2" Edition

JAVA for
Beginners

An introductory course for Advanced IT Students and those who would Riccardo
like to learn the Java programming language. FlaSk

JAVA for Beginners

Contents
INEFOAUCTION ..ttt st e e e e s et e et esa bt e e ab e e s a b e e e ab e e s a bt e eabeesabeeeabeesabeeeabeesabeesabeesabeeenneesn 5
ADBOUT JAVA L.ttt ettt ettt s bt e s bt e s bt et e e et e st e bt e e b e e b e e R e e bt s anesheesheenRe e bt e bt e ne e eneeene e reenrean 5
OOP — Object Oriented Programmingcccooieeeieeiieeeieeriee ettt e et sb e st e sabe e e bt e sabeesbee s beesbeesabeeenseesbeesnneesane 5
Part 1 - GELLING STArtOU.....coiuiieiieeiieee ettt sttt st e et e st e e e bt e sabeesabeesabeeeabeesabeeeabeesabeesaneesn 6
The Java DevelopmeENt Kit — JDKocouiii ettt stee e et e e re e e st e e e e st e e eeattae e ensaeeesstseeeessaeeennnseeessseeaans 6
MY FIFST JAVA PrOBIAMeiiiiiieiiie ettt ettt ettt ettt e bt e b e e e bt e e s bt e s bt e e bt e s bt e e bt e sab et sseesabeeebeesabeeenneesabeeennnenane 6
USING AN IDE ...ttt sttt e st e e e bt et e e e s s ba e e s e n bt e et et e e s b et e e e a e e s nre e e s raeeeeas 7
Variables @aNd Data TYPES ...uuiieeciiiieciiiee et e ettt e etee e e sttt e e e e tte e e staeeeesstaeeeasseeesssaeeantseeeanssaeessssesaanssaeesansseeesnsseeaans 8
VATADIES ...t h e a et et h e b b e b e bt e b e e bt sh e e s bt e bt e bt e ab e e aaesae e beenean 8
@ TSt YOUT SKillS = EXAMPIE3...cuiiieie ittt ettt ettt e e st e te et ete s st ese et e s e besaeetesseensensensenseseessesneessensansen 8
MathemMatiCal OPEIATOISviiiiiiieeciiee ettt ettt e e e et e e e ste e e e etteeeeeabaaeessbeeeeessaeesssaaeaastseseassaeesasseeeesssseenases 9
(oY ={Tor: | @] oT=T = Lo -SSR 9
Character ESCAPE COUESueiruiiiiiieeiei ettt ettt ettt ettt et s ettt e s bt e s bt e s b et e bt e s be e e st e sabeeeseesabeesnseesabeesnseesane 11
TSt YOUN SKIllS — EXAMPIET....eiieiiee ettt ettt e et e e e e e st e e e e tta e e stbe e e e sbaeeeeasaeeesataeeaestseeeansaeeessreeaans 12
D 1= T N T3 TSP 13
INtroduCing CONtrOl STAtEMENTSeiiiieiiee et et sttt e bt e e bt e s bt e st e e bt e e saneenees 16
BIOCKS OF COUE ...ttt ettt et et he e bt ekt e ke e st e sa e sabesabesbeesae e bt et e enteebeeebaeabaenbeeabean 18
TeSt YOUr SKills — EXAMPIELAooeeieii ittt e et e e e e e sttt e e e e e s e ate st e e e e e e senasataeeaeassesnstaseeeeseenanstaaneaaens 18
THE IMAtH Class ...coveiiiiiiiie ettt ettt et r e s ae s st e sb e aeen e ean s eneesrneereesreenees 19
Scope and Lifetime Of Variables....... ...ttt et e e e e ta e e e e aba e s eeaae e e etraeeenn 20
TYPE CaStING ANT CONVEISIONS . .cciiiiiiiiiiieeieeeceiitiieee e e e eeiittreeeeeeeesttereeeeesessastaaraeeesessastasseeeseesaassraseaeseesssssssnnnees 21
(07071 LT 1Y 11 RSSO 24
USING the KEYDOAId ClassSuuiiieiiieiiiiiiie ettt e et e e e e e st e e e e e e st btaeeeeeeseatataeeeeeesennsssaeneeessenssnsres 24
USING The SCANNET ClaSS .. .nuiiiiiiiiee ettt e ettt e e e e e st r e e e e e e s abaaaeeeeeesanstataeeeeeesesssetsaeeeessansnnnes 33
USING SWINE COMPONENTSvvviiiieiiieiiiiiieieeeeeriittrteeeesesetteteeeeessssstaateeeesssasstataeaeesessssssseesesssassssseeeesssenssnnees 34
Part 2 - Advanced Java ProgrammMingc.ccccicciiiiieie ettt e e e eesete e e e e e e e settteeeeeeeesesabstaeeeaassesanstaaseaassessnsaernaaans 35
Control Statements - The if SEateMENT....cocui i s s 35
GUESSING GAME (GUESS.JAVA) c.uvvereiurieeeiiriieeeiteressteesestteesassteeesasseeeasssseesasssasesasssseesasseesasssesesanssasesssseeessnseeenannes 36
[NV 7= I PP T PP P RO P PO PPOPPOPRO 37
(IO oY= CF- T4 a V=RV PPNt 37
(LRt YR B I Vo Lo 1= PP TOPR PSPPI 38
=T gV (0 1= = o SR SSN 39
SWItCH STALEMENT (CASE OF) weeieiiiiieiee et e e e et e e et e e e eetteeeeeabaeeeesbeeestseeeeasbeseeensaeeeasseaaans 41
NESEEA SWILCN ..ttt ettt et et s e s e e sbee s reenr e e n e e et e st e et e eneesneenreerees 45
Mini-Project — Java Help System (HEIP.JAVa) ..ccuuiiiiiiee ettt ee e e ee e e e e s nre e e e sntaeeeeanes 45
(00T 0o [y I I) AoV = U UUPPRN 46

Riccardo Flask 2|Page

JAVA for Beginners

B L= (o] g e Yo o F USSR 48
Multiple LOOP CONErol Variable ...c...oooiiiiieieiieeie ettt st ettt e ane e sbe e e saneennees 50
Terminating a [00p Via USEr INTEIVENTIONciiiiiiieiie ettt 50
INtEresSting FOIr LOOP Variations cicicieieieseseseicse s s s s s s s s s s s s s s s s s s s e snsnsnssansnsnsnsnsnsnnnns 51
INTINTEE LOOPS .. etteeteeitteeite ettt sttt ettt sttt et e st e et e st e e et esa bt e e bt e s a b et e bt e sab et e b b e e b et e be e e b et e eabe e bt e e snneenes 52
INO BOOY LOOPS. t.uutteutieeuieesiiteeieesitteette st e et e e sttt s bt e sttt sbeesabe e s bt e sabeesbtesabeesbeesabeeesbeeabeeeseesabeeeasbeeneeesaneennees 52
Declaring variables inSide the 100Doooceiii et e e st e e et e e e nae e e s nreeeens 52
(oY g aTol=To N oo gl (o o] o NP USSP RTUPUN 53

THE WHITE LOOP -ttt ettt et e et e sa e esab e e s a bt e s ab e e s e bt e eab e e sabeeeabeesabe e e bt e sabaeeseesabeeenneenane 54
THE AO-WHIlE LOOP ..eieiiiiieeeiiie ettt et e et e e e st e e e et e e e etbeeeesabeeeeestaeessseaaastaseeasssseesassaeaanstaeeeansaseessreaaans 55

Mini-Project 2—Java Help System (HEIP2.JAVA) .eo.ueiieiierieiieie ettt sttt et sae et es 58

(6fe] 4o o] (=1 =N 115 Ao - P PRSP PR OPPPTRPPPP 59

USiNg Break to TErMINGATE @ LOOP ..uuiiiiiiiee i iiiie et ettt e ettt e e ettt e e s e tte e e etaeeeesataeaeesstaeesasaaaesasseeeenstseseansaeeesnsseeaans 62
Terminating a loop with break and use labels to carry on eXecutioncccceeccvieeeeiieecccieee e 63

Use of Continue (COMPIEMENT Of BIrEAK)cccviiiiuieiiie ettt ettt ettt e et e st e e sbeeebeeeaeessbeeenseeesaeenneenes 66
CONEINUE F LADEL. ettt st st s bt e st et e et ese e s b e e sb e e beeabesabesanesmeeneee 67

Mini-Project 3— Java Help System (HEIP3.JAVA) ...ecieciiie ettt et et e e e sita e e e aae e e s are e e s entaeeeeanns 68

(00T 3 Y o 13 TN X1 o =SSP 68

IR =T I T o] o 1SR 71

Cl1ass FUNAAMENTALS ...coueiiiiiiiiieeieee e ettt s b e s et sab e e e ae e e st e e smaeesareesnneesareesanee s 72

DEFINTEION 1.ttt s e s a et n et sre e e reere s 72
THE VERICIE Classcoouiiiiiieiiie ettt e bae s b e e s bae s b e e e s meesneeessneeneas 72

USING The VAICIE ClaSS ..ottt e e e e e st e e e e e e st e e e e e e e sesbataeeeeeesensataaeeaeesenssrrens 73
Creating More than ONE INSTANCEccciii it e e et e e et e e e sbaeeeessteeeesnnaeeesnseeeens 73

(O1g=T Ta] 7= 0] o] =Tt £ PR PPUUNt 74

Reference Variables and ASSIZNMENTuuiiii it e e e e ett e e e s bt e e e esataeeeeabaeeessabeeesantaeaeannes 74

T3 g ToTe TSP T OP PSP 75
RetUrNiNg from @ IMIEENOMeeiieecee e e e e et e e e e e e e e s abta e e e e e e s e s eaataaeeaessesnstbaneeaens 76
RETUINING @ VAIUB ..ttt e e e et e e e e e s et a e e e e e e seaabataeeeaaesessnstaeseeaeseaanbaaneaeeeesansraaeeaens 77
Methods Which aCCePt PArameEters:ccuuiiiiciie e eetee st e e ere e e e et e e s eneae e e staeeeentaeesennaeeesnseaenns 79
Project: Creating a Help class from the Help3.Javauuiieeiiiiiccee ettt e 83

MO NEIPON() ettt ettt ettt e e et e e et e e e e tte e e eetbaeeesabaeeeesbeeesasbaaaeastsaeeesseeesssaaaeansseeaannes 83
METNOA SNOWIMENU() oeiiiiiiiiiieii et e e e e e e e e e e e se st bbaeeeeeeeseabaaaeeeeeesesnbsreeeeeessensnrees 84
V1< oo o V2= 1 LT [TSSOSO PP PURRRRRUPIOt 85
(0 T 2 11 o U USPPPN 85
Y 1] o o o - =] | H T T T T TP TP 87
(00T 0] 1 ¥ ot o N 88

Riccardo Flask 3|Page

JAVA for Beginners

CONSTrUCLOr NAVING PATAMETEIS ...uuvieeeiiiieeeiieeeeeiee e e st e e e e rte e e ssttreeestaeeeestaeesensaeeessseeaastaeesassasesssseaeeansseesanns 89
Overloading Methods and CONSTIUCLONScciuueiitiiiiieriie ettt et sb et se e s e e bt e sbeeeseesbeeenneesane 90
METhOA OVEIIOAAINGceeiiiiiieiieeee et ettt et ettt e st e bt e s bt e bt e sbe e e sbbesbeeesnneeanees 90
Automatic Type Conversion for Parameters of overloaded Methods.........cccccoecveieeiiieeicciee e 92
OVErlOadING CONSLIUCTONS ..couutiiiiieiiieetee sttt ettt ettt e st e e it e st e e et e esab e e sbee e sabeesateesabeenneeesaneennees 94
Access Specifiers: pUBIIC and Privatecooii i 96
F N 1Y T2 o IS o T oYU 101
ATTAY S ettt e e — et e e aa e e e s a e e e e s s b st e e e e s e b e s e s e e e s e aas e e e s 101
ONE-AIMENSIONAL AITAYS . ..eieiiieiite ettt ettt et ettt e st e et e st e e e bt e st e e sabeesabeeeabeesabeeenseesabeesnneenn 101
Sorting an Array — The BUDDIE SOcc..eiiii ettt e e et e e e et e e e stae e e e ata e e eesaaeeeasbeeeans 103
TWO-DIMENSIONAI AT TAYS: .ottt ettt sttt s e et e st e e bt e sab e e s bt e sabeeebeesabeeenbeesabeesaneesabeesneesane 104
Different syntax used t0 deClare arrays:cvoueeiiieeieeneeeee ettt st 105

F N A = (T =T o Tl SR UPTPRRN 106

The LENGER Variable:ooo et et e e e st e e e e tt e e e seaba e e e sabaeeeesteeesensaaeeensaeaaans 107
Using Arrays to create a Queue data STrUCTUIrE ¥ ... et 110

BTN gL oY el=Te IR (o T ol e Yo o PSSR 113

1L 01O 114
[0 T Y - AL =48 1 1=3 1 T T L PSSRt 115
LAY AN = LT £ OO ON 117

AV L=Tor o g Ta Yo I o = Y] PR 122
00 o] (o) T I - 1Y TSRS 125

(0T aToET =] 1 [<1D =T 0 oo T -1V SR 126

(ST It e Yalo T o I o I - 1V PR 134
Template to read data from iSK.........eeiiiiiii i et e e s e e e s b e e e snaaeeesaneeas 138
Template to write (Save) data t0 diSKc..eiiiiiii i e 142
INtroduction t0 GUI USING AWT/SWINE ..eccvviiiieieiieeciie ettt ectee ettt esteeeeteeesaeeetaeestaeeesseesareeesseesabeesssessebeessseesseessreens 143
Using SWing to create @ SMall WINAOW.........uii it st e e e e e s eeee e e s nae e e e snta e e eenneeeesnnneeeeas 143
INSErting TexXt INSIAE WINGOW ...c.ccii ittt e et e e e e e s et tr e e e e e e s e s aataeeeeeeseseaasasaeeeaessennssenes 144
Creating a simple application implementing JButton, JTextfield and JLabelcccccooeeeiiiiieiiiciiiieeee e, 145

Riccardo Flask 4|Page

JAVA for Beginners

Introduction

About JAVA

“Java refers to a number of computer software products and specifications from Sun Microsystems
(the Java™ technology) that together provide a system for developing and deploying cross-platform
applications. Java is used in a wide variety of computing platforms spanning from embedded devices
and mobile phones on the low end to enterprise servers and super computers on the high end. Java
is fairly ubiquitous in mobile phones, Web servers and enterprise applications, and somewhat less
common in desktop applications, though users may have come across Java applets when browsing
the Web.

Writing in the Java programming language is the primary way to produce code that will be deployed
as Java bytecode, though there are compilers available for other languages such as JavaScript,
Python and Ruby, and a native Java scripting language called Groovy. Java syntax borrows heavily
from C and C++ but it eliminates certain low-level constructs such as pointers and has a very simple
memory model where every object is allocated on the heap and all variables of object types are
references. Memory management is handled through integrated automatic garbage collection
performed by the Java Virtual Machine (JVM).”*

OOP - Object Oriented Programming

OOP is a particular style of programming which involves a particular way of designing solutions to
particular problems. Most modern programming languages, including Java, support this paradigm.
When speaking about OOP one has to mention:

e Inheritance

e Modularity

e Polymorphism

e Encapsulation (binding code and its data)

However at this point it is too early to try to fully understand these concepts.

This guide is divided into two major sections, the first section is an introduction to the language and
illustrates various examples of code while the second part goes into more detail.

! http://en.wikipedia.org/wiki/Java_%285un%29

Riccardo Flask 5|Page

JAVA for Beginners

Part 1 - Getting Started

The Java Development Kit - J]DK
In order to get started in Java programming, one needs to get a recent copy of the Java JDK. This can
be obtained for free by downloading it from the Sun Microsystems website, http://java.sun.com/

Once you download and install this JDK you are ready to get started. You need a text editor as well
and Microsoft’s Notepad (standard with all Windows versions) suits fine.

My first Java program
Open your text editor and type the following lines of code:

/* A
This is known as a Block Comment.
My first program These lines are useful to the
> programmer and are ignored by the

Version 1 .
Compiler

*/

J

public class Examplel {
public static void main (String args []) {

System.out.println ("My first Java program");

}

Save the file as Examplel.java®. The name of the program has to be similar to the filename.
Programs are called classes. Please note that Java is case-sensitive. You cannot name a file
“Example.java” and then in the program you write “public class example”. It is good practice to
insert comments at the start of a program to help you as a programmer understand quickly what the
particular program is all about. This is done by typing “/*” at the start of the comment and “*/”
when you finish. The predicted output of this program is:

My first Java program

In order to get the above output we have to first compile the program and then execute the
compiled class. The applications required for this job are available as part of the JDK:

e javac.exe — compiles the program
e java.exe —the interpreter used to execute the compiled program

In order to compile and execute the program we need to switch to the command prompt. On
windows systems this can be done by clicking Start>Run>cmd

2 Ideally you should create a folder on the root disk (c:\) and save the file there

Riccardo Flask 6|Page

http://java.sun.com/

JAVA for Beginners

At this point one needs some basic DOS commands in order to get to the directory (folder), where
the java class resides:

e cd\ (change directory)
o cd\[folder name] to get to the required folder/directory

When you get to the required destination you need to type the following:
c:\[folder name]\javac Examplel.java

The above command will compile the java file and prompt the user with any errors. If the
compilation is successful a new file containing the bytecode is generated: Examplel.class

To execute the program, we invoke the interpreter by typing:
c:\[folder name]\java Examplel

The result will be displayed in the DOS window.

Using an IDE

Some of you might already be frustrated by this point. However there is still hope as one can forget
about the command prompt and use an IDE (integrated development environment) to work with
Java programming. There are a number of IDE’s present, all of them are fine but perhaps some are
easier to work with than others. It depends on the user’s level of programming and tastes! The
following is a list of some of the IDE’s available:

e Blue) — www.bluej.org (freeware)
e NetBeans— www.netbeans.org (freeware/open-source)

e JCreator — www.jcreator.com (freeware version available, pro version purchase required)

e Eclipse — www.eclipse.org (freeware/open-source)

e Intelli) IDEA — www.jetbrains.com (trial/purchase required)

e JBuilder — www.borland.com (trial/purchase required)

Beginners might enjoy BlueJ and then move onto other IDE’s like JCreator, NetBeans, etc. Again it’s
just a matter of the user’s tastes and software development area.

