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The Students' Proof Assistant (SPA) aims to both teach how to use a proof assistant like 
Isabelle but also to teach how reliable proof assistants are built. Technically it is a 
miniature proof assistant inside the Isabelle proof assistant. In addition we conjecture 
that a good way to teach structured proving is with a concrete prover where the 
connection between semantics, proof system, and prover is clear. In fact, the proofs in 
Lamport's TLAPS proof assistant have a very similar structure to those in the 
declarative prover SPA. To illustrate this we compare a proof of Pelletier's problem 43 
in TLAPS, Isabelle/Isar and SPA. 
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A Verified Miniature Proof Assistant 
 
Students' Proof Assistant (SPA) is an advanced e-learning tool for teaching proof 
assistants for students in computer science as well as in mathematics and 
complements our other e-learning tool, NaDeA (A Natural Deduction Assistant 
with a Formalization in Isabelle), which is available online and has been used by 
hundreds of BSc and MSc students at DTU in regular courses 
 
We conjecture that a good way to teach structured proving is with a concrete 
prover where the connection between semantics, proof system, and prover is 
clear 
 
Even for paper proofs Leslie Lamport recommends writing in a structured style 

 
  



    3 

Starting Point 
 
Programming and Verifying a Declarative First-Order Prover 
Alexander Birch Jensen, John Bruntse Larsen, Anders Schlichtkrull & Jørgen Villadsen 
Special Issue on Automated Reasoning – AI Communications 281-299 2018 

 
A first-order prover with equality based on John Harrison's Handbook of 
Practical Logic and Automated Reasoning, Cambridge University Press, 2009 
 
ML code reflection is used such that the entire prover can be executed within 
Isabelle as a very simple interactive proof assistant 
 
As examples we consider Pelletier's problems 1-46 
 
Isabelle lines of code: 4147 
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Pelletier’s Problem 55 
 
Someone in Dreadsbury Mansion killed Aunt Agatha. Agatha, the butler, and Charles live in 
Dreadsbury Mansion, and are the only ones to live there. A killer always hates, and is no richer 
than his victim. Charles hates noone that Agatha hates. Agatha hates everybody except the 
butler. The butler hates everyone not richer than Aunt Agatha. The butler hates everyone whom 
Agatha hates. Noone hates everyone. Who killed Agatha? 
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Pelletier’s Problem 46 
 

 
 
Seventy-Five Problems for Testing Automatic Theorem Provers 
Francis Jeffry Pelletier 
Journal of Automated Reasoning 191-216 1986 
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Handbook of Practical Logic and Automated Reasoning 
John Harrison 
Cambridge University Press 2009 
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Pelletier’s Problem 43 
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  (<!"(forall x y. Q(x,y) <=> forall z. P(z,x) <=> P(z,y)) ==> forall x y. Q(x,y) <=> Q(y,x)"!>) 
  [ 
    assume [("A", <!"forall x y. Q(x,y) <=> forall z. P(z,x) <=> P(z,y)"!>)], 
    conclude (<!"forall x y. Q(x,y) <=> Q(y,x)"!>) proof 
    [ 
      fix "x", fix "y", 
      conclude (<!"Q(x,y) <=> Q(y,x)"!>) proof 
      [ 
        have (<!"(Q(x,y) ==> Q(y,x)) /\\ (Q(y,x) ==> Q(x,y))"!>) proof 
        [ 
          conclude (<!"Q(x,y) ==> Q(y,x)"!>) proof 
          [ 
            assume [("", <!"Q(x,y)"!>)], 
            so have (<!"forall z. P(z,x) <=> P(z,y)"!>) by ["A"], 
            so have (<!"forall z. P(z,y) <=> P(z,x)"!>) at once, 
            so conclude (<!"Q(y,x)"!>) by ["A"], 
            qed 
          ], 
          conclude (<!"Q(y,x) ==> Q(x,y)"!>) proof 
          … 
          qed 
        ], 
        so our thesis at once, 
        qed 
      ], 
      qed 
    ], 
    qed 
  ]  
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Isabelle Formalization 
type_synonym id = String.literal 
 
datatype tm = Var id | Fun id ‹tm list› 
 
datatype fm = Truth | Falsity | Pre id ‹tm list› | Imp fm fm | Iff fm fm | Con fm fm | Dis fm fm | 
  Neg fm | Exi id fm | Uni id fm 

 
Rule = function that takes theorems and returns a theorem 
 
E.g. generalization: 
 
definition gen' :: ‹id ⇒ fm ⇒ fm› 
  where 
    ‹gen' x p ≡ Uni x p› 

 
E.g. modus ponens 
 
definition ‹fail ≡ Truth› 

 
definition modusponens' :: ‹fm ⇒ fm ⇒ fm› 
  where 
    ‹modusponens' r p' ≡ case r of Imp p q ⇒ if p = p' then q else fail | _ ⇒ fail› 

 
These are actually the only two rules.  



    14 
Axiom = function that given some arbitrary input returns a theorem 
 
definition axiom_addimp' :: ‹fm ⇒ fm ⇒ fm› 
  where 
    ‹axiom_addimp' p q ≡ Imp p (Imp q p)› 

 
 
definition axiom_impall' :: ‹id ⇒ fm ⇒ fm› 
  where 
    ‹axiom_impall' x p ≡ if ¬ free_in x p then (Imp p (Uni x p)) else fail› 

 
We encode the rest of the rest of the axioms too of course. 
 
