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Abstract

We use a cosmological counterpart of the cylindrical Halilsoy so-
lution to illustrate properties of cross-polarized standing gravitational
waves.

1 Introduction
The linearized gravitational waves are well understood within general rela-
tivity. In the era of gravitational wave astronomy, it is especially interesting
to extend our intuitions beyond linear regime where unexplored phenomena
may be hidden. One of the most basic settings are standing gravitational
waves. The studies of this type has been initiated by Bondi [2] and Stephani
[7]. More recently, the problem has been investigated in the articles [8], [9].

The aim of this work is to clarify the role of polarization in the con-
text of standing gravitational waves. As a toy-model, we examine a class
of exact solutions to Einstein equations which are cosmological counterparts
of the Halilsoy cylindrical spacetimes [4]. (The Halilsoy solutions are cross-
polarized Einstein-Rosen waves.) These solutions correspond to three-torus
Gowdy models. In Gowdy models (contrary to the original cylindrical Halil-
soy spacetime), a privileged class of stationary observers exists (at antinodes)
and one can examine properties of waves relative to this class of observers.

The solution presented in [9] is a special case of the class studied here. It
corresponds to ‘+’ polarization of the waves.
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2 Setting
We consider the line element of the Gowdy form (its relation to the Halilsoy
solution is described in Appendix A)

g = ef
(
−dt2 + dz2

)
+ tep(dx+ ωdy)2 + te−pdy2 , (1)

where t > 0, 0 ≤ x, y, z < 2π and xα = (t, z, x, y). The metric functions f , p
and ω depend on t and z only and are given by

e−p =t

(
cosh(α) cosh[2β

√
λJ0(

t

λ
) sin(

z

λ
)]− sinh[2β

√
λJ0(

t

λ
) sin(

z

λ
)]

)
,

f =− ln t− p+
β2

λ
t2
[
J2

0 (
t

λ
) + J2

1 (
t

λ
)− 2

λ

t
J0(

t

λ
)J1(

t

λ
) sin2(

z

λ
)

]
,

ω =2β
√
λ sinh(α)tJ1(

t

λ
) cos(

z

λ
) ,

(2)

where α is a constant and J0, J1 are the Bessel functions of the first kind
and orders 0, 1, respectively. The number of waves on the torus is given by
1/λ where λ is a parameter such that 1/λ ∈ N. For α = 0, the solution (2)
reduces to the ‘+’ polarized case studied in [9]. For β = 0 it corresponds to
the three-torus identified Minkowski metric in coordinates expanding along
∂y. Only non-diagonal components of the metric depend on the sign of α (the
function ω is odd in α), so without the loss of generality we assume α ≥ 0.
The solution (2) corresponds to the three-torus Gowdy model.

In this article, in addition to the coordinate basis ∂α we use two sets of
non-holonomic bases. They are given by

• the orthonormal tetrad eα̂
e0̂ =e−f/2 ∂t , e1̂ = e−f/2 ∂z ,

e2̂ =
e−p/2√

t
∂x , e3̂ =

ep/2√
t

(−ω ∂x + ∂y) ,
(3)

• and the null tetrad wᾰ = {k, l,m, m̄}

k =
1√
2

(e0̂ + e1̂) , l =
1√
2

(e0̂ − e1̂) ,

m =
1√
2

(e2̂ − ie3̂) , m̄ =
1√
2

(e2̂ + ie3̂) .
(4)

where k · l = −1 , m · m̄ = 1 , k · k = l · l = m ·m = m̄ · m̄ = 0, and
gᾰβ̆ = −2k(ᾰlβ̆) + 2m(ᾰm̄β̆).
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3 Geodesic deviation
Our research extends results obtained previously [9] to the cross-polarized
standing gravitational waves (the polarization ‘×’). An example of such
waves is provided by the solution (1), (2) with the non-zero value of the
parameter α. In this section, we clarify how this parameter alters the effect
of standing gravitational waves on test particles.

