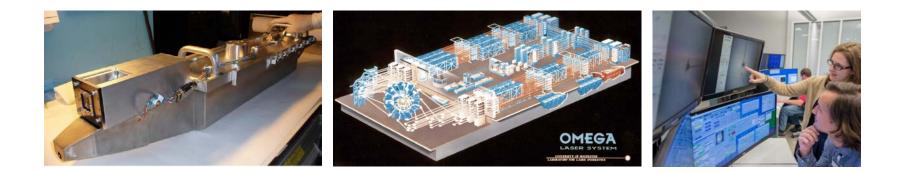
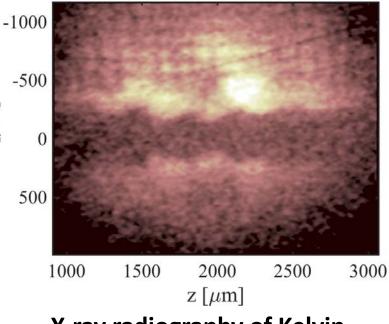


Center for Laboratory Astrophysics


NNSA Center of Excellence Carolyn Kuranz, Director University of Michigan

This work is funded by the Stockpile Stewardship Academic Alliances through grant numbers DE NA0003869.The Center also has or has had support from NLUF, LLE, LLNL, DTRA, LANL, NRL, NSF, and ASC

Outline for talk


- Scientific Overview
- CLA students and education
- Kelvin-Helmholtz experiments on Omega EP
- Radiation-Matter Interaction experiments at Omega
- Radiative Heat Front experiments on Omega and Z

The Center Laboratory Astrophysics (CLA) studies high-energy-density phenomena that are relevant to astrophysics

- We advance fundamental ۲ understanding of HED dynamics relevant to astrophysics $r [\mu m]$
 - Radiation hydrodynamics
 - **Complex HED hydrodynamics**
 - Magnetized flowing plasma
- While advancing the required infrastructure
 - Computer simulation
 - Target fabrication
 - HEDP diagnostics
- The ultimate goal of these activities is to train junior scientists

t = 75 ns

X-ray radiography of Kelvin-Helmholtz instability from the **Omega EP facility**

The CLA team is oriented towards training students

- Most of our students come through the UM Applied Physics Program
 - Outstanding applicants; highly competitive
 - Diverse program 30% women, 30% URM
 - Imes-Moore Fellowship (Underrepresented minorities, 1st generation citizen, 1st generation college, financial hardship)
- We graduate about 1 2 students/year
- Publish about ~10 scientific articles/year
- Nuclear Engineering is #1 in the country
 - UM is #4 public, UM COE is #5 overall

We have a history of placing excellent students at NNSA laboratories

Current Grad Students and Postdoc: Recent Graduates at NNSA labs: Mike MacDonald (2016, LLNL) **Robert Vandervort (Omega)** Jeff Fein (2017, SNL) Joseph Levesque (Omega) Rachel Young (2017, UM) Heath LeFevre (Omega, NIF, Z) Willow Wan (2017, LANL, LLNL) Adrianna Angulo (LLNL, Omega, NIF) Alex Rasmus (2019, LANL) Shane Coffing (LANL) Laura Elgin (2019, SNL) **Raul Melean (MAIZE)** We graduate about 1-2/year Dr. Rachel Young (Omega) Kevin Ma (Omega, NIF)

New Grad Students:

Kwyntero Kelso (Alabama A&M, LANL postbaccalaureate) Michael Springstead (University of Minnesota, LANL postbaccalaureate) Khalil Bryant (University of Michigan)

CLA Students at SSAP

Joseph Levesque, graduating 2020 Heath LeFevre, graduating 2020 Adrianna Angulo Raul Melean Kevin Ma Dr. Rachel Young

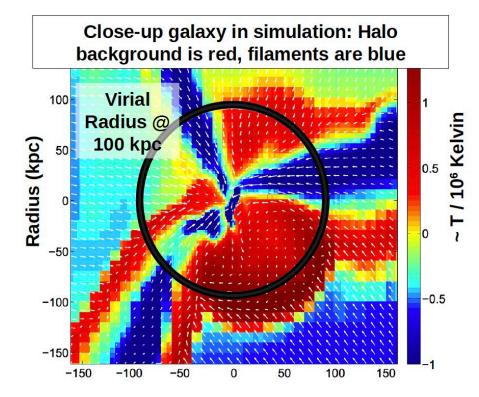
HEDP Education at UM

- Students take a variety of plasma physics classes
 - 15 classes offered
 - Include theory, diagnostics, laboratory
 - 9+1 TT faculty, 4 research faculty
- We offer a HEDP course
 - This year we will remotely offer it to MSU
- We offer a biennial summer school

