

OIDD Cheat Sheet

by vicy12341 via cheatography.com/144393/cs/30992/

Lecture 2	
Flow Rate	Min between demand and capacity
Utilization = R/Capacity	fraction of time spent working
Cycle Time = 1/ Flow Rate	Time between when units exit process
Flow Time = I/R	Time unit spends in process
Cost of Direct Labor	=(wages per unit of time x #of workers) / Flow Rate
Labor Content	sum of processing times involving labor (don't multiply by #of workers)
Labor Utilization	= R / Labor Capacity
Labor Capacity	= N (# of workers) / Labor content
Takt Time =1/ Demand Rate	Time between when flow units are demanded
Target Manpower = Labor Content/ Takt Time	= Labor Content/ Takt Time
Goal of Line Balancing	Find min cycle time

Process Flows (Lecture 1)

Little's Law: I = R I= Inventory, R= Flow x T Rate, T= Flow Time

Days of Supply = The "T" in Little's Law

I/R = 1/Turns (add def)

Inventory Turns = 1/T = R/I = COGS/ I

COGS = R, the flow rate

Gross Margin % = (Price - Cost) / Price

Decision trees

Maximin	Find the minimums of each	
Decision	branch, then choose the max of	
	the mins	
Maximax	Find the max of each branch,	
Decision	then choose the max of the	
	maxes	

value of Perfect

info

= (expected value of decision w/ perfect info) - (expected value of decision w/o perfect info)

Baye's Rule

 $P(A|B) = P(A \cap B) = P(B|A) P(A)$

Queues

Queues (cont)

Inventory in service = p/a

CVa= Standard deviation inter arrival time / avg inter arrival time

CVp= Standard deviation processing time/ avg processing time

Time in queue increases dramatically as utilization approaches 100%

Yield and Capacity of Process

Yield = Flow Rate goof output/ Flow rate bad output

Yield of Process = Product of resource yields

Implied Utilization Can be over 100%,

= Demand/ bottleneck has highest
Capacity IU

Capacity = 1/Processing Time

Processing Time = 1/Capacity

Demand (in min of work) = Processing time x Demand

Required input = Desired output/ Process yield

Required resource capacity = Resource's demand with required input

Required resource capacity = Resource's demand with required input

Finding capacity Find capacity of each of process step and find the bottleneck

Solving Questions

Solving Questions (cont)

Length of queue at time T = T x (Demand - Capacity)			
Time to serve Qth person in queue = Q/Capacity			
Time to serve customer arriving at time T = T x (Demand/Capacity-1)			
Avg time to serve customers in the queue = 1/2 x T x (Demand/Capacity -1)			
Variables to know	a= inter arrival time, m= # of workers/kiosks, p = avg processing time		
Demand = 1/a			
Capacity= m x (1/p)			
Utilization = P / (a x m)			
m = P /(a x utilization)			
Time spent in system = Time in queue + Time in processing			
Inventory = Inventory in queue + Inventory			

Inventory in queue = Time in queue/ a

in service

What the question is asking	Approach to take
Inventory costs are what percent of purchasing costs?	Find Flow Time. Then multiply annual inventory cost percentage by flow time in years and by individual unit cost
Cost to hold inventory for a year What is the avg time	Cost of individual unit x annual holding cost percentage Find flow time

Total time to process 20 customers	Time to process 1st customer (sum of processing times) + time to process other customers (19 x Cycle Time)
Total ordering costs	(K x R) / Q
Total holding costs	1/2 x Qh
How many individual units should they produce in each batch If company ordered a specific number of cases at a time, what would be their holding and ordering costs	Use desired capacity to find full batch size. Then multiply batch size by ratio of individual demand/capacity over total demand/capacity Find C(Q)
If company ordered a specific number of cases, what would be holding and ordering cost per case	Find C(Q)/ R
Quantity of cases per order	Find EOQ
How long will you	Find the time to serve

Avg Inventory

wait if you are

nth in line

 $Average\ Inventory = \frac{1}{2} \times Batch\ size\ \times (1-Flow\ rate\ \times Processing\ time$

front of you.

the number of people in

Setup Times and Batching

Capacity = Number of units produced/ Time to Produce units

Utilization (with a setup time) = Flow rate x Processing Time

By vicy12341 cheatography.com/vicy12341/

Not published yet. Last updated 3rd March, 2022. Page 2 of 3. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

OIDD Cheat Sheet

by vicy12341 via cheatography.com/144393/cs/30992/

Capacity

 $Capacity = \frac{Batch\,size}{Setup\,time + Batch\,size \times Processing\,time}$

EOQ and Quantity Discounts

Inventory Q= quantity in each order,

Variables R=Flow Rate, h = inventory

holding cost per unit time, K=

fixed vost per order

Time between shipments = Q/R

Avg inventory = Q/2

Number of orders placed per unit of time =

R/Q

Capacity (in min of work/hr) = #of workers x

60

Quantity minimizing ordering and holding costs

$$Q^* = \sqrt{\frac{2 \times K \times R}{h}}$$

Batch Size

 $Batch\,size = \frac{Capacity \times Setup\,time}{I - Capacity \times Processing\,time}$

Ordering plus inventory holding cost per unit time

$$C(Q) = \frac{K \times R}{Q} + \frac{1}{2}h \times Q$$

Time in Queue

By vicy12341 cheatography.com/vicy12341/

Not published yet. Last updated 3rd March, 2022. Page 3 of 3. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com