System
Programming
with Go

Build modern and concurrent applications for Unix and Linux

Hands-On System
Programming with Go

Build modern and concurrent applications for Unix and Linux
systems using Golang

Alex Guerrieri

BIRMINGHAM - MUMBAI

Hands-On System Programming with Go

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Shriram Shekhar
Content Development Editor: Tiksha Sarang
Senior Editor: Afshaan Khan

Technical Editor: Sabaah Navlekar

Copy Editor: Safis Editing

Language Support Editor: Storm Mann
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing

Indexer: Rekha Nair

Production Designer: Shraddha Falebhai

First published: July 2019
Production reference: 1040719
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78980-407-2

www.packtpub.com

To my family, who laid the foundation of the path I am on today

— Alex Guerrieri

Packt

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical eBooks and videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.comand, as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.packt . com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

Contributors

About the author

Alex Guerrieri is a software developer who specializes in backend and distributed systems.
Go has been his favorite tool for the job since first using it in 2013. He holds a degree in
computer science engineering and has been working in the field for more than 6 years.
Originally from Italy, where he completed his studies and started his career as a full-stack
developer, he now lives in Spain, where he previously worked in two start-ups—source{d}
and Cabify. He is now working for three companies—as a software crafter for BBVA, one of
the biggest Spanish banks; as a software architect for Security First, London, a company
focusing on digital and physical security; and as a cofounder of DauMau, the company
behind Vidsey, software that generates videos in a procedural manner.

To all the people in my life who supported me and put up with me throughout this
endeavor of writing this book, thank you.

About the reviewers

Corey Scott is a principal software engineer currently living in Melbourne, Australia. He
has been programming professionally since 2000, with the last 5 years spent building large-
scale distributed services in Go.

A blogger on a variety of software-related topics, he is passionate about designing and
building quality software. He believes that software engineering is a craft that should be
honed, debated, and continuously improved. He takes a pragmatic, non-zealous approach
to coding, and is always up for a good debate about software engineering, continuous
delivery, testing, or clean coding.

Janani Selvaraj is currently working as a data analytics consultant for Gaddiel
Technologies, Trichy, where she focuses on providing data analytics solutions for start-up
companies. Her previous experience includes training and research development in relation
to data analytics and machine learning.

She has a PhD in environmental management and has more than 5 years' research
experience with regard to statistical modeling. She is also proficient in a number of
programming languages, including R, Python, and Go.

She reviewed a book entitled Go Machine Learning Projects, and also coauthored a book
entitled Machine Learning Using Go, published by Packt Publishing.

Arun Muralidharan is a software developer with over 9 years' experience as a systems
developer. Distributed system design, architecture, event systems, scalability, performance,
and programming languages are some of the aspects of a product that interest him the
most. Professionally, he spends most of his time coding in C++, Python, and C (and perhaps
Go in the near future). Away from his job, he also develops software in Go and Rust.

I would like to take this opportunity to thank my family, who have provided me with
unconditional support over the years.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

Table of Contents

Preface 1

Section 1: An Introduction to System Programming
and Go

Chapter 1: An Introduction to System Programming 9
Technical requirements 9
Beginning with system programming 10

Software for software 10
Languages and system evolution 1
System programming and software engineering 1
Application programming interfaces 11
Types of APIs 12
Operating systems 12
Libraries and frameworks 12
Remote APIs 12

Web APIs 13
Understanding the protection ring 13
Architectural differences 13
Kernel space and user space 14
Diving into system calls 14
Services provided 14
Process control 15

File management 15

Device management 15
Information maintenance 15
Communication 16

The difference between operating systems 16
Understanding the POSIX standard 16
POSIX standards and features 17
POSIX.1 — core services 17
POSIX.1b and POSIX.1c - real-time and thread extensions 17
POSIX.2 — shell and utilities 18

OS adherence 18
Linux and macOS 18
Windows 19
Summary 19
Questions 20
Chapter 2: Unix OS Components 21

Technical requirements 21

Table of Contents

Memory management
Techniques of management
Virtual memory

Understanding files and filesystems

Operating systems and filesystems
Linux
macOS
Windows
Files and hard and soft links
Unix filesystem
Root and inodes
Directory structure
Navigation and interaction
Mounting and unmounting
Processes
Process properties
Process life cycle
Foreground and background
Killing a job
Users, groups, and permissions
Users and groups
Owner, group, and others
Read, write, and execute
Changing permission
Process communications
Exit codes
Signals
Pipes
Sockets
Summary
Questions

