
 1

Students' Proof Assistant (SPA)

Anders Schlichtkrull
Jørgen Villadsen
Andreas Halkjær From

Technical University of Denmark – DTU Compute

The Students' Proof Assistant (SPA) aims to both teach how to use a proof assistant like
Isabelle but also to teach how reliable proof assistants are built. Technically it is a
miniature proof assistant inside the Isabelle proof assistant. In addition we conjecture
that a good way to teach structured proving is with a concrete prover where the
connection between semantics, proof system, and prover is clear. In fact, the proofs in
Lamport's TLAPS proof assistant have a very similar structure to those in the
declarative prover SPA. To illustrate this we compare a proof of Pelletier's problem 43
in TLAPS, Isabelle/Isar and SPA.

 2

A Verified Miniature Proof Assistant

Students' Proof Assistant (SPA) is an advanced e-learning tool for teaching proof
assistants for students in computer science as well as in mathematics and
complements our other e-learning tool, NaDeA (A Natural Deduction Assistant
with a Formalization in Isabelle), which is available online and has been used by
hundreds of BSc and MSc students at DTU in regular courses

We conjecture that a good way to teach structured proving is with a concrete
prover where the connection between semantics, proof system, and prover is
clear

Even for paper proofs Leslie Lamport recommends writing in a structured style

 3

Starting Point

Programming and Verifying a Declarative First-Order Prover
Alexander Birch Jensen, John Bruntse Larsen, Anders Schlichtkrull & Jørgen Villadsen
Special Issue on Automated Reasoning – AI Communications 281-299 2018

A first-order prover with equality based on John Harrison's Handbook of
Practical Logic and Automated Reasoning, Cambridge University Press, 2009

ML code reflection is used such that the entire prover can be executed within
Isabelle as a very simple interactive proof assistant

As examples we consider Pelletier's problems 1-46

Isabelle lines of code: 4147

 4

Pelletier’s Problem 55

Someone in Dreadsbury Mansion killed Aunt Agatha. Agatha, the butler, and Charles live in
Dreadsbury Mansion, and are the only ones to live there. A killer always hates, and is no richer
than his victim. Charles hates noone that Agatha hates. Agatha hates everybody except the
butler. The butler hates everyone not richer than Aunt Agatha. The butler hates everyone whom
Agatha hates. Noone hates everyone. Who killed Agatha?

 5

Pelletier’s Problem 46

Seventy-Five Problems for Testing Automatic Theorem Provers
Francis Jeffry Pelletier
Journal of Automated Reasoning 191-216 1986

 6

 7

 8

Handbook of Practical Logic and Automated Reasoning
John Harrison
Cambridge University Press 2009

 9

Pelletier’s Problem 43

 10

 11

 12
 (<!"(forall x y. Q(x,y) <=> forall z. P(z,x) <=> P(z,y)) ==> forall x y. Q(x,y) <=> Q(y,x)"!>)
 [
 assume [("A", <!"forall x y. Q(x,y) <=> forall z. P(z,x) <=> P(z,y)"!>)],
 conclude (<!"forall x y. Q(x,y) <=> Q(y,x)"!>) proof
 [
 fix "x", fix "y",
 conclude (<!"Q(x,y) <=> Q(y,x)"!>) proof
 [
 have (<!"(Q(x,y) ==> Q(y,x)) /\\ (Q(y,x) ==> Q(x,y))"!>) proof
 [
 conclude (<!"Q(x,y) ==> Q(y,x)"!>) proof
 [
 assume [("", <!"Q(x,y)"!>)],
 so have (<!"forall z. P(z,x) <=> P(z,y)"!>) by ["A"],
 so have (<!"forall z. P(z,y) <=> P(z,x)"!>) at once,
 so conclude (<!"Q(y,x)"!>) by ["A"],
 qed
],
 conclude (<!"Q(y,x) ==> Q(x,y)"!>) proof
 …
 qed
],
 so our thesis at once,
 qed
],
 qed
],
 qed
]

 13

Isabelle Formalization
type_synonym id = String.literal

datatype tm = Var id | Fun id ‹tm list›

datatype fm = Truth | Falsity | Pre id ‹tm list› | Imp fm fm | Iff fm fm | Con fm fm | Dis fm fm |
 Neg fm | Exi id fm | Uni id fm

Rule = function that takes theorems and returns a theorem

E.g. generalization:

definition gen' :: ‹id ⇒ fm ⇒ fm›
 where
 ‹gen' x p ≡ Uni x p›

E.g. modus ponens

definition ‹fail ≡ Truth›

definition modusponens' :: ‹fm ⇒ fm ⇒ fm›
 where
 ‹modusponens' r p' ≡ case r of Imp p q ⇒ if p = p' then q else fail | _ ⇒ fail›

These are actually the only two rules.

 14
Axiom = function that given some arbitrary input returns a theorem

definition axiom_addimp' :: ‹fm ⇒ fm ⇒ fm›
 where
 ‹axiom_addimp' p q ≡ Imp p (Imp q p)›

definition axiom_impall' :: ‹id ⇒ fm ⇒ fm›
 where
 ‹axiom_impall' x p ≡ if ¬ free_in x p then (Imp p (Uni x p)) else fail›

We encode the rest of the rest of the axioms too of course.

