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Preface

This text was developed for a Strength of Materials course I have taught
at the University of California, Berkeley for more than 15 years. The stu-
dents in this course are typically second-semester Sophomores and first-
semester Juniors. They have already studied one semester of mechanics
in the Physics Department and had a separate two-unit engineering
course in statics, and most have also completed or are concurrently
completing a four-semester mathematics sequence in calculus, linear
algebra, and ordinary and partial differential equations. Additionally
they have already completed a laboratory course on materials. With
regard to this background, the essential prerequisites for this text are
the basic physics course in mechanics and the mathematics background
(elementary one- and multi-dimensional integration, linear ordinary
differential equations with constant coefficients, introduction to partial
differentiation, and concepts of matrices and eigen-problems). The addi-
tional background is helpful but not required. While there is a wealth
of texts appropriate for such a course, they uniformly leave much to be
desired by focusing heavily on special techniques of analysis overlaid with
a dizzying array of examples, as opposed to focusing on basic principles
of mechanics. The outlook of such books is perfectly valid and serves a
useful purpose, but does not place students in a good position for higher
studies.

The goal of this text is to provide a self-contained, concise description
of the main material of this type of course in a modern way. The emphasis
is upon kinematic relations and assumptions, equilibrium relations, con-
stitutive relations, and the construction of appropriate sets of equations
in a manner in which the underlying assumptions are clearly exposed.
The preparation given puts weight upon model development as opposed
to solution technique. This is not to say that problem-solving is not
a large part of the material presented, but it does mean that “solving
a problem” involves two key items: the formulation of the governing
equations of a model, and then their solution. A central motivation for
placing emphasis upon the formulation of governing equations is that
many problems, and especially many interesting problems, first require
modeling before solution. Often such problems are not amenable to hand
solution, and thus they are solved numerically. In well-posed numerical
computations one needs a clear definition of a complete set of equations
with boundary conditions. For effective further studies in mechanics
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this viewpoint is essential, and thus the presentation, in this regard,
is strongly influenced by the need to adequately prepare students for
further study in modern methods.

Sanjay Govindjee
Berkeley and Zürich
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Mechanics is the paradise of mathematical science,
because here we come to the fruits of mathematics

Leonardo da Vinci

Theory is the captain, practice the soldier

Leonardo da Vinci

Mechanics is not a spectator sport

Sanjay Govindjee
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Introduction

The reliable design of many engineering systems is connected with
their ability to sustain the demands put upon them. These demands
can come in many forms, such as the high temperatures seen inside
gas turbines, excessive forces from earthquakes, or simply the daily
demands of traffic loading on a bridge. In this book we will exam the
behavior of mechanical systems subjected to various load systems. In
particular we will be interested in constructing theories which describe
the deformation of mechanical systems in states of static equilibrium.
With these theories we will examine and try to understand how common
load-carrying systems function and what are their load-carrying limits.
To come to a fundamental understanding of all load-carrying systems is
a very large endeavor. Thus, we will in this introductory presentation
restrict ourselves to classes of problems that are both accessible with
an elementary level of analysis and at the same time are useful to
everyday engineering practice. More specifically, we will consider the
behavior of slender structural systems under the action of axial forces,
torsional loads, and bending loads. The presentation will mainly focus on
elastic systems, but on occasion we will discuss the behavior of plastically
deforming systems.
The subject matter of this book is not unlike many other subjects

in engineering science. At a high level, the elements of the theories
we will develop and how they are manipulated and used are common
to many areas of engineering. We will, like in these other areas, need
to work with concepts that describe the measurable state of a system
independent of its material composition or condition of equilibrium.
We will encounter principles of conservation and balance that apply to
all systems independent of their composition or measurable state. And
lastly, we will be forced to introduce relations that account directly for
a system’s material composition. For us, these three concepts will be
the concepts of kinematics, the science of the description of motion;
statics, the science of forces and their equilibrium; and constitutive
relations, the connection between kinematical quantities and the forces
that induce them. If as one reads this book one pays careful attention
to when these concepts are being introduced and utilized, then one will
gain considerable advantage when the time comes to apply them to the
solution of individual problems. It is easy to confuse which ideas have
been combined to create a derived result, but if one can commit these
to memory one will be much better served.
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For the remainder of this introductory chapter we will restate some
basic concepts from elementary physics that we will require throughout
the reminder of the book. In particular, we will review some concepts of
force systems and equilibrium. The reader who is already comfortable
with such notions, can skip directly to Chapter 2 without any loss.

1.1 Force systems

Forces are the agents that cause changes in a system. In this book
we are concerned with the deformation state of solids and thus we
will be concerned with traditional forces – those that cause motion
of a system. In general, forces are abstract quantities that cannot be
directly measured. Their existence is confirmed only via the changes
they produce. Notwithstanding, all of us have an intuitive feeling for
forces, and we will take advantage of this and not dwell any further
upon their philosophical aspects.

