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This article discusses the problem of obtaining short-run and long-tun elasticities of energy demand
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In the analysis of panel data, it is customary to pool the coefficient model, and even if interest centers on the mean
observations, with or without individual-specific dummies. of the coefficients, it will be pointed out that there are some
These dummy variables are assumed to be fixed (fixed- problems with the use of two-step procedures in the gen-
effects models) or random (random-effects or variance- eral least squares (GLS) estimation, a procedure that is most
components models). In these models the slope coefficients commonly used. Moreover, an iterative procedure will be
are assumed to be equal. The homogeneity of the slope co- suggested and illustrated with the empirical example. -
efficients is often an unreasonable assumption, and one can ~ Because a review of the estimation of energy-demand
allow for cross-sectional heterogeneity and/or heterogene- models can be found in the book by Berndt (1991), we
ity over time. A commonly used model to allow for cross- Will not elaborate on the derivation of the demand model
sectional heterogeneity is the random-coefficient model, in  estimated. The model we use is a standard dynamic linear
which the parameters are assumed to come from a com- regression (DLR) model derived by taking account of error- .
mon distribution. A commonly used model to allow for het- correction and partial-adjustment mechanisms. For a review
erogeneity over time is the time-varying parameter model, ©f these, see N1°k°11 (1985) and Alogoskoufis and Smith
which can be estimated by state-space methods. In any case, (1991)

one needs to impose some structure on the coefficients if 1. ALTERNATIVE ESTIMATION METHODS FOR

one allows for parameter heterogeneity. THE ESTIMATION OF THE INDIVIDUAL
In this article we will concentrate on cross-sectional het- HETEROGENEOUS PARAMETERS

erogeneity only. The article considers several shrinkage-

type estimators and illustrates their use in the estimation of Consider the linear model

short-run and long-run price and income elasticities of resi- 2 ]

dential demand for electricity and natural gas in the United Y% ~ N(X.B;, 071), i=12,...,N, (1)
States based on a panel data on 49 states over 21 years ) ) )
(1970-1990). Robertson and Symons (1992) and Pesaran Where y; isa T x 1 vector, X; is a T X k matrix of obser-
and Smith (1995) discussed the biases that are likely to oc- vations for the ith f:ross-sectlon, and @i is a k x 1 vector
cur in the estimation of long-run elasticities if parameter of parameters. Unlike pure cross-section data, panel data

heterogeneity is ignored and the data are pooled. They as- allow us to take care of Fhe dynamic structure. We Wﬂ_l’
sumed a random-coefficient model and were interested in L erefore, assume that X; include lagged values of y;. This
the mean of the coefficients. The focus of this article is on

the festimation of the individual parameters for each cross- © 1997 American Statistical Association
section under parameter heterogeneity of the form consid- Journa! of Business & Economic Statistics
ered by these authors. The framework used is the random- January 1997, Vol. 15, No. 1
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creates problems when we consider the random-coefficient
model later. In this case the assumption of strict exogene-
ity of X; is no longer valid, and the results we discuss are
valid only asymptotically under the usual regularity condi-
tions assumed in dynamic regression models.

With panel data, however, there is the question of whether
to pool the data and obtain a single estimate from the whole
" sample or to estimate the equations separately for each
cross-section. The implicit assumption in both the fixed-
effects and random-effects models for pooling the data is
that the slope coefficients are all the same for all the cross-
section units. This may not be a tenable assumption. In
practice, the null hypothesis of constancy of slope parame-
ters across the different cross-section units is often rejected.
This implies that the equations should be estimated sepa-
rately for each cross-section rather than obtaining an overall
pooled estimate.

The problem with the two usual estimation methods of
either pooling the data or obtaining separate estimates for
each cross-section is that both are based on extreme as-
sumptions. If the data are pooled, it is assumed that the pa-
rameters are all the same. If separate estimates are obtained
for each cross-section, it is assumed that the parameters are
all different in each cross-section. The truth probably lies
somewhere in between. The parameters are not exactly the
same, but there is some similarity between them. One way
of allowing for the similarity is to assume that the parame-
ters all come from a joint distribution with a common mean
and a nonzero covariance matrix. It will be shown later that
the resulting parameter estimates will be a weighted aver-
age of the overall pooled estimate and the separate time
series estimates based on each cross-section. Thus, each
cross-section estimate is “shrunk” toward the overall pooled
estimate. ,

The idea of shrinkage occurs frequently in the litera-
ture on prediction (e.g., see Copas 1983; Rao 1987). Rubin
(1980) also provided evidence on better predictions with
shrinkage estimators [although Scott (1980) in her discus-
sion of the article, disputed their usefulness]. He applied an
empirical Bayes technique for law-school validation stud-
ies. The studies are primarily concerned with the prediction
of first-year grades in law school from the LSAT score and
undergraduate grade-point average. Traditionally, a sepa-
rate admitting equation is estimated for each law school by
the method of least squares by using data for students who
attended that school in recent years. These least squares es-
timates can fluctuate wildly from year to year. The study
by Rubin argued that the estimation of the admitting equa-
tions by the empirical Bayes methods provides more stable
estimates and better predictions.

A shrinkage estimator sometimes suggested is the so-
called Stein-rule estimator defined by

b= (1-L) B+ S By @

where (3; is the ordinary least squares (OLS) estimator and
f3, is the estimator from the pooled regression. F' is the test
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statistic to test the null hypothesis
pr=p2="=Pn=0. 3)

Under the null hypothesis (3), F has an F distribution with
degrees of freedom (N — 1)k and N(T — k), where k is
the dimension of 3. The optimal value of the constant ¢
suggested by Judge and Bock (1978, pp. 190-198) is

o (N-1k-2
“ NT ~Nk+2

This rule has, however, been derived for the case of strictly
exogenous X’s. Zeimer and Wetzstein (1983) applied the
Stein-rule estimator to a wilderness-demand model and ar-
gued that the Stein rule gives better forecasts than the
pooled or the individual cross-section estimators. The Stein
rule shrinks the estimators 3; toward the pooled estimator
(- The factor ¢ in (4) is roughly k/(T—k) for large n. Thus,
the higher the number of explanatory variables k relative to
T, the smaller will be the shrinkage factor (1 — ¢/F) for
given F.

