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  CHAPTER 4  

  Test Dimensionality 
and Factor Analysis  

 Imagine that a colleague wishes to use a personality inventory that includes the 
following six adjectives:  talkative ,  assertive ,  imaginative ,  creative ,  outgoing , and 
 intellectual.  For this brief questionnaire, participants are asked to consider the 

degree to which each adjective describes their personality in general. Your colleague 
asks for your opinion of this common, adjective-based form of personality assess-
ment. You consider the inventory for a moment, and you begin to wonder—what 
exactly does this inventory measure? Does it measure six separate facets of per-
sonality, with each facet being reflected by a single adjective? Or does it measure 
a single construct? If so, then what is that construct—what do these six adjectives 
have in common as a psychological characteristic or dimension? Or are there two 
or three separate dimensions reflected within these six adjectives? How will this 
questionnaire be scored? 

 Take a moment to think about the six adjectives on the short inventory, and 
group them into clusters that seem to share some common meaning. That is, group 
them in terms of their similarity to each other. Some people might suggest that the 
questionnaire includes only two sets of items. For example, some might argue that 
talkative, assertive, and outgoing are three variations on one attribute (let us call it 
“extraversion”) and that imaginative, creative, and intellectual are three variations 
on another attribute (let us call it “openness to experience”). From this perspective, 
responses to these six personality adjectives reflect two basic dimensions: one set of 
responses that are a function of an extraversion dimension and one set of responses 
that are the result of an openness-to-experience dimension. 

 In contrast, some people might suggest that the six adjectives reflect three dimen-
sions, not two. Specifically, “talkative,” “assertive,” and “outgoing” might go together, 
and “imaginative” and “creative” might go together, but “intellectual” is importantly 
different from the other five items. From this perspective, responses to the six items 
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reflect three basic dimensions. Put another way, these six test items essentially reflect 
three ways in which people differ from each other psychologically. 

 This example illustrates the issue of test dimensionality, which is a fundamental 
consideration in test development, evaluation, and use. There are at least three 
fundamental psychometric questions regarding the dimensionality of a test, and 
the answers to these questions have important implications for evaluating the psy-
chometric properties of any behavioral test, for appropriately scoring on a test, and 
for the proper interpretation of test scores. 

 In this chapter, we discuss the concept of dimensionality, the key questions related 
to dimensionality, and the implications that dimensionality has for test construc-
tion, evaluation, use, and interpretation. Indeed, as shown in Figure 4.1, the answers 
to the three key questions lead to three main types of tests: (1) unidimensional tests, 
(2) multidimensional tests with correlated dimensions, and (3) multidimensional 
tests with uncorrelated dimensions. Test developers and test users must understand 
which type of test is being developed or used, because these tests have important 
psychometric differences from each other. 

 Given the importance of understanding a test’s dimensionality, we also describe 
one way the dimensionality questions can be answered quantitatively. We describe 
the way in which test developers, test evaluators, and test users identify the number 
of dimensions reflected by a test, the meaning of those dimensions, and the degree 

Figure 4.1  Three Core Questions of Dimensionality, Three Types of Tests, and 
the Relevant Information From Exploratory Factor Analysis (EFA)
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to which the dimensions are associated with each other. A statistical procedure 
called  factor analysis  is an extremely useful tool in the psychometrician’s statistical 
toolbox. Although factor analysis can be a highly technical procedure, we will pres-
ent its general logic and use in a way that is accessible to those who do not have a 
great interest or background in advanced statistics. A basic understanding of factor 
analysis can provide a solid foundation for several important psychometric issues. 

 Test Dimensionality 

 If you step on a bathroom scale, the resulting number on the scale is a value that 
tells you something about one of your physical attributes or features—your weight. 
As a human being, you have many other physical attributes, including height, skin 
color, length of hair, and so on. When you weigh yourself, the number that repre-
sents your weight should not be influenced by attributes such as your hair color, 
your height, or your age. The “score” on the bathroom scale should (and does) 
reflect one and only one physical dimension. 

 Similarly, if we have a psychological test that yields some kind of number, then 
we would like to think of the number as a value representing a single psychological 
feature or attribute. For example, suppose you had a test of courage. If you have 
a test that produces scores that can be treated as if they are real numbers, then a 
person’s score on the test might indicate the amount of courage that he or she had 
when taking the test. We could then think of courage as an attribute of that person 
and the test score as an indication of the amount of the person’s courage. The score 
on the courage test  should  reflect one and only one psychological dimension. 

 As a general rule (but not always), when we measure a physical or psychologi-
cal attribute of an object or a person, we intend to measure a  single  attribute of 
that object or person. In the case of weight, we try to measure weight so that our 
measurement is not affected by other attributes of the person being measured. 
Furthermore, it would not be reasonable to measure someone’s weight, measure his 
or her hair length, and then add those two scores together to form a “total” score. 
Clearly, the total score would be a blend of two physical dimensions that are almost 
totally unrelated to each other, and the combination of the two scores would have 
no clear interpretation. That is, the total score would not have clear reference to a 
single physical attribute and thus would have no clear meaning. Similarly, it would 
not be reasonable to measure someone’s courage, measure his or her verbal skill, 
and then add those two scores together to form a “total” score. Again, the total score 
would be a blend of two dimensions that are clearly unrelated to each other (i.e., 
one’s courage is probably unrelated to one’s level of verbal skill). Combining test 
scores from two independent psychological attributes produces a total score that 
has no clear meaning. 

 As discussed in our presentation of composite scores, the scores from a wide 
variety of psychological tests are based on multiple questions or test items. For 
example, personality tests range in length from 5 or fewer questions to several 
hundred questions. In scoring such tests, item responses are combined in some 
way, usually by computing one or more scores of some kind, and these combined 
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scores are used to reflect the psychological attribute(s) of interest. These scores are 
referred to as composite scores, and ideally, a composite score reflects one and only 
one dimension. However, a test may include items that reflect more than a single 
dimension. 

 Three Dimensionality Questions 

 As mentioned earlier, there are at least three core questions regarding a test’s 
dimensionality. First, how many dimensions are reflected in the test items? As we 
shall see, some tests reflect one and only one dimension, while others reflect two 
or more psychological dimensions. This issue is important because each dimension 
of a test is likely to be scored separately, with each dimension requiring its own 
psychometric analysis. 

 The second core dimensionality question is this: If a test has more than one 
dimension, then are those dimensions correlated with each other? As we shall see, 
some tests have several dimensions that are somewhat related to each other, while 
other tests have several dimensions that are essentially independent. This issue is 
important, in part, because the nature of the associations among a test’s dimensions 
has implications for the meaningfulness of a “total score” for a test. 

 Third, if a test has more than one dimension, then what  are  those dimensions? 
That is, what psychological attributes are reflected by the test dimensions? For 
example, in the six-adjective personality test described previously, does the first 
dimension reflect the psychological attribute of extraversion or some other attri-
bute? The importance of this issue should be fairly clear—if we score and interpret 
a dimension of a test, we must understand the score’s psychological meaning. 

 Figure 4.1 summarizes these questions and illustrates their connections to three 
different types of tests. These types of tests have different properties, different 
implications for scoring and for psychometric evaluation, and ultimately different 
psychological implications. 

 Unidimensional Tests 

 The first question regarding test dimensionality concerns the number of 
dimensions reflected in a set of test items. Some tests include items that reflect a 
single psychological attribute, and others include items that reflect more than one 
 attribute. 