HEDSS Lectures by Kuranz, Drake, Thomas, Willingale, McBride, Johnsen, Young, and Trantham

– June 2020

Kelvin Helmholtz experiments at Omega EP


Design: Shane Coffing

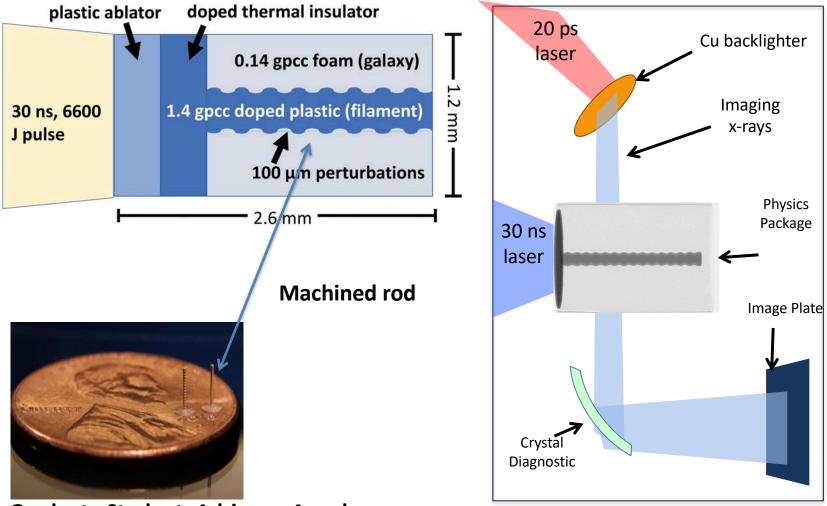
Currently stationed at LANL

SX Coffing et al, "Design and Scaling of an Omega-EP experiment to study Cold Streams feeding Early Galaxies" ApJS, in press Experiments: Adrianna Angulo Currently stationed at LLNL Chiyoe Yamanaka Award Winner

Streams of infalling matter from the cosmic web are thought to have fueled early galaxies

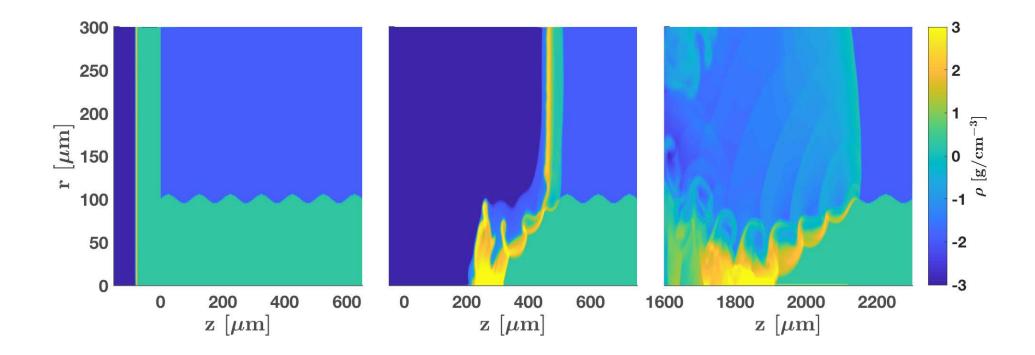
Galaxy bimodality due to cold flows and shock heating, Dekel and Birnboim, Mon. Not. R. Astron. Soc. 368, 2–20 (2006)

- Filaments may be Kelvin-Helmholtz unstable
- Galactic simulations are not well resolved
- We designed a well scaled experiment to study this

