras model. Person i has a following linear utility
function: ∑

j

uijxij

where uij is a constant parameter and xij is the amount of good j

consumed by person i. The Arrow–Debreu Theorem [5] states that
there exists a price vector p �= 0, called the general market equilibrium,
such that buying and selling can be done to clear the market.

Without loss of generality, we assume that everyone likes something,
i.e., for every i, there is a j such that uij > 0, and that there is an equi-
librium where every price pi is non-zero. The first assumption is easily
seen to incur no loss of generality. The case for the second assumption
is more involved, and a proof that there exists an equilibrium where no
price is zero can be found in [70].

Consider the following nonconvex feasibility problem:

maximize No Objectives
subject to

∑
i xij = 1, ∀j

pi
pj

≤
∑

k
uikxik

uij
, ∀i, j

xij ≥ 0, ∀i, j

pi > 0, ∀i

variables {xij},p.

(4.14)

The constraints of
∑

i xij = 1 and xij ≥ 0 state that {xij} is a feasible
assignment of goods to people. The constraint pi > 0 comes from the
assumption of strictly positive prices. The most interesting constraint
is the second one, and as shown in Appendix B.9, the following theorem
can be proved [70].
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Theorem 4.1. The set of general market equilibria is the same as the
set of feasible solutions of problem (4.14).

It is readily recognized that (4.14) is a MLGP feasibility problem,
and thus can be transformed into a convex optimization problem by
taking the logarithm of prices p. Let p̃i = log pi, ∀i. Then the feasi-
bility problem (4.14) can be written as the following convex feasibility
problem:

maximize No Objectives
subject to

∑
i xij = 1, ∀j

exp(p̃i − p̃j) ≤
∑

k
uikxik

uij
, ∀i, j

xij ≥ 0, ∀i, j

variables {xij}, {p̃i}

(4.15)

This result immediately implies the following:

Corollary 4.1. The set of general market equilibria’s assignments of
goods to people is convex. The set of general market equilibria’s log
prices p̃ is convex.

Theorem 4.1 also leads to the conclusion that either the ellipsoid
or interior-point method provides a polynomial time algorithm to com-
pute a general market equilibrium for linear utilities in the general
Walras model. Extensions to nonlinear concave utilities are also pre-
sented in [70].

4.2.3 Generalized source coding

In [49], a generalized source coding problem is proposed as an example
of a class of optimization problems called the probability-loss-resource
(PLR) problem, which is equivalent to the family of source coding prob-
lems with either linear or exponential penalty function in Subsection
3.2.2, and thus a special case of GP.
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PLR problem refers to the following minimization of expected loss
Ep[l] under a given probability distribution p, over a global and linear
constraint R ≥ 0 on resources r:

minimize
∑

i pili
subject to li = fβ(ri), ∀i∑

i ri ≤ R

r � 0
variables r, l

(4.16)

where the resource vs. loss function fβ is parameterized by a scalar
parameter β ≥ 0:

fβ(ri) =

{ −c log(ri), β = 0
c
β

(
r−β
i − 1

)
, β > 0,

(4.17)

so that fβ(1) = 0, and the marginal loss per unit resource decreases pro-
portional to r

−(β+1)
i for β ≥ 0 with proportionality constant c. Problem

(4.16) can be solved analytically just as in the case of source coding
with linear or exponential penalty functions.

It is shown in [49] that the empirical data on the distributions of
file sizes on the Internet and of sizes of forest fires match the optimal
solutions of PLR problems very well, with β = 1 and β = 2 respec-
tively. Explanations of this remarkable fit of PLR problem with data
from apparently unrelated fields are provided in [49], in the context of
the Highly Optimized Tolerance (HOT) framework that explains phe-
nomena in complex systems. HOT provides an alternative, with signif-
icantly different implications, to the Self Organized Criticality (SOC)
framework [2, 9] in statistical physics to explain power law distribu-
tions. In SOC theory, complexity is emphasized as emerging between
order and disorder at a phase transition in an interconnection of com-
ponents and otherwise largely random. The details associated with the
initiation of events would be a statistically inconsequential factor and
large events would be the result of random internal fluctuations. In
contrast, HOT systems arise when deliberate robust design aims for
a specific level of tolerance to uncertainty, which is traded-off against
the cost of the compensating resources. Optimization of this trade-off,
possibly through solving the PLR problem, leads to high performance
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and high throughput, ubiquitous power law distributions of event sizes,
and potentially high sensitivities to design flaws and unanticipated per-
turbations. It is argued in [49, 27] that many mechanisms in complex
systems are implicitly solving a PLR problem with different β, c,p, R

