


FLAT A N D  CORRUGATED 
DIAPHRAG M  DESIG N  
H ANDBO O K



MECHANICAL ENGINEERING

A Series o f Textbooks and Reference Books

EDITORS

L L. FAULKNER S. B. MENKES
Department of  Mechanical Engineering 

The Ohio State University 
Columbus, Ohio

Department o f Mechanical Engineering 
The City College o f  the 

City University o f  New York 
New York, New York

1. Spring Designer’s Handbook, by Harold Carlson
2. Computer-Aided Graphics and Design, by Daniel L. Ryan
3. Lubrication Fundamentals, by J. George Wills
4. Solar Engineering for Domestic Buildings, by William 

A. Himmelman
5. Applied Engineering Mechanics: Statics and Dynamics, 

by G. Boothroyd and C. Poli
6. Centrifugal Pump Clinic, by Igor J. Karassik
7. Computer-Aided Kinetics for Machine Design, by 

Daniel L. Ryan
8. Plastics Products Design Handbook, Part A: Materials 

and Components, edited by Edward Miller
9. Turbomachinery: Basic Theory and Applications, by 

Earl Logan, Jr.
10. Vibrations of Shells and Plates, by Werner Soedel
11. Flat and Corrugated Diaphragm Design Handbook, 

by Mario Di Giovanni

OTHER VOLUMES IN PREPARATION



FLAT AND CORRUGATED 
DIAPHRAGM DESIGN 
HANDBOOK

Mario Di Giovanni
A m etek Controls Division 
Feasterville, Pennsylvania

Taylor &. Francis
Taylor &.Francis Group
Boca Raton London New York

CRC is an imprint of the Taylor & Francis Group, 
an informa business



Published in 1982 by 
CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 1982 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group

No claim to original U.S. Government works 

20 19 18 17 16 15 14 13 12 11 10 9 8

International Standard Book Number-10: 0-8247-1281-1 (Hardcover)
International Standard Book Number-13: 978-0-8247-1281-5 (Hardcover)
Library of Congress catalog number: 81-12523

This book contains information obtained from authentic and highly regarded sources. Reprinted material is 
quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts 
have been made to publish reliable data and information, but the author and the publisher cannot assume 
responsibility for the validity of all materials or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, 
mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and 
recording, or in any information storage or retrieval system, without written permission from the publishers.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only 
for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Catalog record is available from the Library of Congress

Visit the Taylor & Francis Web site at 
http://www.taylorandfrancis.com

and the CRC Press Web site at 
http://www.crcpress.com

http://www.taylorandfrancis.com
http://www.crcpress.com


Foreword

In writing the foreword to th is book on diaphragm design, I am pleased 
to note that the author attem pts to teach the subject more on a scien-
tific basis than the empirical one normally used , especially in the 
design of corrugated diaphragm s.

The theory  of the performance of flat and corrugated plates is 
well known but ra rely  used because it is too theoretical and not readily 
available for diaphragm design and perform ance.

This book b rings together for the firs t time, under one cover, a 
comprehensive, cohesive method of designing diaphragms quickly and 
accurately using equations which are common and intimately related 
to flat and corrugated diaphragm s. Thus the performance equations 
for both flat and corrugated  diaphragm s, though similarly expressed , 
differ in the numerical values of their "stiffness coefficients” which 
may be easily obtained from the many graphs and tables included in 
the tex t.

The tru e  measure of the scientific method is inductive logic, where-
as empiricism leads the research  ultimately into blind alleys. The 
au thor, keenly aware of th is , p resen ts  his information inductively, 
s ta rtin g  with the flat diaphragm and proceeding step by step to dia-
phragms with rigid cen te rs , to diaphragms with tran sv e rse  loading, 
to diaphragms with a snap action, to bellows, and so fo rth . C orru -
gated diaphragms are similarly trea ted , making th is book perhaps one 
of the best of its  kind ever w ritten .

