
Chapter 2 
 
Review of Forces and Moments 
 
 
  
   
 
2.1 Forces 
 
In this chapter we review the basic concepts of forces, and force laws.   Most of this material is identical 
to material covered in EN030, and is provided here as a review. There are a few additional sections – for 
example forces exerted by a damper or dashpot, an inerter, and interatomic forces are discussed in 
Section 2.1.7. 

 
 

2.1.1 Definition of a force 
 
Engineering design calculations nearly always use classical (Newtonian) mechanics. In classical 
mechanics, the concept of a `force’ is based on experimental observations that everything in the universe 
seems to have a preferred configuration – masses appear to attract each other; objects with opposite 
charges attract one another; magnets can repel or attract one another; you are probably repelled by your 
professor.  But we don’t really know why this is (except perhaps the last one).  

 
The idea of a force is introduced to quantify the tendency of objects to move towards their preferred 
configuration.  If objects accelerate very quickly towards their preferred configuration, then we say that 
there’s a big force acting on them. If they don’t move (or move at constant velocity), then there is no 
force. We can’t see a force; we can only deduce its existence by observing its effect. 
 
Specifically, forces are defined through Newton’s laws of motion 
 
 

0. A `particle’ is a small mass at some position in space. 
 
1. When the sum of the forces acting on a particle is zero, its velocity is 
constant; 
 
2. The sum of forces acting on a particle of constant mass is equal to the 
product of the mass of the particle and its acceleration; 
 
3. The forces exerted by two particles on each other are equal in magnitude 
and opposite in direction. 
 

 
Isaac Newton on a bad hair day 

 
 



The second law provides the definition of a force – if a mass m has acceleration a, the force F acting on it 
is  

m=F a  
 
Of course, there is a big problem with Newton’s laws – what do we take as a fixed point (and orientation) 
in order to define acceleration?   The general theory of relativity addresses this issue rigorously.  But for 
engineering calculations we can usually take the earth to be fixed, and happily apply Newton’s laws.  In 
rare cases where the earth’s motion is important, we take the stars far from the solar system to be fixed. 
 
2.1.2 Causes of force 
 
Forces may arise from a number of different effects, including 

(i) Gravity; 
(ii) Electromagnetism or electrostatics; 
(iii) Pressure exerted by fluid or gas on part of a structure  
(v) Wind or fluid induced drag or lift forces; 
(vi) Contact forces, which act wherever a structure or component touches anything; 
(vii) Friction forces, which also act at contacts. 
 

Some of these forces can be described by universal laws.  For example, gravity forces can be calculated 
using Newton’s law of gravitation; electrostatic forces acting between charged particles are governed by 
Coulomb’s law; electromagnetic forces acting between current carrying wires are governed by Ampere’s 
law; buoyancy forces are governed by laws describing hydrostatic forces in fluids.  Some of these 
universal force laws are listed in Section 2.6. 
 
Some forces have to be measured. For example, to determine friction forces acting in a machine, you may 
need to measure the coefficient of friction for the contacting surfaces.  Similarly, to determine 
aerodynamic lift or drag forces acting on a structure, you would probably need to measure its lift and drag 
coefficient experimentally.  Lift and drag forces are described in Section 2.6.  Friction forces are 
discussed in Section 12. 
 
Contact forces are pressures that act on the small area of contact between two objects.  Contact forces can 
either be measured, or they can be calculated by analyzing forces and deformation in the system of 
interest.  Contact forces are very complicated, and are discussed in more detail in Section 8. 
 
 
 
2.1.3 Units of force and typical magnitudes 
 
In SI units, the standard unit of force is the Newton, given the symbol N.   
 
The Newton is a derived unit, defined through Newton’s second law of motion – a force of 1N causes a 1 
kg mass to accelerate at 1 2ms− .   
 
The fundamental unit of force in the SI convention is kg m/s2 

 
In US units, the standard unit of force is the pound, given the symbol lb or lbf (the latter is an abbreviation 
for pound force, to distinguish it from pounds weight) 
 
A force of 1 lbf causes a mass of 1 slug to accelerate at 1 ft/s2 



 
US units have a frightfully confusing way of representing mass – often the mass of an object is reported 
as weight, in lb or lbm (the latter is an abbreviation for pound mass).  The weight of an object in lb is not 
mass at all – it’s actually the gravitational force acting on the mass.  Therefore, the mass of an object in 
slugs must be computed from its weight in pounds using the formula 
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where g=32.1740 ft/s2 is the acceleration due to gravity. 
 
A force of 1 lb(f) causes a mass of 1 lb(m) to accelerate at 32.1740 ft/s2 
 
The conversion factors from lb to N are 
 

1 lb  = 4.448 N 
1 N =  0.2248 lb 

 
(www.onlineconversion.com is a handy resource, as long as you can tolerate all the hideous 
advertisements…) 
 
As a rough guide, a force of 1N is about equal to the weight of a medium sized apple. A few typical force 
magnitudes (from `The Sizesaurus’, by Stephen Strauss, Avon Books, NY, 1997) are listed in the table 
below 
 

Force Newtons Pounds Force
Gravitational Pull of the Sun on Earth 223.5 10×  217.9 10×  
Gravitational Pull of the Earth on the Moon 202 10×  194.5 10×  
Thrust of a Saturn V rocket engine 73.3 10×  67.4 10×  
Thrust of a large jet engine 57.7 10×  51.7 10×  
Pull of a large locomotive 55 10×  51.1 10×  
Force between two protons in a nucleus 410  310  
Gravitational pull of the earth on a person 27.3 10×  21.6 10×  
Maximum force exerted upwards by a forearm 22.7 10×  60  
Gravitational pull of the earth on a 5 cent coin 25.1 10−×  21.1 10−×  
Force between an electron and the nucleus of a Hydrogen atom 68 10−×  81.8 10−×  

 
 
 
 
 
 
 
 
 
 
 
 
 



2.1.4 Classification of forces: External forces, constraint forces and internal forces. 
 
When analyzing forces in a structure or machine, it is conventional to classify forces as external forces; 
constraint forces or internal forces. 
 
External forces arise from interaction between the system of interest and its surroundings.   
 
Examples of external forces include gravitational forces; lift or drag forces arising from wind loading; 
electrostatic and electromagnetic forces; and buoyancy forces; among others.  Force laws governing these 
effects are listed later in this section.  
 
Constraint forces are exerted by one part of a structure on another, through joints, connections or contacts 
between components.  Constraint forces are very complex, and will be discussed in detail in Section 8.  
 
Internal forces are forces that act inside a solid part of a structure or component.  For example, a stretched 
rope has a tension force acting inside it, holding the rope together.  Most solid objects contain very 
complex distributions of internal force.  These internal forces ultimately lead to structural failure, and also 
cause the structure to deform.  The purpose of calculating forces in a structure or component is usually to 
deduce the internal forces, so as to be able to design stiff, lightweight and strong components.  We will 
not, unfortunately, be able to develop a full theory of internal forces in this course – a proper discussion 
requires understanding of partial differential equations, as well as vector and tensor calculus.  However, a 
brief discussion of internal forces in slender members will be provided in Section 9. 
 
 
 
 
2.1.5 Mathematical representation of a force. 
 
Force is a vector – it has a magnitude (specified in Newtons, or lbf, or 
whatever), and a direction.   
 
A force is therefore always expressed mathematically as a vector 
quantity.  To do so, we follow the usual rules, which are described in 
more detail in the vector tutorial.  The procedure is 

1. Choose basis vectors { , , }i j k  or 1 2 2{ , , }e e e  that establish three 
fixed (and usually perpendicular) directions in space; 

2. Using geometry or trigonometry, calculate the force component along each of the three reference 
directions ( , , )x y zF F F  or 1 2 3( , , )F F F ; 

3. The vector force is then reported as 
1 1 2 2 3 3 (appropriate units)x y zF F F F F F= + + = + +F i j k e e e  

 
For calculations, you will also need to specify the point where the force acts on your system or structure.  
To do this, you need to report the position vector of the point where the force acts on the structure. 
 
The procedure for representing a position vector is also described in detail in the vector tutorial. To do so, 
you need to: 

1. Choose an origin 
2. Choose basis vectors { , , }i j k  or 1 2 2{ , , }e e e  that establish three fixed directions in space (usually 

we use the same basis for both force and position vectors) 
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3. Specify the distance you need to travel along each direction to get from the origin to the point of 
application of the force ( , , )x y zr r r  or 1 2 3( , , )r r r  

4. The position vector is then reported as 
1 1 2 2 3 3 (appropriate units)x y zr r r r r r= + + = + +r i j k e e e  

 
 
 
2.1.6 Measuring forces 
 
Engineers often need to measure forces. According to the definition, if we want to measure a 
force, we need to get hold of a 1 kg mass, have the force act on it somehow, and then measure 
the acceleration of the mass. The magnitude of the acceleration tells us the magnitude of the 
force; the direction of motion of the mass tells us the direction of the force.  Fortunately, there 
are easier ways to measure forces.  
 
 In addition to causing acceleration, forces cause objects to deform – for example, a force will 
stretch or compress a spring; or bend a beam.  The deformation can be measured, and the force 
can be deduced. 
 
The simplest application of this phenomenon is a spring scale.  The change in length of a spring is 
proportional to the magnitude of the force causing it to stretch (so long as the force is not too large!)– this 
relationship is known as Hooke’s law and can be expressed as an equation 

k Fδ =  
where the spring stiffness k  depends on the material the spring is made from, and the shape of the spring.  
The spring stiffness can be measured experimentally to calibrate the spring.   
 
Spring scales are not exactly precision instruments, of course.  But the same principle is used in more 
sophisticated instruments too.  Forces can be measured precisely using a `force transducer’ or `load cell’ 
(A search for `force transducer’ on any search engine will bring up a huge variety of these – a few are 
shown in the picture).  The simplest load cell works much like a spring scale – you can load it in one 
direction, and it will provide an electrical signal proportional to the magnitude of the force.  Sophisticated 
load cells can measure a force vector, and will record all three force components.  Really fancy load cells 
measure both force vectors, and torque or moment vectors. 
 

           
 

Simple force transducers capable of measuring a single force component.  The instrument on the right is 
called a `proving ring’ – there’s a short article describing how it works at 

http://www.mel.nist.gov/div822/proving_ring.htm 
 



 
A sophisticated force transducer produced by MTS systems, which is capable of measuring forces and 

moments acting on a car’s wheel in-situ.  The spec for this device can be downloaded at 
www.mts.com/downloads/SWIF2002_100-023-513.pdf.pdf 

 
 
 

The basic design of all these load cells is the same – they measure (very precisely) the deformation in a 
part of the cell that acts like a very stiff spring. One example  (from 
http://www.sandia.gov/isrc/Load_Cell/load_cell.html ) is shown on the 
right.  In this case the `spring’ is actually a tubular piece of high-strength 
steel.  When a force acts on the cylinder, its length decreases slightly.   The 
deformation is detected using `strain gages’ attached to the cylinder. A 
strain gage is really just a thin piece of wire, which deforms with the 
cylinder.  When the wire gets shorter, its electrical resistance decreases – 
this resistance change can be measured, and can be used to work out the 
force.  It is possible to derive a formula relating the force to the change in 
resistance, the load cell geometry, and the material properties of steel, but 
the calculations involved are well beyond the scope of this course. 
 
The most sensitive load cell currently available is the atomic force 

microscope (AFM) – which as the name suggests, is 
intended to measure forces between small numbers 
of atoms.  This device consists of a very thin (about 
1 mμ ) cantilever beam, clamped at one end, with a 
sharp tip mounted at the other.  When the tip is 
brought near a sample, atomic interactions exert a 
force on the tip and cause the cantilever to bend.  
The bending is detected by a laser-mirror system.  
The device is capable of measuring forces of about 
1 pN (that’s 1210− N!!), and is used to explore the 
properties of surfaces, and biological materials such 
as DNA strands and cell membranes.  A nice article 
on the AFM can be found at http://www.di.com 
 
 



Selecting a load cell 
 
As an engineer, you may need to purchase a load cell to measure a force.  Here are a few considerations 
that will guide your purchase. 
 

