<packh

Test Automation
Engineering Handbook

Learn and implement techniques for building
robust test automation frameworks

<> MANIKANDAN SAMBAMURTHY

Chapter 1

Figures
TEST SUMMARY
REPORTS TEST PLAN TEST STRATEGY
TEST
ENVIRONMENT
TEST DELIVERABLES AUTOMATED TEST
TEST METRICS
AUTOMATED TEST
TEST CASES TEST DATA FRAMEWORK
Figure 1.1 — Testing deliverables
BUILD » TEST » INTEGRATE
COMPONENT A COMPONENT B
CONTINUOUS TESTING
COMPONENT C
Figure 1.2 — Continuous testing
Tables
TEST EARLY TEST OFTEN
« More time to fix bugs o Drastically increases chance of catching
bugs faster
« Cost of fixing bugs is low early on « Exposes bugs throughout the
development life cycle
« Fewer surprises in the later stages « Easy to make design changes upfront
of product development

Table 1.1 — Importance of testing early and testing often

Test automation engineer SDET

Creates and executes automated and manual Creates and maintains the test automation
tests framework

Collaborates with the product and Collaborates with software engineers and
implementation teams DevOps teams

Highly skilled in programming with testing skills | Experts in testing either manually or by
automation

Develops test automation tools Uses test automation tools

Table 1.2 — Test automation versus SDET

Chapter 2

Technical requirements

In the later part of this chapter, we will be looking at some Python code to understand a simple
implementation of design patterns. You can refer to the following GitHub URL for the code in the

chapter: https://qithub.com/PacktPublishing/B19046 Test-Automation-Engineering-

This Python code is provided mainly for understanding the design patterns and the readers don't
have to execute the code. But if you are interested, here is the necessary information to get it
working on your machine. First, readers will need an integrated development environment (IDE) to
work through the code. Visual Studio Code (VS Code) is an excellent editor with wide support for a
variety of programming languages.

The following URL provides a good overview for using Python with VS Code:

You will need software versions Python 3.5+ and the Java Runtime Environment (JRE) 1.8+ installed
on your machine to be able to execute this code. pip is the package installer for Python, and | would
recommend installing it using _ Once you have PIP
installed, you can use the pip install -U selenium command to install Selenium Python bindings.

Next is to have the driver installed for your browsers. You can do this by going to the following links
for your particular browser:

» Chrome: https://chromedriver.chromium.org/downloads
» Firefox: hitps://github.com/mozilla/geckodriver/releases

e Edge: https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/

Make sure the driver executables are in your PATH environment variable.

Figures

BUSINESS FACING

2%
Quadrant:2 Quadrant:3 Manual
Automated/Manual

User Acceptance Tests

Functional Tests Usability Tests
End-to-end tests Alpha/Beta
Quadrant:1 Quadrant:4
Automated Non-funtional
Unit Tests Performance
Component Tests

\/

TECHNOLOGY FACING

Figure 2.1 — Agile testing quadrants

TEST AUTOMATION STRATEGY

B
. OBJECTIVES/PURPOSE
[T
N E
E Cl/cD e
S TESTING SCOPE NERR AN H
S N
|
c NON-FUNCTIONAL
o
ﬁ TESTING COVERAGE = e
> I
[TEST TEST A
E REPORTING ENVIRONMENT g
R E
A AGILE TOOLS/ c
T PROCESSES INTEGRATIONS T
| S
¢ AUTOMATION
N
N COLLABORATION iodinpotinly

Figure 2.2 — Test automation strategy breakdown

TESTR

ESULTS

TEST DATA POOL

TEST SCRIPT

y

FUNCTIONS/METHODS/HELPERS

ENVIRONMENT
VARIABLES

A

KEYWORDS
ACTIONS

Figure 2.3 — Essential components of a test automation framework

Code Coverage per test

Execution time
Maintenance costs

Figure 2.4 — Test automation pyramid

TEST CODE

I

WEBDRIVER MANAGER
FACTORY

I

WEBDRIVER INTERFACE

|

l

l

|

CHROME
DRIVER

FIREFOX
DRIVER

SAFARI
DRIVER

IE
DRIVER

Figure 2.5 — Selenium WebDriver architecture

Hands-On Section

POM

Object repositories, in general, help keep the objects used in a test script in a central location rather
than having them spread across the tests. POM is one of the most used design patterns in test
automation; it aids in minimizing duplicate code and makes code maintenance easier. A page object
is a class defined to hold elements and methods related to a page on the Ul, and this object can be
instantiated within the test script. The test can then use these elements and methods to interact
with the elements on the page.

Let us imagine a simple web page that serves as an application for various kinds of loans (such as
personal loans, quick money loans, and so on). There may be multiple business flows associated with
this single web page, and these can be set up as different test cases with distinct outcomes. The test
script would be accessing the same Ul elements for these flows except when selecting the type of
loan to apply for. POM would be a useful design pattern here as the Ul elements can be declared
within the page object class and utilized in each of the different tests running the business flows.
Whenever there is an addition or change to the elements on the Ul, the page object class is the only
place to be updated.

The following code snippet illustrates the creation of a simple page object class and how the
test_search_title test uses common elements on the Ul from the Home_Page_Object page object
class to perform its actions:

import selenium.webdriver as webdriver
from selenium.webdriver.common.by import By
class WebDriverManagerFactory:

def getWebdriverForBrowser (browserName) :
if browserName=='firefox':

return webdriver.Firefox ()

elif browserName=='chrome':

return webdriver.Chrome ()

elif browserName=='edge':

return webdriver.Edge ()

else:

return 'No match'

The WebDriverManagerFactory class contains a method to select the driver corresponding to the
browser being used, as illustrated in the following code snippet:

class Home Page Object:
def init (self, driver):
self.driver = driver

def load home page (self) :

self.driver.get ("https://www.packtpub.com/")

return self

def load page(self,url):

self.driver.get (url)

return self

def search for title(self, search text):
self.driver.find element (By.ID, 'search') .send keys (search text)

search button=self.driver.find element (By.XPATH,
'//button[@class="action search"]')

search button.click()
def tear down (self):
self.driver.close ()

The POM paradigm usually has a base class that contains methods for identifying various elements
on the page and the actions to be performed on them. The Home_Page_Object class here in this
example has methods to set up the driver, load the home page, search for titles, and close the
driver:

class Test Script:

def test 1(self):

driver = WebDriverManagerFactory
.getWebdriverForBrowser ("chrome")

if driver == 'No match':

raise Exception ("No matching browsers found")
pageObject = Home Page Object (driver)
pageObject.load home page ()
pageObject.search for title('quality')
pageObject.tear down ()

def main () :

test executor = Test Script()

test executor.test 1()

if name == " main_ ":
main ()

The test_search_title method sets up the Chrome driver and the page object to search for the
quality string.

We will look in further detail about setting up and using POM in Chapter 5, Test Automation for
Web.

Now, let us investigate how the factory design pattern is helpful in test automation.

The factories pattern

The factory pattern is one of the most used design patterns in test automation and aids in creating
and managing test data. The creation and maintenance of test data within a test automation
framework could easily get messy, and this approach provides a clean way to create the required
objects in the test script, thereby decoupling the specifics of the factory classes from the automation
framework. Separating the data logic from the test also helps test engineers keep the code clean,
maintainable, and easier to read. This is often achieved in test automation by using pre-built libraries
and instantiating objects from classes exposed by the libraries. Test engineers can use the resulting
object in their scripts without the need to modify any of the underlying implementations.

A classic example of a factory design pattern in test automation would be how Selenium WebDriver
gets initialized and passed around in a test. Selenium WebDriver is a framework that enables the
execution of cross-browser tests.

The following diagram breaks down how a piece of test script can exercise Selenium WebDriver to

make cross-browser calls:
TEST CODE

WEBDRIVER MANAGER
FACTORY

I

WEBDRIVER INTERFACE

l l l l

CHROME FIREFOX SAFARI IE
DRIVER DRIVER DRIVER DRIVER

Figure 2.5 — Selenium WebDriver architecture

Figure 2.5 shows how the test code utilizes a factory method to initialize and use the web drivers.

Please refer to the code snippet in the previous section for a simple implementation of the factory
pattern. Here, the WebDriverManagerFactory class returns an instance of the web driver for the
requested browser. The Test_Search_Choose_Title class can use the factory method to open a
Chrome browser and perform additional validations. Any changes to how drivers are being created
are encapsulated from the test script. If Selenium WebDriver supports additional browsers in the
future, the factory method will be updated to return the corresponding driver.

Business layer pattern

This is an architectural design pattern where the test code is designed to handle each layer of the
application stack separately. The libraries or modules that serve the test script are intentionally
broken down into Ul, business logic/API, and data handling. This kind of design is immensely helpful

B19046_05.xhtml#_idTextAnchor119

when writing E2E tests where there is a constant need to interface with the full stack. For example,
the steps involved may be to start with seeding the database with the pre-requisite data, make a
series of API calls to execute business flows, and finally validate the Ul for correctness. It is critical
here to keep the layers separate as this reduces the code maintenance nightmare. Since each of the
layers is abstracted, this design pattern promotes reusability. All the business logic is exercised in the
APl layer, and the Ul layer is kept light to enhance the stability of the framework.

Design patterns play a key role in improving the overall test automation process and they should be
applied after thoroughly understanding the underlying problem. We need to be wary of the fact that
if applied incorrectly, these design patterns could lead to unnecessary complications.

Chapter 3

Technical requirements

In this chapter, we will be looking at working examples of the CLI and Git. We will be using the
Terminal software on macOS for our examples in both sections. Windows users can use the in-built
PowerShell to execute these commands.

Hands-On Sections

The basic tools for every automation engineer

One of the primary tasks of a test automation engineer is to create, edit, or delete code daily. Test
engineers will often also have to interact with the shell of the system under development to tweak
their test environments or the underlying test data. In this section, we will be covering a few basic
commands that test engineers will need to be able to access the source code and navigate the
system under test. This section is a quick refresher for readers who are already experienced in the
software engineering space, and can help to build a good foundation for beginners.

Let us start by looking at the CLI.

The CLI

The CLI is a means to interact with the shell of the system under test. A lot of the tasks performed
through the graphical user interface can be done through the CLI too. But, the real might of the CLI
lies in its ability to programmatically support the simulation of these tasks. Let’s try and get familiar
with a few basic CLI commands. The CLI commands covered in this section can be run on Terminal
software on macQOS, or PowerShell on Windows:

e Thels command lists all the files and directories in the current folder:
=>1s
The output to the preceding command should be as follows:
test.py test.txt testing 1 testing 2 testing 3 testing 4
-

e The cd command stands for change directory and is used to switch to another directory. The

cd .. command navigates to the parent directory.
The syntax is as follows:
cd [path to directory]

The command and output should be as follows:

=>cd testing 1->» testing 1 cd
e The mkdir command creates a new directory under the current directory.
The syntax is as follows:
mkdir [directory name]
The command and output should be as follows:
mkdir testing 5
=31s

test.py test.txt testing 1 testing 2
testing 3 testing 4 testing 5

->
e The touch command creates a new file in the current directory without a preview.
The syntax is as follows:
touch [file name]
The command and output should be as follows:
=> touch testing.txt
=>1s

test.py test. txt testing.txt testing 1 testing 2

testing 3 testing 4 testing 5

Note

Windows PowerShell users can use ni as touch is not supported.

e The cat command allows the user to view file contents on the CLI.
The syntax is as follows:
cat [file name]
The command and output should be as follows:
= cat vim file
This is a new file
- cli demo

So far, we have looked at how to create and modify files. Next, let us look at the commands for
deleting files and folders:

e The rm command can be used to delete folders and files. Let us look at some specific

examples of how to go about this deletion.

To remove a directory and all the contents under that directory, use the rm command with
the —=r option.

The syntax is as follows:

rm —r [directory name]

The command and output should be as follows:

=3 1s

test.py test. txt testing.txt testing 1 testing 2
testing 3 testing 4 testing 5 vim file

=> rm -r testing 1

=21s

test.py test. txt testing.txt testing 2 testing 3
testing 4 testing 5 vim file

-

e To delete the file(s), the same rm command can be used followed by the filename.
The syntax is as follows:
rm [file name]
The command and output should be as follows:

> cli_demo 1s

test.py test. txt testing.txt testing 2 testing 3
testing 4 testing 5 vim file

= cli demo rm test.txt

= cli demo 1s

test.py testing.txt testing 2 testing 3
testing 4 testing 5 vim file

=> cli_demo

Next, let us quickly look at Vim, which is a commonly used file-handling tool for the CLI.
Working with Vim

Vim is an in-built editor that allows you to modify the contents of a file. Vim aims to increase
efficiency when editing code via the CLI and is supported across all major platforms, such as macQOS,

Windows, and Linux. Vim also supports creating custom keyboard shortcuts based on your typing
needs. Let’s look at a basic example of editing and saving a file. This editor supports a wide range of
commands and can be referenced at http://vimdoc.sourceforge.net/. To edit and save a file, you
need to do the following:

1. To execute the editor, the user has to type vi, followed by a space and the filename:
workspace vi test.txt

1. Then, typei to switch to INSERT mode and type in the contents of the file.

2. Pressthe ESsc key to quit INSERT mode.

3. Next, type :wq to save and exit. This command is a combination of :w to write the contents
of the file to the disk and q to quit the file.

4. Then, press ito enter INSERT mode and type the required contents in the file.

The CLI commands we have looked at so far should serve as a good starting point for new users.
Now, let us familiarize ourselves with flags in the CLI.

Flags in the CLI

Flags are add-ons to enhance the usage of a command in the CLI. For example, the =l flag can be
applied to the Is command to alter the displayed list of files and folders in a long format.
The syntax is as follows:

1ls -1

The command and output should be as follows:

=1s -1

total 8

-rw-r--r—-- 1 packt staff 0 Jun 25 09:33 test.py
-rw-r--r-- 1 packt staff 0 Aug 14 18:14 testing.txt

drwxr-xr-x 3 packt staff 96 Jun 26 10:20 testing 2
drwxr-xr-x 2 packt staff 64 Jun 25 09:32 testing 3
drwxr-xr-x 2 packt staff 64 Jun 25 23:16 testing 4
drwxr-xr-x 2 packt staff 64 Aug 14 18:13 testing 5
-rw-r--r-- 1 packt staff 19 Aug 14 18:26 vim file
-

There are thousands of flags that can be attached to various CLI commands, and it is impossible to
know all of them. This is where the man command comes in handy. man can be used with any CLI
command, and it gives all the options and an associated description for each command. There are
usually multiple pages of help content and you are encouraged to browse through them.

For example, to learn all the information associated with the Is commands, you just have to run the
following command:

man 1ls

There are a few tips/tricks to keep in mind regarding CLI usage, such as the following:

e All the CLI commands are case sensitive

e The pwd command lists the current working directory

e The clear command clears the contents on the current shell window

e The up/down arrow keys can be used to navigate through the history of the CLI commands
e The Tab key can be used to get autocomplete suggestions based on the string typed so far

e The cd-and cd ~ commands can be used to navigate to the last working directory and home

directory, respectively

e Multiple CLI commands can be run in a single line using the ; separator

The power of shell scripting

The ultimate utility of the CLI lies in writing automated scripts that perform repeatable tasks. Shell
scripting can be used to achieve this and can save you a great deal of time. Users are encouraged to
refer to the full documentation at AttpS:/Avwv.gnu.org/software/bash/manual/bash.html to learn
more about commands and their syntax. To understand the power of the CLI, let us look at an
example of a shell script in this section. This script creates a folder, named test_folder, and then
creates a text file, named test_file, within it. The script then uses the curl command to download a
web resource that is passed as an argument and stores its output in test_file.txt. Now, $1 refers to
the first argument used when invoking this file for execution. -o is used to override the contents of
the file. Then, it reads the file using the cat command and stores it in a variable named file_content.
Finally, this file is removed using the rm command:

#!/bin/bash

mkdir test folder

cd test folder

touch test file.txt

curl $1 -o test file.txt

file content="cat test file.txt"
echo $file content

rm test file.txt

This script can be executed using the bash sample_bash_script.sh https://www.packt.com/
command, where sample_bash_script.sh is the name of the file. Please note that the web resource
here can be downloaded at httpsS://Mmww.packi.com/ and that it is being passed as the first
argument to the script.

We have just gotten a bird’s eye view of the CLI, and | strongly encourage you to dive deeper into CLI
commands to increase your proficiency. Some major advantages of using the CLI include the
following:

e Speed and security: CLI commands are faster and more secure to use than the
corresponding actions being done through the graphical user interface.

e Scripting on the CLI: The CLI lets users write scripts to perform repetitive actions by
combining them into a single script file. This is much more stable and efficient than a script

run on a graphical user interface.

e Resource efficient: CLI commands use much fewer system resources and therefore provide
better stability.

Now that we have familiarized ourselves with the CLI, let us look at another tool that is an absolute
necessity for the maintenance of a software project of any size.

Git
Git is a modern distributed version control system that allows tracking changes to the source code
and is a versatile tool to enable collaboration in the engineering team. Git primarily helps in

synchronizing contributions to source code by various members of the team, by keeping track of the
progress over time.

Every software application is broken down into code repositories and production code is stored on a
branch called master on the repository. When an engineer is ready to begin working on a feature,
they can clone the repository locally and create a new branch to make their changes. After the code
changes are complete, the engineer creates a pull request that is then peer-reviewed and approved.
This is when they are merged into the master branch. Subsequently, the changes are deployed to
the staging and production environments. There are various hosting services, such as GitHub, that
provide a user interface to maintain, track, and coordinate contributions to the code repositories.
Now, let us look at some of the common Git commands that test engineers might have to use
frequently:

e git --version shows the version of Git software installed on the machine:

» ~ git --version
git version 2.36.1

>~

Figure 3.1 — git version

e gitinit initializes the project folder into a GitHub repository:

git_demo master) x git init
hint: Using 'master' as the name for the initial branch. This default branch name
. 1s subject to change. To configure the initial branch name to use in all
: of your new repositories, which will suppress this ning, call:

git config --global init.defaultBranch <name>
hint:
hint: Names commonly chosen instead of 'master' are 'main', 'trunk' and
hint: 'development'. The just-created branch can be renamed via this command:
hint:
hint: git branch -m <name>
Initialized empty Git repository in /Users/priya/Documents/git_demo/.git/
» git_demo master

Figure 3.2 —git init

e git clone [repository_URL] creates a local copy of the remote repository:

) priya@Priyas-MacBook-Air:~{Documents/git_dema i
git_demo master) git clone https://github.com/PacktPublishing/B19046_Test-Automation-En
gineering-Handbook.git
(loning into 'B19046_Test-Automation-Engineering-Handbook'...
remote: Enumerating objects: 116,
remote: Counting objects: 100% /
remote: Compressing objects: 100% (90/90), done
remote: Total 116 (delta 20), reused 89 (delta 9), pack-reused 0
Receiving objects: 100% (116/116), 3.73 MiB | 5.49 MiB/s, done.
Resolving deltas: 10
git_demo

Figure 3.3 — git clone

e git push pushes all of the committed local changes to the remote GitHub repository:

° priyab .
B19046_Test-Automation-Engineering-Handbook man eadme) x git push origin mani/
update_readme
Enumerating objects: 5, done.

Counting objects: 100% (5/5), done.

Delta compression using up to 8 threads

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 390 bytes | 390.00 KiB/s, done.

Total 3 (delta 1), reused @ (delta @), pack-reused @

remote: Resolving deltas: 100% (1/1), completed with 1 local object.
remote:

~[D E 1

: Create a pull request for 'mani/update_readme' on GitHub by visiting:
https://github.com/PacktPublishing/B19046_Test-Automation-Engineering-Handbook/pul
/mani/update_readme

//github.com/PacktPublishing/B19046_Test-Automation-Engineering-Handbook.git
* [new branch] mani/update_readme -> mani/update_readme
B19046_Test-Automation-Engineering-Handbook mani/upc eadme) x I

Figure 3.4 - git push

e git pull pulls all the latest code from the remote branch and merges them with the local

branch:

B19046_Test-Automation-Engineering-Handbook git:(mani/update_readme) x git pull
Already up to date.

B19046_Test-Automation-Engineering-Handbook git:(mani/update_readme xl

Figure 3.5 — git pull

o gitlog lists the entire commit history:

commit lefeb6a2f799cb91f75d1805f735a97cea9638ed (HEAD -> mani/update_readme, origin/m

update_readme)

Author: Mani S <manikandan.sambamurthy@gmail.com>
Tue Nov 15 22:43:37 2022 -0800

Update readme for chapter 3 content
commit d@ccl3896ced2c37fe4a79d64a2c20edadd8340c (origin/main, origin/HEAD, main)
Merge: cb@317c 7d8870c
Author: manisam <manikandan.sambamurthy@gmail.com>
Date: Tue Sep 27 08:03:27 2022 -0700
Merge pull request #12 from PacktPublishing/mani/move_ch3_src
Moved ch3 under src
commit 7d8870c1c284cdd9df@c686774eb74edfdceld43 (origin/mani/move_ch3_src, mani/move_ch3_
src)
Author: Mani S <manikandan.sambamurthy@gmail.com>

Date: Tue Sep 27 08:03:00 2022 -0700

Moved ch3 under src

Figure 3.6 — git log

e git branch [branch_name] creates a new branch in the local Git repository:

0 priya@Priyas-MacBook-Air:~{Docun fwor f 46_Test-Autom, -Engineering-Handbook ‘lX\‘
B19046_Test-Automation-Engineering-Handbook git:(mani, me) X git branch mani
/git-demo-branch

B19046_Test-Automation-Engineering-Handbook git:(man te_rec X l

Figure 3.7 — git branch [branch_name]

e git branch lists all the local branches created so far. * indicates the branch that is currently

checked out:

ch4/git_a

ch4/git_amend
ch4/git_commit_multiline
ch4/merge_conflict_branch_1
main

man/ch4_js_snippets
mani/ch3_bash_script
mani/ch5_contents

mani/ch6_appium_webdriverio
mani/check_push_access
mani/design_patterns_factory
mani/git-demo-branch
mani/move_ch3_src
mani/rename_search_method

* mani/update_readme

Figure 3.8 — git branch

git branch —a lists all the local and remote branches created so far:

® git branch -a
ch4/git_a

ch4/git_amend
ch4/git_commit_multiline
ch4/merge_conflict_branch_1
main

man/ch4_js_snippets
mani/ch3_bash_script
mani/ch5_contents
mani/ch6_appium_webdriverio
mani/check_push_access
mani/design_patterns_factory
mani/git-demo-branch
mani/move_ch3_src
mani/rename_search_method

-> origin/main

Figure 3.9 — git branch -a

git checkout [branch_name] switches between local Git branches:

Book-Air:~{D Test-A Handbook g1

B19046_Test-Automation-Engineering-Handbook mani/update_readme) x git checkout ma
ni/rename_search_method
Switched to branch 'mani/rename_search_method'

B19046_Test-Automation-Engineering-Handbook git:(mani/rename_search_method xl

Figure 3.10 — git checkout
git status displays the modified files and folders in the current project repository:
B19046_Test-Automation-Engineering-Handbook git:(main) x git status
On branch main

Your branch is up to date with 'origin/main’.

