
A variety of models can be used to study nuclear structure. This book
gives a comprehensive overview of these various models, concentrating in
particular on a description of deformed and rotating nuclei. Emphasis is
given throughout to the important physical features, rather than to esoteric
theoretical topics.

Beginning with a treatment of the semi-empirical mass formula and nuclear
stability, the liquid-drop model is then described and its use in the study
of nuclear deformation and fission is discussed. The spherical nuclear
one-particle potential is introduced and developed to cover the case of
deformed nuclei. The main features of the shell correction method are
described, with applications to nuclear deformation, fission, superheavy
elements and rotation. A detailed discussion of terminating rotational bands
and superdeformation is included. Finally, the nucleon-nucleon interaction
is briefly described and the main features of the nuclear pairing interaction
are discussed.

As well as treating important experimental and theoretical aspects of this
fundamental subject, many problems and solutions are included, which help
to illustrate key concepts. The book will be invaluable to graduate students
of nuclear physics and to anyone engaged in research in this field.
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Preface

It is our intention in this volume to describe in an elementary way some
of the achievements of the nuclear shell model, especially in its form used
for deformed nuclei and rotating nuclei. In recent applications on nuclear
deformation, fission and rotation, the microscopic shell model is merged
with macroscopic models, which are thus also briefly discussed here. We
try to concentrate on physical features rather than theoretical methods, not
introducing more sophisticated models than are needed to understand the
basic principles.

We have tried to put the presentation on such a level that the book should
be suitable as a first course in theoretical nuclear physics. The reader is
supposed to be familiar with the very basic concepts of experimental nuclear
physics and to have some knowledge of quantum mechanics including central
forces and angular momentum, the spin formalism and some perturbation
theory. We also believe that this volume should be useful for people doing
research in nuclear physics, not least for experimentalists.

The introductory chapter defines in a very elementary way the building
blocks of nuclei, how these building blocks are held together and how nuclei
might decay. It then also becomes natural to discuss the boundaries of
nuclear stability and the abundancy of different nuclei.

The subjects of the three following chapters relate to the macroscopic
properties of nuclei. The size and average matter distribution of nuclei are
discussed in chapter 2. The semi-empirical mass formula is introduced in
chapter 3 and the liquid-drop model of nuclear deformation and fission is
treated in chapter 4.

The single-particle concept is then introduced in chapter 5, making com-
parisons between the electron system and the nucleon system. The mean
field concept leading to the introduction of a single-particle potential is dis-
cussed. The single-particle potential of a spherical nucleus is treated in some

xi



xii Preface

detail in chapter 6. As the reader is not assumed to be familiar with the
quantum-mechanical formalism for coupling of angular momentum vectors
(the Clebsch-Gordan formalism), this formalism is presented as an appendix.
Some elementary applications of the spherical single-particle potential are
taken up in chapter 7 where the simplest static moments of nuclei with few
particles outside closed shells are calculated.

The measured quadrupole moments indicate that it is not enough to study
a spherical potential. Thus, in chapter 8, the orbitals of a deformed single-
particle potential are discussed, i.e. this chapter deals with the so-called
Nilsson model and related subjects, which probably more than anything else
have made Sven Gosta Nilsson's name well-known among nuclear physicists.

In chapter 9, it is shown how realistic calculations on nuclear ground
state properties can be carried out if the single-particle model and the
macroscopic model are combined. The methods introduced here make it
possible to calculate the nuclear energy as a function of the most important
shape degrees of freedom. The energy surfaces can be used as input for
barrier penetration calculations of nuclear fission. This is demonstrated in
chapter 10 where alpha-decay, which can be treated by similar methods,
is also discussed. The success of these methods is demonstrated on heavy
and superheavy nuclei. The hunt for an 'island' of superheavy nuclei has
stimulated the imagination of nuclear structure physicists for many years
and the possibility of such an island is also discussed in other parts of the
present volume.

The most recent success of the macroscopic-microscopic method has been
the application to fast nuclear rotation and this subject is treated in some
detail in chapters 11 and 12. It is described how a unifying picture of single-
particle excitations and collective rotation emerges from straightforward
generalisations of the methods introduced in earlier chapters. In particular,
recent applications on band terminations and superdeformation are discussed
within a cranking formalism, which is first illustrated on the conceptionally
much simpler sd-shell nuclei. This chapter leads up to the present research
front with a discussion on identical rotational bands and how they might be
described.

We felt that even though it was not our primary goal, we should still
present some basic concepts about the nucleon-nucleon interaction, which
is thus the subject of chapter 13. This chapter is only intended for the
inexperienced reader to make the present volume reasonably self-contained.

The final chapter deals with the pairing interaction in a way that we hope
should be understandable even for readers who have no previous knowledge
of the so-called second quantisation formalism. This chapter should, we
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hope, clarify some of the discussion in earlier parts of the book, where the
importance of pairing has been mentioned and some consequences of pairing
have been anticipated.

The text is accompanied by a number of problems, some trivial and some
that might be quite tough for the ordinary reader. In some cases we have
felt that the text becomes more transparent without too many derivations.
Thus, some simple derivations are put as problems, which we also hope will
encourage the reader to try to carry them through by him-/herself. In other
problems the more general formalism of the text might be applied to more
concrete cases. If not very trivial, solutions are given to the problems.

In the applications of the shell model, we have used those models that we
think demonstrate best the surprising success of the concept of individual
particle motion in an average field. We have thus concentrated on the so-
called modified oscillator potential in order not to hide the simple physical
arguments with too much mathematical complexity. We are convinced that,
having understood the physical arguments, the reader will be well prepared
to find his way through more 'realistic' potentials of e.g. Woods-Saxon or
Hartree-Fock type.

The reference list is far from complete. We have only put in the papers
whose results and ideas we specifically refer to and some more general papers
so that the reader should easily find his way through the current literature.
Except for some older and generally recognised papers, we have thus not
tried to trace the origin of many of the arguments put forth here. Naturally,
the reference list is weighted toward our own papers and those of our closest
collaborators.

This volume has grown from a course given at the Institute of Technology
in Lund. Many people in our Department have contributed at different
stages of this course and thus also studied and given constructive critisism to
the manuscript. In particular, I want to thank Goran Andersson, Per Arve,
Tord Bengtsson, Ikuko Hamamoto, Stig Erik Larsson, Georg Leander, Peter
Moller and Sven Aberg. I also want to express my gratitude to Edith Halbert,
Witold Nazarewicz and Zdzislaw Szymanski who have read major parts of
the manuscript and made many valuable suggestions. Several people have
assisted in typing the manuscript and preparing the figures; I want to thank
Ulla Jacobsson, Sigurd Madison and Ewa Westberg for their important
contributions and especially Pia Bruhn who has done a lot of careful work
on the munuscript over the years and finally converted it all to LaTeX files.

Sven Gosta Nilsson died in 1979. As a student, colleague and friend of
his, it is with a deep sense of loss that I remember his warm and enthusiastic
personality and all the inspiration I have had from numerous discussions
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with him. To bring the present volume to an end has been a much harder
job than I realised when I started. The long delay means that several
developments from the 1980s are covered. However, these subjects are all
natural continuations of the original manuscript. I hope that the present
book is in line with Sven Gosta's vision and that it will be useful and
inspiring for its readers.

Ingemar Ragnarsson



1
Naturally occurring and artificially produced

nuclei

Nature is very rich. It uses a great number of different building blocks,
atoms, to compose the different chemical compounds of the organic and
inorganic world. For chemistry the electron shells, surrounding the atoms,
are the most important. The stability of the nucleus is, however, decisive
for the existence of the atom. The problem of which atoms may exist
is therefore reduced to the problem of what nuclei may exist. In this
introductory chapter, we will consider in a qualitative manner the following
problem. What is the range in neutron and proton number for the existing
nuclei? This problem will be treated more quantitatively within the liquid
drop model in chapter 3.

To define a nucleus, one must specify its proton number Z (i.e. the
chemical element) and in addition its neutron number N or alternatively its
mass number A —  N + Z. The most common notation is for example 208Pb
for the nucleus with A = 208 and Z = 82. Sometimes, the neutron and
proton numbers are explicitly given, i.e. 2g2Pbi26-

The question of which combinations of N and Z are stable and which
are not is governed by the principle of minimisation of the total relativistic
energy, where a mass M corresponds to an energy Me2, c being the velocity
of light. If an AT, Z combination can find a lower energy state by decaying
in one way or another, this decay will generally take place with some
probability. There are, however, certain constraints, the most important one
being that the total number of nucleons, i.e. neutrons and protons, stays
constant (preservation of baryon number). A possible decay occurs according
to the radioactive decay law, the number of decays being proportional to
the number v of nuclei of a specific kind in a sample

— = -hdt
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which leads to the exponential decay law

v = voQ'^

The decay constant X is typical for the decay in question. From this
constant, one defines the (mean) life-time, T = I/A and the half-life, £1/2,
corresponding to the time it takes (on the average) for half of the nuclei to
decay, t1/2 = (In2/A) = 0.693/1

The stability of nuclei is closely related to the forces holding them together.
From our macroscopic world we know two kinds, namely gravitational and
electromagnetic forces. It is the Coulomb force (of electromagnetic origin)
that ties the electrons to the nucleus, forming the atoms. The nucleus, on the
other hand, is built of protons of like charges (in addition to neutrons). This
means that the Coulomb forces are repulsive and the attractive gravitational
forces, being orders of magnitude weaker, can by no means compensate for
this.

Indeed, it turns out that the nuclei are held together by an interaction of
a different origin, the strong (nuclear) interaction. This interaction is strongly
attractive at the internucleon distance in a nucleus (~ 1 fm = 10~15 m)
but it has a very short range and it becomes more or less unimportant
when the nucleons are only a few femtometres apart (cf. chapter 13). One
could compare this with the 1/r dependence for the potential energy of the
gravitational as well as the electromagnetic interaction. This means that
these interactions are important at all distances and could never be said to
go to zero.

Also a fourth type of interaction is known, namely the weak interaction^.
It is of short range but it is orders of magnitude weaker than the strong
interaction. Thus, its contribution to the nuclear binding energy is negligible.
However, for example electrons do not feel the strong interaction and the
weak interaction could then become important.

A final key factor for an elementary understanding of the stability of nuclei
is the Pauli principle, an effect of quantum mechanics. The Pauli principle
forbids a proton to be in the same quantal state as any other proton. This
means that if we start from the ground state of one nucleus and try to add
a proton, this proton will be placed in a state having a higher energy than
those already present. The same holds true for the neutron states and the
neutrons while the proton and neutron states are essentially independent
(this independence between protons and neutrons is often expressed by an
additional quantum number, the isospin (chapter 13)). For a nucleus having
f In recent years, a unifying description of the electromagnetic and weak interactions has been achieved,

a result for which S.L. Glashow, A. Salam and S. Weinberg won the 1979 Nobel Prize for Physics.
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proton excess, the 'last proton' will be in a state having a considerably higher
energy than the state of the 'last neutron'. Consequently, the total energy
will be lower if one proton is transformed to a neutron. The net result is
thus that the most stable nuclei are those having about an equal number
of neutrons and protons. The repelling Coulomb forces acting between the
protons will modify this tendency toward making the number of protons
somewhat smaller than the number of neutrons, especially for heavy nuclei.

The discussion above leads to the conclusion that the stability of nuclei is
determined by competition between the attractive nuclear forces (the strong
interaction) and the disruptive Coulomb forces, with the Pauli principle
taken into account. As the Coulomb interaction has an infinite range, its
destabilising effects will dominate for large enough mass numbers, which
means that the number of nucleons in a nucleus will be limited. It turns
out that this limit is reached around mass number A = 240, i.e. for heavier
nuclei the half-lives are so small that no such nuclei have been found in
terrestrial matter. The most important decay processes for heavy elements
are fission, i.e. division into two more or less equal fragments, and alpha-
decay (cx-decay), i.e. emission of an alpha-particle consisting of two protons
and two neutrons. The alpha-particle, which is identical to a *He2 nucleus,
has an unusually high binding energy (i.e. it has a low mass or equivalently
a low total energy) which explains the importance of the alpha-decay mode.

The stability of lighter elements is determined by (3-decay (beta-decay). A
free neutron is not a stable particle but decays into a proton, an electron
(a (3-particle) and a particle of vanishing or almost vanishing mass called a
neutrino, -ve (or in this case rather an antineutrino, -ve)

n —•  p4" + e~ + "ve + energy

The half-life of this process is 12 min. The energy released comes out in
the form of kinetic energy of the emitted particles. It equals 0.78 MeV
corresponding to the difference in mass between the particles on the left and
right hand sides. If some energy is added, the process

energy + p + - • n + e + + -ve

also takes place, where the positron, e+, is the so called antiparticle of the
electron. A process of similar kind is electron capture

energy + p + + e~ - • n + -ve

All these processes are governed by the weak interaction and are the most
clear-cut examples where this interaction becomes important.

One now realises that nuclei with constant A (often referred to as isobars)
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but different numbers of protons and neutrons may decay into one another
and that the different binding energies may provide the energy necessary for
this. Indeed, the difference in mass between a proton and a neutron, 1.294
MeV, is small compared with typical differences in binding energies. The
total mass of the electron is even smaller, 0.511 MeV. Thus, as a first crude
approximation, only that (N,Z) combination which for constant A gives
the strongest binding is stable. For example, for mass number A = 91, the
strongest binding is observed for ^Zrsi with weaker bindings for 39Y52 and
4JNb5o etc. (cf. fig. 3.4 below). This means that the decays

39Y52 - • 4o£r5i + e~ + 'Ve + energy

and

4}Nb50 + e" - • 4oZr5i +-ve + energy

are energetically possible, leaving 91Zr as the only stable isobar. In many
cases, however, the binding energy is far from a smooth function for a chain
of isobars and therefore two or more isobars are often stable. The most
important factor leading to a staggering binding energy is the odd-even
effect, see chapters 3 and 14.

One might have expected that the nuclear stability was lost first at the so-
called neutron (or proton) drip lines (see chapter 3) when for one nucleus, the
next neutron (or proton) added becomes unbound. Because of the processes
discussed above, this is, however, not the case even though the drip lines
define some kind of ultimate limit beyond which one cannot really talk
about a nucleus as one entity. On the other hand, (3-unstable nuclei might
survive for quite some time and it is only if the energy gain of the decay
process becomes large that they are really short-lived. Similarly, alpha- and
fission-unstable nuclei might survive for long or very long times. Indeed,
many of the nuclei we consider as stable are fission- or alpha-unstable but
with such long half-lives (much longer than the age of the universe) that we
cannot possibly observe their decay.

Let us now consider the nuclear periodic table. For elements up to Bi with
Z = 83, there is at least one stable isotope (nuclei with the same number
of protons are generally referred to as isotopes and those with the same
number of neutrons as isotones) with the exception of 43Tc and 6iPm. Of
the latter elements, the most long-lived isotopes have half-lives of 2.6 x 106

years (for 97Tc) and 18 years (for 145Pm). Naturally radioactive isotopes are
the elements between 92U and 84P0. These elements belong to the famous
radioactive series, decaying by a- and (3-particle emission, explored by Marie
and Pierre Curie and their followers. Many of these have very short half-lives
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Table 1.1. Distribution of elements in the solar system.

Element

iH
2He
3Li, 4Be, 5B
6C, 7N, gO, 10Ne
Si-group: nNa,...22Ti
Fe-group: 50 £ 4 £62
Intermediate nuclei: 63 £y
Heavy nuclei: A^ 100

Fraction according
to mass
0.71
0.27
io-8

1.8 x IO-2

2 x 10-3

2 x IO-4

4 £100 IO-6

io-7

Fraction according
to number of atoms

0.94
0.06
io- 9

10~3

10~4

4 x IO-6

io-8

io-9

compared with the age of the earth (~ 4.6 x IO9 years) and they are present
in terrestrial matter only because of the existence of the relatively long-lived
radioactive parent nuclei 235U (*1/2 = 7 x 108 years), 238U (t1/2 = 4.5 x IO9

years) and 232Th (t1/2 = 1.4 x IO10 years).
In 1971 it was announced that a research team at the Los Alamos lab-

oratories in New Mexico, USA, had identified in terrestrial ores nuclei of
294Pu, with a half-life of 80 x IO6 years. This was a remarkable discovery.
If these nuclei were formed when or before the earth was formed, it means
that since their formation there have passed 4600/80 « 58 half-lives. This
means that of the original atoms only 1 : 258 or one in 1017 are left. The
minute amounts left, even in an originally pure sample, just escape normal
detection. The frequency of occurrence of 244Pu in bastnasite ore might even
seem to necessitate that the 244Pu atoms arrived on the earth considerably
later than the time when the bulk of terrestrial matter was assembled.

To the elements mentioned we have then to add the artificially produced
elements 93NP, 9sAm, 96Cm, 97Bk, 98Cf, 99Es, iooFm, ioiMd, 102N0, 103LW
and those with proton numbers Z = 104-109. If we add the neutron we
end up with 110 presently known elements. To each Z correspond usually
several iV-values, or isotopes. We have thus 280 stable nuclei, 68 naturally
radioactive nuclei, and presently almost 3000 artificially produced ones.

Many of the elements are rare in terrestrial matter and even more so in
the solar system as a whole. Table 1.1 exhibits the mass distribution of
atoms of various groups of atomic species in the solar system. Note that
this table does not apply to the distribution of elements in terrestrial, lunar
matter or meteoritic matter. The difference in abundances between the earth
and the solar system, for example, is due to the fact that the earth has too
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weak a gravitational field to prevent light volatile elements such as H, He
etc. escaping.

It is obvious from this table that an overwhelming amount of the material
is associated with H and He with a few weight percent distributed over the
C, N, O, Ne group, which latter has shown itself very important for the
development of organic material.



2
Charge and matter distribution in nuclei

The simplest property of a nucleus is the volume or alternatively the radius.
The average density of nuclear matter is found to be roughly the same in all
nuclei, i.e. the volume is found to be proportional to A or the radius to A1^
over the entire table of nuclei. The average central density is found to have
the value

p(0) » 0.17 nucleons fm~ 3

or
p(0) « 1.7 x 10 44 nucleons m~~3

The average matter distribution is, as shown in fig. 2.1, such that there is
an inner region of roughly constant density surrounded by a diffuse region
where the density gradually falls to zero. The diffuseness thickness d is
measured as the distance from 90% of the central density to 10% of this.
One has empirically d « 2.5 fm. It appears that d is roughly the same for
all intermediate or heavy nuclei but with a variation of approximately 10%
due to shell structure. When we speak about density, we may distinguish
between total nucleon density, proton density or neutron density. The one
most accessible to measurement is the proton density (or charge density).
However, due to the strong coupling between neutrons and protons, the
neutron and proton density distributions are grossly the same.

To describe quantitatively what has been said qualitatively above one
often expresses the average nucleon density distribution in terms of a Fermi
function

p(r) = po 11 + exp

with
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P(r)

0.5pc

_P(O)

-

-

0.9

\

0(0) \

0.ip(0);

Fig. 2.1. The radial dependence, p(r), generally used for the average matter density
(or the proton density or the neutron density) in a nucleus. The quantity d marks
the diffuseness depth or the distance between the 90% and 10% density radii.

and p(0) « po because exp(—R/d) <C 1. The quantity d of fig. 2.1 is related
to a as d = 4a In (3) « 4.4a (cf. problem 2.1), i.e. to d = 2.5 fm corresponds
the value a « 0.57 fm.

Besides the radius parameter, R, the so-called root-mean-square radius is
also frequently used in the literature. It is defined as

where

As shown in problem 2.2, for a Fermi function one can find the following
expansion in (a/R):

and therefore

—  R

As (a/R) approaches zero, obviously the two radius parameters, R and
agree exactly. For intermediately heavy nuclei (R « 6 fm) the empirical value
of a (a = 0.55-0.60 fm) gives the second order term an order of magnitude
of 10%. Thus, R = 1.1 • A1/3 fm leads to R^s « 1.2  • ,41/3 fm.
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Fig. 2.2. Schematic illustration showing results of bombardment of a Au nucleus
with electrons. From the alteration of the electron trajectories due to the Coulomb
attraction, the size and character of the Au charge distribution can be inferred.

Information about the proton distribution comes mainly from measure-
ments on particles scattered against nuclei (e.g. Hofstadter, 1963). The
particles are thus deflected differently depending on how close they pass
relative to the nucleus. A requirement associated with the wave nature
of matter is that the wavelength of the probes has to be small compared
with the size of the object probed, i.e. the nucleus. Ordinary light with a
wavelength of about 10~7 m obviously will not suffice. One instead uses for
example protons of 20 MeV or so, or electrons with energies in excess of
100 MeV. If electrons are scattered as indicated in fig. 2.2, only the Coulomb
effects due to the protons are measured. Because of our complete knowledge
of the Coulomb field, it is then possible to deduce the position in space
occupied by the protons from the scattering data. In order to measure the
total matter distribution or the neutron distribution, it becomes necessary to
use some strongly interacting particles like protons, a-particles or pions. We
are then faced with the problem that the interaction is only partly known
and therefore, much less is known about the matter distribution than about
the proton distribution.

Fig. 2.3 shows the so-called differential cross section dd/dfi (proportional
to the number of particles scattered into a certain space angle dfi) as a
function of the angle between the incoming probes and the direction from
the target to detector. The data in this figure are obviously sufficient to
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io-32

RB = 6.38 fm = 1.10>*M

+~ A (HA = 6.87 fm = 1.18/^ fm)

POINT CHARGE

30° 50° 70° 90° 110° 130°
SCATTERING ANGLE

150° 170°

Fig. 2.3. The so-called differential cross section for scattering of 153 MeV electrons
against a stable 79A11 target, i.e. the relative number of scattered electrons counted
over a certain space angle (dQ = sinfldfldcp). The theoretical angular distribution
corresponding to a hypothetical central point charge is given by the solid upper curve.
The dashed curve A corresponds to a homogeneous, constant charge distribution in
Au out to a radius RA. Better agreement with the data points is obtained by the
curve B based on the assumption of a finite charge diffuseness (from A. Bohr and
B.R. Mottelson, 1969, Nuclear Structure, © 1969 by W.A. Benjamin, Inc. Reprinted
with permission of Addison-Wesley Publishing Company, Inc.)
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conclude that the charge distribution is rather the one marked by the solid
line, i.e. the one with the diffuse surface, than the one marked by a dashed
curve, i.e. a sharp surface.

Information on the charge distribution in nuclei is also obtained from the
bound electrons. As the electron wave function penetrates the nucleus, its
energy will depend on the extension of the nuclear charge. This disturbance is
relatively small but can still be measured with a high accuracy. One property
which has received much interest recently is the so-called isotope shift
(e.g. Otten, 1989; Schuessler, 1981), which involves variation of the charge
distribution when neutrons are added. One elementary conclusion from such
studies is for example that, when neutrons are added, the charge radius
increases only by about 50% of the value suggested by the formula R =
roA1/3. Similarly, if only protons are added the charge radius increases on
the average by a factor of 1.5 relative to the simple A1/3 estimate. It thus also
seems clear that the equalness between the proton and neutron distributions
can only be approximately valid, and indeed, much work has gone into the
problem of determining the differences between the two distributions (e.g.
Barrett and Jackson, 1977).

In muonic atoms, one electron is replaced by a muon having a mass about
200 times that of an electron. Thus, the Bohr radius of the muon becomes
200 times smaller than that of the electron and in a heavy nucleus, the
muon may spend half of its time inside the nucleus. The energy spectrum
will thus be very strongly influenced also by small variations in the nuclear
charge radius and muonic atoms have frequently served as tools to measure
the charge distribution in nuclei (e.g. Wu and Wilets, 1969; Devons and
Duerdoth, 1969).

In recent years it has been possible to perform electron scattering at
considerably higher energies (e.g. Heisenberg and Blok, 1983) than used
for example when constructing fig. 2.3. The technique has also been refined
in other aspects and, combined with muonic atom data, it is now possible
to determine the nuclear charge distribution and its radial variation with a
very high accuracy. A sample of recent results is collected in fig. 2.4 where
the line width' represents the experimental uncertainty. It is evident that
the average properties are well described by the Fermi function of fig. 2.1
but also that there are important local variations. Theoretically, these local
effects are understood as shell effects but one notes that even with the most
recent theoretical tools we are not able to describe them fully.

As will become apparent in the coming chapters, the comparison between
theory and experiment in fig. 2.4 illustrates a rather typical situation in
nuclear physics. Thus, the observed features are qualitatively understood
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Fig. 2.4. Nuclear ground state charge distribution as measured for a sample of
nuclei throughout the periodic table. The experimental uncertainty is indicated by
the widths of the solid lines while the dashed lines show the result of a state-of-the-
art calculation (from B. Frois, Proc. Int. Conf. Nucl. Phys., Florence, 1983, eds. P.
Blasi and R.A. Ricci (Tipografia Compositori, Bologna) vol. 2, p. 221).

but, on the detailed level, discrepancies between theory and experiment
might still be quite large. This indicates the difficulty of the many-body
problem in general and especially the nuclear many-body problem where the
forces are not only very complicated but, in addition, they are only partly
known.
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Exercises
Prove for the Fermi distribution function that the entering diffuseness
constant a is related to the skin thickness d as

2.2

2.3

where d is the radial difference between the 90% and 10% density
surfaces.
Show that (r2\ for a spherical Fermi distribution can be expanded
in (a/R) according to the expressionf

and that for a general power of n the formula generalises to

Rn

n + 3
Show that the Coulomb energy for a spherical Fermi distribution
can be expanded in (a/R) as

_ 3 ZV
C 55 4nsoR R

f Hint for problems 2 and 3: To treat integrals over the Fermi distribution function it is convenient to
use a mathematical trick according to e.g. p. 394 of R. Reif Fundamentals of Statistical and Thermal
Physics (McGraw Hill, 1965).



The semi-empirical mass formula and nuclear
stability

3.1 The mass formula
The nuclear binding energy B(N,Z) is defined in the following way

rn(N,Z) = ^E(N,Z) = NMn + ZMu - ^B(N,Z)

where m(N,Z) is the atomic mass corresponding to neutron number N and
proton number Z, and Mn and MR the free neutron and hydrogen atom
masses. The binding energy is thus the energy gained (or the energy saved)
by amalgamating the neutrons and protons instead of keeping them apart.
From an analysis of available nuclear masses already in the 1930s von
Weizsacker (1935) and Bethe and Bacher (1936) were able to identify four
leading terms that accounted relatively well for the variation of B with N
and Z:

1 (W-Z) 2 3 Z V• —A 5B = avo\A - aSUTfA ' - -asym
2

The first two terms, the volume and surface (binding) energies, are formally
the same as those employed to describe a liquid drop. Provided the liquid is
homogeneously charged, there is also a term as the last one in the liquid-drop
case, the Coulomb repulsion energy. A straightforward generalisation of this
formula to describe shapes of the nucleus other than the spherical one is
usually called the liquid-drop model of the nucleus. (We shall come back to
this case in the next chapter.)

Let us discuss briefly each one of these four terms. The first and dominant
term, the volume energy, reflects the nearly linear ^4-dependence of the
nuclear volume or the ^4-independence of the nuclear density. Every nucleon
appears to interact basically with the nearest of its neighbours. Most authors
give avo\ = av —  16 MeV. This is the binding energy per particle of nuclear

14
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matter, the latter so defined that surface effects are negligible and Coulomb
interaction non-existent. Furthermore, by definition, there are equal numbers
of neutrons and protons in nuclear matter.

The second term, the surface energy, is proportional to the nuclear surface
area and represents the loss of binding suffered by the particles in the surface
layer due to the lower density (fewer neighbours) there. Actually, the kinetic
energy is also increased due to the special surface conditions, such as a rapid
fall-off of the nuclear density. A fit to mass data gives asurf = «s — 17-20
MeV (i.e. as « a v, see problem 3.4).

The third term, the symmetry energy, reflects the fact that nuclear forces
favour equal numbers of neutrons and protons, or N = Z. In the case
N = Z, the limitations brought about by the Pauli principle are reduced to a
minimum. This term determines the width of the mass peninsula (see below)
and together with the Coulomb term the path of the stability line through
the N, Z plane. One may write the volume and the symmetry terms together
as

By = awA \l —  K

expressing the fact that this is really a volume symmetry term. A reasonable
numerical value is asym = 50-60 MeV corresponding to /cv = 1.5-2.0.

The last term in the binding energy formula, the electric repulsion term,
corresponds to the electrostatic energy of a homogeneously charged sphere
of radius RQ. One may regard the radius RQ as an available mass formula
parameter. Its value may hide a certain granularity in the charge distribution
and also a neglected surface diffuseness. One should, however, expect RQ to
approximate the value normally assumed for the nuclear radius.

In chapter 2 we discussed the complications in the concept of a radius
from the fact that the nuclear surface is diffuse. For a Fermi distribution of
charge one, the Coulomb energy is

EC = - B C = - f P(r)
J |ri-r:

P(r) J3.. ,3.. 3 e2

2 4neo J |ri - r2| 5
(

2 3 \Rc
where RQ is the 'equivalent radius' of a homogeneous sphere of the central
density (cf. problem 2.3 where the formula looks somewhat different because
of the differing definitions of the radii, JRC and R).

In fact a second correction enters, which also tends to reduce the Coulomb
energy. This is the so-called exchange correction. As the protons have to obey
the Pauli principle, the immediate vicinity of one proton will be forbidden
territory to the other protons. We will not go further into the derivation
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Fig. 3.1. Numerical value of specific binding energy B/A, according to the semi-
empirical mass formula. The constant volume energy enters with opposite sign to all
the other contributions, which together reduce the binding down to the lower curve,
fitted to empirical mass data.

of this term (see Bohr and Mottelson (1969), pp. 149-152). With this term
included, the formula for the electrostatic energy of a spherical nucleus
becomes

E c - l Z2e2 0.76
2 3 \RcJ

In the often cited mass fit by Myers and Swiatecki (1967), the exchange
correction term does not occur. The authors then cite values of the equivalent
radius and the diffuseness, respectively as RQ = 1.2249 x A1/3 fm and
a = 0.544 fm. The large value of RQ hints that the Coulomb energy term in
their semi-empirical mass formula simulates some additional effect otherwise
not explicitly accounted for.

A survey of the effect of the different terms in the complete mass formula
as functions of A is displayed in fig. 3.1. The top of the vertical scale is
represented by the (negative) volume energy. From this is subtracted the
surface, Coulomb and symmetry energy for a sequence of masses selected
along the stability line. The energy is counted per particle.

The binding energy per nucleon for different nuclei along (^-stability is
exhibited in fig. 3.2. Note that for A ~ 40, a roughly constant value of about
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Fig. 3.2. 'Specific binding energy' or binding energy per nucleon B/A for nuclei
along the stability line. The largest value of about 8.7 MeV is exhibited by ^Fe.

8 MeV is reached. It becomes clear from fig. 3.1 that below this 4-value, the
surface energy dominates. The negative slope of the total binding energy for
A ~ 60 reflects the growing importance of the Coulomb energy term.

It has been argued that not only the volume energy, but also the surface
energy should be isospin-dependent. Thus one has added a symmetry-
dependent term to the surface energy, which is now written

£s = _ n = a[A2/3
-Ks(

N-Z\

where Myers and Swiatecki (1967) give a's = 17.944 MeV and KS = 1.7826.
(In this reference furthermore av = 15.494 MeV, and KS = KY leading to
asym = 55.24 MeV.)

In the systematic study of masses one also notices obvious odd-even
effects. In comparing odd-odd, odd-Z and odd-iV nuclei with their even-
even neighbours one observes (on the average) the following relations:

£(odd-JV) —  £ (even-even) = An
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Fig. 3.3. Odd-even mass differences for odd-JV and odd-Z nuclei. The An and Ap
values are calculated from the experimental masses by the formulae given in problem
3.5 (from Bohr and Mottelson, 1969).

£ (odd-Z) —  £ (even-even) = Ap

£ (odd-odd) —  £ (even-even) = Ap + An —  £ n p

where empirically!

An ^ Ap - 12 x A~i/2 MeV

while

£ n p ^ 20 x A'1 MeV

The systematic odd-even differences An and Ap all over the periodic table

t Formulae to calculate An, Ap and Enp in practical cases are given in problem 3.5.



3.1 The mass formula 19

10

37 38
I

39
i

4 = 91
odd-Z
odd-A/

Rb Sr

40
I

41
i

Zr
Z

Nb

42
\

Mo

Fig. 3.4. Relative masses of A = 91 isobars from ^ R b to 42M0. Note that all nuclei
fall roughly on one parabola, implying An « A p.

are plotted in fig. 3.3. One may observe that the data may be taken to
indicate a slightly larger Ap than An. This also is consistent with the fact
that there are altogether 68 stable odd-iV nuclei compared with 53 stable
odd-Z ones. In fig. 3.4 the relative masses of a series of A = 91 isobars are
plotted. Every other one, as 38 Sr, ^Zr and 42Mo, is an odd-iV element while
37Rb, 39Y and ^{Nb are odd-Z elements. They apparently all fall on the
same parabola, implying Ap ~ An.

In fig. 3.5 a similar plot is made for A = 92 isobars. Of these 3gSr, ̂ Zr and
42M0 are even-even elements, while ^Rb, 39Y, ̂ Nb and 43TC are odd-odd
ones. The displacement of the two parabolae now apparent is a measure of
the quantity An + Ap —  £np.

To the other terms of the mass formula there is usually added a pairing
energy term P(N,Z). The energy £np is often neglected and P(N9Z) taken
equal to (—A,0,A) for even-even, odd-̂ 4, and odd-odd nuclei, respectively,
where A « (12/jA) MeV. This term is to account grossly for the odd-even
effects.

Recent experiments on nuclei far from stability have made it meaningful
to consider A not only as a function of mass number A but also as a function
of neutron excess, N —  Z (Jensen et a/., 1984; Madland and Nix, 1988). For
example, in the version of Madland and Nix, the following expressions for
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Fig. 3.5. Relative masses of A = 92 isobars. The energy distance between the two
very distinct parabolas should equal An + Ap —  Enp, where £n p represents the extra
coupling energy between the unpaired neutron and the unpaired proton.

the average pairing gaps are used:

A fit to odd-even mass differences extracted from measured masses gives
r = 5.72 MeV, s = 0.119 and t = 7.89.

The liquid-drop formula can be seen as a first-order description in terms
of two small expansion parameters: the ratio of the surface diffuseness to
the size of the system (oc A~1/3) and the square of the relative neutron excess
[(N —  Z)/A]2. In the 'droplet model' (see e.g. Myers, 1977) this expansion
has been carried to one higher order than in the liquid-drop model. It
seems questionable whether the droplet model gives any improvement in
the description of the nuclear masses. The model has, however, found
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Nuclear mass A

Fig. 3.6. Binding energy gains through fission or fusion. Local variations in the
binding-energy curve are exploited in the fission and fusion processes marked in the
figure.

applications to a larger variety of nuclear problems than the liquid-drop
model. Furthermore, in the droplet model, the value of the Coulomb radius
Re is reduced to a more reasonable value.

One interesting application of the mass formula is that it forms a basis
for a discussion of nuclear power as illustrated in fig. 3.6. The most stable
species of nuclei are centred around Fe and Ni. In fact ^Ni is the element
with the most favourable B/A ratio. Elements to the right of this peak may
gain total binding by subdivision or fission, elements to the left of this peak
by fusion. In fact all elements heavier than A = 110-120 are in principle
fission-unstable. The fission barriers are, however, so large that the resulting
decay rates are far below the observation limit. In fact, for elements along
the stability line, the fission process is unimportant for nuclei with A < 230.
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3.2 The stability peninsula
In terms of the semi-empirical mass formula, where so far no allowance is
made for possible deviation from a purely spherical shape, one may now
study the region of nuclear stability with respect to various break-ups and
transformation phenomena such as beta-decay, neutron and proton emission,
spontaneous fission and alpha-decay.

The trend of the mass peninsula, or more specifically the beta-stability
line, is obtained from the condition

)

oNJA=const

This leads to the relation below for KS = 0

In fig. 3.7 the stability line is drawn together with the stable nuclei.
The deviation from the predictions of the Myers-Swiatecki mass formula is
systematic for the heavy elements and amounts to 2-4 units in N for each
Z (too high iV-values are predicted). This deviation, which is found also in
the droplet model formula, is not really understood.

The heaviest attainable neutron isotope of a given element corresponds to
zero neutron separation energy, or

3iV/z = c o n s t

This so-called neutron 'drip line' is of great astrophysical interest. The
corresponding proton 'drip line' corresponds to the condition

) =°
Z /AT=const

The use of these equations is exemplified in problem 3.7 and calculated
neutron and proton 'drip lines' are exhibited in fig. 3.7.

Instability with respect to alpha-decay and spontaneous fission set addi-
tional limits to the availability of nuclei in terrestrial matter. In particular,
the limit of availability for a heavy-^4 nucleus is largely decided by the
spontaneous-fission process. As already mentioned, the fission process first
becomes important for normal nuclei for A > 230. The spontaneous fission
half-life of 29<JTh is approximately 1017 y, while the corresponding half-life
for 2$Pu is ^ 1011 y, for ?^No 10 s, and for 260104 0.3 s. The fall-off
of half-lives with A is thus very rapid. The liquid-drop model (see chapter
4) makes Z2/A the one relevant parameter for the fission process, and it
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Fig. 3.7. Stable elements versus Z and N together with some quantities calculated
from the Myers and Swiatecki (1967) mass formula. For nuclei beyond 208Pb,
where no stable elements exist, the nucleus having the lowest mass for fixed A is
plotted. The line of beta-stability, and the proton (5P = 0) and neutron (5n = 0)
drip lines according to the mass formula, are indicated. Furthermore, the binding
energies are drawn for three cuts having constant proton number (Z = 60), constant
mass number (A = 170) and constant neutron number (N = 96), respectively. For
constant Z and N the slope of these curves gives the one-particle separation energy
per added neutron and proton, respectively. This quantity is around 8 MeV at
Instability and goes to zero at the drip lines. The beta-stability line is defined as the
extremum point of the mass when plotted for constant A. Owing to the difference
of the neutron and hydrogen atom masses, this point is slightly different from the
extremum of the binding energy. For some nuclei with A = 170, the experimental
binding energies (A.H. Wapstra and G. Audi, Nucl. Phys. A432, 1 (1985)) are shown
by solid points. The small differences relative to the semi-empirical mass formula
indicate that, for these nuclei, the shell effects are small. Stronger shell effects are
expected around the closed shells, which are drawn in the figure. For nuclei beyond
the line Z2/A = 41, very short fission half-lives (^ 1 s) are expected. However, shell
effects like those at the predicted superheavy islands around 298114 could locally
change the half-lives by many orders of magnitude.

has been inferred that the quantity Z2/A being « 41 (see fig. 3.7) should
correspond to half-lives in the region of seconds (which in the Z=100 region
is a rather appropriate estimate).

Use of the semi-empirical mass formula defines only rough boundaries to
the regions of long-lived or stable nuclei. The boundaries of the stability
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Fig. 3.8. Empirical specific binding energies (B/A) compared with the average curve
representing the semi-empirical mass formula. Deviations mark shell structure
effects. The nuclei are chosen along the line of (3-stability while the inset shows
N = Z nuclei (from Bohr and Mottelson, 1969).



3.2 The stability peninsula

40 60

25

160

-10
XBL 685-728

Fig. 3.9. A more quantitative diagram of the detailed differences between the
measured nuclear masses and the semi-empirical mass formula in the 1966 Myers-
Swiatecki version. Isotopic masses are connected by lines. Effects due to shell
closures at N = 28, 50, 82 and 126 are clearly apparent.

peninsula are in their details connected with nuclear shell structure that
gives modifications in the binding energy relative to the predictions of the
semi-empirical mass formula of the order of 10 MeV. For the stable nuclei
exhibited in fig. 3.7, one can discern small irregularities around the magic
proton and neutron numbers (closed shells), Z,JV = 8, 20, 28, 50, .... In a
similar way, the drip lines should be irregular due to shell effects and also
due to odd-even effects. The problem of a possible island of relative stability
beyond the short-lived heavy nuclei of elements with Z = 107-109, which
so far are the heaviest produced, is directly connected with the existence of
nuclear magic numbers, in this case Z = 114 and N = 184 (see chapter 10).

A comparison of empirical nuclear masses with a semi-empirical mass
formula is exhibited in fig. 3.8 for nuclei along ^-stability. Except for the
very light nuclei, the largest deviations are connected with neutron numbers
N = 28, 50, 82 and 126 and proton numbers Z = 28, 50 and 82. The
deviation is indicative of shell structure and we shall return to this important
point later.

The deviations obtained between the measured nuclear masses and the
liquid drop fit of Myers and Swiatecki (1966) are shown in fig. 3.9. The plot
is constructed in terms of neutron number with the isotopes connected. The
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neutron numbers N = 28, 50, 82 and 126 are clearly visible and the general
deviations show the same structure as in fig. 3.8.

Although it is tempting, one cannot employ the mass formula for much
larger or very different systems than those encountered in the neighbourhood
of the beta-stable mass peninsula. One reason is that for very large mass
numbers, the gravitational forces become dominating. These forces are
negligible in normal nuclei and therefore not accounted for by the semi-
empirical mass formula. Gravitational attraction may make a large assembly
of neutrons stable, forming a neutron star with a mass of the same order as
the solar mass, 2 x 1032 g.

Exercises
3.1 Induced fission of 235U occurs according to

n + 235U -* 236U -> 91Kr + 142Ba + 3n + energy

From fig. 3.2 it is apparent that for 235U the binding energy per
nucleon, B/A ~ 7.6 MeV, while for Kr and Ba, B/A ~ 8.6 MeV
and 8.3 MeV, respectively. The energy gain is thus approximately
(142 x 0.7 + 91 x 1.0 - 2 x 7.6) MeV per U atom. Compare this
value with the value calculated from the measured masses if (in units
related to the mass of 12C):

m (23^u) = 235.0439

m (^Kr) = 90.9232

m (^Ba) = 141.9165
m(n) = 1.0087

3.2 Calculate how many kilogrammes of 235U are consumed per year
in a reactor producing 2000 MW thermal energy (about 600 MW
electric). 1 MeV = 1.60 xl0~13 J.

3.3 A fusion-fission reaction has been proposed to occur according to

p + ^B - + 3 ( 4 H e ) + £

Calculate the energy E. How many kilogrammes of n B are needed
per year for a reactor with 2000 MW thermal effect. Use the following
values for the nuclear masses: m(4He) = 4.0026, m(nB) = 11.0093,
m(p) = 1.0078.
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3.4 With the assumption that a nucleon in a nucleus interacts only with
its nearest neighbours, one can show that for the coefficients of the
semi-empirical mass formula, ayo\ «  asurf. Do this! (No detailed
calculations.)

3.5 Calculate the quantities An, Ap and Enp for nuclei around ^(JYb. Use
the following formulae in the respective cases (try to justify these
formulae):

(a) An =
± | [B(N - 2,Z) - 3B{N - 1,Z) + 3B(N,Z) - B(N + 1,Z)]
(Z = even, + for N = even, —  for N = odd).

(b) Ap =
± | [B(N,Z - 2) - 35(iV,Z - 1) + 3B(N,Z) - B(N,Z + 1)]
(N = even, + for Z = even, —  for Z = odd).

(c) A p - £ n p =
±\ [B(N,Z - 2) - 3B(JV,Z - 1) + 3B(N,Z) - B(N,Z + 1)]
(N = odd, + for Z = even, - for Z = odd).

3.6 The nucleus ^ P u (ti/2 = 3.8 x 105 years) decays through emission
of alpha particles, £(cto) = 4.903 MeV, to 2f2\l. Show that this
corresponds to an energy difference Qa = 4.985 MeV. Furthermore
show that Qoc is in agreement with the Q-value obtained from mi
= 242.058739, m(2f2U) = 238.050786 and m(^He) = 4.002603.

3.7 Assume the semi-empirical formula in the form

m(AT,Z) =

with

,2/3 Z 2 (N-Z)2

= awA - M 7 - ^7773 - asym—— 2A
Furthermore the constants (A.E.S. Green and N.A. Engler, Phys.
Rev. 91, (1953) 40)

aY = 15.56 MeV as = 17.23 MeV ac = 0.697 MeV asym = 46.57 MeV

give a good fit to known masses.

(a) Calculate from the above formula an expression for the (3-
stability line. The masses of the hydrogen atom and the
neutron, respectively are MRC 2 = 938.77 MeV and Mnc2 =
939.55 MeV. Derive the equation for the line in the limit of
A —>  oo.
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(b) The neutron and proton 'drip' lines are characterised by

J Z=const L dZ J iv=const
respectively. Derive expressions of the form N = N(A) and
Z = Z(A) for these curves.

(c) Calculate numerical values according to the formulae derived
for A = 100, 200 and 300.



4
Nuclear fission and the liquid-drop model

Fission was the third of the modes of nuclear decay to be discovered. Alpha
and beta decay had been studied since their discovery in 1895. Nuclear fission
was not discovered until 1938, when O. Hahn and F. Strassmann (1938,1939)
bombarded uranium with neutrons and definitely identified barium atoms
in the products in the reaction resulting from neutron capture in uranium.
This reaction had been studied extensively (see Amaldi, 1984, for a review
of these years of physics) since shortly after the discovery of the neutron in
1932. However, as the reaction was expected to yield transuranium elements
it was not until the work by Hahn and Strassmann that it was realised that
a new and entirely unexpected nuclear phenomenon was being observed.

Hahn's coworker Lise Meitner and her nephew O. Frisch (Meitner and
Frisch, 1939) coined the word fission for the new phenomenon discovered by
Hahn and Strassmann. The word is a loan from biology. In close cooperation
with Niels Bohr the former authors also correctly interpreted the reaction as
a break-up of the nucleus into two smaller fragments and offered the first
qualitative explanation of the phenomenon in terms of competition between
the disrupting trend of Coulomb repulsion and the shape-stabilising effect of
surface tension. The effect should have been anticipated from the liquid-drop
model. Thus, for heavy nuclei the large number of positively charged protons
repel each other so strongly that the small amount of energy added to the
nucleus by the impinging neutron (adding its binding energy) is sufficient to
make it break apart. The liquid-drop theory was now systematically extended
to non-spherical shapes to explain the process of fission in a, by now, classic
paper by Bohr and Wheeler (1939). The ideas put forth in this paper still
form a basis for the present theories of nuclear fission.

29
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4.1 Some basic fission phenomena

The fission phenomenon studied by Hahn and Strassmann was so-called
neutron-induced fission, the process of division occurring first after absorption
of an impinging neutron. A very important conclusion was reached first
by Niels Bohr (1939). On the basis of seemingly contradictory findings, he
realised that only one isotope of natural uranium, 235U (with 3% abundance)
was responsible (almost exclusively) for the observed fission, while the other
naturally occurring isotope 238U (with 97% abundance) was inactive.

All this was neutron-induced fission. In 1940, Petrzhak and Flerov discov-
ered that uranium also undergoes fission spontaneously without added energy
from any external agent. Later the heavier artificially produced actinides
were also found to undergo fission spontaneously. The spontaneous fission
half-life is perhaps the most directly measurable quantity associated with
fission. The longest half-life determined is 1017 years for one isotope of U.
One of the shortest measured is 10~10 years or 1 ms for 258Fm (see fig. 10.2
below). There is thus a drastic time variation with charge number Z.

Another striking phenomenon associated with fission is the mass distribu-
tion of the fission fragments. Fig. 4.1 shows this distribution for spontaneous
fission of 29gCf, iooFm, 2ooFm and for neutron-induced fission of 2ooFm. The
y-axis shows the percentage yield. For the lighter mass numbers in fig. 4.1,
an outstanding feature is the mass asymmetry, i.e. the fact that the two
fragment nuclei have unequal masses. The mass asymmetry becomes even
more pronounced for lighter actinides and for 92U and 94PU, the fragment
masses centre around M\ ~ 100 and M2 ^ 140. The peak to valley ratio
also increases with decreasing mass, i.e. the number of asymmetric divi-
sions increases relative to the number of symmetric divisions. For 257Fm
the asymmetry has almost disappeared, as is seen in fig. 4.1. Furthermore,
with increasing excitation energy the asymmetry also decreases. This ex-
plains the difference between the two curves for 257Fm in fig. 4.1 because,
for neutron-induced fission, the excitation energy of the nucleus undergoing
fission becomes approximately equal to the neutron binding energy. For
higher excitation energies symmetric fission dominates in all cases.

Another quantity that is measured experimentally is the fission barrier
height. In fig. 4.2 a typical fission barrier is plotted. When the nuclear shape
deviates from sphericity, the surface energy (which is assumed proportional
to the nuclear surface) increases and the Coulomb energy decreases. The
total potential energy in the liquid-drop model which is illustrated in fig. 10.6
below, is determined by the sum of these terms. To get agreement between
measured and calculated fission barriers it is necessary to take shell effects
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Fig. 4.1. Mass distributions in terms of the fission fragment masses for spontaneous
fission of 29gCf, iooFm and iooFm and for neutron-induced fission of 2^7Fm. Note
the trend toward symmetric fission with increasing mass and in addition the larger
number of symmetric events for neutron-induced than for spontaneous fission (from
R. Vandenbosch and J.R. Huizenga, Nuclear Fission (Academic Press, New York
and London, 1973)).

into account. These shell effects are responsible for the complicated structure
of the barrier shown in fig. 4.2. The ground state minimum for deformed
shape, the secondary minimum and the very shallow third minimum arise
mainly because, at various distortions, specific nucleon numbers give rise to
particularly high binding energy (cf. chapter 9).

In spontaneous fission the nucleus is said to 'penetrate' the barrier. Ex-
perimentally a typical value of the fission barrier height is 6 MeV in the
actinide region. Nuclei can also exist in a fission isomeric state, trapped
in the second minimum (cf. fig. 4.2). They have then a much thinner bar-
rier to penetrate and their fission half-lives are consequently many orders
of magnitude shorter. Known fission isomeric states have half-lives in the
microsecond to picosecond range (see fig. 10.3 below).
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Fig. 4.2. Theoretical fission barrier or equivalently total 'potential' energy for 240Pu
as a function of deformation. The latter is indicated by the shapes along the x-axis
which is graded in terms of the distance between the two centres of mass of the
two nascent fragments. The liquid-drop barrier is a smooth function of deformation
as illustrated for 244Pu in fig. 10.6 below. If the shell effects are added, the dashed
curve is obtained if only rotation-symmetric and reflection-symmetric nuclear shapes
are considered (the reflection plane is perpendicular to the symmetry axis). Finally,
the solid curve results if more general nuclear shapes are considered. The first and
second barriers are lowered due to the inclusion of axial asymmetry and reflection
asymmetry, respectively. Note that the reflection asymmetry naturally leads to an
asymmetric fission mass distribution (from P. Moller and J.R. Nix, Proc. Third IAEA
Symp. on Physics and Chemistry of Fission, Rochester, New York (IAEA, Vienna,
1974) vol. 1, p. 103).

After penetrating the barrier the nucleus arrives at the point where the
fragments separate, the so-called scission point, which lies some 30-40 MeV
below the ground state as indicated in fig. 4.3. After scission the fragments are
accelerated by the Coulomb repulsion between the two separated charged
fragments. Most of the energy released is associated with this 'Coulomb
push'. The fragments acquire an energy from fission of almost 200 MeV
for 240Pu (cf. fig. 4.3), most of it in the form of kinetic energy. In fact the
Coulomb push after scission is almost entirely transferred to kinetic energy.
For thermal fission of 235U one obtains a kinetic energy for the fragments
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Fig. 4.3. A total view of the extended 2$}Pu fission 'barrier'. The total binding energy
is plotted against deformation. Note that scission (fragmentation) is reached about
35 MeV below the equilibrium ground state energy. The additional fission net energy
in excess of 160 MeV is recovered from the Coulomb repulsion between the two
charged fragments (from M. Bolsterli, E.O. Fiset, J.R. Nix and J.L. Norton, Phys.
Rev. C5 (1972) 1050).

of about 170 MeV and for 239Pu a kinetic energy of about 178 MeV (see
problem 3.1).

In the fission process, the remaining energy is dissipated in the form of
separation energy and kinetic energy of the emitted neutrons and of emitted
gamma rays from the excited fragment nuclei. The number of emitted
neutrons is found to grow strongly with charge and mass of the actinides
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Fig. 4.4. The average number of neutrons VT emitted on fission of some isotopes of
elements between 9oTh and iooFm as a function of mass. Note the fast growth in
neutron number with Z. In fact for Z = 114 the number of emitted neutrons in the
fission process is extrapolated to be 10-12 (from D.C. Hoffman and M.M. Hoffman,
Reproduced with permission from the Annual Review of Nuclear Science, Vol. 24,
©1974 by Annual Reviews Inc.)

undergoing fission, as is shown in fig. 4.4. The increase in v, the number of
neutrons emitted, is from about 2 for 92U and 94PU to about 4 for the iooFm
isotopes. Extrapolating to the predicted super-heavy-element region around
Z = 114 and N = 184, one predicts the emission of about 12 neutrons in
the fission of 298114. The number of neutrons emitted in the fission process
is very important for the criticality of the associated chain reaction. A chain
reaction is started if, on average, at least one neutron from a fission event
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induces a second fission event etc. A high v-value generally implies a small
critical mass. (The 'critical mass' is the smallest mass for which the chain
reaction is self-sustaining.)

4.2 The liquid-drop model and the fission barrier
In the liquid-drop model expression that was given in chapter 3 for the
nuclear mass or energy, the relevant terms for the description of the fission
barrier as a function of deformation, d, can be written

E(d) = Ec(d) + Es(d) =
\ Ec J

where I = (N —  Z)/(N + Z) and zero over a character indicates that the
quantity is calculated for spherical shape. The formula has been generalised

o o
to deformed shapes by the inclusion of the quantities Ec(d)/ Ec and Es(d)/ Es.
They are the ratios of the Coulomb and surface energies of the deformed
nucleus to the Coulomb and surface energies of the spherical nucleus. For a
study of the fission barrier, these quantities are calculated for some sequence
of nuclear shapes. One shape parametrisation corresponds to an expansion
of the nuclear radius in spherical harmonics with the shape parameters given
b y otxti-

The requirement that the radius should be a real number, R(9, cp) = R*(0, q>),
and the property of the spherical harmonics,

leads to
o^ = ( - 1 ) ^

The deformation-dependent radius Ra is related to its spherical counterpart
Ro by the condition of volume conservation

^ - far - /dQ/W*V a, = ±F> (i + i E K f +
where the orthogonality of the spherical harmonics has been used

/ YAii
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Using this general expansion one can to second and lowest order in cc^
derive the following expressions for the surface and Coulomb energies. For
the surface energy, one has

with

£ s = as ( l - K S / 2 )

The Coulomb energy is determined from

where a homogeneous charge distribution corresponds to

(po, r<R(0,(p)
p(r) \0, r>R(0,(p)

For a spherical nucleus one finds by straightforward integration (cf. problem
2.3)

o 3 Z V 1 Z2

5 An&o Re
For a deformed nucleus one obtains after somewhat more elaborate calcula-
tions, also to second order,

For an approximate description of the whole fission barrier, it is necessary
to treat the deformation parameters a^ at least to third order. It is fur-
thermore reasonable to assume that the nucleus undergoing fission remains
symmetric with respect to rotation around the deformation axis, chosen as
the z-axis. We thus do not need the Y^(0, q>) angular base but can confine
ourselves to an expansion in P^(cos 9). We have

One then writes the radius vector in the form
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where thus

h = <xw

The lowest-A Legendre polynomials Px(x) are

P0(x) = 1 P4(x) = i (35x4 - 30x2 + 3)
Pi(x) = x P5(x) = i (63x5 - 70x3 + 1 5 )
P2(x) = \ hx2 - l) P6(x) = ^ (231x6 - 315x4 + 105x2 - 5)

( )

In fact the /?2 coordinate is the most important for small deformations.
Next in importance comes /?4. For the illustrative calculation to be carried
out in more detail in problem 4.2 we shall confine ourselves to /?2 ^= 0 only.
Furthermore, to simplify the notation, we introduce 02 = (5/47c)1/2/?2. We
have then

To calculate the surface element one needs the product n • er, where n is the
unit normal vector of the surface and er the unit radius vector. The surface
element can then be written as

AC _ R2 dQ _ R3 dQ
n • er n R

The unit normal vector n is obtained as follows. Consider the radius vector
definition in terms of a2 above. It can be considered as a surface in (r, 6, cp)
space. Each new Ra value defines a new surface

^ l+a2P2(cos6)

The normal is then obtained as

where

V

One then obtains

IJ

' c 8 1C r 3 r H

1

1 d
6 rd6

1*

1

1
sin

d
6d(p

dP2
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It is then easy to derive the integral

d6 dcp

Expanding in a2 and retaining terms to third order one obtains

Using the normalisation of Ra implied from volume conservation or

one obtains finally the following expression for the surface area
2 2 _ 4 3

+ 5a2 ~ 105fl2 + '
The calculation of the Coulomb energy term to third order in a2 is a more
formidable calculational problem, for which we here give only the final result

Introducing the conventional fissility parameter x as
0
£cx = 0

2 £ s

on whose meaning we shall comment below, we obtain for the change in the
sum of the surface and Coulomb energies, i.e. the total deformation energy

Es + Ec- Es - Ec= A£ =£ s f j(1 - x)a2
2 - — ( 1 + 2x)a\ + .

The deformation energy contains a second- and a third-order term. The
first dominates for small a2, i.e. near spherical shape. For x < 1 the
deformation energy has a positive curvature at ai = 0 and is thus stable
against small deformations. For x > 1 the nucleus is already unstable against
small deformations. Also for x < 1 and sufficiently large ai the deformation
energy again becomes negative. The third-order expression in ai therefore
generates a fission barrier. One may now ask whether the expansion is
convergent. In fact it is not so beyond a2 ^ 0.6. Still, this third-order
expansion can be used for an estimate with amazing accuracy for 0.7 <; x. It
provides an example of a semiconvergent series. It is tempting to use the
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Table 4.1. Height of fission barriers and fo (ai) deformations at the top of
the barrier calculated in the liquid-drop model using a third-order expansion

for different values of the fissility parameter x.

Z2/A x £barr (MeV) t?barr

294v
110

32.96

34.91

35.56

36.51

39.37

41.16

0.700

0.753

0.769

0.787

0.841

0.912

17.9

9.7

7.8

6.0

2.4

0.4

0.88

0.69

0.64

0.58

0.41

0.22

1.40

1.09

1.01

0.92

0.65

0.35

expression derived for an estimate of the fission barrier. We then calculate
the maximum point of the third-order polynomial by considering

dAE n o / 4 x 4 ^ w
= 0 =ES T ( 1 - x)a2 - ^ r ( l + 2x)a\

This equation has two roots: ai = 0 and ai = 7(1 —  x)/(l + 2x). The first
corresponds to the spherical minimum, the second to the barrier maximum.
The barrier maximum is obtained as

_ 98 (1 - x)3 o
± ' b a r r ~15 ( l+2x )2 ' / i s

It is useful to remind oneself of the fact that all these expressions are valid
only for small values of |1 —  x|.

The fissility parameter x is thus a measure of the 'readiness' of the nucleus
with respect to division. We see that for x > 1 there is no barrier towards
fission. For the liquid-drop model parameters of Myers and Swiatecki (1967),
ac = 0.7053 (Re = 1.2249 • A^ fin), as = 17.944 and KS = 1.7826, we have

Z2 1
x = 0.01965—-A (1-1.7826/2)

As illustrated in table 4.1, one may evaluate this expression for a few nuclei
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x=0_8_ x=0.9 x= 1.0

Fig. 4.5. Shapes at the liquid-drop saddle point, i.e. at the top of the fission barrier,
for different values of the fissility parameter x (from S. Cohen and WJ. Swiatecki,
Ann. Phys. 22 (1963) 406).

along the (3-stability line. We see from table 4.1 that actinide nuclei have
x < 1 although empirically they are observed to be unstable to spontaneous
fission. However, x is close to 1, which means that the barriers are rather low.
The barrier energies according to the simple third-order deformation energy
expression are given in the fourth column. The nuclear shape corresponding
to the barrier maximum is indicated in the last columns. The lighter elements,
which have longer fission half-lives, are thus characterised by a higher and
thicker fission barrier. In the liquid-drop model approximation, it is also
possible to find the exact nuclear shape at the barrier maximum as shown
in fig. 4.5 for different values of x. An important feature of the figure is the
strong 'necking' for small x-values. Such shapes cannot be described by the
simple expansion of the radius using fo deformations only.

In the region of nuclei where x is close to 1, shell effects give rise to
important modifications of the barriers. As was anticipated in fig. 4.2 and as
we shall see in chapter 9, in the more refined calculations one considers the
barrier energy to be the sum of two parts, a 'macroscopic' part taken from
the liquid-drop model and a microscopic part, or shell correction, related to
the motion of the individual nucleons.
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4.3 Alternative models for the macroscopic energy
The surface energy term in the liquid-drop model is a correction to the
volume energy term and corrects for the fact that the nucleons at the surface
have less interaction energy as they have fewer neighbours than the nucleons
at the centre (see problem 3.4). They thus bind to nucleons only on one side
of the surface. An analysis shows that the surface energy term in our above-
discussed liquid-drop model gives an adequate description only for nuclear
forces of zero range (or for systems of very large dimensions relative to the
range of the forces). Thus, for systems with strong variations in the nuclear
surface the 'standard' surface energy term may be inadequate as exemplified
by the dividing nucleus at the point of scission. In the unmodified liquid-
drop model the theoretical surface energy will get an unphysically large
contribution from the area in the neck region. This is so because the surface
nucleons in the neck region obtain some binding due to their interaction
with the nucleons on the other side of the neck (provided the distance across
is less than the range of the nuclear force, or 1-2 fm). Thus, the unmodified
liquid-drop surface energy is consequently overly sensitive to 'wrinkles' in
the surface. Equivalently, distortions of high multipole order give large
positive contributions to the surface energy. This corresponds to the fact
that the coefficient in front of afy in the expansion of the surface energy is
proportional to X2.

The above considerations show the need to account for corrections due to
the finite range of the nuclear interaction as well as the diffuseness of the
nuclear surface. This led Krappe and Nix (1973) to propose the following
modification of the liquid-drop energy. One starts with consideration of an
effective interaction term

4na3 J |r —  r'\/a

This six-fold integral represents the total interaction energy over the entire
nucleus due to an attractive two-body interaction of a so-called Yukawa-
type (the Yukawa function, e~^r/r, is often used to describe the radial
dependence of the nuclear force, see appendix 13A). The range of the
two-body interaction is defined by the quantity a in the exponential. The
normalisation of the integral expression will be discussed below. The quantity
Vo measures the interaction strength. The volume of integration is specified
by the nuclear-radius parameter RQ. A straightforward evaluation of the
above integral in spherical coordinates yields for the case of a pure sphere

E = Vo l^Y^ + 2naR* " 2na3 + 2na ̂  + ^ exp ( - —
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The first term —  (4TL/3)VOR^, being proportional to A, should be considered
a volume contribution. It is not a priori obvious that this term can be used
to determine the strength parameter Vo in terms of previously introduced
parameters such as aw. The reason is that no account is taken of exchange
contributions, which come from the anti-symmetrisation of the nuclear wave
function, and are considered decisive for description of nuclear saturation.
The latter are thus needed to account for the nuclear equilibrium density.
Also the repulsive core of the nuclear interaction is not included in this first
variant of the Krappe-Nix calculations. Still, with Ro = roA1/3, we may
attempt to write the condition

The remaining terms can be written in the form:

Requiring that the usual (i.e. zero-range) liquid-drop model is obtained in
the limit a/Ro —• 0, we arrive at the following relation between Fo, a and
the usual surface energy expression

Es= 2naV0R% = asA2/3 ( l - KSI2)

For KW = fcs one obtains the following relation between aw and as by
elimination of Vo:

3 a aw= = 1 a ^ r0 => ay ^ as2r0as

For the non-spherical case the integral can still be evaluated provided that the
radius can be expanded in spherical harmonics. With expansion coefficients
a^, lengthy analytical calculations lead to the following elegant expression:

where

Here Ix+1/2 a n d ^A+1/2 a r e the modified Bessel and Hankel functions. For



4.3 Alternative models for the macroscopic energy 43

higher multipoles A, the expression for the stiffness constant Cx becomes
independent of multipole order because, for large k, the second term of Cx
can be neglected as seen from the limiting relation

This is to be contrasted with the quadratic increase with multipole order for
the stiffness constant calculated with the usual liquid-drop model. It illus-
trates the insensitivity of the modified liquid-drop formula to fine wrinkles
of the surface.

The incorporation of the modified surface term into the liquid-drop model
makes re-determination of the parameters necessary. The two new param-
eters a and ro are determined from interaction barrier heights in nucleus-
nucleus collisions and from electron scattering data. The parameters as
and KS have been determined from a fit to fission barriers and ay and KV
from a fit to nuclear masses in the region A > 165 with shell effects included.
Preferably all these effects should be considered simultaneously and the mass
fit should include the whole region of known nuclei. In the less ambitious
determination described above (Krappe and Nix, 1973; Moller et. a/., 1974),
the results were

ro = 1.16 fm
a = 1.4 fm

as = 24.7 MeV
KS = 4.0
av = 16.485 MeV
KY = 2.324

In this determination the relation between the ratios a/ro and as/aw derived
above is not enforced. It is found to be fulfilled rather accurately, however.
We obtain (3/2) • (a/r0) • (av/as) ~ 1.21.

In fig. 4.6 the fission barriers predicted by the liquid-drop model and by
the generalised model with the effects of the finite range of nuclear forces
included are compared. For lighter nuclei (A ~ 100), there is a difference
of the order of 10 MeV between the predictions of the models as to the
fission barrier heights. From recent experimental data, it seems clear that
the fission barriers predicted by the liquid-drop model are too high and that
the generalised model gives an improved description of the fission barrier
heights.

Subsequently, the alternative liquid-drop model has been further developed
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Fig. 4.6. Macroscopic barrier height (in MeV) as a function of Z2/A for the Myers-
Swiatecki liquid-drop model and the modified surface energy model of Krappe and
Nix, respectively. Note that the barrier height culminates for Z2/A ~ 15 or A ~ 100
in both models (from Krappe and Nix, 1973).