In order to move or deform a body or system one needs to apply forces
to it. In this regard there are two basic ways in which one can apply a
force:

(1) on the surface of a body with a surface traction, a force per unit
area, or

(2) throughout the volume of a body with a body force, a force per
unit volume.

Common examples of surface tractions would be, for example, drag
forces on a vehicle, the pressure between your feet and the ground when
you walk, or the forces between flowing water and turbine blades in
a generator in a hydroelectric dam. Examples of body forces include
gravitational forces and magnetic forces.

A fundamental postulate of mechanics further states that for every
force system acting on a body there is an equal and opposite force
system acting on the body which causes the forces. In various forms,
this reaction force principle is known as Newton’s Third Law.

1.1.1 Units

The units of force in the SI system (Le Système International d’Unités)
are Newtons (N). This is a derived unit from those of mass, length,
and time. 1 Newton is equal to 1 kilogram times 1 meter per second
squared: 1 N = 1 kg 1 m/s2. In the USCS (United States Customary
System) the units of force are pounds-force (or simply pounds) and
are denoted by the abbreviations lb or lbf. In this system 1 pound-
force is exactly equal to 1 pound-mass times 32.1740 feet per second
squared: 1 lbf = 1 lbm 32.1740 ft/s2. In the USCS the pound-mass (lbm)
is defined exactly in terms of the kilogram – 0.45359237 kg = 1 lbm.
When using the USCS one should exercise some caution, due to the
occasionally used unit of slug for mass. To accelerate a mass of 1 slug
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1 foot per second squared requires a force of 1 pound-force. Surface
tractions have dimensions of force per unit area, and body forces have
dimensions of force per unit volume. Thus, for example, in the SI system
traction has units of Newtons per meter squared, which is also known
as a Pascal (Pa).

1.2 Characterization of force systems

When dealing with many engineering problems it is often inconvenient to
treat all the details of a force system. In particular, it can be cumbersome
to always take into account the fact that forces are distributed over finite
areas and volumes. It is more convenient to have a characterization of
a force system in terms of some vector (or scalar) quantities acting at
a single point. This type of characterization of a force system is known
as a statically equivalent force system. It is an equivalent description of
a force system within certain assumptions. Most importantly, efficient
analysis can be carried out using statically equivalent force systems and
in many cases without any measurable loss of accuracy.

1.2.1 Distributed forces

Distributed forces are described in general by vector-valued functions
over surfaces and volumes. For example, Fig. 1.1(a) shows a homoge-
neous rigid body of density ρ under the action of a gravitational field
with acceleration g in the minus z-direction. The force system acting
on the body is a body force which is given by a constant vector-valued
function, b = −ρgez. At each point in the body, the magnitude of b
indicates the local force per unit volume acting on the material at that
point, and the direction of b indicates the direction in which this force
acts. As a second example, consider the dam shown in Fig. 1.1(b). The
water applies a force which is distributed on the face of the dam. The
force can be shown to vary linearly from the top of the dam to the
bottom, and further shown to act perpendicular to the face. It can be
described by the vector-valued function t(y, z) = ρg(h− z)ex, where ρ
is the density of the water and g is the gravitational constant. The
magnitude of t at each point (y, z) on the face of the dam gives the
local force per unit area acting on the material at that point, and the
direction of t gives the direction of the force. In these examples, the form
of the distributed force function is rather simple and can easily be used
in analysis. However, to answer certain questions about these systems,
knowing the details of the force distribution is not necessary and can
make the analysis somewhat cumbersome.
A simple characterization of a force system can be had by considering

only the total force given by the system. For example, for the rigid body
in Fig. 1.1(a) this would correspond to the total weight of the body –
the volume of the body times its density and the gravitational constant,
W = V ρg. For the dam in Fig. 1.1(b) we need to account for the fact that
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(b) Dam under the influence of a distributed surface force
system.Fig. 1.1 Systems with distributed

loads.

the traction is a function of position on the dam face. Local to each point
is a different amount of force, and these amounts need to be summed.
The appropriate mathematical device in this regard is integration, and
the total resultant force will be R =

∫
A
t(y, z) dydz = (1/2)h2Lρg. One

way of thinking about the total resultant force is that it represents
the (spatial) average of the force system times the area over which
it acts. The characterization of a force system solely by its resultant
force is quite useful, but in many situations too crude for effective
analysis. One important refining concept is that of the first moment of a
force distribution or simply moment. Moments of functions are defined
relative to reference points which can be freely chosen. If we take as our
reference point a point labeled xo, then an effective definition of the
(first) moment of a surface force system about this point is given by
Mo =

∫
A
(x− xo)× t(x) dA. This moment gives additional information

about the spatial distribution of the force system.