1.1 The Random-Coefficient Model

For ease of exposition, in the following presentation we
will assume that X; does not include lagged dependent vari-
ables. In the presence of lagged dependent variables, the
results hold only asymptotically.

In the random-coefficient model

yi = Xifs + ui, A $)

(4)

we assume that
Bi ~ IN(p, X). (6)
We can write this as
Bi = p+ vi, )]

where v; ~ N(0,X).
In the classical random-coefficient model, Equations (5)
and (7) imply that

Y = Xap + wi, 8)

where w; ~ IN(0,9;) with Q; = (X;EX!+02I). Assuming
that the u; are independent across the N equations, we get
the GLS estimator p* of u as

N -1/ N

y,* = (Z X,’Q,‘IX,) (Z X,{Q,Z_lyi) .
=1 =1

Using the matrix identity

(A+BDB)'=A"'-A"'B(BAT'B+D 1) 1B'A™!

(see Rao 1973, p. 33) to. decompose Q;, Swamy (1970)
showed that

N A
pt= Z W8,
i=1
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where 3; = (X!X;)~1X!y; is the OLS estimator of §; and

-1
N .
Wi = (ij_l) P ©)
Jj=1

(10

Two obstacles in applying the GLS procedure are the un-
known parameters ¥ and o2 in Q. Swamy (1970) proposed
a two-step procedure that uses the least squares estimators
B; of B; and the least squares residuals to obtain unbiased
estimators of ¥ and o2. Of course, in dynamic models with
lagged dependent variables, the unbiasedness property does
not hold. We have to appeal to the consistency property.
These estimators were also used by Rao (1975) in the em-
pirical Bayes procedure. The Swamy (1970) method for es-
timating ¥ and o7 is (

with
= (03(X:X:)7' + D).

- 13 (A3 2A)

i=1
(8- zﬂt)
i=1
1 o N—
-5 (X X;)™t (11)
where 62 = [1/(T - k)] (y; — X,-Bi)’(yi —X;3;) and §; is the

OLS estimator of S;.

One potential problem with the estimator for ¥ is that
it may not be positive definite. In this case Swamy sug-
gests using only the first part of Equation (11) to estimate
. Hsiao (1986) adopted the same strategy. The suggested
estimator, which is consistent in this case, is

. 1 s 1,
z=m;(ﬂi—ﬁgﬂi)(ﬂ,——zﬁ) (12)

In the random-coefficient model, interest centers on the
mean parameters p and o2 and the measure of heterogene-
ity 3. Pesaran and Smith (1995) were concerned with the
estimation of u. Mairesse and Griliches (1990) were con-
cerned with the estimation of ¥ as well. The traditional es-
timator of u from the random-coefficient model is a GLS,
but because Q; involves the unknown parameters o2 and I,
we substitute the estimates from Equation (11) and use the
“feasible” GLS. Thus, it is a two-step GLS estimator based
on an estimated covariance matrix. This procedure, as dis-
cussed later (Sec. 2) gives asymptotically efficient estimates
only if there are no lagged dependent variables.

In the classical model it makes no sense to talk about ob-
taining estimators for the individual parameters 3; because
they are treated as random variables. Hence, 1nference is
based entirely on the parameters y,¥, and o?. One can,
however, talk of predictors for the random parameters g;.
Lee and Griffiths (1978) derived the best linear unbiased
predictors for §; based on the prior likelihood approach
advocated by Edwards (1969). This amounts to estimating
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Bi, 02, p, and % by maximizing the likelihood
L(ﬁi, 0'1'2, Hy Ely7 X)

X
= const. — 52 Ino?

M1
-5 =3 (4 = XiB:) (i — Xif3:)
=1 1

Mli—-

IEI——Z(ﬁ, LY'E"Y B — ). (13)

MIZ

The resulting estimates for 3;, 02, u, and ¥ are given as

1 - - 1 A *—1
ﬁ: = (-&—2- X,{Xi + 1) (;—2- X,{Xiﬂi + X l,u ) ,

(14)
1 N
=37 ﬂ;v (15)
N 2 )
o?= 7 i- Xif) (i - X:B),  (16)
and
Z (B; — u*)(BF — p*)' (17)

1.-1

where 3; is the OLS estimate of B;. As will be shown next,
these prior likelihood estimators are closely related to the
Bayesian estimators.

1.2 An lterative Bayesian Approach

In the Bayesian framework, Equation (6) specifies the
prior distribution of §;. Because this prior distribution in-
volves the parameters p and £, if they are not known priors
must be specified for these hyperparameters. One can then
derive the posterior distribution for the parameters S;.

If 4,0?, and T are known, the posterior distribution of
B is normal with mean 3} given by

-1
B = (—17 XiX; + 2—1) (_15 X'X:B: + E“Iu) (18)
and variance

-1
V(g) = (% X X; +2'1) ,

K]
where f; is the OLS estimate of ;. Note that, with lagged
dependent variables, the normality of the posterior dis-
tribution of g holds only asymptotically and under the
usual regularity conditions assumed in dynamic regression
models.

