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Preface

This book will provide good, in-depth explanations of various interesting Go concepts. It
begins with Unix and system programming, which will help you understand what
components the Unix operating system has to offer, from the kernel API to the filesystem,
and allow you to familiarize yourself with the basic concepts of system programming.

Next, it moves on to cover the application of I/O operations, focusing on the filesystem,
files, and streams in the Unix operating system. It covers many topics, including reading
from and writing to files, among other I/O operations.

This book also shows how various processes communicate with one another. It explains
how to use Unix pipe-based communication in Go, how to handle signals inside an
application, and how to use a network to communicate effectively. Also, it shows how to
encode data to improve communication speed.

The book will, toward the end, help you to understand the most modern feature of
Go—concurrency. It will introduce you to the tools the language has, along with sync and
channels, and how and when to use each one.

Who this book is for

This book is for developers who want to learn system programming with Go. Although no
prior knowledge of Unix and Linux system programming is necessary, some intermediate
knowledge of Go will help you to understand the concepts covered in the book.

What this book covers

Chapter 1, An Introduction to System Programming, introduces you to Go and system
programming and provides some basic concepts and an overview of Unix and its resources,
including the kernel APL It also defines many concepts that are used throughout the rest of
the book.

Chapter 2, Unix OS Components, focuses on the Unix operating system and the components
that you will interact with—files and the filesystem, processes, users and permissions,
threads, and others. It also explains the various memory management techniques of the
operating system, and how Unix handles resident and virtual memory.
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Chapter 3, An Overview of Go, takes a look at Go, starting with some history of the language
and then explaining, one by one, all its basic concepts, starting with namespaces and the
type system, variables, and flow control, and finishing with built-in functions and the
concurrency model, while also offering an explanation of how Go interacts and manages its
memory.

Chapter 4, Working with the Filesystem, helps you to understand how the Unix filesystem
works and how to master the Go standard library to handle file path operations, file
reading, and file writing.

Chapter 5, Handling Streams, helps you to learn about the interfaces for the input and
output streams that Go uses to abstract data flows. It explains how they work and how to
combine them and best use them without leaking information.

Chapter 6, Building Pseudo-Terminals, helps you understand how a pseudo-terminal
application works and how to create one. The result will be an interactive application that
uses standard streams just as the command line does.

Chapter 7, Handling Processes and Daemons, provides an explanation of what processes are
and how to handle them in Go, how to start child processes from a Go application, and how
to create a command-line application that will stay in the background (a daemon) and
interact with it.

Chapter 8, Exit Codes, Signals, and Pipes, discusses Unix inter-process communication. It
explains how to use exit codes effectively. It shows you how signals are handled by default
inside an application, and how to manage them with some patterns for effective signal
handling. Furthermore, it explains how to connect the output and input of different
processes using pipes.

Chapter 9, Network Programming, explains how to use a network to make processes
communicate. It explains how network communication protocols work. It initially focuses
on low-level socket communication, such as TCP and UDP, before moving on to web server
development using the well-known HTTP protocol. Finally, it shows how to use the Go
template engine.

Chapter 10, Data Encoding Using Go, explains how to leverage the Go standard library to
encode complex data structures in order to facilitate process communications. It analyzes
both text-based protocols, such as XML and JSON, and binary-based protocols, such

as GOB.

Chapter 11, Dealing with Channels and Goroutines, explains the basics of concurrency and
channels and some general rules that prevent the creation of deadlocks and resource-
leaking inside an application.

[2]
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Chapter 12, Synchronization with sync and atomic, discusses the synchronization packages of
the sync and sync/atomic standard libraries, and how they can be used instead of
channels to achieve concurrency easily. It also focuses on avoiding the leaking of resources
and on recycling resources.

Chapter 13, Coordination Using Context, discusses Context, a relatively new package
introduced in Go that offers a simple way of handling asynchronous operations effectively.

Chapter 14, Implementing Concurrency Patterns, uses the tools from the previous three
chapters and demonstrates how to use and combine them to communicate effectively. It
focuses on the most common patterns used in Go for concurrency.

Chapter 15, Using Reflection, explains what reflection is and whether you should use it. It
shows where it's used in the standard library and guides you in creating a practical
example. It also shows how to avoid using reflection where there is no need to.

Chapter 16, Using CGO, explains how CGO works and why and when you should use it. It
explains how to use C code inside a Go application, and vice versa.

To get the most out of this book

Some basic knowledge of Go is required to try the examples and to build modern
applications.

Each chapter includes a set of questions that will help you to gauge your understanding of
the chapter. The answers to these questions are provided in the Assessments section of the
book. These questions will prove very beneficial for you, as they will help you revisit each
chapter at a glance.

Apart from this, each chapter provides you with instructions on how to run the code files,
while the GitHub repository of the book provides the requisite details.

Download the example code files

You can download the example code files for this book from your account at
www . packt . com. If you purchased this book elsewhere, you can visit
www .packt . com/support and register to have the files emailed directly to you.

[3]
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You can download the code files by following these steps:

Log in or register at www.packt .com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

=L

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Hands-On-System-Programming-with-Go. In case there's an update to the
code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
athttps://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://static.packt-cdn.com/downloads/
9781789804072_ColorImages.pdf.

Code in Action

Visit the following link to check out videos of the code being run: http://bit.1ly/22WgJb5.

Playground examples

In the course of the book you will find many snippets of code followed by a link to https:/
/play.golang.org, a service that allows you to run Go applications with some limitations.
You can read more about it at https://blog.golang.org/playground.

[4]
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In order to see the full source code of such examples, you need to visit the Playground link.
Once on the website, you can press the Run button to execute the application. The bottom
part of the page will show the output. The following is an example of the code running in
the Go Playground:

package main

import (
"encoding/csv"
“fmt"
“05"
"strconv"

)

func main() {
const million = 1000000
type Country struct {
Code, Name string
Population int

records := []Country{
{Code: "IT", Name: “"Italy"”, Population: 60 * million},
{Code: "ES", Name: “"Spain", Population: 46 * million},
{Code: "JP", Name: “Japan", Population: 126 * million},
{Code: "US", Name: “"United States of America"”, Population: 327 * million},
¥
w := csv.NewWriter(os.Stdout)
defer w.Flush()
for _, r := range records {

IT,Italy, 60000000
ES,Spain, 46000000
JP, Japan, 126000000
US,United States of America, 327000000

Program exited.

If you want, you have the possibility of experimenting by adding and editing more code to
the examples, and then running them.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "This type of service includes 1oad, which adds a program to memory and
prepares for its execution before passing control to the program itself, or execute, which
runs an executable file in the context of a pre-existing process."

[5]
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A block of code is set as follows:

<meta name="go-import" content="package-name vcs repository-url">

Any command-line input or output is written as follows:

Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-—
Subsystem-Linux

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"In the meantime, systems started to get distributed, and applications started to get shipped
in containers, orchestrated by other system software, such as Kubernetes."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt .com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.
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Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.
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