

Chapter 1

Figures

Figure 1.1 – Testing deliverables

Figure 1.2 – Continuous testing

Tables

Table 1.1 – Importance of testing early and testing often

Test automation engineer SDET

Creates and executes automated and manual

tests

Creates and maintains the test automation

framework

Collaborates with the product and

implementation teams

Collaborates with software engineers and

DevOps teams

Highly skilled in programming with testing skills Experts in testing either manually or by

automation

Develops test automation tools Uses test automation tools

Table 1.2 – Test automation versus SDET

Chapter 2

Technical requirements

In the later part of this chapter, we will be looking at some Python code to understand a simple

implementation of design patterns. You can refer to the following GitHub URL for the code in the

chapter: https://github.com/PacktPublishing/B19046_Test-Automation-Engineering-

Handbook/blob/main/src/test/design_patterns_factory.py.

This Python code is provided mainly for understanding the design patterns and the readers don't

have to execute the code. But if you are interested, here is the necessary information to get it

working on your machine. First, readers will need an integrated development environment (IDE) to

work through the code. Visual Studio Code (VS Code) is an excellent editor with wide support for a

variety of programming languages.

The following URL provides a good overview for using Python with VS Code:

https://code.visualstudio.com/docs/languages/python

You will need software versions Python 3.5+ and the Java Runtime Environment (JRE) 1.8+ installed

on your machine to be able to execute this code. pip is the package installer for Python, and I would

recommend installing it using https://pip.pypa.io/en/stable/installation/. Once you have PIP

installed, you can use the pip install -U selenium command to install Selenium Python bindings.

Next is to have the driver installed for your browsers. You can do this by going to the following links

for your particular browser:

• Chrome: https://chromedriver.chromium.org/downloads

• Firefox: https://github.com/mozilla/geckodriver/releases

• Edge: https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/

Make sure the driver executables are in your PATH environment variable.

Figures

Figure 2.1 – Agile testing quadrants

Figure 2.2 – Test automation strategy breakdown

Figure 2.3 – Essential components of a test automation framework

Figure 2.4 – Test automation pyramid

Figure 2.5 – Selenium WebDriver architecture

Hands-On Section

POM

Object repositories, in general, help keep the objects used in a test script in a central location rather

than having them spread across the tests. POM is one of the most used design patterns in test

automation; it aids in minimizing duplicate code and makes code maintenance easier. A page object

is a class defined to hold elements and methods related to a page on the UI, and this object can be

instantiated within the test script. The test can then use these elements and methods to interact

with the elements on the page.

Let us imagine a simple web page that serves as an application for various kinds of loans (such as

personal loans, quick money loans, and so on). There may be multiple business flows associated with

this single web page, and these can be set up as different test cases with distinct outcomes. The test

script would be accessing the same UI elements for these flows except when selecting the type of

loan to apply for. POM would be a useful design pattern here as the UI elements can be declared

within the page object class and utilized in each of the different tests running the business flows.

Whenever there is an addition or change to the elements on the UI, the page object class is the only

place to be updated.

The following code snippet illustrates the creation of a simple page object class and how the

test_search_title test uses common elements on the UI from the Home_Page_Object page object

class to perform its actions:

import selenium.webdriver as webdriver

from selenium.webdriver.common.by import By

class WebDriverManagerFactory:

def getWebdriverForBrowser(browserName):

if browserName=='firefox':

return webdriver.Firefox()

elif browserName=='chrome':

return webdriver.Chrome()

elif browserName=='edge':

return webdriver.Edge()

else:

return 'No match'

The WebDriverManagerFactory class contains a method to select the driver corresponding to the

browser being used, as illustrated in the following code snippet:

class Home_Page_Object:

def __init__(self, driver):

self.driver = driver

def load_home_page(self):

self.driver.get("https://www.packtpub.com/")

return self

def load_page(self,url):

self.driver.get(url)

return self

def search_for_title(self, search_text):

self.driver.find_element(By.ID,'search').send_keys(search_text)

search_button=self.driver.find_element(By.XPATH,

'//button[@class="action search"]')

search_button.click()

def tear_down(self):

self.driver.close()

The POM paradigm usually has a base class that contains methods for identifying various elements

on the page and the actions to be performed on them. The Home_Page_Object class here in this

example has methods to set up the driver, load the home page, search for titles, and close the

driver:

 class Test_Script:

def test_1(self):

driver = WebDriverManagerFactory

.getWebdriverForBrowser("chrome")

if driver == 'No match':

raise Exception("No matching browsers found")

pageObject = Home_Page_Object(driver)

pageObject.load_home_page()

pageObject.search_for_title('quality')

pageObject.tear_down()

def main():

test_executor = Test_Script()

test_executor.test_1()

if __name__ == "__main__":

main()

The test_search_title method sets up the Chrome driver and the page object to search for the

quality string.

We will look in further detail about setting up and using POM in Chapter 5, Test Automation for

Web.

Now, let us investigate how the factory design pattern is helpful in test automation.

The factories pattern

The factory pattern is one of the most used design patterns in test automation and aids in creating

and managing test data. The creation and maintenance of test data within a test automation

framework could easily get messy, and this approach provides a clean way to create the required

objects in the test script, thereby decoupling the specifics of the factory classes from the automation

framework. Separating the data logic from the test also helps test engineers keep the code clean,

maintainable, and easier to read. This is often achieved in test automation by using pre-built libraries

and instantiating objects from classes exposed by the libraries. Test engineers can use the resulting

object in their scripts without the need to modify any of the underlying implementations.

A classic example of a factory design pattern in test automation would be how Selenium WebDriver

gets initialized and passed around in a test. Selenium WebDriver is a framework that enables the

execution of cross-browser tests.

The following diagram breaks down how a piece of test script can exercise Selenium WebDriver to

make cross-browser calls:

Figure 2.5 – Selenium WebDriver architecture

Figure 2.5 shows how the test code utilizes a factory method to initialize and use the web drivers.

Please refer to the code snippet in the previous section for a simple implementation of the factory

pattern. Here, the WebDriverManagerFactory class returns an instance of the web driver for the

requested browser. The Test_Search_Choose_Title class can use the factory method to open a

Chrome browser and perform additional validations. Any changes to how drivers are being created

are encapsulated from the test script. If Selenium WebDriver supports additional browsers in the

future, the factory method will be updated to return the corresponding driver.

Business layer pattern

This is an architectural design pattern where the test code is designed to handle each layer of the

application stack separately. The libraries or modules that serve the test script are intentionally

broken down into UI, business logic/API, and data handling. This kind of design is immensely helpful

B19046_05.xhtml#_idTextAnchor119

when writing E2E tests where there is a constant need to interface with the full stack. For example,

the steps involved may be to start with seeding the database with the pre-requisite data, make a

series of API calls to execute business flows, and finally validate the UI for correctness. It is critical

here to keep the layers separate as this reduces the code maintenance nightmare. Since each of the

layers is abstracted, this design pattern promotes reusability. All the business logic is exercised in the

API layer, and the UI layer is kept light to enhance the stability of the framework.

Design patterns play a key role in improving the overall test automation process and they should be

applied after thoroughly understanding the underlying problem. We need to be wary of the fact that

if applied incorrectly, these design patterns could lead to unnecessary complications.

Chapter 3

Technical requirements

In this chapter, we will be looking at working examples of the CLI and Git. We will be using the

Terminal software on macOS for our examples in both sections. Windows users can use the in-built

PowerShell to execute these commands.

Hands-On Sections

The basic tools for every automation engineer

One of the primary tasks of a test automation engineer is to create, edit, or delete code daily. Test

engineers will often also have to interact with the shell of the system under development to tweak

their test environments or the underlying test data. In this section, we will be covering a few basic

commands that test engineers will need to be able to access the source code and navigate the

system under test. This section is a quick refresher for readers who are already experienced in the

software engineering space, and can help to build a good foundation for beginners.

Let us start by looking at the CLI.

The CLI

The CLI is a means to interact with the shell of the system under test. A lot of the tasks performed

through the graphical user interface can be done through the CLI too. But, the real might of the CLI

lies in its ability to programmatically support the simulation of these tasks. Let’s try and get familiar

with a few basic CLI commands. The CLI commands covered in this section can be run on Terminal

software on macOS, or PowerShell on Windows:

• The ls command lists all the files and directories in the current folder:

➜ls

The output to the preceding command should be as follows:

test.py test.txt testing_1 testing_2 testing_3 testing_4

➜

• The cd command stands for change directory and is used to switch to another directory. The

cd .. command navigates to the parent directory.

The syntax is as follows:

cd [path_to_directory]

The command and output should be as follows:

➜cd testing_1➜ testing_1 cd ..

• The mkdir command creates a new directory under the current directory.

The syntax is as follows:

mkdir [directory_name]

The command and output should be as follows:

➜mkdir testing_5

➜ls

test.py test.txt testing_1 testing_2

testing_3 testing_4 testing_5

➜

• The touch command creates a new file in the current directory without a preview.

The syntax is as follows:

touch [file_name]

The command and output should be as follows:

➜ touch testing.txt

➜ls

test.py test.txt testing.txt testing_1 testing_2

 testing_3 testing_4 testing_5

Note

Windows PowerShell users can use ni as touch is not supported.

• The cat command allows the user to view file contents on the CLI.

The syntax is as follows:

cat [file_name]

The command and output should be as follows:

➜ cat vim_file

This is a new file

➜ cli_demo

So far, we have looked at how to create and modify files. Next, let us look at the commands for

deleting files and folders:

• The rm command can be used to delete folders and files. Let us look at some specific

examples of how to go about this deletion.

To remove a directory and all the contents under that directory, use the rm command with

the –r option.

The syntax is as follows:

rm –r [directory_name]

The command and output should be as follows:

➜ ls

test.py test.txt testing.txt testing_1 testing_2

 testing_3 testing_4 testing_5 vim_file

➜ rm -r testing_1

➜ls

test.py test.txt testing.txt testing_2 testing_3

 testing_4 testing_5 vim_file

➜

• To delete the file(s), the same rm command can be used followed by the filename.

The syntax is as follows:

rm [file_name]

The command and output should be as follows:

➜ cli_demo ls

test.py test.txt testing.txt testing_2 testing_3

 testing_4 testing_5 vim_file

➜ cli_demo rm test.txt

➜ cli_demo ls

test.py testing.txt testing_2 testing_3

 testing_4 testing_5 vim_file

➜ cli_demo

Next, let us quickly look at Vim, which is a commonly used file-handling tool for the CLI.

Working with Vim

Vim is an in-built editor that allows you to modify the contents of a file. Vim aims to increase

efficiency when editing code via the CLI and is supported across all major platforms, such as macOS,

Windows, and Linux. Vim also supports creating custom keyboard shortcuts based on your typing

needs. Let’s look at a basic example of editing and saving a file. This editor supports a wide range of

commands and can be referenced at http://vimdoc.sourceforge.net/. To edit and save a file, you

need to do the following:

1. To execute the editor, the user has to type vi, followed by a space and the filename:

workspace vi test.txt

1. Then, type i to switch to INSERT mode and type in the contents of the file.

2. Press the Esc key to quit INSERT mode.

3. Next, type :wq to save and exit. This command is a combination of :w to write the contents

of the file to the disk and q to quit the file.

4. Then, press i to enter INSERT mode and type the required contents in the file.

The CLI commands we have looked at so far should serve as a good starting point for new users.

Now, let us familiarize ourselves with flags in the CLI.

Flags in the CLI

Flags are add-ons to enhance the usage of a command in the CLI. For example, the –l flag can be

applied to the ls command to alter the displayed list of files and folders in a long format.

The syntax is as follows:

ls –l

The command and output should be as follows:

➜ls -l

total 8

-rw-r--r-- 1 packt staff 0 Jun 25 09:33 test.py

-rw-r--r-- 1 packt staff 0 Aug 14 18:14 testing.txt

drwxr-xr-x 3 packt staff 96 Jun 26 10:20 testing_2

drwxr-xr-x 2 packt staff 64 Jun 25 09:32 testing_3

drwxr-xr-x 2 packt staff 64 Jun 25 23:16 testing_4

drwxr-xr-x 2 packt staff 64 Aug 14 18:13 testing_5

-rw-r--r-- 1 packt staff 19 Aug 14 18:26 vim_file

➜

There are thousands of flags that can be attached to various CLI commands, and it is impossible to

know all of them. This is where the man command comes in handy. man can be used with any CLI

command, and it gives all the options and an associated description for each command. There are

usually multiple pages of help content and you are encouraged to browse through them.

