OpenCV 4 Computer
Vision Application
Programming

Fourth Edition

Build complex computer vision applications with OpenCV and C++
- AL I\ ¥y

a;

-1 Packh

. ") _ www.packtcom
David Millan Escriva and Robert Laganiere

OpenCV 4 Computer Vision
Application Programming
Cookbook

Fourth Edition

Build complex computer vision applications with
OpenCV and C++

David Millan Escriva
Robert Laganiere

BIRMINGHAM - MUMBAI

OpenCV 4 Computer Vision Application
Programming Cookbook
Fourth Edition

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pavan Ramchandani
Acquisition Editor: Sandeep Mishra

Content Development Editor: Zeeyan Pinheiro
Technical Editor: Gaurav Gala

Copy Editor: Safis Editing

Project Coordinator: Vaidehi Sawant
Proofreader: Safis Editing

Indexer: Priyanka Dhadke

Graphics: Alishon Mendonsa

Production Coordinator: Nilesh Mohite

First published: May 2011
Second edition: August 2014
Third edition: February 2017
Fourth edition: May 2019

Production reference: 1020519
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78934-072-3

www.packtpub.com

A Mapt

mapt.io
Mapt is an online digital library that gives you full access to over 5,000 books and videos, as

well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt . com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

Contributors

About the authors

David Milldn Escriva was 8 years old when he wrote his first program on an 8086 PC in
Basic, which enabled the 2D plotting of basic equations. In 2005, he finished his studies in
IT with honors, through the Universitat Politécnica de Valencia, in human-computer
interaction supported by computer vision with OpenCV (v0.96). He has worked with
Blender, an open source, 3D software project, and on its first commercial movie, Plumiferos,
as a computer graphics software developer. David has more than 10 years' experience in IT,
with experience in computer vision, computer graphics, pattern recognition, and machine
learning, working on different projects, and at different start-ups, and companies. He
currently works as a researcher in computer vision.

Robert Laganiere is a professor at the University of Ottawa, Canada. He is also a faculty
member of the VIVA research lab and is the coauthor of several scientific publications and
patents in content-based video analysis, visual surveillance, driver-assistance, object
detection, and tracking. He cofounded Visual Cortek, a video analytics start-up, which was
later acquired by iWatchLife. He is also a consultant in computer vision and has assumed
the role of chief scientist in a number of start-ups companies, including Cognivue Corp,
iWatchLife, and Tempo Analytics. Robert has a Bachelor of Electrical Engineering degree
from Ecole Polytechnique in Montreal (1987), and M.Sc. and Ph.D. degrees from INRS-
Telecommunications, Montreal (1996).

About the reviewers

Nibedit Dey is a software engineer turned entrepreneur with over 8 years' experience of
building complex software-based products. Before starting his entrepreneurial journey, he
worked for L&T and Tektronix in different R&D roles. He has reviewed books

including The Modern C++ Challenge, Hands-On GUI Programming with C++ and Qt5, Getting
Started with Qt5 and Hands-On High Performance Programming with Qt 5 for Packt
Publishing.

I would like to thank the online programming communities, bloggers, and my peers from
earlier organizations, from whom I have learned a lot over the years.

Christian Stehno studied computer science and got his diploma from Oldenburg
University in 2000. Since then, he has worked on different topics in computer science, first
as a researcher in theoretical computer science at university. Later on, he switched to
embedded system design at a research institute. In 2010, he started his own company,
CoSynth, which develops embedded systems and intelligent cameras for industrial
automation. In addition to this, he has been a long-time member of the Irrlicht 3D engine
developer team.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

Table of Contents

Preface

—_

Chapter 1: Playing with Images
Installing the OpenCYV library
Getting ready
How to do it...
How it works...
There's more...
Using Qt for OpenCV developments
The OpenCV developer site
See also
Loading, displaying, and saving images
Getting ready
How to do it...
How it works...
There's more...
Clicking on images
Drawing on images
Running the example with Qt
See also
Exploring the cv::Mat data structure
How to do it...
How it works...
There's more...
The input and output arrays
See also
Defining regions of interest
Getting ready
How to do it...
How it works...
There's more...
Using image masks
See also

Chapter 2: Manipulating the Pixels
Accessing pixel values
Getting ready
How to do it...
How it works...
There's more...
The cv::Mat_ template class

Table of Contents

See also
Scanning an image with pointers
Getting ready
How to do it...
How it works...
There's more...
Other color reduction formulas
Having input and output arguments
Efficient scanning of continuous images
Low-level pointer arithmetics
See also
Scanning an image with iterators
Getting ready
How to do it...
How it works...
There's more...
See also
Writing efficient image-scanning loops
How to do it...
How it works...
There's more...
See also
Scanning an image with neighbor access
Getting ready
How to do it...
How it works...
There's more...
See also
Performing simple image arithmetic
Getting ready
How to do it...
How it works...
There's more...
Overloaded image operators
Splitting the image channels
Remapping an image
How to do it...
How it works...
See also

Chapter 3: Processing Color Images with Classes
Comparing colors using the strategy design pattern

How to do it...
How it works...
There's more...

Computing the distance between two color vectors

[ii]

Table of Contents

Using OpenCV functions
The functor or function object
The OpenCV base class for algorithms
See also
Segmenting an image with the GrabCut algorithm
How to do it...
How it works...
See also
Converting color representations
Getting ready
How to do it...
How it works...
See also
Representing colors with hue, saturation, and brightness
How to do it...
How it works...
There's more...
Using colors for detection — skin tone detection

Chapter 4: Counting the Pixels with Histograms
Computing the image histogram
Getting started
How to do it...
How it works...
There's more...
Computing histograms of color images
See also
Applying lookup tables to modify the image's appearance
How to do it...
How it works...
There's more...
Stretching a histogram to improve the image contrast
Applying a lookup table on color images
Equalizing the image histogram
How to do it...
How it works...

Backprojecting a histogram to detect specific image content

How to do it...
How it works...
There's more...
Backprojecting color histograms
Using the mean shift algorithm to find an object
How to do it...
How it works...
See also
Retrieving similar images using histogram comparison

78
80
81
81
82
82
85
86
86
87
87
89
90
90
91
93
95
95

99

99
100
101
105
106
106
108
109
109
110
110
111
113
114
114
116
116
117
119
119
120
123
124
127
128
128

[iii]

Table of Contents

How to do it... 129
How it works... 131
See also 131
Counting pixels with integral images 132
How to do it... 132
How it works... 134
There's more... 135
Adaptive thresholding 135

Visual tracking using histograms 139

See also 143
Chapter 5: Transforming Images with Morphological Operations 144
Eroding and dilating images using morphological filters 145
Getting ready 145
How to do it... 146
How it works... 147
There's more... 149
See also 149
Opening and closing images using morphological filters 150
How to do it... 150
How it works... 152
See also 153
Detecting edges and corners using morphological filters 153
Getting ready 153
How to do it... 154
How it works... 156
See also 158
Segmenting images using watersheds 158
How to do it... 158
How it works... 163
There's more... 164
See also 166
Extracting distinctive regions using MSER 166
How to do it... 166
How it works... 169
See also 172
Extracting foreground objects with the GrabCut algorithm 173
How to do it... 173
How it works... 176
See also 176
Chapter 6: Filtering the Images 177
Filtering images using low-pass filters 178
How to do it... 178
How it works... 180
See also 183

