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Abstract

Soliton states in three coupled optical waveguide systems were studied: two lin-

early coupled waveguides with quadratic nonlinearity, two linearly coupled waveg-

uides with cubic nonlinearity and Bragg gratings, and a quadratically nonlinear

waveguide with resonant gratings, which enable three-wave interaction. The meth-

ods adopted to tackle the problems were both analytical and numerical. The ana-

lytical method mainly made use of the variational approximation. Since no exact

analytical method is available to �nd solutions for the waveguide systems under

study, the variational approach was proved to be very useful to �nd accurate approx-

imations. Numerically, the shooting method and the relaxation method were used.

The numerical results veri�ed the results obtained analytically. New asymmetric

soliton states were discovered for the coupled quadratically nonlinear waveguides,

and for the coupled waveguides with both cubic nonlinearity and Bragg gratings.

Stability of the soliton states was studied numerically using the Beam Propaga-

tion Method. Asymmetric couplers with quadratic nonlinearity were also studied.

The bifurcation diagrams for the asymmetric couplers were those unfolded from the

corresponding diagrams of the symmetric couplers. Novel stable two-soliton bound

states due to three-wave interaction were discovered for a quadratically nonlinear

waveguide equipped with resonant gratings. Since the coupled optical waveguide

systems are controlled by a larger number of parameters than in the corresponding

single waveguide, the coupled systems can �nd a much broader �eld of applications.

This study provides useful background informations to support these applications.
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Chapter 1

Introduction

1.1 Historic Perspective

The search of new communication technology always remains the quest of human

society for the betterment of our living conditions. The communication technology

is also always at the forefront of all other sciences and technologies.

Ever since the invention of telephone at the beginning of this century, the dis-

semination of information has become faster and more and more convenient, the

volume of information being transferred has grown exponentially, and the pace of

advancement has accelerated at a faster and faster speed. At the same time, the ad-

vancement in communication technology opens up new opportunity and challenges

for the whole society.

From mid- to late-1970s, we saw the advent of telecommunications using opti-

cal �bres. Uncladded glass �bres, in fact, were �rst fabricated in the 1920s, with

J. L. Baird registering a British patent [1] in 1927. Considerable improvement in

the �bre characteristics was made in 1950s, when a cladding layer was proposed [2],

1



CHAPTER 1. INTRODUCTION 2

though these early �bres were still extremely lossy. Thus, the use of glass �bres was

just con�ned to short distance image transmission. In 1966, Kao and Hockham [3]

suggested to use optical �bres as the medium for long distance communication sys-

tems. Following that, much progress was made in the glass �bre fabrication process.

By 1979, a loss level of about 0:2dB=km near the 1:55�m wavelength was reached;

this limit was imposed mainly by the inherent Rayleigh scattering process.

The emergence of low loss �bres stimulated the study of nonlinear phenomena in

both optical �bres and waveguides. In the last twenty years, the intense activities

in the study of the nonlinear e�ects in optical �bre has resulted in a number of

important advances. The nonlinear e�ects in optical �bres have been exploited to

develop new kinds of lasers such as the �bre Raman lasers and the soliton lasers.

The advances in laser, on the other hand, bring the use of optical �bres for telecom-

munications steps closer to reality. The nonlinearity has also been used for pulse

compression to produce optical pulses as short as under 5fs.

In 1973, an important contribution was made by Hasegawa and Tappert. In-

spired by Hasegawa's earlier work on electron cyclotron wave in a plasma �eld,

which had similar modelling equations; i.e., the well-known Nonlinear Scrodinger

Equation, they demonstrated the stability of solitons for the light wave envelope in

�bres by performing various computer simulations [4]. They also recognised the fact

that the dispersive distortion in such optical solitons in optical �bres can be sup-

pressed by the nonlinear e�ect implied immense potential of its use for high speed

telecommunication. This triggered o� heated research interests in �(3) nonlinear

materials, which mainly mean silica glass. Numerous papers has been published,

from 1970s until present, on various topics such as stimulated Raman and Brillouin

scatterings, self-phase and cross-phase modulation, parametric four-wave mixing,
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optically induced birefringence, nonlinear pulse compression techniques, etc. The

number of such works is so large that it is not possible to list all of them and it is

unrespectful to cite just a few.

In recent years, there have be renewed e�orts in the research of nonlinearity

in �(2) materials; i.e., materials with quadratic nonlinearity. As a matter of fact,

research e�orts were at �rst focused here in 1960s, when researchers began to look

into nonlinear optical properties of materials. However, the excitement over the

immense potential of silica glass �bres to be used in long-haul telecommunications

diverted the attention of researchers. Silica glass, being a material with molecular

inverse symmetry, does not exhibit second order nonlinearity. The lowest order of

nonlinearity is cubic, which is inherently smaller, by several orders of magnitude,

when compared with the quadratic nonlinearity which is found in materials such as

KTP, or some organic polymer materials. This makes the use of silica glass for small-

size portable optical switching devices unattractive. This is also the reason why the

research interests in �(2) materials revives recently in these few years. Researchers

explore the potential in the use of �(2) materials as all-optical switching devices.

In this thesis, the topics to be discussed exactly adhere to this theme. Specif-

ically, my research e�orts have been concentrated on the switching characteristics

of soliton. Here, I would like to �rst clarify my usage of terms. In this thesis, I use

the terms "soliton" and "solitary wave" interchangablly to loosely mean the same

thing; i.e., localized solution to the modelling equations. Thus, I do not adhere to

the conventional use of the term "soliton" to denote localized solutions to the mod-

elling partial di�erential equations, which are integrable by the Inverse Scattering

Transform technique. All the models considered in this thesis are not integrable in

this sense.
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1.2 Origin of Optical Nonlinearity

I now describe brie
y how the nonlinear e�ect in materials can arise. We can

consider the materials in optics as a collections of positively charged ions, surrounded

by negatively charged electrons. When an electric �eld is applied, the charged

particles are moved. In dielectric materials, this movement is limited because the

charged particles are bounded together; they are just slightly displaced from their

equilibrium positions. This slight displacement induces an e�ect which we call

polarization, or electric dipole moments.

If this electric �eld is due to a light wave passing through the dielectricmaterials,

the motion of the particles (which mainly are that of electrons), in response to the

optical electric �eld, is thus oscillatory. For simplicity, we consider the optical wave

to be monochromatic. If the applied electric �eld of the optical wave is not large,

the oscillation of the electric charges will be sinusoidal, and the induced polarization

will be at the same frequency harmonious with the incident optical �eld. So, we

can express the polarization ~P as

~P =
1

2
�o ~� ~Eoexp(�i!t) + c:c:; (1.1)

where ~Eo,and ! are the amplitude, and frequency of the optical �eld, ~� is the linear

susceptibility and �o is the free space permittivity. (Note that, in this thesis, we use

the tilde accent to stand for vector and tensor quantities.) So, what we have con-

sidered is the linear regime. It is approximately true if the applied optical �eld and

thus the displacements of the electric charges are small. For stronger optical wave,

and thus larger displacements, the dielectric restoring force will then be signi�cantly

nonlinear. This anharmonic response gives rise to an induced polarization which

is signi�cantly nonlinear too. Spectral analysis will show that the polarization will
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contains signi�cant components oscillating at the harmonic frequencies 2!; 3!; � � � ;
etc.. Mathematically, we can express the polarization ~P in the form:

~P = ~P (0) + ~P (1) + ~P (2) + � � �+ ~P (n) + � � �

= �o(~�
(1) ~E + ~�(2) ~E2 + ~�(3) ~E3 + � � �); (1.2)

where ~P (1) and ~�(1) are the linear polarization and linear susceptibility, ~P (2) and

~�(2) are quadratic, and so on.

The component of the polarization ~P at the second harmonic frequency 2! will

radiate an electric �eld at the frequency 2!. This is then the phenomenon of second

harmonic generation. Higher harmonic terms will give rise to many more nonlinear

optical phenomena, such as Kerr E�ect if the cubic nonlinear term is considered.

1.3 The Constitutive Relation

Constitutive relation is the relation between the induced polarization ~P (t) and the

driving electric �eld ~E(t). It can be considered from two approaches : one is based

on time-domain response function, and the other is on the frequency-domain sus-

ceptibilities. These two alternative approaches will be considered brie
y; details

can be found in, e.g., [5]. Also, here we only consider the local response, which

means that the polarization at a point in the dielectric medium is determined by

the electric �eld at the same point in space. This usually is a very good assumption

for the kind of optical problems considered in this thesis [6].
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1.3.1 Time-domain Response Function Approach

The most general possible relation between the time dependent nth-order polariza-

tion ~P (n)(t) and the electric �eld ~E(t) is

~P (n)(t) = �o
Z +1

�1

d�1 � � �
Z +1

�1

d�n ~T
(n)(t; �1; � � � ; �n)j ~E(�1) � � � ~E(�n); (1.3)

where a vertical bar is used to replace a column of n dots which indicate the con-

traction operation. ~T (n)(t; �1; � � � ; �n) is a (n + 1)th-rank tensor which is a function

of the (n+1) times t; �1; � � � ; �n. The individual component of ~T (n) can be expressed

in su�x notation as T��1����n, where �; �1; � � � ; �n are labels for the coordinate axes

(i.e., x; y; z in Cartesian coordinates). � refers to the coordinate axis where the

component of the polarization ~P considered lies. In general, the tensor ~T (n) is not

unique, because there are n! di�erent orders to arrange the terms ~E(�1) � � � ~E(�n).
However, the usual convention is to de�ne ~T (n) by the average over the n! possible

permutations, and thus making ~T (n) unique. Then, by invoking the Principle of

Time Invariance, it can be easily shown that

~T (n)(t; �1 � to; � � � ; �n � to) = ~T (n)(t+ to; �1; � � � ; �n); (1.4)

which simply means that ~T (n) depends only on the di�erence between the times t

and � 's, but not on their individual values. Thus, we can de�ne a parameter called

polarization response function ~X(n)(�1; � � � ; �n) as

~X(n)(�1; � � � ; �n) � ~T (n)(t; t� �1; � � � ; t� �n): (1.5)

Using this de�nition, Eq.(1.3) becomes

~P (n)(t) = �o

Z +1

�1

d�1 � � �
Z +1

�1

d�n ~X(n)(�1; � � � ; �n)j ~E(t� �1) � � � ~E(t� �n): (1.6)
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Since in most of this thesis, we are dealing with solitons in mediumwith quadratic

nonlinearity, I will write, in particular, the canonical form for the quadratic polar-

ization:

~P (2)(t) = �o

Z +1

�1

d�1

Z +1

�1

d�2 ~X(2)(�1; �2) : ~E(t� �1) ~E(t� �2) (1.7)

1.3.2 Frequency Domain Susceptibility Approach

Susceptibility is a more commonly used approach, although it is exactly equivalent

to the time domain response function approach. To be able to work in the frequency

domain, the electric �eld ~E(t) has to be expressed in terms of its Fourier transform:

~E(t) =
Z +1

�1

d! ~E(!)exp(�i!t); (1.8)

where

~E(!) =
1

2�

Z +1

�1

d� ~E(� )exp(i!t) (1.9)

If we substitute Eq.(1.8) into Eq.(1.6), we obtain the n-th order polarization ~P (t)

as:

~P (n)(t) = �o
Z +1

�1

d!1 � � �
Z +1

�1

d!n
Z +1

�1

d�1 � � �
Z +1

�1

d�n ~X(n)(�1; � � � ; �n)j
~E(!1) � � � ~E(!n) expf�i[!1(t� �1) + !2(t � �2) + � � �

+!n(t� �n)]g: (1.10)

If we now group all the i!j�j terms, where j = 1; � � � ; n, together and de�ne the

susceptibility tensor ~�(n) by

~�(n)(�!s;!1; � � � ; !n) =
Z +1

�1

d�1 � � �
Z +1

�1

d�n ~X(n)(�1; � � � ; �n) expfi
nX
j=1

!j�jg;
(1.11)
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where !s =
Pn

j=1 !j , we have

~P (n)(t) = �o
Z +1

�1

d!1 � � �
Z +1

�1

d!n ~�(n)(�!s;!1; � � � ; !n)j
~E(!1) � � � ~E(!n) exp(�i!st): (1.12)

Of course, by using the term ~�(n)(�!s;!1; � � � ; !n), we implicitly con�ne our con-

sideration of ~P (n)(t) at a single frequency !s and ignore components of ~P (n)(t) at

other possible frequencies. In other word, the Fourier component of ~P (n)(t) at !s is

given by:

~P (n)(!s) = �o ~�
(n)(�!s;!1; � � � ; !n)j ~E(!1) � � � ~E(!n) (1.13)

Sometimes, it is a common practice to extract the directional components out of

all the vectors and tensors so that the parameter susceptibility can be expressed in

scalar form. We write

~E!j = ~ejEj; (1.14)

where ~E!j is the component of the electric �eld at frequency !j, Ej is the complex

amplitude scalar, and ~ej is an unit vector in the direction of the electric �eld ~E!j .

We can then de�ne a scalar nonlinear susceptibility by

�(n)(�!s;!1; � � � ; !n) = ~e�s � ~�(n)(�!s;!1; � � � ; !n)j~e1 � � � ~en; (1.15)

where ~es is in the direction of the component of polarization under consideration.

So, the scalar component of polarization in the direction of ~es is

P (n)
s (t) = �o

Z +1

�1

d!1 � � �
Z +1

�1

d!n

�(n)(�!s;!1; � � � ; !n)E1 � � �Enexp(�i!st); (1.16)

i.e., ~P (n)
!s (!) = ~esP (n)

s (!). To be clearer, it is written out as:

P (n)
s (!) = �o�

(n)(�!s;!1; � � � ; !n)E1 � � �En: (1.17)
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As was done in the last subsection, I also write the scalar canonical form for the

quadratic polarization:

P (2)
s (t) = �o

Z +1

�1

d!1

Z +1

�1

d!2 �
(2)E1E2 exp[�i(!1 + !2)t]; (1.18)

and �(2) is given by

�(2)(�!s;!1; !2) = ~e�s � ~�(2)(�!s;!1; !2) � ~e1~e2: (1.19)

In the next section, we proceed to derive the equations describing the propaga-

tion of optical solitons in a nonlinear medium.

1.4 Solitary Wave Propagation Equations

In this section, the objective is to obtain basic equations which describe the prop-

agation of optical solitons in waveguides. Since in this thesis, we mostly deal with

spatial solitons in slab waveguides, the derivation will be con�ned to this situa-

tion. However, because of the well-known duality between the spatial and temporal

solitons, equations for temporal solitons take the same forms and can be derived

similarly. Nevertheless, the inclusion of the derivation of these basic equations here

is just for the completeness of the thesis. It is not the author's original work. Ex-

cellent derivations can be found in a lot of places; [5, 7, 8, 9, 10] are a few examples

which I made reference to.

1.4.1 Equations for Spatial Solitons in Slab Waveguides

The starting point is Maxwell's Equations :

5� ~E(t) = � @

@t
~B(t)
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5� ~H(t) = �o
@

@t
~E(t) + ~J(t); (1.20)

where the symbols carry their usual meanings. In optics, we are usually concerned

with materials which are nonconductive, contain no free charge, so that ~J(t) consists

of only the polarization current @ ~P (t)=@t; and nonmagnetic, so that ~B(t) = �o ~H(t).

We can eliminate ~H(t) from Eq.(1.20) to get the following vector wave equation for

the electric �eld (in SI units):

5�5� ~E(t) = ��o @
2

@t2
~D(t); (1.21)

where ~D(t) is the electric displacement vector, which can be expressed in terms of

~E(t) and ~P (t) as

~D(t) = �o ~E(t) + ~P (t) (1.22)

So, we have

5�5� ~E(t) = � 1

c2
@2

@t2
~E(t)� �o

@2

@t2
~P (t) (1.23)

We may choose to work with Eq.(1.23) in the time domain, but instead I use the

frequency domain. Thus, for the frequency component !:

5�5� ~E(!) =
!2

c2
~E(!) + !2�o ~P (!): (1.24)

To consider the nonlinear processes, it is usual to separate the polarization ~P (!)

into its linear and nonlinear parts, by writing:

~P (!) = �o�
(1)(�!;!) � ~E(!) + ~PNL(!); (1.25)

where ~PNL(!) =
P1

n=2
~P (n)(!) and ~P (n)(!) are given by Eq.(1.13). Substituting

Eq.(1.25) into Eq.(1.24), and we will get

5�5� ~E(!) =
!2

c2
~� � ~E(!) + !2�o ~P

NL(!); (1.26)
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where the linear permittivity ~� is given by ~� = 1 + ~�(1).

We consider travelling wave solutions of the wave equation Eq.(1.26); which is

of the form

~E(!) = ~eE(!)exp(i~k � ~r); (1.27)

where ~k is the wave vector, ~r is the positional vector, and ~e is the unit vector

in the polarization direction of the ~E vector. E(!) is a slowly varying envelope

function. Assuming that the nonlinearity is weak, we can consider ~E and ~D to be

a superposition of n nearly monochromatic waves, thus,

~E(x; y; z; !) =
nX
i=1

~eiEi(x; y; z; !)exp(i~ki � ~r) + c:c:

~D(x; y; z; !) =
nX
i=1

~diDi(x; y; z; !)exp(i~ki � ~r) + c:c:; (1.28)

where the dependence on the spatial co-ordinates x; y; z has been explicitly spelt out.

To �nd the linear dispersion relation, we can just consider a single monochromatic

wave. When the amplitude is small enough, the nonlinear term can be ignored.

Eq.(1.26) give

5�5� ~E(!) =
!2

c2
~� � ~E(!) (1.29)

By putting the wave vector ~k as

~k =
!n

c
~s; (1.30)

where ~s is an unit vector in the direction of propagation, and using Eq.(1.28) we

can obtain from Eq.(1.29) the Fresnel's equation :

[(~s � ~e)~s� ~e]n2 + ~� � ~e = 0 (1.31)

The three components of Eq.(1.31) are three homogeneous linear equations for each

component of ~e. The solvability condition (i. e. the determinant of their coe�cients
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must vanish) gives the linear dispersion relation:

s2x(n
2 � n2y)(n2 � n2z) + s2y(n

2 � n2x)(n
2 � n2z) + s2z(n

2 � n2x)(n
2 � n2y) = 0; (1.32)

where the subscripts x; y; z denote the coordinate axes which have been aligned

to the principal axes of the dielectric tensor ~�, and nx =
p
�xx, ny =

p
�yy, and

nz =
p
�zz.

This equation is quadratic in n2, thus has four roots; two pairs each of the same

magnitude but opposite sign. The opposite sign just means travelling waves in

opposite directions. So, there are just two distinct values of n, corresponding to

two distinct phase velocities (i. e., birefringence) for wave propagating in a given

direction of ~s: They are called the ordinary and extraordinary waves. If we consider

an uniaxial birefringent medium, for the ordinary wave, the directions of the wave

vector ~s and the Poynting vector ~N = ~E � ~H are the same; for the extraordinary

wave, the directions of the wave vector ~s and the Poynting vector ~N are di�erent,

which means an energy walko� from the wave travelling direction.

On the other hand, for a strong nonlinear parametric interaction of monochro-

matic waves, phase matching is always essential. A common phase matching tech-

nique makes use of the birefringence as mentioned above. For example, in the case

of second harmonic generation (SHG), there are two typical techniques: for the

so-called type I SHG method, both fundamental harmonic waves are of ordinary

waves, and the second harmonic wave is of extraordinary wave; for the type II SHG

method, one of the fundamental harmonics is of ordinary polarization, whereas the

other fundamental harmonic and the second harmonic are of extraordinary polar-

ization. Thus, in general, when we consider nonlinear wave mixing, we usually have

to make provision to take this energy walko� e�ect into account in the model. A



CHAPTER 1. INTRODUCTION 13

scheme was adopted which re-write Eq.(1.28), e. g. for ~E, as

~E(x; y; z; w) =
nX
i=1

~eiEi(x� �iz; y; z)exp(ikiz) + c:c:; (1.33)

where each �i is the angle between the Poynting vector ~ni (which is used to denote

the unit vector in the direction of the Poynting vector) and the wave vector ~si.

In this equation, the z-axis has been chosen as the direction of ~si. Of course,

this implies that all the ~si have the same direction. Such assumption means that

there is no phase velocity walk-o� among the di�erent waves. This is, anyway, not a

bad assumption, as a minimal phase velocity walko� is necessary for any reasonable

strong interaction among the waves. A further simplifying assumption is made that

~ei � ~di, which implies weak anisotropy. However, since the main e�ect of energy

walko� has been taken into account by including the (x� �iz) terms in Eq.(1.33),

the assumptions of all ~ei and ~di vectors being in the same direction, and all ~ki also

being in the same direction should be acceptable. One last assumption needs to be

made before we can proceed. It is to assume that

5�5� ~E = �52 ~E; (1.34)

in Eq.(1.26), ignoring the 5(5 � ~E) term. However, the e�ect of this term is of

minor order in the �nal equation, but the analysis will be much simpli�ed if it is

ignored. The in
uence of the e�ects of this term are well understood or have at

least been discussed in details; discussions on it can be found in [6, 11, 12, 13].

The derivation follows by substituting Eqs.(1.17) & (1.34) into Eq.(1.26), to-

gether with the simplifying assumptions on the vector directions, we get the follow-

ing scalar equation:

@2Es

@z2
+
@2Es

@x2
+
@2Es

@y2
+
!2

c2
�(y)Es+
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!2

c2
�(n)(�!s;!1; � � � ; !n)E1 � � �Enexp(�i4kz) = 0; (1.35)

where Es denotes the electric �eld at the sum frequency !s; i. e., !s =
Pn

j=1 !j. 4k
is the wave vector mismatch parameter (4k =

Pn
j=1 kj � ks). Note also that the

y-dependence of the permittivity has been explicitly expressed as �(y) to indicate

that the linear refractive index variation of the slab waveguide is in the y-direction

only; i. e., the core-cladding interfaces are paralled to the Oxz-plane.

We then further assume that the thickness of the slab waveguide is much smaller

than the soliton width. Thus, we can solve Eq.(1.35) by the method of separation

of variables [7, 10]:

Ei(x; y; z) = Fi(y)Ai(x; z): (1.36)

Substituting Eq.(1.36) into Eq.(1.35) gives

Fs
@2As

@z2
+ Fs

@2As

@x2
+As

�
@2Fs
@y2

+
!2
s

c2
f�s(y)� �effgFs

�
+
!2
s

c2
�effFsAs +

!2
s

c2
�(n)F1F2 � � �FnA1A2 � � �Anexp(�i4kz) = 0;

(1.37)

where �eff is a separation variable, which corresponds to the square of the bound

mode e�ective refractive index.

Then, I would make use of the fact that spatial solitons are the result of a balance

between di�raction and nonlinearity; thus, the terms corresponding to di�raction

and nonlinearity are of the same order. Also, it is a fact that the variation of the

linear refractive index due to doping to form the slab waveguide is much larger than

the refractive index change due to nonlinearity. Thus, we can apply a scaling that

the terms within the square brackets in Eq.(1.37) are of order ", while the terms

outside the square brackets are of order "2. " is a small number used as a reference
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for scaling. So, Eq.(1.37) can be separated into two equations:

@2Fs
@y2

+
!2
s

c2
f�s(y)� �effgFs = 0; (1.38)

and

Fs
@2As

@z2
+ Fs

@2As

@x2
+ �eff

!2
s

c2
FsAs

+
!2
s

c2
�(n)F1F2 � � �FnA1A2 � � �Anexp(�i4kz) = 0: (1.39)

Eq.(1.38) is the famous scalar wave equation in Linear Optics Theory. The solution

of this equation for various refractive index pro�les are well-known, and can be

found in, e. g. [11, 14].

In Eq.(1.39), the @2As=@z2 term can be expanded as

@2As

@z2
= 2iks

@As

@z
� 2iks�s

@As

@x
� k2sAs � �s

@2As

@x@z
+
@2As

@z2
: (1.40)

The k2sAs term cancels with the �eff
!2s
c2
FsAs term in Eq.(1.39) because of the linear

dispersion relation. By invoking the slowly varying envelope approximation, the

last two terms in Eq.(1.40) can be ignored. To get further simplication, we con�ne

ourselves to consider only fundamental bound mode solution to Eq.(1.38), Fs(y),

which is also normalized to satisfy
R1
�1 Fsdy = 1. This enables us to integrate out

the dependence on y from Eq.(1.39) to �nally obtain

2iks
@As

@z
� 2iks�s

@As

@x
+
@2As

@x2
+
!2
s

c2
�(n)
s QeffA1A2 � � �Anexp(�i4kz) = 0; (1.41)

where Qeff is the e�ective modal overlap integral which is de�ned as

Qeff =

R+1
�1 F1F2 � � �Fn dyR+1

�1 F 2
s dy

: (1.42)

For a slab waveguide with translational invariant structure along the z-direction,

Qeff is simply a constant.
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For an n-th order nonlinearity, Eq.(1.41) will give a system of (n+1) equations;

each for one of the (n+1) member waves participating in the nonlinear wave mixing

process. Since we are especially interested in the parametric wave interaction in a

quadratically nonlinear medium, as in the last section, I write down here the system

of the three equations:

2ik1
@A1

@z
� 2ik1�1

@A1

@x
+
@2A1

@x2
+
!2
1

c2
�(2)
1 QeffA3A

�
2exp(�i4kz) = 0

2ik2
@A2

@z
� 2ik2�2

@A2

@x
+
@2A2

@x2
+
!2
2

c2
�(2)
2 QeffA3A

�
1exp(�i4kz) = 0

2ik3
@A3

@z
� 2ik3�3

@A3

@x
+
@2A3

@x2
+
!2
3

c2
�(2)
3 QeffA1A2exp(+i4kz) = 0

(1.43)

1.4.2 Normalization

It is convenient and also is a usual practice to reduce equations such as Eq.(1.41) to

normalized form. Instead of doing it on the more general Eq.(1.41), I will normalize

Eqs.(1.43) instead, with the two FH waves degenerate; i. e. the SHG case with

A1 = A2, k1 = k2, and !1 = !2. Moreover, I consider �1 = �2 = �3, which is

the case considered in the following three chapters (with the exception that dual

waveguide systems are considered there, so that linear coupling between waves in

the two waveguides is also considered). Eqs. (1.43) become

2ik1
@A1

@z
� 2ik1�

@A1

@x
+
@2A1

@x2
+
!2
1

c2
�(2)
1 QeffA3A

�
1exp(�i4kz) = 0

2ik3
@A3

@z
� 2ik3�

@A3

@x
+
@2A3

@x2
+
!2
3

c2
�(2)
3 QeffA

2
1exp(+i4kz) = 0

(1.44)

where

4k = 2k1 � k3
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k3 � 2k1

Normalization for other nonlinear wave mixing processes can be done similarly. To

do the normalization, I need to de�ne several new parameters:

zd = k1r
2
o (1.45)

where zd is the di�raction (di�usion) length and ro is the beam size.