For example, to learn all the information associated with the ls commands, you just have to run the

following command:

man ls

There are a few tips/tricks to keep in mind regarding CLI usage, such as the following:

• All the CLI commands are case sensitive

• The pwd command lists the current working directory

• The clear command clears the contents on the current shell window

• The up/down arrow keys can be used to navigate through the history of the CLI commands

• The Tab key can be used to get autocomplete suggestions based on the string typed so far

• The cd – and cd ~ commands can be used to navigate to the last working directory and home

directory, respectively

• Multiple CLI commands can be run in a single line using the ; separator

The power of shell scripting

The ultimate utility of the CLI lies in writing automated scripts that perform repeatable tasks. Shell

scripting can be used to achieve this and can save you a great deal of time. Users are encouraged to

refer to the full documentation at https://www.gnu.org/software/bash/manual/bash.html to learn

more about commands and their syntax. To understand the power of the CLI, let us look at an

example of a shell script in this section. This script creates a folder, named test_folder, and then

creates a text file, named test_file, within it. The script then uses the curl command to download a

web resource that is passed as an argument and stores its output in test_file.txt. Now, $1 refers to

the first argument used when invoking this file for execution. -o is used to override the contents of

the file. Then, it reads the file using the cat command and stores it in a variable named file_content.

Finally, this file is removed using the rm command:

#!/bin/bash

mkdir test_folder

cd test_folder

touch test_file.txt

curl $1 -o test_file.txt

file_content=`cat test_file.txt`

echo $file_content

rm test_file.txt

This script can be executed using the bash sample_bash_script.sh https://www.packt.com/

command, where sample_bash_script.sh is the name of the file. Please note that the web resource

here can be downloaded at https://www.packt.com/ and that it is being passed as the first

argument to the script.

We have just gotten a bird’s eye view of the CLI, and I strongly encourage you to dive deeper into CLI

commands to increase your proficiency. Some major advantages of using the CLI include the

following:

• Speed and security: CLI commands are faster and more secure to use than the

corresponding actions being done through the graphical user interface.

• Scripting on the CLI: The CLI lets users write scripts to perform repetitive actions by

combining them into a single script file. This is much more stable and efficient than a script

run on a graphical user interface.

• Resource efficient: CLI commands use much fewer system resources and therefore provide

better stability.

Now that we have familiarized ourselves with the CLI, let us look at another tool that is an absolute

necessity for the maintenance of a software project of any size.

Git

Git is a modern distributed version control system that allows tracking changes to the source code

and is a versatile tool to enable collaboration in the engineering team. Git primarily helps in

synchronizing contributions to source code by various members of the team, by keeping track of the

progress over time.

Every software application is broken down into code repositories and production code is stored on a

branch called master on the repository. When an engineer is ready to begin working on a feature,

they can clone the repository locally and create a new branch to make their changes. After the code

changes are complete, the engineer creates a pull request that is then peer-reviewed and approved.

This is when they are merged into the master branch. Subsequently, the changes are deployed to

the staging and production environments. There are various hosting services, such as GitHub, that

provide a user interface to maintain, track, and coordinate contributions to the code repositories.

Now, let us look at some of the common Git commands that test engineers might have to use

frequently:

• git --version shows the version of Git software installed on the machine:

Figure 3.1 – git version

• git init initializes the project folder into a GitHub repository:

Figure 3.2 – git init

• git clone [repository_URL] creates a local copy of the remote repository:

Figure 3.3 – git clone

• git push pushes all of the committed local changes to the remote GitHub repository:

Figure 3.4 – git push

• git pull pulls all the latest code from the remote branch and merges them with the local

branch:

Figure 3.5 – git pull

• git log lists the entire commit history:

Figure 3.6 – git log

• git branch [branch_name] creates a new branch in the local Git repository:

Figure 3.7 – git branch [branch_name]

• git branch lists all the local branches created so far. * indicates the branch that is currently

checked out:

Figure 3.8 – git branch

• git branch –a lists all the local and remote branches created so far:

Figure 3.9 – git branch -a

• git checkout [branch_name] switches between local Git branches:

Figure 3.10 – git checkout

• git status displays the modified files and folders in the current project repository:

Figure 3.11 – git status

• git diff shows the difference between files in the staging area and the working tree:

Figure 3.12 – git diff

• git add . adds all the modified files to the Git staging area:

Figure 3.13 – git add

• git commit –m "commit description" saves the changes to the local repository with the

provided description:

Figure 3.14 – git commit

• git branch –D [branch_name] force deletes the specified local branch.

• git stash temporarily removes the changes on the local branch. Use git stash pop to apply

the changes back onto the local branch:

Figure 3.15 – git stash

• git remote -v gives the name, as well as the URL, of the remote repository:

Figure 3.16 – git remote

This overview provides you with a healthy introduction to Git and its most commonly used

commands. You can explore additional commands and their usage here at https://git-

scm.com/docs/git. Next, let us dive into some of the most commonly used test automation

frameworks.

Figures

Figure 3.17 – Example loan application

Figure 3.18 – Visual representation of how a test script utilizes a factory method to initialize and use the

drivers

Figure 3.19 – Components of Selenium Grid

Figure 3.20 – Appium architecture/components

Figure 3.21 – Cypress architecture/components

Figure 3.22 – JMeter architecture/components

Table

Tool Popularly used for Applications

tested

Supported platforms Supported

programming

languages

Selenium Web browser

automation

Web, mobile

(with external

integrations)

Windows/macOS/Linux JavaScript, Java,

Python, C#, PHP,

Ruby, Perl

Appium Native and hybrid

mobile application

automation

Mobile iOS, Android, macOS,

Windows

JavaScript, Java,

Python, C#, PHP,

Ruby

Tool Popularly used for Applications

tested

Supported platforms Supported

programming

languages

Cypress E2E testing for

web applications

Web Windows/macOS/Linux JavaScript

JMeter Performance

testing of web

applications

Web Windows/macOS/Linux Java, Groovy

script

AXE Accessibility

testing and

associated

compliance

Web, mobile Windows, macOS, iOS,

Android

JavaScript, Java,

Python, C#, PHP,

Ruby

Links

This is the high-level architecture of the Appium tool. In Chapter 6, Test Automation for Mobile,

we will look at a test case’s implementation using Appium. In the meantime, you can refer to

Appium’s official documentation at https://appium.io/docs/en/about-appium/intro/.

The Selenium project can be found at https://github.com/SeleniumHQ.

For further reading on Cypress, you can refer to the documentation at https://docs.cypress.io

The official documentation for JMeter can be found at

https://jmeter.apache.org/usermanual/index.html

You can further explore the capabilities of the AXE tool by referring to

https://www.deque.com/axe/core-documentation/api-documentation/.

B19046_06.xhtml#_idTextAnchor142
https://appium.io/docs/en/about-appium/intro/
https://docs.cypress.io/
https://jmeter.apache.org/usermanual/index.html
https://www.deque.com/axe/core-documentation/api-documentation/

Chapter 4

Technical requirements

In this chapter, we will continue looking at working examples of Git through the Command-Line

Interface (CLI). We will be using the Terminal software on the Mac for our examples. Windows users

can use the built-in PowerShell to execute these commands. We will also be downloading and

exploring VS Code, which is an IDE. Please check this page for the download requirements:

https://code.visualstudio.com/docs/supporting/requirements. We also expect you to know the

basics of HTML to follow along with the next section on JavaScript.

All the code snippets can be found in the GitHub repository:

https://github.com/PacktPublishing/B19046_Test-Automation-Engineering-Handbook in the

src/ch4 folder.

Figures

Figure 4.1 – git commit multiline comment

Figure 4.2 – GitHub multiline commit view

Figure 4.3 – git commit with the --amend flag

Figure 4.4 – git commit with the -a flag

Hands-On Section

Resolving merge conflicts

Merge conflicts happen when changes have transpired in the same region of a file and Git cannot

automatically merge the changes in the file. It is possible that two different engineers are working

on the same file and tried to push their changes to the remote repository. In such cases, Git fails the

merge processes and forces manual resolution of the merge conflict. Without an IDE, this process

can get really messy easily and might end up consuming a lot of the programmer’s time. Resolving

merge conflicts without an IDE usually involves viewing/editing multiple files through a CLI editor

and identifying and fixing the parts of the file that are in conflict. This is a tedious process, but IDEs

provide an interface to deal with conflicts and it is usually completed with a few clicks after manual

file inspection.

Let us now look at how to resolve a merge conflict step by step. Figure 4.5 illustrates a

ch4/merge_conflict_branch_1 branch where the git_amend_2.txt file was updated and this change

was pushed to the remote repository and merged with main through a pull request.

Figure 4.5 – The git_amend_2.txt file updated and merged

In another branch, let us try to merge the changes from Figure 4.4, where the git_amend_2.txt file

was deleted. It is evident that these two changes contradict each other. Figure 4.6 shows the

merged changes being fetched from the main branch:

Figure 4.6 – Fetched merged changes from main

Figure 4.7 shows the result when the conflicting branch is being rebased with the main. Rebasing is

the process of combining a chain of commits and applying it on top of a new base commit. Git

automatically creates the new commit and applies it on the current base. Frequent rebasing from

the main/master branch helps keep a sequential project history. At this point in the process, the

conflicts have to be resolved manually. The engineer has to look through the file and accept or reject

others’ changes based on the project’s needs.

-

Figure 4.7 – Merge conflict message

In this case, let’s resolve the merge conflict by accepting the incoming changes from the remote

rather than pushing the delete. This is simpler when done through an IDE, as shown in Figure 4.8.

On navigating to the source control pane in the IDE and by right clicking the file, the user is shown an

option to accept the incoming changes:

Figure 4.8 – Accept incoming changes

Figure 4.9 shows the result of staging the accepted changes, which results in the deleted file being

retained with the modified contents from the main branch:

Figure 4.9 – Stage the accepted changes

Now that the merge conflict is resolved, the rebase can be continued using git rebase --continue to

complete the commit and merge process subsequently. It is important to remember to pull from

remote or other branches (if necessary) before beginning any new work on the local code base. This

keeps the branch updated, thereby reducing merge conflicts. It is also vital to have continued

communication with the rest of the team when deciding which changes to accept/reject when

resolving merge conflicts.

Downloading and setting up VS Code

In this section, we will be going over the process of downloading VS Code, which can run on macOS,

Linux, and Windows. All the code examples cited in the rest of this book will use VS Code. You are

free to use an IDE of your choice. Let us now go through the steps for manually installing VS Code on

macOS. At the end of this section, you are provided with a shell script to perform this installation via

the CLI:

1. Review this link for the necessary system requirements to download and set up VS Code:

https://code.visualstudio.com/docs/supporting/requirements.

2. Click on the download link on the installation page to download the executable file:

o macOS and Mac: https://code.visualstudio.com/docs/setup/mac

o Linux: https://code.visualstudio.com/docs/setup/linux

o Windows: https://code.visualstudio.com/docs/setup/windows

3. Extract the downloaded archive file and move the Visual Studio Code application file to the

Applications folder.

4. Double-click the VS Code icon in the Applications folder to open the VS Code IDE.

5. Use the Settings option in the Preferences menu for additional configuration. VS Code has

inherent support for Git provided Git is installed on the machine.

VS Code comes as a lightweight installation and in most cases, engineers would need

additional components installed through the Extensions option in the Preferences menu.

6. Click the Extensions option and search for Prettier, which is a particularly useful tool for

code formatting.

7. Select the Prettier - Code formatter extension and click on the Install button, as shown in

Figure 4.10. This should complete the installation of the extension from the Marketplace.

Figure 4.10 – Installing Prettier - Code formatter

There are hundreds of helpful extensions available for installation from the Marketplace. These

extensions have a wide community of users supporting them, thereby creating a strong ecosystem.

Users are strongly encouraged to browse through the available extensions and install them as

necessary.

If you prefer using the CLI for installation, the following shell script can be used for installing VS Code

on macOS. This example uses Homebrew (https://brew.sh/) for CLI installation:

#!/bin/sh

/bin/bash -c "$(curl -fsSL

https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

brew tap homebrew/cask

brew install --cask visual-studio-code

This concludes our section on setting up the IDE. Let us now move on to learning the basics of

JavaScript.

