

Build powerful neural network architectures using advanced PyTorch 1.x features

Ashish Ranjan Jha

Foreword by Dr. Gopinath Pillai, Head of Department, Electrical Engineering, IIT Roorkee

Mastering PyTorch

Build powerful neural network architectures using advanced PyTorch 1.x features

Ashish Ranjan Jha

Mastering PyTorch

Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Kunal Parikh

Publishing Product Manager: Devika Battike

Senior Editor: Roshan Kumar

Content Development Editor: Tazeen Shaikh

Technical Editor: Sonam Pandey

Copy Editor: Safis Editing

Project Coordinator: Aishwarya Mohan

Proofreader: Safis Editing **Indexer**: Priyanka Dhadke

Production Designer: Nilesh Mohite

First published: February 2021 Production reference: 1140121

Published by Packt Publishing Ltd.

Livery Place 35 Livery Street Birmingham B3 2PB, UK.

ISBN 978-1-78961-438-1

www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

Why subscribe?

- Spend less time learning and more time coding with practical eBooks and videos from over 4,000 industry professionals
- Improve your learning with Skill Plans built especially for you
- Get a free eBook or video every month
- Fully searchable for easy access to vital information
- Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at packt.com and, as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Foreword

I am happy to know that Ashish, who was my student on the artificial neural networks course 8 years ago at IIT Roorkee, has now authored this hands-on book that covers a range of deep learning topics in reasonable depth.

Learning by coding is something every deep learning enthusiast wants to undertake, but tends to leave half way through. The effort needed to go through documentation and extract useful information to run deep learning projects is cumbersome. I have seen far too many students become frustrated during the process. There are tons of resources available for any beginner to become an expert. However, it is easy for any beginner to lose sight of the learning task while trying to strike a balance between concept-oriented courses and the coding-savvy approach of many academic programs.

PyTorch is uniquely placed as being pythonic and very flexible. It is appealing both to beginners who have just started coding machine learning models and to experts who like to meddle in the finer parameters of model designing and training. PyTorch is one library I am happy to recommend to any enthusiast, regardless of their level of expertise.

The best way to learn machine learning and deep learning models is by practicing coding in PyTorch. This book navigates the world of deep learning through PyTorch in a very engaging way. It starts from the basic building blocks of deep learning. The visual appeal of learning the data pipeline is one of its strong points. The PyTorch modules used for model building and training are introduced in the simplest of ways. Any student will appreciate the hands-on approach of this book. Every concept is explained through codes, and every step of the code is well documented. It should not be assumed that this book is just for beginners. Instead, any beginner can become an expert by following this book.

Starting from basic model building, such as the popular VGG16 or ResNet, to advanced topics, such as AutoML and distributed learning, all these aspects are covered here. The book further encompasses concepts such as AI explainability, deep reinforcement learning, and GANs. The exercises in this book range from building an image captioning model to music generation and neural style transfer models, as well as building PyTorch model servers in production systems. This helps you to prepare for any niche deep learning ventures.

I recommend this book to anyone who wants to master PyTorch for deploying deep learning models with the latest libraries.

Dr. Gopinath Pillai Head Of Department, Electrical Engineering, IIT Roorkee

Contributors

About the author

Ashish Ranjan Jha received his bachelor's degree in electrical engineering from IIT Roorkee (India), his master's degree in computer science from EPFL (Switzerland), and an MBA degree from the Quantic School of Business (Washington). He received distinctions in all of his degrees. He has worked for a variety of tech companies, including Oracle and Sony, and tech start-ups, such as Revolut, as a machine learning engineer.

Aside from his years of work experience, Ashish is a freelance ML consultant, an author, and a blogger (datashines). He has worked on products/projects ranging from using sensor data for predicting vehicle types to detecting fraud in insurance claims. In his spare time, Ashish works on open source ML projects and is active on StackOverflow and kaggle (arj7192).

About the reviewer

Javier Abascal Carrasco has a master's degree in telecommunication engineering from the University of Seville (Spain). He also studied abroad at TU Dresden (Germany) and Thomas College (ME, USA), where he obtained his MBA. Since his career started, Javier has been passionate about the world of data and analytics. He has had the chance to work with and help all manner of companies, ranging from small start-ups to big corporations, including the consulting firm EY and Facebook. In addition, for the last 3 years, he has been a part-time lecturer on the data science space. He truly believes that PyTorch is bringing a new, fresh style to programming and work involving deep learning, generating a friendly competitor landscape in relation to TensorFlow.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors. packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Table of Contents

Preface

Section 1: PyTorch	Ove	erview	
1 Overview of Deep Learning	g usi	ng PyTorch	
Technical requirements A refresher on deep learning Activation functions Optimization schedule	17 18 25 28	PyTorch modules Tensor modules Training a neural network using PyTorch	33 35 40
Exploring the PyTorch libraryCombining CNNs and LSTN	32 ⁄/Is	Summary	48
Technical requirements Building a neural network with CNNs and LSTMs Text encoding demo Building an image caption generator using PyTorch Downloading the image captioning datasets	50 50 51 52 53	Preprocessing caption (text) data Preprocessing image data Defining the image captioning data loader Defining the CNN-LSTM model Training the CNN-LSTM model Generating image captions using the trained model Summary	55 58 59 61 65 69 71

Section 2: Working with Advanced Neural Network Architectures

4	
4	
	_
ь	_

Deep CNN Architectures

Technical requirements Why are CNNs so powerful? Evolution of CNN architectures Developing LeNet from scratch Using PyTorch to build LeNet Training LeNet Testing LeNet Fine-tuning the AlexNet model Using PyTorch to fine-tune AlexNet Running a pre-trained VGG	76 76 80 82 84 90 91	Exploring GoogLeNet and Inception v3 Inception modules 1x1 convolutions Global average pooling Auxiliary classifiers Inception v3 Discussing ResNet and DenseNet architectures	108 109 111 111 112 113
Using PyTorch to fine-tune AlexNet	97	DenseNet	118
Running a pre-trained VGG model	104	Understanding EfficientNets and the future of CNN architectures Summary	122 124