1. How many force (and maybe moment) components do you need to measure?  Instruments that 
measure several force components are more expensive… 

2. Load capacity – what is the maximum force you need to measure? 
3. Load range – what is the minimum force you need to measure? 
4. Accuracy 
5. Temperature stability – how much will the reading on the cell change if the temperature changes? 
6. Creep stability – if a load is applied to the cell for a long time, does the reading drift? 
7. Frequency response – how rapidly will the cell respond to time varying loads?  What is the 

maximum frequency of loading that can be measured? 
8. Reliability 
9. Cost 

 
 
2.1.7 Force Laws 
 
In this section, we list equations that can be used to calculate forces associated with 

(i) Gravity 
(ii) Forces exerted by linear springs 
(iii) Electrostatic forces 
(iv) Electromagnetic forces 
(v) Hydrostatic forces and buoyancy 
(vi) Aero- and hydro-dynamic lift and drag forces 

 
 
Gravitation 
 
Gravity forces acting on masses that are a large distance apart 

 
Consider two masses 1m  and 2m  that are a distance d 
apart.  Newton’s law of gravitation states that mass 

1m will experience a force  

1 2
122

Gm m
d

=F e  

where 12e  is a unit vector pointing from mass 1m  to mass 2m , and G is the Gravitation constant. Mass 

2m  will experience a force of equal magnitude, acting in the opposite direction. 
 
In SI units, 11 3 -1 -26.673 10 m kg sG −= ×  
 
The law is strictly only valid if the masses are very small (infinitely small, in fact) compared with d – so 
the formula works best for calculating the force exerted by one planet or another; or the force exerted by 
the earth on a satellite.    
 
 

d
m1

m2e12

F



Gravity forces acting on a small object close to the 
earth’s surface 
 
 
For engineering purposes, we can usually assume 
that 

1. The earth is spherical, with a radius R 
2. The object of interest is small compared 

with R 
3. The object’s height h above the earths 

surface is small compared to R 
 
If the first two assumptions are valid, then one can 
show that Newton’s law of gravitation implies that a 
mass m at a height h above the earth’s surface experiences a force 

2( ) r
GMm
R h

= −
+

F e  

where M is the mass of the earth; m is the mass of the object; R  is the earth’s radius, G is the gravitation 
constant and re  is a unit vector pointing from the center of the earth to the mass m.  (Why do we have to 
show this?  Well, the mass m actually experiences a force of attraction towards every point inside the 
earth.   One might guess that points close to the earth’s surface under the mass would attract the mass 
more than those far away, so the earth would exert a larger gravitational force than a very small object 
with the same mass located at the earth’s center.  But this turns out not to be the case, as long as the earth 
is perfectly uniform and spherical). 
 
If the third assumption (h<<R) is valid, then we can 
simplify the force law by setting 

( )2
GM g mg

R h
≈ ⇒ = −

+
F j  

where g is a constant, and j is a `vertical’ unit vector (i.e. 
perpendicular to the earth’s surface).   
 
In SI units 29.81g ms−= .   
 
The force of gravity acts at the center of gravity of an object.  For most engineering calculations the 
center of gravity of an object can be assumed to be the same as its center of mass.  For example, gravity 
would exert a force at the center of the sphere that Mickey is holding.  The location of the center of mass 
for several other common shapes is shown below.  The procedure for calculating center of mass of a 
complex shaped object is discussed in more detail in section 6.3. 
 
 
 
 
 
 
 
 
 



TABLE OF POSITIONS OF CENTER OF MASS FOR COMMON OBJECTS 

 
 

 
 

Rectangular prism Circular cylinder Half-cylinder 
   

  
 

Solid hemisphere Thin hemispherical shell Cone 
   

     
Triangular Prism                                                      Thin triangular laminate 

 
 

 
Some subtleties about gravitational interactions 
  
There are some situations where the simple equations in the preceding section don’t work.  Surveyors 
know perfectly well that the earth is no-where near spherical; its density is also not uniform.  The earth’s 
gravitational field can be quite severely distorted near large mountains, for example.  So using the simple 
gravitational formulas in surveying applications (e.g. to find the `vertical’ direction) can lead to large 
errors.   
 
Also, the center of gravity of an object is not the same as its center of mass.  Gravity is actually a 
distributed force.  When two nearby objects exert a gravitational force on each other, every point in one 
body is attracted towards every point inside its neighbor.  The distributed force can be replaced by a 
single, statically equivalent force, but the point where the equivalent force acts depends on the relative 
positions of the two objects, and is not generally a fixed point in either solid.  One consequence of this 
behavior is that gravity can cause rotational accelerations, as well as linear accelerations.  For example, 
the resultant force of gravity exerted on the earth by the sun and moon does not act at the center of mass 
of the earth.  As a result, the earth precesses – that is to say, its axis of rotation changes with time. 
 



Forces exerted by springs 
 
A solid object (e.g. a rubber band) can be made to exert forces by stretching it.  The forces exerted by a 
solid that is subjected to a given deformation depend on the shape of the component, the materials it is 
made from, and how it is connected to its surroundings. Solid objects can also exert moments, or torques 
– we will define these shortly.  Forces exerted by solid components in a machine or structure are 
complicated, and will be discussed in detail separately.   Here, we restrict attention to the simplest case: 
forces exerted by linear springs. 
 
A spring scale is a good example of a linear spring.  You can attach it 
to something at both ends.  If you stretch or compress the spring, it 
will exert forces on whatever you connected to. 

 
 
 
The forces exerted by the ends of the spring always act along the line 
of the spring.  The magnitude of the force is (so long as you don’t 
stretch the spring too much) given by the formula 

( )F k L a= −  
where a is the un-stretched spring length; L is the stretched length, 
and k is the spring stiffness. 
 
 
In the SI system, k has units of N/m. 
 
Note that when you draw a picture showing the forces exerted by a 
spring, you must always assume that the spring is stretched, so that 
the forces exerted by the spring are attractive.  If you don’t do this, 
your sign convention will be inconsistent with the formula 

( )F k L a= − , which assumes that a compressed spring (L<a) exerts 
a negative force. 
 
 
Forces exerted by dashpots 
 
A ‘Dashpot’ is somewhat like a spring except that it exerts forces that are 
proportional to the relative velocity of its two ends, instead of the relative 
displacement.  The device is extremely useful for damping vibrations.  
The device usually consists of a plunger that forces air or fluid through a 
small orifice – the force required to expel the fluid is roughly proportional 
to the velocity of the plunger.  For an example of a precision dashpot see 
http://www.airpot.com/beta/html/dashpot_defined.html 
 
The forces exerted by the ends of the dashpot always act along the line of 
the dashpot.  The magnitude of the force exerted by a fluid filled dashpot 
is given by the formula 

dLF
dt

η=  



where L is the length, and η   is the rate constant of the dashpot.  Air filled dashpots are somewhat more 
complicated, because the compressibility of the air makes them behave like a combination of a dashpot 
and spring connected end-to-end. 
 
In the SI system, η  has units of Ns/m. 
 
Note that when you draw a picture showing the forces exerted by a dashpot, you must always assume that 
the length of the dashpot is increasing, so that the forces exerted by the ends of the dashpot are attractive.   
 
 
Forces exerted by an ‘Inerter’ 
 
The ‘Inerter’ is a device that exerts forces proportional to the relative 
acceleration of its two ends.  It was invented in 1997 and used in secret by 
the McLaren Formula 1 racing team to improve the performance of their 
cars, but in 2008 was made broadly available 
(http://www.admin.cam.ac.uk/news/dp/2008081906)  
 
The device is so simple that it is difficult to believe that it has taken over 100 
years of vehicle design to think of it – but the secret is really in how to use 
the device to design suspensions than in the device itself.  The device works 
by spinning a flywheel between two moving rods, as sketched in the figure. 
  
The forces exerted by the ends of the inerter always act along the line of the 
inerter.  The magnitude of the force exerted by an inerter is given by the formula 

2

2
d LF
dt

μ=  

where L is the length, and μ   is the inertia constant of the dashpot. 
 
In the SI system, μ  has units of Ns2/m. 
 
 
 
Electrostatic forces 
 
As an engineer, you will need to be able to design structures and machines that manage forces.  
Controlling gravity is, alas, beyond the capabilities of today’s engineers. It’s also difficult (but not 
impossible) to design a spring with a variable stiffness or unstretched length.  But there are forces that 
you can easily control.  Electrostatic and electromagnetic forces are among the most important ones. 
 
Electrostatic forces are exerted on, and by, charged objects.  The concepts of electrical potential, current 
and charge are based on experiments.  A detailed discussion of these topics is beyond the scope of this 
course (it will be covered in detail in EN51), but electromagnetic and electrostatic forces are so important 
in the design of engines and machines that the main rules governing forces in these systems will be 
summarized here. 
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Electrostatic forces acting on two small charged objects that are a large distance apart 
 
Coulomb’s Law states that if like charges 1Q  and 2Q  
are induced on two particles that are a distance d 
apart, then particle 1 will experience a force 

1 2
1224

Q Q
dπε

= −F e  

(acting away from particle 2), where ε  is a 
fundamental physical constant known as the 
Permittivity of the medium surrounding the particles 
(like the Gravitational constant, its value must be 
determined by experiment). 
 
In SI units, 1 2,Q Q  are specified in Coulombs, d is in meters, and ε  is the permittivity of free space, with 

fundamental units 2 -1 -3Amperes kg m .  Permittivity is more usually specified using derived units, in 
Farads per meter.  The Farad is the unit of capacitance. 
 
The value of ε  for air is very close to that of a vacuum.  The permittivity of a vacuum is denoted by 0ε . 

In SI units its value is approximately -12 -18.854185 10 Fm×   
 
 
Like gravitational forces, the electrostatic forces acting on 3D objects with a general distribution of 
charge must be determined using complicated calculations.  It’s worth giving results for two cases that 
arise frequently in engineering designs: 
 
 
 
Forces acting between charged flat parallel plates 

 
 
Two parallel plates, which have equal and opposite charges Q  and 
are separated by a distance d , experience an attractive force with 
magnitude 

2 /(2 )F Q ε=  
The force can be thought of as acting at the center of gravity of the 
plates. 

 
Two parallel plates, which have area A, are separated by a distance d,  and are connected to a power-
supply that imposes an electrical potential difference V 
across the plates, experience an attractive force with 
magnitude 

2 2/(2 )F AV dε=  
The force can be thought of as acting at the center of 
gravity of the plates. 
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Applications of electrostatic forces: 
 
Electrostatic forces are small, and don’t have many applications in conventional mechanical systems.  
However, they are often used to construct tiny motors for micro-electro-mechanical systems (MEMS).  
The basic idea is to construct a parallel-plate capacitor, and then to apply force to the machine by 
connecting the plates to a power-supply.  The pictures below show examples of comb drive motors. 
 

 

 
An experimental comb drive MEMS 

actuator developed at Sandia National 
Labs, 

http://mems.sandia.gov/scripts/index.asp 
 

A rotary comb drive actuator developed at iolon inc.  
Its purpose is to rotate the mirror at the center, which 

acts as an optical switch. 
 

 
The configurations used in practice are basically large numbers of parallel plate capacitors. A detailed 
discussion of forces in these systems will be deferred to future courses. 
 
Electrostatic forces are also exploited in the design of oscilloscopes, television monitors, and electron 
microscopes.  These systems generate charged particles (electrons), for example by heating a tungsten 
wire.  The electrons are emitted into a strong electrostatic field, and so are subjected to a large force.  The 
force then causes the particles to accelerate – but we can’t talk about accelerations in this course so you’ll 
have to take EN4 to find out what happens next… 
 
 
 
Electromagnetic forces 
 
Electromagnetic forces are exploited more widely than electrostatic 
forces, in the design of electric motors, generators, and electromagnets. 
 