Remarks:

(1) Taken together, {R,Mo} give us two parameters to characterize
a force system – at least approximately.

(2) If the force system involves body forces, then the appropriate
definitions are R =

∫
V
b(x) dV and Mo =

∫
V
(x− xo)× b(x) dV .

(3) Knowledge of {R,M o} is sufficient to fully characterize the effects
of a force system acting on a rigid body.
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(4) Force systems where Mo is zero are called single force systems
or point force systems. Force systems where R is zero are called
force couple systems. If both R and M o are zero, then the force
system is said to be self-equilibrated or in equilibrium.

1.2.2 Equivalent forces systems

The characterization of a force system in terms of a resultant force and
a moment is dependent upon the choice of a reference point. Since the
reference point is arbitrary, the representation is not unique. If we choose
another reference point xp = xo + a, where a is the vector from xo to
the new reference point xp, then it is easy to see that the new charac-
terization of our force system is {R,Mp}, where Mp = M o − a×R.
This new characterization is considered equivalent to the first.

Remarks:

(1) Note that if the force resultant, R, is zero, then the first moment
of the force system is independent of the reference point. In
particular, this tells us that a force couple system will always be
a force couple systems regardless of reference point.

(2) A force system which is in equilibrium will always be independent
of the reference point.

(3) All the points along the line x(μ) = xo + μnR have the same
moment resultant characterization, where μ ∈ R and nR =
R/‖R‖; this is the locus of points through xo in the direction
of R.

(4) The notion of equivalent must be carefully understood. The
nomenclature stems from the study of rigid body mechanics. In the
framework of rigid bodies, equivalent force systems have the exact
same effect on a given rigid body. In a deformable body this is not
true. What is true, however, is that if carefully chosen and inter-
preted, equivalent force systems will have almost the same effect on
a given deformable body. We will see this more clearly later in the
book.

Example 1.1

Equivalent forces systems. As an example, consider the bar shown
in Fig. 1.2(a). The bar is loaded with a constant distributed load. In
Fig. 1.2(b) one possible characterization of the force system is shown. It
consists of a single force acting at a point a distance b/2 from the end of
the bar. In Fig. 1.2(c) a second equivalent characterization of the force
system is shown. All three forces systems are equivalent according to our
definition of equivalence. If the bar is rigid, then all three force systems
will have the exact same effect on the behavior of the bar. If, however,
the bar is deformable then the three systems will all affect the bar in
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(a) Body under the action of
a distributed load.

b

q

(b) Single force equivalent
system.

qb

b/2

(c) Second characterization of the force system.

qb

qb2/2

Fig. 1.2 Three equivalent force sys-
tems.

different ways. This difference will manifest itself primarily in the region
of length b from the right-hand end of the bar. At distances greater than
b from the end of the bar, the effect of the three loading systems will be
nearly identical.

Remarks:

(1) The load shown in Fig. 1.2(a) is an example of a parallel dis-
tributed loading system. That is, at every point where the load
acts, the load points in the same (constant) direction in space.
For such loading systems, one can always find a single force
characterization of the loading (as shown in Fig. 1.2(b)). The
point where this single force acts is the centroid of the loading. For
example, if the distributed force is given as t = te over an area A
where e is a constant vector, then the single force equivalent load
acts at the point xR =

∫
A
tx dA/

∫
A
t dA. In the case where t is

also a constant, then xR coincides with the geometric centroid of
the area A, xc = (1/A)

∫
A
x dA.

1.3 Work and power

The effect of forces is often characterized by the scalar concepts of work
and power. The power of a force is defined as the scalar product of the
force and the velocity of the material point where it acts: P = F · v.
For distributed loads, the power is defined by P =

∫
A
t · v dA and P =∫

V
b · v dV . The work of a force system is defined as the time integral

of the power over the time interval of application of the force system:
W =

∫
I
P(t) dt, where I is some interval of time.
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Remarks:

(1) The dimensions of energy, or work, are force times distance. In the
SI system the unit is typically Joules (J), where 1 Joule is equal to
1 Newton times 1 meter. In the USCS the typical unit of energy
is foot-pound (ft-lbf).

(2) The dimensions of power are energy per unit time or force times
velocity. In the SI system the unit is typically Watts (W), where
1 Watt is equal to 1 Joule per second. In the USCS the typical
unit of power is foot-pounds per second (ft-lbf/s), and 550 ft-lbf/s
equals 1 horsepower (hp).

(3) The expression for the work done by a force can be rewritten in
terms of a path integral in space. Suppose we have a body with
a force acting on a given point and that at the start of the time
interval of interest the point is located in space at xP . At the end
of the time interval let us assume our point is located at xQ. In
this case we can re-express the work of the force as:

W =

∫
I

F · vdt =
∫
I

F · dx
dt

dt =

∫ xQ

xP

F · dx. (1.1)

In general, the value of this integral is dependent upon the path
taken from xP to xQ.