Assuming a noninformative prior for u, the mean of the
posterior d1str1but10n of pis p* = (1/N) Z,_l 3. Because
in general o? and T will not be known, one needs to spec-
ify priors for these hyperparameters. Smith (1973) took the
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conjugate Wishart distribution for £~ and the mdependent
inverse x2 distributions for the o?. He suggested using the
mode of the posterior dlstnbutlon His modal estimators are

Az-—_._._l..._ X\ XYY (e _‘*
a"-—T_‘{_,Ui_{_z['U‘A"F(yl Xzﬁi)(yz X1ﬂi)] (19)
and
1 ' N
* * LAY
A e e B LA BICR RS

(20

As discussed by Smith (1973), v;, A;, R, and 6 are parame-
ters arising from the specification of the prior distributions,
and k is the dimension of 3. Approximations to vague pri-
ors are obtained by setting v; = 0,6 = 1, and R to be a
diagonal matrix with small positive entries (e.g., .001).

The estimators are then

a,?——-(Y

T+2 1)

X6 (Y: - XiB})
and

s l}:(ﬂ* W -y (22)

Equations (21) and (22) have to be solved iteratively along
with the equations for 8* and p* given by

* 1 i %1 - 1
,Bi = '5;2‘ XiXi + E —&'?

and

p—

(23)

1en .,
i=1

Note that in Equations (21){24) the prior mean u* is
an average of 37, the estimate of the prior variance X is
obtained from deviations of 3 from their average u*, and
the estimate of o? is obtained from the residual sum of
squares using ;. Equations (21)~(24) have to be solved
iteratively, with the 1mt1al iteration using the OLS estimator
Bi to compute u ,02, and £*. We take p* as the simple
average of ﬁ,, 62 as the usual estimate of o2 from the ith
cross-section, and =* as given by Equation (12). Moreover,
to improve the convergence with the iterative procedure, £*
is computed as

1

N
= |R+ ) (B )6 - )|, (22)
i=1

N-k-1

where R is a diagonal matrix with small positive entries
(e.g., .001).

Thus, as noted by Maddala (1991), many shrinkage esti-
mators only differ on the basis of the overall estimators to-
ward which the individual estimators are shrunk and the es-
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timates of variances and covariance matrices. Smith (1973)
showed with some matrix manipulations that the GLS es-
timator of u is related to the Bayesian estimator 3} by the
equation

25

}_‘,ﬂ:,

z-‘l

which is the same as the Bayesian estimator and the max-
imum likelihood estimator (MLE) for p. Moreover, the
MLE’s given by Lee and Griffiths (1978) only differ from
the GLS and Bayesian estimators in the divisors for o?
and X*.

1.3 The Empirical Bayes Approach

In the empirical Bayes approach, we take Equatlon (18)
and plug in sample-based estimates for y, o2, and ¥. Rao
(1975) suggested estimating them by

ﬂ=7v-2ﬁ,,

~2

..._1____‘ L Xif3.
U‘i - T _ k (yzyl in'Lﬁ’t)7
and
SR TR o UFIPCY SRV 3 1y =152
L= 12(& )(B: - i) NZ.(X‘X’) 6.

All of these expressions are based on the least squares es-
timators, 3;. The estimators for o7 and T are unbiased if
X, includes exogenous variables only As pointed out in
the preceding sections, the Bayesian approach gives a dif-
ferent set of estimators, based on the Bayes estimators, 3.
Kadiyala and Oberhelman (1986) used a modification of the
estimators suggested by Rao (1975). They used p* as an av-
erage of §; rather than (3; as in the Bayesian approach, but
they still used the same estimator for X as that suggested
by Rao.

Both of these empirical estimators are two-step estima-
tors and do not involve any iteration. One can think of the
following empirical Bayes estimator, which, however, has
to be computed iteratively:

1 &
w= N;:lﬂ;

= X8 (- XiB
o; = T—k(y’ XiB;) (yi — XiBy)

A Y B - w8
1
These expressions differ from the ones derived by Smith
(1973) and by Lee and Griffiths (1978) only in the divisors
in 62 and T*. In the preceding equations, the prior mean
p* is an average of J3}, the estimate of the prior variance
%* is obtained from dev1at10ns of 3} from their average p*,
and the estimate of o2 is obtained from the residual sum
of squares using 3}, not the OLS estimator Bi. The preced-
ing equations are solved iteratively, with the initial iteration
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using the OLS estimator J; to compute 4i*, 02, and £* as de-
scribed earlier. Moreover, to improve the convergence with
the iterative procedure ©* is computed as

1 N
B =gy (B 6 -wns - u*)’] ,

i=1

where R is a diagonal matrix as defined previously. Hu and
Maddala (1994) presented some Monte Carlo evidence to
suggest that the iterative procedures for the computation of

* give better estimates (in the mean squared sense) for,

both the overall mean x and the heterogeneity matrix ¥
than the two-step procedures.

1.4 in Summary

We have discussed the classical, Bayesian, and empirical
Bayesian approaches to the estimation of individual cross-
section parameters. We have also discussed two-step versus
iterative methods. These are summarized in a tabular form
in Table 1. In Section 2, we will discuss the theoretical jus-
tification of the iterative procedure over the two-step proce-
dure in dynamic models. To conserve space, we will present

Journal of Business & Economic Statistics, January 1997

empirical results for only the Stein-rule and (the iterative)
empirical Bayes estimators.

The most important points to note are the estimation of T,
which is computed using Formula (26) and not (11) or (12),
the computatlon of u* as (1/N) 21—1 B; and the computa-
tion of ¢2° using not least squares residuals but residuals
based on §;. Note that, incidentally, we get an estimator
of u, which is computed in an iterative fashion, not using
the two-step procedure used by Swamy (1970) and Hsiao
(1986). Even if our interest centers on y, we suggest using
the iterative procedure.

2. TWO-STEP VERSUS ITERATIVE ESTIMATORS

In Section 1, we discussed several estimators for the es-
timation of the overall mean u and covariance matrix ¥ as
well as the individual parameters 3;. The estimators for
and B; can be classified into two categories, (1) two-step
estimators based on initial consistent estimators of ¥ and
o} and (2) iterative estimators in which all the parameters
i, B, Z, and o2 are estimated jointly.