�3 = 2�1 +4k (1.46)

where �1 is the nonlinearity induced phase velocity shift for wave 1.

K1 =
!2
1

2k1c2
�(2)
1 Qeff

K3 =
!2
3

k1c2
�(2)
3 Qeff (1.47)

Then, I make the following variable transformations [8]:

� =
�3
zd
z

s =

p
�3
ro

x

A1 =
�3

k1
p
K1K3r2o

u exp (i
1

2
�1~z)

A3 =
�3

k1K1r2o
v exp (i

1

2
�3~z) (1.48)

where ~z is the scaled z with respect to the di�raction length zd; i. e. ~z = z=zd.

With the variable transformations, the normalized equations of Eqs. (1.44) will

be

i
@u

@�
� i�

@u

@s
+
1

2

@2u

@s2
� qu+ u�v = 0

2i
@v

@�
� 2i�

@v

@s
+
1

2

@2v

@s2
� v +

1

2
u2 = 0 (1.49)
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where

� =
�k1rop
�3

(1.50)

is the walko� parameter, and

q =
�1
2�3

(1.51)

is the phase mismatch parameter.

After deriving the normalized modelling equations for the nonlinear wave mix-

ing process in quadratically nonlinear medium, we will go to investigate individual

system con�gurations in the following chapters.



Chapter 2

Closely Coupled �
(2) Waveguides

2.1 Introduction

The use of nonlinear twin-core �bre couplers as very fast optical switches have

received keen research interest in recent years, after the pioneering work by Jensen

[15]. However, Jensen's theoretical treatment of nonlinear coupled mode equations

applied only to quasi-CW cases, because the time variable was not included. Thus,

it is not applicable to describe pulse switching, especially soliton switching in the

coupler.

Solitons in a dual-core �ber (directional coupler) with cubic (�(3)) nonlinearity

were considered in a number of theoretical studies (see, e.g., Refs. [16]-[24]). An

important feature of these solitons is that they have two components, which ren-

ders their dynamics richer than those in the single-component systems. In [17, 23],

they investigated the coupled nonlinear Schr�odinger equations with an variational

approximation. It was found that a bifurcation occurred, and both symmetric and

asymmetric soliton solutions co-existed. The bifurcation was subcritical and the

19
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coupler showed a strong and easily controlled bistability. In [21], a detailed study

was also undertaken on the stability of the soliton states for a nonlinear �ber cou-

pler. Stability below and above the bifurcation point for symmetric, asymmetric

and antisymmetric soliton states was characterized. On the other hand, saturable

nonlinear couplers were studied in [22], and it was shown that the saturation of non-

linearity can cause the stability of stationary states to change. In [24], the nonlinear

�ber coupler was considered as a Hamiltonian dynamical system, and numerical sim-

ulations were used to study the propagation dynamics of ultrashort soliton pulses.

When polarization e�ect was taken into account, a model of two coupled nonlinear

optical �bers with two polarizations, which were either linear or circular, in each

�ber was considered in [25]. The interaction of soliton pulses and their stability in a

nonlinear directional coupler were investigated in [26], using a perturbation theory

based on a two-soliton system. To control the switching of soliton pulse, a method

which makes use of a weak control pulse was introduced in [27]. Sharp switching

characteristics can be obtained by varying the peak power or the phase of the weak

pulse.

In the studies of materials with quadratic nonlinearity, there had been a lot of

works in second harmonic generation, achieving phase matching by various means,

such as using multiple layers [28]-[30], using an adsorbtive layer with/without grat-

ing enhancement [31]-[33], using the quasi-phase matching technique [34, 35], or

using the anomalous dispersion phase matching technique [36].

With respect to solitons in a dielectric medium with the quadratic nonlinearity,

it has been demonstrated that such a medium can display self-focusing phenomena

too, either by the cascading e�ect or not, which generates soliton by the mutual

trapping of the fundamental and second-harmonic waves [37]-[40]. Experimentally,
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observations of spatial solitary waves in quadratically nonlinear medium were made

in both one-dimensional [41] and two-dimensional [42] cases.

However, since the surge of investigations in waveguides with quadratic non-

linearity, there had been just several works, which studied coupling e�ects in such

medium [43]-[45]. In [45], coupling e�ects were studied between a quadratically non-

linear waveguide and a linear one. In [46], the pulse evolution in coupled waveguides

with mixed quadratic-cubic nonlinearity was investigated. However, solitons were

not considered in these investigations.

In this chapter, I will discuss the investigation of solitons in two linearly coupled

quadratically nonlinear waveguides. Here, we will consider the simplest case, when

the two waveguides are identical, and closely spaced, and the beams in them are

strictly parallel. The cases when the two waveguides are non-identical, or when the

beams are not parallel, will be considered in later chapters.

2.2 Mathematical Model

Equations describing copropagation of the fundamental harmonic (FH) u and second

harmonic (SH) v in the coupled waveguides are as follows:

i
@u1
@z

+ i�
@u1
@x

+
1

2

@2u1
@x2

� qu1 + u�1v1 = �Qu2;

2i
@v1
@z

+ 2i�
@v1
@x

+
1

2

@2v1
@x2

� v1 + 1

2
u21 = �Kv2;

i
@u2
@z

� i�
@u2
@x

+
1

2

@2u2
@x2

� qu2 + u�2v2 = �Qu1; (2.1)

2i
@v2
@z

� 2i�
@v2
@x

+
1

2

@2v2
@x2

� v2 + 1

2
u22 = �Kv1;

where the subscripts 1 and 2 pertain to the �rst and second waveguides, z and

x being the propagation and the transverse coordinates in the waveguides, and �
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is the walko� parameter (which we will consider to be zero in this chapter). The

second derivative terms account for the di�raction; the nonlinear terms account for

the FH-SH conversion. The parameter q measures the phase mismatch between the

two harmonics, which, for the simplest case considered in this chapter, takes on the

value of 1 for the fully matched case. Please refer to the last section of Chapter 1

for de�nitions of � and q. Note that the other frequently used mismatch parameter

�, de�ned as a coe�cient in the equation for SH [38, 47], is just q�1. These four

equations can be derived from the Maxwell's Equations, similar to what I showed

in the previous chapter for Eq. (1.45). Thus, the derivation from the Maxwell's

Equations will not be elaborated again here. The only di�erence is the terms on

the right-hand sides of the equations, which represent the linear coupling between

the waveguides. Q and K are respectively the FH and SH coupling constants.

The derivation of the general form of these coupling terms from the coupled mode

theory can be found easily in some famous references; e.g., [11, 14]. Note that a

supermode analysis leading to such expressions is exact, provided that the �elds u1;2

and v1;2 are superposition �elds, which are modes of the compound coupler structure

consisting of both waveguides as a unit (see Chapter 6 of [14]). However, in most

cases, these superposition �elds are too complicated to �nd. In the investigations of

this thesis, as in most other investigations by other researchers, the superposition

�elds are approximated by the mode �elds of each individual waveguide. For such

an approximation to be accurate, a basic assumption is that the two waveguides are

not too closely spaced such that the contribution of one waveguide to the �eld at

the centre of the second waveguide is small (see Section 18-11 of [11]).

If these coupling terms are derived using perturbation theory, this assumption

is also needed because the second waveguide is treated as a perturbation of the
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�rst �ber [48, 49]. In [49], there are detailed discussions of the derivation of the

form of these terms, and the other assumptions needed for the derivation. Since the

derivation is far a�eld from what is discussed here, and the derivation starting from

the Reciprocity Theorem [49] is too lengthy, it is not repeated here.

Since the frequency of the SH waves is double that of the FH waves, the waveg-

uide parameter V of the SH waves is larger, and thus the SH waves are more tightly

bounded than the FH waves. Thus, the FH coupling constant Q is always larger

than the SH coupling constant K. When the two waveguides are widely separated,

since the �elds fall o� exponentially outside the cores and the SH waves are more

tightly bounded, the SH �eld coupling will be negligible while there is still apprecia-

ble coupling between the FH �elds. So, we can put K = 0 for the widely separated

core case. When the waveguides get close together, the overlap integral of the SH

�elds will increase and approach that of the FH �elds; so the coupling constant of

the SH �elds will approach the coupling constant of the FH �elds. Thus, in the

limit, we can put K = Q for the closely spaced core case.

Note that coupling is also possible when u1 and u2 (or v1 and v2) have opposite

signs (polarity), these cases are taken care of by Q (or K respectively) taking on

negative values.

2.3 Stationary Solutions

The investigation of the coupled system presented here is carried out by �rst estab-

lishing its stationary solutions. Then, its stability is studied. This will be the topic

to be discussed in later section.

To seek for the stationary solution, the z-derivative terms (the �rst terms) in
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Eqs. (2.1) are set to zeros. As a �rst step to analyze this system, we will, in this

chapter, ignore the walko� terms, and assume no phase mismatch, viz., by putting

q = 1. Also, we consider the important case of closely placed waveguides, which

implies the coupling constants for the FH and SH are approximately equal, viz.,

K = Q. These restrictions will be removed in later chapters. As such, Eqs. (2.1)

will be simpli�ed to the following equations:

1

2

@2u1
@x2

� u1 + u�1v1 = �Qu2;
1

2

@2v1
@x2

� v1 +
1

2
u21 = �Qv2;

1

2

@2u2
@x2

� u2 + u�2v2 = �Qu1;
1

2

@2v2
@x2

� v2 +
1

2
u22 = �Qv1: (2.2)

All the variables can then be assumed real. It can be checked further that Eqs. (2.2)

allow the substitution

v1;2 = �u1;2=
p
2 ; (2.3)

where the sign is the same for both values of the subscript. Then, there remains

two equations,

1

2

@2u1
@x2

� u1 +
1p
2
u21 +Qu2 = 0;

1

2

@2u2
@x2

� u2 +
1p
2
u22 +Qu1 = 0: (2.4)

The stationary solutions were found by two separate methods. First, they were

found approximately, using the variational analysis (VA) approach. Then, they

would be found by direct numerical approach; the numerical method used here was

the shooting method.
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2.3.1 Variational Analysis

To study the problem using the variational analysis (VA), we make use of the Hamil-

ton's principle which states that the action given by the time integral of the La-

grangian takes the extremum. For the in�nite dimension problem such as given by

our system of modelling equations (2.4), Hamilton's principle is extended to the

extremum of the action given by the Lagrangian density L which is a real function

of the �elds u1, u2, and also their derivatives,

�
Z
L(u1; u1x; u1xx; u2; u2x; u2xx; � � �) dx = 0 : (2.5)

Note that the variable x here takes the role of `time' in applications in classical

mechanical problems. Also, � is used here to stand for the variational operator

instead of representing the walko� parameter, which is put to zero in this chapter.

The variation in (2.5) is de�ned by

�
Z +1

�1

Ldx

� lim
�!0

1

�

Z +1

�1

�
L
�
u1 + �(�u1); u2 + �(�u2); � � � ; u1xx + �(�u1xx); � � �

�
�L

�
u1; u2; � � � ; u1xx; � � � ;

��
dx (2.6)

Since we are considering soliton solutions, we can assume the variations �u1, and

�u2 etc. to vanish at the boundaries of the integration. As usual, we make use of

the facts that �u1x = @(�u1)=@x, etc.. Then, after taking the integration by parts,

Eq. (2.5) becomesZ 1X
n=0

f(�1)n @
n

@xn
@L
@u1nx

+ (�1)n @
n

@xn
@L
@u2nx

g dx = 0 (2.7)

where u1nx � @nu1=@xn etc.. (Note that, in the system considered here, n can

only be up to 2 because the second derivative terms are the highest derivatives
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in Eqs. (2.4).) Since the variations �u1, and �u2 are taken to be arbitrary and

independent, we have, separately,

�L
�u1

�
2X

n=0

(�1)n @
n

@xn
@L
@u1nx

= 0

�L
�u2

�
2X

n=0

(�1)n @
n

@xn
@L
@u2nx

= 0 (2.8)

To construct the Lagrangian density L, it should be such that Eqs. (2.8) will

give the two modelling equations (2.4). So, the Lagrangian density of the system of

Eqs. (2.4) is:

L = �1

4

�
(u

0

1)
2 + (u

0

2)
2
�
� 1

2
(u21 + u22) +

1

3
p
2
(u31 + u32) +Qu1u2 ; (2.9)

where the prime stands for d=dx.

To apply VA, we need an ansatz. To choose a suitable ansatz, we note that

Eqs. (2.4) have an obvious symmetric solution, which was found a long time ago

[50, 51]:

u1 = u2 =
3p
2
(1�Q) sech2

�s
1

2
(1�Q) x

�
; (2.10)

Also, we can refer to the VA for the solitons in the dual-core �ber with the cubic

nonlinearity [17]. Both suggest us to adopt the following ansatz:

u1 = A cos � sech2(
x

W
);

u2 = A sin � sech2(
x

W
); (2.11)

where A, W , and � are respectively the arbitary amplitude, width, and asymmetry

parameter of the solitons sought for.

The next step is to insert the ansatz (2.11) into Eq. (2.9), and calculate the

e�ective Lagrangian,

L �
Z +1

�1

L dx = � 4

15
A2W�1 � 2

3
A2W
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+
16

45
p
2
A3W (cos3� + sin3�)

+
2

3
QA2W sin(2�): (2.12)

Finally, the equations that determine the unknown parameters A, W , and � are

obtained by demanding that the variations of the e�ective Lagrangian with respect

to each of the parameters are zero. This gives three algebraic equations,

2

15W 2
+
1

3
� 4

15
A sin 

�
1 +

1

2
cos(2 )

�
+
Q

3
cos(2 ) = 0; (2.13)

� 2

15W 2
+
1

3
� 8

45
A sin 

�
1 +

1

2
cos(2 )

�
+
Q

3
cos(2 ) = 0; (2.14)

4A

15

�
cos +

1

2
cos cos(2 )� sin sin(2 )

�
+Qsin(2 ) = 0; (2.15)

where

 � � +
�

4
: (2.16)

Eqs. (2.13-2.16) give two di�erent types of solutions. When � = �=4, i.e.,  =

�=2, Eqs. (2.11) implies u1 = u2; the solutions are for symmetric solitons. It can

be shown that Eqs. (2.13)&(2.14) together with the ansatz (2.11) give the exact

symmetric solutions given by Eqs. (2.3)&(2.10), and these solutions exist at all

Q < 1.

In the other case, after some algebra, Eqs. (2.13-2.15) will give the asymmetric

soliton solutions as,

A = 5Q
sin 

sin(2�)
; (2.17)

W =

vuut� 6�

5Q
(1� �)�1

�
1 +

1

2
�
��1

; (2.18)

where the auxilliary parameter

� = cos(2 ) =
5Q� 6 +

q
3(12 � 20Q� 5Q2)

2Q
: (2.19)



CHAPTER 2. CLOSELY COUPLED �(2) WAVEGUIDES 28

It can be seen that  (or �) is real only if j�j < 1. Thus, from Eq. (2.19), asymmetric

solution exists in the interval of the coupling constant values, Q,

�1 < Q <
3

8
(2.20)

Comparing with the existence range for symmetric soliton, Q < 1, it can be seen

a bifurcation occurs for small jQj, and the bifurcation points estimated by VA are

at �1 and 3=8. A bifurcation diagram is found in Fig. 2.1.
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Figure 2.1: The bifurcation diagram of the system (2.4). The dashed line shows the numerically

obtained results, while the solid line is from VA.

In Fig. 2.1, the asymmetric parameter � is de�ned as:

� = cos 2� : (2.21)

In Fig. 2.2, plots of the peak values of u1, u2, v1, and v2; and in Fig. 2.3 & 2.4,

plots of the width, W , and � versus the control parameter, Q, are shown.
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Figure 2.2: The peak values of u1, u2, v1, and v2 versus the control parameter Q.

In both Figs. 2.2 & 2.3, the dashed lines show the numerically obtained results,

while the solid lines are from VA.
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Figure 2.3: The width parameter,W , cf. Eq. (2.11), versus the control parameter Q.

From these plots, it can be seen that, at Q = 3=8, � = �=4, the solution coincides

with the exact symmetric solution, given by Eqs. (2.3)&(2.10) for the same value

of Q. At the other bifurcation point, Q = �1, � = ��=4, the variational solution
describes an antisymmetric soliton with a vanishing amplitude A and a diverging

width, W . A t Q = 0, � = 0, the variational solution goes over into the exact

solution for one waveguide, Eqs. (2.3)&(2.10), while in the other waveguide, the

�eld is absent. In Figs. 2.1 to 2.3, the dashed curves are those obtained from direct

numerical analysis, which will be discussed later.
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Figure 2.4: The parameter �, cf. Eq. (2.11), versus the control parameter Q.

2.3.2 Zero-mode Analysis

The value of the control parameter Q at the bifurcation point can be found exactly

by a zero-mode analysis. A zero-mode analysis is to search for the perturbation

eigenmode which will grow at the expense of the symmetric soliton solution to

transform into the corresponding asymmetric solution. The point at which the

zero-mode begins to appear denotes where the symmetric solution starts to become

unstable; thus, this point is the bifurcation point.

We look for an antisymmetric eigenmode perturbation such that

�u = �u1 = ��u2 ;
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�v = �v1 = ��v2 : (2.22)

These zero mode perturbations need to be antisymmetric so as to imply a transition

of the symmetric soliton solution to the asymmetric ones as a consequence of the

bifurcation. These perturbations appear on the background of the exact symmetric

solution of modelling equations, Eqs. (2.2),

uo � u1o = u2o =
3p
2
(1�Q)sech2

�
1�Q

2
x
�
; (2.23)

vo � v1o = v2o =
uop
2
;

cf. Eq. (2.3)&(2.10), so that

u1 = uo + �u ;

u2 = uo � �u ;

v1 = vo + �v ; (2.24)

v2 = vo � �v :

Substituting Eqs. (2.24) into Eqs. (2.2), we get two linearized equations for the

zero-modes,

1

2
(�u)00� (1 +Q)�u+ uo�v+

1p
2
uo�u = 0 ;

1

2
(�v)00� (1 +Q)�v+ uo�u = 0: (2.25)

To obtain an exact solution to Eqs. (2.25), we can try the solution in the form

�u = a sech

0@s1 �Q

2
x

1A ;

�v = b sech

0@s1�Q

2
x

1A ; (2.26)
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where a,b, and 
 are unknown parameters to be determined. Direct substitution of

Eqs. (2.26) into Eqs. (2.25) leads tos
1 +Q

1 �Q
=

3

2
; (2.27)

or Q = 5=13. Furthermore, it can be deduced that b = a=
p
2, and a is an in�nitesi-

mal perturbation amplitude, which can take on arbitary value. The corresponding

value of 
 is evaluated to be 3, giving

�u =
p
2�v = a sech3(

2p
13
x) : (2.28)

One can also compare the approximate and exact values of Qcr, the value of

Q at the bifurcation point, i.e., respectively, 3=8 = 0:375 and 5=13 = 0:3846. The

relative error of the simple VA in predicting the bifurcation point is just 2:5%, which

is quite acceptable.

2.3.3 Numerical Check of VA results

In this subsection, I will describe the numerical analysis to �nd the stationary

solution, which serves as a check of the results obtained from the VA. The numerical

method adopted is the shooting method; see e.g. [52].

If the solution to the two modelling equations, Eqs. (2.4), is to describe a soliton,

it has to be localized. Thus, it will satisfy the boundary conditions that

u1(+1) = u1(�1) = 0; and u2(+1) = u2(�1) = 0: (2.29)

So, to obtain a stationary solution numerically for Eqs. (2.4), together with Eqs. (2.29),

we need a boundary value problem solver. The shooting method was used here.

Since we are interested in soliton solutions which are even functions, we can

reduce the integration domain to just one half, moving the left boundary from
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x = �1 to x = 0. Since the solution constitutes of even functions, At x = 0,

u
0

1(0) = u
0

2(0) = 0, whereas u1(0) and u2(0) are unknown. The method is to make

a guess of the values of u1(0) and u2(0), say,

u1(0) = u1g; and u2(0) = u2g (2.30)

and use an initial value integrator to integrate Eqs. (2.4) from x = 0 to a su�ciently

large value of x, say, xr. We will then re�ne the guess of u1g and u2g such that

u1(xr) � 0; and u2(xr) � 0: (2.31)

The initial value integrator used here was the fourth-order Runge-Kutta method.

To implement the Runge-Kutta method, we need to reduce the ordinary di�er-

ential equations, Eqs. (2.4), to a �rst order system,

u
0

1 = w1 � f1(u1; u2; w1; w2);

u
0

2 = w2 � f2(u1; u2; w1; w2);

w
0

1 = 2u1 �
p
2u21 � 2Qu2 � f3(u1; u2; w1; w2); (2.32)

w
0

2 = 2u2 �
p
2u22 � 2Qu1 � f4(u1; u2; w1; w2):

Then, di�erence equations are derived for Eqs. (2.32) by replacing the derivatives

by di�erences. For example, the simplest method is to replace, say, u
0

1 by [u1(x +

h) � u1(x)]=h, where h is the grid size. The idea of the Runge-Kutta method is

to use multiple iterations to get better and better estimates of the slopes, viz., f1,

f2, f3 and f4 to be used in the di�erence equations. The fourth-order Runge-Kutta

formulae in [53] was adopted.

For the system of equations, Eqs. (2.32), the set of di�erence equations used for

the numerical integration to progress from the k-th grid point to the (k+1)-th grid
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point, thus, is

s11 = h f1(u1k; u2k; w1k; w2k);

s12 = h f2(u1k; u2k; w1k; w2k);

s13 = h f3(u1k; u2k; w1k; w2k); (2.33)

s14 = h f4(u1k; u2k; w1k; w2k)

for the �rst iteration;

s21 = h f1(u1k +
1

2
s11; u2k +

1

2
s12; w1k +

1

2
s13; w2k +

1

2
s14);

s22 = h f2(u1k +
1

2
s11; u2k +

1

2
s12; w1k +

1

2
s13; w2k +

1

2
s14);

s23 = h f3(u1k +
1

2
s11; u2k +

1

2
s12; w1k +

1

2
s13; w2k +

1

2
s14); (2.34)

s24 = h f4(u1k +
1

2
s11; u2k +

1

2
s12; w1k +

1

2
s13; w2k +

1

2
s14)

for the second iteration;

s31 = h f1(u1k +
1

2
s21; u2k +

1

2
s22; w1k +

1

2
s23; w2k +

1

2
s24);

s32 = h f2(u1k +
1

2
s21; u2k +

1

2
s22; w1k +

1

2
s23; w2k +

1

2
s24);

s33 = h f3(u1k +
1

2
s21; u2k +

1

2
s22; w1k +

1

2
s23; w2k +

1

2
s24); (2.35)

s34 = h f4(u1k +
1

2
s21; u2k +

1

2
s22; w1k +

1

2
s23; w2k +

1

2
s24)

for the third iteration;

s41 = h f1(u1k + s31; u2k + s32; w1k + s33; w2k + s34);

s42 = h f2(u1k + s31; u2k + s32; w1k + s33; w2k + s34);

s43 = h f3(u1k + s31; u2k + s32; w1k + s33; w2k + s34); (2.36)

s44 = h f4(u1k + s31; u2k + s32; w1k + s33; w2k + s34)



CHAPTER 2. CLOSELY COUPLED �(2) WAVEGUIDES 36

for the fourth iteration. u1k, u2k, w1k, w2k are the values of u1, u2, w1, and w2

respectively at the k-th grid point. Finally, the values u1(k+1), u2(k+1), w1(k+1), and

w2(k+1) at the (k + 1)-th grid point are given by:

u1(k+1) = u1 +
1

6
(s11 + 2s21 + 2s31 + s41)

u2(k+1) = u2 +
1

6
(s12 + 2s22 + 2s32 + s42)

w1(k+1) = w1 +
1

6
(s13 + 2s23 + 2s33 + s43) (2.37)

w2(k+1) = w2 +
1

6
(s14 + 2s24 + 2s34 + s44)

2.3.4 Comparison of Results

The variational analysis and the numerical analysis succeeded to �nd asymmetric

solitary wave solutions for the system of two linearly coupled second-harmonic-

generating waveguides considered. The agreement between the results obtained by

the independent methods is very good. This can be seen in Fig. 2.1, 2.2, & 2.3,

where we show plots of the bifurcation diagram, peak values and widths of the

asymmetric solitons as a function of the controlling parameter Q. The solid lines

are the predictions from the VA, while the dashed lines show the results from the

numerical analysis.