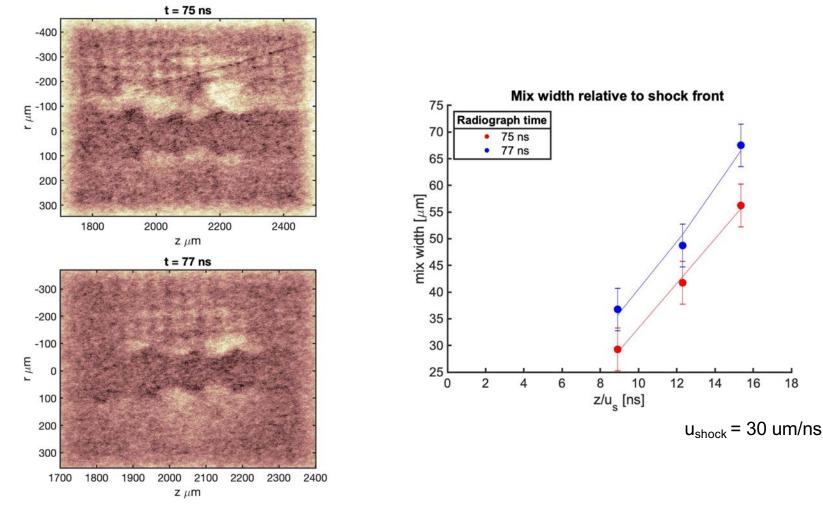

We have a well scaled experiment

Parameter	Physical description		Symbol Cold Stream		eam Experir	Experiment (filament)	
Length scale (cm)	Filament radius		R	<i>R</i> 3×10^{21}		0.01	
Velocity (cm/s)	(Virial) shock speed		U	2×10		3×10^{6}	
Density (gpcc)	Filament density		ρ_s	10^{-26}		1.4	
Temperature (eV)	Filament temperature		T_s	86		2	
Effective ionization	Average of shocked pl	lasmas	Z	2		10.25	
Effective mass number			A	1		0.1	
Ion Density (cm ⁻³)	-		n_i	0.003	1.	67×10^{27}	
Parameter		Symbo	ol Col	d Stream	Experiment		
Hydrodynam	nics:						
Localization		l_c/h	1.8	3×10^{-5}	4.9×10^{-6}		
Ryutov number		$\tilde{v}\sqrt{\tilde{\rho}/\tilde{j}}$		2.2	2.3		
Heat transpo	rt:						
Thermal diffusivity $(cm^2 s^{-1})$		X	2.4	1×10^{26}	5.1		
Peclet number		Pe	2.:	5×10^{3}	6×10^{3}		
Momentum	transport:						
Thermal viscosity ($cm^2 s^{-1}$)		V	3.2	2×10^{24}	4.41×10^{-2}		
Reynolds number		Re	1.	9×10^{5}	6.8×10^{5}		

Graduate Student: Shane Coffing

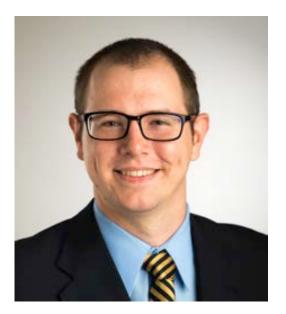

The experimental target has a micro-machined pattern to seed the KH instability

Graduate Student: Adrianna Angulo



CRASH aided in the design of this experiment

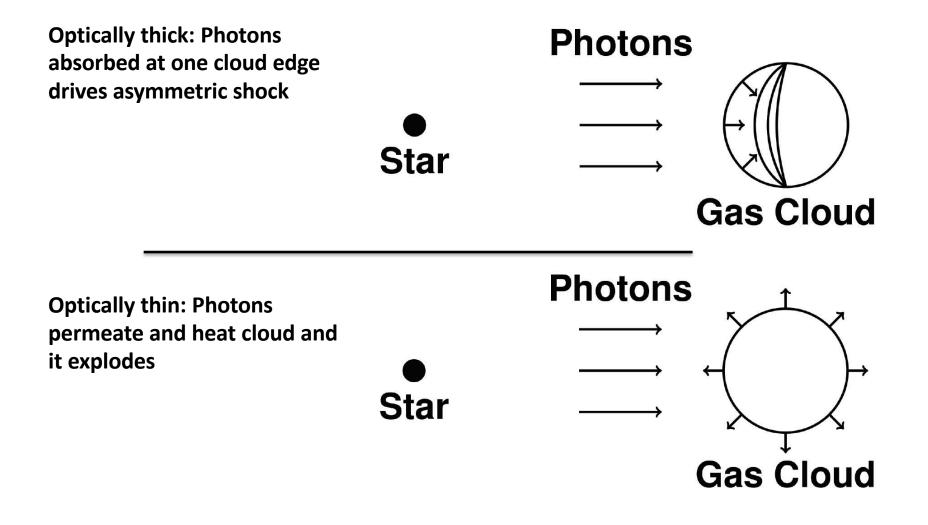
Early experiments on this system have produced promising results