In the first category we have the two-step empirical Bayes
estimator for §; and the Swamy-Hsiao estimator for . In

Table 1. Difterent Estimators for o%, T, B;, and u

Method Estimator Note
For o? ‘
Swamy-Hsiao and two-step empirical Bayesian e 0 = XiB)Y vi — XiBy) 1
Prior likelihood = XiBY (vi — XiB87) 2
lterative Bayesian (Smith) 5 Ui = XiBY (vi — XiB?)
Empirical Bayes (iterative) 7% i = X8} (v — XiB?)
For®

Swamy-Hsiao

Swamy-Rao (unbiased)

_N1El(ﬁ’ N 1=1 )(Bi_%ELBI)’

S=%-1

| Xx)716? 3

Prior likelihood =g EL Br — p*)(B; - u*)
lterative Bayes (Smith) ' Z* = g zf; 1 B — )8y — p*Y
| lterative empirical Bayes o* = —N’_—1 E,’L B — ™ )G — u*)
For 3;
Swamy No estimators
Stein-rule Bi=(1—c/F)B + (c/F)B, 4
—1
Prior likefihood and iterative Bayes B = (—’:2- X/ X + 2*“) (;%2- _X,.’X/B, + 2*“;4*)
i

Two-step empirical Bayes

-1
a—1 a a—1
)" (o 7)

For p
. N A
Swamy fais = Yy Wib; 5
Prior likelihood and iterative Bayes "A = -,:-, 2:11 B; 6

NOTE: (1) ﬁ, is the OLS estimator of ﬂ (2) B} Is defined later. (3) The two-step empirical Bayes method is based on these estimators of X 2}, is used it 35 is not positive definite. (4)

c=[(N— 1)k — 2]/ [NT — Nk + 2], ,3,, is the pooled estimator, and F is the F statistic to test equality of the coefiiclents. {5) W; = (2 "P
get 2 and 3 and then substitute thess for 072 and X in figLs. It is thus a two-step method. (6) Because B} are computed it

b= s

! with Py = [02(X!X)™ " + 5], We first
It 67 and X are known, then

ty, isanit
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the second category we have the prior likelihood, iterative
empirical Bayes, and iterative Bayesian (Smith) estimators.

As is evident from Equations (15) and (18), the expres-
sions for estimation of the overall mean x and the individual
parameters (; involve the unknown parameters o? and 3.
We need estimators for these parameters to implement the
procedures. This is where the difference between the two-
step (based on initial consistent estimators of ? and ) and
jterative procedures lies. Essentially, what we have here is
a problem similar to that of GLS estimation with an esti-
mated covariance matrix. As pointed out by Amemiya and
Fuller (1967), Maddala (1971), and Pagan (1986), in the case
that the explanatory variables X; include only exogenous
variables, the two-step estimators based on any consistent
estimators of parameters oZ and ¥ are as asymptotically ef-
ficient as the estimators from the joint efficient estimation
of all the parameters. If the variables X; include lagged
dependent variables, however, as in the case of dynamic
models, the two-step estimators based on any consistent es-
timates of o? and ¥ are consistent but not efficient. This
suggests that even if we are interested in the estimation of
the overall mean g, in the presence of lagged dependent
variables, the Swamy or Hsiao estimators of ¥ do not pro-
vide efficient estimates of u. We have to use the iterative
procedure suggested in Section 1. In the case, as in this ar-
ticle, our interest centers on the estimation of §;, and we
again should use the iterative procedures.

Many of the applications in the statistical literature, as
well as the example on Grunfeld’s investment function of
Swamy (1970), have no lagged dependent variables. Hence,
the GLS based on the Swamy .or Hsiao estimator of X is
asymptotically efficient. This is not the case, however, with
dynamic models considered by, for instance, Pesaran and
Smith (1995) even though their interest was in the overall
mean p. In the example to be discussed next, we have a
dynamic demand model. Hence, we used the iterative pro-
cedure described in Section 1 for the estimation of §; as
well as p.

3. AN EMPIRICAL EXAMPLE

There have been numerous studies on the price and in-
come elasticities of residential natural-gas and electricity
demand. Short-run price elasticity estimates of both resi-
dential natural-gas and electricity demand have ranged from
—.05 to —.9, and long-run price elasticities estimates have
ranged from —.2 to as high as —4.6. There is a similar di-
versity among short-run and long-run income elasticity esti-
mates. For a partial review of these studies, see Al-Sahlawi
(1989), Bohi (1981), Bohi and Zimmerman (1984), and Tay-
lor (1975).

In this section we present new residential gas and elec-
tricity price and income elasticity estimates using pooled
cross-section and time series data from 49 U.S. states. The
state of Hawaii was excluded because we could not obtain
annual weather data.

The annual state residential electricity and gas price data
used in this study were obtained from The State Energy

Price and Expenditure System of the U.S. Energy Informa-
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tion Administration (1993). Weather data are population-
weighted heating and cooling degree days by state and
were taken from the National Oceanic and Atmospheric
Administration, U.S. Department of Commerce, Ashville,
North Carolina. Annual state income data were drawn from
the Bureau of Economic Affairs, and the annual Consumer
Price Index for the United States was from CITIBASE. The
sample period is from 1970 to 1990.

To estimate the short-run and long-run price and income
demand elasticities for gas and electricity, we specified the
following DLR(1, 1) model:

Vit = Bio+ Bu¥ie—1 + PiaTrie
+ Bis®1i,e—1 + PiaT2it + PisT2it—1
+ Bisait + PirTais + PisTsit + uie,  (27)
where i = 1,2,3,...,49 (U.S. state subscript) and ¢ =
2,3,...,21 (year subscript).