Ampere’s Law states that two long parallel wires which have length L, 
carry electric currents 1I  and 2I , and are a small distance d apart, will 
experience an attractive force with magnitude 

0 1 2 /(2 )F I I L dμ π=  
where 0μ  is a constant known as the permeability of free space. 
 
In SI units, 0μ  has fundamental units of  2 -1 -2kg m sec A , but is usually 
specified in derived units of Henry per meter.  The Henry is the unit of inductance.   
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The value of 0μ is exactly 74 10π −×  H/m 
  
Electromagnetic forces between more generally shaped current carrying wires and magnets are governed 
by a complex set of equations.  A full discussion of these physical laws is beyond the scope of this course, 
and will be covered in EN51.   
 
Applications of electromagnetic forces 
 
Electromagnetic forces are widely exploited in the design of electric motors; force actuators; solenoids; 
and electromagnets.  All these applications are based upon the principle that a current-carrying wire in a 
magnetic field is subject to a force.  The magnetic field can either be induced by a permanent magnet (as 
in a DC motor); or can be induced by passing a current through a second wire (used in some DC motors, 
and all AC motors).  The general trends of forces in electric motors follow Ampere’s law: the force 
exerted by the motor increases linearly with electric current in the armature; increases roughly in 
proportion to the length of wire used to wind the armature, and depends on the geometry of the motor.  
 

          
Two examples of DC motors – the picture on the right is cut open to show the windings.  You can find 

more information on motors at http://my.execpc.com/~rhoadley/magmotor.htm 
 
 
 
Hydrostatic and buoyancy forces 
 
When an object is immersed in a stationary fluid, its surface 
is subjected to a pressure.  The pressure is actually induced 
in the fluid by gravity: the pressure at any depth is 
effectively supporting the weight of fluid above that depth. 
 
A pressure is a distributed force.   If a pressure p acts on a 
surface, a small piece of the surface with area dA  is 
subjected to a force 

d p dA= −F n  
where n is a unit vector perpendicular to the surface. The total force on a surface must be calculated by 
integration.  We will show how this is done shortly. 
 
The pressure in a stationary fluid varies linearly with depth below the fluid surface 

ap p gdρ= +  
where ap  is atmospheric pressure (often neglected as it’s generally small compared with the second 
term); ρ  is the fluid density; g is the acceleration due to gravity; and d is depth below the fluid surface. 

pa

p = pa + ρgd

HMS Bounty
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Archimedes’ principle gives a simple way to calculate the resultant force exerted by fluid pressure on an 
immersed object.   
 

 
 
The magnitude of the resultant force is equal to 
the weight of water displaced by the object.  The 
direction is perpendicular to the fluid surface.  
Thus, if the fluid has mass density ρ , and a 
volume IV  of the object lies below the surface 
of the fluid, the resultant force due to fluid 
pressure is 

IgVρ=F j  
 
The force acts at the center of buoyancy of the immersed object.  The center of buoyancy can be 
calculated by finding the center of mass of the displaced fluid (i.e. the center of mass of the portion of the 
immersed object that lies below the fluid surface). 
 
The buoyancy force acts in addition to gravity loading.  If the object floats, the gravitational force is equal 
and opposite to the buoyancy force.  The force of gravity acts (as usual) at the center of mass of the entire 
object.   

 
 
 
Aerodynamic lift and drag forces 
 
Engineers who design large 
bridges, buildings, or fast-moving 
terrestrial vehicles, spend much 
time and effort in managing aero- 
or hydro-dynamic forces.  
Hydrodynamic forces are also of 
great interest to engineers who 
design bearings and car tires, since 
hydrodynamic forces can cause one 
surface to float above another, so 
reducing friction to very low 
levels. 
 
In general, when air or fluid flow past an object (or equivalently, if the object moves through stationary 
fluid or gas), the object is subjected to two forces: 

1. A Drag force, which acts parallel to the direction of air or fluid flow 
2. A Lift force, which acts perpendicular to the direction of air or fluid flow. 

 
The forces act at a point known as the center of lift of the object – but there’s no simple way to predict 
where this point is. 
 
The lift force is present only if airflow past the object is unsymmetrical (i.e. faster above or below the 
object).  This asymmetry can result from the shape of the object itself (this effect is exploited in the 

Volume VI lies below
fluid surface

F

Center of mass of
submerged portion VI

FL

FD

Flow is asymmetric near airfoil

V
(Lift acts perpendicular
to flow)

(Drag acts parallel
to flow)



design of airplane wings); or because the object is spinning (this effect is exploited by people who throw, 
kick, or hit balls for a living). 
 
Two effects contribute to drag:  
 

(1) Friction between the object’s surface and the fluid or air.  The friction force depends on the 
object’s shape and size; on the speed of the flow; and on the viscosity of the fluid, which is a 
measure of the shear resistance of the fluid.   Air has a low viscosity; ketchup has a high 
viscosity.  Viscosity is often given the symbol η , and has the rather strange units in the SI 
system of  2Nsm− .  In `American’ units viscosity has units of `Poise’ (or sometimes 
centipoises – that’s 210−  Poise).  The conversion factor is 21 0.1P Nsm−= .   (Just to be 
confusing, there’s another measure of viscosity, called kinematic viscosity, or specific 
viscosity, which is /ς η ρ= , where ρ  is the mass density of the material.  In this course 
we’ll avoid using kinematic viscosity, but you should be aware that it exists!)  Typical 
numbers are: Air: 5 21.73 10 Nsmη − −≈ × for a standard atmosphere (see 
http://users.wpi.edu/~ierardi/PDF/air_nu_plot.PDF for a more accurate number) ; Water, 

20.001Nsmη −≈ ; SAE40 motor oil  20.5Nsmη −≈ , ketchup 260Nsmη −≈  (It’s hard to 
give a value for the viscosity of ketchup, because it’s thixotropic.  See if you can find out 
what this cool word means – it’s a handy thing to bring up if you work in a fast food 
restaurant.)  

 
(2) Pressure acting on the objects surface.  The pressure arises because the air accelerates as it 

flows around the object.  The pressure acting on the front of the object is usually bigger than 
the pressure behind it, so there’s a resultant drag force.  The pressure drag force depends on 
the objects shape and size, the speed of the flow, and the fluid’s mass density ρ . 

 
Lift forces defy a simple explanation, despite the efforts of various authors to provide one.  If you want to 
watch a fight, ask two airplane pilots to discuss the origin of lift in your presence. (Of course, you may 
not actually know two airplane pilots.  If this is the case, and you still want to watch a fight, you could try 
http://www.wwe.com/, or go to a British soccer match).   Lift is caused by a difference in pressure acting 
at the top and bottom of the object, but there’s no simple way to explain the origin of this pressure 
difference.  A correct explanation of the origin of lift forces can be found at 
http://www.grc.nasa.gov/WWW/K-12/airplane/right2.html (this site has some neat Java applets that 
calculate pressure and flow past airfoils).  Unfortunately there are thousands more books and websites 
with incorrect explanations of lift, but you can find those for yourself (check out the explanation from the 
FAA!) 
 
 
Lift and drag forces are usually quantified by defining a coefficient of lift LC  and a coefficient of drag 

DC  for the object, and then using the formulas 

2 21 1
2 2L L L D D DF V C A F V C Aρ ρ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠  

Here, ρ  is the air or fluid density,  V is the speed of the fluid, and LA  and DA  are measures of the area 
of the object.  Various measures of area are used in practice – when you look up values for drag 
coefficients you have to check what’s been used.  The object’s total surface area could be used.   Vehicle 



manufacturers usually use the projected frontal area (equal to car height x car width for practical 
purposes) when reporting drag coefficient.  LC  and DC  are dimensionless, so they have no units. 
 
The drag and lift coefficients are not constant, but depend on a number of factors, including: 

1. The shape of the object 
2. The object’s orientation relative to the flow (aerodynamicists refer to this as the `angle of 

attack’) 
3. The fluid’s viscosity η , mass density ρ , flow speed V and the object’s size. Size can be 

quantified by LA  or DA ; other numbers are often used too.  For example, to quantify the 

drag force acting on a sphere we use its diameter D.  Dimensional analysis shows that DC  
and LC  can only depend on these factors through a dimensionless constant known as 
`Reynold’s number’, defined as 

Re V Aρ
η

=  

 
 For example, the graph on the right shows the 
variation of drag coefficient with Reynolds 
number for a smooth sphere, with diameter D.  
The projected area 2 / 4DA Dπ=  was used to 
define the drag coefficient 

 
Many engineering structures and vehicles 
operate with Reynolds numbers in the range 

3 610 10− , where drag coefficients are fairly 
constant (of order 0.01 - 0.5 or so).  Lift 
coefficients for most airfoils are of order 1 or 2, 
but can be raised as high as 10 by special 
techniques such as blowing  air over the wing) 

 
Lift and drag coefficients can be calculated approximately (you can buy software to do this for you, e.g. at 
http://www.hanleyinnovations.com/walite.html . Another useful resource is 
www.desktopaero.com/appliedaero  ). They usually have to be measured to get really accurate numbers.  
 
Tables of approximate values for lift and drag coefficients can be found at 
http://aerodyn.org/Resources/database.html 
 

 
 
Lift and drag forces are of great interest to aircraft 
designers.  Lift and drag forces on an airfoil are 
computed using the usual formula 
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The wing area WA cL=  where c is the chord of the wing (see the picture) and L is its length, is used in 
defining both the lift and drag coefficient. 
 
The variation of  LC  and DC  with angle of attack α  are crucial in the design of aircraft.  For reasonable 
values of α  (below stall - say less than 10 degrees) the behavior can be approximated by  

2
L L

D Dp DI

C k

C k k

α

α

=

= +
 

where Lk , Dpk  and DIk  are more or less constant for any given airfoil shape, for practical ranges of 

Reynolds number.  The first term in the drag coefficient, Dpk , represents parasite drag – due to viscous 

drag and some pressure drag.  The second term 2
DIk α  is called induced drag, and is an undesirable by-

product of lift.  
 
The graphs on the right, (taken from `Aerodynamics 
for Naval Aviators, H.H. Hurt, U.S. Naval Air 
Systems Command reprint’) shows some 
experimental data for lift coefficient LC as a function 
of AOA (that’s angle of attack, but you’re engineers 
now so you have to talk in code to maximize your 
nerd factor.  That’s NF).  The data suggest that 

10.1degLk −≈ , and in fact a simple model known as 
`thin airfoil theory’ predicts that lift coefficient 
should vary by 2π  per radian (that works out as 
0.1096/degree) 
 

 
 

The induced drag coefficient DIk  can be estimated from the formula 
2 2

L
DI

W

c kk
eAπ

=  

where 10.1degLk −≈  ,  L is the length of the wing and c is its width; while e is a constant known as the 
`Oswald efficiency factor.’  The constant e is always less than 1 and is of order 0.9 for a high performance 
wing (eg a jet aircraft or glider) and of order 0.7 for el cheapo wings. 
 
The parasite drag coefficient Dpk  is of order 0.05 for the wing of a small general aviation aircraft, and of 
order 0.005 or lower for a commercial airliner. 
 
 
 
 
 
 
 
 
 



Interatomic forces 
 
Engineers working in the fields of nanotechnology, materials design, and bio/chemical engineering are 
often interested in calculating the motion of molecules or atoms in a system. 
 
They do this using `Molecular Dynamics,’ which is a computer method for integrating the equations of 
motion for every atom in the solid.  The equations of motion are just Newton’s law – F=ma for each atom 
– but for the method to work, it is necessary to calculate the forces acting on the atoms.  Specifying these 
forces is usually the most difficult part of the calculation. 
 