Running a JavaScript program

In this section, let us explore how to run a basic JavaScript program from within our IDE. We will

start by installing the Node.js runtime environment.

Installing Node.js

One of the easiest ways to execute a JavaScript program is to run it using Node.js. Node.js is a

JavaScript runtime environment created to execute JavaScript code outside of a browser. Use

https://nodejs.org/en/ to download Node.js and navigate through the wizard to complete the

installation of the latest stable version of Node.js. Check the installation using the node --version

command. Alternatively, you can use Homebrew on macOS or winget on Windows to download it

via the CLI. At the time of writing this book, the latest stable node version is 18.12.1:

➜ cli_demo node --version

v18.12.1

➜ cli_demo

Now that we have Node.js installed, let us execute our first JavaScript program.

Executing the JavaScript program

We will be using the VS Code IDE to execute the programs for the rest of this book. Let us go through

step by step to execute a simple Hello World program written in JavaScript:

1. The console.log command outputs the message in the parenthesis to the console. Create a

new hello_world.js file and save it with the contents, console.log('hello world');.

2. Open a new Terminal window by selecting the New terminal option from the Terminal

menu. In the Terminal window, navigate to the folder in which the hello_world.js file exists

and run the node hello_world.js command. This prints out the text hello world in the

console:

➜ B19046_Test-Automation-Engineering-Handbook git:(main) ✗

cd src/ch4

➜ ch4 git:(main) ✗ node hello_world.js

hello world

➜ ch4 git:(main) ✗

We have set up our IDE and are able to execute a simple JavaScript program using Node.js. It is now

time to get started with the basics.

Getting to know the JavaScript objects

In JavaScript, an object is a collection of properties. Objects are first initialized using a variable name

and assigned to a set of properties. Objects further provide methods to update these properties.

Properties can be of any data type, sometimes even other objects. This enables building complex

objects in JavaScript. Let us start learning about objects with arrays in the next section.

Using JavaScript arrays

Arrays are one of the most frequent data structures and are built-in objects in JavaScript. Arrays are

nothing but variables that can hold multiple values. The first element of an array is indexed by 0 and

the subsequent indices are incremented by 1. The size of the arrays can be changed by adding or

deleting elements, and they can contain a mix of data types. Arrays can be initialized by enclosing

the elements in square brackets, []. Subsequently, the elements can be accessed by plugging the

index within []. Let’s look at some commonly used array methods:

• push(element): Adds an element at the end of the array.

• unshift(element): Adds an element at the beginning of the array.

• pop(): Removes the last element of the array.

• indexOf(element): Returns the index of the element in the array. Returns –1 if the element

is not found in the array.

• length(): Returns the number of elements in the array.

Figure 4.16 shows these array operations in action:

Figure 4.16 – Array operations

Figure 4.17 shows the corresponding outputs. We begin by creating the array and printing it to the

console. Then, we add elements to the end and beginning of the array. Subsequently, we work with

the indices of the array, and finally, get the length of the array:

Figure 4.17 – Array operation outputs

Unlike a lot of other programming languages, arrays in JavaScript do not throw an Array Out of

Bounds error when trying to access an index greater than or equal to the length of the array.

JavaScript simply returns undefined when trying to access the non-existent index array. Arrays come

with a wide variety of built-in methods, and I would strongly encourage you to browse through them

at https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Global_Objects/Array. Next, let us look at work with object

literals.

Working with object literals

Object literals allow properties to be defined as key-value pairs. Values of the properties can be

other objects as well. Dot (.) or square bracket ([]) notations can be used to retrieve the value of a

property. The code snippet demonstrated in Figure 4.18 shows an object and array nested within

the movie object. In such cases, the object name can be chained subsequently with the call to a

nested data structure. Adding an extra property to the object is very simple and looks like a variable

assignment. To further our example, it would be movie['producer']='Danny DeVito:

Figure 4.18 – Objects

const prevents reassigning the variable but does not prevent modifying values within an object:

const a = { message: "hello" };

a.message = "world"; // this will work

Having learned the basics of JavaScript objects, let us now look at how to destructure one.

Destructuring an object

Object destructuring is used in JavaScript to extract property values and assign them to other

variables. It has various advantages such as assigning multiple variables in a single statement,

accessing properties from nested objects, and assigning a default value when a property doesn’t

exist. We use the same example as in the previous section but as shown in Figure 4.19, we

destructure the movie object by specifying the name and awards variables within {}. On the right-

hand side of the expression, we specify the movie object. We could also assign them to a variable

within the curly brackets to fetch data from nested objects. Object destructuring was introduced in

ECMAScript 6 and prior to this, extracting and assigning properties in such a way required a lot of

boilerplate code.

Figure 4.19 – Object destructuring

Let us next work with an array of objects.

Arrays of objects

Working with arrays of objects is crucial for quality engineers as a lot of times, the API response

payloads in JSON format have multiple objects embedded within an array and their format is

identical to JavaScript object literals. Let us consider an example where multiple movie objects are

embedded within the movies array. We could use the JSON.stringify method to create a JSON string.

The code snippet in Figure 4.20 demonstrates how to access nested elements in an array of objects

and how to create a JSON string from a JavaScript object:

Figure 4.20 – Arrays of objects

In the next section, let us learn how to operate with loops and conditional statements.

Loops and conditionals

Loops and conditional statements form a basic pillar of any programming language. They help

reduce runtime and make the program look cleaner. Let us look at each one of them and understand

how they operate in the next sections, starting with loops.

Working with loops

One of the most frequently used loops is the for loop. A for loop contains three parameters: iterator

assignment, condition, and increment. The code enclosed within the loop executes until the

specified condition is met. In the simple example illustrated in Figure 4.21, we start with 0 and print

the value of i until it meets the i<10 condition:

Figure 4.21 – A simple for loop

Note

One of the common pitfalls while looping through an array is to accidentally exceed the last index of

the array. The condition to check the array should be i<array.length or

i<=array.length-1.

The while loop operates similarly to the for loop, but we set the variable outside of the loop. It is a

common mistake to miss the increment or incorrectly specify the condition. Doing so would result in

an infinite loop. Figure 4.22 shows the same logic in the while loop:

Figure 4.22 – A simple while loop

Now, let us loop through the array of objects we created in Figure 4.20. For this purpose, we will

use the for..of loop, which is much more readable than the regular for loop. In Figure 4.23, we have

the code snippet that iterates over each of the objects in the movies array and prints the name and

director. We create a temporary variable to hold the current entry of the array in the loop and use

that variable to print the properties:

Figure 4.23 – A for..of loop

We looked at some very useful examples of loops in this section. Let us move on next to conditional

statements.

Using the conditional statements

Conditional statements are used to separate the logic into different code blocks based on one or

more conditions. The most common conditional statement is the if...else statement. This is better

understood by referring to the code snippet in Figure 4.24. Here, we use conditional statements to

assign a grade based on the student’s score. We start with the if statement and check for the highest

grade and then use a series of else if statements followed by the else statement to check for any

score less than 60. The else if statements are useful to extend the logic to include additional

conditions. It is important to remember that in the absence of an else statement, JavaScript ignores

the conditional code block when the if condition is not true:

Figure 4.24 – Conditional statements

Table 4.1 summarizes the most common conditional operators in JavaScript:

Operator Description

== Equal to

=== Equal value and equal type

!= Not equal to

!=== Not equal value and not equal type

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Table 4.1 – Conditional operators

In the next section, let us learn about JavaScript functions and how to use them to make the code

more reusable.

Figures

Figure 4.11 – Adding comments in a JavaScript file

Figure 4.12 – Variable types, let and const

Figure 4.13 – Data types

Figure 4.14 – String concatenation

Figure 4.25 – Functions

Links

The MDN docs for JavaScript, located at https://developer.mozilla.org/en-

US/docs/Web/JavaScript, can be used as a standard reference to get additional details on any

concepts.

You might have noticed from Figure 4.13 that null has a typeof object. This is considered a bug in

JavaScript. The explanation for this can be found in this link: https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Operators/typeof#typeof_null.

Chapter 5

Technical requirements

In this chapter, we will continue using Node.js (version 16.14.2), which we installed in Chapter 4,

Getting Started with the Basics. We will also be using node package manager (npm) to install

Cypress version 11.2.0. All the code examples illustrated in this chapter can be found under the ch5

folder at https://github.com/PacktPublishing/B19046_Test-Automation-Engineering-

Handbook/tree/main/src/ch5.

Hands-on Sections

Installing and setting up Cypress

Let us now run through a detailed step-by-step installation and setup process for Cypress:

1. In Chapter 4, we installed Node.js, which is a runtime environment for JavaScript. Node.js

installation comes with a default and extremely useful package manager called npm. Figure

5.1 shows how to check the version of npm installed on your machine:

Figure 5.1 – Checking the installed npm version

2. Let us next create an empty project to install Cypress and further explore its features. Run

npm init –y in an empty folder (preferably named app) in your local directory to create a

package.json file. Figure 5.2 shows the corresponding output with the contents of the file:

Figure 5.2 – npm init

Note

B19046_04.xhtml#_idTextAnchor099
https://github.com/PacktPublishing/B19046_Test-Automation-Engineering-Handbook/tree/main/src/ch5
https://github.com/PacktPublishing/B19046_Test-Automation-Engineering-Handbook/tree/main/src/ch5
B19046_04.xhtml#_idTextAnchor099

npm init <initializer> is used to set up new or existing packages. If <initializer> is omitted, it will

create a package.json file with fields based on the existing dependencies in the project. The –y flag is

used to skip the questionnaire.

package.json is the primary configuration file for npm and can be found in the root directory of the

project. It helps to run your application and handle all the dependencies.

3. Execute npm install cypress in the root of our src/ch5/app project. This creates a

node_modules folder, which contains a chain of dependencies required by the package

being installed (Cypress). Figure 5.3 shows the output of this step, with package.json

showing Cypress installed. It is generally considered good practice to save the testing

libraries in the devDependencies section of the package.json file using the npm install

cypress --save-dev command:

Figure 5.3 – npm install cypress

4. Create an index.html file in the root, as shown in Figure 5.4, to serve as the primary loading

page for our application. Also, create an empty index.js file:

Figure 5.4 – Creating an index.html file

5. Execute npx cypress open to open Cypress. This command opens the executable file from

the node_modules/bin directory. Figure 5.5 illustrates the output where the in-built

browser is opened:

Figure 5.5 – npx cypress open command

6. Now, click on the E2E Testing option, which adds some configuration files to the repository,

and hit Continue in the next modal, as shown in Figure 5.6:

Figure 5.6 – Cypress config modal

7. In the next modal, select the preferred browser for E2E testing. I have selected Chrome in

this case, as shown in Figure 5.7, and it opens the browser in a new window:

Figure 5.7 – Choosing a preferred browser

This completes the installation of Cypress and gets it ready to a point where we can start writing our

own tests. In the next section, let us start working on our first test and review some additional

configurations.

Creating your first test in Cypress

A test in Cypress is commonly referred to as a spec, which stands for specification. We will be

referring to them as specs for the remainder of this chapter. Let us begin by understanding how to

write arrow functions and callback functions in JavaScript.

Creating arrow functions in JavaScript

Arrow functions are extremely handy, and they clean things up quite a bit. They were introduced in

the ECMAScript 6 (ES6) version. The code snippet in Figure 5.8 shows a simple function to add two

numbers. It takes two parameters and returns the sum. Let us turn this into an arrow function:

Figure 5.8 – Function to add two numbers

Instead of using the function keyword, we name it like a variable and use an equals sign to assign

it to the body of the function. After the parameters, we use a symbol called fat arrow (=>). In

the case of one-liner functions, we can further simplify them by removing the curly braces

surrounding the function body. We could also remove the return keyword, and it still returns the

computed value. If we have only one parameter, we could lose the parentheses around the

parameters as well. It would look like this: const addNumbers = number1 => number1 +

5. An example is shown in Figure 5.9. This works very neatly in the case of array iterations. Let’s say

we have an array of movies, and we would like to iterate over them and print the names of all the

movies. This can be neatly done in a single line by using movies.forEach(movie) =>

console.log(movie, name) arrow functions:

Figure 5.9 – Arrow function with two parameters

Let us next learn about callback functions in JavaScript.