The behavior of test particles is investigated relative to a freely falling
observer. For a standing wave spacetime, a preferred family of coordinate
systems exist in which nodes and antinodes are labelled by one of coordinates.
Our coordinates (1) satisfy this criterion. In Appendix C, we show that,
similarly as in the ‘+’ polarized model, observers at antinodes are stationary,
namely, the curves γk∈Z: z = λπ(1/2 + k), x = x0 y = y0 with constants x0,
y0 are future-directed timelike geodesic. The vector tangent to this geodesic
corresponds to e0̂. Thus e0̂ is parallelly transported along γk: ∇e0̂

e0̂ = 0.
Moreover, we have along γk: ∇e0̂

eα̂ = ωβ̂α̂(e0̂)eβ̂ = 0, where ωβ̂α̂ are connection
one forms given in Appendix E. Therefore, the remaining orthonormal basis
vectors eî are also parallelly transported along γk which implies that eα̂ [given
by (3)] is a freely falling frame at antinodes.

Let ξ be a deviation vector, then along γk in a freely falling frame

d2ξα̂

dτ 2
= −Rα̂

0̂β̂0̂
ξβ̂ , (5)

where τ is a proper time of the observer. In vacuum, the Riemann and
Weyl tensors are equal so Rα̂

0̂β̂0̂
= C α̂

0̂β̂0̂
. The non-zero components of the

Riemann tensor may be calculated from the curvature two-forms presented
in Appendix F using the relation Ωα̂

β̂
= 1

2
Rα̂

β̂σ̂δ̂
θσ̂ ∧ θδ̂ where the cobasis θα̂

is given in Appendix D. However, it is instructive to rewrite the geodesic
deviation equation in terms of the complex Weyl coefficients (defined in a
standard way [9]). (The appropriate formulas for Weyl coefficients are too
large to be usefully cited here, but one may evaluate them with the help of
computer system Mathematica.) The relevant non-zero components of the
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Riemann tensor are

R1̂
0̂1̂0̂

= 2<(Ψ2) ,

R2̂
0̂2̂0̂

=
1

2
< [−2Ψ2 + Ψ0 + Ψ4] ,

R3̂
0̂3̂0̂

=
1

2
< [−2Ψ2 −Ψ0 −Ψ4] ,

R2̂
0̂3̂0̂

=
1

2
= [Ψ0 −Ψ4] ,

(6)

where <, = denote real and imaginary parts. At antinodes Ψ1 = Ψ3 = 0 and
Ψ4 = Ψ0, hence R2̂

0̂3̂0̂
= R3̂

0̂2̂0̂
= 0. For α = 0, Ψ0 and Ψ2 are real (not only

at antinodes). The geodesic deviation equation can be written at antinodes
as

d2ξ0̂

dτ 2
=0 ,

d2ξ1̂

dτ 2
=− 2<(Ψ2)ξ1̂ ,

d2ξ2̂

dτ 2
=<(Ψ2 −Ψ0)ξ2̂ ,

d2ξ3̂

dτ 2
=<(Ψ2 + Ψ0)ξ3̂ .

(7)

The polarization of waves is not directly observable at antinodes because the
metric function ω equals zero there. The vanishing of R2̂

0̂3̂0̂
, R3̂

0̂2̂0̂
imply

that d2ξα̂

dτ2
∼ ξα̂. The equations decouple and the standard effect of cross-

polarization is not visible at antinodes. However, the parameter α changes
the global evolution of spacetime and in this sense, it alters the trajectories
of test particles at antinodes (via Ψ0, Ψ2). The Tissot diagrams are very
similar to those presented in [9] and we do not include them here.

4 The interpretation of the α parameter
The role of the α parameter follows from the field equations [5]. A standing
wave may be seen as a ‘superposition’ of two identical gravitational waves
moving in the opposite directions. The amplitudes of these waves may be
split between two polarizations. The oscillations of the metric function ω
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α=2, β=1/2

α=1, β=1/2

α=0, β=1/2

α=0, β=1/10 α=1, β=1/10 α=2, β=1/10
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Figure 1: The photon’s flight time between subsequent antinodes (numbered
by N) meassured in the proper time of stationary observers at antinodes.
The photon flies along ∂z direction. The remaining parameters: t0 = 1,
λ = 1/10.

correspond to the rotation of polarization between + and × modes. This
is a gravitational analogue of the Faraday rotation [5]. Since ω = 0 at
antinodes, then the trajectories of test particles at antinodes depend only
indirectly on α. One may try to understand this dependency in terms of
the high frequency limit of standing waves (e.g. the article [10]) where the
energy of the gravitational waves alters global expansion of spacetime, but
such attempts leads to counter-intuitive results.