The forces are computed using empirical force laws, which are either 
determined experimentally, or (more often) by means of quantum-
mechanical calculations.  In the simplest models, the atoms are assumed to 
interact through pair forces.   In this case  

• The forces exerted by two interacting atoms depends only on their 
relative positions, and is independent on the position of other 
atoms in the solid 

• The forces act along the line connecting the atoms.  
• The magnitude of the force is a function of the distance between 

them.  The function is chosen so that (i) the force is repulsive when 
the atoms are close together; (ii) the force is zero at the equilibrium 
interatomic spacing; (iii) there is some critical distance where the 
attractive force has its maximum value (see the figure) and (iv) the force drops to zero when the 
atoms are far apart. 

 
Various functions are used to specify the detailed shape of the force-separation law.  A common one is 
the so-called ‘Lennard Jones’ function, which gives the force acting on atom (1) as 
 

13 7
(1)

1212 a aE
r r

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

F e  

Here a is the equilibrium separation between the atoms, and E is the total bond energy – the amount of 
work required to separate the bond by stretching it from initial length a to infinity. 
 
This function was originally intended to model the atoms in a Noble gas – like He or Ar, etc.  It is 
sometimes used in simple models of liquids and glasses.  It would not be a good model of a metal, or 
covalently bonded solids.  In fact, for these materials pair potentials don’t work well, because the force 
exerted between two atoms depends not just on the relative positions of the two atoms themselves, but 
also on the positions of other nearby atoms.  More complicated functions exist that can account for this 
kind of behavior, but there is still a great deal of uncertainty in the choice of function for a particular 
material.  
 
 

r

e12

1

F
2

|F|

r

a



 
2.2 Moments 
 
The moment of a force is a measure of its tendency to rotate an object about some point.  The physical 
significance of a moment will be discussed later.  We begin by stating the mathematical definition of the 
moment of a force about a point. 
 

 
 
2.2.1 Definition of the moment of a force. 
 
To calculate the moment of a force about some point, we need to know 
three things: 
 

1. The force vector, expressed as components in a basis 
( , , )x y zF F F , or better as x y zF F F= + +F i j k  

2. The position vector (relative to some convenient origin) of the 
point where the force is acting ( , , )x y z or better 

x y z= + +r i j k  
3. The position vector of the point (say point A) we wish to take moments about (you must use the 

same origin as for 2) ( ) ( ) ( )( , , )A A Ax y z  or ( ) ( ) ( )A A A
A x y z= + +r i j k  

 
The moment of F about point A is then defined as 

( )A A= − ×M r r F  
 
We can write out the formula for the components of AM  in longhand by using the definition of a cross 
product 
 

{ } { } { }

[( ) ( ) ( ) ] [ ]

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
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= − + − + − × + +
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The moment of F about the origin is a bit simpler 

O = ×M r F  
or, in terms of components 

{ } { } { }

[ ] [ ]O x y z
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2.2.2 Resultant moment exerted by a force system. 
 
Suppose that N  forces (1) (2) ( ), ... NF F F  act at positions (1) (2) ( ), ,... Nr r r .  The resultant moment of the 
force system is simply the sum of the moments exerted by the forces.  You can calculate the resultant 
moment by first calculating the moment of each force, and then adding all the moments together (using 
vector sums). 
 
Just one word of caution is in order here – when you compute the resultant moment, you must take 
moments about the same point for every force. 
 
Taking moments about a different point for each force and adding the result is meaningless! 
 
 
2.2.3 Examples of moment calculations using the vector formulas 
 
We work through a few examples of moment calculations 
 
Example 1:  The beam shown below is uniform and has weight 
W. Calculate the moment exerted by the gravitational force about 
points A and B. 

 
We know (from the table provided earlier) that the center of 
gravity is half-way along the beam.   
The force (as a vector) is 

W= −F j  
To calculate the moment about A, we take the origin at A. The position vector of the force relative to A is 

( / 2)L=r i  
The moment about A therefore 

( / 2) ( ) ( / 2)A L W WL= × = × − = −M r F i j k  
 
To calculate the moment about B, we take B as the origin.  The position vector of the force relative to B is 

( / 2)L= −r i  
Therefore 

( / 2) ( ) ( / 2)B L W WL= × = − × − =M r F i j k  
 
Example 2. Member AB of a roof-truss is subjected to a vertical gravitational force W and a horizontal 
wind load P.  Calculate the moment of the resultant 
force about B. 

 
 
Both the wind load and weight act at the center of 
gravity.  Geometry shows that the position vector of 
the CG with respect to B is 

( / 2) ( / 2) tanL L θ= − −r i j  
The resultant force is 

P W= −F i j  
Therefore the moment about B is 
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Example 3.  The structure shown is subjected to 
a force T acting at E along the line EF.  
Calculate the moment of T about points A and D. 
 
This example requires a lot more work.  First we 
need to write down the force as a vector.  We 
know the magnitude of the force is T, so we only 
need to work out its direction.  Since the force 
acts along EF, the direction must be a unit vector 
pointing along EF.  It’s not hard to see that the 
vector EF is 

3 2EF a a a= − +i j k  

We can divide by the length of EF ( 14a ) to 
find a unit vector pointing in the correct 
direction 

( 3 2 ) / 14EF = − +e i j k  
The force vector is 

( 3 2 ) / 14T= − +F i j k  
Next, we need to write down the necessary position vectors 

Force: 2 3a a= +r i j  
Point A: 2A a= −r i  
Point D: 4D a=r j  

Finally, we can work through the necessary cross products 
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Clearly, vector notation is very helpful when solving 3D problems! 
 
 
Example 4.  Finally, we work through a simple problem 
involving distributed loading.  Calculate expressions for the 
moments exerted by the pressure acting on the beam about 
points A and B. 
 

 

p (per unit
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A B
x
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dx

dF = p dx

i

j



An arbitrary strip of the beam with length dx is subjected to a force  
d p dx= −F j  

 
The position vector of the strip relative to A is 

x=r i  
The force acting on the strip therefore exerts a moment 

( )Ad x p dx px dx= × − = −M i j k  
The total moment follows by summing (integrating) the forces over the entire length of the beam 

2

0

( / 2)
L

A p xdx pL= − = −∫M k k  

 
The position vector of the strip relative to B is 

( )L x= −r i  
The force acting on the strip exerts a moment 

( ) ( ) ( )Bd L x p dx p L x dx= − × − = − −M i j k  
The total moment follows by summing (integrating) the forces over the entire length of the beam 

2

0

( ) ( / 2)
L

A p L x dx pL= − − =∫M k k  

 
 
2.2.4 The Physical Significance of a Moment 
 
A force acting on a solid object has two effects: (i) it tends to accelerate the object (making the object’s 
center of mass move); and (ii) it tends to cause the object to rotate. 
 

1. The moment of a force about some point quantifies its tendency to rotate an object about that 
point. 

 
2. The magnitude of the moment specifies the magnitude of the rotational force. 

 
3. The direction of a moment specifies the axis of rotation associated with the rotational force, 

following the right hand screw convention. 
 
Let’s explore these statements in more detail. 
 
The best way to understand the physical significance of a moment is to think about the simple 
experiments you did with levers & weights back in kindergarten.  Consider a beam that’s pivoted about 
some point (e.g. a see-saw).   
 
Hang a weight W at some distance d to the left of the pivot, and 
the beam will rotate (counter-clockwise) 
 
To stop the beam rotating, we need to hang a weight on the 
right side of the pivot.  We could 
 

(a) Hang a weight W a distance d to the right of the pivot 
(b) Hang a weight 2W a distance d/2 to the right of the pivot 

W

d

 
A force applied to a pivoted beam 

causes the beam to rotate 
 



(c) Hang a weight W/2 a distance 2d to the right of the pivot 
(d) Hang a weight Wα  a distance /d α  to the right of the pivot. 
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Four ways to balance the beam 

 
These simple experiments suggest that the turning tendency of a force about some point is equal to the 
distance from the point multiplied by the force.  This is certainly consistent with O = ×M r F  
 
To see where the cross product in the definition comes 
from, we need to do a rather more sophisticated 
experiment.  Let’s now apply a force F at a distance d 
from the pivot, but now instead of making the force 
act perpendicular to the pivot, let’s make it act at some 
angle. Does this have a turning tendency Fd? 

 
 

A little reflection shows that this cannot be the case.  
The force F can be split into two components – 

sinF θ  perpendicular to the beam, and cosF θ  
parallel to it.  But the component parallel to the beam will not tend to turn the beam.  The turning 
tendency is only sindF θ . 
 
Let’s compare this with O = ×M r F .  Take the origin at the pivot, then 

 cos sin sind F F dFθ θ θ= − = − − ⇒ × =r i F i j r F k  
so the magnitude of the moment correctly gives the magnitude of the turning tendency of the force.  
That’s why the definition of a moment needs a  cross product. 
 
Finally we need to think about the significance of the direction of the moment.  We can get some insight 
by calculating O = ×M r F  for forces acting on our beam to 
the right and left of the pivot 

 
 

For the force acting on the left of the pivot, we just found 
cos sin sind F F dFθ θ θ= − = − − ⇒ × =r i F i j r F k

 
 

For the force acting on the right of the pivot 
cos sin sind F F dF= = − − ⇒ × = −r i F i j r F kθ θ θ
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For a force applied at an angle, the turning 

tendency is sindF θ  
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Thus, the force on the left exerts a moment along the +k direction, while the force on the right exerts a 
moment in the –k direction. 
 
Notice also that the force on the left causes counterclockwise rotation; the force on the right causes 
clockwise rotation.  Clearly, the direction of the moment has something to do with the direction of the 
turning tendency. 
 
Specifically, the direction of a moment specifies the axis associated 
with the rotational force, following the right hand screw convention. 
 
It’s best to use the screw rule to visualize the effect of a moment – hold 
your right hand as shown, with the thumb pointing along the direction 
of the moment.  Your curling fingers (moving from your palm to the 
finger tips) then indicate the rotational tendency associated with the 
moment.  Try this for the beam problem.  With your thumb pointing 
along +k (out of the picture), your fingers curl counterclockwise.  With 
your thumb pointing along –k, your fingers curl clockwise. 
 
 
 
 
2.2.5 A few tips on calculating moments 
 
The safest way to calculate the moment of a force is to slog through the ( )A A= − ×M r r F  formula, as 
described at the start of this section.  As long as you can write down 
position vectors and force vectors correctly, and can do a cross 
product, it is totally fool-proof. 
 
But if you have a good physical feel for forces and their effects you 
might like to make use of the following short cuts.   
 
 

 
1. The direction of a moment is always perpendicular to both ( )A−r r  and F.  For 2D problems,  
( )A−r r  and F lie in the same plane, so the direction of the moment must be perpendicular to this plane.  
 
Thus, a set of 2D forces in the {i,j} plane can only exert moments in the ±k direction – this makes 
calculating moments in 2D problems rather simple; we just have to figure out whether the sign of a 
moment is positive or negative. 
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You can do a quick experiment to see whether the direction is +k or –k.  Suppose you want to find the 
direction of the moment caused by F in the picture above about the point A.  To do so,  
 

(i) Place your pencil on the page so that it lies on the line connecting A to the force.   
(ii) Pinch the pencil lightly at A so it can rotate about A, but A remains fixed.   
(iii) Push on the pencil in the direction of the force at B.  If the pencil rotates counterclockwise, 

the direction of the moment of F about A is out of the picture (usually +k).  If it rotates 
clockwise, the direction of the moment is into the picture (–k).  If it doesn’t rotate, you’re 
either holding the pencil in a death grip at A (then the experiment won’t work) or else the 
force must be acting along the pencil  – in this case the moment is zero. 

 
In practice you will soon find that you can very quickly tell the direction of a moment (in 2D, anyway) 
just by looking at the picture, but the experiment might help until you develop this intuition. 
 
 

 
2. The magnitude of a moment about some point is equal to the 
perpendicular distance from that point to the line of action of the force, 
multiplied by the magnitude of the force. 
 
Again, this trick is most helpful in 2D.  Its use is best illustrated by 
example.  Let’s work through the simple 2D example problems again, but 
now use the short-cut. 
 
Example 1:  The beam shown below is uniform and has weight W. 
Calculate the moment exerted by the gravitational force about 
points A and B. 
 