Riccardo Flask 7|Page

http://www.bluej.org/
http://www.netbeans.org/
http://www.jcreator.com/
http://www.eclipse.org/
http://www.jetbrains.com/
http://www.borland.com/

JAVA for Beginners

Variables and Data Types

Variables
A variable is a place where the program stores data temporarily. As the name implies the value
stored in such a location can be changed while a program is executing (compare with constant).

class ExampleZ {
public static void main(String args[]) {

int varl; // this declares a variable
int var2; // this declares another variable
varl = 1024; // this assigns 1024 to varl
System.out.println("varl contains " + varl);
var2 = varl / 2;
System.out.print ("var2 contains varl / 2: ");
System.out.println(var2);
}

}

Predicted Output:

var?2 contains varl / 2: 512

The above program uses two variables, varl and var2. varl is assigned a value directly while var2 is
filled up with the result of dividing varl by 2, i.e. var2 = varl/2. The words int refer to a particular
data type, i.e. integer (whole numbers).

& Test your sKkills - Example3
As we saw above, we used the ‘/’ to work out the quotient of varl by 2. Given that ‘+’ would
perform addition, ‘-* subtraction and “*’ multiplication, write out a program which performs all the
named operations by using two integer values which are hard coded into the program.

Hints:

e You need only two variables of type integer

e Make one variable larger and divisible by the other

e You can perform the required calculations directly in the print statements, remember to
enclose the operation within brackets, e.g. (varl-var2)

Riccardo Flask 8|Page

JAVA for Beginners

Mathematical Operators
As we saw in the preceding example there are particular symbols used to represent operators when
performing calculations:

Operator Description Example —givenais 15and b is 6
+ Addition a+ b, would return 21
- Subtraction a-b, would return 9
* Multiplication a * b, would return 90
/ Division a/ b, would return 2
% Modulus a % b, would return 3 (the remainder)

class Exampled {
public static void main (String argsl[]) {
int iresult, irem;
double dresult, drem;
iresult = 10 / 3;
irem = 10 % 3;
dresult = 10.0 / 3.0;
drem = 10.0 % 3.0;
System.out.println ("Result and remainder of 10 / 3: " +
iresult + " " + irem);

System.out.println ("Result and remainder of 10.0 / 3.0: "
+ dresult + " " + drem);

}
}
Predicted Output:

Result and Remainder of 10/3: 3 1
Result and Remainder of 10.0/3.0: 3.3333333333333335 1

The difference in range is due to the data type since ‘double’ is a double precision 64-bit floating
point value.

Logical Operators

These operators are used to evaluate an expression and depending on the operator used, a
particular output is obtained. In this case the operands must be Boolean data types and the result is
also Boolean. The following table shows the available logical operators:

Riccardo Flask 9|Page

JAVA for Beginners

Operator Description
& AND gate behaviour (0,0,0,1)
| OR gate behaviour (0,1,1,1)
A XOR - exclusive OR (0,1,1,0)
&& Short-circuit AND
| Short-circuit OR
! Not

class Example5 {
public static void main(String args[]) {

int n, d;

n = 10;

d = 2;

if(d '= 0 && (n % d) == 0)

System.out.println(d + " is a factor of " + n);
d =0; // now, set d to zero

// Since d is zero, the second operand is not evaluated.

if(d '= 0 && (n % d) == 0)
System.out.println(d + " is a factor of " + n);

/* Now, try same thing without short-circuit operator.

This will cause a divide-by-zero error.

*/
if(d '= 0 & (n 5 d) == 0)
System.out.println(d + " is a factor of " + n);

}
}

Predicted Output:

*Note if you try to execute the above program you will get an error (division by zero). To be able to

execute it, first comment the last two statements, compile and then execute.

2 i1s a factor of 10

Riccardo Flask

10| Page

JAVA for Beginners

Trying to understand the above program is a bit difficult, however the program highlights the main
difference in operation between a normal AND (&) and the short-circuit version (&&). In a normal
AND operation, both sides of the expression are evaluated, e.g.

if(d =0 & (n % d) == 0) — this returns an error as first d is compared to 0 to check inequality and then
the operation (n%d) is computed yielding an error! (divide by zero error)

The short circuit version is smarter since if the left hand side of the expression is false, this mean
that the output has to be false whatever there is on the right hand side of the expression, therefore:

if(d =0 && (n % d) == 0) — this does not return an error as the (n%d) is not computed since d is
equal to 0, and so the operation (d!=0) returns false, causing the output to be false. Same applies for
the short circuit version of the OR.

Character Escape Codes
The following codes are used to represents codes or characters which cannot be directly accessible
through a keyboard:

Code Description
\n New Line
\t Tab
\b Backspace
\r Carriage Return
\\ Backslash
\ Single Quotation Mark
\” Double Quotation Mark
* Octal - * represents a number or Hex digit
\x* Hex
\u* Unicode, e.g. \u2122 =™ (trademark symbol)

class Example6 {
public static void main(String args[]) {

System.out.println ("First line\nSecond line");
System.out.println ("A\tB\tC");
System.out.println ("D\tE\tF") ;
}

}

Predicted Output:

First Line
Second Line
A B C
D E F

Riccardo Flask 11| Page

JAVA for Beginners

é* Test your sKills - Example7
Make a program which creates a sort of truth table to show the behaviour of all the logical operators
mentioned. Hints:

e You need two Boolean type variables which you will initially set both to false
e Use character escape codes to tabulate the results

The following program can be used as a guide:
class LogicTable {

public static void main (String argsl[]) {
boolean p, g;
System.out.println ("P\tQ\tPANDQ\tPORQ\tPXORQ\tNOTP") ;
p = true; g = true;
System.out.print (p + "\t" + g +"\t");
System.out.print ((p&g) + "\t" + (plg) + "\t");
System.out.println((p~qg) + "\t" + (!p));
p = true; g = false;
System.out.print(p + "\t" + g +"\t");
System.out.print ((p&g) + "\t" + (plg) + "\t");
System.out.println ((p~qg) + "\t" + (!p));
p = false; g = true;
System.out.print(p + "\t" + g +"\t");
System.out.print ((p&g) + "\t" + (plg) + "\t");
System.out.println ((p~qg) + "\t" + (!p));
p = false; g = false;
System.out.print(p + "\t" + g +"\t");
System.out.print ((p&g) + "\t" + (plg) + "\t");
System.out.println((p"qg) + "\t" + (!p));

}

Riccardo Flask 12| Page

JAVA for Beginners

Predicted Output:

P 0 PANDQ PORQ PXORQ NOTP

true true true true false fals
true false false true true fals
false true false true true true
false false false false false true
Data Types

The following is a list of Java’s primitive data types:

Data Type Description

int Integer — 32bit ranging from -2,147,483,648 to 2,147,483,648
byte 8-bit integer ranging from -128 to 127

short 16-bit integer ranging from -32,768 to 32,768

long 64-bit integer from -9,223,372,036,854,775,808 to -9,223,372,036,854,775,808
float Single-precision floating point, 32-bit

double Double-precision floating point, 64-bit

char Character, 16-bit unsigned ranging from 0 to 65,536 (Unicode)
boolean Can be true or false only

The ‘String’ type has not been left out by mistake. It is not a primitive data type, but strings (a
sequence of characters) in Java are treated as Objects.

class Example8 {

public static void main (String argsl[]) {
int var; // this declares an int variable
double x; // this declares a floating-point variable
var = 10; // assign var the value 10
x = 10.0; // assign x the value 10.0
System.out.println ("Original value of var: " + var);
System.out.println ("Original value of x: " + Xx);

System.out.println(); // print a blank line

Riccardo Flask 13| Page

JAVA for Beginners

// now, divide both by 4

var = var / 4;

x =x / 4;

System.out.println ("var after division: " + var);
System.out.println("x after division: " + x);

}
Predicted output:
Original value of var: 10

Original value of x: 10.0

var after division: 2
X after division: 2.5

One here has to note the difference in precision of the different data types. The following example
uses the character data type. Characters in Java are encoded using Unicode giving a 16-bit range, or
a total of 65,537 different codes.

class Example9 {

public static void main (String argsl[]) {
char ch;
ch = 'X';
System.out.println("ch contains " + ch);
ch++; // increment ch
System.out.println("ch is now " + ch);
ch = 90; // give ch the value Z
System.out.println("ch is now " + ch);

}

Riccardo Flask 14| Page

JAVA for Beginners

Predicted Output:

ch 1is now X
ch 1is now Y
ch is now Z

The character ‘X’ is encoded as the number 88, hence when we increment ‘ch’, we get character
number 89, or ‘Y’.

The Boolean data type can be either TRUE or FALSE. It can be useful when controlling flow of a
program by assigning the Boolean data type to variables which function as flags. Thus program flow
would depend on the condition of these variables at the particular instance. Remember that the
output of a condition is always Boolean.

class ExamplelO {
public static void main (String argsl[]) {
boolean b;
b = false;
System.out.println("b is " + b);
b = true;
System.out.println("b is " + b);
// a boolean value can control the if statement
if(b) System.out.println("This is executed.");
b = false;
if (b) System.out.println("This is not executed.");
// outcome of a relational operator is a boolean value
System.out.println("10 > 9 is " + (10 > 9));
}
}
Predicted output:

b is false

b is true

This is executed
10 > 9 is true

Riccardo Flask 15|Page

JAVA for Beginners

Introducing Control Statements
These statements will be dealt with in more detail further on in this booklet. For now we will learn

about the if and the for loop.

class Examplell {

public
int
a =
b =
c =
if (c

static void main (String args[]) {

a,b,c;
2;
3;
a - b;

>= (0) System.out.println("c is a positive number");

if (c < 0) System.out.println("c is a negative number");

System.out.println();

C:

b - a;

if (¢ >= 0) System.out.println("c is a positive number");

if (¢ < 0) System.out.println("c is a negative number");

}

Predicted output:

c is a negative number

c is a positive number

The ‘if’ statement evaluates a condition and if the result is true, then the following statement/s are

executed, else they are just skipped (refer to program output). The line System.out.printin() simply

inserts a blank line. Conditions use the following comparison operators:

Operator Description
< Smaller than
> Greater than
<= Smaller or equal to, (a<=3) : if a is 2 or 3, then result of comparison is TRUE
>= Greater or equal to, (a>=3) : if a is 3 or 4, then result of comparison is TRUE
== Equal to
I= Not equal

Riccardo Flask

16 |Page

JAVA for Beginners

The for loop is an example of an iterative code, i.e. this statement will cause the program to repeat a
particular set of code for a particular number of times. In the following example we will be using a
counter which starts at 0 and ends when it is smaller than 5, i.e. 4. Therefore the code following the
for loop will iterate for 5 times.

class Examplel2 ({

public static void main(String args[]) {

}

Predicted

int count;

for (count = 0; count < 5; count = count+l)
System.out.println("This is count: " + count);
System.out.println ("Done!");

}

Output:

This is count: O

This is count: 1

This is count: 2

This is count: 3

This is count: 4

Done'!

Instead of count = count+1, this increments the counter, we can use count++

The following table shows all the available shortcut operators:

Operator | Description Example Description
++ Increment a++ a=a+1(adds one from a)
-- Decrement a-- a =a-1 (subtract one from a)
+= Add and assign a+=2 a=a+2
-= Subtract and assign a-=2 a=a-2
= Multiply and assign a=3 a=a*3
/= Divide and assign a/=4 a=a/4
%= Modulus and assign a%=5 a=amod5

Riccardo Flask 17 |Page

JAVA for Beginners

Blocks of Code
Whenever we write an IF statement or a loop, if there is more than one statement of code which has
to be executed, this has to be enclosed in braces, i.e. { ...}

class Examplel3 {
public static void main(String args[]) {

double i, 3j, d;

i=5;
j = 10;
iF(1 1= 0) {) -

~ =

System.out.println("i does not equal zero");

Block of

d=73 / i; .
Code

System.out.print("j / 1 is " + d);

R el N

~ =

System.out.println();

}
Predicted Output:
i does not equal to zero

j/i is 2

é* Test your skills - Example14
Werite a program which can be used to display a conversion table, e.g. Euros to Malta Liri, or Metres
to Kilometres.

Hints:

e One variable is required
e You need a loop

The Euro Converter has been provided for you for guidance. Note loop starts at 1 and finishes at 100
(<101). In this case since the conversion rate does not change we did not use a variable, but assigned
it directly in the print statement.

class EuroConv {

Riccardo Flask 18| Page

JAVA for Beginners

public static void main (String args []) {
double eu;
System.out.println ("Euro conversion table:");
System.out.println();
for (eu=l;eu<l01l;eut+)

System.out.println (eu+" Euro is eugivalent to Im
"+ (eu*0.43));

}

The Math Class

In order to perform certain mathematical operations like square root (sqrt), or power (pow); Java
has a built in class containing a number of methods as well as static constants, e.g.

Pi =3.141592653589793 and E = 2.718281828459045. All the methods involving angles use radians
and return a double (excluding the Math.round()).

class Examplelb5 {
public static void main (String argsl[]) {
double x, vy, z;
x = 3;

y = 4;

z Math.sqrt (x*x + y*y);

System.out.println ("Hypotenuse is " +z);

}
Predicted Output:
Hypotenuse is 5.0

Please note that whenever a method is called, a particular nomenclature is used where we first
specify the class that the particular method belongs to, e.g. Math.round(); where Math is the class
name and round is the method name. If a particular method accepts parameters, these are placed in
brackets, e.g. Math.max(2.8, 12.9) —in this case it would return 12.9 as being the larger number. A

Riccardo Flask 19| Page

JAVA for Beginners

useful method is the Math.random() which would return a random number ranging between 0.0
and 1.0.

Scope and Lifetime of Variables
The following simple programs, illustrate how to avoid programming errors by taking care where to
initialize variables depending on the scope.

class Examplel6 {
public static void main(String argsl[]) {
int x; // known to all code within main
x = 10;
if(x == 10) { // start new scope
int yv = 20; // known only to this block
// x and y both known here.

System.out.println("x and y: " + x + " " + vy);

// y = 100; // Error! y not known here
// x 1s still known here.
System.out.println("x is " + x);
}

}

Predicted Output:

x and y: 10 20
x is 40

If we had to remove the comment marks from the line, y = 100; we would get an error during
compilation as y is not known since it only exists within the block of code following the ‘if’
statement.

The next program shows that y is initialized each time the code belonging to the looping sequence is
executed; therefore y is reset to -1 each time and then set to 100. This operation is repeated for
three (3) times.

Riccardo Flask 20| Page

JAVA for Beginners

class Examplel7 {
public static void main(String args[]) {
int x;

for(x = 0; x < 3; x++) {

int v = -1; // y is initialized each time block is
entered

System.out.println("y is: " + y); // this always
prints -1

y = 100;

System.out.println("y is now: " + y);

}

}
Predicted Output:

y is: -1
y is now: 100

y is: -1
y is now: 100

y is: -1
y is now: 100

Type Casting and Conversions

Casting is the term used when a value is converted from one data type to another, except for
Boolean data types which cannot be converted to any other type. Usually conversion occurs to a
data type which has a larger range or else there could be loss of precision.

class Examplel8 { //long to double automatic conversion
public static void main (String argsl[]) {
long L;
double D;

L

100123285L;

D

L; // L =D is impossible

Riccardo Flask 21| Page

JAVA for Beginners

System.out.println("L and D: " + L + " " + D);
}
}

Predicted Output:

L and D: 100123285 1.00123285E8

The general formula used in casting is as follows: (target type) expression, where target type could
be int, float, or short, e.g. (int) (x/y)

class Examplel9 { //CastDemo
public static void main (String argsl[]) {

double x, y;

byte b;

int i;

char ch;

x = 10.0;

y = 3.0;

i = (int) (x / y); // cast double to int
System.out.println ("Integer outcome of x / y: " + 1i);
i = 100;

b = (byte) 1i;

System.out.println("Value of b: " + b);
i = 257;

b = (byte) 1i;

System.out.println("Value of b: " + Db);

b = 88; // ASCII code for X
ch = (char) b;
System.out.println("ch: " + ch);
}

}

Riccardo Flask 22 |Page

JAVA for Beginners

Predicted Output:

Integer outcome of x / y: 3
Value of b: 100

Value of b: 1

ch: X

In the above program, x and y are doubles and so we have loss of precision when converting to
integer. We have no loss when converting the integer 100 to byte, but when trying to convert 257 to
byte we have loss of precision as 257 exceeds the size which can hold byte. Finally we have casting
from byte to char.

class Example20 {
public static void main(String args[]) {
byte b;
int i;

b

10;

i=Db * b; // OK, no cast needed

b = 10;

b = (byte) (b * b); // cast needed!! as cannot assing int
to byte

System.out.println("i and b: " + i + " " + b);

}

}
Predicted Output:

i and b: 100 100

The above program illustrates the difference between automatic conversion and casting. When we
are assigning a byte to integer, i = b * b, the conversion is automatic. When performing an arithmetic
operation the byte type are promoted to integer automatically, but if we want the result as byte, we
have to cast it back to byte. This explains why there is the statement: b = (byte) (b * b). Casting has
to be applied also if adding variables of type char, as result would else be integer.