4

Deep Recurrent Model Architectures

Technical requirements	129	Gated orthogonal recurrent units	138
Exploring the evolution of recurrent networks	129	Training RNNs for sentiment analysis	138
Types of recurrent neural networks	129	Loading and preprocessing the	
RNNs	132	text dataset	139
Bidirectional RNNs	133	Instantiating and training the model	145
LSTMs	134	motantiating and daming the model	5
Extended and bidirectional LSTMs	135	Building a bidirectional LSTM	151
Multi-dimensional RNNs	136	Loading and preprocessing text	
Stacked LSTMs	136	dataset	151
GRUs	137		
Grid LSTMs	138		

Table of	Contents	iii

		Table of Co	ntents 111
Instantiating and training the LSTM model	152	GRUs and PyTorch Attention-based models	155 156
Discussing GRUs and attention-based models	155	Summary	158
5 Hybrid Advanced Models			
Technical requirements Building a transformer model for language modeling	160 160	model from scratch Understanding RandWireNNs Developing RandWireNNs using	173
Reviewing language modeling Understanding the transformer mode architecture	161 el 161	PyTorch Summary	174 187
Developing a RandWireNN			

Section 3: Generative Models and Deep Reinforcement Learning

6

Music and Text Generation with PyTorch

Technical requirements	192	Out-of-the-box text generation with GPT-2	196
Building a transformer-based text generator with PyTorch Training the transformer-based	193	Text generation strategies using PyTorch	197
language model Saving and loading the language	193	Generating MIDI music with LSTMs using PyTorch	204
model	194	Loading the MIDI music data	205
Using the language model to generate text	194	Defining the LSTM model and training routine	209
Using a pre-trained GPT-2 model as a text generator	196	Training and testing the music generation model	211
		Summary	215

Experience replay buffer

7			
Neural Style Transfer			
Technical requirements	218	Loading and trimming the pre-trained VGG19 model	224
Understanding how to transfer style between images	218	Building the neural style transfer model	227
Implementing neural style transfer using PyTorch	222	Training the style transfer model Experimenting with the style	228
Loading the content and style images	222	transfer system	232
		Summary	236
8			
Deep Convolutional GANs			
Technical requirements	240	Defining the generator	244 247
Defining the generator and discriminator networks	241	Defining the discriminator Loading the image dataset	248
Understanding the DCGAN generator	242	Training loops for DCGANs	249
and discriminator	242	Using GANs for style transfer	254
Training a DCGAN using PyTorch	244	Understanding the pix2pix architecture	
Tyroren		Summary	263
9			
Deep Reinforcement Lear	ning		
Technical requirements	266	Building a DQN model in	
Reviewing reinforcement	267	PyTorch Initializing the main and target	279
learning concepts Types of reinforcement learning	207	CNN models	279
algorithms	269	Defining the experience replay buffer	282
Discussing Q-learning	272	Setting up the environment Defining the CNN optimization function	283
Understanding deep Q-learning		Managing and running episodes	286
Using two separate DNNs	277	Training the DQN model to learn Pong	289

278

Summary

294

Section 4: PyTorch in Production Systems

4	4	1	
	l	J	١

<u> </u>			
Technical requirements Model serving in PyTorch Creating a PyTorch model inference pipeline Building a basic model server Creating a model microservice Serving a PyTorch model using TorchServe Installing TorchServe Launching and using a TorchServe server Exporting universal PyTorch models using TorchScript and ONNX	298 299 306 313 319 320 320	Understanding the utility of TorchScript Model tracing with TorchScript Model scripting with TorchScript Running a PyTorch model in C++ Using ONNX to export PyTorch models Serving PyTorch models in the cloud Using PyTorch with AWS Serving PyTorch model on Google Cloud Serving PyTorch models with Azure Summary References	325 326 330 332 337 340 344 346 348 349
11			
Distributed Training			
Technical requirements Distributed training with	352	Training the MNIST model in a distributed fashion	356
PyTorch Training the MNIST model in a	352	Distributed training on GPUs with CUDA	364
regular fashion	353	Summary	367
12			
PyTorch and AutoML			
Technical requirements Finding the best neural	370	Using Auto-PyTorch for optimal MNIST model search	371
architectures with AutoML	370	Using Optuna for hyperparameter search	379

	TT 1 1		•	
771	Lab	IA OT	Conte	nte
VΙ	Iau	IC OI	Conic	11 LO

Defining the model architecture and loading dataset	e 380	Running Optuna's hyperparameter search	384
Defining the model training routine and optimization schedule	383	Summary	387
13			
PyTorch and Explainable A	41		
Technical requirements Model interpretability in	390	Visualizing the feature maps of the model	396
PyTorch Training the handwritten digits	390	Using Captum to interpret models	399
classifier – a recap	391	Setting up Captum	399
Visualizing the convolutional filters of the model	393	Exploring Captum's interpretability tools	400
		Summary	405
14			
Rapid Prototyping with Py	/Torcl	n	
Technical requirements Using fast.ai to set up model training in a few minutes	408 409	Training models on any hardware using PyTorch Lightning	416
Setting up fast.ai and loading data Training a MNIST model using fast.ai Evaluating and interpreting the model	409 412	Defining the model components in PyTorch Lightning Training and evaluating the model	416
using fast.ai	414	using PyTorch Lightning	418
		Summary	422
Other Books You May Enjo	oy		
Index			