 When a psychological test includes items that reflect only a single attribute of a 
person, this means that responses to those items are driven only by that attribute 
(and, to some degree, by random measurement error—see Chapters 5–7). In such 
cases, we say that the test is  unidimensional , because its items reflect only one psy-
chological dimension. 

 Consider a multiple-choice geometry exam given in a classroom. Typically, a 
student takes the exam and receives a score based on the number of questions that 
he or she answers correctly. The student’s score is then interpreted as a measure of 
the amount of his or her “knowledge of geometry.” This interpretation makes sense 
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only if the answers to all the test items truly require knowledge of geometry, and 
 only  knowledge of geometry. For example, if we can believe that the test does not 
(mistakenly) include algebra items, calculus items, or vocabulary items in addi-
tion to geometry items, then we can indeed have some confidence in interpreting 
test scores as reflecting knowledge of geometry. That is, we could assume that the 
answers to each of the questions on the test are affected by that single psychological 
attribute. Such a test would be thought of as unidimensional. In addition, the test 
items or questions would have the property of  conceptual homogeneity —responses 
to each item would be a function of the same psychological attribute. 

 The concept of a unidimensional test is illustrated in Figure 4.2. This figure 
uses formatting that is standard for graphically representing a test’s dimensional-
ity (or factorial structure, as we shall describe later). In such figures, a circle or 
oval represents a hypothetical psychological attribute or latent variable that affects 
participants’ responses to test questions. Returning to the geometry test example, 
the circle would represent “knowledge of geometry” because it is the psychological 
property that (supposedly) determines whether a student answers the test items 
correctly. Correspondingly, in figures like Figure 4.2, squares or rectangles repre-
sent responses to each of the test questions. Finally, the arrows’ directionality (i.e., 
they point from the attribute to the responses) represents the idea that the psycho-
logical attribute affects responses to test questions. For example, they represent the 
assumption that knowledge of geometry (as a psychological ability) is what affects 
students’ answers to the test questions. Because it shows a single psychological attri-
bute affecting participants’ responses, this figure illustrates a unidimensional test. 

 As we have mentioned, a test’s dimensionality has implications for its scoring, 
evaluation, and use. For a unidimensional test, only a single score is computed, 
reflecting the single psychological attribute measured by the test. That is, all the 
items are combined in some way (usually through averaging, summing, or count-
ing) to form a composite or “total” score. For example, if it is indeed unidimen-
sional, the geometry test produces a single score (e.g., the total count of the number 
of correctly answered questions) reflecting “knowledge of geometry.” In terms of 

Figure 4.2  Unidimensional Test
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psychometric evaluation, psychometric quality is evaluated for the single score that 
is obtained from a unidimensional test. In later chapters, we shall discuss reliability 
and validity, which reflect the psychometric quality of test scores. For unidimen-
sional tests, reliability and validity should be estimated and evaluated for the total 
score produced by the test. In terms of test use, test users compute and interpret the 
total score produced by a unidimensional test. 

 Multidimensional Tests With Correlated 
Dimensions (Tests With Higher-Order Factors) 

 When a psychological test includes items reflecting more than one psychologi-
cal attribute, the test is considered multidimensional. In such cases, we confront a 
second dimensionality question—are the test’s dimensions associated with each 
other? As shown in Figure 4.1, the answer to this question differentiates two types 
of tests. When a test has multiple dimensions that are correlated with each other, 
the test can be considered a  multidimensional test with correlated dimensions  (this 
has also been called a test with higher-order factors). 

 Intelligence tests such as the Wechsler Intelligence Scale for Children (WISC-IV) 
(Wechsler, 2003a, 2003b) and the Stanford-Binet (SB5) (Roid, 2003) are examples 
of multidimensional tests with correlated dimensions. These tests include groups of 
questions that assess different psychological attributes. The groups of questions are 
called subtests, and they each reflect a different facet of intelligence. For example, 
the SB5 has five subtests: (1) one to measure fluid reasoning, (2) one to measure 
general knowledge, (3) one to measure quantitative processing ability, (4) one to 
measure visual-spatial processing ability, and (5) one that is thought to measure 
working memory. Research by test developers and test evaluators has shown that 
the subtests of the SB5 are correlated with each other. That is, a participant who 
scores relatively high on one subtest is likely to score relatively high on the other 
subtests as well. 

 As we have mentioned, a test’s dimensionality has important implications for 
the scoring, evaluation, and use of the test. Multidimensional tests with correlated 
dimensions can produce a variety of scores. Typically, each subtest has its own sub-
test score. In principle, each subtest is, itself, unidimensional, and the questions in 
each subtest are conceptually homogeneous. For example, the quantitative process-
ing subtest of the SB5 might require a test taker to answer 10 questions. Presumably, 
responses to each of those 10 questions reflect only quantitative processing and not 
one of the constructs represented by the other subtests. That is, a person’s responses 
to the 10 questions are affected only by the person’s quantitative processing skills 
and not some other psychological attribute. If a subtest is unidimensional, then the 
subtest’s score is interpretable with regard to a single psychological attribute. 

 In addition to scores for each subtest, multidimensional tests with correlated 
dimensions are often scored in a way that produces a total score, combined across 
several subtests. That is, subtest scores are often combined with each other (again, 
either through summing or by averaging the scores) to produce a  total test score.  
For example, the five subtest scores from the SB5 are combined to form an overall 
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“full-scale” score representing general intelligence, or  g . We can think of  g  (a general 
psychological attribute) as affecting a variety of more specific psychological attri-
butes, which in turn affect the way people answer the test questions. 

 This type of test structure is presented in Figure 4.3. Note that there are two 
levels of psychological attributes. Responses to each test question are affected by a 
specific attribute, or factor. For example, an individual’s responses to the questions 
on the quantitative processing subtest of the SB5 are affected by his or her psy-
chological ability to process quantitative information. In contrast, an individual’s 
responses to the questions on the visual–spatial processing subtest of the SB5 are 
affected by his or her psychological ability to process visual–spatial information. In 
addition to these specific psychological attributes, there is a general psychological 
attribute affecting each specific attribute. For example, an individual’s abilities to 
process quantitative information and to process visual–spatial information are par-
tially determined by his or her general cognitive ability, or intelligence. This general 
attribute is often called a  higher-order factor  because it is at a more general level (or 
“order”) than the specific factors or attributes. 

 In terms of test evaluation, multidimensional tests are different from unidimen-
sional tests. Recall that a unidimensional test has one and only one score and this 
score is evaluated with regard to its psychometric quality. In contrast, multidimen-
sional tests have a score for each subtest, and each subtest score is evaluated with 
regard to its psychometric quality. It is possible that a multidimensional test could 
have some subtests that have reasonable psychometric quality and other subtests 
that have poor psychometric quality. Therefore, each subtest requires psychometric 
examination. For example, the developers and users of the SB5 have examined 
carefully the reliability and validity of each of its five subtests. In addition, a 

Figure 4.3  Multidimensional Test With Correlated Dimensions (i.e., a Higher-
Order Factor Test)
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 multidimensional test with correlated dimensions may have a total test score that 
is computed across its subtests. Thus, this total score also requires psychometric 
evaluation. For example, the developers and users of the SB5 have examined the 
reliability and validity of its full-scale score. 

 In terms of test use, multidimensional tests offer a variety of options. Test users 
could use any or all of the subtest scores, depending on their relevance to the 
research or practical context. In addition, test users could use a total test score from 
a test with correlated dimensions if such a score is computed and has acceptable 
psychometric properties. 

 Multidimensional Tests With Uncorrelated Dimensions 

 As we discussed, the second dimensionality question regards the degree to which 
a multidimensional test’s dimensions are associated with each other (see Figure 4.1). 
If a test’s dimensions are not associated with each other (or are only weakly associ-
ated with each other), then the test can be considered a  multidimensional test with 
uncorrelated dimensions.  