[iv]

Table of Contents

Downsampling an image
How to do it...
How it works...
There's more...
Interpolating pixel values
See also
Filtering images using a median filter
How to do it...
How it works...
Applying directional filters to detect edges
How to do it...
How it works...
There's more...
Gradient operators
Gaussian derivatives
See also
Computing the Laplacian of an image
How to do it...
How it works...
There's more...
Enhancing the contrast of an image using the Laplacian
Difference of Gaussians
See also

Chapter 7: Extracting Lines, Contours, and Components
Detecting image contours with the Canny operator
How to do it...
How it works...
See also
Detecting lines in images with the Hough transform
Getting ready
How to do it...
How it works...
There's more...
Detecting circles
See also
Fitting a line to a set of points
How to do it...
How it works...
There's more...
Extracting the components' contours
How to do it...
How it works...
There's more...
Computing components' shape descriptors
How to do it...

183
183
185
187
187
189
189
190
190
191
192
195
198
199
200
201
201
201
203
207
207
207
208

209
209
210
21
213
213
213
214
219
222
222
225
225
225
228
228
229
229
231
232
234
234

[v]

Table of Contents

How it works...
There's more...
Quadrilateral detection

Chapter 8: Detecting Interest Points
Detecting corners in an image
How to do it...
How it works...
There's more...
Good features to track
The feature detector's common interface
See also
Detecting features quickly
How to do it...
How it works...
There's more...
Adapted feature detection
See also
Detecting scale-invariant features
How to do it...
How it works...
There's more...
The SIFT feature-detection algorithm
See also
Detecting FAST features at multiple scales
How to do it...
How it works...
There's more...
The ORB feature-detection algorithm
See also

Chapter 9: Describing and Matching Interest Points
Matching local templates
How to do it...
How it works...
There's more...
Template matching
See also
Describing local intensity patterns
How to do it...
How it works...
There's more...
Cross-checking matches
The ratio test
Distance thresholding
See also
Describing keypoints with binary features

236
237
238

240
241
241
247
249
250
251
252
253
253
254
256
256
259
259
259
261
263
263
265
265
266
266
268
268
269

270
271
271
274
276
276
277
278
278
281
283
283
284
285
286
287

[vi]

Table of Contents

How to do it...
How it works...
There's more...

FREAK
See also

Chapter 10: Estimating Projective Relations in Images
Computing the fundamental matrix of an image pair
Getting ready
How to do it...
How it works...
See also
Matching images using a random sample consensus
How to do it...
How it works...
There's more...
Refining the fundamental matrix
Refining the matches
Computing a homography between two images
Getting ready
How to do it...
How it works...
There's more...
Detecting planar targets in an image
How to do it...
See also

Chapter 11: Reconstructing 3D Scenes
Digital image formation
Calibrating a camera
Getting ready
How to do it...
How it works...
There's more...
Calibration with known intrinsic parameters
Using a grid of circles for calibration
See also
Recovering the camera pose
How to do it...
How it works...
There's more...
cv::Viz — a 3D visualizer module
See also
Reconstructing a 3D scene from calibrated cameras
How to do it...
How it works...

287
289
290
290
292

293
296
296
298
301
302
302
303
306
308
308
309
309
310
311
313
314
314
314
317

318
319
320
321
322
326
328
329
329
329
330
330
333
334
334
336
336
337
343

[vii]

Table of Contents

There's more...
Decomposing a homography
Bundle adjustment
See also
Computing depth from a stereo image
Getting ready
How to do it...
How it works...
See also

Chapter 12: Processing Video Sequences
Reading video sequences
How to do it...
How it works...
There's more...
See also
Processing video frames
How to do it...
How it works...
There's more...
Processing a sequence of images
Using a frame processor class
See also
Writing video sequences
How to do it...
How it works...
There's more...
The codec four-character code
See also
Extracting the foreground objects in a video
How to do it...
How it works...
There's more...
The mixture of Gaussian method
See also

Chapter 13: Tracking Visual Motion
Tracing feature points in a video
How to do it...
How it works...
See also
Estimating the optical flow
Getting ready
How to do it...
How it works...
See also

345
345
346
346
346
347
348
350
351

352
352
353
355
356
357
357
357
359
363
363
364
366
366
366
367
370
371
372
372
374
376
377
377
379

380
381
381
386
387
388
389
390
392
394

[wiii]

Table of Contents

Tracking an object in a video
How to do it...
How it works...
See also

Chapter 14: Learning from Examples
Recognizing faces using the nearest neighbors of local binary
patterns
How to do it...
How it works...
See also
Finding objects and faces with a cascade of Haar features
Getting ready
How to do it...
How it works...
There's more...
Face detection with a Haar cascade
See also
Detecting objects and people using SVMs and histograms of
oriented gradients
Getting ready
How to do it...
How it works...
There's more...
HOG visualization
People detection
Deep learning and convolutional neural networks (CNNs)
See also

Chapter 15: OpenCV Advanced Features
Face detection using deep learning
How to do it...
How it works...
See also
Object detection with YOLOv3
How to do it...
How it works...
See also
Enabling Halide to improve efficiency
How to do it...
How it works...
See also
OpenCV.js introduction
How to do it...
How it works...

394
395
398
402

403

404
404
407
410
411
411
413
417

420
420
421

422
422
423
427
429
430
432
434
435

436
436
437
441
443
443
443
447
448
449
449
451
451
451
452
454

[ix]

Table of Contents

Other Books You May Enjoy 455

Index 458

[x]

Preface

Augmented reality, driving assistance, video monitoring; more and more applications are
now using computer vision and image analysis technologies, and yet we are still in the
infancy of the development of new computerized systems capable of understanding our
world through the sense of vision. And with the advent of powerful and affordable
computing devices and visual sensors, it has never been easier to create sophisticated
imaging applications.

A multitude of software tools and libraries manipulating images and videos are available,
but for anyone who wishes to develop smart vision-based applications, the OpenCV library
is the tool to use. OpenCV is an open source library containing more than 500 optimized
algorithms for image and video analysis. Since its introduction in 1999, it has been largely
adopted as the primary development tool by the community of researchers and developers
in computer vision.

OpenCV was originally developed at Intel by a team led by Gary Bradski as an initiative to
advance research in vision and promote the development of rich vision-based, CPU-
intensive applications. After a series of beta releases, version 1.0 was launched in 2006. A
second major release occurred in 2009 with the launch of OpenCV 2, which proposed
important changes, especially the new C++ interface, which we use in this book. In 2012,
OpenCV reshaped itself as a non-profit foundation (https://opencv.org/) relying on
crowdfunding for its future development.