R. L. Noland 
P residen t, Ametek, Inc.
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Preface

This book has been w ritten to provide instrum ent designers with simple, 
practical methods of calculating the performance characteristics of flat 
and corrugated diaphragm s.

The theory  of flat round diaphragms is generally available from 
many books on elasticity or s tren g th  of m aterials; that for corrugated 
diaphragms is dismally sparse and impractical for instrum ent designers. 
But theory  is one th ing and application of that theory  is something else. 
This book, then , also provides some useful and practical information 
based on my many years of experience in the design and application of 
diaphragm s.

The theoretical treatm ent of diaphragm s, or "p la tes,"  as normally 
re ferred  to in books on s tren g th  of material, involves calculations to 
determine the deflection and s tre ss  analysis usually of in te re st to the 
s tru c tu ra l engineer. The instrum ent designer, however, is also in -
te rested  in linearity , accuracy, h y steresis , stab ility , repeatability , 
and so on. In effect, the designer is in terested  in a diaphragm -type 
element which will respond to a physical stimulus in a predictable and 
accurate manner. It follows, then , that a choice of material becomes 
more important to an instrum ent designer than to a s tru c tu ra l engineer 
who could not care less if the material exhibited hystere tic  tendencies 
or whether the material’s metallurgical constituent is martensitic or 
fe rritic . Also, the s tru c tu ra l engineer would have little concern in 
the m anufacture and installation of "p la tes."  Little would the s tru c -
tu ra l engineer care about therm al, mechanical, or residual s tresses 
generated upon installing the p lates. For an instrum ent designer, 
lack of concern with these "minor problems" would spell trouble.

Part I of th is book basically covers material selection as material 
affects diaphragm perform ance. It also covers basic definitions and 
discusses the effects of production processes on the stability of 
diaphragm s.

v



vi Preface

P art II covers flat diaphragms of various shapes: round , rec tan g -
u lar, convex diaphragms for snap-action effects, and bellows.

Part III covers the performance characteristics of corrugated dia-
phragm s, including s tre ss  analysis and frequency response. It also 
describes forming methods, overload protection, and capsular elements.

Of added in terest is the final chapter on the computer solution of 
diaphragm performance charac teristics . Ready answers are given on 
diaphragms of various sizes and profiles ranging from diameters of
1.00 to 2.5 i n . , material th ickness of 0.002 to 0.005 i n . , and of v a r i-
ous corrugation dep ths.

Considerable emphasis has been placed on the direct use of g raph-
ical data for quick solutions of diaphragm performance problems. In 
optimizing a design, the reader is encouraged to make a firs t approx-
imation by using the graphical data. A final, more exact solution 
through the use of a mathematical analysis can then be made.

Many problems and solutions are provided to develop confidence 
and skill in performance analysis.

The main objective of th is book is to p resen t all available in fo r-
mation cu rren tly  available and to show all the factors which influence 
the design and hence the performance of diaphragms for instrum ent 
use.

In some instances, semiempirical approaches had to be used , as, 
for example, in estimating the linearity  of rectangular diaphragms in 
P art III. A more rigorous and exact method involving Fourier series 
coefficients and partia l differential equations could have been used, 
but h igher mathematics has no place in a design handbook.

I am confident that th is , the firs t book of its  kind ever w ritten 
entirely  on the design of diaphragm s, will be of great value not only 
to instrum entation engineers but to studen ts and all multidisciplinary 
design engineers as well.

Mario Di Giovanni
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Part I
Diaphragm Performance and Materials

Diaphragms are round flexible plates which undergo elastic deflection 
when subjected to p ressu re  or axial loading. They are sometimes 
re fe rred  to as "p ressu re  collectors" or "p ressu re  summing devices." 
They may be flat or corrugated  for la rger axial displacement.

Diaphragms, whether used as p ressu re  collectors or flexural 
suspensions, are im portant links in instrum ents. As p ressu re  col-
lectors they measure p ressu re  and establish the range and accuracy 
of the m easuring instrum ent. In such cases the accuracy, reliability , 
and safety of the instrum ent depend on the designer's  ability to 
develop a quality diaphragm .