(Krappe, Nix and Sierk, 1979) and the parameters have been fitted to masses
and fission barriers of heavy as well as light nuclei (Moller et al. 1992).

Exercises
4.1 Define the fissility parameter

o o
x = E C /2 £ s

0 0
where Ec and £ s are the Coulomb energy and surface energy, re-
spectively, for a spherical distribution.

(a) Show that division into infinitely separated spheres, i.e. binary
fission, is energetically possible if

x > 0.35
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(b) division into three, i.e. ternary fission, is possible if

x > 0.43

(c) and division into n equal parts is possible if

2 x ( l - n-W) >
Comments?

4.2 Assume a nuclear shape given by

where P2 is a Legendre polynomial of second order and where Ra is
determined through volume conservation.

(a) Sketch the nuclear shape for a2 = 0.5 (j8 = 0.79).
(b) Show the surface energy to be given by

(c) For the Coulomb energy one can show

Use this to derive an expression for the deformation energy as
o o

A£ = £s + Ec- Es - Ec

(d) Determine the fission barrier height as
98 o (1 - x)3

Evaluate this expression for 238U.
(e) For x > 1 one finds a minimum for a2 < 0 (so-called oblate

shape). Can there exist stable oblate nuclei for x > 1 ?



5
Shell structure and magic numbers

5.1 Closed shells in atoms and nuclei
In the 1940s one spoke about 'magic' numbers among the nuclei. Such
numbers are for the protons and neutrons, respectively

Z =2,8,20,28,50,82
N = 2,8,20,28,50,82 and 126

These series of numbers one now wants to extend to Z = 114, 164 for
protons and N = 184 and maybe 228 for neutrons. Nuclei containing the
above-listed numbers of neutrons or/and protons are the ones found in figs.
3.8 and 3.9 to be associated with large extra binding energies relative to the
predictions of the semi-empirical mass formula. It is natural to associate
this extra stability with the filling of nucleon shells. Nuclei with N or Z
magic are usually called single-closed-shell nuclei, while those with both N
and Z 'magic' are called doubly closed shell nuclei or 'double-magic' nuclei.
Examples of the latter are 2 ^ 2 , ^Os, 2oCa2O> 20^a28? 28^28* 1soSn82 and
28|Pbi26- A nucleus that from theoretical extrapolations is predicted to have
similar character is 298114, which has Z = 114, N = 184, see chapter 10.

The whole notion of closed shells comes from atomic theory. There the
noble gases represent particularly stable and 'inactive' electron configurations.
The corresponding 'magic' numbers in the electron case are

Z =2,10,28,36,54,86

to which correspond the atoms

He, Ne, Ar, Kr, Xe, Rn

It should be well known that the Hamiltonian describing the motion of one
particle in a spherical symmetric potential can be separated into the radial

46
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Table 5.1. Closed shells calculated from the pure Coulomb potential

Shell

1
2
3
4
5

C

0
o,0,
o,
o,

1
1,
1,
1,

2
2,
2,

3
3,4

States

Is
2s, lp
3s, 2p,
4s, 3p,
5s, 4p,

(n +1)/

Id
2d, If
3d, 2f, lg

Number of
electrons
2
2+6
2+6+10
2+6+10+14
2+6+10+14+18

Total

2
10
28
60

110

Exp.

2
10
18
36
54

and angular degrees of freedom. The corresponding quantum numbers are n,
the number of nodes in the radial wave function, the angular momentum {
and its projection m/. As the energy eigenvalues are independent of m/, one
finds subshells of degeneracy 2(2/+1) where the two possible spin directions
give a factor 2. This degeneracy is partly broken if spin-dependent forces
are present (see chapter 6). The subshells of different £ quantum numbers
are generally denoted by letters, s, p, d, f, g, ... for ( = 0, 1, 2, 3, 4,

For a Coulomb potential there is an even higher degeneracy as the energy
eigenvalues depend only on the N = n + £ + 1 quantum number.f Thus for
'hydrogen-like' atoms with the potential

the energy eigenvalues are given as

1 Z21 2 2ZEN = --mc***-^

where
(e2/4ns0) 1

a = — —  ~
he " 137

is the fine structure constant. With the assumption that, in the many-electron
case, the interaction between the different electrons is negligible, it is now
straightforward to construct table 5.1. In table 5.1, the first two closed-shell
numbers in the next to the last column agree with the empirically known
magic numbers of the last column; the other three theoretical numbers are
too large. This is mainly due to the fact that the Coulomb potential is
smaller than assumed as the inner electrons 'shield' the outer electrons from
t We use a notion customary in nuclear physics, with n being the radial quantum number and N the

principal quantum number.
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Table 5.2. Approximate closed shells resulting from the Coulomb potential
with shielding included.

Shell t States (n + iy Number of Total Exp.
electrons

1
2
3
4
5
6
7
8

0
0,
0,
0,
0,
0,
o,
o,

1
1
1,2
1,2
1,2,
1,2,
1,2,

3
3
3,4

Is
2s,
3s,
4s,
5s,
6s,
7s,
8s,

IP
2p
3p,
4p,
5p,
6p,
7p,

Id
2d
3d,
4d,
5d,

If
2f
3f, lg

2
2+6
2+6
2+6+10
2+6+10
2+6+10+14
2+6+10+14
2+6+10+14+18

2
10
18
36
54
86

118
168

2
10
18
36
54
86
?
?

the nuclear charge. Far away from the nucleus, the Coulomb potential,
owing to electrons in deep orbitals, is much weaker than the formula implies.
With the shielding included we obtain table 5.2 (where the degeneracy of the
shells is only approximate). In this case one has (with a theory based on a
Hartree-Fock calculation, see below) succeeded in reproducing the 'magic'
numbers associated with the electron shells. The noble gases are predicted
at their proper places in the periodic system. The effect of shielding is the
largest for orbitals of high /-values. Thus the Id orbital is displaced from
the third shell down to the fourth shell, 2d and 3d appear near the s and p
levels of the fifth and sixth shells, respectively. Similarly the If orbital occurs
first with the s and p levels of the sixth shell etc.

Of considerable interest is the prediction of a new closed shell at Z =
118, which latter should be another noble gas (it is barely a gas at room
temperature as it has a point of condensation just below room temperature).
The electron closed shell Z = 118 happens to be close to the island of
stability near Z = 114 predicted for the atomic nucleus. For this reason
there is some remote possibility that Z = 118 might be produced. Soon after
Z = 118, a new chemistry should begin with the filling of the first atomic
g-shell.

We have so far appealed to qualitative ideas of the inertness of a noble
gas. To give a more quantitative measure of the shell structure let us study
fig. 5.1 of the atomic ionisation energy of the chemical elements of the
periodic table. The ionisation energy is the cost in energy of removing the
last (and least bound) electron. According to a theorem from Hartree-
Fock theory (Koopman's theorem), the ionisation energy is very near to the
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6s, 5d,4f 6p • 7s,6d,5f

Fig. 5.1. Experimental value of the atomic ionisation potential as a function of Z,
exhibiting the strong effects of closed shells at Z = 2, 10, 18, 36, 54 and 86 (from
Bohr and Mottelson, 1969).

single-electron energy of the valence electron that is removed when the atom
becomes singly ionised.

The corresponding quantity in the nuclear case is the neutron separa-
tion energy or the proton separation energy, respectively. Similarly to the
ionisation energy in the electron case, the neutron separation energy is the
minimum energy it costs to remove one neutron from a nucleus. This lat-
ter quantity is plotted in fig. 5.2 as a function of neutron number N. In
particular the N = 82 and N = 126 shells are clearly visible. The effects of
shells are, however, somewhat less pronounced in the nucleon case than in
the electron case.

To sum up the philosophy implicit in the foregoing discussion, the follow-
ing note should be made. In the atomic case the sudden discontinuities in
certain atomic properties over the periodic table can be understood as effects
of quantal states in an atomic potential varying smoothly with Z. In the
nuclear case the analogous discontinuities in masses and separation energies
can again be understood from quantal shells in a nuclear potential. We just
have to find the potential.
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Fig. 5.2. Neutron separation energies for even-Z, odd-iV elements as a function of
neutron number JV. Note the sudden drop in separation energies in passing the
closed neutron shells at N = 50, 82 and 126 (from Bohr and Mottelson, 1969).

5.2 The atomic and nuclear one-body potentials
In the atomic case it is very apparent that the concept of a one-body
potential in which the electrons move is a very successful concept. This
is so in spite of the fact that many electrons are involved in addition to
the central nuclear charge, assumed to rule alone according to the most
elementary considerations. The more refined concept of a screened central
nuclear charge is a further improvement, enough to account for the closed
shells.

A few words may be needed to clarify further the concept of a one-body
potential. This implies that one particle at a time can be considered present
in a static potential whose only coordinates are those of the one particle
in question, as position r, momentum p and spin s. Formally, such a one-
body potential is obtained from the self-consistent field method proposed
by Hartree (1928). For the atom the Hartree or Hartree-Fock (Fock, 1930)
method is well established. For nucleons the procedure is highly similar
though complicated by the fact of the immense complication of the basic
two-body nuclear interaction.

Around the atom there are really only electrons. In the nucleus the question
can in principle be raised of whether it is really a good approximation to talk
about neutrons and protons. We shall briefly come back to these problems
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in chapter 13. Let us, however, assume that neutrons and protons are
enough and that we can assume that the two-body interaction derived from
neutron-proton and proton-proton scattering can be used unmodified in the
nucleus.

Let us first consider the electron case. The total wave function can be
written as a product wave function

where the one-electron wave functions are given by <£,-. We now consider
the potential seen by electron i under the influence of the nucleus and the
remaining Z — 1  electrons placed statically in the nucleus:

leading to the one-particle Schrodinger equation

with the energy eigenvalues et.
Many wave functions and energy levels are obtained and in each level we

may place one particle in accordance with the Pauli principle. These <f>j are
then used to determine new <j>j functions or new densities pj = </>}0/. One
problem then is how to obtain the initial (j)j or pj terms. The answer is that
one may 'guess' initial (f>j or alternatively initial potentials. The solutions
can then be iterated.

In the nuclear case, there is no central potential and furthermore, the two-
particle interaction is not fully determined. Still, it turns out to be feasible
to use a similar approach with a mean-field potential

where the two-particle interactions Fy in the general case not only depend
on distance but also on e.g. momentum and spin. As in the electron case, if
the wave function is properly symmetrised, the product of (f>i is replaced by a
determinant and the expressions above are somewhat generalised (Hartree-
Fock method).

Another problem is that the empirical nucleon-nucleon two-body interac-
tion corresponds to an infinite repulsion at very small distances. This leads to
convergence problems. To overcome the latter, elaborate technical schemes
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Fig. 5.3. Effective single-proton (solid lines) and single-neutron (dashed lines) poten-
tials for 40Ca obtained in Hartree-Fock calculations based on the so-called Skyrme
interaction. Note that to each orbital corresponds a slightly different potential shape.
All these potentials show a radial dependence similar to that of the Woods-Saxon
potential (from J.W. Negele, Phys. Rev. Cl (1970) 1260).

have been devised by K. Brueckner and his coworkers (1958). Thanks to this
development one is therefore presently capable of rather 'realistic' Hartree
and Hartree-Fock calculations in nuclear physics.

Based on a more or less 'realistic' nucleon-nucleon interaction, it has
been possible to obtain Hartree-Fock one-body potentials for large series of
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nuclei as exemplified in fig. 5.3 for 40Ca. Note that there is one potential for
each state. The fact that the Coulomb interaction modifies the orbitals of
the protons relative to those of the neutrons leads to a nuclear potential for
the protons different from that of the neutrons. The one-body potential can
thus at least roughly be derived from the two-body interaction. As a general
observation one may note that the potential depth is about 50 MeV in the
case illustrated and the radius approximately the same as the matter radius.

We will follow the path taken historically, however. Thus we shall assume
a parameter form of a purely empirical potential. The parameters are
subsequently determined to fit data as well as possible. This procedure is
outlined in the following chapter.

Exercises
5.1 Consider a three-dimensional anisotropic harmonic oscillator poten-

tial
_ Ma>l 2

 Mcoy 2 M(Dl 2

The corresponding Hamiltonian is separable into the x-, y- and
z-directions and the energy eigenvalues are easily obtained as

E = hcox [ nx + ^ ) + hcov ( nv + - ) + hcoz

(a) In the case of spherical symmetry (cox = coy =coz) a large
degeneracy is obtained. Calculate the lowest 'magic' numbers.
Are there any /-shells that are degenerate?

(b) Another case of large degeneracy is cox = coy = 2coz. Calculate
the 'magic' numbers also in this case (the fission isomeric
states as well as the superdeformed high-spin states (chapter
12) have a deformation approximately corresponding to this
frequency ratio).



The nuclear one-particle potential in the
spherical case

In accordance with the discussion in the preceding chapter, our problem is
to find the wave functions of the Hamiltonian,

where V(r) is to represent the nuclear one-body potential (sometimes called
'one-body field') and M is the average nucleon mass. In spherical coordinates
one may write

n2 id2 S2(e,<p)
H = r + + V{r)

Exploiting the fact that we have spherical symmetry we can postulate a wave
function xp = R(r)Yfm(6,(p\ where Y>OT is an eigenfunction of the angular
momentum operator *f2:

We can now write the Schrodinger equation for the radial wave function

A commonly considered type of radial potential is the Woods-Saxon poten-
tial

Vo
V(r) = - 1 + exp [(r - R)/a]

which in many ways reminds one of fig. 5.3. The Schrodinger equation
for this potential can only be solved numerically and therefore it is useful
to consider some simpler potentials for which analytic solutions exist. It

54
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then turns out that the radial shape of the Woods-Saxon potential falls
somewhere between two such potentials, namely the harmonic oscillator

V(r) =

and the infinite square well

- { forr<R

As these two potentials, contrary to a more realistic nuclear potential, go to
infinity for large values of r, it might sometimes be useful to consider also
the finite square well

V(r) = {-Vo f O r r"*y) \0 forr>R

The solutions of the harmonic oscillator and infinite square well potentials,
respectively, are given in appendix 6A and the eigenvectors are plotted in
fig. 6.1. In the oscillator, there is a degeneracy in addition to that caused
by the spherical symmetry. Thus, by a remarkable 'coincidence' the second
root, 2s, of the / = 0 potential exactly 'coincides' with the first root, Id, of
the / = 2 potential. This 'coincidence' is understood first in terms of the
SU3 group. This SU3 invariance implies that the Hamiltonian operator is
invariant under the eight Elliot (1958) SU3 operators.

In the infinite square-well potential the /-degeneracy of the oscillator shells
is split such that Id falls below 2s, lg below 2d, the latter in turn below
3s. This splitting is easily understood if one considers the effective radial
potential where the centrifugal potential has been added to V(r):

This is the potential entering the separated radial equation. We may plot
Feff for different /-values as done for the harmonic oscillator in fig. 6.2. In
the high-/ case the wave functions are pushed towards the region of large
r-values. Thus, as the square well is 'deeper than the oscillator' close to the
'nuclear surface', it leads to a relative depression of high-/ relative to low-/
states.

As one might expect, the level ordering in the Woods-Saxon case falls
somewhere between the two extremes, the soft-surface harmonic oscillator,
and the hard-surface square well. The same level ordering is obtained by the
addition of a term



A/=5

A/=3

A/=2-

A/=1

\ If
2s+1d

\ ^ 2s
\

\ 1d

1p

1p

2s

1d

>̂
8

1P

A/=0<
1s 1s

2

1s

Oscillator
'intermediate' E:D2/MR2

Infinite-box potential
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the interpolated case is exhibited. This level order may be obtained if an *f2-term is
added to the harmonic oscillator potential.
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Fig. 6.2. Effective radial potential for a spherical pure oscillator, i.e. with the
centrifugal term »V(^ + l)/(2Mr 2) added, for e = 0, 1, 2 and 3. The radial wave
functions, £(p) are shown above the radial potential in each *f case and for n = 0, 1,
2, see appendix 6A. The corresponding eigenenergies are shown inside the potentials.

to the harmonic oscillator potential, as you can easily verify for yourself (cf.
fig. 6.1). However, before discussing how such a potential can be used in
applications, we will introduce the spin-orbit term, which is necessary to get
the empirical shell gaps at the proper N- and Z-values.

6.1 The spin-orbit term
In the middle spectrum of fig. 6.1, we want to reproduce e.g. the observed
gap for 50 protons or neutrons. This can be obtained if the lg-shell splits
into g9/2 and g7/2. In a similar way, the splitting of the lh-shell into hn/2
and I19/2 leads to a gap for particle number 82, etc. The energy should thus
depend on whether € and s are 'parallel' or 'antiparalleP (we will define these
concepts better below). Such a term, VLS = W{f)€ • s, which obviously has
to involve the spin coordinate, was introduced by Haxel, Jensen and Suss
(1949) and by M.G. Mayer (1949), for which she and Jensen were awarded
the Nobel Prize in 1963.

A spin-orbit term of this type was known in the electron shell. One source
of this term is the coupling energy of the electron in the intrinsic magnetic
field seen by the electron. Although to the outside observer only a static
Coulomb field E originating from the nuclear central charge is present, the
electron, moving with velocity v, experiences a magnetic field B, proportional
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to v x E (see problems),

B = eojuov x E

In the nuclear case there is indeed also such a term of electromagnetic
origin. The latter is, however, more than an order of magnitude too weak
to help us with the magic numbers. Instead the nuclear spin-orbit term is
of strong-interaction origin and can be understood from the details of the
nuclear two-body interaction.

Phenomenologically one may argue that to construct an invariant quantity
out of naturally entering vectors, one might consider, in addition to s, the
nucleon spin, being an axial vectorf, p, the nucleon momentum, a regular
vector, and either Vp, the gradient of the matter density, or VF, the gradient
of the nuclear central potential, both of which are regular vectors. (Because
of this, e.g. s-VF is not a scalar but rather a pseudoscalar.) It is an empirical
fact that the nuclear forces (the strong interaction) preserve parity, which
requires that the nuclear potential is scalar (see chapter 13). The simplest
conceivable scalar that contains the vector s seems to be

oc s • (p x VF)

Assuming spherical symmetry we have

r dr
or

In the pure harmonic oscillator case the spin-orbit term becomes especially
simple, because

r = MCOA = const.r dr

To calculate the splitting caused by VLS we need to construct new wave func-
tions that are eigenfunctions of £ • s. To do this we need the Clebsch-Gordan
coefficients, which are briefly discussed in appendix 6B. It is, however, in-
structive to obtain the result by intuitive reasoning. Let us therefore write

f An axial vector or a pseudovector remains unchanged under space inversion x& -> —  x^ (k = 1,2,3),
in contrast to a regular vector whose components change sign. The concept of pseudovectors (and
pseudoscalars) is naturally introduced in connection with the transformation of four-vectors under
Lorentz transformations.
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and

i.e.

We shall now assume that it is possible to construct wave functions for which
/ , j and s are good quantum numbers and / • s therefore an eigenoperator.
Then (expressing £ and s in convenient units of h):

We have thus

2it-*) = l' for ;' = / + i
x ' \ -f - 1 for ; = t - \

(expressing as before € and s in units of h). As we shall see later, out of the
2 • (2/ + 1) states with a given { we form one group of states (2j + 1 = 2/ + 2
of them) with j = ( + \ and one with j = t - \ (2j + 1 = 2/ of them).
These two groups separate energy-wise. E.g., the g-shell with a degeneracy
2 • (2/ + 1) = 18, splits up into g9/2 (degeneracy 10) and g-j/2 (degeneracy 8),
as is shown in fig. 6.3 below.

6.2 'Realistic' nuclear one-body potentials

With the addition of the spin-orbit term, the Woods-Saxon (WS) potential
takes the form

F w s = V(r) + VLS + Vc

with

V{r) = --
l+QXp[(r-R)/a]

and

r or
where we have used the notation Fso to indicate that one might choose
the radial function entering into VLS somewhat different from the central
potential, V(r). The Coulomb potential, V& enters only for protons and is
generated by a charge (Z —  l)e, which is uniformly distributed (or possibly
with a diffuse surface) inside the nuclear volume.

In practical applications the Woods-Saxon potential has the disadvantage
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that it cannot be solved analytically. This is contrary to the so-called
modified oscillator (MO) potential (Nilsson 1955, Gustafsson et al. 1967)

FMO = \hmp2 - Khcoo [2/-s + ii (f2 - ( / 2 ) J ] ; p = { ^ ) r

where, as already suggested in this chapter, the last term in parentheses
has the effect of interpolating between the oscillator and the square well
and thus reproducing effectively the Woods-Saxon radial shape (in fact, for
Kfi = \i = 0.04, the energy levels order of the infinite square well potential
is nearly exactly reproduced, see e.g. fig. 27 of Ragnarsson, Nilsson and
Sheline, 1978). The /2-term alone would result in a general compression
of the shells. To avoid this undesired feature, the average value of U2\
taken over each iV-shell, is substracted. This average, which is calculated in
problem 6.7, takes the value

N(N + 3)U2) =\ IN 2
Once the analytic form of the potential is chosen, it remains to fix the

parameters. For the Woods-Saxon potential, they have a simple physical
meaning. Thus, the nuclear radius R, the diffuseness depth a and the potential
depth Vo should have values in reasonable agreement with Hartree-Fock
potentials such as those exhibited in fig. 5.3. The radial function Fso(r),
which enters into VLS, is generally parametrised in a similar way to V(r).
Thus, together with the coupling strength A, another four parameters are
added. Furthermore, there is one potential for protons and another for
neutrons and in principle also one potential for each combination of Z and
N.

In practice, the same potential is used for some limited region of nuclei
and furthermore, some of the parameters are more or less arbitrarily put
equal. For example, Vso(r) is often chosen identical to V(r), the same
diffuseness depth a and/or spin-orbit coupling strength X is used for protons
and neutrons, etc. The rather small number of remaining free parameters
might then be varied within reasonable limits in order to describe different
nuclear properties (mainly excitation spectra, see below) as accurately as
possible. It then also seems reasonable that the different parameters should
vary smoothly, or maybe even stay constant, when considered as functions
of mass number (or proton and neutron number). A recent fit of the Woods-
Saxon parameters ('universal parameters') is briefly described by Nazarewicz
et al (1985). Let us also mention the folded Yukawa potential, which is
parametrised in a different way to the Woods-Saxon potential but which
appears very similar in practical applications. Some standard parameters for
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the folded Yukawa potential have been published e.g. by Moller and Nix
(1981).

In the modified oscillator potential there are basically three parameters,
coo, K and \i for each kind of nucleon. If we for the moment neglect the
neutron-proton differences of the three parameters, coo is used to determine
the radius of the resulting matter distribution (from the wave functions of
the occupied orbitals), \i or rather \i = K\I can be viewed as simulating the
surface diffuseness depth, and K is the spin-orbit coupling strength.

To illustrate further the effect of the / • s- and /2-terms, we show on
the left in fig. 6.3 the pure harmonic oscillator levels. Next is shown how
the term —rfhcooty 2 —  N(N + 3)/2] energetically favours high-/ subshells.
Finally, in the third column of levels a spin-orbit term —2KHCOO£  • s has been
added. The values of K and // are roughly those that fit the neutrons in the
28;>Pbi26 region of nuclei as to level order etc. To make the same diagram
applicable with somewhat improved accuracy in the lighter-element region,
smaller //-values and somewhat larger K-values have been used in the plot
for the lower shells, as indicated in the figure. (This is roughly the same fit
as made by Nilsson (1955).)

In the applications of the following chapters, we will mainly concentrate
on the modified oscillator (MO) potential. This is so because the physical
effects we want to illustrate come out in a similar way in all reasonable
potentials (or Hartree-Fock calculations) and then we want to add as few
calculational difficulties as possible. To conclude this chapter, we will discuss
the parameters of the MO potential and the experimental information used
for their determination in some detail.

6.3 The nuclear volume parameter
Let us first consider the parameter a>o of the MO (modified oscillator) poten-
tial. The radial coordinate of the nuclear wave function is (Mcoo/fc)1//2*r. The
characteristic length is thus (h/Mcoo)1^2- From the wave functions we may
calculate a total nuclear density as a sum of all the single-particle densities
from which the average radius could be further studied and compared with
experiments. A simply accessible quantity for oscillator wave functions (or
for any wave function that is given in an oscillator basis) is, however

1 2) Mco0

(see problem 6.8).
In terms of this we have already in preceding chapters defined an average



6.3 The nuclear volume parameter 63

'root mean square radius' Rrms as

We proceed to evaluate (r)2 for the case of filled oscillator shells. The
degeneracy of an JV'-shell is (Nf + l)(N' + 2) (see problems), so for equal
numbers of neutrons and protons, we have

N N

A = 2 ^ (Nf + l)(iV' + 2) ~ 2 £ (AT + 3/2)2

N'*=0 N'=0

2 ,
(x + 3 / 2 ) d x - ( i V + 2)3

1/2 3
and

r
- 2 /

7-

A (r2) = 2-r}- J2 (N' + I) (N' + l)(Nf + 2) ~ \j^(N + i

From these expressions we immediately obtain the relations

N + 2 ~ (3A/2)1/3

and
5 ^ i / 3 y / 3

 1/3

Using the empirical value i?ms = roA1^ with ro = 1.2 fm we obtainf
1/3

. ,4-1/3 ^ 4 1 . ^4-1/3 M e V

The neutron and proton potentials are really different as shown in fig.
6.4. This is so although the neutron-neutron and proton-proton strong

t When calculating numerically the following expressions are useful
h2

Mr2

ro
mec2

Mpc2

Mnc2

e2

Ansohc

e2

= 28.8 MeV

= 1.2 fm
= 0.511 MeV
= 938.3 MeV

= 939.6 MeV
1

137

- 1.2 MeV
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Fig. 6.4. The approximate neutron and proton potentials for 114Sn. As the 50
protons have more neighbours of the attractive opposite kind than the 64 neutrons
have, the potential is deeper for the protons by ~ 50(N - Z)/A MeV. To this one
has to add the Coulomb repulsive potential, which raises the total effective proton
potential by nearly 20 MeV at the origin. The fact that the Fermi energy becomes
the same for protons and neutrons leads to a neutron excess, which also comes out
from the semi-empirical mass formula. The symmetry and Coulomb energies of this
formula are directly related to the two differences between the proton and neutron
potentials illustrated here.

two-body interactions are the same. The difference in the total one-body
potential enters in two ways. First only the protons interact via the Coulomb
force. In problem 6.11 we calculate the Coulomb potential inside and outside
a homogeneous charge of radius R = r0A1/3. The result is

Vc(r) =
; r>R

Inside r = R the Coulomb potential is thus proportional to r2, apart from a
constant. It can thus very well be incorporated into the oscillator potential
by a modification of CDQ.
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Actually, due to the repulsive Coulomb interaction, nuclei along the
stability line have more neutrons than protons. It turns out that this has
as a consequence that the protons move in a deeper nuclear potential than
the neutrons (this is apart from the electromagnetic Coulomb repulsion).
This is so because unlike particles bind each other better than like particles.
Owing to the Pauli principle only half of the relative states accessible to
unlike particles are also accessible to like particles. The protons furthermore
have more unlike neighbours than the neutrons, and consequently a deeper
potential results.

Both of these effects, the Coulomb and the Pauli principle effect, can be
incorporated into the nuclear potential by choosing

N-Z>

. N-Z
1 —  y

where y is as yet undetermined.
The simplest way to determine y is to use the empirically fulfilled require-

ment that (see problem 6.12)

This leads to y ~ 1/3, and the resulting difference in neutron-proton poten-
tial accounts well for the Coulomb potential and the difference in the purely
nuclear potential for protons and neutrons when N ^ Z.

Actually from the numerical calculations of the nuclear wave functions
it is very easy to obtain values of (r2\ and (r2\ . From these numerical
values, ha>Q and hco^ can be fitted so that the desired values for the radii
of the neutron and proton distributions are reproduced exactly. It turns out
that the original estimate of

hco^ = 41 •  A-1" (l + \ ^ - ) MeV

is correct within 1-2% for all nuclei with exception of the very lightest ones.

6.4 Single-particle spectra of closed-shell + 1 nuclei - the
parameters K and \i

Nuclei having doubly closed shells apart from one added neutron or one
added proton or one missing neutron (a neutron hole) or one missing proton
(a proton hole) are the nuclei for which the single-particle picture should be
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particularly appropriate. This is so first because these nuclei are spherical
and we have limited our calculations to the case of good spherical symmetry.
Furthermore, with several particles outside a closed shell and occupying an
incompletely filled subshell, the 'residual forces' (interactions not taken care
of by the average field) are, in spite of their relative smallness, decisive for
the order of occurring nuclear spins in the excitation spectrum. We shall
therefore take the approach that we first consider only doubly magic ±1
nuclei. For such nuclei, with the odd particle in the lowest subshell above
the gap, the total angular momentum / equals the j-value of this subshell.
For example, in ^09 , with the odd neutron in the d5/2 shell, / = 5/2.

'One-hole' states are also associated with angular momentum j . Thus

/(one hole) = /(one particle) = j

This arises from the following argument: firstly, a closed subshell, having
all positions filled, has / = 0. Secondly, the last particle of such a closed
subshell contributes an angular momentum vector j , which has to balance
exactly the vector sum of the angular momentum of all the other particles.
This can only be true if these other particles vector couple to I = j (cf. fig.
7.3).

For doubly magic ±n nuclei (where n is a small integer), we first consider
the case of an even number of particles of one kind. About these we shall
assume that they always couple to total angular momentum zero in the
lowest energy state. This is supported by much data.

For an odd number of like particles we shall assume the 'seniority rule'
(Racah, 1950) that two by two particles of the same kind pair off to angular
momentum zero. This rule can be qualitatively understood if one introduces a
residual force proportional to S(TI~ r2) operating between the like particles in
the partly filled subshell (Mayer, 1950). Then the state favoured energetically
(and by definition of 'lowest seniority') is the one with particles pairing off
to angular momentum zero. By this rule e.g.

[(dV2)3]=/(d5/2)=5/2
The spins resulting for light odd-Z nuclei if the seniority rule were strictly
followed are listed in table 6.1. A similar table can also be made for odd-JV
nuclei. Note that an 'odd-Z' nucleus has Z = odd, N = even, while an
'odd-iV' nucleus has N = odd and Z = even.

When comparing predicted and measured spins in table 6.1, one first notes
the remarkable agreement. Indeed, the seniority rule is found to hold also
for heavier nuclei if \n\ is kept reasonably small, say \n\ <> 5 or 7. For larger
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Fig. 6.5. Observed low-energy spectra for 208Pb and neighbouring one-hole and
one-particle nuclei. The states are labelled by their spin and parity and, when
appropriate, by the corresponding subshell of the particle or hole. The states of
209 Bi formed from the h9/2 ground state coupled to the collective 3~ state in 208Pb
are also indicated (data from Table of Isotopes, ed. by CM. Lederer and V.S. Shirley,
John Wiley, 1978)

values of |n|, other coupling schemes might take over. For example, the nuclei
with A ~ 20-25, where disagreement is found in table 6.1, are described as
being deformed (such nuclei are discussed first in chapter 8).

One may go further and also discuss excitation spectra for closed-shell ±1
nuclei. As an example, the observed low-energy spectra for 208Pb and the
neighbouring nuclei are given in fig. 6.5. The states with the odd particle or
the hole in the ./-shells around Z = 82 and N = 126 are easy to identify.
It is first for excitation energies larger than about 2 MeV that other kinds
of states are observed, for example where the collective 3~ state of 208Pb
couples to the ground state of the odd nucleus. From the spectra of fig. 6.5,
the energies of the different subshells can be obtained as shown in fig. 6.6
(the energy gaps for Z = 82 and N = 126 are most easily extracted from the
measured mass of 208Pb relative to 209Bi and 209Pb, respectively). In fig. 6.6
is also shown how well these energies are reproduced in a typical fit based
on the Woods-Saxon potential.

We now continue to consider the energy spectra in the region of some
other closed nuclei. Then, the position of the neutron subshells around ^Og,
20Ca20/20Ca28 and 28Ni28 are obtained as shown in fig. 6.7. There, we also



Table 6.1. Shell model subshell occupation for light odd-Z nuclei. Note that the spin resulting from the spherical shell
model (Theor, I) is in agreement with observed spin (Exp, I) except for the nuclei 19F and 23Na. These latter nuclei
can be described as deformed where the valence nucleons fill orbitals that are superpositions of the ds/2* ^3/2 and S1/2

orbitals.

Element
3H
7Li
"B
1 5 N

1 7 F

1 9 F

2 3Na
27 Al
31p

35C1
37C1
3 9 K

4 1 K

45Sc
5 1 V

5 5Mn
5 9Co

Z
1
3
5
7
9
9
11
13
15
17
17
19
19
21
23
25
27

lSl/2

1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

1P3/2

1
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4

IP1/2

1
2
2
2
2
2
2
2
2
2
2
2
2
2

lds/2

1
1
3
5
6
6
6
6
6
6
6
6
6

2si/2

1
2
2
2
2
2
2
2
2

ld3 / 2

1
1
3
3
4
4
4
4

1*7/2

1
3
5
7

Config.

Sl/2
P3/2

(PS/2)3

Pl/2
^5/2
d5/2

(M3

(M5
Sl/2
d3/2
d3/2

(M3
(d3/2)3

f7/2

(M3

(M
(f7/2)?

Eq.
config.

(P3/2)"1

d5/2
(ds/2)-1

f7/2
f7/2

(f-7/2)"1

Theor.
/

1/2
3/2
3/2
1/2
5/2
5/2
5/2
5/2
1/2
3/2
3/2
3/2
3/2
7/2
7/2
7/2
7/2

Exp.
/

1/2
3/2
3/2
1/2
5/2
1/2
3/2
5/2
1/2
3/2
3/2
3/2
3/2
7/2
7/2
7/2
7/2
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Fig. 6.6. The single-neutron and single-proton levels obtained from the spectra of
nuclei near the double-magic nucleus 2"8Pb (fig. 6.5). The experimental levels are
exhibited to the right in each case. They are compared with the single-particle levels
obtained from the fit by Blomqvist and Wahlborn (Arkiv Fysik 16 (1960) 545) based
on a Woods-Saxon potential (from Bohr and Mottelson, 1969).
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Fig. 6.7. Single-neutron energies around ^Og, 20^20, 20^a28 and 28^28- The
experimental values shown to the right in each figure are taken from the adjacent
odd-N isotopes such as 15O, 17O etc. The modified oscillator fits are identified by
the values of K and \i (= KJJ) listed above the spectra. Where two fits are exhibited,
as for 40Ca and 48Ca, they correspond to different weightings of the observed levels.

give the energy levels obtained from fits of the modified oscillator (MO)
parameters, K and // (or pi). Such fits are straightforward because, from the
formulae given in this chapter, it is easy to write down the energy levels of
the spherical MO potential in closed form,

E(Ntj) = iV + ^ - K .

N{N + 3)

In fig. 6.7, one could note that, to fit in a satisfactory way the spectra of
both 40Ca and 48Ca, the parameter \i must be chosen substantially larger in
the latter nucleus.
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Table 6.2. Values of the modified oscillator parameters K and p as suggested
by Bengtsson and Ragnarsson (1985). K is the strength of the €- s-term and

K- p (= pr) is the strength of the /2-term.

N

0
1
2
3
4
5
6
7
8...

Protons

K

0.120
0.120
0.105
0.090
0.065
0.060
0.054
0.054
0.054

0.00
0.00
0.00
0.30
0.57
0.65
0.69
0.69
0.60

Neutrons

K

0.120
0.120
0.105
0.090
0.070
0.062
0.062
0.062
0.062

0.00
0.00
0.00
0.25
0.39
0.43
0.34
0.26
0.26

By fitting the level spectra of well-established spherical nuclei near the
double-magic cases, (Z = 8,iV = 8), (Z = 20, JV = 20), (Z = 20, iV = 28),
(Z = 28, AT = 28), (Z = 50, N = 82), and finally (Z = 82, AT = 126), one
obtains sets of K and \i for neutrons and protons valid in different parts of
the nuclear periodic table. As illustrated in fig. 6.7, however, the agreement
between calculated and experimental energies is far from perfect and similar
fits can be obtained for rather different values of K and p!. Furthermore, the
'observed energies' extracted from closed-shell +1 nuclei appear to include
some correlations and are thus not the bare energies we want to calculate in
a single-particle potential. Therefore, and also because of the approximate
nature of the MO potential, we can only get a rough determination of K and
n'.

A better way to obtain K and \i is through a fit to known single-particle
levels in the well-established deformed regions 20 < A < 28,150 < A < 190
and A > 225 (see e.g. figs. 11.5 and 11.6 below). A criterion for the usefulness
of the potential is the fact that the variations of K and pi with N and Z are
small and fairly continuous (see e.g. Nilsson et a/., 1969).

When doing calculations with the MO potential one could use two some-
what different strategies. The same values of K and p! (or p) could be used
for all shells, leading to a potential only applicable to a limited region of
nuclei. The other possibility is to use different values of K and pr for different
JV-shells as exemplified in fig. 6.3. Values from a more recent fit are listed in
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Fig. 6.8. Single-proton levels predicted in the 298114 region. The predictions are based
on the modified oscillator potential (S.G. Nilsson et al, Nucl. Phys. A131 (1969) 1),
Woods-Saxon type potentials (M. Bolsterli, E.O. Fiset and J.R. Nix, Physics and
Chemistry of Fission, IAEA, Vienna, 1969, p. 183; M. Brack, J. Damgaard, A.
Stenholm-Jensen, H.C. Pauli, V.M. Strutinsky and C.Y. Wong, Rev. Mod. Phys., 44
(1972) 320) and Hartree-Fock calculations (D. Vautherin, M. Veneroni and D.M.
Brink, Phys. Lett. 33B (1970) 381; M.S. Kohler, Nucl. Phys. A170 (1971) 88).

table 6.2. With K = K(N) and [i = jtf(iV), it is possible to construct a potential
that approximately reproduces the level order around the Fermi surface for
all nuclei. As only the orbitals around the Fermi surface influence most
measurable properties, the two strategies are essentially equivalent when a
limited region of nuclei is studied. The latter strategy, however, has the
advantage that the same potential can be used for all nuclei.

6.5 The prediction of nuclear shells at Z = 114, N = 184

An interesting problem that presents itself is the possibility of predicting
other closed shells beyond neutron and proton numbers corresponding to
existing nuclei. The hope is then that the associated shell effects (see chapter
9) are large enough to lead to nuclei with a relative longevity (e.g. £1/2 > 1
year) with respect to fission and alpha decay.

As seen in fig. 6.8 the next proton shell beyond Z = 82 appears to occur
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Fig. 6.9. Same as fig. 6.8 but valid for the neutron levels.

for Z = 114 and corresponds to a splitting of the 5f shell between f5/2 and
f-j/2- This prediction is common to the MO potential, Woods-Saxon type
potentials and also the potentials derived from Hartree-Fock calculations.
The magnitude of the shell effect is, however, highly dependent on how the
spin-orbit strength extrapolates with A. Thus, even if all calculations in
fig. 6.8 predict a large 114 gap, they are rather different in other ways, which
hints that the uncertainties in the extrapolations are large.

The next neutron shell corresponds to N = 184 in most extrapolated
nuclear potentials (see fig. 6.9). Here the position of a subshell hi 1/2 above
N = 184 is critical to the size of the JV = 184 gap. In the MO potential, the
hn/2 subshell occurs right in the middle of a gap between d3/2 and k17/2.
The shell N = 196, above hn/2, is then as important as N = 184. In the
alternative Woods-Saxon type potentials, as seen in fig. 6.9, the 184 gap
dominates clearly over the 196 gap, actually to the point of wiping the latter
out.

The fits shown in figs. 6.8 and 6.9 were all obtained around 1970. In the
spectrum of Kohler in fig. 6.8, one observes that the Z = 126 gap is about as
large as the Z = 114 gap. Some calculations even give a larger 126 gap than
114 gap. However, the predictions of Z = 114 and JV = 184 as the most
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probable candidates for closed shells beyond those observed are certainly
still valid.

The combination of proton number Z = 114 with neutron number N =
184 corresponds to the nucleus 298114. This nucleus or the neighbouring
nuclei should then be associated with the longest half-lives. Estimates of the
corresponding fission half-lives are discussed in chapter 10.

Exercises
6.1 Carry through the substitution for the three-dimensional harmonic

oscillator
1/2

and

P

Make also the 'ansatz' (why?)

to derive the equation

= R(p)

Make finally the substitution z = p2 to show that f(z) satisfies the
differential equation of a confluent hypergeometrical function.

6.2 Write out the wave functions for the isotropic three-dimensional
harmonic oscillator

N = 0 tf = O
N = 1 / = 1
N = 2 ^ = 0,2

Carry through the normalisations.
6.3 Consider an infinite radial box characterised by V(r) = —  Vo for r < R

and V(r) = oo for r > R and show that the radial eigenfunctions
are given by the spherical Bessel functions jj(£) where £ = kr and
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6.4 Generate from

/ sin

the spherical Bessel functions yo, 7i, h a n d J3- Normalise 70 and j \ .
6.5 Use tables to find for half-integer Bessel functions js(£) all roots

corresponding to £ < 10 for { < 5. Check that, for this condition on
£, no higher /-values are of interest.

6.6 Show that for a particle with mass \i, charge e and magnetic moment
m = (e//ji)$9 moving in a circular orbit in an electrostatic central field
<j)(r\ the energy is given by

Cmagn = - ^ - - ^ ^

where V = ecf).
6.7 Show that the '/2-term' of the modified oscillator potential does not

change the centre of gravity for the orbitals of one iV-shell, i.e. show
that the average value of (*f2) within one shell is equal to N(N + 3)/2.

6.8 Show that, for harmonic oscillator wave functions, one has

= (Ni + 3/2)
Ma>o

for any orbital i.
Hint: the problem can for example be solved by use of the virial
theorem, which states that for any potential V

6.9 Discuss for the case of filled oscillator shells the accuracy of the
expressions

by performing the sums exactly.
6.10 How are the relations of the previous problem modified for the case

of the last neutron and proton shells being only half filled?
6.11 Calculate the Coulomb potential within and outside a homoge-

neously charged sphere of total charge Ze and radius R = roA1/3.
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6.12 Show that the condition of equality for the neutron and proton 'radii',

leads to the following expressions for the neutron and proton fre-
quencies,

co" = (o0(x = 0) (1 + ±x)

(OQ = C00(X = 0) ( l - ^

The small expansion parameter, x, is defined by

i.e. x = (N —  Z)/A. Use furthermore the approximate relations of
problems 6.9 and 6.10.

6.13 Show that the wave function Y^a is an eigenfunction of j 2 with the
eigenvalue (*f + l/2)(*f + 3/2) and of jz with the eigenvalue (/ + 1/2).

6.14 Show the relation

by operating j —  m times with the operator y_ on the function

6.15 Show that

jm

6.16 Use the explicit formula for Clebsch-Gordan coefficients to verify
that C${ and C\\l both take the value 1.

6.17 Use the same formula to calculate

Compare with table 6B.1.



Appendix 6A
The harmonic oscillator and infinite square well

potentials in three dimensions

In many situations, it is useful to have some schematic nuclear one-body
potential for which analytic solutions exist. Two such potentials are the
harmonic oscillator and the infinite square well. In this appendix we will
briefly consider the corresponding eigenvectors and eigenvalues.

The Schrodinger equation for the radial wave function, R(r), of any
potential, V(r\ having spherical symmetry, was given in the main text,

We first limit our considerations to the spherical oscillator case V = ^
The transformation to the radial coordinate

where a useful unit of length (h/Mcoo)1^2 has been defined, leads to the
equation!

2

With the substitution R(p) = u(p)/p we obtain

P2 y

It is now easy to find that in the limits p —• 0 and p —• oo,u(p) becomes
proportional to p^+ 1 and e~p /2, respectively. Thus, we make the 'ansatz'

u = pM

t Here and in a few other places, the same symbol is used for two functions; in this case the symbol R
for different functions of r and p, respectively.

77
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and obtain for /

Finally the substitution

leads to

The latter equation is recognisable as the differential equation for the con-
fluent hypergeometric function, or Kummer function, F(a,c;z) which fulfills
the Kummer differential equation

zF" + {c- z)Ff -aF = 0

The eigenvectors of the Kummer differential equation are given in standard
handbooks but are also easy to derive. Assume a power series expansion

F = ao + a\z + aiz1 +...

Substitute into the differential equation, which leads to a simple recursion
relation:

= (k + a)
ak

Thus for large fe, â +i/flfe —•  1/k. This corresponds to a divergence at large
distances, which cannot be allowed. Therefore, it must be required that
the series terminates at some finite k = n, i.e. an ^ 0 but an+i = 0. This
condition, which according to the recursion relation corresponds to a = —n,
leads to an energy quantisation in the original wave function:

or
E=hcoo(2n + t+

with the principal and radial quantum numbers, N and n, related through

The energy-values are degenerate, as to each N there correspond wave
functions of different / (and n) such that ( —  AT, N —  2,... 0 or 1.
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Table 6A.1. Closed shells of the spherical harmonic oscillator potential. The
last column refers to whether the magic number is consistent with the closed

shells observed in nuclei.

N

0
1
2
3
4
5

E/hcoo

3/2
1 + 3/2
2 + 3/2
3 + 3/2
4 + 3/2
5 + 3/2

States
(n + IV

Is
IP

2s,ld
2p,lf

3s,2d,lg
3p,2f,lh

Degeneracy

1-2 = 2
2 - 3 = 6
3 • 4 = 12
4 • 5 = 20
5 • 6 = 30
6 • 7 = 42

Magic number

2
8

20
40
70

112

Comment

yes
yes
yes
(no)
no
no

With C being a normalisation constant, the total wave function is

where the expression for the Kummer function! follows directly from the
recursion relation

„, a z a(a + l)z2

F ( a , c ; Z ) . l + - - + ^ T I i - + ...

or
p \

The energy degeneracy of each AT-value equals 5^(2^ + 1), where the sum
is taken over the odd or even /-values up to N. In both cases this sum comes
out as j(N + l)(N + 2) (see problems). With spin included, the number of
states Jf for each energy (N + 3/2)ha>o equals

jr = (jv + i)(N + 2)

The properties of the energy eigenvalues of the spherical oscillator are
summarised in table 6A.I (cf. tables 5.1 and 5.2) and the energy spectrum is
given on the left in fig. 6.1. It turns out that the first magic numbers, 2, 8 and
20, are consistent with those observed experimentally in nuclei. However,
for higher particle numbers, the magic numbers predicted by the harmonic
oscillator model are not consistent with data.
f Note that the choice of phases is here such that the radial wave function always becomes positive

when p —>  0.
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We now consider a square well potential, V = —  Vo for r < R. With the
substitution u(r) = rR(r), the radial wave function valid inside the well reads

The transformations

k2 = 2M(E + V0)/h2

lead to
d2u )

M

With the substitution

this goes over into

which is the half-integer case, v = / + \, of the differential equation for the
Bessel function

The total radial function in this case

fc-7
can be written

where

The functions js(kr) are the so-called spherical Bessel functions and can be
generated from the operator relation

1 d \ ' s in f
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It is easy to work out the first few i?/-functions
sin/cr

Ro = No—,—kr
T̂ /sinfer cosfcr\Ri=Ni[ -y—5-  - - = —

V (kr)2 kr )
and so on. For an infinite square well (V(r) = oo,r > R\ the corresponding
eigenvalues are found from the condition that

Rtikr) = 0

In the case of t —  0, where the solution is proportional simply to sin kr, the
eigenvalues are roots to the equation

sinkR = 0

which corresponds to kR = nn9 n = 1,2,3.... In terms of E we have (in the
following we put Vo = 0, i.e. we count the energy eigenvalues relative to the
bottom of the potential)

h2 ,
= 0,n = 1) = 27r (corresponding to Is)

h2
= 0, n = 2) = 4TT2 (corresponding to 2s)

etc. For the other /-values we may write correspondingly

' 2MR2 Wn

where &n is the root of

MO = o
A table of the solutions is given in table 6A.2. The corresponding energy
graph is given on the right in fig. 6.1. As for the harmonic oscillator, only
the first few magic numbers are in agreement with those observed in nuclei.
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Table 6A.2. Single-particle energies of the infinite square well potential. The
roots £„£ of the spherical Bessel functions, jt(£nt)> are listed. The squared

quantity ^ is the energy eigenvalue in units of h2/IMF?. The first root for
given ( is denoted n = \, etc. Also listed are the degeneracies and the

corresponding closed shells.

i n State - (
F \1'2

1
H2/2MR2)

3.14
4.49
5.76
6.28
6.99
7.73
8.18
9.10
9.35
9.43

10.42
10.51
10.90

Degeneracy

2
6

10
2

14
6

18
10
22
2

14
26

6

Total

2
8

18
20
34
40
58
68
90
92

106
132
138

0
1
2
0
3
1
4
2
5
0
3
6
1

1
1
1
2
1
2
1
2
1
3
2
1
3

Is
IP
Id
2s
If
2p
Ig
2d
lh
3s
2f
li
3p



Appendix 6B
Coupling of spin and orbital angular

momentum. Clebsch-Gordan coefficients

6B.1 The case of s = \
We have now to go back and make things a little tidier mathematically. What
did the wave function really look like with £ and s appearing 'coupled'?
Earlier we have considered angular-momentum wave functions of the type
|/m/) • \sms) or Ysm,Xsms> This product is an eigenvector of f1 and s2 with
the eigenvalues ftV(«f  + 1) and h2s(s + 1), i.e. (3/4)fc2, furthermore of ̂ z(hm^)
and sz(hms) and, if we like, jz(hm^ + hms). However, this product is not an
eigenvector of j 2 or /• s. Between the latter quantities there is the relation

Let us form linear combinations

where the numbers C ^ s m are so-called Clebsch-Gordan coefficients (C-G
coefficients).

We now exploit the freedom in the choice of the coefficients C ^ s m to
satisfy the following desired relations:

(1) i2

(2) jzl^sjm) =hm\^sjm)
(3) (Ssfmysjm) = djfdmm,

The second relation combined with the equality jz =£z+sz leads to
0 if ttv + ms ^ m or equivalently that the sum over m/ and ms can be limited
by the condition m = mj> + ms. In our simple case under consideration, with
s = j , one has

83
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where a and /J denote spin states with sz = \h and sz = —\K respectively.
To shorten the formulae we shall from now on suppress the factor h. This

is achieved by assuming that j be 'expressed' in units of h etc. Let us study
the product Y^a. Apparently this is 'by luck' already an eigenfunction of j 2

with the eigenvalue (̂  + 5X^+5) and of jz with the eigenvalues jz=S+l/2
(see problem 6.13). In this case one of the Clebsch-Gordan coefficients is
one and the other zero. We thus have

The wave function corresponding to the same j 2 eigenvalue but with m = j—  1
can be generated through the application of j - = /_ + s_.The operator /_
should be well known from elementary courses in quantum mechanics. It is
defined as *f_ = tx —  \fy and has the property

{_\{ m) = \(f + m)(s - m + l)]x/2\/ m - 1)

In a similar way, *f + = fx + i/y is introduced and one finds

/+ \t m) = [(/ - m)(/ + m + 1)]1/2 \t m + 1)
Such lowering and raising operators can be analogously defined for s and
also for j = / + s. This leads to

J-
or

/ 2/

The arbitrary m-state f \ j = t + \ m) can now be reached through the
(j —  m) times repeated application of /_. After some manipulations (see
problem 6.14) one obtains

To obtain the wave function with jz = m but with j = / —  \ it turns
out that the condition of orthogonality with the wave function above and
normalisation immediately determines the form as
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You should verify for yourself that this is really another eigenfunction of
j 2 , now with the eigenvalue (/ —  ^)(/ + \). One should note, however, that
the wave function so conveniently derived is undetermined with respect to
an overall phase. This phase is thus determined through a convention,
which according to Condon and Shortley is the following, namely that
(/s jm\fz\Ss j — 1  m) should be real and positive for all j and m. In our
case apparently

which thus confirms our choice of phase to be properly made.
We have thus derived explicit formulae for the coefficients C^ s m . They are

called vector coupling coefficients, Wigner coefficients or Clebsch-Gordan
coefficients (the last is the most common).

6B.2 The general case
We can now easily generalise the problem of construction of common eigen-
functions of the commuting operations £ and s (which both are angular-
momentum operators but which refer to different Hilbert spaces) to the case
of two general commuting angular momenta ji and J2, which e.g. may be
angular momenta of two different particles or alternatively spin and orbital
angular momenta of the same particle. The problem is treated in most books
on quantum mechanics and we shall therefore be moderately brief in our
presentation. Consider thus

i = j i + J 2
where ji and \i refer to two different spaces. Hence one should more properly
write

j = j l ® 1 + 1 ®J2
The following commutation rules apply

\J\KJIX] = 0

There is a corresponding relation for the components of J2. The problem is
to find eigenvalues and eigenvectors of jz and j 2 . The eigenvectors are to be
expressed in terms of the eigenvectors of j \ z , j 2 , J2Z and j 2 :

ju \j\m\) = mi \j\m\)
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The following ket is a simultaneous eigenket of ji z , j2zJi a n d ]2 namely

\j1j2mim2) = \jimi) \j2m2)

From this base one thus wants to construct eigenvectors of jz and j 2 , and
furthermore j 2 and j 2 . This is possible as all four of the listed operators
commute, as is easily proved. Thus j 2 , j z , j 2 and jfe can simultaneously be
made good quantum numbers. The new eigenvectors remain eigenvectors of
j 2 and j 2 but not of j \ z and J2Z- Formally we can write the relation between
the new and the old system of eigenvectors in the following manner based
on the notation of Dirac:

\j1j2jm) = ^2 \J1J2m1m2) (jijimimil jijijm)
vector number

The transformation matrix element or scalar product (jiJ2mim2\jiJ2Jin) is
identical with the earlier introduced coefficient C£ffi2m. Operate with jz =
hz+hz on \jij2jm):

=m\jiJ2Jm)

Uiz + hz) \j1j2jm) = I ] (mi + m2) C44{m l7imi) \j2m2)
m\mi

= m \jij2jm)

The last equality requires that

££U O if m=/=m1+m2

6B.3 Recursion relations of Clebsch-Gordan coefficients
Operate now with j+ and ji+ + 72+ on \j\jijm):

O'i - w i ) C/i +m + 1)]1/2 l;i h mi + 1 m2) ^

K/2 - m2) (72 + m2 + I ) ] 1 / 2 I J! ;2 Am m2 +

= [(; -m)U + m+ I)]1/2 E Ui 72 mi m2)
mim2

The subsequent operation with j - gives similar relations with a few changes
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of sign. Identification of the cofficients gives the recursion relations

[(/ + m)(j±m+ I)]1/2C^m±1 = U + mi + 1)(h ±

For practical use of the formula, it is necessary to anchor the process at one
or two points. This is done the following way.

(1) Set mi = 71, m = j and use the lower signs. It then follows that
mi = j —  j \ —  1 in order to obtain Clebsch-Gordon coefficients
different from zero. This leads to

{2j)w c$Lh_XHX = o + M+j - h) Vi - j+h + D]1/2 cf^

(2) Analogously, set mi = ju m = j —  1. This, together with the upper
signs, gives

; i h j _ ( 2 f ^ / ^

If CJl'jlfrj is known, the relation 1 serves to determine
From the relation 2 subsequently, the coefficient C^^,^ ^_x can be
determined. One can thus determine all coefficients relative to one,
which

(a) is chosen real and positive
(b) is determined in magnitude through the normalisation condi-

tion.

It is easy to see that CfJjL^ j is ^ 0 only if

In the representation \]\hm\mi) there are (271 + I)(2j2 + 1) basis vectors. In
the new representation (assuming j \ > 72), there are

71+72
Y'V+ ) = (2ji + l)(2j2 + l)

h

basis vectors. Both sets of basis vectors are orthogonal because the corre-
sponding sets of operators are Hermitian. Furthermore they are normalised.
Thus the Clebsch-Gordon coefficients together build up a unitary matrix.
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6B.4 Orthogonality relations
For the unitary transformation matrices the following orthogonality relations
must hold:

m\m2

which is straightforward to prove. Thus, noting that j2 and jz are Hermitian
operators:

<5//<W = (jiJ2J'm'\ jiJ2Jm)

(hJ2fmr\ jiJ2m[rri2) {hh^i^ ' \JU2mim2) UiJ2mim2\ jiJ2Jm)

jiJ2Jm)

The last step is due to the orthogonality condition assumed

(jiJ2m[mf
2\ hjimirm) = <5mim;<5m2m/

The second orthogonality condition

E rhhJ rjlJ2J —  S ,S /
jm

is entirely analogous and is proven as an exercise.
We now want to prove that the transformation coefficients for the inverse

transformation are also Clebsch-Gordan coefficients. Thus we want to show
that

jm

(This really follows directly from the unitarity of the transformation matri-
ces.) We start from

im i m 2

Multiply both sides with Cm
x$lim and sum over j and m

jm m\m'2 jm

which is the desired relation.
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6B.5 Practical calculations with Clebsch-Gordan coefficients
For practical calculation of Clebsch-Gordan coefficients three lines of ap-
proach are possible.

(1) Direct use of the recursion formulae. This was the most common
method used a few years ago for the calculation of non-tabulated
coefficients. However, today the recursion formulae have lost their
importance for practical calculations.

(2) Use of available tabulations. Such tabulations are either in the form
of factorials as exemplified in table 6B.1 or in the form of explicit
numbers.

(3) Use of a closed expression involving factorials. This is the most
common method nowadays on which computer programs are based.
Without proof, we give the following explicit formula satisfying the
recursion relations and the normalisation conditions:

mlm2m y ( /+ Jl +/2 + 1)! C/l - ^i)! Qi + Itn)!

1/2, 0* + mi + m2)! (j - mi - m2)!\
(J)\(J + m2)\ J

U- ji + J2-H)\(j + nn +m2-H)\

+ J2 + m1-H)\(j1-m1+H)\\
x

The sum over H is limited by the fact that the factorials are defined
to equal infinity for negative integer arguments.

Some different symmetry properties of the Clebsch-Gordon coefficients
are also very useful. If j \ and j2 are interchanged, it seems obvious that the
absolute value does not change. However, a phase factor enters:

O'imi72m2| 717273m) = (-lyi+A-A {j2m2Jimi\ J2JiJ3m)

The same phase factor is obtained if the sign of all the m quantum numbers
is changed

(7imi72m2| 7i7273m3) = (—l> /l+-fe~-/3 (71 -m\h-m2\ hhh -m)
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Finally, it is also possible to derive the relations

(2/3 + 1\ 1/2

= (-1)71 mi 1 - mil hj\h

where the last one could be said to be superfluous because it can be obtained
from the other three relations. Instead of Clebsch-Gordan coefficients, so-
called 3j-symbols are sometimes used. The main advantage of the latter is
that ju h a n d h enter in a more symmetric way.

6B.6 The addition theorem
We now give without proof what is called the addition theorem valid for the
spherical harmonics. For the special case j \ = /, 72 = f one can obviously
write

Yim (01, (Pi) *>m' (02, q>2) = E Cmm^LM (&1, <Pl, #2, Vl)
LM

Assume now d\ — 62  = 0, (p\ = (p2 = V- The formula then evolves into

LM

The function </>£M(̂ > (?) m u s t be of the form

4&(09 (p) = F(tfLM) • YLM(9, (p)
where F is a constant. This is so because every function of (0, cp), which is an
eigenfunction of Lz with the eigenvalue hM and to L2 with the eigenvalues
h2L(L + 1), must be proportional to YLM{6, (p)> The determination of F is
most simply done from the case 6 = 0. One arrives at

1)^

Alternatively we can couple the two first spherical harmonics to a total
angular momentum I/, Mr. From the formula above, it is thus easy to derive

where we have used the shorthand notation

mm'
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Table 6B.1 Clebsch-Gordan coefficients (j\J2W\m2\j\hJm)
for jx = 111, 1, 3/2 and 2.

-J2mim2\jm

7

72 + 1

72

7 2 - 1

7

.

72

3

2

2

3 /
2 I

7 mi = i

! 7̂ + mV/2 /
'* ' 2 I 27 J I
/, l ^'~m + 1>\ f.11 2 V 27 + 2 ) {

(lJ2mim2\jm)

mi = 1 mi = 0

f m-l)(j+m) \ 1/2 / 2(7_m)O+m) \

+m)0'—m+1)  \ ' 2m
2;(2,+2) ; (27(2;+2))V

J7+2)(27+3) J ( (2;+2)(2;+3)

(-^J2m\m2\jm\

nt\ = 2

{(j+m—2)(j+m—  l)(j+m)\ ' (
\ (2j-2)(2j-l)(2j) J \

( 3(/+m)(/-m+l)(/-m+2) \ V1
 ( ,

^ 2j(2j+2){2j+3) J U

' O-m+l)(7-ifi+2)(j-m+3) \1/2 (3
K (2j+2)(2j+3){2j+4) J \

mi = 4

j-m\
. 27 J

27 + 2 J

mi = —1

1/2 /, • w. ^\ 1/2

/ ' 2 ( / _ m ) ( / 4 f l | + l A l /2
•2 ( 2y(2;+2) J

) { (27+2X27+3) J

mi = i

3(j+m-W+m)(j-m)\1/2

/ • \ 1/2

1 3m) ( u~m+1) Y/2
1 Dm> \2j(2j+2)(2j+3)J

(2;+2)(2;+3)(27+4) j
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j

.

h

]2

j

72 +

72

72

7

72 +

72 T-

?-»72

72

1

2

2

2

0

mi = - |

/3 O + m)O_m_l)(7_m )\l/2

/ • \ 1/2

(i 1m\ ( (7+w+l) "\
U m) \2j(2j+2)(2j+3) J

\ (2;+2)(27+3)(2y+4) j

(272ml m2|7m)

mi = 2

/ ( / + m _3 ) ( / + m _2)( /+ m- i ) ( / + m) \ 1 / 2

(, (27-3)(27-2)(27-l)(27) )
( 4(7+m-2)(7+m-l)(7+m)(7-m+l) \1/2 ~>{
V (27-2)(27-l)(27)(27+2) ; Z{

/6(7+m-l)(7+m)(7-m+l)(7-m+2) \ X/2

V (27-l)(27)(27+2)(27+3) J

(4(j+m)U-m+W-m+2)(j-m+3) \ 1 / 2

V 27(27+2)(27+3)(27+4) J
/ \ 1/2
( (27+2)(27+3)(27+4)(27+5) J

mi = 0

/ 6 ( /_m ) ( /_m_i) ( / + m ) ( / + m_i ) \ 1/2
1 /^ j—'X\(01 9^71 1W^ î  /\ \^J )\ J—  JK^J—  )\ J) J

O*vi / ^17—^/\7 1  " /̂ 1

2(3m2-7(7+l))
[(27-l)(27)(27+2)(27+3)]i/2

/ 6(7-m+2)(7-m+l)(/+m+2)(7+m+l) \ 1 / 2

^ (27+2)(2;+3)(2;+4)(2;+5) j

mi = - §

/(/_m_2)(7-m-l)(/_m) \ V2

/ 3(7+m+l)(7-m-l)(7-m) \ 1 / 2

^ (27-l)(27)(27+2) )

( 3(7+m+l)(7+m+2)(/-m) \ 1 / 2

/ • \ 1/2
( (2y+2)(27+3)(2;+4) J

mi = 1

/4(7-m)(j+m)(/+m-l)(j+m-2)\1/2

V (27-3)(27-2)(27-l)(27) )

(1 -«*)  (̂  (27-l)(27)(27+2)(27+3) j

- 0 ' 1 - m ) (27(27+2)(27+3)(27+4)J

/4(7-m+3)(7-m+2)(7-m+l)(7+m+l) \ 1 / 2

V (27+2)(27+3)(27+4)(27+5) ^

mi = —1

/4(/_m)(/_m_l)(/_m_2)(/+m)\ I/2

4 ; 1 ^7T I 1) ((27_2)(27-l)(27)(27+2)J

V(27-D(27)(27+2)(27+3)^^

\ 1/2
( (27+2)(27+3)(27+4)(27+5) J
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m\ = —2

- 1 _ /"4 ( / -
2;(2;+2)(2;+3)(2/+4)

/ (7+mH-l)(7+m+2)(7+m+3)(7+m+4)
\ (27+2)(27+3)(27+4)(27+5)



The magnetic dipole moment and electric
quadrupole moment for nuclei with closed shells

+1 nucleon

Two nuclear quantities are easily accessible to measurements, the magnetic
dipole moment and the nuclear quadrupole moment. These represent the
lowest non-trivial electric and magnetic multipoles, as the electric dipole
moment and the magnetic monopole probably vanish exactly while the
electric monopole is the nuclear charge.

7.1 The magnetic dipole moment. Schmidt diagram
The first established method of measurement of the magnetic dipole moment
\i\ was to study the hyperfine splitting of the electron spectrum (see e.g.
Kopfermann, 1958). The interaction energy between the nuclear magnetic
moment directed approximately along the nuclear spin I and the magnetic
field, B, generated by the electrons and on the average directed along the
electron angular momentum J, can be written

JL %3

By this interaction I and J are coupled to a total angular momentum F. This
leads to a spectrum of the following type (the analogy with the £ • s term is
obvious).

\ ^ P [F(F + 1)-I(I + 1) - j(j + 1)]

This relation is called Lande's interval rule.
Thus, provided the field strength B in the nucleus can be calculated, \i\ can

be determined from the magnitude of the splitting. The calculation of the
field strength is, however, often a complicated problem, as it requires detailed
information on the electron wave functions. If possible, one therefore uses
more direct methods, so called 'brute-force' methods, based on a directly

94
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A Time

electron

«*te

positron

electron

Fig. 7.1. Diagram illustrating the formation of a virtual electron-positron pair from
the interaction of an electron with the electromagnetic field.

measureable external field overcoming the field generated by the electronic
motion.

It turns out that the measured magnetic moment, based on the formula
above, is calculated as the expectation value of the z-component of the
nuclear magnetic moment. The direction of the z-axis is defined as the
direction of the B field at the origin.