Riccardo Flask 23 |Page

JAVA for Beginners

Console Input

Most students at this point would be wondering how to enter data while a program is executing.
This would definitely make programs more interesting as it adds an element of interactivity at run-
time. This is not that straight forward in Java, since Java was not designed to handle console input.
The following are the three most commonly used methods to cater for input:

Using the Keyboard Class

One can create a class, which would contain methods to cater for input of the various data types.
Another option is to search the internet for the Keyboard Class. This class is easily found as it is used
in beginners Java courses. This class is usually found in compiled version, i.e. keyboard.class. This file
has to be put in the project folder or else placed directly in the Java JDK. The following is the source
code for the Keyboard class just in case it is not available online!

import java.io.*;

import java.util.*;

public class Keyboard {

[/ FFFFAA AL xx* Error Handling Section
private static boolean printErrors = true;
private static int errorCount = 0;

// Returns the current error count.
public static int getErrorCount () {

return errorCount;

// Resets the current error count to zero.

public static void resetErrorCount (int count) {
errorCount = 0;

}

// Returns a boolean indicating whether input errors are

// currently printed to standard output.

public static boolean getPrintErrors () {

return printErrors;

Riccardo Flask 24 |Page

JAVA for Beginners

// Sets a boolean indicating whether input errors are to be

// printed to standard output.

public static void setPrintErrors (boolean flag) {
printErrors = flag;

}

// Increments the error count and prints the error message
// 1f appropriate.
private static void error (String str) {

errorCount++;

if (printErrors)

System.out.println (str);

}

[/ *xAExHF K I xAxKK* Tokenized Input Stream Section ***x*
private static String current token = null;

private static StringTokenizer reader;

private static BufferedReader in = new BufferedReader

(new InputStreamReader (System.in));

// Gets the next input token assuming it may be on
// subsequent input lines.

private static String getNextToken () {
return getNextToken (true);

}

// Gets the next input token, which may already have been
//read.

private static String getNextToken (boolean skip) {
String token;
if (current token == null)

token = getNextInputToken (skip):;

Riccardo Flask 25| Page

JAVA for Beginners

else {

token = current token;
current token = null;

}

return token;

}

// Gets the next token from the input, which may come from
// the current input line or a subsequent one. The

// parameter determines if subsequent lines are used.
private static String getNextInputToken (boolean skip) {

final String delimiters = \tAn\r\£f";

String token = null;

try {
if (reader == null)
reader = new StringTokenizer
(in.readLine (), delimiters, true);
while (token == null ||

((delimiters.indexOf (token) >= 0) && skip)) {
while (!reader.hasMoreTokens())
reader = new StringTokenizer
(in.readLine (), delimiters, true);

token = reader.nextToken () ;

}

catch (Exception exception) {

token = null;

Riccardo Flask 26 |Page

JAVA for Beginners

return token;

}

// Returns true 1f there are no more tokens to read on the

// current input line.
public static boolean endOfLine () {
return !reader.hasMoreTokens () ;
}
/[*¥FHFFFHkxFkxKXk*x Reading Section
// Returns a string read from standard input.
public static String readString() {
String str;
try {
str = getNextToken (false);
while (! endOfLine()) {

str = str + getNextToken (false);

}
catch (Exception exception) {

error ("Error reading String data, null value

returned.") ;
str = null;

}

return str;

}

// Returns a space-delimited substring (a word) read from

// standard input.

public static String readWord() {

String token;

Riccardo Flask 27 |Page

JAVA for Beginners

try |
token = getNextToken() ;
}
catch (Exception exception) {

error ("Error reading String data, null value
returned.") ;

token = null;
}
return token;
}
// Returns a boolean read from standard input.
public static boolean readBoolean () {
String token = getNextToken () ;

boolean bool;

try f{
if (token.toLowerCase () .equals("true"))
bool = true;
else 1f (token.tolLowerCase() .equals("false"))
bool = false;
else {
error ("Error reading boolean data, false value
returned.");

bool = false;

}
catch (Exception exception) {

error ("Error reading boolean data, false value
returned.") ;

Riccardo Flask 28| Page

JAVA for Beginners

bool = false;
}
return bool;
}
// Returns a character read from standard input.
public static char readChar () {
String token = getNextToken (false);
char value;
try {
if (token.length() > 1) {

current token = token.substring (1,
token.length());

} else current token = null;
value = token.charAt (0);

}

catch (Exception exception) {

error ("Error reading char data, MIN VALUE value
returned.");

value = Character.MIN VALUE;

return value;
}
// Returns an integer read from standard input.
public static int readInt () {
String token = getNextToken();
int value;
try {

value = Integer.parselInt (token);

Riccardo Flask 29 | Page

JAVA for Beginners

}
catch (Exception exception) {

error ("Error reading int data, MIN VALUE value
returned.") ;

value = Integer.MIN VALUE;

}

return value;
}
// Returns a long integer read from standard input.
public static long readLong () {

String token = getNextToken();

long value;

try {

value = Long.parselong (token);
}
catch (Exception exception) {

error ("Error reading long data, MIN VALUE value
returned.");

value = Long.MIN VALUE;

}

return value;
}
// Returns a float read from standard input.
public static float readFloat () {

String token = getNextToken()

float value;

try {

value = (new Float (token)) .floatValue()

Riccardo Flask 30| Page

JAVA for Beginners

}
catch (Exception exception) {

error ("Error reading float data, NaN value
returned.") ;

value = Float.NaN;

}

return value;
}
// Returns a double read from standard input.
public static double readDouble () {

String token = getNextToken();

double value;

try {

value = (new Double (token)) .doubleValue() ;
}
catch (Exception exception) {

error ("Error reading double data, NaN value
returned.");

value = Double.NaN;

}

return value;

The above class contains the following methods:

e public static String readString ()

o Reads and returns a string, to the end of the line, from standard input.
e public static String readWord ()

o Reads and returns one space-delimited word from standard input.
e public static boolean readBoolean ()

Riccardo Flask 31|Page

JAVA for Beginners

o Reads and returns a boolean value from standard input. Returns false if an exception
occurs during the read.
public static char readChar ()
o Reads and returns a character from standard input. Returns MIN_VALUE if an
exception occurs during the read.
public static int readint ()
o Reads and returns an integer value from standard input. Returns MIN_VALUE if an
exception occurs during the read.
public static long readlLong ()
o Reads and returns a long integer value from standard input. Returns MIN_VALUE if
an exception occurs during the read.
public static float readFloat ()
o Reads and returns a float value from standard input. Returns NaN if an exception
occurs during the read.
public static double readDouble ()
o Reads and returns a double value from standard input. Returns NaN if an exception
occurs during the read.
public static int getErrorCount()
o Returns the number of errors recorded since the Keyboard class was loaded or since
the last error count reset.
public static void resetErrorCount (int count)
o Resets the current error count to zero.
public static boolean getPrintErrors ()
o Returns a boolean indicating whether input errors are currently printed to standard
output.
public static void setPrintErrors (boolean flag)
o Sets the boolean indicating whether input errors are to be printed to standard input.

Let’s try it out by writing a program which accepts three integers and working the average:

public class KeyboardInput {

public static void main (String args[]) {
System.out.println ("Enter a number:");

int a = Keyboard.readInt ();
System.out.println ("Enter a second number:");
int b = Keyboard.readInt ();
System.out.println ("Enter a third number:");

int ¢ = Keyboard.readInt ();

Riccardo Flask 32| Page

JAVA for Beginners

System.out.println ("The average is " + (atb+c)/3);
}
}

After printing a statement, the program will wait for the use r to enter a number and store it in the
particular variable. It utilizes the readInt() method. Finally it will display the result of the average.

Using the Scanner Class

In Java 5 a particular class was added, the Scanner class. This class allows users to create an instance
of this class and use its methods to perform input. Let us look at the following example which
performs the same operation as the one above (works out the average of three numbers):

import java.util.Scanner;

public class ScannerInput {

public static void main(String[] args) {
//... Initialize Scanner to read from console.
Scanner input = new Scanner (System.in);
System.out.print ("Enter first number : ");
int a = input.nextInt();
System.out.print ("Enter second number: ");
int b = input.nextInt();
System.out.print ("Enter last number : ");
int ¢ = input.nextInt();

System.out.println ("Average is " + (a+tb+c)/3);

}

By examining the code we see that first we have to import the java.util.Scanner as part of the
java.util package. Next we create an instance of Scanner and name it as we like, in this case we
named it “input”. We have to specify also the type of input expected (System.in). The rest is similar
to the program which uses the Keyboard class, the only difference is the name of the method used,
in this case it is called nextiInt () rather than readInt(). This time the method is called as part of the
instance created, i.e. input.nextint()

Riccardo Flask 33| Page

JAVA for Beginners

Using Swing Components
This is probably the most exciting version, since the Swing package offers a graphical user interface
(GUI) which allows the user to perform input into a program via the mouse, keyboard and other

input devices.
import javax.swing.*; // * means ‘all’
public class SwingInput {
public static void main(String[] args) {
String temp; // Temporary storage for input.

temp = JOptionPane.showInputDialog(null, "First

number"™) ;
int a = Integer.parselnt(temp); // String to int

temp = JOptionPane.showInputDialog(null, "Second

number") ;
int b = Integer.parselnt (temp):;

temp = JOptionPane.showInputDialog(null, "Third

number") ;
int ¢ = Integer.parselnt (temp)

JOptionPane.showMessageDialog (null, "Average is " +
(atb+c) /3);

}
}

One has to note that the input is stored as a string, temp, and then parsed to integer using the
method parselnt(). This time the method accepts a parameter, temp, and returns an integer. When
the above program is executed, a dialog box will appear on screen with a field to accept input from
user via keyboard (JOptionPane.showlnputDialog). This is repeated three times and finally the result
is again displayed in a dialog box (JOptionPane.showMessageDialog).

Message

First number A
IE' @ Average is 25

E

| (0], 4 H Cancel |

JOptionPane.showlnputDialog JOptionPane.showMessageDialog

Riccardo Flask 34| Page

| JAVA for Beginners

Part 2 - Advanced Java Programming

Control Statements - The if Statement

1f (condition) statement;
else statement;
Note:

e else clause is optional
e targets of both the if and else can be blocks of statements.

The general form of the if, using blocks of statements, is:
if (condition)
{
statement sequence
}
else
{
statement sequence
}
If the conditional expression is true, the target of the if will be executed; otherwise, if it exists,
the target of the else will be executed. At no time will both of them be executed. The conditional

expression controlling the if must produce a boolean result.

Riccardo Flask 35|Page

| JAVA for Beginners

Guessing Game (Guess.java)

The program asks the player for a letter between A and Z. If the player presses the correct letter on
the keyboard, the program responds by printing the message **Right **.

// Guess the letter game.
class Guess {
public static void main(String argsl(])
throws java.io.IOException {
char ch, answer = 'K';

System.out.println("I'm thinking of a letter between A

and 72.");

System.out.print ("Can you guess it: ");

ch = (char) System.in.read(); // read a char from the
keyboard

if (ch == answer) System.out.println("** Right **");

}

Extending the above program to use the else statement:
// Guess the letter game, 2nd version.
class Guess2 {
public static void main(String argsl(])
throws java.io.IOException {
char ch, answer = 'K';

System.out.println("I'm thinking of a letter between A
and z2.");

System.out.print ("Can you guess it: ");
ch = (char) System.in.read(); // get a char
if (ch == answer) System.out.println("** Right **");

else System.out.println("...Sorry, you're wrong.");

Riccardo Flask 36| Page

JAVA for Beginners

Nested if

The main thing to remember about nested ifs in Java is that an else statement always refers to the
nearest if statement that is within the same block as the else and not already associated with an
else. Here is an example:

if(i == 10) {

if(j < 20) a = b;

if(k > 100) c = d;

else a = ¢; // this else refers to if(k > 100)
}

else a = d; // this else refers to if(i == 10)

Guessing Game v.3

// Guess the letter game, 3rd version.
class Guess3 {
public static void main(String args|[])
throws java.io.IOException {
char ch, answer = 'K';

System.out.println("I'm thinking of a letter between A

and z2.");
System.out.print ("Can you guess it: ");
ch = (char) System.in.read(); // get a char
if (ch == answer) System.out.println("** Right **");
else {

System.out.print ("...Sorry, you're ");
// a nested if
if (ch < answer) System.out.println("too low");
else System.out.println("too high");

}

Riccardo Flask 37| Page

JAVA for Beginners

A sample run is shown here:
I'm thinking of a letter between A and Z.
Can you guess it: Z

...Sorry, you're too high

if-else-if Ladder

if (condition)
statement;

else if(condition)
statement;

else if(condition)

statement;

else

statement;

The conditional expressions are evaluated from the top downward. As soon as a true condition is

found, the statement associated with it is executed, and the rest of the ladder is bypassed. If none of

the conditions is true, the final else statement will be executed. The final else often acts as a default

condition; that is, if all other conditional tests fail, the last else statement is performed. If there is no

final else and all other conditions are false, no action will take place.

// Demonstrate an if-else-if ladder.
class Ladder {
public static void main (String args[]) {
int x;
for (x=0; x<6; x++) {
if (x==1)
System.out.println("x is one");
else if (x==2)

System.out.println("x is two");

Riccardo Flask

38| Page

JAVA for Beginners

else if (x==3)
System.out.println("x is three");
else if (x==4)
System.out.println("x is four");
else
System.out.println("x is not between 1 and 4");

}

The program produces the following output:
X 1s not between 1 and 4

X 1s one

X 1s two

X 1s three

x is four

X 1s not between 1 and 4

Ternary (?) Operator

Declared as follows:

Expl ? Exp2 : Exp3;

Expl would be a boolean expression, and Exp2 and Exp3 are expressions of any type other than
void. The type of Exp2 and Exp3 must be the same, though. Notice the use and placement of the
colon. Consider this example, which assigns absval the absolute value of val:

absval = val < 0 ? -val : val; // get absolute value of val

Here, absval will be assigned the value of val if val is zero or greater. If val is negative, then absval
will be assigned the negative of that value (which yields a positive value).

Riccardo Flask 39| Page

JAVA for Beginners

The same code written using the if-else structure would look like this:

if(val < 0) absval = -val;
else absval = val;

e.g. 2 This program divides two numbers, but will not allow a division by zero.

// Prevent a division by zero using the ?.
class NoZeroDiv {
public static void main (String args[]) {
int result;

for(int i = -5; 1 < 6; i++) {
result = i !'= 0 2 100 / i : 0;
if(i !'= 0)

System.out.println("100 / " + 1 + " is " + result);
}

}

The output from the program is shown here:

100 / -5 is =20
100 / -4 is -25
100 / -3 is -33
100 / -2 is =50
100 / -1 is -100
100 / 1 is 100
100 / 2 is 50
100 / 3 is 33
100 / 4 is 25
100 / 5 is 20
Please note:

result = i != 0 ? 100 / i : 0;

result is assigned the outcome of the division of 100 by i. However, this division takes place only if i
is not zero. When i is zero, a placeholder value of zero is assigned to result. Here is the preceding
program rewritten a bit more efficiently. It produces the same output as before.

// Prevent a division by zero using the ?.
class NoZeroDiv2 {
public static void main (String args[]) {
for(int i = =-5; 1 < 6; 1i++)
if(i !'= 0 ? true : false)
System.out.println("100 / " + 1 +
" dis " + 100 / i);

}

Notice the if statement. If i is zero, then the outcome of the if is false, the division by zero is
prevented, and no result is displayed. Otherwise the division takes place.

Riccardo Flask 40| Page

| JAVA for Beginners

switch Statement (case of)

The switch provides for a multi-way branch. Thus, it enables a program to select among several
alternatives. Although a series of nested if statements can perform multi-way tests, for many
situations the switch is a more efficient approach.

switch (expression) {
case constantl:
statement sequence
break;
case constant2:
statement sequence
break;
case constant3:
statement sequence

break;

default:

statement sequence

e The switch expression can be of type char, byte, short, or int. (Floating-point expressions,
for example, are not allowed.)

e Frequently, the expression controlling the switch is simply a variable.

e The case constants must be literals of a type compatible with the expression.

e No two case constants in the same switch can have identical values.

e The default statement sequence is executed if no case constant matches the expression.
The default is optional; if it is not present, no action takes place if all matches fail. When a
match is found, the statements associated with that case are executed until the break is
encountered or, in the case of default or the last case, until the end of the switch is reached.

Riccardo Flask 41| Page

JAVA for Beginners

The following program demonstrates the switch.

// Demonstrate the switch.

class SwitchDemo {

public static void main (String args[]) {

int i;
for (i=0; 1i<10; i++)
switch (i) |
case O:
System.out.println("i is zero");
break;
case 1:
System.out.println("i is one");
break;
case 2:
System.out.println("i is two");
break;
case 3:
System.out.println("i is three");
break;
case 4:
System.out.println("i is four");
break;
default:
System.out.println("i is five or more");

}

Riccardo Flask 42 |Page

JAVA for Beginners

The output produced by this program is shown here:

is zero

is one

is two

is three

is four

is five or more
is five or more
is five or more
is five or more

e e el i i =

is five or more

The break statement is optional, although most applications of the switch will use it. When
encountered within the statement sequence of a case, the break statement causes program flow to
exit from the entire switch statement and resume at the next statement outside the switch.
However, if a break statement does not end the statement sequence associated with a case, then all
the statements at and following the matching case will be executed until a break (or the end of the
switch) is encountered. For example,

// Demonstrate the switch without break statements.
class NoBreak {
public static void main(String args[]) {

int 1i;
for (i=0; i<=5; i++) {
switch (i) {
case O:
System.out.println("i is less than one");
case 1:
System.out.println("i is less than two");
case 2:
System.out.println("i is less than three");
case 3:
System.out.println("i is less than four");
case 4:
System.out.println("i is less than five");

}

Riccardo Flask 43 | Page

JAVA for Beginners

System.out.println();

}

Output:

is less than one

is less than two

is less than three
is less than four
is less than five
is less than two

is less than three
is less than four
is less than five
is less than three
is less than four
is less than five
is less than four
is less than five

e S S I el s s i el =

is less than five

Execution will continue into the next case if no break statement is present.

You can have empty cases, as shown in this example:

switch (i) {

case 1:

case 2:

case 3: System.out.println("i is 1, 2 or 3");
break;

case 4: System.out.println("i is 4");

break;

}

Riccardo Flask 44| Page

JAVA for Beginners

Nested switch

switch(chl) {

case 'A': System.out.println("This A is part of outer
switch.");

switch (ch2) {
case 'A':

System.out.println("This A is part of inner
switch") ;

break;

case 'B': //

} // end of inner switch
break;

case 'B': //

é* Mini-Project - Java Help System (Help.java)

Your program should display the following options on screen:
Help on:

1. if
2. switch

Choose one:

To accomplish this, you will use the statement
System.out.println("Help on:");
System.out.println("™ 1. if");
System.out.println ("™ 2. switch");

System.out.print ("Choose one:

Next, the program obtains the user’s selection
choice = (char) System.in.read();

Once the selection has been obtained, the display the syntax for the selected statement.