Graduate Student: Adrianna Angulo

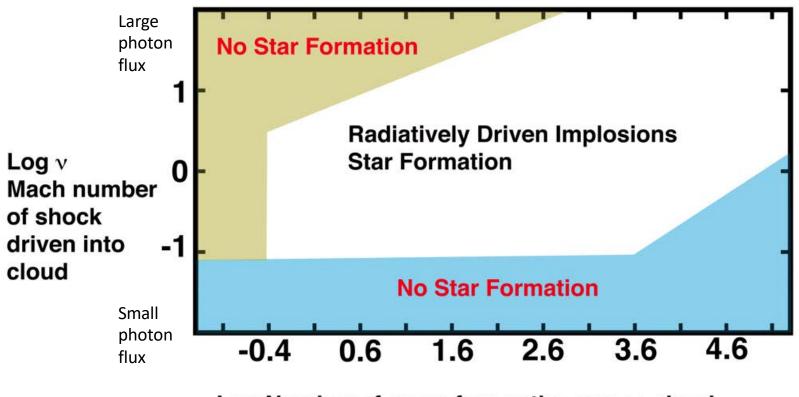
Next experiment in March

Radiation-Matter Interaction experiments at Omega



Experiment: Robert "Woody" VanDervort

R. VanDervort, et al., Development of a backlit-multi-pinhole radiography source 2018, Rev. Sci. Instrum., 89, 10G110 **Design: Griffin Cearly**



Our goal is to probe star formation at moderate optical depth

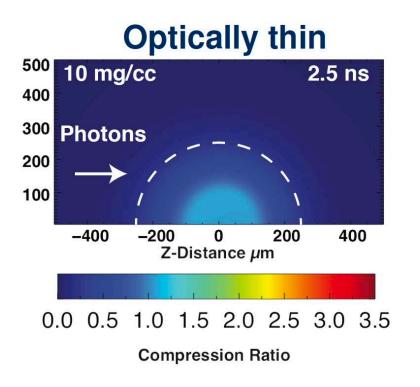
Stars are not predicted to form if the photon flux is too low or the radiation mean free path is larger than the cloud size

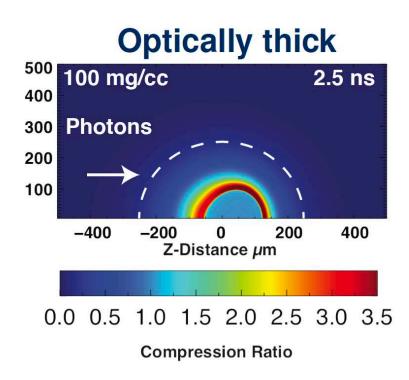
Log Number of mean free paths across cloud