OpenCV 3 was introduced in 2013; changes were made mainly to improve the usability of
the library. Its structure has been revised to remove the unnecessary dependencies, large
modules have been split into smaller ones, and the API has been refined. This book is the
fourth edition of OpenCV Computer Vision Application Programming Cookbook, and the first
one that covers OpenCV 4. All the programming recipes of the previous editions have been
reviewed and updated. We have also added new content and new chapters to provide
readers with even better coverage of the essential functionalities of the library.

This book covers many of the library's features and explains how to use them to accomplish
specific tasks. Our objective is not to provide detailed coverage of every option offered by
the OpenCV functions and classes, but rather to give you the elements you need to build
your applications from the ground up. We also explore fundamental concepts in image
analysis, and describe some of the important algorithms in computer vision.

Preface

This book is an opportunity for you to get introduced to the world of image and video
analysis—but this is just the beginning. The good news is that OpenCV continues to evolve
and expand. Just consult the OpenCV online documentation at https://opencv.org/ to
stay updated about what the library can do for you. You can also visit the author’s website
athttp://www.laganiere.name/ for updated information about this cookbook.

Who this book is for

This cookbook is appropriate for novice C++ programmers who want to learn how to use
the OpenCV library to build computer vision applications. It is also suitable for
professional software developers who want to be introduced to the concepts of computer
vision programming. It can be used as a companion book for university-level computer
vision courses. It constitutes an excellent reference for graduate students and researchers in
image processing and computer vision.

What this book covers

Chapter 1, Playing with Images, introduces the OpenCV library and shows you how to build
simple applications that can read and display images. It also introduces basic OpenCV
data structures.

Chapter 2, Manipulating the Pixels, explains how an image can be read. It describes different
methods for scanning an image in order to perform an operation on each of its pixels.

Chapter 3, Processing Color Images with Classes, consists of recipes presenting various object-
oriented design patterns that can help you to build better computer vision applications. It
also discusses the concept of colors in images.

Chapter 4, Counting the Pixels with Histograms, shows you how to compute image
histograms and how they can be used to modify an image. Different applications based on
histograms are presented that achieve image segmentation, object detection, and image
retrieval.

Chapter 5, Transforming Images with Morphological Operations, explores the concept of
mathematical morphology. It presents different operators and how they can be used to
detect edges, corners, and segments in images.

Chapter 6, Filtering the Images, teaches you the principles of frequency analysis and image
filtering. It shows how low-pass and high-pass filters can be applied to images, and
presents the concept of derivative operators.

[2]

Preface

Chapter 7, Extracting Lines, Contours, and Components, focuses on the detection of geometric
image features. It explains how to extract contours, lines, and connected components in an
image.

Chapter 8, Detecting Interest Points, describes various feature point detectors in images.

Chapter 9, Describing and Matching Interest Points, explains how descriptors of interest
points can be computed and used to match points between images.

Chapter 10, Estimating Projective Relations in Images, explores the projective relations that
exist between two images in the same scene. It also describes how to detect specific targets
in an image.

Chapter 11, Reconstructing 3D Scenes, allows you to reconstruct the 3D elements of a scene
from multiple images and recover the camera pose. It also includes a description of the
camera calibration process.

Chapter 12, Processing Video Sequences, provides a framework to read and write a video
sequence and to process its frames. It also shows you how it is possible to extract
foreground objects moving in front of a camera.

Chapter 13, Tracking Visual Motion, addresses the visual tracking problem. It also shows
you how to compute apparent motion in videos, and explains how to track moving objects
in an image sequence.

Chapter 14, Learning from Examples, introduces basic concepts in machine learning. It
shows how object classifiers can be built from image samples.

Chapter 15, OpenCV Advanced Features, covers the most advanced and newest features of
OpenCV. This chapter introduces the reader to state-of-the-art deep learning models in
artificial intelligence and machine learning. Deep learning is applied to object detection,
autonomous cars, and facial recognition. This chapter will introduce you to OpenCV js, a
new binding that ports web technology directly from OpenCV.

To get the most out of this book

This cookbook is based on the C++ API of the OpenCV library. It is therefore assumed that
you have some experience with the C++ language. In order to run the examples presented
in the recipes and experiment with them, you need a good C++ development environment.
Microsoft Visual Studio and Qt are two popular choices.

[3]

Preface

Download the example code files

You can download the example code files for this book from your account at
www . packtpub . com.If you purchased this book elsewhere, you can visit
www . packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

LogiIlorregkﬁeratwww.packtpub.com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

Ll

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

¢ WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/OpenCV-4-Computer-Vision-Application-Programming—Cookbook—

Fourth-Edition. We also have other code bundles from our rich catalog of books and
videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://www.packtpub.com/sites/default/files/
downloads/9781789340723_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

[4]

Preface

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The cv: :Mat variable's image refers to the input image, while result refers to
the binary output image."

A block of code is set as follows:

// compute distance from target color
if (getDistanceToTargetColor (*it)<=maxDist) {
*itout= 255;

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

Mat scores = outs[i].row(Jj).colRange (5, outs[i].cols);

Point classIdPoint;
double confidence; // Get the value and location of the maximum score

Any command-line input or output is written as follows:
cd 1llvm_root

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"You then click on Build Solution in Visual Studio.”

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections

In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There’s more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

[5]

Preface

Getting ready

This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

How it works...

This section usually consists of a detailed explanation of what happened in the previous
section.

There's more...

This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

[6]

Preface

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

[7]

Playing with Images

This chapter will teach you the basic elements of OpenCV and will show you how to
accomplish the most fundamental image-processing tasks—reading, displaying, and saving
images. However, before you can start with OpenCV, you need to install the library. This is
a simple process that is explained in the first recipe of this chapter.

All your computer vision applications will involve the processing of images. This is why
the most fundamental tool that OpenCV offers you is a data structure to handle images and
matrices. It is a powerful data structure, with many useful attributes and methods. It also
incorporates an advanced memory management model that greatly facilitates the
development of applications. The last two recipes of this chapter will teach you how to use
this important OpenCV data structure.

In this chapter, we will get you started with the OpenCV library. You will learn how to
perform the following tasks:

e Installing the OpenCV library

¢ Loading, displaying, and saving images
e Exploring the cv: :Mat data structure

¢ Defining regions of interest

Installing the OpenCV library

OpenCV is an open source library for developing computer vision applications that run on
Windows, Linux, Android, and macOS. It can be used in both academic and commercial
applications under a BSD license that allows you to use, distribute, and adapt it freely. This
recipe will show you how to install the library on your machine.

Playing with Images Chapter 1

Getting ready

When you visit the OpenCV official website at https://opencv.org/, you will find the
latest release of the library, the online documentation, and many other useful resources

concerning OpenCV.

How to do it...

The following steps will help take us through the installation, as follows:

1. From the OpenCV website, go to the downloads page that corresponds to the
platform of your choice (Unix/Windows or Android). From there, you will be
able to download the OpenCV package.

2. You will then uncompress it, normally under a directory with a name that
corresponds to the library version (for example, in Windows, you can save the
uncompressed directory under C:\OpenCv4.0.0).

Once this is done, you will find a collection of files and directories that constitute
the library at the chosen location. Notably, you will find the modules directory
here, which contains all the source files. (Yes, it is open source!)