Riccardo Flask 45| Page

JAVA for Beginners

switch (choice) {

case '1':

System.out.println ("The if:\
System.out.println("if (condition)
System.out.println("else statement;");
break;

case '2':

System.out.println ("The switch:\
System.out.println ("switch (

System.out.println (" case

default clause catches invalid choices. For
example, if the user enters 3, no case constants
will match, causing the default sequence to

System.out.println(" statement
System.out.println(" break;");

System.out.println ("™ // ..."); execute.

System.out.println("}");
break;
default:

System.out.print ("Selection not found.");

}

Complete Listing

/*
Project 3-1
A simple help system.
*/
class Help {
public static void main (String argsl(])

throws java.io.IOException {

Riccardo Flask 46 |Page

JAVA for Beginners

char choice;

System.
System.
System.
System.
choice

System.

out.println ("Help on:");

out.println(™ 1. if");

out.println ("™ 2. switch");
out.print ("Choose one: ");
= (char) System.in.read();

out.println ("\n");

switch (choice) {

case '1':

System.out.println ("The if:\n");

System.out.println("if (condition) statement;");

System.out.println("else statement;");

break;

case '2':

System.out.println ("The switch:\n");

System.out.println ("switch (expression) {");

System.out.println(" case constant:");

System.out.println (" statement sequence");

System.out.println (" break;");

System.out.println(" // ...");

System.out.println("}");

break;

default:

System.out.print ("Selection not found.");

Riccardo Flask

47 |Page

JAVA for Beginners

Sample run:

Help on:

1. if

2. switch

Choose one: 1

The if:

if (condition) statement;

else statement;

The for Loop

Loops are structures used to make the program repeat one or many instructions for ‘n’ times as
specified in the declaration of the loop.

The for Loop can be used for just one statement:
for(initialization; condition; iteration) statement;
or to repeat a block of code:

for(initialization; condition; iteration)

{

statement sequence
}

e Initialization = assighment statement that sets the initial value of the loop control variable,
(counter)

e Condition = Boolean expression that determines whether or not the loop will repeat

e [teration = amount by which the loop control variable will change each time the loop is
repeated.

» The for loop executes only/till the condition is true.

Riccardo Flask 48 | Page

JAVA for Beginners
Example: using a ‘for’ loop to print the square roots of the numbers between 1 and 99. (It also
displays the rounding error present for each square root).
// Show square roots of 1 to 99 and the rounding error.
class SgrRoot {
public static void main (String args[]) {
double num, sroot, rerr;
for(num = 1.0; num < 100.0; num++) {
sroot = Math.sqgrt (num) ;
System.out.println ("Square root of " + num +
" is " + sroot);
// compute rounding error
rerr = num - (sroot * sroot);

System.out.println ("Rounding error is " + rerr);

System.out.println();

‘For’ loop counters (loop control variables) can either increment or decrement,

// A negatively running for loop.

class DecrFor { Counter
public static void main(String args[]) { decrements by 5
int x; (X =X 5)
for(x = 100; x > -100; x —-= 5)

System.out.println(x);

Riccardo Flask 49 |Page

JAVA for Beginners

Multiple Loop Control Variable
Using more than one variable in the same loop is possible:

// Use commas in a for statement.
‘i and %’ are the
class Comma { .
two variables used

public static void main(String args[]) { in the same loop

int i, 3;

for (i=0, j=10; i < J; 1i++, j--)

System.out.println("i and j: " + 1 + " " + 7J);

}

Expected output:

i and j: 0 10
i and j: 1 9
i and j: 2 8
i and j: 3 7
i and j: 4 6

Terminating a loop via user intervention
Let us write a program which involves a loop and this is stopped when the user types ‘s’ on the
keyboard:

// Loop until an S is typed.
class ForTest {
public static void main (String argsl(])
throws java.io.IOException {
int 1i;
System.out.println ("Press S to stop.");
for(i = 0; (char) System.in.read() != 'S'; i++)

System.out.println ("Pass #" + 1i);

Riccardo Flask 50| Page

JAVA for Beginners
Interesting For Loop Variations
It is possible to leave out parts of the loop declaration:

// Example 1 - Parts of the for can be empty.

class Empty {
public static void main (String args[]) {
int 1i;
for(i = 0; 1 < 10;) {
System.out.println ("Pass #" + 1);

i++; // increment loop control var

}

// Example 2 - Parts of the for can be empty.
class Empty2 {
public static void main(String args[]) {
int i;
i =0; // move initialization out of loop
for(; 1 < 10;) {
System.out.println ("Pass #" + 1i);

i++; // increment loop control var

}

Initialising the loop out of the ‘for’ statement is only required when the value needs to be a result of
another complex process which cannot be written inside the declaration.

Riccardo Flask 51|Page

JAVA for Beginners

Infinite Loops
Sometimes one needs to create an infinite loop, i.e. a loop which never ends! (However it can be
stopped using the break statement). An example of an infinite loop declaration is as follows:

for (;;)
{

// .. statements

N.B. Using break to terminate an infinite loop will be discussed later on in the course.

No ‘Body’ Loops
Loops can be declared without a body. This can be useful in particular situations, consider the
following example:

// Loop without body.

class Empty3 {

public static void main(String args[]) {
Two operations are carried
int 1i; .

on, sum =sum +i and
int sum = 0; L.
i=i+1

// sum the numbers through 5

for(i = 1; i <= 5; sum += i++) ;

System.out.println("Sum is " + sum);

}
Predicted Output:

Sum is 15

Declaring variables inside the loop
Variables can be declared inside the loop itself but one must remember that in such case the
variable exists only inside the loop!

Riccardo Flask 52| Page

JAVA for Beginners

// Declare loop variable inside the for.
class ForVar {
public static void main (String args[]) {
int sum = 0;
int fact = 1;
// compute the factorial of the numbers through 5
for(int i = 1; 1 <= 5; i++) {
sum += i; // i is known throughout the loop
fact *= 1i;
}
// but, i is not known here.
System.out.println ("Sum is " + sum);

System.out.println ("Factorial is " + fact);

}

Enhanced For loop
This type of loop will be discussed later on in the course as it involves arrays.

Riccardo Flask 53| Page

JAVA for Beginners

The While Loop

while (condition) statement; //or more than one statement

The condition could be any valid Boolean expression. The loop will function only if the condition is

true. If false it will move on to the next line of code.

// Demonstrate the while loop.

class WhileDemo {

public static void main(String argsl(])

char ch;

// print the alphabet using a while loop

ch = 'a';

while(ch <= 'z') {
System.out.print (ch) ;
ch++;

}

The above program will output the alphabet. As can be seen in the code the while loop will result
false when the character is greater than ‘z’. The condition is tested at the beginning of the program.

// Compute integer powers of 2.

class Power {

public static void main (String argsl(])

int e;
int result;
for(int i=0; i < 10; i++)
result = 1;
e = 1i;
while(e > 0) {
result *= 2;

e--;

Riccardo Flask

54 |Page

JAVA for Beginners

System.out.println ("2 to the power of " + i + " is "
+ result);

}

}

Predicted Output:

2 to the power of 0 is 1
2 to the power of 1 is 2
2 to the power of 2 is 4
2 to the power of 3 is 8

2 to the power .. (up to ‘of 9 is 5127)

The do-while Loop
This conditional statement checks the Boolean expression after going at least one time through the
loop. The do-while is declared as follows:

do {
statements;
} while (condition);
Braces are used if there is more than one statements and to improve program readability.
// Demonstrate the do-while loop.
class DWDemo {
public static void main (String argsl(])
throws java.io.IOException {
char ch;
do {
System.out.print ("Press a key followed by ENTER: ");
ch = (char) System.in.read(); // get a char

} while(ch != 'qg'");

Riccardo Flask 55| Page

JAVA for Beginners

// Guess the letter game, 4th version.
class Guess4d {
public static void main (String argsl(])
throws java.io.IOException {
char ch, answer = 'K';
do {

System.out.println("I'm thinking of a letter between
A and Z.");

System.out.print ("Can you guess it: ");

// read a letter, but skip cr/1f

do {
The function ch = (char) System.in.read(); // get a char
of this
) } while(ch == "\n' | ch == "\r');

statement is
to skip if (ch == answer) System.out.println("** Right **");
carriage else {
return and line

System.out.print ("...Sorry, you're ");
feed

if (ch < answer) System.out.println("too low");

characters
__________// else System.out.println("too high");

System.out.println("Try again!\n");
}

} while (answer != ch);

Predicted Output:

I'm thinking of a letter between A and Z.
Can you guess it: A
...Sorry, you're too low

Try again!

I'm thinking of a letter between A and 7.

Riccardo Flask 56 |Page

JAVA for Beginners

Can you guess it: Z

...Sorry, you're too high

Try again!

I'm thinking of a letter between A and Z.
Can you guess it: K

** Right **

Riccardo Flask 57| Page

| JAVA for Beginners

é* Mini-Project 2- Java Help System (Help2.java)

We are going to work on our previous project. Copy all the code and add the following code:

do {
System.out.println ("Help on:");
System.out.println(™ 1. if");
System.out.println (" 2. switch");
System.out.println(™ 3. for");
System.out.println(" 4. while");
System.out.println("™ 5. do-while\n");
System.out.print ("Choose one: ");
do {
choice = (char) System.in.read();
} while (choice == '\n' | choice == '\r'");
} while(choice < '1' | choice > '5"');

Now extend the switch as follows:

switch (choice) {

case '1':
System.out.println ("The if:\n");
System.out.println ("if (condition) statement;");
System.out.println("else statement;");
break;

case '2':
System.out.println ("The switch:\n");
System.out.println ("switch (expression) {");
System.out.println (" case constant:");
System.out.println (" statement sequence");
System.out.println (" break;");
System.out.println(" // ...");

System.out.println("}");

Riccardo Flask 58| Page

JAVA for Beginners

break;

case '3':
System.out.println ("The for:\n");
System.out.print ("for (init; condition; iteration)"™);
System.out.println (" statement;");
break;

case '4':
System.out.println ("The while:\n");
System.out.println ("while (condition) statement;");
break;

case '5':
System.out.println ("The do-while:\n");
System.out.println("do {");
System.out.println (" statement;");
System.out.println ("} while (condition);");
break;
}

The default statement has been removed as the loop ensures that a proper response is entered or
else the program will continue to execute.

Complete listing

/*
Project 3-2
An improved Help system that uses a
do-while to process a menu selection.
*/
class Help2 {
public static void main (String argsl(])
throws java.io.IOException {

char choice;

Riccardo Flask 59 |Page

JAVA for Beginners

do {
System.out.println("Help on:");
System.out.println(™ 1. if");
System.out.println(" 2. switch");
System.out.println(™ 3. for");
System.out.println("™ 4. while");
System.out.println (" 5. do-while\n");
System.out.print ("Choose one: ");
do {
choice = (char) System.in.read();
} while (choice == '\n' | choice == '\r');
} while(choice < '1l' | choice > '5");

System.out.println ("\n");
switch (choice) {
case 'l':
System.out.println("The if:\n");

System.out.println("if (condition)
statement;");

System.out.println("else statement;");
break;

case '2':
System.out.println ("The switch:\n");
System.out.println ("switch (expression) {");
System.out.println (" case constant:");
System.out.println (" statement sequence");
System.out.println (" break;");
System.out.println(" // ...");
System.out.println("}");
break;

case '3':

System.out.println ("The for:\n");

Riccardo Flask 60| Page

JAVA for Beginners

case

case

System.out.print ("for (init; condition;
iteration)");

System.out.println (" statement;");
break;

40

System.out.println ("The while:\n");
System.out.println ("while (condition)
statement;");

break;

'S5t

System.out.println ("The do-while:\n");
System.out.println("do {");
System.out.println (" statement;");
System.out.println ("} while (condition);");
break;

Riccardo Flask

6l|Page

JAVA for Beginners

Using Break to Terminate a Loop

One can use the ‘break’ command to terminate voluntarily a loop. Execution will continue from the
next line following the loop statements,

e.g. 1 Automatic termination (hard-coded)

class BreakDemo {

public static void main (String args[]) {
int num;
num = 100;

for (int i=0; i < num; i++) {
if(i*1 >= num) break; // terminate loop if i*i >= 100
System.out.print(i + "™ ");

}

System.out.println ("Loop complete."); When i = 10, i*i = 100. Therefore

the ‘if condition is satisfied and
the loop terminates before i = 100

Expected Output:

0123456 78 9 Loop complete:

e.g. 2 Termination via user intervention

class Break2 {
public static void main (String argsl(])
throws java.io.IOException {

char ch;
for(; 7) |
ch = (char) System.in.read(); // get a char
if(ch == 'qgq') break;
}
System.out.println("You pressed g!");
}
}
In the above program there is an infinite loop, for (; ;) .This means that the program will

never terminate unless the user presses a particular letter on the keyboard, in this case ‘q’.

If we have nested loops, i.e. a loop within a loop, the ‘break’ will terminate the inner loop. It is not
recommended to use many ‘break’ statement in nested loops as it could lead to bad programs.
However there could be more than one ‘break’ statement in a loop. If there is a switch statement in
a loop, the ‘break’ statement will affect the switch statement only. The following code shows an
example of nested loops using the ‘break’ to terminate the inner loop;

Riccardo Flask 62| Page

JAVA for Beginners

// Using break with nested loops

class Break3 {

public static void main(String args[]) {

for(int i=0;

System.out.println ("Outer loop count: " + 1i);
System.out.print (" Inner loop count: ");

int t

while(t < 100)
10)

}

if(t

0;

i<3; i++) |

{

break; // terminate loop if t is 10

System.out.print(t + "™ ");

t++;

System.out.println();

}

System.out.println ("Loops complete.");

}
}

Predicted Output:

Outer
Inner
Outer
Inner
Outer
Inner
Loops

loop
loop
loop
loop
loop
loop

count:
count:
count:
count:
count:
count:

complete.

ON OB OO

1234567829

12345672829

1234567289

Terminating a loop with break and use labels to carry on execution

Programmers refer to this technique as the GOTO function where one instructs the program to jump

to another location in the code and continue execution. However Java does not offer this feature but

it can be implemented by using break and labels. Labels can be any valid Java identifier and a colon
should follow. Labels have to be declared before a block of code, e.g.

// Using break with labels.

class Break4d {

public static void main (String args[]) {

int 1i;

for (i=1;
one:
two:

{
{

three:

i<4;

One, two and three are
labels
i++)

{

System.out.println("\ni is " + 1);

if (i==1) break one;

if (i==2) break two;

if (i==3) break three;

// the following statement is never executed
System.out.println ("won't print");

Riccardo Flask

63| Page

JAVA for Beginners

System.out.println ("After block three."); < three

}
System.out.println ("After block two."); < two

}
System.out.println ("After block one."); € one

}

//the following statement executes on termination of the
for loop
System.out.println ("After for.");

Predicted Output:

iis 1

After block one.

i is 2

After block two.
After block one.

i is 3

After block three.
After block two.
After block one.
After for.

Interpreting the above code can prove to be quite tricky. When ‘i’ is 1, execution will break after the
first ‘if’ statement and resume where there is the label ‘one’. This will execute the statement
labelled ‘one’ above. When ‘i’ is 2, this time execution will resume at the point labelled ‘two’ and
hence will also execute the following statements including the one labelled ‘one’.

The following code is another example using labels but this time the label marks a point outside the

loop:

class Break5 {
public static void main (String args[]) {
done:
for(int i=0; 1<10; 1i++) {
for (int 3j=0; 3<10; Jj++) {
for (int k=0; k<10; k++)

System.out.println (k) ;
if(k == 5) break done; // jump to done

{

}
System.out.println ("After k loop"); // skipped

}
System.out.println ("After j loop"); // skipped

}
System.out.println ("After i loop");

}

Riccardo Flask 64 |Page

JAVA for Beginners

Predicted Output:

g d wbdhh PO

After 1 loop

The ‘k’ loop is terminated when ‘k’ = 5. However the ‘j’ loop is skipped since the break operation
cause execution to resume at a point outside the loops. Hence only the ‘i’ loop terminates and thus
the relevant statement is printed.

The next example shows the difference in execution taking care to where one puts the label:

class Breako6o {
public static void main(String args[]) {
int x=0, y=0;
stopl: for(x=0; x < 5; x++) {
for(y = 0; y < 5; y++) |
if(y == 2) break stopl;
System.out.println("x and y: " + x + " " + y);
}

}
System.out.println();
for(x=0; x < 5; x++)

stop2: {
for(y = 0; y < 5; y++) |
if(y == 2) break stop2;
System.out.println("x and y: " + x + " " + y);

In the first part the inner loop stops when ‘y’ = 2%

Predicted Output: break operation forces the program to skip the outer
x and y: 0 0 ‘for’ loop, print a blank line and start the next set of
x and y: 0 1 loops. This time the label is placed after the ‘for’ loop
x and y: 0 0 declart:{tlon. Henc.e the break o.pef'at/on is only

x and y: 0 1 operating on the inner loop this time. In fact ‘x’ goes
x and y: 1 0 all the way from 0 to 4, with ‘y’ always stopping

x and y: 11 when it reaches a value of 2

x and y: 2 0 ’ 4’/////
x and y: 2 1

x and y: 3 0

x and y: 3 1

x and y: 4 0

x and y: 4 1

Riccardo Flask 65|Page

JAVA for Beginners

The break — label feature can only be used within the same block of code. The following code is an
example of misuse of the break —label operation:

class BreakErr { This break cannot \
public static void main (String args[]) {

one: for(int i=0; i<3; i++) { continue from the

System.out.print ("Pass " + i + ": "); assigned label since it
} is not part of the same
for (int j=0; j<100; j++
- (int 3=0; 3 1) block
if(j == 10) break one;
System.out.print(j + " "); \\ /

}

Use of Continue (complement of Break)

The ‘continue’ feature can force a loop to iterate out of its normal control behaviour. It is regarded
as the complement of the break operation. Let us consider the following example,

class ContDemo {
public static void main (String args[]) {

int 1i;
for(i = 0; i<=100; i++) {
1f((i%2) !'= 0) continue;

System.out.println (i) ;

Predicted Output:

0

100

The program prints on screen the even numbers. This happens since whenever the modulus results
of ‘i’ by 2 are not equal to ‘0’, the ‘continue’ statement forces loop to iterate bypassing the following
statement (modulus refers to the remainder of dividing ‘i’ by 2).