constants.
It is readily seen that when β = 0, the PLR problem is equivalent

to the following GP:

minimize
∏

i r
−cpi
i

subject to
∑

i ri ≤ R

variables r,

and when β > 0, the PLR problem is equivalent to another GP:

minimize
∑

i
cpi
β r−β

i

subject to
∑

i ri ≤ R

variables r.

Therefore, according to the HOT theory, the class of GP with single-
variable monomial terms in the objective and linear constraints provide
a prototype problem for which processes in complex systems are implic-
itly solving.



A
History of Geometric Programming

In 1961, Zener published a seminal paper [132] in the Proceedings of
the National Academy of Sciences, and observed that some engineer-
ing design problems can be formulated as optimization of ‘generalized
polynomials’, and that if the number of terms exceed the number of
variables by one, the optimal design can be found by solving a sys-
tem of linear equations. In 1967, Duffin, Peterson, and Zener published
the book Geometric Programming: Theory and Applications [52] that
started the field of GP as a branch of nonlinear optimization.

Several important developments of GP took place in the late 1960s
and 1970s. GP was tied with convex optimization and Lagrange duality,
and was extended to include more general formulations beyond posyn-
omials. Several numerical algorithms to solve GP were proposed and
tested (e.g., in [47]). And researchers in mechanical engineering, civil
engineering, and chemical engineering found successful applications of
GP to their problems.

There are several books on nonlinear optimization that have a sec-
tion on GP, e.g., [8] in 1973, [57] in 1997, [59] in 1999, and [21] in
2004. In addition, there have also been at least five books devoted to
GP. Other than a very recent one [26], the other four were published
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during the late 1960s and 1970s: the pioneering book by Duffin, Peter-
son, and Zener [52] in 1967, two follow-up books [133, 10] in 1971 and
1976, respectively, and a book of collected papers [6] in 1980. The one
in 1980 summarized major developments in GP since its initiation in
1967, and contained a comprehensive list of over 120 papers published
on the theory, algorithms, and applications of GP up to 1980. There
were also three SIAM Review papers surveying the status of GP at the
time of their publications: [51] in 1970, [103] in 1976, and [54] in 1980.

However, as researchers felt that most of the theoretical, algorithmic
and application aspects of GP had been exhausted by the early 1980s,
the period of 1980–1998 was relatively quiet. Over the last few years,
however, GP started to receive renewed attention from the operations
research community, for example, in a special issue of Annals of Oper-
ations Research in 2000 and a special session in the INFORMS annual
meeting in 2001. In particular, we now have very efficient algorithms to
solve GP, either by general purpose convex optimization solvers [97, 21],
or by more specialized methods [78]. Approximation methods for robust
GP and distributed algorithms for GP have also appeared recently.

New and surprising applications of GP have also been found recently
by the electrical engineering and computer science communities, includ-
ing some that are very different from GP’s traditional applications. Two
areas of applications have been particularly prominent. One is digital
and analog circuit design, since the mid-1980s and especially since the
late 1990s [44, 66]. Another is GP applications in communication sys-
tems, the subject of this text, since the mid-1990s and especially over
the last five years. Insights on why GP is useful for communication
systems have also been obtained.



B
Some Proofs

B.1 Proof of Theorem 3.1

Proof. In order to find the Lagrange dual of problem (3.2), we first
form the Lagrangian L as

L(p,q,ν, µ,λ, γ) = −pT r −
∑
j

qj log qj + (q − PTp)T ν

+ µ(1 − 1Tp) + pT λ + γ(S − pT s) (B.1)

with Lagrange multiplier vector ν ∈ RM×1, Lagrange multiplier µ, γ ∈
R, and Lagrange multiplier vector λ ∈ RN×1. Since λ and γ correspond
to the inequality constraints, we have λ � 0 and γ ≥ 0.