3. However, in order to complete the installation of the library and have it ready for
use, you need to undertake an additional step—generating the binary files of the
library for the environment of your choice. This is indeed the point where you
have to make a decision on the target platform that you will use to create your
OpenCV applications. Which operating system should you use? Windows or
Linux? Which compiler should you use? Microsoft Visual Studio 2013 or
MinGW? 32-bit or 64-bit? The integrated development environment (IDE) that
you will use in your project development will also guide you to make these
choices.

Note that if you are working under Windows with Visual Studio, the
executable installation package will, most probably, not only install the
library sources, but also install all of the precompiled binaries needed to
build your applications. Check for the build directory; it should contain
the x64 and %86 subdirectories (corresponding to the 64-bit and 32-bit
versions). Within these subdirectories, you should find directories such
as vcl4 and vc15; these contain the binaries for the different versions of
Microsoft Visual Studio. In that case, you are ready to start using
OpenCV. Therefore, you can skip the compilation step described in this
recipe, unless you want a customized build with specific options.

i

[9]

Playing with Images Chapter 1

4. To complete the installation process and build the OpenCV binaries, you need to
use the CMake tool, available at https://cmake.org/.

CMake is another open source software tool designed to control the compilation
process of a software system using platform-independent configuration files. It
generates the required makefiles or workspaces needed for compiling a software
library in your environment. Therefore, you need to download and install CMake.

. Then, run it using the command line. Thereafter, it is easier to use CMake with its
GUI (cmake-gui).

. Specify the folder containing the OpenCV library source and the one that will
contain the binaries. You need to click on Configure in order to select the

compiler of your choice, and then click on Configure again as shown in the
following screenshot:

A CMake 3.0.0 - C:/opencv2.4.9/build/x86/Min.. — O n
File Tools Options Help

Where is the source code: |C:/opencv2.4.9/sources Browse Source... |
Where to build the binaries: | C:/opencv2.4.9/build/x86/MinGW ~| Browse Build... |

Search: I [~ Grouped [Advanced dk Add Entry | ¥ Remove Entry I
2L Ll A cmake-gui ? “
@ecify the generator for this project
Press Configure to update and display new values in red, then press Generate
selected build files. [MinGW Makefiles |
Configure Generate Current Generator: None I_ & Use default native compilers

' Specify native compilers
" Specify toolchain file for cross-compiling

' Specify options for cross-compiling

< Back I Finish I Cancel

7. You are now ready to generate your project files by clicking on
the Generate button. These files will allow you to compile the library.

[10]

Playing with Images

Chapter 1

8. This is the last step of the installation process, which will make the library ready
to be used under your development environment:

1. If you have selected Visual Studio, then all you need to do is to open

the top-level solution file that CMake has created for you (most

probably, the OpenCV. s1n file).

. You then click on Build Solution in Visual Studio.
. To get both a Release and a Debug build, you will have to repeat the

compilation process twice, one for each configuration.
The bin directory that is created contains the dynamic library files that

your executable will call at runtime.

. Make sure to set your system PATH environment variable from the

Control Panel such that your operating system can find the d11 files

when you run your applications:

& Device Manager

& Remote settings

9 System protection

& Advanced system settings

See also
Action Center

Windows Update

Computer Name | Hardware | Advanced | System Protection | Remote |

‘You must be logged on as an Administrator to make most ofthese changes.
Performance

Visual effects, processor scheduling. memory usage, and virtual memory

User Profiles
Desktop settings related to your sign-in
Settings...
Startup and Recovery
System startup. system failure, and debugging information
Settings...
Environment Variables...

~ System - olEN
@ ~ 4 & » Control Panel » System and Security » System v| ¢ | | Search Control Panel »p
o ~
Control Panel Home N .
System Properties E2 Environment Variables Ex

User variables for laganiere

Variable
JAVA_HOM
TEMP

™F

Variable value: | ake\bin; C:\opencv2.4.9\build\x64\vc12\bin ‘
[ok Cancel
System variables
Variable Value ~

Variable pame: | Path ‘

Edit System Variable “

Path
PATHEXT

PROCESSOR_AR... AMD64
PROCESSOR_ID... Intel64 Family 6 Model 69 Stepping 1, ...

c:\Program Files (x86)\Intel\ICLS Client...
.COM;.EXE;.BAT;.CMD;.VBS;.VBE; JS;....

v

New.. || Edt. |[Delete |

oK Cancel

v

9. In Linux environments, you will use the generated makefiles by running
your make utility command. To complete the installation of all the directories,
you also have to run a Build INSTALL or sudo make INSTALL command.

If you wish to use Qt as your IDE, the There’s more... section of this recipe describes an
alternative way to compile the OpenCV project.

[11]

Playing with Images Chapter 1

How it works...

Since Version 2.2, the OpenCV library has been divided into several modules. These
modules are built-in library files located in the 1ib directory. Some of the commonly used
modules are as follows:

¢ The opencv_core module that contains the core functionalities of the library, in
particular, basic data structures and arithmetic functions

¢ The opencv_imgproc module that contains the main image-processing
functions

¢ The opencv_highgui module that contains the image and video reading and
writing functions along with some user interface functions

e The opencv_features2d module that contains the feature point detectors and
descriptors and the feature point matching framework

e The opencv_calib3d module that contains the camera calibration, two-view
geometry estimation, and stereo functions

e The opencv_video module that contains the motion estimation, feature
tracking, and foreground extraction functions and classes

¢ The opencv_objdetect module that contains the object detection functions
such as the face and people detectors

The library also includes other utility modules that contain machine learning functions
(opencv_ml), computational geometry algorithms (opencv_flann), contributed code
(opencv_contrib), and many more. You will also find other specialized libraries that
implement higher level functions, such as opencv_photo for computational photography
and opencv_stitching for image-stitching algorithms. There is also a new branch that
contains other library modules, which include non-free algorithms, non-stable modules, or
experimental modules. This branch is on the opencv-contrib GitHub branch. When you
compile your application, you will have to link your program with the libraries that contain
the OpenCV functions you are using, linking it with the opencv-contrib folder.

All these modules have a header file associated with them (located in

the include directory). A typical OpenCV C++ code will, therefore, start by including the
required modules. For example (and this is the suggested declaration style), it will look like
the following code:

#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>

[12]

Playing with Images Chapter 1

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can

visit http://www.packtpub.com/support and register to have the files
emailed directly to you.

You might see an OpenCV code starting with the following command:

#include "cv.h"

This is because it used the old style before the library was restructured into modules and
became compatible with older definitions.

There's more...

The OpenCV website at https://opencv.org/ contains detailed instructions on how to
install the library. It also contains complete online documentation that includes several
tutorials on the different components of the library.