Let us first consider the electron case, which should be well known. For
an electron the magnetic moment derives in part from the orbital motion, in
part from the electron spin. We have thus

where
= - ! and gJ = - 2

and where eh/2me is the Bohr magneton.
From non-relativistic Schrodinger theory one might have expected both

g-factors to equal -1 (the classical result). On the other hand first rela-
tivistic quantum mechanics (Dirac theory) properly connects spin with the
associated magnetic moment. The surprising result is that gf = —2.  Precise
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P+

Fig. 7.2. Examples of how nucleons may emit n-mesons in virtual processes confined
within the limits set by the indeterminacy relation.

measurements show that |gf | is in fact somewhat greater than 2. This has to
do with the fact that the electron cannot be considered a 'naked' particle.
When it interacts with the electromagnetic field an electron-positron pair is
formed virtually*)*, as illustrated in fig. 7.1.

In analogy with the electron case, we shall assume for the nucleons that
eh

** = 2M ^ + gs^
where eh/2M is the nuclear magneton, M being the nucleon mass. The
nucleons are Dirac particles, and one expects therefore

g" = 0 gs
n = 0

Empirically one finds that (or free nucleons (cf. problem 7.6)

g? = 5.59
gs

n = -3.83

This 'anomalous' gs-factor depends on the fact that the nucleon emits 7c-

f 'Virtually' stands here for something like 'in isolation from energy conservation'; the pairs therefore
only exist for ranges of time compatible with the indeterminacy relation.
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mesons as illustrated in fig. 7.2 (cf. also chapter 13). As a first approximation
we shall use the free nucleon gs-values also for the nucleons in the nucleus,
as these are also surrounded by virtual meson clouds.

According to the relations above we have

Hi = (jm=j\iiz\jm=j)

i.e., the magnetic moment is defined for the state with m = j . The operator
liz is given by

ch eh
(^ + gsSz^ = 2M ^ z + ^gs ~ g ^ Sz^

To calculate (sz), we have to expand the wave functions \j m = j) =
\f sjm=j) into components with ms as a good quantum number:

dr-{g,j + (gs-

dO E C '"

Now exploit the normalisation of the radial functions

/ <

and the orthogonality relations

J
to obtain

Set ; = ( + \, which leads to

eh { . . ,

where the last equality follows because the first Clebsch-Gordan coefficient
is equal to one while the second one (with m/ > /) is zero.
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©

©

/ ©

Fig. 7.3. Schematic vector addition of magnetic moments showing that a missing
particle in a shell (a hole) gives the same magnetic moment as a particle in the shell.

The Clebsch-Gordan coefficients to be evaluated in the case of j = f —  \
are somewhat more difficult but can be found in table 6B.1. One then obtains

eh J , , 1

and thus the general formula
eh .(

Based on the empirical gs-values, valid for free nucleons, we obtain finally
the following simplified expressions, representing the 'extreme' single-particle
model values:

(1) for odd-Z nuclei (i.e. protons)

AV+i/2 = 2-29 + J

(2) for odd-iV nuclei (i.e. neutrons)

/V+i/2 = -1.91

AV-i/2 = 1-91-T^J

These values are expressed in nuclear magnetons, eh/2M.
We shall now consider the magnetic moment, //, for nuclei with closed

shells +1 nucleon. For a closed shell, the particles are assumed to be
coupled to spin 0. Consider then fig. 7.3. There is shown on the left a
missing leg, representing a hole, in the polygon. On the right the dashed
cancelling angular momenta are added. Thus a shell where a particle is
missing behaves as a closed shell plus one particle of the same charge and
angular momentum as an ordinary one-particle state. This results in the
relation /i(hole) = //(particle).
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Fig. 7.4. a) Measured magnetic moments of some 'closed-shell ±1 proton' nuclei
compared with the corresponding free proton values (Schmidt lines). Nuclei with
f and 5 coupled in parallel are denoted by open circles, those with ( and s in
antiparallel by crosses, b) Same as part a) but for 'closed-shell ±1 neutron' nuclei
instead.
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In figs. 7.4a,b, we exhibit so-called Schmidt (1937) diagrams showing the
magnetic moment as a function of angular momentum / . The theoretical
values of the single-particle model (the Schmidt lines) are compared with
measured magnetic moments for nuclei having closed shells +1 nucleon. Note
the tendency that, with increasing mass number, the discrepancy between
theory and experiment increases. Note also that the experimental values
always fall inside the Schmidt lines or more or less on the Schmidt lines. No
experimental value is found significantly outside the Schmidt lines. All the
nuclei also fall closest to the one Schmidt line characterised by the proper
coupling scheme, j = £ + \ or j = t —  \ (correct Schmidt group).

The fact that nearly all nuclei, even those further removed from closed
shells, fall inside the Schmidt lines, indicates a systematic reduction of gs.
One may analyse the empirical magnetic moments on the basis of an effective
gs-factor,gf = x - g s ^ x - g s

f r e e :

x < 1 means that the nucleus falls inside the Schmidt lines
x > 0 means that the nucleus belongs to the proper Schmidt group

Experience shows that, with few exceptions, 0 < x < 1. Here, only some
qualitative considerations are used to illuminate this systematic feature:

(1) The recoil effect. As mentioned above, the anomalous magnetic
moment derives from emitted 7i-mesons. If now several nucleons in
the vicinity of each other emit 7r-mesons, the latter do not perturb
each other because the 7c-mesons are bosons (follow Bose-Einstein
statistics), while on the other hand a nucleon cannot recoil into states
already occupied by other nucleons, as the nucleons are fermions
(which means that they follow Fermi-Dirac statistics and have to
obey the Pauli principle). This effect should result in a reduced
7r-emission and for example for protons we would expect

free > eff > Dirac

An estimate of this effect gives dpi « +0.2 nuclear magnetons, always
in the direction inward relative to the Schmidt lines. Although this
effect is certainly of the correct trend, its magnitude is too small to
account alone for the entire discrepancy.

(2) The spin polarisation effect. As already stated, one may analyse
empirical moments from

leading to values of the ratio g^ /glTee = x. The tendency here is
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Magnetic
s P | n : 4 moment:

Fig. 7.5. Schematic illustration of the spin polarisation effect.

that the ratio falls from about 1 for light nuclei to about 0.6 for
heavy nuclei. These systematically reduced values of x are indicative
of a negative spin polarisation, which can be ascribed to a spe-
cific component of the residual interaction (i.e. the interaction not
included in the nuclear potential). The component in question is
(<ri -<72)(TI *T2) * VXG (cf. chapter 13), where a and T refer to the
nucleon spin and isospin. The isospin factor, TI -T2 is positive for like
particles (e.g. a proton interacting with a proton) and negative for
unlike particles (proton-neutron interaction) just as the spin factor,
a i • a2 is positive for parallel spins and negative for antiparallel spins
(the isospin formalism will be introduced in chapter 13).

The (o\ *<72)(TI "CI) interaction attempts to align in parallel the
spins of unlike particles and consequently antiparallel the spins of
like particles. Now consider a proton outside the nucleus as exhibited
in fig. 7.5. There is thus a trend for this proton to set the spins of
the internal protons antiparallel to the spin of the valence proton.
For internal neutrons on the other hand, the trend will be to put
the spins in parallel. Owing to the sign of gs, the magnetic moment
and spin are parallel for a proton, while the magnetic moment and
spin are antiparallel for a neutron. Thus, the trend for the magnetic
moments of both internal protons and neutrons will be to put them
antiparallel to a proton outside the nucleus (fig. 7.5). In an analogous
way, it is found that, for an external neutron, its magnetic moment
tends to be antiparallel to those of the internal nucleons. Apparently
the trend towards polarisation of the nucleons of the closed shells
can be realised only a fraction of the time. The result is a systematic
suppression of the magnetic moment associated with the spin. Thus
we have

,free

In fact the subshell pulled down by the spin-orbit force is most easily
polarisable. For the doubly magic +1 nucleus 209Bi the subshells
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and i13/2 are the most easily polarisable for protons and neutrons,
respectively. From these subshells, a one-particle-one-hole state can
easily be excited as (hn/2) h9/2 and (ii3/2J in/2 respectively.

As a final remark on magnetic moments, let us mention that not only gs

but also g/ might be subject to a modification relative to the 'free'-nucleon
value. However, both experiment and theory point to a |<5ĝ | not exceeding
about 0.1 nuclear magnetons (see e.g. Hausser et al, 1977, and references
therein).

7.2 The electric quadrupole moment
Another nuclear quantity first observed on the basis of optical spectra is
the electric quadrupole moment. One found certain deviations from Lande's
interval rule for the hyperfine structure. These could be ascribed to the
coupling between the electric quadrupole moment of the nucleus and the
wave function of the electrons (Kopfermann, 1958).

Classically the electrostatic interaction energy due to the coupling between
the electron cloud and the nucleus is given by the expression

= eJPz(r)(l)(r)dT
where pz is the electric charge density of the nucleus and </> the electrostatic
potential due to the electrons. By expansion of 0(r) around the nuclear
centre of gravity point one obtains

W = e /pz</>(0) Ax+e JpzV(j) • r&x+^jpz (</>x**2 + 2cj)XyXy + ...) dt+...

where (j)xy = d2(j)/dx dy etc., all derivatives assumed evaluated at the origin.
The first integral corresponds to the case of a point charge at the origin.
In the absence of a nuclear dipole moment, f pz* dt = 0, the second term
vanishes identically. Thus, the third integral gives the lowest order effect
of the finite extension of the nucleus. With the coordinate system having
its z-axis along the electronic axis of rotational symmetry (then excluding
spherically symmetric Si/2 and p1 / 2 electrons for which such an axis cannot
be defined, cf. fig. 7.6 below), the non-diagonal terms <l>Xy etc. disappear
leaving an energy contribution from the third term as

WQ = 2 r x

The relation



1.2 The electric quadrupole moment 103

combined with the assumption of axial symmetry around the z-axis leads to

(j>zz = —  2<t>xx = —2<l>yy
We then obtain the third integral simplified to the following form

Assuming that the nucleus is rotationally symmetric, a new coordinate system
(*', / , z') with the z'-axis along the nuclear symmetry axis is introduced.
Now, if the angle between the z- and z'-axes is /J, it is straightforward to
make a coordinate transformation (cf. problem 7.2) to obtain:

WQ = -^ej(3 (zf - r2) Pz dt (f cos2
 P - A)

We now define the quadrupole moment (Q or Q2) as the integral

or its quantum mechanical generalisation (dropping the 'primes' on the
nuclear oriented coordinate system)

where the sum is to be taken over the charge-carrying particles, i.e. in our
case the protons in the nucleus. Note that the quadrupole moment, according
to the standard definition, has the dimension of an area. The unit of charge
thus does not enter. In terms of spherical coordinates we write for a single
proton

For the extreme single-particle model, only the 'valence'-particle contributes
to the quadrupole moment. Furthermore, by definition the quadrupole
moment is calculated in the m = j state and we thus obtain

Q = Nt

where for the neutron and the proton we have en = 0 and ep = 1, respectively.
We shall derive this result for the case j = £+\ and will leave the proof that
it holds also for j = / —  \ to the exercises. We consider the matrix element
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Let us here introduce the notation that bra- and ket-vectors, written with
rounded parentheses imply that only the angular integral enters. The wave
function in the j = t + \ case (corresponding to the case of parallel spin and
orbital angular momentum),

comes out very simple because there is only one possibility of having mt +
ms = / + j , namely mj> = /,ms = \ (in the derivation of the magnetic
moment above, this same fact was obtained from a direct evaluation of the
Clebsch-Gordan coefficients obtained as 1 and 0, respectively). We now
obtain

Note that

and therefore

&*«- (1 O )(<0=

1 = J Y^ (6, <t>) 72o (0,

In the preceding chapter, we quoted the addition formula for spherical
harmonics

1/2

1 mm'M

The sum over M obviously contains one term, M = m + m' and consequently

Owing to orthogonality it follows that the only non-vanishing contributions
to the angular integral above are those with L = /. We have thus

*T I j /~iiLC r~*t Lt

\4TC/

and if the values of the Clebsch-Gordan coefficients (available e.g. from
table 6B.1) are inserted, one obtains

Q = -
2/en \

ep I 2 / + 3
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Fig. 7.6. Vector model of a spin ^ particle. The angle a is quite large. This leads to
a wave function that is smeared over all angles in such a way that the quadrupole
moment Q vanishes.

which can be transformed to

2 7 - 1
27 + 2

This relation has thus been proven for j = / + ^. In the exercises it is shown
that this expression, with Q expressed in terms of j , also holds for j = f —  \.
This means that the quadrupole moment depends only on j and not on L

Note that directly from the expression for Q in terms of j it is apparent
that Q = 0 for j — \. The quantum fluctuations are then so large that
no deviation from sphericity can be observed. The picture provided by the
vector model for these relations is illustrated in fig. 7.6. The length of the
vector is \j(j +1)]1^2 = ^J\ (in units of h) and the length of the z-component
is \. In terms of this model the orbit precesses around the z-axis. This
precession smears the charge distribution in space relative to that of the
orbital by the smearing factor (2j —  l)/(2j + 2). For j = \ the angle a is so
large and the smearing as a consequence so severe that Q vanishes exactly.

We have derived an expression for the quadrupole moment valid for
closed shells plus 1 particle. For the case of closed shells plus 1 hole the
corresponding formula holds but with the opposite sign. We have thus

g(hole) = -g(particle)

The situation is thus opposite to that for the magnetic moment. The reason
for the change of sign for the quadrupole moment can be understood from
an inspection of fig. 7.7. We have thus replaced the hole with cancelling +
and - charge clouds. The + charge completes the closed shell. The - charge
is subsequently responsible for the shift in sign of the quadrupole moment
for a hole state relative to a particle state.

Let us estimate the magnitude of Q. We assume that the orbital of the
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N

Fig. 7.7. Schematic addition of wave functions showing that a hole gives a
quadrupole moment with a different sign than that of a particle (cf. fig. 7.3).

Table 7.1. Experimental quadrupole moments compared with theoretical
'one-proton values' for nuclei with one proton or one neutron outside closed
shells. Also given are the corresponding effective charges and polarisation

factors.

Nucleus (doubly magic +1)

Orbital
QexP (barn)
(gone proton} ( b a m )

êff /^exp / (Qonc proton \

a=(e's-e{n,p))/(Zep/A)

'lo9
d5/2

-0.026
-0.051

0.51
1.1

"9FS

d5/2
-0.10
-0.051

2.0
1.8

2^Bi126

h9/2
-0.46
-0.30

1.5
1.3

valence nucleon lies near the surface of the nucleus. This leads to

\Q\ « (r 2^ « R 2 » 1.2 2 • A2/3 • 10"26 cm2 = 1.44 • A2/3 • 10"2 barns

( lbarn = l(T24cm2)

Thus for light nuclei we expect in terms of the 'extreme' one-particle model
a quadrupole moment of a few hundredths of a barn, and for heavier nuclei
some tenths of a barn. A comparison with a few selected experimental values
is shown in table 7.1.

Because e = 1 for protons and e = 0 for neutrons, one should expect
to have Q = 0 for the odd-JV case. Instead, the quadrupole moment turns
out to be approximately equal to that expected for an odd proton. For the
odd-proton case, Q comes out larger than the single-proton value by about
a factor of 2. These deviations in the quadrupole moment are considered to
represent matter polarisation as illustrated in fig. 7.8 (one often refers to the
tidal waves caused on the surface of the earth by the orbiting moon).

Let us introduce the factor of polarisation a. This implies a charge a-(Z /A)
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^_ = odd nucleon

-«—  = tidal crest

-«-•= tidal trough

Fig. 7.8. Illustration of how a particle outside a spherical core polarises the core.

Table 7.2. Quadrupole moments of nuclei removed from doubly closed shells.
Subshells for protons and neutrons are denoted by n and v, respectively. In

the last five cases of the table, the polarisation factor a has no apparent
meaning. These nuclei are deformed, permanently or momentarily through

vibrations. The two In nuclei are so-called vibrational nuclei. The last three
nuclei are permanently deformed. The quadrupole moment is 20-30 times

larger than that of a single proton.

Nucleus State Qexp Qone proton Polarisation Comment
(barn) (barn) factor

]U4 (rcp3/2j
9
4Be5 ( ^ps / i ) " 1

17Cli8 7rd3/2

113ID64 (TTge^)-1

149In«  \n&/iYl

^ H O Q S 7/2
7JLU104 7/2

181 To 1/173iaio8 1 / £

-0.040
0.053

-0.082
-0.065

0.8
0.86

2.73
5.68
3.9

-0.020
0.020

-0.047
-0.049

0.22
0.22

- 0 . 2
-0.2
-0.2

a> 1
a> 1
a> 1

(a » 1)
(a » 1)

(a > » 1)
(a > » 1)
(a > » 1)

Vibrational
nuclei a —  10

Nuclei with
stable deformations
a - 1 0 0

from the polarisation. One thus obtains

—  en « 0

eff

ef =

z
'A
Z

1
X n " 2

As a very rough estimate, o£xp « 1 and  apXp « 1 - 2 (cf. table 7.1). The
theoretical value obtained for the harmonic oscillator is a = 1 and for the
infinite square well potential a « 2-4.

Some examples of other types of nuclei than closed-shells +1 nuclei are
given in table 7.2. It is apparent that, in some cases, a becomes much larger
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than one. This must mean that the quadrupole moment is built from many
nucleons and the whole nucleus is deformed, either vibrationally or more
permanently (Bohr, 1976; Rainwater, 1976). In the coming chapters, we
will consider the permanently deformed nuclei. As a preparation for the
description of their measurable properties, we will study the single-particle
orbitals of a deformed potential in chapter 8.

Exercises
7.1 Use the formula

h2j(j + l)0'm|t|;W) = (jm\}\jm')(jm'\t • j|jW)

where t represents a vector of type / , s etc., to derive the formula for
the magnetic moment:

V = (jj \gssz + grfzljj) = j (gs ± (gs - gt)

The upper and lower signs are valid for j = ( ± 5, respectively.
Interpret the given formula in the case m = m'.

7.2 (a) Show that the quadrupole moment Q with regard to the sym-
metry axis of a homogeneously charged spheroid is | Z (b2 —  a2\
The half-axes are given by a and b with b referring to the sym-
metry axis.

(b) If the symmetry axis of the spheroid is rotated by an angle /?,
show that the quadrupole moment with regard to the rotated
axis is given by

7.3 Calculate the magnetic moment for
nuclei (experimental values

1 5 N

15 0

17O
3 9 K

41Ca
2 07p b

209B i

are given

(pi/2r
/ \— i

ds/2

(ds/z)"1

f7/2

1 (pl/2)
h9/2

the following closed shell +1
in square brackets)

[-0.28]

[0.719]
[-1.894]
[0.391]
[-1.595]

[0.590]
[4.080]
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Which g£ff is needed for the different nuclei to reproduce the experi-
mental values? Use the formula ^ = j [g, + (gf - g^j / (2 / + 1)].

7.4 Because of the Coulomb field, the average potential for protons and
neutrons becomes somewhat different. Estimate this difference due
to the Coulomb energy for a lgy/2 and a 2d5/2 proton, respectively
in the following case.

(a) The wave function of the proton is of harmonic oscillator type
(b) The charge distribution in the nucleus is assumed homoge-

neous out to the radius R = l.2 • A1/3 fm.
7.5 Calculate the quadrupole moment

where Q°p = e(l6n/5)(r2)N^Y2o is the quadrupole moment operator.
7.6 In the quark picture, the proton is described as being built from two

u quarks and one d quark while the neutron is built from one u quark
and two d quarks. The u quark has charge (2/3)e and the d quark
(—l/3)e. They both have an internal spin, s = 1/2. The magnetic
moment operator for a quark with charge Q is now assumed to be
given as /xq = QuoSz where /xo is a constant. Furthermore, to fulfill
the necessary symmetry relations, the two equal quarks in a proton
or neutron must couple to spin 1. Through the coupling of the third
quark, a total spin of 1/2 is then obtained. Show that this leads
to the relation /xn = (—2/3)/x p for the neutron and proton magnetic
moments. How does this relation compare with the experimental
values?
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Single-particle orbitals in deformed nuclei

For the spherical case we have discussed the isotropic harmonic-oscillator
field. To amend for the radial deficiencies we have seen that the addition of
a term proportional to — t 1 has the desired properties of giving rise to an
effective interpolation between a harmonic oscillator and a square well. One
thus obtains a fair reproduction of the spherical single-particle levels by the
following Hamiltonian - the modified-oscillator (MO) Hamiltonian:

A + \ I?= ~ A + \MCOI? -

As a secondary and undesirable effect of / 2 alone, there is a general com-
pression of the distance between the shells below ftcoo- This basic energy
spacing is restored by the subtraction of the term U2\ = N(N + 3)/2 (see

\ / N
problem 6.7), which thus assumes a constant value within each shell. One
argument for the introduction of the U2\ term is the following. Only the

\ / N
terms proportional to r2 are conveniently included in the volume conserva-
tion condition (see below). In order not to upset volume conservation by the
effective widening of the radial shape by the f1 term, it appears reasonable
to subtract from this term the average value appropriate to each shell. A
resulting level scheme is exhibited in fig. 6.3. In that figure, different strength
parameters, K and \i are used. The relations C = IKHCOO and D = rfhcoo are
straightforward to derive. The parameters K and \i (or \i where // = K\X) are
the standard parameters used together with dimensionless oscillator units.

This potential easily lends itself to a generalisation so as to be applicable
to the deformed case. If we allow for the potential extension along the
nuclear z-axis (3-axis) being different from the extension along the x- and

110
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y-axes, we may write the single-particle Hamiltonian in the form

The anisotropy corresponds to the difference introduced between a>± and
coz. It is convenient to introduce an elongation parameter e (Nilsson, 1955):

(coz = cooOO U
2\--SJ

where coo(e) is weakly £-dependent, enough to conserve the nuclear volume
(see below). The distortion parameter £ is obtained as s = (CO_L —  coz)/coo- It
is defined so that £ > 0 and s < 0 correspond to so-called prolate and oblate
shapes, respectively.

8.1 Perturbation treatment for small e
Let us first study the situation for very small 8-values. Expanding in s we
may write

where Ho is the spherical shell model Hamiltonian. Furthermore shf is given
as

eh' = e^-cof- (x2 + y2- 2z2) = - ^ ^ ( c o s 6)

As shown in preceding chapters we may write the eigenfunctions in the
spherical case as

(t>(NSsjQ) = RN/(r) £ (SsAWsjQ) Y,AXsx
AS

where the constants of the motion are j 2 and Q, the total angular momentum
and its z-component, and furthermore / 2 and s2, the orbital and spin angular
momenta. The projections of the orbital and spin angular momenta are
denoted by A and Z, respectively.

In the spherical case each j state is (2y'+l)-fold degenerate. This degeneracy
is removed by the perturbation h! to first order as (see problem 8.1)

(N/sjQ\eK\NtsjQ) = \eMo>l (r2)
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This result of the deformation of the field is easily understood qualitatively.
For a so-called prolate distortion (s > 0) of the field, matter is removed
from the 'waistline' and placed at the 'poles'. This corresponds to a softer
potential in the z-direction and a steeper potential in the perpendicular
x- and y-directions where the equatorial orbitals with ft ~ j are mainly
located. Classically, this is understood from the fact that the ft ~ j angular
momentum vector is almost parallel to the z-axis and the particle moves in a
plane perpendicular to this vector. Consequently, the ft ~ j orbitals move up
in energy. On the other hand, the polar orbitals with ft « j are  associated
with a negative energy contribution for s > 0. They are thus favoured by a
prolate deformation, i.e. they move down in energy. For an oblate distortion
the opposite is true, i.e. the large ft-values are suppressed energywise (cf. the
splitting of the y-shells for small distortions in fig. 8.3 below).

8.2 Asymptotic wave functions
Before we discuss the case of moderate deformations of e ~ 0.2—0.3,  acquired
by most deformed nuclei, we shall now consider the limit of very large e-
values. Beyond very small s-values, say e ~ 0.1, the exhibited perturbation
treatment of the e-term is no longer applicable. Instead one may at large s
introduce a representation that exactly diagonalises the harmonic oscillator
field while instead the f2 and € • s terms are treated as perturbations.

Let us write

H = Hosc + H

where

Hose = ~ | ^ A + —  [©i (x2 + y2) + co2
zz2]

It is now convenient to introduce what one may call 'stretched' coordinates
(Nilsson, 1955)

l/2 fMco±\1/2 fM(Dz\1'2

Thus

1

In the spherical case we added correction terms of the type

H'sph = -2Kh<o0t • s - fi'hao (f2 - (f2)N)
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Introducing an £t corresponding to the stretched coordinates £, r\ and £,
where e.g.

it seems natural to generalise Hr into

S -

One may show (Nilsson, 1955) that the difference terms between H'sph and
H'def have no matrix elements within each JV-shell. There exist alternatives
but no really definite prescription for how the terms £2 and £ • s are to
be generalised in going from the spherical to the distorted case (see e.g.
Bengtsson, 1975). The presently employed recipe of simply replacing £ by €t

is thus associated with a high degree of arbitrariness.
Consider first the oscillator part of H given above as iJ0Sc- To proceed

with the case of cylinder symmetry only, Hosc is transformed by going over
to cylindrical coordinates (p, <p, £) where

£ = p cos cp
t] = p sin (p

(contrary to above, p is here the 'cylinder radius' p —  (£2 + *72)1//2). We can
write the Schrodinger equation in terms of these coordinates:

We separate off the (^-dependence by the assumption

xp = U{p)Z{Qcj>{cp)

where

dcp2^ *
with the solution

(j) = eiA<?>

corresponding to the fact that [LZ,H] = 0 and thus Lz = A a constant of
the motion. We can also separate off the C-dependence and obtain

hcDz(-^+Az{Q = EzZ{Q

with the usual one-dimensional harmonic oscillator solution where Ez =
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(nz + 1/2) hcoz. Finally, with E = E±_ + EZ9 one ends up with the following
equation for U(p):

or

ap^ p ap p^
From the behaviour in the limiting cases p - • 0 and p - • oo it is natural to
assume

U = pwe-P2/2W{p)

Hence W fulfils

P
After the substitution

we obtain

zW" + (|A| + 1 - z) ^ - \ (|A| + 1 - — ) Pr = 0
2 V ncoj/

This should be compared with the equation obtained in the spherical oscil-
lator case (chapter 6) with the 'ansatz' R/(p) = / / e~ p ^ / (p) , where

pf + (S+ 3/2-z)f' + \(j^-V

The differential equation for W is, similarly to the equation for / , a Kummer
equation and the solution is a confluent hypergeometric function

+ 1 -EJhco±) , |A| + 1 ;

with the (finiteness) condition

^ (|A| + l-E±/hco±) = -np ; np = 0,1,2,...

or

£ ± = ^co^ (2np + |A| + 1) = hco± (n± + 1)

The quantity np is thus the number of (cylinder) radial nodes and n± is the
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total number of oscillator quanta in the x- and y-directions, n± = nx + ny.
Note that

2np + |A| = n±

Thus

IA| = n± , n± —  2, n± —  4 . . . 0 or 1

We may now sum up the final results for the cylindrical oscillator case

E (nz, n±) = hcoz ( nz + - J + hco^ (n± + 1) = hco0 [N + - + (nj_ - 2nz) - j

Let us see how our oscillator levels look with distortion (fig. 8.1). Obviously
each N shell, N = n± + nz, is split into N + 1 levels corresponding to
n_L = 0 ,1 , . . . , N. The degeneracy of each level is 2 x (n± + 1) corresponding
to the two spin values E = +1/2 and the n± + 1 different A-values for each
n± (for example A = 2, 0 and —2 for n± = 2).

We may note in passing that, although the spherical shell structure is lost
when e =£ 0, new shells are re-appearing e.g. at s = 0.6, 8 = 1 and e = —0.75
etc. Thus for s = 0.6 we have hco± = 2hcoz, i.e. we can replace one quantum
ha>± with two quanta hcoz without change of energy just as for spherical
symmetry hcox, hcoy and hcoz are interchangeable (cf. problem 5.1).

This covers the pure oscillator Hamiltonian. There remains, however, the
€t • s and i\ terms. One can actually treat these by first-order perturbation
theory. The matrix elements of these terms are evaluated by operator
methods in the last section of this chapter. For the perturbation treatment,
we only need the diagonal terms:

\it • s| NnzAX) = AS

= A2 + 2n±nz + 2nz + n±

The diagonal value of the total Hamiltonian then becomes

{Nnz A2| ifosc - Ikkooit' s -

= I N + - j ha>o + -zshcoo (N —  3nz) —

A2 + 2nLnz + 2nz + n±
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0.0

-1.0
-0.75 = 0.86

1.0

Fig. 8.1. Single-particle energies of the axially symmetric harmonic oscillator po-
tential drawn as functions of the deformation parameter, s = (co± —  (OZ)/COQ. The
orbitals that stay degenerate for all 8-values are drawn with a small spacing to
indicate the total level density more clearly. The high degeneracy for spherical shape
is partly broken for e ^ 0 but is then largely regained for co± : coz corresponding
to small integer numbers where the most important ones are indicated in the lower
part of the figure. For co± : coz = 1:2, 1:1, 2:1, and 3:1, the corresponding magic
numbers are given.

The effect of the inclusion of the it • s and i\ terms in perturbation
approximation is thus a lifting of the 2 x (n± + l)-fold degeneracy. After
the inclusion of these terms only a two-fold degeneracy (the time-reversal
degeneracy) remains. The splitting can be seen from fig. 8.2, where first the
it ' s term and subsequently the i\ term have been added to an N = 5
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Fig. 8.2. Different contributions to the splitting of the N = 5 oscillator shell are
illustrated. First the pure oscillator is deformed to e = 0.6, then diagonal matrix
elements of the <f • s and /2-terms are added to the \NnzAQ) basis. Finally, to the
right, an exact diagonalisation was carried out, with 84 = 0 and 0.07 respectively.
The latter value of 84 corresponds approximately to the liquid drop valley in the
actinide region. The K and fi parameters are chosen for neutrons in this same region.
In the case of 84 = 0, the pureness of the asymptotic representation is indicated
(from Ragnarsson et al, 1978).
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shell of orbitals. The effect of the inclusion of neglected off-diagonal terms
(exact diagonalisation) is then illustrated and finally the importance of hexa-
decapole deformations (see below) is shown. As the £t • s term enters with
a negative coefficient the resulting splitting is such that orbitals with A and
L parallel are favoured. Furthermore the spin-orbit splitting is smaller than
in the spherical case and proportional to 2A rather than 2/ + 1. (Note that
A is at the most equal to £t.) The ^-term favours states of high A-values
among those of given nz and n±.

To conclude this section, it may be stated that, although the splitting of
the n_L degeneracy involves energies of the order of ha>o, i.e. the separation
between spherical shells, still off-diagonal elements are so small that the
so called asymptotic quantum numbers N, nz, A and 2 remain essentially
preserved even at intermediate s. This holds also for the spectroscopic
data. The asymptotic wave functions Nnz AS (or Nnz AQ where Q = A + 2)
have become a very useful labelling of orbitals in nuclear spectroscopy. In
fact nowadays deformed single-particle states identified experimentally are
usually labelled in terms of this classification (see e.g. Jain et al, 1990).

8.3 The intermediate region
In the intermediate region of e being neither very small nor very large one
usually employs an expansion in either </>(A///Q), <j)(N£AL) or 0(iVnzAQ).
Let us, however, first briefly consider the general case with a complete set
of basis states <£v. Every wave function \pa, which solves the Schrodinger
equation:

H xpa = £atpa

can now be expanded in terms of the <f>v base functions

We insert this expansion in the Schrodinger equation:

Multiplying from the left by 0* and integrating (taking the scalar product)
we obtain
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Denoting

we have thus a set of equations, one for each pi

V

The condition that a solution exists is that the determinant vanishes:

Det ( i ^ v - £ a ( V ) = 0

The problem is two-fold, first to calculate the matrix elements H^ =
/ 0*ff0v dx and second to 'diagonalise' the matrix or in principle find the
roots that make Det^^v —  £a<V) vanish. Technically the computer pro-
grams constructed find a transformation matrix Sa/Z such that the transformed
H-matrix is diagonal.

The set of equations can be written:

LflV

or in matrix form

where E is a diagonal matrix:

E S = S H

E =

Ei 0 0
0 E2 0
0 0 E3

\ :

The eigenvalues Ea are now given as

E = S H S 1

and the eigenvectors are the rows of the transformation matrix S.
Let us now return to the practical case. We assume a wave function

MZ ME

where we assume that RNJ is normalised. The spherical harmonics Y/\ are
already normalised. The spin wave function XsL is simply

(i) - 0
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The quantity p is now defined (in contradistinction to the cylindrical case)
as the radius in the stretched coordinates,

while 6t and cpt are the polar and azimuthal angles in these coordinates.
Note also that all the quantum numbers, AT, / , . . . are defined in the stretched
coordinates and should more appropriately be denoted Nt9£u•••• I* 1 these
cases, we will however drop the index 'f.

The coefficients a^AX are our unknowns. The assumption is that any
wave function can be expressed in terms of these basis vectors \NSAI).
These vectors form a complete basis but the problem is that our computer
can only accept a finite number of basis states. Usually, we limit ourselves
to the lowest iV-values.

There are restrictions on the sum fortunately. First we note that jz =
fz + sz = (^t)z + sz (with o)x = coy = co±9 it follows that tz = (£t)z) is a
constant of the motion as (cf. problem 8.4)

Indeed (£t)z and sz both commute with the cylindrically symmetrical ifOsc
and also with €\. With €t • s only the sum (£t)z + sz commutes. In the
wave function expansion only two A values can occur as we have to fulfill
A + 2 = Q. Thus we can have A = Q —  1/2 and A = Q + 1/2 corresponding
to 2 = +1/2 and X = - 1 / 2 .

It is convenient to rewrite the Hamiltonian in the following form

H = Hd + He

where Hd is a part of the Hamiltonian that is rotationally symmetric, in the
stretched coordinates, (£,*7,C);

Hd = 2 ^ 0 ( -A{ + p1) - iKhcooft • s - ///too (f2
t -

We have furthermore

The quantity Hs now has the remarkable property that its matrix elements
vanish identically between base states with different N quantum numbers.
Between states belonging to one N-shell (or rather one iVrshell) one may
prove (see appendix 8) that the matrix elements are identical to those of

E[ = ^shcoo (e + r\2- 2C2) = -^sh(o0p2P2 (cos 0t)
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In the expansion of ipajvo, we used the fact that there are no matrix

elements between states of different N or different Q. The sum thus runs
only over f and A (with Z determined from 2 = Q —  A) and we can limit
our diagonalisation to one JV-shell and one fi-value at a time. The index a
is used to distinguish states, xpaNQ having the same N- and Q-values.

The matrix elements are simple to generate within the computer or to
calculate by hand. We have thus

(ATMS \Hd\ ATMS) = ^hco0 (N +

1)

For the *f • s-term, we note that / • s = \ (/+s_ + £s+) + / zsz and obtain

- A

Noting that H'e may be written Hr
e = -hcooe%(n/5)1/2p2Y2om.

(NfA'I,' \He\ N/AL) = (NSA'l! \H'B\ AT^AS)

/* / 2/ -I- 1 \2 / 9j / ^ t l \ " ' " jrv/2/' r^tlt1

-afecoo^AA^z^ / RwRmP dp • ( o/)/ , i ) CA0A,Cm

We can thus easily construct the matrix and use the computer to diagon-
alise it. As already stated, the eigenvalues and eigenvectors both come out
as a result. An example of a calculated single-particle diagram is provided
in fig. 8.3.

If VaJVQ is expanded in normal coordinates x, y9 z instead of the stretched
set £, >/, f, there enter components with N + 2, N + 4. Their amplitude is not
negligible and it is certainly only together with stretched coordinates that
the use of pure AT-shells (ATrshells) can be justified.

8.4 The volume conservation condition
In the oscillator calculations the absolute energy scale is given by ftcoo. The
energy scale is as well as its a-dependence, however, irrelevant in establishing
the single-particle level order. On the other hand, for a determination of
the equilibrium distortion (chapter 9) the volume conservation condition is
of primary importance. This condition is based on the empirical finding
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8.4 The volume conservation condition 123

that nuclear matter is incompressible and the nuclear volume proportional
to A. The short-range character of the nuclear force then appears to justify
the condition that the volume enclosed by a given equipotential surface
(the locus of points of the same nuclear potential) is preserved. For the
simple harmonic oscillator potential an equipotential surface is obviously an
ellipsoid.

= VQ = constant

The half-axes in this ellipsoid are given as proportional to cojj- and coz
 x and

the volume enclosed is thus proportional to coj2^1. The remarkable feature
for the pure oscillator is that for any equipotential surface (any value of Fo)
we obtain the same volume conservation condition

/ o
= constant = (coo (e = 0))3 = (coo

Using the definitions cited for coz and co± we obtain

All the energies in a level diagram such as fig. 8.3 are conveniently
expressed in the e-dependent energy unit ha>o(e). Even though some energy
levels appear wildly down-sloping as a function of s in the hcoo scale, when
expressed in the a-independent unit h COQ they eventually bend upwards for
large enough s. Thus the ellipsoidal shape at very large distortions ultimately
becomes unfavourable for any combination of nuclear orbitals filled.

Fig. 8.3. (opposite) Single-neutron orbitals calculated from the modified oscillator
potential for nuclei in the mass region 150 < A < 190 as a function of the ellipsoidal
deformation parameter s. Solid and dashed lines are used to distinguish between
orbitals having even parity (even N) and odd parity (odd N), respectively. For
large e-values, the orbitals are labelled by the asymptotic quantum numbers Nnz AQ,
which, of course, are only approximate. N refers to the oscillator shell quantum
number, nz to the number of nodes along the z-axis, A to the value of the orbital
angular momentum along the intrinsic z-axis and Q to the value of the total angular
momentum along the same axis. The spin projection along this axis is implied as
2 = Q - A.
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8.5 Single-particle orbitals in an axially symmetric modified oscillator
potential

The nuclear potential we have worked with so far can be written

V = Fosc + V

1 / 2 \
Fosc = 2HC°OP2 f 1 - 3 ^ 2 (COS et)\

Vf = -IKHCOO A * s - \ihcoo (fi - (*?)N

Here, we have by convention (Nilsson, 1955) used the volume conserved
frequency, coo, together with the €% • s- and /^-terms. To be able to describe
nuclear shapes other than ellipsoidal ones, the potential must be generalised
in some way. A natural generalisation is (Nilsson et a/., 1969)|

1 - \sP2 (cos 9t) + 2 Y. s*p* (cos °t) I

With this potential, we preserve the property that for any equipotential
surface, Fosc = Fo, the same volume conservation condition is obtained.
However, the ratio coo(£,£3,£4,...)/ ^o must be calculated numerically (see
e.g. Bengtsson, Ragnarsson and Aberg, 1991).

The shape of an equipotential surface is obtained as

9 constant
P = ( l - \sP2 (cos Bt) + 2 E A *kPx (cos 9t))

Using the definition of the stretched coordinates, we obtain a relation bet-
ween the stretched and unstretched radii:

9 co 1M / 9 9 \ cozM= i (x + y)+9 co 1 M / 9 9 \ c o z M 9 Mcoo o f . 2 e „ / .p = ~i- (x + y)+~irz = V r I1 - JP2 (cos d)

Here we will only calculate r to first order in the distortion coordinates. It
is then possible to neglect the difference between cos 6 and cos 9t (cos 6t =
(£2 + Y\2)l/2/p) to obtain

)

This expression, which should only be used for small values of e, S3 and 84,
f The quadrupole deformation parameter is sometimes referred to as £2 = e. Here we have used s to

indicate that the constant of the ePi term is different from that of the e^Px, A > 3, terms. Furthermore,
the 'Cartesian coordinates' in the (e,y) plane are sometimes denoted (£2,622) see e.g. Larsson (1973).
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Fig. 8.4. The equipotential shapes generated by the parameters s and £4 of the
modified oscillator potential (from Nilsson et al, 1969).

..., describes the same shapes as the coordinates fa (or â o) used in chapter
4. Thus, to first order, one obtains for example

3 / 5 \ 1 / 2

£ « - ( — ) fa « 0.95)82 (quadrupole deformation)

/ 7 x i / 2
£3 « (—) I T ~ I fa « (—)0.75/?3 (octupole deformation)

V47T/
/ 9 x i / 2

£4 «  —  f — j fa « —0.85j?4 (hexadecapole deformation)

Higher order expressions have been published e.g. by Bengtsson et al (1989).
At large distortions, the two parametrisations become rather different. The
shapes generated in the (£,£4) parametrisation are illustrated in fig. 8.4.
Observe that, if only £ =̂= 0, one obtains pure spheroids, in contrast to the
/?4-parametrisation with only fa^=0 (see problem 4.2).

In the Legendre polynomials, the coordinates £ and r\ (or x and y) enter
in a symmetric way (independence of q>t or q>) and it follows that [H,jz] = 0.
Thus, Q remains as a good quantum number. On the other hand, the different
(stretched) JVrshells are no longer uncoupled. One finds instead that, with
k even, P4, P^ ..., only the shells with ANt = 2 couple. This means that
the even shells, Nt = 0,2,4, ..., do not mix with the odd shells, Nt = 1,3,5,
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These shells are associated with even { and odd / , respectively, and
thus with even and odd parity. The conservation of parity is associated
with the fact that the potential is mirror symmetric, not only in the z-x and
z-y-plane, but also in the x-y-plane. The analogous case in one dimension
is a symmetric potential where the solutions separate in even and odd ones.

In fig. 8.5, we show the proton single-particle orbitals drawn along a path
in the (6,£4)-plane. A distinct difference compared with fig. 8.3 is that, for
example, orbitals from JV = 5 and N = 7, which have the same Q-value,
never intersect. This is a simple consequence of their interaction due to the
£4-term. Two interacting orbitals never become degenerate in energy.

With odd A, P3, P5, . . . (and also Pi which mainly corresponds to a shift of
the centre of gravity of the potential), the mirror symmetry in the x-y-plane
is lost and (intrinsic) parity is no longer a good quantum number. However,
because of the rotational symmetry with respect to the z-axis, Q remains well
defined for the different single-particle orbitals. In addition, time-reversal
symmetry (see chapter 13) leads to a double degeneracy of the single-particle
energies. Thus, all orbitals are filled by two particles 'moving in different
directions' (corresponding to jz = Q and jz = —Q, respectively).

The calculation of the matrix elements of the r2P^(cos0t) terms in a
\NSAL) (or |A///Q)) basis involves one radial and one angular integral.
The latter is solved exactly analogous to the P2(cos0t) term and results in
a sum over Clebsch-Gordan coefficients. The matrix elements of p2 can
be given in closed form if the properties of the confluent hypergeometric
functions are explored. The formula has been given for example by B.
Nilsson (1969). When using such formulae, care must be taken that the same
phase convention is used througout.

8.6 Triaxial nuclear shapes - the anisotropic harmonic oscillator potential
For description of the properties of really well-deformed nuclei, it seems to
be a good approximation to consider only axially symmetric nuclear shapes.
Thus, most of the early calculations (e.g. Mottelson and Nilsson, 1959a;
Nilsson et al, 1969; Brack et a/., 1972) on deformed nuclei were restricted
to such shapes. However, for description of nuclei that are not so strongly
deformed (transitional nuclei) it is in many cases necessary to consider also
axially asymmetric (triaxial) shapes. Furthermore, it was pointed out in
chapter 4 that the (inner) fission barrier of a large number of actinide
nuclei is lowered by 1-2 MeV for a fission path involving triaxial shapes. It
could also be mentioned that, even if a nucleus is axially symmetric in the
ground state, it might change its deformation if it begins to rotate and thus
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Fig. 8.5. Single-neutron levels in the actinide region drawn as functions of the set of
prolate shapes defined in terms of e and 84 as noted below the figure. The £4P2 4̂0
term couples the different iV-shells, Nf = N ± 2, which means that orbitals having
the same parity and the same Q-value never cross. Regions of almost degenerate
orbitals with nz = 0 and nz = 1 are indicated. These orbitals lead to a high level
density for special deformations and particle numbers and are largely responsible
for the octupole 83 -deformations at large 8-values as discussed in chapter 9 (from
Ragnarsson et al, 1978).
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break the axial symmetry (chapter 12). Indeed, for a rotating nucleus, the
special symmetry associated with the axial shape is broken. Thus, axial and
non-axial deformations enter on exactly the same footing.

It is straightforward to introduce triaxial shapes in connection with the
harmonic oscillator potential, namely

= \M (CO2
XX2 + co2

yy2 + co2
zz2 v * "̂  z

with cox ^ a>y =£ coz. It is then customary to describe the ratio of the
frequencies by s and y (Bohr, 1952):

cox =

coy = coo(e9y)

coz = coo(e,y)

—  - e c o s ( y + —

1 - - e c o s [y- ^

1 —  -8cosy

The parameter e specifies the degree of deformation, and for y = 0°, this
parameter is the same as was introduced above. The parameter y describes
the departure from axial symmetry.! The deformation dependence of a>o(£,y)
is determined from volume conservation of the ellipsoidal equipotential
surfaces. This is completely analogous to the case of axial symmetry and
leads to

/o V
CDxO)yCOz = ( (OQJ

where the value of a>o= &>o(£ = y = 0) was discussed in chapter 6. It is thus
evident that coofaj) can be given in closed analytic form.

The variation of the frequencies cox, coy and coz as functions of y for a
fixed s is illustrated in fig. 8.6. One observes that one sector of 60°, e.g.
y = 0-60°, is enough to describe all ellipsoidal shapes. The different 60°
sectors then only correspond to a different labelling of the three principal
axes. Thus, for description of static nuclei we need only consider one sector,
y = 0-60°. The nucleus is prolate for y = 0°, oblate for y = 60° and triaxial
for intermediate y-values. For a rotating nucleus, one often considers the
case where the axis of rotation coincides with the x-axis. Then, to describe
all possible situations, it is necessary to consider three sectors with the x-axis
being the smaller (y = 0° to 60°) the intermediate (y = 0° to -60°) and the
larger (y = —60° to —120°) principal axis, respectively.
t Different conventions for the sign of y are used in the literature. This has no importance for the shape

of the nucleus but corresponds to a different labelling of the principal axes, see fig. 8.6.
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-120° -90' 60°

Fig. 8.6. The harmonic oscillator frequencies, cox, coy and coz, versus the asymmetry
parameter y for fixed value of e, s = 0.6.

With the introduction of stretched coordinates, £ = xiMcOx/h)1/2 etc.,
the three-dimensional oscillator potential separates into three uncoupled
oscillators

Hosc —  Hx + Hy + Hz

where

and analogous expressions for
thus obtained as

and Hz. The single-particle energies are

ex = hcox (nx + -) + ^coy (ny + - J + fecoz f nz + ^ J

In the case of cox = coy = co± (y = 0°), these energies are exhibited in
fig. 8.1. The present calculations thus show that the energies of fig. 8.1 are
much easier to get out in Cartesian than in cylindrical coordinates. With
the introduction of cylindrical coordinates, however, one takes advantage of
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the symmetry of the Hamiltonian. The wave functions with corresponding
(asymptotic) quantum numbers are thus more suited to deal with the / • s-
and *f2-terms and also axial deformations of a more general type (P^P^
. . .) .

For axially symmetric shapes, we used Legendre polynomials, Px(cos9t),
to describe the potential. An obvious generalisation is to use spherical
harmonics, Y^(dt9(pt\ for triaxial shapes. The angles 9t and cpt are the
polar and azimuthal angles in the stretched coordinates, £, r\ and (. In these
coordinates, the potential takes the form

^ h £ 2 + h 1 + h^2

We now express the frequencies, cox, coy and coz in terms of s and y to obtain

- Is ( y ) V 2 (cos (y720) - ^ (722 + 72_2))

Our treatment in the stretched Cartesian basis shows that the corresponding
Hamiltonian has no matrix elements that couple the different iV-shells.
The corresponding analysis in a 'stretched spherical basis' is carried out in
appendix 8A. There, it is shown that those parts of the kinetic energy that
break the 'spherical symmetry' in the stretched coordinates can be transformed
to a potential energy term. This term cancels the AiV = 2 matrix elements of
the original potential while it increases the matrix elements within an AT-shell
by a factor of two.

The triaxial potential, Vosc, can now easily be generalised by the addition of
*f • s- and *f2-terms and also by deformations of higher order, p2e4P4(cos 6t),
etc. In addition it is straightforward, and in principle also necessary to
introduce terms like p2fi42 (742 + 74_2) and p2£44 (744 + 74-4) (Larsson et a/.,
1976; Rohozinski and Sobiczewski, 1981; Nazarewicz and Rozmej, 1981).
The importance of such terms can be understood from the fact that for
triaxial shape, it is not clear with respect to which axis the angle 9t should
be defined.

The y-deformation does not alter the fact that each orbital is filled by two
particles 'moving in different directions' (due to the time-reversal symmetry).
Also the parity is preserved as a good quantum number as long as no odd P%
are introduced. Thus, the odd and even JV-shells remain uncoupled. There
are however no other exact quantum numbers and it is also difficult to find
any approximate quantum numbers to compare with the asymptotic ones,
|iVnzAQ), which are used for axial symmetry.

The single-particle energies of the triaxial modified oscillator Hamiltonian
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Fig. 8.7. Single-proton orbitals in the Z ~ 80 region. The orbitals at the left edge
and the right edge are identical and correspond to spherical shape. In between, s and
y are varied in such a way that the left part of the figure is drawn for prolate shapes
and £-values up to 0.2, the middle part shows the orbitals for triaxial shape and in
the right part of the figure, the orbitals corresponding to oblate shape are exhibited.
The asymptotic quantum numbers for prolate and oblate shape, respectively, are
given. At the small deformation of s = 0.2, they are rather impure and in some
cases, two alternatives are indicated. For y -deformations, it is difficult to find any
approximate quantum numbers, but the orbitals of different parity can be numbered
from 'the bottom' as indicated in the figure. Furthermore, a calculated Fermi level,
1, (chapter 14) for Z = 79 is indicated by a wavy line (from C. Ekstrom et a/., 1989,
Nucl. Phys. A348, 25).

are obtained from diagonalisation. An example of such energies, shown
along a closed path in the (£,y)-plane, is provided in fig. 8.7. The orbitals are
labelled by the asymptotic quantum numbers for oblate and prolate shape.

We will come back to the question of triaxial deformations in chapter 12.
Now, we will, however, finish this chapter by discussing an operator method,
which provides a concise method to calculate single-particle matrix elements
in an oscillator basis.



132 Single-particle orbitals in deformed nuclei

8.7 Asymptotic wave functions by operator methods
We have earlier derived the wave function for the deformed harmonic
oscillator with axial symmetry by the solution of the Schrodinger differential
equation. We shall now utilise an operator method to generate the wave
functions characterised by N, nz and A being constants of the motion
(Mottelson and Nilsson, 1959b).

From the study of the one-dimensional oscillator, the operator method is
well known. Here we will briefly go through the necessary derivations. In
terms of stretched coordinates, £ = x • (M(ox/ti)1/2 etc., one may write

1 (r
 d

where thus a+ is the Hermitian adjoint of ax. Inversely

8 1 ( +^

Similar definitions hold for ay and az. It is easy to verify that the ax operators
fulfill the commutation relations

Expressing

in terms of a j and ax we obtain

Hx = hco (t +x = hcox

Thus Hx commutes with a+aX9 which means that these two operators can be
assumed to have the same eigenvectors. We introduce eigenvectors xpk and
eigenvalues Xk

a+ax\pk =

Scalar multiplication with xpk leads to

(xpk \a+axxpk) = (axxpk\ axxpk) = Xk (\pk \\pk)
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Since (axxpk \axipk) and (xpk \y)k) are non-negative, we conclude that

4>0

From the commutation relations we furthermore get

(a+ax) a+xpk = a+ (a^ax + l)xpk = (Ak + l)a^\pk

which means that a+xpk is also an eigenvector of a+ax, the corresponding
eigenvalue being Xk + 1. Similarly, one can show that ax\pk is an eigenvector
with the eigenvalue Xk —  1. The operator a+ is thus called a raising operator,
while ax is a lowering operator. Since Xk > 0, there must be a lowest value
for Xk:

The eigenvalue cannot become smaller and consequently

axVo = 0

This leads to

A0 = 0

and consequently X\ — 1,12 = 2, etc., i.e.

a+axtpn = a ja x \nx) = nx \nx)

We thus find for the oscillator Hamiltonian

Hx \nx) = hcox (a+cix + - J \nx) = hcox (nx + - j \nx)

The eigenvalue, nX9 of a^ax is referred to as the number of oscillator quanta.
This justifies the designation of a^ax as a number operator, JVX, with respect
to the x quanta. The eigenvector *Fo is of course the no-quantum ground
state wave function

y,0 = |0> = n-We-?'2

The one-quantum state is now easily calculated

4 10) = K-^-L (t _ ^

Generally the normalised state with nx quanta can be written
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The normalisation constant is obtained from the commutation relations.
These lead to (see problem 8.7)

4 \nx) = fa + 1)1/2 \nx + 1)
0* \nx) = yjnx \nx - 1)

After these general considerations in one dimension, we go back to the
three-dimensional oscillator with cylinder symmetry. To exploit this symme-
try between x and y we define

-fi

S = ~l2

One can now verify the commutation rules

while all other commutations vanish. It is apparent that one can subsequently
construct eigenfunctions with the help of the R+ and S+ operators analogous
to what is done in the a j case.

The operators R+ and S+ increase while R and S lower the quantum
number n± by one unit. This corresponds to the fact that the number
operator with respect to the quanta perpendicular to the z-axis can be
written

JT± = a+ax + a+ay = R+R + S+S

In terms of these new operators, the Hamiltonian of the cylindrically sym-
metrical harmonic oscillator can be written

(a+az + - JHcyi osc = h(oz

= hcoz

= hcoz (jfz + \

As we have seen in the earlier parts of this chapter, from the Schrodinger
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equation we can find a solution to this Hamiltonian, which in addition has
a good A quantum number, and is of the type

Alternatively using the operators we can write a solution

It is easily seen that

#cyi. osc \nzrs) = \(nz + -)hcoz + (n± + l)hco± \nzrs)

where
n± = r + s

Our next step is to express £z in terms of the R and S operators. We shall use
the simplified notation tx etc. to denote (£t)x etc. and furthermore assume
the angular momentum vector to be expressed in units of h (thus set h = 1)

'*= i ( 4 " 4 ) = i (aUy ~ a*ax)= {R+R ~s+s)

Thus,
tz \nzrs) = (r — s) \nzrs) = A \nzrs)

where
A = r — s

Hence \nzrs) is an eigenfunction both of Hcyi osc and tz.
The operators R+ and S increase the quantum number tz = A by one

unit while JR and S+ lower A by one unit. This corresponds to commutation
rules

[fZ9 R+] = R + , [/z, S] = S, [tZ9 R] = - U , [tZ9 S+] = -S+

which are easily proven if the expression of tz in terms of the R- and
S-operators is used.

For the €x and €y operators, we obtain

Vx = a+az - atay = ^- [at(R -S) + az (£+

Vy = ajax - 4az = ^- [az (R+ + S+) - af (R + S)]
z
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and furthermore

which latter expressions will prove useful later on.
Starting from the wave function \nZ9 n± = r + s, A = r —  s), we may gener-

ate a wave function with n± —>  n± + 1 and A -» A +  1 or \nZ9 n± + 1, A + 1)
by operation with R+. We utilise [ifcyi. Osc>^+] = hco±R+ to obtain

Hcyi osc {R+ \nzrs)} = R+ (ifcyL Osc + ^ _ L ) \nzrs)

= [(n* + \) «o>z  + (r + s + 2)hco±] {R+ \nzrs)}

Similarly

£z {R+ \nzrs)} = R+ (Sz + 1) |nzr5) = R+(r - 5 + 1) |nzrs)

Alternatively we may just exploit the fact that

R+ \nzrs) = (r + 1)1/2 |nz r + 1 s)

and the relations

n_L = r + s, A = r —  s

With inclusion of spin the total wave function is

xp = \nzrs) |2)

We are now in a position to evaluate the matrix elements of £% • s and €\ in
this asymptotic representation. Let us start with (t • s. From the expansion

€t - s = (ft)z sz + - ((^)+ ss + (/,)_ s+)

we obtain, simplifying the notation by leaving out t as is done above,

£ - s = (K+K - S+S) % - - 4 M + - afS) s--^jz (afR - azS+) 5+
V2 v 2

The first term is an eigenoperator of \nzrsL)

tzsz \nzrsL) = (r - s)2 \nzrsL) = AS |nzrs2)

and
(nzrsL \€ • s| n*rs£) = AS
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The next two terms of {( • s) give rise to non-diagonal coupling terms
associated with selection rules

A2 = - 1 , AA = 1, Anz = -AnL = ±1

and
A2 = 1, AA = - 1 , Anz = -Am. = +1

For the matrix elements, we get for example

{nz - 1 r + 1 s 2 - 1 \€ • s| nz r s2 ) = — l - [nz(r
v

and thus

(nz - 1 n± + 1 A + 1 2 - 1 K • s| nz w± A S) = - ^ [« z (n± + A + 2)]1/2

In a similar way, the other matrix elements are obtained as

<nz + 1 n± - 1 A + 1 2 - 1 \€ • s| nz n± AS) = ^ [(nz + l )(n± - A)]1/2

(nz + 1 nj. - 1 A - 1 Z + 1 K-s |nz nx AS) = ~\ [{nz + l ) (nx + A)]1/2

(nz - 1 n± + 1 A - 1 2 + 1 \€ • s| nz BJ. A 2) = ^ [nz (n± - A + 2)]1/2

From the expressions for /+ and /_ it is easy to find an expression for
<f J_ = tX + {y

= 2ataz (R+R + S+S R+R + S+S

-2(at)2RS-2(az)2R+S+

The first three terms are an eigenoperator of \nzrs) with the eigenvalue
2nz (n± +1) + n± while the last two terms have selection rules AA = 0,
AN = 0, Anz = -An± = ±2:

= -2 [{nz + 2) (« z • r • s] 1 / 2

and

(nz - 2 r + 1 s + 1 \fij_| nz r s) = -2 [(nz - 1) nz (r + 1) (s + 1)]1/2

Thus with /2 = t\

(nz n± A 2 | A 2^ = 2« z (n± + 1) + n± + A2
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+ 2n±-2A'E

- [(nz + 2) (nz + 1) (n± + A) (n± -

nz-2n± +

[(nz - 1) nz (n± + A + 2) (n± - A + 2)]1/2

Exercises
8.1 Show that

8.2 Find the solution in hypergeometrical functions of

\̂  pdpPdp p2

Use the substitution

hco±J

8.3 Start from the harmonic oscillator Hamiltonian

Make the substitution

{ = x (Mcojh)1/2 etc.; p2 = ? + r\2 +
and show that H can be expressed as

H = Hd + HE

where

and

8.4 Show that an axially symmetric modified oscillator Hamiltonian,
>, commutes with the jz operator, [ifMO? jz] = 0. Calculate also
s,/ z] . Comments!
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8.5 For the modified oscillator potential at small deformations, the en-
ergy levels can be calculated in first-order perturbation theory. At
large deformations, a good approximation is to treat the harmonic
oscillator exactly but only to consider diagonal contributions from
the £ • s- and / 2-terms. Carry through these calculations for the
N = 2 levels and sketch them for \e\ < 0.75. Put K = 0.1 and
\i = 0.02.

8.6 For the Q = 3/2, N = 2 levels of the modified oscillator potential,
it is easy to make an exact diagonalisation. Carry through the
calculations and compare with the approximate energies of problem
8.5.

8.7 Use the properties [a,a+] = 1 and a+a \n) =n\n) of the step operator
a+ to find the normalisation constant Cn in the formula

8.8 Prove that [R,R+] = 1 and that [R+,S] = 0.
8.9 Express tz in terms of R and S and their Hermitian conjugates.
8.10 Let \A) be an eigenvector of the operator A with the eigenvalue a,

A\A) = a\A). Show that, if [A,B] = B, then B \A) is an eigenvector
of A with the eigenvalue (a + 1).

8.11 Prove

(nz + 1 n± - 1 A - 1 2 + 1 \€ • s| nzn±AS) = ^ [(nz + 1) (n± + A)]l'2

8.12 Use operator methods to calculate the radius of a triaxial harmonic
oscillator wave function,

r2(nxnynz

Specialise to spherical shape!



Appendix 8A
The anisotropic harmonic oscillator in a

'spherical basis'

Consider a triaxial harmonic oscillator Hamiltonian

Hosc = - i r A + ^M (a>\x2 + co%y2 + co2z2}

The solution of this Hamiltonian in a (stretched) Cartesian basis was given
in the main text. It was found that the number of quanta m, ni and 713 was
preserved, i.e. this is the case also for the total number of quanta (the index
£, which is sometimes suppressed, is used in the transformed basis, i.e. the
stretched basis).

Nt = n\ + n2 + m

When working in the polar coordinates of the stretched system, (p, Qu q>t\
we have to go through a somewhat more tedious derivation to find the
solution (Nilsson, 1955; Larsson, 1973). Let us introduce the deformation
coordinates e and y in the standard way

cot = co0(s,y) 1 - -ecos (7 + i— )

and then split the Hamiltonian into two parts,

#osc = Ho + He

where Ho is isotropic in the stretched system;

= -hco0(s)[-Ai+p2]
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and

esiny
+

We now introduce a representation, \Nt<xt), which makes Ho diagonal

The quantum numbers, which, in addition to Nt, are needed to specify
the basis, are denoted by at, i.e. the natural choices are oct = (£tKtsL) or
a* = Vtsjttot).

For the evaluation of the matrix elements of He it is convenient to
rewrite the derivatives in terms of double commutators containing Laplacians
because in an oscillator basis (in a stretched or non-stretched system)

= 4 [(AT' - N)2 - {X + ii + v)] (N'a
This equality is easily proven by use of the eigenvalue equation for Ho and

the commutator
[ [A, XYZV] , p2] =

The double commutators needed are

and

It is now straightforward to calculate

-~M\>*W+*-*%\
- 2} (NX | (e + r,2- 2c2) I

N[ = Nt

N't = Nt ± 2
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For \N't -Nt\^0 or 2, the matrix elements of (t;2 + rj2- 2£2) oc r2Y2o (du q>t)
vanish. This is easily seen, e.g. by help of the operator technique of the last
section in chapter 8 because at most two quanta can be created or destroyed
by help of quadratic expressions in the coordinates.

The matrix elements of the derivatives in the second part of Hs are now
treated in an analogous manner leading to a similar formula as for the first
part:

N'ta't

\N't = Nt

[N't = Nt±2
It is thus obvious that the matrix elements of the kinetic and potential energy
parts of H£ have the same magnitude and also the same sign for ANt = 0
but different signs for ANt = 2. Thus, the formula mentioned in the main
text follows:

N'tct't Ntoct\dNtN>

where the two terms in parentheses are proportional to p2Y2o{ducpt) and
P2 (Y22 (du (pt) + Y2-2 (0t9 cpt)\ respectively.



The shell correction method and the nuclear
deformation energy

We have previously calculated the total energy of the atomic nucleus by
use of the 'macroscopic' liquid-drop model. In this model the energy is
assumed to be a sum of a volume term, a surface term and a Coulomb term

E = -ay ( l - K V / 2 ) A + as(l- KSI2) ^2/3Bs(def) + aQ-^5c(def)

We have found that this model could reasonably well explain, in addition
to the variation in nuclear mass, various phenomena associated with fission,
e.g. why the heavier elements undergo spontaneous fission and, furthermore,
the approximate heights of the fission barriers.

However, it is also apparent that many phenomena could not be un-
derstood in terms of this model. Thus it does not reproduce the detailed
variation in fission barrier height with particle number or the two-peak
character of the barriers in the actinide region. Neither could it explain
why many nuclei are deformed and not spherical in their ground state. One
might say that various nuclear properties are only explained on the average
(where the average might be taken over particle number or alternatively over
deformation) by the liquid-drop model.

To reproduce other aspects of nuclear structure such as ground state spins
and energy spectra, it was found that a different description was necessary.
In the preceding chapters, we have therefore introduced the single-particle
model In this connection we calculated single-particle energies ev as functions
of the deformation parameters, ev = ev (£,83,84,...). It is now tempting to
consider the total energy of the nucleus (often referred to as the potential
energy) obtained by the addition of the single-particle energies ev:

£ s p (£, £3, £4 • •  •) = ] T ev (8,83,84,...)
V
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There are some problems connected with this procedure, however. First the
single-particle energy ev is a sum of a kinetic-energy contribution (Tv) and
a potential-energy contribution (Vv), the latter representing the expectation
value of a sum of all the two-particle interactions

As all the terms (Vv) are added, the problem arises of whether or not
the interactions are counted twice. A second problem concerns the volume
conservation condition, which is difficult to generalise to include the effects
of the £ • s-term and, in the modified oscillator model, also the *f2-term.

The recipe of single-particle energy summation has been tried, however,
and found to have fair success. The energy surface (i.e. the energy considered
as a function of two variables, e.g. e and 84, see fig. 9.3 below) given by the
single-particle sum is found to give a lowest minimum usually somewhat re-
moved from spherical shape. The equilibrium shapes of well-deformed nuclei
can be directly related to a quadrupole moment Q2 and in some cases a hex-
adecapole moment Q4, which can also be obtained from experiment (optical
spectroscopy, Coulomb excitation cross sections etc.). It turns out that at
least Q2 is in good agreement with data. When extended to larger distortions
the energy surface should then also account for the fission barrier. For this
application, however, the single-particle sum recipe is found to be inadequate.

One may note that the restoring energy introduced by the volume conserva-
tion condition is a term of very large magnitude, being roughly proportional
to (e2/9) times the total nuclear energy, or for s = 0.9 of the order of 1000
MeV. As, among other things, the entire nuclear potential is not included in
the volume conservation condition, 'small' corrections to the gross trends of
the total energy are not unexpected. On the other hand, the vicinity of the
spherical shape appears to be correctly reproduced as long as the corrrect
level order is reproduced. Indeed the entire topological character of the en-
ergy surface may be obtained although the entire surface appears to be tilted.