Creating callback functions in JavaScript

In JavaScript, since functions are set up as objects. we can pass and call other functions within a

function. A function that is passed as a parameter to another function is called a callback function.

Let us use the setTimeout() function to understand callback functions. The setTimeout() function

calls a method after a specified wait in milliseconds. For example, setTimeout(() =>

console.log('hello!'), 5000) would print the message after a wait of 5 seconds. Let us now create an

arrow function to accept and print a message to the console, as shown in Figure 5.10. Let us call

this function printMessage(), with a delay of 5 seconds by passing it as a parameter to the

setTimeout() function, making it a callback function:

Figure 5.10 – Callback functions

We could also pass in the whole body of the arrow function instead of the name, as shown in Figure

5.11. These are called anonymous functions since they do not have a name and are declared at

runtime:

Figure 5.11 – Anonymous callback functions

A key advantage of using callback functions is that it enables the timing of function calls and assists

in writing and testing asynchronous JavaScript code. There are many instances in the modern web

application where there is a need to make external API calls and resume the current task rather than

wait for the external call to complete. Callback functions come in handy here to unblock the

execution of the main block of code. It is important to use callbacks only when there is a need to

bind your function call to something potentially blocking, to facilitate asynchronous code execution.

With this additional knowledge about functions in JavaScript, let us now commence writing our first

spec.

Writing our first spec

It is a good practice to organize all tests under a single folder in your repository. If there are more

tests, then they can be categorized under a parent test folder. Create a folder named e2e under

src/ch5/app/cypress. Now, create a test file, as shown in Figure 5.12:

Figure 5.12 – Creating a test file

Our first test searches for the string quality in the search box on the home page of

https://www.packtpub.com/. Then, it verifies the search result page by looking for the Filter Results

string. Copy and paste the code from the https://github.com/PacktPublishing/B19046_Test-

Automation-Engineering-Handbook/blob/main/src/ch5/app/cypress/e2e/search_title.cy.js
GitHub link into the test file.

Let us now examine the structure of a Cypress spec.

Becoming familiar with the spec structure

Every test framework requires its tests to be written in a specific language and format. Cypress is no

different, and as we already know, it uses JavaScript. Cypress comes packed with its own set of

functions under the global cy object. It also utilizes the describe-it-expect format using bundled

libraries from Mocha and Chai frameworks. Additionally, an assertions framework using expect with

command chaining is also supported to complete granular validations. The describe block captures

the high-level purpose of the spec, and the it block adds specific implementation details of the test.

Note that both the describe and it blocks accept callback functions as their second parameter, and

they are defined as arrow functions. This is a common syntax, and you will see this more often in

modern JavaScript code. Please be wary of braces, semicolons, and parentheses. It is recommended

to use an extension such as Prettier to assist with the formatting as it could get messy pretty quickly.

We have started with a comment that describes what is being achieved in this spec. Cypress

internally uses the TypeScript compiler, and the reference tag is used to equip autocompletion with

only Cypress definitions. The beforeEach block, as the name suggests, runs before every it block. It

usually contains the prerequisite steps to execute the individual it blocks. Here, we use the visit

command to access the Packt Publishing website within the beforeEach block. Then, the it block

drills down to which action is performed in the spec. If we end up adding more it blocks to this spec,

the visit command would be executed before the beginning of each it block. This is a simple spec but

it captures the necessary structure of a spec written in Cypress.

Next, let us examine how to execute our first spec.

Executing our first spec

Cypress comes packed with a powerful visual runner tool to assist in test execution. This can be used

when users have a need to inspect tests visually during runtime. Another option is to execute tests

via the CLI for quicker results and minimal test execution logs. In this section, we will survey both

ways to execute tests in Cypress.

Using the command line

Using the command line to execute tests is always a quick and easy option. It usually helps when you

are not interested in looking at the frontend aspects of the test execution. The npx cypress run -s

cypress/e2e/search_title.cy.js command can be used to execute an individual spec in Cypress. The –

s flag stands for spec, followed by the name of the file. Without the –s flag, the npx cypress run

command would execute all the specs found in the current project. Figures 5.13 and 5.14 illustrate

the output of the command-line execution of our first spec. Figure 5.13 shows the output of the

CLI, with a listing of actions performed on the UI:

Figure 5.13 – CLI test execution

Figure 5.14 shows a summary of the tests executed, with a breakdown of the results:

Figure 5.14 – CLI test execution (continued)

Next, let us next explore the visual test runner for executing our spec.

Using the visual test runner

Cypress comes with an extremely insightful and detailed test runner and provides quite a bit of

debugging data for tests being executed. To utilize this mode, we can start with the npx cypress

open command, which opens up a series of modals. The first modal requires the selection of the

type of test, as previously shown in Figure 5.5. The second modal, as seen earlier in Figure 5.7,

provides an option to select a browser against which the test can be run. The third modal lists all

specs in the project and shows some additional metadata about the specs and their recent runs:

Figure 5.15 – Test selection modal

Test execution begins when the user clicks on the test, as shown in Figure 5.15. This opens a new

browser that shows the actual steps being executed. The left pane shows the various frontend and

backend calls being made while executing this test. Figure 5.16 shows a view of the test execution.

Cypress offers a live-reloading feature out of the box using the cypress-watch-and-reload package.

Whenever there is a change in the code, the test is rerun automatically and the view, as shown in

Figure 5.16, reloads live:

Figure 5.16 – Visual test runner

This view also allows users to view the stack trace of errors and provides options to navigate

between test runs and settings. The browser on the right pane can be used like any other browser

window to inspect and debug using the developer tools. Users are strongly encouraged to further

explore the features that this test runner has to offer.

In the next section, let us gain a deeper understanding of using selectors in Cypress.

Employing selectors and assertions

Selectors are identifiers for elements in the Document Object Model (DOM). We have various ways

to identify elements, such as using their class, name, type, and so on. Every test framework has its

own custom commands to make the code clear and concise. Cypress provides users with an efficient

interface to look for selectors and comes with standard support for all selectors. Let us continue

using our first spec to dig deeper into utilizing selectors.

Working with selectors

cy.get is the primary function to search for elements in the DOM. In our search_title.cy.js test file,

we have used .input-text, which identifies the element with the input-text class name and sets a

value in it. We have also used [aria-label="Search"] to look for the Search button. This is an example

of an attribute search. We are essentially finding an element with the value of the aria-label Search

attribute and clicking on it. id and data are other reliable attributes for identifying elements in the

DOM. It is important to remember to use square brackets when employing attributes in selectors.

This raises the question of what kind of selector to use in each case. The answer would be to employ

the simplest one that uniquely identifies the required element on the DOM.

Cypress assists users here by providing a selector playground feature that automatically populates

the selector. Let us rerun our first spec using a visual test runner and reach the execution page, as

shown in Figure 5.16. Now, refer to Figure 5.17 and click the circular toggle icon This opens the

selector playground where the user can type the selector or use the arrow icon for Cypress to

automatically populate it. Now, the user can use the browser to click on the required UI element and

get the unique selector right away. The user can also play around with other options and validate

their correctness by plugging them into the textbox:

Figure 5.17 – Selecting a playground

To write efficient automation scripts, it is vital to know which selectors are reliable and perform

better in a given situation. Imagine a test automation project with 5,000 test cases and all of them

find a link using the worst-performing selector, which has a lag of 50 milliseconds relative to the

best-performing selector. That would make the test suite slower by 250,000 milliseconds for every

run. This would impact feedback times immensely when considering hundreds of CI pipeline runs

over a few days.

XPath selectors identify the target element by navigating through the structure of the HTML

document, while CSS selectors use a string to identify them. Direct CSS selectors using an element’s

ID or class usually perform better than XPath selectors. Using an ID selector is often the most reliable

way of selecting an HTML element. It helps to analyze the elements to understand whether they are

dynamic and which selectors would be supported across different browsers, and based on that,

decide on a selector strategy. It usually takes a bit of troubleshooting to arrive at an efficient pattern

of selectors working for a specific application and a team.

Let us now learn about the available assertion options.

Asserting on selectors

Assertions give us a way to perform validations on various UI elements. They are usually chained to

the command with selectors and work together to identify an element and verify it. should is the

primary function utilized on assertions, and it works with a myriad of arguments.

Let us update our first spec to add some assertions. We have earlier used the contains function in

our spec to assert a partial string in the search results page. Figure 5.18 shows the assertions in

action. Next, we add an assertion on the Reset button to validate that it is disabled. In the following

line, we get the navigation bar element by the id attribute and chain it with an assertion that

validates the class name:

Figure 5.18 – Assertions for the navbar and Reset button

Let us add another assertion before entering the search string to validate it is empty using the

have.value parameter. Figure 5.19 demonstrates this assertion:

Figure 5.19 – Asserting empty value in a textbox

Cypress comes with very good documentation (https://docs.cypress.io/api/table-of-contents) and

users are encouraged to use it as a reference to be aware of the various available options. So far,

we’ve worked on identifying and asserting UI elements. In the next section, let us work with API calls

in Cypress.

Intercepting API calls

Cypress lets users work with underlying API requests and stub responses where necessary. Let us

analyze the API calls when loading the Packt Publishing home page and try to stub one of the

responses. cy.intercept() is the command used to work with API calls, and it offers a wide variety of

parameters. For this example, we will be using the routeMatcher and staticResponse arguments.

We add a second it block to intercept the underlying API call and specify the type of HTTP call, URL,

and a predefined response as parameters, as shown in Figure 5.20:

Figure 5.20 – cy.intercept call

The value of the static response parameter can be obtained using the Network tab of the developer

tools to get the actual response for the API call. This is illustrated in Figure 5.21. By passing this in

as the staticResponse parameter, the GET call on this URL will always return the stubbed response

instead of the original:

Figure 5.21 – API payload for stubbing

Figure 5.22 demonstrates the result of the intercept command in action:

Figure 5.22 – Intercept results

This empowers the user to test the underlying API calls for different payloads and validate the

application behavior in each case. This also saves resources in cases where some of these are

expensive API calls. This is just one way to handle API calls with Cypress, and there are a variety of

options available to explore. In the next section, let us quickly review some additional configurations

that might be helpful with setup and validation.

Additional configurations

Let us review a few additional configurations in this section to build stable and efficient specs:

• The first configuration is a Git feature and not specific to Cypress. Adding a .gitignore file is a

general necessity for all projects. Add it to the src/ch5/app root folder to ignore files we

don’t want Git to track on our local directory. As shown in Figure 5.23, let’s add a

node_modules folder so that we don’t have to check in and keep track of all dependencies:

Figure 5.23 – .gitignore file

• Cypress comes with a default timeout of 4 seconds (4,000 milliseconds), and the get method

accepts a second parameter to set a custom timeout. For example, in our spec, we can add

extra wait after searching for the string and waiting for the Reset button to appear with

cy.get('.reset-button', {timeout:10000}).should("be.disabled"). This line waits for 10

seconds for the Reset button to appear and then runs the assertion.

• Cypress provides a delay feature when performing actions on the DOM. For example, when

typing an entry in the textbox, it has a default delay of 10 milliseconds for each key press. In

our spec, this delay can be customized as cy.get(".input-text").type(`${search_string}`, {

delay:500 }) to fit the need of the application. In this case, there will be a half-second delay

before typing the next character in the textbox.

We have secured a solid understanding of the major features of Cypress and are well set to explore

its capabilities further. Before we close this chapter, let us review some valuable considerations for

web automation.

Links

There are also options to extend the behavior of Cypress using innumerable plugins, available at

https://docs.cypress.io/plugins/index

https://docs.cypress.io/plugins/index

Chapter 5

Technical requirements

We will continue using Node.js, which we installed in Chapter 4. We need the Java Development

Kit (JDK) on our machines (which can be found at this link: https://adoptium.net/temurin/releases)

to download and install the compatible version with the operating system. Please remember to set

up the JAVA_HOME path in your .zshrc or .bashrc files. JAVA_HOME should point to the directory

where the JDK was installed.

Next, we will be needing Android Studio, which can be installed using the following link:

https://developer.android.com/studio. Similar to the JAVA_HOME path, the ANDROID_HOME

variable should be set up in your .zshrc or .bashrc files and point to the directory where the Android

SDK is installed. Also, make sure to append the PATH variable to include the platform-tools and

tools folders within the SDK. We will be using a demo Android application from

github.com/appium/android-apidemos for our automated testing. This is Google’s demo

application used for testing Appium. All the code and setup used in this chapter can be found at

https://github.com/PacktPublishing/B19046_Test-Automation-Engineering-

Handbook/tree/main/src/ch6.