You are currently bisecting, started from branch 'main'.
(use "git bisect reset" to get back to the original branch)

Untracked files:
(use "git add <file>..." to include in what will be committed)

nothing added to commit but untracked files present (use "git add" to track)
B19046_Test-Automation-Engineering-Handbook git:(main) x l

Figure 3.11 - git status

o git diff shows the difference between files in the staging area and the working tree:

diff --git a/README.md b/README.md

index aea7eac..cebdef8 100644
--- a/README .md

+++ b/README . md

0@ ’LG ‘%1,6)
B19046_Test-Automation-Engineering-Handboo
This repository contains all the code used in the book Test Automation engineering Handb
ook

Chapter 3

Chapter 4
Example for git commit with multiline comments
\ No newline at end of file

Figure 3.12 - git diff

e gitadd. adds all the modified files to the Git staging area:
(mani/update_readme) x git add .
(mani/update_readme) x git status

B19046_Test-Automation-Engineering-Handbook
B19046_Test-Automation-Engineering-Handbook ¢
On branch mani/update_readme

Your branch is up to date with 'origin/mani/update_readme".

You are currently bisecting, started from branch 'main’.
(use "git bisect reset" to get back to the original branch)

Changes to be committed:
(use "git restore --staged <file>..." to unstage)

B19046_Test-Automation-Engineering-Handbook git:(mani/update_readme) x I

Figure 3.13 — git add

e git commit -m "commit description" saves the changes to the local repository with the
provided description:

n

B19046_Test-Automation-Engineering-Handbook git:(mani/update_readme) x git commit -m
GIT Demo commit"
[mani/update_readme 6960800] GIT Demo commit
8 files changed, 100 insertions(+), 1 deletion(-)
create mode 100644 src/ch5/cypress.config.js
create mode 100644 src/ch5/cypress/fixtures/example.json

create mode 100644 src/ch5/cypress/support/commands. js
create mode 100644 src/chS/cypress/support/ele.js
create mode 100644 src/ch8/Account. java
create mode 100644 src/ch8/AccountObjects.java
create mode 100644 src/ch8/first_java_program.java
» B19046_Test-Automation-Engineering-Handbook git:(mani/update_readme) l

Figure 3.14 — git commit

git branch —D [branch_name] force deletes the specified local branch.

git stash temporarily removes the changes on the local branch. Use git stash pop to apply

the changes back onto the local branch:

B19046_Test-Automation-Engineering-Handbook git:(mani/update_readme) x git stash
Saved working directory and index state WIP on mani/update_readme: 6960800 GIT Demo commi
t
B19046_Test-Automation-Engineering-Handboo :(mani/update_readme) git stash pop
On branch mani/update_readme
Your branch is up to date with 'origin/mani/update_readme’.

You are currently bisecting, started from branch 'main'.
(use "git bisect reset" to get back to the original branch)

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

no changes added to commit (use "git add" and/or "git commit -a")
Dropped refs/stash@{0} (2f6325fb@bab45d2de37bf59e80a01f74af80a35)
B19046_Test-Automation-Engineering-Handbook git:(mani/update_readme) x l

Figure 3.15 — git stash

git remote -v gives the name, as well as the URL, of the remote repository:

B19046_Test-Automation-Engineering-Handbook git:(mani/update_readme) x git remote -v
https://github.com/PacktPublishing/B19046_Test-Automation-Engineering-Handbook.gi
t (fetch)

origin https://github.com/PacktPublishing/B19046_Test-Automation-Engineering-Handbook.gi
t (push)
B19046_Test-Automation-Engineering-Handbook (mani/update_readme) x I

Figure 3.16 — git remote

This overview provides you with a healthy introduction to Git and its most commonly used
commands. You can explore additional commands and their usage here at _

_. Next, let us dive into some of the most commonly used test automation
frameworks.

Figures

BANK XYZ

Figure 3.17 — Example loan application

TEST SCRIPT

Y

[WEBDRIVER MANAGER }

FACTORY

{ WEBDRIVER INTERFACE J
CHROME FIREFOX SAFARI EDGE
DRIVER DRIVER DRIVER DRIVER

Figure 3.18 — Visual representation of how a test script utilizes a factory method to initialize and use the
drivers

CLIENT

NODES WITH REMOTE WEBDRIVER AND BROWSER SUPPORT

& « @ 1§

@ ©&® e @ O

Figure 3.19 — Components of Selenium Grid

APPIUM CLIENT

—

!f’ =

MOBILE JSON @ WIRE PROTOCOL

e APPIUM SERVER E
‘ NODE.JS
GUI AUTOMATOR/
SIMULATOR

DEVICES/EMULATORS

« @

Figure 3.20 — Appium architecture/components

CYPRESS NODE.JS SERVER

B B B =

HTTPS 1 T REQUESTS
4

(BROWSER b
CYPRESS TESTS

\ J

APPLICATION UNDER

TEST)

Figure 3.21 — Cypress architecture/components
(=)
{ TEST TRIGGER }

U

JMETER MASTER

TEST TEST
RESULTS CONFIG

APP UNDER TEST

Figure 3.22 — JMeter architecture/components

Table
Tool Popularly used for | Applications Supported platforms Supported
tested programming
languages
Selenium | Web browser Web, mobile Windows/macOS/Linux | JavaScript, Java,
automation (with external Python, C#, PHP,
integrations) Ruby, Perl
Appium Native and hybrid | Mobile iOS, Android, macQOS, JavaScript, Java,
mobile application Windows Python, C#, PHP,
automation Ruby

Tool Popularly used for | Applications Supported platforms Supported
tested programming
languages
Cypress E2E testing for Web Windows/macOS/Linux | JavaScript
web applications
JMeter Performance Web Windows/macOS/Linux | Java, Groovy
testing of web script
applications
AXE Accessibility Web, mobile Windows, macQS, iOS, JavaScript, Java,
testing and Android Python, C#, PHP,
associated Ruby
compliance
Links

This is the high-level architecture of the Appium tool. In Chapter 6, Test Automation for Mobile,
we will look at a test case’s implementation using Appium. In the meantime, you can refer to
Appium’s official documentation at

The Selenium project can be found at _
For further reading on Cypress, you can refer to the documentation at _

The official documentation for JMeter can be found at

You can further explore the capabilities of the AXE tool by referring to

B19046_06.xhtml#_idTextAnchor142
https://appium.io/docs/en/about-appium/intro/
https://docs.cypress.io/
https://jmeter.apache.org/usermanual/index.html
https://www.deque.com/axe/core-documentation/api-documentation/

Chapter 4

Technical requirements

In this chapter, we will continue looking at working examples of Git through the Command-Line
Interface (CLI). We will be using the Terminal software on the Mac for our examples. Windows users
can use the built-in PowerShell to execute these commands. We will also be downloading and
exploring VS Code, which is an IDE. Please check this page for the download requirements:
https://code.visualstudio.com/docs/supporting/requirements. We also expect you to know the
basics of HTML to follow along with the next section on JavaScript.

All the code snippets can be found in the GitHub repository:
https://github.com/PacktPublishing/B19046 Test-Automation-Engineering-Handbook in the
src/ch4 folder.

Figures

> B19046_Test-Automation-Engineering-Handbook git:(main) git checkout -b ch4/git_commit_multiline
Switched to a new branch 'ch4/git_commit_multiline'
- B19046_Test-Automation-Engineering-Handbook git:(ch4/git_commit_multiline) git status
On branch ch4/git_commit_multiline
Changes not staged for commit:
(Cuse "git add <fil ." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

no changes added to commit (use "git add" and/or "git commit -a")
B19046_Test-Automation-Engineering-Handbook git git_commit_multiline) x git add README.md
B19046_Test-Automation-Engineering-Handbook git: git nit_multiline) x git commit -m "readme file: add chapter 4 header
" -m "readme file: add a note for git commit multiline comment"
[ch4/git_commit_multiline a858d24] readme file: add chapter 4 header
1 file changed, 3 insertions 1 deletion(
-+ B19046_Test-Automation-Engineering-Handbook git:(ch4/git_commit_multiline) git push origin ch4/git_commit_multiline
Enumerating obje 5, done.
Counting obj 1 10 5/5), done.
Delta compression using up to 8 threads
sing jects: 100% (3/3), done.
Writing objects: 100% (3.
Total 3 (delta 1), reuse i , pack-reused @
remote: Resolving deltas: 100% (1/1), completed with 1 local object.

Create a pull request for 'ch4/git_commit_multiline' on GitHub by visiting:
https://github. /PacktPublishing/B19046_Test-Automation-Engineering-Handbook/pull/new/ch4/git_commit_multiline

To https://github.com/PacktPublishing/B19046_Test-Automation-Engineering-Handbook.git
* [new branch] ch4/git_commit_multiline ch4/git mit_multiline
B19046_Test-Automation-Engineering-Handbook git:(ch t_commit_multiline I

Figure 4.1 - git commit multiline comment

& PacktPublishing / B19046_Test-Automation-Engineering-Handbook Fubiic < Edit Pins ~ @ Unwatch 1 ~
Code () Issues 1) Pullrequests 1 () Actions [0 Wiki @ Security |« Insights (1 Setting:
readme file: add chapter 4 header #4
©) Conversation 0 < Commits 1 B Checks 0 D) Files changed 4 +3-1 mu
manisam commented 41 minutes ago Collaborator | (@) «+ P

readme file: add a note for git commit multiline comment

Figure 4.2 — GitHub multiline commit view

-+ B19046_Test-Automation-Engineering-Handbook gi ch4/git_amend) x git status
On branch ch4/git_amend
Untracked files:

(use "git add <file>...

to include in what will be committed)

nothing added to commit but untracked files present (use "git add" to track)
» B19046_Test-Automation-Engineering-Handbook git:(ch4/git_amend) x git add src/ch4/
-» B19046_Test-Automation-Engineering-Handbook git:(ch4/git_amend) x git commit -m "Add ch4 folder"
[ch4/git_amend 03f2f9e] Add ch4 folder
1 file changed, @ insertions(+), @ deletions(-)
create mode 100644 src/ch4/git_amend_1.txt
» B19046_Test-Automation-Engineering-Handbook git:(ch4/git_amend) git status
On branch ch4/git_amend
Untracked files:
(use "git add <file>..." to include in what will be committed)

nothing added to commit but untracked files present (use "git add" to track)
» B19046_Test-Automation-Engineering-Handbook git:(ch4/git_amend) x git add src/ch4/git_amend_2.txt
-+ B19046_Test-Automation-Engineering-Handbook git:(ch4/git_amend) x git commit --amend --no-edit
[ch4/git_amend 6d88963] Add ch4 folder

Date: Sat Aug 20 21:54:38 2022 -0700

2 files changed, @ insertions(+), 0 deletions(-)

create mode 100644 src/ch4/git_amend_1.txt

create mode 100644 src/ch4/git_amend_2.txt

- B19046_Test-Automation-Engineering-Handbook git:(ch4/git_amend) I

Figure 4.3 — git commit with the --amend flag

» B19046_Test-Automation-Engineering-Handbook git:(ch4/git_a) git status
On branch ch4/git_a
Changes not staged for commit:

(use "git add/rm <file>..." to update what will be committed)

(use "git restore <file>..." to discard changes in working directory)

no changes added to commit (use "git add" and/or "git commit -a")

+ B19046_Test-Automation-Engineering-Handbook git:(chd/git_a) x git commit -a -m "Modified git_amend_1.txt" -m "Deleted git_amend_2.txt"
[ch4/git_a 2f40807] Modified git_amend_1.txt

2 files changed, 1 insertion(+)

delete mode 100644 src/chd4/git_amend_2.txt

» B19046_Test-Automation-Engineering-Handbook git:(ch4/git_a) git status

On branch ch4/git_a

nothing to commit, working tree clean

> B19046_Test-Automation-Engineering-Handbook git:(ch4/git_a) |

Figure 4.4 — git commit with the -a flag

Hands-On Section

Resolving merge conflicts

Merge conflicts happen when changes have transpired in the same region of a file and Git cannot
automatically merge the changes in the file. It is possible that two different engineers are working
on the same file and tried to push their changes to the remote repository. In such cases, Git fails the
merge processes and forces manual resolution of the merge conflict. Without an IDE, this process
can get really messy easily and might end up consuming a lot of the programmer’s time. Resolving
merge conflicts without an IDE usually involves viewing/editing multiple files through a CLI editor
and identifying and fixing the parts of the file that are in conflict. This is a tedious process, but IDEs

provide an interface to deal with conflicts and it is usually completed with a few clicks after manual
file inspection.

Let us now look at how to resolve a merge conflict step by step. Figure 4.5 illustrates a
ch4d/merge_conflict_branch_1 branch where the git_amend_2.txt file was updated and this change
was pushed to the remote repository and merged with main through a pull request.

» B19046_Test-Automation-Engineering-Handbook git:(ch4/merge_conflict_branch_1) git status
On branch ch4/merge_conflict_branch_1
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git restore <file>..." to discard changes in working directory)

no changes added to commit (use "git add" and/or "git commit -a")

» B19046_Test-Automation-Engineering-Handbook git:(ch4/merge_conflict_branch_1) x git add src/ch4/git_amend_2.txt

» B19046_Test-Automation-Engineering-Handbook git:(ch4/merge_conflict_branch_1) x git commit -m "Update git_amend_2.txt"
[ch4/merge_conflict_branch_1 ed13825] Update git_amend_2.txt

1 file changed, 1 insertion(+)

» B19046_Test-Automation-Engineering-Handbook git:(ch4/merge_conflict_branch_1) git push origin ch4/merge_conflict_branch_1
Enumerating objects: 9, done.

Counting objects: 100% (9/9), done.

Delta compression using up to 8 threads

Compressing objects: 100% (4/4), done.

Writing objects: 100% (5/5), 445 bytes | 445.00 KiB/s, done.

Total 5 (delta 1), reused @ (delta 0), pack-reused @

remote: Resolving deltas: 100% (1/1), completed with 1 local object.

remote:

remote: Create a pull request for 'ch4/merge_conflict_branch_1' on GitHub by visiting:

remote: https://github.com/PacktPublishing/B19046_Test-Automation-Engineering-Handbook/pull/new/ch4/merge_conflict_branch_1
remote:

To https://github.com/PacktPublishing/B19046_Test-Automation-Engineering-Handbook.git

Figure 4.5 — The git_amend_2.txt file updated and merged

In another branch, let us try to merge the changes from Figure 4.4, where the git_amend_2.txt file
was deleted. It is evident that these two changes contradict each other. Figure 4.6 shows the
merged changes being fetched from the main branch:

@ priya@Priyas-MacBook-Air:~/Doct fwork /B19046_Test-Automation-Engineering-Handbook X

B19046_Test-Automation-Engineering-Handbook git:(ch4/git_a) git checkout main

Switched to branch 'main’

Your branch is behind 'origin/main' by 2 commits, and can be fast-forwarded.
(use "git pull" to update your local branch)
B19046_Test-Automation-Engineering-Handbook git:(main) git pull

Updating 2f2ed33..6e8dcf8

Fast-forward

src/ch4/git_amend_2.txt | 1

1 file changed, 1 insertion(+)

» B19046_Test-Automation-Engineering-Handbook git:(main) git checkout ch4/git_a
Switched to branch 'ch4/git_a’

Figure 4.6 — Fetched merged changes from main

Figure 4.7 shows the result when the conflicting branch is being rebased with the main. Rebasing is
the process of combining a chain of commits and applying it on top of a new base commit. Git
automatically creates the new commit and applies it on the current base. Frequent rebasing from
the main/master branch helps keep a sequential project history. At this point in the process, the
conflicts have to be resolved manually. The engineer has to look through the file and accept or reject
others’ changes based on the project’s needs.

+ B19046_Test-Automation-Engineering-Handbook git:(ch4/git_a) git rebase main

CONFLICT (modify/delete): src/chd/git_amend_2.txt deleted in 240807 (Modified git_amend_1.txt) and modified in HEAD. Version
HEAD of src/ch4/git_amend_2.txt left in tree

error: could not apply 2f40807... Modified git_amend_1.txt

hint: Resolve all conflicts manually, mark them as resolved with

hint: "git add/rm <conflicted_files>", then run "git rebase --continue"
hint: You can instead skip this commit: run "git rebase --skip"

hint: To abort and get back to the state before "git rebase", run "git rebase --abort".
Could not apply 2f40807... Modified git_amend_1.txt

+ B19046_Test-Automation-Engineering-Handbook git:(6e8dcf8) x I

Figure 4.7 — Merge conflict message

In this case, let’s resolve the merge conflict by accepting the incoming changes from the remote
rather than pushing the delete. This is simpler when done through an IDE, as shown in Figure 4.8.
On navigating to the source control pane in the IDE and by right clicking the file, the user is shown an
option to accept the incoming changes:

SOURCE CONTROL Bl)

Modified git_amend_1.txt

Deleted git_amend_2.txt

I% v Merge Changes
‘Open File

v Staged Cha
Accept All Current

= git_amend Accept All Incoming
Stage Changes

v Changes

Reveal in Explorer View

Figure 4.8 — Accept incoming changes

Figure 4.9 shows the result of staging the accepted changes, which results in the deleted file being
retained with the modified contents from the main branch:

README.md X

This repos

Example for git commit with multiline comments

File 'git_amend_2.txt' was
deleted by them and modified by
us.

What would you like to do?

Keep Our Version

Delete File

Cancel

Figure 4.9 — Stage the accepted changes

Now that the merge conflict is resolved, the rebase can be continued using git rebase --continue to
complete the commit and merge process subsequently. It is important to remember to pull from
remote or other branches (if necessary) before beginning any new work on the local code base. This
keeps the branch updated, thereby reducing merge conflicts. It is also vital to have continued
communication with the rest of the team when deciding which changes to accept/reject when
resolving merge conflicts.

Downloading and setting up VS Code

In this section, we will be going over the process of downloading VS Code, which can run on macQS,
Linux, and Windows. All the code examples cited in the rest of this book will use VS Code. You are
free to use an IDE of your choice. Let us now go through the steps for manually installing VS Code on
macOS. At the end of this section, you are provided with a shell script to perform this installation via
the CLI:

1. Review this link for the necessary system requirements to download and set up VS Code:
2. Click on the download link on the installation page to download the executable file:

o macOSs and Mac: filfpSilcodeistalstiidio.com/docs/setlipimac

5 Linux: hitpsficode.visualstudio.com/docs/setupinux

5 Windows: hitps://code.visualstudio.com/docs/sefupwindows

3. Extract the downloaded archive file and move the Visual Studio Code application file to the
Applications folder.

4. Double-click the VS Code icon in the Applications folder to open the VS Code IDE.

5. Use the Settings option in the Preferences menu for additional configuration. VS Code has

inherent support for Git provided Git is installed on the machine.

VS Code comes as a lightweight installation and in most cases, engineers would need

additional components installed through the Extensions option in the Preferences menu.

6. Click the Extensions option and search for Prettier, which is a particularly useful tool for
code formatting.

7. Select the Prettier - Code formatter extension and click on the Install button, as shown in
Figure 4.10. This should complete the installation of the extension from the Marketplace.

& Code Fie Edit Selecton View Go Run Terminal Window Help
h oo [v——

B = Extension: Prettier - Code formatter X

Prettier - Code formatter w.s.o
Prettier - Code formatter ©236M % 35 2 ,
Code formatter using prettier Prettier D 23,699,894 | ok ok % (351)

Prettier Install Code formatter using prettier

Prettier ESLint g
A Visual Studio Extension to format Jav

Prettier Now
VS Code plugin for Prettier Miscellaneous | ..
Remi Marsal Install

Details Feature Con 3 Dependencies

Prettier - Code formatter D 310K * 2.5
Code formatter using prettier

Simon Siefke Install

Prettier-Standard - JavaScrip... © 167K * &
VS Code plugin for prettier + standard

numso Install

Prettier - JavaScript formatter < 95K % 5
VS Code plugin for jlongster/prettier with ta...

Bastian Kistner Install

Prettier Java 66K * 25
Format Java with Prettier

dotdevru Install

Prettier - JavaScript formatter 62K % &
Fork of prettier-vscode: VS Code plugin for ...

Prettier Formatter for Visual Studio Code R

Formatters

is an opinionated code formatter. It enforces a consistent style by parsing RoEOToes
your code and re-printing it with its own rules that take the maximum line length

into account, wrapping code when necessary.