Using Qt for OpenCV developments

Qt is a cross-platform IDE for C++ applications developed as an open source project. It is
offered under the GNU Lesser General Public License (LGPL) open source license as well
as under a commercial (and paid) license for the development of proprietary projects. It is
composed of two separate elements—a cross-platform IDE called Qt Creator, and a set of
Qt class libraries and development tools. Using Qt to develop C++ applications has the
following benefits:

e Itis an open source initiative, developed by the Qt community, that gives you
access to the source code of the different Qt components

e Itis a cross-platform IDE, meaning that you can develop applications that can
run on different operating systems, such as Windows, Linux, macOS, and so on

e Itincludes a complete and cross-platform GUI library that follows an effective
object-oriented and event-driven model

¢ Qt also includes several cross-platform libraries that help you to develop
multimedia, graphics, databases, multithreading, web applications, and many
other interesting building blocks useful for designing advanced applications

[13]

Playing with Images Chapter 1

You can download Qt from https://www.qt.io/developers/. When you install it, you will
be offered the choice of different compilers. Under Windows, MinGW is an excellent
alternative to the Visual Studio compilers.

Compiling the OpenCV library with Qt is particularly easy because it can read CMake files.
Once OpenCV and CMake have been installed, simply select Open File or Project... from
the Qt menu, and open the CMakeLists.txt file that you will find under

the sources directory of OpenCV. This will create an OpenCV project that you will have
built by clicking on Build Project in the Qt menu:

[OpenCV - Qt Creator - B

Eile Edit Build Debug Analyze Tools Window Help
X 4 9

<no document>

Projects v e "Bt
4 | OpenCV
CMakelLists.txt

Lo

| 3rdparty
| apps

| cmake

| data

| doc

| include

| modules

A X

precomp.hpp 53

C:\opencv2.4.9\build\x86\MinGWqt32\modules\superres\precomp.hpp

In member function ‘virtual cv:Algorithminfo* {anonymous}:Farneback_GF gpumat.hpp
A array subscript is above array bounds [-Warray-bounds] gpumat.hpp 374
A array subscript is above array bounds [-Warray-bounds] gpumat.hpp 374

| Bl ©- Type to locate (Ctrl... Search Res...AppIication Compile Ou...a QML/3S Co... _

You might get a few warnings, but these can be overlooked without consequences.

[14]

Playing with Images Chapter 1

The OpenCV developer site

OpenCV is an open source project that welcomes user contributions. You can access the
developer site at https://docs.opencv.org/. Among other things, you can access the
currently developed version of OpenCV. The community uses Git as its version control
system. You then have to use it to check out the latest version of OpenCV. Git is also a free
and open source software system; it is probably the best tool you can use to manage your
own source code. You can download it from https://git-scm.com/.

See also

e The website of the author of this cookbook (www.laganiere.name) also presents
step-by-step instructions on how to install the latest versions of the library.

e The There's more... section of the next recipe explains how to create an OpenCV
project with Qt.

We've successfully learned how to install the OpenCV library. Now, let's move on to the
next recipe!

Loading, displaying, and saving images

It is now time to run your first OpenCV application. Since OpenCV is about processing
images, this task will show you how to perform the most fundamental operations needed
in the development of imaging applications. These are loading an input image from a file,
displaying an image on a window, applying a processing function, and storing an output
image on a disk.

Getting ready

Using your favorite IDE (for example, MS Visual Studio or Qt), create a new console
application with the main function that is ready to be filled.

[15]

Playing with Images Chapter 1

How to do it...

Let's take a look at the following steps:

1.

Include the header files, declaring the classes and functions you will use. Here,
we simply want to display an image, so we need the core library that declares
the image data structure and the highgui header file that contains all the
graphical interface functions:

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>

Our main function starts by declaring a variable that will hold the image. Under
OpenCV2, define an object of the cv: :Mat class:

cv::Mat image; // create an empty image

This definition creates an image sized 0 x 0. This can be confirmed by accessing
the cv: :Mat size attributes:

std::cout << "This image is " << image.rows << " x " << image.cols
<< std::endl;

. Next, a simple call to the reading function will read an image from the file,

decode it, and allocate the memory:
image= cv::imread ("puppy.bmp"); // read an input image

You are now ready to use this image. However, you should first check whether
the image has been correctly read (an error will occur if the file is not found, if
the file is corrupted, or if it is not in a recognizable format) using the empty ()
function. The empty method returns t rue if no image data has been allocated:

if (image.empty()) { // error handling
// no image has been created...
// possibly display an error message
// and quit the application

[16]

Playing with Images Chapter 1

6. The first thing you might want to do with this image is to display it. You can do
this by using the functions of the highgui module. Start by declaring the
window on which you want to display the images, and then specify the image to
be shown on this special window:

// define the window (optional)
cv::namedWindow ("Original Image");
// show the image

cv::imshow ("Original Image", image);

As you can see, the window is identified by a name. You can reuse this window
to display another image later, or you can create multiple windows with different
names. When you run this application, you will see an image window as follows:

0

W Original Image —

7. Now, you would normally apply some processing to the image. OpenCV offers a
wide selection of processing functions, and several of them are explored in this
book. Let's start with a very simple one that flips an image horizontally. Several
image transformations in OpenCV can be performed in-place, meaning that the
transformation is applied directly on the input image (no new image is created).
This is the case with the flipping method. However, we can always create
another matrix to hold the output result, and that is what we will do:

cv::Mat result; // we create another empty image
cv::flip(image, result,l); // positive for horizontal
// 0 for vertical,
// negative for both

8. We are going to display the result on another window:

cv::namedWindow ("Output Image"); // the output window
cv::imshow ("Output Image", result);

[17]

Playing with Images Chapter 1

9. Since it is a console window that will terminate when it reaches the end of
the main function, we add an extra highgui function to wait for a user keypress

before ending the program:

// 0 to indefinitely wait for a key pressed
// specifying a positive value will wait for
// the given amount of msec

cv::waitKey (0);

You can then see that the output image is displayed on a distinct window, as
shown in the following screenshot:

O

s Output Image —

10. Finally, you will probably want to save the processed image on your disk. This is
done using the following highgui function:

cv::imwrite ("output.bmp", result); // save result

The file extension determines which codec will be used to save the image. Other
popular supported image formats are JPG, TIFF, and PNG.

How it works...

All classes and functions in the C++ API of OpenCV are defined within the cv namespace.
You have two ways to access them. First, precede the main function's definition with the

following declaration:
using namespace cv;

Alternatively, prefix all OpenCV class and function names by the namespace specification,
thatis, cv: :, as we will do in this book. The use of the prefix makes the OpenCV classes

and functions easier to identify.

[18]

Playing with Images Chapter 1

The highgui module contains a set of functions that allows you to visualize and interact
with your images easily. When you load an image with the imread function, you also have
the option to read it as a gray-level image. This is very advantageous since several
computer vision algorithms require gray-level images. Converting an input color image on
the fly as you read it will save your time and minimize your memory usage. This can be
done as follows:

// read the input image as a gray-scale image
image= cv::imread ("puppy.bmp", cv::IMREAD_GRAYSCALE) ;

This will produce an image made of unsigned bytes (unsigned char in C++) that
OpenCV designates with the cv_8U defined constant. Alternatively, it is sometimes
necessary to read an image as a three-channel color image even if it has been saved as a
gray-level image. This can be achieved by calling the imread function with a positive
second argument:

// read the input image as a 3-channel color image
image= cv::imread ("puppy.bmp", cv::IMREAD_COLOR) ;

This time, an image made of three bytes per pixel will be created, designated as Cv_8UC3 in
OpenCV. Of course, if your input image has been saved as a gray-level image, all three
channels will contain the same value. Finally, if you wish to read the image in the format in
which it has been saved, then simply input a negative value as the second argument. The
number of channels in an image can be checked by using the channels method:

std::cout << "This image has " << image.channels () << " channel (s)";

Pay attention when you open an image with imread without specifying a full path (as we
did here). In that case, the default directory will be used. When you run your application
from the console, this directory is obviously one of your executable files. However, if you
run the application directly from your IDE, the default directory will most often be the one
that contains your project file. Consequently, make sure that your input image file is
located in the right directory.