Chapter 3: An Overview of Go
Technical requirements
Language features

History of Go

Strengths and weaknesses
Namespace

Imports and exporting symbols
Type system

Basic types

Composite types

Custom-defined types
Variables and functions

Handling variables
Declaration

[ii]

Table of Contents

[iii]

Operations 46
Casting 48
Scope 49
Constants 49
Functions and methods 50
Values and pointers 53
Understanding flow control 55
Condition 55
Looping 56
Exploring built-in functions 57
Defer, panic, and recover 58
Concurrency model 59
Understanding channels and goroutines 59
Understanding memory management 61
Stack and heap 61
The history of GC in Go 63
Building and compiling programs 63
Install 63
Build 64
Run 65
Summary 65
Questions 66
Section 2: Advanced File I/O Operations
Chapter 4: Working with the Filesystem 68
Technical requirements 68
Handling paths 68
Working directory 69
Getting and setting the working directory 70
Path manipulation 70
Reading from files 73
Reader interface 74
The file structure 74
Using buffers 75
Peeking content 76
Closer and seeker 78
Writing to file 79
Writer interface 80
Buffers and format 81
Efficient writing 83
File modes 84
Other operations 84
Create 85
Truncate 85
Delete 86

Table of Contents

Move

Copy

Stats

Changing properties
Third-party packages

Virtual filesystems

Filesystem events
Summary
Questions

Chapter 5: Handling Streams
Technical requirements
Streams

Input and readers
The bytes reader
The strings reader
Defining a reader
Output and writers
The bytes writer
The string writer
Defining a writer
Built-in utilities
Copying from one stream to another
Connected readers and writers
Extending readers
Writers and decorators
Summary
Questions

Chapter 6: Building Pseudo-Terminals
Technical requirements
Understanding pseudo-terminals

Beginning with teletypes
Pseudo teletypes
Creating a basic PTY
Input management
Selector
Command execution
Some refactor
Improving the PTY
Multiline input

Providing color support to the pseudo-terminal

Suggesting commands
Extensible commands

Commands with status
Volatile status

[iv]

Table of Contents

Persistent status 122
Upgrading the Stack command 123
Summary 125
Questions 125
Section 3: Understanding Process Communication
Chapter 7: Handling Processes and Daemons 127
Technical requirements 127
Understanding processes 127
Current process 128
Standard input 128
User and group ID 128
Working directory 130
Child processes 131
Accessing child properties 132
Standard input 133
Beginning with daemons 134
Operating system support 134
Daemons in action 135
Services 137
Creating a service 137
Third-party packages 143
Summary 144
Questions 144
Chapter 8: Exit Codes, Signals, and Pipes 145
Technical requirements 145
Using exit codes 145
Sending exit codes 146
Exit codes in bash 146
The exit value bit size 147
Exit and deferred functions 147
Panics and exit codes 147
Exit codes and goroutines 148
Reading child process exit codes 149
Handling signals 150
Handling incoming signals 150
The signal package 150
Graceful shutdowns 151
Exit cleanup and resource release 152
Configuration reload 154
Sending signals to other processes 157
Connecting streams 158
Pipes 158
Anonymous pipes 158
Standard input and output pipes 160

[v]

Table of Contents

Summary
Questions

Chapter 9: Network Programming
Technical requirements
Communicating via networks

OSI model
Layer 1 — Physical layer
Layer 2 — Data link layer
Layer 3 — Network layer
Layer 4 — Transport layer
Layer 5 — Session layer
Layer 6 — Presentation layer
Layer 7 — Application layer
TCP/IP — Internet protocol suite
Layer 1 — Link layer
Layer 2 — Internet layer
Layer 3 — Transport layer
Layer 4 — Application layer
Understanding socket programming
Network package
TCP connections
UDP connections
Encoding and checksum
Web servers in Go
Web server
HTTP protocol
HTTP/2 and Go
Using the standard package
Making a HTTP request
Creating a simple server
Serving filesystem
Navigating through routes and methods
Multipart request and files
HTTPS
Third-party packages
gorilla/mux
gin-gonic/gin
Other functionalities
HTTP/2 Pusher
WebSockets protocol
Beginning with the template engine
Syntax and basic usage