We have directly compared the peak values of the variables u1 and u2 for the

whole range of the control parameter Q, as predicted by VA and as given by the

shooting method. Within the interval�0:3 < Q < 0:35, they prove to be fairly close.

The worst case error is about 8%, which happens at the smaller of the peak values

of u1 and u2 when they are strongly asymmetric; i.e., Q is close to 0. It is interesting

to add that, in this case, the larger peak value achieves the best agreement between

VA and the shooting method; the error is less than 0:04%.
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For Fig. 2.1, to be consistent with the de�nition in Eq. (2.21), the asymmetry

parameter � for the numerical analysis results is de�ned as:

� =
u21m � u22m
u21m + u22m

: (2.38)

The agreement between the bifurcation curves as obtained from the VA and the

shooting method can be seen to be very good.

From Fig. 2.2, it can be seen that u1 (and thus also v1) has the maximum peak

value, whereas u2 and v2 are 0 at Q = 0. While the peak values approach each

other (for FH and SH separately) as Q increases towards the larger bifurcation

point, 5=13; all the peak values approach 0, as Q! �1. On the other hand, from

Fig. 2.3, the widths diverge as Q! �1. Thus, in this limit of Q!�1, the solitons
disappear. While the agreements in the peak values of the waves between VA and

numerical analyses are good, it can be seen from Fig. 2.3 that the agreement in

the widths from the two di�erent analyses is not. (In Fig. 2.3, the dashed and dot-

dashed lines show the FWHM widths of the numerical obtained waves u1 and u2.)

This is because of a classical di�culty in variational analysis that when hyperbolic

secant functions are used as ansatz, only a single width factor can be used for the

di�erent waves, which is quite a big drawback of the method, which cannot provide

for the fact that the di�erent waves in the system can have di�erent widths.

Very close to the bifurcation point at Q = 5=13, the shooting method becomes

unstable, and easily snaps to produce the symmetric soliton solutions on the sym-

metric branch, for the same value of Q. Numerical analyses stopped short before

reaching and producing the exact location of the bifurcation point there; thus, the

dashed curves in Figs. 2.1 - 2.3 do not end at the bifurcation point at Q = 5=13,

which has been found exactly. However, there is no doubt that the bifurcation takes
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place as predicted by VA.

Another point that needs to be mentioned is that for Q < �0:3, the shooting

method has never produced solitary wave solutions. Instead, it generated periodic

waves. Since the subject of the work is soliton, and periodic wave are usually

unstable, thus, all the dashed curves for numerical results terminate at Q = �0:3
for Figs. 2.1 - 2.3. It has been suspected that another bifurcation is amenable for

the termination of the numerically found branch of the asymmetric soliton solution

at Q close to �0:3. However, it has later been found that this phenomenon was just

an artifact of the numerical method used, and is not a real re
ection of the property

of the system. The shooting method became unstable for large negative value of Q.

Thus, in later chapters, the shooting method was abandoned, and another method

was used to seek for the stationary solutions. Stationary solutions of asymmetric

solitons beyond Q < �0:3 were found by this method; which will be ellaborated in

the next chapter.

Finally, as a particular example of comparing the results obtained, we display in

Fig. 2.5 the VA predicted and numerically found shapes of the asymmetric soliton

at Q = 0:1. The disagreement can be seen largest at around the skirts of the

waveforms.

2.4 Stability of the Solitons

To verify the stability of the stationary solitons found in the preceding section, direct

numerical simulations of the full system of partial di�erential equations (PDEs) (2.1)

was performed. The numerical method adopted was the Split step Fourier method,

which is also known as the beam propagation method (BPM). To perform the
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Figure 2.5: The shape of the asymmetric soliton at Q = 0:1. Shown are the FH components

u1;2: the analytical prediction (crosses) and the results obtained by means of the shooting method

(solid).

numerical stability analysis, we use slightly perturbed stationary solutions, which

were obtained by means of what was outlined in the previous section, as initial

conditions for the BPM simulations. The propagation of these inputs was observed

for a su�cient long distance in z. If there is any large scale change of the slightly

perturbed soliton, or perhaps disintegration, its instability is indicated.
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2.4.1 Beam Propagation Method

The beam propagation method is presently the most widely used tool for the in-

vestigation of complex photonic structures. It is a versatile instrument to calculate

the wave propagation through optical circuits. It was �rst proposed [54]-[56] to

calculate the propagation of an optical beam through a medium with small vari-

ations of the refractive index. The method consists basically of propagating the

input beam over a small distance through homogeneous space and then correcting

for the refractive index variations seen by this beam during the propagating step,

which amounts to the application of the lens law. In nonlinear optics, the beam

propagation method has also been adopted to apply to problems for which it was

not originally conceived. The propagation equations in nonlinear optics usually do

not lend themselves to analytic solutions. Thus, a numerical approach is often nec-

essary. Beam propagation method, which is known as Split step Fourier method

in these applications, becomes a popular choice to study the dynamic evolution of

nonlinear wave, such as solitons.

The split step Fourier method can be classi�ed to belong to the category of

pseudospectral methods. In comparing with �nite di�erence methods, its advantage

in speed can be attributed in part to the use of the Fast Fourier Transform (FFT)

algorithm.

In general, di�raction (or dispersion) and nonlinearity act together along the

length of the waveguide structure in which the optical wave propagates. The basic

idea of the Split step Fourier method is by assuming that, over a small distance dz

in which the optical �eld propagates, the di�raction and nonlinear e�ects can be

pretended to act independently. If the propagation step size dz is small enough, the



CHAPTER 2. CLOSELY COUPLED �(2) WAVEGUIDES 41

accuracy of the approximate solution so obtained can be quite good. Speci�cally,

the propagation of the optical �eld in a segment from z to z + dz is carried out in

two sub-steps. In the �rst sub-step, the nonlinearity acts alone, and di�raction is

ignored; in the second sub-step, di�raction acts alone, and nonlinearity is ignored.

For Eqs. (2.1) the principle amounts to breaking up the equations, for the �rst

sub-step, into

i
@u1
@z

+ i�
@u1
@x

+
1

2

@2u1
@x2

= 0 ; (2.39)

2i
@v1
@z

+ 2i�
@v1
@x

+
1

2

@2v1
@x2

= 0 ; (2.40)

i
@u2
@z

� i�
@u2
@x

+
1

2

@2u2
@x2

= 0 ; (2.41)

2i
@v2
@z

� 2i�
@v2
@x

+
1

2

@2v2
@x2

= 0: (2.42)

For the second sub-step, the remaining parts of Eqs. (2.1) give

i
@u1
@z

� qu1 + u�1v1 +Qu2 = 0 ; (2.43)

2i
@v1
@z

� v1 +
1

2
u21 +Kv2 = 0 ; (2.44)

i
@u2
@z

� qu2 + u�2v2 +Qu1 = 0 ; (2.45)

2i
@v2
@z

� v2 +
1

2
u22 +Kv1 = 0: (2.46)

Eqs. (2.39-2.42) can be solved using the Fourier transform method, giving

u1(x; z + dz) = F�1exp
�
�i(1

2
k2x + �kx)dz

�
F u1(x; z) ;

v1(x; z + dz) = F�1exp
�
�i(1

4
k2x + �kx)dz

�
F v1(x; z) ;

u2(x; z + dz) = F�1exp
�
�i(1

2
k2x � �kx)dz

�
F u2(x; z) ; (2.47)

v2(x; z + dz) = F�1exp
�
�i(1

4
k2x � �kx)dz

�
F v2(x; z) ;
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where kx is the Fourier space variable conjugated to x; F and F�1 are, respec-

tively, the direct and inverse Fourier transform operators, which are implemented

numerically using the FFT algorithm.

For the second sub-step, Eqs. (2.43-2.46) are ordinary di�erential equations

(ODEs) and were solved numerically in this work using a third order Runge-Kutta

scheme. The integration of Eqs. (2.43-2.46) completes a single propagation step of

dz, and the two sub-step procedure can then repeated to cover the whole propaga-

tion length of the waveguide structure under investigation.

In the actual implementation of this procedure, there is a slight modi�cation

of the procedure outlined above. Instead of including the nonlinearity sub-step at

the segment boundary, its e�ect is included in the middle of each segment. So,

in summary, the propagation in each segment is �rst carried out for half dz of

the di�raction sub-step. Then, it is followed by the propagation of the whole dz

nonlinear sub-step, and is �nally completed by the remaining half dz di�raction

sub-step. The reason for adopting this modi�cation is that accuracy can be greatly

improved. (See the discussion in [57].)

2.4.2 Error Analysis

As a characteristic of �(2) systems, the evolution of perturbed optical �eld will ex-

hibit conspicuous internal vibrations [58, 59], which may be di�cult to di�erentiate

from those introduced by the global errors due to, e.g., using excessively coarse step

size in the numerical scheme. Thus, an error analysis was performed to identify and

characterize any global errors (mainly discretization errors) and artifacts that may

be introduced by the numerical schemes.
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As it was long established that, for a single waveguide case (which corresponds

to Q = 0 in our system), an exact stable analytical soliton solution exists [50, 51].

Thus, it is convenient to do the error analysis here at Q = 0, where the characteristic

of the real system is known. There are two main parameters for the numerical Split

step Fourier method, viz., the number of FFT points in doing the Fourier transform

steps, and the propagation step size dz. So, the error analysis was done with respect

to these two parameters.

BPM simulation runs were �rst performed for 4 di�erent choices of the number

of FFT points: 256, 512, 1024, and 2048 points, with a propagation distance of �. It

was observed that, other than the 256 point FFT simulation which showed distortion

of the optical waveforms, which developed into vibrations, FFT simulations with the

other 3 larger number of FFT points produced very similar results, showing stable

propagation of the exact analytical solution inputs. Thus, it can be concluded that

using 1024 FFT points should give quite accurate simulation results, with still an

acceptable high speed of computer runs.

Then, BPM simulation runs were performed for a propagation distance of �=2,

when the propagation step size dz was varied from 0:05 to 0:0001. For dz = 0:05, the

evolution of the exact analytical soliton solution developed into vibrations, which

showed that such a coarse step size will introduce instability into the numerical

scheme. Thus, �ner step size should be used. For �ner step sizes, there were no

conspicuous di�erence in the results, showing no internal vibration of the exact

analytical solution. However, they all showed a drooping of the peak values as the

waves propagate, indicating a global error introduced by the numerical scheme. This

drooping of the peak value, nevertheless, is smaller and smaller when the step size

dz gets �ner and �ner. In Fig. 2.6, a plot of the fractional drooping error introduced
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by the �nite step size as a function of the step size dz (in base 10 logarithmic scale)

was shown. The slope of the error curve is about �1, showing that the error due

to the step size dz is of the order of O(dz). With an idea of the global error which

can be introduced, simulation runs were performed with either a step size of 0:0005

or 0:001 (for probing runs). Use of the more accurate �ner step size of 0:0001 was

prohibited by the excessive lengthy simulation time needed.
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Figure 2.6: The fractional drooping error introduced by the �nite step size as a function of the

step size dz (in log scale).

2.4.3 Stability of the Asymmetric and Symmetric Solitons

With the potential errors that may be introduced by the numerical method char-

acterized, it is ready to investigate the stability of the stationary soliton solutions
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found in the last section. The initial conditions used in the PDE simulations of the

solitons were slightly di�erent from the stationary solutions found by the shooting

method: the peak values of the waves were taken as given by the shooting method,

but for the pulse shapes, the VA analytical expressions, Eqs. (2.11) were used. The

aim in choosing the initial conditions in this mixed form was twofold: �rst, it is

much easier to insert the initial conditions into the numerical code when they are

known in an analytical form; second, a small deviation of the initial conditions from

the (practical) exact solitary-wave shape generated by the shooting method seeds a

small perturbation which is necessary to observe the dynamics.
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Figure 2.7: An example of the evolution of a slightly perturbed asymmetric soliton at Q = 0:1.

Shown are the fundamental harmonics in both waveguides.

In all the cases in which the asymmetric stationary solitons were found by the
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shooting method, the PDE simulations have demonstrated their stability. A typical

example is displayed, for Q = 0:1 in Fig. 2.7. In this �gure, two well separated

solitons are seen. The �rst one is the larger u1 component of the stationary soliton,

while the second soliton is represented by the smaller u2 component of essentially the

same solution. (Recall that at Q = 0:1, the solution is strongly asymmetric.) The

peak values of the components of the perturbed soliton undergo minor 
uctuations

(within 1%). The 
uctuations show no sign of decay, but they are not growing

either. This has been checked by making some runs for much longer propagation

distance. Thus, it may be concluded that all the stationary asymmetric solitons

are, in e�ect, neutrally (or marginally) stable.

We also ran simulations with large initial perturbations of the asymmetric soli-

tons. From these runs, we can formulate an inference that strongly perturbed

solitons demonstrate persistent internal vibrations, without being destroyed by the

perturbations, but also without emitting conspicuous amounts of radiations.

We also checked numerically the stability of the exact symmetric solutions for Q

beyond the bifurcation point at Qcr = 5=13. First of all, one should expect that, for

Q < Qcr, the symmetric soliton must be destabilized by the bifurcation producing

the stable asymmetric solitons. As is illustrated by Fig. 2.8, this is indeed the case.

Moreover, the instability evolution illustrated by Fig. 2.8 demonstrates a trend to

rearrange the unstable symmetric soliton into a stable asymmetric one existing at

the same value of Q. This process is, though, quite slow, because it gives rise to

strong internal vibrations of the solitary wave, for which, in accord with a rather

general property of the SHG systems mentioned above at the beginning of this

section, the damping is very weak.

AtQ > Qcr, the symmetric solitons are stable. An example, shown in Fig. 2.9 for
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Figure 2.8: Evolution of the peak values of the components u1;2 and v1;2 illustrating the insta-

bility of the symmetric soliton at Q = 0:1.

Q = 0:4, shows that the initially introduced perturbations trigger internal vibrations

of the solitary wave around the stationary symmetric solution. Very little damping

can be seen, but the vibrations are not growing either. Thus, we can conclude that

the symmetric solitons here are also, e�ectively, neutrally stable, as the asymmetric

solitons that exist beyond the bifurcation point, Q < Qcr.
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Figure 2.9: Evolution of the peak values of the components u1;2 and v1;2 for Q = 0:4. In this

case, the symmetric soliton is (neutrally) stable.

2.5 Summary

In this chapter, we have formulated and analyzed a model which describes two

linearly coupled quadratically nonlinear waveguides. The model includes two equa-

tions for the fundamental harmonics, and two equations for the second harmonics.

We considered in detail the important special case of closely coupled waveguides,

no walko� and fully matched harmonics, when the only control parameter is the

coupling constant, the same for both harmonics. It was demonstrated that, along-

side the obvious symmetric solitons, the model supports asymmetric solitary waves.

A bifurcation point at which the asymmetric solutions appear was found using

both the variational analysis, and the exact mathematical analysis. The variational
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approximation also gives a full description of the solutions in an analytical form.

Comparison with numerical results obtained using the shooting method has demon-

strated that this approximation provides a fairly good accuracy in a part of the

range where existence of the stationary asymmetric solitons was predicted, while

in another part of this range, where Q < �0:3, asymmetric solitary wave solutions

were not found, although periodic solutions can be easily obtained. The reason

is the instability of the numerical method in this range of Q values. Then, direct

simulations of the full PDEs have shown that the asymmetric solitons, whenever

they exist, are always neutrally stable. On the contrary, the symmetric solitons are

also neutrally stable only to the right of the bifurcation point at 5=13, where the

asymmetric solitons do not exist. To the left of this bifurcation point, the symmetric

soliton is found to be unstable, demonstrating a trend to rearrange itself into the

stable asymmetric soliton that exists at the same value of the coupling constant Q.

Note, from Eqs. (2.1), that the coupling constants Q and K are the fractional

change in the wave envelopes per unit di�raction length, which, for quadratic non-

linear waveguides, are typically in the centimeter range. From Eqs. (2.10)&(2.20),

the limits of the existence range of solitary wave solutions, �1 < Q < 1, correspond

to complete coupling from one waveguide to another.

In the next chapter, we will investigate the system when the assumption of closely

coupled waveguides is removed. It leads to a much richer bifurcation phenomenon.



Chapter 3

Coupled Quadratically Nonlinear

Waveguides

(The General Case)

3.1 Introduction

In the last chapter, solitons in a model of parallel-coupled waveguides with quadratic

nonlinearity were studied. However, only a very limited situation was considered

there. The most essential limitation is the assumption that the coupling constants

between the fundamental harmonics (FH) and between the second harmonics (SH)

are equal. This assumption implies that the separation between the two waveguides

is small, so that the FHs and the SHs are equally coupled. Evidently, this is very

restrictive. In this chapter, the aim is to extend the study of the solitons in parallel-

coupled quadratically nonlinear waveguides, by removing this restriction, which

corresponds, physically, to varying the separation between the two cores. We denote

50
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the FH and SH coupling constants as Q and K. So, in this chapter, we consider

the case Q 6= K. Consideration of the general case of unequal couplings is of

principal interest, because it has no analog in terms of the single waveguides. The

main issues to be considered are the asymmetric solitons and bifurcations which

give rise to them, and the stability of the asymmetric and symmetric solitons. In

this chapter, it will be shown that the bifurcation discussed in the last chapter is

extended for this more general case, and the result needs to be formulated in the

form of three dimensional bifurcation diagrams.

3.2 Mathematical Model

The general model to describe the copropagation of FH u and SH v in the linearly

coupled waveguides was put forward in the last chapter. It is repeated here, for

convenience of reference,

i
@u1
@z

+ i�
@u1
@x

+
1

2

@2u1
@x2

� qu1 + u�1v1 = �Qu2 ;

2i
@v1
@z

+ 2i�
@v1
@x

+
1

2

@2v1
@x2

� v1 +
1

2
u21 = �Kv2 ;

i
@u2
@z

� i�
@u2
@x

+
1

2

@2u2
@x2

� qu2 + u�2v2 = �Qu1 ; (3.1)

2i
@v2
@z

� 2i�
@v2
@x

+
1

2

@2v2
@x2

� v2 +
1

2
u22 = �Kv1 ;

where the symbols carry the same meaning as in the last chapter. In the discussion

of this chapter, we still keep the assumptions that � = 0, and q = 1, which means

that we are still considering the no walko� and fully phase matching cases. Removal

of these assumptions to consider the e�ects of walko� and phase mismatch will be

deferred to the next chapter.

In this chapter, our analysis imposes no technical restrictions on the values of the
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coupling constants K and Q in Eqs. (3.1). However, there is a physical limitation

jKj � jQj: it is very unlikely that the SH coupling can be stronger than the FH

coupling. With regard to this restriction, the range K > 5=13 was not considered,

because only evident symmetric solutions exist there. In the negative K domain, we

will limit our investigation to K > �1, which is another boundary for the existence

of asymmetric solitons.

3.3 Stationary Solution

To obtain stationary solutions, one should drop the z-derivative terms in Eqs. (3.1),

and set all the variables real. (We also put � = 0, and q = 1.) Thus, we obtain

1

2

@2u1
@x2

� u1 + u1v1 +Qu2 = 0 ;

1

2

@2u2
@x2

� u2 + u2v2 +Qu1 = 0 ;

1

2

@2v1
@x2

� v1 +
1

2
u21 +Kv2 = 0 ; (3.2)

1

2

@2v2
@x2

� v2 +
1

2
u22 +Kv1 = 0 :

As in the previous chapter, the analysis consists of two independent parts. First,

analytic approximate results were sought for, using the variational analysis (VA)

approach; however, di�erent from the VA in last chapter, instead of using a sech2

function as ansatz, the more general Gaussian ansatz is used in this chapter. The

second part of the analysis, which serves as a check of the approximate results

obtained by VA, is a numerical analysis using a modi�ed version of the method of

lines (see, e.g., [53]. It is also called the relaxation method elsewhere [52].), instead

of using the Shooting method used in the last chapter. The reasons for making

these changes will be elaborated below in the following subsections.
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3.3.1 Variational Analysis

The di�erence of the variational analysis in this chapter from that in the last chapter

is that we use the Gaussian ansatz. When K = Q, the relations between the FH

and SH waves are

v1;2 = � 1p
2
u1;2 : (3.3)

However, since we allow the waveguides to have di�erent coupling constants for

FH and SH, Eq. (3.3) is no longer true. FH and SH waves will thus have di�erent

widths. Moreover, as discussed in the last chapter, and shown in Fig. 2.3, the widths

of the solitons estimated by VA using a sech2 ansatz do not agree very well with

those obtained numerically by the shooting method. This is because of the inherent

weakness of using the sech2 ansatz that only a single width parameter can be used.

Thus, it is necessary to use another ansatz for the more general case considered here

in order to allow for di�erent widths of all the four components of the soliton. It

has to be mentioned here that the Gaussian ansatz was earlier successfully applied

to description of solitons in a single-core quadratically nonlinear waveguide [39].

The basic idea of the variational analysis is to make use of the Hamilton's princi-

ple that the solution exists at the point where the action given by the time integral

of the Lagrangian is at its extremum. As what has been discussed in detail in

Sec. 2.3.1 in the last chapter, this corresponds to demanding the variations of the

e�ective Lagrangian with respect to each of the parameters to be zero.

As mentioned above, in this analysis, we use the more general Gaussian ansatz,

and it is

u1 = A1 exp
�
�1

2
�1x

2
�
;

u2 = A2 exp
�
�1

2
�2x

2
�
;
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v1 = B1 exp
�
�1

2
�1x

2
�
; (3.4)

v2 = B2 exp
�
�1

2
�2x

2
�
;

where A1, A2, B1, and B2 are the amplitudes, and �1, �2, �1, and �2 are the width

parameters of the FH and SH of the soliton solution sought for. The subscripts 1

and 2 pertain to the two cores.

Following the theory as described in Sec. 2.3.1, the Lagrangian density of Eqs. (3.2)

is

L = �1

4

h
(u01)

2 + (u02)
2 + (v01)
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2
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2
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2
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1

2
u21v1 +

1

2
u22v2 ; (3.5)

where the prime stands for d=dx.

Inserting Eqs. (3.4) into Eq. (3.5), we calculate the e�ective Lagrangian L,
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The variational equations are obtained by demanding the variations of the e�ective

Lagrangian L with respect to each of A1;2, B1;2, �1;2, and �1;2 to be zero. Then, we

obtain the following eight equations:
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Because these algebraic equations cannot be solved analytically, we resort to the

numerical Newton-Raphson method to �nd the solutions for the 8 parameters A1,

A2, B1, B2, �1, �2, �1, and �2. The Newton-Raphson method will be described

brie
y in the next subsection.

3.3.2 Newton-Raphson method

The Newton-Raphson method is a well-known method for solving nonlinear alge-

braic equations. Good reference to this method can be found in, e.g., [53, 60]. For

the self-consistency of this thesis, we will describe it brie
y here.
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Let f(s) be a real-valued scalar function and the method is used to solve the

equation

f(s) = 0: (3.15)

If we expand f(s) in Taylor series about s = sm, we will have

f(s) = f(sm) + f
0

(sm)(s� sm) +
1

2
f
00

(sm)(s� sm)2 + � � � = 0 ; (3.16)

where the prime here denotes d=ds. Newton-Raphson method arises from linearizing

f(s), i.e., replacing f(s) by a linear approximation consisting of the �rst two terms

in its Taylor expansion. From Eq. (3.16), it can be seen that

sm+1 = sm � f(sm)

f 0(sm)
; (3.17)

where sm and sm+1 here denote the values of s at the m-th and the (m + 1)-

th iterations. It can be shown that this process of iteration gives second-order

convergence to the true root of s. However, there is a catch in using the Newton-

Raphson method: the method is a local method; convergence is second-order only

if the initial guess of s is close enough to the true root.

The same idea can be extended to solve a system of equations such as Eqs. (3.7-

3.14). If we write

~f (~s) = 0 (3.18)

where ~f is a vector function, ~f(~s) = [f1(~s); � � � ; f8(~s)]T ; the f1; � � � ; f8 stands for

the functions in Eqs. (3.7-3.14), and ~s = (A1; A2; B1; B2; �1; �2; �1; �2)T . Expanding

~f(~s) around an approximation ~sm using a linear approximation of ~f (~s) will give

~f(~sm) + ~J(~sm)(~sm+1 � ~sm) = 0 ; (3.19)
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where ~J(~s) is the Jacobian matrix

~J =

26666664
@f1
@A1

� � � @f1
@�2

...
. . .

...

@f8
@A1

� � � @f8
@�2

37777775 (3.20)

If the inital guess ~so is su�ciently close to the true solution, the method converges

very rapidly (also with quadratic convergence as the scalar case).

3.3.3 Numerical Analysis

As mentioned in the last chapter, the Shooting method introduces numerical in-

stability in the range of the coupling constant Q < �0:3 . It failed to produce

the stationary soliton solutions in that parameter range; thus, another numerical

method is adopted in the work described in this chapter. The method is a modi�ed

version of the method of lines (which is also called the relaxation method in [52]).

First, we discretize the transverse space variable x . We replace the integration

domain dm of x by a set of n points:

xk = (k � 1)h; k = 1; 2; : : : ; n ; h � dm

n� 1
: (3.21)

Along each of the lines (xk; z) for z � 0, we denote the values of u1 by u1k (and

similarly for u2 and v1, v2 ). Then, the �nite-di�erence approximation is used for

@2u=@x2 :

@2u

@x2
=
uk�1 � 2uk + uk+1

h2
;

the error of the numerical scheme being O(h2) .