In order to evaluate the effect of α parameter on the global expansion
explicitly, we calculated numerically a flight time of a photon between sta-
tionary observers at antinodes in terms of the proper time of these observers.
We note that for β = 0 the metric (1) describes the three-torus identified
Minkowski spacetime in expanding coordinate system. Thus, any expansion
for β = 0 is of artificial nature and depends on the choice of coordinates.
Standing waves apear already for small β and a position of stationary ob-
servers at antinodes is distinguished by the geometry of spacetime. We show
in Figure 1 that in this setting the time flight of photons between subsequent
observers (measured in their proper time) grows initially almost linearly with
the slope controlled by α parameter. Therefore, α describes not only polar-
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ization of waves, but also encodes initial conditions how fast the distance
between antinodes should grow. Whether this is merely a coincidence (or
artifact of the model studied) needs further investigation. For larger β an
exponential expansion of spacetime becomes evident (Figure 1), but the role
of the α parameter remains unchanged: larger α implies faster expansion.

5 The Poynting vector
Stephani suggested [7] that gravitational analogue of the Poynting vector may
play a fundamental role in understanding of standing gravitational waves. In
his approach, he derived the Poynting vector from the Lagrangian that leads
to the Ernst equations. We follow here another approach. We construct
the gravitational analogue of the Poynting vector with the help of the Bel-
Robinson tensor Tαβγδ [1]. The Bel-Robinson tensor is given by

Tαβγδ = C ν
αµγ C

µ
δνβ + ?C ν

αµγ ? C
µ

δνβ . (8)

C is the Weyl tensor and ? denotes the Hodge dual, namely

?Cαβγδ =
1

2
ηαβµνC

µν
γδ ,

where η is the canonical volume form. The supermomentum P is defined
relative to an observer with four-velocity u: Pα = −Tαβγδuβuγuδ. It might be
decomposed into the superenergy density W and the super-Poynting vector
S: Pα = Wuα+Sα. The superenergy density and the super-Poynting vector
can be written in terms of the Bel-Robinson tensor

W =Tαβγδu
αuβuγuδ ≥ 0 ,

Sα =− T µβγδ(δ
α
µ + uαuν)u

βuγuδ .
(9)

In the orthonormal frame, relative to the observer with the four-velocity e0̂,
these formulas take a form (S 0̂ = 0)

W =T0̂0̂0̂0̂ ,

S î =− Tî0̂0̂0̂ .
(10)

The expressions for the superenergy W and the super-Poyting vector for
solutions studied in this paper are too long to be usefully cited here. The
analysis of these formulas with the help of the computer algebra system
Mathematica reveals
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α=0, β=1/2, t=4

α=1, β=1/10, t=1/2

α=2, β=1/2, t=2

α=1, β=3, t=1
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Figure 2: The superenergy density for λ = 1/10 and several sets of remaining
parameters. The amplitude of the solid black function was multiplied by a
factor 300. The anitnodes and nodes are indicated with solid and dashed
vertical lines, respectively.

• W oscillates periodically with extrema at antinodes,

• S 1̂ oscillates periodically with zeros at antinodes (no energy transfer at
antinodes),

• S 1̂ averages to zero over hypersurfaces t = const,

• S 2̂ = S 3̂ = 0.

We remind here that beyond antinodes observers with the four-velocity e0̂

do not move on geodesics. The superenergy and the z-component of the
super-Poynting vector are presented in Figures 2, 3 for a particular set of
parameters.
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Figure 3: The S 1̂ component of the super-Poyting vector for λ = 1/10 and
several sets of remaining parameters. It shows the superenergy transfer in
∂z direction. The amplitude of the solid black function was multiplied by
a factor 300. The anitnodes and nodes are indicated with solid and dashed
vertical lines, respectively.

6 Summary
We constructed, starting from the Halilsoy cylindrical spacetime [4], the cos-
mological model of the Gowdy form with standing gravitational waves. This
solution generalizes the spacetime studied in [9] (with ‘+’ polarization) to
cross-polarized waves (denoted with ‘×’). Similarly to the ‘+’ case, in the
‘×’ polarized model there exist stationary observers at antinodes. The tra-
jectories of neighbouring test particles for these observers differ trivially from
the trajectories in the ‘+’ polarized model. The Tissot diagrams do not re-
veal standard effects of cross-polarization although the ‘×’ polarized model
expands differently than the ‘+’ polarized model. In order to evaluate the
expansion rate of the spacetime, we studied the time of flight of photons
between antinodes measured in the proper time of stationary observers at
antinodes. We showed that the expansion rate of the model depends on a
parameter which describes the deviation of the model from the ‘+’ polarized
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model and controls the polarization. Finally, we used the Bel-Robinson ten-
sor to calculate the superenergy density and the gravitational analogue of the
Poynting vector. We showed that both quantities have expected properties
and are useful tools in the studies of the standing gravitational waves.
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A From Halilsoy solution to cross-polarized Gowdy
standing waves