When you use imshow to display an image made up of integers (designated as Cv_16U for
16-bit unsigned integers, or as CV_32S for 32-bit signed integers), the pixel values of this
image will be divided by 256 first, in an attempt to make it displayable with 256 gray
shades. Similarly, an image made of floating points will be displayed by assuming a range
of possible values between 0. 0 (displayed as black) and 1. 0 (displayed as white). Values
outside this defined range are displayed in white (for values above 1. 0) or black (for values
below 1.0).

[19]

Playing with Images Chapter 1

The highgui module is very useful for building quick prototypal applications. When you
are ready to produce a finalized version of your application, you will probably want to use
the GUI module offered by your IDE in order to build an application with a more
professional look.

Here, our application uses both input and output images. As an exercise, you should
rewrite this simple program such that it takes advantage of the function's in-place
processing, that is, by not declaring the output image and writing it instead:

cv::flip(image,image,1); // in-place processing

There's more...

The highgui module contains a rich set of functions that help you to interact with your
images. Using these, your applications can react to mouse or key events. You can also draw
shapes and write texts on images.

Clicking on images

You can program your mouse to perform specific operations when it is over one of the
image windows you created. This is done by defining an appropriate callback function. A
callback function is a function that you do not explicitly call but which is called by your
application in response to specific events (here, the events that concern the mouse
interacting with an image window). To be recognized by applications, callback functions
need to have a specific signature and must be registered. In the case of the mouse event
handler, the callback function must have the following signature:

void onMouse(int event, int x, int y, int flags, void* param);

The first parameter is an integer that is used to specify which type of mouse event has
triggered the call to the callback function. The other two parameters are simply the pixel
coordinates of the mouse location when the event occurred. The flags are used to determine
which button was pressed when the mouse event was triggered. Finally, the last parameter
is used to send an extra parameter to the function in the form of a pointer to an object. This
callback function can be registered in the application through the following call:

cv::setMouseCallback ("Original Image", onMouse,
reinterpret_cast<void*> (&image));

[20]

Playing with Images Chapter 1

In this example, the onMouse function is associated with the image window

called Original Image, and the address of the displayed image is passed as an extra
parameter to the function. Now, if we define the onMouse callback function as shown in the
following code, then each time the mouse is clicked, the value of the corresponding pixel
will be displayed on the console (here, we assume that it is a gray-level image):

void onMouse(int event, int x, int y, int flags, void* param) {

cv::Mat *im= reinterpret_cast<cv::Mat*> (param);

switch (event) { // dispatch the event

case cv::EVENT_LBUTTONDOWN: // left mouse button down event
// display pixel value at (x,y)

std::cout << "at (" << x << "," <K<y << ") value is: " <<
static_cast<int> (im->at<uchar> (cv::Point(x,y))) << std::endl;
break;

}

Note that in order to obtain the pixel value at (x, y), we used the at method of

the cv: :Mat object here; this is discussed in chapter 2, Manipulating the Pixels. Other
possible events that can be received by the mouse event callback function include

cv: :EVENT_MOUSE_MOVE, cv: : EVENT_LBUTTONUP, cv: : EVENT_RBUTTONDOWN,

and cv: :EVENT_RBUTTONUP.

Drawing on images

OpenCV also offers a few functions to draw shapes and write texts on images. The
examples of basic shape-drawing functions are circle, ellipse, line, and rectangle.
The following is an example of how to use the circle function:

cv::circle (image, // destination image
cv::Point (155,110), // center coordinate

65, // radius
0, // color (here black)
3); // thickness

The cv: :Point structure is often used in OpenCV methods and functions to specify a pixel
coordinate. Note that here we assume that the drawing is done on a gray-level image; this
is why the color is specified with a single integer. In the next recipe, you will learn how to
specify a color value in the case of color images that use the cv: : Scalar structure. It is also
possible to write text on an image. This can be done as follows:

cv::putText (image, // destination image
"This is a dog.",// text

[21]

Playing with Images

Chapter 1

cv::Point (40,200), // text position
cv: :FONT_HERSHEY_ PLAIN, // font type
2.0, // font scale

255, // text color (here white)

2); // text thickness

Calling these two functions on our test image will then result in the following screenshot:

O

(K Drawing on an Image -

Let's see what happens when you run the example using Qt.

Running the example with Qt

If you wish to use Qt to run your OpenCV applications, you will need to create project files.
For the example of this recipe, here is how the project file (loadDisplaySave.pro) will

look:

QT += core
QT —-= gui

TARGET = loadDisplaySave
CONFIG += console
CONFIG -= app_bundle

TEMPLATE = app

SOURCES += loadDisplaySave.cpp

INCLUDEPATH += C:\OpenCV4.0.0\build\include

LIBS += -LC:\0penCV4.0.0\build\x86\MinGWgt32\1ib \
-lopencv_cored00 \

-lopencv_imgproc400 \

—lopencv_highgui400

[22]

Playing with Images Chapter 1

This file shows you where to find the include and library files. It also lists the library
modules that are used by the example. Make sure to use the library binaries compatible
with the compiler that Qt is using. Note that if you download the source code of the
examples for this book, you will find the CMakeLists files that you can open with Qt (or
CMake) in order to create the associated projects.

See also

e The cv: :Mat class is the data structure that is used to hold your images (and
obviously, other matrix data). This data structure is at the core of all OpenCV
classes and functions; the next recipe offers a detailed explanation of this data
structure.

* You can download the source code of the examples for this book from https://
github.com/PacktPublishing/OpenCV-4-Computer-Vision-Application-
Programming-Cookbook-Fourth-Edition.

We've successfully learned how to load, display, and save images. Now, let's move on to
the next recipe!

Exploring the cv::Mat data structure

In the previous recipe, you were introduced to the cv: :Mat data structure. As mentioned,
this is a key element of the library. It is used to manipulate images and matrices (in fact, an
image is a matrix from a computational and mathematical point of view). Since you will be
using this data structure extensively in your application developments, it is imperative that
you become familiar with it. Notably, you will learn in this recipe that this data structure
incorporates an elegant memory management mechanism, allowing efficient usage.

How to do it...