 Several personality tests are multidimensional with dimensions that are gener-
ally treated as if they are uncorrelated. For example, a test called the NEO Five 
Factor Inventory (NEO-FFI; Costa & McCrae, 1992) is a 60-item questionnaire 
reflecting five dimensions, or factors of personality. That is, the NEO-FFI is 
designed to measure five relatively independent personality attributes, and these 
five attributes are not typically treated as reflecting any higher-order factors. Test 
takers receive five scores—one for each dimension—and each one is itself treated as 
if it were unidimensional. In a sense, such tests could be viewed as a set of unrelated 
unidimensional tests that are presented with their items mixed together. 

 With regard to scoring, evaluation, and use, multidimensional tests with uncor-
related dimensions are similar to multidimensional tests with correlated dimen-
sions, with one important exception. For tests with uncorrelated dimensions, no 
total test score is computed. That is, a score is obtained for each dimension, but the 
dimensions’ scores are not combined to compute a total test score. Furthermore, 
each of the dimension scores is evaluated in terms of psychometric quality, and 
each is potentially used by researchers and practicing psychologists. For example, 
the NEO-FFI produces only five scores—one for each of the five factors or dimen-
sions; however, no total test score is computed for the NEO-FFI. 

 This type of test structure is presented in Figure 4.4. Similar to the multidimen-
sional test presented in Figure 4.3, there are two psychological attributes, each one 
affecting responses to a set of questions. However, in this figure, the two attributes 
are not linked together in any way. This implies that the attributes are uncorrelated 
with each other. 

 The Psychological Meaning of Test Dimensions 

 After the first two dimensionality issues are addressed (the number of dimen-
sions reflected in a test’s items and the association among multiple dimensions), 
a third important dimensionality issue needs examination. Specifically, test 
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 developers, evaluators, and users must understand the psychological meaning of 
each test dimension. For a test’s dimensions to be used and interpreted accurately, 
test developers and evaluators must conduct research that reveals the psychological 
attribute that is represented by each test dimension. 

 In the next section, we discuss a common way in which such research is con-
ducted. We present the basics of a statistical procedure called factor analysis, which 
is a fundamental tool in the examination of test dimensionality. We present its 
logic, and we discuss the information that it provides to address each of the three 
core questions of test dimensionality. 

Figure 4.4  Multidimensional Test With Uncorrelated Dimensions
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 Factor Analysis: Examining the Dimensionality of a Test 

 Test developers can use a variety of statistical procedures to evaluate a test’s dimen-
sionality. Although procedures such as cluster analysis and multidimensional scal-
ing are available, factor analysis is the most common method of examination. By 
using factor analysis, researchers can address the core questions outlined in the 
section above, and this provides important insight into the potential scoring, evalu-
ation, and use of psychological tests. 

 There are, in fact, two broad types of factor analysis: exploratory factor analysis 
(EFA) and confirmatory factor analysis (CFA). EFA is the more common type, and 
it is relatively easy to conduct with basic statistical software such as SPSS or SAS. 
In addition, EFA is often used in early stages of psychometric analysis and develop-
ment. Considering these issues, the remainder of this chapter focuses primarily on 
EFA. We will revisit CFA briefly at the end of this chapter, and we will dedicate an 
entire chapter to it later in this book (Chapter 12). 

 The Logic and Purpose of Exploratory 
Factor Analysis: A Conceptual Overview 

 At the beginning of this chapter, we asked you to consider a six-item personality 
questionnaire that includes the following adjectives:  talkative ,  assertive ,   imaginative ,  
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creative ,  outgoing , and  intellectual.  Furthermore, we asked you to consider the 
 number of different attributes that are reflected in these adjectives. As we men-
tioned, reasonable people might disagree about this question. Based on one’s par-
ticular interpretation of the adjectives and one’s understanding of personality, one 
might argue that the six adjectives reflect one single dimension, two dimensions, or 
perhaps three or more dimensions. 

 An important difficulty with this approach—an approach based only on our 
interpretations of the meaning of items—is that it is not easy to evaluate which 
perspective is the best. That is, if you believe that there is a two-factor structure to 
the questionnaire but your colleague believes that there is a three-factor structure, 
then how could you determine who is correct or if either one of you is correct? 

 Rather than relying on idiosyncratic interpretations of the meaning of items, 
test developers and users often prefer to base their arguments on empirical data. 
Therefore, we might give the six-item questionnaire to a sample of 100 respondents, 
asking each respondent to rate each item in terms of the following response options 
(circling the number for the appropriate option): 

1 2 3 4 5

Completely 
unlike me

Somewhat 
unlike me

Neither 
like me nor 
unlike me

Somewhat 
like me

Completely 
like me

 We then enter their data into a statistical software computer program and com-
pute the correlations among the six items. We would then use the correlations to 
help us identify and interpret the dimensions reflected in the items. 

 For example, take a moment to examine the hypothetical correlation matrix pre-
sented in Table 4.1. Note that three of the items—“talkative,” “assertive,” and “out-
going”—are all strongly correlated with each other. An individual who rates herself 
as relatively high on one of these three items is likely to rate herself as relatively 
high on the other two items. We also see that the other three items—“imaginative,” 
“creative,” and “intellectual”—are strongly correlated with each other. Importantly, 
we also see that these two clusters of items are independent. For example, the corre-
lation between “talkative” and “creative” is 0, as is the correlation between talkative 
and imaginative, between outgoing and intellectual, and so on. That is, the fact that 
an individual rates himself as assertive, talkative, and outgoing says nothing about 
that person’s likely level of creativity, imagination, or intellect. This pattern of cor-
relations begins to reveal the dimensionality of the six-item personality test. 

 By scanning an interitem correlation matrix in this way, we could begin to 
understand a test’s dimensionality. Essentially, we try to identify sets of items that 
go together—sets of items that are relatively strongly correlated with each other but 
weakly correlated with other items. Each set of relatively highly correlated items 
represents a psychological dimension or “factor.” 

 Indeed, we can begin to address the three dimensionality questions in Figure 
4.1. To determine the number of factors within a scale, we count the number 
of sets that we identify. If all scale items are well correlated with each other at 
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approximately equal levels, then there is only a single set (i.e., factor) and the scale 
is  unidimensional. If, however, there are two or more sets, then the scale is multidi-
mensional. We identified two sets of items in the hypothetical correlation matrix in 
Table 4.1—these findings suggest that the six-item personality questionnaire has a 
two-dimensional structure (i.e., it is multidimensional). That is, three items cluster 
together into one dimension, and the other three cluster into a second dimension. 

 To determine whether the factors are correlated with each other, we would 
examine the pattern of correlations between the sets. That is, the potential correla-
tions between factors are based on the correlations between items in different sets. 
In the example in Table 4.1, we found that the items from one set were uncorrelated 
with the items in the other set. This suggests that the two factors are, themselves, 
uncorrelated with each other—the factor represented by the items in one set is 
unrelated to the factor represented by the items in the other set. Thus, this six-item 
test appears to be a multidimensional test with uncorrelated dimensions. However, 
if items from one set are, in fact, correlated with items from another set, then the 
factors are correlated with each other. For example, we might have found a cor-
relation of .30 between talkative and creative, a correlation of .25 between talkative 
and imaginative, a correlation of .32 between outgoing and intellectual, and so on. 
Such a pattern of moderately sized cross-factor correlations would suggest that the 
factors are correlated with each other—that we were working with a test that was 
multidimensional with correlated dimensions. 