 
 
The perpendicular distance from a vertical line through the CG to 
A is L/2.  The pencil trick shows that W exerts a clockwise moment about A.  Therefore 

( / 2)A LW= −M k  
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Similarly, the perpendicular distance to B is L/2, and W exerts a counterclockwise moment about B.  
Therefore 

( / 2)B LW=M k  
 

Example 2. Member AB of a roof-truss is subjected to a 
vertical gravitational force W and a horizontal wind load 
P.  Calculate the moment of the resultant force about B. 

 
 
The perpendicular distance from the line of action of W 
to B is L/2.  W exerts a counterclockwise moment about 
B.  Therefore W exerts a moment ( / 2)B L W=M k  
The perpendicular distance from the line of action of P 
to B is ( / 2) tanL θ .  P also exerts a counterclockwise moment about B.  Therefore 

( tan / 2)B L Pθ=M k  
The total moment is 

{ }( / 2) tanB L W P θ= +M k  
 
 Example 3: It is traditional in elementary 
statics courses to solve lots of problems 
involving ladders (oh boy! Aren’t you glad 
you signed up for engineering?) .   The 
picture below shows a ladder of length L and 
weight W resting on the top of a frictionless 
wall. Forces acting on the ladder are shown 
as well. Calculate the moments about point 
A of the reaction force at B (which acts 
perpendicular to the ladder) and the weight 
force at C (which acts at the center of 
gravity, half-way up the ladder). 
 
 
The perpendicular distance from point A to the line along which N acts is / cosd θ .  The pencil 
experiment (or inspection) shows that the direction of the moment of N about A is in the +k direction.  
Therefore the trick (perpendicular distance times force) gives  

( / cos ) (for the force acting at B)A d Nθ=M k  
The perpendicular distance from point A to the line along which W is acting is ( / 2)cosL θ .  The 
direction of the moment is –k.  Therefore  

( / 2)cos (for the weight force)A L W= −M kθ  
 

Let’s compare these with the answer we get using ( )A A= − ×M r r F .  We can take the origin to be at A 
to make things simple.  Then, for the force at B 
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giving the same answer as before, but with a whole lot more effort! 
 
Similarly, for the weight force 
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3. The moment exerted by a 
force is unchanged if the force 
is moved in a direction parallel 
to the direction of the force. 
 
This is rather obvious in light 
of trick (2), but it’s worth 
stating anyway.  
 
 
 
 
4. The component of moment exerted by a force about an axis 
through a point can be calculated by (i) finding the two force 
components perpendicular to the axis; then (ii) multiplying each 
force component by its perpendicular distance from the axis; and 
(iii) adding the contributions of each force component following the 
right-hand screw convention. 
 
The wording of this one probably loses you, so let’s start by trying to 
explain what this means. 

                   
First, let’s review what we mean by the component of a moment 
about some axis.  The formula for the moment of a force about the 
origin is 

{ } { } { }O z y x z y xyF zF zF xF xF yF= − + − + −M i j k  

This has three components - { }x z yM yF zF= −  about the i axis, 

{ }y x zM zF xF= −  about the j  axis, and { }z y xM xF yF= −  about 

the k axis. 
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The trick gives you a quick way to calculate one of the components.  For example, let’s try to find the i 
component of the moment about the origin exerted by the force shown in the picture. 
 
The rule says 
(i) Identify the force components perpendicular to the i axis – that’s zF  and yF  in this case; 
(ii) Multiply each force component by its perpendicular distance from the axis.  Drawing a view 

down the i axis is helpful.  From the picture, we can see that zF  is a distance y from the axis, and 

yF  is a distance z from the axis.  The two contributions we need are thus zyF  and yzF . 
(iii) Add the two contributions according to the right hand screw rule.  We know that each force 

component exerts a moment ±i  - we have to figure out which one is +i and which is –i.  We can 
do the pencil experiment to figure this out – the answer is that zF  exerts a moment along +i, 
while yF  causes a moment along –i.   So finally 

{ }x z yM yF zF= − . 

 
 
 
Example: The structure shown is subjected to a vertical force 
V and horizontal force H acting at E.  Calculate the k 
component of moment exerted about point A by the resultant 
force. 
 

 
 

Our trick gives the answer immediately.  First, draw a 
picture looking down the k axis 
 

 
 
Clearly, the force H exerts a k component of moment 3aHk , 
while the force V exerts a k component of moment 4aV− k .  The 
total k component of moment is 

(3 4 )AzM a H V= −  
 
This trick clearly can save a great deal of time.  But to make use 
of it, you need excellent 3D visualization skills.   

 
 
 
 
 
 
 
 
 



2.3 Force Couples, Pure Moments, Couples and Torques 
 
 
We have seen that a force acting on a rigid body has two effects: (i) it tends to move the body; and (ii) it 
tends to rotate the body. 
 
A natural question arises – is there a way to rotate a body without moving it?  And is there a kind of force 
that causes only rotation without translation? 
 
The answer to both questions is yes. 
 
2.3.1 Force couples 
 
A system of forces that exerts a resultant moment, but no resultant force, is 
called a force couple. 
 
The simplest example of a force couple consists of two equal and opposite 
forces +F  and −F  acting some distance apart.  Suppose that the force −F  
acts at position −r  while the force +F  acts at position +r  The resultant 
moment is 

( )
( )

+ −

+ −

= × + × −
= − ×

M r F r F
r r F

 

Of course, the vector + −−r r  is just the vector from the point where −F  acts 
to the point where +F  acts.  This gives a quick way to calculate the moment 
induced by a force couple: 
 
The moment induced by two equal and opposite forces is equal to the moment of one force about the point 
of action of the other.  It doesn’t matter which force you use to do this calculation. 
 
Note that a force couple 

(i) Has zero resultant force 
(ii) Exerts the same resultant moment about all points.   

Its effect is to induce rotation without translation. 
 
The effect of a force couple can therefore be characterized by a single vector moment M.  The physical 
significance of M is equivalent to the physical significance of the moment of a force about some point.  
The direction of M specifies the axis associated with the rotational force.  The magnitude of M specifies 
the intensity of the rotational force. 
 
There are many practical examples of force systems that are best thought of as force-couple systems.  
They include 
 

1. The forces exerted by your hand on a screw-driver 
2. The forces exerted by the tip of a screw-driver on the head of a screw 
3. The forces exerted by one part of a constant velocity joint on another 
4. Drag forces acting on a spinning propeller 
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2.3.2 Pure moments, couples and torques.- Definition, Physical Interpretation, and Examples 
 
A pure moment is a rotational force.  Its effect is to induce rotation, without translation – just like a force 
couple. 
 
Couples and torques are other names for a pure moment. 
 
A pure moment is a vector quantity – it has magnitude and direction.  The physical 
significance of the magnitude and direction of a pure moment are completely 
equivalent to the moment associated with a force couple system. The direction of a 
moment indicates the axis associated with its rotational force (following the right 
hand screw convention); the magnitude represents the intensity of the force.  A 
moment is often denoted by the symbols shown in the figure. 
 
The concept of a pure moment takes some getting used to.  Its 
physical effect can be visualized by thinking about our beam-
balancing problem again. 
 

 
The picture above shows the un-balanced beam.  We saw earlier that we can balance the beam again by 
adding a second force, which induces a moment equal and opposite to that of the force W. 
 
We can also balance the beam by applying a pure moment to it.  Since the moment of W is dWk , a 
moment dW= −M k applied anywhere on the beam would balance it. 
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You could even apply the moment to the left of the beam – even right on top of the force W if you like! 
 
 

2.3.3 Units and typical magnitudes of moments 
 

In the SI system, moments have units of Nm (Newton-meters).   
In the US system, moments have units of ft-lb (foot pounds) 
The conversion factor is 1 Nm = 0.738 ft lb; or 1 ft-lb = 1.356 Nm. 
Typical magnitudes are:   
 

• Max torque exerted by a small Lego motor: 0.1 Nm 
• Typical torque output of a typical car engine 300-600 Nm 
• Breaking torque of a human femur: 140Nm 

 
 

A 3D moment

A 2D moment
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2.3.4 Measuring Moments 
 
Just as you can buy a force transducer to 
measure forces, you can buy a force 
transducer that measures moments.  We 
showed an example of a force-
transducer attached to the wheel of a car 
during our earlier discussion of force 
transducers. 
 
Another common moment-measuring 
system is a torque-wrench.  (So then is 
Oprah a talk wench?) When you tighten 
the bolts on a precision machine, it’s 
important to torque them correctly.  If 
you apply too much torque, you will 
strip the thread.  If you don’t apply 
enough, the bolt will work itself loose 
during service. 
 
You can buy a tool that measures the 
moment that you apply to a bolt while 
tightening it.  The device may be 
mechanical, or electronic.  An example 
(see www.mac.ie/whatwedo/ 
torquestory.asp ) is shown below. 
 

 
 
 
 
2.3.5 Engineering systems that exert torques 
 
There are many practical examples of moments, or torques, in engineering systems. For example,  
 
(i) The driving axle on your car turns the wheels by exerting a moment on them. 
(i) The drive shaft of any motor exerts a torque on whatever it’s connected to.  In fact, motors are 

usually rated by their torque capacity. 
(ii) The purpose of a gearbox is to amplify or attenuate torque.  You apply a torque to the input shaft, 

and get a bigger or smaller torque from the output shaft.  To do this, the input and output shafts 
have to rotate at different speeds.  There are also some clever gearboxes that allow you to add 
torques together – they are used in split-power variable speed transmissions, for example. 

(iii) A torque converter serves a similar purpose to a gearbox.  Unlike a gearbox, however, the input 
and output shafts don’t rotate at the same speed.  The output shaft can be stationary, exerting a 
large torque, while the input shaft rotates quickly under a modest torque.    It is used as part of an 
automatic transmission system in a car. 

(iv) Moments also appear as reaction forces.  For example, the resistance you feel to turning the 
steering wheel of your car is caused by moments acting on the wheels where they touch the 
ground.  The rolling resistance you feel when you ride your bike over soft ground or grass is also 
due to a moment acting where the wheel touches the ground. 



(v) Moments appear as internal forces in structural members or components.  For example, a beam 
will bend because of an internal moment whose direction is transverse to the direction of the 
beam.  A shaft will twist because of an internal moment whose direction is parallel to the shaft.  
Just as an internal force causes points in a solid to move relative to each other, an internal 
moment causes points to rotate relative to each other. 

 
 
 
 
2.4 Constraint and reaction forces and moments 
 
Machines and structures are made up of large numbers of separate components.  For example, a building 
consists of a steel frame that is responsible for carrying most of the weight of the building and its 
contents.  The frame is made up of many separate beams and girders, connected to one another in some 
way.  Similarly, an automobile’s engine and transmission system contain hundreds of parts, all designed 
to transmit forces exerted on the engine’s cylinder heads to the ground. 
 
To analyze systems like this, we need to know how to think about the forces exerted by one part of a 
machine or structure on another. 
 
We do this by developing a set of rules that specify the forces associated with various types of joints and 
connections. 
 
Forces associated with joints and connections are unlike the forces described in the preceding section.  
For all our preceding examples, (e.g. gravity, lift and drag forces, and so on) we always knew everything 
about the forces – magnitude, direction, and where the force acts. 
 
In contrast, the rules for forces and moments acting at joints and contacts don’t specify the forces 
completely.  Usually (but not always), they will specify where the forces act; and they will specify that 
the forces and moments can only act along certain directions.  The magnitude of the force is always 
unknown.   
 
2.4.1 Constraint forces: overview of general nature of constraint forces 

 
The general nature of a contact force is nicely illustrated by a 
familiar example – a person, standing on a floor (a Sumo 
wrestler was selected as a model, since they are particularly 
interested in making sure they remain in contact with a floor!).  
You know the floor exerts a force on you (and you must exert 
an equal force on the floor).  If the floor is slippery, you know 
that the force on you acts perpendicular to the floor, but you 
can’t make any measurements on the properties of the floor or 
your feet to determine what the force will be.   
 