1.3.1 Conservative forces

A special class of important force systems are conservative forces. Con-
servative force systems are those where the path integral form of the
work expression is path independent. In this case, it can be shown that
the force F must be a gradient of a scalar function; i.e. we can always
write (for conservative force systems) that

F = −∂V

∂x
. (1.2)

Further, we can also write that the work of the force is given by
W = −V (xQ) + V (xP ).

Remarks:

(1) The function V is called the potential of the loading system, or
alternatively, the potential energy of the load.

(2) The introduction of the minus sign in eqn (1.2) is by convention.

(3) A common example would be the potential energy of a weight
near the surface of the earth. The gravitational loading system is
conservative and V (x) = Wz, where W is the weight of the object
and z is its elevation above the surface of the earth.

(4) The absolute value of the potential energy does not play any role in
the way we use the concept of potential energy. It is easily observed
that if we add an arbitrary constant to the value of the potential
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energy, then it does not effect the force or the work expression –
as the constant always drops out.

1.3.2 Conservative systems

In mechanics one also has the concept of conservative systems. Con-
servative systems are those that conserve their total energy; i.e. they
do not dissipate energy. A common example of a conservative system
is a gravitational pendulum. In such a system, the energy changes
continuously from kinetic energy to potential energy of the mass of
the pendulum, but at all times the sum of the two is constant. Later
on, we will deal with deformable bodies under the action of various
conservative loading systems. When we assume the bodies to be elastic
(without dissipation) then we will be able to exploit the notion of energy
conservation as long as we consider our system to be the deformable body
plus the loading system.

1.4 Static equilibrium

Static equilibrium of a material system is a property of the material
system and the force system acting upon it. A system is in a state
of static equilibrium if all material points in the system have zero
velocity and remain so as long as the force system acting on the material
system does not change. Determining the conditions required for a static
equilibrium is an important part of the analysis of many engineering
systems, as many systems are designed to be in a state of equilibrium. To
actually determine working relations, we will need to make a hypothesis
about equilibrium.

1.4.1 Equilibrium of a body

The central axiom of mechanics states:

For a body to be in static equilibrium the resultant force and moment acting
on every subset of the body must be equal to zero.

Thus, if we have a body Ω, then for every subset B ⊂ Ω with a
force system acting on B which is characterized by {R,Mo}B, we must
have {R,M o}B = {0,0}. Another way of saying the same thing is that
the resultant force system acting on any part of a body must be in
equilibrium for the whole body to be in static equilibrium. This axiom
takes as its origin Newton’s Second Law.

1.4.2 Virtual work and virtual power

The concept of static equilibrium is very intuitive – the system in ques-
tion is unchanging, i.e. static. The determination of static equilibrium
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given above is essentially vectorial in that for static equilibrium we must
ensure that two vector valued quantities are zero (for every subset of a
body). There is also an equivalent scalar test for equilibrium. It is known
as the principle of virtual power or virtual work. The virtual power of
a force system is defined as the power associated with the force system
when the points of the body take on arbitrary velocities v̄. The virtual
work of a force system is defined as the work associated with the force
system when the points of the body take on arbitrary displacements ū;
i.e. P̄ = F · v̄ or W̄ = F · ū. It can be shown that the virtual power (or
work) of a force system is identically equal to zero for all virtual velocity
fields (virtual displacement fields) if and only if the conditions for a
static equilibrium are met. This statement is known as the Principle of
Virtual Power (Work). Because of the if-and-only-if condition, we can
use the Principle of Virtual Power (Work) as an alternative means for
studying the equilibrium of material systems. In the latter part of this
book we will see how to exploit this principle and a closely related one
to solve a number of different classes of problems.

1.5 Equilibrium of subsets: Free-body
diagrams

The fact that all subsets of a system must be in equilibrium for a system
to be in equilibrium leads to the concept of internal forces. Whenever
we consider a subset of a body we note that on the boundary of this
subset there must be surface forces due to its interaction with the rest
of the system. These forces are called internal forces, and they can be
characterized in terms of resultants which are simply called internal
forces and moments. The boundaries of such a subset are often called
section cuts, and the process of splitting a body along such an imaginary
boundary is called making a section cut. Note that a section cut need
not be straight. If we have a diagram of a part of a body that has been
isolated from the remainder by section cuts and the diagram shows the
forces and moments acting on the part, then we call the diagram a free-
body diagram. As we shall see in this book, internal forces and moments
are key to understanding how load-bearing bodies behave.