Optically thin

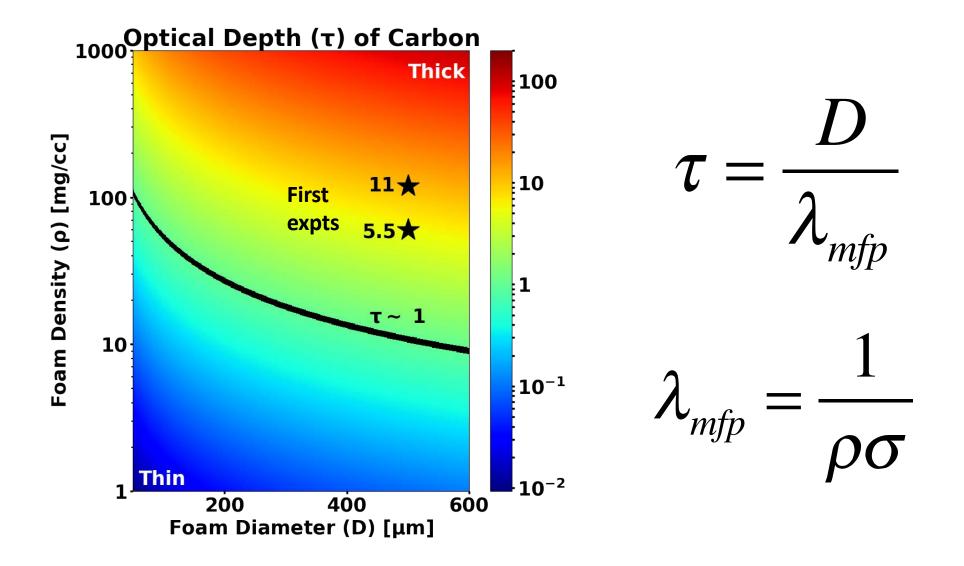
Optically thick

Adapted from Bertoldi Astrophys. J. 1989

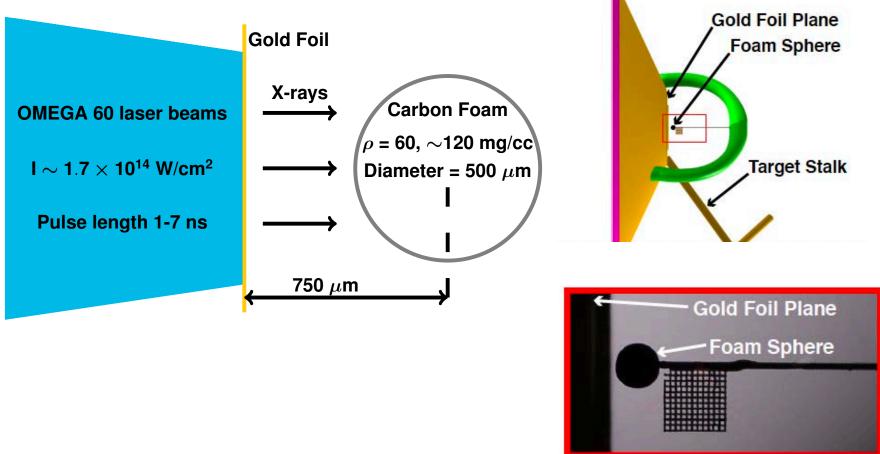

The experiment is in a similar regime as a typical, radiation-driven, astrophysical implosion


Parameter and Units	Potential Radiation Driven Implosion	Omega Experiment	
$c_s ({\rm cm}{\rm s}^{-1})$	$\sim 10^7$	$\sim 6 \times 10^{6}$	
$n_o ({\rm cm}^{-3})$	~ 500	$10^{20} - 10^{22}$	
N (photons s ⁻¹ cm ⁻²)	$10^8 - 10^9$	$10^{27} - 10^{29}$	
ν	0.1 - 10	0.1 - 10	
τ	a few - 10 ⁵	a few - 10^3	

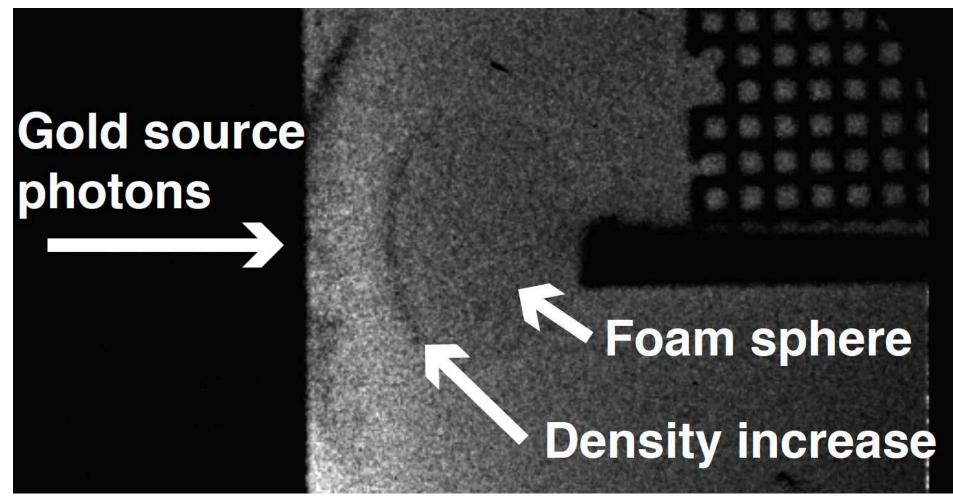
Mach v - ratio of the speed of the shock driven into the cloud on axis to the sound speed corresponding to the ionization front produced by the source