Riccardo Flask 66 |Page

JAVA for Beginners

In ‘while’ and ‘do-while’ loops, a ‘continue’ statement will cause control to go directly to the
conditional expression and then continue the looping process. In the case of the ‘for’ loop, the
iteration expression of the loop is evaluated, then the conditional expression is executed, and then
the loop continues.

Continue + Label

It is possible to use labels with the continue feature. It works the same as when we used it before in
the break operation.

class ContToLabel {
public static void main(String args[]) {
outerloop:
for(int i=1; i < 10; 1i++) {
System.out.print ("\nOuter loop pass " + 1 +

", Inner loop: ");
for(int j = 1; 3 < 10; Jj++) {
if(j == 5) continue outerloop;

System.out.print(j);

Predicted Output:

Outer loop pass
Outer loop pass
Outer loop pass
Outer loop pass
Outer loop pass
Outer loop pass
Outer loop pass
Outer loop pass
Outer loop pass

Inner loop: 1234
Inner loop: 1234
Inner loop: 1234
Inner loop: 1234
Inner loop: 1234
Inner loop: 1234
Inner loop: 1234
Inner loop: 1234
Inner loop: 1234

N~ N 0~

~

N~ N 0~

O oo Joy U Wb
~

~

Note that the inner loop is allowed to execute until ‘j’ is equal to 5. Then loop is forced to outer loop.

Riccardo Flask 67 |Page

| JAVA for Beginners

é* Mini-Project 3- Java Help System (Help3.java)

This project puts the finishing touches on the Java help system that was created in the previous
projects. This version adds the syntax for ‘break’ and ‘continue’. It also allows the user to request the
syntax for more than one statement. It does this by adding an outer loop that runs until the user
enters ‘q’ as a menu selection.

1. Copy all the code from Help2.java into a new file, Help3.java

2. Create an outer loop which covers the whole code. This loop should be declared as infinite but
terminate when the user presses ‘q’ (use the break)

3. Your menu should look like this:

do {

System.out.println ("Help on:")
System.out.println (™ 1. 1if");
System.out.println (" 2. switch");
System.out.println (" 3. for");
System.out.println (" 4. while");
System.out.println ("™ 5. do-while");
System.out.println ("™ 6. break");
System.out.println ("™ 7. continue\n");
System.out.print ("Choose one (g to quit): ");
do {

choice = (char) System.in.read();

} while (choice == '\n' | choice == '\r');

} while(choice < '"1'" | choice > '"7' & choice != "qg'");

4. Adjust the switch statement to include the ‘break’ and ‘continue’ features.

Complete Listing

class Help3 {
public static void main (String argsl(])
throws java.io.IOException {

char choice;

for(;;) {
do {

System.out.println ("Help on:");

System.out.println(™ 1. if");
System.out.println(" 2. switch");
System.out.println("™ 3. for");
System.out.println(" 4. while");

Riccardo Flask 68| Page

JAVA for Beginners

System.out.println(" 5. do-while");
System.out.println(" 6. break");
System.out.println(" 7. continue\n");
System.out.print ("Choose one (g to quit): ");
do {
choice = (char) System.in.read();

} while (choice == '\n' | choice == '\r'");

} while(choice < '1' | choice > '7' & choice != 'qgq');

if (choice ==

'q') break;

System.out.println ("\n");

switch (choice)

case '1':
System.
System.

System.

break;

case '2':
System.
System.
System.
System.
System.
System.

System.

break;

case '3':

out

out

out

out

out

out

out

out

out

out

{

.println ("The if:\n");
.println("if (condition) statement;");

.println("else statement;");

.println ("The switch:\n");

.println("switch (expression) {");

.println(" case constant:");
.println (" statement sequence");
.println (" break;");

.println(" // ...");
.println("}");

Riccardo Flask

69 |Page

JAVA for Beginners

System.out.println ("The for:\n");
System.out.print ("for (init; condition; iteration)"™);
System.out.println (" statement;");
break;

case '4':
System.out.println ("The while:\n");
System.out.println ("while (condition) statement;");
break;

case '5':
System.out.println ("The do-while:\n");

System.out.println("do {");

System.out.println (" statement;");
System.out.println ("} while (condition);");
break;

case '6':

System.out.println("The break:\n");
System.out.println ("break; or break label;");
break;

case 'T7':
System.out.println ("The continue:\n");
System.out.println ("continue; or continue label;");
break;

}

System.out.println();

Riccardo Flask 70| Page

JAVA for Beginners

Nested Loops

A nested loop is a loop within a loop. The previous examples already included such loops. Another
example to consider is the following:

class FindFac {
public static void main(String args[]) {
for(int 1=2; i <= 100; i++) {

System.out.print ("Factors of " + 1 + ": ");
for(int j = 2; 7 < 1i; J++)
if ((i%3) == 0) System.out.print(j + " ");

System.out.println();

}

The above code prints the factors of each number starting from 2 up to 100. Part of the output is as
follows:

Factors of
Factors of
Factors of
Factors of
Factors of
Factors of
Factors of
Factors of
Factors of

= O o Joy Ul W
N
w

Can you think of a way to make the above code more efficient? (Reduce the number of iterations in
the inner loop).

Riccardo Flask 71| Page

JAVA for Beginners

Class Fundamentals

Definition
A class is a sort of template which has attributes and methods. An object is an instance of a class,
e.g. Riccardo is an object of type Person. A class is defined as follows:

class classname
// declare instance variables
type varl;
type var2;

//
type varN;

// declare methods
type methodl (parameters) {
// body of method

}
type methodZ (parameters) {

// body of method

}
//

type methodN(parameters) {
// body of method
}

The classes we have used so far had only one method, main(), however not all classes specify a main
method. The main method is found in the main class of a program (starting point of program).

The Vehicle Class

The following is a class named ‘Vehicle’ having three attributes, ‘passengers’ —the number of
passengers the vehicle can carry, ‘fuelcap’ — the fuel capacity of the vehicle and ‘mpg’ — the fuel
consumption of the vehicle (miles per gallon).

class Vehicle {
int passengers; //number of passengers
int fuelcap; //fuel capacity in gallons
int mpg; //fuel consumption

}

Please note that up to this point there is no OBJECT. By typing the above code a new data type is
created which takes three parameters. To create an instance of the Vehicle class we use the
following statement:

Vehicle minivan = new Vehicle ();
To set the values of the parameters we use the following syntax:

minivan.fuelcap = 16; //sets value of fuel capacity to 16

Riccardo Flask 72 |Page

JAVA for Beginners

Note the general form of the previous statement: object. member

Using the Vehicle class
Having created the Vehicle class, let us create an instance of that class:

class VehicleDemo {

public static void main (String argsl[]) {
Vehicle minivan = new Vehicle();
int range;
// assign values to fields in minivan
minivan.passengers = 7;
minivan.fuelcap = 16;
minivan.mpg = 21;

Till now we have created an instance of Vehicle called ‘minivan’ and assigned values to passengers,
fuel capacity and fuel consumption. Let us add some statements to work out the distance that this
vehicle can travel with a tank full of fuel:

// compute the range assuming a full tank of gas
range = minivan.fuelcap * minivan.mpg;

System.out.println ("Minivan can carry " +
minivan.passengers + " with a range of " + range);

}

Creating more than one instance

It is possible to create more than one instance in the same program, and each instance would have
its own parameters. The following program creates another instance, sportscar, which has different
instance variables and finally display the range each vehicle can travel having a full tank.

class TwoVehicles {
public static void main (String argsl[]) {
Vehicle minivan = new Vehicle () ;
Vehicle sportscar = new Vehicle();

int rangel, range?2;

// assign values to fields in minivan
minivan.passengers = 7;
minivan.fuelcap = 16;

minivan.mpg = 21;

Riccardo Flask 73| Page

JAVA for Beginners

// assign values to fields in sportscar
sportscar.passengers = 2;
sportscar.fuelcap = 14;

sportscar.mpg = 12;

// compute the ranges assuming a full tank of gas

rangel = minivan.fuelcap * minivan.mpg;
range?2 = sportscar.fuelcap * sportscar.mpg;
System.out.println ("Minivan can carry " +
minivan.passengers +

" with a range of " + rangel);

System.out.println ("Sportscar can carry " +
sportscar.passengers +
" with a range of " + range2);

Creating Objects

In the previous code, an object was created from a class. Hence ‘minivan’ was an object which was
created at run time from the ‘Vehicle’ class — vehicle minivan = new Vehicle() ; This statement
allocates a space in memory for the object and it also creates a reference. We can create a
reference first and then create an object:

Vehicle minivan; // reference to object only
minivan = new Vehicle (); // an object is created

Reference Variables and Assignment
Consider the following statements:

Vehicle carl new Vehicle ();

Vehicle car?2 car 1;

We have created a new instance of type Vehicle named carl. However note that car2 is NOT
another instance of type Vehicle. car2 is the same object as carl and has been assigned the same
properties,

carl.mpg = 26; // sets value of mpg to 26
If we had to enter the following statements:
System.out.println(carl.mpg) ;
System.out.println (car2.mpg) ;

The expected output would be 26 twice, each on a separate line.

Riccardo Flask 74 |Page

JAVA for Beginners

carl and car2 are not linked. car2 can be re-assigned to another data type:

new Vehicle () ;

Vehicle carl

Vehicle car2 = carl;

Vehicle car3 = new Vehicle();

car2 = car3; // now car?2 and car3 refer to the same object.
Methods

Methods are the functions which a particular class possesses. These functions usually use the data
defined by the class itself.

// adding a range () method
class Vehicle {
int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon
// Display the range.
void range () {

System.out.println("Range is " + fuelcap * mpg);

}

Note that ‘fuelcap’ and ‘mpg’ are called directly without the dot (.) operator. Methods take the
following general form:

ret-type name(parameter-list){
/I body of method
}

‘ret-type’ specifies the type of data returned by the method. If it does not return any value we write
void. ‘name’ is the method name while the ‘parameter-list’ would be the values assigned to the
variables of a particular method (empty if no arguments are passed).

class AddMeth {

public static void main (String argsl[]) {

Riccardo Flask 75| Page

JAVA for Beginners

Vehicle minivan = new Vehicle();
Vehicle sportscar = new Vehicle();
int rangel, range2;

// assign values to fields in minivan
minivan.passengers = 7;
minivan.fuelcap = 16;

minivan.mpg = 21;

// assign values to fields in sportscar
sportscar.passengers = 2;
sportscar.fuelcap = 14;

sportscar.mpg = 12;

System.out.print ("Minivan can carry " +
minivan.passengers + ". ");

minivan.range(); // display range of minivan

System.out.print ("Sportscar can carry " +
sportscar.passengers + ". ");

sportscar.range(); // display range of sportscar.

}

Returning from a Method

When a method is called, it will execute the statements which it encloses in its curly brackets, this is
referred to what the method returns. However a method can be stopped from executing completely
by using the return statement.

void myMeth () {
int 1i;
for (1=0; 1i<10; i++) {
if(i == 5) return; // loop will stop when i = 5

System.out.println();

Riccardo Flask 76 |Page

JAVA for Beginners

Hence the method will exit when it encounters the return statement or the closing curly bracket ‘ }

There can be more than one exit point in a method depending on particular conditions, but one
must pay attention as too many exit points could render the code unstructured and the program will
not function as desired (plan well your work).

void myMeth () {
//
if (done) return;
//
if (error) return;
}

Returning a Value
Most methods return a value. You should be familiar with the sqrt() method which returns the

square root of a number. Let us modify our range method to make it return a value:
// Use a return value.
class Vehicle {
int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon
// Return the range.
int range () {

return mpg * fuelcap; //returns range for a
particular vehicle

}

Please note that now our method is no longer void but has int since it returns a value of type
integer. Itis important to know what type of variable a method is expected to return in order to set

the parameter type correctly.

Riccardo Flask 77 |Page

Main program:

JAVA for Beginners

class RetMeth {

public static void main(String args[]) {

}

Vehicle minivan = new Vehicle();
Vehicle sportscar = new Vehicle();
int rangel, range?2;

// assign values to fields in minivan
minivan.passengers = 7;
minivan.fuelcap = 16;

minivan.mpg = 21;

// assign values to fields in sportscar
sportscar.passengers = 2;
sportscar.fuelcap = 14;

sportscar.mpg = 12;

// get the ranges

rangel = minivan.range () ;

range2z = sportscar.range();

System.out.println("Minivan can carry " +

minivan.passengers + " with range of " + rangel + "

Miles");

System.out.println ("Sportscar can carry " +

sportscar.passengers + " with range of " + range2 +

" miles");

Study the last two statements, can you think of a way to make them more efficient, eliminating the

use of the two statements located just above them?

Riccardo Flask

78 | Page

JAVA for Beginners

Methods which accept Parameters:
We can design methods which when called can accept a value/s. When a value is passed to a
method it is called an Argument, while the variable that receives the argument is the Parameter.

~

// Using Parameters. //
The method accepts a
class ChkNum { value of type integer, the

parameter is x, while the

// return true 1f x 1s even argument would be any

boolean isEven (int x) { < value passed to it

1f ((x%2) == 0) return true;

else return false;

class Parmbemo ({
public static void main (String argsl[]) {
ChkNum e = new ChkNum() ;
if(e.isEven (10)) System.out.println("10 is even.");
if(e.isEven(9)) System.out.println("9 is even.");

if(e.isEven(8)) System.out.println("8 is even.");

}
Predicted Output:
10 is even.

8 is even.

A method can accept more than one parameter. The method would be declared as follows:
int myMeth (int a, double b, float c¢) {

//

Riccardo Flask 79 |Page

JAVA for Beginners

The following examples illustrates this:
class Factor {

boolean isFactor (int a, int b) {
(b $ a) == 0) return true;

else return false;

}

class IsFact {

public static void main (String argsl[]) {

//]ﬁotethatthese
statements are validating
‘x’, and print the correct
statement.

_

~

)

Factor x = new Factor ()

if(x.isFactor (2, 20)) System.out.println("2 is a
factor.");

if(x.isFactor (3, 20))

displayed");

Predicted Output:

2 is a factor.

System.out.println("this won't be

If we refer back to our ‘vehicle’ example, we can now add a method which works out the fuel
needed by a particular vehicle to cover a particular distance. One has to note here that the result of
this method, even if it takes integers as parameters, might not be a whole number.

Therefore one has to specify that the value that the method returns, in this case we can use

‘double’:
double fuelneeded (int miles) {
(double)

return miles / mpg;

Riccardo Flask

80| Page

JAVA for Beginners

Updated vehicle class:

class Vehicle {
int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons

int mpg; // fuel consumption in miles per gallon

// Return the range.
int range () {

return mpg * fuelcap;

// Compute fuel needed for a given distance.
double fuelneeded (int miles) {

return (double) miles / mpg;

Main Program:
class CompFuel {
public static void main(String argsl[]) {
Vehicle minivan = new Vehicle();
Vehicle sportscar = new Vehicle();
double gallons;

int dist = 252;

// assign values to fields in minivan

minivan.passengers = 7;

Riccardo Flask 8l |Page

JAVA for Beginners

minivan.fuelcap = 16;

minivan.mpg = 21;

// assign values to fields in sportscar
sportscar.passengers = 2;
sportscar.fuelcap = 14;

sportscar.mpg = 12;

gallons = minivan.fuelneeded(dist);

System.out.println("To go " + dist + " miles minivan
needs " +

gallons + " gallons of fuel.");

gallons = sportscar.fuelneeded(dist); //overwriting same
variable

System.out.println("To go " + dist + " miles sportscar
needs " +

gallons + " gallons of fuel.");

Predicted Output:
To go 252 miles minivan needs 12.0 gallons of fuel.

To go 252 miles sportscar needs 21.0 gallons of fuel.

Riccardo Flask 82 |Page

JAVA for Beginners

& Project: Creating a Help class from the Help3.java

In order to carry out this task we must examine the Help3.java and identifies ways how we can break
down the code into classes and methods. The code can be broken down as follows:

1. A method which displays the ‘help’ text — helpon()
2. A method which displays the menu — showmenu()
3. A method which checks (validates) the entry by the user —isvalid()

Method helpon()
void helpon (int what) {

switch (what) {

case '1l':
System.out.println ("The if:\n");
System.out.println("if (condition) statement;");
System.out.println("else statement;");
break;

case '2':
System.out.println ("The switch:\n");
System.out.println ("switch (expression) {");
System.out.println (" case constant:");
System.out.println (" statement sequence");
System.out.println (" break;");
System.out.println(" // ...");
System.out.println("}");
break;

case '3':
System.out.println ("The for:\n");
System.out.print ("for(init; condition; iteration)");
System.out.println (" statement;");

break;

Riccardo Flask 83| Page

JAVA for Beginners

case '4':
System.out.println ("The while:\n");
System.out.println("while (condition) statement;");
break;

case '5H':
System.out.println ("The do-while:\n");
System.out.println("do {");
System.out.println (" statement;");
System.out.println ("} while (condition);");
break;

case '6':
System.out.println ("The break:\n");
System.out.println ("break; or break label;");
break;

case '7':
System.out.println ("The continue:\n");
System.out.println("continue; or continue label;");
break;

}

System.out.println () ;

}

Method showmenu()

void showmenu() {
System.out.println ("Help on:");
System.out.println(" 1. if");
System.out.println(" 2. switch");

System.out.println ("™ 3. for");

Riccardo Flask 84 |Page

JAVA for Beginners

System.out.println(" 4. while");
System.out.println(" 5. do-while");

System.out.println (" 6. break");

System.out.println (" 7. continue\n");
System.out.print ("Choose one (g to quit): ");
}
Method isvalid()

boolean isvalid(int ch) {
if(ch < '1" | ch > '"7'" & ch != 'q') return false;
else return true;

}

Class Help

class Help {
void helpon (int what) {

switch (what) {

case 'l':
System.out.println ("The if:\n");
System.out.println("if (condition) statement;");
System.out.println("else statement;");
break;

case '2':
System.out.println ("The switch:\n");
System.out.println ("switch (expression) {");
System.out.println (" case constant:");

System.out.println (" statement sequence");

Riccardo Flask 85| Page

JAVA for Beginners

case

case

case

case

System.out.println (" break;");

System.out.println("™ // ...");

System.out.println("}");

break;

case '3':

System.out.println ("The for:\n");

System.out.print ("for (init; condition;
iteration)");

System.out.println (" statement;");

break;

l4l:

System.out.println ("The while:\n");

System.out.println ("while (condition)
statement;") ;

break;

l5|:

System.
System.
System.