JavaScript - TypeScript - Flow - JSX - JSON
CSS - SCSS - Less
HTML - Vue - Angular HANDLEBARS - Ember - Glimmer
GraphQL - Markdown - YAML

Marketplace Info

) Main [BaSSING] downloads [HB7M instaiis B4M) code styl

Mathieu SCHROETER Install follow prettier [BHEY

Java prettier formatter 60K * &

Figure 4.10 — Installing Prettier - Code formatter

There are hundreds of helpful extensions available for installation from the Marketplace. These
extensions have a wide community of users supporting them, thereby creating a strong ecosystem.
Users are strongly encouraged to browse through the available extensions and install them as
necessary.

If you prefer using the CLI for installation, the following shell script can be used for installing VS Code
on macOS. This example uses Homebrew (https:/brew.shi/) for CLI installation:

#!/bin/sh

/bin/bash -c¢ "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

brew tap homebrew/cask
brew install --cask visual-studio-code

This concludes our section on setting up the IDE. Let us now move on to learning the basics of
JavaScript.

Running a JavaScript program

In this section, let us explore how to run a basic JavaScript program from within our IDE. We will
start by installing the Node.js runtime environment.

Installing Node.js

One of the easiest ways to execute a JavaScript program is to run it using Node.js. Node.js is a
JavaScript runtime environment created to execute JavaScript code outside of a browser. Use
hitps://nodejs.org/en/ to download Node.js and navigate through the wizard to complete the
installation of the latest stable version of Node.js. Check the installation using the node --version
command. Alternatively, you can use Homebrew on macOS or winget on Windows to download it
via the CLI. At the time of writing this book, the latest stable node version is 18.12.1.:

= c¢li demo node --version

v1g8.12.1
- cli demo

Now that we have Node.js installed, let us execute our first JavaScript program.

Executing the JavaScript program

We will be using the VS Code IDE to execute the programs for the rest of this book. Let us go through
step by step to execute a simple Hello World program written in JavaScript:

1. The console.log command outputs the message in the parenthesis to the console. Create a

new hello_world.js file and save it with the contents, console.log('hello world');.

2. Open a new Terminal window by selecting the New terminal option from the Terminal
menu. In the Terminal window, navigate to the folder in which the hello_world.js file exists
and run the node hello_world.js command. This prints out the text hello world in the

console:

=> B19046 Test-Automation-Engineering-Handbook git: (main) X
cd src/ch4

=> ch4 git: (main) X node hello world.js

hello world

- ch4 git: (main) X
We have set up our IDE and are able to execute a simple JavaScript program using Node.js. It is now
time to get started with the basics.
Getting to know the JavaScript objects

In JavaScript, an object is a collection of properties. Objects are first initialized using a variable name
and assigned to a set of properties. Objects further provide methods to update these properties.
Properties can be of any data type, sometimes even other objects. This enables building complex
objects in JavaScript. Let us start learning about objects with arrays in the next section.

Using JavaScript arrays

Arrays are one of the most frequent data structures and are built-in objects in JavaScript. Arrays are
nothing but variables that can hold multiple values. The first element of an array is indexed by 0 and
the subsequent indices are incremented by 1. The size of the arrays can be changed by adding or
deleting elements, and they can contain a mix of data types. Arrays can be initialized by enclosing
the elements in square brackets, []. Subsequently, the elements can be accessed by plugging the
index within []. Let’s look at some commonly used array methods:

push(element): Adds an element at the end of the array.
e unshift(element): Adds an element at the beginning of the array.
e pop(): Removes the last element of the array.

¢ indexOf(element): Returns the index of the element in the array. Returns -1 if the element

is not found in the array.
e length(): Returns the number of elements in the array.

Figure 4.16 shows these array operations in action:

JS arrays.js U X

src > ch4 > JS arrays.js > ...

ci 5 = ['San Francisco', 'Los Angeles', 'San Diego', 'Irvine'l;
console. log(cities);
console. log(cities[1]);
cities.push('Oakland');
console. log(cities);
cit unshift('Sunnyvale');
console. log(cities
cit push(1);
console. log(c
cities.pop();
console. log(ci
console. log(ci .index0f('San Diego'));
console. log(cit .index0f(1));
console. log(c >s. length);

Figure 4.16 — Array operations

Figure 4.17 shows the corresponding outputs. We begin by creating the array and printing it to the
console. Then, we add elements to the end and beginning of the array. Subsequently, we work with
the indices of the array, and finally, get the length of the array:

TERMINAL

> ch4 X node arrays.js
[,
Los Angeles

[’
[

Figure 4.17 — Array operation outputs

Unlike a lot of other programming languages, arrays in JavaScript do not throw an Array Out of
Bounds error when trying to access an index greater than or equal to the length of the array.
JavaScript simply returns undefined when trying to access the non-existent index array. Arrays come
with a wide variety of built-in methods, and | would strongly encourage you to browse through them
at https://developer.mozilla.org/en-

US/docs/\Web/JavaScript/Reference/Global Objects/Array. Next, let us look at work with object
literals.

Working with object literals

Object literals allow properties to be defined as key-value pairs. Values of the properties can be
other objects as well. Dot (.) or square bracket ([]) notations can be used to retrieve the value of a
property. The code snippet demonstrated in Figure 4.18 shows an object and array nested within
the movie object. In such cases, the object name can be chained subsequently with the call to a
nested data structure. Adding an extra property to the object is very simple and looks like a variable
assignment. To further our example, it would be movie['producer']='Danny DeVito:

Js objects_declare.js > [€] movie

e = {| name: 'Pulp Fiction',
director: 'Quentin Tanrantino',
year_of_release: 1994,
cast: {
'Vincent Vega': 'John Travolta',
Samuel Jackson',
: 'Uma Thurman'

awards: ['Academy Awards 1995', 'Golden Globes 1995', 'Cannes 1994',
H

console. movie) ;

console. .name, movie.year_of_release);

console. e.awards [0]);

console. e.cast.Jules)

TERMINAL

x node objects_declare.js

name: b
director:
year_of_release: 1994,
cast: {

Jules:

Mia:

Butch:
},
awards: [

]
}
Pulp Fiction 1994
Academy Awards 1995
Samuel Jackson

Figure 4.18 — Objects

const prevents reassigning the variable but does not prevent modifying values within an object:

const a = { message: "hello" };
a.message = "world"; // this will work

Having learned the basics of JavaScript objects, let us now look at how to destructure one.

Destructuring an object

Object destructuring is used in JavaScript to extract property values and assign them to other
variables. It has various advantages such as assigning multiple variables in a single statement,
accessing properties from nested objects, and assigning a default value when a property doesn’t
exist. We use the same example as in the previous section but as shown in Figure 4.19, we
destructure the movie object by specifying the name and awards variables within {}. On the right-
hand side of the expression, we specify the movie object. We could also assign them to a variable

within the curly brackets to fetch data from nested objects. Object destructuring was introduced in

ECMAScript 6 and prior to this, extracting and assigning properties in such a way required a lot of
boilerplate code.

ch4 > Js objects_destructure.js > [@] awards

ovie = { name: 'Pulp Fiction',
director: 'Quentin Tanrantino',
year_of_release: 1994,
cast: {
'Vincent Vega': 'John Travolta',
s': 'Samuel Jackson',
'Mia': 'Uma Thurman'

1
I

awards: ['Academy Awards 1995', 'Golden Globes 1995', 'Canr
12 {name, a\
console. log (rame,
{cast: {
console. log(Jules

TERMINAL

x node objects_destructure.js

Pulp Fiction [

’

’

]

Samuel Jackson

Figure 4.19 — Object destructuring

Let us next work with an array of objects.

Arrays of objects

Working with arrays of objects is crucial for quality engineers as a lot of times, the API response
payloads in JSON format have multiple objects embedded within an array and their format is
identical to JavaScript object literals. Let us consider an example where multiple movie objects are
embedded within the movies array. We could use the JSON.stringify method to create a JSON string.
The code snippet in Figure 4.20 demonstrates how to access nested elements in an array of objects
and how to create a JSON string from a JavaScript object:

JS arrays_of_objects.js X

4 > Js arrays_of_objects.js > ...
director: 'Quentin larantino

1025
name: 'Inception’,
director: 'Christopher Nolan

1d=37
name: 'The Shawshank Redemption’,
director: 'Frank Darabont'

console. log(movies[1].name, [1].director)
console. log(JSON.stringify(movies));

TERMINAL Blzsh-cha ++v [@ @ ~ X

X node arrays_of_objects.js

Inception Christopher Nolan
[{"id":1,"name":"Pulp Fiction","director":"Quentin Tarantino"},{"id":2,"name":"Inception","director":"Chris
topher Nolan"},{"id":3,"name":"The Shawshani Redemption","director":"Frank Darabont"}]

» ch4 X

Figure 4.20 — Arrays of objects

In the next section, let us learn how to operate with loops and conditional statements.

Loops and conditionals

Loops and conditional statements form a basic pillar of any programming language. They help
reduce runtime and make the program look cleaner. Let us look at each one of them and understand
how they operate in the next sections, starting with loops.

Working with loops

One of the most frequently used loops is the for loop. A for loop contains three parameters: iterator
assignment, condition, and increment. The code enclosed within the loop executes until the
specified condition is met. In the simple example illustrated in Figure 4.21, we start with 0 and print
the value of i until it meets the i<10 condition:

src
ik

TERMINAL

For

For
For
For
For
For
For
For
For

For

Note

ch4d >

JS |loops_for.js > [@]i

for (i=0; i<10; i++){

loop
loop
loop
loop
loop
loop
loop
loop
loop
loop

console.log(For loop iteration:

*x

node loops_for.js
iteration:
iteration:
iteration:
iteration:
iteration:
iteration:
iteration:
iteration:
iteration:
iteration:

EOONOUVAWNRES®

k3

Figure 4.21 — A simple for loop

One of the common pitfalls while looping through an array is to accidentally exceed the last index of
the array. The condition to check the array should be i<array.length or

i<=array.length-1.

The while loop operates similarly to the for loop, but we set the variable outside of the loop. Itis a
common mistake to miss the increment or incorrectly specify the condition. Doing so would result in
an infinite loop. Figure 4.22 shows the same logic in the while loop:

src > ch4d >

JS loops_while.js

i=0;

while (i<10){

TERMINAL

While

While
While
While
While
While
While
While
While

While

loop
loop
loop
loop
loop
loop
loop
loop
loop
loop

console. log(While loop iteration:
i++;

x node loops_while.js
iteration:
iteration:
iteration:
iteration:
iteration:
iteration:
iteration:
iteration:
iteration:
iteration:

x 0

LoNOOUMBAWNRES®

Figure 4.22 — A simple while loop

Now, let us loop through the array of objects we created in Figure 4.20. For this purpose, we will
use the for..of loop, which is much more readable than the regular for loop. In Figure 4.23, we have
the code snippet that iterates over each of the objects in the movies array and prints the name and
director. We create a temporary variable to hold the current entry of the array in the loop and use
that variable to print the properties:

» JS for_of.js >

ad:1,;
name: 'Pulp Fiction',
director: 'Quentin Tarantino'

1d:2;
name: ‘Inception’,
director: 'Christopher Nolan'

id:3,
name: ‘The Shawshank Redemption’,
director: 'Frank Darabont'

17 IF
for(movie
console.log(Director of movie.name} is movie.director});

TERMINAL

. h4 x node for_of.js

Director of Pulp Fiction is Quentin Tarantino

Director of Inception is Christopher Nolan

Director of The Shawihank Redemption is Frank Darabont
! X

Figure 4.23 - A for..of loop

We looked at some very useful examples of loops in this section. Let us move on next to conditional
statements.

Using the conditional statements

Conditional statements are used to separate the logic into different code blocks based on one or
more conditions. The most common conditional statement is the if...else statement. This is better
understood by referring to the code snippet in Figure 4.24. Here, we use conditional statements to
assign a grade based on the student’s score. We start with the if statement and check for the highest
grade and then use a series of else if statements followed by the else statement to check for any
score less than 60. The else if statements are useful to extend the logic to include additional
conditions. It is important to remember that in the absence of an else statement, JavaScript ignores
the conditional code block when the if condition is not true:

src > ch4 > Js conditionals.js > ...

80){
‘B*;

re>70){
= Lt

score>60){
grade = 'D';
grade = 'F';

console. log('Student's score is ${grade}’);

TERMINAL

»> x node conditionals.js
student's score is C

Figure 4.24 — Conditional statements

Table 4.1 summarizes the most common conditional operators in JavaScript:

Operator | Description

== Equal to

=== Equal value and equal type

I= Not equal to

=== Not equal value and not equal type

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

Table 4.1 - Conditional operators

In the next section, let us learn about JavaScript functions and how to use them to make the code
more reusable.

Figures

JS comments.j X

src > ch4 > JS comments.js

Figure 4.11 — Adding comments in a JavaScript file

ch4 > Js var_data.js

temperature=75;
city = 'San Francisco';
console.log(city);
console. log(temperature);
temperature=80;
console. log(temperature);

ty = 'San DLego‘ﬂ

TERMINAL

75

80
/Users/priya/Documents/workspace/B19046_Test-Automation-Engineering-Handbook/src/ch4/var_data.js:
9

city = 'San Diego'

TypeError: Assignment to constant variable.
at Object.<anonymous> J ri
var_data.js:9:6)

Figure 4.12 — Variable types, let and const

> JS primitives.js >
'San Francisco';
= 815000;
= 50.72;

y:
console.
console.
console.
console.
console.
console.

TERMINAL

4 X node primitives.js
string

number

number

boolean

object

undefined

X

JS strings.j
it 'San Francisco';
n = 815000;

sfo “${city} has a population of ${
console.log(sfo);

TERMINAL

-+ ci x node strings.js
San Francisco has a population of 815000
X

Figure 4.14 - String concatenation

functions_area.js — B19046_Test-Automatio!

Js functions_area.js > & compute_area
compute_area() {
2of . length==1){
area 0]x
l\,
else if (. length==2) {
area 0]x
else {
area = 'Invalid number of arguments’;
)
return area;
}
console. log(compute_area(10));
console. log(compute_area(10,20));

console. log(compute_area());
TERMINAL

x node functions_area.js

100
200
Invalid number of ariuments
; / X

Figure 4.25 — Functions

Links

The MDN docs for JavaScript, located at https://developer.mozilla.org/en-
US/docs/\Web/JavaSeript, can be used as a standard reference to get additional details on any
concepts.

You might have noticed from Figure 4.13 that null has a typeof object. This is considered a bug in
JavaScript. The explanation for this can be found in this link: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/typeof#typeof null.

Chapter 5

Technical requirements

In this chapter, we will continue using Node.js (version 16.14.2), which we installed in Chapter 4,
Getting Started with the Basics. We will also be using node package manager (npm) to install
Cypress version 11.2.0. All the code examples illustrated in this chapter can be found under the ch5
folder at https://github.com/PacktPublishing/B19046 Test-Automation-Engineering-
Handbook/tree/main/src/ch5.

Hands-on Sections

Installing and setting up Cypress
Let us now run through a detailed step-by-step installation and setup process for Cypress:

1. In Chapter 4, we installed Node.js, which is a runtime environment for JavaScript. Node.js
installation comes with a default and extremely useful package manager called npm. Figure
5.1 shows how to check the version of npm installed on your machine:

» ¢ch5 npm -v
8.15.0

> chs |}

Figure 5.1 — Checking the installed npm version

2. Let us next create an empty project to install Cypress and further explore its features. Run
npm init =y in an empty folder (preferably named app) in your local directory to create a
package.json file. Figure 5.2 shows the corresponding output with the contents of the file:

ation-Engineeri cd src/ch5/app
+ app npm init -y
Wrote to /Users/priya/Documents/workspace/B19846_Test-Automation-Engineering-Handbook/src/ch5/app/package.json:

{
“name": "app",
"version"

": "echo \"Error: no test specified\" & exit 1"

’
"keywords": [1,
“author: ",

"license": "ISC"

}

«1

Figure 5.2 — npm init

Note

B19046_04.xhtml#_idTextAnchor099
https://github.com/PacktPublishing/B19046_Test-Automation-Engineering-Handbook/tree/main/src/ch5
https://github.com/PacktPublishing/B19046_Test-Automation-Engineering-Handbook/tree/main/src/ch5
B19046_04.xhtml#_idTextAnchor099

npm init <initializer> is used to set up new or existing packages. If <initializer> is omitted, it will
create a package.json file with fields based on the existing dependencies in the project. The -y flag is

used to skip the questionnaire.

package.json is the primary configuration file for npm and can be found in the root directory of the
project. It helps to run your application and handle all the dependencies.

3. Execute npm install cypress in the root of our src/ch5/app project. This creates a

node_modules folder, which contains a chain of dependencies required by the package

being installed (Cypress). Figure 5.3 shows the output of this step, with package.json

showing Cypress installed. It is generally considered good practice to save the testing

libraries in the devDependencies section of the package.json file using the npm install

cypress --save-dev command:

EXPLORER

v B19046_TEST-AU.. [} B O @

v SIC
> ch3
> ch4
v chs
v app
> cypress
I
.gitignore
JS cypress.config.js
index.html
JS index.js
{} package-lock.json
{} package.json
> Ccypress

i,

rc > chs

{

}

package.json — B19046_Test-Automation-Engineering-Handbook

{} package.json M X

> app > {} package.json > ..

"name": "app",

"version": "1.0.0",

"description" i

"main": "index.js",

> D

"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"

3

"keywords":

tauthoRt st

"license": "ISC",

"devDependencies": {
"cypress": "~11.2.0"

}

Figure 5.3 — npm install cypress

4. Create an index.html file in the root, as shown in Figure 5.4, to serve as the primary loading

page for our application. Also, create an empty index.js file:

EXPLORER

v B19046_TEST-AUTOMATION-ENG...

> test
fi LICENSE
README.md

ch5

X

index.html > @ html > @ body > & h1

html
lang="en"

app

charset="utf-8"
Cypress

Learning Cypress through Packt

Figure 5.4 — Creating an index.html file

Execute npx cypress open to open Cypress. This command opens the executable file from
the node_modules/bin directory. Figure 5.5 illustrates the output where the in-built

browser is opened:

Cypress
& v11.2.0 & Docs @ Login

VVEILUIIIC LU UYNICOS!

Review the differences between each testing type =
Component Testing

e Configured Not Configured

node - app

X npx cypress open
It looks like this is your first time using Cypress:

Opening Cypress...
[

Figure 5.5 — npx cypress open command

Now, click on the E2E Testing option, which adds some configuration files to the repository,
and hit Continue in the next modal, as shown in Figure 5.6:

Configuration Files

We added the following files to your project:

cypress.config.js

v
The Cypress config file for E2E testing.
= cypress/support/e2e.js
The support file that is bundled and loaded before each E2E spec
) cypress/support/commands.js
A support file that is useful for creating custom Cypress commands and overwriting existing ones
z cypress/fixtures/example.json

Added an example fixtures file/folder

Figure 5.6 — Cypress config modal

7. Inthe next modal, select the preferred browser for E2E testing. | have selected Chrome in

this case, as shown in Figure 5.7, and it opens the browser in a new window:

| XN Cypress

@ chs E2E Testing @ v10.80 @ Docs ® Log In

Choose a Browser

Choose your preferred browser for E2E testing.

¢ C 2 2

Chrome Edge Electron Firefox

[Z Focus O Close

& Switch testing type

Figure 5.7 — Choosing a preferred browser

This completes the installation of Cypress and gets it ready to a point where we can start writing our
own tests. In the next section, let us start working on our first test and review some additional
configurations.

Creating your first test in Cypress

A test in Cypress is commonly referred to as a spec, which stands for specification. We will be
referring to them as specs for the remainder of this chapter. Let us begin by understanding how to
write arrow functions and callback functions in JavaScript.

Creating arrow functions in JavaScript

Arrow functions are extremely handy, and they clean things up quite a bit. They were introduced in
the ECMAScript 6 (ES6) version. The code snippet in Figure 5.8 shows a simple function to add two
numbers. It takes two parameters and returns the sum. Let us turn this into an arrow function:

> js > Js arrow.js > @ addNumbers
addNumbers (numberl=1, number2=1) {
return numberl + number2;

console. log(addNumbers(10,15))

TERMINAL

X node arrow.js

x1

Figure 5.8 — Function to add two numbers

Instead of using the function keyword, we name it like a variable and use an equals sign to assign
it to the body of the function. After the parameters, we use a symbol called fat arrow (=>).In
the case of one-liner functions, we can further simplify them by removing the curly braces
surrounding the function body. We could also remove the return keyword, and it still returns the
computed value. If we have only one parameter, we could lose the parentheses around the
parameters as well. It would look like this: const addNumbers = numberl => numberl +
5. An example is shown in Figure 5.9. This works very neatly in the case of array iterations. Let’s say
we have an array of movies, and we would like to iterate over them and print the names of all the
movies. This can be neatly done in a single line by using movies. forEach (movie) =>
console.log (movie, name) arrow functions:

> JS arrow.js > ...
addNumbers = (numberl=1, number2=1) numberl + number2;

console. log(addNumbers(10,15));

TERMINAL

X node arrow.js

x1

25

Figure 5.9 — Arrow function with two parameters

Let us next learn about callback functions in JavaScript.

Creating callback functions in JavaScript

In JavaScript, since functions are set up as objects. we can pass and call other functions within a
function. A function that is passed as a parameter to another function is called a callback function.

Let us use the setTimeout() function to understand callback functions. The setTimeout() function
calls a method after a specified wait in milliseconds. For example, setTimeout(() =>
console.log('hello!'), 5000) would print the message after a wait of 5 seconds. Let us now create an
arrow function to accept and print a message to the console, as shown in Figure 5.10. Let us call
this function printMessage(), with a delay of 5 seconds by passing it as a parameter to the
setTimeout() function, making it a callback function:

X

src > ch5 > js > Js callback.js > ...
printMessage = message console. log(message) ;
printMessage('hello!"');
setTimeout(printMessage, 5000, 'hello delayed...');

TERMINAL

I x node callback.js
hello!

hello delayed...
x : 'Y |

Figure 5.10 — Callback functions

We could also pass in the whole body of the arrow function instead of the name, as shown in Figure
5.11. These are called anonymous functions since they do not have a name and are declared at
runtime:

Js callback.js X

src > chb > js > Js callback.js > ...
console.log('hello!"');
2 setTimeout(message console. log(message), 5000, 'hello delayed...');

TERMINAL

X node callback.js

hello!
hello delayed...

x
Figure 5.11 — Anonymous callback functions

A key advantage of using callback functions is that it enables the timing of function calls and assists
in writing and testing asynchronous JavaScript code. There are many instances in the modern web
application where there is a need to make external API calls and resume the current task rather than
wait for the external call to complete. Callback functions come in handy here to unblock the
execution of the main block of code. It is important to use callbacks only when there is a need to
bind your function call to something potentially blocking, to facilitate asynchronous code execution.