The variables for the electricity regression are y;; =
In(residential electricity per capita consumption), 1z =
In(real per capita personal income), x2;: = In(real residen-
tial electricity price), z3;; = In(real residential natural-gas
price), z4; = heating degree days (HDD), and zs5;: = cool-
ing degree days (CDD).

For the natural-gas regression, we have y; =
In(residential natural gas per capita consumption), z1 =
In(real per capita personal income), z2;; = In(real residen-
tial natural-gas price), and z3;; = In(real residential elec-
tricity price), with x4, and zs;; unchanged.

From Equation (27) the following short-run and long-run
elasticities can be derived for the ith state:

. Short-run income elasticity: SRn, = B;2
Long-run income elasticity: LRp, = Satfi

Short-run price elasticity: SRn, = Bi4
Long-run price elasticity: LRz, = &4t/

Short-run cross-price elasticity: SRng = fi6
Long-run cross-price elasticity: LRng = i—g‘z‘,‘:

4. EMPIRICAL RESULTS

We here present 10 tables of results. The separate state re-
gression coefficients will be presented in Tables 6~9. Tables
10 and 11 will present estimates of the short- and long-run
elasticities.

Tables 2-5 summarize the estimates from the five ap-
proaches discussed. In Table 2 the parameter estimates
from the electricity-demand regression and ¢ statistics are
presented. Column 1 contains the results from the fixed-
effects model given by yi: = a1¥i -1 + QaT1i¢ + @3T14,t—1
+ o042 + 5T2it-1 + 6Tt + T + agTsie +
Y12 8 + uig, and column 2 contains the pooled data
model given by y;; = op + a1¥ii-1 + Q2T + 3T4-1
+ @aToit + 05T244—1 + CeT3it + QrTie + 08Trit + Uit
The next column of Table 2 presents the average of the sep-
arate state regression estimates followed by columns with
the results on the average of the Bayesian estimates and

finally the average of the Stein-rule estimates.

N\
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Table 2.+ Parameter Estimate of the Electricity Regression (t values in parentheses)

Pooled Pooled oLs Shrinkage Stein-rule
with without estimator estimator estimator
-Variables dummies dummies (average) (average) (average)
Vi1 .789 .903 530 .629 .685 -
(49.00) (106.03) (22.28) (32.12) (47.76)

X1it 137 138 . 429 .394 .308
(3.25) (3.12) (7.80) . (11.39) (8.32)

X1i,0—1 —-.013 —.134 —.040 —.064 -.079
(—.31) (—3.08) (~.74) " (~1.80) (—2.16)

Xoit - =196 —.214 —.163 —.158 - ~.184
(—7.96) (—8.47) (—6.19) (—8.37) (—9.88)

X2f 81 .078 113 .057 .061 .081
(3.15) (4.49) (2.16) (2.71) (4.30)

X3t .035 .028 017 .. .023 .022
(4.48) (4.86) (1.43) (1.80) (2.93)

Xait 138 084 ° 129 142 . 110

. (3.99) (6.97) (3.53) (6.77) (5.03)

Xsit 1.319 .398 1.561 1.069 1.077
(12.58) (9.87) -(2.75) (10.02) (3.24)

Table 3 contains the short- and long-run income elastic-
ities (SRn, and LR7,), price elasticities (SR, and LR7,),
and cross-elasticities (SRnS and LRn;) for electricity de-
mand in the columns. The average, maximum, and mini-
mum estimates by different methods are provided in the
rows. There is less variability in the short-run elasticities
compared with the long-run elasticities. The second law of
demand appears to hold; the long-run elasticities are higher
than the short-run elasticities except in one case. This ex-
ception appears to be due to an outlier in the LRy, using the
state-specific regressions. The F statistic testing hypothesis
(3) is 1.698, and the 5% critical value for the F distribution
is 1. Thus, the Stein-rule estimator for the electnc1ty regres-
sion is §; = 5840; + 416ﬂp The constant in the regression
is .706.

The average SRy, elasticity estimates for electricity pre-
sented in Table 3 range from .137 to .429 with the two
pooled model estimates being approximately the same, .137
and .138. The separate OLS estimates are much higher and
have the greatest variability ranging from —.83 to 1.328.
The average of the Bayesian shrinkage estimates is .394

and the average of the Stein estimates is .308. The Bayesian
shrinkage estimates have a much smaller spread than the
Stein estimates, reflecting the greater weight for hetero-
geneity across the states in the Stein estimator.

The average LRy, LRnp, and LRnp elasticities for elec-
tricity are presented in two ways. First we calculate the
simple average of the elasticities for each state. Then the
elasticities are calculated using the average based on the in-
dividual parameter estimates. The LRy, elasticity estimates
range from .044 with the pooled data model to 1.58 for the
OLS estimator. The separate OLS regression results have
by far the greatest variability (—1.229 to 33.033) followed -
by the Stein estimator (—7.771 to 2.82) and the Bayesian
shrinkage estimator (.486 to 1.966). The Bayesian shrink-
age estimator produces a tighter and more sensible range
for LRn, than the Stein estimator because the latter is influ-
enced by the separate regression results that contain several
negative long-run elasticities.