We then find the Lagrange dual function g(ν, µ,λ, γ) =
supp,q L(p,q,ν, µ,λ, γ) by finding the p and q that maximize L, which
is a concave function of (p,q). First, note that L is a linear function
of p, thus bounded from above only when it is identically zero. As a
result, g(ν, µ,λ, γ) = ∞ unless r + Pν + µ1 − λ + γs = 0, which is
equivalent to r + Pν + µ1 + γs � 0 since λ � 0.

Assuming r + Pν + µ1 + γs � 0, the Lagrangian becomes
−∑

j (qj log qj − νjqj)+µ+γS, which we must now maximize over q. To
find the maximum of −qj log qj +νjqj over qj , we set the derivative with
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respect to qj equal to zero: log qj + 1 − νj = 0. Thus, qj = exp(νj − 1)
is the maximizer, with the associated maximum value

−qj log qj + νjqj = −eνj−1(νj − 1) + νje
νj−1 = eνj−1.

Therefore, the Lagrange dual function is

g(ν, µ, γ) =

{ ∑
j exp(νj − 1) + µ + γS, r + Pν + µ1 + γs � 0

∞, otherwise.
(B.2)

By making the constraint r + Pν + µ1 + γs � 0 explicit, we obtain
the Lagrange dual problem:

minimize
∑

j exp(νj − 1) + µ + γS

subject to r + Pν + µ1 + γs � 0, γ ≥ 0
variables ν, µ, γ.

The constant parameters are P.
Letting α = ν +µ1, and using the fact P1 = 1, we rewrite the dual

problem as

minimize exp(−1 − µ)
∑

j eαj + µ + γS

subject to r + Pα + γs � 0, γ ≥ 0
variables α, µ, γ.

Since the dual variable µ, which is the Lagrange multiplier correspond-
ing to the primal constraint 1Tp = 1, is unconstrained in the dual
problem, we can minimize the dual objective function over µ analyti-
cally, and obtain the minimizing µ = log

∑
j eαj −1. The resulting dual

objective function is log
∑

j eαj + γS. The Lagrange dual problem is
simplified to the following GP in convex form:

minimize log
∑

j eαj + γS

subject to Pα + γs � −r, γ ≥ 0
variables α, γ.

We can turn this GP into standard form, through an exponential
change of the variables zj = eαj and the dual objective function:

minimize wS ∑
j zj

subject to wsi
∏

j z
Pij

j ≥ e−H(P(i)), i = 1, 2, . . . , N

zj ≥ 0, j = 1, 2, . . . , M, w ≥ 1
variables z, w.
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The constant parameters are entries of the channel matrix P, and
P(i) is the ith row of P.

The weak duality part of the proposition follows directly from a
standard fact in Lagrange duality theory [21]: the Lagrange dual func-
tion is always an upper bound on the primal maximization problem.

It is well-known that the objective function to be maximized in the
primal problem (3.2) is concave in (p,q) and the constraint functions
are affine. The strong duality part of the proposition holds because
the primal problem (3.1) is a convex optimization satisfying Slater’s
condition [21].

B.2 Proof of Corollary 3.1

Proof. We are given α ∈ RM×1 :
∑

j Pijαj ≥ ∑
j Pij log Pij , i =

1, 2, . . . , N , and p ∈ RN×1,q ∈ RM×1 : p � 0,1Tp = 1,PTp = q.
Through the second derivative test, f(t) = t log t, t ≥ 0 is read-
ily verified to be convex, i.e.,

∑
j θjf(tj) ≥ f(

∑
j θjtj) with θ �

0,1T θ = 1. Letting tj = qj

eαj and θj = eαj∑
k

eαk
and using 1Tq =

1TPTp = 1Tp = 1 gives log
∑

j eαj ≥ ∑
j αjqj − ∑

j qj log qj . Since∑
j αjqj =

∑
j αj

∑
i piPij =

∑
i pi

∑
j Pijαj ≥ ∑

i pi
∑

j Pij log Pij , we
have log

∑
j eαj ≥ ∑

i,j piPij log Pij − ∑
j qj log qj = I(X; Y ), i.e., any

feasible dual objective value is an upper bound on channel capacity.
This proves the weak duality part of Corollary 3.1.