In fact, the floor will always exert on your feet whatever force 
is necessary to stop them sinking through the floor.  (This is 
generally considered to be a good thing, although there are 
occasions when it would be helpful to be able to break this law).   
 

Contact
Forces

Weight

floor



We can of course deduce the magnitude of the force, by noting that since you don’t sink through the floor, 
you are in equilibrium (according to Newton’s definition anyway – you may be far from equilibrium 
mentally).  Let’s say you weight 300lb (if you don’t, a visit to Dunkin Donuts will help you reach this 
weight).  Since the only forces acting on you are gravity and the contact force, the resultant of the contact 
force must be equal and opposite to the force of gravity to ensure that the forces on you sum to zero. The 
magnitude of the total contact force is therefore 300lb. In addition, the resultant of the contact force must 
act along a line passing through your center of gravity, to ensure that the moments on you sum to zero. 
 
From this specific example, we can draw the following general rules regarding contact and joint forces 
 

(1) All contacts and joints impose constraints on the relative motion of the touching or connected 
components – that is to say, they allow only certain types of relative motion at the joint. (e.g. the 
floor imposes the constraint that your feet don’t sink into it) 

(2) Equal and opposite forces and moments act on the two connected or contacting objects.  This 
means that for all intents and purposes, a constraint force acts in more than one direction at the 
same time.  This is perhaps the most confusing feature of constraint forces. 

(3) The direction of the forces and moments acting on the connected objects must be consistent with 
the allowable relative motion at the joint (detailed explanation below) 

(4) The magnitude of the forces acting at a joint or contact is always unknown.  It can sometimes be 
calculated by considering equilibrium (or for dynamic problems, the motion) of the two 
contacting parts (detailed explanation later). 

 
Because forces acting at joints impose constraints on motion, they are often called constraint forces.   
 
They are also called reaction forces, because the joints react to impose restrictions on the relative motion 
of the two contacting parts. 
 
 
 
 
2.4.2 How to determine directions of reaction forces and moments at a joint 
 
Let’s explore the meaning of statement (3) above in more detail, with some specific examples. 
 
In our discussion of your interaction with a slippery floor, we stated that the force exerted on you by the 
floor had to be perpendicular to the floor.  How do we know this? 
 
Because, according to (3) above, forces at the contact have to be consistent with the nature of relative 
motion at the contact or joint.  If you stand on a slippery floor, we know 

(1) You can slide freely in any direction parallel to the floor.  That means there can’t be a force 
acting parallel to the floor. 

(2) If someone were to grab hold of your head and try to spin you around, you’d rotate freely; if 
someone were to try to tip you over, you’d topple. Consequently, there can’t be any moment 
acting on you. 

(3) You are prevented from sinking vertically into the floor.  A force must act to prevent this. 
(4) You can remove your feet from the floor without any resistance.  Consequently, the floor can 

only exert a repulsive force on you, it can’t attract you. 
 
You can use similar arguments to deduce the forces associated with any kind of joint.  Each time you 
meet a new kind of joint, you should ask 



(1) Does the connection allow the two connected solids move relative to each other?  If so, what 
is the direction of motion? There can be no component of reaction force along the direction of 
relative motion. 

(2) Does the connection allow the two connected solids rotate relative to each other?  If so, what 
is the axis of relative rotation?   There can be no component of reaction moment parallel to 
the axis of relative rotation. 

(3) For certain types of joint, a more appropriate question may be ‘Is it really healthy/legal for 
me to smoke this?’   

 
 
2.4.3 Drawing free body diagrams with constraint forces 
 
When we solve problems with constraints, we are nearly always interested in analyzing forces in a 
structure containing many parts, or the motion of a machine with a number of separate moving 
components.   Solving this kind of problem is not difficult – but it is very complicated because of the 
large number of forces involved and the large number of equations that must be solved to determine them.  
To avoid making mistakes, it is critical to use a systematic, and logical, procedure for drawing free body 
diagrams and labeling forces. 
 
The procedure is best illustrated by means of some simple Mickey Mouse examples.  When drawing free 
body diagrams yourself, you will find it helpful to consult Section 4.3.4 for the nature of reaction forces 
associated with various constraints. 
 
2D Mickey-mouse problem 1. The figure shows Mickey 
Mouse standing on a beam supported by a pin joint at one end 
and a slider joint at the other.  

 
We consider Mickey and the floor together as the system of 
interest.  We draw a picture of the system, isolated from its 
surroundings (disconnect all the joints, remove contacts, etc).  In 
the picture, all the joints and connections are replaced by forces, 
following the rules outlined in the preceding section.   

 
Notice how we’ve introduced variables to denote the unknown 
force components.  It is sensible to use a convention that allows 
you to quickly identify both the position and direction associated 
with each variable.  It is a good idea to use double subscripts – 
the first subscript shows where the force acts, the second shows its direction.  Forces are always taken to 
be positive if they act along the positive x, y and z directions. 
 
We’ve used the fact that A is a pin joint, and therefore exerts both vertical and horizontal forces; while B 
is a roller joint, and exerts only a vertical force.  Note that we always, always draw all admissible forces 
on the FBD, even if we suspect that some components may turn out later to be zero.  For example, it’s 
fairly clear that 0AxR =  in this example, but it would be incorrect to leave off this force.  This is 
especially important in dynamics problems where your intuition regarding forces is very often incorrect. 
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2D Mickey Mouse problem 2 Mickey mouse of weight MW  stands on 
a balcony of weight BW  as shown.  The weight of strut CB may be 
neglected.  
 
This time we need to deal with a structure that has two parts 
connected by a joint (the strut BC is connected to the floor AB 
through a pin joint).  In cases like this you have a choice of (a) 
treating the two parts together as a single system; or (b) considering 
the strut and floor as two separate systems.  As an exercise, we will 
draw free body diagrams for both here. 
 
 
A free body diagram for the balcony and strut together is shown on 
the right.  Note again the convention used to denote the reactions: 
the first label denotes the location of the force, the second denotes 
the direction.  Both A and C are pin joints, and therefore exert both 
horizontal and vertical forces. 
 
 

 
The picture shows free body diagrams for both components.  Note 
the convention we’ve introduced to deal with the reaction force 
acting at B – it’s important to use a systematic way to deal with 
forces exerted by one component in a system on another, or you 
can get hopelessly confused.  The recommended procedure is 

1. Label the components with numbers – here the balcony is 
(1) and the strut is (2) 

2. Denote reaction forces acting between components with 
the following convention.  In the symbol (1/ 2)

BxR , the 
superscript (1/2) denotes that the variable signifies the 
force exerted by component (1) on component (2) (it’s 
easy to remember that (1/2) is 1 on 2).  The subscript Bx 
denotes that the force acts at B, and it acts in the positive 
x direction. 

3. The forces (1/ 2)
BxR , (1/ 2)

ByR  exerted by component (1) on 
component (2) are drawn in the positive x and y directions on the free body diagram for 
component (2).  

4. The forces exerted by component (2) on component (1) are equal and opposite to (1/ 2)
BxR , (1/ 2)

ByR .  
They are therefore drawn in the negative x and y directions on the free body diagram for 
component (1).  You need to think of the reaction force components as acting in two directions at 
the same time.  This is confusing, but that’s the way life is. 
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2.4.4 Reaction Forces and Moments associated with various types of joint 
 
 
Clamped, or welded joints 
 
No relative motion or rotation is possible. 

 
Reaction forces: No relative motion is possible in any direction.  Three 
components of reaction force must be present to prevent motion in all three 
directions. 
 
Reaction moments: No relative rotation is possible 
about any axis.  Three components of moment must be 
present to prevent relative rotation. 

 
The figure shows reaction forces acting on the two 
connected components.  The forces and moments are 
labeled according to the conventions described in the 
preceding section.  
 
2D versions of the clamped joint are shown below 
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Pinned joint. 
 
A pinned joint is like a door hinge, or the joint of your elbow.  It allows 
rotation about one axis, but prevents all other relative motion. 
 
Reaction forces: No relative motion is possible at the joint.  There must 
be 3 components of reaction force acting to prevent motion.  
 
Reaction moments: Relative rotation is possible about one axis 
(perpendicular to the hinge) but is prevented about axes perpendicular 
to the hinge.  There must be two components of moment acting at the joint. 



 

 
 
2D pinned joints are often represented as shown in the picture below 
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Roller and journal bearings 
 
Bearings are used to support rotating shafts.  You can buy 
many different kinds of bearing, which constrain the shaft in 
different ways.  We’ll look at a couple of different ones. 
 
Example 1: The bearing shown below is like a pin joint: it 
allows rotation about one axis, but prevent rotation about the 
other two, and prevents all relative displacement of the shaft. 

 
Reaction forces: No relative motion is possible at this kind of 
bearing.  There must be 3 components of reaction force. 
 
Reaction moments: Relative rotation is allowed about one axis 
(parallel to the shaft), but prevented about the other two.  There must be two components of reaction 
moment. 
 



 
 
 
 
Example2:  Some types of bearing allow the shaft both to rotate, and 
to slide through the bearing as shown below 

 
Reaction forces: No relative motion is possible transverse to the shaft, 
but the shaft can slide freely through the bearing.  There must be 2 
components of reaction force. 
 
Reaction moments: Relative rotation is allowed about one axis 
(parallel to the shaft), but prevented about the other two.  There must 
be two components of reaction moment. 
 

 
 
Roller bearings don’t often appear in 2D problems.  When they do, they look just like a pinned joint. 
 
 
 
Swivel joint: Like a pinned joint, but allows rotation about two axes.  
There must be 3 components of reaction force, and 1 component of 
reaction moment. 
 
Reaction forces: All relative motion is prevented by the joint.  There 
must be three components of reaction force. 
 
Reaction moments: rotation is permitted about two axes, but prevented 
about the third.  There must be one component of reaction force 
present. 



 
 

Swivel joints don’t often appear in 2D problems.  When they do, they look just like a pinned joint. 
 
 
Ball and socket joint Your hip joint is a good example of a ball and 
socket joint.  The joint prevents motion, but allows your thigh to rotate 
freely relative to the rest of your body. 
 
Reaction forces: Prevents any relative motion.  There must be three 
components of reaction force. 
 
Reaction moments. Allows free rotation about all 3 axes.  No reaction 
moments can be present. 

 
Ball joints don’t often appear in 2D problems.  When they do, they look just like a pinned joint. 
 
 
Slider with pin joint Allows relative motion in one direction, and 
allows relative rotation about one axis 

 
Reaction forces:  Motion is prevented in two directions, but allowed in 
the third.  There must be two components of reaction force, acting 
along directions of constrained motion. 
Reaction moments: Relative rotation is prevented about two axes, but 
allowed about a third.  There must be two components of reaction 
moment. 
 



 
2D slider joints are often represented as shown in the picture below 

 

 
 
Slider with swivel joint: Similar to a swivel joint, but allows 
motion in one direction in addition to rotation about two axes. 

 
Reaction forces:  Relative motion is prevented in two directions, 
but allowed in the third.  There must be two components of 
reaction force acting to prevent motion. 
 
Reaction moments: Rotation is permitted around two axes, but 
prevented around the third.  There must be one component of 
reaction moment. 
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In 2D, a slider with swivel looks identical to a slider with a pin joint. 
 
 
 
2.4.5 Contact Forces 
 
Contacts are actually a bit more complex than our glib discussion of your interaction with a slippery floor 
might suggest. 
 
The nature of the forces acting at a contact depends on three things: 

(1) Whether the contact is lubricated, i.e. whether friction acts at the contact 
(2) Whether there is significant rolling resistance at the contact 
(3) Whether the contact is conformal, or nonconformal. 

 
A detailed discussion of friction forces will be left until later.  For now, we will consider only two 
limiting cases (a) fully lubricated (frictionless) contacts; and (b) ideally rough (infinite friction) contacts.  
 
Rolling resistance will not be considered at all in this course. 
 