System.

break;

System.

System.

break;

System.

out.

out

out.

out.

out.

out.

out.

println ("The do-while:\n");

.println("do {");

println(" statement;");

println ("} while (condition);");

println ("The break:\n");

println ("break; or break label;");

println ("The continue:\n");

Riccardo Flask

86 |Page

JAVA for Beginners

System.out.println ("continue; or continue
label;");

break;

}

System.out.println();

void showmenu () {
System.out.println ("Help on:");
System.out.println(" 1. 1if");
System.out.println(" 2. switch");
System.out.println(" 3. for");
System.out.println (" 4. while");
System.out.println(" 5. do-while");
System.out.println(" 6. break");
System.out.println (" 7. continue\n");
System.out.print ("Choose one (g to quit): ");

}

boolean isvalid(int ch) {
if(ch < '1'" | ch > '"7'" & ch != 'gq') return false;
else return true;
}

}

Main Program:

class HelpClassDemo {
public static void main (String argsl])
throws java.io.IOException {

char choice;

Riccardo Flask 87 |Page

JAVA for Beginners

Help hlpobj = new Help();
for(;;) {
do {

hlpobj.showmenu() ;

do {
choice = (char) System.in.read();
} while (choice == '\n' | choice == '\r');

} while(!'hlpobj.isvalid(choice));
if (choice == 'g') break;
System.out.println ("\n");
hlpobj.helpon (choice);

}

Constructors
In previous examples when working with the vehicle class we did assign values to the class variables

by using statements like: minivan.passengers = 7;

To accomplish this task Java programmers use constructors. A constructor is created by default and
initializes all member variables to zero. However we can create our constructors and set the values

the way we want, e.g.
class MyClass {
int x;

MyClass () {

This is the constructor
x = 10;

Riccardo Flask 88 |Page

JAVA for Beginners

class ConsDemo {

public static void main(String args[]) {

MyClass tl = new MyClass();
MyClass t2 = new MyClass({()
System.out.println(tl.x + " " + t2.x);

}
}
Predicted Output:

10 10

Constructor having parameters
We can edit our previous constructor to create a parameter:

MyClass (int i) {

If we edit the main program, by changing the statements which initiate the two objects:

MyClass tl = new MyClass(10);
MyClass t2 = new MyClass(88);
The output would now be:
10 88
The values 10 and 88 are first passed on to ‘i’ and then are assigned to x’.
Now we can modify our vehicle class and add a constructor:
// Constructor for Vehicle class
Vehicle (int p, int £, int m) {
passengers = p;

fuelcap = f;

mpg = my,

Riccardo Flask

89 |Page

JAVA for Beginners

The main program would be as follows:

class VehConsDemo {
public static void main(String args[]) {
// construct complete vehicles
Vehicle minivan = new Vehicle (7, 16, 21);
Vehicle sportscar = new Vehicle(2, 14, 12);
double gallons;
int dist = 252;

gallons = minivan.fuelneeded(dist);

System.out.println("To go " + dist + " miles minivan
needs " + gallons + " gallons of fuel.");

gallons = sportscar.fuelneeded(dist);
System.out.println("To go " + dist + " miles sportscar

needs " + gallons + " gallons of fuel.");

}

Overloading Methods and Constructors
The term overloading refers to the act of using the same method/constructor name in a class but
different parameter declarations. Method overloading is an example of Polymorphism.

Method Overloading

// Demonstrate method overloading.
class Overload {
void ovlDemo () {
System.out.println ("No parameters");
}
// Overload ovlDemo for one integer parameter.

void ovlDemo (int a) {

Riccardo Flask 90| Page

JAVA for Beginners

System.out.println ("One parameter: " + a);
}

// Overload ovlDemo for two integer parameters.
int ovlDemo (int a, int b) {

System.out.println ("Two parameters: " + a + " " +
b) ;

return a + b;
}

// Overload ovlDemo for two double parameters.
double ovlDemo (double a, double b) {
System.out.println ("Two double parameters: " +
a+ " "+ b);
return a + b;

}
}
Main Program:
class OverloadDemo {

public static void main (String argsl[]) {

Overload ob = new Overload();

int resI;

double resD;

// call all versions of ovlDemo ()
ob.ovlDemo () ;

System.out.println();
ob.ovlDemo (2) ;
System.out.println();
resI = ob.ovlDemo (4, ©);

System.out.println ("Result of ob.ovlDemo (4, 6): "

Riccardo Flask 91| Page

JAVA for Beginners

resI);
System.out.println();
resD = ob.ovlDemo (1.1, 2.32);

System.out.println ("Result of ob.ovlDemo(l.1, 2.32):
" + resD);

Predicted Output:

No parameters

One parameter: 2

Two parameters: 4 6

Result of ob.ovlDemo (4, ©6): 10
Two double parameters: 1.1 2.32

Result of ob.ovlDemo (1.1, 2.32): 3.42

Automatic Type Conversion for Parameters of overloaded Methods

class Overload2 {
void f(int x) {
System.out.println("Inside f(int): " + x);
}
void f (double x) {

System.out.println("Inside f (double): " + x);

Riccardo Flask 92 |Page

JAVA for Beginners

Main Program:
class TypeConv {
public static void main(String args[]) {

Overload2 ob = new Overload2();
int 1 = 10;
double d = 10.1;
byte b = 99;
short s = 10;

float £

11.5F;

ob.f(i); // calls ob.f(int)

ob.f(d); // calls ob.f (double)

ob.f(b); // calls ob.f(int) - type conversion
ob.f(s); // calls ob.f(int) - type conversion

ob.f(f); // calls ob.f (double) - type conversion

}

Predicted Output:

Inside f(int): 10
Inside f (double): 10.1
Inside f(int): 99
Inside f(int): 10
Inside f (double): 11.5

Even though “f” had been defined with two parameters, ‘int’ and ‘double’, it is possible to pass a
different data type and automatic conversion occurs. ‘byte’ and ‘short’ are converted to ‘int’ while
‘float’ is converted to ‘double’ and the respective methods are called.

Riccardo Flask 93 |Page

JAVA for Beginners

Overloading Constructors

// Overloading constructors.

class MyClass {
int x;

MyClass () {
System.out.println("Inside MyClass().");
x = 0;

}

MyClass (int 1) {
System.out.println("Inside MyClass (int).");
X = 1i;

}

MyClass (double d) {
System.out.println("Inside MyClass (double).");
x = (int) d;

}

MyClass (int i, int 3j) {

System.out.println("Inside MyClass (int, int).");

}
Main Program:
class OverloadConsDemo {
public static void main (String argsl[]) {

MyClass tl = new MyClass();

MyClass t2 = new MyClass(88);

MyClass t3

new MyClass (17.23);

Riccardo Flask 94 |Page

JAVA for Beginners

MyClass t4 = new MyClass (2,
System.out.println("tl.x: "
System.out.println("t2.x: "
System.out.println("t3.x: "

System.out.println("t4.x: "

}

Predicted Output:

Inside MyClass() .
Inside MyClass (int) .
Inside MyClass (double) .

Inside MyClass (int, int).

tl.x: O
t2.x: 88
t3.x: 17
td.x: 8

In Java programming, overloading constructors is a technique used to allow an object to initialize

another. This makes coding more efficient.
class Summation {
int sum;
// Construct from an integer
Summation (int num) {
sum = 0;
for(int i=1; 1 <= num; 1i++)
sum += 1i;
}

// Construct from another object

Riccardo Flask

95| Page

JAVA for Beginners

Summation (Summation ob) {

sum = ob.sum;

}
Main Program:
class SumbDemo {
public static void main(String args[]) {

Summation sl = new Summation (5);

Summation s2 = new Summation (sl);
System.out.println("sl.sum: " + sl.sum);

System.out.println("s2.sum: " + s2.sum);

}

Predicted Output:
sl.sum: 15
s2.sum: 15

In the above example, when s2 is constructed, it takes the value of the summation of s1. Hence
there is no need to recompute the value.

Access Specifiers: public and private
Whenever we started a class, we always wrote ‘public’. If one writes ‘class’ only, by default it is
taken to be public.

// Public and private access.

class MyClass {
private int alpha; // private access
public int beta; // public access

int gamma; // default access (essentially public)

Riccardo Flask 9% |Page

JAVA for Beginners

/* Methods to access alpha. Members of a class can access a
private member of the same class.

*/
void setAlpha(int a) {
alpha = a;
}
int getAlpha() {

return alpha;

}
Main Program:
class AccessDemo {
public static void main(String args[]) {
MyClass ob = new MyClass();

ob.setAlpha (-99);

System.out.println("ob.alpha is " + ob.getAlpha()):;

// You cannot access alpha like this:
// ob.alpha = 10; // Wrong! alpha is private!

// These are OK because beta and gamma are public.

ob.beta = 88;

ob.gamma = 99;

Riccardo Flask 97 |Page

JAVA for Beginners

Another example using arrays:

class FailSoftArray {
private int all; // reference to array
private int errval; // value to return if get() fails
public int length; // length is public

/* Construct array given its size and the value to

return if get () fails. */

public FailSoftArray(int size, int errv) {

a = new int[size];
errval = errv;
length = size;

}
// Return value at given index.
public int get (int index) {
if (ok(index)) return al[index];
return errval;
}
// Put a value at an index. Return false on failure.
public boolean put(int index, int wval) {
if (ok (index)) {
alindex] = val;
return true;
}
return false;
}
// Return true if index is within bounds.

private boolean ok (int index) {

Riccardo Flask 98 |Page

JAVA for Beginners

if(index >= 0 & index < length) return true;

return false;

}
Main Program:
class FSDemo {
public static void main(String args[]) {
FailSoftArray fs = new FailSoftArray(5, -1);
int x;
// show quiet failures
System.out.println("Fail quietly.");
for(int i=0; i < (fs.length * 2); i++)
fs.put (i, i*10);
for (int i=0; i < (fs.length * 2); i++) {
x = fs.get (i);
if(x !'= -1) System.out.print(x + " ");
}
System.out.println("");
// now, handle failures
System.out.println ("\nFail with error reports.");
for (int i=0; i < (fs.length * 2); i++)
if(!fs.put(i, 1i*10))
System.out.println("Index " + i + " out-of-bounds");
for (int i=0; i < (fs.length * 2); i++) {
x = fs.get(i);
if(x !'= -1) System.out.print(x + " ");

else

Riccardo Flask 9 |Page

JAVA for Beginners

System.out.println ("Index " + 1 + " out-of-

bounds") ;

}

Predicted Output:

Fail with error reports.

Index 5

Index ©

Index 7

Index 8

Index 9

0 10 20

Index ©

Index 7

Index 8

Index 9

out-of-bounds

out-of-bounds

out-of-bounds

out-of-bounds

out-of-bounds

30 40 Index 5

out-of-bounds

out-of-bounds

out-of-bounds

out-of-bounds

out-of-bounds

Riccardo Flask

100 |
Page

JAVA for Beginners

Arrays and Strings

Arrays
An array can be defined as a collection of variables of the same type defined by a common name,
e.g. an array called Names which stores the names of your class mates:

Names [namel, name2, name3, ... nameX]

Arrays in Java are different from arrays in other programming languages because they are
implemented as objects.

One-dimensional Arrays

Declaration: type array-name[] = new type[size];
e.g.int sample[] = new int[10];

The following code creates an array of ten integers, fills it up with numbers using a loop and then
prints the content of each location (index) of the array:

class ArrayDemo {
public static void main(String args[]) {
int sample[] = new int[10];
int 1i;

for(i = 0; 1 < 10; 1

i+1)

sample[i] = 1i;

for(i = 0; 1 < 10; i = 1i+1)
System.out.println("This is sample[" + i + "]: " +

sample[i]);

}
Predicted Output:
This is sample[0]: O

This is sample[l]: 1

Riccardo Flask 101 |
Page

JAVA for Beginners

This is sample[2]: 2
This is sample[3]: 3
This is sample[4]: 4
This is sample[5]: 5
This is sample[6]: 6
This is sample[7]: 7
This is sample[8]: 8
This is sample[9]: 9

The following program contains two loops used to identify the smallest and the largest value stored
in the array:

class MinMax {
public static void main (String argsl[]) {
int nums[] = new int[10];

int min, max;

nums [0] = 99;
nums[1] = -10;
nums [2] = 100123;
nums [3] = 18;
nums [4] = -978;
nums [5] = 5623;
nums [6] = 463;
nums[7] = -9;
nums [8] = 287;
nums [9] = 49;

min = max = nums[0];

for (int i=1; i < 10; i++) {

if (nums[i] < min) min = nums[i];

Riccardo Flask 102 |
Page

JAVA for Beginners

if(nums[i] > max) max = nums[i];

}

System.out.println("min and max: " + min + " " +
max) ;

Predicted Output:

min and max: -978 100123

Sorting an Array - The Bubble Sort
The Bubble sort is one type, the simplest, of sorting algorithms. It can be used to sort data stored in
arrays but it is not ideal when the size of the array to sort is large.

class Bubble {
public static void main (String argsl[]) {

int nums[] = { 99, -10, 100123, 18, -978,
5623, 463, -9, 287, 49 };
int a, b, t;
int size;
size = 10; // number of elements to sort
// display original array
System.out.print ("Original array is:");
for(int 1i=0; i < size; 1i++)
System.out.print (" " + nums([i]);
System.out.println();
// This is the Bubble sort.
for(a=1l; a < size; a++)

for (b=size-1; b >= a; b--) {

Riccardo Flask 103 |
Page

JAVA for Beginners

if (nums[b-1] > nums([b]) { // if out of order
// exchange elements
t = nums[b-1];
nums [b-1] = nums[b];
nums [b] = t;
}
}
// display sorted array
System.out.print ("Sorted array is:");
for(int 1=0; 1 < size; 1++)
System.out.print (" " + nums[i]);

System.out.println();

Predicted Output:

Original array 1is: 99 -10 100123 18 -978 5623 463 -9 287 49

Sorted array is: -978 -10 -9 18 49 99 287 463 5623 100123

Two-Dimensional Arrays:

A two dimensional array is like a list of one-dimensional arrays. Declaration is as follows:
int table[][] = new int[10]([20];

This would create a table made up of 10 rows (index: 0 to 9) and 20 columns (index: 0 to 19). The
following code creates a table, 3 rows by 4 columns, and fills it up woth numbers from 1 to 12. Note
that at index [0][0] = 1, [0][1] = 2, [0][2] = 3, [0][3] = 4, [1][0] = 5, etc.

class TwoD {

public static void main (String argsl[]) {

Riccardo Flask 104 |
Page

JAVA for Beginners

int t, 1i;
int table[][] = new int[3]1[4];
for (t=0; t < 3; ++t) {
for(i=0; 1 < 4; ++1i) {
table[t] [1i] = (t*4)+1i+1;
System.out.print (table[t][1] + " ");
}

System.out.println();

Different syntax used to declare arrays:
Consider the following: type[] var-name;

The square brackets follow the type specifier, not the name of the array variable. For example, the
following two declarations are equivalent:

int counter[] = new int[3];

int[] counter = new int[3];
The following declarations are also equivalent:
char table[][] = new char[3][4];

char[][] table

new char[3][4];

This alternative declaration form offers convenience when declaring several arrays at the same time.
int[] nums, nums2, nums3; // create three arrays

This creates three array variables of type int. It is the same as writing:

int nums[], nums2[], nums3[]; // also, create three arrays

The alternative declaration form is also useful when specifying an array as a return type for a
method:

int[] someMeth() {

Riccardo Flask 105 |
Page

JAVA for Beginners

This declares that someMeth () returns an array of type int.