B.3 Proof of Theorem 3.2

Proof. In order to find the Lagrange dual of problem (3.15), we first
form the Lagrangian:

L(P,µ, γ,Λ) =
∑
i,j

piPij log
Pij∑

k Pkjpk
+

∑
i

µi

∑
j

Pij

−
∑

i

µi + γ
∑
i,j

piPijdij − γD −
∑
i,j

λijPij (B.3)

with Lagrange multiplier vector µ ∈ RN×1, Lagrange multiplier γ ∈ R
and Lagrange multiplier matrix Λ ∈ RM×N , with (i, j) entry of Λ



136 Some Proofs

denoted as λij . Since γ and Λ correspond to the inequality constraints,
we have γ ≥ 0 and λij ≥ 0, i = 1, 2, . . . , N, j = 1, 2 . . . , M .

We then find the Lagrange dual function g(µ, γ,Λ) =
infP L(P,µ, γ,Λ) by finding the P that minimizes L, which is a convex
function of Pij . We let the derivatives of L with respect to Pij be equal
to 0:

pi

[
log

(
Pij

zi
∑

k Pkjpk

)
+ γdij − λij

pi

]
= 0

where zi = exp(−µi
pi

). This gives the following condition on the mini-
mizer P of L:

Pij = ziqj exp
(

λij

pi
− γdij

)
(B.4)

where qj =
∑

k Pkjpk. Now multiply both sides of (B.4) by pi, sum
over i, and cancel qj on both sides, we obtain the following condition:∑

i zipi exp
(

λij

pi
− γdij

)
= 1, j = 1, 2, . . . , M, which, by the definition

of zi and the condition λij ≥ 0, is equivalent to

∑
i

pi exp
(

−µi

pi
− γdij

)
≤ 1, j = 1, 2, . . . , M. (B.5)

Substituting the minimizer (B.4) and the condition (B.5) into L

(B.3), we obtain the Lagrange dual function

g(µ, γ) =

{
−∑

i µi − γD,
∑

i pi exp
(
−µi

pi
− γdij

)
≤ 1

−∞, otherwise.
(B.6)

By making the constraints explicit, we obtain the Lagrange dual
problem:

maximize −∑
i µi − γD

subject to
∑

i pi exp
(
−µi

pi
− γdij

)
≤ 1, j = 1, 2, . . . , M

γ ≥ 0
variables µ, γ.

The constant parameters are p, dij and D.
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Now we change the dual variables from µ to α: αi = −µi
pi

, and
rewrite the dual problem as

maximize
∑

i piαi − γD

subject to log
∑

i exp(log pi + αi − γdij) ≤ 0, j = 1, 2, . . . , M

γ ≥ 0
variables α, γ.

In order to bring the dual problem (3.16) to the standard form of
GP, we use an exponential change of the variable w = eγ , zi = eαi to
rewrite the dual problem as

maximize w−D ∏
i z

pi
i

subject to
∑

i piziw
−dij ≤ 1, j = 1, 2, . . . , M

w ≥ 1, zi ≥ 0, i = 1, 2, . . . , N

variables z, w.

The constant parameters are p, dij and D.
The weak duality part of the proposition follows directly from a

standard fact in Lagrange duality theory [21]: the Lagrange dual func-
tion is always a lower bound on the primal minimization problem.

It is well-known that the objective function in the primal problem
(3.15) is convex in Pij , and the constraints are affine. The strong duality
part of the proposition holds because the primal problem (3.1) is a
convex optimization satisfying Slater’s condition [21].

B.4 Proof of Proposition 3.3

Proof. Let Aij = P
1/(1+ρ)
ij . Problem (3.23) can be written as:

minimize
∑

j w1+ρ
j

subject to ATp = w
1Tp = 1
p � 0

variables w,p.