Users of instrum ents are demanding b e tte r  performance and more 
reliability from instrum ents today because the related  equipment in the 
overall measurement system is itse lf extremely accurate and depends on 
the instrum ent to pick up the signal from the measurand faithfully and 
accurately.

The design of diaphragms in the past has been performed to some 
degree by tria l and e rro r as the available plate theo ry , developed for 
s tru c tu ra l eng ineers, dealt prim arily with allowable stresses  and de-
flections and not with accuracy and dynamic performance which is of 
prim ary in te re st to the instrum ent designer.

Historically, the theory  of the symmetrical bending of circular 
plates was originally given by Lagrange in 1811 and a little la ter in 
1829 by Poisson. C lebsch, Saint Venant, Michell, and Love proposed 
additional rigorous theories from which Timoshenko and o ther investiga-
to rs  have w ritten some excellent textbooks. U nfortunately, the r e -
lated design information is e ither too theoretical or too empirical for 
instrum ent design use.

A method of diaphragn design utilizing performance ratios and co-
efficients has been used with great success by the author for the past

1



2 I: Diaphragm Performance and Materials

25 years in his practice and recently  in his classes at Loyola Mary- 
mount University.

The method is simple, as all diaphragm s, whether fla t, co rrugated , 
or with rigid cen te rs , use the same basic equations. Only the coef-
ficients change for the particu lar profile and configuration. Since 
the coefficients may be obtained from g raphs, the performance ch a r-
acteristics of any "normal" diaphragm may be calculated easily and 
expeditiously .

The fundamentals of the theory  of flat diaphragms has been fully 
covered by many re search ers , notably by Timoshenko and Woinowsky- 
K rieger (1959), Way (1934), Andreeva (1962), and many o thers and 
will not be repeated in th is tex t.

The fundamentals of the theory  of corrugated  diaphragms from 
which most of the data for th is tex t have been taken have been p re -
sented by L. A. Haringx (1950, 1956, 1957). L. A. Andreeva (1955a, 
1955b, 1956, 1958), Y. T. Feodos’ev (1945, 1949), and o thers listed 
in the Bibliography at the back of th is book.

Flat diagrams are widely used in pressure-m easuring  instrum ents 
because of the ir simplicity and high frequency response. With proper 
design they can react with great accuracy to p ressu res  from thousands 
of psi to less than 1 psi. Flat diaphragms are linear only for very  
small deflections as for th is condition the median plane of the dia-
phragm endures almost no elongation. However, as the diaphragm 
gets very  th in , as is the case for low-range instrum ents, flexural 
rig id ity  diminishes and tensile s tresse s  in the median plane become 
dominant. In this condition the diaphragm becomes nonlinear and un-
fit for most applications. The designer than must re so rt to corrugated 
diaphragms to produce a linear instrum ent.

Flat diaphragms mounted in series.
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Flat diaphragm capsule.

However, flat diaphragms can be mounted in series to increase the 
linear range of the elastic element, the total axial displacement being 
the sum of the individual elements. Observe also that many flat dia-
phragms mounted in series constitu te a bellows, as illu stra ted . A com-
mon elastic element consisting of two diaphragms is called a capsule, 
also illu stra ted .



The Performance of Diaphragms

1

THE DIAPHRAGM AS A PRIMARY SENSING ELEMENT

The most common method of measuring p ressu re  is to balance it 
against an elastic force provided by an elastic member. The con-
struction  variations of these elastic members are many. Typically 
diaphragm s, bellows, or Bourdon tubes are most commonly used; the 
choice depending primarily on the amount of elastic deflection required  
for the data presentation element. T hus, if the data presentation 
element is the conventional scale and pointer usually used in dial 
gage instrum ents where the pointer must ro tate 270° or more, then 
the sensing element must have a high deflection range. The choice 
would then be bellows for low -pressure range or Bourdon tubes for 
h ig h -p ressu re  range. On the o ther hand, if  the deflection is small, 
the diaphragm would be the best choice. The diaphragm is not only 
the simplest to construct of all the elastic members bu t is the best 
sensing element th a t can be used in a high-vibration environm ent. 
Moreover, its  performance is predictable and it lends itse lf to many 
design variations, as will be shown in this te x t. Generally speaking, 
diaphragms are used where the deflection is less than 0.005 in . (de-
pending on the diameter) where the dynamic response of the in s tru -
ment must be high and where simple overload stops must be provided. 
Nearly all p ressu re  tran sd u cers  of recent design utilize the advan-
tages of the diaphragm to improve the ir perform ance.