1.5.1 Internal force diagram

The internal force (moment) diagram for a body is a method of dis-
playing information about a body that gives one a snapshot of how
it carries its load. It is the graph of the internal force in the body
parameterized by the location of a section cut. For our purposes we
will adhere to the following sign convention: tension will correspond
to positive internal forces, and compression will correspond to negative
internal forces. This is predicated on the following convention: a force
that acts in the direction of the outward normal to a section cut is
considered positive; else it is negative.
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Example 1.2

End-loaded bar. Consider the bar shown in Fig. 1.3 that is loaded with
a force F in the x-direction and restrained from motion at the left end.
Find the internal forces on a section cut located at x = L/2 if the entire
system is to be in equilibrium.

x
F

L

Fig. 1.3 End-loaded bar.

Solution
Make a vertical section cut at x = L/2 and redraw the body in separated
form. On the exposed (imaginary) surfaces place the unknown resultants
(three in the two-dimensional case); see Fig. 1.4.

Fx

y

z

V

V

MM
R

Fig. 1.4 End-loaded bar with section
cut.

Now apply our axiom for static equilibrium to the subset of the body
shown on the right: ∑

Fx = F −R = 0∑
Fy = V = 0∑
Mz = −M = 0

(1.3)

This implies

R(L/2) = F, V (L/2) = 0, and M(L/2) = 0. (1.4)

x

L − a

F1

a

F2

Fig. 1.5 Bar with two point forces.

Example 1.3

Bar with two point forces. Consider the bar shown in Fig. 1.5. Find
R(x) the axial internal force as a function of x when the bar is in static
equilibrium.

Solution
Make successive section cuts at various values of x, and sum the forces
in the x-direction to obtain representative values of R. When one does
this it is easy to see that all section cuts between x = 0 and x = a give
the same result, and all section cuts between x = a and x = L give the
same result. The final solution is shown in Fig. 1.6.

x

F1

a L − a

R(x)

x

F1

F2 + F1

F2

Fig. 1.6 Internal-force diagram for
bar with two point forces.

x

L

5 N

Fig. 1.7 Compression of a bar.

Example 1.4

Compression of a bar. Find the internal axial force R(x) for the bar
shown in Fig. 1.7, assuming static equilibrium.
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Solution
One should first recognize that the internal forces will be a constant. This
should be evident, because no matter where the section cut is made, the
free-body diagram will look the same in terms of total loads. One such
cut is made in Fig. 1.8.

R
5 N

Fig. 1.8 Compression of a bar with
section cut.

Thus: ∑
Fx = 0 ⇒ R(x) = −5N (1.5)

Remarks:

(1) Note that one should in general draw the internal forces in the
positive sense, and then let the signs take care of themselves. Here,
the negative sign of R(x) tells us that the bar is in compression
at all points x.

1.6 Dimensional homogeneity

As we move forward and treat more and more complex problems, the
concept of dimensional homogeneity becomes an important tool for
double checking results. The concept of dimensional homogeneity simply
states that all terms in an equation must have the same dimensions. Thus
if one has an equation

a = b , (1.6)

then for this equation to make sense the dimensions of a and the
dimensions of b must be the same; for example, if a is mass times
length, then so must b. When numbers are used this also translates
to the requirement that the units of a must match the units of b. The
requirement of dimensional homogeneity can be used at any stage in an
analysis to check for errors, since all equations must be dimensionally
homogeneous.

Exercises

(1.1) Make a free-body diagram of your pencil, isolating
it from the paper and your hand. Show appropriate
forces and moments imparted by your hand and
the paper. Omit ones that you think are zero.

(1.2) Make a free-body diagram of a bicycle, isolating it
from the road and the rider. Omit support forces
and moments that you think are zero.

(1.3) Make a free-body diagram of an airplane wing dur-
ing flight. Isolate the wing from the fuselage and

the aerodynamic loads. Omit forces and moments
that you think are zero.

(1.4) What type of internal forces and moments do you
think are present in the drive axle of a rear-wheel
drive car?

(1.5) For the crane following assign appropriate vari-
ables to the dimensions and then provide
expressions for the internal forces and moments at
sections a–a and b–b.
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a a

b b

W2

W1

(1.6) For the following cantilever beam shown, deter-
mine the support reactions at the built-in end.
Define any needed parameters for the analysis.

M

P

(1.7) Sketch the internal force/moment diagrams for
Exercise 1.6.

(1.8) Sketch the internal force diagram for the rod shown
below.