Let's write the following test program that will allow us to test the different properties of
the cv: :Mat data structure, as follows:

1. Include the opencv headersand a c++ i/o stream utility:

#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>

[23]

Playing with Images Chapter 1

2. We are going to create a function that generates a new gray image with a default
value for all its pixels:

cv::Mat function() {
// create image
cv::Mat ima (500,500,CV_8U, 50);
// return it
return ima;

}
3. In the main function, we are going to create six windows to show our results:

// define image windows

cv: :namedWindow (" Image "y

cv: :namedWindow (" Image

~

~

~

cv: :namedWindow (" Image

~

1
(2
cv::namedWindow ("Image 3
cv::namedWindow ("Image 4
(5
(")

cv::namedWindow ("Image") ;

4. Now, we can start to create different mats (with different sizes, channels, and
default values) and wait for the key to be pressed:

// create a new image made of 240 rows and 320 columns
cv::Mat imagel (240,320,CV_8U,100);

cv::imshow ("Image", imagel); // show the image
cv::waitKey (0); // wait for a key pressed

// re-allocate a new image
imagel.create (200,200,CV_80U);
imagel= 200;

cv::imshow ("Image", imagel); // show the image
cv::waitKey (0); // wait for a key pressed

// create a red color image
// channel order is BGR
cv::Mat image2(240,320,CV_8UC3,cv::Scalar(0,0,255));

// or:
// cv::Mat image2 (cv::Size (320,240),CV_8UC3);
// image2= cv::Scalar (0,0,255);

cv::imshow ("Image", image2); // show the image
cv::waitKey (0); // wait for a key pressed

[24]

Playing with Images Chapter 1

5. We are going to read an image with the imread function and copy it to another
mat:

// read an image
cv::Mat image3= cv::imread ("puppy.bmp") ;

// all these images point to the same data block
cv::Mat imaged (image3);
imagel= image3;

// these images are new copies of the source image
image3.copyTo (image2) ;
cv::Mat imageb= image3.clone();

6. Now, we are going to apply an image transformation (£1ip) to a copied image,
show all images created, and wait for a keypress:

// transform the image for testing
cv::flip(image3, image3,1);

// check which images have been affected by the processing
cv::imshow ("Image 3", image3);

cv::imshow ("Image 1", imagel);
cv::imshow ("Image 2", image2);
cv::imshow ("Image 4", image4)
cv::imshow ("Image 5", imageb);
cv::waitKey (0); // wait for a key pressed

’

7. Now, we are going to use the function created before to generate a new gray mat:

// get a gray-level image from a function
cv::Mat gray= function();

cv::imshow ("Image", gray); // show the image
cv::waitKey (0); // wait for a key pressed

8. Finally, we are going to load a color image but convert it to gray in the loading
process. Then, we will convert its values to float mat:

// read the image in gray scale
imagel= cv::imread ("puppy.bmp", IMREAD_GRAYSCALE) ;
imagel.convertTo (image2,CV_32F,1/255.0,0.0);

cv::imshow ("Image", image2); // show the image
cv::waitKey (0); // wait for a key pressed

Run this program and take a look at the following images produced:

[25]

Playing with Images Chapter 1

Image 1

Now, let's go behind the scenes to understand the code better.

How it works...

The cv: :Mat data structure is essentially made up of two parts: a header and a data block.
The header contains all the information associated with the matrix (size, number of
channels, data type, and so on). The previous recipe showed you how to access some of the
attributes of this structure contained in its header (for example, by using cols, rows,

or channels). The data block holds all the pixel values of an image. The header contains a
pointer variable that points to this data block; it is the data attribute. An important
property of the cv: :Mat data structure is the fact that the memory block is only copied
when it is explicitly requested. Indeed, most operations will simply copy

the cv: :Mat header such that multiple objects will point to the same data block at the same
time. This memory management model makes your applications more efficient while
avoiding memory leaks, but its consequences have to be understood. The examples for this
recipe illustrate this fact.

By default, the cv: :Mat objects have a zero size when they are created, but you can also
specify an initial size as follows:

// create a new image made of 240 rows and 320 columns
cv::Mat imagel (240,320,CVvV_8U,100);

[26]

Playing with Images Chapter 1

In this case, you also need to specify the type of each matrix element; Cv_8U here, which
corresponds to 1-byte pixel images. The letter U means it is unsigned. You can also declare
signed numbers by using the letter s. For a color image, you would specify three channels
(cv_8uc3). You can also declare integers (signed or unsigned) of size 16 and 32 (for
example, CV_16sC3). You also have access to 32-bit and 64-bit floating-point numbers (for
example, CV_32F).

Each element of an image (or a matrix) can be composed of more than one value (for
example, the three channels of a color image); therefore, OpenCV has introduced a simple
data structure that is used when pixel values are passed to functions. It is

the cv: : Scalar structure, which is generally used to hold one value or three values. For
example, to create a color image initialized with red pixels, you will write the following
code:

// create a red color image
// channel order is BGR
cv::Mat image2 (240,320,CV_8UC3,cv::Scalar(0,0,255));

Similarly, the initialization of the gray-level image could also have been done using this
structure by writing cv: :Scalar (100).

The image size also often needs to be passed to functions. We have already mentioned that
the cols and rows attributes can be used to get the dimensions of a cv: :Mat instance. The
size information can also be provided through the cv: : size structure that simply contains
the height and width of the matrix. The size () method allows you to obtain the current
matrix size. It is the format that is used in many methods where a matrix size must be
specified. For example, an image could be created as follows:

// create a non-initialized color image
cv::Mat image2 (cv::Size (320,240),CV_8UC3);

The data block of an image can always be allocated or reallocated using

the create method. When an image has been previously allocated, its old content is
deallocated first. For reasons of efficiency, if the newly proposed size and type match the
already existing size and type, then no new memory allocation is performed:

// re—allocate a new image
// (only if size or type are different)
imagel.create (200,200,CV_8U);

[27]

Playing with Images Chapter 1

When no more references point to a given cv: :Mat object, the allocated memory is
automatically released. This is very convenient because it avoids the common memory leak
problems often associated with dynamic memory allocation in C++. This is a key
mechanism in OpenCV 2 that is accomplished by having the cv: :Mat class implement
reference counting and shallow copying. Therefore, when an image is assigned to another
one, the image data (that is, the pixels) is not copied; both the images will point to the same
memory block. This also applies to images passed by value or returned by value. A
reference count is kept, such that the memory will be released only when all the references
to the image will be destroyed or assigned to another image:

// all these images point to the same data block
cv::Mat imaged (image3);
imagel= image3;

Any transformation applied to one of the preceding images will also affect the other
images. If you wish to create a deep copy of the content of an image, use

the copyTo method. In that case, the create method is called on the destination image.
Another method that produces a copy of an image is the clone method, which creates an
identical new image as follows:

// these images are new copies of the source image
image3.copyTo (image?2) ;
cv::Mat imageb5= image3.clone();

If you need to copy an image into another image that does not necessarily have the same
data type, you have to use the convertTo method:

// convert the image into a floating point image [0, 1]
imagel.convertTo (image2,CV_32F,1/255.0,0.0);

In this example, the source image is copied into a floating-point image. The method
includes two optional parameters—a scaling factor and an offset. Note that both the images
must, however, have the same number of channels.