With this approximation, we transform the system of ODEs, Eqs. (3.2) to a

system of �nite-di�erence nonlinear algebraic equations,

F = 0 ; (3.22)
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where F is a system of 4n� 1 vector functions de�ned by

Fk =

8>>>>>>>>>><>>>>>>>>>>:

1
2
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h2
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1
2

�
wk�1�2wk+wk+1

h2
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� wk + w�kw2n+k +Qwk�n for (n + 1) � k � 2n ;

1
2

�
wk�1�2wk+wk+1

h2

�
� wk + 1

2w
2
k�2n +Kwk+n for (2n + 1) � k � 3n ;

1
2

�
wk�1�2wk+wk+1

h2

�
� wk +

1
2w

2
k�2n +Kwk�n for (3n + 1) � k � 4n :

(3.23)

In Eq. (3.23), we have denoted

wk �

8>>>>>>>>>><>>>>>>>>>>:

u1k for 1 � k � n ;

u2(k�n) for (n+ 1) � k � 2n ;

v1(k�2n) for (2n + 1) � k � 3n ;

v2(k�3n) for (3n + 1) � k � 4n ;

Of course, the wk�1 and wk+1 terms have to be equated to zero in Eq. (3.22) at

the boundaries of the integration domain to get the correct boundary conditions for

the solitary wave solutions.

Now, as a system of nonlinear algebraic equations, Eq. (3.22) can again be solved

by the Newton-Raphson method. The corresponding Jacobian matrix is obtained

by calculating @Fj=@wk , where 1 � j � 4n , and 1 � k � 4n . It is a 4n � 4n

matrix. Further technical details on how to obtain the solutions from here onward

will not be elaborated.

3.3.4 Discussion of Results

First, we will display results for the stationary solitons obtained by means of VA.

We should stress, however, that, except for a peculiar narrow parametric region

described below, the variational results are always fairly close to the direct numerical

ones. A detailed comparison will be given at the end of this subsection.
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We have found that the asymmetric soliton solutions exist only in the regions

R and S in the (K;Q) plane as shown in Fig. 3.1. The solid lines mark the loci of

the bifurcation points, whereas the dotted lines are Q = �K, which mark o� the

physically unrealistic regions where the SH coupling is larger than the FH coupling

(i.e., jKj > jQj). Thus, in the two triangular regions delineated by the dotted lines

and the vertical axes, the asymmetric solitons do exist, but are physically unrealistic.

It is to be repeated here that the range of existence of the asymmetric solitons is

found to be

�1 < K < 0:385: (3.24)

The upper limit was found exactly as 5=13 in the last chapter, which is approximated

by 0:385.

The variational results allow us to construct two three-dimensional bifurcation

diagrams shown in Figs. 3.2 and 3.3, for FH and SH respectively. They are plots,

vs. the coupling constants K and Q, of the e�ective asymmetry parameters �F

and �S de�ned as follows:

�F =
u21 � u22
u21 + u22

; (3.25)

�S =
v21 � v22
v21 + v22

; (3.26)

where u1;2 and v1;2 without the argument x are the peak values of the corresponding

waves. Note that the middle portions of the curved surfaces, corresponding to

the unphysical situation with jKj > jQj, have been chopped o�. We stress that,

although it is shown in Figs. 3.2 and 3.3 that both �F and �S are zero in these

regions, asymmetric solitons do exist in these regions as mathematical objects.
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Figure 3.1: The bifurcation regions. Asymmetric solitons exist in the regions marked by R and

S. The corners of the regions are at (�1;�1); (0; 0) and (0:385;�0:385). The dotted lines are

the lines Q = �K , to separate the unphysical area where jKj > jQj. The solid lines are the

loci of the bifurcation points found numerically.

In general, at all values of K, the FH �elds of the asymmetric solitons are

more asymmetric at small jQj. In fact, at jQj = jKj = 0, the two waveguides

become decoupled, and the �eld in the second waveguide is absent (we adopt a

convention to allocate the number 1 to the waveguide carrying larger �elds, i.e.,

u1 � u2 and v1 � v2). As jQj increases from zero, the asymmetry of the FH

�elds monotonically decreases; on the other hand, the asymmetry of the SH �elds

at �rst gets even stronger, and then rapidly decreases as the bifurcation point is

approached. The asymmetric solutions �nally merge with the symmetric ones at
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Figure 3.2: The bifurcation diagram for the fundamental harmonics. The middle portions are

chopped o� since jKj > jQj there.

the bifurcation points. These trends are more evident for more negative K. Close

to K = �1, the SH �elds attain the strongest asymmetry at very sharp parts of

the bifurcation diagram (Fig. 3.3). As K becomes more and more negative, the

bifurcation points spread apart towards larger values of jQj.
The characteristics of the asymmetric solutions can be further clari�ed by looking

at Figs. 3.4 and 3.5, which are plots of the peak values of u1;2 and v1;2 versus Q,

with K �xed as a parameter. (In both Figs. 3.4 and 3.5, the solid lines are for the

waves in waveguide 1 and the dotted lines are for the waves in waveguide 2.) For
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Figure 3.3: The bifurcation diagram for the second harmonics. The middle portions are chopped

o� since jKj > jQj there.

both FH and SH �elds in the waveguide 1, as K decreases (but remains positive),

the �elds become larger, and they reach a maximum at K = 0. Then, as K keeps

on decreasing further to negative values, the �elds become smaller. The FH �eld

decreases towards zero as K ! �1. In the waveguide 2, both FH and SH decrease

as K decreases. We adopt a convention that the amplitudes of the �elds in the

waveguide 2 are negative when they have the sign opposite to that in the waveguide

1. So, the amplitude of the SH �eld in the waveguide 2 assumes a larger absolute

value when K is getting more negative.

In fact, at Q = 0, when K ! �1, the absolute peak values of both v1 and v2

approach the same value, but they are of opposite sign, whereas u1 approaches zero
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Figure 3.4: The peak values of u1;2 vs Q, with K as a parameter. The solid lines stand for u1,

and the dotted lines are for u2. K takes the values: K = 0:4; 0:3; � � � ;�0:8;�0:9;�0:998.

and u2 is identically zero, so, that the soliton becomes anti-symmetric, with the

dominant SH �eld. However, since this is an unphysical case, we will not discuss it

further.

An noteworthy point is that when K is negative, the �eld v2 changes its sign

from positive to negative as jQj decreases past a certain value (depending on the

value of K). When this sign reversal takes place, the �eld v2 is essentially non-

Gaussian over a narrow range of Q, and has a very small value (see Fig. 3.6).

Coincidently, these non-Gaussian solutions correspond to the sharp portions of the

strongest asymmetry in the bifurcation diagram for SH (Fig. 3.3). Thus, VA based

on the Gaussian ansatz is inappropriate in this narrow parametric region, but it

proves to be appropriate in all the other cases.
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Figure 3.5: The peak values of v1;2 vs Q, with K as a parameter. The solid lines stand for v1,

and the dotted lines are for v2. K takes the values: K = 0:4; 0:3; � � � ;�0:8;�0:9;�0:998.

The widths of the components of the soliton solutions also vary with K and Q.

Fig. 3.7 shows the plot of the spot size W1 vs. K and Q for the component u1,

which is de�ned as follows:

W1 = 1=
p
�1 ; (3.27)

�1 being the width parameter according to Eq. (3.4). In general, the spot size

increases towards in�nity as K ! �1, jQj ! 1. As the peak values of the �elds are

simultaneously approaching zero there, this implies that the solutions are spreading

out inde�nitely in this limit.

Before proceeding to comparison of the analytical results obtained by means

of VA and numerical �ndings, it is relevant to mention that, in order to validate

our numerical results, we compared them as produced by di�erent methods. As a
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Figure 3.6: The shape of the SH component v2 of the asymmetric soliton at Q = 0:48 and

K = �0:2, where the sign reversal of v2 occurs. The solid line is the actual non-Gaussian

shape of the soliton obtained by the numerical method. The dashed line is the prediction of the

variational approximation. Since the variational approximation uses the Gaussian ansatz, it fails

to predict the correct shape in a narrow parametric region around this point.

typical example, we can mention what was obtained for the peak values u1 of the

FH in the waveguide 1. In the limit case K = Q, we compared the results obtained

from the modi�ed method of lines with those produced by the shooting method

described in the last chapter. The modi�ed method of lines used 101 lines; i.e.,

the discrete grid in the x domain has 101 points. The results were compared for

the range of Q from �0:2 to 0:3, the worst discrepancy being 1:7% at Q = �0:2;
otherwise, the discrepancies are all under 1%.

To check the relevance of the results obtained by means of VA, we compared

themwith those produced by two versions of the modi�ed numericalmethod of lines,
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outside the curved surface has no meaning, since data were not gathered for symmetric solitons

there.

using, respectively, 101 and 161 lines (the latter number was a technical limit set by

the computer used), for K and Q taking on di�erent values. In this relation, it is

relevant to note, �rst of all, that the modi�ed methods of lines using, respectively,

101 and 161 lines agree very well with each other, the worst discrepancy being

0:24%. Based on this, we believe that our numerical scheme is reliable.

Comparison between the variational and direct numerical results shows that

their di�erences range from about 2% to about 6%. Generally, the discrepancies

are larger very close to the bifurcation points. This is understandable because, as

shown in Figs. 3.2 through 3.5, the �elds change rapidly with Q near these points.

Particular results of the comparison are displayed in Table 3.1.
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Figure 3.8: The shape of the asymmetric soliton at K = 0, Q = 0:5. Shown are the FH

components u1;2. The solid line is the result obtained from the numerical method, and the dashed

line is generated by the variational approximation.

As a typical case, we show in Fig. 3.8 the shape of the asymmetric soliton at

K = 0 and Q = 0:5, as obtained from both VA and the modi�ed method of lines. It

can be seen that the agreement is very good; the largest deviations are at the skirts

of the soliton. The shape produced by VA is narrower there, which is a natural

drawback of the Gaussian ansatz. This feature is generic for all the values of K and

Q.
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Discrepancies

K �0:7 �0:4 0:0 0:3

Q 0:8 0:874y 0:5 0:725y 0:05 0:56y 0:35 0:425y

ML\ 0:03% 0:01% 0:06% 0:04% 0:08% 0:09% 0:08% 0:24%

VA] 2:9% 5:3% 2:4% 2:9% 2:1% 3:2% 2:3% 5:5%

y: these columns correspond to points close to the bifurcation points

\: method of lines, using 101 lines

]: variational method.

Table 3.1: Sensitivity Analysis (discrepancies when compared with method of lines using 161

lines)

3.4 The Stability Analysis

In this section, we will study stability of the stationary solutions found in the pre-

vious section. The Jacobian matrices obtained in Subsection (3.3.3) were used for

a straightforward linear stability analysis, by evaluating its eigenvalues, which is a

well-established method, see, e.g., [61] for details.

We use the results of the method based on 101 lines, which means discretizing

the variable x at 101 points. The corresponding Jacobian matrices will thus have

404 eigenvalues. If any of these eigenvalues is positive, the stationary solution is

regarded to be unstable. Since the calculation of the eigenvalues is straightforward

(being a standard feature of the software used), the linear stability was tested for

all the stationary solutions found.

Without exception, all the stationary solutions considered (including the sym-

metric ones) have at least one positive eigenvalue. This, however, does not mean



CHAPTER 3. COUPLED QUADRATICALLY NONLINEAR WAVEGUIDES 69

that all the solutions are truly unstable. Indeed, in the conservative system, the

stability may be only neutral, implying the existence of at least one zero eigenvalue

in the linear stability analysis. This fact was observed, for the limit case K = Q,

in the last chapter, in the form of very persistent, nongrowing and nondecaying,

internal vibrations of the asymmetric soliton generated by a small perturbation in

the initial conditions. In the numerical computations, however, the zero eigenvalue

can easily turn out to be a tiny positive one because of the numerical errors. On

the other hand, this implies that the straightforward numerical calculation of the

stability eigenvalues does not provide for the �nal answer, and direct simulations of

the PDE's (3.1) with perturbed initial conditions are necessary. The stability was

thus tested directly by means of the Split-step Fourier method.
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Figure 3.9: Evolution of a slightly disturbed asymmetric soliton at Q = 0:7 and K = �0:3.
Shown are the fundamental harmonic �elds in both waveguides. Distance of propagation simulated

was 3�.
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The conventional method of lines, that was used above to produce the stationary

soliton solutions, can also be used to solve the PDE's. However, we did not use

this method to tackle the stability problem, because, when formulated as above

to obtain the stationary solutions, the method turns out to be very ine�cient for

the PDE integration. Instead, we used the split-step Fourier method. The study

of the stability was performed at various points in the parametric space where the

asymmetric solitons exist. The selected points were

(K;Q) = (�0:3; 0:7); (�0:1;�0:4); (0;�0:4); (0;�0:56); (0; 0:566);

(0:2;�0:45); (0:3; 0:4):

They were chosen so that areas close to and far from the bifurcation points, as well

as the regions with positive and negative values of the coupling constants, were all

tested.

The results of this analysis are in complete agreement with the inferences for-

mulated in the last chapter: All the asymmetric solitons were found to be neutrally

stable. This means that, slightly perturbed, the solitons will undergo minor 
uc-

tuations around the stationary solutions over very long distances. The 
uctuations

do not have any sign of decay, but they are not growing either. This is exactly

the same behaviour as observed in the last chapter. A quite typical example of the

evolution of a slightly perturbed asymmetric soliton is displayed in Fig. 3.9, which

depicts a case of Q = 0:7 and K = �0:3. This �gure displays simultaneously the

FH components of the soliton in both waveguides.

We also checked the stability of the symmetric solitons which coexist with the

asymmetric ones. Exactly as expected, the symmetric solitons are always destabi-

lized by the bifurcation. This is illustrated by Fig. 3.10. It shows that the unstable
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Figure 3.10: Evolution of the peak values of the unstable symmetric soliton at Q = �0:4 and

K = 0. This �gure illustrates evolution towards the stable asymmetric soliton.

symmetric soliton su�ers spontaneous symmetry breaking and shows a trend to re-

arrange itself into a stable asymmetric soliton which exists at the same values of the

coupling constants. However, damping of the internal vibrations of the resultant

strongly perturbed soliton is so weak that there is no sign of settling down even

after a long distance.

For unstable symmetric solitons closer to bifurcation points, simulations show

that the process of evolution is even slower. As depicted in Fig. 3.11, even after a

long distance, the separation of the symmetric soliton is still quite barely noticable.

Comparison of Figs. 3.10 and 3.11 shows that symmetric solitons further away from

bifurcation points are more unstable than those closer to bifurcation points.
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Figure 3.11: The evolution of the peak values of an unstable symmetric soliton at Q = 0:566

and K = 0, (close to a bifurcation point). The evolution towards the asymmetric soliton state is

very slow.

3.5 Conclusion

In this chapter, we reported results of analytical and numerical consideration of

solitons in a system of two linearly coupled second-harmonic-generating waveguides.

We consider the system with arbitrary coupling constants for the fundamental and

second harmonics. Two regions of existence of nontrivial asymmetric soliton states,

along with bifurcation lines at which they bifurcate from obvious symmetric solitons,

are identi�ed. The analytical approach is based on the variational approximation,

which, di�erent from the last chapter, used a Gaussian ansatz. It provides better
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exibility in allowing one to use di�erent widths for the di�erent component waves.

This variational analysis is then followed by direct numerical solution of the station-

ary ordinary di�erential equations. The analytical and numerical results are found

to be in fairly good agreement, except for a very narrow parametric region, where

the second-harmonic component of the soliton is changing its sign, having a non-

monotonous shape. We further establish the stability of the asymmetric solitons,

simulating the corresponding partial di�erential equations, and simultaneously show

that the co-existing symmetric solitons are unstable. In the next chapter, we will

analyze in detail e�ects of a walko� (spatial misalignment) between the two cores.

We will also consider cases when the phase mismatch inside each waveguide to be

arbitary.



Chapter 4

Secondary E�ects

4.1 Introduction

Coupled waveguides can have important applications in photonics, e.g., as all-optical

switches [62, 63]. It has also been proposed to use dual core �ber coupler as soliton

compressor and splitter, achieving smaller pedestal [64], as nonlinear optical loop

mirror with self-switching [65].

For couplers in quadratically nonlinear medium, systematic theoretical results

for solitons in a model of parallel-coupled identical waveguides have been reported

very recently [66, 67]. The detailed results of this investigation were elaborated

in the previous two chapters. In this chapter, we will begin by considering the

case when the optical solitons do not have their wave vectors in parallel directions,

i.e., there is a spatial walko�, manifested as the terms, +i�ux and �i�ux. (The

walko� parameter � was put to zero in the two previous chapters.) The inclusion

of these \walko�" terms in the investigation of solitons in cubic nonlinear medium

appeared in a number of papers, e.g., [68, 69, 70]. Such terms can also be found

74
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in the investigations of gap solitons [71, 72, 73], in which such terms represent

the grating induced dispersion or di�raction, although then, the material second-

derivative dispersion or di�raction terms, uxx, need to be dropped o� because they

are much weaker in comparison.

For �(2) solitons in a single waveguide, investigations were carried out with the

phase mismatch as a varying parameter [58, 74, 75, 76], and a stability threshold in

terms of the phase mismatch parameter is known. In this chapter for coupled �(2)

waveguides, we will also investigate the case when the assumption of fully phase

match as in the last two chapters is dropped.

Usually, in the study of optical couplers, the two cores of the coupler are as-

sumed to be identical. However, in reality, the cores will seldom be identical, and,

furthermore, a �ber with dissimilar cores can easily be fabricated and may even �nd

interesting applications [17, 18].

It had been shown that the asymmetric couplers, with one linear core, and one

nonlinear core, with either quadratic or cubic nonlinearity, are superior in perfor-

mance, when compared with symmetric couplers with identical cores [45, 77]. The

asymmetric couplers do not exhibit the undesirable throughput oscillations, which

are found in symmetric couplers.

An application was also proposed to use asymmetric couplers as logic gates [78].

The asymmetric coupler there consisted of two single-mode �bers with di�erent

cubic nonlinearity constants, which were implemented by using �ber cores of the

same material but di�erent core radii.

In [79], soliton solutions were considered to equations describing a pair of tunnel-

coupled asymmetric cubic nonlinear optical �bers, the asymmetry being a phase-

velocity mismatch between them. Two bifurcations were found: one involved a ter-
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mination of a branch whose solitons have components of the opposite sign; the other

linked with the occurrence of a hysteresis-type behavior of another branch, whose

solitons have the same signs of their components. The hysteresis-type behaviour of

the second bifurcation might be of interest for applications, such as switching.

For other applications, it has been suggested to use asymmetric coupler as all-

�ber Brewster window [80], as highly broadband splitter [81, 82]. Using an asym-

metric coupler geometry, it has been shown that a higher e�ciency can be achieved

in designing a semiconductor ring laser [83].

From this survey, it can be seen that asymmetric coupler is a very useful con�gu-

ration. So, in the last part of this chapter, we will investigate solitons in asymmetric

couplers with quadratic nonlinearity. We will consider two types of asymmetry: one

case is that the phase mismatch parameters between the fundamental harmonic and

the second harmonic in the two cores are di�erent; the other case is that one core

is nonlinear, while the other core is linear.

4.2 E�ects of Spatial Walko�

A general model to describe the co-propagation of FH u and SH v in the linearly

coupled waveguides was put forward in the last two chapters, and is repeated here

for convenience:

iu1z + i�u1x+
1

2
u1xx � qu1 + u�1v1 = �Qu2; (4.1)

2iv1z + 2i�v1x +
1

2
v1xx � v1 +

1

2
u21 = �Kv2; (4.2)

iu2z � i�u2x +
1

2
u2xx � qu2 + u�2v2 = �Qu1; (4.3)

2iv2z � 2i�v2x +
1

2
v2xx � v2 +

1

2
u22 = �Kv1; (4.4)
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where all the symbols carry the same meanings as before.

In this section, we will concentrate on the e�ects of the spatial walko� terms. The

study is by means of direct PDE simulations (using the Split-step Fourier method as

discussed in Section (2.4.1)), keeping the walko� terms in Eqs. (4.1) - (4.4), which

had been omitted in previous chapters.

Firstly, we demonstrate that the asymmetric solitons are not destabilized by

the walko� e�ect if the walko� is small enough. In Fig. 4.1, we illustrate the

evolution of an asymmetric soliton under the action of a small walko�. In this

case, K = 0, Q = 0:5, and � = 0:05. For typical nonbirefringent Group III-V

semiconductor crystals, with a refractive index of 3:5, coherence length of around

10 � 100�m, and a typical wavelength of about 1�m, [84], this corresponds to an

actual misalignment of around 0:11 � 0:34 degrees between the beams in the two

waveguides (This physical value can be deduced from the normalized value of � by

reversing the normalization procedure as described in Section (1.4.2) of Chapter

1). Actually, available experimental techniques allow us to make the misalignment

essentially smaller than this, so these values are quite relevant to estimate limits

of the soliton's stability against the walko�. The total distance of travel simulated

was 3�.

In Fig. 4.2, we illustrate the evolution of another soliton when the walko� is

larger. In this case, � = 0:5, K = Q = �0:7. The total distance of travel simulated

is �. It can be seen that the shapes of the soliton components get distorted, and

skew to one side. It can be also seen that the smaller of the soliton components

in the two waveguides gets trapped by the larger soliton component and pulled to

travel in the same direction.

In Fig. 4.3, we summarize the distortion e�ect in
icted on the soliton as both the
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walko� parameter � and the coupling constants, K and Q are varied (we consider

here the case K = Q). We quantify the distortion by de�ning

D =

R
W1
ju21 � u21ijd�R
W1
u21id�

; (4.5)
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Figure 4.1: Evolution of the asymmetric soliton at Q = 0:5, K = 0 under the in
uence of

the walko� e�ect with � = 0:05. Only the FH components are shown. The slanting propagation

directions are due to the walko� terms. Distance of propagation simulated was 3�.
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Figure 4.2: Evolution of soliton when walko� is larger.

(a) Trajectories of the peak values of the soliton components. Initially, the upper two traces are

those of the FH and SH in waveguide 1, and the lower two traces are those in waveguide 2. It

can be noted that they travel in opposite directions. However, the smaller waves in waveguide

2 are �nally pulled by the larger waves in waveguide 1 and trapped to follow their direction of

travel. (b) The shapes of the soliton components in waveguide 1 and (c) the shapes of the soliton

components in waveguides 2, after propagating over a normalized distance of �. In this analysis,

K = Q = �0:7, q = 1, and � = 0:5. It can be seen that the walko� distorts the soliton,

making the waveforms to skew to one side.
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Figure 4.3: Distortion as a function of walko� parameters � and coupling constant Q. In

this analysis, K = Q, and distortion is shown after a propagation distance of �. In general,

the distortion is larger for larger walko�, and stronger coupling (where the solitons get more

symmetric).

where the integrations are con�ned within the beam width (the spot size), W1, as

de�ned in Eq. (3.27) in Chapter 3. u1 is the FH in waveguide 1 after the propagation

distance of �, and u1i is the same wave �led at the input (z = 0). The integrations

are done with respect to the transverse coordinate, �, in the reference frame which

travels together with u1.

It can be seen that, in general, the distortion becomes larger as � gets larger.

Also, distortion is larger for larger absolute values of the coupling constants. This

trend is very prominent for positive Q: as one sees in Fig. 4.3, the distortion pro-

duced by a �xed value of � steeply increases with the increase of Q > 0, quickly

leading to destruction of the soliton. Because the solitons become more symmetric
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with the increase of the absolute values of the coupling constants, we can interpret

this trend as an e�ect of pulling apart of two soliton components (referring to the

two cores) having nearly equal energies.

We also considered the walko�-induced deformation of the stable symmetric

solitons, existing before the bifurcation. For instance, in the case K = Q = 0:4, we

observed that, in the presence of quite a strong walko�, � = 0:4, both components of

the soliton developed conspicuous side lobes after having travelled a long distance,

z = 3�. As walko� becomes even larger, at � = 0:6, the components in the two

cores get pulled apart into the lobes, and they are no longer trapped together to

travel in the same direction, which we interpret as destruction of the soliton at some

� between 0:4 and 0:6.

4.3 E�ects of Varying the Phase Mismatch

E�ects produced by varying the mismatch parameter q are important in practice,

and they turn out to be rather easy to investigate. Running the numerical analysis,

using the relaxation method (see descriptions in Section (3.3.2) & (3.3.3)) with

di�erent values of q, we have found that, as it gets smaller, the regions where

asymmetric solitons can exist shrink; the opposite happens when q gets larger. In

fact, as q gets larger, the asymmetry gets larger very rapidly (�F and �S , which

were de�ned in Eqs. (3.25) & (3.26) of the last chapter, become very close to 1 ).

This means the �elds stay largely in one waveguide and are absent in the other;

there is negligible coupling, thus, the two waveguides get e�ectively decoupled at a

large phase mismatch.

Fig. 4.4 shows the plots of the asymmetry parameters, �F;S , versus the FH
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Figure 4.4: The asymmetry parameter, �F;S , as functions of the FH coupling constant Q.

coupling constant Q for a �xed value of the SH coupling constant K of 0, with the

phase mismatch q as a changing parameter, taking on values 0.25, 0.5, 1, 2, and

4. It can be seen that the regions where the asymmetric solitons exist expand as q

gets larger. Note that the dashed curves, corresponding to q = 1, are cross-sections

of the bifurcation diagrams shown in Figs. 3.2 and 3.3 in the last chapter. Similar

analyses had been done for K = �0:5 and K = 0:3. The results are not displayed

here as they do not produce anything essentially di�erent. To show the e�ect of

even larger values of q, we include Figs. 4.5 and 4.6, for the cases K = Q and

K = 0, respectively, which show that the asymmetry stays relatively constant as q
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is increased beyond about 4.
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Figure 4.5: The bifurcation diagrams as a function of the coupling constant Q and phase

mismatch q for the case K = Q.