With this additional knowledge about functions in JavaScript, let us now commence writing our first
spec.

Writing our first spec

It is a good practice to organize all tests under a single folder in your repository. If there are more
tests, then they can be categorized under a parent test folder. Create a folder named e2e under
src/ch5/app/cypress. Now, create a test file, as shown in Figure 5.12:

EXPLORER JS search_title.cy.js X

v B19046_TEST-AUTOMATION-ENG... src > ch5 > app > cypress > e2e > JS search_title.cy.js
1

Figure 5.12 — Creating a test file

Our first test searches for the string quality in the search box on the home page of
hitps://mwww.packipub.com/. Then, it verifies the search result page by looking for the Filter Results
string. Copy and paste the code from the https:/github.com/PacktPublishing/B19046 Test-
Automation-Engineering-Handbook/blob/main/src/ch5/app/cypress/e2e/search title.cy.js
GitHub link into the test file.

Let us now examine the structure of a Cypress spec.

Becoming familiar with the spec structure

Every test framework requires its tests to be written in a specific language and format. Cypress is no
different, and as we already know, it uses JavaScript. Cypress comes packed with its own set of
functions under the global cy object. It also utilizes the describe-it-expect format using bundled
libraries from Mocha and Chai frameworks. Additionally, an assertions framework using expect with
command chaining is also supported to complete granular validations. The describe block captures
the high-level purpose of the spec, and the it block adds specific implementation details of the test.
Note that both the describe and it blocks accept callback functions as their second parameter, and
they are defined as arrow functions. This is a common syntax, and you will see this more often in
modern JavaScript code. Please be wary of braces, semicolons, and parentheses. It is recommended
to use an extension such as Prettier to assist with the formatting as it could get messy pretty quickly.

We have started with a comment that describes what is being achieved in this spec. Cypress
internally uses the TypeScript compiler, and the reference tag is used to equip autocompletion with
only Cypress definitions. The beforeEach block, as the name suggests, runs before every it block. It
usually contains the prerequisite steps to execute the individual it blocks. Here, we use the visit
command to access the Packt Publishing website within the beforeEach block. Then, the it block
drills down to which action is performed in the spec. If we end up adding more it blocks to this spec,
the visit command would be executed before the beginning of each it block. This is a simple spec but
it captures the necessary structure of a spec written in Cypress.

Next, let us examine how to execute our first spec.

Executing our first spec

Cypress comes packed with a powerful visual runner tool to assist in test execution. This can be used
when users have a need to inspect tests visually during runtime. Another option is to execute tests
via the CLI for quicker results and minimal test execution logs. In this section, we will survey both
ways to execute tests in Cypress.

Using the command line

Using the command line to execute tests is always a quick and easy option. It usually helps when you
are not interested in looking at the frontend aspects of the test execution. The npx cypress run -s
cypress/e2e/search_title.cy.js command can be used to execute an individual spec in Cypress. The —
s flag stands for spec, followed by the name of the file. Without the —s flag, the npx cypress run
command would execute all the specs found in the current project. Figures 5.13 and 5.14 illustrate
the output of the command-line execution of our first spec. Figure 5.13 shows the output of the
CLI, with a listing of actions performed on the Ul:

+ app git:(main) x npx cypress run -s cypress/e2e/search_title.cy.js

(Run_Starting)

11.2.0

Electron 106

vig8.12.1

1 found (search_title.cy.js)

cypress/e2e/search_title.cy.js

Running:

Vist packt home page,
(11003ms)

Figure 5.13 — CLI test execution

Figure 5.14 shows a summary of the tests executed, with a breakdown of the results:

(Run Finished)

search_title.cy.js

Figure 5.14 — CLI test execution (continued)

Next, let us next explore the visual test runner for executing our spec.

Using the visual test runner

Cypress comes with an extremely insightful and detailed test runner and provides quite a bit of

debugging data for tests being executed. To utilize this mode, we can start with the npx cypress
open command, which opens up a series of modals. The first modal requires the selection of the
type of test, as previously shown in Figure 5.5. The second modal, as seen earlier in Figure 5.7,
provides an option to select a browser against which the test can be run. The third modal lists all
specs in the project and shows some additional metadata about the specs and their recent runs:

Specs @ v11.2.0 Electron 106 @ Docs @ Login

@ Optimize and record your Cl test runs with Cypress Cloud X

When you configure Cypress to record tests to Cypress Cloud, you'll see data from your latest
recorded runs in the Cypress app. This increased visibility into your test history allows you to debug
your tests faster and more effectively, all within your local workflow.

@ Get started with Cypress Cloud

E2E specs Last updated ? Latest runs ? Average duration ?

cypress [e2e

search_title 8 mins ago

Figure 5.15 — Test selection modal

Test execution begins when the user clicks on the test, as shown in Figure 5.15. This opens a new
browser that shows the actual steps being executed. The left pane shows the various frontend and
backend calls being made while executing this test. Figure 5.16 shows a view of the test execution.
Cypress offers a live-reloading feature out of the box using the cypress-watch-and-reload package.
Whenever there is a change in the code, the test is rerun automatically and the view, as shown in
Figure 5.16, reloads live:

& che View History Bookmarks Profies Tab Window Help

. packipub.com|_j#/specs/runnerfile=cypressje2e/search_title.cy.js

)
»
=]
»

Kipat query=quaitys. 212734 10087498 X

Packty some ey

Filter Results (64)

o 14

Publisher Aug 2012 318 pages Aug2022 1hours 1l minutes

Figure 5.16 — Visual test runner

This view also allows users to view the stack trace of errors and provides options to navigate
between test runs and settings. The browser on the right pane can be used like any other browser
window to inspect and debug using the developer tools. Users are strongly encouraged to further
explore the features that this test runner has to offer.

In the next section, let us gain a deeper understanding of using selectors in Cypress.

Employing selectors and assertions

Selectors are identifiers for elements in the Document Object Model (DOM). We have various ways
to identify elements, such as using their class, name, type, and so on. Every test framework has its
own custom commands to make the code clear and concise. Cypress provides users with an efficient
interface to look for selectors and comes with standard support for all selectors. Let us continue
using our first spec to dig deeper into utilizing selectors.

Working with selectors

cy.get is the primary function to search for elements in the DOM. In our search_title.cy.js test file,
we have used .input-text, which identifies the element with the input-text class name and sets a
value in it. We have also used [aria-label="Search"] to look for the Search button. This is an example
of an attribute search. We are essentially finding an element with the value of the aria-label Search
attribute and clicking on it. id and data are other reliable attributes for identifying elements in the
DOM. It is important to remember to use square brackets when employing attributes in selectors.
This raises the question of what kind of selector to use in each case. The answer would be to employ
the simplest one that uniquely identifies the required element on the DOM.

Cypress assists users here by providing a selector playground feature that automatically populates
the selector. Let us rerun our first spec using a visual test runner and reach the execution page, as
shown in Figure 5.16. Now, refer to Figure 5.17 and click the circular toggle icon This opens the
selector playground where the user can type the selector or use the arrow icon for Cypress to
automatically populate it. Now, the user can use the browser to click on the required Ul element and
get the unique selector right away. The user can also play around with other options and validate
their correctness by plugging them into the textbox:

https://bam.nr-data.net/even... @ Chrome 104 1000x660 (61%)

Y v cy.get(‘.logo") 1 Match (M}

Figure 5.17 — Selecting a playground

To write efficient automation scripts, it is vital to know which selectors are reliable and perform
better in a given situation. Imagine a test automation project with 5,000 test cases and all of them
find a link using the worst-performing selector, which has a lag of 50 milliseconds relative to the
best-performing selector. That would make the test suite slower by 250,000 milliseconds for every
run. This would impact feedback times immensely when considering hundreds of Cl pipeline runs
over a few days.

XPath selectors identify the target element by navigating through the structure of the HTML
document, while CSS selectors use a string to identify them. Direct CSS selectors using an element’s
ID or class usually perform better than XPath selectors. Using an ID selector is often the most reliable
way of selecting an HTML element. It helps to analyze the elements to understand whether they are
dynamic and which selectors would be supported across different browsers, and based on that,
decide on a selector strategy. It usually takes a bit of troubleshooting to arrive at an efficient pattern
of selectors working for a specific application and a team.

Let us now learn about the available assertion options.

Asserting on selectors

Assertions give us a way to perform validations on various Ul elements. They are usually chained to
the command with selectors and work together to identify an element and verify it. should is the
primary function utilized on assertions, and it works with a myriad of arguments.

Let us update our first spec to add some assertions. We have earlier used the contains function in
our spec to assert a partial string in the search results page. Figure 5.18 shows the assertions in
action. Next, we add an assertion on the Reset button to validate that it is disabled. In the following
line, we get the navigation bar element by the id attribute and chain it with an assertion that
validates the class name:

https://subscription.packtpu

™ cy.get(‘#packt-navbar’ 1 Matc

Packty swmeusary

LF {3 JavaScript Prettier & 0 } |
expected <button.reset- Expert Reading List

button> to be disabled L

get #packt-navbar

expected <nav#packt- Released
navbar.navbar-logout. full-width-
container.navbar.navbar-expand- Category
1g.navbar-light.sticky-top> to
have class navbar-logout Publisher Aug 2012 318 pages Aug 2022 Thot

Figure 5.18 — Assertions for the navbar and Reset button

Let us add another assertion before entering the search string to validate it is empty using the
have.value parameter. Figure 5.19 demonstrates this assertion:

search_title.cy.js — B19046_Test-Automation-Engineering-Handb. | E=Hn Bt
X [T

ch5 > app > cypress > e2e > Js search_title.cy.js > &) describe("Vist packt home f
.com/search?query

types="cypress"
describe("Vist packt home page, ", ()
beforeEach(() {
cy.visit("https://www.packtpub.com");

};

it ("search for title and and click submit", ()
"quality";

result_s = "Filter Results

unoun

cy.get(".input ").and("have.value","");
y.get(".input-text").type(" string
y.get('[aria-label="Search"]

).
/'y
'

y.click():
y.get(".filter-results").contains(result_string);

P maint O ®O0AO0 Spaces: 4 UTF-8 LF {& JavaScript « Prettier &7
get

expected Publisher

<input#search.input-text> to

v

have value Concept

Figure 5.19 — Asserting empty value in a textbox

Cypress comes with very good documentation (hitps://docs.cypress.io/api/table-of-contents) and
users are encouraged to use it as a reference to be aware of the various available options. So far,
we’ve worked on identifying and asserting Ul elements. In the next section, let us work with API calls
in Cypress.

Intercepting API calls

Cypress lets users work with underlying API requests and stub responses where necessary. Let us
analyze the API calls when loading the Packt Publishing home page and try to stub one of the
responses. cy.intercept() is the command used to work with API calls, and it offers a wide variety of
parameters. For this example, we will be using the routeMatcher and staticResponse arguments.
We add a second it block to intercept the underlying API call and specify the type of HTTP call, URL,
and a predefined response as parameters, as shown in Figure 5.20:

é;.intercept(

"GET",

"https://subscription.packtpub.com/api/subscription/getrecentitems?offset=0&1limit=4",
staticResponse
);

Figure 5.20 - cy.intercept call

The value of the static response parameter can be obtained using the Network tab of the developer
tools to get the actual response for the API call. This is illustrated in Figure 5.21. By passing this in
as the staticResponse parameter, the GET call on this URL will always return the stubbed response
instead of the original:

Network ~ Performance M y Application Security ighthouse i Performance insights &

che Nothrotting ¥ T 4

Invert Hide data URLs All Fetch/XHR JS CSS Img Media Font Doc WS Wasm Manifest Other Has blocked cookies Blocl

15000 ms 20000 ms: 25000 ms 30000 ms 35000 ms 40000 ms 45000 ms 50000 ms 55000 ms

Name e { Response
?cacheEmbargoTime=true 1y o stay ahead with a t u2013 access over 7,500 online books and videos
collect?v=18 v=j96&a=1075715.
collect?t=dc&aip=18&_r=3&v=1&..
rum
getcontentfulembargotime
visit-data?sv=7
6
logger

[0 getrecentitems?offset=08&limit=4
contentful

Figure 5.21 — API payload for stubbing

Figure 5.22 demonstrates the result of the intercept command in action:

by intercepting the recent items GET call
ROUTES (1)

Method Route Matcher Stubbed /

Advance v

GET https://sut iption.packtpub.com/api/subscription/getrecentitems? Yes
offset 1 =4

knowledge il

Figure 5.22 — Intercept results

This empowers the user to test the underlying API calls for different payloads and validate the
application behavior in each case. This also saves resources in cases where some of these are
expensive API calls. This is just one way to handle API calls with Cypress, and there are a variety of
options available to explore. In the next section, let us quickly review some additional configurations
that might be helpful with setup and validation.

Additional configurations

Let us review a few additional configurations in this section to build stable and efficient specs:

e The first configuration is a Git feature and not specific to Cypress. Adding a .gitignore file is a
general necessity for all projects. Add it to the src/ch5/app root folder to ignore files we
don’t want Git to track on our local directory. As shown in Figure 5.23, let’s add a

node_modules folder so that we don’t have to check in and keep track of all dependencies:

EXPLORER

v B19046_TEST-AUTOMATION-ENG... src > ch5 > app .gitignore
1 node_modules

{}p
> test
fi LICENSE

Figure 5.23 — .gitignore file

e Cypress comes with a default timeout of 4 seconds (4,000 milliseconds), and the get method
accepts a second parameter to set a custom timeout. For example, in our spec, we can add
extra wait after searching for the string and waiting for the Reset button to appear with
cy.get('.reset-button’, {timeout:10000}).should("be.disabled"). This line waits for 10

seconds for the Reset button to appear and then runs the assertion.

e Cypress provides a delay feature when performing actions on the DOM. For example, when
typing an entry in the textbox, it has a default delay of 10 milliseconds for each key press. In
our spec, this delay can be customized as cy.get(".input-text").type('${search_string}’, {
delay:500 }) to fit the need of the application. In this case, there will be a half-second delay

before typing the next character in the textbox.

We have secured a solid understanding of the major features of Cypress and are well set to explore
its capabilities further. Before we close this chapter, let us review some valuable considerations for
web automation.

Links

There are also options to extend the behavior of Cypress using innumerable plugins, available at
https://docs.cypress.io/plugins/index

https://docs.cypress.io/plugins/index

Chapter 5

Technical requirements

We will continue using Node.js, which we installed in Chapter 4. We need the Java Development
Kit (JDK) on our machines (which can be found at this link: _)
to download and install the compatible version with the operating system. Please remember to set
up the JAVA_HOMIE path in your .zshrc or .bashrc files. JAWA_HOME should point to the directory
where the JDK was installed.

Next, we will be needing Android Studio, which can be installed using the following link:
hitps://developer.android.com/Stidio. Similar to the JAVA_HOME path, the ANDROID_HOME
variable should be set up in your .zshrc or .bashrc files and point to the directory where the Android
SDK is installed. Also, make sure to append the PATH variable to include the platform-tools and
tools folders within the SDK. We will be using a demo Android application from
_ for our automated testing. This is Google’s demo
application used for testing Appium. All the code and setup used in this chapter can be found at
https://github.com/PacktPublishing/B19046 Test-Automation-Engineering-
Handbooki/tree/main/src/ch6.

Hands-On Section

Setting up Appium and WebdriverlO

Combining Appium with WebdriverlO helps build an extremely scalable and customizable mobile
automation framework. Let us start with Appium installation on macOS.

Appium installation

Next, let us go ahead and install Appium. This can be done using the npm install —g appium@next
command to install a version above 2.0 globally. The use of @next here is to force an installation of
a beta version (2.0.0). If by the time you install this, 2.0 is available as the latest stable version, you
do not have to use @next. With the appium —=v command, double-check the version after
installation.

Appium involves multiple installations working in tandem, and it would be convenient to have a tool
that could provide us with constant feedback on the health of our setup. appium-doctor does just
that. Let us install it using the npm install =g appium-doctor command, and the installation can be
checked using appium —version.

appium-doctor can be executed for the Android platform through the appium-doctor --android
command. It primarily checks for the presence of all dependencies and their path. Users should be
on the lookout for any errors in the output from executing appium-doctor and fix them before
proceeding further.

B19046_04.xhtml#_idTextAnchor099

There is one more installation before we can wrap up this section. Let us now install the necessary
Appium drivers for iOS and Android using the following commands:

appium driver install xcuitest
appium driver install uiautomator2

The installations can be verified using appium driver list, as shown in Figure 6.1:

ché main) X appium driver install xcuitest
Setting NODE_PATH to '/usr/local/lib/node_modules’
Installing 'xcuitest' using NPM install spec 'appium-xcuitest-driver'

automationName:
platformNames:
ché main) X appium driver install uiautomator2
Setting NODE_PATH to '/usr/local/lib/node_modules’
Installing 'uiautomator2' using NPM install spec 'appium-uiautomator2-driver'’

automationName:

platformNames:

ché main) X appium driver list

Setting NODE_PATH to '/usr/local/lib/node_modules'

Listing available drivers
xcuitest@4.11.1

uiautomator2@2.6.0
youiengine
windows
mac
mac2

espresso

tizen

flutter

safari

gecko

ch6

Figure 6.1 — Appium driver installation

This completes the Appium setup for macOS, and we have a couple more steps before we can start
writing our first tests. Before diving into the WebdriverlO setup, let us look at how to configure an
Android emulator.

Configuring an Android emulator

Emulators are virtual devices that let engineers set up and test against a variety of devices on the
computer. Let us go over how to set up an Android emulator in this section:

1. Inthe home dialog of Android Studio, click on the Virtual Device Manager option, as shown
in Figure 6.2:

0 Android Studio

Projects

o Welcome to Android Studio

Plugins

Learn Android Studio

o v

New Project Get from VCS

[L Virtual Device Manager

|¥ Profile or Debug APK

W, SDK Manager

¥ Import an Android Code Sample

Figure 6.2 — Android Studio Virtual Device Manager

2. The Android Studio installation usually comes with an emulator, as shown in Figure 6.3. You
can add another device by clicking on the Create device button at the top left of the dialog

box. This opens an additional dialog to set up the new hardware:

3.

Create device

Device -

[L Pixel_3a_API_33_arm64-v8a

G Select Hardware

Choose a device definition

Virtual Device Configuration

(g Pixel 2

Name
TV
Phone xel X 5" 14.. Size large

long

Wear 0OS Dixe 0" 10... Density: 420dpi
Tablet Pixel 4a

Pixel 4 XL

Pixel 4

Pixel 3a XL

Pixel 3a

New Hardware Profile Import Hardware Profiles Clone D

Cancel

Figure 6.3 — Android Studio device selection

For our example, let us select Pixel 4a and hit Next, which will take us to the System Image

selection dialog.

Please make sure to download two different versions here. We will be running the Appium
tests on one version and connecting the Appium Inspector on the other. In our case, we will
be downloading the Android API versions 32 and 33, as shown in Figure 6.4:

Create device

Device a A Size on Disk Actions

ixel 3a APl 3 n64-v8
(L Pixel_3a_API_33_arm64-v8a - 801 MB > S -

Virtual Device Configuration

0 System Image

Select a system image
Recommended ARM Images Other Images

Release... APILevel ¥ ABI Target
AP| Lavel

API33 33 arm64-v8a Android . 33
Sv2 32 arm64-v8a Android
Android
- Google Inc.
arm64-v8a

We recommend these images because they run the

Cancel Previous

Figure 6.4 — Android Studio system images
Hit the Next button and complete the emulator setup with the Finish button.

On the Device Manager dialog, hit the play button against one of the devices, as highlighted

in green in Figure 6.5. This will open the device emulator:

3
Android Emulator - Pixel_3a_...

Sizeon Disk Actions ‘

513 MB

Create device ?

CL Pixel 4a API 33

L Pixel_3a_API_33_arm64-v8a 801 MB

Figure 6.5 — Opening the Android device emulator

We are now set up with Appium and an emulated device to test on. Let us now dive into
WebdriverlO installation and setup.

Configuring WebdriverlO with Appium

Let us begin with the WebdriverlO setup by creating and initializing a new directory named
webdriverio-appium. You could also name it based on whichever project name suits your needs.
Once we are inside the directory, let us run the npm init -y command to set up our project. This
should create a package.json file within the directory.

Next, let us install the CLI for WebdriverlO using the npm install @wdio/cli command. This is used
for setting up the configuration for WebdriverlO using the CLI. Let us now run npx wdio config. This
npx command goes inside the node_modules folder to find WebdriverlO, which we just installed,
and runs the config command using the CLI.

On running this command, we go through a series of steps, with each of them requiring a selection.
Let us look at them one by one. Refer to Figure 6.6 for a summary of the options selected for
configuring WebdriverlO through the CLI:

X npx wdio config

Where is your automation backend located?

Which framework do you want to use?

Do you want to use a compiler?

Where are your test specs located?

Do you want WebdriverI0 to autogenerate some test files?
Which reporter do you want to use?

Do you want to add a plugin to your test setup?

Do you want to add a service to your test setup?

What is the base url?

Do you want me to run “npm install’

Figure 6.6 — WebdriverlO configuration

Here are the steps

1. Inthe first step, we will be selecting the location of the automation backend. Since we are
not running the tests externally yet, we will be selecting the first option, which is the local

machine.