The adverse impact of ignoring cross-section spécific ef-
fects is clear by comparing the pooled model with state
intercept dummies to the pooled model without state inter-

Table 3. Short-Run and Long-Run Income and Price Elasticities of the Elsctricity Regression

Approaches SRny LRny SR, LAnp SR LAng
Pooled w/ dummies 137 .584 —.196 —.561 .035 .166
Pooled w/o dummies .138 .044 —.214 -1.031 .028 .290
OLS? average 429 1.580 —.163 =375 017 -.135

maximum 1.328 33.033 778 2.179 648 977
minimum —.830 -1.229 -.916 —-10.380 -.392 —6.454

oLsb 429 .827 —.163 —.225 .017 .037
Shrk® average 394 .921 —.158 —.239 .023 .054
‘ maximum .585 1.966 —.064 242 161 447
minimum 211 .486 —.281 —.873 -.108 —-.263

ShrkP .394 890 —.158 —.263 023 062
Stein? average .308 609 -.184 -.276 .022 .083
maximum .833 2.820 .365 1.526 .390 1.888
minimum ° —.427 —7.771 —.624 —~1.745 -217 ~.994

Stein® .308 727 —.184 -.329 .022 069

# Calculated based on the individual elasticities for each state. The same is the case for maximum and minimum.

b Calculated by first taklng the mean of the individual

Then the elasticitios are calculated from this mean. The

elasticities marked by 2 and ® are the same for the shon-run but not for the long-run,
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Table 4. Parameter Estimate of the Natural-Gas Regression {t values in parentheses)

Pooled Pooled oLs Shrinkage Stein-rule
with without estimator estimator estimator
Variables dummies dummies (average) (average) (average)
Vit—1 628 .983 173 499 440
(25.49) (195.83) (5.77) (19.67) (21.83)
Xit 114 .048 307 .280 222
(1.15) (.45) (2.63) (3.42) (2.58)
X371 —-.075 —.040 —.583 -.314 —.404
{(—.79) (—.38) (—5.31) (—4.12) (-4.98)
X2it -177 —.164 —.092 —.099 -.116
(—4.68) (—4.13) (—2.46) (-3.77) (—4.08)
X1 t-1 .035 41 -.073 -.041 —.003
(.92) (3.60) (—1.92) (—1.43) (—.09)
Xa3jt .016 .026 -.034 -.001 —.014
(.49) (1.74) (—.73) (—.03) (—.45)
X4t 529 .027 421 424 291
(6.30) (.96) (4.63) (7.91) (4.72)
X5t —-1.104 -.079 1.494 -913 .976
(—4.40) (—.96) (-42) (—5.83) (.41)

cept dummies. The electricity LRy, elasticity of .584 from
the former is closer to what economic theory would sug-
gest than the simple pooled estimate without state intercept
dummies of .044. This can be explained by the near can-
celing of the income estimates in the pooled model without
state intercept dummies. Moreover, by ignoring heterogene-
ity in the intercepts, the size and explanatory power of the
lagged dependent variable is greatly increased in the pooled
model without state intercept dummies.

The SR7, are very similar across the five methods (-.158
to —.214). The separate state Bayesian shrinkage estimates
are closest to the average and numerically the most inelastic
(~.158) and do not contain any positive elasticities as does
the Stein estimator. The range for the LRy, is (-.239 to
—1.031), and the higher estimates are from the two pooled
models. This appears due to the “imposition” of homogene-
ity across the states. .

Table 4 summarizes the parameter estimates from the
five methods using the natural-gas models. The explana-
tory power is provided primarily by the lagged consump-
tion term and contemporary natural-gas price. Evidence of
heterogeneity across the states is again evident by the rel-

atively large estimate for the lagged dependent variable in
the pooled model with state intercept dummies (.628) and
the pooled model without state intercept dummies (.983)
relative to the average from the individual state OLS esti~
mates (.173).

Short- and long-run elasticities for the natural gas mod-
els are presented in Table 5 and organized as in Table 3.
The short-run price elasticity estimates are quite stable over
the different estimation approaches, ranging from —.092
to —.177. The short-run income-elasticity estimates range
from .048 to .307. As with electricity demand, the long-run
income and price elasticity estimates for natural-gas de-
mand vary quite a bit over the five estimation approaches.
The LRy, estimates range from —.239 to —1.358, and the
LRy, estimates range from —.425 to .491.

The null hypothesis in (7) is again rejected from the F'
statistic for the Stein-rule estimator; the statistic is 2.143
and the 5% critical value is 1. This implies that the Stein-
rule estimator is given by §; = .6710;+.32903, and suggests
that there is relatively greater heterogeneity in the natural-
gas regression model compared with the electricity model.

One final note on the natural-gas elasticities is worth

Téble 5, Short-Run and Long-Run Income and Price Elasticities of the Natural Gas Regression

Approaches SRny LRny SRnp LRnp SRn; LRng
Pooled w/ dummies 114 .104 -.177 ~.381 016 .044
Pooled w/o dummies .048 491 —.164 —1.358 .026 1.558
OLS? average .307 —.425 -.092 —.239 -.034 .046

maximum 3.339 1.847 1.069 2.198 783 5.506
minimum -2.745 -5.132 —1.341 —2.454 —.963 -2.104
oLsb .307 -.334 -.092 —.200 —.034 —.041
Shrk® average .280 -.057 —-.099 -.273 —.001 -.007
maximum .356 473 —.060 .085 .083 .151
minimum 210 —.486 ~.150 —.660 -.091 —.233
Shrkt .280 -.068 —.099 —.280 —.001 —.002
Stein® average 222 —412 -.116 —.250 -.014 .057
maximum 2.255 1.816 663 2127 534 5.185
minimum —1.825 -5.020 —.953 —2.365 -.637 —2.031
Stein? 222 —.326 —116 -.212 -.014 —-.025