Hands-On Section

Setting up Appium and WebdriverIO

Combining Appium with WebdriverIO helps build an extremely scalable and customizable mobile

automation framework. Let us start with Appium installation on macOS.

Appium installation

Next, let us go ahead and install Appium. This can be done using the npm install –g appium@next

command to install a version above 2.0 globally. The use of @next here is to force an installation of

a beta version (2.0.0). If by the time you install this, 2.0 is available as the latest stable version, you

do not have to use @next. With the appium –v command, double-check the version after

installation.

Appium involves multiple installations working in tandem, and it would be convenient to have a tool

that could provide us with constant feedback on the health of our setup. appium-doctor does just

that. Let us install it using the npm install –g appium-doctor command, and the installation can be

checked using appium –version.

appium-doctor can be executed for the Android platform through the appium-doctor --android

command. It primarily checks for the presence of all dependencies and their path. Users should be

on the lookout for any errors in the output from executing appium-doctor and fix them before

proceeding further.

B19046_04.xhtml#_idTextAnchor099

There is one more installation before we can wrap up this section. Let us now install the necessary

Appium drivers for iOS and Android using the following commands:

appium driver install xcuitest

appium driver install uiautomator2

The installations can be verified using appium driver list, as shown in Figure 6.1:

Figure 6.1 – Appium driver installation

This completes the Appium setup for macOS, and we have a couple more steps before we can start

writing our first tests. Before diving into the WebdriverIO setup, let us look at how to configure an

Android emulator.

Configuring an Android emulator

Emulators are virtual devices that let engineers set up and test against a variety of devices on the

computer. Let us go over how to set up an Android emulator in this section:

1. In the home dialog of Android Studio, click on the Virtual Device Manager option, as shown

in Figure 6.2:

Figure 6.2 – Android Studio Virtual Device Manager

2. The Android Studio installation usually comes with an emulator, as shown in Figure 6.3. You

can add another device by clicking on the Create device button at the top left of the dialog

box. This opens an additional dialog to set up the new hardware:

Figure 6.3 – Android Studio device selection

3. For our example, let us select Pixel 4a and hit Next, which will take us to the System Image

selection dialog.

4. Please make sure to download two different versions here. We will be running the Appium

tests on one version and connecting the Appium Inspector on the other. In our case, we will

be downloading the Android API versions 32 and 33, as shown in Figure 6.4:

Figure 6.4 – Android Studio system images

5. Hit the Next button and complete the emulator setup with the Finish button.

6. On the Device Manager dialog, hit the play button against one of the devices, as highlighted

in green in Figure 6.5. This will open the device emulator:

Figure 6.5 – Opening the Android device emulator

We are now set up with Appium and an emulated device to test on. Let us now dive into

WebdriverIO installation and setup.

Configuring WebdriverIO with Appium

Let us begin with the WebdriverIO setup by creating and initializing a new directory named

webdriverio-appium. You could also name it based on whichever project name suits your needs.

Once we are inside the directory, let us run the npm init –y command to set up our project. This

should create a package.json file within the directory.

Next, let us install the CLI for WebdriverIO using the npm install @wdio/cli command. This is used

for setting up the configuration for WebdriverIO using the CLI. Let us now run npx wdio config. This

npx command goes inside the node_modules folder to find WebdriverIO, which we just installed,

and runs the config command using the CLI.

On running this command, we go through a series of steps, with each of them requiring a selection.

Let us look at them one by one. Refer to Figure 6.6 for a summary of the options selected for

configuring WebdriverIO through the CLI:

Figure 6.6 – WebdriverIO configuration

Here are the steps

1. In the first step, we will be selecting the location of the automation backend. Since we are

not running the tests externally yet, we will be selecting the first option, which is the local

machine.

We will be using the Mocha framework for our tests, and that option should be selected in

the next step.

2. In the next step, we will be selecting the No option as we will not be using any compiler in

our tests.

3. We will go with the default location for our test specs in the next step.

4. We will type No in the next step as we will be starting all our tests from scratch and do not

need the autogenerate option.

5. We will stick with the default spec reporter in the next step.

6. Let us skip adding any plugins at this step.

7. In the next step, since we will be running the tests from Appium, we will not be needing any

additional drivers. So, let us select the appium option.

8. We can ignore the base URL step as we will not be running a test on the web, and move on

to the next step.

9. In the last step, we can select Yes for running the npm install.

The use of the CLI to configure WebdriverIO is productive as we circumvent the need for installing

these packages manually. WebdriverIO does a lot of heavy lifting for us to configure the

fundamental requisites for our project.

Before proceeding, please make sure to install Appium and its drivers again within the webdriverio-

appium folder as this is where we will be storing and executing our tests.

In the next section, let us look at additional WebdriverIO configuration for Android.

WebdriverIO Android configuration

As part of the WebdriverIO setup through the CLI, you will notice that a new wdio.conf.js file has

been created. This is the primary file where we will be making changes to get WebdriverIO working

with Appium. Let us now go ahead and look at how it’s set up to start making changes.

Quickly browsing through this file shows the customizable port number (4723) where the Appium

server will spin up. All configurations that we did through the CLI should also be reflected in this file.

The important change to be done in this file is in the capabilities section. It shows the browser as

Chrome by default. Here, we will be specifying the Android settings to connect to the Appium server

and run it via WebdriverIO.

Let us now copy our test application within our project by creating a new app/android folder

structure, as shown in Figure 6.7:

Figure 6.7 – Copying test Android app

We are now ready to update the capabilities section of the config file. Refer to Figure 6.8 for the

values to be used here. We have added the platform name and platform version, which are Android

and 13.0, respectively, in this case. Then, we added the device name, which should be the same as

the one set up for the emulator in Android Studio. The automation name is the name of the driver

used for Android automation.

For the app path, we use the path library to dynamically create a complete path to the test app

within our project, as shown in the following screenshot. This library is built-in in Node.js and

doesn’t need to be installed separately. The path library must be initialized at the beginning of this

config file using const path = require('path'). This completes the preliminary customization of the

config file for the Android application:

Figure 6.8 – wdio config: capabilities section

Before we try to run the app with WebdriverIO, let us create a test folder and an empty test file, as

shown in Figure 6.9. Also, launch the specified emulator from within Android Studio:

Figure 6.9 – Test folder and file creation

We are now ready to run this spec. For running this spec, use the npx wdio command. This

command by default uses the wdio.config.js file to spin up the Appium server, load the test app, and

execute the test. Results from the empty test can be seen in Figure 6.10:

Figure 6.10 – WebdriverIO test run log

This confirms that our installation/setup is complete for Android, and we can go over the manual

configuration for the Appium Inspector tool.

Appium Inspector installation and configuration

Let us begin by installing the Appium Inspector, which is a handy tool to inspect mobile elements on

the desktop. The latest release can be downloaded from the following link:

https://github.com/appium/appium-inspector/releases. Opening the application after completing

the download and installation would display a dialog, as shown in Figure 6.11. In this dialog, when

we put in the server information and desired capabilities and hit the Start Session button, we will be

able to connect the inspector with the emulator. We will look at the details to be filled in here in

detail in the subsequent sections:

Figure 6.11 – Appium Inspector tool

In the previous section, we used an emulator to run automated tests with WebdriverIO. Now, let us

configure another emulator that can be used to find elements on our Android application. Earlier in

this chapter, we added a virtual device within Android Studio, which was shown in Figure 6.6.

So, we already have two different virtual devices set up—namely, Pixel 4a and Pixel 3a. Now, let us

set up Pixel 3a on the Appium Inspector tool. We will be adding capabilities, as illustrated in Figure

6.12, under the Desired Capabilities section of the tool. Also, remember to update the port number

to 4724 since we are already using 4723 for running our WebdriverIO tests:

Figure 6.12 – Appium Inspector configuration

Next, bring up the Appium server on port 4724 using the appium –p 4724 command. Once the

server is up, hit the Start Session button on the Appium Inspector window to load our application on

the Pixel 3a emulator. Figure 6.13 shows the test application loaded simultaneously in the emulator

and Appium Inspector window:

Figure 6.13 – Test application loaded in Appium Inspector and the emulator

In the next section, let’s understand how an async function works in JavaScript and then write a test

to validate mobile elements.

Figures

Figure 6.14 – JavaScript function with async/await

Figure 6.15 – Inspecting an element via Appium Inspector

Figure 6.16 – Appium test execution

Figure 6.18 – WebdriverIO Android config file

Figure 6.19 – WebdriverIO iOS config file

Code

Code 6.1

describe ("First Android Spec", () => {

it ("to find element by accessibility id", async () => {

const animationOption = await $("~Animation");

await animationOption.click();

const bouncingBalls = await $("~Bouncing Balls");

await expect(bouncingBalls).toBeExisting();

});

});

Code 6.2: An example of the capabilities section of the wdio.config.js file for

iOS:

platformName: "iOS",

"appium:platformVersion": "15.0",

"appium:deviceName": "iPhone 13",

"appium:automationName": "XCUITest",

"appium:app": path.join(process.cwd(),"/app/iOS/Test-iOS.app")

Links

For further exploration of the various features that Appium offers, refer to the documentation at

https://appium.io/docs/en/about-appium/api/.

Chapter 7

Technical requirements

We will continue using Node.js along with JavaScript in this chapter. We will also download the

Postman application (version 9.3.15) and the Newman command-line tool. We will need Docker

installed locally to run our Postman collections on a Docker container. Docker installation

instructions can be found at https://www.docker.com/.

Figures

Figure 7.1 – Postman application

https://www.docker.com/

Figure 7.2 – Creating a workspace

Figure 7.3 – Home page with multiple workspaces

Figure 7.4 – New API request

Hands-On Section

Making a GET API request

We will be using the https://www.boredapi.com/api/activity API to get an understanding of GET

requests. Bored is a free API that returns some random activities to do when bored. Postman makes

it easy to get a simple GET API request without any authorization working. Just paste the API URL in

the URL section of the request window and hit the Send button next to it. Every request to the

server must be made with a URL to fetch the required response. Figure 7.5 shows the GET request

with the response. Here, the Status section of the response says 200 OK, which means that the

server responded to the request without any errors. The server returns the response in a JSON

format, which can be validated for accuracy based on the business logic. In our case, we see an

activity being returned with a bunch of other information:

Figure 7.5 – GET API request

In most cases, the API will have certain authorization to be added for the request to work. Postman

supports a wide variety of authorization mechanisms that can be accessed via the Authorization tab,

as shown in Figure 7.6:

Figure 7.6 – Request authorization support in Postman

Postman identifies the applicable headers for a given API call, but in cases where there is specific

metadata that must be sent as part of the header, this can be done using the Headers tab. Postman

automatically identifies any query parameters that are added as part of the URL. For the case in

Figure 7.7, https://api.agify.io?name=packt, a name is sent as a query parameter as part of the

URL. Postman creates a parameter in the Params tab, and this can be modified to feed the request

with different test data. New parameters can be manually added here as well:

Figure 7.7 – API request with a query parameter

Users are encouraged to check out the various other features available within the request and

response windows. Let us now learn to make a POST API request.

Making a POST API request

A POST request creates a new resource on the server and requires content to be sent in the body of

the request. Postman supports different body types for a POST call, and in this section, we will

review how to make a POST call. Create a new API request and click on the dropdown to the left of

the URL section to select a POST request type. We will be using GitHub’s create a new repository

API call (https://api.github.com/user/repos) for our example here. GitHub provides a lot of public

APIs, but it requires the generation of an access token. This token can be generated in the personal

access tokens section of your GitHub profile. Please remember to copy and save this secure token

for future use in Postman. As shown in Figure 7.8, use this as a bearer token in the Authorization

tab of the new POST request:

Figure 7.8 – POST API request authorization

Now, moving on to the Body section of the request, this API requires a name as a mandatory key for

the new repository being created. An example of this request can be found at this link:

https://docs.github.com/en/rest/repos/repos#create-a-repository-for-the-authenticated-user.