We will be using the Mocha framework for our tests, and that option should be selected in

the next step.

2. Inthe next step, we will be selecting the No option as we will not be using any compiler in

our tests.
3. We will go with the default location for our test specs in the next step.

4. We will type No in the next step as we will be starting all our tests from scratch and do not

need the autogenerate option.

5. We will stick with the default spec reporter in the next step.

6. Let us skip adding any plugins at this step.

7. Inthe next step, since we will be running the tests from Appium, we will not be needing any

additional drivers. So, let us select the appium option.

8. We canignore the base URL step as we will not be running a test on the web, and move on
to the next step.

9. Inthe last step, we can select Yes for running the npm install.

The use of the CLI to configure WebdriverlO is productive as we circumvent the need for installing
these packages manually. WebdriverlO does a lot of heavy lifting for us to configure the
fundamental requisites for our project.

Before proceeding, please make sure to install Appium and its drivers again within the webdriverio-
appium folder as this is where we will be storing and executing our tests.

In the next section, let us look at additional WebdriverlO configuration for Android.

WebdriverlO Android configuration

As part of the WebdriverlO setup through the CLI, you will notice that a new wdio.conf.js file has
been created. This is the primary file where we will be making changes to get WebdriverlO working
with Appium. Let us now go ahead and look at how it’s set up to start making changes.

Quickly browsing through this file shows the customizable port number (4723) where the Appium
server will spin up. All configurations that we did through the CLI should also be reflected in this file.
The important change to be done in this file is in the capabilities section. It shows the browser as
Chrome by default. Here, we will be specifying the Android settings to connect to the Appium server
and run it via WebdriverlO.

Let us now copy our test application within our project by creating a new app/android folder
structure, as shown in Figure 6.7:

v webdriverio-appium

v app/android

= ApiDemos-debug.apk

Figure 6.7 — Copying test Android app

We are now ready to update the capabilities section of the config file. Refer to Figure 6.8 for the
values to be used here. We have added the platform name and platform version, which are Android
and 13.0, respectively, in this case. Then, we added the device name, which should be the same as
the one set up for the emulator in Android Studio. The automation name is the name of the driver
used for Android automation.

For the app path, we use the path library to dynamically create a complete path to the test app
within our project, as shown in the following screenshot. This library is built-in in Node.js and
doesn’t need to be installed separately. The path library must be initialized at the beginning of this
config file using const path = require('path'). This completes the preliminary customization of the
config file for the Android application:

Js wdio.conf.js X

src > ch6 > webdriverio-appium > Js wdio.conf.js > [€] config > /2 capabilities

capabilities: [
platformName: "Android",
"appium:platform sion®: "1320%,
"appium:deviceNam "Pixel 4a",
"appium:automationName": "UIAutomator2",

appium:app": path.join(process.cwd(),"/app/android/ApiDemos-debug.apk")

Figure 6.8 — wdio config: capabilities section

Before we try to run the app with WebdriverlO, let us create a test folder and an empty test file, as
shown in Figure 6.9. Also, launch the specified emulator from within Android Studio:

EXPLORER Js first_spec.js X

\ B19046_TEST-... [} E7 U & src > ch6 > tests > specs > Js first_spec.js > ...
describe("First Android Spec", () {

it("using Appium and WebdriverIO", ()

Vv tests/specs

Js first_spec.js

v webdriverio-appium
Figure 6.9 — Test folder and file creation

We are now ready to run this spec. For running this spec, use the npx wdio command. This
command by default uses the wdio.config.js file to spin up the Appium server, load the test app, and
execute the test. Results from the empty test can be seen in Figure 6.10:

Js first_spec.js X

src > ch6 > webdriverio-appium > test > specs > Js first_spec.js
describe("First Android Spec", ()
it("using Appium and WebdriverI0", ()

TERMINAL (3] zsh - webdriverio-appium -} 0w ~ X

[0-0] 2022-09-12T07:11:44.3942 webdriver: deleteSession()
[0-0] 2022-09-12T07:11:44.394 webdriver: [DELETE] http://localhost:4723/session/@eff4008-0f1b-411d-a4c2-788ef883
ffob
[0-0] PASSED in Android - /test/specs/first_spec.js
)) | 3Z @wdio/cli:launcher: Run onWorkerEnd hook
@wdio/cli:launcher: Run onComplete hook

- oid 13 executing /Users/priya/Documents/workspace/B19046
_Test-Automation-Engineering-Handbook/src/ch6/webdriverio-appium/app/android/ApiDemos-debug.apk
[emulator-5554 Android 13 #0-0] Session ID: @eff4008-0f1b-411d-adc2-788ef883ff9b
[emulator-5554 Android 13 #90-0]
[emulator-5554 Android 13 #0-0] » /test/specs/first_spec.js
[emulator-5554 Android 13 #0-0] First Android Spec
[emulator-5554 Android 13 #9-0] using Appium and WebdriverIO
[emulator-5554 Android 13 #0-0]
[emulator-5554 Android 13 #0-0]

Spec Files: 1 , 1 total (100% completed) in 00:00:13

@wdio/local-runner: Shutting down spawned worker
@wdio/local-runner: Waiting for @ to shut down gracefully
9-12 FO @wdio/local-runner: shutting down
ebdriveri

Figure 6.10 — WebdriverlO test run log

This confirms that our installation/setup is complete for Android, and we can go over the manual
configuration for the Appium Inspector tool.

Appium Inspector installation and configuration

Let us begin by installing the Appium Inspector, which is a handy tool to inspect mobile elements on
the desktop. The latest release can be downloaded from the following link:
hitps://qithub.com/appium/appium-inspector/releases. Opening the application after completing
the download and installation would display a dialog, as shown in Figure 6.11. In this dialog, when
we put in the server information and desired capabilities and hit the Start Session button, we will be
able to connect the inspector with the emulator. We will look at the details to be filled in here in
detail in the subsequent sections:

o0 e

Appium Server Select Cloud Providers
Remote Host Remote Port
Remote Path ssL

> Advanced Settings

Desired Capabilities Attach to Session...
text .
JSON Representation
Automatically add necessary Appium vendor prefixes on start +
i8;
2z
2 Desired Capabilities Documentatior

Save As... Start Session

Figure 6.11 — Appium Inspector tool

In the previous section, we used an emulator to run automated tests with WebdriverlO. Now, let us
configure another emulator that can be used to find elements on our Android application. Earlier in
this chapter, we added a virtual device within Android Studio, which was shown in Figure 6.6.

So, we already have two different virtual devices set up—namely, Pixel 4a and Pixel 3a. Now, let us
set up Pixel 3a on the Appium Inspector tool. We will be adding capabilities, as illustrated in Figure
6.12, under the Desired Capabilities section of the tool. Also, remember to update the port number
to 4724 since we are already using 4723 for running our WebdriverlO tests:

eoe
Appium Server Select Cloud Providers

Remote Host Remote Port 4724

Remote Path

> Advanced Settings

Desired Capabilities Attach to Session...
platformiame text android a .
JSON Representation
appium:platfornversion text 13 o
appium:deviceName text Pixel 3a o t 2
"platfornName”: “Android", =
appiun: app text /users/priya/Docunents/w a 7app.uiplatrorversioni; *13%
“appium:deviceName": "Pixel 3a",
epplunsaitonstionitime fest tastonatadi a appium:app": "/Users/priya/Documents/workspace/B19046_Test-Automation-Engineering-
Handbook/src/ch6/webdriverio-appiun/app/android/ApiDemos-debug. apk",
£ “appium:automationName": "UIAutomator2"

Automatically add necessary Appium vendor prefixes on start

@ Desired Capabilities Documentation Save As...

Figure 6.12 — Appium Inspector configuration

Next, bring up the Appium server on port 4724 using the appium —p 4724 command. Once the
server is up, hit the Start Session button on the Appium Inspector window to load our application on
the Pixel 3a emulator. Figure 6.13 shows the test application loaded simultaneously in the emulator

and Appium Inspector window:

@ Appiuminspector File Edit View Window Help L@ W T QE O MnSepl2

ﬂ@ ¢ Ce®Qa x

Session Information

5200 &
S

API Demos (0] g Soute Commands Actions
Wl Accessibility) Py

[App Source R O selected Element
Accessibilty A API Demos
v <and Select n element in th source fo begin

Access bl
Animation ssibily
Aop
Content
Graphics
Media

NFC

0s

Preference

<=="UCI /SES510N70uueeoe]-2656

> GET /session/b@bee6e7-2656

Calling AppiumDriver.getTimeouts() with args: ["b@bee6e7-2656-497b-9103-c4d9fd

[debug]
€6353¢"]
[debug]
licit":0}
<— GET /session/b@bee6e7-2656-497b-9103-c4d9fde6353¢c/timeouts

Responding to client with driver.getTimeouts() result: {"command":3600000,"imp

Figure 6.13 — Test application loaded in Appium Inspector and the emulator

In the next section, let’s understand how an async function works in JavaScript and then write a test
to validate mobile elements.

Figures

Js async_await.js X

src > ch6 > functions > JS async_await.js
demo_async_await() {

simple_promise = Promise((resolve, reje
setTimeout(() resolve("Promise Fulfilled!"), 5000)

)3
result = await simple_promise;

console. log(result);

}
demo_async_await();

TERMINAL

X node async_await.js

x 1

Promise Fulfilled!

Figure 6.14 — JavaScript function with async/await

- = Source Commands Actions Session Information
App Source a4, < selected Element
API Demos BApp g
~ <android.widget. FrameLayout>
Accessiibility " v ¢l 00 E
¥ <android.viewViewGroup resource-
Accessibility id="android:id/decor_content_parent"> Find By Selector

» <android widget.FrameLayout resource-
Animation o accessibility id Animation
id="android:id/action_bar_container">

App /landroid widget TextView[@content-desc="Animati

v <android.widget.FrameLayout resource- xpath
on"]
Content ic="android-id/content">
v <android.widget.ListView resource-id="android:id/list">
Graphics Attribute Value

<android.widget.TextView content-

Figure 6.15 — Inspecting an element via Appium Inspector

)5 first_spec.js = ommands Actions
describe(B App Source o > Selected Lement
it ("to fi t) i (5 T3TaTa 3

t expect (bou .toBeExisting

TERMINAL

D in Android - /test/specs/first_spec.js
@wdio/cli:launcher: Run onWorkerE Mgl reperses i T
@wdio/cli:launcher: Run onCom

13 #0-0]
13 #0-0] » /
5554 Android 13 #0-] Fi
r-5554 Android 13 #0-0) o find element by
4 Android 13 #0-8)
4 Android 13 #0-0]

1 total (100% completed) in ©0:00:11

Figure 6.16 — Appium test execution

js Js wdio.android.conf.js X S w

src > ch6 > webdriverio-appium > config > JS wdio.android.conf.js > ..
{ fig } = require('./wdio.shared.conf')
path = require('path');
config.port = 4723
config.specs = [
'<<folder where the Android tests live>>'

1
config.capabilities =

platformName: "Android",

"appium:platformVersion": "13.0",

"appium:deviceName": "Pixel 4a",

"appium:automationName": "UIAutomator2",

"appium:app": path.join(process.cwd(),"/app/android/ApiDemos-debug.apk"

s.config = config

Figure 6.18 — WebdriverlO Android config file

Js wdio.ios.conf.js X

> webdriverio-appium > config > JS wdio.ios.conf.js > ...
e } = require('./wdio.shared.conf")
= require('path');
config.port = 4723
config.specs = [
'<<folder where the i0S tests live>>'
I
config.capabilities = [

[
B!

platformName: "i0S",
"appium:platformVersion": "15.0",

"appium:deviceName": "iPhone 13",
"appium:automationName": "XCUITest",
"appium:app": path.join(process.cwd(),"/app/i0S/Test-i0S.app"

“ts.config = config

Figure 6.19 — WebdriverlO iOS config file

Code

Code 6.1
describe ("First Android Spec", () => {
it ("to find element by accessibility id", async () => {

const animationOption = await $("~Animation");

await animationOption.click();

const bouncingBalls = await $("~Bouncing Balls");
await expect (bouncingBalls) .toBeExisting () ;

1) ;

1)

Code 6.2: An example of the capabilities section of the wdio.config.js file for
iOS:

platformName: "iOS",

"appium:platformversion": "15.0",
"appium:deviceName": "iPhone 13",
"appium:automationName": "XCUITest",

"appium:app": path.join (process.cwd(),"/app/i0S/Test-i0S.app")

Links

For further exploration of the various features that Appium offers, refer to the documentation at

Technical requirements

Chapter 7

We will continue using Node.js along with JavaScript in this chapter. We will also download the
Postman application (version 9.3.15) and the Newman command-line tool. We will need Docker
installed locally to run our Postman collections on a Docker container. Docker installation

instructions can be found at _

Figures

L] Home Workspaces ~

API Network ~

Create Team

Workspaces
Integrations

Reports

[Learning Center
7) Support Center
© Bootcamp

What is Postman?

Home Workspaces v

API Network v

Explore Q Search Postmaf

Good evening, Mani S!

Recently visited workspaces

My Workspace

Get started with Postman

Start with something new Import an existing file

tion, or mport any API schema file f

Explore popular APls Explore all =

>n Postman by fork
3

. Salesforce Platform APIs

Figure 7.1 — Postman application

Explore Q search Postman

Create workspace
Name

Packt_Demo_Personal_Workspace

Summary

Add a brief summary about this workspace.

This workspa used to demonstrate AP| testing using Postman

Visibility
Determines who can access this workspace.
© Personal

Only you can access

ed team members can access
Team
All team members can access

Public

Everyone can view

Create Workspace Cancel

)

Upgrade

Product Updates

0 Postman v10 is here! new
¥ Read about Post 10 and leas

Your team’s activity will show up here

Create Team

& 0 (o) Upgrade

https://www.docker.com/

Figure 7.2 — Creating a workspace

aoe Home Workspaces »+ APl Network » Explore (Q Search Postman & 0 @ Upgrada
Good evening, Mani S! Product Updates wide
9 3
Go) F;; Take a look around, get started when you're ready. 0 T —
) :m’o\‘k \ Read about Postman v10 an
\) Py fe e cluding Native
-\ ‘1\ b Recently visited workspaces ures including Nal
J 1'] {J Learn More
A Packt_Demo_Personal_Workspace @

A My Workspace (’) Activity Feed

single sous

Create Team)
Get started with Postman
Start with something new Import an existing file
Workspaces >
Create an , collection, or a file from your
> APlinaw ek
Integratins APlinaw Your team's activity will show up here
Reports Get started by inviting people to your team
Create New - Import file -
Create Team
e .+
Learning Center — \g\
Figure 7.3 — Home page with multiple workspaces
p® ® Home Workspaces v APINetwork v Explore QU Search Postman & 0 @ Upgrade
2, Packt_Demo_Personal_Workspace New Import (& Overview Untitled Request + No Environment . =]
(5] + | = “* Untitled Request B save v <
Callections
il : ¢
= Params Authorization Headers (6) Body Pre-requestScript Tests Setlings Cookies
=
anmen Query Params
KEY VALUE DESCRIPTION ses Bulk Edit

Create a collection for your requests

Create collection

Figure 7.4 — New API request

Hands-On Section

Making a GET API request
We will be using the _ API to get an understanding of GET

requests. Bored is a free API that returns some random activities to do when bored. Postman makes
it easy to get a simple GET API request without any authorization working. Just paste the APl URL in
the URL section of the request window and hit the Send button next to it. Every request to the
server must be made with a URL to fetch the required response. Figure 7.5 shows the GET request
with the response. Here, the Status section of the response says 200 OK, which means that the
server responded to the request without any errors. The server returns the response in a JSON
format, which can be validated for accuracy based on the business logic. In our case, we see an
activity being returned with a bunch of other information:

A Overview GET hitps://www.boredapi. ® + oo0 No Environment v E

https://www.boredapi.com/api/activity (E) save v /Z B </
GET v https://www.boredapi.com/api/activity ¢
Params Authorization ~ Headers (6) Body Pre-request Script ~ Tests Settings Cookies

Query Params

"key": "6301585",
"accessibility": 0.1

KEY VALUE DESCRIPTION 000 Bulk Edit
Body Cookies Headers (10) Test Results @3 Status: 200 OK Time: 91ms Size: 484 B | Save Response v
Pretty Raw Preview Visualize JSON v = @ Q

1§ !

2 "activity": "Write a short story",

3 "type": "recreational",

4 "participants": 1,

5 "price": 0,

6 “Tink": ",

7

8

9

Figure 7.5 — GET API request

In most cases, the APl will have certain authorization to be added for the request to work. Postman
supports a wide variety of authorization mechanisms that can be accessed via the Authorization tab,
as shown in Figure 7.6:

53 Overview GFT https://www.boredapin ® + eoe No Environment v
https://www.boredapi.com/api/activity [B) save Z &
GET v https://www.boredapi.com/api/activity
Params Authorization Headers (6) Body Pre-request Script Tests Settings Cookies

Type No Auth ~

Inherit auth from parent
No Auth
API Key

Bearer Token
This request does not use any authorization. Learn more about authorization 7
Basic Auth

Digest Auth
OAuth 1.0
OAuth 2.0

Hawk Authentication

Body Cookies Head aws signature @5 Status: 200 OK Time: 91ms Size: 4848 Save Response v

Pretty Raw NTLM Authentication... son = o Q

Akamai EdgeGrid I

"activity": "Write a short story",
"type": "recreational",
"participants”: 1,

"price": 0
"link" B
"key": "6301585",
"accessibility": 0.1

O ®NOeG A WN R

Figure 7.6 — Request authorization support in Postman

Postman identifies the applicable headers for a given API call, but in cases where there is specific
metadata that must be sent as part of the header, this can be done using the Headers tab. Postman
automatically identifies any query parameters that are added as part of the URL. For the case in
Figure 7.7, _, a name is sent as a query parameter as part of the
URL. Postman creates a parameter in the Params tab, and this can be modified to feed the request
with different test data. New parameters can be manually added here as well:

& Overview ET https://api.agify.io?nan ® + oo No Environment e Bz
https://api.agify.io?name=packt [B) save v <
S @
GET v https://api.agify.io?name=packt Send v
Paramse Authorization Headers (6) Body Pre-requestScript Tests Settings Cookies
Query Params
KEY VALUE DESCRIPTION ooo Bulk Edit
name packt
Body Cookies Headers (13) Test Results @5 Status: 200 OK Time: 89 ms Size: 539B Save Response v
Pretty Raw Preview Visualize JSON v =] Q
1 |
2 “age": 39,
3 "count": 1,
4 "name": "packt"
s I

Figure 7.7 — APl request with a query parameter

Users are encouraged to check out the various other features available within the request and
response windows. Let us now learn to make a POST API request.

Making a POST API request

A POST request creates a new resource on the server and requires content to be sent in the body of
the request. Postman supports different body types for a POST call, and in this section, we will
review how to make a POST call. Create a new API request and click on the dropdown to the left of
the URL section to select a POST request type. We will be using GitHub’s create a new repository
API call (_) for our example here. GitHub provides a lot of public
APIs, but it requires the generation of an access token. This token can be generated in the personal
access tokens section of your GitHub profile. Please remember to copy and save this secure token
for future use in Postman. As shown in Figure 7.8, use this as a bearer token in the Authorization
tab of the new POST request:

& Overview https://api.github.con ® 0% No Environment a4 B
https://api.github.com/repos/owner/repo [3) Save v % <>
POST M https://api.github.com/repos/owner/repo @

Cookies

Params Authorization e Headers (8) Body Pre-request Script Tests Settings

S—
U’
L o

ype v
Bearer Token Token 9999999999999 999999:)

—

The authorization header will be
automatically generated when you send the

request. Learn more about authorization »

Figure 7.8 — POST API request authorization

Now, moving on to the Body section of the request, this APl requires a name as a mandatory key for
the new repository being created. An example of this request can be found at this link:
https://docs.github.com/en/rest/repos/repostcreate-a-repository-for-the-authenticated-user.
We will be using the raw body type with JSON from the dropdown, as shown in Figure 7.9. Postma
supports a wide variety of request body formats, and the one supported by the API being tested
should be used. On hitting the Send button, we complete the POST call to the GitHub server to
create a new repository with the name Packt-test-api-repo. Figure 7.9 shows the response status
of 201 Created with all the metadata in the response body section. Users may notice that the status
code is different from the GET call as 201 indicates that in addition to the call being successful, a new
resource was created by the server:

& averview nitps://apl agify io?nan @ nips/japlgithuncon @ + Nu Environment v [3=]
https://api github r [Rsave v 192
e @)
POST w hupe://api.github.com/user/repos o
Params Authorization e Headers (9) Body o Pre-request Script Tests Settings Cookies
none form-data x-www-form-urlencoded @ raw binary GraphQL JSON - Beautify
1 fi Text I
2 "name” ; “Packl-lest-api-zepo” ¢
2 Javascript T
3 B
JSON
HTML
XML
Body Cookies Headers (27) Test Results € status: 201 Created |Time: 5.58s Size: 6.97KB Save Response v
Pretty Raw Preview Visualize JSON v = G Q
1 .
1 f
2 "id": 544730188,
3 "node_id": "R_kgDOIHfsTA",
4 "name”: "Packt-test-api-repo",
5 "full_name": "manisam/Packt-test-api-repo",
6 2": false,
7
8 manisam
9 ’
10 Q6VXN1CEIMTEaMTUS" ,
2l “avatar_url": "https://avatars.githubusercontent.com/u/15188159?v=4",
12 “gravatar_id": "*,
13 "url®: “https://api.github.com/users/manisam",
14 "html_url®: "https://github.com/manisam”,
15 “followers_url": “"https://api.github.com/users/manisam/followers"”,
16 “following_url®: “https://api.github.com/users/manisam/following{/other_user}",
17 “gists url": "httns://ani.github com/users/manisam/sistef/oist idi"

Figure 7.9 — POST API request body type

This completes our section on creating a new resource using a POST call. In the next section, let’s
learn about collections and how they help structure API requests in Postman.