Creating, parsing, and executing templates

Conditions and loops
Template functions
RPC servers

[vi]

162
162

163
163
164
164
164
165
165
165
166
166
166
166
166
167
167
167
167
167
168
172
174
176
177
177
179
180
180
182
183
183
184
186
187
187
188
190
190
191
191
191
192
193
195

196

Table of Contents

Defining a service

Creating the server

Creating the client
Summary
Questions

Chapter 10: Data Encoding Using Go

Technical requirements

Understanding text-based encoding

CSV
Decoding values
Encoding values
Custom options
JSON
Field tags
Decoder
Encoder

Marshaler and unmarshaler

Interfaces
Generating structs
JSON schemas

XML
Structure

Document Type Definition
Decoding and encoding

Field tags

Marshaler and unmarshaler

Generating structs
YAML
Structure

Decoding and encoding

Learning about binary encoding

BSON
Encoding
Decoding

gob
Interfaces
Encoding
Decoding
Interfaces

Proto
Structure
Code generation
Encoding
Decoding
gRPC protocol

Summary

Questions

[vii]

196
199
200
202
202

203
203
204
204
204
205
207
207
208
209
209
210
21
213
213
214
214
215
216
217
218
219
219
220
220
222
222
223
223
223
224
224
225
226
227
227
228
229
230
230

232
233

Table of Contents

Section 4: Deep Dive into Concurrency

Chapter 11: Dealing with Channels and Goroutines
Technical requirements
Understanding goroutines

Comparing threads and goroutines
Threads
Goroutines
New goroutine
Multiple goroutines
Argument evaluation
Synchronization
Exploring channels
Properties and operations
Capacity and size
Blocking operations
Closing channels
One-way channels
Waiting receiver
Special values
nil channels
Closed channels
Managing multiple operations
Default clause
Timers and tickers
Timers
AfterFunc
Tickers
Combining channels and goroutines
Rate limiter
Workers
Pool of workers
Semaphores
Summary
Questions

Chapter 12: Synchronization with sync and atomic
Technical requirements
Synchronization primitives

Concurrent access and lockers

Mutex

RWMutex

Write starvation

Locking gotchas
Synchronizing goroutines
Singleton in Go

Once and Reset

235
235
235
236
236
236
237
239
239
240
241
241
241
242
244
245
246
247
247
248
249
250
251
251
253
253
254
254
257
259
262
264
265

266
266
266
267
267
270
271
273
274
276
277

[viii]

Table of Contents

Resource recycling
Slices recycling issues
Conditions
Synchronized maps
Semaphores
Atomic operations
Integer operations
clicker
Thread-safe floats
Thread-safe Boolean
Pointer operations
Value
Under the hood
Summary

Questions

Chapter 13: Coordination Using Context
Technical requirements
Understanding context

The interface
Default contexts
Background
TODO
Cancellation, timeout, and deadline
Cancellation
Deadline
Timeout
Keys and values
Context in the standard library
HTTP requests
Passing scoped values
Request cancellation
HTTP server
Shutdown
Passing values
TCP dialing
Cancelling a connection
Database operations
Experimental packages
Context in your application
Things to avoid
Wrong types as keys
Passing parameters
Optional arguments
Globals
Building a service with Context
Main interface and usage

[ix]

278
280
281
284
287
287
288
288
289
291
291
292
292
293
294

295
295
295
296
297
297
297
298
298
299
299
300
302
302
302
303
305
305
306
308
308
310
310
311
311
311
312
313
313
314
314

Table of Contents

Exit and entry points 315
Exclude list 316
Handling directories 317
Checking file names and contents 317
Summary 319
Questions 319
Chapter 14: Implementing Concurrency Patterns 320
Technical requirements 320
Beginning with generators 321
Avoiding leaks 323
Sequencing with pipelines 324
Muxing and demuxing 328
Fan-out 328
Fan-in 330
Producers and consumers 331
Multiple producers (N * 1) 332
Multiple consumers (1 * M) 333
Multiple consumers and producers (N*M) 333
Other patterns 335
Error groups 335
Leaky bucket 338
Sequencing 341
Summary 344
Questions 344
Section 5: A Guide to Using Reflection and CGO
Chapter 15: Using Reflection 346
Technical requirements 346
What's reflection? 346
Type assertions 347
Interface assertion 348
Understanding basic mechanics 349
Value and Type methods 349
Kind 350
Value to interface 351
Manipulating values 351
Changing values 351
Creating new values 353
Handling complex types 353
Data structures 353
Changing fields 354
Using tags 355
Maps and slices 357
Maps 357