Array References:

Consider a particular array, nums1, and another array, nums2 and at one point in the code we assign
one array reference to the other, i.e. nums2 = nums1. Then every action on nums2 will be as if it
were on numsl (nums2 reference is lost).

class AssignARef {
public static void main(String args[]) {

int 1i;

int numsl|[] new int[107];

int nums2[] = new int[10];

for (i=0; i < 10; i++)
numsl[i] = 1;
for(i=0; i < 10; i++)
nums2[i] = -1i;
System.out.print ("Here is numsl: ");
for (i=0; i < 10; i++)

System.out.print (numsl[i] + "™ ");
System.out.println();
System.out.print ("Here is nums2: ");

for (i=0; i < 10; i++)

System.out.print (nums2[i] + "™ ");
System.out.println();
nums2 = numsl; // nums2 is now numsl

System.out.print ("Here is nums2?2 after assignment:

")
for (i=0; 1 < 10; i++)
System.out.print (nums2[i] + " ");

System.out.println();

Riccardo Flask 106 |
Page

JAVA for Beginners

// now operate on numsl array through nums?2
nums2 [3] = 99;

System.out.print ("Here is numsl after change through
nums2: ") ;

for(i=0; i < 10; i++)
System.out.print (numsl[i] + " ");

System.out.println();

Predicted Output:

Here is numsl: 0 1 2 3 4 5 6 7 8 9

Here is nums2: 0 -1 -2 -3 -4 -5 -6 -7 -8 -9

Here is nums?2 after assignment: 0 1 2 3 4 5 6 7 8 9

Here is numsl after change through nums2: 0 1 2 99 4 5 6 7 8 9

The Length Variable:

This variable automatically keeps track of the number of items an array can hold and NOT the actual
items. When an array is declared to have ten items, even if one does not put actual data, the length
of the array is 10. Something to keep in mind is also when dealing with two dimensional arrays. As
already explained in the theory lessons, two dimensional arrays are considered to be an array of
arrays. Hence calling up the length of such array would return the number of sub-arrays. To access
the length of the particular sub-array, one has to write the ‘row’ index, e.g. arrayname [0].length

// length of array demo
class LengthDemo {
public static void main (String argsl[]) {

int list[] = new 1int[10];

int nums/|] {1, 2, 3 }:

Riccardo Flask 107 |
Page

JAVA for Beginners

int table[][] = { // a variable-length table
(1, 2, 3}, 9 1,23
0 1 2 3
{4, 5%, g S
2 6 7 8 9

{e, 7, 8, 9}

System.out.println("length of list is " +
list.length);

System.out.println("length of nums is " +
nums.length) ;

System.out.println("length of table is " +
table.length); // returns number of rows

System.out.println("length of table[0] is "
table[0].length);

System.out.println("length of table[l] is "
table[l].length);

System.out.println("length of table[2] is "
table[2].length);

System.out.println();

// using length to initialize list

for (int i=0; i < list.length; i++)
list[i] = 1 * i;

System.out.print ("Here 1is list: ");

// using length to display list

for (int i=0; i < list.length; i++)
System.out.print (list[i] + " ");

System.out.println();

}

Predicted Output:

Riccardo Flask

108 |
Page

JAVA for Beginners

length of list is 10
length of nums is 3
length of table is 3
length of table[0] is 3
length of table[l] is 2
length of table[2] is 4

Here is list: 0 1 4 9 16 25 36 49 64 81

Using the Length to copy elements from one array to another while previously checking for size to
prevent errors:

//copying an array
class ACopy {
public static void main(String args[]) {

int 1i;

int numsl|[] new int[10];

int nums2[] new int[10];
for (1i=0; i1 < numsl.length; 1i++)
numsl[i] = i;
if (nums2.length >= numsl.length)//size check
for(i = 0; i < nums2.length; i++)//limit set
nums2[i] = numsl[i];

for (i=0; i < nums2.length; i++)

System.out.print (nums2[i] + " ");

Riccardo Flask 109 |
Page

JAVA for Beginners

Using Arrays to create a Queue data structure **

Data structures are used to organize data. Arrays can be used to create Stacks and Queues. Imagine
a stack to be a pile of plates. Stacks implement a Last In First Out system (LIFO). Queues use a First In
First Out order (FIFO). We can implement this as a class and also two methods to PUT and GET data
to and from a queue. Therefore we put items at the end of the queue and get items from the front.
Once a data item is retrieved, it cannot be retrieved again (consumptive). A queue can also be full or
empty. The following code creates a noncircular queue (does not reuse locations once they are
emptied).

class Queue {
char g[l; // array of type char
int putloc, getloc; // the put and get indices
Queue (int size) {
g = new char[size+l]; // allocate memory for queue
putloc = getloc = 0;
}
// method put - places a character into the queue
void put (char ch) {
if (putloc==g.length-1) {
System.out.println(" - Queue is full.");
return;
}
putloc++;
glputloc] = ch;
}
// method get - get a character from the queue
char get () {
if (getloc == putloc) {
System.out.println (" - Queue is empty.");

return (char) O;

Riccardo Flask 110 |
Page

JAVA for Beginners

}
getloct++;
return gl[getloc];
}

}

// MAIN PROGRAM

class QDemo {

public static void main(String args[]) {
Queue bigQ = new Queue (100);
Queue smallQ = new Queue (4);
char ch;
int i;

System.out.println ("Using bigQ to store the
alphabet.");

// put some numbers into bigQ
for(i=0; i < 26; i++)
bigQ.put ((char) ('A' + 1))
// retrieve and display elements from bigQ
System.out.print ("Contents of bigQ: ");
for(i=0; i < 26; i++) {
ch = bigQ.get();
if(ch != (char) 0) System.out.print(ch);
}
System.out.println ("\n");
System.out.println ("Using smallQ to generate errors.");
// Now, use smallQ to generate some errors

for (1i=0; 1 < 5; i++) {

Riccardo Flask 111 |
Page

JAVA for Beginners

System.out.print ("Attempting to store " +

(char) ('2' - 1));

smallQ.put ((char) ('2' - 1i));

System.out.println();

}

System.out.println();

// more errors on smallQ

System.out.print ("Contents of smallQ:

for (i=0;

i < 57 i++) |

ch = smallQ.get();

if(ch !=

}

}
Predicted Output:

Using bigQ to store

(char) 0) System.out.print (ch);

the alphabet.

Contents of bigQ: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Using smallQ to generate errors.

Attempting to store
Attempting to store
Attempting to store
Attempting to store
Attempting to store

Contents of smallQ:

Z
Y
X
W
V - Queue is full.

ZYXW — Queue is empty.

")

Riccardo Flask

112 |
Page

JAVA for Beginners

The Enhanced ‘for’ Loop:

While studying loops we had mentioned the ‘enhanced for loop’. This special loop was designed to
cater for situations where one would need to manipulate each data item of an array. Declaration of

this for loop includes an iteration variable (itr-var), which is a variable that will be used to store

temporarily each item from a particular collection (e.g. array, vectors, lists, sets, maps):

for(type itr-var : collection) statement-block

The type of itr-var should be similar or compatible to the type of the data items held in the array.

Traditional vs. enhanced version:
Traditional:

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;

for(int i=0; i < 10; i++) sum += nums[i];
Enhanced:

int nums{] = {(1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int sum = 0; x will automatically

. increment
for(int x: nums) sum += x;

Sample program:
class ForEach {
public static void main (String argsl[]) {

int nums(] = { 1, 2, 3, 4, 5, o, 7, 8, 9, 10 };
int sum = 0;

// Use for-each style for to display and sum the values.
for (int x : nums) {
System.out.println("Value is: " + x);

sum += X;

System.out.println ("Summation: " + sum);

Riccardo Flask

113 |
Page

JAVA for Beginners

Predicted Output:
Value is: 1
Value is: 2
Value is: 3
Value is: 4
Value is: 5
Value is: 6
Value is: 7
Value is: 8
Value is: 9
Value 1is: 10

Summation: 55

Strings

The string data type defines is used in Java to handle character strings. It is important to note that in

Java, strings are Objects. Every time we write an output statement, the characters we enclose within

the quotes are automatically turned into a String object,
System.out.println (“Hello World”);
Strings are constructed just like other objects, e.g.
String str = new String (“Hello”);
String str2 = new String (str); //str2 = “Hello”
String str = “I love Java.”;
Basic String example:
// Introduce String.
class StringDemo {
public static void main (String argsl[]) {

// declare strings in various ways

Riccardo Flask

114 |
Page

JAVA for Beginners

String strl
String str2

String str3

new String("Java strings are objects.");

"They are constructed various ways.";

new String(str2);

System.out.println(strl);

System.out.println(str2);

System.out.println(str3);

}
}

Predicted Output:

Java strings are objects.

They are constructed various ways.

They are constructed various ways.

Using String Methods

// Some String operations.

class StrOps {

public static void main (String argsl[]) {

String strl =

"When it comes to Web programming,

String str2

new String(strl);

String str3 = "Java strings are powerful.";

int result, idx;

char ch;

System.out.println ("Length of strl: " +
strl.length());

// display strl, one char at a time.

for (int i=0; i < strl.length(); i++)

Java is #1."

Riccardo Flask

115 |
Page

JAVA for Beginners

System.out.print (strl.charAt(i));
System.out.println();
if(strl.equals(str2))

System.out.println("strl equals str2");
else
System.out.println("strl does not equal str2");
if(strl.equals(str3))
System.out.println("strl equals str3");
else

System.out.println("strl does not equal
str3");

result = strl.compareTo(str3);
if (result == 0)
System.out.println("strl and str3 are equal");
else if (result < 0)
System.out.println("strl is less than str3");
else

System.out.println("strl is greater than
str3");

// assign a new string to str2
str2 = "One Two Three One";
idx = str2.indexOf ("One");

System.out.println("Index of first occurrence
of One: " + idx);

idx = str2.lastIndexOf ("One") ;

System.out.println("Index of last occurrence of
One: " + idx):;

}

Riccardo Flask

116 |
Page

JAVA for Beginners

Predicted Output:

Length of strl: 45

When

strl

strl

strl

it comes to Web programming, Java 1is #1.
equals str2
does not equal str3

is greater than str3

Index of first occurrence of One: 0

Index of last occurrence of One: 14

String Arrays

// Demonstrate String arrays.

class StringArrays {

public static void main (String argsl[]) {

String strs[] = { "This", "is", "a", "test." };
System.out.println ("Original array: ");
for (String s : strs)

System.out.print(s + " ");

System.out.println ("\n");

// change a string

strs[1] "was";

strs[3]

"test, too!";
System.out.println ("Modified array: ");
for(String s : strs)

System.out.print(s + " ");

Riccardo Flask 117 |
Page

JAVA for Beginners

Predicted Output:

Original array:
This is a test.
Modified array:

This was a test, too!

Strings are said to be ‘immutable’, i.e. they cannot be changed once they are created. However we
can use the method substring() to capture part of a string. The method is declared as follows:

String substring (int startindex,

Example:
// Use substring() .

class SubStr {

public static void main (String argsl])

int endlndex)

{

String orig = "Java makes the Web move.";

// construct a substring

String subst = orig.substring(5, 18);
System.out.println("Original String: " + orig);
System.out.println("Sub String: " + subst);
}
}
Note: @
/
0|12 4 |5 7 9110|1112 |13 |14 | 15|16 |17 (18 |19 |20 |21 |22 | 23
J | a m k s t |h |e Wle | b mi|o |v |e
Predicted Output:
Original String: Java makes the Web move.
Sub String: makes the Web
Riccardo Flask 118 |

Page

| JAVA for Beginners

§%; Understanding the “public static void main(String args[])” line of code - FYI only

This line really represents a method call, main, having ‘args’ (a string array) as parameter. This array
stores command-line arguments (CLI arguments), which is any information which follows the
program name. Consider the following examples:

Example 1

// Display all command-line information.

class CLDemo {
public static void main(String args[]) {
System.out.println ("There are " + args.length +
" command-line arguments.");
System.out.println ("They are: ");
for (int i=0; i<args.length; i++)

System.out.println("arg[" + i + "]1: " + args[i]);

If we execute this program in a DOS shell® (not via IDE), we use the following syntax:

C:\ java CLDemo one two three (pressenter)

* put your file (*.class, after compilation) in root drive. Then Start > Run > cmd

Riccardo Flask 119 |
Page

JAVA for Beginners

BN Command Prompt

Microseoft Windows [Uersion 6.8.606881
Copyright (c? 2806 Microsoft Corporation. All rights reserved.

C:“Usersz“Riccardoicd. .
C:xUsersrcd..

C:~>java CLDemo one two three

The following output will be generated:
There are 3 command-line arguments.
They are:
arg[0]: one
arg[l]: two
arg[2]: three
Example 2:
// A simple automated telephone directory.
class Phone {
public static void main (String argsl[]) {
String numbers[][] = {
{ "Tom", "555-3322" 1},
{ "Mary", "555-8976" 1},
{ "Jon", "555-1037" 1},
{ "Rachel"™, "555-1400" }
i
int i;

if (args.length != 1)

JAVA for Beginners
System.out.println ("Usage: java Phone <name>");

else {

for (1i=0; i<numbers.length; i++) {

if (numbers[i] [0] .equals(args[0])) {
System.out.println (numbers[i] [0] + ": " +
numbers([i][1]);
break;
}
}
if (i == numbers.length)
System.out.println ("Name not found.");
}
}
}
Execute the code as follows (after compilation):
C>java Phone Mary
Mary: 555-8976
121 |

Riccardo Flask
Page

JAVA for Beginners

Vector and ArrayList
A vector can be defined simply as an Array which can ‘grow’. Nowadays it has been replaced by
ArrayList. The following code snippets are examples of implementing Vectors:

// beware Vector's List-compatible set method with the
parameters reversed:

vector.set (i, object);

// yet in the old form:

vector.setElementAt (object, i);

// get has two forms, the new List-compatible:
Object o = vector.get(1);

// or the old form:

Object o = vector.elementAt(i);

// there is no such thing as:

Object o = vector.getElementAt(1);

// similarly add has two forms: the new list-compatible:
vector.add (o);

// or the old form:

vector.addElement (o);

[Further details can be obtained by referring to text book]

As already stated in the previous page ArrayList have replaced Vector in versions of Java following
1.1. ArrayList are much faster than Vector. You can add items to an ArrayList either at a particular
index, ‘i', or simply at the end of the list. The methods used are as follows:

// adding an element to the middle of a list
arrayList.add(i, object); //i = index

// adding an element to the end of a list
arrayList.add(object);

If one tries to add an element to a list, and this operation results in an error one would get an
ArraylndexOutOfBoundsException. Possible sources of error include:

e Using a negative index.
e Indexing past the current end of the ArrayList with get or set.

Riccardo Flask 122 |
Page

JAVA for Beginners

e Doing a lastIndexOf starting out past the end.
Code snippets used to remove items from an ArrayList:
// Removing item at particular index
arrayList.remove(i, object);

To remove an item at an unknown index, one must first search for it (better if list is sorted). To
remove elements from the entire list one must work backwards since the list shrinks as we go.

// removing empty Strings.

for (int i=arraylist.size(); i>=0; i--) {
String element = (String)arrayList.get(i);
if (element == null || element.length() == 0)

{

arrayList.remove (i) ;

}

else

break;

To remove undesirable elements from the head end of a list one has to work forwards without
incrementing, always working on element 0. The list shrinks as we go.

// removing empty Strings.

while (arrayList.size() > 0)
{
String element = (String)arrayList.get(0);
if (element == null || element.length() == 0)

{

arrayList.remove (0) ;

Riccardo Flask 123 |
Page

JAVA for Beginners

else

break;

To delete the last ‘n’ elements from the list one can use the following:
arrayList.setSize(arrayList.size() - n);
Or to delete a portion of it:

arrayList.subList(from, to).clear();

Once all the unwanted items have been removed, unless the list will grow again, it is best to use the
method ArrayList.trimToSize(). One has to note that some programmers prefer to convert ArrayLists
into arrays to perform certain functions as it is much faster. Once done the arrays can be converted
back to ArrayLists.

Sample code:

import java.util.ArrayList;
public class AraryListDemo ({
public static void main (String[] args) ({
ArrayList al = new ArrayList():
System.out.print ("Initial size of al : " 4+ al.size()):;
System.out.print ("\n");

//add.elements to the array list
al.add("Cc");

al.add("A");
al.add("E");
al.add("B");
al.add("D") ;
al.add ("F");
al.add(1,"A2");//inserts "A2" into array at index 1

Riccardo Flask 124 |
Page

JAVA for Beginners

System.out.print ("size of al after " + al.size());
System.out.print ("\n");

//display the array list
System.out.print ("contents of al: " + al);
System.out.print ("\n");

//Remove elements from the array list

al.remove ("F") ;

al.remove (2) ;

System.out.print ("size after deletions : " + al.size());
System.out.print ("\n") ;

System.out.print ("contents of al:" + al);

Predicted Output:

Initial size of al: O

size of al after 7

contents of al: [C, A2, A, E, B, D, F]
size after deletions : 5

contents of al:[C, A2, E, B, D]

Sorting Collections using Comparable Interface (collection of methods):

Employee.java
public class Employee implements Comparable {

int EmpID;
String Ename;
double Sal;
static int i;

public Employee () {
EmpID = i++;
Ename = "dont know";
Sal = 0.0;

public Employee (String ename, double sal) {

Riccardo Flask 125 |
Page

JAVA for Beginners

EmpID = i++;
EFname ename;
Sal = sal;

public String toString () {
return "EmpID " + EmpID + "\n" + "Ename " + Ename + "\
n" + "sal" + Sal;
}

public int compareTo (Object ol) {
if (this.Sal == ((Employee) ol).Sal)
return 0;
else if ((this.Sal) > ((Employee) o0l).Sal)
return 1;
else
return -1;

ComparableDemo.java
import java.util.*;

public class ComparableDemo {

public static void main (String[] args) {

List tsl = new ArrayList();
tsl.add (new Employee
tsl.add (new Employee
tsl.add (new Employee
tsl.add (new Employee
Collections.sort(tsl);
Iterator itr = tsl.iterator();

"Tom",40000.00)) ;
"Harry",20000.00)) ;
"Maggie",50000.00));

(
(
(
("Chris",70000.00));

while (itr.hasNext ()) {
Object element = itr.next();
System.out.println (element + "\n");

Riccardo Flask 126 |
Page

JAVA for Beginners

Predicted Output:
EmpID 1
Ename Harry

Sal20000.0

EmpID O
Fname Tom

Sal40000.0

EmpID 2
Ename Maggie

Sal50000.0

EmpID 3
Ename Chris

Sal70000.0

The following is another example of sorting. Please note that this code is being presented for
reference. The term package is used to group related pieces of a program together. All the related
classes will be stored in a sort of folder:

package test;

import java.util.*;

public class Farmer implements Comparable {
String name;
int age;

long income;

public Farmer (String name, int age) {

Riccardo Flask 127 |
Page

JAVA for Beginners

this.name = name;

this.age = age;

public Farmer (String name, int age,long income)

{
this.name = name;
this.age = age;
this.income=income;

}

public String getName ()

{

return name;

public int getAge ()
{

return age;

public String toString()

{

return name + " : " + age;

// natural order for this class

public int compareTo (Object o)

Riccardo Flask 128 |
Page

JAVA for Beginners

return getName () .compareTo(((Farmer)o) .getName())

static class AgeComparator implements Comparator

{

public int compare (Object ol, Object 02)

{

Farmer pl = (Farmer)ol;

(Farmer)o2;

Farmer p2
if(pl.getIncome ()==0 && p2.getIncome ()==0)
return pl.getAge () - p2.getAge();

else

return (int) (pl.getIncome () -
p2.getIncome()) ;

}

public static void main (String[] args)

{
List farmer = new ArrayList();
farmer.add(new Farmer ("Joe", 34));
farmer.add(new Farmer ("Ali", 13));
farmer.add(new Farmer ("Mark", 25));

farmer.add (new Farmer ("Dana", 66));

Collections.sort (farmer);

Riccardo Flask 129 |
Page

JAVA for Beginners

System.out.println("Sort in Natural order");

System.out.println("t" + farmer);

Collections.sort (farmer,
Collections.reverseOrder ())

System.out.println ("Sort by reverse natural order");

System.out.println("t" + farmer);

List farmerIncome = new ArrayList();
farmerIncome.add (new Farmer ("Joe", 34,33));
farmerIncome.add(new Farmer ("Ali"™, 13,3));
farmerIncome.add(new Farmer ("Mark", 25,666));

farmerIncome.add(new Farmer ("Dana", 66,2));

Collections.sort (farmer, new AgeComparator()):;
System.out.println("Sort using Age Comparator");

System.out.println("t" + farmer);

Collections.sort (farmerIncome, new AgeComparator()):;

System.out.println ("Sort using Age Comparator But
Income Wise");

System.out.println("t" + farmerIncome);

public long getIncome () {
return income;

}

Riccardo Flask 130 |
Page

JAVA for Beginners

public void setIncome (long income) {

this.income = income;

public void setAge (int age) {

this.age = age;

public void setName (String name) {

this.name = name;

}
Predicted Output:
Sort in Natural order
[Ali : 13, Dana : 66, Joe : 34, Mark : 25]
Sort by reverse natural order
[Mark : 25, Joe : 34, Dana : 66, Ali : 13]
Sort using Age Comparator
[Al1 : 13, Mark : 25, Joe : 34, Dana : 66]
Sort using Age Comparator But Income Wise

[Joe : 34, Ali : 13, Mark : 25, Dana : 66]

The following simple example utilizes the Scanner” for input:
//import package containing scanner

import java.util.*;

* Scanner is part of the java.util package and can be used for input (keyboard/file)
Riccardo Flask 131 |

Page

JAVA for Beginners

//read an integer and return it to user
public class Scan {
public static void main (String args([]) {

//creating instance
Scanner kb = new Scanner (System.in);
System.out.println ("Enter a number: ");
//read integer
int x = kb.nextInt();

System.out.println ("Number: " + x);

}

Using the scanner to capture text (string variable) from keyboard:

import java.util.*;

public class Alphabetize {

public static void main (String[] args) {
//... Declare variables.
Scanner in = new Scanner (System.in);

ArrayList<String> words = new ArrayList<String>();

//... Read input one word at a time.