LINEARITY OF DIAPHRAGMS

In designing diaphragms the designer is in terested  not only in its  
deflection for a given p resssu re  bu t also in a linear deflection-pres-
su re relationship. It should be stressed  tha t if the diaphragm Ts cal-
ibration curve for given inpu ts is not a s tra ig h t line, the diaphragm

4



1 / The Performance of Diaphragms 5

may still be accurate and serviceable. However, a linear deflection- 
p ressu re  relationship is highly desirable and easier to handle in cal-
culations and data reduction. T herefore, performance conformity 
to stra igh t-line  behavior are highly desirable and universally sought 
by d esig n ers .

In instrum ent engineering language, "linearity" is defined as 
"the closeness to which a curve approximates a s tra ig h t line."  It is 
usually measured as nonlinearity and expressed  as "linearity ,"*  e .g . ,  
a maximum deviation between the calibration curve and a s tra igh t 
line .

Linearity is usually expressed  as independent linearity , terminal- 
based linearity  or zero-based linearity . When expressed  simply as 
linearity , it is assumed to be independent linearity . The Scientific 
A pparatus Makers Association (SAMA) in its  SAM A Standard 
PMC20.1-1973, endorsed by the Instrum ent Society of America, 
specifies the following definitions:

Independent linearity—the maximum deviation of the actual ch a r-
acteristic (average of upscale and downscale readings) from 
a stra ig h t line so positioned as to minimize the maximum de-
viation (see Fig. 1.1a).

Terminal-based linearity—the maximum deviation of the actual 
characteristic  (average upscale and downscale readings) from 
a stra ig h t line coinciding with the actual characteristic  at 
upper and lower range values (see Fig. 1 .1b).

Zero-based linearity—the maximum deviation of the actual ch a r-
acteristic (average of upscale and downscale readings) from a 
s tra ig h t line so positioned as to coincide with the actual ch a r-
acteristic at the lower range value and to minimize the max-
imum deviation (see Fig. 1 .1c).

HYSTERESIS

It is generally accepted th a t, at low s tre sse s , most materials exhibit 
elastic behavior in accordance with HookeTs law and th a t, in this range, 
the stra in s are reversib le with s tre ss . This would suggest th a t, if 
we were to pu t p ressu re  on a diaphragm and calibrate it from zero to 
full scale within the elastic range, the ascending and descending curves 
would be superim posed. This is not the case because of a phenomenon 
known as h y steresis . Recall that hysteresis effects also show in elec-

*Notwithstanding SAMATs admonition tha t "nonlinearity" be expressed 
as linearity , the term "nonlinearity" is still very  much used in the 
instrum ent in d u s try , especially by tran sd u cer m anufacturers.
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FIG. 1.1 Types of linearity : (a) independent;
(b) zero-based; (c) term inal-based. [From SAMA 
Standard PMC20-1-1973. R eprinted by perm ission.]
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trica l phenomena as when a ferromagnetic material such as iron is 
magnetized. The relationship between the flux density  and the mag-
netizing force in the complete magnetization cycle is rep resen ted  by 
a hysteresis loop, and the p roperty  of a magnetic substance in which 
the flux density  lags behind its  previous value while the magnetizing 
force re tu rn s  to its  former value is called h y ste resis . But the mech-
anism which induces "mechanical" hysteresis  is due to energy absorp-
tion in the elastic member produced by molecular friction and appears 
as heat in dynamic cycling. Late evidence indicates th a t hysteresis  
is due to the homogeneous displacement of all the atoms in the c rysta l 
lattice from th e ir equilibrium positions. Figure 1.2 shows a typical 
h ysteresis cu rve. The numerical value of hysteresis can be specified 
by specifying the difference of the ascending and descending value, 
usually at midscale, as a percentage of full scale.