Indeed a renormalisation of the energy surface appears to be called for
and it is brought about by the introduction of the Strutinsky (1967) proce-
dure. The basic idea behind this is the following. The average, long-range
behaviour of nuclear binding energy as a function of the nuclear charge and
size is well reproduced by the liquid-drop model. One then surmises that on
the average this model also adequately describes deformationf. The relative
success of the liquid-drop theory of fission may be taken as a warrant for

f This is, of course, what is conjectured in the original application of the model to the theory of fission
in the classical paper by N. Bohr and J.A. Wheeler (1939).
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this. One should therefore require that on the average - the average taken
over so many nuclei that shell effects are averaged out - the total energy has
the same distortion dependence as that of a liquid drop. This requirement
can be enforced by subtracting out of the total energy an averaged energy
and replacing the latter by the liquid-drop energy. The main problem consists
of forming this average in a satisfactorily unique way.

To this end, Strutinsky (1967) first defines a smoothed level density g(e)
by smearing the calculated single-particle levels ev over a range y, where y is
an energy of the order of the shell spacing, hcoo. Strutinsky thus considers a
comparison between the actual discrete level structure g, where

and a smeared level density g(e) (see below). One then defines a shell energy
as the difference

-2 eg(e)de«/
(the factor 2 coming from the double degeneracy of the deformed levels).

To obtain the smooth density g(e) the discrete levels are associated with a
smearing function,

or

The role of the exponential function is the obvious one of smearing. Through
this we eliminate fluctuations of order L «  hcoo by a choice of y «  hcoo.
In order not to disturb the long-range variations of order L » ficoo, a
correction function fcon is introduced (cf. problem 9.3),

where Hn are Hermite polynomials!.
f One can understand the occurrence of Hermite polynomials by the fact that the 5-function can be

expanded as follows:

If all the Hn polynomials up to n = oo were retained, then obviously the 'smeared' function g(e) would
be identical to the unsmeared one g(e). It is thus by a proper break-off of the ^-function expansion
that the desired g(e) is obtained.
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50 100 150 200
Single-particle number (A/)

250 300

Fig. 9.1. Theoretical single-particle (neutron) energies in a Woods-Saxon type radial
potential applicable to 208Pb. The discrete energies define a 'staircase' function
estair(N)- The smooth curve e(N) removes the local fluctuations but retains the
long-range behaviour. The Fermi surface X of the smooth distribution of levels
is illustrated for 126 neutrons. The corresponding shell correction is given by the
difference between the areas under the two curves up to N = 126. Note that a
large section of the staircase curve is below the smooth one for N values just below
N = 126 (from M. Bolsterli, E.O. Fiset, J.R. Nix and J.L. Norton, Phys. Rev. C5
(1972) 1050).

The shell correction method is illustrated in fig. 9.1. One understands that
the shell correction is negative when the sum of single-particle levels is below
average, i.e. when there is a gap. It is positive and large where there is a
high level density. To the shell energy, £sh? which is defined independently
for protons and neutrons, is to be added the liquid-drop energy. For an even
nucleus the total energy is therefore given by the following expression:

£sh(prot) + £sh(neutr)

For the method to be well defined, the results should not be too sensitive
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to the value of the smearing range y. In fig. 9.2 the shell correction energy
is calculated for various distortions as a function of y for the nucleus 208Pb.
It is evident that, if terms up to the order 6 are included in the correction
function /COrr> the shell correction is insensitive to the choice of y over a wide
range of values.

To get the total nuclear energy, it is also necessary to add a pairing energy
(chapter 14). The pairing Hamiltonian is introduced to account for the short
range nuclear interactions, which are not taken care of in the mean field
approximation (interaction terms not accounted for by the mean field are
generally referred to as the residual interaction). In the present context,
the main effect of the pairing interaction is to smoothen the fluctuations,
considered as functions of deformation and particle number, which result
from the shell energy.

Only after Strutinsky had suggested the above renormalisation procedure
in 1966, did it become possible to calculate realistic potential-energy surfaces
covering the whole of the fission process (see e.g. Nilsson et a/., 1969; Brack
et a/., 1972). We shall briefly look at some of the main results. The
potential energy is studied for various sets of shapes for the nucleus. One
such set was illustrated in fig. 8.4. An actinide nucleus undergoing fission
will assume a sequence of shapes corresponding to a line from the lower
left hand corner to the upper right hand one as shown in fig. 9.3. In
fig. 8.5 the single-neutron levels were plotted as functions of deformation
corresponding to this line. One should note the gaps for N = 152 at s « 0.25
and for N = 144 at e « 0.6. These gaps and the corresponding low level
densities for neighbouring particle numbers are associated with the first and
second minimum in the potential-energy surface illustrated in fig. 9.3. This
surface is typical for the actinide region. The second minimum at e « 0.6,
corresponding to a 2 :1 ratio of the nuclear axes, gives rise to a two-humped
fission barrier as discussed already in chapter 4 (cf. fig. 4.2).

One may also wish to study the effects of reflection asymmetric distortions
of the nucleus, that is distortions that make one developing fragment of
the nucleus larger and the other correspondingly smaller. To describe such
pear-shaped nuclei, one introduces terms of the type p2e3Y30 (and p2ssYso)
in the nuclear potential (see chapter 8).

In fig. 9.4 the potential energy for 236U is plotted in contour form as a
function of an elongation-necking coordinate (approximately corresponding
to the line in fig. 9.3) on the x-axis and a reflection asymmetry coordinate
(pear-shape) on the y-axis. We note that the two minima and the first saddle
are stable towards asymmetric distortions. The second saddle, however,
is moved into the reflection asymmetry direction, and the latter degree of
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2.0

Fig. 9.2. Proton shell energy, £Sheib as a function of the smearing parameter y for the
nucleus 208Pb. Three different orders of the correction function /corr corresponding
to second-, fourth- and sixth-order terms are included. Also three different shapes
are considered. In all cases, a sixth-order correction function and y = l.lhcoo appears
a reasonable combination (from Nilsson et al, 1969).
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Fig. 9.3. A calculated potential-energy surface for 236U in terms of the shape
parameters s and £4. The corresponding nuclear shapes are illustrated in fig. 8.4.
Regions with a low energy are shaded and the contour line separation is 1 MeV.
The solid line defines an average fission path and an associated coordinate e24 (from
P. Moller and S.G. Nilsson, Phys. Lett. 31B (1970) 283).

freedom is found to lower the second peak of the fission barrier considerably.
The effect also appears to explain the fission fragment asymmetry effect.

The instability of the second saddle to asymmetric distortions is obviously
due to the fact that the shell energy decreases with increasing asymmetry.
The liquid-drop energy is stable towards asymmetric distortions at these
values of the fissility parameter, so the increase in liquid-drop energy must
be overcome by a rather sharp decrease in the shell correction part of the
energy. This in turns means that the level density at the Fermi surface
decreases with asymmetry as can be studied in fig. 9.5. The asymmetry
effect is caused mainly by levels of type [iVnzA] = [40A] (Johansson, 1961;
Gustafsson et a/., 1971), which are strongly favoured (down-sloping) in the
£3 direction due to their interaction with [51 A] levels (one would then have
expected the latter to be strongly up-sloping but this is prevented by their
interaction with [62A] levels, cf. problem, 9.2). Furthermore, it has been
found that the position of the interacting levels is rather insensitive to the
exact radial shape of the single-particle potential.
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Ui44 ' T 0 T A L ENERGY; Contour line separation: 1.0 MeV
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e(and e4)
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Fig. 9.4. The potential-energy surface of 236U in terms of the combined s and £4
parameter (in fig. 9.3 denoted 824) and a combined £3 and £5 parameter. Note that
the second barrier is lowered approximately 2 Mev by reflection-asymmetric shapes
(from P. Moller, Proc. Int. Conf on Nuclei far from Stability, Leysin, Switzerland,
1970 (CERN 70-30, Geneve, 1970) vol. 2, p. 689).

One could also imagine that the shell energy of the fragments that are
formed could help to understand the outer part of the fission barrier. As the
strongest shell effects are found for spherical nuclei, such an effect should be
especially large if both fragments were doubly magic. The question is then of
what happens if the two magic nuclei are placed side by side and allowed to
overlap to some extent. If the shell energy remains low, it appears reasonable
to consider a fission path leading to an approximate scission configuration
of two touching spherical nuclei. This in turn means that the centres of mass
of the two fragments are exceptionally close at scission so that the Coulomb
energy leads to an unusually large kinetic energy of the two fragments.

It turns out to be difficult to find magic fragments for 'normal' nuclei
undergoing fission. One interesting case is 264Fm, which, if formed, could
split into two magic 132Sn nuclei. The nucleus 264Fm is, however, too neutron-
rich to be accessible with present techniques and we must go to somewhat
lighter Fm isotopes, e.g. 258Fm. Indeed, it turns out that, also for this
isotope, the fission path leading to two essentially spherical fragments is very
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Neutron levels for 2 4 0Pu; A = 36 a = 0.8
e = 0.75, e4 = 0.087, e3 = e35; e5 = -0 .425 e35

16C7 734 9/2

514 7/2 853 7/2 981 1/2

-12

-13
0.20

Fig. 9.5. Single-neutror igies calculated in a Woods-Saxon type potential as
functions of the asymmetry coordinate £3 (and £5). It is striking how a few special
orbitals profit from the inclusion of £3, such as orbitals [402 5/2], [404 7/2], [400
1/2], [402 3/2], [505 11/2] etc. These are all 'waist-line' orbitals (from P. Moller and
J.R. Nix, Nucl Phys. A229 (1974) 269).
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competitive. Calculations along this line have been presented for example
by Mosel and Schmitt (1971) and Mustafa (1975). The idea was put on a
more solid ground by the detailed experimental studies of fragment mass
and kinetic energy distributions by Hulet et al (1986). In particular, they
concluded that the two paths of compact and more elongated scission shapes
could be seen as competing processes in the same nucleus. Then, in more
complete calculations (Moller, Nix and Swiatecki, 1989; Pashkevich, 1988;
Cwiok et al.9 1989) such phenomena have been described in more detail.
We show in fig. 9.6 some different shapes close to scission as calculated by
Pashkevich. We note the two possibilities discussed above but also a mixture
of them. In this 'mixed' case, a large left-right shape asymmetry is calculated
but even so, there is almost no mass asymmetry.

If the shell corrections are taken into account in evaluating nuclear masses,
the agreement between theory and experiment is improved considerably.
The mass is calculated as the sum of the (macroscopic) liquid-drop model
mass expression at the (distorted) nuclear ground state and a microscopic
correction, including shell plus pairing energies, which for doubly magic
nuclei may be of the order of 10 MeV in magnitude. In fig. 9.7 theoretical
and experimental results are compared. The maximum deviations are now
reduced to approximately +2 MeV. In more recent fits of all measured
masses for nuclei heavier than oxygen (Z = 8) (e.g. Moller et al, 1992)
a root-mean-square deviation somewhat smaller than 1 MeV is typically
obtained.

In fig. 9.7, the large negative shell corrections around mass numbers
A = 130-140 and A = 200-210 are due to the spherical closed shells,
Z = 50,82 and N = 82,126 respectively. These nuclei are thus spherical.
The regions of rather constant shell energy for A = 150-190 (rare earths)
and A = 230-260 (actinides) are built from deformed nuclei.

The deformation can also be studied in more direct ways, for example
by the scattering of a-particles. Information about the deformation can
be deduced from the scattering cross sections as illustrated in fig. 9.8. The
quadrupole and hexadecapole moments deduced from such experiments are
compared with theoretical calculations within the modified oscillator model
in fig. 9.9. The theoretical moments are calculated at the ground state minima
of the potential energy surfaces. From the occupied wave functions, |v), at
these deformations, the moments are extracted as
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Fig. 9.6. Calculated shapes close to scission for the nucleus 264Fm. In the calculations,
a suitably defined 'necking coordinate' has been fixed and the three configurations
correspond to minima with respect to other degrees of freedom. Case I resembles
two touching 132Sn nuclei and has a low shell energy caused by the Z = 50 and
N = 82 magic gaps for spherical shape. Case III corresponds to a 'normal' fission
while case II (with a half-volume sphere shown by dots) is a 'mixture' of I and III
(from Pashkevich, 1988).

The quadrupole and hexadecapole operators J20 and J40 are defined as

The fits obtained in fig. 9.9 are rather typical with discrepancies smaller than
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100 140 180

Fig. 9.7. Measured and calculated masses of nuclei relative to the spherical liquid
drop value. As seen in the lower part of the figure, the masses are obtained with a
typical accuracy of ± 1 MeV within the shell correction method (from I. Ragnarsson,
Proc. 6th Int. Conf. on Atomic Masses, East Lansing, Michigan, 1979 (Plenum Press,
New York, 1980) p. 87).

10% for the quadrupole moments and maybe somewhat larger discrepancies
for the hexadecapole moments.

Reflection asymmetric distortions in connection with fission were consid-
ered above. For axial symmetry, such shapes are mainly described by a
730-term in the nuclear potential and, with X = 3, this corresponds to oc-
tupole deformation. Also nuclear ground states might be octupole deformed
although it is only recently that this issue has been considered in more detail
(e.g. Leander et a/., 1982, Aberg, Flocard and Nazarewicz, 1990). The reason
is that the calculated minima are generally very shallow or even do not
show up in some standard calculations. For example, it seems important
to use the alternative liquid-drop model (discussed in connection with fig.
4.6), which is softer towards higher multipoles. Furthermore, the single-
particle potential should be realistic enough, for example of Woods-Saxon
type. Potential-energy surface calculations all over the nuclear chart will then
reveal reflection asymmetric minima in some specific regions. The deepest
minima are obtained for heavy nuclei with Z « 86-90 and N « 130-140,
but even in the 'best cases' the gain in energy due to reflection asymmetry is
only around 1 MeV, see fig. 9.10. This should be compared with the energy
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Fig. 9.8. The experimental scattering cross sections of 50 MeV alpha particles for
Coulomb excitation of the 2+, 4+ and 6+ excited states in 154Sm. Furthermore, the
elastic cross section relative to the Rutherford value is shown. The cross sections
are plotted as functions of angle. A theoretical fit is made in terms of a charge
shape as defined by p2 and j84. The best fit corresponds to #> « 0.235, j8 4 « 0.05
(solid curves). (From N.K. Glendenning, Proc. Int. School of Physics, 'Enrico Fermi\
Course XL (Academic Press, New York, 1967) p.332.)
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Fig. 9.9. Experimental and theoretically calculated quadrupole and hexadecapole
moments for some rare-earth nuclei. The data are from Coulomb excitations as
measured by K.A. Erb et al, Phys. Rev. Lett., 29 (1972) 1010. The modified
oscillator potential was used to calculate the equilibrium deformations as listed by
I. Ragnarsson et al, Nucl. Phys. A233 (1974) 329.

gain due to quadrupole deformation (relative to spherical shape), which is
typically one order of magnitude larger.

The tendency for nuclei to become reflection asymmetric can be understood
from the coupling of specific /-shells, (N9S) and (N —  \J —  3), through the
Y^ potential (or Y30 for axial shape) (Bohr and Mottelson, 1975). For
example, for Z « 86-90, the  ii3/2 orbitals couple with the f7/2 orbitals and
for N « 130-140, the  j 1 5 / 2 orbitals couple with the g9/2 orbitals, see figs.
8.3, and 8.5. These orbitals separate with increasing octupole deformation
so that a region of lower level density is formed in an analogous way to that
illustrated in fig. 9.5, where some other orbitals repel each other.

If the reflection asymmetric shape were really fully stabilised, it would
strongly influence the spectrum, giving rise to a rotational band of alternating



The shell correction method and the nuclear deformation energy 157

Potential energy for 222Ra (MeV)
0.16

0.08 -

0.00 -

-0.08 -

-0.16
0.00 0.05 0.10 0.15 0.20 0.25

£2{84)

Fig. 9.10. Potential energy surface of 222Ra calculated as a function of quadrupole
(£2(24)) and octopole {83(85)) deformation. A Woods-Saxon type single-particle
potential has been used (more specifically, the folded-Yukawa potential). The energy
gain due to quadrupole deformation is around 1.5 MeV and then an additional 1.2
MeV is gained because of octupole deformation (from Leander et al, 1982).

parity, 0+, 1 , 2 + , 3 ,4 + , . . . . Spectra of this kind have never been observed
(at least not at very low spins), but in several nuclei, negative parity states
are very low in energy. A very important consequence of the octupole
deformation is that the centre of mass for the neutron distribution might
be different from that of the proton distribution, i.e. the nucleus gets an
intrinsic dipole moment with important consequences, in particular enhanced
dipole radiation, see e.g. Leander et al. (1986). It seems clear that the
concept of octupole deformation is very useful for our understanding of the
spectroscopic properties of specific nuclei. This is so even though one could
argue that it is probably difficult to find any nucleus that has acquired a
shape of really permanent octupole deformation.

As indicated in chapter 5, it is also possible to do calculations within the
more 'fundamental' self-consistent Hartree-Fock approach. These methods,
although very time consuming, have also been applied to calculation of the
fission barrier, where the two-peak character has been reproduced (Flocard
et al, 1974; Berger, Girod and Gogny, 1989). Also the absolute barrier
heights are reproduced within a few MeV. The Strutinsky method can be
formally derived from the Hartree-Fock equations (see Brack and Quentin
(1981) for a review). From the calculational point of view, the Strutinsky
prescription is much simpler and it has therefore made possible systematic
calculations over large regions of the nuclear chart.
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Exercises
9.1 The single-particle potential for a nucleus is assumed to be of har-

monic oscillator type with the energy eigenvalues e = ha>o(N + 3/2).
This potential is used for protons as well as neutrons and the nu-
cleus is assumed to have equally many particles of each kind. The
shells with N < N* are completely filled and the filling of the shell
N = N* + 1 is given by p (0 < p < 1). The total number of particles
is A and the total energy is E. It is now straightforward to deter-
mine A = A(N*,p) and E = E(N*,p). Elimination of N* leads to
E = E(A,p). Carry through these calculations by expanding

N* = ocA1/3 +p + yA~1/3 + ...

and from this, with hcoo = 41 • A~1^3 MeV,

E = <x'A + fiA2'3 + y'A1/3 + . . . MeV

Show that E can be split into one 'smooth part' E and one shell
correction part £sheii where

E = (41/8) [3(12)1/3,4 + (18)1/3,41/3] MeV

£sheii = (41/4) [12p(l - p) - 1] n-WA1'3 MeV

Sketch £sheii and compare it with the experimental shell effects shown
in figs. 3.9 and 9.7. Comments!

9.2 For a simple estimate of the single-particle effect behind the asym-
metric deformations one might consider the matrix elements of the
p3Yio(Ot,(Pt) operator (instead of p2Yw(0t, <Pt\ which is used in the
modified oscillator). Apply the operator method of chapter 8 to find
the selection rules for N' and n' in the matrix element

(NnzA\p3Y3O\N'rizA)

Calculate the distance between the corresponding orbitals as func-
tions of s for a pure oscillator potential. Evaluate the matrix element
for those orbitals that come closest together for large s. Compare
with the single-particle diagrams of the modified oscillator, figs. 8.5
and 9.5.

9.3 The smearing function of the Strutinsky shell correction method
is defined in such a way that long-range variations are preserved.
Thus, with a correction function, /COrr(w) = ao + a2U2 + ... ami*2"1,
(u = (e —  e')/y\ a polynomial function G(e) of order 2m + 1 should
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remain unchanged by the smearing procedure. This makes it possible
to derive /COrr(w) by direct calculation.

(a) Use a polynomial G = ao+o^e2 t 0 determine ao and ai. Sketch
the corresponding smearing function.

(b) Show that with these coefficients, ao and ai, a general poly-
nomial of order 3 also remains unchanged.

(c) Determine a system of equations for a\ in the general case
with G of order 2m.
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The barrier penetration problem - fission and

alpha-decay

The deformation parameter s (or /?2 discussed in chapter 4) is not enough
to bring us to the point of scission. For example, e —  1.5 corresponds to
needle-like shapes. Indeed, independently of parametrisation, fission should
be treated as a multi-deformation-parameter problem.

Let us, however, assume for the moment that the problem is a one-
dimensional one and s the relevant parameter. According to simple WKB
theory the penetration probability for the penetration of a barrier is given
by the expression (cf. appendix 10)

P « exp ( - - f  [2B(V(e) - E)]1/2 de) = exp (-K)

where e' and s" are the points of entry and exit of the fission barrier. For
an initial excitation energy near that of the top of the barrier there exists an
improved expression:

The integral is the well-known action integral. Usually one is more familiar
with the corresponding expression for the case that s is replaced by the
length coordinate x and B by the mass M of the penetrating particle. With
our parameter choice, B takes the dimension of mass times (length)2, or
moment of inertia, as s is dimensionless. The quantity V(s) represents the
potential energy considered in the foregoing (cf. fig. 10.1). In the actual case,
B = B(e) turns out to be strongly 6-dependent but, to make things simple, let
us assume B to be constant, replacing B(s) by some kind of mean value. This
mean value may not be too different from the value of B(e) at the saddle
point, where the contribution to the integral is expected to be the largest. The
quantity P is defined as the probability of penetration through the barrier
for a given 'assault'. The 'assaults' correspond to the natural characteristic

160



The barrier penetration problem -fission and alpha-decay 161

I
*J •— Mass distribution
O

— m -  Normal fission

. — • - Subbarrier fission

Isomer fission

• - • - Spontaneous fission

Deformation

Fig. 10.1. Schematic illustration of different fission possibilities for a nucleus in the
A «  240 region. The nucleus might undergo fission spontaneously from the ground
state, it might be trapped in the second minimum before it goes to fission (isomer
fission) or it might first get excited, for example by an impinging neutron (normal
fission or sub-barrier fission). The corresponding nuclear shapes with preference for
asymmetric deformations in the second barrier region are also exhibited.

zero-point vibrations of the nucleus. Thus the number of assaults, n, is
usually equated to the frequency of vibration in the elongation coordinate
(e.g. e), so called /^-vibration (cf. problem 10.2). One may therefore set
n = 1021 s"1, corresponding to a vibrational frequency of ftcovib « 1  MeV.
We have thus obtained an estimate of the life-time in units of seconds,

n P
21expX

which, converted to half-life, is

Consider first a simple parabolic barrier of height S over the energy
minimum with the barrier top at s = £5, situated half-way between sf and e",
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where thus

and

C = 8S/ (s' - s"f

Introducing

or = (C/B)1/2

one obtains for the action integral

K = 2nS/hcof

The quantity hcof (of dimension energy) is usually called the 'transparency'.
Using the more accurate expression for the penetration probability P one
obtains

P = [l+exp(27rS/fta;f)] - l

For a purely parabolic shape the WKB approximation happens to give
the exact result as shown by Hill and Wheeler (1953). In this formula S
represents the barrier height, while the frequency cof contains both the barrier
curvature C and the inertial parameter B (cf. the vibrational frequency for
a particle in a parabolic potential well, e.g. problem 10.2).

From the Hill-Wheeler expression we obtain P = 1/2 for zero barrier.
The zero barrier point accordingly is the point where, as a function of the
excitation energy £, the penetrability has diminished to 1/2 of that of the
limit corresponding to infinite excitation energy. It is also the point of
maximum change in penetrability with E.

Indeed, the Hill-Wheeler formula has long been used for the analysis of
fission cross section data. From the dependence of the penetrability on exci-
tation energy £, not only S but also an average hcof appears experimentally
accessible. Analyses of experimental data give S as dropping from 8 to 4
MeV when A goes from 230 to 250. Various empirical values of hcof are
available, centred around about 500 keV. Note, however, that this is a very
simplified discussion because it is now well established that most nuclei in
the A = 230—250 region have a two-peak barrier. Various calculations based
on such a two-peak barrier have also been published (see Vandenbosch and
Huizenga, 1973, for a review).
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10.1 Application of the fission half-life formula to actinides
About 40 fission ground state half-lives are known for even-even transura-
nium elements. In addition a few even-even fission isomeric half-lives have
been measured (most fission isomers being odd-^4 or odd-odd cases). This
material provides an excellent set of data for testing our knowledge about
the fission process. The different modes of the fission process are illustrated
schematically in fig. 10.1.

Up to now very little has been said about the inertia parameter. For
the multidimensional case the one-component function B(s) is replaced by
a tensor function Bmjf(ai,a2,...) where the a* denote the coordinates of
deformation, e.g. e, 84, 83, y The action integral is then calculated along a
trajectory L in the multidimensional deformation space

K{L) = \ [S2[2(V(s)-E)Bs(s)]l/2ds
n JSl

where s specifies a point on the trajectory. The effective inertia function Bs(s)
along the trajectory is expressed as

The components of the inertia tensor Baia.(s) are calculated from the nuclear
wave function at the deformation s. We will not give any formulae but
only point out that the problem of calculating Bmj(s) is very similar to the
calculation of the moment of inertia which will be discussed in appendix
14B.

It is now possible to calculate the action integral K(L) along different
trajectories L. So-called dynamical calculations are understood as a search
for that trajectory Lm{n which minimises K(L). Subsequently, K (Lm[n) is
inserted in the half-life formula given above, leading to a number, which
can be compared with measured half-lives. Such calculations have been
performed e.g. by Baran et al. (1981). They consider essentially the three
deformation degrees of freedom 8, 84 and 83. Furthermore, they make sure
that the fission half-lives are influenced by non-axial y shapes only to a minor
extent and therefore neglect this degree of freedom in their final results.

The theoretical fission half-lives of Baran et al. are compared with exper-
imental ones in fig. 10.2. Considering the fact that no parameters have been
fitted (in addition to the standard ones involved in the fission barrier cal-
culations, see chapter 9), the agreement is really remarkable. The unusuaUy
long half-life for N = 152 isotones reflects the stability of the ground states
mass associated with N = 152. This in turn is associated with the N = 152
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Fig. 10.2. Measured and calculated half-lives given in years for spontaneous fission
of elements in the A « 250 region (from Baran et al, 1981).

gap as observed for s = 0.2-0.3 in fig. 8.5. The rather large discrepancy
obtained for the heaviest Fm and No isotopes is probably associated with
the fact that the alternative fission path discussed in connection with fig. 9.6
was not considered when fig. 10.2 was constructed, see e.g. Moller, Nix and
Swiatecki (1989).

The predicted half-lives of some Z = 106-110 elements are also given in
fig. 10.2. We will briefly discuss the synthesis of such elements in the last
section of this chapter.

Some calculated and measured half-lives for fission from the isomeric
minimum at e « 0.6 are given in  fig. 10.3. The calculated results are influenced
by the relative depth of the second minimum compared with the second
barrier, by the width of the second barrier and by the inertia parameter.
In view of the uncertain single-particle orbitals at large deformations, the
agreement between theory and experiment is at least as good as could be
expected. The half-lives for ground state fission on the other hand are more
sensitive to the properties at smaller deformations (especially the ground state
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Fig. 10.3. Measured and calculated half-lives given in seconds for 'isomer fission' of
some 92U, 94PU and 96Cm isotopes (from A. Lukasiak et al, Proc. 4th Int. Conf. on
Nuclei far from Stability, Helsingor, Denmark, 1981 (CERN 81-09, Geneva, 1981) p.
751).

mass). As the single-particle model has been designed mainly to describe
the ground state properties, it seems rather natural that these half-lives are
better reproduced than the isomeric ones.

10.2 Alpha-decay

One way to treat alpha-decay is to consider it as a barrier penetration
problem essentially analogous to the fission process, see e.g. Rasmussen
(1965). The decay probability is then roughly the product of the probability
of alpha-particle formation and the probability of barrier penetration by the
alpha-particle. It turns out that the first probability can be considered to be
essentially the same in one nucleus and another. The barrier penetrability
depends, however, in a smooth and systematic way on 1) the available energy
2) the charge of the daughter nucleus and to a minor extent 3) the mass or,
equivalently, size of the daughter nucleus.

As shown in fig. 10.4 the potential far outside the nucleus is entirely
determined by the Coulomb interaction,

where Z is the charge of the daughter nucleus and Z' = 2 is the charge of
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Fig. 10.4. The potential acting on the alpha-particle. The dashed curve shows the
Coulomb barrier while the full curve exhibits a more realistic barrier where the
effects of the nuclear forces are also accounted for.

the emerging alpha-particle. Inside the range of nuclear forces, extending
from the density radius out to a distance of the order of h/mnc, the rise of
the Coulomb potential is compensated by the attractive nuclear force field.
The result is a barrier of the type shown in fig. 10.4. In the calculations we
shall for simplicity assume a rise of the barrier given by Vc for diminishing
r until an effective radius, R, where there is a sudden cut-off of the potential.
We have thus

P =

with

K 2M;, (2Ze2

a \4ns0r

where Ea is the a-particle energy and b the classical turning point as shown
in the figure,

b =
2Ze2

The reduced mass of the alpha-particle is denoted by 0.98Ma) and
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its energy by £ a . We have then to evaluate the integral

rb n i\1/2

JR \r bj

This is easily done by the substitution r = ft cos2 w:

For the approximation K <C ft we find

which leads to the following expression for K

K = 3.92Z£~1/2 - 3.22Z1/2A1/e

where we have inserted R = roAl/3 with ro = 1.2 fm. As we are mainly
interested in heavy nuclei, we put A = 2.5Z and thus get K as a function of
EQC and Z only:

K = 3.92Z£~1/2 - 3.75Z2/3

In analogy with the fission decay case, the life-time for alpha-decay is
calculated as

1 j _
T * x P

where x is the number of assaults. From the motion of an alpha-particle in
a square well potential of radius R, we estimate

x »  lO^s"1 »  1029 years"1

the inverted time of travel of the alpha-particle across the nucleus.
In this way, we arrive at a formula for the half-life

ti/2 = In2 • 10~29 exp (K) years

or

log10(t1/2)=C1ZE-1/2-C2

With ti/2 expressed in years and £ a measured in MeV:

Ci = 1.7 MeV1/2

C2 = 29 + 1.6Z2/3
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An analysis of alpha-decay data in terms of C\ and C2, as performed by
Taagepera and Nurmia (1961) gives

Ci = 1.61 MeV1/2

C2 = 28.9 + 1.61Z2/3

For nuclei in the Z = 60-100 region, this formula gives deviations that
are generally smaller than one power of ten. In view of the very large
variation of the experimental half-lives, about 10~15-1015 years, this fit must
be considered very good.

Up to now we have only considered the situation where the a-particle
has orbital angular momentum *f = 0 relative to the daughter nucleus.
The case of / ^ 0 is, however, rather easily handled if a centrifugal barrier,
f (f + 1) ft2/2M^r2, is added to the Coulomb barrier in the barrier penetration
calculation.

In the derivation above, we have implicitly assumed that in the nucleus
there is always an alpha-particle ready to escape. This is of course not
true and a correct treatment of the formation factor would increase our
estimate of the half-life. A factor that will work in the opposite direction is
deformation. The alpha-particle will then have a smaller barrier to penetrate
at the poles of the prolate nucleus than at the equator and the overall
effect will be a higher penetration probability. These two observations are
consistent with the fact that the half-lives of the spherical nuclei around 208Pb
are generally underestimated by the Taagepera-Nurmia formula, while no
systematic deviations are found for deformed nuclei.

10.3 The stability of superheavy nuclei
Let us now come back to the question of the existence of an island of
superheavy elements as indicated schematically in fig. 10.5. From this figure,
it becomes clear that the stability of such an island should be determined
almost exclusively by shell effects, a feature shown in more detail in fig. 10.6.
There, the calculated liquid-drop barrier of some heavy nuclei is compared
with the total barrier that results if shell and pairing energies are also added.
As was already discussed in chapter 4, the superheavy island around Z = 114
and JV = 184 corresponds to a fissility parameter close to x = 1, i.e. the
liquid-drop fission barrier has essentially vanished. Note, however, that the
liquid-drop energy is almost constant in the region s « 0  —  0.4. Therefore,
with a deep shell energy minimum for spherical shape, and rather small
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Fig. 10.5. An artist's view of the stability peninsula with the magic numbers for
neutrons and protons marked on the x- and y-axes, respectively. The magic numbers
give rise to ridges and mountains on the peninsula. Of special interest is the Magic
Island, which is supposed to be created from combination of the extrapolated magic
numbers, Z = 114 and N = 184 (partly from G.T. Seaborg and J.L. Bloom, Scientific
American, April 1969, p. 57).

shell effects for deformed shapes, a substantial fission barrier reaching out
to e = 0.6-0.7 is created.

Calculated fission barrier heights in the heavy and superheavy region are
shown in the form of a contour plot in fig. 10.7. This figure should mainly
be taken as an illustrative example, keeping in mind that different extra-
polations of the single-particle orbitals (see figs. 6.8, and 6.9) might lead
to rather different results. The heaviest nuclei to have been synthesised so
far are situated around Z = 108 and N = 156. Thus, it is by now well
established that, in agreement with fig. 10.7, the barriers in this region are
quite high.

Models that are able to describe the fission half-lives of heavy elements
(e.g. fig. 10.2) can easily be extrapolated into the superheavy region. In
the calculations presented in fig. 10.8, the fission half-life of 298114 is about
1015 years. The uncertainty of this number is illustrated by the fact that
either a 1 MeV change in barrier height or a 5% change in barrier width
or a 10% change in the mass parameter will lead to a change of about two
orders in the fission half-lives. In view of this and also in view of other
calculations, which have given rather different results, the fission life-times of
fig. 10.8 must be considered uncertain within many orders of magnitude. For
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-0.2

Fig. 10.6. Calculated barrier along the 'path of fission' for heavy and superheavy
elements. Dashed lines mark the liquid-drop fission barrier. Solid lines are obtained
after the inclusion of shell and pairing terms (from Nilsson et a/., 1969).

example, in one more recent study (Moller et a/., 1986), a longest half-life of
200 days is calculated in the superheavy region.

The stability of the superheavy nuclei is determined not only by fission but
also by a- and (3-decay. As the nucleus 298114 happens to fall almost on the
line of (3-stability (see fig. 3.7), many nuclei in this region should be (3-stable
(see fig. 10.8). Alpha-decay, on the other hand, is more of a problem and the
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SYMMETRIC BARRIER HEIGHT (MeV)
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100-

90 *^T
140 150 160 170 180 190

Fig. 10.7. Example of calculated fission barrier heights for nuclei in the heavy and
superheavy region. The names given in the figure have been introduced to facilitate
the reference to specific areas of the nucleid chart. The heaviest nuclei to have been
synthesised so far are on the (Berkeley-Dubna) New-Found Land or even a little
further to the 'north' where a lot of work has recently been done at the Darmstadt
Heavy Ion Accelerator, see e.g. Armbruster (1985) (from R. Bengtsson, R. Boleu
and S.E. Larsson, Phys. Scripta 10A (1974) 142).

calculated total half-lives of fig. 10.8 are determined by a-decay for some
nuclei and by fission for others. There is a very strong general trend that
the a half-lives are short for proton-rich nuclei because a-decay will then
lead to a daughter nucleus closer to (3-stability (i.e. more strongly bound on
average) while the situation is reversed on the neutron rich side (cf. problem
10.4). Considering both a-decay and fission, the largest half-life in fig. 10.8 is
obtained for 294110, a result first obtained by Nilsson et al (1969) and which
is common for several different calculations (see e.g. Sobiczewski, 1974, 1978
and Nilsson, 1978).

Considering the fact that the total life-times in the superheavy region
might be as long as 108-109 years it seems worthwhile to search for such
elements on the earth or in cosmic rays impinging on the earth. Except
for a long life-time, this would, however, also require that there exist some
astrophysical process in which superheavy elements are formed. Indeed, most
studies suggest that no such process exists (Boleu et al, 1972; Howard and
Nix, 1974) and no solid evidence for the existence of superheavy elements
in nature has been reported although many different samples have been
investigated (see e.g. Herrmann, 1980).

The remaining possibility is to synthesise superheavy elements in the
laboratory (Herrmann, 1980). One feasible process seems to be fusion of
two heavy ions. It is instructive first to consider how the heaviest elements
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s
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184 190

Fig. 10.8. Examples of calculated fission, a-decay and (3-decay/electron-capture
half-lives in the superheavy region. Nuclei that are (3-stable are indicated by points.
In the lower right hand figure, the total half-lives resulting from the three decay
modes are indicated. The contour lines are marked by half-lives in years (from E.O.
Fiset and J.R. Nix, Nucl. Phys. A193 (1972) 647).
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54Cr + 209Bi
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Fig. 10.9. Example of a decay chain observed in the irradiation of 209Bi with 4.85
MeV/nucleon 54Cr ions. First, one neutron is evaporated, then three consecutive
a-particles followed by one positron and finally another a-particle. The end product
is then the ^gCf^g nucleus having a half-life of 36 hours (from G. Munzenberg et
al, Proc. 4th Int. Conf. on Nuclei far from Stability, Helsing0r, 1981 (CERN 81-09)
p. 755).

known today are being synthesised. Thus, we show in fig. 10.9 how the
fusion of 54Cr and 209Bi leads to the compound nucleus 263107. After the
emision of one neutron, some a-particles and one positron, one ends up with
246Cf. In the time-scale of the experiment, this latter element is essentially
stable, having a life-time of 36 hours. By measuring the different particles
emitted and from previous knowledge of the decay chain from 258105 it is
possible to conclude that element 262107 was really formed in the reaction.
Furthermore, the energy of the a-particle gives the mass of 262107 and it is
of course also possible to measure the a-decay half-life.

One might then expect that it would be straightforward to form superheavy
elements from fusion of two somewhat heavier elements. However, some
different problems arise. The line of (3-stability tends towards increasingly
neutron-rich species with increasing mass. Therefore it is impossible to find
two stable nuclei that can be combined to the desired neutron to proton ratio.
If their neutron and proton numbers are simply added, one cannot achieve
simultaneously that Z = 114 and N = 186. Some kind of compromise
then has to be made. One reaction that has been suggested and tried
(e.g. Oganessian et a/., 1978, Illige et a/., 1978, Armbruster et a/., 1985)
is illustrated in fig. 10.10. With calculated life-times as input, the reaction
chain that would result from fusion of 48Ca with 248Cm is shown. One notes
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Q-Value 170 MeV 8

Coulomb barrier 233 MeV (Lab)
Bombarding energy 255 MeV
116
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5.7 barrier (MeV)
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Fig. 10.10. Calculated neutron evaporation and radioactive decay chain after com-
plete fusion of 255 MeV 48Ca with 248Cm using the half-lives of fig. 10.8. The
estimated Q-value, i.e. the difference in total binding energy before and after the
fusion, and the Coulomb barrier seen in the laboratory system is given. If the bom-
barding energy is transformed to the centre of mass system and compared with the
Qrvalue, one easily calculates an excitation energy of 44 MeV for the 296116 nucleus.
This excitation energy should primarily be carried away by neutrons. Also listed are
the fission barriers underlying the calculations of fig. 10.8 and of Randrup et al,
(1974). Note the large discrepancies between the two calculations where the latter
one gives much lower fission barriers in this 'north-western' part of the super-heavy
island (from G. Herrman, Proc. 4th Int. Conf. on Nuclei far from Stability, Helsingor,
1981 (CERN 81-09) p. 772).

that the compound nucleus is 296116, i.e. four neutrons too little and two
protons too much compared with the doubly magic 298114. Additionally,
most of the excitation energy inevitably created in the reaction is carried
away by neutrons (cf. problem 11.4 below) leading further away from the
centre of the island. The number of neutrons emitted is of course strongly
connected with the bombarding energy and one of the intricate problems
is to find the optimal bombarding energy. Fewer neutrons were emitted in
the reaction of fig. 10.9, partly because of a comparatively low bombarding
energy and partly because of strong binding for 209Bi, being a neighbour
of the doubly magic 208Pb nucleus. Note also that owing to the Coulomb
barrier (cf. problem 6.11) there is no prompt emision of protons.

Although the reaction 48Ca + 248Cm does not lead to the centre of
the superheavy island, complete fusion would still produce quite long-lived
species according to the estimate of fig. 10.8. No trace of the associated a-
particle or fission products have, however, been observed. One has therefore
been able to conclude only that the fusion cross section is extremely small,
putting an upper limit on it. In view of the fact that the fusion of 54Cr + 209Bi
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(fig. 10.9) is just on the limit of being observable and one generally expects
diminishing cross sections with increasing mass, this is not so surprising.

Another way to produce superheavy elements might be through collisions
of very heavy elements leading to a transfer of a large number of nucleons,
e.g.

2 ^ 2 ^ > 2 9 8 H 4 l 8 4 1 ^

According to theoretical estimates, the cross section for such a reaction
might be large enough to make observation of superheavy elements feasible.
The uncertainties are, however, large and no evidence for production of
superheavy elements in such reactions has been reported (see Herrmann,
1980, for references).

The hunt for superheavy elements has thus still not been successful but
is going on with more and more sophisticated methods. It seems that
theoretical calculations can only indicate that the chances for success are
so large that it is worth going on but also that the uncertainties are large
and we can neither expect nor exclude that any superheavy elements will be
synthesised in the near future.

Exercises
10.1 Consider a one-dimensional model for fission where the nuclear

shapes along the fission path are described by

The corresponding fission barrier in the liquid-drop model was cal-
culated in problem 4.2

o / 2 o 4 *
Ef =ES ( a - x)-a2

2 - (1 + 2x)—a\ +...

If we set x = 0.76, which is approximately valid for 238U, we get

Ef = 0.096 £ s ' 4(1-a2)

We now consider the nucleus as consisting of two equal parts divided
at z = 0 and use the distance between the two centres of mass as our
coordinate, r. For large values of r, we will observe two fragments
moving away from each other with the mass parameter Br given by
the reduced mass /a. Before the scission point, one expects a mass
parameter that is bigger than \i and which increases with decreasing
r.
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We will now carry through a simple calculation to get some idea
about the value of Br for small values of r. To this end we set Br = k\i
where k is a constant. We furthermore neglect shell effects. The total
length of the nucleus along the z-axis is 2R(9 = 0) = 2Ra{\ + #2).
To get simple calculations, we put r equal to half of this value and
neglect the difference between Ra and RQ, r = Ro(l + a2); (Ro =
ro^41/3,ro = 1.2 fm). Apply the WKB approximation to calculate
the life-time of 238U under these assumptions. The integral may be
solved either numerically or analytically. Determine the value of k
corresponding to the measured half-life of 238U, t\/2 = 1016 years.
How is ti/2 affected if Br is changed by 10%? Comments?

10.2 Use the same model as in problem 10.1 but consider instead vibrations
for small deformations. Let do be the ground state value of r and
use the potential energy shown in fig. 4.2 as a starting point to
find an approximate expansion around the ground state minimum.
Approximate the mass parameter by the reduced mass \i and by 10/i,
respectively, to get an order of magnitude estimate of the energy
of the lowest state for vibration in the r-coordinate, so-called (3-
vibration. Compare also with the number of assaults, n, that enters
in the fission life-time formula.

10.3 Free particles of energy E and mass M approach a potential barrier
of height V and width a. Show that the transmission coefficient T
equals

The quantities k and K are defined as h2k2/(2M) = E and H2K2/(2M) =
V-E.

10.4 Neglect the shell effects for heavy elements and use the simple binding
energy formula of problem 3.7 in order to get a general idea of alpha
half-lives on different sides of the line of (3-stability. Consider

(a) the proton-rich nucleus 264108, which is situated in the region
of the heaviest elements that have been synthesised,

(b) the nucleus 294110 close to (3-stability and situated on the
island of suggested superheavy nuclei,

(c) the neutron-rich nucleus 29gCf, which according to the calcu-
lations of fig. 10.7 has a rather high fission barrier.

Apply the Taagepera-Nurmia half-life formula. The binding energy
of the a-particle is 28.296 MeV.
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From fig. 3.9, one can estimate that shell effects alter the a-energies,

£a, by less than 1 MeV in deformed regions while corrections to JEa
of up to 3 MeV might occur around closed shell nuclei. Calculate the
corresponding correction to the a half-lives for the nucleus 294110.



Appendix 10A
Barrier penetration in one dimension with

piece-wise constant barrier

We consider the one-dimensional barrier penetration problem of fig. 10A.1.
Free particles of energy E and mass M enter from the left towards a constant
barrier of height V extending from 0 to a. To the left of the barrier (region
/) we have incoming and reflected waves with the /c-number given by

2M
or

In the barrier region (II) we have solutions of the type
xj/JJ = CQ-KX + DQKX

with
fc2 2
——  = V-E (where V > E)
2M

Finally in the region to the right of the barrier (III) we have only outgoing
waves and thus the solution

We will now be interested in the transmission coefficient, T, corresponding
to the problem of how much the incoming amplitude A is reduced by the
passage of the barrier

The solution to the problem is provided by the matching of solutions ^V1

and *FJ/ at x = 0 and Y77 and x¥ 111 at x = a. The result (the derivation is

178
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Aeikx + Be-ikx Fe ikx

dx[M (V(X) -12 Ax

Fig. 10A.1. Schematic illustration of the quantum mechanical barrier penetration
solution. The solution explicitly given in the upper figure is drawn schematically in
the middle figure (apart from reflected waves). Note the exponential decrease of the
amplitude in the barrier region. In the lower figure, it is shown that the essential
features of the WKB solution are obtained if an arbitrary barrier is approximated
by a step-function barrier.

requested in problem 10.3) is

T =
2kK

2k.K cosh (xa) —  i(k2 —  K2) sinh (KO)
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Apart from reflected waves, the solution corresponds to the picture given in
fig. 10A.1. For large xa, or small penetration, one can make the replacement
sinh (KO) « cosh  (KO) « \e Ka. One then obtains

Here the first factor may be interpreted as describing reflection losses at the
two potential discontinuities while t~lKa is the result of amplitude decay in
the barrier region.

As the first factor is slowly varying with energy compared with the second
factor, it is usually neglected. If we then replace the constant barrier with a
step-function barrier as shown in the lower part of fig. 10A.1, it follows that
lua is replaced by 2 J2 K(X) AX, which in the limit goes over into the action
integral

or

as used in the main text.
We have thus derived the main ingredients of the WKB formula in a

simple and intuitive way. The full derivation is straightforward but tedious.
It can be found in most textbooks on quantum mechanics and will not be
given here.

T «  exp [-2 j dx (jp-(V(x) - £)



11
Rotational bands - the particle-rotor model

A general frame for the description of rotational states in nuclei was set
in the beginning of the fifties by Bohr (1952) and by Bohr and Mottelson
(1953). Rotation is a typical example of a collective degree of freedom in
nuclei. A collective excitation is characterised by the coherent movement of
a large number of nucleons. Thus, an elementary understanding of collective
excitations is often achieved from macroscopic models. One example is
nuclear fission, which could be considered as some kind of very large
amplitude shape vibration. It is then also straightforward to introduce shape
vibrations in general as a collective degree of freedom as illustrated in an
elementary way in problem 10.2. In a more general context, shape vibrations
can be described for example by the variation around the equilibrium value
of the (XXfi parameters introduced in chapter 4. The most important and first
non-trivial mode corresponds to X = 2, quadrupole vibrations.

When describing nuclear quadrupole vibrations in the laboratory system,
one has to introduce all the five o^ shape parameters. These can, however,
be transformed to a body-fixed system where two parameters describe de-
formations, namely in the £2 (or fo) and the y degrees of freedom (the y
parameter was introduced in chapter 8). The three additional parameters
then describe the orientation of the body-fixed system, e.g. by the three Euler
angles. These three parameters thus describe the rotational motion, which is
treated in the present chapter and continued in chapter 12. Vibrations, on
the other hand, will not be treated here but instead we refer to the literature,
e.g. Rowe (1970) and Eisenberg and Greiner (1987).

When it comes to a quantum mechanical description, a further important
observation is that one cannot define any collective rotation around a sym-
metry axis. This is seen from the fact that such a rotation would change only
a trivial phase factor in the wave function (for example in the QlAq> part in
the single-particle orbitals of a potential with cylindrical symmetry). Such an
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unchanged wave function is in contrast to collective rotation. Instead, col-
lective rotation is characterised by small angular momentum contributions
from a large number of particles, i.e. the wave functions of these particles
change slowly with increasing angular momentum.

What has been said above implies that only deformed nuclei can rotate
collectively and, if the nucleus is axially symmetric, the only possible rotation
axis is perpendicular to the symmetry axis. For collective rotation, it is then
also possible to define one moment of inertia, / , leading to the following
Hamiltonian

R2

"rot = ^

where R is the collective angular momentum. For pure collective rotation
the total angular momentum (often referred to as the total spin) I is equal
to R. The spectrum then takes the form

As only deformed nuclei exhibit rotational spectra, it should be possible
to determine which nuclei are deformed from the occurrence of rotational
bands. In practice, really pure rotational bands are never realised in nuclei
but instead, rotations and vibrations are more or less mixed. Even so, with a
not very strict definition of a rotational band, it becomes possible to define
approximately which nuclei are deformed as exemplified in fig. 11.1.

The moment of inertia / can be extracted from measured rotational
bands. The values for deformed nuclei in the rare earth region are exhibited
in fig. 11.2 together with calculated values. The experimental values are
generally 25-50% of the rigid body values and can be calculated with any
accuracy only when pairing correlations are introduced (appendix 14B). A
simpler way to get an estimate of f is within the two-fluid model (see
e.g. Rowe, 1970) where it is assumed that only nucleons outside the largest
possible central sphere give any contribution to f (problem 11.1).

It was discussed in chapter 6 how the valence particle outside a spherical
core determines the ground state angular momentum. This is thus a typical
single-particle effect and, similarly, several valence particles may partly or
fully align their angular momentum vectors to build higher spin states. Also,
in deformed nuclei, similar non-collective components may be present and
in this chapter we will discuss the low-energy spectra of more or less well-
deformed nuclei as a mixture of single-particle and collective components
where the latter are treated macroscopically. With increasing spin it becomes
necessary to consider the single-particle contribution from more particles
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40 60 80 100 120
NEUTRON NUMBER

140 160 180

Fig. 11.1. Regions of deformed nuclei. The points represent even-even nuclei, whose
excitation spectra exhibit an approximate I {I + 1) dependence, indicating rotational
structure. An exact / ( / + 1) dependence corresponds to E(I = 4) : E(I = 2) = 3.33.
Practically all disturbances of the rotational motion will tend to decrease this value.
The nuclei in the figure have been selected on the basis of the (rather arbitrary)
criterion E(I = 4) : E(I = 2) > 2.8. The line of (3 stability and the estimated borders
of instability with respect to proton and neutron emission are indicated (from Bohr
and Mottelson, 1975, supplemented with data from M. Sakai, Atomic Data and Nucl.
Data Tables 31 (1984) 399).

and at some point it seems more appropriate to consider also the collective
component from a microscopic point of view. This will be discussed in chap-
ter 12, both in the somewhat unrealistic but illustrative harmonic oscillator
model and in more realistic models. In these calculations we will use the
cranking model where collective and non-collective rotation are treated on
the same footing. It then also becomes evident that one cannot really make
a strict division between different ways to build angular momentum but that
all kinds of intermediate situations occur.

11.1 Strong coupling - deformation alignment
For an odd nucleus, the specific features of the low-energy states are deter-
mined by the orbital of the odd nucleon. In chapter 8, it was found that, for
such orbitals in a deformed axially symmetric potential, in addition to parity,
only the projection of the angular momentum j on the symmetry axis, Q, is
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Values corresponding to rigid rotation
Theoretical (case A)
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Mass number, A
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Fig. 11.2. Experimental and calculated moments of inertia of nuclei in the rare-earth
region. The experimental values are extracted from the £2+ energies. Note that these
values are far below the rigid moments of inertia. In the single-particle model with
the pairing correlation correctly accounted for (dot-dashed lines), it is possible to get
a fair agreement between theory and experiment. The two cases A and B correspond
to somewhat different choices of the single-particle parameters (from Nilsson and
Prior, 1961).

a preserved quantum number. As illustrated on the left in fig. 11.3, the total
spin, I, is built as the sum of the spin of the odd particle, j , and the collective
spin of the core, R. The core is built from all the paired nucleons. Thus,
the collective energy for rotation of an axially symmetric nucleus around a
perpendicular axis, the 3-axis being the symmetry axis, is calculated from

» [e-,! +(/f+Js)- - + i-j

The term (I+j- + I-j+) corresponds classically to the Coriolis and cen-
trifugal forces. It gives a coupling between the motion of the particle in
the deformed potential and the collective rotation. For small / it is justified
to assume that this term is small and we need therefore consider only its
diagonal contributions, i.e. the term (I+j- + I-j+) is treated in first order
perturbation theory. This approximation, where it is assumed that the influ-
ence of the rotational motion on the intrinsic structure of the nucleus can
be neglected, is generally referred to as the adiabatic approximation or the
strong coupling limit. The selection rules for j+ and j - are AQ = +1. Each
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Fig. 11.3. Schematic illustration of the two extreme coupling schemes; deformation
alignment (left figure) and rotation alignment (right figure) (from R.M. Lieder and
H. Ryde, Adv. in Nucl. Phys., eds. M. Baranger and E. Vogt (Plenum Publ. Corp.,
New York) vol. 10 (1978) p. 1).

orbital of the deformed potential is twice degenerate corresponding to the
two possible signs of Q. Thus, with the odd particle in one such orbital, it is
only for ft = \ (or rather ft = ±\) that the diagonal matrix elements of the
(I+j- + J_/f)-term are different from zero (see below).

The projection of the total angular momentum on the nuclear symmetry
axis is a preserved quantum number, which is given by K, see fig. 11.3. With
no collective component along this axis, Q = K. The matrix elements of
C/i + Ji\ ^ e recoil term, depend only on the particle wave function, (f)v.
This means that they are constant for one rotational band. We will first
consider situations where they furthermore are rather small so as a first
approximation, we will neglect them.

The full Hamiltonian H has the form

H = Hsp + 'rot

where Hsp is the deformed single-particle Hamiltonian. Its eigenvalues are
the single-particle energies ev

as exhibited in figs. 8.3 and 8.5. The total energy is now obtained as

where the single-particle energy is counted relative to the Fermi level energy
X (see fig. 11.4). As / > K, the spins / = K,K + \9K + 2,. . . are observed.
The application of this formula may be studied in fig. 11.4. In the lower part
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Fig. 11.4. For legend see opposite.
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of this figure, the proton single-particle orbitals are exhibited as functions of
the deformation coordinate, e. For a given nucleus, the equilibrium value of
e can either be taken as an experimental quantity derivable from for example
the measured quadrupole moment or it can be calculated with the methods
described in chapter 9.

In the upper part of fig. 11.4, the measured low-energy spectrum of ^ T n ^
is exhibited. For this nucleus, the equilibrium value of s is approximately
equal to 0.29. The even neutrons (96 of them) are assumed to be paired off
two and two in orbitals 'Q and —  CT to angular momentum zero. Similarly,
the 68 protons are assumed to fill pairwise the 34 lowest orbitals. The 69th
proton is then (for the ground state) placed in the 35th orbital, marked [411
1/2]. This is thus associated with Q = \. The ground state spin is also
measured to be \ and a rotational band with / = \,\,\, ...based on this
orbital is identified.

At 81 keV of excitation energy there is another band starting with / =
Q = | (and having positive parity). This band is obtained by promoting the
odd proton from [411 1/2] and up into [404 7/2]. The excitation energy, 81
keV, is associated with the energy difference in the single-particle diagram
and described by \ev —  k\ in the formula above. This energy is thus counted
relative to the Fermi energy k, where k is given by the single-particle energy
of the [411 1/2] orbital. A third band, having K = Q = j and negative
parity, is observed starting at 161 keV excitation energy. This band is realised
by the promotion of one of the two protons from [523 7/2] to [411 1/2], in
which latter orbital a pair state of compensating spins is formed. We may
then call the ^ state built on [523 7/2] a 'hole' state. From fig. 11.4, it is
evident that such a hole state is associated with a positive excitation energy,
thus justifying the absolute sign in the \ev —  k\ term of the formula above.|

The other bands of 165Tm are now easily understood. They are obtained

If pairing is also considered, the \ev —/l| term should be replaced by a [(e v —  X)2 + A 2 ] 1 / 2 term, see
chapter 14.

Fig. 11.4. (opposite) Calculated single-proton orbitals in the rare-earth region with
the observed spectrum of 165Tm above. The usual spherical subshell notation is
used for s = 0. For s =/= 0 the standard asymptotic notation is given for each orbital
[Nn^AQ], N being the oscillator shell quantum number, n^ the number of modes
along the intrinsic 3-axis (the symmetry axis), A the value of the orbital angular
momentum ti along the 3-axis and Q the value of the total angular momentum
73 along the same axis. The Fermi level in the case of 69 protons is indicated.
The experimental states are ordered in rotational bands and the orbital of the odd
particle is indicated in each case.
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simply by placing the odd proton in the orbitals indicated. The bands to
the left are hole excitations, those to the right are particle excitations. A
remaining problem is the K = \ bands, [411 1/2] and [541 1/2}, which
look somewhat peculiar. This is, however, what was already anticipated
when it was found that the 'Coriolis term', (/+;'- +1-}+\ giyes diagonal
contributions for such bands. To calculate these contributions we will first
briefly discuss the wave functions.

The orientation of a body in space is described by the three Eulerian
angles a,/? and y. Two angles are needed to describe the orientation of
a body-fixed axis and one to describe rotations around that axis. This
means that, for a rotationally symmetric nucleus, the latter angle becomes
superfluous. We will not try to derive the wave function of the collective
motion but simply state that it is described by a so called ^-function,
^MK^P^y)' These functions are also used to describe transformations
between differently oriented coordinate systems. The quantum number M is
the projection of / on the laboratory z-axis. It is a trivial quantity to which
we will pay no attention subsequently. With the intrinsic wave function of
the odd particle given by cj)v we get the total wave function as

VIKM oc &MK (o,j
Nj

where in the last step we have expanded the intrinsic wave function in an

Nj

In the present discussion, we confine ourselves to nuclei having axial
symmetry with respect to the 3-axis and in addition reflection symmetry
with respect to a plane perpendicular to the 3-axis (these restrictions may
exclude some but not very many of the nuclei that are deformed in their
ground states). The nuclear shape is then mainly described by e and £4 while
for example £3=0 (cf. chapter 9). With these symmetries, there is no way to
distinguish operationally between a wave function XPIMK and one RIXPIMK
that is rotated 180° with respect to the 1-axis, the nuclear body-fixed x-axis.
We shall therefore be required to use a new redefined wave function that is
invariant with respect to the #1-operation; (1+R\)xp instead oft/). It is easy
to realise that the operation with R\ changes K to — K and in addition a
phase factor is introduced. The derivation of this phase factor lies outside
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the scope of the present treatment so we give it without proof,

Nj

It is now convenient to define a conjugate intrinsic state fa where, however,
different phase conventions are used in the literature. We will use the
convention that makes the wave functions for two particles in a 7-shell
coupled to / = 0 (see chapter 14) particularly simple,

Nj

It now becomes possible to write the total wave function as

For Q = 5, the first and the second terms of xpiKM couple through I+j- and
I-j+. The matrix elements of j± are well known to be

(jn\j±\jQ +1) = 10" ± Q)(/ + «  +1)]1/2

When the total spin / is projected, not on the laboratory axes, but in the
rotating body-fixed axes, one can show that the '+' and '-' operators change
character leading to the matrix elements

(IK\I±\IK + 1) = [(/ +K)(I ±K + I)]1/*; \IK) oc &MK

It is now straightforward to calculate the general expression for the energies
of the rotational bands in the strong coupling approximation:

E +
Here, a is the so-called decoupling parameter, which has a fixed value for
each Q = \ orbital. It is calculated as

a = WM7+I0V/ = \<Pv\J-\<Pv) =
Nj

where the last expression is independent of phase conventions. For an Q = \
band, the \ and \ states, the \ and | , etc. become degenerate for a = —  1.
Thus for the [411 1/2] band in fig. 11.4, a decoupling parameter a « —0.8
can be extracted. The [541 1/2] band is approximately described in the
range 3 < a < 4. However, in this case the adiabatic approximation with
only one 'deformed orbital' considered and the Coriolis term, I • j treated in
first order perturbation theory, is not very accurate. In the next section, we



190 Rotational bands - the particle-rotor model
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Fig. 11.5. A similar single-particle diagram as in fig. 11.4 with measured band heads
of a number of odd-proton rare-earth nuclei to the right. In each case, a rotational
band is built on the band heads in a similar way as for 165Tm in fig. 11.4. The
orbital of the ground state rotational band is indicated in each case (we are grateful
to Sven Aberg who prepared this and the following figure).

will consider a different coupling scheme but, first, we will make some more
comparisons between the present formalism and experimental spectra.

For a number of odd-Z nuclei with Z = 63-75, we show in fig. 11.5
the measured band heads together with the orbitals of the deformed shell
model. On each band head, a rotational band is then built as exhibited for
165Tm in fig. 11.4. The ground state e-deformation for the nuclei in fig. 11.5
varies roughly as exhibited in the figure with s being largest around Z = 70.
In addition the equilibrium 84-value varies rather much, being negative for
small Z and positive for large Z. This latter variation is not accounted for
in fig. 11.5 where £4 = 0. In spite of this approximation, all the band head
spins and corresponding energies come out more or less as expected from
the level order in the deformed shell model.

Fig. 11.6 shows a similar comparison for odd-AT nuclei with N = 93-107.
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Fig. 11.6. Similar to fig. 11.5 but for neutrons instead.

Also in this case, the agreement between theory and experiment is very
satisfying. In an early stage, the classification of such data as presented in
figs. 11.4-11.6 played a very important role in the understanding of deformed
nuclei, see e.g. Mottelson and Nilsson (1959a).

Coming back to even nuclei, we find that, for the ground state rotational
band, the wave function that is properly invariant with respect to the R\-
operation takes the form

Thus, for odd /, the wave function disappears in agreement with the fact
that only even spins, / = 0,2,4,... are observed.

11.2 Decoupled bands - rotation alignment
In the preceding section, we discussed situations where the rotational mo-
tion and the nuclear deformation are essentially uncoupled. The rotational
frequency was not high enough to break the coupling scheme caused by the
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intrinsic deformation. The comparison with experimental spectra showed
that, in many cases, this was a very reasonable approximation. However, in
other cases one must expect a different coupling scheme, which is mainly de-
termined by the rotational motion. The importance of this coupling scheme
was first realised in the 1970's (Stephens, 1975).

The particle-rotor Hamiltonian can be written in the following way:

H = Hsp + Hrot = Hsp + ^-{l2+ j 2 - 21 • j

Thus, the principle of minimisation of the total energy shows that for a fixed
/ and for a more or less fixed 7, the I • j term of the rotor Hamiltonian tries
to align the intrinsic spin j with the total spin / . The latter is in most cases
essentially perpendicular to the nuclear symmetry axis, the 3-axis. There will
thus be a tendency towards a large perpendicular component of j contrary to
the deformation aligned case (adiabatic approximation) where j is quantised
along the nuclear symmetry axis (leading to (j\) = (72) = 0).

The effects of the I • j-term, the Coriolis term, are especially important
for large j (and large / ) . In the rare-earth region, one notices that the
high-7 neutron and proton orbitals belong to the i13/2 and h11/2 subshells,
respectively (figs. 11.5 and 11.6). These 'intruder' orbitals are uncoupled
from the surrounding orbitals of different parity. In the modified oscillator
potential, this is understood from the fact that they are pushed down in
energy due to the *f2- and *f • s-terms. The j quantum number of these
subshells is therefore almost pure up to rather large 8-values. This is in
contrast to most other orbitals which are built from a mixture of several
different 7-values.

We will now study in some detail the neutron i13/2 orbitals and assume
that j is pure, j = 13/2. A quadrupole deformation along the 3-axis, 8Y2o(3),
will then split the orbitals according to

\ 3 Q 2 - 7 ( 7 + 1)

as was found in chapter 8 (problem 8.1). With (r2\ = (N + j)h/Mcoo
where N = 6 and with ha>o = 8 MeV as a typical value for neutrons in the
rare-earth region (A = 160) we get

MeV

A rotational motion will try to break this coupling scheme and align the
7-vector along the rotation axis instead. In the extreme case, the orbitals get
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quantised along the 1-axis. We will denote the projection of j along this axis
by a, see right part of fig. 11.3. Then, such a state being denoted by 0a can
be expressed in the ^Q states (Stephens, Diamond and Nilsson, 1973):

Q

We will not try to evaluate the transformation coefficients, which are given
by 3){n (0,f,0), with j = 13/2 (cf. problem 11.3). In the limiting case of
full alignment along the 1-axis, a = 13/2, one would expect that mainly the
small Q-values enter and the result is

= 0.21, "±3/2 = 0.16, |C± 5 / 2 | 2 =

"±7/2 = 0.03, "±9/2 = 0.01, "±11/2 "±13/2 0

The Fermi level is now placed on the Q = \ orbital and the energies of
some high spin states are calculated in the two extreme coupling schemes
as functions of deformation. In the deformation aligned case (K = Q = \
band), it is convenient to write the Hamiltonian as

With the Fermi level on the Q = \ orbital, Hsp gives a zero energy contribu-
tion and we obtain

[I{1 +1) + jU

where j = 13/2 and Q = K = ^. In this expression, we have thus included
the matrix element of (jl+fy, which was neglected in the preceding section.
Here it is included to make the energy compatible with that calculated in
the rotation aligned case below. For an orbital with pure j (and Q = \) the
decoupling factor is trivially obtained as a = (—l) j+ (̂j +3). Thus, in the
case of j = 13/2, one obtains a = —7.

In the rotation aligned case, the energies for the / = 13/2,17/2,21/2,
... states are calculated as

a
where j = a = 13/2 in the present case. The first term is the single-
particle contribution, which gets larger the more the orbitals are spread
apart, i.e. the larger the deformation becomes. This term will thus make
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the rotation aligned coupling scheme disadvantageous at large deformations.
The dependence of the energy splitting, e& —  e 1, on s can be calculated from
the first order expression given above or can be extracted from a figure like
fig. 11.6.

We also must find a value for h2/2f. An empirical relation (Grodzins,
1962) for the rotational 2+ energies of even nuclei is £2+ «  1225/(^47//3jS2)
MeV. With 0 transformed to e we get £2+ ^ 1100/(A1/3s2) MeV, i.e. for
, 4 - 1 6 0 :

£-*£*% keV
2 / 6 e2

The two energy expressions corresponding to the deformation aligned
(strongly coupled) and rotation aligned coupling schemes are compared in
fig. 11.7. This figure should mainly be taken to show the trends. With
increasing spin / , increasing particle spin j and decreasing deformation, the
rotation aligned coupling scheme becomes more favoured. This is especially
the case when the Fermi level is in the region of low-Q orbitals of a high-y
shell.