 Finally, to understand the potential psychological meaning of the factor, we 
examine the content of the items constituting that factor. That is, a factor’s poten-
tial meaning arises, in part, from the psychological concept or theme that its items 
share. Consider, for example, the items “talkative,” “assertive,” and “outgoing.” What 
do they have in common? What is a common psychological concept that they 
share? Many personality psychologists would likely suggest that these items reflect 
an extraversion factor and that the other three items (i.e., “imaginative,” “creative,” 
and “intellectual”) reflect openness to experience. The answer to this question is, 
of course, based on interpretation, judgment, and preference. Indeed, one person’s 
answer might differ from another’s. The interpretation of “extraversion” and “open-
ness to experience” is based on familiarity with “the five-factor model” of personal-
ity, which is widely known in personality psychology and which includes the traits 
of extraversion and openness to experience. People with other perspectives and 
backgrounds might choose to label the factors differently. 

 By examining the pattern of correlations in this way, we have performed a very 
basic factor analysis. Unfortunately, such a simplistic “eyeballing” approach rarely 
works with real data. Real data usually include many more items. In the current 
example, we examined only six items, but many measures include consider-
ably more than six items. For example, the Conscientiousness scale of the NEO 
Personality Inventory–Revised (NEO-PI–R) questionnaire (Costa & McCrae, 
1992) includes 48 items. Difficulty arises because a larger number of items 
produces a much larger number of correlations to examine. For example, if we 
examined a correlation matrix for 48 items, we would have to inspect more than 
1,100 correlations! Obviously, visually inspecting such a large correlation matrix 
is a nearly impossible task. In addition to the large number of correlations in most 
real data, the pattern of correlations in real data is never as clear as it appears to be 
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in Table 4.1. The hypothetical correlations in Table 4.1 include a few very strong 
positive correlations and a few zero correlations, but nothing else. In real data, 
correlations often are closer to .18 or –.32 than to .70. Therefore, the clusters of 
items in real data are much more ambiguous than the ones in Table 4.1, and this 
ambiguity complicates the process of evaluating dimensionality. 

 EFA is a statistical procedure that simplifies this process. Rather than visually 
inspecting a matrix of dozens or even hundreds of correlations, we can use EFA to 
process a large set of correlations. Because the analysis of dimensionality typically 
is “messier” than the example in Table 4.1, researchers often rely on EFA to examine 
the dimensionality of psychological measures. 

 Conducting and Interpreting an Exploratory Factor Analysis 

 Factor analysis can be conducted by using participants’ raw data—their 
responses to each individual item in a test. However, some statistical software pack-
ages allow factor analysis to be conducted on a correlation matrix that summarizes 
the associations among test items. Thus, if you have access to the appropriate soft-
ware, you could replicate the example analyses that we report and interpret below. 

 Figure 4.5 is a flowchart of the process of conducting an EFA. As this figure 
illustrates, EFA is often an iterative process, as the results of one step often lead 
researchers to reevaluate previous steps. 

  Choosing an Extraction Method.   In the first step of an EFA, we choose an “extrac-
tion method.” This refers to the specific statistical technique to be implemented, 
and options include principal axis factoring (PAF), maximum likelihood factor 
analysis, and principal components analysis (PCA), among others. 

 PAF and PCA are the common choices in most applications of EFA. Although 
PCA is not technically a “factor” analysis, it is essentially the same thing and is 
the default method for several popular statistical software packages’ factor analy-
sis procedure. Although the results obtained from PAF are often quite similar to 
those obtained from PCA, many experts recommend PAF over PCA. For example, 
Fabrigar, Wegener, MacCallum, and Strahan (1999) conclude that PCA is not 
 recommended “when the goal of the analysis is to identify latent constructs underly-
ing measured variables” (p. 276), as is typically the case in psychometric evaluation. 

Table 4.1 (Hypothetical) Correlation Matrix for a Two-Factor Set of 
Items

 Talkative Assertive Outgoing Creative Imaginative Intellectual

Talkative 1.00      

Assertive .66 1.00     

Outgoing .54 .59 1.00    

Creative .00 .00 .00 1.00   

Imaginative .00 .00 .00 .46 1.00  

Intellectual .00 .00 .00 .57 .72 1.00
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Figure 4.5  Process Flowchart of an Exploratory Factor Analysis

NOTE: PAF = principal axis factoring; PCA = principal components analysis.
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 To illustrate the EFA process, we will use a PAF extraction method to analyze the 
data illustrated in Table 4.1. Note that responses should be reverse scored, if neces-
sary, before conducting the EFA (see Chapter 10). 

  Identifying the Number of Factors and Extracting Them.  In the second step of an 
EFA, we identify the number of factors within our set of items, and we direct the 
statistical software to “extract” that number of factors. Unfortunately, we have no 
single, simple rule that we can use to make this identification. Instead, we must rely 
on rough guidelines and subjective judgment. 

 To address the “number of factors” issue, test developers and test users often 
refer to statistics called  eigenvalues.  In Figure 4.6, this information is presented 
in the “Total Variance Explained” box—specifically, the six eigenvalues are in the 
“Total” column under the “Initial Eigenvalues” heading. Although there are highly 
technical definitions of eigenvalues, what matters for our current discussion is how 
eigenvalues are used, not what they are. There are many ways in which this informa-
tion can be used (e.g., parallel analysis; see Hayton, Allen, & Scarpello, 2004), but 
we will focus on the three ways that are the most common and that are integrated 
into most popular statistical software options. 

 One way of using eigenvalues is to examine the relative sizes of the eigenvalues 
themselves. Note that the eigenvalue output in Figure 4.6 includes six rows. Each 
row represents the potential number of dimensions reflected among the six test 
items. That is, this output will always include a number of rows that is equal to the 
number of items on the test, and each item might reflect a different dimension. 

 Examining the eigenvalues, we scan down the descending values in this column, 
and we hope to find a point at which all subsequent differences between values 
become relatively small. For example, in our output, we see a relatively large differ-
ence between the second eigenvalue (2.173) and the third eigenvalue (0.563). We 
also note that this difference is much larger than all the subsequent other row-by-
row differences. That is, the difference between the third and fourth eigenvalues is 
small, as is the difference between the fourth and fifth, and so on. 

 The “location” of this point has implications for the answer to the “number 
of dimensions” question. We find this point, and we conclude that the test has a 
number of dimensions equal to the row with the larger eigenvalue. In Figure 4.6, 
the point is located between Rows 2 and 3, so we would conclude that the test has 
two dimensions. If the large difference was located between Rows 1 and 2, then 
we would conclude that the test has one dimension (i.e., that the test is unidimen-
sional). Similarly, if the large difference was located between Rows 4 and 5, then we 
would conclude that the test has four dimensions. 

 Although it has been criticized, the “eigenvalue greater than 1.0” rule is the sec-
ond common way in which eigenvalues are used to evaluate the number of dimen-
sions. As represented by the fact that several popular statistical packages (e.g., SPSS 
and SAS) use this as a default option for answering the “number of dimensions” 
question, many factor analysts base their judgments on the number of eigenvalues 
that are greater than 1.0. For example, of the six eigenvalues in Figure 4.6, only 
two are above 1.0. Therefore, we might conclude that the test items reflect two 
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Total Variance Explained

Initial Eigenvalues
Extraction Sums of Squared 
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Rotation
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Squared
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% of 
Variance
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% Total

% of 
Variance

Cumulative 
% Total

1 2.195 36.578 36.578 1.836 30.599 30.599 1.836

2 2.173 36.222 72.800 1.808 30.131 60.730 1.808

3 .563 9.382 82.183

4 .472 7.867 90.050

5 .333 5.554 95.604

6 .264 4.396 100.000

Extraction Method: Principal Axis Factoring.

a. When factors are correlated, sums of squared loadings cannot be added to obtain a total 
variance.

 dimensions. If our analysis had revealed three eigenvalues greater than 1.0, then we 
might conclude that the test items reflect three dimensions. 