[x]

Table of Contents

Slices 359
Functions 360
Analyzing a function 361
Invoking a function 362
Channels 363
Creating channels 363
Sending, receiving, and closing 363

Select statement 364
Reflecting on reflection 365
Performance cost 365
Usage in the standard library 366
Using reflection in a package 367
Property files 368

Using the package 371
Summary 372
Questions 372
Chapter 16: Using CGO 373
Technical requirements 373
Introduction to CGO 373
Calling C code from Go 374
Calling Go code from C 375
The C and Go type systems 376
Strings and byte slices 377
Integers 380
Float types 382
Unsafe conversions 382
Editing a byte slice directly 383
Numbers 384
Working with slices 385
Working with structs 386
Structures in Go 387
Manual padding 388
Structures in C 389
Unpacked structures 389

Packed structures 390

CGO recommendations 393
Compilation and speed 393
Performance 393
Dependency from C 394
Summary 394
Questions 395
Assessments 396
Other Books You May Enjoy 410

[xil

Table of Contents

Index 413

[xii]

Preface

This book will provide good, in-depth explanations of various interesting Go concepts. It
begins with Unix and system programming, which will help you understand what
components the Unix operating system has to offer, from the kernel API to the filesystem,
and allow you to familiarize yourself with the basic concepts of system programming.

Next, it moves on to cover the application of I/O operations, focusing on the filesystem,
files, and streams in the Unix operating system. It covers many topics, including reading
from and writing to files, among other I/O operations.

This book also shows how various processes communicate with one another. It explains
how to use Unix pipe-based communication in Go, how to handle signals inside an
application, and how to use a network to communicate effectively. Also, it shows how to
encode data to improve communication speed.

The book will, toward the end, help you to understand the most modern feature of
Go—concurrency. It will introduce you to the tools the language has, along with sync and
channels, and how and when to use each one.

Who this book is for

This book is for developers who want to learn system programming with Go. Although no
prior knowledge of Unix and Linux system programming is necessary, some intermediate
knowledge of Go will help you to understand the concepts covered in the book.

What this book covers

Chapter 1, An Introduction to System Programming, introduces you to Go and system
programming and provides some basic concepts and an overview of Unix and its resources,
including the kernel APL It also defines many concepts that are used throughout the rest of
the book.

Chapter 2, Unix OS Components, focuses on the Unix operating system and the components
that you will interact with—files and the filesystem, processes, users and permissions,
threads, and others. It also explains the various memory management techniques of the
operating system, and how Unix handles resident and virtual memory.

Preface

Chapter 3, An Overview of Go, takes a look at Go, starting with some history of the language
and then explaining, one by one, all its basic concepts, starting with namespaces and the
type system, variables, and flow control, and finishing with built-in functions and the
concurrency model, while also offering an explanation of how Go interacts and manages its
memory.

Chapter 4, Working with the Filesystem, helps you to understand how the Unix filesystem
works and how to master the Go standard library to handle file path operations, file
reading, and file writing.

Chapter 5, Handling Streams, helps you to learn about the interfaces for the input and
output streams that Go uses to abstract data flows. It explains how they work and how to
combine them and best use them without leaking information.

Chapter 6, Building Pseudo-Terminals, helps you understand how a pseudo-terminal
application works and how to create one. The result will be an interactive application that
uses standard streams just as the command line does.

Chapter 7, Handling Processes and Daemons, provides an explanation of what processes are
and how to handle them in Go, how to start child processes from a Go application, and how
to create a command-line application that will stay in the background (a daemon) and
interact with it.

Chapter 8, Exit Codes, Signals, and Pipes, discusses Unix inter-process communication. It
explains how to use exit codes effectively. It shows you how signals are handled by default
inside an application, and how to manage them with some patterns for effective signal
handling. Furthermore, it explains how to connect the output and input of different
processes using pipes.