The Lagrangian can be written as:

L(p,w,α, β,λ) =
∑
j

w1+ρ
j + αT (w − ATp) + β(1 − 1Tp) − λTp.
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The Lagrangian is convex in w and can be minimized over w. The
minimizer is

w∗
j = [−αj/(1 + ρ)]1/ρ, ∀j.

Since the Lagrangian is affine in p, its minimized value is finite if and
only if the coefficient of p is zero:

−AT α − β1 − λ = 0.

Let θ(ρ) be a constant that only depends on ρ:

θ(ρ) =
ρ(−1)1/ρ

(1 + ρ)1+1/ρ
.

Substituting w∗ into the Lagrangian, we can write the Lagrange dual
problem as:

maximize θ(ρ)
∑

j α
(1+ρ)/ρ
j + β

subject to −AT α − β1 − λ = 0
λ � 0

variables α,λ, β,

which, by removing the slack variable λ, is equivalent to

maximize θ(ρ)
∑

j α
(1+ρ)/ρ
j − β

subject to AT α � β1
variables α, β.

Since at optimality, β∗(α) = maxi{∑j Aijαi}, the Lagrange dual prob-
lem can be simplified to an unconstrained problem over α:

maximize


θ(ρ)

∑
j

α
(1+ρ)/ρ
j − max

i



∑
j

Aijαi




 .

B.5 Proof of Theorem 3.4

Proof. The claim is readily verified if the objective in (3.48) is to max-
imize xi∗ . In this case, omitting the monomial constraints in the form
of range constraints on the variables, we can rewrite (3.48) as

minimize 1
xi∗

subject to 1
xi

≤ 1
xi,min

i = 1, 2, . . . , N

variables x.

(B.7)
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By the structure of GPA forms, xi are inverted posynomials of the
variables p,ν and γij , thus (B.7) is minimizing a posynomial subject
to upper bound constraints on other posynomials. Therefore, (3.48) is
equivalent to a GP.

To prove the claim for the maxmin fairness case, we can use the fol-
lowing technique to convert the problem of maximizing (over variables
z) the minimum of gj(z) to be maximizing over (z, t) (where t is an
auxiliary variable) such that gj(z) ≥ t, ∀j. Specifically, for the maxmin
fair optimization, the following problem

maximize minj=1,2,...,M gj(z)
subject to fi(z) ≥ 1, i = 1, 2, . . . , N

variables z
(B.8)

where gj , fi are inverted posynomials, is easily verified to be equivalent
to the following problem:

maximize t

subject to gj(z) ≥ t, j = 1, 2, . . . , M

fi(z) ≥ 1, i = 1, 2, . . . , N

variables z, t.

(B.9)

Now we rewrite the optimization (B.9) as

minimize t−1

subject to t
gj(z) ≤ 1, j = 1, 2, . . . , M

1
fi(z) ≤ 1, i = 1, 2, . . . , N

variables z.

The objective function is a monomial, and the inequality con-
straints are posynomials of (z, t). Therefore, this is a GP in standard
form.

B.6 Proof of Theorem 3.5

Proof. We first associate a Lagrange multiplier λl for each of the con-
straints

∑
s:l∈L(s) xs ≤ cl(P). Using the KKT optimality conditions for

convex optimization [16, 21], solving problem (3.53) is equivalent to
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satisfying the complementary slackness condition and finding the sta-
tionary points of the Lagrangian.

Complementary slackness condition states that at optimality, the
product of the dual variable and the associated primal constraint must
be zero. This condition is satisfied since the equilibrium queuing delay
must be zero if the total equilibrium ingress rate at a router is strictly
smaller than the egress link capacity.

We now find the stationary points of the Lagrangian:
Isystem(x,P,λ) = (

∑
s αsds log xs − ∑

l λl
∑

s:l∈L(s) xs) + (
∑

l λlcl(P)).
By linearity of the differentiation operator, this can be decomposed
into two separate maximization problems:

maximizex
0
∑
s

αsds log xs −
∑
s

∑
l∈L(s)

λlxs,

maximizeP
0 Ipower(P,λ) =
∑

l

λlcl(P).