(Continued)



86        PART I: BASIC CONCEPTS IN MEASUREMENT

Factor

1 2

Intellectual .942 .000

Imaginative .764 .000

Creative .604 .000

Assertive .000 .849

Talkative .000 .777

Outgoing .000 .695

Extraction Method:
Principal 
Axis Factoring.

a. 2 factors extracted. 19 
iterations required.

Factor Correlation Matrix

Factor 1 2

1 1.000 .000

2 .000 1.000

Extraction Method: 
Principal Axis Factoring.

Rotation Method: Promax 
with Kaiser Normalization.

Factor

1 2

Intellectual .942 .000

Imaginative .764 .000

Creative .604 .000

Assertive .000 .849

Talkative .000 .777

Outgoing .000 .695

Extraction Method: 
Principal 
Axis Factoring.
Rotation Method: 
Promax with Kaiser 
Normalization.

Factor

1 2

Intellectual .942 .000

Imaginative .764 .000

Creative .604 .000

Assertive .000 .849

Talkative .000 .777

Outgoing .000 .695

Extraction Method: 
Principal 
Axis Factoring.

Factor Matrixa Factor Matrixb Structure Matrix

(Continued)

 Again, we should note that, despite its popularity, the “eigenvalue greater than 1.0” 
rule has been criticized as inappropriate for evaluating the number of dimensions 
in many applications of factor analysis (Fabrigar et al., 1999). Indeed, this guideline 
“is  among the least accurate methods  for selecting the number of factors to retain” 
(Costello & Osborne, p. 2), and it should generally  not  be used as a guideline for 
identifying the number of factors. 

 A third common way of using eigenvalues is to examine a  scree plot , and it is 
probably the best of the three most common methods of identifying the number 
of factors. As illustrated by Figure 4.6’s presentation of the scree plot resulting 
from our EFA, a scree plot is a graphical presentation of eigenvalues. Similar to the 
examination of eigenvalues discussed above, we look for a relatively large differ-
ence or drop in the plotted values. More specifically, we hope to find an obvious 
“leveling-off point” in the plot (as we move from left to right along the  x -axis). 

Figure 4.6 Selected Output From Exploratory Factor Analysis of the 
Correlations in Table 4.1

AQ: Is the sec-
ond chart the 
Factor Matrix 
b or should it 
be the Pattern 
Matrix as on 
page 88?

Rotation Method: Promax 
with Kaiser Normalization.

b. Rotation converged in 2
iterations.

egarner
Text Box
<AQ: is Factor Matrix in 2nd column correct? Or should it be Pattern Matrix?>

egarner
Line
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For example, the scree plot in Figure 4.6 shows an obvious flattening beginning at 
Factor 3. An obvious flattening point suggests that the number of factors is one less 
than the factor number of the flattening point. That is, if there is a flattening point 
beginning at the second eigenvalue, then this indicates the presence of only one fac-
tor. In contrast, if a flattening point begins at the third eigenvalue (as in our scree 
plot), then this indicates the presence of two factors, and so on. 

 If we do obtain a clear answer to the “number of factors” question, then we 
extract that number of factors. In most software programs, this simply means that 
we tell the program to proceed to the next step (see the flowchart in Figure 4.5) using 
the number of factors that we have identified. In the case of the data in Table 4.1 and 
Figure 4.6, we directed the program to proceed with two factors. We will return to 
the EFA of these data shortly. 

 Unfortunately, scree plots are not always clear—certainly rarely as clear as 
the one in Figure 4.6, which was based on hypothetical data constructed to be as 
obvious as possible. Providing more realistic examples, Figures 4.7 and 4.8 show 
selected results of two additional EFAs based on hypothetical data from two differ-
ent six-item scales. Figure 4.7 is more realistic than the results in Figure 4.6, but it 
is still fairly clear—we see a relatively clear flattening point at the third eigenvalue, 
again indicating a two-dimensional structure to the items. In contrast, the scree 
plot in Figure 4.8 is extremely ambiguous—there is no clear flattening point that 
would guide our decision about the number of factors. In ambiguous cases like this, 
we use additional information to guide our understanding of the scale’s number of 
dimensions. 

 One type of additional information is the clarity with which the scale’s items 
are associated with its factors. For example, the ambiguous scree plot in Figure 4.8 
might lead us to (somewhat arbitrarily) extract two factors and examine the item–
factor associations in the next step of the EFA. As we will discuss shortly, our results 
from that later step might motivate us to revisit the present step, extract a different 
number of factors, and proceed again to the next steps. This is the iterative back-
and-forth nature of EFA that was mentioned earlier. 

 Occasionally, we never obtain a clear answer to the “How many dimensions?” 
question, suggesting that the scale has no clear dimensionality. If we did encounter 
that situation, then we might conclude that the scale needs revision—for example, 
in terms of clarifying the construct(s) that it is intended to assess or in terms of 
revising the items themselves (see Furr, 2011, chaps. 2 and 3). 

 In a typical EFA, researchers make an initial decision about the scale’s number 
of factors and then move on to one of two subsequent steps. As illustrated in the 
flowchart in Figure 4.5, if the scree plot (or another good guideline) suggests a 
single dimension, then researchers proceed directly to examining the associations 
between the items and that factor. We will discuss this later. However, if there is 
evidence of more than one dimension, then researchers next make decisions about 
rotating the factors. 

  Rotating the Factors.  If the evidence suggests that a scale is multidimensional, then 
we usually “rotate” the factors. The purpose of this step is to clarify the psychologi-
cal meaning of the factors. 
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Figure 4.7 Selected Output From Exploratory Factor Analysis of “More 
Realistic” Data From a Six-Item Questionnaire
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item2 –.015 .861

item1 .016 .694

item3 .007 .642

Factor

1 2

item6 .882 .314

item5 .737 .245

item4 .679 .257

item2 .288 .855

item1 .260 .699

item3 .233 .644

Extraction Method: 
Principal Axis Factoring.
Rotation Method: 
Promax with Kaiser
Normalization.

 Factor Matrixa Pattern Matrixa Structure Matrix

Factor Correlation Matrix

Factor 1 2

1 1.000 .352

2 .352 1.000

Extraction Method: Principal Axis Factoring.
Rotation Method: Promax with Kaiser Normalization.

Extraction Method: 
Principal Axis Factoring.

a. 2 factors extracted. 15
iterations required.

Extraction Method: 
Principal Axis Factoring.
Rotation Method: 
Promax with Kaiser
Normalization.

a. Rotation converged in 
3 iterations.
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Figure 4.8 Selected Output From Exploratory Factor Analysis of 
Ambiguously Structured Data From a Six-Item Questionnaire

 Factor Matrixa Pattern Matrixa Structure Matrix

Factor Correlation Matrix

Factor 1 2
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item5 .959 –.138

item4 .359 .022
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Extraction Method: 
Principal Axis Factoring.

a. 2 factors extracted. 206
iterations required.
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1 2

item5 .969 –.004
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1 2

item5 .969 .021

item4 .359 .037

item1 –.010 .568

item3 .032 .481

item2 –.020 .368

item6 .126 .289

Extraction Method: 
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Rotation Method: 
Promax with Kaiser
Normalization.