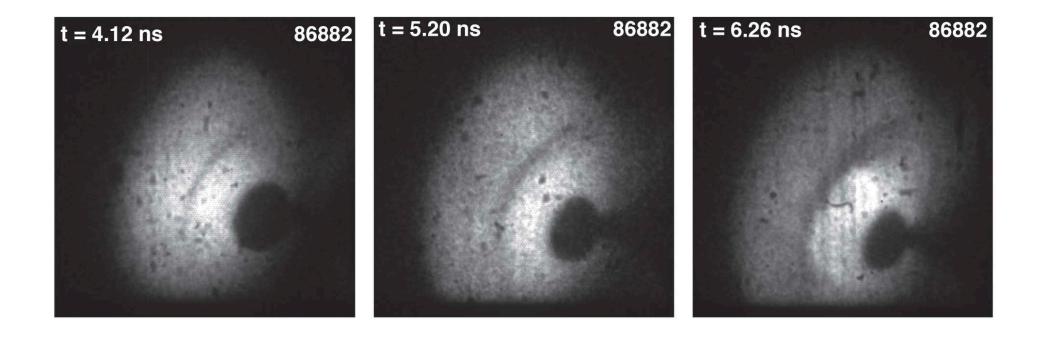
CRASH simulations show compression or explosion based on the initial foam density



A range of optical depths is accessible by changing the sphere diameter and density


Optically thick limit provides a starting point to test the platform

Graduate Student: Robert Vandervort


Backlit-pinhole radiography shows an asymmetrically-compressed sphere

Graduate Student: Robert Vandervort

Soft x-ray radiographs suggest an asymmetric compression

Graduate Student: Robert Vandervort

Radiative Heat Fronts

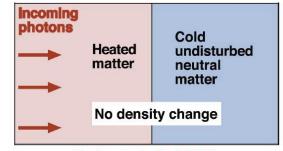
Heath LeFevre

Michael Springstead

Kwyn Kelso

H.J. LeFevre, "A platform for x-ray Thomson scattering measurements of radiation hydrodynamics experiments on the NIF", Review of Scientific Instruments 2018

Photoionization fronts on Omega and the Z machine


$$\alpha = \frac{n_{i+1}}{n_i} \frac{R_{i+1,i}n_e}{\Gamma_{i,i+1}},$$

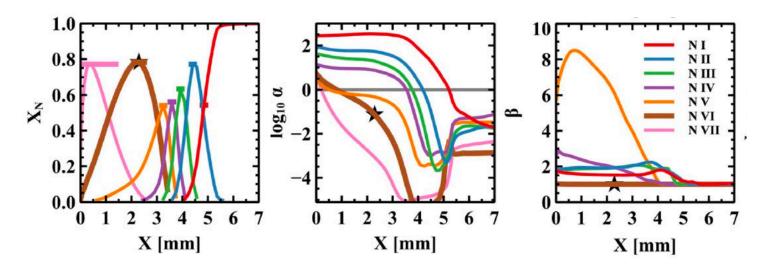
$$\beta = 1 + \frac{n_i}{n_{i+1}} \frac{\langle \sigma_{ei}v \rangle_{i,i+1}}{R_{i+1,i}}$$

Photoionization needs to dominate recombination and

Recombination needs to dominate electron collisional ionization

For a PI front to form α << 1 and β \approx 1

$R_{i+1,i}$	Recombination rate coefficient(cm ³ s ^{-1})		
n _i	lon number density(cm $^{-3}$)		
Γ _{<i>i</i>,<i>i</i>+1}	Photoionization rate(s $^{-1}$)		
$<\sigma_{ei}v>_{i,i+1}$	Electron impact ionization rate(cm ³ s ^{-1})		
n _e	Electron number density(cm $^{-3}$)		