The case of very small values of q can be easily considered by means of an

approximation for the single-core waveguides (one should bear in mind that our

parameter q, entering the FH equations, is the inverse of the frequently de�ned

mismatch parameter � in the equation for SH, see e.g. [76]). Namely, one assumes

that, in Eqs. (4.2) and (4.4), it is possible to neglect all the terms but the last two

terms on the left-hand sides, so that SH can be eliminated in favor of FH: vn � 1
2u

2
n

(n = 1; 2). Substitution of this into Eqs. (4.1) and (4.3) immediately yields a system
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Figure 4.6: The bifurcation diagrams as a function of the coupling constant Q and phase

mismatch q for the case K = 0.

of two linearly coupled cubic nonlinear Schr�odinger equations for the FH �elds un,

which is identical to that considered in detail earlier in the context of the twin-core

nonlinear optical �bers [17, 24].

4.4 Asymmetric Coupler

In this section, we consider solitons in asymmetric couplers with the quadratic non-

linearity. Since the two crucial length scales (the di�raction and coupling lengths)
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are on the same order of magnitude (a few millimeters) [24, 43], which applies to the

asymmetric couplers as well, so a soliton in this system is a physically realistic ob-

ject. We will be dealing with two di�erent types of dissimilarity between the cores.

First, we study couplers with cores which have di�erent intrinsic phase mismatches

between the fundamental harmonic (FH) and the second harmonic (SH). Here, we

consider two limiting cases, viz., those when the cores are closely spaced or, on the

contrary, are widely separated. This kind of asymmetric coupler can be fabricated

quite easily. One way to do so is to give the waveguides di�erent cross-sectional

shapes, while keeping their e�ective cross-sectional areas equal, so that they have

equal nonlinear constants, which will be assumed below.

Then, we consider another type of the asymmetry, namely, a limiting case when

one of the cores is purely linear, while the other one has the quadratic nonlinearity.

This case can also be readily realized, by simply using di�erent materials for the

two cores. It was found that for cw beams in such a coupler, complete switching

can be achieved without the detrimental oscillations observed in the coupler with

the identical nonlinear cores [77].

We will present detailed bifurcation diagrams for solitons existing in these cou-

plers. These diagrams are of twofold interest, as a description of a fundamental

physical object, and, also, for understanding the switching properties of the asym-

metric couplers in the soliton regime when they are used as optical switches.

4.4.1 Mathematical Model

A general model which describes the stationary distribution of FH and SH ampli-

tudes in two coupled quadratically nonlinear waveguides was put forward in the two
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previous chapters, and repeated in Section (4.2). In this section, the equations are

slightly modi�ed as below (so that the frequently used phase mismatch parameters

�1;2 in the equations for SH are used instead of the parameter q which was used

previously):

i (u1)z +
1

2
(u1)xx � u1 + u�1v1 = �Qu2; (4.6)

2i (v1)z +
1

2
(v1)xx � �1v1 +

1

2
u21 = �Kv2; (4.7)

i (u2)z +
1

2
(u2)xx � u2 + u�2v2 = �Qu1; (4.8)

2i (v2)z +
1

2
(v2)xx � �2v2 +

1

2
u22 = �Kv1: (4.9)

We will, �rst of all, investigate the e�ect of the asymmetry due to di�erent phase

mismatch between the two harmonics in each core, i.e., �1 6= �2. We will analyze in

detail two limiting cases of the closely spaced or widely separated cores, the former

being dealt with by setting the FH and SH coupling constants Q and K equal,

while the latter is accounted for by neglecting the K in comparison with Q, i.e.,

setting K = 0 (see Ch. 3). The other case which is worthy special consideration is

that when one core is quadratically nonlinear while the other one is purely linear

[77]. In this case, we simply omit the nonlinear terms in Eqs. (4.8) & (4.9), keeping

arbitrary couplings constants Q and K.

4.4.2 Results

A peculiarity of the �(2) models is that they are far from any integrable limit, so that

almost no property of the soliton solutions can be obtained in an analytical form,

the only exception being the particular exact solution in the single-core model at

� = 1, found long ago by Karamzin and Sukhorukov [50, 51]. That is why general
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results can only be obtained numerically [43], or, sometimes, in a semianalytical

approximate form based on the variational approach. For the �rst time, the varia-

tional approximation was applied to the �(2) model in the work [39], and in [66, 67],

it was quite e�ciently developed for the solitons in the symmetric �(2) coupler.

This had been elaborated in the last two chapters. However, the variational ap-

proximation gets messy for more sophisticated models containing a large number of

parameters. Therefore, in the present work, we have carried out the analysis using

direct numerical techniques. We used the same �nite di�erence scheme as before

(see Sections (3.3.2) & (3.3.3)) to trace out all the stationary spatial-soliton solu-

tions. The stability of the solitons can be partially predicted, using the standard

theorems of the bifurcation theory [86]; however, in this work, we further tested the

stability by means of direct simulations, using the well-known Beam Propagation

Method (BPM) (see Section (2.4.1)).

In view of the necessity to analyze the soliton solutions in the �(2) models by

numerical methods, and because of the presence of several physically meaningful

control parameters, as done in earlier chapters, I present the results here in the

form of plots, bifurcation diagrams, showing the dependence of the important pa-

rameters of the solitons (e.g., the energy ratios �F;S ) vs. the control parameters.

The bifurcation diagrams display both a smooth variation of established solutions

with the change of the control parameters, and the bifurcations, i.e., qualitative re-

arrangements of the solutions at some critical points. The bifurcations are of major

interest not only by themselves, but for applications too, as a bifurcation exactly

indicates switching in the corresponding nonlinear optical device.
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4.4.2.1 Di�erent Phase Mismatch, Closely Placed Cores

As a reference, the phase mismatch factor for waveguide 2 was kept constant, �2 � 1,

while the control parameter �1, the phase mismatch in the �rst waveguide, was

varied from 0:25 to 8. Typical results for �1 > 1 are depicted in Fig. 4.7, which

are plots of the asymmetry parameters �F and �S vs. the coupling constant Q

(recall that the closely spaced cores implyK = Q). It is obvious that �F = �S = 1

at Q = 0, because the �elds are absent in one of the waveguides in the absence of

the linear coupling. As expected from the bifurcation theory, the branches of the

bifurcation diagram for the symmetric coupler (the dotted line in Fig. 4.7) unfold

to closed loops above the horizontal axis, and to open curves below it. (Typical

examples of similar unfolding of bifurcation diagrams can be found in e.g., [61].) As

�1 gets larger, the branches deviate more from the dotted lines.

The same bifurcation diagram for �1 < 1 is shown in Fig. 4.8, for a (typical)

particular value �1 = 0:25 (while �2 is kept at 1). The unfolding is di�erent from

that in Fig. 4.7, mainly at large negative values of Q. The loops for FH get open

and those for SH cross. The �nite-di�erence scheme that was used to obtain the

soliton states becomes inaccurate at large negative values of Q. The reason is that

the widths of the soliton diverges as Q ! �1, hence the size of the integration

domain needs to be expanded. With a �xed number of the grid points, this implies

deterioration of the accuracy. However, because it is clear that the soliton disappears

in the limit Q ! �1, getting in�nitely broad, we did not try to trace this with a

great accuracy.

The bifurcation diagram for �1 = 0:5 has also been obtained; however, it is not

displayed here, because it looks quite similar to that shown in Fig. 4.8, but with a
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smaller deviation from the bifurcation diagram of the fully symmetric coupler.
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Figure 4.7: Bifurcation diagrams for closely placed asymmetric cores

(the case K = Q) with a di�erence in the phase mismatch: (a) the FH component; (b) the SH

component. The phase mismatch factor of core 1, �1, takes on the value 2, 4, and 8, while in the

second core we set �2 � 1. The bifurcation diagram for the corresponding symmetric coupler is

also included as a reference (by the dotted lines).
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Figure 4.8: Bifurcation diagrams for closely placed asymmetric cores (the case K = Q and

�1 = 0:25): (a) the FH component; (b) the SH component.

4.4.2.2 Di�erent Phase Mismatch, Widely Separated Cores

In this case, we set K = 0. Similar to the previous case of K = Q, the phase-

mismatch factor for waveguide 2, �2, was kept constant, while the one for waveg-

uide 1, �1, is varied. The unfolding of the bifurcation diagram, starting from that

corresponding to the fully symmetric coupler, is shown for this case in Fig. 4.9. The

unfolding looks as expected from the bifurcation theory. It can be seen that, here,

the bifurcation diagrams are all symmetric about Q = 0.



CHAPTER 4. SECONDARY EFFECTS 93

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Θ

F

α
1

=2

FH

A

B

C

Q

(a)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Θ

S

α
1

=2

SH

Q

(b)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Θ

F

α
1

=0.5

FH

Q

(c)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Θ

S

α
1

=0.5

SH

Q

(d)

Figure 4.9: Bifurcation diagrams for widely separated asymmetric cores (the case K = 0) with

di�erent phase mismatch:

(a) �1 = 2, �2 = 1, the FH component; (b) �1 = 2, �2 = 1, the SH component; (c) �1 = 0:5,

�2 = 1, the FH component; (d) �1 = 0:5, �2 = 1, the SH component. The bifurcation diagram

for the corresponding symmetric coupler is also included as a reference (by the dotted lines).

4.4.2.3 Stability of the Solitons and Dynamical Rearrangement of Unsta-

ble Solitons

In Figs. 4.7 - 4.9, the solution branches which are expected to be unstable on the

basis of the general principles of the bifurcation theory [86] are shown by the dot-
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dashed lines. The corresponding stability results are natural extensions of those

obtained in the previous chapters for the symmetric coupler. To verify this, direct

BPM simulations were run at a number of points in the parametric space. It has

been found that the solutions which were expected to be stable or unstable on the

basis of the general principles, always agree with the predictions. It has also been

found that nonlinear development of the instability of unstable soliton states tends

to rearrange the unstable solitons into the stable ones existing at the same values of

the parameters. As an example, in Fig. 4.10 we show the evolution (solid lines) of an

unstable soliton (corresponding to the point A in Fig. 4.9a), with a visible trend to

rearrange it into its stable counterpart (corresponding to the point B in Fig. 4.9a),

for the case K = 0 (the widely separated cores). In Fig. 4.10, we have also showed

the evolution (dotted lines) of the same soliton input into another stable soliton

(corresponding to the point C in Fig. 4.9a) when the asymmetry of the coupler is

nulli�ed; i.e., �1 = �2 = 1. This demonstrates the potential use of the proposed

�(2) coupler as an optical switching device, provided that the asymmetry of the

coupler may be controlled electronically (e.g., by means of the piezoelectric e�ect).

Finally, we note that conspicuous internal vibrations observed during the evolution

are characteristic of �(2) systems [59].
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Figure 4.10: The evolution of soliton states

Solid lines: the evolution of an unstable soliton state into the corresponding stable soliton, for

widely separated cores (the case K = 0), with �1 = 2, �2 = 1, and Q = 0:25. Dotted

lines: the evolution of the same soliton input when the asymmetry of the coupler is nulli�ed; i.e.,

�1 = �2 = 1. Only the evolution of the FH waves is shown here (the SH waves follow the same

trend and are not shown).
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4.4.3 Solitons in the Coupler with One Linear and One Non-

linear Cores

The special case of the coupler in which one core is linear is of interest by itself (see

results below which show that soliton-like localized wave with no e�ective di�rac-

tion can be present in a linear core) and for applications [77]. Recall that the

corresponding model is obtained from the general system (4.6) - (4.9) by dropping

the nonlinear terms in Eqs. (4.8) and (4.9). The results were obtained for the case

of no phase mismatch, viz., �1 = �2 = 1. It immediately follows from the linear

equations (4.8) and (4.9) that, if also K = Q (the case of small separation between

the cores), the FH and SH asymmetries are strictly equal, �F = �S . For this case,

the results are summarized in Fig. 4.11, in the form of the plot of �F vs. Q. A

noteworthy feature of the solution is that, as the linear coupling, jQj, tends to the

value 1, the solitons in both cores tend to become identical. (Note that the word

\solitons" is used loosely here for the linear core to mean localized waves with no

e�ective di�raction; rather than to refer to the de�nition that soliton is formed by

a balance between di�raction and nonlinearity, which obviously is absent in the lin-

ear core.) Also, the numerical solutions demonstrate that the solitons can only be

obtained when the nonlinear core dominates, which is quite natural, as the solitons

cannot exist without the nonlinearity. When K = 0 (the case of the widely sepa-

rated cores), the solutions do not have any SH components in the linear core, i.e.,

�S = 1. Otherwise, there is only a small qualitative di�erence between this case

and the previous one, K = Q.

As concerns the stability, it has been found, by means of the direct BPM simu-

lations, that all the soliton solutions for both cases K = Q and K = 0 are stable.



CHAPTER 4. SECONDARY EFFECTS 97

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

solid: K=Q

dashed: K=0

Θ
F

Q
Figure 4.11: Plots of the asymmetric parameter, �F , vs. the linear coupling constant, Q,

for the closely placed waveguides (the case K = Q; the solid line), and for the widely separated

waveguides (the case K = 0; the dashed line). One waveguide is linear and the other one is

quadratically nonlinear. In the case K = Q, �F � �S , and in the case K = 0, �S = 1.
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4.5 Conclusion

In this Chapter, we analyze, in detail, e�ects of a walko� (spatial misalignment)

between the two cores. We demonstrate that the asymmetric solitons remain stable

if walko� is small. When the walko� becomes larger, the solitons get strongly

distorted, and �nally destructed when walko�.

We also investigated e�ects when the phase mismatch parameter was varied.

As the phase mismatch parameter, q, gets smaller than 1, the regions where the

asymmetric solitons exist shrink, whereas these regions expand when q gets larger

than 1. However, as q increases beyond about 4, the asymmetry stays more or less

constant, especially for the case K = 0.

Then, by means of direct numerical methods, we study spatial solitons and

their stability in a pair of asymmetric linearly coupled waveguides with the intrinsic

quadratic nonlinearity. Two cases are considered in detail, viz., when the coupling

constants at the fundamental and second harmonics are equal, and when the cou-

pling at the second harmonic is absent. These cases correspond to the physical situ-

ations in which the coupled waveguides are, respectively, closely or widely separated.

Two di�erent kinds of the asymmetry between the waveguides are considered. The

�rst of them corresponds to a di�erence in the phase mismatch between the funda-

mental and second harmonics in the two cores. Unfoldings of the previously known

bifurcation diagrams for the symmetric coupler are studied in detail at various val-

ues of the asymmetry parameter, and stability of di�erent branches of the solutions

are tested. Simulations of dynamical evolution of unstable solitons demonstrates

a trend of their rearrangement into stable solitons coexisting with them. The sec-

ond kind of the asymmetry is the special case when one waveguide is linear, while
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the other one possesses the quadratic nonlinearity. In contrast to the case when

both waveguides are nonlinear, in this case the soliton solutions for the two lim-

iting cases of the closely and widely separated waveguides are not much di�erent.

All the solitons in this system are found to be stable. The obtained results, and

especially bifurcations between solitons of di�erent types, suggest straightforward

applications to the all-optical switching. For example, the numerical experiment as

depicted in Fig. (4.10) indicates the use of that device as an electronically controlled

demultiplexer.



Chapter 5

Coupled Waveguides with Bragg

Gratings

5.1 Introduction

A soliton is a localized pulse of wave, which gains its stability by a balance of the

e�ect of the nonlinearity of the medium, which tends to concentrate the energy

of the pulse and the e�ect of group velocity dispersion (for temporal soliton), or

normal di�raction (for spatial soliton), which tends to disperse the energy of the

pulse. Gap solitons are also localized wave structure, but in a medium which has a

periodic variation in the linear optical properties, i.e., with a grating, over a length

scale on the order of the wavelength of light. The balance will then be between

the nonlinearity and the e�ective dispersion (or di�raction) due to the photonic

band gap structure that results from the periodic variation in the linear dielectric

constant. Qualitatively, the grating dispersion is due to the fact that, close to the

Bragg resonance, light is slowed down because of the multiple Fresnel re
ections o�

100
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the rulings of the grating. This slowdown of the group velocity of light, however,

has a strong frequency dependence, leading to the strong dispersion. A recent

experimental study [87] has demonstrated that the e�ective Bragg-grating dispersion

may be six orders of magnitude larger than that in uniform �ber. A detailed account

of the interplay between the counterpropagation of forward and backward waves,

and the resulting opening up of a gap in the system's linear spectrum (the photonic

bandgap) can be found in [88, 89].

Since the grating structure can easily be engineered, also the e�ective dispersion

(di�raction) due to the grating is always much stronger than the normal material

dispersion (di�raction) [75], medium with a grating structure o�ers ideal premises

to generate solitons, with properties which are easily controlled by proper design

of the grating structure. Since the soliton period is inversely proportional to the

dispersion, the strong dispersion implies gap solitons can be observed in gratings of

only a few centimeters in length; however, the strong dispersion also implies that the

required optical intensities to generate solitons are correspondingly higher than in

uniform media. This is because the e�ect of the nonlinearity needed to balance the

dispersion must be much larger, but the strength of the nonlinearity is una�ected

by the grating.

Early investigations of nonlinear periodic structures included the studies of the

stationary properties and dynamics of �elds in such structures [90, 91]. The term

\gap soliton" was �rst used by Chen and Mills [92], who showed that electric �eld

in such periodic structure can exhibit solitonic behaviour, using numerical tech-

niques. Further discussion of the implications of modulation instability in nonlinear

periodic structures for the existence of gap soliton can be found in [93]. In subse-

quent researches, it was shown that wave envelope functions in nonlinear periodic
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structures do really have analytical solitary-wave solutions [71, 72, 94], following the

pattern of the classical exact soliton solution to the massive Thirring model (MTM)

[95, 96] (this approach is referred to below as the MTM approach). The solutions

have two parameters: the �rst one determines the soliton's velocity, which can be

anywhere between zero and the speed of light in the bare medium, while the second

one is a detuning parameter which determines the width, height, and spectrum of

the soliton. In another limit, where the nonlinear terms can be treated as small

perturbations, linear approximation can be assumed to represent the solutions by

Bloch functions (BF), which are the eigenfunctions of the periodic linear media [88].

By applying perturbation method to take the nonlinearity as slow modulations of

the Bloch functions, the wave envelope function can be shown to satisfy the non-

linear Schr�odinger equation [97]-[99]. The solution is then well known [100]. We

refer to this approach as the BF approach below. In [101]-[103], they used the name

\Bragg Grating Solitons" for the gap soliton solutions, where such an approach is

applicable, which have the spectral contents concentrated close to the edge of the

photonic band gap. A detailed comparison of the two approaches can be found in

[89].

Many structures can be used for the experimental observation of gap solitons.

These include thin-�lm stacks, planar waveguides with a surface corrugation, and

optical �bers with a grating grown or written in them. Among these, optical �ber

is the most attractive because its low loss allows very long interaction lengths,

which thus reduce the nonlinearity required. A recent experimental achievement

was the observation of Bragg grating solitons in optical �ber with gratings written

on it, using the phase mask scanning technique [87, 104]. Earlier observation of gap

soliton propagation in optical �ber gratings was reported in [105].
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On the other hand, research e�orts also diverted into investigation of gap solitons

in a nonlinear optical systems with other nonlinearities. Recently, theoretical results

have been reported for the model with the quadratic (second-harmonic-generation)

nonlinearity [106]-[111], as well as for the self-induced transparency in the extended

Bragg re
ector (resonant interaction between the counterpropagating waves and

two-level atoms) [112].

However, in these earlier works, gap solitons were investigated in a single waveg-

uide. In this work, we study gap solitons in a system of two linearly coupled waveg-

uides with Bragg gratings, which have never been studied before. The system which

we study here may �nd a broad �eld of applications, as it combines properties of

the solitons in both the dual-core nonlinear �bers and in the nonlinear single-core

ones with the Bragg gratings.

5.2 Background Theory

To give a qualitative description of the background physics of gap solitons propagat-

ing through periodic structures, let us consider a grating in an optical �ber, which

points in, says, the z-direction. The refractive index pro�le is as shown in Fig. 5.1.

For simplicity (also in practice), we can assume the modulation amplitude �n of

the refractive index to be small, or �n � n, n being the average refractive index.

This means that the grating is shallow. The period of the periodic refractive index

modulation is d. The key property of gratings is that at wavelength � � �o, where

�o = 2nd; (5.1)

exactly half a wavelength �ts into each period of the grating. At this \Bragg con-

dition", light which is re
ected o� the interfaces which are an integer number of
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Figure 5.1: The refractive index pro�le of a Bragg grating structure.

periods apart are all in phase. The re
ected wave will then be very strong, and

for a grating of su�cient length, the re
ectivity can be almost one. Higher-order

Bragg re
ection also can occur at shorter wavelengths. At wavelengths far from

this Bragg condition, the light re
ected o� the various interfaces is mutually out of

phase. As a consequence, the light then propagates through the medium essentially

with transmissivity close to unity.

Rather than as a function of wavelength, Eq. (5.1) can be re-written as a function

of the frequency !,

!o =
�c0
nd

; (5.2)

where !o is the Bragg frequency, and c0 is the speed of light in vacuum.

We also de�ne here the wave number ko at the Bragg condition,

ko � �

d
: (5.3)

The range of frequencies �! around !o, over which light is Bragg-re
ected is
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given by [89]:

�!

!o
� �n

n
: (5.4)

Let us denote the upper edge of this frequency range by !u, and the lower edge by

!l. We consider the nonlinearity to be of Kerr (cubic) type; i.e., the refractive index

is intensity-dependent,

n(I) = n1 + n2I: (5.5)

I is the local light intensity, n1 is the linear refractive index, and n2 is the nonlinear

index coe�cient. For simplicity, we take the nonlinearity to be positive, so that the

refractive index increases with intensity. From Eq. (5.2), it can be seen that the

Bragg frequency !o will decrease with intensity I. So, light with high intensity at

frequency around !u will detune itself from the Bragg condition, and can propagate

through the mediumunimpeded, while light with low intensity at the same frequency

will be Bragg-re
ected. Now, let us consider a light pulse with frequency !u, present

in the nonlinear periodic medium. It can been seen that light in the middle of the

pulse with high intensity can propagate freely in the medium, while light at the

leading and trailing skirts of the pulse, where intensity is low, will be Bragg-re
ected

back towards the middle of the pulse. From this simple qualitative description, it

can be deduced that once a high intensity light pulse is created inside such nonlinear

periodic medium, it tends to stay together, and travels through the medium as a

soliton.
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5.3 Coupled-Mode Equations for a Single

Nonlinear Waveguide

For a single nonlinear waveguide with a grating in it, let us consider the light wave

to travel in the z-direction. As usual, we can assume that the medium is non-

magnetic, and the light is linearly polarized. We can start the derivation of the

modelling equations from Eq. (1.23) in Chapter 1, which I write again here as,

5�5�E = � 1

c20

@2

@� 2
E � �o

@2

@� 2
P (5.6)

(Note that the symbol � is used instead here to denote the \time" variable, reserv-

ing t for the normalized time later.) Following the same assumptions leading to

Eq. (1.34), Eq. (5.6) becomes

@2

@z2
E � �(z)

c20

@2

@� 2
E � �o

@2

@� 2
PNL = 0 : (5.7)

Since what we consider here is temporal soliton, as contrast to spatial soliton con-

sidered in Section (1.4.1), the second derivative terms with respect to the transverse

coordinates x, and y are absent here. Also, in Section (1.4.1), the dielectric constant

� � (1 + �) was a function of y only to account for the refractive index pro�le of

the slab waveguide. Here, for a waveguide with a grating, the dielectric constant

will then be a function of z to model the periodic variation due to the grating.

Speci�cally, we write

�(z) = n2 + "(z) ; (5.8)

where we consider "(z) to have a period of d, i.e., period of the grating. Expanding

" in a Fourier series, we have

"(z) =
X
m

"m exp(2ikomz): (5.9)
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Since the average value of the dielectric constant has been denoted explicitly as n2,

m = 0 is excluded from the summation. We will restrict ourselves to consider only

light at frequencies ! around the Bragg condition at !o, cf. Eq. (5.2).

We look for solutions of the form:

E(z; � ) = E+(z; � )e
�i(!o��koz) + E�(z; � )e

�i(!o�+koz) + c:c: ; (5.10)

where E+ and E� denote the �elds travelling to the right (forward direction) and left

(backward direction), and they vary weakly with z and � . c.c. stands for complex

conjugates.

We then insert Eq. (5.8),(5.9)&(5.10) into Eq. (5.7). Note that in taking sec-

ond derivatives, those terms involving k2oE� and !2
oE� will cancel because of the

linear dispersion relation. Those terms involving @2E�=@z2, and @2E�=@� 2 can be

neglected because we assume E+ and E� to be slowly varying. Also, The contri-

bution from the nonlinear polarization is assumed to be of the same order as the

second derivatives of the linear terms, so that only the lowest order terms due to the

nonlinearity are kept. This is justi�able, since this is the physical requirement of

a balance between nonlinearity and dispersion for obtaining soliton solutions (see,

e.g., discussion in [8]). Thus, we get"
+i
@E+

@z
+ i

n

c0

@E+

@�
+ �E� + �S jE+j2E+ + 2��jE�j2E+

#
e�i(!o��koz)

+

"
�i@E�

@z
+ i

n

c0

@E�
@�

+ �E+ + �S jE�j2E� + 2��jE+j2E�
#
e�i(!o�+koz)

+ c:c: = 0 ;

(5.11)

where �S and �� are given by [8, 10, 113, 114]:

�S =
3

4

!2
o

koc20
QS

eff�
(3)(�!;!;�!; !) (5.12)
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and

�� =
3

4

!2
o

koc20
Q�

eff�
(3)(�!;!;�!; !) : (5.13)

QS
eff and Q�

eff are the e�ective modal overlap integrals for self-phase modulation

and cross-phase modulation respectively, cf. Eq. (1.42). Usually, these two integrals

are the same. We label them separately because, in some mode-coupling problems,

the mode overlap is more complicated, and they can be di�erent. Finally, we have

+i
@E+

@z
+ i

n

c0

@E+

@�
+ �E� + �S jE+j2E+ + 2��jE�j2E+ = 0

�i@E�
@z

+ i
n

c0

@E�
@�

+ �E+ + �S jE�j2E� + 2��jE+j2E� = 0 : (5.14)

where

� =
!o~�

2nc0
; (5.15)

and ~� � "1 = "�1.