The allocation model for the cv: :Mat objects also allows you safely to write functions (or
class methods) that return an image:

cv::Mat function() {
// create image
cv::Mat ima(240,320,CV_8U,cv::Scalar (100));
// return it
return ima;

[28]

Playing with Images Chapter 1

We also call this function from our main function, as follows:

// get a gray-level image
cv::Mat gray= function();

If we do this, then the gray variable will now hold the image created by the function
without extra memory allocation. Indeed, as we explained, only a shallow copy of the
image will be transferred from the returned cv: : Mat instance to the gray image. When
the ima local variable goes out of scope, this variable is deallocated, but since the associated
reference counter indicates that its internal image data is being referred to by another
instance (that is, the gray variable), its memory block is not released.

It's worth noting that in the case of classes, you should be careful and not return image
class attributes. Here is an example of an error-prone implementation:

class Test {
// image attribute
cv::Mat ima;

public:
// constructor creating a gray-level image
Test () : ima(240,320,CV_8U,cv::Scalar (100)) {}

// method return a class attribute, not a good idea...
cv::Mat method() { return ima; }

}i

Here, if a function calls the method of this class, it obtains a shallow copy of the image
attributes. If later this copy is modified, the class attribute will also be surreptitiously
modified, which can affect the subsequent behavior of the class (and vice versa). To avoid
these kinds of errors, you should instead return a clone of the attribute.

There's more...

While you are manipulating the cv: :Mat class, you will discover that OpenCV also
includes several other related classes. It will be important for you to become familiar with
them.

[29]

Playing with Images Chapter 1

The input and output arrays

If you look at the OpenCV documentation, you will see that many methods and functions
accept parameters of the cv: : InputArray type as the input. This type is a simple proxy
class introduced to generalize the concept of arrays in OpenCV, and thus, avoid the
duplication of several versions of the same method or function with different input
parameter types. It basically means that you can supply a cv: :Mat object or other
compatible types as an argument. This class is just an interface, so you should never declare
it explicitly in your code. It is interesting to know that cv: : InputArray can also be
constructed from the popular std: : vector class. This means that such objects can be used
as the input to OpenCV methods and functions (as long as it makes sense to do so). Other
compatible types are cv: : Scalar and cv: : Vec; this later structure will be presented in
Chapter 2, Manipulating the Pixels. There is also a cv: : OutputArray proxy class that is
used to designate the arrays returned by some methods or functions.

See also

¢ The complete OpenCV documentation can be found at https://docs.opencv.
org/.

e Chapter 2, Manipulating the Pixels, will show you how to access and modify the
pixel values of an image represented by the cv: :Mat class efficiently.

The next recipe will explain how to define a region of interest (ROI) inside an image.

Defining regions of interest

Sometimes, a processing function needs to be applied only to a portion of an image.
OpenCV incorporates an elegant and simple mechanism to define a subregion in an image
and manipulate it as a regular image. This recipe will teach you how to define an ROI
inside an image.

[30]

Playing with Images Chapter 1

Getting ready

Suppose we want to copy a small image onto a larger one. For example, let's say we want to
insert the following small logo into our test image:

To do this, an ROI can be defined over which the copy operation can be applied. As we will
see, the position of the ROI will determine where the logo will be inserted in the image.

How to do it...

Let's take a look at the following steps:
1. The first step consists of defining the ROI. We can use Rect to define the ROI:

cv::Rect myRoi= cv::Rect (image.cols-logo.cols, //ROI coordinates
image.rows-logo.rows,
logo.cols,logo.rows)

2. Once the ROl is defined, we can create a new mat applying the ROI to another
mat and it can be manipulated as a regular cv: :Mat instance. The key is that the
ROl is indeed a cv: :Mat object that points to the same data buffer as its parent
image and has a header that specifies the coordinates of the ROL Inserting the
logo would then be accomplished as follows:

// define image ROI at image bottom-right
cv::Mat imageROI (image, myRoi);

// insert logo
logo.copyTo (imageROTI) ;

[31]

Playing with Images Chapter 1

Here, image is the destination image, and 1ogo is the logo image (of a smaller
size). The following image is then obtained by executing the previous code:

|

L Image —

Now, let's go behind the scenes to understand the code better.

How it works...

One way to define an ROl is to use a cv: : Rect instance. As the name indicates, it describes
a rectangular region by specifying the position of the upper-left corner (the first two
parameters of the constructor) and the size of the rectangle (the width and height are given
in the last two parameters). In our example, we used the size of the image and the size of
the logo in order to determine the position where the logo would cover the bottom-right
corner of the image. Obviously, the ROI should always be completely inside the parent
image.

The ROI can also be described using row and column ranges. A range is a continuous
sequence from a start index to an end index (excluding both). The cv: : Range structure is
used to represent this concept. Therefore, an ROI can be defined from two ranges; in our
example, the ROI could have been equivalently defined as follows:

imageROI= image (cv::Range (image.rows—-logo.rows, image.rows),
cv::Range (image.cols-logo.cols, image.cols));

[32]

Playing with Images Chapter 1

In this case, the operator () function of cv : :Mat returns another cv: :Mat instance that
can then be used in subsequent calls. Any transformation of the ROI will affect the original
image in the corresponding area because the image and the ROI share the same image data.
Since the definition of an ROI does not include the copying of data, it is executed in a
constant amount of time, no matter the size of the ROI.

If one wants to define an ROI made of some lines of an image, the following call could be
used:

cv::Mat imageROI= image.rowRange (start,end);

Similarly, for an ROI made of some image columns, the following could be used:

cv::Mat imageROI= image.colRange (start,end);

There's more...

The OpenCV methods and functions include many optional parameters that are not
discussed in the recipes of this book. When you wish to use a function for the first time, you
should always take the time to look at the documentation to learn more about the possible
options that this function offers. One very common option is the possibility to define image
masks.

Using image masks

Some OpenCV operations allow you to define a mask that will limit the applicability of a
given function or method, which is normally supposed to operate on all the image pixels. A
mask is an 8-bit image that should be nonzero at all locations where you want an operation
to be applied. At the pixel locations that correspond to the zero values of the mask, the
image is untouched. For example, the copyTo method can be called with a mask. We can
use it here to copy only the white portion of the logo shown previously, as follows:

// define image ROI at image bottom-right

imageROI= image (cv::Rect (image.cols—-logo.cols,image.rows—-logo.rows,
logo.cols, logo.rows));

// use the logo as a mask (must be gray-level)

cv::Mat mask (logo);

// insert by copying only at locations of non-zero mask
logo.copyTo (imageROI, mask) ;

[33]

Playing with Images Chapter 1

The following image is obtained by executing the previous code:

|

W Image -

The background of our logo was black (therefore, it had the value 0); therefore, it was easy
to use it as both the copied image and the mask. Of course, you can define the mask of your

choice in your application; most OpenCV pixel-based operations give you the opportunity
to use masks.

See also

e The row and col methods that will be used in the Scanning an image with neighbor
access recipe of Chapter 2, Manipulating the Pixels. These are special cases of
the rowRange and colRange methods in which the start and end indexes are
equal in order to define a single-line or single-column ROIL.

[34]