OUTPUT

FIG. 1.2 H ysteresis effects.
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Hysteresis depends on the magnitude of the applied s tre ss . Since 
it decreases with a decrease in s tre s s , the value of the maximum allow-
able s tre ss  in a diaphragm is determined by how much hysteresis  e rro r 
can be tolerated and not on s tru c tu ra l requirem ents.

Hysteresis cannot be calcu lated , bu t can be minimized or nearly 
eliminated by p roper choice of material and s tre ss  level. However, the 
designer may not have the choice of designing with low -hysteresis 
m aterials, as compatibility with process media may dictate materials 
poor in hysteresis charac te ristic s . For example, corrosion resistance 
with p ressu re  media may dictate materials such as tantalum or even 
platinum—materials which cannot be h ea t-trea ted  or which are of u n -
suitable hardness level. Here, the recourse available is to keep the 
s tre ss  level as low as possible or to design a diaphragm which can be 
backed up with a h ea t-trea ted  elastic member of a h igher sp ring  con-
s ta n t—thus complicating the  problem.

Generally speaking, crystalline materials yield low hysteresis e r -
ro rs . In metals, materials hea t-trea ted  afte r fabrication to a m arten-
sitic m icrostructure are b est. Diaphragms made of monocrystalline 
silicon chips by the author have shown indiscernible levels of 
h y s te re s is .

SPRING RATE AND SENSITIVITY

The relationship between applied load and deflection of a diaphragm 
may be rep resen ted  in tabular or graphical form s. Since diaphragms 
are elastic links, the sp rin g  ra te  and its reciprocal, the sensitiv ity , 
are normally used in evaluating the ir performance charac teristics .

The sp rin g  ra te  k is defined as the ratio  of the applied load to 
the corresponding deflection y . If the load is a force F, then

kf
F
y

usually in lb /in . or kg/mm

If the load is a p re ssu re ,

(1.1a)

P 2k = -  p s i/in . or kg/cm /mm (1.1b)
P y

The sensitiv ity  s is defined as the ratio  of the deflection to the load. 
That i s , it gives the displacement y of the diaphragm produced by 
unit load F:

s f
= y

F usually in in . /lb or mm /kg (1.2a)
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Sensitivity for Linear System =  ^ p —

FIG. 1.3 Definition of sensi-
tiv ity : (top) linear system;
(bottom) nonlinear system .

If the load is p re ssu re ,

s
P

= y
p in . /psi or mm/kg/cm (1.2b)

It is apparent th a t, when an inpu t-ou tpu t calibration such as tha t 
in Fig. 1.3 is made, the sensitiv ity  of the diaphragm can be defined 
as the slope of the calibration cu rve. If the curve is not a s tra ig h t 
line, the sensitiv ity  will vary  with the input value and therefore is 
w ritten in the differential form:

COMBINATION OF ELEMENTS 

Diaphragms Mounted in Series

It is common, where high sensitiv ity  is desired , to mount diaphragms 
in series as is the case with bellows and capsules (see illustrations
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in the In troduction). For th is condition, the sensitiv ity  of the system 
as a whole is equal to the sum of the sensitivities of the component 
elements

The formula for the sp ring  ra te  for the same series system is

Diaphragms Mounted in Parallel

In some ra re  applications, diaphragm elements may be mounted in 
parallel. This is usually the case, for example, when two or more 
diaphragms are used as shock-absorbing elements. For th is con-
dition, the sp rin g  ra te  will be the sum of the sp rin g  ra tes of the 
individual elements:

The sensitiv ity  of the system will be the reciprocal of the sp ring  
ra te , or

n
(1.3)

(1.3a)

n
(1.4)

1s (1.4a)
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