4P

aba

P
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Tension–Compression
Bars: The
One-Dimensional Case

One-dimensional tension–compression is a good place to begin to grasp
the concepts of mechanics. It offers a relatively familiar and simple start-
ing point for higher studies. In this chapter we will look at the essential
features of mechanics problems. Our attention will be restricted to one-
dimensional tension–compression problems so that we can concentrate
on the fundamental concepts of mechanics. All of the remaining problem
classes with which we will deal will mimic what we do here; the only real
difference will be the geometric complexity. Our model system will be
a bar with all loads applied in the x-direction and all motion occurring
in the x direction, where x is the coordinate direction aligned with the
long axis of the bar. Our goal will be a complete description of the bar’s
mechanical response to load. Before beginning, it is noted that even
this very simple setting arises quite often in engineering and science.
Figures 2.1 and 2.2 illustrate a few common examples.

2.1 Displacement field and strain

The first observation of deformable bodies is that when loads are applied
to them they move; see Fig. 2.3. In one dimension the motion of a body is
completely characterized by the x-displacement of the material particles.
In general this displacement will be a function of the material particle
which we will identify by its position. Thus the displacement field will
by given by a function

u(x). (2.1)

To each point x in a one-dimensional body there is a corresponding
displacement u. In Fig. 2.3, points at the wall on the left have zero
displacement and those at the end where the load is applied move more.
The second observation is that loads are associated with differential

motion. In Fig. 2.3, for example, the difference in motion at the two
ends of the bar increases with increasing load. This differential motion
Δ = u(L)− u(0) is closely related to the important concept of strain. In
its simplest incarnation we say that the strain in a body is the change in
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(a) Chair leg in axial compression.

(b) Deck support in compression with a point
force applied in the middle.

(c) A nail being struck by a hammer. (d) A wood clamp. The tightening screw in
the clamp is in compression.

Fig. 2.1 Examples of physical systems
where the mechanical loads are primar-
ily in the axial direction.

length of a body divided by the length of the body. Mathematically this
amounts to the engineer’s mantra of Delta ell over ell as exemplified by
Fig. 2.3. Physically, strain is a measure of relative deformation and is
thus only non-zero when the motion is not rigid.

2.1.1 Units

The dimensions of strain are length per unit length. Thus strain is non-
dimensional and does not require the specification of units. Since strains
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(c) Some of the structural elements of this
front loader.

(a) A roof strut that holds open a car
hatch.

(d) A tree. The tree trunk is in
compression from its own weight and
the branches provide a distributed
axial load.

(b) Columns that support a freeway.

Fig. 2.2 Additional examples of phys-
ical systems where the mechanical
loads are primarily in the axial
direction.

are often of the order of 10−6 one often sees the notation μstrain when
discussing strain values; this is especially the case when dealing with
metals in the elastic range. For other materials such as elastomers and
biological materials, strains can easily be order 1.

L

L

P

ΔL

ε = ΔL/LAverage strain:  

Fig. 2.3 Definition of average strain.

2.1.2 Strain at a point

The definition of strain that we have given is quite common and useful
in many contexts. However, it is somewhat limiting and we need to
generalize it a bit even for one dimensional problems. It will be more
useful to us to have a pointwise definition of strain – just as our definition
of displacement is pointwise.
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u(x)

x

u(x +   x)

(Unspecified loads)

Change in length of this segment = u(x +   x)Δ − u(x)

Δ

x

Δx

Fig. 2.4 Construction for the deriva-
tion of pointwise strain in one dimen-
sion.

To obtain an expression for strain at a point, consider what happens to
a segment of our body that starts at x and ends at x+Δx. By looking
at the change in length of this segment divided by its original length
we will come to an expression for average strain in the x direction for
the segment itself; see Fig. 2.4. By taking the limit at Δx → 0 we will
then obtain an expression for strain at a point. The overall x-direction
elongation of this particular segment is u(x+Δx)− u(x). The average
strain of the segment is then

ε =
u(x+Δx)− u(x)

Δx
. (2.2)

If we take the limit as Δx → 0 we will have a notion of strain at a point.
The limit gives us

ε(x) =
du

dx
. (2.3)

This is the definition of one-dimensional strain at a point.

Remarks:

(1) The sign convention for strain indicates that positive values of
strain correspond to the elongation of material, and negative
values correspond to the contraction of material.

(2) The strain-displacement relation ε = du/dx will be our primary
kinematic relation for one-dimensional problems.
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2.2 Stress

Motion is caused by forces, and relative motion, strain, is properly
related to stress. In one dimension we will restrict attention to forces
that are acting parallel to the x-direction. Our working definition of
stress will be:

The force per unit area acting on a section cut is the stress on the section cut.

In other words, the total force on a section divided by the area over which
it acts is what we will define to be stress. This definition lends itself
naturally to being a definition valid at a point along the bar, since the
section cut itself is parameterized by its location along the bar (i.e. the
x coordinate), as is the internal force. Mathematically one has

σ(x) =
R(x)

A(x)
; (2.4)

see Fig. 2.5, where A is the cross-sectional area and R is the internal
force. A(x)

R(x)

(Unspecified Loads)
Section Cut

Fig. 2.5 Construction for definition of
stress.