8 calculated based on the individual elasticities for sach state. The same Is the case for maximum and minimum.
b calculated by first taking the mean of the individual parameter estimates. Then the elasticities are calculated from this mean. The
elasticities marked by 2 and b are the same for the short-run but not for the fong-run.
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Table 6. OLS Estimates and t Values of Individual States Table 8. OLS Estimates and t Values of Individual States
(electricity regression) (natural-gas regression)
State  yi -1 X1it Xtit—1 Xojt X2i,0—1 X3t State  yit—q X1t X4,t—1 Xojt X2i,t—1 X3t
CA 581 510 -.215 -.211 .087 —.036 CA -.179 —-.223 -1.686 .193 -.310 —.160
3.647 1.814 —918 —-2.076 1.367 -1.016 . —1.009 -.326 -2.036 1.554 —2.520 —.908
FL 422 1.265 —.659 -.163 .009 —-.073 FL 172 2733 -3914 -.579 —~.472 423
2.617 6.491 -2688 —2.601 125 —-1.303 1.183 3376 —4470 -—-2.703 —1.399 2.578
IL 241 .558 144 -.011 ~—.051 .019 IL —-.512 .947 -.877 .662 —.447 —.898
1.832 2.353 .605 —.090 —.423 570 —2.905 2588 -2513 4,108 —2.728 —4.037
Ml .754 .285 —.126 —.040 .012 —.008 Mi —.023 —.563 .463 359 —.263 —.506
6.475 2404 —-1.124 —.468 128 —.452 —.088 -.990 1.106 1.282 —.937 —1.829
NY .810 476 —.243 —.152 191 —.053 NY .023 1.088 —.738 .006 -.128 .012
7.615 2.491 —1.194 -2581 3.400 -1.715 .089 1982 —1.481 .041 —1.008 .089
OH 637 437 —.007 —.110 —.065 .055 OH —.441 —.136 —.920 —.067 -.191 —.025
7.022 2.428 —.042 —1.271 ~.602 1.613 —2.041 —.286 -—2.345 —-.419 —1.271 —-111
PA 521 522 .034 —.207 .166 —.010 PA -.133 —.010 —.410 .103 —.090 —.557
5.632 2.788 174 -2.686 2.137 —.653 —.450 -.017 -.793 .645 —.567 —2.677
TX .688 .091 .028 ~.444 .206 .103 TX .599 —-.751 ~1.304 1.069 —.189 —.843
3.243 .188 073 —-2.955 1.470 651 4.700 —-772 -1.555 3.134 —.812 —2.807

NOTE: t values are presented in the second line for each state. Coefficlents for cooling and
heating degree days are not reported.

making. The long-run income elasticity for natural gas is
persistently estimated as negative with the individual OLS
regressions and is nearly 0 (—.057) with the shrunken es-
‘timates. Although it seems counterintuitive that the long-
run natural-gas income elasticity is smaller than the short-
run natural-gas elasticity, there are several explanations for
this result. First, as incomes rise, households may buy mi-
crowave ovens and will substitute away from gas cooking
into microwave cooking. Second, as incomes rise, house-
holds may convert their homes to central air conditioning
and households that previously used gas for heating now
have the option of converting to electric heating and cooling
with a heat pump, Hence, a certain subset of these house-
holds will reduce their gas consumption dramatically as in-
comes rise. Third, as incomes rise, households will remodel
their homes. In many cases the configuration of appliances
such as ranges, clothing dryers, and water heaters after re-
modeling are not convenient to gas lines. Again a subset of
households that previously used gas for these end uses will
now convert to electricity as incomes rise. Finally, natural-

Table 7. Shrinkage Estimates and t Values of Individual States
(electricity regression)

NOTE: See note to Table 6.

gas price controls had an impact on the availability of sup-
plies. The availability of natural gas for new homes fell
from 50% in 1971 to 37% in 1979 (when prices were de-
controlled) and has risen to 63% in 1993. Over the same pe-
riod, electricity’s share of heating in new homes rose from
43% in 1971 to 57% in 1985 and then fell to 33% in 1993.
In addition, the U.S. Energy Information Administration in
1987 reported that among the 2.2 million new homes that
used electricity as a primary heating source, 89.3 percent of
the households stated that they did not have access to nat-
ural gas in their neighborhoods. The combination of these
factors can explain the income elasticity results.

Tables 6-9 present the estimates of the individual state
regression coefficients with the associated ¢ statistics and
Tables 10 and 11 present the corresponding price, income,
and cross-price elasticities. To conserve space, only the re-
sults for the OLS and Bayesian shrinkage estimation meth-
ods are presented for the largest eight states—California,
Florida, Illinois, Michigan, New York, Ohio, Pennsylvania,

Table 9. Shrinkage Estimates and t Values of Individual States
(natural-gas regression)

State Yijt—1 X1t Xtit—1 Xoit X2i,t—1 X3it State Yijt—1 X1it X1i,t—~1 Xzit X2j,t—1 X3it

CA .635 441 —.205 -.208 .090 -.018 CA 451 .240 -.417 —-.128 —.154 .052
12035 6.022 -3.241 —4.450 1.944 —.726 11.531 6.998 —-7.651 —~4.485 —4.080 1.349

FL 647 585 -.296 ~.233 139 -016 FL 502 225 —.409 —.135 —115 .018
12760 8.387 —6.103 —5.347 3.090 —.477 13.056 5436 5650 -3.822 —1.793 429

IL .561 .359 .035 -~.086 .006 .014 I 481 299 —.295 —.078 —.024 .003
12572 4.993 528 —1.553 117 476 13.546 9473 -6.176 —-2.757 -.739 .094

Mi 621 .338 —.050 —.120 .024 .003 Mi 512 322 —.235 -.067 .029 -.027
14.291 5.482 -.957 —2.499 .469 162 14520 10533 5207 -—2.352 -.920 —-.787

NY .715 453 —-.121 -.136 167 —.042 NY 523 324 -—.229 —-.074 .040 —.045
20.162 6.369 —2.166 —3.699 4.033 —1.536 16408 11847 —6.159 -2.792 1.526 -1518

OH 679 395 -.043 -.152 .044 .034 OH 461 270 —.362 —.099 —.073 .030
19.903 6.128 —.931 —3.298 814 1.259 12.174 8384 -7246 -3614 —2.351 .843

PA 679 476 —.129 —.172 115 —.004 PA 489 .290 —.303 —.090 —.020 -.008
18.702 7240 —-2452 -3.827 2.830 —.266 14.073 9.693 —-7.138 —3.246 -.726 -.226

X 625 .353 .009 -.197 .045 .023 TX 480 .268 ~.359 -.106 —.093 .033
11576 3.864 116 —3.223 591 429 12.880 7682 6459 3522 2215 .837

NOTE: See note to Table 6.

