
3. Introduction to threads

In this chapter

• What is multithreaded programming?

• Constructing concurrently running Threads

Modern computers have the ability to perform multiple tasks seemingly, i.e. running multiple programs

or processes, simultaneously. Strictly speaking, a single CPU can perform a single computation at a time.

But the high speeds of the processors and the ability of modern operating systems to schedule which com-

putations are going to be performed at each moment make the multitaksing possible.

Multithreading, on the other hand, extends the idea of multitasking and allows a single program to per-

form multiple taks simultaneously (or strictly speaking, concurrently on a single CPU ). Each of these tasks

is called a thread. The programs which can run more than one task concurrently are called multithreaded.

This technique of programming is often named as parallel programming.

Multithreading is extremely useful for a psychophysics experiment. Suppose that you want to present

your observers an animation and ask them to adjust the luminance of a test patch in the scene. In order

to allow a smooth flow of the animation, you can construct three threads which perform the following three

tasks: One for displaying the frames of animation, a second one for getting the observer response, and the

third one to re-render the stimulus and change the luminance of the test patch depending on the observer’s

response.

3.1. Constructing concurrently running threads

Although extremely useful, multithreaded programming can get very complex. In this chapter I only intro-

duce how to construct a new thread and run an experiment in that new thread. Later in Chapter XX, we will

work on a more complex example of multithreaded programming.

The creation of a thread is actually quite straightforward. You place the code that performs the task in

the run() method of a class which implements the Runnable interface (see the references listed in Chapter

XXX for more on object oriented programming and interfaces)

class RunnableTest implements Runnable {

public void run(){

// code to perform your task

}

}

next you construct an object of that class, then construct a Thread with that object and finally start the

Thread. Here are those three steps

30



3. Introduction to threads

Runnable test = new RunnableTest();

Thread experiment = new Thread(test);

experiment.start();

I will use the same example as in previous chapter to emphasize how to construct a new thread. Here is the

multithreaded version of HelloPsychophysicist example from Chapter 2.

/*

* chapter 3: HPThreaded.java

*

* Multithreaded version of HelloPsychophysicist of Chapter 2

*

* displays the text "Hello Psychophysicist (Threaded)"

* and two images on an otherwise entirely blank screen

*

*/

import java.awt.image.BufferedImage;

import java.io.File;

import java.io.IOException;

import javax.imageio.ImageIO;

public class HPThreaded extends FullScreen1 implements Runnable {

public static void main(String[] args) {

HPThreaded fs = new HPThreaded();

fs.setNBuffers(2);

Thread experiment = new Thread(fs);

experiment.start();

}

public void run() {

try {

displayText("Hello Psychophysicist (Threaded)");

updateScreen();

Thread.sleep(2000);

blankScreen();

hideCursor();

BufferedImage bi1 = ImageIO.read(new File("psychophysik.png"));

displayImage(bi1);

updateScreen();

Thread.sleep(2000);

blankScreen();

BufferedImage bi2 = ImageIO.read(new File("fechner.png"));

displayImage(0,0,bi2);

updateScreen();

Thread.sleep(2000);

31



3. Introduction to threads

} catch (IOException e) {

System.err.println("File not found");

e.printStackTrace();

} catch (InterruptedException e) {

Thread.currentThread().interrupt();

}

finally {

closeScreen();

}

}

}

The first difference from the previous version is that HPThreaded inherits from the FullScreen1 class

public class HPThreaded extends FullScreen1

This means that HPThreaded itself is-a FullScreen1. We can construct an object of HPThreaded as we

constructed an object of FullScreen1 in the previous chapter. All the methods of the FullScreen1 class will

be available for the object of the class HPThreaded as well. This approach is going to save us quite a bit of

bookkeeping and I will use it throughout this guide.

The other difference is that HPThreaded implements the Runnable interface

public class HPThreaded extends FullScreen1 implements Runnable

This way we can create a HPThreaded object with the convinience of having all the methods of FullScreen1

class accessible, moreover we can also create a new Thread using that object and put the experimental code

inside its own run() method (multiple inheritance). This results in a clearer and a simpler code.

As explained above, we first create an object of a class which implements the Runnable interface

HPThreaded fs = new HPThreaded();

Note that the HPThreaded class must implement the run() method (see below). Because HPTHreaded is a

Runnable, we can create a Thread object using a HPTHreaded object

Thread experiment = new Thread(fs);

At last, to initiate the execution of the run() method, we invoke the start() method of the Thread class

experiment.start();

Note that we don’t directly invoke the run() method of the Runnable class, instead invoke the start() method

of Thread class.

Next, let’s inspect the run() method

public void run() {

try {

displayText("Hello Psychophysicist (Threaded)");

updateScreen();

32



3. Introduction to threads

Thread.sleep(2000);

blankScreen();

hideCursor();

BufferedImage bi1 = ImageIO.read(new File("psychophysik.png"));

displayImage(bi1);

updateScreen();

Thread.sleep(2000);

blankScreen();

BufferedImage bi2 = ImageIO.read(new File("fechner.png"));

displayImage(0,0,bi2);

updateScreen();

Thread.sleep(2000);

} catch (IOException e) {

System.err.println("File not found");

e.printStackTrace();

} catch (InterruptedException e) {

Thread.currentThread().interrupt();

}

finally {

closeScreen();

}

}

This portion of the code is the same as the corresponding portion of the HelloPsychophysicist class from the

previous Chapter. With only one difference: notice that here we directly invoke the methods of FullScreen1

class, for example

displayText("Hello Psychophysicist (Threaded)");

updateScreen();

instead of

fs.displayText("Hello Psychophysicist");

fs.updateScreen();

We are able to this, because the run() method is in the HPThreaded class, which inherits from the FullScreen1.

Just as the methods in the FullScreen1 class doesn’t need an explicit object reference to invoke each other,

the calls to FullScreen1 methods from within the run() method of HPThreaded also doesn’t need an explicit

object reference. (Nevertheless there is a special keyword this, which could be used to make an explicit

reference to an object, for example this.updateScreen();)

3.2. Summary

Here are the steps to take to write a Threaded program

1. Prepare a class which implements the Runnable interface (say RunnableTest)

2. Place the code which performs the task in the run() method of RunnableTest class

33



3. Introduction to threads

3. Construct an object of RunnableTest class:

RunnableTest rt = new RunnableTest();

4. Construct a Thread with that RunnableTest object:

Thread experiment = new Thread(rt);

This allocates a new Thread and the argument is the object whose run method is going to be invoked.

In this case the argument is conveniently an HPThreaded object.

5. Finally start the Thread:

experiment.start();

This was a very brief introduction to multithreading, see Chapter XXX for more complex examples. In this

Chapter we also established a more convinient coding style. This style saves us some bookkeeping and

results in clearer code. In the remaining of the Guide I will follow this convention of style by performing the

5 steps mentioned above.

34