We will be using the raw body type with JSON from the dropdown, as shown in Figure 7.9. Postman

supports a wide variety of request body formats, and the one supported by the API being tested

should be used. On hitting the Send button, we complete the POST call to the GitHub server to

create a new repository with the name Packt-test-api-repo. Figure 7.9 shows the response status

of 201 Created with all the metadata in the response body section. Users may notice that the status

code is different from the GET call as 201 indicates that in addition to the call being successful, a new

resource was created by the server:

Figure 7.9 – POST API request body type

This completes our section on creating a new resource using a POST call. In the next section, let’s

learn about collections and how they help structure API requests in Postman.

Organizing API requests using collections

Postman provides a way to group the API requests using collections. It helps organize a workspace

by breaking it down, and a workspace can also be sorted into multiple collections. Apart from this,

collections can also be published as documentation as well as run together in an automated fashion.

In this section, let us review how to create a collection and add requests to it. Collections can be

created in multiple ways within a workspace, and a simple way is to use the + button next to the

Collections icon in the left pane of the Workspaces window. A name must be provided for the

collection, and both existing and new requests can be saved to this collection. Figure 7.10 shows a

new collection holding the two API requests we have created so far in the previous sections:

Figure 7.10 – Collections

Collections can thus help organize API requests in a meaningful way under a given workspace. This

helps immensely when there are a high number of requests, which is usually the case when testing

enterprise applications. Various other actions can be performed on collections, such as Export,

Monitor, Mock, and so on. Let us now look at one more feature of a collection that promotes

collaboration within the team.

Postman allows users to create a fork of a collection and merge it after making some modifications

to the forked collection. These changes can be shared with other members, just like how Git pull

requests work. This can be done via the Collections drop-down menu, as shown in Figure 7.11:

Figure 7.11 – Collections drop-down menu

On clicking the Create a fork option, the user will be required to enter a label for the fork and to

which workspace this collection is to be forked, as shown in Figure 7.12:

Figure 7.12 – Forking a collection

Once the required changes have been made to the forked collection, a pull request can be created

using the Collections drop-down menu. Figure 7.13 shows a snippet of a pull request where the

user can provide a title, description, and select reviewers:

Figure 7.13 – Creating a pull request

The changes can be reviewed and merged using the merge option within the pull request or through

the Collections drop-down menu. This is a neat way to keep track of changes to your API requests

and nurture collaboration within the team while making these changes.

So far, we have looked at the basics of the Postman tool and how to make requests manually. This

works well for testing new API features but falls short when it comes to regression testing. In the

next section, let’s learn to write automated tests to validate API responses.

Writing automated API tests

Postman allows us to add tests that run automatically after an API response is returned from the

server. This can be done through the Tests tab in the Postman request dashboard. We will be using

the following three GitHub API requests in this section to help us set up and understand automated

API response validation:

• Create a new repository

• Get a repository by name

• Delete a repository by name

In the next section, let us review how to use snippets to speed up our test automation process.

Using snippets for asserting an API response

Postman comes with pre-defined JavaScript test scripts in the form of code snippets that can directly

be used in our tests. Let us start by adding snippets for some of the basic checks performed on an

API response. Snippets are shown on the right pane next to the various tabs on the request

dashboard.

Every API test requires the validation of the status of an API response, and Postman provides a

readymade code snippet for this. On selecting the Status code: Code is 200 snippet, the following

code is populated onto the Tests tab, as shown in Figure 7.14:

pm.test("Status code is 200", function () {

pm.response.to.have.status(200);

});

pm represents a Postman object, and it contains all information pertaining to the request and

response body. The pm object comes with a lot of properties and methods built in. Here, we use the

test method, which accepts a description and a function within which an assertion can be defined.

These assertions are defined using the chai library, and readers can refer to their documentation at

https://www.chaijs.com/api/bdd/ to get familiarized with more assertions.

Let us now add the Status code: Code name has string snippet, which adds the following code

snippet. In the case of a GET request, this string is OK, and for the POST request, it is Created, as we

have seen before:

pm.test("Status code name has string", function () {

pm.response.to.have.status("Created");

});

Postman provides a snippet to validate the response time of the API. On adding the Response time

is less than 200ms snippet, we see the following code added. Note that we use the expect assertion

here, which operates on the responseTime property and checks its value range:

pm.test("Response time is less than 200ms", function () {

pm.expect(pm.response.responseTime).to.be.below(200);

});

Let us now add an assertion on the response header using the Response headers: Content-Type

header check snippet. This can be further modified to check the presence of any header in the

response, as shown in the following code snippet:

pm.test("Last-Modified is present", function () {

pm.response.to.have.header("Last-Modified");

});

Figure 7.14 shows a summary of the test results for the GET repository API call with a test status for

each of the snippets we have added:

Figure 7.14 – Automated API response validation

These are some of the generic tests we can add for API responses. In the next section, let us learn

how to add assertions on specific values such as the repository name on the response.

Understanding Postman variables

Let us understand what an environment means in Postman before jumping into looking at variables.

An environment is an assembly of variables that can be used in API requests. For example, multiple

environments can be added in Postman, each with its own collection of variables. A new

environment can be created and added using the Environments drop-down menu and the icon from

the top-right section of the workspace window, as shown in Figure 7.15. Here, we have created a

new Packt testing environment:

Figure 7.15 – Environments drop-down menu and icon

Postman has five types of built-in variables, which are the following:

• Global variables: Variables with the broadest scope and can be accessed anywhere in a

workspace

• Collection variables: Variables scoped to be available for all the requests within a collection

• Environment variables: These variables are accessible only within an environment and

primarily used to manipulate access—for example, in staging versus production

• Data variables: These are variables created when importing external data and are scoped for

a single execution

• Local variables: Used on tests in a single request and lose scope as soon as the execution

ends

Let us consider the API for creating a new GitHub repository to understand how variables can be

used in Postman to remove static context from API requests. For example, we must validate that the

repository name matches between request and response. It is also important to remember that

GitHub repositories cannot have duplicate names. So, in order for this to work, we should provide a

randomly generated name in our POST request body and validate the presence of this name in the

corresponding response body. Dynamic variables come in handy to achieve this in Postman.

Variables are defined using double curly braces: {{<variable name>}}. The request body for the

create repository POST call will look like this:

{

"name": "{{repository_name}}",

"private": false

}

Now, we need this value to be new for every POST request we send, and the best place to do this is

in the Pre-request Script tab of the request dashboard. This represents a pre-condition to the test

case, and it is run before the request is sent to the server. We accomplish random value generation

by defining a variable with static and dynamic parts. Here, we use the variables property of the pm

object. Then, we set this as an environment variable. Figure 7.16 shows a new repository_name

environment variable created in the current environment, Packt testing:

let repository_name = "test_packt_api_" +

pm.variables.replaceIn('{{$randomInt}}');

pm.environment.set("repository_name", repository_name);

The following figure shows the repository_name environment variable:

Figure 7.16 – A new environment variable created

Note

Pre-requisite scripts are run before the API request is executed, while the test scripts are run after

the server returns a response.

So far, we have created an environment variable in the Pre-request Script tab and updated the

request body to use that variable. Let us next add an assertion on this variable in the response body.

This can be done in the Tests tab via the Response body: JSON value check snippet. This snippet

helps check a specific value in the API response. Note that the value of an environment variable can

be fetched using pm.environment.get("repository_name"):

pm.test("Check repository name", function () {

var jsonData = pm.response.json();

pm.expect(jsonData.name).to.eql(pm.environment.get("repository_name"

));

});

In the next section, let us learn to chain a series of API requests by passing data from one API to the

next.

Chaining API requests

Postman allows us to use variables to enable the chaining of a series of API requests. A variable

created from the response of an API can be used in the subsequent request. Let us take the example

of the create repository call where a new repository is created for every request. The name of this

repository can be captured and used in a subsequent GET call.

For our understanding here, let us chain the create repository call with GET and DELETE calls. These

calls require the name of the repository and owner. In the create repository call from the previous

section, we have the repository_name variable. Let us now capture the owner variable from the

response body using the following code:

let json = JSON.parse(responseBody);

pm.environment.set("owner", json.owner.login);

We use the JSON.parse() method to convert responseBody into a JSON object and then create an

environment variable using the login key from the response. GET and DELETE calls both use the

https://api.github.com/repos/:owner/:repo route. We create requests for each of these API

requests with this route, and on saving, Postman automatically creates a new Path variables section

in the Params tab of the request dashboard. We can now substitute the captured environment

variables as values, as shown in Figure 7.17. In this way, we are chaining the response of the create

repository call to the GET and DELETE calls:

Figure 7.17 – Chaining API requests

On executing these requests one after another, we notice that the values from the request are being

passed on to the next one, seamlessly eliminating static data transfer. This behavior makes Postman

an effective tool for testing complex API workflows.

We now have a simple collection with multiple API requests, and it is not feasible to run each of

them manually for every test cycle. In the next section, let us survey a few ways of executing tests in

Postman.

Various ways to execute tests

Let us first look at how to run our tests using the Collection runner. This is helpful when all tests in a

collection must be run sequentially in an automated fashion. The Collection runner window can be

launched by using the Run button from the Overview tab on clicking the collection name. This opens

a new tab that displays all the requests in the collection and some additional run parameters. Figure

7.18 shows this window and the associated options:

Figure 7.18 – Collection runner window

Using the Iterations option, users can specify the number of times the requests would be run. The

Delay option helps to add a specified wait between subsequent requests. This is very useful in case

of long-running requests. There is also an option to upload an external data file and use that data in

the form of variables within the request. On clicking the Run button, all requests in the collection are

run, and results with a clear breakdown are populated in the same window, as shown in Figure

7.19:

Figure 7.19 – Test results summary

Postman also supports running a collection from the command line through a tool called Newman.

Newman can be installed using the npm command: npm install –g newman. The installation can be

verified using the newman –v command. To run the collection, we will first export the collections

and the associated environment variables. A collection can be exported and saved to the local

filesystem using the Export option from the Collections drop-down menu. Similarly, environment

variables can be downloaded by using the Export option within Environments on the left navigation

bar. Note that these files are downloaded in a JSON format. Now that we have the collection and its

necessary variables, we can run it using Newman:

newman run packt_testing_collection.json -e

packt_testing_environment.json

The output from the run command line is demonstrated in Figure 7.20:

Figure 7.20 – Collection CLI run

Postman provides integration with Docker for executing tests within a Docker container. Docker is a

platform that assists in building, deploying, and testing your application code on units called

containers, irrespective of the underlying operating system. It provides great portability for

developing and testing applications. Running a collection on Postman’s Docker container involves

just a couple of commands. Once you have Docker installed on your machine, run the docker pull

postman/newman command. This command pulls the latest image of the Postman docker/newman

runner from Docker Hub and sets up the container. Next, we need the URL of the collection to be

able to run it externally. This can be obtained using the Share option from the Collections drop-

down menu. Now, run the following Docker command:

run –t postman/newman run "<<Collection URL>>"

This brings us to the end of a basic exploration of API testing with Postman. The Postman tool has so

much more to offer, and its capabilities can be referenced at https://learning.postman.com/docs.

In the next section, let us review the considerations that go into API automation testing.

Links

Postman’s downloads page (https://www.postman.com/downloads/)

We will be using the https://www.boredapi.com/api/activity API to get an understanding of GET

requests

For the case in Figure 7.7, https://api.agify.io?name=packt, a name is sent as a query parameter

as part of the URL

Chapter 8

Technical requirements

To get functional with JMeter, we need Java installed on our machine. Currently, JMeter works with

JDK 8 and JRE 8 or higher.

Hands-on Sections

Installing JMeter

Let’s look at the steps involved in the installation of JMeter:

1. The first step in the installation of JMeter is to check the Java version on your machine. This

can be done using the java -version command. As shown in Figure 8.1, this command prints

out the JDK version:

Figure 8.1 – Checking the Java version

2. The next step is to download the JMeter binary. The file for download can be found on the

JMeter website, https://jmeter.apache.org/download_jmeter.cgi. In this case, I am

downloading the binaries zip file for version 5.5, as shown in Figure 8.2.

Figure 8.2 – JMeter downloads page

3. Once the download is complete, move the zipped file to the desired local folder and unzip it.

This should create a new folder in the same location within which all the contents are

extracted.

JMeter can now be started with the sh jmeter.sh command from the bin folder of the

application. This brings up the application in a separate window, as shown in Figure 8.3.