The first maximization is already implicitly solved by the congestion
control mechanism. But we still need to solve the second maximization.

We first establish that, if the algorithm converges, the convergence
is indeed toward the global optimum. As in Subsection 3.4.2, this can
be established by showing that the second partial Lagrangian maxi-
mization problem is a GP. We can also directly verify that the par-
tial Lagrangian to be maximized Ipower(P) =

∑
l λl log(SIRl(P)) is a

strictly concave function of a logarithmically transformed power vector.
Let P̃l = log Pl, ∀l, we have Ipower(P̃) =

∑
l

λl log
Glle

P̃l∑
k GlkeP̃k + nl

=
∑

l

λl

[
log(Glle

P̃l) − log

(∑
k

Glke
P̃k + nl

)]

=
∑

l

λl

[
log(Glle

P̃l) − log

(∑
k

exp(P̃k + log Glk) + nl

)]
.

The first term in the square bracket is linear in P̃, and the second term
is concave in P̃ as directly verified below.
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Taking the derivative of Ipower(P̃) with respect to P̃l, we have

∇lIpower(P̃) = λl −
∑
j �=l

λjGjle
P̃l∑

k �=j GjkeP̃k + nj

= λl − Pl

∑
j �=l

λjGjl∑
k �=j GjkPk + nj

.

Taking derivatives again, for each of the nonlinear
−λl log

(∑
k exp(P̃k + log Glk) + nl

)
terms in Ipower(P̃), we obtain the

Hessian:

Hl =
−λl

(
∑

k zlk + nl)2

((∑
k

zlk + nl

)
diag(zl) − zlzT

l

)

where zlk = exp(P̃k + log Glk) and zl is a column vector
[zl1, zl2, . . . , zlN ]T .

Matrix Hl is indeed negative definite: for all vectors v,

vTHlv =
−λl

(
(
∑

k zlk + nl)
(∑

k v2
kzlk

) − (
∑

k vkzlk)
2
)

(
∑

k zlk + nl)2
< 0. (B.10)

This is because of the Cauchy–Schwarz inequality: (aTa)(bTb) ≥
(aTb)2 where ak = vk

√
zlk and bk =

√
zlk and the fact that nl > 0.

Therefore, Ipower(P̃ ) is a strictly concave function of P̃, and its Hessian
is a negative definite block diagonal matrix diag(H1,H2, . . . ,HL).1

Coming back to the P solution space instead of P̃, it is easy to
verify that the derivative of Ipower(P) with respect to Pl is

∇lIpower(P) =
λl

Pl
−

∑
j �=l

λjGjl∑
k �=j GjkPk + nj

.

Therefore, the logarithmic change of variables simply scales each entry
of the gradient by Pl: ∇lIpower(P) = 1

Pl
∇lIpower(P̃). Power update can

be conducted in either P or P̃ domain.

1 Interestingly, some of the propositions about JOCP in [31] depend on the invertibility of
H, which are provided for by the nonzero noise terms.
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We now use the gradient method [16], with a constant step size κ,
to maximize Ipower(P):

Pl(t + 1) = Pl(t) + κ∇lIpower(P)

= Pl(t) + κ


λl(t)

Pl(t)
−

∑
j �=l

λj(t)Gjl∑
k �=j GjkPk(t) + nj


 .

Simplifying the equation and using the definition of SIR, we can write
the gradient steps as the following distributed power control algorithm
with message passing:

Pl(t + 1) = Pl(t) +
κλl(t)
Pl(t)

− κ
∑
j �=l

Gljmj(t)

where mj(t) are messages passed from node j:

mj(t) =
λj(t)SIRj(t)

Pj(t)Gjj
.

These are exactly items (3) and (4) in the JOCP Algorithm.
It is known [16] that when the step size along the gradient direc-

tion is optimized, the gradient-based iterations converge. Such an opti-
mization of step size κ in (3.56) would require global coordination in
a wireless ad hoc network, and is undesirable or infeasible. However,
in general gradient-based iterations with a constant step size may not
converge.