Extraction Method: Principal Axis Factoring.
Rotation Method: Promax with Kaiser Normalization.
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 There are two general types of rotation, and they have differing implications for 
the potential associations among factors. The first general type of rotation is an 
orthogonal rotation, and it generates factors that are uncorrelated or “orthogonal” 
to each other. A procedure called “varimax” is the standard orthogonal rotation. 
The second general type of rotation is an oblique rotation, which generates fac-
tors that can be either correlated or uncorrelated with each other. There are many 
subtypes of oblique rotations, including “promax” and “direct oblimin.” A full 
discussion of the differences among these subtypes is beyond the scope of our 
discussion—the important point is that all the oblique rotations allow factors to be 
correlated or uncorrelated with each other. To anthropomorphize, if factors “want 
to be” correlated with each other, then oblique rotations allow them to be corre-
lated; and if factors “want to be” uncorrelated, then oblique rotations allow them 
to be uncorrelated. 

 Many experts suggest that oblique rotations are preferable to orthogonal rota-
tions (e.g., Fabrigar et al., 1999). Again, the main purpose of rotation is to clarify 
the nature of the factors, which (as we will discuss next) depends on the pattern of 
associations between the factors, on one hand, and the scale’s items, on the other. 
Oblique rotations can produce results in which these associations are as clear as 
possible, allowing us to understand our scales as clearly as possible. With this in 
mind, there is often little conceptual or psychometric reason to force a scale’s fac-
tors to be orthogonal (i.e., uncorrelated)—doing so can create less clarity about the 
scale as compared with oblique rotations. After rotating factors, we next examine 
the associations between the items and the factors. 

  Examining Item–Factor Associations.  Although a full understanding of a scale’s 
dimensions emerges from many kinds of information (as discussed in later 
 chapters on reliability and validity), the associations between items and factors 
can be an important piece of the puzzle. EFA presents these associations in terms 
of “factor loadings,” and each item has a loading on each factor. By examining the 
loadings and identifying the items that are most strongly linked to each factor, we 
can begin to understand the factors’ psychological meaning. 

 Generally, factor loadings range between –1 and +1, and they are interpreted 
as correlations or as standardized regression weights. When using an orthogonal 
rotation (or when a scale has only one factor), we obtain loadings that can be seen 
as correlations between each item and each factor. In contrast, when using oblique 
rotations, we obtain several kinds of factor loadings. For example, if we use the 
statistical program SPSS and we choose an oblique rotation, then we obtain both 
“pattern coefficients” and “structure coefficients.” Pattern coefficients reflect the 
“unique association” between an item and a factor. That is, a pattern coefficient 
reflects the degree to which an item is associated with a factor, controlling for the 
correlation between the factors. For readers who are familiar with multiple regres-
sion, pattern coefficients are the standardized regression weights produced by a 
regression analysis in which respondents’ item responses are predicted from their 
levels of the underlying factors. In contrast, structure coefficients are simply cor-
relations between respondents’ item responses and their levels of the underlying 
factors. By controlling for any correlation between factors, pattern coefficients can 
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provide sharper clarity about the unique associations between items and factors as 
compared with structure coefficients. 

 When interpreting factor loadings, two pieces of information are important  (see 
our discussion of interpreting correlations and covariances in Chapter 3). First, 
the  size  of the loading indicates the degree of association between an item and a 
 factor—larger loadings (i.e., loadings farther from 0, closer to –1 or +1) indicate 
stronger associations between an item and a factor. More specifically, loadings above 
.30 or .40 are often seen as reasonably strong, with loadings of .70 or .80 being seen 
as very strong. The second important piece of information is the  direction of a load-
ing—positive or negative. A positive loading indicates that people who respond with 
a “high score” on the item have a high level of the underlying factor. In contrast, a 
negative loading indicates that people who respond with a high score on the item 
have a low level of the underlying factor. 

 For example, recall that the scree plot in Figure 4.6 strongly indicated the pres-
ence of two factors. With this in mind, we continued our EFA of these data by 
extracting two factors and using an oblique rotation (i.e., “Promax”). We obtained 
the loadings also shown in 4.6; in fact, there are three sets of loadings. The “Factor 
Matrix” presents the factor loadings that would be obtained before rotating the 
factors. Given the usefulness of factor rotations, we generally ignore these loadings. 
As the “Pattern Matrix” label implies, the second set of loadings is the pattern coef-
ficients. And, of course, the “Structure Matrix” presents the structure coefficients. 

 Examining all three matrices reveals a very clear pattern of item–factor associa-
tions. Indeed, these results are highly consistent with our earlier “eyeball” factor 
analysis of the correlations in Table 4.1. Specifically, the items “intellectual,” “imagi-
native,” and “creative” load positively and strongly on Factor 1—the lowest loading 
being .604. Similarly, the items “assertive,” “talkative,” and “outgoing” load strongly 
and positively on Factor 2. Importantly, the first set of items (i.e., “intellectual,” 
etc.) do not load on Factor 2, and the second set of items do not load on Factor 1. 

 Note that the three sets of loadings in Figure 4.6 are identical. That is, the Factor 
Matrix, Pattern Matrix, and Structure Matrix have identical values. This is a very 
atypical finding that, again, results from the fact that the correlations in Table 4.1 
were created to be as clear and simple as possible. Thus, these results are rather 
artificial—in real analyses of oblique rotations, these matrices will differ from each 
other. We will illustrate this shortly. 

 The factor loadings in Figure 4.6 are an ideal example of “simple structure.” 
Simple structure occurs when each item is strongly linked to one and only one fac-
tor. Again, in Figure 4.6, each item loads robustly on one factor but has a loading of 
.000 on the other factor. Thus, each item clearly belongs on one and only one factor. 

 Simple structure is important in psychometrics and scale usage. Generally, we 
sum or average a respondent’s responses to the items that load together on a factor. 
For example, if we used the six-item questionnaire analyzed in Figure 4.6, we would 
create two scores for each person. Recall that for our six-item questionnaire, we asked 
each hypothetical respondent to rate himself or herself on each item, using a 5-point 
set of response options (i.e., 1 =  Completely unlike me , 5 =  Completely like me ). First, 
we would sum (or average) a person’s responses to intellectual, imaginative, and 
creative, producing an “openness to experience” score for each person (based only 
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on those three items). Second, we would combine each person’s responses to “asser-
tive,” “talkative,” and “outgoing,” producing an “extraversion” score for each person. 
Note that if an item does not load on a factor, then it is not included in scoring of 
that dimension/factor. Thus, simple structure is important because it reveals which 
items should be scored together. Because rotation makes it more likely that we will 
obtain simple structure, rotation is usually a key part of EFA. 

 For a more realistic example, consider the EFA results in Figure 4.7, conducted 
on a different (hypothetical) set of six items. As noted earlier, this scree plot indi-
cates two factors; thus, we extracted two factors, used an oblique rotation, and 
obtained factor loadings. There are several important points to note. First, note that 
the three matrices differ from each other. Again, as noted earlier, this is  typical—
the Factor Matrix will differ from the Pattern Matrix, which will differ from the 
Structure Matrix. Second, note that the loadings in the Factor Matrix do not show 
simple structure. That is, each item loads fairly robustly on  both  factors. In this case, 
the lack of simple structure occurs because the Factor Matrix includes factor load-
ings that are obtained before rotation has taken place. Thus, as mentioned earlier, 
we typically ignore these results, even though they are often provided by the statisti-
cal package. Third, the Pattern Matrix does show very good simple structure—each 
item loads robustly on one and only one item. Fourth, the loadings in the Structure 
Matrix have a somewhat less clear simple structure than the loadings in the Pattern 
Matrix. This result is pretty typical, and it arises from the difference (discussed ear-
lier) between pattern coefficients and structure coefficients. Fifth, we now see nega-
tive factor loadings, although none of the negative loadings in the Pattern Matrix 
are large enough to be very meaningful. As compared with the highly artificial 
results in Figure 4.6, the results in Figure 4.7 are a much more realistic illustration 
of a clear two-factor scale with very good simple structure. 