In fig. 11.7, we only plot the so-called favoured states, / = j , J + 2J+4,....
In the pure rotation aligned case, the total nuclear wave function is symmetric
with respect to an R\ -rotation and, in a similar way as for an even nucleus,
the wave function for the intermediate spin states, j + 1J + 3, . . . disappears.
Full alignment is hardly realised in any nucleus. Experimentally, one thus
often observes also the j + l9j + 39... states but they come relatively higher
in energy than the j9 7 + 2,. . . states.

In the rotation aligned case, the spin projection on the rotation axis, a,
equals j and the rotational energy can be written

£rot = ^ [/(/ + 1) + JU + 1) - 2 / a ] = ^ [ ( /_ « ) ( / _ a + 1) + 2a]

h2

= ir-pR{R + 1) + constant

where R = I —  cc describes the collective rotation. Thus, the energy spacings
in a rotation aligned spectrum of an odd nucleus should be the same as
in neighbouring even nuclei. This is nicely illustrated in fig. 11.8. With 57
protons in the La nuclei, the Fermi level is situated around the [550 1/2]
orbital with j « 11/2 (fig. 11.5) and rotation aligned bands starting with
/ = 11/2 are formed.

The breaking of the deformation aligned coupling scheme is generally
referred to as decoupling. The wave function of the particle is then distributed
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Fig. 11.7. With the Fermi level on the Q = \ state in an i13/2 shell, the spectra
of the favoured states in the two coupling schemes, deformation alignment and
rotation alignment, are shown as functions of e. The quantity (Hsp) is the energy
required when the wave function of the odd particle is redistributed over the i13/2
orbitals to get its spin vector aligned with the axis of rotation. One notes that small
deformations and high spins tend to favour the rotation aligned scheme. If the
particle-rotor Hamiltonian is fully diagonalised, a situation between the two simple
models of the figure will result. However, many experimental spectra can be quite
accurately described by one or the other of the two extremes.

over several 'deformed orbitals' and the spin of the particle is largely aligned
along the collective rotation vector, R. In the idealised situation described
in the present section, this alignment is complete. In the strong coupling
scheme, the mixing of the Q = ±\ orbitals correspond to a partial alignment.
As the particle wave function is equally distributed over the Q = \ and the
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Fig. 11.8. A comparison of the rotational bands based on the hn/2 proton orbital in
the odd-mass 57 La isotopes with the ground state bands of the neighbouring 56 Ba
nuclei. The very similar features of the neighbouring spectra suggest that the spin of
the odd nuclei is obtained by simple addition of the particle spin and the collective
spin, i.e. that these two spin vectors are aligned (from R.M. Lieder and H. Ryde,
Adv. Nucl. Phys., eds. M. Baranger and E. Vogt (Plenum Publ. Corp., New York)
vol. 10 (1978) p. 1).

Q = — \  orbitals (the v and v orbitals), the alignment is easily calculated as

= (\ (0v + fa) L/il -J2

For an orbital \jQ) = 113/2 1/2), it was found from the equation above
that the decoupling factor a = —7, i.e.  \{ji)\ = 3.5 in the strong coupling
approximation. This should be compared with (j\) = a = 6.5 for full
alignment in a j = 13/2 shell.
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Fig. 11.9. Observed rotational bands based on the ii3/2 neutron orbitals in odd-mass
68 Er isotopes. One observes a gradual change from a rotation aligned spectrum in
155Er and 157Er, to a deformation aligned spectrum for the lower spin states in 165Er
(from R.M. Lieder and H. Ryde, Adv. Nucl. Phys., eds. M. Baranger and E. Vogt
(Plenum Publ. Corp., New York) vol. 10 (1978) p. 1.).

The transition between the two coupling schemes is illustrated in fig. 11.9.
The positive-parity spectra of the odd 68 Er isotopes with N = 89-97 are
shown. These isotopes change from being weakly deformed with the Fermi
level around the i13/2, Q = \ orbital for small N to larger deformations with
the Fermi level higher up in the i13/2 shell with increasing N. Consequently,
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the spectrum is essentially decoupled for N = 89-91, intermediate for N = 93
and strongly coupled for N = 95,97. Note, however, that also for these
latter isotopes the high spin favoured states, / = 17/2, 21/2, 25/2, ...come
relatively lower in energy than the unfavoured 15/2, 19/2, 23/2 states. Thus,
as expected, the rotation aligned coupling scheme becomes more important
with increasing spin.

Here we have only discussed the two extreme coupling schemes. It should,
however, be evident that it is straightforward to diagonalise the full particle-
rotor Hamiltonian and thus to describe intermediate situations as for example
the spectra of 161Er and 163Er shown in fig. 11.9. Furthermore, only axially
symmetric shapes have been considered. For the generalisation of the
particle-rotor Hamiltonian to non-axial shapes, we refer to Larsson, Leander
and Ragnarsson (1978) for a derivation along the lines presented here or to
Meyer-ter-Vehn (1975) for a somewhat different derivation.

11.3 Two-particle excitations and back-bending
The collective angular momentum vector, R, is built from small contributions
of all the paired nucleons. None of the wave functions is then strongly
disturbed. For particles in low-Q high-j orbitals one must, however, expect
tendencies, not only for odd nucleons but also for paired nucleons, to align
their spin vectors along the collective spin vector (Stephens and Simon,
1972). The maximal aligned spin for the two nucleons in a pure y-shell is
then ai = j and 0C2 = j —  1, respectively, leading to a total aligned spin of
a = ai + a2 = 2j —  1. With R = I —  a, the collective rotational energy is
given by (cf. preceding section):

£rot = ^ ^

The alignment is however accompanied by the breaking of one pair leading
to a configuration with 'two odd particles'. A rough estimate is therefore
that the energy cost for breaking the pairs is approximately twice the odd-
even mass difference, 2A (see chapter 14). Compared to this, the energy
cost for redistributing the particle wave function over the different orbitals,
as discussed in the preceding section, can be neglected. Furthermore, the
pairing correlations will tend to decrease this energy.

In the present approximation, we thus get for the band with 'two aligned
spins'

h2

E «  2A + — ( / -  a)(J - a + 1); / > a
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Fig. 11.10. Simple estimates are shown of the ground-band energy in an even-even
A ~ 160 nucleus (solid line) and the energy of a decoupled band based on two
'aligned' i13/2 particles (dashed line) (from RS. Stephens, Proc. 4th Summer School
on Nuclear Physics, Rudziska, Poland, 1972, p. 190).

Total spin values smaller than the largest possible aligned spin can be
obtained by a partial alignment with no collective rotation. Provided one
pair is broken, this should lead to an energy E « 2A. The resulting 'aligned'
band is compared with the ground band in fig. 11.10.

The states having lowest possible energy for given spin are referred to as
the yrast states. A typical yrast line for an A ~ 160 nucleus is sketched
in fig. 11.11. In this figure is also shown how the yrast levels can be
studied. If two nuclei, e.g. igAr22 and n£Te12 collide in a non-central
collision, a compound nucleus having a large excitation energy and a large
angular momentum might be formed. By emission of e.g. four neutrons,
which each carry away about 8 MeV of excitation energy (i.e. the neutron
binding energy) a point some few MeV above the yrast line is reached.
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Fig. 11.11. Schematic illustration of which nuclear states are populated in reactions
where either 40Ar or an a-particle fuses with a target nucleus to form a compound
system with A~ 160. Such reactions are best suited for the study of the yrast states,
i.e. the lowest energy states for each spin I (partly from Stephens and Simon, 1972).

Some additional excitation energy might be carried away by a few so called
statistical y-rays and the yrast region is reached. The additional excitation
energy is now carried by the rotational motion. For collective rotation,
the compound nucleus will now de-excite mainly through E2 transitions,
(/ + 2) -> /, along the yrast line. A situation like in fig. 11.10 will then lead
to E2 energies that are larger for spins / = 8-10 than for spins / = 14-16.

In fig. 11.11 is also illustrated that the real high spin states can only be
reached in so called heavy-ion collisions where both the projectile and the
target are heavy nuclei. If an a-particle is used as projectile, only lower spin
states can be reached (see problem 11.4).
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Fig. 11.12. Observed y-ray energies of 158Er formed in a reaction like the one
illustrated in fig. 11.11. For / « 14 two i 13/2 neutrons become aligned resulting in a
backbend while a second irregularity caused by the alignment of two h11/2 protons
is seen for / « 32. The features for / > 38 with the final band termination for
/ = 46 are discussed in chapter 12.

As seen in fig. 11.12, the experimentally observed E2 energies of 158Er in
the range / = 12-18 show the properties expected from the simple model
of fig. 11.10. Of course, one must expect that the ground band and the
decoupled band interact in the crossing region giving rise to a smoother
transition between the two bands than shown in fig. 11.10. This is in
agreement with the experimental spectrum of 158Er. We must also remember
that the model we have described is very much idealised. Still it seems to
contain the main features of the physical effect.

The feature that the yrast E2 transition energies suddenly become smaller
with increasing spin is generally referred to as back-bending (see fig. 11.12).
When investigating such spectra, the yrast energies are often plotted in a
somewhat different way. An effective moment of inertia as a function of the
spin / can be obtained as

2/
h2 47-2
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Fig. 11.13. Yrast energies in the / = 0-18 range of 158Er and 174Hf plotted versus
/ ( / +1) and corresponding back-bending plots with the moment of inertia / versus
the squared rotational frequency, co2 (from R.M. Lieder and H. Ryde, Adv. in Nucl.
Phys., eds. M. Baranger and E. Vogt (Plenum Publ. Corp., New York) vol. 10 (1978)
p. 1).

The canonical relation between the spin / and the rotational frequency co is

dH
CO = di

Thus, in the quantum mechanical case it is natural to define

Ei - Ei-2

- E1-2

which formula is often simplified to

hco =

i.e., twice the rotational frequency is equal to the E2 transition energy.
A standard back-bending plot shows the moment of inertia 2f/h2 as a

function of the squared rotational frequency. This is illustrated for 158Er and
174Hf in fig. 11.13. Note that while the yrast lines, E versus / ( / + 1), look
rather similar, the differences are blown up in the f versus co2 plot. Thus,
158 Er shows back-bending while 174Hf does not.

The yrast states of 160Yb and 164Hf are shown in an alternative back-
bending plot, / (or rather the component Ix) versus co, in fig. 11.14. In
the spin region / = 10-14, two i13/2 neutrons get aligned for each nucleus.
The second irregularity (up-bend) seen for 160Yb at / « 28 and for  158Er at
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Fig. 11.14. Plot of the spin projection Ix ( « / ) versus fico for yrast transitions up to
/ « 30 in  160Yb and 164Hf (from L.L. Riedinger, Phys. Scripta 24 (1981) 312).

/ « 32 (fig. 11.12) appears to be caused by alignment of two hn/2 protons.
Thus, the general features of these curves can be understood from the simple
models we have discussed here. However, for any more detailed theoretical
description, a proper treatment of, for example, the pairing correlations
(chapter 14) becomes necessary.

Spectra of the type illustrated in figs. 11.12-11.14 have more often been
described in terms of the cranking model, which is the subject of the coming
chapter where, however, we concentrate on even higher spins. For more
details on the description of intermediate spin states, we refer to Bengtsson
and Frauendorf (1979) and Bohr and Mottelson (1977). Articles of review
character have been written by for example Szymanski (1983), de Voigt et
al. (1983) and Bengtsson and Garrett (1984).

Exercises
11.1 Consider a nucleus of spheroidal shape. Calculate the moment of

inertia, f, for rigid rotation around a perpendicular axis. Compare
with the value in a two-fluid model where a central sphere is assumed
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to give no contribution to / . Find the ratio of the two moments of
inertia if

(a) the symmetry axis is 30% longer than the perpendicular axis
(e = 0.25)

(b) the symmetry axis is twice as long as the perpendicular axis
(e = 0.6).

11.2 The measured low-spin members of the rotational band of 178Hf
are given in the figure. Try to fit these values according to the
rotational formula, £/ = (h2/2f)I{I + 1). Compare the resulting
moment of inertia with the rigid body value. Assume spheroidal
shape in calculating the latter and use the measured quadrupole
moment, Q = 7.5 barns, as input.

178Hf

/* keV

1059

632.5

306.8

2+ 93.2

Fig. 11.15.

11.3 Find the expansion of an orbital with j = 5/2, jx — 5/2 and ( = 2
in terms of orbitals quantised along the z-axis.

11.4 Consider the situation illustrated in fig. 11.16. A nucleus with mass
number A\ is accelerated to react with another nucleus with mass
number Ai. The impact parameter is equal to (3/4)i?2? see fig. 11.16.
The aim of forming a rapidly rotating compound nucleus can only
be attained if the energy of the projectile is neither too high (too
high excitation energy) nor too low (the projectile will not overcome
the Coulomb barrier of the target). Find the spin and the excitation
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energy of the compound nucleus if the projectile, its energy and the
target are

(a) 4He, 60 MeV and 160Dy
(b) ^Ar, 180 MeV and 124Sn

TMeV

Fig. 11.16.



12
Fast nuclear rotation - the cranking model

At very high spin, one expects the Coriolis and centrifugal forces to disturb
strongly the wave functions of many nucleons. As discussed in the introduc-
tion to the previous chapter, it then becomes desirable to treat all nucleons
on the same footing.

In this chapter, we will introduce two models of this kind, namely the
cranking model and the rotating liquid-drop model. The cranking model is
first applied to the simple harmonic oscillator potential to illustrate some
different concepts. Then the Nilsson-Strutinsky cranking approach corre-
sponding to a combination of the two models is introduced. Within this
approach, phenomena like band terminations and superdeformed high-spin
states are discussed.

12.1 The cranking model

In the cranking model, the rotation is treated in the classical sense with
the rotation vector coinciding with one of the main axes of the nucleus.
It then turns out that, in this system, the nucleons can be described as
independent particles moving in a rotating potential. In fact, the rotation
degree of freedom enters in very much the same way as the deformation
degrees of freedom, which were introduced in chapters 8 and 9. One
important shortcoming of the cranking model is that the wave functions are
not eigenstates of the angular momentum operator. Instead, the angular
momentum is generally identified with the expectation value of its projection
on the rotation axis.

The mathematical formulation of a rotating single-particle potential was
first given by Inglis (1954). With the coordinates in the laboratory system
given by x,y and z and those in the rotating system by x\,X2 and X3, we get,

206
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for constant angular velocity, co, around the xi-axis

X\ = X

X2 = y cos cot + z sin cot

X3 = — y sin  cot + z cos cot

Apart from some phase-factor, the time-dependent wave functions in the
two systems must satisfy

\pW (Xl, X2, * 3 , t) = \p (x, y, Z, t)

which leads to
fd\p\ _ fdxp^\ dxp^_dx2 dip0" dx3

\dtjx>y>z \ dt JXlfX2sX3 dx2 dt dx3 dt

With

8x2
^—  = co(—y  sm cot + z cos cot) = 0x3
ot

-^—  = co(—y  cos cot —  z sin cot) = — 0x2
dt

we now find
S\p(x, y9 z, t) fd \

r- = ( — —  ICO^l \p (Xl , X2, X3, t)dt \dt )
where the angular momentum operator t\ is given by

d d \ .( d d\
>- X 3 - — = —1 y-  Z —  = €x0x3 0x2 J \ oz oyj

The equality between f\ and / x is easily proven by direct evaluation.
The relation for the time derivatives implies that the time-dependent

Schrodinger equation for \p

d\p(x,y,z,t)
lft — = htp(x 9y,z,t)

is transformed into

ih——  (xi,X2,X3, t) = (h — hco^i)w (xi,X2,X3,  t)
ot

for the wave function in the intrinsic system, xp™.  In these equations, the
Hamiltonian is given by h to point out that it is a one-particle operator.
This is in contrast to the total Hamiltonian, which is denoted by H (in the
preceding chapters, no such distinction has been made and a capital H has
been used also for the single-particle Hamiltonian).
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The Schrodinger equation in the rotating system can now be solved in the
standard way as an eigenvalue problem

where the orbital angular momentum operator f\ has been generalised to
cover also particles having an intrinsic spin and has thus been replaced by
h 0 = ^ + s)- The Hamiltonian in the rotating system,

h(O = h-hcoj1

is also referred to as the cranking one-particle Hamiltonian. The eigenvalues
ef are referred to as the single-particle energies in the rotating system
or more properly Routhians. This is so because the Hamiltonian in the
rotating system does not overlap with the energy. The cranking one-particle
Hamiltonian may be summed over all the independent particles of the system
to obtain the total cranking Hamiltonian,

H™  =H- fuoh

Alternatively, the cranking Hamiltonian can be derived by direct use of the
rotation operator 0t = exp (—il xcot) (see e.g. de Voigt, Dudek and Szymanski,
1983) or from the Lagrangian (problem 12.1).

A simple way to obtain the cranking Hamiltonian is to minimise the
energy

E =

under the constraint that the total spin

is fixed. The rotational frequency co (or rather hco) will then take the role of
a Lagrangian multiplier, which, as seen from the derivation above, can be
identified with the rotational frequency.

The energies of the particles are measured in the laboratory system and
are calculated as

where it should be observed that the time-independent wave functions, <j>f,
are not eigenvectors of the Hamiltonian, h. Similarly, the angular momentum
is calculated as an expectation value

Uxh = (4>r\jx\4>?) = (
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The total energy and the total spin are now given as sums over the occupied
orbitals:

occ

j«ix  =
occ

In a similar way as for deformed nuclei at spin zero (chapter 9), these
summed quantities can on average be renormalised to liquid-drop behaviour.
We will, however, first study the pure harmonic oscillator potential within
the cranking model. For this potential, no renormalisation is necessary.

12.2 The rotating harmonic oscillator

Many of the effects observed or expected at high spin can be illustrated
in the rotating harmonic oscillator potential. It is then very advantageous
that the single-particle wave functions and corresponding energies are given
by closed expressions (Valatin, 1956). In the present discussion of the
harmonic oscillator, we mainly follow Cerkaski and Szymanski (1979). We
will thus introduce some approximations so that the minimal energy and
corresponding shape for different spins / can also be determined analytically.
With these approximations, the details of the solutions should not be given
too much significance but the main trends are illustrated very nicely.

In the pure oscillator, the intrinsic spin is uncoupled from the spatial
coordinates. We thus only consider the orbital angular momentum, which
gives the cranking Hamiltonian

tt° = hosc - (oti

where

hose = ~ ^ A + 2m (^l*! + ^2*2 +

and

A =

Boson creation and annihilation operators are now introduced in a similar
way as in chapter 8:

h V / 2 / + N 1/2
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for i = 1,3 and

With the special phases chosen (Bohr and Mottelson, 1975), one finds that,
for example, the matrix elements of f\ are real. The Hamiltonian \i° is
obtained as

3

i = l

where

(a2al + ata2) ~ v* „ Jn (a2at + a2"l)

It is possible to make a transformation among the operators a\, a2, a\ and
«3 (i.e. among the coordinates *2,X3 and the momenta  P2,P?>) to bring the
Hamiltonian into the form of three uncoupled harmonic oscillators, but as
mentioned above, here we will introduce some approximations to make the
solution more transparent.

While the first term of the f\ operator couples orbitals within the same
major oscillator shell, the second term couples orbitals of (iV, N + 2) shells
(where, as usual, the N-shells are defined in the stretched basis, N = Nt).
For small and intermediate deformations, the energy spacing between such
orbitals belonging to different JV-shells is large. Furthermore, the coefficients
of the two terms differ by a factor (a>2 —  coi)/((O2 + <*>3), which is far below
unity for reasonably small deformations. We thus conclude that the AN = 2
couplings of the A operator are generally much less important than the
AN = 0 couplings. Consequently, we neglect the second term of the f\
operator.

The remaining part of \f is now diagonalised by a unitary transformation

a\ = a+ cos (f> + dp sin 0, a% = —a+ sin  (fr + a'p cos 0

which leads to

j~aa ( a>2 cos2 0 + 0)3 sin2 $ + co———-^ cos 0 sin
V (COCO)l/I

+hatciR 10J2 sin2 </> + C03 cos2 (/> —  co- -r-pr cos<f> s in4>
V (CQ2CO3) '
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i 1- ( + . + \ / / \ JL • JL  CO2+CO3 ( 2 JL ' 2 J l \ \
+ft (aTap + a l a a (a>2 — C03)  cos 0 sin 0 —  co— -r-^ cos z 0 —  sur 0

V H p / V 2(a)2CO3)1/2 V / /
To get /iw in the form of three uncoupled oscillators, we must require the
mixed operators to disappear

(a>2 — C03)cos0sin0  —  co—^ -^ (cos 20 —  sin20 j = 0
2(CO2&>3) ' ^ ^

The angle 0 is thus obtained as

co (a>2 + C03)p = tan 20 =
— C03

where the notation p (= tan 2<j>) has been introduced as a measure of the
rotational frequency, co. We now get the Hamiltonian W° in the following
form

with the frequencies of the normal modes given by

( + ) +
The single-particle eigenvalues of h™  are

+ \)+ hcoP (nP + \

where ni,na and np specify the number of quanta in the three normal-mode
degrees of freedom.

A further quantity of interest is the expectation value of t\. The di-
agonal parts of this operator are easily obtained and thus, for an orbital
characterised by the occupation numbers ni,na and np

(A) = (nwanpl +
 P

 /2 (afap - 4a«

We will now consider total quantities of the A-particle system with the A
particles filling the orbitals (generally those being lowest in energy) of the
rotating harmonic oscillator. For this purpose we define the quantities

k ^ v | a k 0 k + 2 |v ; L{nk +
 2)V

occ occ

The index k takes the values k = l , a and /J (or fe = 1, 2 and 3 for co = 0)
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and the summation runs over the occupied orbitals, |v). The total energy in
the rotating system is given by

In the cranking model, the angular momentum is identified with the sum of
the expectation values of €\

Thus, each configuration is associated with a maximum angular momentum,
/max, with

The energy that will result from a measurement (in the laboratory system)
is calculated as the sum of the expectation values of the static Hamiltonian

hcol

For a fixed configuration, i.e. fixed values of 2 i ,£ a and S^, and for a fixed
spin /, we now want to find the potential shape that minimises the energy
E. For this purpose, the energy is rewritten in the form

where
1/2

This simple formula for the energy E is obtained only if a further approxi-
mation is made, namely

* / \ 110

In the derivation, it is also useful to note that p = //(/^ax ~ I2)1/2 or

For fixed values of Ei, £2 and £3, it is straightforward to find the minimum
under the volume conservation constraint (cf. chapter 8):

o3

CO1CO2CO3 = C O 0
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The following relation results:

coiSi = CO2S2 = CO3S3

The frequencies cQi,a>2 and C03 are obtained as

0 / ~ ~ \ 1/3 ~
COi =COo [S1S2S3J /S j

(with Si = Si). These values of the frequencies correspond to a shape
adjusted to minimise the energy E for any value of the spin / ( / < /max) and
for any configuration specified by Si,Sa and S^ (or by Si,S2 and S3 in the
limit of / = 0). The minimised energy E can be written in the concise form

11/3
E = 3hco0 (SiS2S3)1/3 = 3fc£0 [S

For / = Jmax, i.e. for maximal spin within a configuration, we note that
S2 = S3. Thus, the formula for the frequencies shows that a>2 = C03, which
corresponds to a potential being axially symmetric around the rotation
axis. For such a shape, the rotation is not collective but instead built from
individual nucleons having their spin vectors quantised along the rotation
axis, so-called rotation around the symmetry axis.

If the formula for the frequencies is combined with the definitions of e
and y (chapter 8), it is possible to calculate s and y as functions of spin /
(see problem 12.3)

_ 3 (sr
x 1/2

2 • ^ ^ • ^ ^  ^"* 1 •&* 1 ^ 1 ^ 1 ^ In 1 \ '

8 =

We will finally consider the moment of inertia in the simple harmonic
oscillator model. For collective rotation with a constant moment of inertia,
/ , the energy is given by E = (H2/2/)I2 (in the case of rotation around
one axis, one should use I2 rather than / ( / + 1), which latter is the proper
quantity for three-dimensional quantum-mechanical rotation). For a general
function, £ = £ ( / ) , it seems natural to define moments of inertia from the
derivatives (Bohr and Mottelson, 1981),

h2 _ d£ _ 1 d£
d/ 2 ~ I dl 21
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and
h2 d2E ^ E(I +2)-2E(I) + E(I -2)

where we also indicate how to define these moments of inertia from measured
transition energies, Ey = E(I + 1) - E(I - 1). Note that / ( 1 ) = / ( 2 ) = /
when E = (h2/2ef)I2. The /^ moment of inertia is a direct measure of
the transition energies while f^ is obtained from differences in transition
energies. Except that / ( / + 1) has been replaced by I2 and the discrete
differences are now centred around /, f^ is identical to the moment of
inertia introduced in chapter 11 and shown in fig. 11.13.

For the harmonic oscillator in the present approximation, it is straightfor-
ward to calculate

(2) = m Z g ^ + J 2

^ ^ 2 a 2 ^ - / 2

These values might be compared with the static rigid body moment of inertia

If we follow the equilibrium shapes of the harmonic oscillator, we obtain
(see problem 12.4)

It turns out that both f^ and f^ are generally below #n%\ at large
deformations and small spins even considerably below. One could also note,
however, that, for / = Jmax, / ( 1 ) = / r i g .

The solution of the harmonic oscillator presented here is useful because it
illustrates general features like shape changes and band terminations. On the
other hand, the numerical values of moments of inertia or deformations are
somewhat crude. Indeed, as mentioned above, it is possible to solve the full
cranking single-particle Hamiltonian for the harmonic oscillator potential.
With the resulting single-particle energies as input, it is then possible to
calculate the total energy using the same procedure as above, i.e. the volume
conservation condition is applied to find the deformations, s and y, which
for each spin / minimise the total energy, E. In this case, however, no
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Fig. 12.1. The variation with spin of the moments of inertia / ( 1 ) and / ( 2 ) as obtained
from the full solution of the cranked harmonic oscillator. The configurations,
are labelled by their equilibrium deformations at spin zero, which are all axially
symmetric. The moments of inertia and the spin are given in units of the rigid body
moment of inertia at the spin zero deformation, f^g, and the maximum spin within
the configuration, Jmax (from I. Ragnarsson, 1987, Phys. Lett. 199B, 317).

analytic expressions have been given for E(I) but a numerical solution is
straightforward. One difference (Troudet and Arvieu, 1979) compared with
the approximate solution is that only those configurations that are not too
deformed (23/22 < 1-78) for / = 0 really terminate, i.e. whose rotation
becomes non-collective for / = /max. The more deformed configurations
do not terminate but, instead, they become more and more elongated for
very high spins. With the exception of very deformed configurations, both
the moments of inertia, f^ and f^2\ which start out equal to fT{g for
/ = 0, decrease with increasing spin, see fig. 12.1. In this figure, the different
configurations, which are all axially symmetric for / = 0 (Lx = 2-y), are
labelled by their deformation s at / = 0. The spin is given in units of Jmax

defined by 2^ —  2 a = 23 —  22 independently of whether any real termination
occurs or not, while the unit for the moments of inertia is </rig(/ = 0). With
these units, the same figure can be applied to different mass regions. Note,
however, that /m a x is strongly dependent on deformation, e.g. /max is much
larger for an 'e = 0.6 configuration' than for an 's = 0.2 configuration'.
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In the more realistic calculations considered below, we will find that, for
strongly deformed configurations in heavy nuclei (superdeformation), the
spin will always be much smaller than Jmax. Therefore, we might expect that
f^ (as well as f^) stays close to f^g for all spins of physical interest.
On the other hand, configurations having a smaller deformation at / = 0
might very well reach /max at observable spins (band termination). Then,
however, the special shell structure caused by the grouping in the y-shells at
8 = 0 might strongly influence the energies and the pure oscillator can only
be used to indicate the general trends.

Besides publications quoted previously in this section, one could mention
the papers by Zelevinskii (1975) and by Glas, Mosel and Zint (1978), where
additional aspects of the rotating harmonic oscillator are considered.

12.3 The rotating liquid-drop model
We will now for a moment ignore the quantal effects and consider the
rotation of a nucleus according to the laws of classical mechanics. In such a
macroscopic model, the energy is given by

£macr(E,iV,def, J) = E(Z,N, def)

The energy £(Z,iV,def) is taken as the static liquid-drop energy, which was
treated in chapter 4. The variable 'def denotes a number of deformation
parameters, e.g. 8,7,84.... For stable nuclei the liquid drop energy has a
minimum for spherical shape. This minimum is caused by the surface energy,
which overcomes the deforming tendencies of the Coulomb energy.

In our discussion of the harmonic oscillator, we found that the dynamical
moment of inertia was essentially equal to the rigid body value. In the
case of independent nucleon motion, this is what is generally expected
also for potentials other than the harmonic oscillator. The fact that the
experimentally observed moment of inertia is smaller than /̂ng for low / can
be traced back to the pairing correlations. At higher spins, however, these
correlations should disappear. As the rotating liquid-drop model is relevant
only at relatively high spins, we will use the rigid body moment of inertia in
connection with this model.

The rotational energy becomes smaller with increasing /. Thus, with
the rigid body value, configurations with the nucleons far away from the
rotation axis are favoured. This means that the rotational energy tries to
deform the nucleus and this tendency will become dominating for a large
enough value of the angular momentum /.
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For small values of / , the nucleus will behave in a similar way to the
rotating earth and become flattened at the poles, i.e. oblate shape with
rotation around the symmetry axis. With the rotation axis being the 1-axis
and with the definitions of e and y given in chapter 8, this corresponds
to y = 60° (there exists some confusion about the definition of the sign
of the angle y and consequently, oblate shape with rotation around the
symmetry axis is sometimes referred to as y = —60°). With increasing spin,
the distortion of the nucleus will become larger and e will increase (still at
y = 60°). The macroscopic energy of the nucleus 154Sm, rotating with a spin
of / = 40, is shown as a function of deformation in fig. 12.2.

Detailed calculations, as have been carried out by Cohen, Plasil and
Swiatecki (1974), then show that, at sufficiently large angular momentum,
the stability towards axial asymmetry is lost. For higher spins, most nuclei
will for some intermediate spin values have a minimum for triaxial shape
(60° < y < 0°) before, for even higher spins, the stability in the fission
direction is lost. Thus, the nucleus divides into two fragments, which fly
apart due to the centrifugal forces. The /-values where the transition to
triaxial shape and where fission instability sets in, respectively, are shown in
fig. 12.3. This figure also shows that, for heavy nuclei, these two /-values
coincide. This means that as soon as the oblate regime becomes unstable the
nucleus goes to fission.

12.4 An illustrative example of microscopic calculations of high
spin states - 20Ne

In the discussion of the modified oscillator potential (chapter 6), it was found
that no *f2-term was necessary for the light nuclei. This means that, apart
from the (• s-coupling term, the single-particle potential of such nuclei is
essentially a pure harmonic oscillator. Consequently, the harmonic oscillator
has been used quite a lot for the description of light nuclei, especially the
sd-shell nuclei. These are the nuclei with the valence protons and valence
neutrons in the CI5/2, S1/2 and d3/2 shells (fig. 12.4), i.e. those having neutron
and proton numbers in the range N9Z = 8-20.f

The rotating harmonic oscillator should thus be a very useful starting
point for the study of high spin states in 20Ne, which nucleus we will now
discuss in some detail. Let us first point out that, for such a light nucleus,
/ = 4 or / = 6 are already very high spin states, i.e. they correspond to
t In the study of sd-shell nuclei, the symmetry group of the deformed harmonic oscillator, SU(3), has

often been used for classification of different configurations. This same symmetry group has also
played an important role in elementary particle physics, e.g. for the understanding of the protons and
the neutrons as being built out of three quarks.
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Fig. 12.2. Contour plot in the (e,y)-plane of the rotating liquid-drop energy calcu-
lated for the nucleus 154Sm at / = 40. The rotation axis (defined as the 1-axis) is
sketched for the different cases of axially symmetric shape (cf. fig. 8.6). The same
nuclear shapes are formed in the three 60° sectors but the rotation axis coincides
with the smaller (y = 0° to 60°), the intermediate (y = 0° to -60°) and the larger
(y = —60° to —120°) principal axis, respectively. The numbers on the contour lines
refer to MeV above the energy of a spherical liquid drop at / = 0 (from Andersson
et al 1976).
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Fig. 12.3. Spin values in the rotating liquid drop model where the fission barrier
disappears '£f = 0' and is equal to 8 MeV, respectively. The dashed curve shows the
spin value where the stability of the oblate regime (y = 60°) is lost. Thus, between
the dashed line and the (£f = 0) line, the equilibrium shape is triaxial (from Cohen
et aU 1974).

high rotational frequencies (cf. problem 12.6). The calculated spin zero
potential energy surface of 20Ne has a minimum for prolate shape with
s « 0.4. Fig. 12.4 then shows that this corresponds to a situation where
the N = 1 shell is completely filled and there are in addition two protons
and two neutrons in the N = 2 orbital with asymptotic quantum numbers
\Nn3AQ) = |220 1/2).

In the pure oscillator model, we described the nuclear configuration with

As the 12 particles in the N = 1 shell have in total four quanta in each of
the three Cartesian directions, while the four nucleons in the N = 2 shell
have m = 2,m = ri2 = 0, it is easily found that the ground state of 20Ne
has Si = £2 = 14 and 2 3 = 22. The fact that Zi = S2 indicates that the
configuration is axially symmetric and the only possible axis of collective
rotation is thus perpendicular to the symmetry axis, e.g. the 1-axis. The
rotation causes a mixing of the quanta in the 2- and 3-directions and the
resulting normal modes were denoted by a and (1 in our discussion of the
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Fig. 12.4. Single-particle orbitals along a path in the (s,S4,y,co) space as indicated
schematically in the lower part of the figure. The path is chosen to illustrate how
the orbitals can be followed when a prolate collective band goes to termination at
oblate shape. The spherical origin of the orbitals at a typical low-spin deformation
is traced in part A while in part B, rotation is switched on at constant deformation.
At a frequency of co/ coo—  0.15 corresponding to J ~ 6 in the 20Ne ground
band, the driving forces toward oblate shape become important. Thus, in part
C the deformation is varied over the y plane together with changes in the other
parameters as they occur when a band approaches termination at y = 60°. In part
D, finally, the origin of the aligned oblate orbitals is traced, illustrating to which j
shell they mainly belong and their aligned spin. The occupation of sd-shell orbitals
in the ground state and in the terminating 8+ state of ^°Ne is also indicated. It
is interesting to note how the Z = N = 10 gap stays large all the way to the
termination (e ~ 0.20, y = 60°) while this is not the case for the N = Z = 12
gap. Thus, we expect the aligned 8+ state terminating the ground band in 20Ne to
be more favoured than the corresponding aligned 12+ state in 24Mg (revised from
Sheline et al, 1988).

rotating harmonic oscillator. The present configuration of 20Ne should thus
be denoted as 2a = 14,2^ = 22 (and Ei = 14).

In the harmonic oscillator approximation, it is now trivial to calculate
the properties of the ground state configuration of 20Ne from the explicit
formulae given above. The maximum spin of the configuration is / ma x = 8
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(Jmax = £jg —  2a), a value that can also be deduced from more simple
reasoning. With the N = 1 shell being completely filled, the particles in this
shell do not contribute to the spin. Thus, eight protons and eight neutrons
form an inert core. For particles in the N = 2 shell, the maximum lvalue is 2.
The double degeneracy in each orbital makes it possible for the two protons
and two neutrons to couple independently to / = 4. The four particles
can thus give a total spin of / = 8. If the intrinsic spin of the particles is
also considered, we get the situation illustrated in the upper right part of
fig. 12.5. The two protons (or two neutrons) in the N = 2 orbitals (essentially
d5/2 orbitals) must have anti-aligned intrinsic spin vectors due to the Pauli
principle. Thus, in this case also, the maximum spin is 8. The particles then
have their spin vectors quantised along the rotation axis, which means that
the nuclear state is axially symmetric around this axis. Furthermore, the four
particles rotate mainly around the equator of the nucleus, giving rise to an
oblate nuclear shape (fig. 12.5). This was also formally found for the pure
oscillator. With the coupling between the different iV-shells being neglected,
the nuclear shape is always symmetric at the termination of a band.

The evolution of the proton or neutron single-particle orbitals for the
ground band of 20Ne is illustrated in fig. 12.4. To the far left in this
figure, the splitting (and mixing) of the spherical subshells caused by prolate
deformation is illustrated. At s « 0.35, this leads to the orbitals appropriate
for the ground state of 20Ne where two protons and two neutrons fill the
[220 1/2] orbital. The potential is now cranked around a perpendicular axis
(the x-axis) leading to a splitting of the doubly degenerate orbitals and new
eigenvalues ef(co). Without going into details, we should mention that apart
from parity, one more symmetry (associated with rotation, 180°, around the
cranking axis) survives so that the orbitals labelled by + and - (signature
a = +1/2 and a = —1/2), respectively in fig. 12.4 remain uncoupled.

For cranking at a fixed deformation, the slope of the orbitals corresponds
to the alignment, (jx) = m. This is seen from the relation

which is easily obtained from the cranking Hamiltonian. For prolate shape
and small co-values, the two branches of an Q = 1/2 orbital get an alignment
of +(l /2)a where a is the decoupling factor discussed in chapter 11 while in
lowest order of co, the Q > 1/2 orbitals show no alignment (no decoupling
factor). Then with increasing rotational frequency co, the coupling between
the different orbitals means that all orbitals get a (jx) different from zero.
Note especially that the two orbitals emerging from [220 1/2] become
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Fig. 12.5. Calculated In = 4+ and 8+ energy surfaces with inclusion of the shell
energy for 20Ne together with schematic illustrations of the configurations at the
minima. The definition of £ and y is the same as in fig. 12.2. The contour line
separation is 2 MeV and the numbers on the lines refer to excitation energy above
the spherical liquid drop at J = 0 (from Ragnarsson et al, 1981).

strongly aligned at large co. These are the orbitals occupied in the ground
band of 20Ne as discussed qualitatively above. Their strong alignment
corresponds to a polarisation toward oblate shape. Thus, in the third section
of fig. 12.4, the shape is followed through the y-plane with slightly increasing
rotational frequency ending up in an oblate nucleus 'rotating around its
symmetry axis'.

The so-called rotation around the symmetry axis deserves some comments.
Indeed, from the quantum mechanical point of view, no such rotation
is possible as two states rotated by an angle (p relative to each other
cannot be distinguished. Even so, the concept is useful when selecting
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favoured configurations of single-particle character. Indeed, rotation around
a symmetry axis only corresponds to particle-hole excitations for a symmetric
nucleus. One problem is then to select those excitations giving favoured
energies for different spins (the yrast states). One convenient way to do this
is from a diagram as illustrated on the left in fig. 12.6, where the single-
particle energies e\ are plotted versus m = Q,fi being the eigenvalue of j x .
The total spin is simply given by

and the excitation energy by

where the sum runs over the particle-hole excitations. It is now easy to
conclude that the most favoured states are selected from filling the orbitals
below the straight line 'tilted Fermi surfaces' illustrated in the figure. In
this way, states having lowest energy per spin unit will be selected, however
only for some spin values. Intermediate spins will then be obtained from
particle-hole excitations relative to the tilted Fermi surface.

It is straightforward to conclude that the same results are obtained from
the cranking formalism. For 'rotation around a symmetry axis', jx = Q is a
good quantum number and the eigenvalues of the cranking Hamiltonian are
simply

ef = a - coQt

corresponding to straight lines when drawn as functions of co, see right panel
of fig. 12.6. Then, if for different frequencies the lowest ef are selected, this
is exactly analogous to choosing the points below the straight line Fermi
surface (where a> corresponds to the slope of the line). This result is important
because it now becomes possible to treat all kind of rotations, collective and
particle-hole excitations, within the same formalism obtaining the yrast states
from filling the lowest eigenvalues ef of the cranking Hamiltonian. Indeed,
this is what we already used in our discussion of the harmonic oscillator.
Note also that the slope of the tilted Fermi surface is proportional to co,
which in this case is only an auxiliary parameter. However, in analogy with
the case of collective rotation, it appears natural to refer to it as rotational
frequency.

Let us now go back to fig. 12.4 where the part to the right is analogous
to the single-particle diagram in fig. 12.6. However, the deformation and the
rotational frequency are varied simultaneously so that the spherical subshells
are regained to the left in fig. 12.4. It is interesting to note that, by choosing
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Fig. 12.6. In the left panels, the calculated single-particle energies in the sd-shell
region are drawn versus their spin projection on the symmetry axis, m*. The
deformation is oblate at e = 0.15. Sloping Fermi surfaces are then drawn to indicate
how different spin states for particle numbers 10 and 12, respectively might be
formed at this specific deformation. Whether these configurations are really formed
in the spectra of 20Ne and 24Mg depends on whether they show up as minima in the
energy surfaces or not, i.e. whether that specific deformation is favoured or not at
the resulting spin value. The same information can be extracted from the diagram to
the right where the spherical origins of the orbitals are first drawn and the 'rotating
energies', et —  conii, are then followed as functions of co. The numbers enclosed in
squares indicate total neutron or proton spin. Note that gaps develop for the same
particle numbers and spins where straight line Fermi surfaces could be drawn in the
et versus m, diagrams. In both approaches is also illustrated (by a long-dashed line
and by an arrow, respectively) how an / = 5 state for 12 particles might be formed
as a particle-hole excitation from the / = 6 state. Note the large gap that develops
to the far right for particle number 10 and the corresponding appearance of the
e\ versus m\ diagram where there is lots of space for the / = 4 straight line Fermi
surface. For particle number 12 on the other hand, no large gap develops and it
becomes much more difficult to find space to draw straight line Fermi surfaces in
the et versus m* diagram.

the path in deformation/rotational frequency illustrated in fig. 12.4, it is
possible to follow in a continuous way (no crossings between orbitals) the
evolution of 20Ne from its ground state to the aligned 8+ state.

Using the methods discussed in the next subsection, it is possible to
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Fig. 12.7. Measured ground band energies of 20Ne plotted versus I2 compared with
calculated energies in some different approximations. The curve marked 'Harm, osc.'
shows the energies in the simplified solution of cranked harmonic oscillator while
'Mod. osc' indicates the modified oscillator (fig. 12.5) model. For each spin, the
energy is minimised as a function of deformation. The corresponding shapes are
shown in the (£,y)-plane in the inset. The curve marked 'Rigid rot.' gives the energy
E = (h2/2fng) I2 where /ng is kept constant, equal to the rigid body value at the
ground state snape of the harmonic oscillator.

calculate potential energy surfaces also for / =£ 0. An example of sucl} a
calculation is given in fig. 12.5, where the / = 4 and / = 8 energy surfaces
of 20Ne are drawn. The ground state 7 = 0 shape of 20Ne is calculated at
s ~ 0.35, y — 0. At / = 4, the disturbance caused by the rotation is rather
small with an essentially unchanged deformation at the potential energy
minimum. For / = 8, the rotational disturbances are much larger and, as
anticipated above, the minimal energy shape is oblate with rotation around
the symmetry axis (y = 60°).

In fig. 12.7, the experimental yrast states are compared with the calcu-
lated energies within the harmonic oscillator and modified oscillator models.
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Furthermore, we show the energy

rig

where / r i g is taken as a constant, namely the rigid moment of inertia of the
harmonic oscillator at the / = 0 deformation (see problem 12.4). Except for
the 2 + energy, the calculated yrast line of the modified oscillator potential
(Ragnarsson et a/., 1981) is in quite good agreement with experiment. It
is especially satisfying that the relatively low energy of the / = 8 state is
reproduced. This is in contrast to the harmonic oscillator calculations, which
give a much too large £g+ to E$+ spacing. The equilibrium shapes in the
two models are also shown in fig. 12.7. The main feature is that the shape
remains essentially prolate up to the / = 6 state and that a large change in
deformation occurs between 7 = 6 and 7 = 8.

If one goes to higher spins than / = 8 for 20Ne, one expects an increase
of the deformation. In the macroscopic description, this is understood as
a result of the centrifugal forces. In the microscopic harmonic oscillator
model, particles must be excited to higher shells to get spins above 7 = 8.
This naturally leads to larger deformations.

The case of 20Ne is particularly simple because of the axial symmetry
(Li = D2). For a triaxial configuration, there is the possibility to rotate
around each of the three principal axis. Three different bands are thus
formed but the stability and physical significance of the higher ones is
unclear.

The ground state of 24Mg with Zi = 16, S2 = 20 and £3 = 28 is an example
of a configuration that is triaxial in the harmonic oscillator approximation
(problem 12.5). In the modified oscillator, however, the ground state comes
out as essentially prolate (being soft towards y-deformations) (Ragnarsson
et a/., 1981; Sheline et a/., 1988). The shape evolution with increasing spin
is then essentially the same as in the ground band of 20Ne. Thus, figs. 12.4
and 12.6 can also be used for a qualitative understanding of 24Mg. Note,
however, the high level density at the terminating 12+ state, indicating
a competition between different configurations. This is in contrast to 20Ne
where the terminating 8+ state is calculated to be energetically very favoured
compared with other states of similar spin.

12.5 The shell correction method for 7 ^ 0
When the ground state potential energy has been calculated at some fixed
deformation it should be possible to get the 7-dependence simply by adding
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the rotational energy as extracted from the cranking model. Thus, for a
prescribed spin Jo, the frequency coo is determined so that

h =

Then the excitation energy is obtained as

-E'exc / y ei Ic0=a>o / ^ * lco=0
i i

occ occ

For example, in fig. 12.5, the Strutinsky shell correction method has been
applied to calculate the 7 = 0 energy surface while the 7-dependence at a
fixed deformation has been calculated according to the above formulae. In
practice, in each mesh point in deformation space, the cranking Hamiltonian
is diagonalised for a number of co-values. Subsequently, coo and then £exc
are obtained from interpolation. In the energy surface of fig. 12.5, the energy
has also been minimised with respect to £4 deformations.

Very often, however, simple summation to obtain £exc might lead to unde-
sired features. In general, this is caused by deficiencies in the single-particle
potential so that the average behaviour of £exc is unrealistic. For example,
the (unphysical) /2-term in the modified oscillator potential corresponds to a
velocity-dependence and leads to an average moment of inertia considerably
larger than /rig- Similarly, in some parametrisations of the Woods-Saxon
potential, the radius parameter is different from experimentally observed
nuclear radii and, with / oc r2, this might have rather drastic effects.

It is expected, however, that the fluctuations are more accurately described
by the sums, cf. chapter 9. Therefore, it appears reasonable to retain only
these fluctuations with the average behaviour governed by the rigid body
moment of inertia. To this end we define (see e.g. Andersson et al, 1976) a
spin-dependent shell correction energy

/=/o I=lo

where the smoothed single-particle sums (indicated by '~') are calculated
from a Strutinsky procedure essentially the same as that described in chapter
9. Subsequently, the total energy is calculated as the sum of the rotating
liquid-drop energy and the shell energy,

h2

Etat (M) = Eu>. (£,7 = 0) + — — - 7 2 + £sh (e,7)

where £ is a shorthand notation for the deformation, s = (£,7,24,...).
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In the definition of the shell energy, all quantities should be evaluated
at the same spin Jo, i.e. the smoothed single-particlejmergy sum should
be calculated at an co-value giving a smoothed spin Em* = Jo. Thus, the
co-values in the discrete sum and in the smoothed sum are generally different
and it becomes difficult to get any feeling for the variation of £sh from an
inspection of a single-particle diagram. However, it can be shown that the
quantity

with all quantities calculated at the same co is numerically very similar to
£sh. An elementary discussion of this is given in Ragnarsson et al. (1978).
The quantity £qUasi-sh is defined exactly analogous to the static shell energy
discussed in chapter 9. Thus, co enters very much as a deformation parameter
and we can take over all our experience from the static case; specifically that
gaps in the single-particle spectrum give a favoured (negative) shell energy
while a large level density leads to a positive shell energy, i.e. an unfavoured
configuration.

12.6 Competition between collective and single-particle degrees of freedom
in medium-heavy nuclei

We will now turn to heavier nuclei where, as seen in fig. 11.2, the moment of
inertia extracted from the measured 2 + to 0+ energy spacing is less than 50%
of the calculated rigid body value. We have already pointed out that the
low value is due to the pairing correlations (the pairing correlations are less
important in a light nucleus like 20Ne). With increasing spin, the experimental
moment of inertia becomes larger (fig. 11.13) and for the deformed rare-earth
nuclei, it comes close to the rigid body value in the / = 20-30 region. This
suggests that the pairing correlations are rather unimportant at these spins
and the same conclusion is also reached from more fundamental theoretical
considerations. The cranking model in the form in which we applied it
to 20Ne, with independent particles in a rotating potential, should then be
applicable to heavy nuclei at high enough spins, let's say / >30. For such
high spins, the approximation of identifying the total spin with the projection
on the rotation axis should also be quite accurate. The result from 20Ne that
the model seems to describe the spectrum quite reasonably all the way down
to / = 0 or at least / = 2 is in some ways surprising. Indeed, the application
of a rotating independent particle model to the / = 0, 2, ... states of 20Ne
can hardly be justified theoretically.

Calculated potential energy surfaces for 160Yb at different spin values
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Fig. 12.8. Calculated 7=0,40,50,60,70 and 80 potential energy surfaces in the (e, y)
plane with inclusion of the shell energy for ^ Y b ^ . The contour line separation is
1 MeV (from Andersson et al.9 1976).
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are exhibited in fig. 12.8. The nucleus is prolate for / = 0 but becomes
soft toward y = 60°, with increasing spin. At / = 50, a shape transition
has occurred and the lowest energy is found for oblate shape with rotation
around the symmetry axis (y = 60°). The same general trend as in 20Ne
is thus obtained. However, the difference in mass means that the large
shape transitions occur at very different spins, / = 8 in 20Ne compared with
/ = 40-50 in 160Yb.

The energy surfaces of fig. 12.8 should be understood as some average of
the states in the yrast region at the different spin values exhibited. If the
different states are considered in more detail (Bengtsson and Ragnarsson,
1985), it turns out that the shell effects leading to the y = 60° shape transition
are very similar to those in 20Ne. Thus, at high spins, 160Yb can be considered
as a closed core of 146Gd and 14 additional valence particles in the j-shells
above the Z = 64 and N = 82 shell closures. (See figs. 11.5 and 11.6 where
one notes that the Z = 64 gap is smaller than e.g. the Z = 50 and Z = 82
gaps, and it is only for nuclei with a limited number of valence nucleons
outside the 146Gd core that it shows any magic properties (Kleinheinz et al,
1979).) For example, according to calculations for 160Yb, it is possible to
define a configuration with six h11/2 valence protons, six valence neutrons
distributed over the f7/2 and h9/2 shells and the remaining two neutrons
in the ii3/2 shell. In this configuration denoted 7z;(hii/2)6'v(f7/2h9/2)6(ii3/2)2,
it is possible to follow the gradual alignment of the spin vectors until full
alignment in an In = 48+ state where the hn/2 protons contribute with 18
spin units (11/2 + 9/2 + 7/2 + 5/2 + 3/2 + 1/2), the f7/2 and h9/2 neutrons
also with 18 spin units (9/2 + 7/2 + 7/2 + 5/2 + 5/2 + 3/2) and the
i13/2 neutrons with 12 spin units (13/2 + 11/2). Similarly, it is for example
possible to form a 46+ terminating state in 158Er from the configuration
n(^n/2)4y(^i/2^9/2)6(h3/2)2 a n d a 42+ terminating state in 156Er from the
configuration 7r(h11/2)S(f7/2h9/2)4(ii3/2)2-

The labelling of the configurations would be somewhat easier if all the
y-shells could be considered as essentially pure and thus distinguishable.
However, at typical ground state deformations of e > 0.2, the neutron h9/2

and f7/2 shells are rather strongly mixed (see fig. 11.6). Therefore, in our
labelling we have considered these two subshells as one unit. On the other
hand, at the termination, which generally occurs at e ~ 0.1 (y = 60°), the
two shells are more pure and then it seems justified for example to refer to
the ^(f7/2h9/2)6 structure as three f7/2 neutrons coupled to (l5/2)h and three
h9/2 neutrons coupled to (21/2)fe.

Starting from he configurations mentioned above, other terminating bands
ca,n be formed for example by redistributing the neutrons among the (f7/2h9/2)
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Fig. 12.9. Single-particle energies et for oblate shape, e = 0.10, versus spin projection
on the symmetry axis m, together with a schematic illustration of the band structure
in the closed core configuration of 158Er. Sloping Fermi surfaces indicate the filling
of the orbitals in the fully aligned Ip = 16 and In = 30 states and also in the cases
of one proton and neutron, respectively, anti-aligned giving Ip = 8 and Jn = 24
states. It then becomes possible to form energetically favoured 46+, 40+, 38+ and
32+ states, each associated with a terminating band as illustrated for the three higher
spin values in the right part of the figure where the 40+ state is assumed yrast and
the 38+ state is not. With no interaction, between the bands, an yrast line as shown
by the thick dashed line results. Similarly, a sloping Fermi surface giving Jn = 33"
can be drawn so that for example a favoured 49" state might be formed (from
Ragnarsson et al, 1986).

and i13/2 shells or by making holes in the proton core. Thus, in 158Er
we expect for example a n{d5/2)~l{\in/2)5 <v(f7/2h9/2)5(ii3/2)3 configuration
terminating in a 53+ state and so on. It also seems possible to define band-
terminating states where one spin vector points in the opposite direction
relative to the total spin vector. As one example, consider an oblate 7r(h11/2)4

^(f7/2)4(h9/2)2(ii3/2)2 configuration in 158Er where one of the f7/2 neutrons
gives a spin contribution of (—7/2)ft, i.e.  the four f7/2 neutrons contribute only
with (7/2 + 5/2 + 3/2 -1/2)h = Ah, while the nucleons in the other subshell
contribute with their maximal possible spin. The f7/2 (Q = m = +7/2)
orbital is thus occupied by two particles, which can be understood from the
fact that, at the oblate deformation in question, this orbital is far below the
Fermi surface (see fig. 8.3 where the orbital is labelled [514 7/2] (s < 0)).

As discussed already for the sd-shell nuclei, a more quantitative compar-
ison between different aligned configurations is obtained from et versus mi
diagrams drawn at the appropriate deformation. This is illustrated for 158Er
in fig. 12.9 where some corresponding terminating bands are also shown
schematically. Similarly, we show in fig. 12.10 how the neutron configura-
tion of 158Er, (f7/2h9/2)6(ii3/2)2> can be followed from the ground state to
the terminating configuration with a neutron spin of 30fc. Other terminat-
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6.8

6.2

Fig. 12.10. Similar to fig. 12.4 but for neutrons around N = 90. Thus the left
panel illustrates the spherical origin of the ground state orbitals while the other
two panels show the orbitals in the (s, e*, y, co) plane along an approximate path to
termination. Particle numbers are given within rings and total neutron spin at specific
deformations and rotational frequencies within rectangles. At the termination for
oblate shape (right edge of the figure), twice the spin projection on the symmetry
axis, 2mh is indicatede for some orbitals. It is interesting to note how the N = 90 gap
survives all the way to the termination while a large N = 88 gap develops close to
the termination.

ing neutron configurations are then obtained as particle-hole configurations
with respect to this optimal configuration. Which configuration is considered
optimal might, however, depend on the specific deformation and rotational
frequency chosen.

The structure of 20Ne is particularly simple because the ground state
configuration is identical to the configuration terminating for In = 8+.
Fig. 12.10 shows that the situation is similar for the N = 90 neutron
configuration. For the protons in the 4̂ « 160 nuclei on the other hand
the terminating configurations come into the yrast region first for spin
values in the / = 30-40 region while, at lower spins, other configurations
are yrast. For example, from figs. 11.5 and 11.6, we may conclude that
an approximate ground state configuration of 158Er (s « 0.20) is of the



12.6 Collective and single-particle degrees of freedom 233

v (f 7/2 h 9/2)6 (i 13/2)2 ^ A

r\

i

i
i

/ ^ i
v N 1

1
1
1
1
1 « ^

/~30ft /=46/7

Fig. 12.11. Schematic illustration of the proton configuration yrast bands in 158Er.
As seen in fig. 11.5, in the ground state there are 8 protons in hn/2 orbitals but with
increasing spin, there is a tendency to close the Z = 64 core and thus to 'de-excite'
protons from the hi 1/2 shell above the gap to the ds/2 and g7/2 shells below the
gap. In the configuration with all shells below the Z = 64 gap filled (hn/2)4, an
energetically favoured termination occurs for I = 46. In this aligned state, the
spin contribution is 16ft from the protons and 30ft from the neutrons. As seen in
fig. 12.10, the neutrons remain in the same configuration, -v(f7/2 I19/2)6 (ii3/2)2> for all
spins up to the termination (from Ragnarsson et al, 1986).

form 7r(d5/2g7/2) 4(hii/2)8/v(f7/2h9/2)6(ii3/2)2- Then with increasing spin, the
deformation will develop towards decreasing ^-deformation and increasing
y-deformation leading to a band-crossing so that the configuration with two
protons moved from hn/2 to (d5/2g7/2) comes lower in energy before, at even
higher spins, we reach the band-terminating configuration discussed above
with a closed Z = 64 core. This situation is schematically illustrated in
fig. 12.11. There we have omitted the low spin region, partly to indicate that
at these spins the discussion above is only qualitatively but not quantitatively
correct because of the neglect of pairing in the calculations. Note also that
in each step two protons are exchanged between positive and negative parity
orbitals in order to preserve the total parity.

Calculated potential energy surfaces close to termination in the ^(hn^)4

/v(f7/2h9/2)6(ii3/2)2 configuration of 158Er are shown in fig. 12.12 while cal-
culated energies for different configurations are compared in fig. 12.13. In
fig. 12.14 the calculated evolution with shape of these different configura-
tions is depicted. The bands denoted 1, 2 and 3 in figs. 12.13 and 12.14
are identical to the three bands shown schematically in fig. 12.11. The other
bands then correspond to a redistribution of the valence nucleons over the
open y-shells and/or making one or several holes first in the proton Z = 64
core and then also in the neutron N = 82 core.

With a fixed distribution of the particles over the y-shells, all configu-
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Fig. 12.12. Calculated potential energy surfaces for 158Er in the configuration that
terminates for / = 46. The configuration for the particles outside the Z = 64 and
N = 82 cores is 7r(h11/2)'Mf7/2h9/2)6(ii3/2)2 where the f7/2 and h9/2 shells are mixed
so that no distinction can be made between neutrons in one or the other of these
subshells. This means for example that the 'two configurations' terminating at / = 40
and / = 46 in fig. 12.9 are both considered and the minimum is found at oblate
shape (y = 60°) for these two spins (from Ragnarsson et a/., 1986).

rations will terminate sooner or later. However, it seems that it is only
configurations with a few particles (or holes) distributed over rather many
high-j subshells that are favoured in energy at the termination. Alterna-
tively, this could be expressed by the fact that all valence particles should
give an appreciable contribution to the total spin. Therefore, for example an
(hn/2)6 configuration does not really favour a termination because the two
last protons give a spin contribution of only (1/2 + 3/2)fi in the terminating
state. For an (h11/2)8 configuration the two last protons give a negative
spin contribution and the (oblate) terminating state is even less favoured.
One further observation is that particles rotating around the equator tend
to make the nucleus oblate while holes of corresponding type will 'dig a
hole' at the equator, thus trying to make the nucleus prolate (with 'rotation
around the symmetry axis', i.e. y = —120°). For example, coming back
to the (h11/2)8 configuration, it could as well be described as a (h11/2)~4

configuration relative to a filled shell and combined with other high-7 hole
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Fig. 12.13. Calculated energies of rotational bands in the yrast region of 158Er. The
bands labelled by 1, 2 and 3 are identical to the three bands of fig. 12.11. An
open circle indicates an oblate aligned state (y = 60°). For most such oblate states,
the configuration relative to a 146Gd core and the deformation s is given (from
Bengtsson and Ragnarsson, 1983).

configurations, a favoured prolate band-termination might be formed. Note,
however, that high-; hole states and high-; particle states strive in opposite
directions and therefore do not live very well together.

In figs. 12.13 and 12.14, we observe a mixture of bands which terminate
and which essentially stay collective for all spins. The latter is the case not
only for bands 1 and 2 but also for band 9, which is calculated as yrast or
close-to-yrast in the / = 50-60 region. At these spins, one will also note that
the centrifugal effects favouring larger deformations become more important
and as suggested for example from fig 12.8 and discussed in the next section,
some strongly deformed minima may come lowest in energy.

It seems that the calculated features discussed above are surprisingly well
borne out in experiment. Thus, the observed (Simpson et a/., 1984, Tjom
et a/., 1985) y-ray energies of 158Er shown in fig. 11.12 are consistent with
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Fig. 12.14. Calculated shape trajectories for different rotational bands in the yrast
region of 158Er. The bands are labelled as in fig. 12.13 and the yrast states denoted
by large filled circles. The configuration of some other bands can be extracted from
the structure of the band-terminating states given in fig. 12.13 (from Bengtsson and
Ragnarsson, 1983).

a crossing between bands 2 and 3 of fig. 12.13 at / « 40, which should
be compared with / « 44 in the calculations. With a small adjustment of
the single-particle parameters, we might even get full agreement. Evidence
for band terminations has also been found in 158Yb (Baktash et a/., 1985,
Ragnarsson et a/., 1985) and 156Er (Stephens et a/., 1985). In the latter
nucleus, the positive parity ground band is collective up to / « 30 but around
this spin, the spectrum changes character with somewhat irregular and
comparatively small transition energies. Thus, when plotted as in fig. 12.13
relative to a rigid-rotation energy, the / = 30-42 structure comes down in
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energy with the 42+ state very low-lying as predicted for a terminating state
(Ragnarsson et al.9 1986). Indeed, In = 42+ is identical to the maximum
spin in the expected yrast configuration rc(hii/2)4Mf7/2h9/2)4(ii3/2)2- Note
also the large gap associated with this neutron configuration to the far right
in fig. 12.10.

Here, we have mainly discussed the nuclei with valence particles outside
the 146Gd core. However, starting from other closed shell nuclei similar
analyses could be carried through and, as indicated above, also for holes
in a closed core, an analogous formalism should be valid. The nuclei we
have discussed here with A « 160 are, however, especially advantageous for
several reasons. From the experimental side it is so because they are neutron
deficient, which makes it easy to form high spin states from heavy ion
reactions (fig. 11.11). Furthermore, nuclei with mass numbers A = 100-200
on the average can accommodate the highest spins as seen from fig. 12.3.
From the theoretical side, the presence of several high-y shells just above the
Z = 64 and N = 82 shell closures make the terminating bands especially
favoured.

12.7 Shell effects at large deformation
In the preceding section, we discussed the case of a few valence nucleons
outside closed shells leading to states of single-particle character at inter-
mediate spin values. With more particles outside the core, the nucleus will
stay collective to higher spins with only small shape changes. In any case,
however, the centrifugal force will sooner or later become dominating as
discussed within the liquid-drop model above and illustrated in figs. 12.2 and
12.3. Indeed, for nuclei with mass A = 100-150, the liquid-drop energy will
be very soft over large regions of the deformation plane for spins / « 50-60.
This means that the shell effects may play a very important role, creating
minima at small but also at large and very large deformations. One example
of this is seen for 160Yb in fig. 12.8 where a minimum develops for e « 0.4
and y = 20-30°.

Because of the important role of the shell effects, it seems appropriate to
consider their properties at large deformation in some detail. In general,
one expects larger shell effects for axial symmetric shapes than for triaxial
shapes. In the static harmonic oscillator approximation, this is understood
from the fact that the quanta in the two perpendicular directions can be
interchanged with no change in the single-particle energies. Consequently,
large degeneracies occur as indicated in fig. 8.1. For example, with a two-fold
spin degeneracy, the nz = 0 orbitals with all quanta in the perpendicular
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Fig. 12.15. The shell energy landscape for neutrons drawn as a function of neutron
number and elongation. The shell energy is negative in shaded regions and the
contour line separation is 1 MeV. Some neutron numbers in regions of favoured
shell energy are indicated. The magic numbers for spherical shape are seen clearly.
Another very prominent feature of the plot are the ridges that intersect the landscape,
bending towards higher particle numbers with increasing prolate deformation. These
ridges are caused by the numerous nz = 0 orbitals, which are degenerate in the pure
oscillator. In between the ridges, regions of negative shell energy are seen, suggesting
very definite relationships between particle number and deformation for favoured
configurations at large deformation (from I. Ragnarsson and R.K. Sheline, 1984,
Phys. Scripta 29, 385).

direction have a total degeneracy of 2(N + 1) while those with one quantum
in the polar direction (nz = 1) have a total degeneracy of 2N. In more
realistic potentials like the modified oscillator, the nz = 0 and nz = 1 orbitals
are not degenerate but most of them are still rather close together, see figs
8.2 and 8.5. In the latter figure, the regions of dense shading correspond to
the nz = 0 orbitals and those with less dense shading to nz = 1 orbitals. Note
that the orbitals emerging from the high-y intruder shells do not fit into this
scheme as they are far below the other orbitals with the same nz and n±. An
example seen in figs. 8.2 and 8.5 is the [505 11/2] orbital from the N = 5
hi 1/2 subshell. The approximate degeneracy of the low-nz orbitals is thus
not applicable to the full oscillator spectrum as discussed by Ragnarsson et
al (1978). This has also been noted in the analysis of the Woods-Saxon
potential by Dudek et al (1987), who introduced the term pseudo-oscillator
symmetry.
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A more quantitative measure of the approximate degeneracies of the
single-particle orbitals is obtained if the shell energy is plotted as a function
of particle number and elongation, see fig. 12.15. Consider as an example
the nz = 0, N = 5 orbitals (fig. 8.5), which are found at the Fermi level for
N « 100 at spherical shape, N « 135 at s = 0.3 and N « 185 at s = 0.6. The
high level density along this path should then lead to a ridge of unfavourable
positive shell energy, which is indeed the case. In a similar way, other ridges
are created in fig. 12.15 from the nz = 0, N = 4 orbitals, etc. while the
approximate degeneracies of the nz = 1 orbitals almost appear too small to
give any discernible ridges in fig. 12.15.