Halilsoy showed [4] that the Einstein-Rosen waves [3, 6] may be extended
to include the second polarization. The exact solution to Einstein equations
has a form

g = e2(γ−ψ)
(
−dt2 + dρ2

)
+ ρ2e−2ψdϕ2 + e2ψ(dz + ωdϕ)2 , (11)

where ρ > 0, −∞ < t, z <∞, 0 ≤ ϕ < 2π. The metric functions ψ, γ and ω
depend on t and ρ only and are given by

e−2ψ =eAJ0 cosσt sinh2 α

2
+ e−AJ0 cosσt cosh2 α

2
,

ω =− (A sinhα)ρJ1 sinσt ,

γ =
1

8
A2
(
σ2ρ2(J2

0 + J2
1 )− 2σρJ0J1 cos2 σt

)
,

(12)

where J0 = J0(σρ), J1 = J1(σρ) are the Bessel functions of the first kind and
orders 0, 1, respectively.

The Einstein equations for the metric 11 are form-invariant under the
complex substitution

t 7→ iz, , ρ 7→ it , ϕ 7→ iy , z 7→ z , ω 7→ −iω

which brings the metric (11) into the form (1) where the remaining metric
functions are related by f = 2(γ − ψ), p = − ln t + 2ψ. Therefore, any
cylindrical solution has its cosmological counterpart. The Halilsoy solution
(12) corresponds to (2) with additional trivial redefinitions: σ 7→ 1/λ followed
by z 7→ z + λπ/2 and A 7→ 2β

√
λ.
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B Geodesic equation
The geodesic equation in coordinates xα = (t, z, x, y) for the metric (1) has
a form

ẗ+
1

2

{
f,tṫ

2 + 2f,z ṫż + f,tż
2 + e−f

[
epẋ2(1 + p,tt) + e−pẏ2(1− p,tt)

]}
+ ep−f

(
tω,tẋẏ + ωẏ[(1 + p,tt) + tω,t] +

1

2
ω2ż(1 + p,tt)

)
= 0 ,

z̈ +
1

2

[
f,z ż

2 + 2f,tṫż + f,z ṫ
2 + tp,ze

−f (−epẋ2 + e−pẏ2)
]

− ep−f ẏ
(
tẋω,z + ωẋp,z + ẏω,z +

1

2
ω2tẏp,z

)
= 0 ,

ẍ+ ẋ(ṫ/t+ p,tṫ+ p,z ż) + ẏ(ṫω,t + żω,z) + ω
[
2ẏ(ṫp,t + żp,z)− e2pẋ(ṫω,t + żω,z)

]
− e2pω2ẏ(ṫω,t + żω,z) = 0 ,

ÿ + ẏ(ṫ/t− p,tṫ− p,z ż) + e2p(ẋ+ ωẏ)(ṫω,t + żω,z) = 0 ,

(13)

where a dot denotes differentiation in the proper time τ or the affine pa-
rameter for timelike or null geodesics, respectively. The normalization of the
four-velocity/wave vector gives rise to the first integral of the form

− ε = ef (−ṫ2 + ż2) + t(ep(ẋ+ ωẏ)2 + e−pẏ2) .

where the constant ε is equal to 1 or 0 for timelike or null geodesics, re-
spectively. The Killing fields ∂x, ∂y give two more quantities cx, cy that are
conserved along geodesics

(ẋ+ ωẏ)ept = cx ,

ẏe−pt+ (ẋ+ ωẏ)ωept = cy .
(14)

C Observers at antinodes
In this Appendix, we show that the observers at antinodes are stationary.
The geodesic equation is presented in Appendix B. For stationary solutions
ż = ẋ = ẏ = 0 it takes the same form as for α = 0, thus this part of
the analysis mimics calculations in [9]. For readers convenience we repeat it
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below. We have

0 = ẗ+
1

2
f,tṫ

2 , (15)

0 = f,z ,

ṫ = e−
1
2
f , (16)

where (16) is the first integral of (15). The condition f,z = 0 corresponds to
antinodes. Using (2) we have f,z = (. . . ) cos (z/λ), thus z = λπ(1/2 + k),
where k ∈ Z, implies f,z = 0. Therefore, the curve γk

xµ = [t(τ), λπ(1/2 + k), x0, y0] , (17)

with k ∈ Z and t(τ) determined by (16) is a future-directed timelike geodesic
and a stationary solution to the geodesic equation.