By the descent lemma [16], convergence of the gradient-based opti-
mization of a function f(x), with a constant step size κ, is guaranteed
if f(x) has the Lipschitz continuity property: ‖∇f(x1) − ∇f(x2)‖ ≤
L‖x1 − x2‖ for some L > 0, and the step size is small enough:
ε ≤ κ ≤ 2−ε

L for some ε > 0. It is known that f(x) has the Lipschitz
continuity property if it has a Hessian bounded in l2 norm.

The Hessian H of
∑

l λlcl(P) can be verified to be

Hll =
∑
j �=l

λj

(
Gjl∑

k �=j GjkPk + nj

)2

− λl

P 2
l

, (B.11)

Hli =
∑
j �=l,i

λjGjlGji(∑
k �=j GjkPk + nj

)2 , i �= l. (B.12)
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It is known that the second assumption for Theorem 3.5 leads to
the conclusion that λ are upper bounded, which, together with the first
assumption for Theorem 3.5, shows that ‖H‖2 is upper bounded. The
upper bound can be estimated by the following inequality:

‖H‖2 ≤
√

‖H‖1‖H‖∞

where ‖H‖1 is the maximum column-sum matrix norm of H, and ‖H‖∞
is the maximum row-sum matrix norm.

Therefore, the power control part (3.56) converges for a small
enough step size κ:

ε ≤ κ ≤ 2 − ε

L′

where

(L′)2 = maxi


∑

l

∑
j �=l,i

λjGjlGji(∑
k �=j

GjkPk+nj

)2

+

∣∣∣∣∣∑j �=l λj

(
Gjl∑

k �=j
GjkPk+nj

)2
− λl

P 2
l

∣∣∣∣∣
)

× maxl


∑

i

∑
j �=l,i

λjGjlGji(∑
k �=j

GjkPk+nj

)2

+

∣∣∣∣∣∑j �=l λj

(
Gjl∑

k �=j
GjkPk+nj

)2
− λl

P 2
l

∣∣∣∣∣
)

and ε can be any small positive number ≤ 2
1+L′ .

It is known [88] that TCP Vegas converges for a small enough step
size 0 < γ ≤ 2αmindmincmin

LmaxSmaxx2
max

, where αmin and dmin are the smallest TCP
source parameters αs and ds among the sources, respectively, xmax is
the largest possible source rates, cmin is the smallest link data rate,
Lmax is the largest number of links any path has, and Smax is the
largest number of sources sharing a link.

Convergence proof for TCP Vegas in [88] assumes that cmin �= 0.
Since SIRl is lower bounded by Pl,minGll∑

j �=l
Pj,maxGlj+nl

, each cl is lower
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bounded by a strictly positive number. (In fact, the formulation in
(3.53) assumes high SIR in the first place.) Consequently, TCP Vegas
(3.55,3.54) also converges. By the convergence result of the simul-
taneous gradient method to the saddle point of minmax problems
[17, 110] (in this case, minimizing the Lagrangian over dual variables
and maximizing it over the primal variables to the saddle point of
the Lagrangian, which is the optimal (x∗,P∗)), the JOCP Algorithm
converges.

Since cl can be turned into a concave function in P̃, each constraint∑
s:l∈L(s) xs − cl(P) ≤ 0 in (3.53) is an upper bound constraint on a

convex function in (x, P̃). So problem (3.53) can be turned into max-
imizing a strictly concave objective function over a convex constraint
set. The established convergence is thus indeed toward a unique global
optimum.

B.7 Proof of Proposition 4.1

Proof. The Perron–Frobenius eigenvalue ρ(B) of a positive n×n matrix
B can be characterized as:

ρ(B) = min{λ|Bv � λv for some v 
 0}.

Therefore, computation of Perron–Frobenius eigenvalues can be con-
ducted by the following GP:

minimize ρ

subject to
∑n

j=1
Bijvj

ρvi
≤ 1, i = 1, . . . , n

variables v, ρ.

(B.13)

Substituting Bij as Aij exp(λT g(yj)), we see that the constraint in
problem (B.13) becomes the constraint in problem (4.11).