Figure 8.3 – Starting JMeter

JMeter comes with a simple GUI that contains the following components:

• Menu bar: Contains a collection of high-level options to set up and configure various aspects

of the tool

• Tool bar: Contains frequently used tools

• Test plan tree view: Groups all components that are added within a test plan

• Editor section: Provides options to edit the selected component from the test plan view

In the next section, let’s look at how to create our first performance test in JMeter.

Automating a performance test

JMeter provides an intuitive GUI that we can use to create and configure performance tests. The test

plan is at the core of a performance test, and we start by creating one. We can do this by either

using the New option from the menu bar or the tool bar. We looked at the new Test Plan window in

Figure 8.3 when launching the JMeter application.

Building and running our first performance test

One of the primary focuses of a performance testing tool is its ability to simulate multiple users. This

is accomplished in JMeter by configuring a thread group. As shown in Figure 8.4, this is done via the

Thread Group option under Test Plan.

Figure 8.4 – New thread group

We use a combination of three parameters to achieve the required pacing for our performance test:

• Number of Threads: The number of parallel users to be simulated in this test

• Ramp-up period: The time taken to simulate the specified number of users

• Loop Count: The number of iterations to be executed as part of the current test

There are additional settings to configure and fine-tune the load on the test, as shown in Figure 8.5.

Figure 8.5 – Thread Group configuration

The next step is to add a sampler to the test plan. A sampler is nothing but a test added in JMeter.

Figure 8.6 shows the list of the samplers supported by JMeter. Let’s now add a simple HTTP

sampler for our test. We can then use the HTTP editor to configure our test.

Figure 8.6 – Adding an HTTP sampler

In our example, we will be load-testing the Packt Publishing website at https://packtpub.com. The

URL is split between the fields, protocol, and server name in the editor. Then we specify the path,

/terms-conditions, in the Path field. We will be testing the GET request, but there are in-built

options to support other types of requests, along with request body and file uploads, as shown in

Figure 8.7.

Figure 8.7 – Configuring an HTTP sampler

The test plan can now be saved to a local directory using the Save option from the menu bar. The

next step is to add a listener, which helps us view the test results. A listener is a component within a

test plan that stores and allows us to views results. Let’s add the View Results Tree and View Results

in Table listeners to our test plan. JMeter provides a variety of listener options in the Add | Listener

menu. Figure 8.8 shows our test plan with the listeners added.

Figure 8.8 – Listeners in a test plan

After saving the test plan, we are ready to execute our first test. This is done using the Start button

on the menu bar. We can see the results being populated in the listeners as soon as the test begins.

Figure 8.9 shows a breakdown of the test run stats by the thread group within the View Results in

Table listener.

Figure 8.9 – Test run results

JMeter provides options to configure the fields in the results. Some important fields to look out for

in the results are Sample Time(ms), Latency, and Status, as they specify the status of the test and

the time taken to get a response from the server. JMeter offers a convenient option to save and

view the test results in CSV or XML format.

Sample time versus latency

Latency is the time taken by the server to return the first byte of the response, whereas sample time

is the total time taken by the server to return the complete response. Sample time is always greater

than or equal to latency.

Working with assertions

Assertions, as we have seen in previous chapters, are the checks performed on the request and

response. JMeter provides options to perform checks on an array of options, such as response size,

response time, the structure of the response, and so on. An important thing to note about assertions

is that they can be added at all levels. For example, an assertion added at the test plan level will

apply to every sampler within it. For our example, let’s add response and duration assertions for the

HTTP sampler, as shown in Figure 8.10.

Figure 8.10 – Adding assertions

Let’s update the Response Assertion to look for the response code 200 and the Duration Assertion

to flag responses over 1,000 ms. These conditions are checked after every iteration of the HTTP

sampler, and the results are flagged accordingly. Figure 8.11 demonstrates the execution of the

Duration Assertion where some of the responses took over a second to complete.

Figure 8.11 – Assertion results

The Assertion Results listener is an effective component that collates the responses from all the

assertions so you can view them in one place. This listener can be added at the test plan level, as

illustrated in Figure 8.12. It combines the results from the Response Assertion and the Duration

Assertion.

Figure 8.12 – Assertion results listener

Let’s now look at how to use the command line to handle JMeter’s tests.

Working with tests via the command line

Performance tests are often long-running and tend to be heavy on system resource consumption.

GUI mode consumes a lot of memory, especially when running pre-recorded scripts, and execution

via the command line alleviates this pain by reducing the memory footprint of the tool. Another

significant benefit is the ability of the command line to integrate easily with external processes, such

as continuous integration systems. In this section, we will learn how to configure and run a JMeter

test from the command line.

Let’s reuse the test plan from the previous section for execution via the command line. Navigate to

JMeter’s bin folder in your command line and run the following command:

sh jmeter –n –t "<location of the .jmx test plan>"-l "<location to

log the results>"

Here, -n stands for non-GUI mode, -t specifies the location of the test plan, and –l is the location of

the result logs. The command line supports various other parameters, but these are the minimum

required parameters to trigger the execution. Figure 8.13 shows the execution of a command line

run.

Figure 8.13 – JMeter command line run

Additionally, the sh jmeter –h command can be used to review all the available command-line

options.

Performance test results can get voluminous, and it is always necessary to produce a clear and

concise report. It will be hard to understand the test results with just the results shown on the

command line and it necessitates a better report. This is achieved by using the –e option, which

generates a dashboard report, and the –o option to specify the location of the results folder. Figure

8.14 shows a part of the HTML report generated when using these parameters. By default, this is

produced as an index.html file within the results folder specified as part of the command-line

option. The full command to achieve this is as follows:

sh jmeter -n -t "./packt/packt_http_request.jmx" -l

"./packt/report.csv" -e -o "./packt/dashboard_report"

Figure 8.14 – JMeter Dashboard report

Another powerful feature that the JMeter command line provides is the use of built-in functions to

send dynamic parameters when running a test plan. For example, in our test plan, we have

hardcoded the path as /terms-conditions. In real time, we would be testing different paths from the

command line and would not have to update the test plan for every run. The test plan can be

updated with a function in this field to be able to receive this parameter via the command line using

the format ${__P(VariableName)}. The path can now be sent through the command line by prefixing

J to the variable name:

sh jmeter -n -t "./packt/packt_http_request.jmx" -Jpath=/terms-

conditions

In the next section, let’s look at how to use the HTTP(S) Test Script Recorder component in JMeter.

Using the HTTP(S) Test Script Recorder

The HTTP(S) Test Script Recorder is a component that records requests from the browser.

Previously, we manually added the HTTP request, but this component adds them automatically by

recording the transactions. This option can be added directly under the test plan, as shown in Figure

8.15.

Figure 8.15 – Adding the HTTP Test Script Recorder component

We will also need a recording controller to be added to the test plan to categorize the recording by

the traffic or per page. For simplicity, let’s use a single controller here, but in real-world scenarios

where the user flows involve multiple pages, we might need a separate controller per page. The

Target Controller property should be set to point to the right controller within the HTTP Test Script

recorder. Another notable feature within the HTTP Test Recorder component is Request Filtering. A

lot of resources are exchanged when recording HTTP requests, and not all of them will be applicable

for load testing. URL patterns that need to be included or excluded can be specified using the

Request Filtering option.

The next step is to configure the proxy on our browser so that only the desired traffic flows through

the port. This is done by specifying the default JMeter port 8888 within the browser’s proxy

configuration. Figure 8.16 shows this configuration on the Chrome browser.

Figure 8.16 – Chrome proxy configuration

There is one more step before we can start recording, and that is to add the JMeter certificate to the

browser. This file (ApacheJMeterTemporaryRootCA.crt) can be found in JMeter’s bin folder, and it

needs to be added to the browser certificates via settings. Once this is done, we can use the Start

button on the recorder component to commence the recording. When the recording is complete,

the HTTP requests are stored under the corresponding controller. These requests can then be played

back with the simulated load.

We have gained foundational knowledge on how JMeter operates, and we recommend you to

further explore the tool using the user manual at

https://jmeter.apache.org/usermanual/index.html. Let’s move on to the next section to gain a

basic understanding of the Java programming language and how to use it to write custom code

within JMeter.

Java essentials for JMeter

There may be instances where the features that come out of the box with JMeter are not sufficient

and custom scripts are needed to perform specific tasks. JSR233 and Beanshell assertions/samplers

can be utilized in cases such as these to get the job done. Both these components support Java code,

and hence it is important to acquire basic Java knowledge. In this section, let’s go through a quick

introduction to the Java programming language.

A quick introduction to Java

Java is a platform-independent compiled programming language. Java code gets compiled into

bytecode, which can then be executed on any OS. The Java Virtual Machine (JVM) is the OS-specific

architectural component that sits between the compiled bytecode and the OS to make it work on

any platform. Let’s now create our first Java program, compile it, and run it. Any Java program

comes with a boilerplate code, as follows:

package ch8;

public class first_java_program {

 public static void main(String[] args) {

 }

}

Let’s familiarize ourselves with these keywords, to begin with. Whenever a new class is created in

Java, the very first line is usually the package name, followed by the class definition. The public

keyword is an access modifier that denotes the access level of this class. This is followed by the class

keyword and the name of the class. Within the class, there is always a main method with a public

access modifier.

This is followed by another keyword, static, which signifies that this method can be invoked directly

without the need to create an instance of the class. The main method is always called by the JVM at

the beginning of program execution, and that is why we do not need an instance of the class to call

this method. Next is void, which represents the return type of this method. In this case, we do not

return anything and hence leave it as void. We could return a string or an integer depending on what

is being done within the method. The values within the parentheses after the method name mark

the arguments accepted by the method.

Let’s add a simple print statement, System.out.println("My first java program") within the main

method and run it via the IDE. This should print the text specified within the println method. This

completes our first program in Java. Java is a strong object-oriented language, so let’s learn how to

create classes and objects in Java.

Object-oriented programming primarily helps us model real-world information in our programs. Let’s

take an example of a bank account and see how it can be modeled in Java using object-oriented

techniques. To start with, let’s create an Account class, as follows:

package ch8;

public class Account {

String account_holder_name;

int age;

float account_balance;

boolean direct_deposit_enabled;

Boolean maintains_minimum_balance;

public void test_minimum_balance(){

if (account_balance > 5000) {

maintains_minimum_balance = true;

}

}

}

This class would act as a template for all the accounts that are created. Each account created from

this template would be an object, or an instance, of this class. We have used different variable types

to model real-world information. We have also used the test_minimum_balance method to derive

and set the value of a variable called maintains_minimum_balance within the class.

Let’s now go ahead and create another class that holds these objects:

package ch8;

public class AccountObjects {

public static void main(String[] args) {

Account johns_account = new Account();

Account davids_account = new Account();

johns_account.account_holder_name = "John Doe";

johns_account.age = 32;

johns_account.account_balance = 10000;

johns_account.direct_deposit_enabled = true;

johns_account.test_minimum_balance();

tims_account.account_holder_name = "Tim Sim";

tims_account.age = 35;

tims_account.account_balance = 1000;

tims_account.direct_deposit_enabled = true;

tims_account.test_minimum_balance();

}

}

We have created two objects in our second class, which represent two different people’s bank

accounts. This example demonstrates how we can use classes to model information.

JDK versus JRE versus JVM

JDK: The Java Development Kit is an environment for developing, compiling, and running Java

applications.

JRE: The Java Runtime Environment is an environment for running Java applications. Users of Java

applications just need the JRE.

JVM: The Java Virtual Machine is an interpreter for executing Java programs.

This section was meant to quickly inform you what the Java programming language is and how to

write a basic program. You are encouraged to refer to the official Java documentation at

https://docs.oracle.com/javase/tutorial/getStarted/index.html to further your knowledge. Let’s

now get back to writing custom scripts in JMeter.

Using the JSR233 assertion

JMeter comes with a JSR233 assertion/sampler that can interpret and execute Java code. JSR233 is a

scripting API for languages that can work on the JVM. Apache Groovy, Python, and Ruby are some of

the supported languages, and we will be using Groovy for our example as it provides better

performance.

Another advantage of using Groovy is that it is an extension of the JDK and accepts Java code. In fact,

it supports all the features of Java and provides additional dynamic features, whereas Java is a

strongly typed language. Groovy’s official documentation can be found at https://groovy-

lang.org/documentation.html. Since the Groovy engine is part of JMeter, no additional installation

is required to get it working. Let’s now look at how to employ a Groovy script within a JMeter test

plan using the JSR233 sampler/assertion.