Organizing API requests using collections

Postman provides a way to group the API requests using collections. It helps organize a workspace
by breaking it down, and a workspace can also be sorted into multiple collections. Apart from this,
collections can also be published as documentation as well as run together in an automated fashion.
In this section, let us review how to create a collection and add requests to it. Collections can be
created in multiple ways within a workspace, and a simple way is to use the + button next to the
Collections icon in the left pane of the Workspaces window. A name must be provided for the

collection, and both existing and new requests can be saved to this collection. Figure 7.10 shows a
new collection holding the two API requests we have created so far in the previous sections:

® @ Home Workspaces v API Network v

2 Packt_Demo_Personal_Workspace New Import

=i + =
Collections
v Packt Testing Demo 1

v [GET Requests
GET Request Example
v [3 POST Requests

POST Request Example

o)

Explore

Q Search Postman
GET Request Example 1
GET Request Example
GET https://api.agify.io?name=packt
Params o Authorizatior Headers (6) Body Pre-request Script Tests

Settings

Query Params
KEY

name

VALUE DESC

packt

Figure 7.10 — Collections

Collections can thus help organize API requests in a meaningful way under a given workspace. This
helps immensely when there are a high number of requests, which is usually the case when testing
enterprise applications. Various other actions can be performed on collections, such as Export,
Monitor, Mock, and so on. Let us now look at one more feature of a collection that promotes

collaboration within the team.

Postman allows users to create a fork of a collection and merge it after making some modifications
to the forked collection. These changes can be shared with other members, just like how Git pull
requests work. This can be done via the Collections drop-down menu, as shown in Figure 7.11.:

2 Packt_Demo_Personal_Workspace New Import Gt7 GET Request Example + e
[3 el = = Packt Testing Demo 1 / GET Requests /| GET Request Example
Collections
> Packt Testing Demo 1 P oo
So GET v > https://api.agify.io?name=packt
APIS Share
D Move Params Authorization Headers (6) Body Pre-request Script Tes
o —
Environments Run collection Query Params
e Edit KEY VALUE
Mock Servers
Add request name packt
Add folder
Monitors
Monitor collection
Flows Mock collection
o) Create a fork 88F
History o ate pul

View changelog

View documentation
Rename HE
Duplicate 36 [

Export

Click Send

Delete

Figure 7.11 — Collections drop-down menu

On clicking the Create a fork option, the user will be required to enter a label for the fork and to
which workspace this collection is to be forked, as shown in Figure 7.12:

[X N J Home Workspaces v APl Network v Explore search Postman
2 Packt_Demo_Personal_Workspace New Import GeT GET Request Example %7 Create Fork + oo
8 il “** Fork collection
Collections
> Packt Testing Demo 1 Original collection Packt Testing Demo 1
So
APIs

Forking creates a copy of the collection in your account. You can use its
[=] requests or suggest changes without affecting the original.
Environments
Fork label (required)

2 Enables you to identify this fork from the other forks and original.
Mock Servers

Demo_Fork
Monitors
Workspace (required)
2 Select a workspace where you want to fork.
™
ba £
Flows ‘ Packt_Demo_Personal_Workspace
D
History

Watch original collection @

Fork Collection Cancel

Figure 7.12 - Forking a collection

Once the required changes have been made to the forked collection, a pull request can be created
using the Collections drop-down menu. Figure 7.13 shows a snippet of a pull request where the
user can provide a title, description, and select reviewers:

() [] Home Workspaces v API Network v Explore Q) Search Postman
2 Packt_Demo_Personal_Workspace New Import [Create Pull Request + oee
8 T+ = == Create Pull Request
Collections : < & s !
v Packt Testing Demo 1 Source: Packt Testing Demo 1 " Demo_Fork —> Destination: Packt Testing Demo 1
o
o v [3 GET Requests Overview Changes 2

GET Request Example
E > [POST Requests Title
v Packt Testing Demo 1 Demo_Fork Update GET request parameter

=) > [GET Requests

> [POST Requests Description

Give a brief summary of the major changes — your revi

you for it

Changed parameter from packt to packt-publishing

Reviewers

Select up to 50

Q Find a reviewer s

@ Manis X

Cancel

Figure 7.13 — Creating a pull request

The changes can be reviewed and merged using the merge option within the pull request or through
the Collections drop-down menu. This is a neat way to keep track of changes to your API requests
and nurture collaboration within the team while making these changes.

So far, we have looked at the basics of the Postman tool and how to make requests manually. This
works well for testing new API features but falls short when it comes to regression testing. In the
next section, let’s learn to write automated tests to validate APl responses.

Writing automated API tests

Postman allows us to add tests that run automatically after an APl response is returned from the
server. This can be done through the Tests tab in the Postman request dashboard. We will be using
the following three GitHub API requests in this section to help us set up and understand automated
APl response validation:

o Create a new repository
e Get arepository by name
e Delete a repository by name

In the next section, let us review how to use snippets to speed up our test automation process.

Using snippets for asserting an APl response

Postman comes with pre-defined JavaScript test scripts in the form of code snippets that can directly
be used in our tests. Let us start by adding snippets for some of the basic checks performed on an
APl response. Snippets are shown on the right pane next to the various tabs on the request
dashboard.

Every API test requires the validation of the status of an APl response, and Postman provides a
readymade code snippet for this. On selecting the Status code: Code is 200 snippet, the following
code is populated onto the Tests tab, as shown in Figure 7.14:

pm.test ("Status code is 200", function () {
pm.response.to.have.status (200) ;
1) ;

pm represents a Postman object, and it contains all information pertaining to the request and
response body. The pm object comes with a lot of properties and methods built in. Here, we use the
test method, which accepts a description and a function within which an assertion can be defined.
These assertions are defined using the chai library, and readers can refer to their documentation at
hitps://mwww.chaijs.com/api/bdd/ to get familiarized with more assertions.

Let us now add the Status code: Code name has string snippet, which adds the following code
snippet. In the case of a GET request, this string is OK, and for the POST request, it is Created, as we
have seen before:

pm.test ("Status code name has string", function () {

pm.response.to.have.status ("Created") ;

P

Postman provides a snippet to validate the response time of the APIl. On adding the Response time
is less than 200ms snippet, we see the following code added. Note that we use the expect assertion
here, which operates on the responseTime property and checks its value range:

pm.test ("Response time is less than 200ms", function () {
pm.expect (pm.response.responseTime) .to.be.below (200) ;
})

Let us now add an assertion on the response header using the Response headers: Content-Type
header check snippet. This can be further modified to check the presence of any header in the
response, as shown in the following code snippet:

pm.test ("Last-Modified is present", function () {
pm.response.to.have.header ("Last-Modified") ;
1)

Figure 7.14 shows a summary of the test results for the GET repository API call with a test status for
each of the snippets we have added:

[X°N) Home Workspaces v APINetwork v Explore Q. Search Postman & B 0N (9) Upgrade

8 JET Get repository ® DEL Delete repository Create repository + ove No Environment v
& t Get repository [save v
E
GET ~ https:/fapi.github. Packt-test-api-repi Send 23
(]
Params Authorizatione Headers (7) Body Pre-request Script Testse Settings Cookies
& ;
1 pm.test("Status code is 200, function () { 5
2 pm.response.to.have.status(200);
3 W
s 4 pm.test("Status code name has string", function () {
')
= 5 pm.xresponse.to.have.status("0K");
6 1; Snippets
T
8 pm.test("Response time is less than 200ms", function () { Set an environment variable
9 pm.expect(pm.response.responseTime).to.be.below(200);
A N Set a global variable
0 1);
1n Set a collection variable
12 pm.test('Last-Modified is present”, function () {
13 pm.response.to.have.header("Last-Modified"); Clear an environment variable
14 B);
Clear a global variable
Clear a collection variable
Body Cookies Headers (28) Test Results (3/4) @ Status: 200 OK Time: 312ms Size: 6.98KB Save Response v
All Passed Skipped Failed

Status code name has string
Response time is less than 200ms
Last-Modified is present

200

AssertionError: expected 312 to be below 200

Figure 7.14 — Automated API response validation

These are some of the generic tests we can add for API responses. In the next section, let us learn
how to add assertions on specific values such as the repository name on the response.

Understanding Postman variables

Let us understand what an environment means in Postman before jumping into looking at variables.
An environment is an assembly of variables that can be used in APl requests. For example, multiple
environments can be added in Postman, each with its own collection of variables. A new
environment can be created and added using the Environments drop-down menu and the icon from
the top-right section of the workspace window, as shown in Figure 7.15. Here, we have created a
new Packt testing environment:

'mo_Personal_Workspace New Import + oos Packt testing

+ = oee Packt testing

v Packt Testing Demo 1
No Environment variables

> [GET Requests
An environment is a set of variables that allow you to switch the

> [POST Requests context of your requests.

v [GitHub Demo requests

Create repository Giobals Add

ET Get repositol
pository No global variables

DEL Delete repository
Global variables are a set of variables that are always available in a

workspace.

@ Use variables to reuse values and protect sensitive data
Store sensitive data in variable type secret to keep its values masked on the screen. Learn more about variable
type X
Work with the current value of a variable to prevent sharing sensitive values with your team. Learn more about
variable values

Figure 7.15 — Environments drop-down menu and icon

Postman has five types of built-in variables, which are the following:

e Global variables: Variables with the broadest scope and can be accessed anywhere in a

workspace
e Collection variables: Variables scoped to be available for all the requests within a collection

e Environment variables: These variables are accessible only within an environment and

primarily used to manipulate access—for example, in staging versus production

e Data variables: These are variables created when importing external data and are scoped for

a single execution

e Local variables: Used on tests in a single request and lose scope as soon as the execution

ends

Let us consider the API for creating a new GitHub repository to understand how variables can be
used in Postman to remove static context from API requests. For example, we must validate that the
repository name matches between request and response. It is also important to remember that
GitHub repositories cannot have duplicate names. So, in order for this to work, we should provide a
randomly generated name in our POST request body and validate the presence of this name in the
corresponding response body. Dynamic variables come in handy to achieve this in Postman.
Variables are defined using double curly braces: {{<variable name>}}. The request body for the
create repository POST call will look like this:

{
"name": "{{repository name}}",
"private": false

}

Now, we need this value to be new for every POST request we send, and the best place to do this is
in the Pre-request Script tab of the request dashboard. This represents a pre-condition to the test
case, and it is run before the request is sent to the server. We accomplish random value generation
by defining a variable with static and dynamic parts. Here, we use the variables property of the pm
object. Then, we set this as an environment variable. Figure 7.16 shows a new repository_name
environment variable created in the current environment, Packt testing:

let repository name = "test packt api " +
pm.variables.replaceIn (' {{$randomInt}}");

pm.environment.set ("repository name", repository name);

The following figure shows the repository_name environment variable:

S 5 A®
@®ne Workspaces v APINetwork v Explore Q. Search Postman & 8 0 @ Upgrade v
mo_Personal_Workspace New Import Create repository [=] Packt testing + o Packt testing &
= Packt testing Y Fork | O A Share
v Packt Testing Demo 1
VARIABLE TYPE ® INITIAL VALUE G CURRENT V eee Persist All Reset All ol
> [GET Requests
_ repository_name default v test_packt_api_935
> [POST Requests

v [GitHub Demo requests

Create repository

Figure 7.16 — A new environment variable created

Note

Pre-requisite scripts are run before the APl request is executed, while the test scripts are run after
the server returns a response.

So far, we have created an environment variable in the Pre-request Script tab and updated the
request body to use that variable. Let us next add an assertion on this variable in the response body.
This can be done in the Tests tab via the Response body: JSON value check snippet. This snippet
helps check a specific value in the API response. Note that the value of an environment variable can
be fetched using pm.environment.get("repository_name"):

pm.test ("Check repository name", function () {
var jsonData = pm.response.json() ;

pm.expect (jsonData.name) .to.eql (pm.environment.get ("repository name"

D) g
}) s

In the next section, let us learn to chain a series of APl requests by passing data from one API to the
next.

Chaining API requests

Postman allows us to use variables to enable the chaining of a series of APl requests. A variable
created from the response of an API can be used in the subsequent request. Let us take the example
of the create repository call where a new repository is created for every request. The name of this
repository can be captured and used in a subsequent GET call.

For our understanding here, let us chain the create repository call with GET and DELETE calls. These
calls require the name of the repository and owner. In the create repository call from the previous
section, we have the repository_name variable. Let us now capture the owner variable from the
response body using the following code:

let json = JSON.parse (responseBody) ;
pm.environment.set ("owner", json.owner.login);

We use the JSON.parse() method to convert responseBody into a JSON object and then create an
environment variable using the login key from the response. GET and DELETE calls both use the
hitps://api.github.com/repos/:owner/:irepa route. We create requests for each of these API
requests with this route, and on saving, Postman automatically creates a new Path variables section
in the Params tab of the request dashboard. We can now substitute the captured environment
variables as values, as shown in Figure 7.17. In this way, we are chaining the response of the create
repository call to the GET and DELETE calls:

~ o ol A
@®ne Workspaces v APINetwork v Explore Q. search Postman & @ 0 @ Upgrade v

no_Personal_Workspace New Import Create reposit: Get repository DEL Delete repositol t Packt testing v

Get reposit v

m

v Packt Testing Demo 1

5 B GET Requests GET v https://api.github.com/repos/:owner/:repo &

> [POST Requests i
Paramse Authe Headers (7) Body Pre-req. Testse Settings Cookies

v [GitHub Demo requests

Query Params
Create repository

X KEY VALUE DESCRIPTION ees Bulk Edit
ET Get repository

DEL Delete repository ™
Path Variables

KEY VALUE DESCRIPTION oo Bulk Edit

Figure 7.17 — Chaining APl requests

On executing these requests one after another, we notice that the values from the request are being
passed on to the next one, seamlessly eliminating static data transfer. This behavior makes Postman
an effective tool for testing complex APl workflows.

We now have a simple collection with multiple API requests, and it is not feasible to run each of
them manually for every test cycle. In the next section, let us survey a few ways of executing tests in
Postman.

Various ways to execute tests

Let us first look at how to run our tests using the Collection runner. This is helpful when all tests in a
collection must be run sequentially in an automated fashion. The Collection runner window can be
launched by using the Run button from the Overview tab on clicking the collection name. This opens
a new tab that displays all the requests in the collection and some additional run parameters. Figure
7.18 shows this window and the associated options:

s ° n® A
[] ® Home Workspaces v APl Network v Explore () Search Postman 25 B Q @ Upgradi
2 Packt_Demo_Personal_Workspace New Import [S Packt Testing Demo 1 [*] Runner t o Packt testing
5] v = : RUN ORDER Deselect All Select All Reset
Collections Choose how to run your collection

v Packt Testing Demo 1 Or il
un manual

Run this collection in the Collection Runner

<]
o
q

> [GET Requests GET Request Example

> [GitHub Demo requests

a

Creats repository Run configuration

<]
2
T

) Get repository Iterations
wironment

a
o
B
7

Delete repository 1

it Delay
= 0 ms

Data

Select File

> Advanced settings

Figure 7.18 — Collection runner window

Using the Iterations option, users can specify the number of times the requests would be run. The
Delay option helps to add a specified wait between subsequent requests. This is very useful in case
of long-running requests. There is also an option to upload an external data file and use that data in

the form of variables within the request. On clicking the Run button, all requests in the collection are
run, and results with a clear breakdown are populated in the same window, as shown in Figure
7.19:

[] ® Home Workspaces v APl Network v Explore (. Search Postman - r,\ff 0 Cp) Upgrade

[3 [Packt Testing Demo 1 + Packt testing

o
So Packt Testing Demo 1

All Tests Passed (9) Failed (0] Skipped (0 View Sumi

Iteration 1

] ET GET Request Example
Pass Status code is 200

Pass Status code name has string

Create repository
Pass Check respository name
GET Get repository
Pass Status code is 200
Pass Status code name has string
Pass Response time is less than 200ms
Pass Last-Modified is present
DELETE Delete repository
Pass Status code is 200

Pass Status code name has string

Figure 7.19 — Test results summary

Postman also supports running a collection from the command line through a tool called Newman.
Newman can be installed using the npm command: npm install =g newman. The installation can be
verified using the newman —v command. To run the collection, we will first export the collections
and the associated environment variables. A collection can be exported and saved to the local
filesystem using the Export option from the Collections drop-down menu. Similarly, environment
variables can be downloaded by using the Export option within Environments on the left navigation
bar. Note that these files are downloaded in a JSON format. Now that we have the collection and its
necessary variables, we can run it using Newman:

newman run packt testing collection.json -e
packt testing environment.json

The output from the run command line is demonstrated in Figure 7.20:

packt_postman_downloads ls
packt_testing_collection.json packt_testing_environment.json
packt_postman_downloads clear
packt_postman_downloads ls
packt_testing_collection.json packt_testing_environment.json
packt_postman_downloads newman run packt_testing_collection.json -e packt_testing_environm)
ent.json
ewman
Packt Testing Demo 1

b GET Requests
b GET Request Example

b GitHub Demo requests
Create repository

Get repository

1. Response time is less than 200ms

Delete repository

executed failed

total run duration: 2.5s

total data received: 11.39kB (approx)

average response time: 61@0ms [min: 208ms, max: 1237ms, s.d.: 390ms]

1. AssertionError Response time is less than 200ms

postman_downloads

Figure 7.20 — Collection CLI run

Postman provides integration with Docker for executing tests within a Docker container. Docker is a
platform that assists in building, deploying, and testing your application code on units called
containers, irrespective of the underlying operating system. It provides great portability for
developing and testing applications. Running a collection on Postman’s Docker container involves
just a couple of commands. Once you have Docker installed on your machine, run the docker pull
postman/newman command. This command pulls the latest image of the Postman docker/newman
runner from Docker Hub and sets up the container. Next, we need the URL of the collection to be
able to run it externally. This can be obtained using the Share option from the Collections drop-
down menu. Now, run the following Docker command:

run -t postman/newman run "<<Collection URL>>"

This brings us to the end of a basic exploration of API testing with Postman. The Postman tool has so
much more to offer, and its capabilities can be referenced at AitpSi/I€arNiNG-pOStman.com/docs.

In the next section, let us review the considerations that go into APl automation testing.

Links

Postman’s downloads page (HHBSIAMIW:DOSTMAN.Com/doWNIOATS/)
We will be using the _ API to get an understanding of GET

requests

For the case in Figure 7.7, _, a name is sent as a query parameter

as part of the URL

Chapter 8

Technical requirements

To get functional with JMeter, we need Java installed on our machine. Currently, IMeter works with
JDK 8 and JRE 8 or higher.

Hands-on Sections

Installing JMeter
Let’s look at the steps involved in the installation of IMeter:

1. The first step in the installation of JMeter is to check the Java version on your machine. This
can be done using the java -version command. As shown in Figure 8.1, this command prints
out the JDK version:

app git:(main) x java -version
openjdk version "17.0.4.1" 2022-08-12
Open]DK Runtime Environment Temurin-17.0.4.1+1 (build 17.0.4.1+1)

Open]DK 64-Bit Server VM Temurin-17.0.4.1+1 (build 17.0.4.1+1, mixed mode)
app git:(main) x I

Figure 8.1 — Checking the Java version

2. The next step is to download the JMeter binary. The file for download can be found on the
JMeter website, https://imeter.apache.org/download jmeter.cagi. In this case, | am

downloading the binaries zip file for version 5.5, as shown in Figure 8.2.

- C # jmeter.apache.org/dowr

About

- Overview Download Apache JMeter

e License

We recommend you use a mirror to download our releas
Download signatures downloaded from our main distribution directo

o Download Releases

« Releaseliotos You are currently using https://dicdn.apache.org/. If you

mirrors are failing, there are backup mirrors (at the end of

i ! “/ldicdn. .org/

Documentation Other mirrors: | https://dicdn.apache.org v|| Change |
* SEt bt\‘;rted i The KEYS link links to the code signing keys used to sign
o getrari from our main site. The SHA-512 link downloads the sha
* Best Practices downloaded file
« Component Reference '

» Functions Reference For more information concerning Apache JMeter, see the
« Properties Reference

¢ Change History KEYS

e Javadocs

o JMeter Wiki -
- FAQ (Wik) Apache JMeter 5.5 (Requi

Tutorials
 Distributed Testing
¢ Recording Tests Binaries
e JUnit Sampler
e Access Log Sampler
o Extending JMeter apache-jmeter-5.5.tgz sha512 pgp

apache-jmeter-5.5.zip sha512 pgp

Community

Issue Tracking

Security

Mailing Lists

Source Repositories
Building and Contributing
Project info at Apache
Contributors

Source

apache-jmeter-5.5 src.tgz sha512 pgp
apache-jmeter-5.5 src.zip sha512 pgp

Foundation

¢ The Apache Software Foundation 3
ok Archives

e Get Involved in the ASF
e Sponsorship

Older releases can be obtained from the archives.
e Thanks

s browse download area

+ Apache JMeter archives...

Figure 8.2 — JMeter downloads page

Once the download is complete, move the zipped file to the desired local folder and unzip it.
This should create a new folder in the same location within which all the contents are

extracted.

JMeter can now be started with the sh jmeter.sh command from the bin folder of the

application. This brings up the application in a separate window, as shown in Figure 8.3.