The objective of maximizing λTz − log ρ(Aλ) is equivalent to min-
imizing log ρ − log

∏d
k=1 λ̃zk

k , or minimizing ρ
∏d

k=1 λ̃−zk
k , where λ̃k =

exp(λk). Therefore, the rate function I(z) of Markov chain large devi-
ation bounds can be computed by GP (4.11).
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B.8 Proof of Proposition 4.2

Proof. We need to show that the Lagrange dual problem of (4.12) is

maximize
∑

i pi log βi − vT λ

subject to AT λ + αν = β

λ � 0
variables λ,β.

(B.14)

The constant parameters are A,v,p,ν and α. Furthermore, the opti-
mal primal variables x∗ can be obtained from the optimal dual variables
λ∗ as

x∗
i =

pi∑
j λ∗

jAji + ανi
, ∀i.

Indeed, we can form the Lagrangian of the primal problem (4.12),
ignoring the constant term of

∑
i pi log pi:

L(x,λ,σ) = −
∑

i

pi log xi + α(νTx) + λT (Ax − v) − σTx

where λ,σ � 0 are the Lagrange multiplier vectors. Let the derivative
of L(x,λ,σ) with respect to xi be equal to 0, we obtain

xi =
pi∑

j λjAji + ανi − σi
.

Substitute this x into the Lagrangian L(x,λ,σ), we obtain the
Lagrange dual function g(λ,σ):

−∑
i pi log pi∑

j
λiAji+ανi−σi

+
∑

j λj
∑

i Aji
pi∑

j
λjAji+ανi−σi

− λTv

−∑
i σi

pi∑
j

λiAji+ανi−σi
,

which can be simplified to

g(λ,σ) =
∑

i

pi log


∑

j

λjAji + ανi − σi


−vT λ+

∑
i

pi−
∑

i

pi log pi.

Therefore, the Lagrange dual problem can be stated as

maximize
∑

i pi log
(∑

j λjAji + ανi − σi

)
− vT λ

subject to σ,λ � 0
variables σ,λ.
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Since the objective function is a non-increasing function of σ � 0, we
let σ = 0, and simplify the Lagrange dual problem to

maximize
∑

i pi log
(∑

j λjAji + ανi

)
− vT λ

subject to λ � 0
variables λ.

Now letting β = AT λ + αν proves the claim.

B.9 Proof of Theorem 4.1

Proof. It is easy to see that a market equilibrium must satisfy the
constraints. To see that any feasible solution must also be a market
equilibrium, multiply the second constraint by xijpj and sum over j,
which gives: ∑

j

uijxij ≤
∑
k

uikxik

∑
j xijpj

pi
, ∀i.

By assumptions,
∑

k uikxik �= 0 and pi �= 0. Therefore, we have

pi ≤
∑
j

xijpj , ∀i.

Sum over i and change the order of summation over i and j, we obtain:∑
i

pi ≤
∑
j

pj

∑
i

xij ,

which should be an equality. Therefore, either the inequality constraint

is tight pi
pj

=
∑

k
uikxik

uij
or the factor xijpj with which we multiply the

inequality is 0. Since pj �= 0, either xij = 0, i.e., good j is not assigned

to person i, or pi
pj

=
∑

k
uikxik

uij
. This is the definition of a general market

equilibrium.
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Abstract

Geometric Programming (GP) is a class of nonlinear optimization with
many useful theoretical and computational properties. Over the last few
years, GP has been used to solve a variety of problems in the analysis
and design of communication systems in several ‘layers’ in the commu-
nication network architecture, including information theory problems,
signal processing algorithms, basic queuing system optimization, many
network resource allocation problems such as power control and conges-
tion control, and cross-layer design. We also start to understand why,
in addition to how, GP can be applied to a surprisingly wide range of
problems in communication systems. These applications have in turn
spurred new research activities on GP, especially generalizations of GP
formulations and development of distributed algorithms to solve GP in
a network. This text provides both an in-depth tutorial on the theory,
algorithms, and modeling methods of GP, and a comprehensive survey
on the applications of GP to the study of communication systems.