Note that all the non-phase-matched terms and terms involving components of

higher spatial frequencies in Eq. (5.9) have been ignored, keeping only the lowest

order Fourier terms "1 and "�1. This is acceptable because, if the grating is shallow,

i.e., "m=n2 being small, all the higher terms will be of order �2 and negligible, cf.

Eq.(5.15).

Note that the �E� terms in Eq. (5.14) represent the linear couplings between

the forward moving and the backward moving waves due to the grating. From

Eq. (5.15), it can be seen that the coupling strength depends on the Bragg frequency,

and the fractional refractive index modulation depth.

These coupled-mode equations are for a single waveguide with grating. We will

re-visit these equation in Section (5.5), where we will add in the coupling terms due

to tunnel-coupling between two parallel closely spaced waveguides.
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5.4 Scope of Investigation

In this Chapter, the discussion will be on the investigation of solitons (strictly

speaking, solitary waves, SW's) in a model of two linearly coupled waveguides with

the Kerr nonlinearity and resonant gratings in both of them, i.e., a hybrid of the

well-known nonlinear optical coupler [15, 115] with the Bragg grating. This chapter

di�ers from the previous ones in that all previous chapters deal with waveguides

with quadratic nonlinearity. However, the treatment of coupled waveguides with

Bragg gratings and quadratic nonlinearity will need a model of totally eight equa-

tions, which is much more involved. Since coupled waveguides with the Kerr non-

linearity and resonant gratings have not been studied before, such a study will give

new and useful informations on the interplay of Bragg re
ection and linear tunnel

coupling between cores. The linear couplings between the forward and backward

Bragg-scattered waves will induce an e�ective dispersion, which, similar to the sin-

gle waveguide case, is much stronger than the intrinsic material dispersion. The

material dispersion can thus be neglected.

In such a system, we will show that a bifurcation occurs which transforms the

obvious symmetric solitons into nontrivial asymmetric ones for quiescent (standing)

solitons. This resembles the well-known bifurcation in the dual-core nonlinear opti-

cal �ber (without the gratings but with the material dispersion taken into regard),

see [17, 20, 23]. The solutions are found by the same approach as in earlier chapters,

�rst in an approximate analytical form by means of the variational approximation

and, then independently, by direct �nite-di�erence numerical simulations. We fur-

ther establish the stability of the asymmetric solitons by direct simulations, while

showing that the symmetric solitons coexisting with the asymmetric ones are al-
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ways unstable, using the BPM. Symmetric solitons are stable only if there is no

co-existing asymmetric ones.

Next, we consider travelling SW's. In order to display the results, we �x the

frequency detuning, while the strength of the coupling between the two cores and

the velocity of the moving soliton are varied. In this case, the solutions are found

only by direct numerical methods, revealing that moving asymmetric solitons exist

and are stable. Similar to the case of the quiescent SW's, the symmetric solitons

coexisting with the asymmetric ones prove to be always unstable.

5.5 The Mathematical Techniques

x

Z

d

core 2

core 1   n -
_
_

 -
_
_

   n

Figure 5.2: Schematic diagram of one implementation of the model using nonlinear dual-core

�bres with gratings.

In Fig. 5.2, we show a schematic diagram of the most straightforward implemen-

tation of the model introduced in this work, using dual-core nonlinear �bres with
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gratings.

The electric �elds E in two coupled nonlinear waveguides with the Bragg gratings

are looked for in the form (cf. Eq. (5.10)):

E1(z; � ) = E1+(z; � )e�i(!0��k0z) + E1�(z; � )e�i(!0�+k0z) + c:c;

E2(z; � ) = E2+(z; � )e�i(!0��k0z) + E2�(z; � )e�i(!0�+k0z) + c:c: (5.16)

Here, the subscript 1 and 2 pertain to the two cores. The E1� and E2� are slowly

varying envelope functions.

Starting from the Maxwell equations, following the same approach as in Section

5.3, the following evolution equations for the �eld envelopes can be derived, cf.

Eq. (5.14), (see also [89, 116, 11]):

+i
@E1+
@z

+ i
n

c0

@E1+
@�

+ �E1� + �jE1+j2E1+ + 2�jE1�j2E1+ +KE2+ = 0

�i@E1�
@z

+ i
n

c0

@E1�
@�

+ �E1+ + �jE1�j2E1� + 2�jE1+j2E1� +KE2� = 0

+i
@E2+
@z

+ i
n

c0

@E2+
@�

+ �E2� + �jE2+j2E2+ + 2�jE2�j2E2+ +KE1+ = 0

�i@E2�
@z

+ i
n

c0

@E2�
@�

+ �E2+ + �jE2�j2E2� + 2�jE2+j2E2� +KE1� = 0

(5.17)

The only di�erence of Eq. (5.17) from Eq. (5.14) is the linear tunnel-coupling terms

(the sixth terms) between waves in the two separate cores. Since tunnel-coupling

is independent of the presence of the gratings, the derivation of these terms is no

di�erence from that in Chap. 2 (see discussion there).

The third terms in the equations account for the linear conversion induced by

the Bragg scattering in each core, the fourth and the �fth terms correspond to

the self-phase modulation and cross-phase modulation, respectively. Note that we

assume �S = �� � �.
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We then apply the following rescaling to Eqs.(5.17),

E1;2+ �
r
�

2�
U1;2; E1;2� �

r
�

2�
V1;2; (5.18)

z � x

�
; � � n

�c0
t; (5.19)

arriving at the set of the normalized equations which describe the wave propagation

in the linearly coupled nonlinear cores with the gratings:

iU1t + iU1x + (�jU1j2 + jV1j2)U1 + V1 + �U2 = 0 ; (5.20)

iV1t � iV1x + (�jV1j2 + jU1j2)V1 + U1 + �V2 = 0 ; (5.21)

iU2t + iU2x + (�jU2j2 + jV2j2)U2 + V2 + �U1 = 0 ; (5.22)

iV2t � iV2x + (�jV2j2 + jU2j2)V2 + U2 + �V1 = 0 : (5.23)

If the model is realized in terms of the parallel-coupled optical �bers equipped with

gratings, t and x are the normalized time and propagation distance, respectively.

Alternatively, the same model can be realized as describing stationary �eld distri-

butions in two parallel-coupled planar waveguides with the gratings in the form of

a system of parallel scores (strati�ed layers), in which case t and x are, respectively,

the normalized propagation distance and the normalized transverse coordinate. In

the case of the optical �bers, which is the most realistic realization of the model

[101, 104], we neglect the �ber's intrinsic dispersion, while in the case of the planar

waveguides, the di�raction is neglected. The coe�cient � accounts for the self-

phase modulation to cross-phase modulation coe�cient being set equal to 1. In the

single-core case, the model with � = 0 is equivalent to MTM [95]. However, in the

application to the optical media � = 1
2 (as we have already assumed in Eqs.(5.17)).

Lastly, the above rescaling yields the coe�cient in front of the last linear coupling

terms in Eqs. (5.20){(5.23): � = K=�.



CHAPTER 5. COUPLED WAVEGUIDES WITH BRAGG GRATINGS 113

To �nd stationary solutions, we search for them in the form

U1;2 = e�i!tu1;2(�) ; V1;2 = e�i!tv1;2(�) ; (5.24)

where � � x� ct is the coordinate in the reference frame moving with the soliton's

velocity c (according to Eqs. (5.19), c is normalized with respect to the speed of

light c0=n in the dielectric medium), and ! is a frequency detuning. Referring to

the scaling equations (5.19), it can be noted that the limiting frequency detuning

values ! = �1 correspond to the centre frequency of the soliton being at the edges

of the photonic band gap (cf. section 3 of [89]).

Substituting Eqs. (5.24) into Eqs. (5.20){(5.23) leads to the coupled ODE's (with

the prime standing for d=d�),

!u1 + i(1� c)u
0

1 + (�ju1j2 + jv1j2)u1 + v1 + �u2 = 0 ; (5.25)

!v1 � i(1 + c)v
0

1 + (�jv1j2 + ju1j2)v1 + u1 + �v2 = 0 ; (5.26)

!u2 + i(1� c)u
0

2 + (�ju2j2 + jv2j2)u2 + v2 + �u1 = 0 ; (5.27)

!v2 � i(1 + c)v
0

2 + (�jv2j2 + ju2j2)v2 + u2 + �v1 = 0 : (5.28)

As a �rst step, we study quiescent solitons with c = 0 , so that � � x. On the other

hand, to set up a standing-wave solution, the forward and backward propagating

waves, u1;2 and v1;2, must bear certain symmetry relations. The relations compatible

with the underlying equations and with the exact solutions found in [71] are

v1;2 = �u�1;2 : (5.29)

Substituting Eqs. (5.29) into Eqs. (5.25)-(5.28) (with c = 0), we arrive at a simpli�ed

system,

!u1 + iu
0

1 + (� + 1)ju1j2u1 � u�1 + �u2 = 0 ; (5.30)
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!u2 + iu
0

2 + (� + 1)ju2j2u2 � u�2 + �u1 = 0 : (5.31)

To �nd nontrivial (asymmetric) soliton solutions to Eqs. (5.30) and (5.31),

two independent methods were employed. An analytical approach is based on the

variational approximation (VA), i.e., the same method as used in previous chapters.

However, there is a novel technical feature in the present problem: thus far, VA

was usually applied to �nd real solutions, while here we are seeking for essentially

complex ones (an exception is the work [70], in which VA was elaborated for solitons

in the generalized MTM introduced in [71, 72] to describe an optical �ber with the

Bragg grating and cubic nonlinearity). This di�erence is not simply formal: the

necessity to accommodate a complex waveform makes the corresponding ansatz

(the trial soliton's form) much more involved, and in many cases a straightforward

extension of the usual VA leads to messy equations of no practical value. However,

below we will develop an analytical approximation that will produce very reasonable

results for the present model.

To apply VA, we need the Lagrangian density for Eqs. (5.30) and (5.31), which

is

L = !(u1u
�
1 + u2u

�
2) +

i

2
(u1xu

�
1 � u�1xu1) +

i

2
(u2xu

�
2 � u�2xu2)

+
1

2
(� + 1)(ju1j4 + ju2j4)� 1

2
(u21 + u�21 + u22 + u�22 )

+�(u1u
�
2 + u�1u2) : (5.32)

Then, the following ansatz is adopted for the quiescent solitons sought for:

u1 = A1 sech (�x) + iB1 sinh(�x) sech
2(�x) ; (5.33)

u2 = A2 sech (�x) + iB2 sinh(�x) sech
2(�x) ; (5.34)
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where the amplitudes A1;2 and B1;2 are real. Inserting Eqs. (5.33){(5.34) into

Eq. (5.32), it is straightforward to calculate the e�ective Lagrangian:

L �
Z +1

�1

Ldx =
2!

�
(A2

1 +A2
2) +

2

3�
!(B2

1 +B2
2)�

4

3
(A1B1 +A2B2)

+
2(� + 1)

3�
(A4

1 +A4
2)� 0:8571

� + 1

�
(B4

1 +B4
2)

+
4(� + 1)

15�
(A2

1B
2
1 +A2

2B
2
2)�

2

�
(A2

1 +A2
2) +

2

3�
(B2

1 +B2
2)

+
4�

�
A1A2 +

4�

3�
B1B2 (5.35)

(the numerical coe�cient 0:8571 is given by some integral).

The variational equations are obtained by demanding the variations of the La-

grangian with respect to each of A1;2, B1;2, and � to be zero. Thus, we obtain the

following �ve equations:

�A2 �A1 +
2

3
(� + 1)A3

1 +
2

15
(� + 1)A1B

2
1 �

1

3
�B1 + !A1 = 0 ; (5.36)

�A1 �A2 +
2

3
(� + 1)A3

2 +
2

15
(� + 1)A2B

2
2 �

1

3
�B2 + !A2 = 0 ; (5.37)

1

3
�B2 +

1

3
B1 � 0:8571(� + 1)B3

1 +
2

15
(� + 1)A2

1B1 � 1

3
�A1 +

1

3
!B1 = 0 ; (5.38)

1

3
�B1 +

1

3
B2 � 0:8571(� + 1)B3

2 +
2

15
(� + 1)A2

2B2 � 1

3
�A2 +

1

3
!B2 = 0 ; (5.39)

2!(A2
1 +A2

2) +
2!

3
(B2

1 +B2
2) +

2(� + 1)

3
(A4

1 +A4
2)� 0:8571(� + 1)(B4

1 +B4
2)

+
4(� + 1)

15
(A2

1B
2
1+A

2
2B

2
2)�2(A2

1+A
2
2)+

2

3
(B2

1+B
2
2)+4�A1A2+

4�

3
B1B2 = 0 : (5.40)

We will then use the numerical Newton-Raphson method (see Section (3.3.2)) to

solve these algebraic equations.

The other method, as in previous chapters, employs the direct numerical �nite-

di�erence solution of the equations, using the approximate solutions furnished by

VA as the necessary �rst guess. Proceeding to �nding the stationary solutions to
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Eqs. (5.30){(5.31) numerically, we will split the complex equations (5.30) and (5.31)

into four equations for the real and imaginary parts of u1;2. Straightforward �nite-

di�erence numerical techniques can then be applied to solve these real equations.

For the travelling SW's, the symmetry relations (5.29) no longer apply. In this case,

we split the full system of Eqs. (5.25){(5.28) into eight equations for the real and

imaginary parts of u1;2 and v1;2, to which the same numerical techniques apply.

Finally, the stability of the soliton solutions is tested by direct simulations of the

underlying PDE's (5.20)-(5.23). To this end, we again use the well-known split-step

Fourier method, taking the initial con�guration in the form of the soliton with a

superimposed small perturbation.

5.6 Stationary Solutions

5.6.1 Quiescent Solitons

Quiescent soliton solutions are standing-wave solutions when the �elds travelling in

the forward direction, U1;2, and in the backward direction, V1;2 (cf. Eqs. (5.20){

(5.23)) balance.

The �rst, quite obvious, result of our analysis is that, for any �xed value of

the frequency detuning !, the symmetric soliton solutions are unique and stable at

su�ciently large values of the coupling constant � (we will address the stability issue

later.) However, below a critical value of �, the symmetric solutions bifurcate, giving

rise to three branches, one being the continuation of the original symmetric branch,

which becomes unstable, while two others are nontrivial stable asymmetric solutions.

Because the coupled cores considered in this work are symmetric (identical), the two
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asymmetric branches are mirror images of each other. As � goes smaller, the solution

gets more asymmetric. At � = 0, when Eqs. (5.30) and (5.31) become decoupled,

the numerical solution matches the exact one for the single waveguide (found in

[71]) in one core, while the other core is empty in this limit.

The bifurcation is found to be supercritical (which is also called a forward bifur-

cation), the critical value of � at the bifurcation point decreasing with the increase

of !. The full bifurcation diagram, including both the variational prediction and

the direct numerical results, is shown, for ! = 0:5, in Fig. 5.3, which is a plot of an

e�ective asymmetry parameter

� �
�
u21m � u22m

�
=
�
u21m + u22m

�
(5.41)

vs. the coupling constant �, where u1;2m are the amplitudes of the �eld u in the two

cores (it can be easily shown, using obvious symmetries of Eqs. (5.25) - (5.28), that

the bifurcation diagram for � < 0 is the mirror image of that for � > 0). As one

sees, agreement between the analytical prediction and the numerical results is fairly

good. A further comparison of the variational and numerical results is illustrated

by Fig. 5.4, which shows the shapes of the real and imaginary parts of the larger of

the two asymmetric soliton components in the two cores.

A complete three-dimensional bifurcation, i.e., a plot of � vs. both ! and �, is

shown in Fig. 5.5 . For clarity, this bifurcation diagram was drawn using only the

numerical results, its variational counterpart being quite close to it. The asymmetric

branch can be seen to narrow down as ! approaches the limit value 1 .



CHAPTER 5. COUPLED WAVEGUIDES WITH BRAGG GRATINGS 118

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.2

0

0.2

0.4

0.6

0.8

1

λ

Θ

Figure 5.3: Bifurcation diagram for the quiescent soliton at ! = 0:5. The solid and dashed line

depict, respectively, the numerical results and the variational approximation. The dot-dashed line

is the branch corresponding to the symmetric solutions. The branch at � < 0, which is a mirror

image of the curve shown, is not displayed here.
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Figure 5.4: The shapes of the larger of the two quiescent-soliton components in the two cores.

The upper and lower graphs show the real and imaginary parts of the forward-propagating wave.

As in Fig. 5.3, the solid and dashed lines represent the numerical and variational results. Here,

! = 0:5 and � = 0:2.
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Figure 5.5: The three-dimensional bifurcation diagram for the quiescent solitary wave, showing

the e�ective soliton's asymmetry � as a function of the frequency ! and coupling constant �.

5.6.1.1 Linear Dispersion Relation

The existence range of the soliton solutions in the (�; !)-parametric plane can be

found from the linear dispersion relation for Eqs. (5.20)-(5.23). The linear dispersion

relation can be found by assuming that the waves U1;2 and V1;2 are small enough

that the nonlinear terms are negligible. Eqs. (5.20)-(5.23) will thus become

iU1t + iU1x + V1 + �U2 = 0 ;

iV1t � iV1x + U1 + �V2 = 0 ;
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iU2t + iU2x + V2 + �U1 = 0 ; (5.42)

iV2t � iV2x + U2 + �V1 = 0 :

Looking for a linearized solution in the form

U1;2 = u1;2e
ikx�i!t ;

V1;2 = v1;2e
ikx�i!t; (5.43)

Substitute Eqs. (5.43) into Eqs. (5.42) will then give

(! � k)u1 + v1 + �u2 = 0 ;

u1 + (! + k)v1 + �v2 = 0 ;

�u1 + (! � k)u2 + v2 = 0 (5.44)

�v1 + u2 + (! + k)v2 = 0 :

or, in the form of a matrix equation,266666666664

(! � k) 1 � 0

1 (! + k) 0 �

� 0 (! � k) 1

0 � 1 (! + k)

377777777775

266666666664

u1

v1

u2

v2

377777777775
= 0 : (5.45)

Eq. (5.45) can only be satis�ed if the determinant of the 4 � 4 coe�cient matrix is

equal to 0. Evaluation of the determinant will give

!4 � 2(k2 + �2 + 1)!2 + k4 + 2(1� �2)k2 + �4 � 2�2 + 1 = 0 ; (5.46)

Solving this equation (5.46), the four branches of the dispersion relation in an ex-

plicit form are then given by:

!2 = �2 + 1 + k2 � 2�
p
1 + k2; (5.47)



CHAPTER 5. COUPLED WAVEGUIDES WITH BRAGG GRATINGS 122

-1

-0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1
-3

-2

-1

0

1

2

3

k
λ

ω

Figure 5.6: A set of the dispersion curves for the linearized equations (5.42) at three di�erent

values of the coupling constant: � = 0:02, � = 0:5, and � = 0:99.

which are displayed in Fig. 5.6. The quiescent solitons can only exist in the gap

between the two pairs of the dispersion curves (usually, the soliton solutions exist

everywhere in the region where they are allowed by the dispersion relations; however,

unexpected lacunas, in which the solitons do not exist, were found in the model of

two linearly coupled waveguides with the quadratic nonlinearity [109]). At � = 0,

when the two waveguides decouple, the two pairs of the curves coalesce into just

two curves. In this case, the gap is widest: �1 < ! < 1. At � = 1 (also at � = �1,
although not shown in Fig. 5.6), the gap gets closed up, i.e., no soliton solution

may exist at j�j > 1. To summarize, the existence range of the quiescent soliton is
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con�ned to j�j < 1 and j!j < 1.

Analysis of a similar issue can be found in [118].

5.6.2 Moving Solitary Waves
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Figure 5.7: The three-dimensional bifurcation diagram for the moving soliton, showing the

asymmetry� vs. the velocity c and the coupling constant �.

When the �elds travelling in the forward direction, U1;2, and in the backward direc-

tion, V1;2, (cf. Eqs. (5.20){(5.23)) do not balance, they interact to form moving (or

travelling-wave) solitary wave solutions.

To display a typical example of the results obtained for the moving solitons, we

�x ! = 0:5. Only the direct �nite-di�erence numerical method was employed to �nd
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the stationary moving solitons. (Recall that stationary solutions mean that they

are in the form of Eqs. (5.24).) Fig. 5.7 shows the bifurcation diagram for this case,

i.e., the asymmetry parameter �, de�ned as per Eq. (5.41), as a function of the

soliton's velocity c and the coupling constant �. The diagram shows features similar

to those noticed above for the quiescent solitons: the asymmetric branches at � < 0

are mirror images of those at � > 0; only symmetric solitons exist at large j�j;
the asymmetric soliton solutions exist only when � is below the bifurcation value;

and the asymmetric branches narrow down as c increases. We conjecture that the

asymmetric branches close up at c = 1, where the soliton's speed is equal to the

light speed. However, this cannot be veri�ed numerically. The numerical scheme

gets unstable as c becomes too close to 1 (no solutions was found for c > 0:8). This

instability, however, is de�nitely a numerical artefact rather than a property of the

model. Analysis has traced out the inaccuracy of the �nite-di�erence di�erentiation

at the edges of the integration domain to be the origin of the numerical instability.

It was observed that the instability can be gradually suppressed by decreasing the

grid size of the �nite-di�erence scheme. No solution can be found for c > 0:8 simply

because the memory size limit of the computer used restricted further decrease of

the grid size.

5.7 The Stability Analysis

In this section, we investigate the stability of the stationary solutions by direct

simulations of the partial di�erential equations (5.20)-(5.23), using the split-step

Fourier (beam-propagation) method. As the initial con�gurations, we took the

stationary solutions found above by the �nite-di�erence numerical method, with
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small arbitrary perturbations added to them.

The study of the stability was done at a number of points inside the regions

where the asymmetric solitons exist. The �nal inferences can be formulated in a

fairly simple and general form. It was found that asymmetric solitons, whether they

are quiescent or moving, are always stable whenever they exist. On the other hand,

the symmetric solitons, whenever they coexist with the asymmetric ones at the same

values of �, !, and c, are always unstable. However, beyond the bifurcation points,

where the asymmetric solitons do not exist, the symmetric solitons are always stable.

These inferences are quite natural, exactly concurring with what one would expect

following the lines of the elementary bifurcation theory. We numerically checked

the stability of such symmetric solitons; in Fig. 5.8, we show an example of the

evolution of a slightly perturbed stable symmetric soliton.

A typical example of the stable asymmetric and the co-existing unstable sym-

metric solitons is shown in Fig. 5.9. Longer simulations show that the unstable sym-

metric solitons demonstrate a trend to rearrange themselves into the asymmetric

ones existing at the same values of the parameters; however, this is only a trend - the

rearranging solitons show strong internal vibrations, which can be suppressed only

through emission of dispersive radiation, that would take a very long propagation

distance to complete (in [103], it was reported that, in the single-core �nite-length

�ber with the Bragg grating, a transient needed several round-trip times to settle

at typical values of the parameters).

Finally, in Fig. 5.10 we show an example of the evolution of a stable moving

asymmetric soliton. Here, the soliton's velocity is quite high, c = 0:8, showing

that the asymmetric solitons still maintain their stability at the high speed. (The

apparent oscillations seen in the �gure is an artefact produced by the way the graph-
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Figure 5.8: The evolution of a slightly perturbed stable quiescent symmetric soliton. Here,

� = 0:4, and ! = 0:4, at which no asymmetric soliton exists.

plotting routine was processing the data: it could only display the values at the cross

points of the grid lines. So, when the peak values of the waves were located between

two longitudinal grid lines, the maximum values had no way to show up, causing

the illusive dips.)

5.8 Discussion

Although experimental generation of the solitons in the dual-core nonlinear optical

�ber with the gratings is not going to be easy, one may expect that this is not
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Figure 5.9: The evolution of slightly perturbed symmetric (upper) and asymmetric (lower)

quiescent solitons at ! = 0:8 and � = 0:16.

unrealistic. Indeed, a characteristic propagation length necessary for formation of

the soliton in the recent experiments done with the single-core �ber was � 2 cm

[101] (while the actual length of the grating was 5:5 cm; actually, gratings up to 1

m long can be fabricated by means of the available technology [104]). At the same

time, a typical coupling length in the real dual-core �bers is a few centimeters (but if

necessary, it may also be extended to � 1 m or even more). The fact that these two

important lengths are of the same order makes it possible to expect the existence of

solitons whose propagation period will be simultaneously commensurate with both

lengths, so that the Bragg scattering and the linear coupling between the cores will
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Figure 5.10: The evolution of a slightly perturbed moving asymmetric soliton. Here, ! = 0:5,

� = 0:04, and c = 0:8.

be equally essential for the soliton. It is also important that, as it follows from what

was said above, it is technologically possible to fabricate a relatively long dual-core

nonlinear optical �ber with the gratings written on the cores, so that the soliton

will have enough room to be observed. As for its expected temporal width, one may

conjecture, following the available experimental data [101], that it will be between

15 and 80 picoseconds. At this stage of the theoretical study of the newly proposed

system, it would be too early to specify the physical parameters more de�nitely.