We define the provable formulas
inductive OK :: ‹fm ⇒ bool› ("⊢ _" 0)
 where
 ‹⊢ s ⟹ ⊢ s' ⟹ ⊢ modusponens' s s'› |
 ‹⊢ s ⟹ ⊢ gen' _ s› |
 ‹⊢ axiom_addimp' _ _› |
 …
 ‹⊢ axiom_allimp' _ _ _› |
 …
 ‹⊢ axiom_exists' _ _›

 15

We define the type of theorems

typedef "thm" = ‹{p :: fm. ⊢ p}›
proof -
 have ‹⊢ axiom_addimp' Truth Truth›
 using OK.intros by auto
 then show ?thesis by blast
qed

concl :: ‹thm ⇒ fm› = the function that extracts the formula from a theorem

 16
We define semantics of FOL:

primrec ― ‹Semantics of terms›
 semantics_term :: ‹(id ⇒ 'a) ⇒ (id ⇒ 'a list ⇒ 'a) ⇒ tm ⇒ 'a› and
 semantics_list :: ‹(id ⇒ 'a) ⇒ (id ⇒ 'a list ⇒ 'a) ⇒ tm list ⇒ 'a list›
 where
 ‹semantics_term e _ (Var x) = e x› |
 ‹semantics_term e f (Fun i l) = f i (semantics_list e f l)› |
 ‹semantics_list _ _ [] = []› |
 ‹semantics_list e f (t # l) = semantics_term e f t # semantics_list e f l›

primrec ― ‹Semantics of formulas›
 semantics :: ‹(id ⇒ 'a) ⇒ (id ⇒ 'a list ⇒ 'a) ⇒ (id ⇒ 'a list ⇒ bool) ⇒ fm ⇒ bool›
 where
 ‹semantics _ _ _ Truth = True› |
 ‹semantics _ _ _ Falsity = False› |
 ‹semantics e f g (Pre i l) = (if i = STR ''='' ∧ length l = 2
 then (semantics_term e f (hd l) = semantics_term e f (hd (tl l)))
 else g i (semantics_list e f l))› |
 ‹semantics e f g (Imp p q) = (semantics e f g p ⟶ semantics e f g q)› |
 ‹semantics e f g (Iff p q) = (semantics e f g p ⟷ semantics e f g q)› |
 ‹semantics e f g (Con p q) = (semantics e f g p ∧ semantics e f g q)› |
 ‹semantics e f g (Dis p q) = (semantics e f g p ∨ semantics e f g q)› |
 ‹semantics e f g (Neg p) = (¬ semantics e f g p)› |
 ‹semantics e f g (Exi x p) = (∃v. semantics (e(x := v)) f g p)› |
 ‹semantics e f g (Uni x p) = (∀v. semantics (e(x := v)) f g p)›

 17

We want the axioms and rule to return thms

setup_lifting type_definition_thm

Remember

definition gen' :: ‹id ⇒ fm ⇒ fm›
 where
 ‹gen' x p ≡ Uni x p›

We lift it:

lift_definition gen :: ‹id ⇒ thm ⇒ thm› is gen'
 using OK.intros(2) .

Remember

definition axiom_addimp' :: ‹fm ⇒ fm ⇒ fm›
 where
 ‹axiom_addimp' p q ≡ Imp p (Imp q p)›

We lift it:

lift_definition axiom_addimp :: ‹fm ⇒ fm ⇒ thm› is axiom_addimp'
 using OK.intros(3) .

Likewise we lift the rest of the rules and axioms

 18

We prove that the theorems are valid:
theorem soundness: ‹semantics e f g (concl p)›

 19
Code generation

code_reflect
 Proven
 datatypes
 tm = Var | Fun
 and
 fm = Truth | Falsity | Pre | Imp | Iff | Con | Dis | Neg | Exi | Uni
 functions
 modusponens gen axiom_addimp axiom_distribimp axiom_doubleneg axiom_allimp axiom_impall
 axiom_existseq axiom_eqrefl axiom_funcong axiom_predcong axiom_iffimp1 axiom_iffimp2
 axiom_impiff axiom_true axiom_not axiom_and axiom_or axiom_exists concl

This generates a module
structure Proven:

 sig

 type thm

 val axiom_addimp: fm -> fm -> thm

 …

 val concl: thm -> fm

 datatype tm = Fun of string * tm list | Var of string

 datatype fm = Con of fm * fm | Dis of fm * fm | Exi of string * fm |

 Falsity | Iff of fm * fm | Imp of fm * fm |

 Neg of fm | Pre of string * tm list | Truth |

 Uni of string * fm

 end

With an implementation based on the specified functions

 20
Load functions building on Proven

ML_file ‹SPA.ML›

A few examples

ML_val ‹ auto "A ==> A" ›

ML_val ‹ auto "exists x. D(x) ==> forall x. D(x)" ›

ML_val ‹ auto "(forall x. ~R(x) ==> R(f(x))) ==> exists x. R(x) /\\ R(f(f(x)))" ›

 21

Work in Progress – Now at Version 0.9.9

Logic Tools – NaDeA and other open source software for teaching logic

https://github.com/logic-tools

https://nadea.compute.dtu.dk

 22

Conclusion

We have made an Isabelle/HOL formalization of sound axiomatic system.

We have used code generation to obtain a proof assistant from it.

On top of that is defined:
 verified derived rules,
 verified tableau prover,
 verified tactics,
 verified declarative ITP.

We conjecture that a good way to teach structured proving is with this concrete
prover: The connection between semantics, proof system and prover is clear.