 For a full understanding of item–factor associations, it is important to realize 
that factor loadings can violate simple structure in two ways. First, an item might 
not load strongly on any factor, and second, an item might load strongly on more 
than one factor. 

 For example, consider again the results in Figure 4.8, illustrating a dimensional-
ity that appears quite unclear. Based on another hypothetical six-item question-
naire, the scree plot is highly ambiguous (as discussed earlier). Because of this 
ambiguity, we rather arbitrarily tried a two-factor extraction, and we used an 
oblique rotation. Concentrating on the Pattern Matrix, we see one clear problem—
Item 6 does not load very strongly on either factor (i.e., loadings below .30 on 
both). Two other slight problems are that the strongest factor loadings for Items 4 
and 2 are below .40—ideally, an item would have an even stronger factor loading. 
Such results create ambiguity with regard to this scale. Do all of these items belong 
on the questionnaire? How should the questionnaire be scored? Are there really two 
factors, perhaps more, perhaps less? 

 As shown in the EFA flowchart (Figure 4.5), when faced with such ambiguity, 
one option is to revisit our initial decision about the number of factors to extract. 
We noted earlier that scree plots sometimes fail to provide clear information about 
this issue, but the item–factor associations might help shape our decision about 
the number of factors. Revisiting again the unclear structure in Figure 4.8, we 
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 examined factor loadings based on several different factor structures. Our hope 
was to find a number of factors that produces factor loadings with a clear simple 
structure. If we find loadings that are relatively clear and meaningful, then we 
might decide that the “correct” number of factors is the one producing that pattern 
of factor loadings. In our analysis of the ambiguous data represented in Figure 4.8, 
we also examined one-factor and three-factor extractions. Unfortunately, neither 
analysis produced clearer results. 

 Failing to find a clearer solution by revisiting the number of factors, there is at 
least one additional option for dealing with factorial ambiguity. Specifically, we 
might drop items that have poor structure. If an item is not strongly associated 
with any factor, then we conclude that it simply is not coherently related to the 
other items on the test or questionnaire. This might suggest that the item reflects 
a psychological construct that differs from the one(s) reflected by the other items 
on the scale (e.g., having a single math item on a vocabulary test). Alternatively, it 
might suggest that the item is strongly affected by random measurement error (see 
the later chapters on reliability). Either way, the item, as it is, likely does not belong 
on the scale. We noted that another problem is when an item loads robustly on 
more than one factor. In such cases, the item reflects more than one psychological 
construct. That is, responses to the item are affected by several psychological traits, 
abilities, or states (or what have you). Such an item does not uniquely reflect any 
construct, and thus we might drop it or revise it to reflect only one construct. 

 With this option in mind, we revisited the data reflected in Figure 4.8’s ambigu-
ous results. Noting that Item 6 seemed to load weakly on both factors (in the two-
factor solution), we removed this item from the analysis and reconducted the EFA. 
Essentially, this addresses the dimensionality of a questionnaire that would include 
only Items 1 through 5. Figure 4.9 presents the results of this analysis, showing that 
this adjustment produces a questionnaire that now has a clearer dimensionality. 
Indeed, the scree plot now clearly suggests two factors, and the factor loadings have 
good simple structure—each of the five remaining items loads on one and only one 
factor. Apparently the inclusion of Item 6 created ambiguity in the questionnaire 
as a whole. Thus, by dropping that item from the questionnaire, we are left with a 
five-item questionnaire that clearly includes two dimensions. 

  Examining the Associations Among Factors.  Finally, as shown in the EFA flowchart 
(Figure 4.5) when using oblique rotations, we should examine the correlations 
among the factors. Recall that oblique rotations allow factors to be either correlated 
or uncorrelated with each other, whereas orthogonal rotations force the factors to 
be uncorrelated. The results of oblique rotations thus include a correlation for each 
pair of factors, revealing the higher-order associations among factors. This infor-
mation has implications for our understanding of the nature of the factors and 
for the scoring of the test or questionnaire. As mentioned earlier (Figure 4.1), we 
should create “total scores” from a multidimensional scale only when the dimen-
sions are correlated with each other to a meaningful degree. 

 Returning to our first and main example (see Table 4.1 and Figure 4.6), the 
factor correlation is presented in the “Factor Correlation Matrix” box. This small 
matrix presents the correlation between the two factors that we extracted and 
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Figure 4.9 Selected Output From Exploratory Factor Analysis of Data 
From a Five-Item Version of the Questionnaire Originally 
Analyzed in Figure 4.8

 Factor Matrixa Pattern Matrixa Structure Matrix

Factor Correlation Matrix

Factor 1 2

1 1.000 .050

2 .050 1.000

Factor

1 2

item4 .846 –.117

item5 .401 –.082

item1 .137 .651

item2 .030 .394

item3 .084 .368

Extraction Method: 
Principal Axis Factoring.

a. 2 factors extracted. 
279 iterations required.

Factor

1 2

item4 .854 .006

item5 .410 –.024

item1 .009 .665

item2 –.046 .395

item3 .011 .376

Extraction Method: 
Principal Axis Factoring.
Rotation Method: 
Promax with Kaiser
Normalization.

a. Rotation converged in 
3 iterations.

Factor

1 2

item4 .854 .048

item5 .409 –.003

item1 .042 .665

item2 –.026 –.362

item3 .030 .377

Extraction Method: 
Principal Axis Factoring.
Rotation Method: 
Promax with Kaiser
Normalization.

Extraction Method: Principal Axis Factoring.
Rotation Method: Promax with Kaiser Normalization.

ED: indent 
turnovers under 
charts?



 Chapter 4: Test Dimensionality and Factor Analysis      95

rotated earlier in the analysis. This output reveals a zero correlation between the 
two dimensions, indicating that the two dimensions are not associated with each 
other. That is, people who have a high level of openness to experience are not par-
ticularly likely (or particularly unlikely) to have a high level of extraversion. 

 Again, it is important to note that different data will produce different results—
it is quite possible that an oblique rotation will produce dimensions that are more 
highly correlated with each other. For example, Figure 4.7 presents a two-factor 
structure in which the two factors are indeed more highly correlated, at .35. This 
suggests that people who have a relatively high level of the first psychological 
dimension are likely to have a relatively high level of the second dimension. 

 In sum, oblique rotations allow factors to be correlated “however they want 
to be.” For the questionnaire represented in Figure 4.6, the factors “wanted” to be 
uncorrelated, and the oblique rotation allowed them to be uncorrelated (i.e., the 
interfactor correlation was .00). In contrast, for the questionnaire represented in 
Figure 4.7, the factors “wanted” to be correlated, and the oblique rotation allowed 
them to be correlated. 

 For some final insights into the links between rotations, factor correlations, and 
factor loadings, consider what happens if we use an orthogonal rotation for these 
EFAs. In the case of the data from Figure 4.6 (the original, highly artificial data), 
varimax rotation produces the factor loadings shown in Figure 4.10a. Note that 
these loadings are identical to those obtained in the original analysis based on an 
oblique rotation (see Figure 4.6). In the case of the data from Figure 4.7 (the more 
realistic data in which the factors were moderately correlated with each other), 
varimax rotation produces the loadings given in Figure 4.10b. Note that these load-
ings differ from those obtained in the analysis based on an oblique rotation (see 
Figure 4.7). 