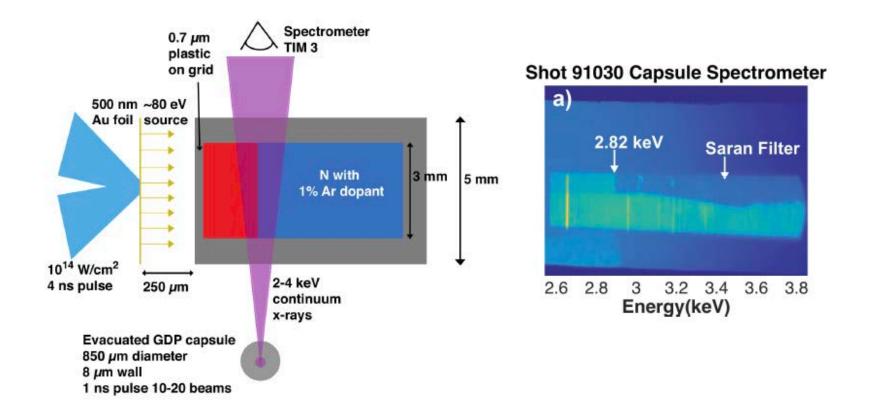
Drake et al. ApJ 2016

We can meet the requirements for a PI front in N at HED facilities

HELIOS Simulation

$$\alpha = \frac{n_{i+1}}{n_i} \frac{R_{i+1,i}n_e}{\Gamma_{i,i+1}},$$

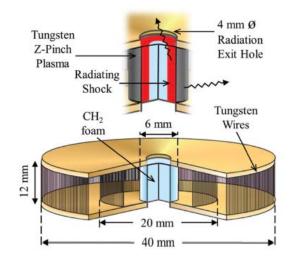
$$\beta = 1 + \frac{n_i}{n_{i+1}} \frac{<\sigma_{ei}v>_{i,i+1}}{R_{i+1,i}}$$

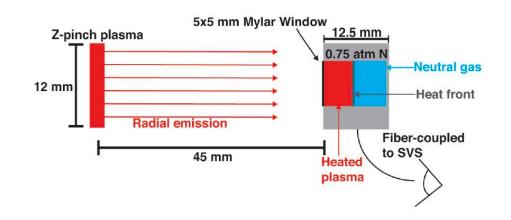

Photoionization needs to dominate recombination and

Recombination needs to dominate electron collisional ionization

For a PI front to form $\alpha \ll 1$ and $\beta \approx 1$

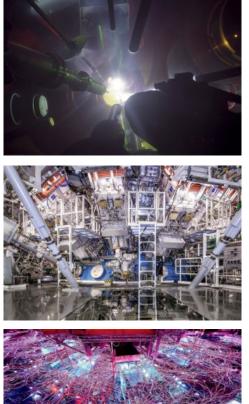
On Omega we use absorption spectroscopy to find the population density of different ionization states



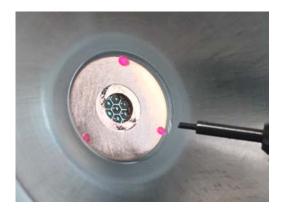

Graduate Student: Heath LeFevre

We have experimental time in April and June

On Z we will use various streaked spectrometers to detect the front evolution


Graduate Student: Heath LeFevre

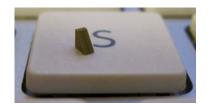
We have experimental time from FY20-22 for proof-of-principle experiments

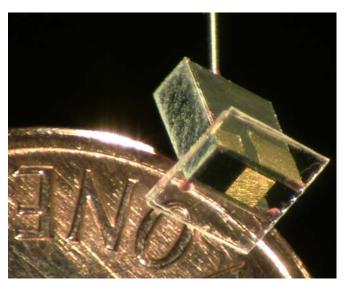


We use a variety of HEDP "tools" to do our work...

- Omega Laser Facility LLE
- National Ignition Facility LLNL
- Z Machine SNL
- MAIZE LTD UM
- HERCULES/ZEUS UM
- BELLA LBL
- Jupiter Laser Facility LLNL
- Trident Laser Facility LANL
- ORION AWE
- LULI2000 LULI

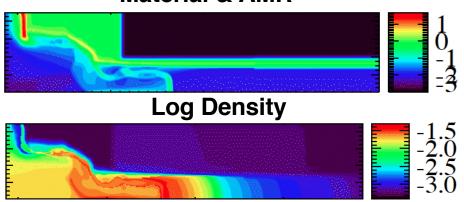
Components for photoionization front gas target