 
Forces acting at frictionless nonconformal contacts 

 
A contact is said to be nonconformal if the two objects initially touch at 
a point.  The contact between any two convex surfaces is always non-
conformal.  Examples include contact between two balls, a ball and a 
flat surface, or contact between two non-parallel cylinders.  
 
The simplest approximation to the forces acting at a non-conformal 
lubricated contact states that 

(1) Each solid is subjected to a force at the contact point; 
(2) The forces between the two solids are repulsive; this 

requires 0AN >  and 0BN > for both examples illustrated 
in the picture; 

(3) The direction of the forces are along the line connecting the centers of curvature of the two 
contacting surfaces; 

(4) The moments acting on each solid at the contact point are negligible. 



 
Three rules that help to establish the direction of frictionless 
contact forces are:  

(1) When one of the two contacting surfaces is flat, the 
force must act perpendicular to the flat surface; 
(2) When two solids contact along sharp edges, the 
contact force must be perpendicular to both edges. 
(3) When two curved surfaces contact, the reaction force 
acts along a line joining the centers of curvature of the 
two objects. 

 
 
 
Forces acting at rough (infinite friction) nonconformal  contacts 

 
A rough nonconformal contact behaves somewhat like a pinned 
joint.  There can be no relative motion of the contacting surfaces, 
therefore there must be three components of reaction force acting on 
both contacting solids.  Unlike a pin joint, however, the contact can 
only sustain a repulsive normal force. This means that the 
components of force shown in the picture must satisfy 0AN ≥ .  If 
the normal force is zero (eg when the two surfaces are about to 
separate), the tangential forces 1 2 0A AT T= =  as well.  
 
The contacting solids can rotate freely relative to one another.  Therefore there must be no moment acting 
on the contacting solids at the point of contact. 
 
Usually the forces acting at a rough contact are represented by components acting perpendicular and 
parallel to the contacting surfaces, as shown in the picture above.  If you do this, it’s easy to enforce the 

0AN ≥ constraint.  But if it’s more convenient, you can treat the contact just like a pin joint, and express 
the reaction forces in any arbitrary basis, as shown in the picture below. 

 
There’s a minor disadvantage to doing this – it’s not easy to check whether the normal force between the 
surface is repulsive.  You can do it using vectors – for the picture shown the normal force is repulsive if 

(1/ 2) (1) 0A A⋅ ≥R n  
 
 
 



Forces acting at frictionless conformal contacts 
 
A contact is said to be conformal if two objects initially contact over a 
finite area.  Examples include contact between the face of a cube and a 
flat surface; contact between the flat end of a cylinder and a flat surface; 
or a circular pin inside a matching circular hole. 
 
Two conformal solids are actually subjected to a pressure over the area 
where they are in contact.  It’s really hard to calculate the pressure 
distribution (you have to model the deformation of the two contacting 
solids), so instead we replace the pressure by a statically equivalent force. 
 
If the two contacting surfaces are flat, then 

(1) The reaction force can be modeled as a single force, with no 
moment 

(2) The force can act anywhere within the area of contact (its actual 
position is determined by force and moment balance) 

(3) The force must be perpendicular to the two surfaces 
(4) The force acts to repel the two solids. 

 
You can of course make really weird conformal contacts – like a jigsaw connection – that can completely 
prevent both relative translation and rotation of the contacting solids.  In this case the contact behaves just 
like a clamped joint. 
 
 
Forces acting at ideally rough (infinite friction) conformal contacts 

 
No relative motion can occur at the contact.  There must therefore be 
three components of force acting on each solid. 
 
The forces can act anywhere within the area of contact – (its actual 
position is determined by force and moment balance) 
 
The component of force acting normal to the surface must be 
repulsive. 
 
No relative rotation of the two solids can occur.    A moment must act 
about an axis perpendicular to the contact to prevent relative rotation 
about this axis. 
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2.4.6 Some short-cuts for drawing free body diagrams in systems containing components with 
negligible mass 
 
The safest procedure in solving any statics or dynamics problem is to set up and solve equations of 
motion for every different part of the structure or machine.  There are two particularly common structural 
or machine elements that can be treated using short-cuts.  These are (i) Two force members in a structure; 
and (ii) A freely rotating wheel in a machine. 
 
A Two-force member is a component or structural member that 

1. is connected only to two ball-and socket type 
joints (in 3D) or pin joints (in 2D).   

2. has negligible weight 
 

We’ve seen an example already in one of the Mickey 
Mouse examples – it’s shown again in the picture to 
remind you.  Member BC is a two-force member, 
because its weight is negligible, and it has only two 
pin joints connecting it to other members.  Member 
AB is not a two-force member – partly because it’s 
weight is not negligible, but also because Mickey 
exerts a force on the member.   

 
 
The following rules are very helpful  
 

• Only one component of reaction force acts at the joints on a 2-force member 
• The reaction force component acts along a line connecting the two joints. 

 
It’s trivial to show this – if forces act on a body at only two points, and the body is in static equilibrium, 
then the forces have to be equal and opposite, and must also act along the same line, to ensure that both 
forces and moments are balanced. 
 
A generic 2 force member is shown in the 
figure.  Note that a 2-force member 
doesn’t have to be straight, though it often 
is. 

 
By convention, a positive reaction force is 
normally taken to pull at each end of the 
member, as shown.  Equal and opposite 
reaction forces must act on whatever is 
connected to the two force member. 
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Forces on a freely rotating wheel with negligible weight: Wheels are so ubiquitous that it’s worth 
developing a short-cut to deal with them. The picture shows a generic 2D wheel, mounted onto an axle 
with a frictionless bearing. The contact between wheel and ground is assumed to be ideally rough (infinite 
friction).  
 
The following trick is helpful 
 
For a freely rotating 2D wheel, there is only one component of reaction force at the contact between the 
ground and the wheel. 
 
The picture shows a free body diagram for 
a 2D wheel mounted on a frictionless 
bearing. 
 
Since only two forces act on the wheel 
(the force at the axle, and the contact 
force), it behaves just like a 2 force 
member.  The two forces must be equal 
and opposite, and must act along the same 
line.  Moreover, the contact force must 
satisfy 0AyR > . 

 
For a freely rotating 3D wheel, there are 2 components of reaction force acting at the contact 
between the wheel and ground.  One component acts perpendicular to the ground; the other acts 
parallel to the ground and perpendicular to the direction of motion of the wheel (i.e. parallel to 
the projection of the wheel’s axle on the ground) . 
 
The picture below shows all the forces and moments acting on a freely rotating 3D wheel.  The reactions 
that act on the axle are also shown. 

 
A view from in front of the wheel shows the directions of the forces and moments more clearly 
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The forces and moments shown are the only nonzero components of reaction force.   
 
The missing force and moment components can be shown to be zero by considering force and moment 
balance for the wheel.  The details are left as an exercise. 
  
 
Finally, a word of caution.  
 
 You can only use these shortcuts if: 

1. The wheel’s weight in negligible; 
2. The wheel rotates freely (no bearing friction, and nothing driving the wheel); 
3. There is only one contact point on the wheel. 

 
If any of these conditions are violated you must solve the problem by applying all the proper reaction 
forces at contacts and bearings, and drawing a separate free body diagram for the wheel. 
 



 
2.5 Friction Forces 
 
Friction forces act wherever two solids touch.  It is a type of contact force – but rather more complicated 
than the contact forces we’ve dealt with so far. 
 
It’s worth reviewing our earlier discussion of contact forces.  When we first introduced contact forces, we 
said that the nature of the forces acting at a contact depends on three things: 

(4) Whether the contact is lubricated, i.e. whether friction acts at the contact 
(5) Whether there is significant rolling resistance at the contact 
(6) Whether the contact is conformal, or nonconformal. 

 
We have so far only discussed two types of contact (a) fully lubricated (frictionless) contacts; and (b) 
ideally rough (infinite friction) contacts.  
 
Remember that for a frictionless contact, only one component of force acts on the two contacting solids, 
as shown in the picture on the left below.  In contrast, for an ideally rough (infinite friction) contact, three 
components of force are present as indicated on the figure on the right. 

                  
 

(a) Reaction forces at a frictionless contact           (b) Reaction forces at an ideally rough contact 
 

All real surfaces lie somewhere between these two extremes.  The contacting surfaces will experience 
both a normal and tangential force.  The normal force must be repulsive, but can have an arbitrary 
magnitude.  The tangential forces can act in any direction, but their magnitude is limited.  If the tangential 
forces get too large, the two contacting surfaces will slip relative to 
each other.   
 
This is why it’s easy to walk up a dry, rough slope, but very difficult to 
walk up an icy slope.  The picture below helps understand how friction 
forces work. The picture shows the big MM walking up a slope with 
angleθ , and shows the forces acting on M and the slope.  We can 
relate the normal and tangential forces acting at the contact to 
Mickey’s weight and the angleθ  by doing a force balance 

 
Omitting the tedious details, we find that 
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Note that a tangential force sinA MT W θ=  must act at the contact.  If 
the tangential force gets too large, then Mickey will start to slip down 
the slope. 
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When we do engineering calculations involving friction forces, we always want to calculate the forces 
that will cause the two contacting surfaces to slip.  Sometimes (e.g. when we design moving machinery) 
we are trying to calculate the forces that are needed to overcome friction and keep the parts moving.   
Sometimes (e.g. when we design self-locking joints) we need to check whether the contact can safely 
support tangential force without sliding. 
 
 
2.5.1 Experimental measurement of friction forces 
 
To do both these calculations, we need to know how to determine the critical tangential forces that cause 
contacting surfaces to slip.  The critical force must be determined experimentally.  Leonardo da Vinci was 
apparently the first person to do this – his experiments were repeated by Amontons and Coulomb about 
100 years later.  We now refer to the formulas that predict friction forces as Coulomb’s law or Amonton’s 
law (you can choose which you prefer!). 
 
The experiment is conceptually very 
simple – it’s illustrated in the figure. 
 
We put two solids in contact, and push 
them together with a normal force N.  We 
then try to slide the two solids relative to 
each other by applying a tangential force 
T.  The forces could be measured by force 
transducers or spring scales.   A simple 
equilibrium calculation shows that, as long 
as the weight of the components can be 
neglected, the contacting surfaces must be 
subject to a normal force N and a tangential force T. 
 
In an experiment, a normal force would first be applied to the contact, and then the tangential force would 
be increased until the two surfaces start to slip.  We could measure the critical tangential force as a 
function of N, the area of contact A, the materials and lubricants involved, the surface finish, and other 
variables such as temperature. 
 
You can buy standard testing equipment for measuring friction 
forces – one configuration is virtually identical to the simple 
experiment described above – a picture (from http://www.plint-
tribology.fsnet.co.uk/cat/at2/leaflet/te75r.htm ) is shown below.  
This instrument is used to measure friction between polymeric 
surfaces. 

 
 
 There are many other techniques for measuring friction. One 
common configuration is the `pin on disk’ machine. Two examples 
are shown below.  The picture on the left is from 
www.ist.fhg.de/leistung/gf4/ qualitaet/bildgro4.html , and 
shows details of the pin and disk.  The picture on the right, from www.ulg.ac.be/tribolog/ test.htm 
shows a pin on disk experiment inside an environmental chamber.  In this test, a pin is pressed with a 
controlled force onto the surface of a rotating disk.  The force required to hold the pin stationary is 
measured. 
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Another test configuration consists of two disks that are pressed into contact and then rotated with 
different speeds.  The friction force can be deduced by measuring the torque required to keep the disks 
moving.  An example (from 
http://www.ms.ornl.gov/htmlhome/mituc/te53.htm ) is shown below 

 
 
If you want to see a real friction experiment visit Professor Tullis’ lab at 
Brown (you don’t actually have to go there in person; he has a web site 
with very detailed descriptions of his lab) – he measures friction 
between rocks, to develop earthquake prediction models.   
 
 
A friction experiment must answer two questions: 
 

(i) What is the critical tangential force that will cause the surfaces to start to slide? The force 
required to initiate sliding is known as the static friction force. 