Chapter 9, Network Programming, explains how to use a network to make processes
communicate. It explains how network communication protocols work. It initially focuses
on low-level socket communication, such as TCP and UDP, before moving on to web server
development using the well-known HTTP protocol. Finally, it shows how to use the Go
template engine.

Chapter 10, Data Encoding Using Go, explains how to leverage the Go standard library to
encode complex data structures in order to facilitate process communications. It analyzes
both text-based protocols, such as XML and JSON, and binary-based protocols, such

as GOB.

Chapter 11, Dealing with Channels and Goroutines, explains the basics of concurrency and
channels and some general rules that prevent the creation of deadlocks and resource-
leaking inside an application.

[2]

Preface

Chapter 12, Synchronization with sync and atomic, discusses the synchronization packages of
the sync and sync/atomic standard libraries, and how they can be used instead of
channels to achieve concurrency easily. It also focuses on avoiding the leaking of resources
and on recycling resources.

Chapter 13, Coordination Using Context, discusses Context, a relatively new package
introduced in Go that offers a simple way of handling asynchronous operations effectively.

Chapter 14, Implementing Concurrency Patterns, uses the tools from the previous three
chapters and demonstrates how to use and combine them to communicate effectively. It
focuses on the most common patterns used in Go for concurrency.

Chapter 15, Using Reflection, explains what reflection is and whether you should use it. It
shows where it's used in the standard library and guides you in creating a practical
example. It also shows how to avoid using reflection where there is no need to.

Chapter 16, Using CGO, explains how CGO works and why and when you should use it. It
explains how to use C code inside a Go application, and vice versa.

To get the most out of this book

Some basic knowledge of Go is required to try the examples and to build modern
applications.

Each chapter includes a set of questions that will help you to gauge your understanding of
the chapter. The answers to these questions are provided in the Assessments section of the
book. These questions will prove very beneficial for you, as they will help you revisit each
chapter at a glance.

Apart from this, each chapter provides you with instructions on how to run the code files,
while the GitHub repository of the book provides the requisite details.

Download the example code files

You can download the example code files for this book from your account at
www . packt . com. If you purchased this book elsewhere, you can visit
www .packt . com/support and register to have the files emailed directly to you.

[3]

Preface

You can download the code files by following these steps:

Log in or register at www.packt .com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

=L

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Hands-On-System-Programming-with-Go. In case there's an update to the
code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
athttps://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://static.packt-cdn.com/downloads/
9781789804072_ColorImages.pdf.

Code in Action

Visit the following link to check out videos of the code being run: http://bit.1ly/22WgJb5.

Playground examples

In the course of the book you will find many snippets of code followed by a link to https:/
/play.golang.org, a service that allows you to run Go applications with some limitations.
You can read more about it at https://blog.golang.org/playground.

[4]

Preface

In order to see the full source code of such examples, you need to visit the Playground link.
Once on the website, you can press the Run button to execute the application. The bottom
part of the page will show the output. The following is an example of the code running in
the Go Playground:

package main

import (
"encoding/csv"
“fmt"
“05"
"strconv"

)

func main() {
const million = 1000000
type Country struct {
Code, Name string
Population int

records := []Country{
{Code: "IT", Name: “"Italy"”, Population: 60 * million},
{Code: "ES", Name: “"Spain", Population: 46 * million},
{Code: "JP", Name: “Japan", Population: 126 * million},
{Code: "US", Name: “"United States of America"”, Population: 327 * million},
¥
w := csv.NewWriter(os.Stdout)
defer w.Flush()
for _, r := range records {

IT,Italy, 60000000
ES,Spain, 46000000
JP, Japan, 126000000
US,United States of America, 327000000

Program exited.

If you want, you have the possibility of experimenting by adding and editing more code to
the examples, and then running them.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "This type of service includes 1oad, which adds a program to memory and
prepares for its execution before passing control to the program itself, or execute, which
runs an executable file in the context of a pre-existing process."

[5]

Preface

A block of code is set as follows:

<meta name="go-import" content="package-name vcs repository-url">

Any command-line input or output is written as follows:

Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-—
Subsystem-Linux

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"In the meantime, systems started to get distributed, and applications started to get shipped
in containers, orchestrated by other system software, such as Kubernetes."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt .com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

[6]

Preface

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[7]