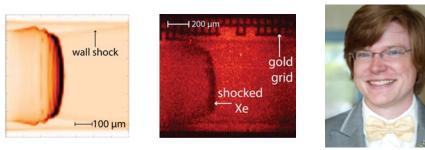

Sallee Klein is CLA target fab engineer

UM target

Some components are fabricated at GA


Omega EP Kelvin Helmholtz target

We use the CRASH code for experimental protoyping, prediction, and analysis


- 1D, 2D or 3D
- Dynamic adaptive mesh refinement
- Level set interfaces
- Self-consistent EOS and opacities
- Multigroup-diffusion radiation
 transport
- Electron physics and flux-limited electron heat conduction
- Laser package
 - 3D ray tracing for 2D or 3D runs

CRASH code: Van der Holst et al, Ap.J.S. 2011

Material & AMR

Log Electron Temperature

Matt Trantham is CLA computer engineer

We value our scientific collaborators*

LLNL – Huntington, Park, Moody, Remington,

Doeppner, MacDonald

LANL – Flippo, Li, Liao, Kline, Keiter,

Montgomery, Di Stefano

SNL – Knapp, Doss, Hansen, Loisel

NRCN Israel – Malamud, Elbaz, Shimony

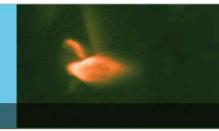
Rice – Hartigan

LLE/Rochester – Theobald, Frank, Blackman

Florida State – Plewa

University of Nevada – Mancini

UT Austin – Winget, Montgomery


MIT - Li

Center for Laboratory Astrophysics, Los Alamos National Laboratory, Nuclear Research Center– Negev HED Hydrodynamic collaboration

*a partial list

2020 HEDSS: High Energy Density Summer School

Home

Registration

Student/Postdoc Support

Schedule of Lectures

Class Schedule

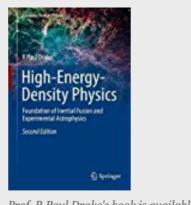
Lodging

Venue and Parking

Transportation

Contact

2020 High Energy Density Summer School Foundations of High Energy Density Physics


June 22- July 3, 2020 University of Michigan Ann Arbor, MI

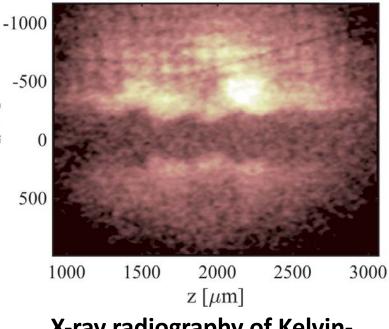
High-energy-density physics is an actively growing field that exploits the ability of various modern devices to create pressures of millions of atmospheres in dynamic, high-temperature, and even relativistic systems. This field of physics is essential to inertial fusion research, to using such tools to address issues in astrophysics, and to other fundamental studies and applications.

In an effort to promote the spread of broad, fundamental knowledge in this new field, and to help train the new entrants to it, we're offering this summer school.

Topics to be covered include:

- 1. Fundamental Equations and Equations of State
- 2. Shocks, Rarefactions, and their Interactions
- 3. Hydrodynamic Instabilities
- 4. Radiative Transfer
- 5. Radiation Hydrodynamics
- 6. Creating High-Energy-Density Conditions
- 7. Magnetized Flows
- 8. Inertial Fusion
- 9. Experimental Astrophysics
- 10. Relativistic Systems
- 11. Magnetohydrodynamics

Prof. R Paul Drake's book is available for purchase from Springer Verlag


http://clasp-research.engin.umich.edu/workshops/hedss/

Google "umich HEDSS", email jbeltran@umich.edu

The Center Laboratory Astrophysics (CLA) studies high-energy-density phenomena that are relevant to astrophysics

- We advance fundamental ۲ understanding of HED dynamics relevant to astrophysics $r [\mu m]$
 - Radiation hydrodynamics
 - **Complex HED hydrodynamics**
 - Magnetized flowing plasma
- While advancing the required infrastructure
 - Computer simulation
 - Target fabrication
 - HEDP diagnostics
- The ultimate goal of these activities is to train junior scientists

t = 75 ns

X-ray radiography of Kelvin-Helmholtz instability from the **Omega EP facility**