Lastly, it is relevant to mention that the dual-core �ber with the gratings is the

most straightforward but not the single nonlinear optical medium in terms of which
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the model introduced in this work can be realized. Another possible medium is

based on parallel-coupled planar nonlinear waveguides, each carrying a grating in

the form of a system of parallel scores; in that case, essentially the same model will

describe spatial solitons rather than temporal ones in the �ber. One can also think of

parallel-coupled semiconductor waveguides with periodically corrugated boundaries,

although nonlinear absorption may be a problem in the latter system.

A potential for applications of the solitons in both the dual-core nonlinear �bers

and in the nonlinear single-core ones equipped with the Bragg grating is well known

(switching, bistability, pulse compression, etc., see, e.g., [17, 64] and [104]). The

solitons in the dual-core �bers with the gratings may �nd a still broader �eld for

the applications, as they combine properties of the solitons in both types of the

systems, and may be controlled by a larger numbers of parameters.

We will also discuss some additional essential points here. A crucial concept in

the Bragg grating theory is a parameter called the e�ective dispersion [87, 88, 103].

It is de�ned as the local curvature of the upper dispersion branch at the point

where the Bragg grating soliton resides (for the self-focusing nonlinearity, the Bragg-

grating soliton can only form on the upper branch of the dispersion curve, where

the e�ective dispersion is anomalous). This de�nition is based on the reduction of

the nonlinear coupled mode equations [89] to the nonlinear Schr�odinger equation in

the BF approach [99]. The BF approach relies upon approximating the electric �eld

by the Bloch functions on the upper branch (if we limit ourselves to the focusing

nonlinearity), which implies that the frequency content of the �eld must concentrate

around the upper edge of the gap. This precludes not only �elds with frequency

elsewhere in the gap, but also temporally narrow optical pulses with a spectral width

of the same order of magnitude as the gap width. This limitation prevented our use
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of the local dispersion parameter in this work, as we basically consider gap soliton

inside the photonic band gap. When the Bloch functions corresponding to the upper

and lower branches are equally important, the de�nition of this e�ective dispersion

parameter is not straightforward. On the other hand, the MTM approach adopted

in this work makes the use of this parameter unnecessary.

It is also relevant to discuss the frequency spectrum of the solitons studied in

this work. As already mentioned in section 5.5, the values ! = �1 of the normalized

frequency detuning correspond to the soliton's central frequency being at the edges

of the photonic band gap. From Eqs. (5.24), it follows that, at the zero soliton's

velocity c, the �eld envelopes U1;2 and V1;2 have a pure harmonic time dependence.

Therefore, at c = 0, the soliton has zero spectral width. Note that this conforms

to what can be deduced from the exact solutions of the single-waveguide case as

obtained in [71, 72]. At c 6= 0, the variable � in Eqs. (5.24) has a time depen-

dence, which leads to a �nite spectral width of the soliton. It can be deduced from

Eqs. (5.24) that the normalized spectral width will increase with c. This conforms

to the �ndings in [89] for the single-waveguide case. However, because the main

subject of this investigation are the bifurcations and stability of the asymmetric

and symmetric solitons, a more detailed calculation of this spectral width was not

carried out.

The last topic to be discussed here is the modulational instability of distributed

feedback structures. There had been several studies relating to this issue [71, 73, 93,

117]. In them, it was found that the modulational instability initiated conversion

an input continuous-wave beam into a train of spiky self-pulsations. In a recent

paper [87], a breakup of the Bragg-grating solitons into multiple sharp pulses was

observed, which was attributed to the modulational instability. It clearly follows
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from our numerical results that the instability of the symmetric solitons (when they

are unstable) is clearlynot of the same type. The instabilities found in this work

can be adequately explained by the standard bifurcation theory.

5.9 Conclusion

In this work, we have investigated a model describing two linearly coupled waveg-

uides with the cubic nonlinearity, each equipped with the resonant grating.

Using the variational and direct numerical approach, both methods demonstrate

the existence of asymmetric solitary wave solutions, alongside the obvious symmetric

solitons. The bifurcation diagrams were constructed.

Then, the stability of both asymmetric and symmetric solitons was tested by

BPM simulations. The asymmetric solitons, whenever they exist, were shown to be

always stable, while the symmetric ones coexisting with them are always unstable.

Nevertheless, the symmetric solitons are stable beyond the bifurcation points, where

they do not have to coexist with asymmetric solitons.



Chapter 6

Three Wave Gap Solitons

6.1 Introduction

In a medium without the center of symmetry, quadratic nonlinearity results in

parametric three-wave mixing. Two waves, which are in resonant interaction, create

a third wave at a combined frequency !3 = !1 + !2. There is an energy exchange

among these three waves of di�erent carrier frequencies. In a degenerate case, two

of the waves at the lower frequency are identical. These waves thus correspond

to fundamental harmonic (FH) waves. Their interaction will then create a second

harmonic (SH) wave, which at the same time, also is down-converted to the FH

waves. Such interaction is known as type I second harmonic generation (SHG). In

the previous chapters, what we consider, therefore, belonged to type I interaction.

In the particular case when the two lower frequency waves have the same carrier

frequency (thus they are FHs), but di�erent polarizations. The two orthogonally

polarized FH waves are, so, not identical. This case of three-wave interaction is

known as type II SHG [119]. The SH �eld down-converts to both components of

132
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the FH �eld.

Observation of the large phase shift in the potassium titanyl phosphate (KTP)

crystals, and the suggestion of using it to induce a self-focusing e�ect [120], have

inspired a new surge of studies of solitons generated by mutual trapping of the FH

and SH waves in a waveguide (see a review [43]).

In the most physically realistic case, solitons observed in planar waveguides or

bulk media are spatial solitons, generated by the competition between the cascaded

nonlinearity and the spatial di�raction. A great deal of interest to this �eld is

attracted by unique chance to study solitons in a new physical setting, as well

as by the potential that the spatial solitons have for implementation of all-optical

switching in multichannel optical communication systems, the lack of which in a

technologically acceptable form is, in fact, the most important problem hindering

further progress of optical communications.

When the dispersion or di�raction may be neglected in certain circumstances,

it has been investigated in a number of studies [121]-[128]. Note that the three-

wave resonance interaction (3WRI) model with group-velocity di�erences between

the waves but without di�raction or dispersion is exactly integrable by means of

the inverse scattering transform [129] (moreover, this model is integrable too in the

multidimensional case). In [130], 3WRI under exact phase-matched conditions was

investigated.

In a real experiment, it is essentially easier to achieve the necessary phase match-

ing between the FH and SH through the type-II interaction than through the type-I

interaction that involves a single FH component. Actually, the �(2) interaction that

gave rise to the spatial solitons observed in [41, 42] belonged to the type-II. This

type of the SHG is also preferable for the above-mentioned application to the all-
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optical switching, as it is easy to control, by a�ecting the FH polarization. A lot of

experiments, generating high-energy, ultrashort optical pulses, were also achieved

using the type-II phase matching technique [131]-[139].

Theoretical studies of 3WRI in the presence of di�raction or dispersion have

commenced recently [75, 140, 141]. In [141], particular exact soliton solutions were

found; in [75], a general two-parameter family of solitons was constructed by means

of both the VA and direct numerical methods, and domains of stable and unstable

solitons were identi�ed. Further results concerning the stability of the solitons

supported by the 3WRI can be found in [76, 142, 143]. In [142], it was pointed

out that 3WRI may give rise to a multistability of the soliton solutions in a limited

range of parameters. In [76, 143], analytical stability criteria of the three-wave

soliton were derived, and veri�ed numerically.

6.2 Scope of Study

In this chapter, we consider solitary waves due to three-wave mixing in a quadratic

medium, which has parallel scores (strati�ed layers in the direction of propagation

of the SH wave) inscribed in it, i.e., a resonant grating. The FH waves are chosen

so that their carrier wave vectors have equal lengths, and they travel in directions

making small, equal but opposite angles with the parallel scores (which is also the

direction of the Z-axis). The SH wave, thus, travels in parallel with the Z-axis

(See Fig. 6.1). The FH waves su�er the Bragg re
ection, which couples them to

each other, and are thus subjected to a strong e�ective dispersion or di�raction.

This is very signi�cant, because then, it is much easier to achieve the FH-SH phase

matching, which is fundamentally necessary to use the �(2) nonlinearity to form
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Figure 6.1: The con�guration of the wave vectors k1, k2, and k3 of the two components of the

fundamental harmonic and of the second harmonic. The scores that form the spatial grating are

parallel to the z axis.

solitons. Theoretical results for the four-wave gap solitons in the temporal domain,

in �(3) medium with the Bragg gratings, was discussed in detail in the last chapter.

For gap solitons, supported by SHG in combination with the Bragg gratings, can

be found in [109, 110, 111, 144]. Here in this chapter, the resonant interaction of

the three waves will give rise to three-wave spatial solitons, in which the SH wave

couples to the two FH components through the nonlinearity.

Since the FH components are assumed to travel at an angle with the gratings,

the mathematical model of this system includes transverse-walko� terms in the

equations for the two FH components. These transverse-walko� terms give rise to

an e�ective di�raction which is de�nitely much stronger than that of the intrinsic

second-derivative di�raction [75]. Therefore, the second-derivative di�raction terms

can be dropped in the FH equations. On the other hand, since the SH wave travels

in parallel with the grating, it does not interact with the grating, and we have to
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keep the second-derivative di�raction term in the SH equation.

A similar model was a starting point in the work [108], but an important di�er-

ence is that a very large phase mismatch between the SH and FHs was assumed, to

allow one to eliminate the SH component, transforming the system into the mas-

sive Thirring model (MTM) [95],which is exactly integrable by means of the inverse

scattering transform [96, 145] (an optical �ber with the Bragg grating and cubic

(Kerr) nonlinearity is described by a well-known nonintegrable generalization of

MTM [71, 72]). Since all the soliton solutions of the integrable MTM are stable,

the solitons considered in [108] are also always stable. In the present work, we do

not assume that the phase mismatch is specially large, and keep the SH compo-

nent in the model explicitly. Obviously, the case of a smaller mismatch is more

physically interesting. We will demonstrate that stable three-wave soliton solutions

do exist at a large mismatch, and they continue to exist as the phase mismatch is

decreased. However, we �nd a threshold value of the mismatch, below which the

soliton solutions lose their stability (though they do not disappear). An instability

threshold in terms of the mismatch parameter is also known for the usual �(2) soli-

tons [40, 58, 75, 76]; however, the principal di�erence is that the usual solitons are

stable in the fully matched case, while our solitons may be both stable and unstable

in this case, depending on other parameters (the wave number shift and an e�ective

SH di�raction parameter), i.e., the location of the instability threshold is di�erent

in the present model. We also investigated the e�ect of changing the SH di�raction

(dispersion) coe�cient, �nding that it has less e�ect on the threshold than the wave

number shift and the wave-vector mismatch.

Finally, we will consider two-soliton bound-state solutions (or simply two-solitons),

�nding that they have their own stability threshold (which is higher than but close
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to the one for the fundamental solitons). The fact that two-solitons in our model

can be stable is quite nontrivial, as, in the usual �(2) models, all the higher-order

solitons are subject to an instability [43, 47].

6.3 The Model

We consider the resonant nonlinear interaction of two FH waves with identical

frequencies ! and Z-components of their carrier wave vectors k1 and k2. The �(2)

nonlinearity generates the third wave with wave number k3 at the frequency 2!.

The case of interest is �k � k3, where �k � k1 + k2 � k3 is the wave-vector

mismatch. We assume that the FH wave vectors make small angles �� with the Z-

direction, and have the same length, so that k1 = k2 � k. (See Fig. 6.1.) Assuming

the amplitudes E1, E2, and E3 of the interacting harmonics to be slowly varying

in comparison with the carrier waves and employing same techniques as elaborated

in Chapter 1, and in the last chapter, one can derive the following system of the

amplitude equations:

2ik
@E1

@Z
+ 2ik�

@E1

@X
+ �E2 + �E3E

�
2e
�i�kZ = 0;

2ik
@E2

@Z
� 2ik�

@E2

@X
+ �E1 + �E3E

�
1e
�i�kZ = 0; (6.1)

2ik3
@E3

@Z
+
@2E3

@X2
+ e�E1E2e

i�kZ = 0;

where � � (4�!2=kc2)�(2)(!; 2!;�!), e� � (8�!2=k3c2)�(2)(2!;!; !), � being the

coupling constant induced by the Bragg scattering. We can then rescale Eq. (6.1)

by setting

E1 � �v1=
q
�e�; E2 � �v2=

q
�e�; E3 � (�=�)v3exp(i�kZ);
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Z � 2kz=�; and X � 2�kx=� :

Additionally, using the fact that k3=k � 2, and de�ning the e�ective mismatch

q � 4k�k=� (note that the parameter q here carries the same meaning as the q

parameter which was used in Chapters 2 to 4, although the de�nitions di�er slightly

due to the use of di�erent normalization schemes), and the di�raction parameter

D � �=(4�2k2), we arrive at the system in the normalized form,

i
@v1
@z

+ i
@v1
@x

+ v2 + v3v
�
2 = 0;

i
@v2
@z

� i
@v2
@x

+ v1 + v3v
�
1 = 0; (6.2)

2i
@v3
@z

� qv3 +D
@2v3
@x2

+ v1v2 = 0:

Using obvious symmetry properties of the system (6.2), we can con�ne ourselves to

the case D > 0 without the loss of generality.

We are interested in stationary solutions to Eqs. (6.2), in the form v1 = eikzu1(x),

v2 = eikzu2(x), and v3 = e2ikzu3(x), where k is a common wave-number shift of the

harmonics. Thus, we obtain from Eqs. (6.2) a system,

�ku1 + iu01 + u2 + u3u
�
2 = 0; �ku2 � iu02 + u1 + u3u

�
1 = 0;

�(4k + q)u3 +Du003 + u1u2 = 0; (6.3)

the prime standing for d=dx. We can impose a natural reduction, u1 = �u�2 � u, on

the amplitudes u1 and u2, which is compatible with Eqs. (6.2). Substituting this

into Eqs. (6.3), we �nally obtain the following equations for the complex function

u(x) and real u3(x),

�ku+ iu0 � u3u� u� = 0 ;

�(4k + q)u3 +Du003 � juj2 = 0 : (6.4)
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This is the simplest version of the model to produce the three-wave solitons in the

�(2) media.

6.4 The Linearized and Semilinearized Systems

First of all, it is useful to analyze the linearized version of the system (6.4); i.e.,

�ku+ iu0 � u� = 0 ;

�(4k + q)u3 +Du003 = 0 : (6.5)

Obviously, the linearized equations get decoupled. Looking for a solution in the

form

u � exp(��jxj); u3 � exp(��3jxj); (6.6)

corresponding to an exponentially decaying tail of the soliton, it is straightforward

to �nd, by substituting Eqs. (6.6) into Eqs. (6.5),

�2 = 1� k2; �23 = D�1(4k + q): (6.7)

A necessary condition for the existence of the soliton is �2 > 0, i.e., according to

(6.7), jkj < 1. This restriction on the allowed values of the propagation constant

implies that we are dealing with gap solitons, which is typical for all the model

involving the Bragg scattering [71, 72]. Another necessary condition, 4k + q > 0, is

imposed by demanding �23 > 0 (recall, we set, by de�nition, D > 0). However, the

expression (6.7) for �23 makes sense only if �3 � 2�, or, in an explicit form,

q � q0(k) � 4D
�
1 � k2

�
� 4k; (6.8)

otherwise the quadratic term in the second equation (6.4) dominates over the linear

ones at jxj ! 1.
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Thus, we arrive at a conclusion that the �2 solitons may be of two di�erent

types, within the framework of the same model. In the region (6.8), supplemented

by the necessary condition jkj < 1, the tails of both the FH and SH components of

the soliton are governed by the decoupled linearized equations and have the form

given by Eqs. (6.6) and (6.7), in which case the solitons can be naturally called

free-tail ones. However, in the opposite case, the equation for the SH component

(the second equation of the system (6.4)) cannot be linearized, hence the soliton's

tails are determined, in this case, by a semilinear system,

�ku+ iu0 � u� = 0 ; �(4k + q)u3 +Du003 = juj2: (6.9)

A general solution to Eqs. (6.9) describing the soliton's tails is (cf. Eqs. (6.6) and

(6.7)), if k < 0:

u = A exp
�
i

2
sin�1

�p
1� k2

��
exp

�
�p1 � k2jxj

�
; (6.10)

u3 = A2
h
4D

�
1� k2

�
� (4k + q)

i�1
exp

�
�2p1� k2jxj

�
; (6.11)

A being an arbitrary real constant, and, in the case k > 0, u ! iu�. Of course,

the solution (6.10) for the FH tail is exactly the same as in the case of the free-tail

soliton; however, the solution (6.11) for the SH tail is very di�erent, being locked

to the FH tail, so that the solitons of this type may be called tail-locked.

Note that the boundary between the free-tail and tail-locked solitons, q = q0(k)

(see Eq. (6.8)), may also be de�ned as the point of the exact matching between FH

and SH, following the analogy with the usual �(2) models.
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6.5 Analytical and Numerical Techniques

To �nd soliton solutions to the full nonlinear equations (6.4), analytical and numer-

ical methods were employed. The same analytical method based on VA and the

same numerical �nite-di�erence method used in earlier chapters were used. Such a

two-step approach has proved to be very e�cient in all the problems described in

these earlier chapters.

To apply VA, we need the Lagrangian for Eqs. (6.4), L =
R+1
�1 Ldx, with the

density

L = �kjuj2�1

2
(q+4k)u23+

i

2
[u0u��(u�)0u]�1

2
D(u03)

2�juj2u3�1

2
[u2+(u�)2] : (6.12)

Then, we adopt the following complex ansatz for the solutions sought for:

u = A sech (�x) + iB sinh (�x) sech2 (�x) ; u3 = A3 sech (�x) ; (6.13)

where the soliton's amplitudes A, A3, and B and the inverse width � are free

parameters to be found by means of VA. Insertion of Eqs. (6.13) into Eq. (6.12)

and integration generate an e�ective Lagrangian L. We then follow the variational

formalism to derive the VA equations: @L=@A = 0, @L=@B = 0, @L=@A3 = 0, and

@L=@� = 0. The resulting algebraic equations are:

4��1(1 + k)A+
4

3
B + ���1AA3 = 0 ;

4

3
��1(1� k)B � 4

3
A� �

4
��1A3B = 0 ;

2��1(q � 4k)A3 � 2

3
D�A3 � �

8
��1B2 � �

2
��1A2 = 0 ; (6.14)

���2
h
�2(1 + k)A2 + 2

3(1 � k)B2 + (q � 4k)A2
3 � �

2A
2A3 � �

8A3B2
i

�1
3DA

2
3 = 0 :
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This set of algebraic equations was solved numerically, using the Newton-Raphson

Method, described in Section (3.3.2). Other details of the procedure are straight-

forward. After this, the stationary-soliton solutions to Eqs. (6.4) were obtained

by means of the direct �nite-di�erence numerical scheme (see Section (3.3.3)). The

results produced by these methods are displayed and commented below.

6.6 Stationary Solutions: Existence and Stability
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Figure 6.2: A typical example of the comparison between the numerical (solid curves) and

variational (dashed curves) fundamental-soliton solutions for the real (ur) and imaginary (ui)

parts of the fundamental-harmonic component and the real second-harmonic component (u3).

The values of the parameters are: k = 0:3, D = 0:5, and q = 60.
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Stationary solutions were found using both the numerical and the variational meth-

ods. Similar to the solutions found in [108], the fundamental harmonic components

are complex, with the real parts being even functions and the imaginary parts being

odd functions of x. The second harmonic components are real, and with an opposite

polarity to the real parts of the fundamental harmonics.

Plots of the di�erent components of a typical fundamental-soliton solution are

shown in Fig. 6.2. Comparison of the solutions obtained, by means of the analyt-

ical and numerical methods, is also presented there (a relatively large value of the

normalized mismatch, q = 60, is selected for this �gure; however, this corresponds

to a point just within the region of stable fundamental solitons, see Fig. 6.7 below).

It is seen that the agreement is acceptable, especially in view of the fairly simple

form of the ansatz (6.13).

In Figs. 6.3 { 6.6, we present a numerically obtained family of the fundamental

soliton solutions to Eqs. (6.4), in the form of three-dimensional plots showing the

dependence of the basic characteristics of the fundamental-soliton, viz., the ampli-

tudes and widths of its two FH components u and SH u3 vs. the mismatch q and

wave-number shift k, the di�raction coe�cient D being �xed at a realistic value

0:5. The width of the u3-component turns out to be quite close to (more accu-

rately, slightly smaller than) the u-component's width (note that the ansatz (6.13)

adopted above as the basis of VA assumed both components to have identically

equal widths). Here, the standard de�nition of the FWHM width is applied to the

absolute values of the complex �elds, and the amplitudes refer to their peak values.
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Figure 6.3: The family of the fundamental-soliton solutions: the FH (u) amplitude is plotted

vs. the wave-number shift k and phase mismatch q, while the SH di�raction parameter is �xed at

D = 0:5.

A general trend seen in these plots is that the amplitudes of the soliton's compo-

nents increase, whereas their widths decrease, with the increase of q and k. Another

clearly seen, and quite natural, feature is that the FH and SH amplitudes are on

the same order of magnitude at small values of the mismatch q, while at large q the

FH amplitude is much larger. In Fig. 6.3 and Fig. 6.4, we also indicate the soliton

existence limit as implied by Eq. (6.7); i.e., 4k+ q > 0 (shown by the crosses on the

base plane). It can be seen that the trend of decreasing amplitudes and increasing

widths accelerates rapidly as this soliton existence limit is approached. A simi-

lar trend is observed as another existence limit, k = �1, is approached, although
no curves beyond k = �0:5 were drawn, because, in this region, the numerical
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Figure 6.4: The family of the fundamental-soliton solutions: the SH (u3) amplitude. The line

consisting of crosses in both Figs. 6.3 and 6.4 shows the existence boundary 4k + q = 0 for the

tail-free solitons.

scheme converges too slowly, which makes it di�cult to accumulate enough data

for drawing the continuous curves. However, an opposite trend is seen as yet an-

other soliton existence limit, k = 1, is approached: the amplitudes and widths keep

on, respectively, increasing and decreasing, which is quite surprising, because from

Eq. (6.7), one would expect that the width should diverge at both limits, k = �1.
This unexpected trend does not reverse up to the value, k = 0:99. At k = +1,

the amplitude remains �nite; however, the soliton becomes delocalized with a small

�nite-amplitude cw (continuous wave) oscillatory tail. (Such delocalized soliton so-

lutions were previously discussed in detail in [79].) This, in turn, is in accord with

Eq. (6.7), which can also be interpreted as that the exponentially decaying soliton
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Figure 6.5: The family of the fundamental-soliton solutions: the FH width.

tail is changed to a nonvanishing oscillatory cw. No solutions can be numerically

found for k > 1. However, since a delocalized soliton is not really a soliton, and

also, as it is shown below, in the same limit the solitons become strongly unstable,

investigation was not carried out further beyond k > 1. It is relevant to stress

that the parametric domain in which the three-wave gap solitons may exist in the

present model, appears to be completely �lled by the soliton solutions. This is a

drastic di�erence from the four-wave model of the �(2) gap solitons [75], in which

large \voids" were found inside the formally available existence domain.

Proceeding to the stability of the fundamental solitons, one sees that it would be

really di�cult to investigate it analytically (in particular, VA is much less convenient

for this than to search for the shape of stationary solitons). Therefore, the stability

was tested by direct simulations of Eqs. (6.2), using the beam propagation method
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Figure 6.6: The family of the fundamental-soliton solutions: the SH width.

(BPM). The stationary shape of the solitons produced by the �nite-di�erence nu-

merical solution was used as the initial con�guration for the BPM simulations,

with an additional perturbation generated by increasing the amplitude of the wave

components by 1%. In most cases, the simulations were run over the propagation

distance z = 2� (in the notation of Eqs. (6.2)), which was quite su�cient to discern

between the stable and unstable solitons; however, in some cases, the simulations

were run twice as long for stable solitons, in order to further check the stability.

No change has been observed in the longer simulations as compared to those with

z = 2�.

It has been found that, when the mismatch q is large enough, the solitons are

stable (in agreement with the results reported in [108]). The solitons existing at

k > 0 become unstable as q decreases past a threshold value q(F)thr (which depends on
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the wave-number shift k, and slightly on the di�raction coe�cient D, see below; the

superscript F refers to the fundamental solitons, as another stability threshold, for

two-solitons, will be found below). For smaller positive values of k, q(F)thr is smaller

too, and for k < 0 the threshold does not exist - in this case, all the solitons turn

out to be stable in the simulations (see more details below). On the other hand,

when k gets close to its limit value 1 (see above), q(F)thr becomes very large (i.e., the

stability is lost in the limit k ! +1, when the soliton demonstrates the unexpected

behavior described above). The simulations also demonstrate that the instability of

the solitons with q slightly below q(F)thr evolves by developing an asymmetry between

the two FH components: for instance, u1 grows, while u2 diminishes, or vice versa.

Thus the instability breaks the reduction that leads from Eqs. (6.3) to (6.4). The

asymmetry is enhanced as the waves propagate. For still smaller values of q, the

soliton breaks up or develops large distortion very rapidly.

In Fig. 6.7, we summarize the results found numerically for the stability of

the fundamental solitons, in the form of their stability and instability domains on

the (k; q) (with k > 0) and (D; q) parametric planes (the presentation of these

results in the form of one three-dimensional plot is undesirable because it does not

seem clear). Evidently, the borders between the domains simultaneously display the

dependencies, respectively, q(F)thr (k) and q
(F)
thr (D). With regard to the great di�erence

in the vertical scales between Figs. 4a and 4b, it can be inferred that the di�raction

parameter D, unlike the wave-number shift k, has a little e�ect on q(F)thr .