NOTE: See nots to Table 6.
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Table 10. Short-Run and Long-Run Income Elasticities (ny), Price Elasticities (np),
and Cross-Price Elasticities (ng) of Individual States (electricity regression)

Estimation
methods State SRy LRny SRnp LRnp SAng LA
oLsS
CA 510 .703 -.211 —.297 —.036 —.085
FL 1.265 1.048 —.163 —.265 —-.073 -.125
L 558 925 —-.011 —.082 019 .025
Mi .285 .648 —.040 -117 —.008 —-.032
NY 476 1.225 —-.152 .202 —.053 —-.281 \
OH 437 1.184 -.110 -.480 .055 .152
PA ' 522 1.160 -.207 -085 - -.010 —.022
TX .091 382 —.444 -.765 103 329
Shrinkage
CA 441 647 -.208 —-.324 -.018 —.049
FL 585 .820 -.233 -.265 +—,016 —.046
L 359 .898 -.086 -.181 .014 .031
MI 338 .760 -.120 —.253 .003 .007
NY 453 1.166 -.136 109 . —.042 —.147
OH 395 1.096 —.152 -.336 .034 .105
PA 476 1.083 -.172 -.176 —.004 -.013
> - .353 965 -.197 —.406 .023 .063 oo

and Texas. Detailed tables for all the 49 states as well as for
the Stein-rule estimation method are available on request
from us. The differences between the results from the OLS
and Bayesian shrinkage methods are evident and have also
been discussed earlier and hence will not be elaborated on.

5. CONCLUSIONS

The most common procedure used in the analysis of panel
data is to pool with individual-specific dummies that are as-
sumed to be fixed (fixed-effects model) or random (random-
effects model). This procedure, however, assumes homo-
geneity of the slope coefficients. At the other extreme is
the case of complete heterogeneity and separate estimation
of cross-section coefficients 3;. An intermediate case be-
tween complete homogeneity and complete heterogeneity is

the random-coefficient model. In this framework we would
be interested in estimating (a) the mean p and covariance
matrix X of the cross-section coefficients 3; and (b) the
coefficients 3; themselves. In the classical framework only
p and T are estimable; 3; are not. One can talk of predictors
for ;, however.

This article presents in a unified framework different pro-
cedures for the estimation of j3;. The Bayesian approach to
this problem results in shrinkage estimators that shrink the
individual OLS estimator ﬁ, toward the estimator of the
overall mean u. Other shrinkage estimators have been sug-
gested in the literature. For instance, the Stein-rule estima-
tor shrinks the OLS estimator ﬁ, toward the pooled estima-
tor obtained under complete homogeneity. The estimator of
u is different from the pooled estimator.

Table 11. Short-Run and Long-Run Income Elasticities (ry), Price Elasticities (np),
and Cross-Price Elasticities (r)f, ) of Individual States (electricity regression)
Estimation .
methods State SRny LRy, SAnp LRAnp SRng LARng
oLs )

CA -.223 -1.620 .193 —.099 -.160 —.136

FL 2.733 ~1.425 -.579 -1.270 423 511

. 947 .046 662 142 —.898 —.593

Mi -.563 —.097 .359 .095 -.506 —.494

NY 1.088 .358 .006 -.125 012 012

OH —-.136 -.733 —.067 —-179 —.025 -.018

PA -.010 —.370 103 .011 -557 —.491

TX -.751 -5.132 1.069 2.198 —.843 -2.104

Shrinkage

CA .240 -.322 -.128 -.513 052 .094

FL 225 —.368 -.135 -.500 .018 037

L .299 .008 ~.078 -.197 .003 .007

Mi 322 178 -.067 -077 -.027 —.056

NY 324 199 —.074 -.073 —.045 —.095

OH 270 -.153 ~.099 -.319 .030 055

PA 290 —.025 —.090 —.216 -.008 -.015

TX 268 -.176 —.106 -.383 .033 .063

Copyright © 2001 All Rights Reserved



100

The article discusses the classical prediction approach as
well as the empirical Bayes and Bayes approaches to this
problem. It discusses two-step versus iterative estimation
methods. It is argued that the latter methods should be pre-
ferred in the presence of lagged dependent variables.

The article applies these procedures to the problem of
estimating short-run and long-run elasticities of residential
demand for electricity and natural gas in the United States
for each of 49 states. The separate estimates were hard to
interpret and had several wrong signs. These are not pre-
sented here to conserve space but are available from us. The
pooled estimator gave a very high coefficient of the lagged
dependent variable implying long lags in adjustment. This
estimator was rejected because it rests on the hypothesis of
homogeneity of the coefficients, which was easily rejected
by an F test. The shrinkage estimator gave much more rea-
sonable parameter values. Because the model was dynamic,
iterative estimation methods were used.

If our interest lies in obtaining the elasticity estimates
for each state, as in this study, then there are three choices
open:

1. Use the individual state data only—but this gave bad
results.

2. Pool the data and use the estimates from the pooled
estimates—but this is not valid because the hypothesis of
homogeneity is convincingly rejected.

3. Use the procedure presented here of allowing some
(but not complete) heterogeneity (or homogeneity), which
is what the random-coefficient model implies.-

In many applications, the experience of researchers will
be similar to ours in this case. The comparative performance
of the different procedures in the context of dynamic panel-
data models is being studied by Monte Carlo experiments.
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