In between the regions of high level density, there will by necessity be
fewer single-particle orbitals leading to valleys in the shell energy landscape.
This corresponds to a favoured shell energy, which is really what we are
looking for. Thus, it is suggested from fig. 12.15 that the regions of low
shell energy occur in a very regular and well-defined way at large prolate
deformations. Furthermore, this general structure is the same for protons as
for neutrons.

The feature of the harmonic oscillator spectrum that has been discussed
most in the literature (e.g. Bohr and Mottelson, 1975 and references therein)
is the large degeneracies that occur when all three frequencies are related
through

cox : coy : coz = a : b : c

where a,b,c are small integer numbers. Apart from spherical shape (1 : 1 : 1)
the most important ratios seen in fig. 8.1 correspond to co± : coz = 2 : 1 (cf.
problem 5.1) and co± : coz = 1 : 2. In fig. 12.15, the prolate 2 : 1 ratio shows
up in the form of somewhat increased shell effects for s « 0.6 compared with
for other prolate shapes.

Note also that minima at e « 0.6 (fig. 12.15) are seen at somewhat larger
particle numbers than the shell gaps of the pure oscillator (fig. 8.1). For
example, shell gaps at N = 60 and 80 correspond to a favoured shell
energy of the modified oscillator at s « 0.6 for N « 60-66 and N « 80-88.
As illustrated in fig. 8.2 this is understood from the way the orbitals are
influenced by the /2-term and to a smaller extent by the 84-term. It seems
rather well established that the fission isomers discussed in chapter 9 show
up because of a large negative shell energy for e « 0.6 and JV = 140-150
(fig. 12.15).

Fig. 12.15 is drawn for a static potential. The question is now what
happens for a rotating potential. Indeed, the rotation will only influence the
shell structure in a minor way (e.g. Ragnarsson et a/., 1980). The reason is
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Fig. 12.16. The single-proton orbitals of the modified oscillator potential plotted as
functions of rotational frequency. The deformation, s = 0.6 corresponds to a 2 : 1
ratio of the symmetry axis and the perpendicular axis. The orbitals are labelled by
the asymptotic quantum numbers at co = 0. At frequencies co/coo = 0.05 and 0.10,
total spins for different particle numbers (shown in rings) are given within rectangles.
Note that most orbitals are only weakly dependent on rotational frequency so that
the regions of low and high level density are very little disturbed by the rotation
(from Ragnarsson et a/., 1980).

that the rotation is strongly collective so that many orbitals contribute to
the angular momentum but each orbital only marginally. Therefore, most
orbitals get only a small (jx) corresponding to a small slope in fig. 12.16
where the proton orbitals at s = 0.6 are drawn. Orbitals having a small nz
are especially difficult to align. However, according to the discussion above,
these are the orbitals that are essentially responsible for the regularity in
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Fig. 12.17. The neutron shell energy drawn versus particle number and rotational
frequency. The corresponding proton diagram is quite similar and as suggested from
fig. 12.16, favoured particle numbers remain constant or are only slightly shifted at
rapid rotation (from S. Aberg et al, Proc. Fourth IAEA Symp. on Phys. and Chem.
of Fission, Jiilich, 1979 (IAEA, Vienna, 1980) vol. I, p. 303).

the shell effects. The fact that a few high-nz (and high-iV) orbitals get a
stronger alignment does not alter the shell structure in any major way. This
becomes evident from fig. 12.17 where the calculated neutron shell energy
at e = 0.6 is shown as a function of neutron number N and rotational
frequency co. It is evident that particle numbers of favoured and unfavoured
shell energies are essentially the same independent of co. This is apart from
a general tendency that the valleys of favoured shell energy are slightly
shifted towards higher particle numbers with increasing co. This small shift
is easily understood from the way in which the few orbitals showing strong
alignment in fig. 12.16 cut through the large number of less aligned' orbitals.
Note also that fig. 12.16 is drawn for protons while fig. 12.17 is drawn for
neutrons. Even so the same particle numbers are favoured in both cases,
e.g. Z = 62-64 in fig. 12.16 and N = 62-64 in fig. 12.17. This underlines
once more that the main features of the shell effects are governed by the
general symmetries and not by the detailed features of the single-particle
potential. Therefore these main features are the same for protons as for
neutrons.

12.8 Rotational bands at superdeformation

The discussion above suggests that it should be straightforward to obtain
superdeformed states at high enough spins in theoretical calculations. This
has also been the case with the predictions concentrating on the nuclei
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Fig. 12.18. The gamma-ray spectrum of the superdeformed band in 152Dy as origi-
nally identified in the 1986 Daresbury experiment (from Twin et a/., 1986).

around 152Dy with Z = 6 6 and N = 86. The first observation of a superde-
formed high-spin band in 152Dy (Twin et al, 1986) was still something of a
surprise considering the many practical obstacles that had to be overcome.
The experimental transition energies shown in fig. 12.18 are very regular,
indicating large collectivity and no band-crossings. The 'magic' features at
2 : 1 deformation of 152Dy suggest shell gaps and corresponding low shell
energies at Z = 66 and N = 86 in qualitative agreement with figs. 12.16 and
12.17.

From the transition energies of fig. 12.18 it is straightforward to extract
an average moment of inertia, which comes out very close to the rigid
body value at 2 : 1 (e = 0.6) deformation. Similarly, it has been possible
to measure (Bentley et al, 1987) average life-times of the high-spin states
and thus the transition probabilities, which can be interpreted in the form
of a quadrupole moment. Again, consistency with an approximate 2 : 1
deformation is obtained.

The full spectrum observed for 152Dy is shown in fig. 12.19. As 152Dy is
close to the magic or semi-magic spherical nucleus 146Gd, it is not unexpected
that most of the states in the yrast region are of single-particle character
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Fig. 12.19. The full spectrum observed for the nucleus 152Dy showing the low-spin
non-collective yrast states in the middle, a collective normal-deformed band to the
left and the superdeformed band to the right. The inset in the upper left corner
shows E versus / plotted in a schematic way for the different structures (from J.F.
Sharpey-Schaffer, Physics World, Sept. 1990, p. 31).
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(and interpreted as slightly oblate). These states are seen at spin / «
40. Furthermore, one collective band corresponding to prolate normal
deformation, s = 0.2-0.3 is shown at / = 46. Finally, the superdeformed
band extends to / « 60 where the exact spin values are not known because
it has not been possible to observe the linking transitions between the
superdeformed band and the small deformation states.

In many ways, the observed superdeformed band opens a new era in the
study of the orbitals and the shell structure at large deformation. From
fig. 12.15 it is suggested that favoured shell energies at large deformations
are present for more or less all particle numbers but that the favoured
deformations are coupled to the particle numbers in a regular pattern.
Indeed, since the discovery of the superdeformed band in 152Dy, several
similar rotational bands have been observed in neighbouring nuclei (see
Aberg et a/., 1990; Janssens and Khoo, 1991, for reviews). Additionally,
rotational bands with properties indicating a deformation of s ~ 0.5 have
been observed in nuclei around ^Hgin . It is very satisfying that the proton
and neutron numbers do fit into the valleys of fig. 12.15. Also in the nuclei
around 132Ce, several rotational bands with large deformations e = 0.3-0.4
have been observed (Nolan and Twin, 1988). Again this is consistent with
fig. 12.15 but compared with normal ground state deformations these bands
are probably formed by putting one or two particles in deformation driving
high-7 orbitals, especially in the [660 1/2] neutron orbital. As seen for
example in fig. 11.6, this orbital comes down from the next major shell.
Therefore, it is questionable whether these states in the Ce/Nd region do
increase our knowledge about the shell structure at large deformations in
any major way.

From the discussion above, it should be evident that it is mainly the low-nz
orbitals (the equatorial orbitals) that are responsible for the shell structure
at large deformation. This feature is independent of rotational frequency.
The high-y large-nz orbitals are, however, very important for the detailed
properties of the rotational bands. This is natural because they are the
orbitals that are easy to align and which therefore carry a lot of angular
momentum. Note that these kinds of orbitals are also responsible for band-
crossings in normal-deformed rotational bands or for the polarising forces
leading to band terminations.

As discussed in connection with the pure oscillator, a disturbed rotational
band can be analysed in the form of different moments of inertia. As the
exact spins for the superdeformed bands are not known, it is not possible
to extract f^ with any certainty. On the other hand, f^2\ which is a
measure of the relative change in transition energy, can be calculated from
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the relation

d2E/dI2 [Ey(I + 1) - Ey(I - 1)]

where Ey(I) = E(I + 1) —  E(I —  1) is the transition energy for the transition,
(/ + 1) —>  (/ —  1). When comparing with theory, we note that

{) d ( O ^ dco
where the last equality is valid in the cranking approximation. Furthermore,
we have used the canonical relation,

d£
(0=dT

to obtain the rotational frequency from the spectrum. Thus, in the cranking
approximation, / ( 2 ) is a sum from single-particle terms measuring how the
alignment (jx) changes with rotational frequency. It is then instructive to
consider how the alignment occurs in a high-j shell, see fig. 12.20 drawn
for a hi 1/2 shell at s = 0.25. The general features of this figure remain for
other high-y shells and also for larger deformation. At large deformations,
however, the different orbitals get aligned at a higher frequency. As / ( 2 )

measures the increase in alignment, it is evident that the lowest high-y orbital
contributes at a very small frequency (fig. 12.20), the next at a somewhat
higher frequency and so on.

Realistic calculations illustrating how f^ is built for the superdeformed
bands in the A « 150 region are shown in fig.  12.21. Note that, for many
particles in a shell, /^ is essentially constant similar to what was found
in the pure oscillator where no orbital gets a strong alignment. Also, the
first, second and third orbitals in a y-shell contribute as anticipated above.
The fourth orbital becomes anti-aligned at low frequencies but it gives a
positive contribution to f^ at higher frequencies. This means that, at
superdeformation, high-y shells with four particles or more will contribute
with an approximately constant value to the f^ moment of inertia.

From the analysis of the observed f^ moment of inertia for the superde-
formed bands in l^G&%2-l5i(py%i> it has been possible to extract probable
configurations for most of these bands (Bengtsson et a/., 1988, Nazarewicz
et a/., 1989). The configurations are specified by the number of particles in
high-j (or rather high-iV) shells, which according to the discussion above
give characteristic contributions to f^2\ A large number of superdeformed
bands have also been identified in the Hg/Pb region. These nuclei show a
very rich structure as indicated from the plot of calculated bands in fig. 12.22.
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Fig. 12.20. Single-particle angular momentum component along the rotation axis
for the hi 1/2 orbitals at prolate shape, £ = 0.2. The orbitals are labelled by their
asymptotic quantum numbers. The two-fold degeneracy is broken (cf. fig. 12.16)
and the two sets of noninteracting orbitals (having different signature), are drawn
with and without a 'tilde'. As discussed also in chapter 11, it is the polar orbitals at
the bottom of the shell which become strongly aligned. The figure would be very
similar for another high-y' shell like ii3/2 or j 1 5 / 2 and it would also be qualitatively
unchanged at a larger deformation, however with the alignment becoming more
gradual (from Andersson et al., 1976).

Recently, superdeformed rotational bands with identical or almost identical
transition energies have been identified in several neighbour nuclei both in
the A = 150 and in the A = 190 regions. This has inspired a lot of experi-
mental as well as theoretical investigations so we will discuss it in some more
detail.

12.9 Identical bands at superdeformation
The first identification of almost identical bands in neighbouring nuclei at
superdeformation came very much as a surprise. Indeed, as the spins are
not known, what is really known with certainty from experiment is that
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Fig. 12.21. At a deformation, typical for superdeformation in the 4̂ = 150 region,
the contribution to the /^ moment of inertia from a) protons and b) neutrons
in high-7 shells is plotted versus the rotational frequency. The contribution from
n particles in an JV-shell is denoted as Nn. The lower orbitals in the N = 6 shell
belong to i13/2 and those in N = 1 to j 1 5 / 2 but as the y-shells are appreciably
mixed at the large deformation, the labelling by iV-shells is preferred. Furthermore,
the contributions from a (Z9N) = (54,76) core are shown. Note that this core
contribution is essentially constant while large fluctuations are seen in the high-j
part (from Bengtsson et al, 1988).

the / ( 2 ) moments of inertia are identical, i.e. when the spins are plotted
versus transition energies (fig. 12.23), the slopes are identical. Near-identical
superdeformed rotational bands have been found both in the Dy/Gd region
and in the Hg/Pb region (see Janssens and Khoo, 1991, for a review).
Furthermore, it has been noticed recently (Baktash et al, 1992) that normal
deformed rotational bands also have f^ values, which are surprisingly
similar in many cases.

The surprisingly large number of identical bands might suggest that some
'new symmetry' is involved but no such symmetry is known at present.
Indeed, we are far from a more general understanding of the identical
bands. Even so, it seems appropriate to discuss some of the specific features
and how they can be described in simple models. We will concentrate on
the Dy/Gd region where the number of identical bands is rather small (at
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Fig. 12.22. Calculated excitation energy versus spin for 194Hg illustrating a rich
spectrum of collective and non-collective rotations, which evolve and co-exist near
the yrast line. One insert shows the shell gap at oblate shape, which stabilises an
oblate ground state configuration that terminates at prolate shape (7 = —120°) for
spins just above / = 30. Another insert shows the Z = 80 gap at large prolate de-
formation, which is mainly responsible for the superdeformed configuration. Energy
surfaces to the right indicate the corresponding minima at no rotation and at a high
rotational frequency (M.A. Riley et aly Nucl Phys., 1990, A512, 178).

present) but those cases that have been observed are very distinct, extending
over a large range of frequencies. This is illustrated in fig. 12.23 where the
transition energies of 152Dy are compared with those of superdeformed bands
in neighbouring nuclei. The figure is drawn assuming specific values for the
spins. If all the bands were shifted up or down by the same value in spin,
this would change nothing in our conclusions. However, the relative spin
assignments are crucial and although very reasonable, we must remember
that they have not been measured.

The excitation energy versus spin, £(/), for the superdeformed bands can
(at least locally) be approximated by the parabola

E(I)*>Eo+AI(I + l)
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Fig. 12.23. Observed transition energies at superdeformation for 152Dy, two bands in
153Dy and the second band in 151Tb. The bands are drawn as spin / versus transition
energy Ey. The functional dependence is very close to linear as indicated by straight
dashed lines. In the insets, different parts are magnified with straight lines through
the 152Dy points. One finds that, within about 1-2 keV, the 152Dy and 153Dy data
points (except one transition in 153Dy) follow the same curve while the 151Tb and
!52Dy data points have identical Ey values. In the main figure, the 151Dy data points
are also included to show 'large' differences between superdeformed bands.

to a high accuracy. This means that the relation between the spin / and the
quadrupole transition energies, Ey, is approximately linear, namely

Ey(I) = E(I + 1) - E(I - 1) «  A{41 + 2)

as comes out in fig. 12.23. Consequently, the energy difference between two
consecutive transitions is roughly constant

AEy(I) = Ey(I Ey(I -

Consider now the case that the excitation energy, E(I) —  E(I = 0), is
described by the same function for a rotational band in an even and an
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odd nucleus. Then, when plotted as in fig. 12.23, all transitions will lie on
the same line but because the spins are half-integer in the odd nucleus and
integer in the even, the points of the two bands will be displaced relative to
each other. Thus, with the even nucleus band as reference, the points in the
odd nucleus will be displaced upwards or downwards by A£y/4 depending
on whether the spins in the odd nucleus are 0.5ft larger or smaller than the
spins in the even nucleus.

It turns out that two bands in 153Dy are identical to the yrast superde-
formed band in 152Dy in the way described here, i.e. that both the upward
and the downward shift are realised. In fact, such bands come out from
the most simple realisation of strong coupling discussed in chapter 11. In a
simplified cranking model, assuming constant deformation and no pairing,
such bands result if the orbital of the odd particle shows no alignment. This
is easily seen if, starting from the cranking Hamiltonian, the expectation
value with respect to the single-particle state | i) is taken:

With (jx)i = 0, e\ = ef = constant, the total energy £ s p is changed by a
constant while the total spin / remains unchanged (cf. fig. 12.24). When
comparing two nuclei, an additional factor is that ftcop and hcon depend on
the number of protons and neutrons (chapter 8). This is, however, a small
correction, see below.

For an orbital with (jx) = 0 independently of rotational frequency co, the
two branches with different signature will be degenerate but depending on
in which of these orbitals the odd particle is put, the spin values realised
are increased (signature a = 1/2) or decreased (signature a = —1/2) by 0.5ft.
Examples of orbitals that approximately fulfil the requirement of (jx) = 0 in
fig. 12.16 are [303 7/2] in the Z = 40 region or [413 5/2], which is the 67th
orbital at co = 0. For neutron particle states above 'JV = 86', the [402 5/2]
orbital (cf. fig. 8.3) is of similar nature and could thus be responsible for the
two bands in 153Dy.

Even in more complete cranking calculations including shape polarisation,
e.g. using the harmonic oscillator or the modified oscillator potential (see e.g.
Ragnarsson, 1990; Szymanski, 1990), it turns out to be rather easy to get
out near-identical bands in calculations. Let us illustrate this by considering
the rotating oscillator model in some detail. Thus, fig. 12.24 presents a
comparison between calculated rotational bands in a 'core nucleus' (152Dy)
and 'core plus valence particle nucleus' (153Dy), where the valence particle is
placed in different orbitals. The differences between the calculated bands are
illustrated as the difference between the / versus Ey curves (of the type drawn
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Fig. 12.24. Changes in transition energies (Ey = 2hco) caused by the addition of one
particle to a core nucleus as calculated in the rotating harmonic oscillator. The core
is defined from the asymptotic orbitals, which are filled in the superdeformed band
of 152Dy according to current theories. Its deformation is s = 0.57. In the figures to
the right is indicated schematically that, if a particle with alignment (jx) is added
to a core at constant deformation, this alignment (effective) is obtained from the
differences in the / versus co curves for the two bands. Thus, (jx) as calculated
from the simple expression given in section 12.2 is drawn by dashed lines for the
orbitals considered (assumed to have nx = ny). Then we also give the calculated
differences in transition energies (expressed as an effective alignment) between the
core and the 'core plus particle' in a complete solution of the rotating oscillator. The
important factors, in addition to the single-particle alignment, are the individual
shape minimisation and the addition of an A1^ factor (see dotted line) because of
the y41/3-dependence of hcon. Note that the shape minimisation tends to 'decrease the
scattering' between the different orbitals and that the average effect of all orbitals
comes close to an A5^ -dependence.

in fig. 12.23), i.e. as a relative alignment between the different bands. It is
immediately obvious that, considered as functions of rotational frequency co,
all differences are essentially linear. Furthermore, with the valence particle
in an equatorial orbital (nz = 0), essentially identical bands are created while
the bands in the two nuclei become increasingly different with increasing nz

of the valence orbitals.
In our simplified treatment of rotating oscillator (section 12.2), (jx) «

constant •  co. This relation and the relation / = / • co for the core are illus-
trated to the right in fig. 12.24 and it is then also shown how they add. Thus,
in this approximation assuming constant deformation, the difference between
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the rotational bands is simply the alignment of the particle. Consequently,
the alignments for the different orbitals are drawn in fig. 12.24. Then, in
a complete treatment of the rotating oscillator there are additional effects.
First, the oscillator constant hcon varies with A1^ (and a (N —  Z)/A depen-
dence, which is compensated by the sign change in the (N—Z)/A dependence
of ftcop). This adds the same constant factor for all orbitals as illustrated
in the figure. Second, the shape polarisation will change the moment of
inertia of the core. Both of these corrections can be expressed as an effective
alignment. The curves in fig. 12.24 are obtained from numerical calculation
in the full rotating oscillator taking differences between calculated transition
energies. It turns out, however, that the result would be almost the same if
the different single-particle alignments curves were corrected by the change
in rigid moment of inertia, / ^ ( c o r e ) — d/rig(core+particle) due to the co = 0
shape change and by the A1/3 factor. Thus, the main features of fig. 12.24
are easy to calculate analytically using the equilibrium deformations given
in section 12.2.

One could also note from fig. 12.24 that, if a mean value of all orbitals is
taken observing that there are more equatorial orbitals than polar orbitals,
the result will be an approximate A5^-dependence as expected for a rigid
moment of inertia. In more realistic nuclear potentials, the properties of the
equatorial orbitals are about the same as in the pure oscillator. As these
are the most common type of orbitals, one would expect a large number of
identical bands at superdeformation from this point of view. On the other
hand, one might question whether the approximation of pure single-particle
motion in a mean field is realistic or not.

Coming back to fig. 12.23, if we accept the 'explanation' given above
for the bands of 153Dy that are identical to the band in 152Dy, the other
identity between the 152Dy band and one band in 151Tb is straightforward
to explain although it appears even more strange at first sight. The fact
is that, in this case, a rotational band in an even nucleus and a band in
an odd nucleus have transition energies that are indeed identical, i.e. not
displaced due to the different quantisation of the spin values. Within the
scheme we have described, this is understood as caused by an orbital that
shows an alignment already at no rotation, i.e. an Q = 1/2 orbital with a
decoupling factor a ± 0 (cf. section 11.2). For an equatorial orbital of this
kind, the frequency-dependence of the alignment is essentially independent
of the initial alignment. Thus, we can use the same arguments as above if
we only add a constant factor corresponding to the co = 0 alignment. The
identical transition energies in the bands in 152Dy and 151Tb then require
an initial alignment of (jx) = —0.5 (corresponding to \a\ = 1) for the active
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orbital (the minus sign results because the particle is taken away, i.e. a hole
excitation, when going from 152Dy to 151Tb). Indeed, in the single-particle
diagram, the orbital [301 1/2] has essentially the desired properties even
though the decoupling factor comes out somewhat smaller than a = 1 in
most calculations using different potentials.

It was the observation (Byrski et a/., 1990) of the identical bands in 152Dy
and 151Tb (and a similar identity between the yrast band in 151Tb and one
excited band in 150Gd) that really focused attention on such bands (see e.g.
Stephens et a/., 1990) and started a lot of theoretical investigations. This
was so even though the identical bands in 152Dy and 153Dy were already
known, as were also two identical superdeformed bands in the A = 190
region, the latter, however, over a range of fewer transitions. In the best
cases, the identity of the transition energies is good within 1-2 keV extending
over about 15 transitions with energies about 600-1600 keV. These numbers
might, however, give the impression that the identity is even more strange
than it really is. We must remember that all the superdeformed bands are
very regular and follow essentially the same curve in an / versus Ey diagram.
This is illustrated in fig. 12.23 where we also give the transition energies for
151 Dy. The superdeformed band in 151Dy is understood as being formed when
one N = 7 neutron is removed from 152Dy. Considering that these bands are
found in neighbour nuclei, they are unusually different. This indicates that,
if a more inert orbital is either empty or filled in two bands in neighbouring
nuclei, the bands by necessity have to be rather similar. Even so, the
extreme identity observed appears very strange. Furthermore, in view of the
accuracy obtained in nuclear calculations in general, it is indeed surprising
that the simple theories discussed here seem to describe the experimental
situation so well. One would expect that different correlations not accounted
for, especially pairing, would make the very detailed comparison between
theory and experiment impossible. The models introduced here seem to
be useful mainly in the Dy/Gd region. The superdeformed bands in the
Hg/Pb region could not really be described within this scheme assuming
pure single-particle degrees of freedom with no pairing. Different ideas on
how the identical bands in Hg/Pb nuclei could be understood have been
published e.g. by Stephens et al (1990) and Azaiez et al (1991). There is
however no established understanding of these bands, see e.g. Baktash et al
(1993).

If the mechanisms for creating identical bands discussed here are qualita-
tively correct, it should also be possible to describe differences between bands
that are not identical. One might say that to invent a theory which gives
identical bands, or even bands that differ by some smooth quantity, is not



254 Fast nuclear rotation - t/ie cranking model

Woods-Saxon potential: & = 0.56, p4 = 0.08

-9.0

-9.5

CO

[651 1/2]

. [642 5/2]

\

1.5

1

-0.5

[651 1/2]

[642 5/2]

0.0 0.2 0.4 0.6
Rotational frequency (MeV)

0.8

Fig. 12.25. The orbitals calculated in the Woods-Saxon potential at superdeforma-
tion in the N = 80-85 region are drawn versus rotational frequency co in the upper
figure while the alignments of the orbitals labelled by asymptotic quantum numbers
[651 1/2] and [642 5/2] are shown in the lower figure.

so difficult. A better test of some theory is its ability to describe non-smooth
differences between the observed quantities. Then, the superdeformed bands
observed in 146~149Gd are especially favourable because some of these bands
show a band-crossing while others do not.

When searching for orbitals at 2 : 1 deformations and neutron numbers
N = 82-85, which could give rise to an observable crossing, the only
reasonable candidates seem to be the N = 6 orbitals [642 5/2] and [651 1/2].
As should be evident from fig. 8.3, drawn for somewhat smaller deformations,
these orbitals come close together for s = 0.5-0.55. Other crossings occur
between orbitals from different N-shells and appear to interact much less
than observed in experimental bands. The details of this single-particle
crossing are illustrated in fig. 12.25, as calculated in the Woods-Saxon
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model. The single-particle orbitals are drawn in the upper figure where
a very small energy interval is considered so that only the two signature
branches of these two orbitals together with the lowest N = 7 orbital are
seen (cf. fig. 12.16, which shows a much larger energy interval but where
the crossings are drawn somewhat schematically. Consider e.g. the crossing
between the [532 5/2] and [541 1/2] orbitals around Z = 60 in fig. 12.16
which in many ways is similar to the crossing in fig. 12.25). In the lower part
of fig. 12.25, the alignments (jx) of the orbitals are drawn. These alignments
are proportional to the slopes in the upper figure.

In a way analogous to the identical bands, we now consider (Haas et
a/., 1993) the differences between the transition energies of two bands in
neighbouring nuclei with one orbital either filled or empty. For the orbitals
of fig. 12.25, the calculated differences are drawn in the lower part of fig.
12.26. It is evident that this figure has the same structure as the alignments in
fig. 12.25 and it is straightforward to see which orbital is either empty or filled
when comparing two bands. The differences when comparing the two figures
arise mainly from the fact that the Woods-Saxon potential has been used in
one figure and the modified oscillator in the other. Furthermore, in fig. 12.26,
we compare rotational bands which have been minimised in deformation
independently while in fig. 12.25, the single-particle alignment (jx) is shown.
The comparison shows that, in the present formalism corresponding to
single-particle motion in a mean field, it is the alignment of the specific
orbitals which is the important factor and that e.g. deformation changes
between different bands will only lead to minor corrections.

In the upper panel of fig. 12.26, the differences in transition energies
between the observed bands are drawn. The large similarity between ex-
periment and theory in fig. 12.26 seems to be very strong evidence that
our interpretation of which orbitals are active is really correct. In draw-
ing the experimental figure, one has to make specific assumptions about
the relative spins but now it seems possible to turn the argument around,
claiming that the good agreement between theory and experiment means
that we have determined these relative spins. This would mean that, if it
becomes possible to measure the spin values in one superdeformed band, we
might extract the spins also for the bands in neighbouring nuclei. Indeed,
in a recent paper (Atac et a/., 1993), it has been claimed that the spins in
the superdeformed band of 143Eu have been measured. At present, very
few superdeformed bands are known in neighbouring nuclei of 143Eu so it
does not seem possible to carry out a similar analysis around 143Eu as for
146-149Gd

The cases we have chosen in fig. 12.26 are not really typical but more
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Fig. 12.26. The upper figure shows the relative transition energies for superdeformed
bands in 146~149Gd where an asterisk indicates the 'second' band in that nucleus. The
differences are plotted as (effective) alignments extracted as indicated in the lower
right panel of fig. 12.24 (co = Ey/2). Effective alignments extracted in the same way
from rotational bands calculated in the modified oscillator are shown in the lower
figure. A comparison with fig. 12.25 shows that it is the orbital that is labelled by
[651 1/2] at co = 0 and has (jx) > 0 (the signature a = —1/2 branch), which is being
filled in the calculations when going from 147Gd to 148Gd or from 146Gd to 147Gd*
etc. A comparison between the upper and lower figure strongly suggests a one to
one correspondence between those orbitals used in the calculations and those active
in the observed bands.
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specific cases where theory and experiment seem consistent almost to the
fine details. Even so, the comparison suggests that the superdeformed bands
are really the best chance to see pure single-particle effects in nuclei. In
the future, we could hope that a large number of rotational bands will be
observed at different deformations (where favoured proton and neutron shell
effects are 'in phase'). Thus, it might be possible to map the single-particle
orbitals all the way from the ground state to two separated fragments. In
this sense, nuclei are a very special laboratory in our study of quantum
many-body physics.

Some more details of the cranking calculations have been reviewed in a
recent paper (Bengtsson et al, 1991) where also computer codes on a floppy
disc are provided. The theoretical model behind the calculated energies
shown in fig. 12.22 is somewhat different from the simple cranking model
presented here. Specifically, the pairing interaction (chapter 14) is included.
This should make the calculations more realistic in most cases but it has
the disadvantage that they become less transparent and it becomes difficult
to plot energy surfaces as functions of the physical quantity / or to follow
the evolution of fixed configurations. Thus, the energy surfaces shown in
fig. 12.22 are a mixture of different configurations (similar to fig. 12.8 for
160Yb) and as they are drawn for a fixed rotational frequency, the spin /
might be different at different deformations. Attempts to overcome these
deficiencies have been made recently (Bengtsson, 1989). One could also note
that, even within the simplified model described here, all the structures of
fig. 12.22 come out (see calculations on 187Au by Bengtsson and Ragnarsson,
1985) although in a somewhat qualitative way for low spins.

The recent discoveries of the superdeformed bands have thus made it
possible to test theoretical predictions of the single-particle structure and
the shell effects at large deformation. Fig. 12.15 suggests that favoured shell
effects are present at large deformations for essentially all particle numbers.
Thus, we would expect that, correlated with the particle number, rotational
bands will be identified for essentially all deformations up to very elongated
shapes, e.g. at 3 : 1 axis ratio. In this way it should be possible to scan large
parts of fig. 12.15 and test how well the predictions are realised. One can
then also start to ask more detailed questions about how large deformations
and/or rotation disturb the nuclear quantal system.

Exercises
12.1 A particle of mass m is subject to the laws of classical mechanics.

The motion of the particle can be described either in a laboratory
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system, x, y and z or in another system xi, X2 and X3, which rotates
with a constant angular frequency, co, around the x-axis (equal to
the xi-axis). The potential energy only depends on the coordinates
in the rotating system, V = F(xi,X2,X3). Find the Hamiltonian in
the rotating system and compare with the cranking Hamiltonian.

12.2 The nuclear single-particle potential is built from the mutual inter-
action of the individual nucleons. Therefore, it is important that
the shape built from the nuclear density distribution is similar to
the potential shape. In a non-rotating harmonic oscillator, this is
easily verified. Thus, one finds that, if the energy of an arbitrary
configuration is minimised with respect to deformation, the ratio
of expectation values, (x2) : {x\) : (x2) is the same for the density
distribution as for the potential. Show this!

12.3 In the discussion of the rotating oscillator model, the self-consistent
0 / ~ ~ \ l / 3 ~

frequencies were derived as cot =coo f Z1S223 J /%. Use this ex-
pression together with the definitions of the quadrupole deformation
parameters, s and 7, to calculate how these latter parameters vary
with spin, / .

12.4 Derive the static moment of inertia

for independent particles in a rotating harmonic oscillator potential.
12.5 In the harmonic oscillator model, the ground state energy is given as

as derived in the main text. Use this formula to determine the
distribution of quanta in the ground state of 24Mg. Then, apply the
simplified formulae for the cranked harmonic oscillator to calculate
£(/) , s(I) and y(I) for the three bands that result from rotation
around the three principal axes.

12.6 Calculate the rotational frequency for rigid rotation of a spherical
20Ne nucleus at angular momentum / = 8. Which angular momen-
tum will result for a spherical A = 160 nucleus that compared with
20Ne has

(a) the same rotational frequency;
(b) the same velocity at the nuclear surface?



13
The nucleon-nucleon two-body interaction

We have already discussed the nucleon one-body potential as the coherent
external field exerted on one nucleon due to the presence of all the others.
We shall now go on to analyse the basic characteristics of the underlying
two-body interaction (the strong interaction).

Knowledge of this interaction rests, in part, on the observation of the
properties of very simple nuclear systems. Historically, interest centred very
much on the deuteron (consisting of a bound state of a neutron and a
proton). Also, simple systems such as the trinucleon systems lend themselves
to a direct test of the internucleon interaction.

In part the knowledge - and this is now the overwhelmingly important
source - derives from a study of the properties of the scattering of protons
against protons and protons against neutrons.

To reproduce the remarkably constant quantity of 8 MeV binding per
nucleon encountered all over the periodic table, one has to postulate that
nuclear forces have a very short range. We thus conclude as a general
gross feature, a nucleon-nucleon interaction (or two-body potential) of the
character exhibited in fig. 13.1 in terms of the inter-nucleon distance r.

The range, as roughly defined by fig. 13.1, we associate with the distance b
marked in the figure. It is found empirically to be of order b = 1.4 fm. This is
exactly the Compton wave length of the pi-meson (pion) or b = h/mnc. This
in turn is indicative of the fact that at this relatively long range (i.e. in the
outer regions of the interaction potential) the important agent, transmitting
the interaction between the nucleons, is the pi-meson.

As shown in the figure, V(r) is maximally attractive inside 1 fm while for
very short distances the nucleon-nucleon interaction becomes repulsive. This
is needed to account for the general finding of a constant nuclear density.
This feature of the nuclear system has its counterpart in the constant density
of solids. Here the interaction forces (largely Van der Waals forces) are

259
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r(fm)

Fig. 13.1. Schematic illustration of the radial dependence of the nucleon-nucleon
interaction.

G> n,p,co <D
Fig. 13.2. Meson exchange between two nucleons.

attractive generally but at short distances become repulsive leading to a
potential minimum characteristic of the interaction distance in the crystal.

13.1 Meson exchange

The assumption usually made is that in the nucleus the nucleon-nucleon
interaction is of two-body character corresponding to the exchange of mesons
(TC, p or cu) as indicated in fig. 13.2. We thus assume that only two nucleons
at a time are involved in the exchange of mesons. In a Feynman picture,
with a time axis pointing upwards, we draw it symbolically like in fig. 13.3̂
The diagram, with the time arrow pointing upwards, may depict a proton
(P) transforming into a neutron (N) and emitting a 7c+-meson. The latter is
subsequently absorbed, the neutron thereby becoming a proton.

We have already remarked that there is an exponential fall-off of the
interaction with distance. For long distances this occurs approximately as
(1/r) exp (-r/ocs) (cf. appendix 13A). The range ocs may be related to a mass
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Fig. 13.3. Feynman diagram illustrating the exchange of a 7i+-meson between two
nucleons.

m of the transmitted agent and the fundamental constants h and c as
has = —me

Thus the mass of the agent, in our case mostly the 7r-meson, is reflected in
the range of the interaction. One can understand how this comes about by
the following simple argument.

Compare the energy at the initial state, marked 'A' in fig. 13.3,

EA = 2MNc2 £P(kin)

with the energy of the intermediate state marked 'B'

EB = 2MNc2 + mnc2 + En(kin) + £N(kin) + £N(kin)

Neglecting the kinetic-energy terms, which are small possibly apart from
i^ (kin), we find

EB » EA + m nc2
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The energy conservation is thus violated by a quantity of the order of
AE = mnc2. This violation is permissible during a time At consistent with
the indeterminacy relation

At- AE ~h

or

At ~
mnc2

In this time interval the pion can at most travel a distance as, which defines
the range

h
as ~ At - c =

mnc

In the 1930s the short-range character of the nucleon-nucleon interaction
became known and also the numerical value of the range. From theoretical
arguments of the type exhibited above, the Japanese theoretical physicist H.
Yukawa was able in the late 1930s to predict a particle, which he named a
'meson' (denoting a particle intermediate between an electron and a nucleon).
In his estimate it had a mass of about 100 MeV.

It took nearly 10 years before the pion (pi-meson) was identified experi-
mentally and shown to have a mass of 137 MeV, corresponding to a range
a ^ 1.4 fm. (In the meantime another particle, the muon, was discovered.
This was first considered to be the Yukawa particle but was soon found
to have very different properties from those predicted. Actually it does not
interact by the strong interaction at all and is also not a meson but a lepton,
a close relative of the electron.)

Obviously there is some asymmetry between the NN and PP systems and
the NP system if we consider one-meson exchange only. Thus if the meson
is charged (as n+ or TT~), it is only in the case of a neutron and a proton
that this first-order exchange can take place. For a neutron pair or a proton
pair to lowest order only a n° meson can be exchanged. This first-order
diagram is thus highly charge- or (as we shall later say) isospin-dependent.
It is only in terms of second-order diagrams, involving the exchange of two
mesons (for instance allowing the intermediate creation of a A-hyperon) that
the approximate symmetry, encountered in nature between the NN, the PP
and the NP systems, can be restored, see fig. 13.4. In this figure we have
thus assumed that in the intermediate state the nucleon may go over into
one of the spin 3/2 members of the nucleon 'family', the A-particle. The
symmetry between NN and PP on the one hand and NP on the other found
in nature leads us to conclude that it is the two-pion-exchange processes that
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Fig. 13.4. Feynman diagrams illustrating two-pion exchange.

are mainly responsible for the nuclear binding. This is supported by detailed
analysis.

Let us also say a few words about the (unimportance of) three-body forces,
which one sometimes depicts as in fig. 13.5. It turns out that (fortunately
for theoretical physicists who have to compute for a living) these effects are
not very important and in nuclei heavier than 3He or 3H they are generally
neglected.

Some more details about the meson theory are given in appendix 13A,
while in the continuation of this chapter, we will instead treat the nucleon-
nucleon interaction on a more phenomenological basis. We will discuss
some invariance principles, which make it possible to draw some general
conclusions about the analytic structure of the nucleon-nucleon interaction,
its dependence on spin, charge and momentum. We are then left with some
free constants, determining the radial dependence, which are obtained by
fitting experimental scattering data to theory. An important background for
our discussion is the symmetry of a two-particle wave function, which we will
discuss in some detail and in this context introduce the concept of isospin.
First we will, however, end this subsection with a brief discussion about the
connection between the meson theory and modern theories of elementary
particle physics.

The proton and the neutron belong to a family of particles referred to
as baryons. The baryons are described as being built out of three quarks,
qqq, which are held together by a gluon field. Similarly, the mesons are
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f
Fig. 13.5. Three-body interaction involving the exchange of rc-mesons between two
neutrons and a proton with intermediate creation of A-particles.

built from a quark-antiquark pair, qq. It appears that quarks can only
exist in these two combinations, qqq and qq, and no free quark has been
observed. One can consider the quarks as being held together by springs,
as symbolised in fig. 13.6. The force appears to rise linearly with distance
r, more or less indefinitely. If some energy is contributed for the purpose
of quark separation, this energy may be available for the creation of a
quark-antiquark pair. This pair is then broken and the released antiquark
is hypothesised to join the separating quark to form a meson. The meson is
thus ejected from the nucleon while the created quark joins the two original
quarks to recreate an undisturbed baryon. One can talk about a quark 'bag'
preventing the quarks escaping from the proton or neutron.

With the introduction of the quark and gluon picture a problem arises.
Why is it still useful to speak of neutrons and protons inside the nucleus?
The quark bag picture also provides an 'explanation' for this finding. The
bag walls thus rise fast enough to prevent the nucleons fusing. Furthermore,
the usefulness of meson exchange as the main vehicle for nucleon-nucleon
interaction goes well with the fact that no gluon and no solitary quark can
get out of the bag. Only in the form of a qq pair is quark exchange between
baryons possible.
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(a)
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Quark-antiquark
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Fig. 13.6. The interaction between three quarks (a baryon) symbolised by springs.
Energy contributed to this system might be used for creation of a quark-antiquark
pair where the antiquark together with one of the original quarks forms an emitted
meson.

13.2 Relative coordinates and symmetries for the two-particle problem

Consider generally two particles of mass mi and m2 described by coordinates
ri and r2, velocities fi and f2 (and spins a\ and <r2). Obviously the problem
will be one where the relative position r = ri —  r2 and relative velocities
f = ri — f 2 enter, apart from maybe o\ and a2. We have therefore to consider
the elementary transformation to centre-of-mass coordinates (cf. problem
13.1).

With an interaction that only depends on the relative distance, r = |ri —  r2|,
the Schrodinger equation takes the form

2mi
- ^-A(2) + F (|n - r2|) - £ j T (n, r2) = 0

The centre-of-mass coordinate,

R = 1
mi +ni2

(mm + m2r2)
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is now introduced in addition to the relative coordinate, r. It is then straight-
forward to express the Schrodinger equation as

[% I ^ V(r) - E I * = °
J

y 2 (mi + m2) 2/i J

where AR and Ar are the Laplace operators in the centre-of-mass and relative
coordinates, respectively. The reduced mass \x is related to mi and m2 through

1 _ 1 1
\i m\ m2

For the case of two particles having the same mass, mi = m2 = m, one finds
pi = m/2. With the ansatz

the Schrodinger equation separates into

and

( " C A + v { r ) ) ^ '^ = E'<Kx>y>z)
where E = Er + ER. We have thus reduced the two-body problem to a
one-body problem with all the complication entering through the potential,
which so far has been assumed to depend only on the relative distance r.

We have in addition a problem of symmetry. Obviously the neutron
(N) and proton (P) are different particles and therefore, the NP system is
apparently not restricted by the Pauli principle applicable to fermions of the
same kind. For the NN and PP system on the other hand the Pauli principle
must be observed in the construction of the wave functions. Thus, the wave
function, built out of ordinary space and spin space

W = <t>(r)x(ou<T2)

must be antisymmetric, i.e. the wave function must change sign under
interchange of the two protons (or two neutrons). The symmetry of the spatial
wave function is determined by the eigenvalue of the angular momentum
operator, which in the relative coordinates takes the form

Even values of L then correspond to even wave functions, which are thus
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Table 13.1. Possible states defined by internal spin S, orbital angular
momentum L, total angular momentum J and parity n applicable to the NP
(neutron-proton) and NN and PP systems, respectively. In the last column,

the corresponding isospin is given. Only those states having L < 3 are
indicated.

NP only <

NN 1̂
PP

and
NP ,

> <

S
r l

1

0
.0
1
1

0
ko

L

0
2

1
3
1
3

0
2

Jp

1+
1+, 2+,

1"
3"

0~, 1",
2~, 3",

0+
2+

3+

2"
4"

Symmetry

symmetric
in

spin + position

antisymmetric

in

spin + position

Notation
3 s , }

3Dl,2,3

^ 3 J
3p0,l,2 '
3F2,3,4

'So
' D 2 J

Isospin T

0

1

symmetric in the spatial coordinates while odd values of L give antisymmetric
wave functions.

The total spin is either S = 1 (triplet) or S = 0 (singlet), whose wave
functions take the form (problem 13.2)

a(l)a(2) , m = 1

It is evident that the triplet wave function is symmetric in the spin variables
while the singlet wave function is antisymmetric. Thus, for identical particles,
even L must be combined with S = 0 and odd L with S = 1. These wave
functions, and also those applicable to only the neutron-proton system are
listed in table 13.1. Also the possible values of the total spin, J = L + S, and
the parity are given in this table. The standard notation is used, 2S+1(L)j,
where the L = 0,1,2... states are denoted by S, P, D,....

In table 13.1 we have already, anticipating the discussion in a later section
of this chapter, introduced the isospin classification denoting the states
symmetric in space and spin as T = 0 states while the others are classified
as T = 1.
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13.3 The deuteron and low-energy nucleon-nucleon scattering data

In the 1940s and early 1950s information about the nucleon-nucleon in-
teraction came largely from studying the simplest non-trivial nucleus, the
deuteron, denoted d or 2H, consisting of a neutron and a proton. For
the deuteron the most important properties, known since the 1930s are the
following

binding energy £ B = 2.25 MeV
spin, parity Jn = 1 +

isospin T = 0
magnetic moment \i = 0.8574 n.m. = jup + / j n —  0.0222 n.m.
quadrupole moment Q = 2.82 x 10~3 barn

As the NP system is stable, while the NN (and PP) are not, we must look
for the deuteron ground state among states available only to NP (and not to
NN and PP). It thus appears obvious (table 13.1) that the deuteron ground
state should be either 3S\ or 3D\ (or maybe a combination of these). For the
potentials we have so far studied, the oscillator or the infinite-square well,
the L = 0 state has always come out as the lowest state. For the deuteron 3Si
should therefore be a reasonable first guess. The assumption that L = 0 is
also in agreement with the fact that the measured magnetic moment is very
close to the sum of the proton and neutron magnetic moments. From the
fact that xSo does not exist bound while 3Si is bound we have here to draw
the important conclusion that the nucleon-nucleon interaction is necessarily
spin-dependent. We could choose to distinguish between a singlet-spin and a
triplet-spin potential.

Much more information about the nucleon-nucleon interaction has been
obtained from the scattering of proton and neutron projectiles against pro-
tons and neutrons. The scattering cross section (the number of scattered
particles per steradian angle| and per incoming flux of particles) depends
critically on the relative angular momentum of the projectile-target system.
For very high angular momentum the particles never come sufficiently close
for the nuclear interaction to be felt. In fact for energies up to 10 MeV the
main contribution comes from particles moving in relative S-states i.e. states
having L = 0. One can then analyse the data in terms of two parameters for
the total-spin 0 (singlet) and the total spin 1 (triplet) cases. These often used
parameters are the so-called 'scattering length' and 'effective range'. We shall
not discuss these more general terms here but consider the same information

t The angle referred to is the angle between ingoing and outgoing particle.
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converted into two other more easily conceptualised parameters, namely the
depth V and width b of approximate square well potentials.

From an analysis of scattering data, one finds that the triplet potential is
much deeper but has a somewhat smaller range than the singlet potential.
It should also be remarked that it is of course only when the effect of the
Coulomb repulsion is disentangled from the PP scattering effects that the
near symmetry among the NN, PP and NP cases becomes apparent.

It is easy to derive an approximate value of the depth of the triplet
potential from the weak deuteron binding energy, EB = 2.25 MeV. For a
state having angular momentum L = 0, the Schrodinger equation inside a
square well of depth Vt and range bt takes the form

valid for the space part of the triplet case wave function

V = Xo (<ri<T2) '<l>t = -y;((xP + Poc) • (j) t(r)

We may estimate the product Vtb] by just noting the fact that inside the
square well box we have a sine wave solution

<j)m ~ sinKr (r < bt)

where

Now in order to have a bound state we should have a solution with an
exponential fall-off for r > bu i.e. outside the square well

where

In passing we may note that the numerical value, K~X = 4.3 fm, shows that
the neutron and the proton are quite far away from each other a large
fraction of the time.

The usual boundary condition has the familiar form
KcotKbt = K

As K is much smaller than K, we can find an approximate solution
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which means that we neglect £B compared with Vt. We have thus
n2 h2 n2h2

4 2ii AM

The right hand side can be estimated to be about 100 MeV fm2. Based on a
range of 1.43 fm, the Compton wavelength of the pi-meson, the cited number
would imply a potential depth, Vt « 50 MeV. From proton scattering data
alone the product in question comes out to be 146 MeV fm2. Although
there is an agreement as to the order of magnitude, the sizeable discrepancy
reflects the fact that the potential model is too rough and oversimplified.!

It is very easy to construct a spin-state-dependent potential within the
available formalism. It is readily apparent that the operator a\ •  a2, where
a 1 and a 2 are the spin operators of particles 1 and 2 respectively, is an
eigenoperator of the triplet and singlet wave functions such that

= !Z
and

Xo = -
where xln and Xo a r e the triplet spin and singlet spin wave functions. We
may now utilise this convenient operator for our aim to construct a spin-
dependent two-nucleon potential

For the total triplet and singlet eigenfunctions Xm&i*) and Zo$s(r), one can
separate off the spin parts and arrive at the two equations that determine
the spatial wave functions cj)t(r) and 0s(r):

f In this connection one could also mention that the deuteron problem was the subject of much study
in the early 1940s. A potential that represented a large improvement and fulfills the requirements of
a diffuse surface of the proper depth is the Hulthen potential (see e.g. L. Hulthen and M. Sagawara,
Encycl. of Physics, ed. S. Flugge (Springer Verlag, 1957) vol. XXXIX, p. 1)

to which an exact solution exists, the Hulthen radial wave function

^ = [2K(IC + H)(2K + fi)]l/2 • —e-™ ( l -
r fir v

where K is defined above.
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In this way we obtain an effective Vt{r) =£ Vs(r\ as required by experiments.
Before we go on to discuss more the character of the nucleon-nucleon

force, it is convenient to introduce the isospin formalism to treat the NN,
PP and NP interaction on an equal footing.

13.4 The isospin formalism
We have already mentioned the symmetry encountered within the nucleon
family both as far as the mass values of the neutron and proton are concerned
and as to the interaction. It is therefore natural to speak of the neutron and
the proton as being just two 'charge states' of the nucleon particle.

Let us consider the proton as the 'isospin-up' state and the neutron as the
'isospin-down' state, or in other words:

the proton: I I

the neutron: I I

The wave function of a proton with position ri and spin a\ and a neutron
with position x2 and spin a2 can be written

xp (ri = rp,<ri = <TP,(TI)3 = 1, r2 = rn,o2 = ^,(^2)3 = -1)

The isospin component 13 is thus by definition +1 for the proton and -1 for
the neutron.|

The Pauli principle says that the exchange 1 —•  2 for two protons or two
neutrons respectively gives rise only to a phase -1 for the entire wave function
containing the position and spin coordinates. We formulate the generalised
Pauli principle by postulating that the exchange 1 —•  2 shall always give a
change of sign for the total wave function containing position+spin+isospin.

There is an almost complete analogy between the spin case and the isospin
case. This means that we can take over what we know from the spin problem.
Thus there are only four independent matrices, which we may choose as

and

The first is the unit matrix and the latter three we shall call TI, 12, T3. These
matrices look identical with <n, (72 and (73 but refer to a different space.
t This is the standard definition in particle physics while in nuclear physics the opposite definition with

T3 = 1 for neutrons and T3 = — 1 for protons is often used.
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Now introduce a matrix t = \x. For the proton we have t = \ and £3 = \
(£3 = component of isospin along the 3-axis) and for the neutron: t = ^,
£3 = — \. The charge is related as q =  £3 + \. Thereby the 3-axis in isobaric
space and the physical meaning of £3 are defined. For several nucleons we
may form a total T as

We now study a wave function containing spacial coordinates, spin and
isospin. If a state is symmetric with respect to a change ridi —• r^oi, it
follows from the generalised Pauli principle that it is antisymmetric with
respect to a change (TI)3 <-• (12)3 and vice versa:

V(12) = ipsymm fa^l^^) £(T = 0)

where £ refers to isospin. This is an isosinglet state with (cf. the spin case)

This state can thus only be realised by a NP system (and not by NN or PP),
which is consistent with the fact that the combined space and spin state is
symmetric.

Let us now assume that we have a state, antisymmetric in r and <r, which
as a consequence is symmetric in T;

= ipantisymm T = 1, T3 = 0

This is an isotriplet state

UT = l , T 3 = l ) = | J ) f j l ; P P s y s t e m

The ch&rge-independence principle now implies that the interaction is
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independent of T3. The replacement of the eigenvalue of T3 by another
number thus should change nothing in the interaction. While thus T3 has a
direct physical meaning (charge state), on the other hand T\ and T2 have no
apparent physical meaning. The radical physical assumption we have made,
is to postulate, that not only T3 but also T are physical quantities and take
on a quantum number eigenvalue. The charge-independence of the nuclear
interaction can thus also be expressed as

[if,T]=0

The formal implication is thus that H becomes 'invariant' with respect to a
'rotation in isospin space'. Those words borrowed from our experience with
the angular momentum J have as yet little physical content as we have no
picture of 'isospin space'.

For the commutation condition to be fulfilled (in analogy with the spin
case) one can permit only interactions of the type

as all other products of TI and T2 that form invariants reduce to this. A and
B are then functions of ri, r2, <ri, 02 etc.

With the help of the operator x\ • T2 one can reproduce the effect of charge
exchange between the nucleons. The process behind is, as we mentioned
earlier, in the first place an exchange of 7r-mesons between a pair of nucleons.
Let us assume that particle 1, say a neutron, emits a n~-meson. The nucleon
1 thereby becomes a proton (an alternative is a A+ baryon). Nucleon 2,
being a proton, absorbs the n~-meson and goes over into a neutron. What
we have described is a one-pion exchange. In terms of nucleons alone we
can describe this with the operator (TI)+(T2)_, which is thus a component
Of Ti * T2-

13.5 General conditions on the two-nucleon interaction
As indicated above the agents transmitting the interactions are particles other
than the nucleons. We shall still assume that the internucleon interaction
can be described to a certain accuracy by a potential involving only the
coordinates of the two nucleons but with no reference to the intermediary
agents. The degrees of freedom of the mesons are thus entirely concealed in
the complications of the nucleon-nucleon potential.

The nucleon-nucleon potential is still in its details not entirely determined.
However, it is being determined to better and better accuracy from scattering
data. In some sense it appears fair to say that the analysis in terms of phase
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shifts appears completed. Given the data no potential can, however, be
derived uniquely. It is not even clear that such a potential exists. Postulating
its existence and applicability, a few requirements can be safely imposed a
priori on the potential. Those requirements are based on simple and general
invariance laws.

The coordinates on which the potential may depend are in addition to the
position coordinates of the nucleons and isospin (symmetry) also the velocity
and spin coordinates. In terms of these a few general conditions may be
formulated.

(1) Translational invariance implies that the position of the origin is of no
consequence. This is fulfilled by the only relevant spatial coordinate
being the relative distance r = ri —  r2. Similarly, the only possible
momentum variable is the relative momentum p = pi —  P2.

(2) Rotational invariance. The interaction cannot depend on the choice
of axis of the coordinate system or the orientation of the laboratory.
If vectors enter in the expression for the interaction potential V, they
must appear in expressions that are scalars under rotation.

These two conditions can be expressed through the commutators

[F,p]=0

[F , J ]=0

They are probably exactly fulfilled in nature in the limit of low
velocities. Then come some conditions that are to a high degree
approximately accurate.

(3) One is that of reflection invariance or parity invariance (P), by which
we mean 'reflection in the origin', or r replaced by —r. This reflection
corresponds to a 'physical' reflection in a plane and a subsequent
rotation of the reflected image 180° parallel to the plane. Expressed
in more common-day language one could say that, if some physicist
chose to study the outcome of all of his experiments through a mirror,
he should still arrive at the same natural laws. Up until 1957 this
invariance was taken for granted, surprisingly enough. Since then we
have learned that in beta-decay this symmetry is actually violated.
The beta-decay is, however, governed by the weak interaction. For the
nucleon-nucleon interaction or strong interaction, reflection symmetry
P is assumed to hold exactly on the basic level. Up to a factor 10~~6

or 10~7 it is proven experimentally.
The replacement of r by — r through the parity operator can be
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expressed as

SPx3P~l = - r

Similarly
^ p ^ - 1 = _p

and thus

£P(x x p ) ^ " 1 = r x p = L

For the spin operator we require in analogy to the relation for L that

= s

Vectors like r and p are referred to as real vectors while L and s,
which are unaffected by the parity operator, are pseudovectors (or
axial vectors).

Sometimes people interpret the last two equations by saying that
'seen in a mirror, the mirrored top rotates the same way as the original
top'. That statement is correct provided you place the mirror under
or above the top, i.e. perpendicular to its axis. If you place the mirror
in a plane parallel to the mirror axis, the mirror shows a top rotating
the opposite way. It is, however, to be remembered that 3P involves
reflection in a plane plus a subsequent 180° rotation around an axis
perpendicular to the plane. After the complete prescribed operation
the mirrored top rotates indeed in the original sense.

(4) Time reversal invariance. By time reversal {ST) we mean the math-
ematical replacement of t with —t. On the more popular level we
can translate this condition into one where a physicist chooses to
record as films all his basic experiments and subsequently always
runs the films backwards. The claim is then that he should arrive
at the same set of natural laws. This is true only on the basic level.
Thus we should note that on the macroscopic level there is not time
reversal invariance. The difference relates to the fact that time direc-
tion and entropy are closely connected. Our world is highly ordered
- although presently chaos may seem to gain. Macroscopic events
therefore proceed preferentially in a direction of entropy increase.
Let us repeat: macroscopically there is no time reversal invariance.
On the microscopic level - and there only - there seems to be time
reversal invariance, however, only to some degree of accuracy. We
shall require time reversal invariance to hold exactly for the strong
interaction exemplified in the nucleon-nucleon interaction.
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Time reversal changes the sign of p but not r

= r

= - p

and consequently it follows that

^ ( r x p ) ^ " 1 = - L

In complete analogy to the case for L we should have for s:

= - s

Looking at 'the film shown backwards', all motions, translational and
rotational, take place backwards, according to expectations.

(5) Charge independence. As expressed by the isospin formulation, we
shall consider the neutron and the proton to be isospin states of one
and the same particle, the nucleon.

13.6 The static approximation. Central interactions and the tensor
interaction

We shall first consider the approximation of no velocity-dependence, i.e. no
dependence on the relative momentum p. This is usually termed the static
approximation. In this case only two types of terms can occur, subject to
the limitation imposed by various invariance laws, the central forces and the
tensor force.

Based on the invariants formed from the vectors <JI,<F2,TI,T2 a n d using
only scalar functions of r (= central forces) in this static approximation one
ends up with the following time-honoured 'ansatz'

^central = V0(r) + Va(r)ai ' (T2 + Vx(r)x i ' T2 + Vx<r(r)*i • <T2Tl • T2

This expression is often written in the following alternative forms:

(1) in terms of exchange operators,

P (

The P^-operator has the property of exchanging the spin-components
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of the particles 1 and 2. PT has apparently the same effect on the
isospin variables:

We define then an additional operator Pr, which we, without speci-
fying its more detailed construction, posit to have the property of
exchanging the position coordinates ri and xi for the particles 1 and
2. The generalised Pauli principle as a consequence gives rise to the
relation

prpapx = _ j

and thus

We can then write

Central = Vw(r) + Vu(r)Pr + VB(r)P° + Vn(r)PrP°

The different indices refer to the physicists Wigner, Majorana, Bartlett
and Heisenberg, who were involved in the introduction of these terms
in the early thirties. Using the operator relation above we can in the
expression for Fcentrai replace PrP° with —P T.

(2) The central forces may also be expressed in terms of projection oper-
ators. We first introduce two projection operators in spin space:

with the properties

p(s =
and furthermore

=O) = ( l P

with the properties

P(S=0)X(S
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In a way that is entirely analogous one may construct projection
operators in isospin space:

We then obtain an expression for the nuclear potential that has
probably been most commonly employed

Central = 13V(r)P(S = 0, T = l,Leven)
+ nV(r) = (S = 0, T = 0,L odd)
+ 337(r) = (s = l,T = 1,L odd)
+ 31 F(r) = (S = 1, T = 05 L even)

In this terminology of the superscripts, the first figure refers to the
spin degeneracy, the second to the isospin degeneracy. Thus '31'
implies S = 1 and T = 0.

The central interactions were historically the first to be introduced. It
was found already in the 1930s that they failed to explain the existence of
a non-vanishing quadrupole moment of the deuteron. The magnitude of
the quadrupole moment of the deuteron is very small indeed but clearly
non-vanishing

2o = (2.74 + 0.02) x l (T 2 7 cm2

Expressed in the natural unit of the deuteron cross section nR2, the small
magnitude becomes more apparent

nR2 200
With the spin determined to be 1 and the parity pure and unadmixed,
the only mixture that could enter (the ground state wave function being
dominantly 3Si) appears to be 3Di. It turns out that the admixture of 3Di
required by the measured quadrupole moment is ^ 4%. This in turn can
be used to provide a rough determination of the magnitude of the tensor
interaction term (cf. appendix 13B).

In the deuteron, with the origin at the centre-of-mass and neglecting the
difference between neutron and proton masses, we have rn + rp = 0 and
by definition rp —  rn = r and therefore rp = ^r. If the deuteron were a
pure 3Si state then the charge distribution or the proton distribution would
be described by a YQQ wave function. This contains no angle-dependence
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and corresponds to complete spherical symmetry and therefore implies that
(<2) = 0. To reproduce the experimental measurement one is required to mix
in other states with L ^ 0. This can be done with a potential involving the
direction of the position vectors ri, X2 and the spin vectors o\9 <X2. It turns
out that there is only one non-trivial combination that fulfils both of the
principles of time reflection and space reflection in addition to the trivial one
of rotational invariance.

Let us consider conceivable invariants of the a and the r operators. The
transformation of o\ x under the parity and time reversal operators is easily
obtained as

0> r^"1 = -<xi • r

Both conservation laws are thus broken. The problem is easily handled,
however. Obviously the product (p\ • r) (a 2 * r) preserves its sign under both
of the operators. Additionally the latter combination is also invariant under
the exchange of indices 1 and 2. This is indeed the important term of the
tensor interaction. By convention, instead of this product alone one uses
an expression where one subtracts a term proportional to o\ • 02 to form
(er = r/r)

S12 = 3 (<xi • e r ) (<72 • e r ) - (<ri • <x2)

and
t̂ensor = VT(r) ' Sn

The operator S12 is chosen such that the mean value of S12 over all directions
vanishes. Thus the expectation value of Sn vanishes for an S-state, where
the wave function is isotropic in angle. Consequently,

er)) = - ( ( T l

13.7 Velocity-independent terms. The L S potential
We have so far not discussed the dependence on velocity, which enters
through the variables pi and P2. Because of the limitation brought about by
the condition of translational invariance the sole coordinate is p = pi —  P2.
The basic assumption followed is that the dependence on p is weak and that
a classification in terms different powers of p can be considered.

We may also note that we did not allow for any p-dependence in the
potential when we considered the separation of the Schrodinger equation into
centre-of-mass and relative coordinates. If the p-dependence is introduced,
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the separation still holds but it leads to a slightly modified kinetic energy
term (so as to include a p-dependent mass).

The simplest invariant involving p is the scalar (r x p)- S (cf. the spin-orbit
term of the one-particle potential, chapter 6) where S = si + S2. Considering
only first order powers in p, we should thus add a term

VLS(T)L-S

Sometimes second order terms in p are also considered but, to a good
approximation, they may in general be neglected.

13.8 The radial dependence

The analysis of the great body of scattering data is now done in terms of the
mentioned central potential components, the tensor component Vr(r) and
the two spin-orbit components VLS(T)- All these terms thus contain a priori
unknown radial functions, to be determined from the fit to the scattering
data. For the radial functions one now usually employs functions that are
obtained from theories involving the exchange of one or several mesons
(appendix 13A) in addition to some undetermined parameters to be fitted
by data.

Most of the radial functions so obtained are, however, of the type indicated
in fig. 13.1, thus involving an attractive long-range tail, reflecting one-pion
exchange, an attractive inner minimum and finally a repulsive hard core.
Sometimes, however, a few of the terms have a different behaviour, e.g.
altogether repulsive.

In this elementary discussion of the nucleon-nucleon interaction, we have
refrained from giving any references. For further reading, we could suggest
text books e.g. by Eisenberg and Greiner (Nuclear Theory, vol. 3, North-
Holland Publ. Comp., 1976, 1986) or by Ring and Schuck (The Nuclear
Many-Body Problem, Springer Verlag, 1980), the Proceedings of the Interna-
tional School of Physics 'Enrico Fermi\ Course 79, 1980 (ed. A. Molinari,
North-Holland Publ. Company, 1981) and the review article by Rho in
Annual Review of Nuclear and Particle Physics (vol. 34, 1984) as well as
references given in these books and papers.

Exercises
13.1 Consider two particles of masses mi and ni2 interacting through a

potential V = V (|ri —  T2|) = V(r). Find the canonical momenta pi
and p2 through the Lagrangian, S£ = T —  V. Introduce relative coor-
dinates, r = (x9y9z)9 and centre-of-mass coordinates, R = (X, Y,Z).



Exercises 281

Show that the corresponding momenta, p and P are given by

m2pi - mip2
p = ™  »  w — , P = Pi + P2

mi +m2
Find the Hamiltonian in the new coordinates. Specialise to the case
of m\ = mi —  m.

13.2 Use the table of Clebsch-Gordan coefficients (given in appendix 6B)
to derive the triplet and singlet spin wave functions. Alternatively,
one may start from a general two-spin wave function, AOL(\)VL(2) +
Ba(l)j?(2) + Cj8(l)a(2) + DjS(l)j8(2), and determine the coefficients
A, B, C and D from the requirement that S2 and Sz should be
eigenoperators (together with the normalisation condition). Do this
in the triplet case when m = 0.

13.3 Show that (G\ •  G2)2 — 3  + 2(<r\ • 02) = 0. Determine the eigenvalues of
ovoi from this equation. The formula (<r-A)(<r-B) = A-B+i<r(AxB)
(where [<r,A] = 0 and [<r,B] = 0), which is generally shown in
elementary courses in quantum mechanics, simplifies the calculations.

13.4 Show that the triplet and singlet wave functions are eigenvectors of
the operator PG = ^(1 + a\ • ai) with the eigenvalues +1 and —1,
respectively. Also show that P° corresponds to an exchange of the
spin components, o\ +± 02.

13.5 Consider a simplified deuteron potential of the form

where

f(r) =

This gives rise to a square well potential where the depths become
different for the triplet and singlet wave functions. Scattering data
show that Ftripiet —  2Fsingiet. Determine the constant a\

13.6 (a) Derive the projection operators, P(S = 1) and P(S = 0) from
the general expressions

P(S = 1) = (A + B<n * <r2); P(S = 0) = C + Dax • <r2

and requiring

P(S = 1) [ail + bXi) = axl; P(S = 0) (aX}> + &*o) = bX% ;

(P(S = I))2 = P(S = 1) ; (P(S = 0))2 = P(S = 0)
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The triplet and singlet spin wave functions are denoted by y}m

and %d> respectively,
(b) Carry through the expansion

first by use of Clebsch-Gordan coefficients and then by use
of the projection operators P(S = 1) and P(S = 0).