 Take a moment to consider why this might be—why in one case orthogonal and 
oblique rotations produce the same result, whereas in the other case they produce 
different results. The answer is that for the data in Figure 4.6, the factors “want” to 
be uncorrelated. That is, the oblique rotation (Figure 4.6) allowed the factors to 
be either correlated or uncorrelated, and the results showed that the factors were 
“naturally” uncorrelated. Because the oblique rotation produced results in which 
the factors were uncorrelated, the orthogonal rotation (which forces the factors to 
be uncorrelated) produced the exact same results in terms of factor loadings. In 
contrast, the questionnaire reflected in Figure 4.7 includes factors that “want” to 
be correlated—the oblique rotation allowed them to be correlated, and they were, 
in fact, correlated at .35. When we then conducted an orthogonal rotation, which 
forced the factors to be uncorrelated, this changed the nature of the factors, which 
then changed the associations between the items and the factors (i.e., it changed 
the factor loadings). 

 Also, notice the way the factor loadings changed—compare the pattern coef-
ficients in Figure 4.7 with the factor loadings in Figure 4.10b. This comparison 
reveals that the orthogonal rotation produced factor loadings that are somewhat 
less clear—they have worse simple structure. For example, examine the loadings for 
Item 6 (the top item in the matrix). In the oblique rotation, its loading on Factor 1
was .880, and its loading on Factor 2 was .004. In the orthogonal rotation, its 
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 (a) (b)

 Rotated Factor Matrixa Rotated Factor Matrixa

Factor

1 2

Intellectual .942 .000

Imaginative .764 .000

Creative .604 .000

Assertive .000 .849

Talkative .000 .777

Outgoing .000 .695

Extraction Method: 
Principal Axis Factoring.
Rotation Method: Varimax 
 with Kaiser Normalization.

a. Rotation converged in 
2 iterations.

Factor

1 2

item6 .867 .162

item5 .728 .117

item4 .665 .141

item2 .139 .844

item1 .140 .685

item3 .121 .633

Extraction Method:
Principal Axis Factoring.
Rotation Method: 
Varimax with Kaiser 
Normalization.

a. Rotation converged in 
2 iterations.

Figure 4.10  Factor Loadings From Orthogonal Rotation of Data From 
(a) Figure 4.6 and (b) Figure 4.7

 loading on Factor 1 is weaker, at .867 (though still quite strong), and its loading on 
Factor 2 is somewhat stronger, at .162 (though still relatively weak). All the items 
show this pattern—in the orthogonal rotation, their main or “on-factor” loadings 
are somewhat weaker, and their other or “off-factor” loadings are somewhat stron-
ger. Thus, orthogonal rotation can produce a somewhat less simple structure within 
the factor loadings. 

 A Quick Look at Confirmatory Factor Analysis 

 As noted earlier, there are two types of factor analysis: exploratory factor analysis 
(EFA) and confirmatory factor analysis (CFA). Our discussion so far has focused 
on EFA because it has been used more frequently than CFA, because it is relatively 
easy to conduct with basic statistical software, and because it is often used in early 
phases of the development and evaluation of psychological tests. However, a brief 
discussion of CFA and how it differs from EFA is potentially useful at this point. 

 Although both EFA and CFA are approaches to factor analysis, they have some-
what different purposes or roles. As its label implies, EFA is as an exploratory 
procedure—it is designed for situations in which there are few, if any, ideas about 
a test’s dimensionality. Again, test developers and evaluators might use EFA in the 
early phases, while conducting basic exploratory analyses of a set of items. 
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 In contrast, CFA is a confirmatory procedure—it is designed for situations in 
which there are very clear ideas about a test’s dimensionality. For example, we 
might wish to evaluate the dimensionality of a 16-item test that has been devel-
oped specifically to have 8 questions reflecting one factor and another 8 questions 
reflecting a different factor. In this case, we would have a fairly clear idea about the 
intended dimensionality of the test. That is, we would know exactly which items 
were intended to load on which factor. After collecting a large number of responses 
to this 16-item test, we could use CFA to directly test these ideas; or perhaps more 
accurately, we could test whether the responses to the test items match or fit with 
these ideas (i.e., whether the test shows the dimensionality that it is intended to 
have). In this way, CFA is used to confirm, or potentially disconfirm, our hypoth-
eses about a test’s dimensionality. 

 There are important similarities between CFA and EFA, but the process of con-
ducting a CFA is substantially different from the process of conducting an EFA. 
Indeed, CFA includes new concepts and statistics, such as inferential tests of param-
eter estimates and “goodness-of-fit” indices. Moreover, although most of the com-
mon statistical software packages can now be used to conduct a CFA, the way this 
is done differs rather dramatically from the way those packages conduct an EFA. 

 Given the differences between EFA and CFA, and given the additional complex-
ity of CFA, we will return to CFA later in the book, in Chapter 12. In that chapter, 
we will describe the information provided by a CFA of a test, the procedures for 
conducting a CFA, and the application of CFA to several important psychometric 
questions. 

 Summary 

 In this chapter, we have discussed the concept of test dimensionality and the way in 
which it is examined. We have discussed three core issues regarding test dimension-
ality: (1) the number of dimensions reflected in a set of test items, (2) the degree 
of association among a test’s dimensions, and (3) the psychological meaning of a 
test dimension. These issues serve to differentiate three types of tests, which has 
important implications for the way a test is scored, evaluated, and used. 

 This chapter provided an overview of factor analysis—what it is and how it is 
used to examine test dimensionality. Although factor analysis is a highly advanced 
statistical procedure, we have provided a general discussion and illustration of the 
procedures. Interested readers can obtain more details from many available sources 
(e.g., Gorsuch, 1983; Meyers, Gamst, & Guarino, 2006). 

 The first four chapters of this book have provided the conceptual and statisti-
cal foundations for the remaining chapters. In the remaining chapters, we focus 
on core psychometric properties. Specifically, issues such as reliability and validity 
require familiarity with basic concepts and procedures such as variability, correla-
tions, and dimensionality. We will turn next to reliability. 
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 Suggested Readings 

 For a more extensive introduction to factor analysis: 

 Meyers, L. S., Gamst, G., & Guarino, A. (2006).  Applied multivariate research: Design and 
interpretation  (chaps. 12A–13B) .  Thousand Oaks, CA: Sage. 

 Thompson, B. (2004).  Exploratory and confirmatory factor analysis: Understanding con-
cepts and applications.  Washington, DC: American Psychological Association. 

 For a detailed technical discussion of the procedures: 

 Gorsuch, R. L. (1983).  Factor analysis.  Hillsdale, NJ: Lawrence Erlbaum. 

 For commentary and recommendations on common tendencies in the use of factor 
analysis: 

 Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the 
use of exploratory factor analysis in psychological research.  Psychological Methods,  
 4,  272–299. 

 For a detailed but concise discussion of the use of factor analysis in determining 
test score dimensionality: 

 Netemeyer, R. G., Bearden, W. O., & Sharma, S. (2003).  Scaling procedures.  Thousand 
Oaks, CA: Sage. 

 For recommendations on the use of factor analysis in scale development: 

 Floyd, F. J., & Widaman, K. F. (1995). Factor analysis in the development and refinement 
of clinical assessment instruments.  Psychological Assessment, 7,  286–299. 