System.out.println ("Enter words. End with EOF (CTRL-Z
then Enter)");

//... Read input one word at a time, adding it to an
array list, hasNext to read more than one word

Riccardo Flask 132 |
Page

JAVA for Beginners

while (in.hasNext ()) {

words.add (in.next ()) ;

//... Sort the words.

Collections.sort (words) ;

//... Print the sorted list.

System.out.println ("\n\nSorted words\n") ;

for (String word : words) {

System.out.println (word) ;

}
Using the Scanner is the most suggested method compared to the Keyboard Class or the
System.in.read . Remember that the Keyboard class was created by you (or given) and is not a

standard in Java.

133 |

Riccardo Flask

Page

| JAVA for Beginners

File Operations in Java

Through file handling, we can read data from and write data to files besides doing all sorts of other
operations. Java provides a number of methods for file handling through different classes which are
a part of the “java.io” package. The question can arise in the mind of a new programmer as to why
file-handling is required. The answer of this question would be in two parts, why do we need to read
data from the files and why do we need to save it (write it) to a file.

To answer the first part, Let us suppose that we have a very large amount of data which needs to be
input into a program, Something like a 1000 records, If we start inputting the data manually and
while we are in half-way through the process, there is a power-failure, then once power is restored,
the entire data has to be input again. This would mean a lot of extra work, an easier approach would
be to write all the records in a file and save the file after writing 10 or so records, in this case even if
there is a power-failure, only some records would be lost and once power is restored, there would
be only a few records that would need to be input again. Once all the records are saved in that file,
the file-name can be passed to the program, which can then read all the records from the file.

For the second part, consider a system which needs to record the time and name of any error that
occurs in the system, this can be achieved through saving the data into a file and the administrator
can view the file any time he/she wishes to view it.

Note that if you use a “/” in a path definition in Java in Windows, the path would still resolve
correctly and if you use the Windows conventional “\”, then you have to place two forward slashes
“\\” as a single “\” would be taken as an escape-sequence.

import java.io.*;

public class streams

{

public static void main (String []args)

{
File fl=new File("Folder/FILE");
File f2=new File("Folder/FILE1");
String s;
if(fl.exists())
Riccardo Flask 134 |

Page

JAVA for Beginners

if(fl.isFile())
{

System.out.println("File Name is
"+fl.getName ())

s=fl.getParent();

File f3=new File(s);

fl.renameTo (new File ("Folder/abc"));

f2.delete () ;

if (f3.isDirectory())

{

System.out.println (f2.getPath());

else

System.out.println ("Not a File");

}

The output of the program is:

File Name is FILE

Riccardo Flask 135 |
Page

JAVA for Beginners

Folder

If successfully run, the ” FILE ” file inside the folder ” Folder ” will be renamed to ” abc ” and the ”
FILE1 ” file will be deleted.

Here is an example of a program that reads its own first six bytes, we have:

//0123

import java.io.*;

public class read
{
public static void main (String []args)
{
int s=6;
int b[]=new int[6];
char c[]=new char[6];
try
{

FileInputStream f = new
FileInputStream("read.java");

for (int i=0; i<6; i++)

o
'_l.
Il

f.read();

(char) b[i];

Q
'_l.
Il

System.out.println ("First 6 bytes of the file

for (int i=0;i<6;i++)

Riccardo Flask 136 |
Page

JAVA for Beginners

System.out.print (b[i]+" ");

System.out.println("nnFirst 6 Bytes as

characters :");
for (int i=0;i<6;i++)
System.out.print (c[i]);

}

catch (Exception e)

{

System.out.println ("Error");

Predicted Ouptut:

First 6 bytes of the file are

47 47 48 49 50 51

First 6 Bytes as characters are

//0123

Notice that the FilelnputStream object is created inside a try-catch block since if the specified-file
does not exist, an exception is raised. In the same way to write data to a file byte-by-byte, we have:

import java.io.*;

public class writer

{

Riccardo Flask 137 |
Page

JAVA for Beginners

public static void main(String [Jargs) throws IOException

{

String s="Hello";

byte b[]=s.getBytes();

FileOutputStream f=new FileOutputStream("file.txt");

int 1=0;

while (i < b.length)

}

If the file called file.txt does not exist, it is automatically created. If we place a true in the constructor
for the FileOutputStream, then the file would be opened in append mode.

Template to read data from disk

import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;

class {

public static void main (String argsl])

throws FileNotFoundException {

Scanner diskScanner = new Scanner (new
File(\\ //)),.
Riccardo Flask 138 |

Page

JAVA for Beginners

diskScanner.nextInt () ;

diskScanner.nextDouble () ;

diskScanner.nextLine () ;

diskScanner.findInLine (“.”) .charAt (0);

// etc

The following program reads item from a file on disk. You have to create the file using a text editor
(MS Notepad), and save the file in the same location as your classes. You can use the following
examples for the riddles file (save the file as riddles.txt):

What is black and white and red all over?

An embarrassed zebra

What is black and white and read all over?

A newspaper

What other word can be made with the letters of ALGORITHM?

LOGARITHM

Program Code:
public class Riddle{
private String question;
private String answer;
public Riddle(String g, String a) {
question = qg;

answer = ay

public String getQuestion() {

Riccardo Flask 139 |
Page

JAVA for Beginners

return question;
}
public String getAnswer () {

return answer;

}

Main Program:

import java.io.*;

import java.util.Scanner;

public class RiddleFileReader

{ private Scanner fileScan; // For file input

private Scanner kbScan; // For keyboard input

public RiddleFileReader (String fName)

{ kbScan = new Scanner (System.in);
try
{ File theFile = new File (fName) ;

fileScan = new Scanner (theFile);

fileScan = fileScan.useDelimiter ("\r\n"):;

} catch (IOException e)

{ e.printStackTrace();

} // catch()
} // RiddleFileReader () constructor
public Riddle readRiddle ()
{ String ques = null;

String ans = null;

Riddle theRiddle = null;

Riccardo Flask

140 |
Page

JAVA for Beginners

if (fileScan.hasNext ())
ques = fileScan.next();
if (fileScan.hasNext ())
{ ans = fileScan.next();
theRiddle = new Riddle(ques, ans);
Y // if
return theRiddle;

} // readRiddle ()

public void displayRiddle (Riddle aRiddle)

{ System.out.println (aRiddle.getQuestion()) ;
System.out.print ("Input any letter to see answer:");
String str = kbScan .next(); // Ignore KB input
System.out.println (aRiddle.getAnswer());
System.out.println () ;

} // displayRiddle ()

public static void main (String[] args)

{ RiddleFileReader rfr =

new RiddleFileReader ("riddles.txt");
Riddle riddle = rfr.readRiddle()
while (riddle != null)
{ rfr.displayRiddle (riddle) ;

riddle = rfr.readRiddle () ;

Riccardo Flask 141 |
Page

|]AVAferegnnmS

Template to write (save) data to disk

import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintStream;

class {

public static void main(String argsl(])
throws FileNotFoundException {
PrintStream diskWriter =

new PrintStream (™ ")

diskWriter.print () ;
diskWriter.println() ;

// Etc.

Riccardo Flask 142 |
Page

JAVA for Beginners

Introduction to GUI using AWT /Swing

Java GUIs were built with components from the Abstract Window Toolkit (AWT) in package
java.awt. When a Java application with an AWT GUI executes on different Java platforms, the
application's GUI components display differently on each platform. Consider an application that
displays an object of type Button (package java.awt). On a computer running the Microsoft
Windows operating system, the Button will have the same appearance as the buttons in other
Windows applications. Similarly, on a computer running the Apple Mac OS X operating system, the
Button will have the same look and feel as the buttons in other Macintosh applications.

Swing GUI components allow you to specify a uniform look-and-feel for your application across all
platforms or to use each platform's custom look-and-feel. An application can even change the look-
and-feel during execution to enable users to choose their own preferred look-and-feel. Swing
components are implemented in Java, so they are more portable and flexible than the original Java
GUI components from package java.awt, which were based on the GUI components of the
underlying platform. For this reason, Swing GUI components are generally preferred.

Swing advantages:

e Swing is faster.
e Swing is more complete.
e Swing is being actively improved.

AWT advantages:

e AWT is supported on older, as well as newer, browsers so Applets written in AWT will run on
more browsers.

e The Java Micro-Edition, which is used for phones, TV set top boxes, PDAs, etc, uses AWT, not
Swing.

Using Swing to create a small Window
[Refer to the code on the next page]

1. First we have to import all classes in the javax.swing package, although we use only the
JFrame class in the following example. "Windows" are implemented by the JFrame class.

2. Make the application quit when the close box is clicked.

After the window has been constructed in memory, display it on the screen. The setVisible
call also starts a separate thread to monitor user interaction with the interface.

4. When we are finished setting up and displaying the window, don't call System.exit(0). We
don't want to stop the program. Although main returns, execution continues because the
call to setVisible(true) created another execution thread, A GUI program builds the user
interface, then just "goes to sleep" until the user does something.

Riccardo Flask 143 |
Page

JAVA for Beginners

import javax.swing.*;
class FirstWindow {
public static void main (String[] args) {
JFrame window = new JFrame () ;

window.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
window.setVisible (true);

}

The window created can be resized and dragged around. One can also minimize, maximize or close
the window. Now that we created a window we can set the text which appears in the title bar:

import javax.swing.*;
class MyWindow2 extends JFrame
public static void main (String[] args) ({

MyWindow?2 window = new MyWindow2 () ;
window.setVisible (true) ;
}
public MyWindow?2 () { //constructor
setTitle ("My Window Title using JFrame Subclass");
setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;

}

Inserting Text inside Window

import Jjava.awt.*; // required for FlowLayout.
import javax.swing.*;

class MyWindow3 extends JFrame {

public static void main (String[] args) ({

Riccardo Flask 144 |
Page

JAVA for Beginners

MyWindow3 window = new MyWindow3 () ;
window.setVisible (true) ;

}

public MyWindow3 () {
//Create content panel and set layout
JPanel content = new JPanel();
content.setlLayout (new FlowLayout()):;
//... Add one label to the content pane.
JLabel greeting = new JLabel ("Hello World.");

content.add (greeting) ;

//... Set window (JFrame) characteristics
setContentPane (content) ;

pack () ;

setTitle ("MyWindow using JFrame Subclass");
setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;

setLocationRelativeTo (null); // Centre window.

}

Creating a simple application implementing JButton, JTextfield and JLabel

import java.awt.*;
import javax.swing.*;

class DogYears extends JFrame {

private JTextField humanYearsTF new JTextField(3);

private JTextField dogYearsTF = new JTextField(3);

Riccardo Flask 145 |
Page

JAVA for Beginners

public DogYears () {
JButton convertBtn = new JButton ("Convert");

JPanel content = new JPanel () ;
content.setlLayout (new FlowLayout())

content.add (new JLabel ("Dog Years")):;
content.add(dogYearsTF) ;

content.add (convertBtn) ;

content.add (new JLabel ("Human Years")):;
content.add(humanYearsTF) ;

setContentPane (content); //window attributes
pack () ;

setTitle ("Dog Year Converter");
setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;

setLocationRelativeTo (null) ;

}
public static void main (String[] args) { //main
DogYears window = new DogYears();

window.setVisible (true) ;

}

The final touch to our application is to set the action to perform while the user interacts with the
application:

import java.awt.*;

import javax.swing.*;

import java.awt.event.*; // Needed for ActionListener
class DogYears?2 extends JFrame {

private static final int DOG_YEARS PER HUMAN YEAR = 7;

private JTextField humanYearsTF new JTextField(3);

new JTextField (3);

private JTextField dogYearsTF

Riccardo Flask 146 |
Page

JAVA for Beginners

public DogYears2 () {

JButton convertBtn = new JButton ("Convert");
convertBtn.addActionlListener (new ConvertBtnListener()):
_dogYearsTF.addActionListener (new ConvertBtnListener());
_humanYearsTF.setEditable (false);

JPanel content = new JPanel();

content.setlLayout (new FlowLayout())

content.add (new JLabel ("Dog Years"));
content.add(dogYearsTF) ;
content.add (convertBtn) ;
content.add (new JLabel ("Human Years"));
content.add(humanYearsTF) ;
setContentPane (content) ;
pack () ;
setTitle ("Dog Year Converter");
setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
setLocationRelativeTo (null); // Center window.
}
class ConvertBtnlListener implements ActionListener {

public void actionPerformed (ActionEvent e) {

String dyStr = dogYearsTF.getText();
int dogYears = Integer.parselnt (dyStr);

int humanYears = dogYears *
DOG YEARS PER HUMAN YEAR;

Riccardo Flask 147 |
Page

JAVA for Beginners

_humanYearsTF.setText ("" + humanYears);

public static void main(String[] args) {
DogYears2 window = new DogYears2();

window.setVisible (true) ;

}

Predicted Final Output:

i =

| £:| Dog Year Converter = | =[]

Dog Years |5 Comvert Human Years 35

Riccardo Flask

148 |
Page

	Introduction
	About JAVA
	OOP – Object Oriented Programming
	Part 1 - Getting Started
	The Java Development Kit – JDK
	My first Java program
	Using an IDE

	Variables and Data Types
	Variables

	(Test your skills – Example3
	Mathematical Operators
	Logical Operators
	Character Escape Codes
	(Test your skills – Example7
	Data Types
	Introducing Control Statements
	Blocks of Code

	(Test your skills – Example14
	The Math Class
	Scope and Lifetime of Variables
	Type Casting and Conversions
	Console Input
	Using the Keyboard Class
	Using the Scanner Class
	Using Swing Components

	Part 2 - Advanced Java Programming
	Control Statements - The if Statement
	Guessing Game (Guess.java)

	Nested if
	Guessing Game v.3

	if-else-if Ladder
	Ternary (?) Operator
	switch Statement (case of)
	Nested switch
	(Mini-Project – Java Help System (Help.java)
	Complete Listing

	The for Loop
	Multiple Loop Control Variable
	Terminating a loop via user intervention
	Interesting For Loop Variations
	Infinite Loops
	No ‘Body’ Loops
	Declaring variables inside the loop
	Enhanced For loop

	The While Loop
	The do-while Loop

	(Mini-Project 2– Java Help System (Help2.java)
	Complete listing

	Using Break to Terminate a Loop
	Terminating a loop with break and use labels to carry on execution

	Use of Continue (complement of Break)
	Continue + Label

	(Mini-Project 3– Java Help System (Help3.java)
	Complete Listing

	Nested Loops
	Class Fundamentals
	Definition
	The Vehicle Class
	Using the Vehicle class
	Creating more than one instance

	Creating Objects
	Reference Variables and Assignment
	Methods
	Returning from a Method
	Returning a Value
	Methods which accept Parameters:
	(Project: Creating a Help class from the Help3.java
	Method helpon()
	Method showmenu()
	Method isvalid()
	Class Help
	Main Program:

	Constructors
	Constructor having parameters
	Overloading Methods and Constructors
	Method Overloading
	Automatic Type Conversion for Parameters of overloaded Methods
	Overloading Constructors

	Access Specifiers: public and private
	Arrays and Strings
	Arrays
	One-dimensional Arrays
	Sorting an Array – The Bubble Sort
	Two-Dimensional Arrays:
	Different syntax used to declare arrays:
	Array References:
	The Length Variable:
	Using Arrays to create a Queue data structure **
	The Enhanced ‘for’ Loop:
	Traditional vs. enhanced version:

	Strings
	Using String Methods
	String Arrays
	(Understanding the “public static void main(String args[])” line of code – FYI only

	Vector and ArrayList
	Employee.java
	ComparableDemo.java

	File Operations in Java
	Template to read data from disk
	Template to write (save) data to disk

	Introduction to GUI using AWT/Swing
	Using Swing to create a small Window
	Inserting Text inside Window
	Creating a simple application implementing JButton, JTextfield and JLabel