We define the provable formulas 
inductive OK :: ‹fm ⇒ bool› ("⊢ _" 0) 
  where 
    ‹⊢ s ⟹ ⊢ s' ⟹ ⊢ modusponens' s s'› | 
    ‹⊢ s ⟹ ⊢ gen' _ s› | 
    ‹⊢ axiom_addimp' _ _› | 
    … 
    ‹⊢ axiom_allimp' _ _ _› | 
    … 
    ‹⊢ axiom_exists' _ _› 
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We define the type of theorems 
 
 
typedef "thm" = ‹{p :: fm. ⊢ p}› 
proof - 
  have ‹⊢ axiom_addimp' Truth Truth› 
    using OK.intros by auto 
  then show ?thesis by blast 
qed 
 

concl :: ‹thm ⇒ fm› = the function that extracts the formula from a theorem  
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We define semantics of FOL: 
 
primrec ― ‹Semantics of terms› 
  semantics_term :: ‹(id ⇒ 'a) ⇒ (id ⇒ 'a list ⇒ 'a) ⇒ tm ⇒ 'a› and 
  semantics_list :: ‹(id ⇒ 'a) ⇒ (id ⇒ 'a list ⇒ 'a) ⇒ tm list ⇒ 'a list› 
  where 
    ‹semantics_term e _ (Var x) = e x› | 
    ‹semantics_term e f (Fun i l) = f i (semantics_list e f l)› | 
    ‹semantics_list _ _ [] = []› | 
    ‹semantics_list e f (t # l) = semantics_term e f t # semantics_list e f l› 
 
primrec ― ‹Semantics of formulas› 
  semantics :: ‹(id ⇒ 'a) ⇒ (id ⇒ 'a list ⇒ 'a) ⇒ (id ⇒ 'a list ⇒ bool) ⇒ fm ⇒ bool› 
  where 
    ‹semantics _ _ _ Truth = True› | 
    ‹semantics _ _ _ Falsity = False› | 
    ‹semantics e f g (Pre i l) = (if i = STR ''='' ∧ length l = 2 
      then (semantics_term e f (hd l) = semantics_term e f (hd (tl l))) 
      else g i (semantics_list e f l))› | 
    ‹semantics e f g (Imp p q) = (semantics e f g p ⟶ semantics e f g q)› | 
    ‹semantics e f g (Iff p q) = (semantics e f g p ⟷ semantics e f g q)› | 
    ‹semantics e f g (Con p q) = (semantics e f g p ∧ semantics e f g q)› | 
    ‹semantics e f g (Dis p q) = (semantics e f g p ∨ semantics e f g q)› | 
    ‹semantics e f g (Neg p) = (¬ semantics e f g p)› | 
    ‹semantics e f g (Exi x p) = (∃v. semantics (e(x := v)) f g p)› | 
    ‹semantics e f g (Uni x p) = (∀v. semantics (e(x := v)) f g p)› 
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We want the axioms and rule to return thms 
 
setup_lifting type_definition_thm 
 

Remember 
 
definition gen' :: ‹id ⇒ fm ⇒ fm› 
  where 
    ‹gen' x p ≡ Uni x p› 
 
We lift it: 
 
lift_definition gen :: ‹id ⇒ thm ⇒ thm› is gen' 
  using OK.intros(2) . 
 

Remember 
 
definition axiom_addimp' :: ‹fm ⇒ fm ⇒ fm› 
  where 
    ‹axiom_addimp' p q ≡ Imp p (Imp q p)› 

 
We lift it: 
 
lift_definition axiom_addimp :: ‹fm ⇒ fm ⇒ thm› is axiom_addimp' 
  using OK.intros(3) . 
 

Likewise we lift the rest of the rules and axioms 
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We prove that the theorems are valid: 
theorem soundness: ‹semantics e f g (concl p)› 
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Code generation 
 
code_reflect 
  Proven 
  datatypes 
    tm = Var | Fun 
    and 
    fm = Truth | Falsity | Pre | Imp | Iff | Con | Dis | Neg | Exi | Uni 
  functions 
    modusponens gen axiom_addimp axiom_distribimp axiom_doubleneg axiom_allimp axiom_impall 
    axiom_existseq axiom_eqrefl axiom_funcong axiom_predcong axiom_iffimp1 axiom_iffimp2 
    axiom_impiff axiom_true axiom_not axiom_and axiom_or axiom_exists concl 

 
This generates a module 
structure Proven: 

  sig 

    type thm 

    val axiom_addimp: fm -> fm -> thm 

    … 

    val concl: thm -> fm 

    datatype tm = Fun of string * tm list | Var of string 

    datatype fm = Con of fm * fm | Dis of fm * fm | Exi of string * fm | 

                  Falsity | Iff of fm * fm | Imp of fm * fm |  

                  Neg of fm | Pre of string * tm list | Truth |  

                  Uni of string * fm 

  end 

With an implementation based on the specified functions 
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Load functions building on Proven 
 
ML_file ‹SPA.ML› 
 

A few examples 
 
ML_val ‹ auto "A ==> A" › 
 
ML_val ‹ auto "exists x. D(x) ==> forall x. D(x)" › 
 
ML_val ‹ auto "(forall x. ~R(x) ==> R(f(x))) ==> exists x. R(x) /\\ R(f(f(x)))" › 
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Work in Progress – Now at Version 0.9.9 
 
 

Logic Tools – NaDeA and other open source software for teaching logic 
 
https://github.com/logic-tools 
 
https://nadea.compute.dtu.dk 
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Conclusion 
 
We have made an Isabelle/HOL formalization of sound axiomatic system. 
 
We have used code generation to obtain a proof assistant from it. 
 
On top of that is defined: 
   verified derived rules,  
   verified tableau prover,  
   verified tactics,  
   verified declarative ITP. 
 
We conjecture that a good way to teach structured proving is with this concrete 
prover: The connection between semantics, proof system and prover is clear. 