To start, let’s add the JSR233 assertion to the HTTP request in our existing test plan. By default,

Groovy is selected as the language for this assertion, but there are other options, as shown in Figure

8.17.

Figure 8.17 – Adding a JSR233 sampler

One of the top uses of employing custom scripting within JMeter is to enhance the logging

capabilities wherever needed. This helps tremendously in reducing debugging effort. For example,

the statement log.info("Output from the log message") can be used to print additional logging

messages. Now consider the following code block, which can be run as part of the JSR233 assertion:

int thread_run_time = SampleResult.getTime();

int thread_latency = SampleResult.getLatency();

int response_threshold = 1000;

if ((thread_run_time+thread_latency)>response_threshold){

 AssertionResult.setFailure(true);

 AssertionResult.setFailureMessage("Threshold exceeded");

 }

SampleResult is a built-in JMeter object through which various properties of the test result can be

accessed. Here, we are getting the run time and latency of the HTTP response and using an if

statement to perform an assertion. Custom scripting thus extends JMeter’s ability to perform

specific validations.

Another area where custom scripting can be used is with getting and setting values of variables and

properties. It might be necessary to dynamically change the value of a variable based on the test

result. This can be performed with the following statements:

failure_count = vars.get("failure_count");

Failure_count++;

vars.put("failure_count", String.valueOf(failure_count));

We are getting the value of the failure_count variable and incrementing it before writing it out. As

you can see, custom scripting opens up various ways to extend our tests to address project-specific

needs. This is as far as we can go here; it’s up to you to explore it further.

In the next section, let’s explore some considerations for performance testing.

Chapter 9

Technical requirements

We will be working on GitHub Actions in the last part of this chapter to implement a CI job. The

repository used will be https://github.com/PacktPublishing/B19046_Test-Automation-

Engineering-Handbook. It is advised to possess a basic familiarity with the GitHub UI and how it

works to follow along.

Figures

Figure 9.1 – CI/CD

Figure 9.2 – Parts of a CI system

Figure 9.3 – Components of a deployment pipeline

Figure 9.4 – Feedback loop in a CI/CD system

Table

Type of Test Recommended CI/CD Strategy

Unit/component

tests

Tests with minimal dependencies and the quickest feedback cycle to be run

on every commit and every merge to master

API tests Tests that verify the functional correctness of the API endpoints to be run

on every merge to master

Type of Test Recommended CI/CD Strategy

E2E API tests Long-running tests involving sequential API calls to test business workflows

to be run on every deployment to test environments

E2E UI tests Long-running tests involving user actions to test business workflows to be

run on every deployment to test environments

Smoke tests A subset of tests selected to be run on every deployment to an environment

Table 9.1 – CI/CD strategies for various test types

Hands-On Sections

GitHub Actions CI/CD

GitHub Actions is a CI/CD platform that enables the automation of building, testing, and deployment

of application code. It is the built-in CI/CD tool for GitHub. In this section, let us go over all the

concepts we need to know to understand the GitHub Actions workflow. We will also learn to

implement a GitHub action to run syntax checks against our code to make sure it meets specific

criteria. Let us start with the necessary terms to help us understand the GitHub Actions workflow

file.

The workflow .yaml file contains all the information used to initiate and drive the CI pipeline to

completion. YAML is a data-serialization language commonly used for building configuration files. It

is in human-readable format and compatible with all the major programming languages. The

workflow .yaml file at a high level specifies the following:

• Events: An event is a trigger for a workflow

• Jobs: Jobs are high-level actions performed as part of the workflow

• Runners: A runner is a platform where the action is performed

• Steps: A job can be broken down into multiple steps

• Actions: Each step performs a specific action in an automated fashion

For illustration, we will be using code commits and merges, which are common events that occur in

every repository. In this example, we will be configuring our workflow file to be triggered when

someone pushes code to our repository. When this push event occurs, all jobs within the workflow

will be run. This is demonstrated by the YAML code snippet shown next. In this configuration file, we

use the on parameter to specify the trigger for the workflow. When the push event occurs, it will run

all jobs within this workflow. We have a single job here that comprises multiple steps and actions.

Under the steps, two actions will be run in this case. The first action will check out the latest version

of our code from the main/master branch, and the next one will run the super-linter against it.

Linters are tools to evaluate that our code conforms to certain standards. The super-linter supports

multiple languages and automatically understands and checks any code in the specified repository.

The runs-on parameter is used to specify the runner. This is the container environment where

GitHub will run this job. There are additional options to host your own container; however, we will

be sticking to the default container offered by GitHub in this case:

name: Packt CICD Linter Demo

on: [push]

jobs:

 super-lint:

 name: Packt CICD Lint Job

 runs-on: ubuntu-latest

 steps:

 - name: Checkout Code

 uses: actions/checkout@v3

 - name: Lint Code Base

 uses: github/super-linter@v4

 env:

 DEFAULT_BRANCH: main

 GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

Let us now go to GitHub to set up a workflow in our repository

(https://github.com/PacktPublishing/B19046_Test-Automation-Engineering-Handbook). First,

we create the right folder structure for our workflow file. We use the Add File option on the home

page of our repository. We create a linter_demo.yml file with a .github/workflows structure under

the root folder of the project and copy the code into the editor below, as shown in Figure 9.5. Then,

this file can be committed through a new branch or to the main branch directly. It is mandatory to

follow this folder structure to save the workflow file:

Figure 9.5 – Creating a GitHub workflow file

On navigating back to the home page of the repository, we notice a yellow status icon now, as

shown in Figure 9.6. This signifies that the workflow is being run now and the code is being

checked. This status icon turns green or red based on whether the checks pass or fail. This is

particularly helpful when you are viewing a new repository and it aids to know that the repository is

in a healthy state with all the tests passing. The results of the workflow can be viewed by clicking on

the status icon or visiting the Actions tab:

Figure 9.6 – Workflow status

We can view the execution results of a specific job by following the link within the Actions tab. This

provides a neat breakdown of the steps executed within the job and how long each one took. You

could open each step to view the run logs. Figure 9.7 shows the view for a failed job and its

individual steps executed as part of the workflow:

Figure 9.7 – Workflow results

The Actions tab is where all the CI/CD information is shown within a GitHub repository. It shows a

history of all our workflow jobs and their statuses, with options to look through each one further in

detail. We can have as many workflows as we need within a single hub repository. For example, we

could have one workflow that runs only Cypress tests and another to lint the entire code repository.

On fixing the suggestions from the linter and pushing the code to the repository, the CI job should

automatically be triggered based on our setting in our workflow file.

The following is a sample snippet to invoke Cypress tests for reference. Placing these contents in a

workflow file at the root of the project under the recommended directory structure triggers Cypress

tests on every commit to the repository:

name: Packt Cypress Tests

on: [push]

jobs:

cypress-run:

name: Packt Cypress CI/CD Demo

runs-on: ubuntu-latest

steps:

- name: Checkout Code

 uses: actions/checkout@v3

- name: Cypress.io

 uses: cypress-io/github-action@v4.2.0

env:

DEFAULT_BRANCH: main

GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

GitHub has an extensive marketplace (https://github.com/marketplace) where you can grab pre-

written workflows for different use cases. We can download and modify them to use in our

repository. Readers are advised to take a look at these extensions to get an idea of the tremendous

community surrounding CI/CD systems.

This brings us to the end of this chapter. In the next section, let us quickly summarize what we

learned in this chapter and peek into our explorations in the final chapter of this book.

Chapter 10

Figures

Figure 10.1 – Code duplication

Figure 10.2 – Test automation tasks

Table

Story points Test type The complexity of

the task

Dependencies The effort required

in days

1 API

integration

Very minor Nothing Less than 3 hours

Story points Test type The complexity of

the task

Dependencies The effort required

in days

2 API

integration

Simple Some Half a day

3 UI end-to-

end

Medium Some Up to 2 days

5 UI end-to-

end

Difficult More than a

few

3 to 5 days

Split into smaller

tasks

API/UI Very complex Unknown More than a week

Table 10.1 – Sample test automation effort matrix

Code

Code 10.1: Lengthy complex tests

describe("Visit packt home page, ", () => {

beforeEach(() => {

cy.visit("https://www.packtpub.com");

});

it("search, terms and contact pages", () => {

const search_string = "quality";

const result_string = "Filter Results ";

cy.get('#__BVID__324').and("have.value", "");

cy.get('#__BVID__324').type(`${search_string}`, { delay: 500

});

cy.get('.form-inline > .btn-parent > .btn > .fa').click();

cy.get(".filter-results").contains(result_string);

cy.get(".reset-button", { timeout: 10000

}).should("be.disabled");

cy.get("#packt-navbar").and("have.class", "navbar- logout");

//test term-conditions page

cy.visit("https://www.packtpub.com/terms- conditions");

cy.get('.form-inline > .btn-parent > .btn > .fa').click();

cy.get(".terms-button", { timeout: 10000 }).should("be.enabled");

//test contact us page

cy.visit("https://www.packtpub.com/contact");

cy.get('.form-inline > .btn-parent > .btn > .fa').click();

cy.get(".send-button", { timeout: 10000 }).should("be.disabled");

});

Code 10.2: A case where no assertions are being used

function compute_product() {

...Test logic...

 if (product==10){

 console.log('product is 10');

 else if (product==20){

 console.log('product is 20');

 }

 else {

 console.log('product is unknown');

 }

 return product;

}

Code 10.3: Use of multiple assertions in a single test

cy.get('[data-testid="user-name"]').should('have.length', 7)

cy.get('[data-testid="bank_name"]').should('have.text', 'BOA Bank')

cy.get('[data-testid="form_checkbox"]')

 .should('be.enabled')

 .and('not.be.disabled')

Code 10.4: The use of the same type of assertions for multiple UI elements

cy.get('#about').contains('About')

cy.get('.terms')contains('terms-conditions')

cy.get('#home').contains('Home')

Code 10.5: Mishandling data in automation

• Functional test data: This drives the application logic and is seeded within the framework or

comes from a test environment.

• Dynamic test suite data: This is data required by the test scripts for execution, such as

secrets:

node test-script.js -secret='HAGSDH' -timeout=30000

• Global data: This is configuration data specific to particular environments, stored in config

files and the CI system:

DEV_URL= //test-development.com

STAGING_URL=https://test-staging.com

AWS_KEY=test-aws-key

• Framework level constants: These are constant values required by the tests and stored

within the framework in a non-extendable base class:

const swift_code = 111222333,

 routing_number = 897654321;

class BankConstants {

 static get swift_code () {

 return swift_code;

 }

 static get routing_number () {

 return routing_number;

 }

}

Appendix A: Mocking API Calls

Figures

Figure A.1 – API mocking

Hands-On section

Mocking API calls using Postman

Postman provides an interactive GUI to set up mocks for API calls. Let us now review how to set one

up step by step:

1. Create or use an existing Postman collection as seen earlier in Chapter 7, Test Automation

for APIs.

2. Set up a request as shown in Figure A.2. There are two scenarios where we end up mocking

an API request:

3. The first is when we have a sample response from the API call, but subsequent requests

cannot be made to the API. We could save the response as an example in Postman and use it

for mocking.

4. The other one is when the API call does not exist or we do not have a sample. In this case,

we will have to build the response from the scratch. We will be simulating this scenario in

our example:

B19046_07.xhtml#_idTextAnchor169

Figure A.2 – Postman request

5. The next step is to create the mock server for our request as shown in Figure A.3. This can

be done by using the Mock Servers option on the left-hand pane and selecting the collection

to associate it with. Once this is done, a mock server URL is generated, to which a request

can be made. Postman also provides an option to make the mock server private by

generating an API key to authorize requests.

Figure A.3 – Creating a mock server

6. The next step is to add an example to the request using the Options menu. We will be using

the dynamic variables in Postman to generate random values in our response. This can be a

static response as well. We will be using the following response in our example:

{ "age": {{$randomInt}},

 "count": {{$randomInt}},

 "name": "{{$randomLastName}}"

}

7. The final step is to create a new request and use the mock server URL to make the API call.

Figure A.4 shows this in action.

Figure A.4 – Mocked response

By using a combination of environment and dynamic variables, it is possible to simulate almost any

kind of API response in Postman. Let us now look at a few important considerations when employing

mocks.