Remarks:

(1) By our sign convention for internal force we see that negative
stresses correspond to compression and positive stresses to
tension.

2.2.1 Units

The dimensions of stress are force per unit area. In the USCS the unit
is most commonly pounds per square inch (psi) or thousand pounds per
square inch (ksi). The international convention is commonly Newtons
per square millimeter or million Newtons per square meter, also known
as mega-Pascals (MPa). Note that 1MPa = 1 N

mm2 .

2.2.2 Pointwise equilibrium

Stresses are clearly related to forces; thus it should be possible to express
equilibrium in terms of stresses. Doing so will bring us to an expression
for equilibrium at a point in the bar as opposed to equilibrium of the
overall bar (sometimes referred to as global equilibrium). Our method
of arriving at such an expression will be similar to our construction
for strains. Consider first a segment cut from our rod and apply the
requirement of force equilibrium to it; see Fig. 2.6.

F

x

x

Δx

R(x)
b(x)

ΔR(x +    x)

b(x) −− applied force per
unit length

Fig. 2.6 Construction for deriving the
equilibrium equation in one dimension.
Applied loads include distributed loads
and point force.

∑
Fx = 0 = R(x+Δx) + b(x)Δx−R(x), (2.5)

where b(x) are applied loads per unit length along the length of the bar
(units = force/length). If we divide through by Δx and take the limit
as Δx → 0 we will arrive at a pointwise expression of equilibrium.



18 Tension–Compression Bars: The One-Dimensional Case

dR

dx
+ b = 0. (2.6)

Utilizing our definition of stress we arrive at an expression of equilibrium
at a point in terms of stresses:

d

dx
(σA) + b = 0. (2.7)

Remarks:

(1) The determination of the stress is made through the internal force
field which can only be determined through the use of equilibrium.

Fig. 2.7 Test specimen for testing the
tensile properties of Aluminum; the
specimen is approximately 0.5 inches in
diameter.

2.3 Constitutive relations

Our equilibrium eqn (2.7) (equivalently eqn (2.6)) and our kinematic
relation eqn (2.3) constitute two basic elements of any mechanical theory.
To close the system of equations requires an expression connecting
stresses to strains. The constitutive behavior of materials is the link
between stress and strain. We will have occasion to use several different
material models: linear elastic, non-linear elastic, elastic–plastic, and
thermo-elastic. In general, constitutive properties (relations or equa-
tions) are determined from experimental investigation by taking test
specimens and subjecting them to known stresses or strains and measur-
ing the other quantity. Figures 2.7 and 2.8 show example test specimens
that are used for such testing.

Fig. 2.8 Test specimen for testing
the compressive properties of concrete;
they are 6 by 12 inches.

Table 2.1 Young’s moduli for some
materials.

Material E (psi) E (GPa)

Tungsten 50× 106 350
Steel 30× 106 210
Aluminum 10× 106 70
Wood 2× 106 14

2.3.1 One-dimensional Hooke’s Law

The simplest material law is Hooke’s Law. It supposes a linear relation
between stress and strain. In this setting, the slope of the stress–strain
response curve for a material in a uniaxial test is called the Young’s
modulus; see Fig. 2.9. It is a material (constitutive) property; i.e. it is
independent of equilibrium and kinematic considerations. Expressed in
equation form, it says:

σ = Eε, (2.8)

where E is the symbol for Young’s modulus. We will call this model linear
elastic, since it represents elastic behavior and is linear in the variables
that appear. Typical material properties are shown in Table 2.1.

Table 2.2 Coefficients of thermal
expansion for some materials.

Material α (μstrain / oC)

Iron 12
Diamond 1.2
Aluminum 24
Graphite −0.6

In the presence of temperature changes the constitutive equation takes
on an added term and can be expressed as

ε =
σ

E
+ αΔT, (2.9)

where α is a material property called the coefficient of thermal expansion,
and ΔT is the change in temperature relative to some reference value;
thus the last term (αΔT ) represents the thermal strain. We will call this
model linear thermo-elastic. Typical values of α are given in Table 2.2.
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2.3.2 Additional constitutive behaviors

The behavior described by Hooke’s Law is known as linear elastic.
The response of the stress to strain is linear and, further, upon
reversal of the strain the unloading curve follows the loading curve;
see Fig. 2.9. The linear thermo-elastic model has the same properties.
Another common one-dimensional material response is elastic–plastic.
Figure 2.10 shows the schematics of two such possible responses – i.e.
one for a high-strength steel (HSS), and one for a low-carbon steel.
Other examples of one-dimensional behavior are ceramics, which often
are very brittle and possess a fracture stress and elastomers which
can undergo very large strains without problem; see Fig. 2.11. The
unloading curves for these last two materials follow the loading curves,
and thus are termed elastic materials. The unloading curve for the
elastic–plastic material is more complex. For our studies in this text
we will work with an idealization of elastic–plastic behavior which is
called elastic–perfectly plastic. It is shown in Fig. 2.12. Its characteristic
features are that past the yield point the unloading curve does not
follow the loading curve. Unloading from a state of yield gives rise
to an elastic behavior but shifted with respect to the origin. Further
compressive loading causes a reverse yield of the material.