(master) x sh jmeter.sh

For load testing, use CLI Mode (was NON GUI):

jmeter -n -t [jmx file] -1 [results file] -e -o [Path to web report folder]
& increase Java Heap to meet your test requirements:

Modify current env variable HEAP="-Xmslg -Xmxlg -XX:MaxMetaspaceSize=256m" in the jmeter batch file
Check : https://jmeter.apache.org/usermanual/best-practices.html

® Apache JMeter (5.5)
S ad XDa +|/=[* »hk d 4l % = H
[Test Plan
e — Test Plan
Name: Test Plan
Comments:
User Defined Variables
Name \
Add Add from Clipboard

Run Thread Groups consecutively (i.e. one at a time)
¥| Run tearDown Thread Groups after shutdown of main threads
Functional Test Mode (i.e. save Response Data and Sampler Data)
Selecting Functional Test Mode may adversely affect performance.
Add directory or jar to classpath Browse... Delete Clear

Library

Figure 8.3 — Starting JMeter

JMeter comes with a simple GUI that contains the following components:

e Menu bar: Contains a collection of high-level options to set up and configure various aspects

of the tool
e Tool bar: Contains frequently used tools
e Test plan tree view: Groups all components that are added within a test plan
e Editor section: Provides options to edit the selected component from the test plan view

In the next section, let’s look at how to create our first performance test in JMeter.

Automating a performance test

JMeter provides an intuitive GUI that we can use to create and configure performance tests. The test
plan is at the core of a performance test, and we start by creating one. We can do this by either
using the New option from the menu bar or the tool bar. We looked at the new Test Plan window in
Figure 8.3 when launching the JMeter application.

Building and running our first performance test

One of the primary focuses of a performance testing tool is its ability to simulate multiple users. This
is accomplished in JMeter by configuring a thread group. As shown in Figure 8.4, this is done via the
Thread Group option under Test Plan.

[AN J Apache JMeter (5.5)

[‘“ @ e ‘h‘ B D‘ ‘ﬂ‘: SR 4 ﬂ‘ ® v 153’_%:! 000000 A\ 0 0/0)
& [ESEREs I—]
) Threads (Users) i\ Open Model Thread Group
Paste %-v Config Element »| Thread Group
Open...— Listener »| setUp Thread Group
Merge Timer Nl tearDown Thread Group
Save Selection As... Pre Processors) User Defined Variables
Save Node As Image #-C Post Processors » Name: \ Value
Save Screen As Image #+0-C Assertions »
Enable Test Fragment »
Disable Non-Test Elements
Toggle ®-T
Help

Detail || Add | Addfrom Clipboard || Delete | Up || Down \

[_] Run Thread Groups consecutively (i.e. one at a time)
[v| Run tearDown Thread Groups after shutdown of main threads
[_| Functional Test Mode (i.e. save Response Data and Sampler Data)

Selecting Functional Test Mode may adversely affect performance.

Add directory or jar to classpath | Browse... l Delete]‘ Clear ‘

Library

Figure 8.4 — New thread group
We use a combination of three parameters to achieve the required pacing for our performance test:
e Number of Threads: The number of parallel users to be simulated in this test
e Ramp-up period: The time taken to simulate the specified number of users
e Loop Count: The number of iterations to be executed as part of the current test

There are additional settings to configure and fine-tune the load on the test, as shown in Figure 8.5.

[XN Apache JMeter (5.5)
D‘“ ad X508+ =% rh» }ﬂ‘”“?}‘ i 00:00:00 A 0 0/0)
? g TestPlan
0 Thread Group Thread GrouP
Name: Thread Group |
¢ |

Action to be taken after a Sampler error

=

@® Continue (O Start Next Thread Loop () Stop Thread O Stop Test () Stop Test Now

Thread Properties

Number of Threads (users): 1

Ramp-up period (seconds): 1

Loop Count: [Infinite 1

[v] Same user on each iteration
[] Delay Thread creation until needed

[] Specify Thread lifetime
Duration (seconds):

Startup delay (seconds):

Figure 8.5 — Thread Group configuration

The next step is to add a sampler to the test plan. A sampler is nothing but a test added in JMeter.
Figure 8.6 shows the list of the samplers supported by JMeter. Let’s now add a simple HTTP
sampler for our test. We can then use the HTTP editor to configure our test.

ece Apache JMeter (5.5)
elaH 5\‘1:« ‘H= AL 14 &% =B 00:0000 A 0 0/0)
¢ g TestPlan ‘
0 Thread Groun Thread Group
Add) Sampler » Flow Control Action
Add Think Times to children Logic Controller » HTTP Request
Start Pre Processors » Debug Sampller
Start no pauses Post Processors Doon223 sampler = |
Validate Assertions LIRS Sampler O Stop Thread O Stop Test O Stop Test Now
Cut #-X Timer) :I:ccesssh L;:gs Samlpler
Copy %-c [~ BeanShell Sampler
Test Fragment » -
Paste %-V J Bolt
Duplicate w.o-c | Config Element ¥ FTp Request |
Remove ® Listener » GraphQL HTTP Request
Open Ramp-up perio |DBC Request |
Merge Loop Count: M Point-to-Point |
Save Selection As... IMs Publisher
= [v] Same user JMs Subscriber
Save Node As Image fw(, e JUnit Request
Save Screen As Image ®+0-G y Vi Ricist
Enable [] Specify Thr LDAP Extended Request
Disable Durat LDAP Request
@_T yration (se
Toggle el UIRHOM SO pail Reader Sampler
Help Startup delay OS Process Sampler
SMTP Sampler
TCP Sampler

Figure 8.6 — Adding an HTTP sampler

In our example, we will be load-testing the Packt Publishing website at _ The
URL is split between the fields, protocol, and server name in the editor. Then we specify the path,

[terms-conditions, in the Path field. We will be testing the GET request, but there are in-built
options to support other types of requests, along with request body and file uploads, as shown in

Figure 8.7.

000 Apache JMeter (5.5)

W “‘J B XD [+ =% bb® d Wl % = ——
9 g TestPlan
¢ 40 Thread Group HTTP Request
/" HTTP Request Name: [Packt HTTP Request |
r |

Ay,

| Basic | Advanced ‘

Web Server
Protocol [http}: https | Server Name or IP: |packtpub.com | Port Number.‘
HTTP Request
GET IV Path; /terms-conditions/| ‘Comem encoding:
[] Redirect Automatically v/ Follow Redirects [v] Use KeepAlive [| Use multipart/form-data |_| Browser-compatible headers
[P [Body Data | Files Upload |
Send Parameters With the Request:
Name: \ Value J‘ URL Encode? Content-Type Include Equals?
Detail Add ‘ Add from Clipboard ‘ Delete Up Down

Figure 8.7 — Configuring an HTTP sampler

The test plan can now be saved to a local directory using the Save option from the menu bar. The
next step is to add a listener, which helps us view the test results. A listener is a component within a
test plan that stores and allows us to views results. Let’s add the View Results Tree and View Results
in Table listeners to our test plan. JMeter provides a variety of listener options in the Add | Listener
menu. Figure 8.8 shows our test plan with the listeners added.

@ ® Apache JMeter (5.5)
Oe@d £5a +=% b dd n% & 0c0000 A0 0/0 @
9 g TestPlan]

% @ Thread Group View Results in Table

/" Packt HTTP Request Name: ;View Results in Table
¢ View Results Tree C [
. [View Results in Table

Write results to file / Read from file

Filename Browse.. | Log/Display Only: [] Errors [Successes | Configure |
Sample # | start Time IThread Name} Label Sample Time... Status Bytes } Sent Bytes Latency \ConnectTJm.:

«

Figure 8.8 — Listeners in a test plan

After saving the test plan, we are ready to execute our first test. This is done using the Start button
on the menu bar. We can see the results being populated in the listeners as soon as the test begins.

Figure 8.9 shows a breakdown of the test run stats by the thread group within the View Results in
Table listener.

@ @ Packt_test_2.jmx (/Users/pri: i i i jmeter-5.5/bi _test_2.jmx) - Apache JMeter (5.5)

@@l &5a + =% »h» Wl ®% 2 E 00:00:28 A\ 0 0/10 &)

9 4 TestPlan
¢ <O Thread Group
/" Packt HTTP Request Name: View Results in Table

View Results in Table

View Results Tree Comments:

R -
MewiResUihiiabl Write results to file / Read from file

Filename i Browse.. | Log/Display Only: [] Errors [] Successes = Configure
Sample # | Start Time ‘ Thread Name Label ‘Sample Time... Status ‘ Bytes ‘ Sent Bytes Latency Connect Tim...|
1] 00:30:59.688|Thread Grou... [Packt HTTP ... | 2270 9 8077| 430 1384 1349
2| 00:31:02.648|Thread Grou... |Packt HTTP ... 1882 y 8077| 430 143] 105
3/ 00:31:05.648|Thread Grou... |Packt HTTP ... | 1494| | 8076 430| 131) 79
4| 00:31:08.650|Thread Grou... |Packt HTTP ... | 1811| 7 8077 430| 89| 60!
5/ 00:31:11.645|Thread Grou... |Packt HTTP ... 1308 ; 8077 430 111 72
6[00:31:14.649[Thread Grou... [Packt HTTP ... 1284, 7 8076 430 108 80
7/ 00:31:17.649(Thread Grou... |Packt HTTP ... 1249 A 8077 430 102| 58
8| 00:31:20.646(Thread Grou... |Packt HTTP ... | 1296| @ 8077 430| 91 59
9/00:31:23.646|Thread Grou... [Packt HTTP ... | 1141| o 8077 430 120, 76
10| 00:31:26.644|Thread Grou... |Packt HTTP ... | 1664 < 8076 430 88! 54/

[[] seroll i ? [] child les? No of Samples 10 Latest Sample 1664 Average 1539 Deviation 341

Figure 8.9 — Test run results

JMeter provides options to configure the fields in the results. Some important fields to look out for
in the results are Sample Time(ms), Latency, and Status, as they specify the status of the test and
the time taken to get a response from the server. JMeter offers a convenient option to save and
view the test results in CSV or XML format.

Sample time versus latency

Latency is the time taken by the server to return the first byte of the response, whereas sample time
is the total time taken by the server to return the complete response. Sample time is always greater
than or equal to latency.

Working with assertions

Assertions, as we have seen in previous chapters, are the checks performed on the request and
response. JMeter provides options to perform checks on an array of options, such as response size,
response time, the structure of the response, and so on. An important thing to note about assertions
is that they can be added at all levels. For example, an assertion added at the test plan level will
apply to every sampler within it. For our example, let’s add response and duration assertions for the
HTTP sampler, as shown in Figure 8.10.

@ @ Packt_test_2.jmx (/L [priya/D /! jmeter-5.5/bi _test_2.jmx) - Apache JMeter (5.5)
- 1
Ojelaua X Ea) + -] »p 000028 A\ 0 0/10 @
? g TestPlan |
¢ 9 Thread Group | HTTP Request
/” Packt HTT L Mama: S = ; |
(View Resu Add | = ‘ |
¢ View Resu | Insert Parent *| Timer »| JSON Assertion ‘
Cut ®-X Pre Plotassors) Size Assemon- ‘
Copy %-C PostProcessors) JSR223 Assertion ‘
-V XPath2 i
Taste *V [Config Element o ——— | ‘
Duplicate EAC | tenay)| Compare Assertion | | Port Number: |
Remove B Duration A |
Open... M Path: /terms{ HTML Assertion Content encoding:
Merge JSON JMESPath Assertion |

Save Selection As...
Save as Test Fragment

Save Node As Image *-C

ttically [¥/] Follow Re|

ody Data | Files|

MDS5Hex Assertion
SMIME Assertion ‘

se multipart/form-data || Browser-compatible headers

XML Assertion
XML Schema Assertion

jnelers With the Request:
|

Save Screen As Image *+7-C ame: XPath A URL Encode? Content-Type Include Equals?
Engle BeanShell Assertion
Disable
Toggle ®-T
Help
|
|
|
|
|
|
|
|
1‘ Detail | Add ‘ Add from Clipboard ‘ Delete \ Up Down
| J
1
Figure 8.10 — Adding assertions

Let’s update the Response Assertion to look for the response code 200 and the Duration Assertion
to flag responses over 1,000 ms. These conditions are checked after every iteration of the HTTP
sampler, and the results are flagged accordingly. Figure 8.11 demonstrates the execution of the
Duration Assertion where some of the responses took over a second to complete.

@® @ @ packt_http_request.jmx (/L iyal

_http_request.jmx) - Apa...

PR
¥
@
)

v | | Assertion result

Figure 8.11 — Assertion results

Configure

The Assertion Results listener is an effective component that collates the responses from all the
assertions so you can view them in one place. This listener can be added at the test plan level, as
illustrated in Figure 8.12. It combines the results from the Response Assertion and the Duration

Assertion.

Packt_test_2.jmx (/L

jmeter-5. _test_2.jmx) - Apache JMeter (5.5)

O@lad &

5[5

+ =% P/ B

| at

00:0028 A\ 0 0/10 €

? g TestPlan
¢ & Thread Group
9 /" Packt HTTP Request
0\ Response Assertion
O, Duration Assertion
o6 View Results Tree
4 View Results in Table

+ [ssertion Resuls|

Assertion Results

Name: Assertion Results

C

Write results to file / Read from file

Filename

Browse.. | Log/Display Only: [Errors [] Successes Configure

Assertions:

Packt HTTP Request
Packt HTTP Request
Packt HTTP Request

2]

Duration Assertion : The operation lasted too long: It took 1,216 milliseconds, but should not have lasted longer than 1,000 milliseconds.
Packt HTTP Request

Duration Assertion : The operation lasted too long: It took 1,556 milliseconds, but should not have lasted longer than 1,000 milliseconds.
Packt HTTP Request

Duration Assertion : The operation lasted too long: It took 1,234 milliseconds, but should not have lasted longer than 1,000 milliseconds.
Packt HTTP Request

Duration Assertion : The operation lasted too long: It took 2,063 milliseconds, but should not have lasted longer than 1,000 milliseconds.
Packt HTTP Request

Duration Assertion : The operation lasted too long: It took 1,203 milliseconds, but should not have lasted longer than 1,000 milliseconds.
Packt HTTP Request

Duration Assertion : The operation lasted too long: It took 1,252 milliseconds, but should not have lasted longer than 1,000 milliseconds.
Packt HTTP Request

Duration Assertion : The operation lasted too long: It took 1,676 milliseconds, but should not have lasted longer than 1,000 milliseconds.
Packt HTTP Request

Duration Assertion : The operation lasted too long: It took 1,951 milliseconds, but should not have lasted longer than 1,000 milliseconds.

Figure 8.12 — Assertion results listener

Let’s now look at how to use the command line to handle JMeter’s tests.

Working with tests via the command line

Performance tests are often long-running and tend to be heavy on system resource consumption.
GUI mode consumes a lot of memory, especially when running pre-recorded scripts, and execution
via the command line alleviates this pain by reducing the memory footprint of the tool. Another
significant benefit is the ability of the command line to integrate easily with external processes, such
as continuous integration systems. In this section, we will learn how to configure and run a JMeter
test from the command line.

Let’s reuse the test plan from the previous section for execution via the command line. Navigate to
JMeter’s bin folder in your command line and run the following command:

sh jmeter -n -t "<location of the
log the results>"

.Jjmx test plan>"-1 "<location to

Here, -n stands for non-GUI mode, -t specifies the location of the test plan, and =l is the location of
the result logs. The command line supports various other parameters, but these are the minimum
required parameters to trigger the execution. Figure 8.13 shows the execution of a command line
run.

Figure 8.13 — JMeter command line run

Additionally, the sh jmeter —h command can be used to review all the available command-line
options.

Performance test results can get voluminous, and it is always necessary to produce a clear and
concise report. It will be hard to understand the test results with just the results shown on the
command line and it necessitates a better report. This is achieved by using the —e option, which

generates a dashboard report, and the —o option to specify the location of the results folder. Figure
8.14 shows a part of the HTML report generated when using these parameters. By default, this is
produced as an index.html file within the results folder specified as part of the command-line
option. The full command to achieve this is as follows:

sh jmeter -n -t "./packt/packt http request.jmx" -1
"./packt/report.csv" -e -o "./packt/dashboard report"

Apache JMeter Dashboard
@ Dashboard
|4d Charts < Test and Report information
Lt Customs Graphs < Source file “report.csv®
Start Time *11/7/22, 5:55 PM"
End Time *11/7/22, 5:55 PM"

Filter for display

APDEX (Application Performance Index)

0.583 500 ms 1 sec 500 ms Total

0.000 500 ms 1 sec 500 ms Packt HTTP Request

0.850 500 ms 1 sec 500 ms Packt HTTP Request-0

0.800 500 ms 1 sec 500 ms Packt HTTP Request-1
Requests Summary

H FAL
WPASS

Figure 8.14 — JMeter Dashboard report

Another powerful feature that the JMeter command line provides is the use of built-in functions to
send dynamic parameters when running a test plan. For example, in our test plan, we have
hardcoded the path as /terms-conditions. In real time, we would be testing different paths from the
command line and would not have to update the test plan for every run. The test plan can be
updated with a function in this field to be able to receive this parameter via the command line using

the format ${__P(VariableName)}. The path can now be sent through the command line by prefixing
J to the variable name:

sh jmeter -n -t "./packt/packt http request.jmx" -Jpath=/terms-
conditions

In the next section, let’s look at how to use the HTTP(S) Test Script Recorder component in JMeter.

Using the HTTP(S) Test Script Recorder

The HTTP(S) Test Script Recorder is a component that records requests from the browser.
Previously, we manually added the HTTP request, but this component adds them automatically by
recording the transactions. This option can be added directly under the test plan, as shown in Figure
8.15.

200 Packt_test_2.jmx (/Users/priya/D« /Books|T i ineering/JM Japache-jmeter-5.5/bin/packt/Packt_test_2.jmx) - Apache JMeter (5
Sakd £ 00 =% »b 1d 0% = H 000
g TestPt
o o 1Add } Threads (Users))
¢ 4 Paste Config Element »
Open... Listener »
Merge Timer)
7Save Selection As... Pre Processors) User Defined Variables
Save Node As Image * Post Processors Name Value
Save Screen As Image Assertions)
Test Fragment)
Disable Non-Test Elements? HTTP Mirror Server
Toggle HTTP(S) Test Script Recorder
Help Property Display

Figure 8.15 — Adding the HTTP Test Script Recorder component

We will also need a recording controller to be added to the test plan to categorize the recording by
the traffic or per page. For simplicity, let’s use a single controller here, but in real-world scenarios
where the user flows involve multiple pages, we might need a separate controller per page. The
Target Controller property should be set to point to the right controller within the HTTP Test Script
recorder. Another notable feature within the HTTP Test Recorder component is Request Filtering. A
lot of resources are exchanged when recording HTTP requests, and not all of them will be applicable
for load testing. URL patterns that need to be included or excluded can be specified using the
Request Filtering option.

The next step is to configure the proxy on our browser so that only the desired traffic flows through
the port. This is done by specifying the default JMeter port 8888 within the browser’s proxy
configuration. Figure 8.16 shows this configuration on the Chrome browser.

& Chrome rome://settings/?search=proxy

@ Settings Network
& You and Google
= Wi-Fi
B Adofil Wi-Fi TCPIP DNS WINS 802.1X Proxies Hardware
@ Privacy and security §
Select a protocol to configure: Web Proxy Server

@ Appearance Auto Proxy Discovery localhost - 8888

Automatic Proxy Configuration = . d

roxy server requires passwor

Q_ Search engine Web Proxy (HTTP) 4 q P

Secure Web Proxy (HTTPS)
EN Default browser FTP Proxy

SOCKS Proxy
(I_) On startup Streaming Proxy (RTSP)

Gopher Proxy

Exclude simple hostnames
@ Languages
Bypass proxy settings for these Hosts & Domains:

3 Downloads “.local, 169.254/16
T Accessibility
R, System Use Passive FTP Mode (PASV)
£) Reset settings 2 Cancel OK
W Extensions [

&) About Chrome

Figure 8.16 — Chrome proxy configuration

There is one more step before we can start recording, and that is to add the JMeter certificate to the
browser. This file (ApacheJMeterTemporaryRootCA.crt) can be found in JMeter’s bin folder, and it
needs to be added to the browser certificates via settings. Once this is done, we can use the Start
button on the recorder component to commence the recording. When the recording is complete,
the HTTP requests are stored under the corresponding controller. These requests can then be played
back with the simulated load.

We have gained foundational knowledge on how JMeter operates, and we recommend you to
further explore the tool using the user manual at
hitps://ijmeter.apache.org/usermanual/index.html. Let’s move on to the next section to gain a
basic understanding of the Java programming language and how to use it to write custom code
within JMeter.

Java essentials for JMeter

There may be instances where the features that come out of the box with JMeter are not sufficient
and custom scripts are needed to perform specific tasks. JSR233 and Beanshell assertions/samplers
can be utilized in cases such as these to get the job done. Both these components support Java code,
and hence it is important to acquire basic Java knowledge. In this section, let’s go through a quick
introduction to the Java programming language.

A quick introduction to Java

Java is a platform-independent compiled programming language. Java code gets compiled into
bytecode, which can then be executed on any OS. The Java Virtual Machine (JVM) is the OS-specific

architectural component that sits between the compiled bytecode and the OS to make it work on
any platform. Let’s now create our first Java program, compile it, and run it. Any Java program
comes with a boilerplate code, as follows:

package ch8;

public class first java program {
public static void main(String[] args) {
}

}

Let’s familiarize ourselves with these keywords, to begin with. Whenever a new class is created in
Java, the very first line is usually the package name, followed by the class definition. The public
keyword is an access modifier that denotes the access level of this class. This is followed by the class
keyword and the name of the class. Within the class, there is always a main method with a public
access modifier.

This is followed by another keyword, static, which signifies that this method can be invoked directly
without the need to create an instance of the class. The main method is always called by the JVM at
the beginning of program execution, and that is why we do not need an instance of the class to call
this method. Next is void, which represents the return type of this method. In this case, we do not
return anything and hence leave it as void. We could return a string or an integer depending on what
is being done within the method. The values within the parentheses after the method name mark
the arguments accepted by the method.

Let’s add a simple print statement, System.out.printin("My first java program") within the main
method and run it via the IDE. This should print the text specified within the println method. This
completes our first program in Java. Java is a strong object-oriented language, so let’s learn how to
create classes and objects in Java.