13.7 The central nuclear interaction can be expanded directly in terms
of a\ • (72 and TI • T2 with expansion coefficients Fo, Va, FT and
VGX. Alternatively, one may for example use projection operators
with expansion coefficients 3 1 F , 1 3F, n F and 3 3 F . Find the relation
between the two sets of coefficients.

13.8 Show that the average of the tensor force

Ftensor = VT(r) [3 (a\ - er) ((7i • er) - o\ • a2]

taken over all directions of r vanishes.
13.9 Prove that the tensor force, Ftensor? gives no contribution in the single

spin state. This follows for example (why?) from the relation

Ftensor (1-<X1 * <72) = 0

which can be shown by help of the formula given in problem 13.3.
13.10 Show by direct evaluation of the commutator that |S2, Ftensor 1 = 0.

This commutator implies that the tensor interaction does not mix
the triplet and the singlet spin wave functions. Calculate also the
commutator [J, Ftensor]? which must vanish for rotational invariance
to be fulfilled.

13.11 Show that an L • S force has no matrix elements in a singlet spin
state.

13.12 Show that the deuteron quadrupole moment can be written

= JoI (M( dr

in terms of the 3Si and 3D\ amplitudes, u(r) and w(r).
13.13 Assume that the 3Si and 3Di deuteron radial amplitudes are given

by

^ / C ) 1 / 2 ^ ; w(r) = ( T /

where K'1 = {h2/MEB)1/2 - 4.29 fm (£B is the deuteron binding
energy, 2.25 MeV). Determine n to fit the experimental quadrupole
moment, Q = 2.82 x 10~3 barn.



Appendix 13A
Theoretical basis for the phenomenological

nucleon-nucleon interaction

In the present appendix we will make a very sketchy attempt to relate the
largely phenomenologically determined potential in terms of the more basic
'mechanism' involving repeated scattering of different mesons of masses fi
and coupling constant g between the nucleon and the exchanged meson
particle. (Note that in the main text \i is also used in a different sense,
namely as the reduced mass of the relative motion.)

The elementary field theoretical description of the nuclear interaction
bears a close analogy to the quantum formulation of the transmission of
the Coulomb interaction through the exchange of an intermediary (virtual)
photon. Consider two particles having a charge. In this case the Poisson
equation holds for the electromagnetic scalar field $ having the charge p(r)
as a source

W2(t> = -P(T)

For a point charge particle we replace p(r) by a ^(r)-function at the origin.
The solution to the Poisson equation is then

which is the scalar Coulomb field.
The potential energy of particle 2 of charge e moving in the electromagnetic

field of particle 1 is then
e2

V(r) =

We draw the corresponding diagram as shown in the upper part of fig. 13A.1,
thereby indicating the exchange of the electromagnetic field <j)9 between
particles 1 and 2, both of charge e.

In the electromagnetic case the messenger photon is of mass 0. In the

283
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Fig. 13A.1. Diagrammatic representation of the electromagnetic interaction as ex-
change of a photon and the nuclear interaction as exchange of a meson.

more general case the exchanged particle may still be a scalar particle but
now of mass \i. The corresponding meson field equation reads

with the solution proportional to e ^/r. Obviously the electromagnetic field
solution is a special case of this in the limit // —>  0. Although the field is
a scalar in configuration space, it is a vector in isospin space, as the particle
transmitted is an isovector particle, which may appear in one of its three
states, e.g. TT+, n0 or n~. We therefore obtain a potential energy of the form

T = 0

In the first case the transmitted particle is a scalar in isospace-; in the latter
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1
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pseudoscalar

isovector
isovector
isoscalar
isoscalar

n
P
cu

Theoretical basis for the phenomenological nucleon-nucleon interaction 285

Table 13A.1. The low-mass mesons contributing to the nucleon-nucleon
interaction.

Character Denotion Candidate Mass (MeV)
Jn T meson

139̂ 6
765
783
549

0+ 0 scalar isoscalar 2n(=tf) 279

case a vector in isospace. The corresponding diagram is drawn in the lower
part of fig. 13A.1.

Without any attempt at derivation we shall just state that the pseudoscalar
meson leads to an interaction

V(r) oc [<n

The pseudoscalar meson field thus gives rise to a tensor force component,
Sn> A vector meson field is finally needed to generate the nucleon-nucleon
interaction terms proportional to L • S in first order. The meson fields of
scalar, pseudoscalar or vector types with associated meson masses falling in
the energy ranges we are considering are summarised in table 13A.1.

This appendix is only meant for supplementary reading. It does not
attempt to derive the nucleon-nucleon force in a self-explanatory fashion.
Instead the purpose is to outline the possible connection between the phe-
nomenologically suggested interaction functions and the presently known
lighter mesons considered as transmitter agents.



Appendix 13B
The solution of the deuteron problem with the

inclusion of a tensor force

We now assume a Hamiltonian for the deuteron with a central force and a
tensor force

82 L 2 \

where L is the angular momentum operator. The wave function can be
written as

where

Inserting this wave function 'ansatz' into the corresponding Schrodinger
equation one obtains

^(i,+^pi\+r^E\UL(r)+VT(r)

The angular matrix element can then be evaluated using some Clebsch-
Gordan technique (matrix elements with round parentheses imply angles
only). The final result is given in table 13B.1 (see J.M. Eisenberg and W.
Greiner, Nuclear Theory, vol. 3 (North-Holland, 1976, 1986)). The table
reflects the obvious fact that only two L-states of the same J admix; for the
deuteron case of J = 1+ thus the L = 0 and L = 2 states, or the 3Si and
3Di. Let us then write the wave function explicitly

286
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Table 13B.1. Values of the matrix elements of the tensor interaction.

L' = J + 1 L' = J U = J - 1

L = J + 1 -2(J + 2)/(2J +1) 0
L=J 0 2 0
L = J-1 6[J(J + l)]1/2/(2J + 1) 0 - 2 ( J - 1)/(2J + 1)

Table 13B.2. Matrix elements of the tensor interaction in the special case of

V = 2 L' = l L' = i

L = 2 -2 0 6J2/3 = JS
L = l 0 2 0
L = 0 ^8 0 0

r y*n> r MLMS

where we have changed the notation to u(r) and w(r) instead of uo(r) and
U2(r). It is evident that the 3Di wave function has only three components
for each M(Ms = —1,0,1). The listed matrix elements now take on an even
simpler form as seen in table 13B.2. The fact that the bottom right corner
element is zero shows that the tensor force vanishes in the L = 0 state.

The radial equations now simplify into

^ u ( r ) + ^[E- Vc(r)] u(r) - ^VT{r)w{r) = 0

and

^(r) + | f (E - | ^ - Vc(r) + 2VT(r)^ w(r) - ^VT(r)u(r) = 0

The solutions are subject to the normalisation condition

J [u(r)2 + w(r)2] dr = 1
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13B.1 The deuteron quadrupole moment
To calculate the electric quadrupole moment we have to recognise that only
the charged proton contributes. Let us set the neutron (n) and proton (p)
masses equal in which case

1
rP = 2 r

1
rn = -2r

where we have referred the coordinates rp and rn to the deuteron centre of
mass. Furthermore for the momenta we have

Pp = P = -Pn

The quadrupole operator is given as

The quadrupole moment is to be evaluated for the M = 1 case of the J = 1
wave function

r (47r)V2 A1

/ 1 \ V 2 . / l \ l / 2 , / 1 x l / 2

lio.+Mr)

The quadrupole moment has matrix elements within the 3Di component and
between the 3Si and 3Di. It is easy to show that (problem 13.12)

r2 dr

Thus, to lowest order, Q is linear in the relative amplitude |W|/|M| of the 3D
admixture in the 3S state.

From a comparison of Q with the empirically available quadrupole mo-
ment one obtains the squared amplitude of the D-state

p D = fw
2dr

as PD —  5% depending somewhat on the assumed radial dependences of Vc
and VT (cf. problem 13.13).
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13B.2 The deuteron magnetic moment
The general expression for the magnetic moment measured in nuclear mag-
netons, eh/2M, is

/* = gP? + gfsp + gfSn = ^L + gs
PSp + gs

nSn

where the last equality follows from gj = 1 and from
1 1T

^P = rP x PP = 2 r x P = 2
The gs-factors are given as

gf = 5.5855
g° = -3.8263

For a pure L = 0 state it is apparent that

while for the 3Si and 3Di (evaluated for the already explicitly written M = 1
component) we obtain

= \ (gf + gf) - \ (gf + gf - 1) / w2(r) dr

where the last equality follows from the normalisation of the wave function.
The experimental value of the deuteron magnetic moment is

= 0.8574 = i (gf + gf) - 0.0222

from which we get

in fair agreement with the estimate from the quadrupole moment.



14
The pairing interaction

In the empirical study of odd-̂ 4 spectra it appears that the level density
observed at low energies is well described as due to the excitation of the odd
particle alone. In even-even spectra on the other hand, the general rule is
that no states, with exception of members of ground state rotational bands,
are found below 1 MeV of excitation energy. This is the famous even-even
'energy gap' of a magnitude of the order 2A, where A is the odd-even energy
difference. The latter is defined as the average difference between the mass
parabolae connecting separately odd and separately even nuclei, respectively
(problem 3.5).

These facts are well described in nuclear physics by the nuclear pairing
theory. The corresponding formalism goes back to solid-state physics, where
it was developed to describe the phenomenon of superconductivity and the
corresponding energy gap in the electronic level density of superconducting
metals.

Let us first consider a single spherical subshell (£J) with a degeneracy
2Q = 2/ + 1. If one places two particles (1,2) into this shell, one may obtain
good angular momentum states by the use of Clebsch-Gordan coupling
coefficients

m,mf

Without symmetrisation conditions the resulting states have / = 0,1.. . 2j.
If the two particles are of the same kind, however, only the even values of
those /-values are permissible, or / = 0,2...2y —  1. This can be seen from
the fact that to fulfil the Pauli principle we must require the two-particle
wave function to be antisymmetric (chapter 13)

290
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Using

m,mf

and renaming m and mf as m' and m, respectively, and furthermore exploiting
the following symmetry of the Clebsch-Gordon coefficients (appendix 6B):

rJ J'1 —  (—1  y + / - ' ^

it is easy to see that

The requirement of antisymmetry is thus equivalent to 2j—I being an odd
number. As 2j is an odd number, it follows that only even I are allowed.^

For these two particles all /-values allowed by the Pauli principle are
degenerate in energy as long as no interaction, apart from the common
potential, is considered. We shall now assume that there is added such
a residual interaction of the simplest possible kind ('residual' refers to the
interaction that is not included in the common potential).

The simplest interaction we can think of may be a zero-range potential or
a (5-interaction. This interaction affects only particles with identical positions
in space.

Fres(l, 2) = -K8 (ri - r2) = -K5 (XI - x2) S (yi - y2) S (z\ - z2)

We simplify additionally by saying that t is so large that spin \ is really
negligible and characterise the orbitals only by L We can now show by
direct calculations (see problem 14.1) that

(UIM |Fres(l,2)| aiM) oc -K I

Actually, if spin is included, the formula above generalises to

(jjIM\Vm{l,2)\jjIM)ac-K'

It is interesting to evaluate the energy 'spectrum' of states with such an
interaction included (cf. problem 14.2 and fig. 14.1). For large /-values with
the energy of In = 0+ being £o> the other spins correspond to the following
energies in units of £o •
t Note, however, that for two identical particles placed in different subshells, ]\ and J2, all / between

\ji —  h I a n d h + h a r e permissible.
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- / = 4

- / = 2

/ = 0 — — - — • / = 0
5-force Pairing force

Fig. 14.1. Energy spectrum of a pair of identical particles in a spherical j = 9/2
subshell interacting through a 5-force and schematic pairing force, respectively.

E2/E0 = 1/4, E4/E0 = 9/64, E6/E0 = 25/256

For two particles, the spectrum is thus of a type where one combination of
occupation amplitudes (corresponding to / = 0) fully exploits the interaction
while the other permissible wave functions barely take advantage of the
two-body interaction. Two things therefore suggest themselves:

(1) to analyse how this / = 0 wave function looks
(2) to replace the 8 -interaction with an even simpler force - the pairing

force - characterised by the even simpler two-body spectrum illus-
trated in fig. 14.1. In this spectrum the / = 0 state is depressed by £0,
while JE/̂ O = 0.

14.1 Creation and annihilation operators

Let us first investigate the ground-state wave function. We had

We may now use a further symmetry of the Clebsch-Gordan coefficients
(which follows from the relations given in appendix 6B), namely that
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or

i x 1/2

( }

We may include the phase in the definition of a conjugate state xpJ
m such that

(this definition of a conjugate state was introduced already in chapter 11).
Let us call 2/ + 1 the subshell degeneracy 2Q. We furthermore let the sum
run over positive m-values solely. The 7 = 0 wave function then takes the
form

ro>0

The state above is a particular state where the particles 1 and 2 always
fill conjugate (time-reversed) pairs of orbitals, m and m, with all amplitudes
equal and with a particular relative phase, which can be defined as +1, once
the m state is properly defined.

We might worry about the Pauli principle. Actually the Clebsch-Gordan
coefficients take care of that for us in the two-particle case by constructing
the states as either symmetric or antisymmetric. To handle more particles
we shall need the second-quantisation method based on the use of creation
and annihilation operators a+ and am. Let us describe the situation of one
particle occupying the orbital \pJ

m by defining

<•£ |0> = \jm) = xpL
and analogously:

Here |0) denotes the 'vacuum state' i.e. a situation with no particles occupying
the orbitals. With a+ |0) one particle is 'created' in the level \jm).

The Hermitian conjugate operator am 'annihilates' or 'absorbs' a particle in
the orbital m. Obviously the 'vacuum' state must be subject to the condition

am|0>=0

for any m, as no particles can be 'absorbed' from the vacuum. Furthermore,
as each orbital can be occupied by one particle a+ \m) = 0.

In the general case, the wave function of two particles occupying the
orbitals |v) and |/i),
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is written as

in the second-quantisation formalism. The requirement of antisymmetry,
pi2xj/ = _xV i s eqUivalent to P» vx¥ = - ¥ and is thus taken care of by
requiring a+a+ = -a+a+, i.e.

and similarly for the Hermitian conjugate operator

{a^av} = 0

If one creation and one annihilation operator are mixed we find for example

<0|a+a, |0>=0

and similarly if |0) is replaced by |v):

(v |a+fy| v) = (v |a+| 0) 8

These equations are simultaneously fulfilled if

The so-called Fermion anticommutator relations, which we have given
above, are valid for a general many-particle wave function and the second-
quantisation formalism is then a very efficient way to take care of the
symmetries. For example, a three-particle wave function is given as

a+ata+ |0) = a+a+ \co) = a+ |vco) = \nvco)

with the antisymmetry \juvco) = —  \vfico) being equivalent to | a + , a + | = 0 .
The operator a+av has the eigenvalue 1 if the state |v) is occupied and the

value 0 if |v) is empty. Thus, the eigenvalue of the operator (with summation
over all v)

is the total number of particles, i.e. Jf is naturally referred to as the number
operator. In the second-quantisation formalism, the diagonal form of the
Hamiltonian is
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The single-particle energies ev are given as ev = (v|if|v). Furthermore,
{V\H\/J) = 0 for v^jt i and thus we can write

One now realises that this is the general form of a one-particle operator

where bf is the creation operator in an arbitrary basis,

For two particles in the orbitals \i and v, which interact via a potential V2,
we write in the second-quantisation language

ir2 = ata+a^v (VJLL\V2\ vja)

For a wave function \vfj)9 this gives the correct matrix elements:

(vfi\r2\vfi) = (vfi\V2\vfi) = (V2)Vfi

For a many-particle wave function, the interaction generalises to

v>jn

If we finally expand to an arbitrary basis, we find the general expression for
a two-particle operator

2 z

Uj
Obviously this operator is capable of annihilating a pair of particles in
orbitals k and / and 'recreating' them in i and j . The operator is thus
associated with a diagram of the type shown in fig. 14.2.

The probability of the scattering of two particles from the orbitals k and
/ and into i and j is thus proportional to the square of the matrix element
(iJ\V2\kl).

14.2 The pairing interaction (for degenerate configurations)
The pairing interaction HG is characterised by having non-vanishing matrix
elements of constant magnitude —G for time conjugate pairs of states (m,m)
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Fig. 14.2. A two-particle operator illustrated through a diagram with the pair of
particles in the orbitals k and / being annihilated but being recreated in the orbitals
i and j .

and (m',mf), while all other matrix elements vanish. We have thus

where we have introduced the convention that the sums run solely over
positive m-values. Note first that this operator only involves orbitals occupied
by pairs of particles. Considering the space spanned by paired two-particle
states a+a^ |0), we can write out the entire matrix representation of HG as

( 1
1
1

\

• /

a matrix of Q rows and Q columns (Q = (2j + l)/2). We could actually a
priori find an eigenstate to this Hamiltonian HG namely

* - 7 >
1
1

such that

HGV0 = -
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T h i s is o f c o u r s e t h e s t r a i g h t f o r w a r d v e c t o r r e p r e s e n t a t i o n o f o u r 7 = 0
t w o - p a r t i c l e w a v e f u n c t i o n

This is usually defined as a seniority-zero (v = 0) state. We may also
conventionally denote this as

where
^+ = E«m4

We have then
HG = -GA+A

It is immediately obvious that HG is a negative definite operator

(V |tfG| *F) = - G / l ^ l 2 dr < 0

Furthermore, the sum of eigenvalues Ex equals the matrix trace (sum of
diagonal elements)

As all eigenvalues have to be negative or zero and as J2 ^x = ô> all Ex with
X ^ 0 have to be zero. In fact we can readily find all the eigenfunctions as

= £ cia+al |0>
All these Q —  1 states have by definition seniority 2 (v = 2). The seniority
number v is the number of particles not coupled two-and-two to spin zero!
The wave functions can be conventionally orthogonalised by requiring

m

Finally (as the eigenvalues are zero)

corresponds to the condition (which also assures orthogonality with the
v = 0 state)

m
One can now actually also construct wave functions in the four- and
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ultimately n-particles case for the so-called degenerate model (i.e. particles
in a subshell of ft degenerate orbitals).

We shall now assert that the lowest energy, spin 0, seniority 0 solution of
the four-particle case corresponds to an energy — G2(ft  —  1) and the wave
function (unnormalised)

¥(n = 4,t?=0)oc (A+) 2 |0)

The basis space of this problem contains \ ft (ft— 1) basis states as only pairs
are considered and only one pair can be placed in each orbital.

Above the v = 0 state there is an energy gap and then a set of ft — 1  states
of seniority v = 2:

Obviously there are ft— 1 of these states. Their energy is —G(ft—2) as shown
below. Finally there remain of the ^ft(ft —  1) four-particle states ^ft(ft —  3)
that have energy zero and seniority 4 (v = 4). They can be written out as

in terms of a four-particle operator Ct.
To prove that the wave functions we have given in the four-particle case

are really eigenfunctions of HG, we need the commutators (problem 14.4)

= - G ( f t - J f + 2)A+

where Jf is the particle number operator

Applied to the two-particle wave function,

HGA+ |0) = A+HG |0) - G(ft - Jf + 2)A+ |0) = -

we get the energy eigenvalue, —ftG, which was already derived above.
In the general case, it is found that (problem 14.5)

[HG, - Jf + p (

which for the special case of p = 2 leads to

HG {A+f |0) = (A+f HG |0) - 2G(Q - Jf + 3) (A+)2

We also find

HGA+Bf |0) = A+HGB£ |0) - G(Q - Jf
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and thus the eigenvalues —G(Q —  2) for the four-particle v = 2 states. With
the trace of the total matrix being —̂ GQ(Q  —  1) it is now easy to find that
the v = 4 states have zero energy.

One can now easily write down the energy of the v = 0 (lowest) state of
any n-particle system, which state involves p = n/2 pairs

E(n,v = 0) = -G^(2Q - n + 2)

while the v = 2 states which have p = (n/2) — 1  correspond to the energy

E(n,v = 2) = - G ^ ^ ( 2 f i - n)

The gap between the v = 0 and t; = 2 states thus remains equal to GQ
independently of n. Note, however, that the total pair correlation energy
given by E(n,v = 0) is to leading order proportional to the number of pairs
n/2 and to the degeneracy Q. For larger n-values there is a considerable
second-order term of opposite sign in n. This term reproduces the effect of
the Pauli principle that orbitals already occupied by the first pair are no
longer available to the second pair.

Actually the largest correlation energy is obtained for a half-filled shell.
For a shell with Q=5, we obtain thus pairing energies —5,-8,-9,-8 and
—5 in units of G for a particle number of 2, 4, 6, 8 and 10. It should,
however, be noted that there is a diagonal energy equal to —(n/2)G  and the
true correlation energy is thus —4,  —6, —6,  —4  and 0, again in units of G. For
a completely filled shell, the Pauli principle determines the wave function
entirely. There is in fact no energy arising from pure correlation.

For real nuclei this is an oversimplified description based on the availability
of only one degenerate orbital. We may, however, let it simulate the empirical
situation for nuclei with neutron or proton numbers between two closed
shells. There the largest pair correlation energy is obtained for nuclei
representing half-filled shells of neutrons and protons provided the nuclear
shape remains unchanged.

14.3 Generalisation to non-degenerate configurations.
The BCS formalism

The situation we now envisage is first a single-particle model of non-
degenerate orbitals v, where v may alternatively be a deformed state char-
acterised by a given value of 73, parity and maybe an additional label or
a spherical state (n,/,j and my). In the absence of pairing we write the
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single-particle part of the quantised Hamiltonian as

As yet we have not included pairing. Eigenstates of Hsp are for example

(1) a j |0) or one orbital \i occupied by an odd particle, the associated
energy eigenvalues being e^

(2) a^a^ |0) two particles occupying the time-reversed orbitals xp^ and
V>p, the associated energy being 2e^

We now include pairing and write

H =

Obviously for very small level splitting the last term dominates and we
should obtain the results of the previous paragraph while for large level
splitting the second term becomes negligible and we expect a situation where
only the lowest levels are filled. This latter case we denote as a 'sharp Fermi
surface' case.

It would therefore seem natural to look for a solution based on a gene-
ralised pair operator

with cv a diminishing function with increasing ev. This is, however, an
impractical way to approach the problem and the great inventiveness of the
solid-state physicists Bardeen, Cooper and Schrieffer (BCS, 1957) is shown
in the fact that they suggested a very different kind of wave function, which
they applied to the theory of superconductivity. This same theory was then
applied to nuclei by Bohr, Mottelson and Pines (1958), Belyaev (1959) and
Migdal (1959). The new wave function is of the form (cf. appendix 14A)

= n (Uv + Vvat4) 10) = |6)
V

subject to the condition U* + Fv
2 = 1. This is the ground-state solution

and we shall denote it ^o C S ' o r ^ e 'BCS vacuum' 6\, or the 'quasiparticle
vacuum'.

In this sum there are terms of the type suggested above. We can thus write

From this we can project out the terms containing exactly n/2 pairs a
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These we can write

There are, however, also other components in the BCS wave function.
To analyse the components in the BCS wave function let us just consider

the case of two levels r and s. The wave function is then

m=(Ur + Vra+at) (Us + Vsafaf) |0)
Multiplying this out we have

where

¥<o) =  UrUs

We thus note that one component ¥(0) contains no pairs at all, while
contains one pair alternatively occupying levels r and s, while in ¥(4) both
levels are occupied. Assume we want to describe one pair filling these two
pairs of orbitals. Only one component of the wave function then has the
proper particle number.

Thus one component of the wave function *PQ CS has the desirable number
of particles while components with n —  2, n + 2, etc. are also present in
the wave function. One can make sure that the correct average number
of particles are present (this usually implies that the component with the
correct number of particles is the largest). This is achieved through the help
of the number operator

This is then subtracted, multiplied by a Lagrangian multiplier A, from the
original Hamiltonian Hf

H' = H - XJT

The condition that n particles are present on the average corresponds to the
relation

(JT)=n
t There are important analogies between the auxiliary Hamiltonian, H —  XJf, and the cranking

Hamiltonian, H —  col, which was introduced for rotating nuclei. The equation naturally leads to
solutions where the 'exact' quantum numbers, particle number and angular momentum, are only
preserved in an average sense. This, however, makes the solutions much more straightforward.
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Let us denote the ground state wave function with ¥0 and the expectation
values of H and Hr by £0 and E'o, respectively. The condition that Ef

0 is
stationary with respect to changes in Uv and Vv that change the number of
particles determines X

dn dn
or

dn
We have now a simple understanding of A, the 'chemical potential', within
reach. This energy is the energy of the last added particle, the 'marginal
energy' of the 'marginal particle'. To evaluate (H'} we first need the effect of

We thus need to commute a^ through the operators on the right. We have
then

[a^a+a$]=0 for /1 + v

and thus (by the property of the vacuum state, a^ |0) = 0)

a^a+aj |0) = 0 for \i ^ v

For v = /i, we find
a t = at

and thus

and finally

It is therefore easy to prove

a a ±

We shall leave it to the exercises to prove that for

while

* o > = 72
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We thus obtain (Uj + Vj = 1)

(uj + vf)

all

and

The energy E'o is now minimised with respect to the coefficients (UV,VV).
However, we have to observe the condition

Fv
2 =

The condition of constant average number of particles,

is, on the other hand, upheld through X. With

dUv _ d / 2 \ 1 / 2 _ vv

we now find

Introducing by definition

we should note that thus A » G by a magnitude measuring the number of
contributing orbitals. For realistic nuclear models this effective Q-number,
Qeff > is of the order of 4—10.  In solving the stationarity equation above we
take advantage of this relation between G and A and neglect the last term.
We have thus

Squaring this equation and using the normalisation condition

C/v2 + F 2 = 1

we may express the relation above in a simpler form. We first define the
'quasiparticle energy' Ev as
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ground state decorrelated pair broken pair

Fig. 14.3. The occupation probabilities, Vh of the orbitals around the Fermi surface X
in a BCS ground state are illustrated to tne left. Furthermore, schematic illustrations
are given of a decorrelated pair in orbital fi and a broken pair state with one 'odd'
particle in each of the orbitals \i and K.

We obtain

and

2UVVV = —

From these equations we obtain

ev —  X

These important factors can be interpreted as the probability of the orbitals
(v,v) being occupied by a pair and being empty, respectively. Obviously for
ev < X, where X is the 'chemical potential', or the 'Fermi surface', the
occupation probability V2 exceeds 1/2, while the opposite is true for a level
above the Fermi surface. For the complementary quantity U2 the situation
is exactly the opposite. A picture of V2 for a set of levels is exhibited in
fig. 14.3.

We have still not determined the relation between the 'gap parameter A',
entering the expressions for Fv

2 and U2 and the basic two-particle matrix
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element G. However, by combining the definition of A with the expression
for 2UVVV, we obtain

_A
172

This 'gap equation' has two solutions, first the 'trivial', or 'collapsed solution',
corresponding to A = 0 and secondly in most cases the one corresponding
to A ^ 0. The gap equation is generally written as

2_ _ ^ 1 v - 1
G =

There is still another auxiliary condition relating to the particle number

ev-l \

From these two equations, both A and X are determined for given single-
particle energies, ev.

In most cases these two equations are solved by the help of a computer by
numerical methods. One should note that for the case of a non-degenerate
(apart from the (v,v)-degeneracy) level system there may not exist any non-
trivial solution to the first of the auxiliary equations. In fact a minimum
G-value is required in excess of Gcrit

For G > GCnt, the ground state for an even number of particles has the
wave function

The corresponding energy £0 is obtained as the expectation value of the
Hamiltonian H

E0 =

where E'o = OFolfl" —  XJ^l^o) was calculated above. This should be com-
pared with the energy of the sharp Fermi surface uncorrelated wave function

£ (A = 0) = 2 5 > v - !J G = 2 ]T ev - G
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where (n/2)G is the diagonal pairing energy. The pairing correlation energy,
which is a collective energy caused by the spreading of the wave function
around the Fermi surface, is thus obtained as

£ c - = 2 j > F v
2 - ^ - 2 £ e v - G (Fv

4 - Fv
2)

V OCC

The last term is small and furthermore, it was not correctly taken care of in
our derivation of the Vv terms. Thus, we shall in the following neglect this
term.

We can now construct an excited pair or 'decorrelated pair' state. The
requirement of orthogonality to the ground state leads to the following wave
function:

It is easy to prove that the excitation energy £| xc c a n be calculated as

Note that Hf, but not H, is stationary with respect to a variation in the
average particle number. If one alternatively chooses to study (H) one has
to correct for changes in the average particle number (see problem 14.9).

We will leave the detailed calculations to the exercises and only give the
answer (neglecting terms of the order G):

(To \H'\ To) = 2 {e, - X) {yl - Vl) + 4AU.V,

This state we shall call a 'two-quasiparticle' state, each quasiparticle being
associated with the quasiparticle energy E^. Some of the energy comes from
excitation of pairs from the area around the Fermi surface and up into the
level \x. In addition this pair fails to contribute to the correlation energy.
The maximal loss due to this 'blocking' occuring with ev = X is 2A. Together
the single-particle and correlation energy cost is

Another way to make an excited state is to break a pair, putting one
particle in orbital \i and another particle in orbital K (fig. 14.3)

a f l
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The corresponding excitation energy is obtained as (problem 14.11)

0F2 |H'| *2> " <^o \H'\ Y0> = (e, - X) ( l - 2V}) + (eK - X) ( l - 2V*)

+A • 2 (U^ + UKVK) = Eli + EK^2A

The two-quasiparticle state discussed in connection with fig. 11.10 is of this
type with an excitation energy of approximately 2A. In an even nucleus we
thus expect an energy gap of a magnitude 2A.

A simple special case of the 'broken-pair' problem is the 'one-quasiparticle'
problem applicable to the odd-particle case. In this case the ground state
wave function is of the type

< II ^ + Vvat4) 10)

In solving the BCS equations connecting X and A to the particle number
and pairing strength G we shall adopt the convention of considering an
even-particle vacuum of n particles where n is an odd number. | The wave
function thus represents an average of the even neighbours on both sides.
We have thus

G ^^ Ev

with unrestricted sums (the no-blocking case).
For the odd-particle case, with the odd particle in the orbital pt close

to the Fermi surface A, the energy relation to the corresponding even-even
quasiparticle vacuum is

Ei-E0 = OFi \H'\ Yi) - (Yo \H'\ Yo) = Efi= [ (^ - X)2 + A2]V 2 ~ A
For \e^ — X\  « A the displacement between the odd-iV mass parabola
and the even-iV mass parabola (of the same Z) is thus expected to be An.
Similarly the odd-Z to even-even mass comparison gives a mass difference

14.4 The uniform model
The relation between the energy-gap parameter A, the coupling constant G,
the number of levels involved and finally the level density can be studied in
t Because of the smaller number of paired orbitals in odd nuclei, there will be a tendency towards

smaller A in odd than in even nuclei. Similarly, the two-quasiparticle states of even nuclei should be
associated with even smaller values of A. None of these effects are accounted for here.
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terms of the uniform model. Let us assume a case with evenly spaced doubly
degenerate levels, equally many below the Fermi surface (situated at X = 0)
as above, with a level spacing of d = p"1. The levels considered extend from
—S MeV to +S MeV, and finally the pairing matrix element is assumed a
constant G all over the level diagram considered. The real physical situation
is that the matrix element connecting a pair at the Fermi surface with a pair
far below or above diminishes with the energy distance. To simulate this
roughly, the cut-off energy S is introduced.

To preserve the symmetry we also have to assume that the number of
pairs is half the number of levels. In this way we assure that 2 = 0. Thus
only one of the BCS equations remains

We shall furthermore assume that, in this model, sums can always be replaced
by integrals

or
S + (S2 + A2)1/2

A2

For S »  A , we can write

and so,

This is a very simple and extremely useful relation between A, G, p, and the
cut-off energy S. In fact the same formula appears in the solid-state problem
of electron superconductivity.

For a nucleus in, say, the rare-earth region we have p" 1 ^ 0.35 MeV,
A « 0.9 MeV. Considering two shells above and two below the Fermi
surface, or S = 2hco « 15 MeV, we find that we have to use G « 0.1 MeV.

We may now calculate a 'correlation energy' defined as a difference between
the correlated (A =̂  0) state and the unpaired (A = 0) state. Still neglecting
the difference between the G J2 V* term and the diagonal pairing energy, we
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have

A2 0
£(A) - £(0) = £ 2V2ev - —  - £ 2ev

0 /_<> _\ . . /* „<> . A2

- p / f2F2-2)ede + p / 2V2sds- —
J-sv y Jo G

where the unpaired sum in £(0) extends only up to e = X = 0. One can
evaluate the integrals involved and obtain (problem 14.13)

JE(A) - £(0) = p[s2- S(S2 + A2)1/2] ~ ~\pk2

using S »  A.
The pairing correlation energy involved is indeed very small. Thus for a

deformed nucleus in the rare-earth region with p ̂  3 MeV"1 and A «  0.9
MeV, £(A) —  £(0) ^ 1.25 MeV separately for the neutrons and protons, or
a total of 2.5 MeV. For near-spherical nuclei we may have an effective level
density, p ^ 5 MeV"1 and A =1-1.5 MeV, leading to a pairing energy of
2-5 MeV for each kind of particle. For spherical nuclei at closed shells on
the other hand, the effective level density is small and, generally, G < Gcrit.
Thus, the only solution of the BCS equations corresponds to A = 0.

14.5 Application of the BCS wave function to the pure y-shell case

We have the BCS wave function for the v = 0 case (v = generalised seniority
= number of quasiparticles)

For a spherical y-shell of degeneracy Q, the values of Vv and Uv must be the
same for all the orbitals. Thus

= F = ( ^ ) " 2

1/2

which leads to
1/2

A = GilUV = GQ - - f -V
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Hence the total energy is given as (ev = 0)

This should be compared with the exact formula

E(n,v = 0) = -G^ (2Q - n + 2)

The BCS wave function thus gives a correct result up to terms of order 1/Q.

14.6 Applications of the BCS theory to nuclei
The BCS equations are easily solved on a computer for an arbitrary set of
single-particle orbitals. The coupling constant G is determined for example
from the empirical values of the pairing gap which is set equal to the odd-
even mass difference (see problem 3.5). It is furthermore necessary to make a
cut-off in the single-particle orbitals and thus only include a certain number
of orbitals around the Fermi surface in the BCS equations.

An estimate of the different constants is obtained from the uniform model.
We thus consider a pure oscillator potential and furthermore assume N =
Z = A/2. If the oscillator shells with principal quantum numbers smaller
than N* are filled while the AT*-shell is half-full, we get

A —  JX[ —  J7 ~ _ (fJ* _|_ 1 * \ 3

XJL Z*±y Z*Z~t r>j \J.y —1~ \..J\

(see chapter 6 and especially problem 6.10). The number of orbitals (for
protons or neutrons) in the JV*-shell is equal to \{N* +1.5)2, which gives the
level density

A K \T 1
41 C

where we have eliminated N* and inserted ha>o = 41 •  A~1/3.
In the uniform model, we derived the formula

A = 2Sexp( - l /Gp)

which should be compared with the experimental value (fig. 3.3)

An ^ Ap ~ 12 • A'1'2 MeV

We make the approximation that p is constant over the whole pairing
interval and conclude that G should vary as A~l and S as A~*/2. As an
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alternative to the energy interval, S, one could consider a fixed number
of orbitals above and below the Fermi surface. With p oc A, this number
should be proportional to A1/2 or equivalently to N1^2 for neutrons and Z1/2

for protons. A standard procedure in modified oscillator calculations is to
consider (15iV)1/2 and (15Z)1/2 orbitals, respectively, above and below the
Fermi surface (Nilsson et a/., 1969). The following estimate is then obtained
for the coupling constant:

where the value of p according to the harmonic oscillator expression has
been inserted.

With N ^ Z, one could furthermore expect that Gn ^ Gp. As An ~ Ap,
we should from the uniform model formula require that the same cut-off in
energy is made for neutrons and protons and furthermore that pnGn = ppGp.
In a similar way as in problem 6.12, we consider only first order terms in
the small parameter x = (N —  Z)/A to obtain

ar I/N-Z
A [ ' 3 V A

where Go is a constant, which is common for protons and neutrons. One
furthermore finds that it is approximately correct to make the cut-off as
suggested above with the number of 'paired orbitals' proportional to ^jN
and <JZ9 respectively.

In realistic calculations, one should determine the pairing constants some-
what more carefully. A possibility is to assume a pairing matrix element

where the general dependence on neutron and proton number has been
taken from the uniform model expression. With (15iV)1/2 or (15Z)1/2 orbitals
considered above and below the Fermi surface, the constants go and g\ have
been determined from a fit of the A-value at the calculated ground state
deformation to the odd--even mass differences for a number of nuclei in the
A = 150-250 region (Nilsson et a/., 1969). The quality of the fit is illustrated
for rare-earth nuclei in fig. 14.4 where the constants

go = 19.2 MeV; gi = 7.4 MeV

have been used.
When calculating the nuclear energy by the shell correction method, the
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Fig. 14.4. a) Calculated pairing gap Ap for nuclei in the rare-earth region compared
with odd-even mass differences, Pp. The latter were extracted from measured masses
of even-Z and odd-Z isotones using the difference formula illustrated in problem
3.5. The theoretical pairing gaps were extracted at the calculated equilibrium
deformations with the parameters given in the text (from Nilsson et al, 1969).
b) Same as part a) but for neutrons instead, i.e. pairing gaps An compared with
odd-even mass differences extracted from measured masses of odd-iV and even-AT
isotopes.

parameters of the liquid-drop energy are fitted to reproduce the average
trends. Thus, one must assume that the average pairing energy is also
accounted for. This means that we should only consider the variation of the
pairing energy around an average value, <5£pair = £pair —  (£pair). The average
value can be estimated from the uniform model. It comes out as

(£Pair) = - \ (pnAl + « -(1.15 + 1.15) MeV = -2.3 MeV

independently of mass number, A. In calculating this value, we have used
the harmonic oscillator estimate for the level density and the empirical
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0.2 0.4 -0.4 -0.2

Fig. 14.5. The different energy contributions for protons (p) and neutrons (n) which
build up the total energy in the shell correction approach are exhibited as a function
of quadrupole deformation for 164Er and 140Ce. The shell energies £Sheii were
calculated by the Strutinsky method. The BCS formalism was used to calculate the
pairing energies £pair (where the average value, —1.15 MeV in the present approach,
has been subtracted) and the pairing gap. The total energy Etot is obtained as the
sum of the liquid-drop energy, £L.D.> the shell and the pairing energies.

value, 12/JA MeV, for the pairing gap. It is also possible to calculate the
level density and especially its variation with energy, p(e\ by the Strutinsky
method (chapter 9). The average pairing energy is then calculated numerically
leading to a more accurate and systematic method to obtain (£pair) (Brack
et a/., 1972).

In fig. 14.5, the variation of the pairing energy and its relation to the shell
correction energy are illustrated as functions of quadrupole deformation, e,
for the nuclei 164Er and 140Ce. The energies were calculated from the single-
particle orbitals of figs. 11.5 and 11.6. Let us first consider the case of 164Er.
From the single-particle diagram, the level density around the Fermi surface
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for proton number Z = 68 and neutron number N = 96, respectively,
appears to be highest for spherical shape. This is also supported by the
shell energy maxima of fig. 14.5. Consequently, the pairing correlations are
maximal for spherical shape as manifested by the maxima in Ap and An and
the minima in the pairing energies. It is also evident that the pairing energies
tend to smooth the shell effect, with the pairing energy fluctuations being of
the order 50% of the shell energy fluctuations.

In fig. 14.5, we also plot the liquid-drop energy and the total energy, the
latter being the sum of the liquid drop, the shell correction and the pairing
energy (the energy of for example figs. 9.3 and 9.4 was calculated in this
same way). The total energy of 164Er has the deepest minimum for prolate
shape with a « 0.26. The depth of this minimum gives the 'shell correction'
to the nuclear mass. This is the quantity that was plotted in the middle of
fig. 9.7. In the case of 164Er, this correction is approximately zero as seen in
fig. 14.5 (one finds that, for 164Er, the depth of the minimum is very little
affected by e.g. 84-deformations).

The case of 164Er is in one way simple because the proton as well as the
neutron Fermi surface is in the middle of a shell. Thus, their respective
shell energies both have maxima for spherical shape and tend to deform the
nucleus. The situation for the other nucleus of fig. 14.5, 140Ce is somewhat
more complex. The neutron number, N = 82, corresponds to a closed shell
with a deep shell energy minimum for spherical shape. Thus, although the
protons strive to make the nucleus deformed they have only a secondary
effect and the total energy minimum is for spherical shape. The depth
of this minimum suggests a binding energy of 140Ce, which is about 6
MeV larger than the liquid-drop estimate (a comparison with experimental
masses suggests that this number should rather be around 4 MeV). It is
also interesting to observe that, for spherical shape and 82 neutrons, the
pairing constant G is smaller than Gcrit, corresponding to the fact that no
BCS solution with An ^ 0 exists. With An = 0, the Fermi surface is sharp
with the orbitals below the 82 gap being fully occupied (F 2 = 1) and those
above empty (Fv

2 = 0). Furthermore, still considering only neutrons, we
obtain 6£pair = —  (£pair) where, in the present approximation (£pair) =
-1.15 MeV.

We have thus demonstrated that a consistent and still relatively simple
theory for the pairing correlations can be achieved through the BCS formal-
ism. This makes it possible to get a quantitative description of phenomena
such as the odd-even mass difference referred to in preceding chapters. In
appendices we will demonstrate how the reduction of the nuclear moment of
inertia relative to the rigid body estimate can be accounted for by the pairing
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theory. We will also show how a more compact description of the pairing
theory is achieved through the introduction of quasiparticle operators.

Exercises
14.1 Assume a (5-interaction acting between two particles in a pure Y-

shelP. Show that the matrix elements are proportional to ' ^ ' / / N

14.2 The interaction potential between two particles in a j = 9/2 shell is
of 6 -type. Use the formula given in the text to evaluate numerically
the energy of the / = 2,4,6 and 8 states in units of the / = 0 energy.

14.3 Consider a j = 5/2 shell, which has a degeneracy of Q = 3. Construct
the matrix of the pairing Hamiltonian HG if there are four paired
particles in the shell. Evaluate the eigenenergies. Compare with the
general formulae.

14.4 Evaluate the commutators [̂ 4,̂ 4+] and [HG,A+].
14.5 The relation [HG, {A+f} = -Gp(Q -JV + p + \.){A+f was shown for

p = 1 in problem 14.4. Probe by induction, p —•  p + 1, that it is true
for any p.

14.6 Prove that a+dj~ |0) is an eigenstate of Hsp = ^2V ev (a+av + afa^)
with the eigenvalue le^.

14.7 Show that the BCS wave function is normalised provided I/2 + Vj; =
1,^=1,2 , . . . .

14.8 With Yo being the BCS wave function, show that ( ^ o l ^ ^ ^ ^ l ^ o ) =
U,V,UKVK and ( ^ | < 4 ^ | ¥ 0 ) = V*.

14.9 Let ¥2 be a two-quasiparticle state (a 'decorrelated pair' or a 'broken
pair' state) and ¥0 the BCS ground state. Show that after correction
for the particle number difference, 8N = N2 —  No, we obtain the
excitation energy £fc = 0F2|if - kJT^) ~ (^o|H - ^H^o} .

14.10 Prove that the excitation energy of a 'decorrelated pair' in the level
fi is lE^.

14.11 Prove that for a broken-pair state with one particle in the orbital \i
and another in the orbital TC, the excitation energy is E^ + EK.

14.12 Calculate the excitation energy for a one-quasiparticle state with the
odd particle in the orbital \i.

14.13 Prove that the correlation energy in the continuous model is approx-
imately equal to ^pA2. The level density is given by p and the pairing
gap by A.

14.14 Prove that the quasiparticle operators a+ and a satisfy the Fermion
anticommutator relations if Vl + V} = 1.
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14.15 Derive the relations that are inverse to the definitions of quasiparticle
operators.

14.16 Transform the Hamiltonian H'(A) to quasiparticle operators and find
the expressions for i?oo, # n and i?20-

14.17 Prove that the zero-quasiparticle state, |A) oc n v
 avav |0), is identical

to the BCS wave function, 6^ = flv (^v + Vyd$<4) |0).
14.18 Consider the continuous model together with the linearised pairing

Hamiltonian. Assume that the occupation probabilities are given by

leading to a pairing energy that can be considered as a function of A.
Derive the expression for this energy and plot it for the parameters
that are approximately relevant for rare-earth nuclei: p" 1 = 0.35
MeV, S = 15 MeV and G = 0.1 MeV. How does the function change
if G is decreased to 0.06 MeV?

14.19 Show that the one-quasiparticle state, a+ |A), is equivalent to the
'one-particle state', a+IIv#i (^v + Vva+af) |0).



Appendix 14A
The quasiparticle formalism

In this appendix we shall derive the BCS wave function in an alternative
way by the use of a technique based on the concept of quasiparticles. In
order to make the calculation somewhat simpler the pairing interaction is
linearised to a pair field. It turns out that a complete diagonalisation of the
linearised Hamiltonian is equivalent to the BCS solution.

The pairing Hamiltonian can be written as

HG = -GF+F

where

v>0

The summation is, as usual, only over the states v and not over the time-
reversed states v (v > 0). HG can now be rewritten, using identities, as
follows

HG = -GF+F = - G (F+ - (F+) + (F+» (F - (F> + (F))
= -G <F+) (F+ + F)-G(F+- (F+»  (F - (F+)) + G (F+)2

In this expression we have used that (F) = (F+). This is not self-evident,
but it is easily verified for the BCS wave function. To proceed one assumes
that the second term is small, i.e. the operators F + and F are approximately
equal to (F). Thus, if we for the moment neglect the last constant term, we
can write the linearised Hamiltonian as

where
A = G(F+)

317
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The Hamiltonian HA is said to represent a pair field, which simulates the
pairing interaction, and A is the strength of the field. This pair field, or pair
potential, is an approximation of the 'true' pairing Hamiltonian, HG, in the
same way as the ordinary nuclear potential in r-space is an approximation
to the two-body interaction between the nucleons in the nucleus. Its main
characteristic is that it describes the emission or absorption of a pair of
particles. The shortcoming of the pair field is that it does not commute with
the number-of-particles operator. Physically this means that the associated
wave function will contain components with different number of particles.

The task is now to diagonalise the total Hamiltonian

H(A) = J2ev W"«v  + <4<h) - A
V

The main advantage of this Hamiltonian compared with the Hamiltonian
studied earlier is that it is bilinear in the operators a+ and a. The Hamiltonian
can thus be diagonalised by a unitary transformation of the operators a+

and a. This transformation was first suggested by Bogoliubov (1958) and
Valatin (1958) and reads

( a+ = Uva+ - Vvav (<4 = Uvaf + Vvav

I av = Uvav —  Vva$ | â  = Uva^ + Vva$

The operators aj" and av are denoted quasiparticle creation and annihilation
operators, respectively. The signs in the formulae are understood from
the equality at = —a+. This  in turn follows from general transformation
properties and can be seen from the definition of the conjugate state in a
\jm) basis

and from the fact that an arbitrary single-particle state can be expanded in
such a basis. Provided that Uy + Fv

2 = 1, the quasiparticle operators fulfil
the following (fermion) anticommutators (problem 14.14)

{av,a^} = {a+,a+ | = 0

and

The transformation from particle to quasiparticle operators is given by
(problem 14.15)

(a+ = Uvat + Vva-V { at = Uv<4 - Vvav
\ av = Uvav + Vvat I a* = C/Vav —  Vvcct
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As stated above the Hamiltonian does not preserve the number of particles
as a good quantum number. In order to ensure that the number of particles
is right on the average a Lagrangian multiplier, —/L/T, is added to the
Hamiltonian. Thus we want to diagonalise

if'(A) = if (A) - kJf

If we denote the solution with lowest energy by |A), then the subsidiary
conditions

G(A|F|A) = A
= n

where n is the number of particles, must be satisfied. The Hamiltonian if'(A)
is now transformed using the transformation derived in problem 14.16. The
result is

with

v>0 v>0

v>0
2AC/VKV] (o+o,

H20 = X ) [2U*V* <«»  - A) - A
v>0

The indices of if denote the partition between creation and annihilation
operators. If the Hamiltonian containing the full pairing force, HG, had been
transformed, additional terms, ff22> if3i and if4o, would be present.

So far the numbers Uv and Vv have been arbitrary, apart from the
condition Uy + Fv

2 = 1. It is now possible to choose Uv and Vv so that
if20 = 0. This condition implies that

2UVVV (ev-!)-A(ul - F2) = 0

The solutions, of physical interest, to this equation are
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When #20 = 0, the Hamiltonian is diagonal in the quasiparticle representation.
Inserting the values derived for Uv and Vv the Hamiltonian reads

if'(A) = ]T 2 (ev - X) F2 -2AJ2UVVV+Y,EV (a+av + ajov)
v>0 v>0 v>0

where we have introduced the quasiparticle energy Ev = [(ev —  X)2 + A2]1/2.
The eigenstate with lowest energy is obviously the state with no quasiparticles
since Ev > 0, if A > 0. If this state is denoted | A) it must fulfil

av |A) = av- |A) = 0

for all v, i.e. |A) is the quasiparticle vacuum. This state can be constructed
as

\A)oc]J(xvocv\0)
v

where |0) is the particle vacuum defined by av |0) = 0 for all v. If the
quasiparticles are transformed to ordinary particles, the wave function is
(problem 14.17)

As seen by direct inspection the wave function |A) is identical to the BCS
wave function \o\ derived earlier.

The parameters A and X introduced in the derivation must be determined.
First we have the self-consistency condition for the strength of the pair field
A. It must satisfy

A = G(A|F+|A)

Furthermore the requirement that the expectation value of the number of
particles is the desired one gives

(A|«yT|A) = n

The calculation of the expectation values is straightforward and the result is
obtained as

These equations are identical to the equations used in the earlier treatment.
As both Uv and Vv are functions of A and A, the equations are coupled. In
a general case they have to be solved by an iteration procedure. However,
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roughly speaking, one may say that the first equation determines A and the
second one A.

The energy of the state |A) is now easily calculated since |A) is the vacuum
of the quasiparticles. By looking at ifoo we see that £(A) = 2 £ V^ev—2A 2/G.
The first part is the single-particle energy while the second term is the
correlation due to the pairing interaction. As we have linearised the pairing
interaction to a pair field, the pairing energy is counted twice. This is a
feature that occurs quite often in many-body problems. We recall that we
omitted a constant term in the linearised pairing Hamiltonian. This term
compensates the double counting of the pairing energy. The energy of the
ground state is thus

As the Hamiltonian is given as

if'(A) = constant + X^£* (a*av + a*~av)
v>0

the excitation energy of a one-quasiparticle state, a+ | A), is trivially obtained
as E^. Similarly, for a two-quasiparticle state a+at |A) we calculate an
excitation energy of E^ + E^.

By the quasiparticle formalism we have succeeded in reproducing in an
elegant fashion the results obtained more straightforwardly in the main text.
A further advantage is that the Valatin-Bogoliubov method leads itself easily
to generalisations in the case of a more general two-body interaction.



Appendix 14B
The moment of inertia

It was mentioned in chapter 11 (fig. 11.2) that, because of the pairing
correlations, the observed nuclear moment of inertia is much smaller than the
rigid body value. In this appendix, we will derive the corresponding formula.
The derivations are made within the cranking model in perturbation theory
with the rotational frequency, co, as the small parameter (Inglis, 1954).

Consider the cranking Hamiltonian for rotation around the 1-axis (chapter
12):

Hw = Ho - hah

The ground state energy is given by EQ and the corresponding (many-particle)
wave function is

For classical rotation, the rotational energy is given by

which formula thus defines the moment of inertia, / .
In first order perturbation theory, the cranking wave function is given by

where *¥'  is a part of a complete set of wave functions such that (*F' |/i| *Fo) ^
0. Furthermore,

Ho \Y) = E' |T'>

For the non-rotating ground state, it is obvious that (¥0 |/i  | To) = 0. Thus,

322
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to lowest order in co

Using second order perturbation theory, the energy in the rotating system
Em is obtained as

F--F (km*E -E0-(h(o)
°

The energy E in the laboratory system is calculated as the expectation value
of H0 = H0}

F-

leading to the following formula for the moment of inertia:

The same formula is obtained if the relation

is compared with the expectation value of /i derived above.
For a pure single-particle configuration (with no pairing correlation), the

ground state wave function is given by

where the product is over all occupied orbitals (v as well as v). In the
second-quantisation formalism, the angular momentum operator is written
as

The only states V that have (¥'l/il^o) ^ 0 are the one-particle-one-hole
states

This state corresponds to one particle being excited from the occupied orbital
\x to the empty orbital // and its excitation energy is given as

E' —  EQ = e^ —  e^
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where e^ and e^ are the single-particle energies. It is now easy to calculate

= {11 \h\

and thus for the moment of inertia

y
where thus the first sum runs over occupied orbitals only and the second
over empty orbitals. This formula is valid for an arbitrary single-particle
potential and can be applied for example to the rotating harmonic oscillator
discussed in chapter 12. It is then possible to distinguish between the AN = 0
terms (couplings of j \ within an oscillator shell) and the AN = 2 terms. If
only the former are considered, we arrive, of course, at the co = 0 limit of
the formula given in chapter 12.

We will now also incorporate pairing with the BCS function as the nuclear
ground state (Belyaev, 1959; Migdal, 1959; Griffin and Rich, 1960; Nilsson
and Prior, 1961). The derivation becomes somewhat more involved but gives
a good insight into the calculation of general matrix elements within the
quasiparticle formalism.

The first step is to express the I\ operator in quasiparticle operators (cf.
problem 14.15)

+ Fvav-) (I7v,<v + *Va+)

As the BCS ground state is the zero-quasiparticle state (a |o\ = 0), it is
evident that it is only the a+a+ term ,

which contributes in the moment of inertia formula. It furthermore follows
that the *F; which should be considered in the moment of inertia formula
are the two-quasiparticle states. In the present context it is convenient to
write them as

= 44
The matrix element to evaluate is

= (v \jt\ fi') U
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where the (—1) in the last term depends on the sign change v'\ =  —  |v').
The two single-particle matrix elements in the formula are essentially the
same. With the state \/JL) being given as an expansion over spherical states

the conjugate state is given as

The following relation is now derived

We have used the fact that the matrix element of j \ = (j+ + j-) /2 is different
from zero only if / = j and Q! = Q + 1. Furthermore, the matrix element
remains the same if the sign of both Q and Q! is changed. Thus, as j is
half-integer, the equality follows. As j \ is a Hermitian operator with real
matrix elements it also follows that

and thus for the matrix element of I\:

We finally insert in the moment of inertia formula to obtain
. . / \ |2

With a full summation over both n and /ir, we had counted each state
of *F; twice. This could have been avoided by dividing by two but, for
computational reasons, we prefer instead to exclude the conjugate states in
the sum over \i (fi > 0).

Let us consider the case where n is far above the Fermi surface (Vp « 0,
Up « lEp =  [{ep - Xf + A2]1/2 « (^ -  A)) while //r is far below {Vp> « 1,
[7̂ / « 0,£^ «  (A —  ep')). This leads to a denominator of (ep —  e^) and
a UV-factor of one in agreement with the non-paired case. Similarly, one
concludes that when both fi and \i are far above or far below the Fermi
surface, the UV-factor is essentially zero, and the same contribution as in
the non-paired case is again obtained. It is, however, the orbitals close
to the Fermi surface that give the largest contributions to the moment of
inertia. For such orbitals, being partly occupied and partly empty, the
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Fig. 14B.1. Schematic yrast lines for a rotational A « 160  nucleus. The 'no pairing'
curve is drawn using the rigid body moment of inertia while the empirical ground
state pairing energy is subtracted and the 7 = 0 moment of inertia' is used for the
7 = 0 pairing' curve. The figure suggests that, for high enough spin values, there
will be no pairing energy in the yrast states.

UV-factor is essentially smaller than one. Furthermore, for such orbitals,
the energy denominator becomes much larger than in the non-pairing case,
£M + i y « 2A »  e^ —  e^. This is understood from the large energy required
to break up the strongly correlated BCS ground state. It is now easy to
understand the general appearance of fig. 11.2 and the reduction of the
moment of inertia compared with the rigid body value.

It was mentioned in chapter 12 that the pairing correlations are expected
to disappear at high spins. This is referred to as Coriolis antipairing (CAP) or
the Mottelson-Valatin (1960) effect and is easy to understand qualitatively.
Let us take the nucleus 164Er as an example. From fig. 14.5, we find
that its total pairing correlation energy is around 3 MeV. Furthermore, the
observed moment of inertia is (l/h2)^ « 70 MeV" 1 (fig. 11.2). Assuming
this moment of inertia for all spin, we get the energy versus spin as shown
in fig. 14B.1. Similarly, we can draw the energy versus spin curve in the
absence of pairing correlations in which case we expect to observe the rigid
body moment of inertia, (2/h2)/ « 150 MeV" 1. The two curves intersect for
/ « 20, which is thus a very crude estimate of the spin at which the pairing
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correlations should disappear. A more careful analysis will show that the
disappearance is gradual and is accompanied by spin alignment giving rise to
two-quasiparticle states, four-quasiparticle states, etc. (fig. 11.10). The process
by which the pairing correlations become less important with increasing spin
/ is complicated and still not understood in its detail.
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2.2 Definition (dx = d3r):

/r"p(r) dt
* ' /p(r)dr

Fermi distribution:

1+exp [(r-R)/a\

We first give a sketch of the derivation of the formula referred to
in the text. For an arbitrary /(r) (/(r) < oo, r = 0) one has

f{r)p(r) dr = - f° F(r)p'(r) dr
Jo

328
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where

F(r) = f f{rf) d/ , i.e. [F{r)p(r)]$ = F(oo)p(oo) - F(O)p(O) = 0

As p'(r) ^ 0 only in a small interval at the nuclear surface, F(r) is
preferably expanded around r = R. One further assumes R » a
and after some calculation arrives at

/(r)p(r)dr = p(O)

By use of this formula it is easy to calculate

Jr"p(r)dx = 1 +^-(n + 2)(n + 3)(^)
0 \KJ

p(r) dt = 47tp(0)y 1 + n2 ^

For the special case of n = 2:

2.3 The Coulomb energy is calculated as the energy required to assemble
the nucleus from charges infinitely far away. The spherical symmetry
is exploited and the nucleus is built up by successive addition of
concentric shells.
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Consider first a spherical symmetric distribution of total charge Q
located inside the radius r. It is then well known that the potential
outside r is the same as for a point charge Q at r = 0.

-,\ r'>rr

1 Q
r

rr = r : V(r) =

For the nucleus, the charge inside r is

Q = Q(r) = I p(x)4nx2 dx
Jo

The total energy required to assemble the nucleus is

W= fv dQ= r V(r)p(r)4nr2 dr

The Coulomb energy is

EQ = W = — /  rp(r) dr / p(x)x d
so Jo Jo

The integral to be solved is

/•oo ( f(r) = r /o
r d x p ( x ) x

7 = / dr p(r)f(r) where <
7 o [p(r) = po{l+exp[(r-i?)/a]}

With the formula from problem 2.2:

/ d r r / dx p{x)x2 + — a 2 \— r /  x2p(x) dx + . . .
./o 7o o Ldr V ./o / 1 R

- l
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We perform a partial integration to eliminate integrals of the type
Jo • •.  dx where r is a variable

= p(0)
iR

Jo
- / dr ^

Jo 2
+ ^-a1

6 x2p(x) dx + RR2
P(R)) + . . .J

All integrals are now of the type Jjf f(r)p(r) dr and can be solved
with a method analogous to that for /0°° f(r)p(r) dr (problem 2.2):

fRf(r)p(r) dr = [F(r)p(r)]$ - [* F(r)p'(r) dr
Jo Jo

00

With the definition

/

) V

00 (1

V d x : 7̂  = 1/2; l'2 = n-

(it will later turn out that the integral I[ is not needed). With
= p(0)/2:

J* /(r)p(r) dr = p(0) |"F(H) + a/{/(*) + ^ a

One now easily obtains

£rAp{r) dr = p(0) (j + al[R4 + ̂ a24R3 + ..\

fR r2p(r) dr = p(0) (y + a/Ji?2 + ya22K3 + ... j

Up to second order in (a/R) the integral / is now given by

The value of p(0) was already calculated in problem 2.2:
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With EQ = (47i/eo) /, we then obtain

_An
C *

The denominator is expanded and we get for the Coulomb energy

„ 3(Ze)2 1
" 5 R 4ne0

3.1 We study the reaction

n + 235U -»  236U -> 91Kr + 142Ba + 3 n + energy

The energy is thus obtained from
235U -+ 91Kr + 142Ba + 2 n + energy

The atomic masses are expressed in the units

u = m (12C) /12 = 1.661 x 10"27 kg

corresponding to 931.5 MeV. From the table in the text, the energy
gain is now easily obtained as

(235.0439-90.9232-141.9165-2 x 1.0087) x 931.5MeV = 174MeV

This is roughly in agreement with the estimate in the text:

142 x 0.7 + 91 x 1.0 - 2 x 7.6 »  175 MeV.

3.2 2000 MW is equivalent to

i
2 ^°X , / ?°1 , x 60 x 60 x 24 x 365 MeV y"1 = 3.94 x 1029 MeV y"1

1.60 x 10~13 v v '
sy1

(2000 MW = 2000 x 106 J s"1; 1 MeV = 1.60 x 10"13 J). With 174
MeV being released for each atom of 235U it is now easy to calculate
how many kg of 235U are being 'burned' per year:

1 94 x 102^
x 235 x 1.661 x 1(T27 = 884 kg y"1

With the isotopic abundance of 235U being 0.72%, 123 x 103 kg of
natural uranium are needed per year.

3.3 E = 8.7 MeV; 832 kg UB y"1.
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3.5

Solutions to exercises

Volume per nucleon: jizR^/A. Diameter of nucleon: d.

333

volume of surface layer 4nR2 • d
total volume (4TT/3) R*

The nucleons in the surface layer have neighbours on five sides out
of six or maybe three sides out of four.
=> Loss of energy due to surface:

A => £surf ~ -aw\ • A2/3 => asurf ~ avol

We first briefly discuss the formulae in the text. Consider two para-
bolae, f(x) and g(x) = /(x) + A. It is then easy to check that (xo and
d arbitrary constants):

Thus, for example for a constant even proton number Z, the formula
in the text for An is exact if the masses for different JV-values lie on
two parabolae with that for odd N displaced An compared with that
for even N (the difference formula suggested is of lowest order to
give an exact result in the parabola approximation).

The binding energies are taken from mass tables (e.g. A.H. Wapstra
and K. Bos, At. Data and Nucl. Data Tables 19, 175 (1977)).

1362.798 MeV'

1369.665 MeV

1378.134 MeV

1384.748 MeV

B

B ( ^ Y b )

B ( ^ Y b )

B

An = 0.864 MeV

B

B

1365.783 MeV

1371.356 MeV

1378.134 MeV

1382.485 MeV

Ap = 0.908 MeV
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B (^|Er) = 1371.786 MeV

B (^Tm) = 1377.948 MeV
),,, < } => Ap - £np = 0.681 MeV

B (^Yb) = 1384.748 MeV
B (17,?Lu) = 1389.464 MeV

These values are thus the 'experimental' pairing parameters for 170Yb
and 171Yb, respectively. With Ap(170Yb) ~ Ap(171Yb): £ n p ~ 0.2 MeV.
It is interesting to compare with the empirical relations:

A = 12/y/A MeV JEnp = 20/A MeV

For A = 170, these formulae give

A = 0.92 MeV £ n p = 0.12 MeV

3.6 Alpha decay of 242Pu: 2$Pu -»•  2 ^ U + a. The total energy released
is

The kinetic energy of the a-particle is measured:

The kinetic energy of the 238U nucleus is then obtained from mo-
mentum conservation:

=> Qoc = (1 + ^) ^ = (1 + 4 ) 4'903 M e V = 4'985 M e V
V m\jj 2 \ 238/

From mass tables:

QK = m (242Pu) - m (238U) - m (4He)
= (242.058737 - 238.050785 - 4.002603)«
= 0.005349 x 931.5 MeV = 4.983 MeV

3.7 (a) The line of beta-stability is denned by
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We express the mass as a function of N and A:

m(N9A)c2 = N (Mn - MH) c2 + ^MHc2 - ayA + asA2/3

(A-N)2 (2N-A)2

+ a c ~ I ~ + a s y m 2A

With 4 -* oo this formula leads to N ^ A (one finds Z oc A1/3).
The mass formula is fitted for nuclei with A <, 250 and should in
principle not be applied too far outside this region. However, with
A —>  oo, we get the reasonable result that N » Z. This is due to
the increasing importance of the Coulomb energy,

(b) The neutron drip line. This is characterised by (35/diV)z=constant =
0. We then express the binding energy as a function of N and Z
and get the partial derivative as

dN "v 3 " s v ' ; ' 3 (JV
asym(N-Z) asym(N-Z)2

N + Z 2 (N + Z)2

N+Z=A;Z=A-N^

M2 ( ac , 2asym\ _ {2acA 4asymA
\3AW + A* J \3AW + A*

+ av + -asym - 3«s^i/3 + y 4 2 / 3 = 0

This equation is of the form

N2 - 2NA + uA2 = 0

3 _ 2
2 3

(c) The proton drip line
dB(N,Z)

dZ

f ^/3 + 2asym

= 0
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leads to
Z = .

where

y=(ay + ^asym - ^M~1 / 3 ) /(jacA2/3 + 2asym

With the constants inserted we get the following table:

A Beta-stability Neutron drip line Proton drip line
Z N Z

"TOO 414 618 494
200 80.3 138.1 88.1
300 113.3 209.4 121.4

4.1 In the semi-empirical mass formula, the binding energy is given by

Z2

B = ayA (1 - KWI2) - asA2/3 (l - KSI2) - ac—jyj

where / = (AT -Z)/A.
The binding energy is thus split up into a volume term, a surface

term and a Coulomb term.