Additional information is given by Fig. 6.8, where we have redrawn the stability

and instability domains (the boundary between them is labeled as the \stability"

curve consisting of circles) on the (k; q) parametric plane with a di�erent scale, so

that the soliton existence limit 4k + q = 0 (shown by crosses and labeled as the



CHAPTER 6. THREE WAVE GAP SOLITONS 149

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

q

(a)

k

UNSTABLE

STABLE

0.5 1 1.5 2
4.2

4.4

4.6

4.8

5

q

(b)

D

UNSTABLE

STABLE

Figure 6.7: Numerically found stability domains for the fundamental solitons: (a) on the (q; k)

plane at D = 0:5; (b) on the (q;D) plane at k = 0:1.

\existence" curve), and the boundary q = q0(k), see Eq. (6.8), between the free-tail

and tail-locked solitons (the solid line labeled \tail") can all be plotted too, k < 0

being also included. The other two soliton existence limits, k = �1, form the left

and right boundaries of the �gure. In this �gure, D is �xed at 0:5. Solitons exist

above the \existence" boundary, are stable to the left of the "stability" boundary,

and are of the tail-locked type above the \tail" boundary. Note that the free-tail

solitons exist only in a narrow stripe. It can be deduced from Eq. (6.8) that, as

D decreases, the curvature of the \tail" curve reduces (but with the end points at

k = �1 �xed), and thus, the free-tail soliton existence region will further shrink,

tending to nothing as D ! 0.
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Figure 6.8: Numerically determined domains of existence, stability, and tail-type for the funda-

mental solitons on the (q; k)-plane at D = 0:5.

The \stability" and \existence"curves intersect in Fig. 6.8 at (k; q) = (0:08;�0:3);
thus, all the solitons at k < 0 are stable, which was veri�ed in many runs of the

numerical simulations. It is also noteworthy that, at the negative mismatch, q < 0,

there is only a tiny stability domain, at k very close to 0. It is interesting that not

all the solitons with the exactly matched harmonics (corresponding to the "tail"

curve) are stable. This situation is drastically di�erent from that known for the

usual �(2) solitons, which are always stable at the exact-match point [40, 58, 75, 76].

Also, in the usual �(2) models, all the tail-locked solitons (corresponding to positive

mismatch) and a part of the free-tail ones (that correspond to negative mismatch)

are simultaneously stable. This is di�erent from what is depicted here: only part of
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both the tail-locked and the free-tail solitons are stable.

6.7 Two-Soliton States
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Figure 6.9: A typical shape of a numerically found two-soliton, at k = 0:1, D = 0:5, and

q = 1. The solid and dotted curves are the real and imaginary parts of the FH �eld u, and the

dot-dashed curve is the real SH �eld u3.

The parametric space of Eqs. (6.4) was numerically scanned to search for other

possible stationary solutions, and a family of two-soliton bound states was found.

A shape of a typical two-soliton solution is shown in Fig. 6.9. To describe the whole

family of the two-soliton solutions, in Figs. 6.10 - 6.12 we plot the FH and SH

amplitudes, together with the SH width of the individual bound pulses, vs. q and

D, �xing k = 0:1. Note that the two individual pulses in the bound state always
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Figure 6.10: The family of the two-soliton solutions: the amplitude of the FH (u) �eld plotted

vs. the phase mismatch q and the SH di�raction parameter D, at a �xed wave-number shift,

k = 0:1. The inset shows an extended plots of the FH amplitude vs. q at D = 1 .

have equal peak values.

It can be seen that the basic features of the two-soliton solutions are similar

to those of the fundamental-soliton ones. The amplitudes of the FH and the SH

components increase, while the widths decrease, with the increase of q. The e�ect

of changing D is much smaller. As can be expected, the SH amplitude and width

decrease and increase, accordingly, with the increase of D, while the FH amplitude

and width are only slightly a�ected by changing D. The soliton existence limit,

4k+ q = 0, is also included in Figs. 6.10 and 6.11, showing the trend of the solitons

to disappear by getting in�nitely broad and having vanishing amplitudes in this
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Figure 6.11: The family of the two-soliton solutions: the amplitude of the SH (u3) �eld. The

line consisting of crosses in Figs. 6.10 and 6.11 shows the existence boundary 4k + q = 0 for the

free-tail solitons.

limit. The curves were not traced up to the limit because of the slow convergence

of the numerical scheme; however, there is no doubt that this trend persists.

In the limit q ! 1, when the SH �eld can be eliminated to cast the model

into the Massive Thirring Model (MTM) form [108], the two-soliton solution only

exists under restricted conditions [146]. This inspires one to search for the two-

solitons' existence limit for large q and the way they disappear when approaching

the limit. In the inset of Fig. 6.10, we show the dependence of the FH amplitudes

vs. q for k = 0:1 and D = 1, with q extended to larger values. It can be seen that

the amplitude keeps on increasing, and the increase accelerates when at q � 20.

The widths of the waves (not plotted here) are decreasing accordingly. Thus, the
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Figure 6.12: The family of the two-soliton solutions: the SH width of the individual bound pulse

inside the two-soliton.

trend for the two-solitons is to become taller and narrower as q increases. At q >

20, the numerical scheme has failed because of an instability caused in it by the

large change of the derivatives at the sharp peaks of the pulse. Although an exact

existence limit of the two-solitons was not reached at large q, we conjecture that

they disappear through a collapse-like mechanism, similarly to what is well-known

in the multidimensional �(3) models.

A speci�c characteristic of the two-soliton is the dependence of the separation S

between the individual bound pulses on the model's parameters. The simulations

demonstrate that the separation is nearly immune to the changes of the parameters

over most of the range considered, except that S slightly decreases with increasing

q, and increases at those existence limits, k = �1 and 4k + q = 0, where the
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Figure 6.13: The separation between the bound pulses inside the two-soliton vs. the di�raction

parameter D, at k = 0:1 and q = 10.

fundamental solitons broaden inde�nitely. It seems that, near these limits, the

individual pulses repel each other stronger as they spread out. A separate plot

of the dependence S vs. D is shown in Fig. 6.13 for q = 10 and k = 0:1. It

demonstrates an interesting feature that, beyond D � 1:1, the separation of the

pulses rapidly increases with D. This probably indicates a two-solitons' existence

limit at large D.

The e�ect of the wave-number shift, k, on the characteristics of the bound-state

solutions was also investigated. Without displaying detailed results, it is su�cient

to note the characteristics of the two-solitons vary with k similarly to those of

the fundamental solitons (see Figs. 6.3 - 6.5): with increasing k, the amplitudes
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increase and the widths decrease. As the existence limits, k = �1 and 4k + q = 0,

are approached, the solitons broaden and amplitudes vanish.

Stability of the two-solitons is an important issue, as similar bound states are

also known in the usual (two-wave) �(2) model, but they are always unstable [43].

On the other hand, a numerically stable object similar to a two-soliton was found

in simulations of the four-wave �(2) gap-soliton model combining SHG and the

Bragg scattering, but completely ignoring the di�raction (dispersion) [75]. We have

performed systematic BPM simulations of perturbed two-solitons in order to test

their stability in the present model (it is virtually impossible to study the stability

analytically - �rst of all, because the stationary two-soliton is not known in an

analytical form). As well as in the case of the fundamental solitons, the initial

perturbation added to the stationary two-solitons was generated by an increase of

the amplitudes of the two constituent pulses by 1%, and the simulations were then,

typically, run over the propagation distance of z = 2�, which was su�cient to

conclude if the two-soliton was stable or not. In many cases when the two-solitons

seemed stable, the runs were made twice as long in order to control the accuracy of

the results, which, however, never revealed an additional instability.

The stability was �rst tested for �xed k = 0:1, while q and D were varied. As

well as the fundamental solitons, the two-solitons are always found to be stable at

a su�ciently large phase mismatch q, getting destabilized when q decreases past a

speci�c two-soliton's threshold value q(2)thr. As an illustration, in Figs. 6.14 and 6.15

we show a typical example of the evolution of slightly perturbed stable and unstable

two-solitons, corresponding to q taken, respectively, above (at q = 6) and beneath

(at q = 1) the threshold. Only the FH components are shown in Figs. 6.14 and

6.15, v1 being displayed in the region x < 0, and, simultaneously, v2 at x > 0. This
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Figure 6.14: Evolution of a slightly perturbed two-soliton over a propagation distance of 2�

above the instability threshold, at k = 0:1, D = 1:2, and q = 6. (z is in units of �.)

way of presenting the numerical results was adopted for convenience; in reality, of

course, both components occupy the same space in the medium. It can be seen

that the stable two-solitons in Fig. 6.14 maintains its shape and amplitudes, while

the two-soliton in Fig. 6.15 clearly develops an instability, developing an asymmetry

between v1 and v2 (v2 grows and v1 diminishes).

The stability threshold q(2)thr is found to be higher than that for the fundamental

solitons, although the two thresholds are actually close. The numerically determined

stability domain for the two-solitons was plotted on the (q;D)-plane in Fig. 6.16.

As D increases, the threshold q(2)thr decreases, although the e�ect of changing D is

actually very weak (note at the vertical scale of Fig. 6.16). Also, the border between
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Figure 6.15: The same as Fig. 6.14, except that q = 1, i.e., below the two-soliton instability

threshold.

the stable and unstable domains is obtained to be practically straight, within our

accuracy. It can be seen that q(2)thr decreases towards the threshold value q(F)thr for

the fundamental soliton (see Fig. 6.7b), which is quite natural: as it follows from

Fig. 6.13, the two pulses in the two-soliton state separate as D increases, hence the

two-soliton's stability essentially amounts to the stability of the individual pulses,

although the reason why q(2)thr decreases with increasing D, in the range of small D,

where the separation between the two individual pulses is quite insensitive to D, is

unknown.

For values of k other than 0:1, the stability was also investigated. For k > 0:1,

all the two-solitons were found to be unstable, while for k < 0, they all are stable,

so that a stability-threshold curve on the (q; k)-plane, similar to that drawn in
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Figure 6.16: Numerically determined stability domains for the two-solitons on the (q;D)-plane

at k = 0:1.

Fig. 6.7a for the fundamental solitons, cannot, as a matter of fact, be obtained for

the two-solitons. However, the dependence of the two-solitons' stability threshold

on the wave-number shift k can be understood by the following argument. For

k = 0:1, it has been found that the threshold q(2)thr is close to but a bit larger than

the threshold q(F)thr for the fundamental soliton. For k = 0:3, the results borrowed

from the previous section yield q(F)thr = 57. If extrapolation from the k = 0:1 case is

approximately correct, q(2)thr should be > 60 for k = 0:3. Then, of course, no stable

two-solitons can be found for k > 0:1, since the numerical scheme fails to �nd any

stationary two-solution for q > 20, as mentioned above in the discussion related to

the inset in Fig. 6.10. Furthermore, if the two thresholds q(2)thr and q
(F)
thr are always
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close, Fig. 6.8 can be applied, approximately, to the two-solitons too. Recall that

Fig. 6.8 tells us that all the solitons are stable at k < 0, which exactly complies

with the numerical �nding that all the two-solitons are also stable if k < 0.
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Figure 6.17: Evolution of the asymmetry ratio of the two-soliton over a very long propagation

distance of 10� well above the instability threshold, at D = 0:5, k = 0:1, and q = 10. (z is in

units of �.)

The last issue to be addressed is the asymmetry between the two FH components,

which spontaneously develops as the solitons propagate. Although it cannot be seen

in Fig. 6.14, all the stable solitons, both fundamental and two-solitons, are found to

acquire a non-zero, although small, asymmetry. Because the stability of the two-

solitons is a crucially important issue, more simulation runs with an excessively long

propagation distance, z = 10�, were carried out to see if the asymmetry will keep
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growing at the parameters values inside the stability domain. A typical example

of the evolution of the asymmetry, for D = 0:5, k = 0:1, and q = 10, is shown in

Fig. 6.17. The asymmetry is quanti�ed by the ratio of the peak values of v1 and v2.

The oscillatory evolution of the asymmetry re
ects the internal vibrations of the

solitary wave, when it approaches its stationary value. Similar to the quadratically

nonlinear system considered in Chapters 2 & 3, the damping of these oscillations

is slight (see Sec. (2.4.3) &(3.4)). Discussions of similar evolution of transients in

soliton solutions in quadratically nonlinear media can be found in [58, 59, 142]. It

can be seen that the ratio approaches a constant value, slightly di�erent from 1,

after propagating over a very long distance. A natural assumption that explains this

numerical observation is that the underlying equations (6.3) have a general family of

asymmetric stationary fundamental-soliton and two-soliton solutions, the solution

subject to the above symmetry reduction, u1 = �u�2, being only a particular one.

Then, a small perturbation breaking the solution's symmetry (generated, e.g., due

to an inaccuracy of the numerical scheme) is expected to be neutrally stable, leading

to a slightly asymmetric established solution.

Furthermore, a survey of the asymmetry over the whole parameter plane shows

that, for the stable solitons in the positive k region, the asymmetry is � 1 %,

decreasing as k decreases. In the region of negative k (where the solitons have the

trend to be more robust), the observed asymmetry is � 0:1 % at k = �0:1, and, at
k = �0:5, it drops to � 0:01 %, which indicates that the soliton have practically no

asymmetry. This is another con�rmation of the general inference formulated above,

according to which the two-solitons are essentially more robust at larger negative k.



CHAPTER 6. THREE WAVE GAP SOLITONS 162

6.8 Conclusion

Amodel of the second-harmonic-generating (�(2)) optical mediumwith a Bragg grat-

ing is considered. Two components of the fundamental harmonic (FH) are assumed

to be resonantly coupled through the Bragg re
ection, while the second harmonic

(SH) propagates parallel to the grating, hence its dispersion (di�raction) must be

explicitly taken into regard. It is demonstrated that the system can easily generate

stable three-wave gap solitons of two di�erent types (free-tail and tail-locked ones),

that are identi�ed analytically according to the structure of their tails. The sta-

tionary fundamental solitons are sought for analytically, by means of the variational

approximation, and numerically. The results produced by the two approaches are

in a fairly reasonable agreement. The existence boundaries of the soliton are found

in an exact form. The stability of the solitons is determined by direct PDE sim-

ulations. A threshold value of an e�ective FH-SH mismatch parameter is found,

the soliton being stable above the threshold and unstable below it. The stability

threshold strongly depends on the soliton's wave-number shift k, and very weakly

on the SH di�raction coe�cient. Stationary two-soliton bound states are found too,

and it is demonstrated numerically that they are stable if the mismatch exceeds

another threshold, which is close to that for the fundamental soliton. At k < 0, the

stability thresholds do not exist, as all the fundamental and two-solitons are stable.

With the increase of the mismatch, the two-solitons disappear, developing a singu-

larity at another, very high, threshold. The existence of the stable two-solitons is a

drastic di�erence of the present model from the earlier investigated �(2) systems. It

is argued that both the fundamental solitons and two-solitons can be experimentally

observed in currently available optical materials with the quadratic nonlinearity.



Chapter 7

Conclusion

In this thesis, I reported the �ndings in the investigation of the characteristics of

solitons (solitary waves) in coupled waveguides.

The investigation as reported can be divided into two categories. The �rst half

of the thesis covers the parallel tunnel-coupled waveguides which have quadratic

nonlinearity. We reported a bifurcation, which can be observed in such coupler

structure. E�ects due to a spatial walko�, and di�erent phase mismatches were

also reported. Investigation was further carried out for the coupling structure when

the assumption of identical waveguides was removed; i.e., solitons in asymmetric

couplers were investigated.

The second half of the thesis covers coupling phenomena that can be observed

in waveguides which are equipped with gratings. This is further divided into two

parts. The �rst is on the investigation of gap solitons in a pair of linearly coupled

waveguides which also have Bragg gratings inscribed in them. The nonlinearity

considered here is however cubic. The reason for considering cubic nonlinearity

here is that the model involved will be simpler than the same structure but with

163
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quadratic nonlinearity. On the other hand, since coupled waveguides with Bragg

gratings and cubic nonlinearity was a novel research topic, it can provide useful

informations in the understanding of such a structure. The second part is on the

investigation of solitons due to three wave resonant interaction in a waveguide which

also has gratings in it.

In the �rst two chapters, we have formulated and analyzed a model describ-

ing two linearly coupled quadratically nonlinear waveguides. The model includes

two equations for the fundamental harmonics, and two equations for the second har-

monics. We have considered in details the most important special case of no-walko�

and fully matched harmonics, when the only control parameter is the coupling con-

stant, the same for both harmonics in the �rst chapter. It was demonstrated that,

alongside the obvious symmetric solitons, the model supports asymmetric solitary

waves. A bifurcation point at which the asymmetric solutions appear was found

exactly. A full description of these solutions in an analytical form was based on a

simple variational approximation. Comparison with numerical results obtained by

the shooting method has demonstrated that this approximation provides a fairly

good accuracy in a range where existence of the stationary asymmetric solitons was

predicted, while in some other range, asymmetric solitary-wave solutions were not

found, although periodic solutions can be easily obtained. Direct simulations of the

full PDE's have shown that the asymmetric solitons, whenever they exist, are always

neutrally stable. On the contrary, the symmetric solitons are stable (e�ectively, also

neutrally) only to the right of the bifurcation point, where the asymmetric solitons

do not exist. To the left of the bifurcation point, the symmetric soliton is found to

be unstable, demonstrating a trend to rearrange itself into the stable asymmetric

soliton that exist at the same value of the coupling constant Q.



CHAPTER 7. CONCLUSION 165

As the next steps, in chapter 2, we investigated the parallel tunnel-coupled

waveguide system, when the assumption of equal fundamental and second harmonic

coupling constants was removed. This is equivalent to removing the restriction that

the separation between the two waveguides needs to be small. We have completely

identi�ed the entire region (that includes two sub-regions) where the asymmetric

solitons exist, along with the bifurcation lines, at which the asymmetric solitons

branch o� from the obvious symmetric-soliton solutions. Similar to what was used

in Chapter 1, the asymmetric solutions were found in the two di�erent ways: One

(analytical) approach based on the variational approximation, and another approach

is direct numerical. However, the variational approach used the Gaussian ansatz.

As usual, the main advantage of using this type of ansatz is a possibility to admit

di�erent components of the soliton to have di�erent widths. Final solutions to

the system of eight algebraic equations produced by the variational approximation

were found numerically. Another approach which was based on direct numerical

solution employed a �nite-di�erence scheme, instead of the shooting method used

in Chapter 1. The reason is that the shooting method failed to produce solutions for

the range Q < �0:3 . The agreement between the analytical and direct numerical

results turns out to be very good, except for a very narrow region, where the SH

component of the soliton is changing its sign, and its shape is strongly non-Gaussian

(nonmonotonous).

Then, the stability of these soliton states was again tested by direct PDE simula-

tions. The result is in line with previous �ndings: The asymmetric solitons, when-

ever they exist, were shown to be neutrally stable, while the symmetric solitons

that obviously coexist with the asymmetric ones are always unstable. Moreover,

simulations of evolution of the symmetric solitons close to the bifurcation point
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and farther from it show that the unstable symmetric solitons su�er spontaneous

symmetry breaking and begin to evolve into the corresponding asymmetric solitons

(which they do faster if they are farther from the bifurcation point). The �nding of

this investigation suggests that the strong dependence of the stable asymmetric so-

lutions upon the e�ective coupling parameter, or, in physical units, upon the energy

of the beam, may open way to use these states for optical switching.

We then investigated the e�ect of the walko� (spatial misalignment) on the

solitons in the coupled waveguides for di�erent values of the coupling constants. An

estimate for the values of the walko� parameter � corresponding to experimentally

relevant values of the misalignment angles was obtained (� � 0:05 for the angles

� 0:3 degrees). The walko� term being small enough, the asymmetric solitons, as

well as the symmetric ones existing before the bifurcation, remain robust. With

increase of the parameter �, the solitons develop a distortion, and they �nally get

destructed when walko� becomes too large.

We have also investigated e�ects produced by varying the phase mismatch pa-

rameter. As phase mismatch parameter, q, gets smaller than 1, the regions where

the asymmetric solitons exist shrink, whereas these regions expand when q gets

larger than 1. However, as q increases beyond about 4, the asymmetry stays more

or less constant, especially for the case K = 0. We have also demonstrated that, in

the opposite limit of very small q, one can eliminate the second-harmonic �elds to

transform the model into that for the twin-core �ber with the Kerr nonlinearity.

In Chapter 4, we also investigated solitons in asymmetric coupler with quadratic

nonlinearity. We report results of analysis of the soliton bifurcations in such a pair of

asymmetric linearly coupled waveguides. We analyzed two limiting cases, when the

coupling constants at the fundamental and second harmonics are equal, or when the
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coupling at the second harmonic is absent. These cases correspond to the physical

situations in which the coupled waveguides are, respectively, weakly or strongly

separated. Two di�erent kinds of the asymmetry between the waveguides were

considered. The �rst of them corresponds to a di�erent phase mismatch between

the fundamental and second harmonics in the two cores. Unfoldings of the previously

known bifurcation diagrams corresponding to the symmetric coupler were studied

in detail at various values of the asymmetry parameter, and stability of di�erent

branches of the solutions was tested by direct simulations. Both the unfoldings

and the stability results were found to be in line with what is predicted by the

elementary bifurcation theory. Solitons on the unstable branches were found to

have a tendency to rearrange themselves, through the evolution of the growing

dynamical perturbations, into the corresponding stable solitons.

The second kind of the asymmetry investigated was the special case when one

waveguide is linear, while the other one possesses the quadratic nonlinearity. It was

found that soliton solutions exist in such a system. In contrast to the case when

both waveguides are nonlinear, here, the soliton solutions for the two limiting cases

of the weakly and strongly separated waveguides are not much di�erent. All the

solitons were found to be stable in the latter system.

The obtained results, and especially bifurcations between solitons of di�erent

types, suggest straightforward applications of the asymmetric quadratically nonlin-

ear couplers to the all-optical switching.

In Chapter 5, we have investigated a model describing two linearly coupled

waveguides with the cubic nonlinearity, each equipped with the resonant grating.

Assuming the Bragg scattering to dominate, the temporal dispersion or spatial

di�raction was ignored. This resulted in four coupled-mode equations which describe
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the propagation of the forward and backward waves in the two cores.

Using the variational approach, we have obtained approximate stationary solitary-

wave solutions in an analytical form, which were then re�ned by direct �nite-

di�erence numerical computations. The analytical and numerical results are found

to be in a good agreement. Both methods demonstrate the existence of asymmetric

solitary wave solutions, alongside the obvious symmetric solitons. The bifurcation

diagrams were constructed, showing narrowing down in terms of the coupling con-

stant j�j when either the frequency j!j or the velocity jcj increases. We have also

found exact existence limits for the solitary waves following from the linear dis-

persion analysis. It was shown that the solitary-wave solutions may only exist at

j�j < 1 and jcj < 1. For the quiescent solitons, the existence range is also limited

by the condition j!j < 1.

Then, the stability of both asymmetric and symmetric gap solitons was tested

by direct PDE simulations. The asymmetric solitons, whenever they exist, were

shown to be always stable, while the symmetric ones coexisting with them are

always unstable. Nevertheless, the symmetric solitons are fairly stable beyond the

bifurcation points, where they do not have to coexist with asymmetric solitons.

In the last chapter, We have demonstrated the existence of spatial gap solitons,

and of their bound states in the form of two-solitons, in a system of three waves,

resonantly interacting in a quadratically nonlinear planar waveguide with a Bragg

grating written on it. The model includes two components of the fundamental har-

monic, with di�erent orientations of their wave vectors, and the second harmonic,

whose wave vector is parallel to the grating. Control parameters of the model are the

phase mismatch between the harmonics and the di�raction coe�cient of the second

harmonic that does not interact with the grating. The analysis of the linearized
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and semilinearized versions of the model has allowed us to identify two possible

types of the solitons, distinguished by the structure of their tails ( free-tail and tail-

locked solitons). Then, a family of the complex fundamental-soliton solutions was

constructed numerically and analytically, by means of the variational approxima-

tion, that demonstrates a fairly reasonable agreement with the numerical solutions.

Soliton existence limits were found in an exact form. Mechanisms by which the

fundamental-solitons disappear as these limits are approached were explored. Un-

like the gap solitons in the four-wave �(2) model, in the present one the solitons

completely �ll the domain where they can exist (which implies that they should be

easier to observe in the experiment).

Two-soliton solutions also exist in a broad parametric range, with the separation

between the bound pulses inside them very weakly depending on the parameters,

except for a vicinity of the existence borders. With the increase of the mismatch

parameter, the two-solitons display a trend to disappear via a collapse.

The stability of the fundamental solitons and two-solitons was analyzed bymeans

of direct PDE simulations. It was found that both types of solitons are stable or

unstable when the mismatch is, respectively, above or beneath a corresponding

threshold value. The thresholds for the fundamental solitons and two-solitons are

di�erent but close, the latter one being somewhat higher. The thresholds strongly

depend upon the soliton's wave-number shift k, but are nearly independent of the

second-harmonic's di�raction coe�cient. At k < 0, the thresholds do not exist as all

the fundamental solitons and two-solitons are stable. Depending on the parameters,

the fundamental soliton at the point of the exact matching between the fundamental

and second harmonics (which is, simultaneously, a boundary between the free-tail

and tail-locked solitons) may be both stable and unstable, in contrast to the usual
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�(2) models. The existence of stable two-soliton bound states is a remarkable feature

of the model, which is a drastic di�erence from the familiar �(2) systems.

Because a �(2) waveguide with the resonant grating can be easily fabricated, the

most important physical result of this work is that it suggests straightforward ideas

for the experimental search for single- and two-humped three-wave spatial solitons

in �(2) optical materials by means of the Bragg grating.
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