(ii) If the two surfaces do start to slip, what tangential force is required to keep them sliding?  The 
force required to maintain steady sliding is referred to as the kinetic friction force. 

 
 
We might guess that the critical force required to cause sliding could depend on 

(i) The area of contact between the two surfaces 
(ii) The magnitude of the normal force acting at the contact 
(iii) Surface roughness 
(iv) The nature of the crud on the two surfaces 
(v) What the surfaces are made from 

 
We might also guess that once the surfaces start to slide, the tangential force needed to maintain sliding 
will depend on the sliding velocity, in addition to the variables listed. 
 
In fact, experiments show that 
 
(i) The critical force required to initiate sliding between surfaces is independent of the area of contact.  
This is very weird.  In fact, when Coulomb first presented this conclusion to the Academy Francaise, he 
was thrown out of the room, because the academy thought that the strength of the contact should increase 
in proportion to the contact area.  We’ll discuss why it doesn’t below. 
 



(ii) The critical force required to initiate sliding between two surfaces is proportional to the normal force.  
If the normal force is zero, the contact can’t support any tangential force.  Doubling the normal force will 
double the critical tangential force that initiates slip. 
 
(iii) Surface roughness has a very modest effect on friction.  Doubling the surface roughness might cause 
only a few percent change in friction force. 
 
(iv) The crud on the two surfaces has a big effect on friction.  Even a little moisture on the surfaces can 
reduce friction by 20-30%.  If there’s a thin layer of grease on the surfaces it can cut friction by a factor of 
10.  If the crud is removed,  friction forces can be huge, and the two surfaces can seize together 
completely.   
 
(v) Friction forces depend quite strongly on what the two surfaces are made from.  Some materials like to 
bond with each other (metals generally bond well to other metals, for example) and so have high friction 
forces.  Some materials (e.g. Teflon) don’t bond well to other materials.  In this case friction forces will 
be smaller. 
 
(v) If the surfaces start to slide, the tangential force often (but not always) drops slightly.  Thus, kinetic 
friction forces are often a little lower than static friction forces.  Otherwise, kinetic friction forces behave 
just like static friction – they are independent of contact area, are proportional to the normal force, etc. 
 
(vi) The kinetic friction force usually (but not always) decreases slightly as the sliding speed increases.  
Increasing sliding speed by a factor of 10 might drop the friction force by a few percent. 
 
Note that there are some exceptions to these rules.  For example, friction forces acting on the tip of an 
atomic force microscope probe will behave completely differently (but you’ll have to read the scientific 
literature to find out how and why!).  Also, rubbers don’t behave like most other materials.  Friction 
forces between rubber and other materials don’t obey all the rules listed above. 
 
 
 
 
2.5.2 Definition of friction coefficient: the Coulomb/Amonton friction law 
 
A simple mathematical formula 
known as the Coulomb/Amonton 
friction law is used to describe the 
experimental observations listed in the 
preceding section.   
 
Friction forces at 2D contacts 
 

 
 
Friction forces at a 2D contact are 
described by the following laws: 
 
(i) If the two contacting surfaces do 
not slide, then  

T Nμ<  
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(ii) The two surfaces will start to slip if  
T Nμ=  

(iii) If the two surfaces are sliding, then  
T Nμ= ±  

The sign in this formula must be selected so that T  opposes the direction of slip.   
 
In all these formulas, μ  is called the `coefficient of friction’ for the two contacting materials.  For most 
engineering contacts, 0 1μ< < .  Actual values are listed below.   
 
Probably we need to explain statement (iii) in more detail.  Why is there a ± ?  Well, the picture shows 
the tangential force T  acting to the right on body (1) and to the left on body (2).  If (1) is stationary and 
(2) moves to the right, then this is the correct direction for the force and we’d use T Nμ= + .  On the 
other hand, if (1) were stationary and (2) moved to the left, then we’d use T Nμ= −  to make sure that 
the tangential force acts so as to oppose sliding. 
 
 
 
Friction forces at 3D contacts 
 
3D contacts are the same, but more complicated.  The tangential force 
can have two components.  To describe this mathematically, we 
introduce a basis 1 2 3{ , , }e e e  with 1 2,e e  in the plane of the contact, 

and 3e  normal to the contact.  The tangential force (1/ 2)T  exerted by 
body (1) on body (2) is then expressed as components in this basis 

(1/ 2)
1 1 2 2T T= +T e e  
 

 
(i) If the two contacting surfaces do not slide, then  

2 2
1 2T T Nμ+ <  

(ii) The two surfaces will start to slip if  
2 2

1 2T T Nμ+ =  
(iii) If the two surfaces are sliding, then  

(1/ 2) 12

12

Nμ=
vT
v

 

where (1/ 2)T  denotes the tangential force exerted by body (1) on body (2), and 12v  is the relative velocity 
of body (1) with respect to body (2) at the point of contact.  The relative velocity can be computed from 
the velocities 1v  and 2v  of the two contacting solids, using the equation 12 1 2= −v v v .  
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2.5.3 Experimental values for friction coefficient 
 
The table below (taken from `Engineering Materials’ by Ashby and Jones, Pergammon, 1980) lists rough 
values for friction coefficients for various material pairs.   
 

Material Approx friction coefficient
Clean metals in air 0.8-2 
Clean metals in wet air 0.5-1.5 
Steel on soft metal (lead, bronze, etc) 0.1-0.5 
Steel on ceramics (sapphire, diamond, ice) 0.1-0.5 
Ceramics on ceramics (eg carbides on carbides) 0.05-0.5 
Polymers on polymers 0.05-1.0 
Metals and ceramics on polymers (PE, PTFE, PVC) 0.04-0.5 
Boundary lubricated metals (thin layer of grease) 0.05-0.2 
High temperature lubricants (eg graphite) 0.05-0.2 
Hydrodynamically lubricated surfaces (full oil film) 0.0001-0.0005 

 
These are rough guides only – friction coefficients for a given material 
can by highly variable.  For example, Lim and Ashby (Cambridge 
University Internal Report CUED/C-mat./TR.123 January 1986) have 
catalogued a large number of experimental measurements of friction 
coefficient for steel on steel, and present the data graphically as shown 
below.   You can see that friction coefficient for steel on steel varies 
anywhere between 0.0001 to 3.   

 
Friction coefficient can even vary significantly during a measurement.  
For example, the picture below (from Lim and Ashby, Acta Met 37 3 
(1989) p 767) shows the time variation of friction coefficient during a 
pin-on-disk experiment. 
 

 
 

 
 
 
 
 



2.5.4 Static and kinetic friction 
 
Many introductory statics textbooks define two different friction coefficients.  One value, known as the 
coefficient of static friction and denoted by sμ , is used to model static friction in the equation giving the 
condition necessary to initiate slip at a contact 

sT Nμ<  

A second value, known as the coefficient of kinetic friction, and denoted by kμ , is used in the equation 
for the force required to maintain steady sliding between two surfaces 

kT Nμ= ±  
 

I don’t like to do this (I’m such a rebel).  It is true that for some materials the static friction force can be a 
bit higher than the kinetic friction force, but this behavior is by no means universal, and in any case the 
difference between kμ  and sμ  is very small (of the order of 0.05).  We’ve already seen that μ  can vary 
far more than this for a given material pair, so it doesn’t make much sense to quibble about such a small 
difference. 
 
The real reason to distinguish between static and kinetic friction coefficient is to provide a simple 
explanation for slip-stick oscillations between two contacting surfaces.  Slip-stick oscillations often occur 
when we try to do the simple friction experiment shown below.  
 

 
 
 
If the end of the spring is moved steadily to the right, the block sticks for a while until the force in the 
spring gets large enough to overcome friction.  At this point, the block jumps to the right and then sticks 
again, instead of smoothly following the spring.   If μ  were constant, then this behavior would be 
impossible.  By using s kμ μ> , we can explain it.  But if we’re not trying to model slip-stick oscillations, 
it’s much more sensible to work with just one value of μ . 
 
In any case, there’s a much better way to model slip-stick oscillations, by making μ  depend on the 
velocity of sliding.   Most sophisticated models of slip-stick oscillations (e.g. models of earthquakes at 
faults) do this. 
 
 
12.6 The microscopic origin of friction forces 
 
Friction is weird.  In particular, we need to explain  

(i) why friction forces are independent of the contact area 
(ii) why friction forces are proportional to the normal force. 

 
Coulomb grappled with these problems and came up with an incorrect explanation.  A truly satisfactory 
explanation for these observations was only found 20 years or so ago. 
 
To understand friction, we must take a close look at the nature of surfaces.  Coulomb/Amonton friction 
laws are due to two properties of surfaces: 



(1) All surfaces are rough; 
(2) All surfaces are covered with a thin film of oxide, an adsorbed layer of water, or an 

organic film.   
 
Surface roughness can be controlled to some extent – a cast 
surface is usually very rough; if the surface is machined the 
roughness is somewhat less; roughness can be reduced further 
by grinding, lapping or polishing the surfaces.  But you can’t get 
rid of it altogether.  Many surfaces can be thought of as having a 
fractal geometry. This means that the roughness is statistically 
self-similar with length scale – as you zoom in on the surface, it 
always looks (statistically) the same (more precisely the 
surfaces are self-affine.  When you zoom in, it looks like the 
surface got stretched vertically – surfaces are rougher at short 
wavelengths than at long ones). 

 
Of course no surface can be truly fractal: roughness can’t be 
smaller than the size of an atom and can’t be larger than the 
component; but most surfaces look fractal over quite a large range of lengths.  Various statistical 
measures are used to quantify surface roughness, but a discussion of these parameters is beyond the scope 
of this course. 
 
Now, visualize what the contact between two rough surfaces looks like.  The surfaces will only touch at 
high spots (these are known in the trade as `asperities’) on the two surfaces.  Experiments suggest that 
there are huge numbers of these contacts (nobody has really been able to determine with certainty how 
many there actually are).  The asperity tips are squashed flat where they contact, so that there is a finite 
total area of contact between the two surfaces.  However, the true contact area (at asperity tips) is much 
smaller than the nominal contact area. 

Nominal contact area Anom

True contact
 area Atrue

N

 
 
The true contact area can be estimated by measuring the surface roughness, and then calculating how the 
surfaces deform when brought into contact.  At present there is some uncertainty as to how this should be 
done – this is arguably the most important unsolved problem in the field.  The best estimates we have 
today all agree that: 
 
The true area of contact between two rough surfaces is proportional to the normal force pressing them 
together. 
 

trueA CN=  



At present, there is no way to measure or calculate the contact C accurately. 
 
This is true for all materials (except for rubbers, which are so compliant that the true contact area is close 
to the nominal contact area), and is just a consequence of the statistical properties of surface roughness.  
The reason that the true contact area increases in proportion to the load is that as the surfaces are pushed 
into contact, the number of asperity contacts increases, but the average size of the contacts remains the 
same, because of the fractal self-similarity of the two surfaces. 
 
Finally, to understand the cause of the Coulomb/Amonton friction law, we need to visualize what happens 
when two rough surfaces slide against each other.   
 

Surface film, 
shear strengthτ0

 
 
Each asperity tip is covered with a thin layer of oxide, adsorbed water, or grease.  It’s possible to remove 
this film in a lab experiment – in which case friction behavior changes dramatically and no longer follows 
Coulomb/Amonton law – but for real engineering surfaces it’s always present. 
 
The film usually has a low mechanical strength.  It will start to deform, and so allow the two asperities to 
slide past each other, when the tangential force per unit area acting on the film reaches the shear strength 
of the film 0τ . 
 
The tangential friction force due to shearing the film on the surface of all the contacting asperities is 
therefore 

0 trueT Aτ=  
 
Combining this with the earlier result for the true contact area gives 
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Thus, the friction force is proportional to the normal force.  This simple argument also explains why 
friction force is independent of contact area; why it is so sensitive to surface films, and why it can be 
influenced (albeit only slightly) by surface roughness.   
 