B(^,Z) = EW(A)~ Es (A,Z)- Ec (A,Z)

In the general case of division into n equal fragments, we calculate
the 'gain' in energy as

A£ = HB(-,-\ -B(A,Z)\n nJ

+ Es(A,Z)+Ec(A,Z)
o o o 1 o

= £s (A,Z)+ Ec (A,Z) -nEs (A,Z)-^ -nEc

With x = Ec (A,Z)/2 Es (A,Z), i.e. Ec = 2x • Es:

A£ = Es ( l + 2x - n1/3 - 2x«~ 2/3)



Solutions to exercises

The division is energetically possible if A£ > 0

337

Special cases:

n = 2;x>0.351 (4 £90-95)
n = 3; c> 0.426 (A £ 110-120)

These yl-values can also be graphically extracted from fig. 3.8.

4.2 (a)

P2(x) = i (3x 2 - l )

a2
= 0.5 => R(6) = -Ra (l + cos2

(b) The derivation is carried through in the text. We will fill in some
details. The surface S is derived as

a2P2(coSe)]2 [, , a2
2[(d/d9)P2(cos9)]

K \ 1 + [l P(e)f

2\m

To third order in ai (noting that / ^ Pi{oosQ) d(cosO) = 0):

S = 2nR2
af{\+a\
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With P2 and (d/d0)P2 inserted (x = cos0):

S = 2nR2
a

It now remains to determine the deformation dependence of Ra-
With RQ being the radius of a sphere with the same volume as the
deformed nucleus, we get

lnl%= fdV= fdQ fR r2dr = ^- f R3(9)dil

3a2P2

To third order in

(d) The expression for the height of the fission barrier is calculated in
the text:

0 98 ( 1 - x ) 3

— £s  1 c15 (l+2x)2 ; x < 1

In the liquid-drop model the surface energy £ s is obtained as

o
Es =

With as = 17.9 MeV and KS = 1.78 we find for 238U:

£g (2 3 8u) = 624 MeV

The fissility parameter is

x (2 3 8u) = 0.769

and we thus find for the fission barrier:

£barr (2 3 8u) = 7.8 MeV
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(e) For x < 1 and x > 1, respectively, the fission barrier has the
following appearance as a function of a.2:

AE

However, there are no stable oblate nuclei with x > 1, at least not
in the liquid-drop model.
If triaxial shapes are also considered, it is found that the 'oblate
minimum' is 'only' a saddle point and the nucleus can go to fission
without passing any energy barrier.

5.1 (a) Spherical shape; cox = coy = coz = coo'-

E = ha>o (nx + ny ++ nz + 3/2)

We get the following table (because of the two possible spin
directions, the degeneracy becomes a factor 2 larger than that
obtained directly from the oscillator).

E/hcoo nx ny nz Degeneracy Magic numbers

3/2
5/2

7/2

9/2

0
1
0
0
2
1
1
0
0
0
3

0
0
1
0
0
1
0
2
1
0
0

0
0
0
1
0
0
1
0
1
2
0

12 20

20 40

If the solution is instead carried through in spherical coordinates,
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6.2

we obtain /-shells, (n + 1)/ = Is, 2s, lp, etc. Their degeneracy is
2(2*?+1). With *f constant, the energy must increase with increasing
n and with n constant, the energy must increase with increasing L
The Is shell is then lowest in energy. Its degeneracy is 2 and it
corresponds thus to the no-quantum state of the oscillator. Next,
we expect either 2s or lp with degeneracies 2 and 6, respectively,
i.e. the one-quantum state corresponds to lp. With Is and lp
filled, 2s or Id with degeneracies 2 and 10, respectively, must come
next. The degeneracy 12 of the oscillator two-quantum state then
shows that 2s and Id are degenerate. If we continue, we find that
also 2p and If are degenerate etc. The general formula is derived
in section 6:

E = + 3/2) hco0

(cf. also fig. 6.1).
(b) cox = (oy = 2coz = E = hcoz (2nx + 2ny 5/2)

E/hcoz nx ny nz Degeneracy Magic numbers
5/2
7/2
9/2

0 1
0 0

11/2 1 0

0 0 0
0 0 1
1 0 0

0
2

2
2

0 1

13/2

1
1

0 0 3
2 0 0

1
2
0
1

15/2
0 0
2 0

0
0
2
2
4
1

12

2
4

10

16

28

12 40

(cf. fig. 8.1).

The eigenfunctions of the harmonic-oscillator potential are given by

= Cf/F [-nj + 3/2;p1) ^^YeJQ, <j>)



Solutions to exercises 341
The Kummer function F has the form

\ 1 , az , a(a + l)z2 ,) l + + +

The principal quantum number iV is defined as

N = In + t
N = 0, / = 0 => n = 0

F(-0,3/2,p2) = l

Vooo = Coe-"2/27oo = Q e x p ( -

As the Y>m-functions are already normalised (Yoo = 1/(4TT)1/2) we
only need to normalise the radial integral:

We use the formula

which can either be found in tables or derived by partial integration.
The gamma function is given by

We thus find for the normalisation integral:

2 _IW2) 2 _

J y exp ̂ _
= 3, / = ! = > » = !

Mcoo\1/2

)

1 = —y
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The other examples are now easily carried through in a similar way.

6.4

d /s in£\ sin£ cosr
2 / I d \ / I d \ sin<̂  _ d / si

{5
15 sin £ 15 cos { 6sin^

73(C) = ... = —14 3̂ ^2~

The radial functions of the infinite square well potential are given by

With R being the radius of the well we have js(kR) = 0. For / = 0:
_ sinkr _

Normalisation:

_ N2 fR fsinkr\2
 2 _ Ng I?

!/ 2 « 7 r / 7 x i / 2

2 y / 2 sin (nnr/R)
)

V (kr)2 kr )

Normalisation:

A XT2 fR f sin2 kr 2 sin kr cos kr cos2 kr\ 2 i
Jo I (kr)4 (kr)3 (kr)2 /
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JV? fkR / s in 2 x 2sinxcosx 9 \ ,
1 = TT / — i  + c o s x dx

k5 Jo \ x2 x J
pkK. o-ifî  Y / 1 \ fkR. 9 c i n Y r»nc  Y
/ — x - dx  = —  sin2 x + / dx

Jo x1 \ x Jo Jo x
fkR 2 A fkRl+ cos 2x , kR sin 2kR/ cosz x dx = / -

JO 70 2

/c.R sin2fcR

If we also use ji(kR) = 0 (sinfei? = kR coskR\ the expression for Ni
can be somewhat simplified and we finally arrive at

.3 / 2 fkR 1 . ^ \~1/2 fsinkr cosfer\
Ri = /c3/2 —  - - sin2fei? —-=-  - — —

V 2 4 / V (kr)2 kr J

Here, the possible values of k are obtained as the zeros of ji(kR), see
table 6A.2 (and problem 6.5).

6.6 For a particle with mass /i, charge e and spin S, the magnetic moment
m is given by

m = - S

According to the formulas from special relativity, the electric and
magnetic field vectors, E and B, are transformed according to

B11 = B11 B ^ - ( l _ ,2^2)1/2 (B^- c2

Thus, a particle with velocity v in the electrostatic field E = — (3</>/3r)e r

will also experience a magnetic field (v = |v| «  c):

B = — T V  x E = -£oW)V x E = aojuov x e r Tcz or
W i t h t h e o r b i t a l a n g u l a r m o m e n t u m L = r x p = / o i x v :

L
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For a magnetic moment m in a magnetic field B, the energy is given
by

£magn == "~~m ' B
With m and B inserted and V = e$\

1 dV

Note that this is an incomplete derivation. A more correct treatment
gives corrections of approximately a factor 2.

6.7 For this problem and also for some of the following problems we
must calculate sums of the type

where p is an integer that will never be greater than 4. Such sums may
be calculated for example by use of the Euler-Maclaurin summation
formula:

£/(**) = \ f 7(*) dx + l [/(xo)+ /(*„)]

Here xu = xo + k • h and the nth derivative of /(x) is denoted by
/W(x). We now get

Jo 2 12 2

AT'=O
N

 t N
r4 = ... = ^-(N + l)(2N + l)l3N2 + 3N-

N>=O 3 0
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To solve the problem we first show that the number of degenerate
levels within one JV-shell is (JV + l)(N + 2).

We have JV = 2n +1 or f = JV - 2n.
For / fixed, there are 2/ + 1 different orbitals (with m̂  = — /,

—/ + 1, ..., 0, ...,  *f —  1, /). Furthermore, the spin can take on two
values and assuming that JV is even we thus find the degeneracy:

N/2
2 ^ ( 2 / + 1) = 2 ]P[2(JV —  2n) + 1]

/JV \
= 2(2N + 1) f —  + 1) - :

\ 2 )

= ... = (JV + l)(JV + 2)

For N odd we get
N/2-\

N/2

0

2

The expectation value of t1 is t{t + 1). The degeneracy 2(2/ + 1)
then leads to

E
one shell

First assume that JV is even. The sum may be performed over
n = (JV —  *f)/2 as above but we prefer to perform it over *f/2 (= v)
which also takes the values 0, 1, ...N/2:

N/2

one shell v=0

= 4 ^ (8v3 + 6v2 + v) = j(N + l)(N + 2)(N + 3)

With the degeneracy (N + l)(iV + 2), we obtain

For odd JV, / takes the values 1, 3 , . . . N. If the summation is carried
out over \i = (/ + l)/2, \i = 1, 2, ..., (N + l)/2, the calculations
become easy. The same result as for even N is obtained.
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6.8 The virial theorem: 2(T) = (r • VF)

V = ^Mcoy => r • VF = Mcoy = 2V

and thus for a harmonic oscillator:

(T) = (V)
The eigenvalue equation

(i\H\i) = (H) = (T + V)= hcoo (Ni + |

now leads to

6.9 With the shells from N' = 0 up to N' = N being filled and with a
shell degeneracy of (iV + l)(N' + 2), see problem 6.7, we find for the
number of particles (equal number of protons and neutrons):

N N

A=Y, 2(N' + J)(N/ + 2) = E 2 (^2 + 3iV' + 2)
iV'=0 0

^ 1) + 6^(iV + 1) + 4(iV + 1)

The value of (r2) for a specific orbital was calculated in problem 6.8,

N

One finds that the approximate expressions are constructed in such
a way that not only the coefficient of highest but also that of next
highest order in N are the same:
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We thus expect the approximate expressions to be quite accurate also
for not very high N-values.

6.10 We first perform the sums exactly and thus assume that the shells
with principal quantum number < N are full and the shell with
principal quantum number N + 1 is half full.

Degeneracy in the \N + 1)' shell: (N + 2)(N + 3).
Radius in the \N + 1)' shell: (r2) =(N + 5/2)h/Mco0.
Assuming that the number of neutrons and protons is equal and

using the results from problem 6.9 we get

A = ^(]V ^

+

1
2

We conclude that, if the approximate expressions are generalised in
a natural way, replacing N by N + 1/2, they are about as accurate
when the last shell is half full as when it is completely filled.

6.11 We first let r < R. Integrate Maxwell's equation,

div D = p

over a sphere with radius r:
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/ V • D di = / p dr => / D • dS = QrJv Jv Js
where Qr is the charge within the sphere, i.e. Qr = (r/R)3Ze.
Furthermore, due to the spherical symmetry, D = D(r)er.

_ Qr Zer

E =
47T60 R3

, —  — \V —  —-—e r => V —  —
dr 2F?

For r > R we have

47C80

The potential must be continuous at r = R and this leads to

47T80 2 1?

r=/?

6.12 Assume that for the protons the shells with principal quantum num-
ber N < Nz and for the neutrons those with N < NN, are filled (if
the last shell is only partly filled this will correspond to NN or Nz
non-integer, see problem 6.10).

The number of neutrons is:
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The sum of (r2) for the neutrons is

The neutron radius is

With the number of protons being Z we find in an analogous way

We now define
N-Z

x = A

i.e. N = (A/2)(l + x) and Z = (A/2)(l - x)

(r2\ = / r 2 \ ^ _ ( 1 + X ) V 3

V / z V / j v cof ( l - x ) i / 3

It is now natural to make the following ansatz:

<4 =c»o(l-x) 1/3

where cog' and COQ are functions of JV and Z or equivalently of x
and A. This means that also coo might depend on these variables,
coo(x,A). Either COQ or COQ is now inserted in the expression for the
corresponding radius:

2 \
1/3

As (r2) only depends on A, this must also be the case for coo, i.e.

cog = co0(A)(l +
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6.13 For jz it is trivial to show that

h (Y«a) = V* + s z) YUOL = if + 1/2) Y«a

Thus, Yaoc is an eigenfunction of jz with the eigenvalue t + 1/2. To
apply j2 to YMU. we rewrite j2 in a similar way as jz above:

f = (f + s)2 = ^2 + s2 + 2€ • s

where

• s = 2/x5x + 2/ySy

Thus

Finally for j 2 :

j2

6.14 We want to show that
1 io

V 1/2 ] = < + 1/2 m) = (f*£ll12)

In problem 6.13 it was shown that

\t 1/2 j = t + 1/2 t + 1/2) = Ya<*

We now apply j - = /_ + 5_ y —  m' times to this equation. We use the
formula j-\jm >= [(j + m)(j —  m + l)]1/2\jm—l) and the analogous
formulae for /_ and s_.

It is then easy to calculate

l/2m>

In a similar way (/_ + s_);~m is applied to the right side of the
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equation above:

(tm t1^-) Yua
Y,m_1/2<x

A comparison of these two expressions leads to

(2jf2 y 1/2 { + 1/2 m) = (; + m)1'2 Yfm_m a + (j-mf2 Y,m+l/2 jS

We finally insert ; = { + 1/2:

^ 1 ^_|_1

The coefficients are the Clebsch-Gordan coefficients C 5
t ^ and

m wm—j  ^ w

C 5 ! 5j , respectively.

6.16

[ 0 ? n! fi! 0 I HM V 2 ( 1 \H+0 li /"> LJ\ I zi!

Z!U!U!Z!U! v ^ (— 1J y ^ (2 — i i ) ! i i !
3!0!2!0!0lJ ^(0-H)!(2-H)! ' H\H\

where it is only for H = 0 that no factorials of negative arguments
occur.

= > C101 = 1

Similarly,
C 1 1 2 —  . . . — 1

6.17

(2<)!l!0!

2)1/2

! {f + m+\-H)\
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7.1

In table 6B.1, we find

The symmetry relation for interchange of 7i' and '72' gives a phase
factor, (—\)h+h-ĵ  which equals (—1)° in our special case. The
calculated value is thus consistent with table 6B.1.
Formula (J in units of h)

This formula is a special case of the well-known Wigner-Eckart
theorem, which is discussed in many books on quantum mechanics.
For m = m':

(jm\t\jm) =

Interpretation: 'Only the projection of the vector t on j gives any
contribution to the expectation value above.'

The magnetic moment is calculated from the formula

0 = 07 \gssz + grfzljj) = (jj \gih + (gs - gt) sz\jj)
= gd + (gs - gt) (Jj \sz\jj)
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We use the formula above to calculate (jj\sz\jj) and we then need

)

/ 1 \

7.2 The quadrupole moment Q is defined by

1
' •' ~ 2

^ ^ 2

For spheroidal shape with half-axes a and 6, the integral is easily
solved through the introduction of the 'ellipsoidal coordinates':

x/a = r sin 9 cos cp
y/a == r sin 9 sin q> => ' ' = a2br2 sin 9 =>
z/b = r cos 9

Q = - f f [ (2b2 cos2 9 - a2 sin2 9) r2a2br2 sin 0 d0 dcp dr
e Jr=o Je=o Jq>=o ^ '

= P-a2b\ - In f1 \(2b2 + a2) cos2 9 - a2] d(cos 9)
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Ze

We first calculate the full quadrupole tensor in the system of
principal axes and then make a coordinate rotation by an angle jS.
Define the quadrupole tensor:

In another coordinate system with x\ =

Q'ij = -e I ( 3

7
where we have inserted 5y =

k(

V J

or Q' = AQAT

We now calculate the tensor Q: It is easy to see that Qy = 0 for
i ^ ;. Furthermore Qn + Q22 + Q33 = Tr (Q) = 0. As Qn = Q22 we
thus have Qn = g22 = —3Q33.

The symmetry axis (the z-axis) is rotated an angle /? for example
by the transformation

/ I 0 0
A = Ocos/3 -sin/?

\ 0 sin/?

=* Q' = \Qx
/ I 0 0 \ / - I 0 0 \ / I 0 0

x 0 cosjS -sinjS 0 - 1 0 0 cosjS sinjS
\ 0 sin^ cosjg / \ 0 0 2 / \ 0 —  sinjg COSJS
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7.4 The Coulomb potential for a homogeneously charged sphere was
calculated in problem 6.11 (the 'step function' is denoted by 0):

We treat Vc(r) as a perturbation.
The wave function is assumed to be of 'harmonic oscillator type':

AS

with Rn;(r) = Cntp'F (-nj + 3/2; p2) e~P2/2; p = {Ma>/h)l'2r where
Cnt is the normalisation constant. The Kummer function is defined
by

F(a,c;z) = 1 + - T + , , n r : + . . .c\ c(c +1)2!
We want to compare an lg7/2 and a 2d5/2 proton:

= 4? n = 0; the radial function is given by Ro4(r) with

;p2) = l.

= 2, n = 1; the radial function is given by Rn{r) with

In first order perturbation theory, the energy shift due to the
Coulomb potential is given by

A £ ( l g 7 / 2 ) = r R^(r)eVc(r)Ro4(r)r2 dr
JO

A£(2d5/2) = J™ Rn(r)eV c(r)Rn(r)r2dr

It is now straightforward to calculate the energy shifts. The cal-
culations are, however, quite lengthy and we will only estimate the
answers. At the centre the Coulomb potential is given by

and at the nuclear surface Vc(R) = \ Vic(0). F °r a wave function
centred somewhere in between the shift should be of the order
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We have R = r0 •  A1/3 and let us put that Z = A/2 => A£ ~
^(e2/4nsoro)A2^ ^ 0.8 • ,42/3 MeV. With A = 100, A£ - 17 MeV.
Furthermore, the lg-j/2 wave function is 'closer' to the nuclear surface
than the 2ds/2 wave function and we thus expect

A£(2d5/2) > A£(lg7/2)

where a difference of maybe 1 MeV could be expected for A = 100.
We also observe that A£ oc A2/3, which means that the Coulomb
effects are not very important for small A but become more and
more important with increasing A.

7.5 We want to calculate the quadrupole moment for a particle outside
closed shells and which has a charge e (e = 1 for a proton, e = 0 for
a neutron):

(a) j = t+l/2 : V 111 jf) = Y«* => {t \/2 j  j\Y*\t 1/2 j j) =
J Y^(Q)Y2o(0)Yu(0) dQ. The addition theorem gives

We also use the orthogonality

/ \ 1/2
(̂  1/2 ;; | Y20K1/2 ;7) = ( ^ J

The Clebsch-Gordan coefficients are taken from table 6B.1:

-2/(/+i) / / ( /+i) y / 2

[(2/-l)2/(2/ + 2)(2/ + 3)]1/2 = ~ V(2/-1)(2/ + 3)J

= 2
[(2/-l)2/(2/ + 2)(2/ + 3)]1/2

——— for j = /  -

. / « \  1/2 ,- 1 /'l
:\ | _ 1 ./ ~ x / z

V 5 J V /N<\4n) 2j + 2



Solutions to exercises 357

(b) 7 = / - 1/2. We have

V 111 jj) = tf 111 jj) V1/1 mtms)

Thus, with a change in the notation:

re \/2 t-\
_i 1/2 /_i

We now get for the matrix element:

= (a

= MI2 (y« H20I
We calculated above that

-\b\2(Ya-i\Y2O\Yu-i

\4n)
£

IS+ 3
The second term is obtained as

(Y«- 1\Y2O\Y«-I)=JY;,_ 1

1/2

where we have used the addition theorem for Y20Y//-1 a nd or-
thogonality for the sperical harmonics:

It remains to determine a = C^ff/J* and ft = C^ . We
explore the symmetry rhhj and obtain from tables
a2 = 2//(2/ + 1) and b2 = 1/(2^ + 1). Thus, for the quadrupole
moment:

\5J
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7.6 The magnetic moment is calculated in the nucleon state having
5 = 5Z = i. Thus, of the two-quark states having s = 1 we need to
consider those having sz = 0 and sz = 1:

We have

1.1.
22

/2q

1 _ 1
2 2

2q
H
22

11
22

qi

1 _ 1
2 2 qi

11
22

1 1 '
2 2 / 3 q

"(I) 1/2

22

-G)1 11.
22

1 in

11
22

22 qi
- -22

The total magnetic moment operator is

s2)3]

11.
22

1/2

For
For

the
the

proton Qi
neutron Q

1
3

= 62 = *
1 = 6 2 =

1
M S 2 3 "

N; C3 =
-\e; Qi

- VoQ:

= iM>e/2.

The measured ratio is gf/gf = -(3.83/5.56) = -0.69.
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8.1 The normalised wave function is given by

\NtsjQ) =
AS

where it is assumed that

• V d r =

We want to calculate the diagonal matrix elements of

^ = -Mco2^s ( y ) r2Y20(6,cp)

Consider first the angular part:

i AL A'Z'
1/2

- O O O
/AS \

^ o / 5 \ 1 / 2

= J^ I (tsAZ\SsjQ)|2 ( — I (2/0A|2^A)(2/00|2//0)
AS ^ 4 7 C /

where, in a similar way as in problem 7.5, we have first used orthog-
onality for the spin functions and the addition theorem for spherical
harmonics (noting that the 'm^ quantum numbers' should add to
zero) and then orthogonality for the spherical harmonics.

In order to find numerical values of the Clebsch-Gordan coeffi-
cients in table 6B.1, we need the symmetry relation

For a fixed value of O, there are two terms in the sum, namely
Z = 1/2, A = Q - 1/2 and Z = -1/2, A = Q + 1/2. Furthermore, it
turns out that the calculations in the two cases j = / + 1/2 can be
carried out simultaneously:

(T)'

1 / 2 [3(0 - 1/2)2 - /(/ + 1)] [ -2^ + 1)]
27+T I ( / ± Q + 1 /2)



360 Solutions to exercises

2 [3(0 + 1/2)2 - ((t + 1)] \-2({{ + 1)] \
)(2/ - 1)2/(2^ + 2)(2«f + 3)

1/2 + 1)6Q2 -

1
"4

1
~4 .

We thus obtain the desired relation:

);(;
2)6O2

3f l 2 - j(j
4/a+1

- 1/2)

; = f̂ + 1/2

8.4 First consider the pure oscillator Hamiltonian,

Hose = ^ A + ^ fco2 (x2 + y2) + o?zzz | = T + Va
2M 2 L \ /

We want to calculate [Hosc,jz] = [HOXJZ] + [Hosc,sz] = [HOSC,SZ]
where

z~i\Xdy ydx)~id<p
We also find that iz in the stretched system,

is identical to £z (and cp̂  = (p).
The kinetic energy is rewritten in cylindrical coordinates (see sec-

tion on asymptotic wave functions, chapter 8):

1T = --2
1 d d 1 d2 \ 1 d2

pop dp p2d(p2j 2 dC2

and it is immediately obvious that [T,£z] = 0. (Indeed, we have
the general relation [T,*fz] = 0 as should be obvious from the
introduction of chapter 6.) Furthermore, Fosc is independent of cp
and thus
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Indeed, as long as V stays axially symmetric, i.e. by definition
independent of cp, V = F(p,£), we must have [F,/z] = 0.

It remains to calculate

]f\jz] = [t2Jz+Sz] = 0

V-'Jzl = \[j2-f2-s2J
=> [HuoJz]=0

Consider now:

[t'*,Sz\ = Vx,Sz\sx+[*y9fz]sy
= —ih^yS x + ih^xSy = ih (£xSy ~ ^ySx) ^ 0

i.e. tz is not generally a preserved quantum number if an € • s term
is present in the Hamiltonian.

8.5 In the spherical case

Ho = \hco0 (-A{ + p2) - hco0 [iM •  s + \l (f2 - ( / 2 ) J ]
For the spherical eigenvectors, |JV//Q), the energies are

^ {;• = /- 1/2 }

|22 5/2 O) = d5/2 £5 / 2 = 3.

|22 3/2 Q) = d3/2 £3 / 2

|20 1/212) = s1/2 £1/2 = 3.60fico0

For small deformations:

H = H0 + eti; eh' = - f a o 0 ^ 2

where

l (p2) ^

; i.e. (p2) = 7/2 for JV = 2
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7 . / 3fi2

j
Q

(h')/hco0
5/2
0.67

5/2

3/2
-0.13

1/2
-0.53

3/2

3/2 1/2
0.47 -0.47

1/2

1/2
0

For large deformations:

•Eosc («z,  n±) = hcoz (raz + 1/2) + hco± (n±

First order perturbation for the £ • s and /2-terms:

(JVnzAE \£ • s| iVnzAE) = AE

Nn7AZ = A2 N(N + 3)

Nnz

22

f
21 I

f
20 <I

A

0
• 1

1
' 2
2

. 0

2

1/2
1/2

-1/2
1/2
-1/2
1/2

Q

1/2
3/2

1/2
5/2
3/2
1/2

3.5 - 4e/3

3.5 - s/3

3.5 + 2s/3

E/M

'£•*'

0
1/2

-1/2
1
-1
0

>o
Y2'

-1
1

1
1
1
-3

Total
e = 0.75

2.52
3.13

3.33
3.78
4.18
4.06

In the last column, K = 0.1 and \i = 0.02 have been inserted
(assuming that the ^ s and /2-terms are multiplied by the £-dependent
frequency, hcoo)- Note that for each Q, there is one 'conjugate' state
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with negative Q (and inverted signs for A and S) having the same
energy.

H.O.
(e = 0)

4.0

3.5

3.0

2.5 -

d3/2

A/=2 / s1/2 /

\ d5/2

0.25 0.50 0.75

In the figure, the levels at spherical shape have been drawn to the
left and those at s = 0.75 to the right. The addition of first the f • s
and then the *f2-terms is illustrated when approaching the middle of
the figure. Note that the calculations are exact for spherical shape but
not for e = 0.75. The perturbation terms as functions of e are then
drawn by dashed lines and the levels at the two perturbation limits
are connected, noting that levels with the same Q are coupled and
therefore cannot intersect. As there is only one orbital with Q = 5/2,
the calculations are exact (in both perturbation limits) in this case.
The pure oscillator levels are drawn as functions of deformation
by thin dot-dashed lines. As usual, all energies are given in hcoo
units.



364 Solutions to exercises

8.6 The diagonalisation is carried out in an \NnzAZ) basis with basis
vectors |211 1/2) and |202- 1/2).

The following matrix elements are needed:

(202 - 1/2 |HMO| 202 - 1/2) (202 - 1/2 |HMol 211 1/2)
(211 1 / 2 | # M O | 2 0 2 - 1 / 2 > (211 1/2|HMO|211 1/2)

The operator formalism is used to calculate the non-diagonal matrix
elements of £ • s and t1 (the diagonal ones were given in problem
8.5):

(211 1/2 l^-sl 202-1/2) =

(n'z = 1 r' = 1 s' = 0 Y! = 1/2 |<? •  s\ n2 = 0 r = 2 s = 0 S = -1/2)

Further, it is found that the /2-term does not couple the two basis
vectors.

The eigenvalues A are obtained from the equation (K = 0.1):

3.38 - £e - X -0.2
-0.2 3.68 + f e -

= 0

= 3.53 + | ± (0.0625 + 0.1
1/2

or
1/2

That is, the two orbitals 'come closest together' for e = —0.3, see
figure.
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4.2

4.0

A/=2,Q =

3.8

3°

3.6

3.4

3.2

asymptotic
perturbation

theory'

-0.75 -0.50 -0.25 0.25 0.50 0.75

8.7

8.8

8.9

The formula a+\n) = Cn\n + 1) leads to {n\aa+\n) —  (Cn)2. Now apply
the two relations [a,a+] = 1 and a+a\n) = n|n):

(n\aa+\n) = {n\a+a + l\n) = n + 1

=> (Cn)2 = n + 1, which means that Cn = (n + 1)1/2 is one possible
choice.

\ [ax,4] +^ [%' = 1 etc.

- KT 1] —

= j{ [(«*  + a+) (ay - a+) - (ay + a+) (ax - at)]

R+=
at - iaf
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i(R - S) - (R

8.10

8.11

where we have used commutation rules like [R, R+] = 1, [R+, S] = 0
etc.

A(B\A)) = (BA + B)\A) = Ba\A) + B\A) = (a+ l)B\A

n± = r + s 1 j r = (n±+ A)/2

(|/.S|> = (nz + l n±-l A - l 2 + l | / - s |n z n x AE>
= (nz + 1 r - 1 s £ + 1 \t • s\ nz r s S)

In chapter 8, the <f • s operator was derived as

/ • s = (J?+l? - S+S) s z ~ (azR+ - a+S) s _ — ^ (afR ~ a zS+) s+

The only term that contributes is (—1/J2)af  Rs+;

8.12

s+ |S = -1/2) = |2 = 1/2)

= ^ (nz + I)1/2 ̂ r = ~ [(nz +

1 h
2Ma>x

h
M(ox

axax

A + lfaxax + a+a+\)

nx) =
Mcox
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=> {nxnynz r2 nxnynz)

fo* + 1/2) + J~ (ny + 1/2) + -A- (nz + 1/2)
Mcox y z

Spherical shape corresponds to cox = a>y —  a>z = G>O:

9.1 With the number of protons and neutrons equal, the total degenera-
tion for an iV-shell is 2(N + l)(N + 2) (cf. problem 6.7). Thus

N*

N=0

= ^(JV* + 1)(JV* + 2)(iV* + 3) + 2p(N* + 2)(AT + 3)

= |(AT* + 2)(AT* + 3)(N* + 1 + 3p)

AT*
£ = ^ 2(iV + 1)(JV + 2)(N + 3/2)ftcoo

* + 5/2)hcoo =

2hco0 [i(iV* + 1)(JV* + 2)2(iV* + 3) + p(iV* + 2)(N* + 3) ( V +

We now want to express N* as a function of A (and p). The following
equation is obtained:

N*3 + (6 + 3p)i\T2 + (11 + 15p)i\T + 6 + 18p - 3,4/2 = 0

Through the substitution N* = x —  (6 + 3p)/3 = x —  2 —  p, the term
of second order is eliminated:

x3 + (-3p2 + 3p - l) x + 2p3 - 3p2 + p - 3,4/2 = 0

The equation x3 + 3px + 2q = 0 has one and only one real root if
D = q2 + p3 > 0. In our case

V 2 / V 3 /
We have 0 < p < 1 and if we confine ourselves to ^-values of
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practical interest, let us say A > 4, it is trivial to conclude that
D > 0. It is possible to find the exact solution of any third order
equation but, in this case, it is easier to make an ansatz

N* = aA1/3 + p + yA-l/3 + ...

This expression is inserted in the equation. The requirement that the
coefficient of the ^4-term should vanish gives

a3 - 3/2 = 0 => a = (3/2)1/3

The .42/3-term is

3a2jS + (6 + 3p)a2 = 0 => p = - ( 2 + p)

Finally, y is obtained from the 41/3-term, leading to the following
solution:

which, inserted in the expression for the energy £, gives

where E and £sheii are given in the text of the problem (in the
present approach, the division of the ^1/3-term between E and £Sheii
is somewhat arbitrary).

It is instructive to draw £sheii and compare it with figs. 3.9 and 9.7:

iu

40

20

n

20

1 1 ' 1 ' I ' 1 ' 1 '

— / \ / \ /

f 11 \ /

, 1 . 1 . 1 . 1 . 1 .

1
\

1

1 I

\ —

\ / "

. 1
20 40 60 80 100

Mass number A
120 140
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9.2

'3y- id) "2 (« 3 - 3'2o - K s ) "212{3 -3 ({2+<
Now introduce f = (1/^/2) (a+ + az) to obtain

^ + 3a+ + 3a+ara, + 3az + (az)3]

where the operators have been put in so called normal order, i.e.
creation operators before annihilation operators ([az,af] = 1).

Similarly:

(£2 + r\2) C = (I/72) (1 + R+R + S+S + R+S+ + RS) (at + az)

where
4 = (1/V2) (i?+ + S+); [U, R+] = 1, etc.

We now obtain the selection rules for the £3-term:

Anz = riz-nz = ±1, +3; Ar = As = 0; i.e. An± = AA = 0

and for the (%2 + *;2) C-term:

Anz = ±1; Ar = As = 0,+l; i.e. An± = 0,+2, AA = 0

(the selection rule mf + /1 = m of the matrix element (Y>m | 7^ | Y^^)
makes it evident from the beginning that AA = 0).

Expressed in nz and n±, the harmonic oscillator levels are given by
(see chapter 8)

nz + 3/2) hcoo + (l/3)sha>o (n± - 2nz)

a/3) + Anz(l - 2e/3)) hco0

Thus, at large positive s and for the orbitals that couple through the
p3Y30-term, bE is smallest for An±_ = 0, Anz = 1:

nz

oc -^-(r s nz + 1 |3a+a+az + 3a+ - 3 (1 + K+l? + S+S) a+| r s nz)
V2

= 3 ( ^ " w ± ) ( r 5 n z + 1 |az+| rsnz) = 3(nz - n±) [(nz + 1)/2]1 / 2

For JV = nz + nj_ fixed, i.e. essentially for fixed mass number, this ma-
trix element is largest for nz being maximum and n± being minimum.
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This corresponds e.g. to the coupling between [NnzA] = [550] and
[660] orbitals. The matrix element is, however, also quite large for nz
minimum and n± maximum, e.g. couplings between [NnzA] = [404]
and [514]. These orbitals are illustrated in fig. 9.5. They are impor-
tant for the formation of 'mass asymmetric fission barriers' not only
because the matrix elements are large but also because they have a
high degeneracy and because £4 helps to make them approach each
other at large 8.

9.3

G = a0 + ocie + oc2e2 + a^e3 + ...

The smearing function is

U =

We require that

G(e') = G(e)f(

G(e') = f" G(yu + e')yf(u) du = T G(yu + e')-±-fC0II(u)e-<2 du
J—oo  7—oo  yftoo

(a)

G = ao + <x2e2; /COrr(") =

2a.2yue' + <X2e/2) —r-  (ao + «2" 2) e~"2 du

-a2

ao + \a2 = 1
jao + \a2 = 0

We have used the general solution

,00 ( V 7 1 forn = 0
/ xnQ~x dx= < 1 x 3 x 5 . . . ( n - i y ? r / 2 n / 2 for n = 2,4,6,...

J~co [0 for n odd
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The smearing function is more peaked than a pure Gaussian and
becomes negative before it goes to zero,

(b) With G being a function of order 3, we obtain

<x2e '2

(ao (ao + f ) + y2 (a2 + 3a3e') ( f + 3-f
leading to the same equations for ao and a2 as above,

(c) From the special cases studied it is straightforward to see the
pattern that develops. Thus, in the general case:

1
l

1 3 3-5
2 2* IF

1 3 3-5 3-5-7
2 2* IF 1T
3 3-5 3-5-7 3-5-7-9
2* IF "? ?~
3-5

\

a2

V / \
The regular pattern makes it rather straightforward to find the
solutions for polynomials of order 4, 6,

10.1 The action integral

2 r1 r
X = - / 2fy-0.096

The integral to be calculated is

1/2

The substitution a2 = sin2 6 leads to

T 3 2 TI = s T sin3 0 cos2 0 d0 = - 2 T ( l - cos2 0) cos2 0 d(cos 6)

With a surface coefficient of the mass formula, as « 17 MeV, we
obtain for 238U that £ s « 650 MeV. For division into two equal
parts, the reduced mass fi is 1/4 of the mass of the mother nucleus,
li = MA/4. With h2/(Mrl) = 28.8 MeV and with Ro = ro^41/3 we
obtain

—  [lk\x - 0.096 Is)
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t1/2 « In 2  • 10~21 exp ( 5 3 ^ ) s

f$ « 10 16 years « 3 x 10 23s ^

ABr = 0ABr => t!/2 changes by approximately a factor of 102.

10.2 From fig. 4.2, we find that when r is changed by about O.O5/?o away
from the ground state minimum, V is increased by about 3 MeV:

1200
V = Vo + — 2 - (r - do) 2 MeV (l?o = 1-2 • ^ 1 / 3 fm)

With the mass being m, the H.O. potential is generally written

V = ^mco2r2

(a)
MA MAoi2 1200

8-1200 h2 V / 2 «
) 5 4=> hco =

The lowest vibrational state for a one-dimensional oscillator is at

Eo = \h(OQ « 2.7 MeV

(b)
m = l O M ^ 4 = > £ o w O 9 M e V

The 3-vibrational state of 240Pu is observed at 0.86 MeV. For ftcoo =
1.7 MeV, the vibrational frequency becomes coo = 2.7 x 1021s-1.

10.3 The solution to this problem can be found in elementary books on
quantum mechanics.

10.4 (a) 264108->260106 + <x

B(264108) = 1928.3 MeV
5(260106) = 1910.3 MeV \ => £ a = 10.3 MeV
B(a) = 28.3 MeV

i 10~12 years
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(b) 294110 -+ 290108 + a

£ a = 2089.6 + 28.3 - 2110.8 = 7.1 MeV => t1/2 « 10° years

(c) 2f«Cf  - ^ g C m + a
J5a = 1993.5 + 28.3 - 2021.3 = 0.5 MeV => tl/2 * 1O156 years

It is also interesting to see how t\/i varies with £K. For example,
in the case of 294110 -*•  290108 + a, the Taagepera-Nurmia formula
gives

E«  (MeV)

ti/2 (years)

4.1

1020

6.1

105

7.1

10°
8.1

10~4

10.1

io-u

11.1 Denote the longer axis by b and shorter by a. With a mass AM
of the nucleus, we obtain for the rigid moment of inertia (rotation
around the x-axis):

The integrals are solved as in problem 7.2:

MA

For a central sphere of radius a:

^sphere =
 2MA

 a2

Thus, for the moment of inertia in the two-fluid model:

^rTF _ ^ . _ ^sphere _
<r rig "" <7 rig <f rig ""

/ r i g (2>A*)2-1 f 0.26 ; fc = 1.3fl2 (0.26;
1 \0.60;j ng W/ "

b = 1.3a is a typical value in the ground state of a deformed nucleus
while b ^ 2a in the fission isomers of the actinides or in the superde-
formed high-spin states, discussed in chapter 12.
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11.2 With Ei = (fc2/2/) / ( / + 1) we get

For 178Hf

(keV) (AJS//47 + 6) (keV)

0
2
4
6
8

0
93.2
306.8
632.5
1059

15.5
15.3
14.8
14.2

The quadrupole moment of a spheroid with half-axes a and b is
according to problem 7.2

To take account of volume conservation to first order, we define

b = Ro ( l + f«)
; 2?o = 1.2 • v4J/3 fm

a = Ro (l - je)

(this e is to first order the same as e of the M.O. potential)

-2s + O (e2) =* e = 0.29

h2 5h2

11.3 The orbital with j = 5/2 and jx = 5/2 is given by (t = 2)

^22(x)ax

where ax is the wave function having spin up in the x-direction. The
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transformation of ax is trivial:

where az and /?z have spin up and spin down in the z-direction. The
spherical harmonics are given by

(the symmetry requires that Yi
amplitude).

After some straightforward calculations

and Y2—/*(̂ ) enter with the same

Y22(x) = - ( |

We now expand:

\j = 5/2 j x = 5/2) = A |j = 5/2 jz)
jz

Combination with the spin wave function leads to

= 5/16 "±3/2 = 5/32 "±5/2 = 1/32

Compare these numbers with those for recoupling of a j = 13/2
shell, which were given without proof in the text. Note that neither
(z nor sz are good quantum numbers but £ = 2 and j = 5/2 are
preserved.

11.4 With the kinetic energy of the projectile being T MeV, we obtain for
its velocity (which defines the x-direction)

/ 2T \ */2
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We must go to the centre-of-mass system. In this system, the velocities
are

The angular momentum with respect to the centre of mass is thus
( 4/3)

/3R2\
A 1A T A 1AA\ + A2 \ 4 ) A\ + A2

where [A2/(Ai +A2)] 3R2/4 and [Ai/(Ai +A2)\ 3R2/4 are the per-
pendicular distances to the respective velocity vectors. With h2/Mr% =
28.8 MeV, this leads to

1/2

(a) Ax =A,A2 = 160, T = 60 MeV => / ~ I6h
(b) Ax = 40, A2 = 124, T = 180 MeV => / ~ 63ft

The kinetic energy from the motion of the centre of mass is

The rest of the kinetic energy is transformed to excitation energy
(including rotational energy):

2Texc = AiMvj - A
 A

 A Mv\ =1 Ax+A2
 l

In case (a) \AiMv\ = 60 MeV and Texc = 58.5 MeV.
The total excitation energy is (B = binding energy)

£exc =

= (1336.5 - 1309.5 - 28.3 + 58.5) MeV = 57 MeV

For / = 16ft, this corresponds to about 54 MeV above the yrast line
(see fig. 11.11). Thus, if six neutrons are emitted each carrying their
binding energy of about 8 MeV and in addition a small amount of
kinetic energy but no angular momentum, an / = 16 state close to
the yrast line of 158Er is reached.



Solutions to exercises 377

Case (b) AiMvj = 180 MeV; Texc = 136.1 MeV

= (1336.5 - 1050.0 - 343.8 + 136.1)MeV = 79 MeV

With an estimated yrast energy of 35 MeV for / = 63ft, this suggests
the possibility of a (40Ar, 5n) or (40Ar, 4n) reaction.

12.1 Coordinate transformation:

x = xi
y = X2 cos cot — X3  sin cot
z = X2 sin cot + X3 cos cot

The velocities are then given by

x = xi
y = (x2 —  C0X3) cos cot —  (±3 + C0X2) sin cot

z — (*3 +  WX2) cos cot + (x2 —  0*3) sin cot

The kinetic energy is:

= -m [x? + x\ + x] - 2co (jc2*3 - X3X2) + co2 (x\ +

The Lagrangian is given by S£ = T —  F where F is the potential
energy, F(xi,X2,X3). The generalised momenta are

5if
T T = WX2 - mcox3
(7X2

P3 = -T-r- = mX3 +
3X3

The Hamiltonian is given by

= 5Z 2m^ "" 2mC°2 (^2 + x^) + F (*i>X2,X3)
= T + mO) [X3 (X2 —  COX3) — X2 (X3 + COX2)] + V (Xi, X2,:
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, x2,

where A is the angular momentum operator. This is thus equivalent
to the cranking Hamiltonian, hf° = h —

12.2 We use the same formalism as for the rotating potential and define

with summation over occupied orbitals. The energy is given by

E =

and minimisation under the constraint of volume conservation,

a>ico2(O3 = I COQ 1 , leads to

(Oilii = co222 = 0)3X3 = constant

The expectation value, (x£) is given by

= S (v I iL-k ^ak+1 - {at°t+aka^ Iv)
nk + - } =

2 / = constantMcol
The shape of an equipotential surface is ellipsoidal with half-axes a,
b and c proportional to l/co,-. Thus

where the integral is solved as in problem 7.2.
Equivalent expressions are found for (x^) and (X3). Consequently,

in both cases (xk) oc (l/a)kj.

12.3 The parameters s and y are defined as

coi = co0(£,y) l--ecosly + y
. 2 / 2 7 1
l - - 8 C 0 S ( y - y



Solutions to exercises 379

( 2
,y) ( l - - e c o s y

with the self-consistent frequencies

£0 (2il223)1 / 3 /Si = coo f 1 + ^cosy + - ^ siny) (E12.1)

S i ^ a ) V3 /£ 2 = ^0 ( l + \s cos y - - ~ sin y) (E12.2)

©0 (S1S223) V3 /£ 3 = coo ( l - | c cos y) (E12.3)
We thus have three equations to determine £,y and coofoy)-

(E12.4)

This is the volume conservation condition and gives a>o/coo a s a

function of s and y:

(l)-(2)=>esiny = ^ — S1S2S3 S^-ST 1 (E12.5)2 COQ \ / V /

(On / ~ ~ \ 1/3 / ~ „ t \
(1) + (2) - 2 x (3) => £ cos y = —- (SiS 2S3J {if1 +1<2 ~ 2 £ F )

(E12.6)
Eq. (5) is now divided by eq. (6):

y = arctan

Eqs. (5) and (6) are squared and added. The value of cao/a>o is taken
from eq. (4):

2 /V-2 i y-2 i y-2 y - ly -1 y - ly -1 y - l y - l Wj I ẑ j ~r ^2 ' 3 — 1 2 — 2 3 — 3 1 /
£ = — 3 s^: s^-:

12.4

a2 + a2j (a2 + <i2)
2Ma>2
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+ (4a3

where the summation runs over occupied orbitals. We have used
the fact that operators that change the number of quanta give no
contribution to the matrix element.

occ

stat = 0)2

h

Essentially, the same operator is found in Hamiltonian hosc. A
transformation to the operators a+ and at leads to

occ

= E k /I 1
+ ^ + K+«« ( - cos 2 + + - sin2

ta« ( — sin 2 6-\ cos2 6) v )
P P \ ( O 2 CO3 ) \ I

We have omitted terms of the type a+ap and ataa because (v \a+ap\ v)

0, etc. We write (h/2co2) as (h/2co2) (cos2 (f> + sin2 (/>) and
in a anal Th d f i i t i f Z d U a

( )
in an analogous way. The definitions of Za and Up are now used to
obtain

— cos 2 0 + — sin 2

Q>2 0)3
> j + ftE« ( —
/ \CO2

sin2 0 + — cos 2

0 / ~ - \ 1/3 ~
The frequencies are given by a>i =COQ (21X2^3) /Zi where £2,3 =

-stat — 1/3

- 72) cos2

2 4sin

x [(Sa + Z,,)2 - (S/, - S«) (/ 2 - 72) V2 (cos2 </. - sin2
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We have tan 20 = p =>

s 2 d> - s i n 2 4> =cos2 d> - sin2 4> = cos 2 * =
1 (T2 —  T2)1/2

With Im = I<p —  2 a we finally arrive at

12.5 The ground state configuration of 24Mg is determined by some simple
reasoning. With the N = 0 and N = 1 shells completely filled and
with eight particles in JV = 2, one obtains the total number of quanta:
2 = S x 4-Sy + 2Z = 24 x 3 x 1/2 +12 x 1 + 8 x 2 = 64. The first term
comes from '1/2' in the definition of the S,- terms. For / = 0, the total
energy is given by E = 3ha>o (2xZyZz) ' . For a fixed sum, Z, it is
easy to conclude that this expression has a minimum if S z is as large
as possible and S x as small as possible (assuming 2Z > Zy > Sx). In
this case, for the first four particles in the N = 2 shell, we can put
both quanta in the z-direction while for the next four, we put one
quantum in the z-direction and one in the y-direction. Thus, there
will be no quanta in the x-direction for N = 2 and S* is minimised
simultaneously as Sz is maximised (the N = 1 shell is completely
filled so, in this shell, there are as many quanta in all three directions).
For the ground state of 24Mg we now find

Ex = 16, Xy = 20 and Sz = 28

In more complicated cases, there might be a conflict between max-
imising 2Z and minimising Ex but it is then straightforward to
evaluate E for a few different cases. Furthermore, it might be advan-
tageous to excite particles to higher shells, for example four particles
in N = 2 and four in N = 3 in the present case. It turns out, however,
that the configuration given above has the lowest energy for 24Mg.

The ground state configuration of 24Mg is triaxial and three rota-
tional bands are formed from rotation around the x-, y- and z-axes;
in practice by putting Si = 2 x , 2 i = Hy and Si = 2Z, respectively. It
is then straightforward to insert in the explicit formulae to calculate
how 8, y and E vary with / and which are the maximal spins for the
three bands. The solution is given in graphical form in the figures of
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Cerkaski and Szymanski (1979) and also in fig. 24 of Ragnarsson et
al. (1981).

If we instead would confine ourselves to prolate ground states,
we would put the four particles outside 20Ne in the [NnzA] = [211]
orbital where we would then make an equal distribution of the per-
pendicular quanta in the x- and ^-directions leading to 2X = 2^ =
18,2Z = 28. The energy of this configuration is only marginally
higher than for the triaxial configuration, so in a more realistic po-
tential, 24Mg might very well come out as axially symmetric.

12.6

/ = /co => hco = Ih/f = 5Ih/(2MA5/3rl)

where the rigid moment of inertia, /ng = (2/5) MA5^TQ9 as calcu-
lated in problem 11.1 has been inserted. With (ft2/Mr^) = 28.8 MeV
we have

and thus co = 5.9 x 1021 s"1. As the moment of inertia scales as A5/2>,
the same rotational frequency leads to

J = (160/20)5/3-8ft = 256ft

for A = 160. The radius is proportional to Al/2>, so the same velocity
on the surface leads to

/ = (160/20)4/38ft = 128ft

13.1 The kinetic energy is

= mxf\ m2f2
2

2 2

The potential energy is

F = F ( | n - r 2 | )

The Lagrangian is
JS? = T-V

The canonical momenta are

= f^L => / P1

dqj 1 P2 = rn2t2
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Introduce
miri+ra2r2 ._r = n - r2, R = — ; M = mi + m 2

dx dx\ dx d±2 dx
Express r and R in ri and r2:

^ m2 ^ m l
ri = R + - j r ; r2 = R - - j r

M M
Then

Px = W1X1 — + m2^2 ( —— I =  X "*lt'*x ;(cycl.)
M \ M J M

= m2pi - mip2

^ P ~ M
Similarly:

The Hamiltonian is

We now express pi and P2 in terms of p and P and then T = T(p, P):

2mi V M 7 2m2 V M

where \i is the reduced mass, \i = m\m2/{m\ + mi). We now get

or equivalently

2^ 2 w

If mi = m2 = m then /i = m/2.

13.2 The triplet wave function
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where the one-particle spin wave function is denoted by <f>m. The
m —  1 case is trivial (m = 1 => mi = ni2 = 1/2):

X\ = (1/2 1/2 1/2 1/2|11)01/2(1)01/2(2) = «(l)a(2)

For m = 0, then mi = 1/2 and rm = —1/2 or mi = —1/2 and
m2 = 1/2:

xi = (1/21/21/2 -
+ ( 1 / 2 1 / 2 - 1 / 2 l/2|10)/?(l)a(2)

We use the tables of appendix 6B and the symmetry relation

to obtain

The wave functions x~i a n d Xo c a n ^ e derived in a similar way.
We will now instead determine xl from

X = Aa(lH2) + Ba{l)P(2) + Cj8(l)o

and require S2
X = 1(1 + 1)Z ; SzZ = 0 ; (z|z> = 1

SzZ = 0 = > ^ = £> = 0

Expand S2 = ŝ  + s\ + 1s\zS2Z + S1+S2- + si_S2+ and thus e.g.

S2a(l)/?(2) = [| + | +

The normalisation is B2 + C2 = 1 => C = B = 1/^/2 in agreement
with Xo derived above.

13.3 From the given formula:

(<ri • <r2) (ai * 02) = a\ + ioi • (<r2 x a2)

As (72 = 3 and (72 x a2 = 2i(72, we obtain the desired relation

((71 ' (72)2 - 3 + 2(71 ' (72 = 0



13.4

Solutions to exercises 385

We now assume

i.e. xa is an eigenvector to a\ • a 2 with the eigenvalue X. The relation
above now gives the equation

X2 - 3 + 2X = 0

with the solutions X\ = 1 and X2 = —3 (from the main text, we
already know that the corresponding eigenvectors are the triplet and
singlet states).

PG = - (1 + (7i • <x2); with h = 1: s = a/2

o2 = 4si • S2 = 2 (s2 - s] - s2}

- - -= 2 f 2 - - - - j Z = Z

The space of the two-spin wave function is spanned by a(l)a(2),
a(l)0(2), /J(l)a(2) and /5(l)j8(2). Then, for example

(si+s2_ + si_S2+ + 2sizs2z)a(l)i?(2)

i.e. an exchange of the spin components. The exchange property is
shown in a similar way for a(l)a(2) etc.

13.5

For the singlet state #0 •

V(r)xl = f(r)
For the triplet state xL '•

V(r)xl = /(r)
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triplet = 2Fsingiet => 1 + a = 2(1 - 3a) => a = 1/7

13.6 (a) From the relations

•  <T2X0 = l l

= 3*8= - 3 * 8
it follows almost immediately that

A + B = l, A-3B = 0
corresponding to

A = 3/4 and B = 1/4

Similarly, C and D are obtained as C = 1/4 and D = —1/4.
The relation P2 = P follows from the projection properties but
can also be shown directly by help of the formula of problem 13.3.

(P(S = I))2 = 1 (3 + ffl • <r2) (3 + <ri • <r2)

= ^ [9 + 6*i •  o2 + fa •  <r2)2] = J (3
(b)

\j1mij2m2) = ^ O'imi;2m2| JM) |;'i;2JM)

^ o(l)j»(2) = (1 /21 /21 /2 - 1/2|  10>Z0 + (1 /21 /21 /2 -

Insert the Clebsch-Gordan coefficients

Alternatively:

P(S = l)a(l)jff(2) = 1 (3 + ff 1 • «r 2) a

= (4 + 4+ + e

c =
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(we have used the formulae aza = a, a_a = 2/J etc., which are
equivalent to szoc = ^a, s-cc = /? etc.).

Sn = -2 (^ 1 • r) (<*2 * r) -

We want to show that / Sn dQ = 0

= I (-5 (°lxX + Glyy + auZ) (a2xX + Glyy + °2zZ) ~
= / ( ^2 (x2(Jlx^2x + y2°ly<*2y + Z2(Tlza2z) - (7l * (72 J

= (47T —  4n)a\ •  <72 = 0

The integrals entering in the expressions above are easily solved from
symmetry considerations:

^ = 0 etc, J'a-J^-J**-*
where the last equality follows because the sum, / dQ = 4n.

13.9 Because (1 —  o\ -(72) projects out the singlet state it is enough to show

^tensor ( 1 - ^ 1 ' <*2) = 0

• er) ((72 • er) - (7i • a2] (1 —  * i • ^2) =

er) ((72 • er) - (7i • (72 - 3 ((7i • er) (a2 '

With the formula from problem 13.3

((72 * er) ((71 • (72) = ((72 * er) ((72 * * l ) = er • (71 + i(72 * (er X (7i)

Then (with the same formula)

Furthermore

((7i • er)i(72 • (er x (71) = i((7i • er)((72 x er) • (7i

= (same formula again) = i {er • ((72 x er) + i<ri • [er x ((72 x er)]}

= i(72 • (er x er) - (7i • [(er • er) a2 - (er • a2) er]
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= -(7i • a2 + (<ri • er) (<T2 • er)

=> ^tensor (1 ~ *1 ' Ol) = - * 1 * <*2 ~ 3 + 3(71 • (72 + (*1 • O2f = 0

where for the last equality, the result of problem 13.3 has been used.

13.10

, (<FI • er) (<72 • er)] = \s\ + s\ + 2si • s2, (*i • er) (<r2 * er)]

t (2 er)]

j er)] + b i , (cri • er) ((72 • er)] • <72)

where we have used [s,s2] = 0; s = \a

[ai, ((7i • er) ((72 • er)] = (7i • er [(7i, (72 • er] + [au a\ • er] a2 • er

where \a\,a2 ' er] = 0 because all operators of particle T commute
with those of particle '2'.

We now consider the x-component:

[(7, (7 • T]X = [ax, a-r]=<Tx [GX, X] + [aX9 <JX] x + oy [crx, y]

+ [oX9 oy] y + oz [<TX, z] + [ox, Gz\ z = 2i (yaz - zoy) = 2i (r x a)x

=> [(7i, ((7i • er) ((72 • er)] = 2i(er x (7i) ((72 • er)

=> k i '^2 , (^1 *er)((72 *er)]

= 2i [(71 • (er X (72) ((71 ' er) + (er X (7l) ((72 ' er) • (72]

= 2i [(7i • (er x (72) ((7i • er) + (a2 • er) (72 • (er x a)]

= 2i {(er x (72) • er + i(7i • [(e r x a2) x er]

+ e r • (er x (7i) + i(72 * [er x (er x ai)]}

= -2 |(7i •  [e2(72 - (er •  (72) er] + a2 •  [(er •  (7i) er - e2(Ji] j
= 0

where we have used the formula of problem 13.3. To prove [J, Ftensor]
= 0, we only need to consider

[J, ((7i • er) ((72 • er)] = [L + S, ((7i • er) (a2 • er)]

From the calculations above:

[S, ((7i • er) ((72 • er)] = i [((72 • er) (er x * i ) + (<ri • er) (er x
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er)] = ((7i • er) [L,(72 • er]

389

er] a2 ' er

which follows from [Lx, y] = iz, etc. This then gives

[L, ((7i • er) ((72 * er)] = - [S, ((7i • er) (<r2 • er)]

and thus [J, Ftensor] = 0.

13.11 The total wave function in a singlet spin state is XO^LML- The
total wave function must have a good total angular momentum J.
Furthermore, in a singlet state, S = 0. Because J = L + S, this means
that also L is well defined, namely L = J. The matrix element of
L • S then becomes

l)-0]=0

13.12 From appendix 13B:

1 r (47r)i/2Zl

,w(r) ( l
(lo

Q =
1/2

1 / 2

vST=i
1 / 2

x ( ^ (72o)3 + ^ 2 ^ 2 0 ^ 2 1 + ^22^20^2) r2 dr dQ

where the other terms disappear because of orthogonality. The
addition theorem (appendix 6B) is used to calculate

/ LM

1/2
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5 V 2r222r222

With the Clebsch-Gordan coefficient inserted:

- ( 5 V

10 ( vi4A 714) + 5 C 714X714)]

13.13

Q = JQJ (u(rMr)y/2 - \w2(r)^j r2 dr

-^(IK)1/2 e - ; w(r) = _ ^ _ _ ( 2 K ) 1 / 2
 e-«

^ 10 (1 + n2) \ 2K2 2

Q = 0.282 fm2 => n ~ 0.25

The amplitude of the D-state is

14.1 The wave function is given as

\UIM) = (Qi) YM (Q2) ̂  ( r i )R^ (r2)
mm!

m
(l,

( " 1 ri) ^ (r2) —  K-

r2)
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r2 dr J VAYtl
mm! mi'

+1) nMl
4n(2L + 1) mm'M

mm' /i^' LMi ^ '

where the addition theorem has been used twice and then the or-
thogonality of spherical harmonics.

The orthogonality relation for the Clebsch-Gordan coefficients
now leads to

(aiM\ - KS (n - r2) vnu) oc -K

14.3 The basis states are

amamam'amf\°) ' m>m' = !5253,m + ni

The Hamiltonian is:

3 3

k=\ k'=\
The matrix elements are

TjG S~<

\ k k'

(a) Assume n = m and n' = m'. Then, the matrix element is different
from zero only if k = k! and if either k = m or k = m'.

=> (HG)n'n,n'n = ~ G + (—G) = —2G

(b) n — m and n r ^ mr. Then (i?G) ^ 0 if k! — ni and k = vl\

(HG) = -G

As the order between n and nf is unimportant, these are the only
possibilities:

/2G -G -G
(HG)n,nm,m = - G -2G -G

_G _G _2G

The rows and columns correspond to values of 1 2, 1 3 and 2 3
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14.4

Solutions to exercises

for the indices n} n and mr m, respectively. The eigenvalues X\ are
now obtained from the determinant equation:

- 2 G - X -G -G
-G -2G -X -G
—G —G —2G  — i

= 0 = - 4 G

tat - a$a$amam)
m,n

m,n

where Q is the degeneracy and Jf the particle number operator.

[HG,A+] =-G[A+A,A+]

= - G (A+ [A,A+] + [A+,A+] A) = -GA+ (Q - JT)

where we have inserted the commutator derived above and further-
more, of course, [yl+,yl+] = 0. We now want to change the order of
A+ and Jf and therefore need the commutator [A+,JY*]. The gen-
eral method in deriving such commutators is to put all operators in
so-called normal order (as is done above), i.e. with annihilation op-
erators to the right and creation operators to the left. One then finds
[A+9JT] = -2A+ and consequently [HG,A+] = -GA+{Q - Jf) =
-G(Q -JT + 2)A+.

14.5 We want to prove that

[HG, (A+Y] =-Gp(il-^ + p + l) (A+Y
We assume that the relation is valid for \p —  1)' and use the commu-
tators of problem 14.4 to calculate:

=A+ [H6,^-1] + [HG,A+] 1

= -GA+(p - 2) (A+Y
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- JT + 2 + p) (A+)p -= -G(p -

Thus, the relation holds true for all p.

14.7 The BCS wave function is

393

2) (A+)p

We use [a-^a^ a+af] = 0 if \i ± v

= l if

14.8

0

= 0 Vva-Vav) F/iFK

(o\(uK

V2
= UKVKUllVll

0

= /c
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14.9 The wave function ¥2 may have a different number of particles
than has Yo. Assume that there is an excess of 8N particles in ¥2
compared with ¥0. We must correct for this. As the 'marginal energy'
of the 'marginal particle' is A, the correction is to first order equal
(-X&N). The corrected excitation energy of a two-quasiparticle state
is thus

14.10

£fc = 0F2|JJ|<F2> "

With 6JV = ( ^ K l ^ ) - OFoKl^o) we obtain

Efc =

= (-V, + Upa+af) n (Uv + VvaUt) |0>

u> co,co'

= # s p - XJT + H G

The excitation energy is calculated from the expression of problem
14.9. The matrix element of Yo was given in the main text (cf.
problem 14.8)

This result can be taken over when calculating the matrix element
for ¥2 if for index \i we make the substitution Up  —•  —  Vp, Vp —>  Up\

(V2 \HG\ V2) = E E UaVaUrfVa, + 2 (-

i-y,)2 + E K +
coj=p
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- K + ui
co,co'

Terms of order G are now neglected and we obtain

f£fc =
7 2 —  1V2\ (P — ) \

CO

With A = G £ w UmVa, U2 - V2 = (e^ - X) /E^ and

£exc ^ \?l* ^y
2 = ?

2 A 2 ^ 1 I ?

14.12 The one-quasiparticle state is *Pi = a+ n v ^ (Uv + Vva+af) |0). It is
then straightforward to calculate (cf. problem 14.8)

H - e^ - X)

co+co'

The ground state energy is now subtracted, terms of the order G are
neglected, the definition A = GJ2VUVVV and the relations 2UVVV =
A/£v, Uy —  Vf = (ev — X)  /Ev are used to obtain an excitation energy
as

, = [ ( , , - X? + A2]

14.13

£(A) - £(0) = p f (lV2 - 2) e de + p [ 2V
J-s v ' h

e de-

2F2 = 1 -

£(A)-£(0) = £(- (e2+A2)l/2 - 1 )e de

ede
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The two integrals are identical. Their sum is

2 Jo V e de

= S2-2
e(e2+A2)l/2

I « S 2

where we have used the relation (2S/A) = exp(l/Gp) given in the
main text. We now obtain

-E(0) = - ^ A G - ^ = -2'

14.14 We know that the fermion anticommutator relations are fulfilled by
the particle operators

{av?a^} = |a+,a+ | = 0 ;

It now follows that

{av,a+} = {(Uvav - Vya£), (ll^ - V^)

= UVU^ {av,a+} + VyVp {d+9afi} = (t/J + Fv
2) ̂  = dVfl

if C7y + Fv
2 = 1. The other relations are shown in a similar way.

14.15 Start from the definitions

av = C/v̂ v + Vva+

The first equality is multiplied by Uv and the second by Vv. The two
equalities are then added:

C7vo+ vav- = C/V2a+ + Vfaf => a+ = I7va+ + Fvav-

if t / 2 + Fv
2 = 1. The expressions for av, â ~ and «v then follow directly.
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14.16

fl'(A) = £ (ev - X) (fl+ov + 4av-) - A £ (a+4 + a^v)
V V

= £ > * ~ A) [(C/Va+ + Fvav) (t/vav + Kva+)
V

+ (Uv<x$ - Fvav) ([/v«v -  Fva+)]

- A 2 [(Uva+ + Fvav) (I7votf - Fvav)

The terms of type a+a, etc. are now collected and the commutation
relations are used to obtain HQQ, H\\ and if20 as given in appendix
14A.

14.17

|A> oc J]av«v |0> = I ] (U vav - Vva$) (Uvav + Fva+) |0)
V V

x J ] {U2
vava-V - Vfatat + UVVV (ava+ - a+Ov

V

We now use ava+ = 1 —  a+av and the fact that a^ |0) = av |0) = 0 to
obtain

|A) oc n (UVVV + VfaUt) 10} = I I ^ 1 1 ( ^ + Vvaiai) |0>
V fi V

Normalisation of |A) now leads to

14.18 For the linearised pair field, the ground state energy is given by
(appendix 14A)

£(A) = Y,2(ev-X) Fv
2 - 2 A ^ UVVV + ^

v>0 v>0

where A2/G = G (F+)2 is the constant term of HG. For A = 0, this
energy becomes

(note that, for the linearised field, the diagonal pairing energy disap-
pears). The sums are now replaced by integrals and the Fermi energy
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X is put equal zero. The calculations are similar to those in problem
14.13. The result is

E(A)-E(0) =

A2

For S = 15 MeV, p 1 = 0.35 MeV, we get as a function of A

?
so
UJ
<;
Uj

-1

X 0.4

\

IG = 0.06 MeV

0.8 1.2

y
/

/ 1'6 A
/ (MeV)

The minima of these curves correspond to the BCS solution. For
G = 0.06 MeV, the minimum is for A ^ 0.06 MeV and the pairing
energy is negligable.

14.19

= 4 II

- Vpafi) J ] {Uv +
V

(^ + Vvat4) 10)

Vva+4

if Uj

(Uv
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strong coupling 183ff 249-250
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time-reversal 116, 126, 130, 275f, 294
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two-particle problem 265ff
two-quasiparticle state 198ff, 307f

parity 267
Pauli principle 266
reduced mass 266, 280f
singlet state 267ff
symmetries of wave function 265fT
triplet state 267ff

vacuum state 294
quasiparticle vacuum 301, 322

valence particles 66ff, 94ff, 182, 218f, 228fT, 250
vector coupling coefficients 85
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