Object-oriented programming primarily helps us model real-world information in our programs. Let’s
take an example of a bank account and see how it can be modeled in Java using object-oriented
techniques. To start with, let’s create an Account class, as follows:

package ch8;

public class Account {

String account holder name;

int age;

float account balance;

boolean direct deposit enabled;
Boolean maintains minimum balance;
public void test minimum balance () {
if (account balance > 5000) {
maintains minimum balance = true;

}

}
}

This class would act as a template for all the accounts that are created. Each account created from
this template would be an object, or an instance, of this class. We have used different variable types
to model real-world information. We have also used the test_minimum_balance method to derive
and set the value of a variable called maintains_minimum_balance within the class.

Let’s now go ahead and create another class that holds these objects:

package ch8§;

public class AccountObjects {

public static void main (String[] args) ({
Account johns account = new Account();

Account davids account = new Account();

johns account.account holder name = "John Doe";
johns account.age = 32;

johns account.account balance = 10000;

johns account.direct deposit enabled = true;

johns account.test minimum balance();

tims_ account.account holder name = "Tim Sim";
tims_account.age = 35;
tims account.account balance = 1000;

tims account.direct deposit enabled = true;
tims account.test minimum balance () ;

}

}

We have created two objects in our second class, which represent two different people’s bank
accounts. This example demonstrates how we can use classes to model information.

JDK versus JRE versus JVM

JDK: The Java Development Kit is an environment for developing, compiling, and running Java
applications.

JRE: The Java Runtime Environment is an environment for running Java applications. Users of Java
applications just need the JRE.

JVM: The Java Virtual Machine is an interpreter for executing Java programs.

This section was meant to quickly inform you what the Java programming language is and how to
write a basic program. You are encouraged to refer to the official Java documentation at

hifpSJ/docs oracie-comjavaseliliioriallGeiSarediindexchiml o further your knowledge. Let's

now get back to writing custom scripts in JMeter.

Using the JSR233 assertion

JMeter comes with a JSR233 assertion/sampler that can interpret and execute Java code. JSR233 is a
scripting API for languages that can work on the JVM. Apache Groovy, Python, and Ruby are some of
the supported languages, and we will be using Groovy for our example as it provides better
performance.

Another advantage of using Groovy is that it is an extension of the JDK and accepts Java code. In fact,
it supports all the features of Java and provides additional dynamic features, whereas Java is a
strongly typed language. Groovy’s official documentation can be found at _

. Since the Groovy engine is part of J]Meter, no additional installation
is required to get it working. Let’s now look at how to employ a Groovy script within a JMeter test
plan using the JSR233 sampler/assertion.

To start, let’s add the JSR233 assertion to the HTTP request in our existing test plan. By default,
Groovy is selected as the language for this assertion, but there are other options, as shown in Figure
8.17.

Dié ad £[E D‘ =% pID i Wl &% = ‘ 00:0028 A\ 0 0710)
¢ Test Plan .
; B Thread Group JSR223 Assertion
¢ /" Packt HTTP Request Name: JSR223 Assertion |
n\ Response Assertion C ‘

”\ Duration Assertion

N Script language (e.g. groovy, beanshell, javascript, jexl)
Y

© View Results Tree Language: groovy (Groovy 3.0.11 / Groovy Scripting Engine 2.0) v
= P T T} R
¢ View Results in Table P 2,006 / B Engine 1.0)
bsh (BeanShell 2.0b6 / hell Engine 1.0)

(. Asserti I
R Assertion Results groovy (Groovy 3.0.11 / Groovy Scripting Engine 2.0)

liava (BeanShell 2.0b6 / BeanShell Engine 1.0)
File Nametljex] (JEXL 2.0 / JEXL Engine 2.0)
jexI2 (JEXL 2.0 / JEXL Engine 2.0)

Edit
pIeTSTTpTTT L2

Script file

Script con

Cache ¢

Script (variables: ctx vars props Sampl It (aka prev) Assertii It sampler log Label Filename Parameters args OUT)
Script:
1

>

Figure 8.17 — Adding a JSR233 sampler

One of the top uses of employing custom scripting within JMeter is to enhance the logging
capabilities wherever needed. This helps tremendously in reducing debugging effort. For example,
the statement log.info("Output from the log message") can be used to print additional logging
messages. Now consider the following code block, which can be run as part of the JSR233 assertion:

int thread run time = SampleResult.getTime () ;

int thread latency = SampleResult.getLatency();

int response threshold = 1000;

if ((thread run time+thread latency)>response threshold) {

AssertionResult.setFailure (true) ;

AssertionResult.setFailureMessage ("Threshold exceeded");
}

SampleResult is a built-in JMeter object through which various properties of the test result can be
accessed. Here, we are getting the run time and latency of the HTTP response and using an if
statement to perform an assertion. Custom scripting thus extends JMeter’s ability to perform
specific validations.

Another area where custom scripting can be used is with getting and setting values of variables and
properties. It might be necessary to dynamically change the value of a variable based on the test
result. This can be performed with the following statements:

failure count = vars.get("failure count");
Failure count++;
vars.put ("failure count", String.valueOf (failure count));

We are getting the value of the failure_count variable and incrementing it before writing it out. As
you can see, custom scripting opens up various ways to extend our tests to address project-specific
needs. This is as far as we can go here; it’s up to you to explore it further.

In the next section, let’s explore some considerations for performance testing.

Technical requirements

Chapter 9

We will be working on GitHub Actions in the last part of this chapter to implement a Cl job. The
repository used will be

_. It is advised to possess a basic familiarity with the GitHub Ul and how it

works to follow along.

Figures
/ CONTINUOUS DELIVERY \
CONTINUOUS INTEGRATION CONTINUOUS
DEPLOYMENT
AUTOMATICALLY AUTOMATICALLY
BUILD TEST MERGE RELEASE TO DEPLOY.TO
REPOSITORY PRODUCTION
Figure 9.1 - CI/CD
SOFTWARE/QUALITY ENGINEERS
— . —l
A A (===
MERGE COMMIT
CODE CHANGES
A
CONTINUOUS CONTINUOUS
FEEDBACK FEEDBACK

O
=

DISTRIBUTED VERSION CONTROL SYSTEM

FREQUENT POLLING 1
FOR CHANGES

A

CREATES BUILDS

EXECUTES TESTS

0
= -

DEPLOYS CODE

CONTINUOUS INTEGRATION SERVER

Figure 9.2 — Parts of a Cl system

CODE

COMMITS
BUILD &
L EXEcUTE
UNIT TESTS
DEPLOY
— ToTesT
ENVIRONMENTS
| RWN
ACCEPTANCE
TESTS
DEPLOY TO
. PRODUCTION

Figure 9.3 — Components of a deployment pipeline

CI/CD SYSTEM

Feedback during the
development process

Code Commits

Unit Tests
N Component Tests
\
Feedback after s)
deploying to a test Smoke Tests
environment Integration/API Tests)
4 End-to-end Tests Inpeoved quiadly
and production
readiness at every
" step
Smoke Tests
Feedback after deploying. End-to-end tests
to a production-like Performance Tests
environment 9 User Acceptance Tests

Production Deployment
Smoke Tests

A 4

Figure 9.4 — Feedback loop in a CI/CD system

Table

Type of Test

Recommended CI/CD Strategy

Unit/component
tests

Tests with minimal dependencies and the quickest feedback cycle to be run
on every commit and every merge to master

API tests

Tests that verify the functional correctness of the APl endpoints to be run
on every merge to master

Type of Test Recommended CI/CD Strategy

E2E API tests Long-running tests involving sequential API calls to test business workflows
to be run on every deployment to test environments

E2E Ul tests Long-running tests involving user actions to test business workflows to be
run on every deployment to test environments

Smoke tests A subset of tests selected to be run on every deployment to an environment

Table 9.1 - CI/CD strategies for various test types

Hands-On Sections

GitHub Actions CI/CD

GitHub Actions is a CI/CD platform that enables the automation of building, testing, and deployment
of application code. It is the built-in CI/CD tool for GitHub. In this section, let us go over all the
concepts we need to know to understand the GitHub Actions workflow. We will also learn to
implement a GitHub action to run syntax checks against our code to make sure it meets specific
criteria. Let us start with the necessary terms to help us understand the GitHub Actions workflow
file.

The workflow .yaml file contains all the information used to initiate and drive the Cl pipeline to
completion. YAML is a data-serialization language commonly used for building configuration files. It
is in human-readable format and compatible with all the major programming languages. The
workflow .yaml file at a high level specifies the following:

e Events: An event is a trigger for a workflow

e Jobs: Jobs are high-level actions performed as part of the workflow

e Runners: A runner is a platform where the action is performed

e Steps: A job can be broken down into multiple steps

e Actions: Each step performs a specific action in an automated fashion

For illustration, we will be using code commits and merges, which are common events that occur in
every repository. In this example, we will be configuring our workflow file to be triggered when
someone pushes code to our repository. When this push event occurs, all jobs within the workflow
will be run. This is demonstrated by the YAML code snippet shown next. In this configuration file, we
use the on parameter to specify the trigger for the workflow. When the push event occurs, it will run
all jobs within this workflow. We have a single job here that comprises multiple steps and actions.
Under the steps, two actions will be run in this case. The first action will check out the latest version
of our code from the main/master branch, and the next one will run the super-linter against it.
Linters are tools to evaluate that our code conforms to certain standards. The super-linter supports
multiple languages and automatically understands and checks any code in the specified repository.
The runs-on parameter is used to specify the runner. This is the container environment where
GitHub will run this job. There are additional options to host your own container; however, we will
be sticking to the default container offered by GitHub in this case:

name: Packt CICD Linter Demo

on: [push]
Jjobs:

super-lint:

name: Packt CICD Lint Job

runs-on: ubuntu-latest

Steps:

- name: Checkout Code

uses: actions/checkout@v3

- name: Lint Code Base

uses: github/super-linter@v4

env:

DEFAULT BRANCH: main

GITHUB TOKEN: ${{ secrets.GITHUB TOKEN }}

Let us now go to GitHub to set up a workflow in our repository
(https://qithub.com/PacktPublishing/B19046 Test-Automation-Engineering-Handbook). First,
we create the right folder structure for our workflow file. We use the Add File option on the home
page of our repository. We create a linter_demo.yml file with a .github/workflows structure under
the root folder of the project and copy the code into the editor below, as shown in Figure 9.5. Then,
this file can be committed through a new branch or to the main branch directly. It is mandatory to
follow this folder structure to save the workflow file:

8 PacktPublishing / B19046_Test-Automation-Engineering-Handbook pubiic

<> Code () lIssues

11 Pullrequests () Actions [Wiki (@ Security [~ Insights 3 Settings

B19046_Test-Automation-Engineering-Handbook / .github / workflows / linter_demo.yml

<> Edit new file ®© Preview

name: Packt CICD Linter Demo
on: [push]

jobs:
super-lint:
name: Packt CICD Lint Job
runs-on: ubuntu-latest
steps:
- name: Checkout Code
uses: actions/checkout@v3

- name: Lint Code Base
uses: github/super-linter@v4
env:
DEFAULT_BRANCH: main
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} |

Figure 9.5 — Creating a GitHub workflow file

in main

On navigating back to the home page of the repository, we notice a yellow status icon now, as
shown in Figure 9.6. This signifies that the workflow is being run now and the code is being
checked. This status icon turns green or red based on whether the checks pass or fail. This is
particularly helpful when you are viewing a new repository and it aids to know that the repository is
in a healthy state with all the tests passing. The results of the workflow can be viewed by clicking on
the status icon or visiting the Actions tab:

& PacktPublishing / B19046_Test-Automation-Engineering-Handbook public R EditPins v | ¢

(© lIssues 1 Pull requests 0 wiki @ Security [~2 Insights 3 Settings
¥ main ~ ¥ 14 branches © 0 tags Go to file Add file ~ <> Code ~

manisam Create linter_demo.ym| @751‘266\' 3 minutes ago & 26 commits
B _github/workflows Create linter_demo.yml 3 minutes ago
B src Moved ch3 under src 2 months ago
[LICENSE Initial commit 6 months ago
D README.md readme file: add chapter 4 header 3 months ago
:= README.md Vi

Figure 9.6 — Workflow status

We can view the execution results of a specific job by following the link within the Actions tab. This
provides a neat breakdown of the steps executed within the job and how long each one took. You
could open each step to view the run logs. Figure 9.7 shows the view for a failed job and its
individual steps executed as part of the workflow:

<> Code (Issues 19 Pullrequests () Actions [0 Wiki @ Security |~ Insights 3 Settings

€ Packt CICD Linter Demo

0 Create linter_demoyml #1 O Re-run jobs ~

(@ Summary

Packt CICD Lint Job

Jobs

| © Packecico Lint Job

d Setupjob
Run details @ Pull ghcr.io/github/super-linter:v4.9.7
& Usage @ Checkout Code
&) Workflow file

Lint Code Base
@ Post Checkout Code

& Complete job

Figure 9.7 — Workflow results

The Actions tab is where all the CI/CD information is shown within a GitHub repository. It shows a
history of all our workflow jobs and their statuses, with options to look through each one further in
detail. We can have as many workflows as we need within a single hub repository. For example, we
could have one workflow that runs only Cypress tests and another to lint the entire code repository.

On fixing the suggestions from the linter and pushing the code to the repository, the Cl job should
automatically be triggered based on our setting in our workflow file.

The following is a sample snippet to invoke Cypress tests for reference. Placing these contents in a
workflow file at the root of the project under the recommended directory structure triggers Cypress
tests on every commit to the repository:

name: Packt Cypress Tests
on: [push]
jobs:
cypress-run:
name: Packt Cypress CI/CD Demo
runs-on: ubuntu-latest
steps:
- name: Checkout Code
uses: actions/checkout@v3
- name: Cypress.io
uses: cypress-io/github-action@v4.2.0
env:
DEFAULT BRANCH: main

GITHUB TOKEN: ${{ secrets.GITHUB TOKEN }}

GitHub has an extensive marketplace (hitps:/github.com/marketplace) where you can grab pre-
written workflows for different use cases. We can download and modify them to use in our
repository. Readers are advised to take a look at these extensions to get an idea of the tremendous
community surrounding Cl/CD systems.

This brings us to the end of this chapter. In the next section, let us quickly summarize what we
learned in this chapter and peek into our explorations in the final chapter of this book.

Figures

Test 1

Chapter 10

Test 2 Test 3

‘

Class: Generate HTML report

methodA
methodB
methodC

Class: Generate PDF report
methodA
methodB
methodD

Figure 10.1 — Code duplication

Requirement analysis/Feature discovery

&

Product
feature
development

Manual
testing

Test Automation Design/Planning

e Framework updates

e Test environment changes
e Test data creation

e Test cases selection

A

Test automation

y &

Create automated tests
Execute across environments
Add tests to Cl pipeline

Table

Figure 10.2 — Test automation tasks

Story points

Test type

The complexity of
the task

Dependencies

The effort required

in days

1 API
integration

Very minor

Nothing Less than 3 hours

Story points Test type The complexity of Dependencies | The effort required
the task in days
2 API Simple Some Half a day
integration
3 Ul end-to- Medium Some Up to 2 days
end
5 Ul end-to- Difficult More than a 3 to 5 days
end few
Split into smaller | API/UI Very complex Unknown More than a week
tasks

Table 10.1 — Sample test automation effort matrix

Code

Code 10.1: Lengthy complex tests
describe ("Visit packt home page, ", () => {
beforeEach (() => {

cy.visit ("https://www.packtpub.com") ;

P

it ("search, terms and contact pages", () => {

const search string "quality";

const result string "Filter Results ";

cy.get ('# BVID 324').and("have.value",

"");

cy.get ('# BVID 324'").type(${search string} , {
});

cy.get ('.form-inline > .btn-parent > .btn >
cy.get(".filter-results") .contains (result string)
cy.get (".reset-button", { timeout: 10000

}) .should ("be.disabled") ;

cy.get ("#packt-navbar") .and ("have.class",
//test term-conditions page

cy.visit ("https://www.packtpub.com/terms-
.btn > .fa")

cy.get ('.form-inline > .btn-parent >

"navbar-

delay: 500
.fa') .click();
logout") ;

conditions") ;

.click();

cy.get (".terms-button", { timeout: 10000 }).should("be.enabled"):;
//test contact us page

cy.visit ("https://www.packtpub.com/contact") ;

cy.get ('.form-inline > .btn-parent > .btn > .fa').click();

cy.get (".send-button", { timeout: 10000 }).should("be.disabled"):;

1)

Code 10.2: A case where no assertions are being used
function compute product () {
...Test logic...
if (product==10) {
console.log('product is 10");
else if (product==20) {
console.log ('product is 20'");
}
else {
console.log('product is unknown');
}

return product;

Code 10.3: Use of multiple assertions in a single test
cy.get ('[data-testid="user-name"]"') .should('have.length', 7)
cy.get (' [data-testid="bank name"]') .should('have.text', 'BOA Bank')
cy.get (' [data-testid="form checkbox"]")
.should ('be.enabled')

.and ('not.be.disabled")

Code 10.4: The use of the same type of assertions for multiple Ul elements
cy.get ('"#about') .contains ('About"')
cy.get ('.terms')contains ('terms-conditions')

cy.get ("#home') .contains ('Home"')

Code 10.5: Mishandling data in automation

Functional test data: This drives the application logic and is seeded within the framework or

comes from a test environment.

Dynamic test suite data: This is data required by the test scripts for execution, such as

secrets:

node test-script.js -secret='HAGSDH' -timeout=30000

Global data: This is configuration data specific to particular environments, stored in config
files and the Cl system:

DEV_URL= //test-development.com
STAGING URL=https://test-staging.com

AWS KEY=test-aws-key

Framework level constants: These are constant values required by the tests and stored

within the framework in a non-extendable base class:
const swift code = 111222333,
routing number = 897654321;
class BankConstants {
static get swift code () {
return swift code;
}
static get routing number () {

return routing number;

Appendix A: Mocking API Calls

Figures

)

API 1
Available

N —

T)
AP| 2
SOFTWARE Available

APPLICATION
~

e
API 3

Under
development

Mock API

a Server with
pre-configured
response

Figure A.1 — APl mocking

Hands-On section

Mocking API calls using Postman

Postman provides an interactive GUI to set up mocks for API calls. Let us now review how to set one
up step by step:
1. Create or use an existing Postman collection as seen earlier in Chapter 7, Test Automation
for APIs.

2. Set up arequest as shown in Figure A.2. There are two scenarios where we end up mocking

an API request:

3. The first is when we have a sample response from the API call, but subsequent requests
cannot be made to the API. We could save the response as an example in Postman and use it

for mocking.

4. The other one is when the API call does not exist or we do not have a sample. In this case,
we will have to build the response from the scratch. We will be simulating this scenario in

our example:

B19046_07.xhtml#_idTextAnchor169

,% Packt_Demo_Personal_Workspace New Import GET Mock demo request + o000
& £ | = 000 Mock demo request
Collections

v Packt Testing Demo 1

o v [GET Requests GET v https://api.agify.io?name=packt
APIs
GET GET Request Example
Params e Authorization Headers (6) Body Pre-request Script Tests
B > [GitHub Demo requests
Environment: p——
Environments - S Query Params
v 5/Packt Mock Demo ™\
= £T Mock demo request/> KEY VALUE
Mock Servers ’
s name packt
Monitors
Body Cookies Headers (13) Test Results
L': S
Flows Pretty Raw Preview Visualize JSON v =
9 1 j
History 2 "age": 39,
3 "count": 1,
4 "name": "packt"
5 §

Figure A.2 — Postman request

5. The next step is to create the mock server for our request as shown in Figure A.3. This can
be done by using the Mock Servers option on the left-hand pane and selecting the collection
to associate it with. Once this is done, a mock server URL is generated, to which a request
can be made. Postman also provides an option to make the mock server private by
generating an APl key to authorize requests.

,9‘ Packt_Demo_Personal_Workspace New Import Mock demo request (D Createmock server ® + oo Packt testing
0 | =
Colisctions Create a mock server
5 (©) select collection tomock 2. Configuration
o
Mock server name
E
(=} Collection
Mack Servers §
You don't have any mock servers. Packt Testing Demo 1
Monit Tag
o CURRENT not finked to an AP, th
Create Mock Server
. Environment
Packt testing An e mer up o les usefu nd reusing values. Leam more 2
Save the mock server URL as an environment variable Note: This will create a new environment containing the URL.
Make mock server private ey

Simulate fixed network delay

Figure A.3 — Creating a mock server

6. The next step is to add an example to the request using the Options menu. We will be using
the dynamic variables in Postman to generate random values in our response. This can be a

static response as well. We will be using the following response in our example:

{ "age": {{$randomInt}},

"count": {{$randomInt}},

"name": "{{$randomLastName}}"

7. The final step is to create a new request and use the mock server URL to make the API call.

Figure A.4 shows this in action.

Demo_Personal_Workspace New Import GET Mock dem B3 packt Mock [e8] Mock dem £T Mocked ref + o Packt testing v

v

v Packt Testing Demo 1
v [GET Requests GET v https://7d0dcb82-69e5-4b03-9093-42df69f771f8. mock.pstmn.io?name=packt

+ = 000 C Mocked reponse

ctT GET Request Example .
Paramse Auth Headers (6) Body Pre-req. Tests Settings Cookies
> [GitHub Demo requests
Query Params
v [Packt Mock Demo
= KEY VALUE DESCRIPTION eoo Bulk Edit
v ET Mock demo request
Mock demo request name packt
GET Mocked reponse
Body v € 2000k 1552ms 452B Save Response v
Pretty Raw Preview Visualize HTML v = B Q
1 q
2 "age": 719,
3 “count": 941,
4 "name": "Narciso"
5 § |

Figure A.4 — Mocked response

By using a combination of environment and dynamic variables, it is possible to simulate almost any
kind of APl response in Postman. Let us now look at a few important considerations when employing

mocks.