D Orthonormal cobasis and its external deriva-
tive

θ0̂ =ef/2 dt ,

θ1̂ =ef/2 dz ,

θ2̂ =
√
t ep/2 (dx+ ω dy) ,

θ3̂ =
√
t e−p/2 dy ,

dθ0̂ =− 1

2
e−f/2 f,z θ

0̂ ∧ θ1̂ ,

dθ1̂ =
1

2
e−f/2 f,t θ

0̂ ∧ θ1̂ ,

dθ2̂ =
1

2
e−f/2

((
1

t
+ p,t

)
θ0̂ ∧ θ2̂ + p,z θ

1̂ ∧ θ2̂ + 2ep
(
ω,t θ

0̂ ∧ θ3̂ + ω,z θ
1̂ ∧ θ3̂

))
,

dθ3̂ =
1

2
e−f/2

((
1

t
− p,t

)
θ0̂ ∧ θ3̂ − p,z θ1̂ ∧ θ3̂

)
.

(18)

E Connection one-forms
The non-zero connection one-forms
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ω0̂
1̂ =

1

2
e−f/2

(
f,z θ

0̂ + f,t θ
1̂
)
,

ω0̂
2̂ =

1

2
e−f/2

((
1

t
+ p,t

)
θ2̂ + ep ω,tθ

3̂

)
,

ω0̂
3̂ =

1

2
e−f/2

((
1

t
− p,t

)
θ3̂ + ep ω,tθ

2̂

)
,

ω1̂
2̂ =− 1

2
e−f/2

(
ep ω,zθ

3̂ + p,z θ
2̂
)
,

ω1̂
3̂ =

1

2
e−f/2

(
p,z θ

3̂ − ep ω,zθ2̂
)
,

ω2̂
3̂ =− 1

2
e−f/2 ep

(
ω,t θ

0̂ + ω,z θ
1̂
)
.

(19)

F Curvature two-forms
The non-zero curvature two-forms

Ω1̂
0̂ =

1

2
e−f/2

[
(f,tt − f,zz)θ0̂ ∧ θ1̂ + ep (p,tω,z − p,zω,t)θ2̂ ∧ θ3̂

]
,

Ω2̂
0̂ =

1

4
e−f/2

[(
(p,t +

1

t
)(p,t − f,t +

1

t
) + 2(p,tt −

1

t2
)− p,zf,z − e2pω2

,t

)
θ0̂ ∧ θ2̂−

−ep
(
ω,t(f,t − 4p,t −

2

t
)− 2ω,tt + ω,zf,z

)
θ0̂ ∧ θ3̂+

+

(
(p,z − f,z)(p,t +

1

t
) + 2p,tz − p,zf,t − e2pω,tω,z

)
θ1̂ ∧ θ2̂−

−ep
(
ω,t(f,z − p,z)− 2p,tω,z − 2ω,tz + ω,z(f,t − p,t +

1

t
)

)
θ1̂ ∧ θ3̂

]
,
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Ω3̂
0̂ =

1

4
e−f/2

[
−ep

(
ω,t(f,t − 4p,t −

2

t
)− 2ω,tt + f,zω,z

)
θ0̂ ∧ θ2̂+

+

(
(f,t + p,t −

1

t
)(p,t −

1

t
)− 2(p,tt +

1

t2
) + p,zf,z + 3e2pω2

,t

)
θ0̂ ∧ θ3̂−

−ep
(
ω,t(f,z − 3p,z)− 2ω,tz + ω,z(f,t − p,t −

1

t
)

)
θ1̂ ∧ θ2̂+

+

(
(f,z + p,z)(p,t −

1

t
)− 2p,tz + p,zf,t + 3e2pω,tω,z

)
θ1̂ ∧ θ3̂

]
.
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