E

1

ε

σ

Fig. 2.9 Linear elastic behavior.

Yield Point

E

1

ε

σ HS
Steel

ultimate
point

Low Carbon
Steel

Fracture Point

Fig. 2.10 Schematic elastic–plastic re-
sponse of a low-carbon steel and a high-
strength steel.

2.4 A one-dimensional theory
of mechanical response

We have now defined the essential features of a one-dimensional mechan-
ical system. The primary ingredients are a displacement field u(x), a
strain field ε(x), a stress field σ(x), a kinematic relation, an equilibrium
expression, and a constitutive law. The basic one-dimensional problem
we will deal with is this: Given the geometry of a one-dimensional
body, the loads, and the boundary conditions, find the displacement,
strain, and stress fields for a given constitutive specification. To solve
such problems we will systematically apply the principles of kinematics,
equilibrium, and constitutive relations.

E

1

ε

σ

Ceramics

Elastomers

1000%
Strain

Fig. 2.11 Schematicbrittle–elasticbe-
havior and elastomer behavior.

2.4.1 Axial deformation of bars: Examples

As our first example application we will consider the bar shown in
Fig. 2.13 that is loaded by a generic distributed load and some point
forces. The question we will first consider is: What is the deflection at
the end of the bar for a given set of loads? The central characteristic of
our unknown is kinematic, and we are asked to relate it to the forces
on the system. The only connection that we have between these two
concepts is the constitutive relation. For this example we will assume a
linear elastic material. Let us begin with kinematics. The strain in the
bar is

ε =
du

dx
. (2.10)
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If one integrates this over the length of the bar, one will obtain the net
change in length of the bar:

Δ = u(L)− u(0) =

∫ L

0

du

dx
dx =

∫ L

0

ε dx. (2.11)

σ

E

1

1

E

ε
plastic strain

recoverable
(elastic) strain

Fig. 2.12 Idealized elastic–perfectly
plastic behavior.

Since the bar is built-in at x = 0 we have the boundary condition
u(0) = 0; note, the quantity of interest Δ = u(L). We can now apply
our constitutive rule

σ(x) = E(x)ε(x) (2.12)

to give

Δ =

∫ L

0

σ

E
dx. (2.13)

x

P1

A(x) and E(x) given
P2

b(x)

Fig. 2.13 Generic one-dimensional bar
loaded axially.

Using the definition of stress

σ(x) =
R(x)

A(x)
(2.14)

gives the “final result”:

Δ =

∫ L

0

R(x)

A(x)E(x)
dx. (2.15)

Remarks:

(1) So far we have used our kinematic relation, our constitutive rela-
tions, and our definition of stress. To actually use the final result
we need to specify more precisely what the loads on the bar are
so that we can apply equilibrium to determine the internal forces
R(x).

Example 2.1

End-loaded bar. For the end-loaded bar (see Fig. 2.3) find the deflection
of the end of the bar.

Solution
An application of statics tells us that R(x) = P . If the bar is materially
homogeneous (i.e. E(x) = E a constant) and prismatic (i.e. A(x) = A a
constant) then we have that

Δ =
P

AE

∫ L

0

dx =
PL

AE
. (2.16)
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Remarks:

(1) The quantity k = P/Δ = AE/L is called the axial stiffness of the
bar and represents the amount of force required to induce a unit
displacement on the end of the bar.

(2) The quantity f = Δ/P = L/AE is called the flexibility of the bar
and represents the amount of displacement that will result from
the application of a unit force.

Example 2.2

Gravity-loaded bar. Assume our bar is acted upon by gravitational forces
as shown in Fig. 2.14. Let the weight density of the bar be γ, which will
have dimensions of force per unit volume. Assume A and E are constant.
Find the deflection of the end of the bar.

Solution
The end deflection will be given by

x

L

g

Fig. 2.14 One-dimensional bar under
the action of gravity.

Δ =

∫ L

0

R(x)

A(x)E(x)
dx =

1

AE

∫ L

0

R(x) dx. (2.17)

To determine the internal force we need to apply equilibrium. One way to
find R(x) is to solve the governing ordinary differential equation (ODE),
eqn (2.6). At the moment let us not use this approach, but rather, take
a direct approach of making section cuts and explicitly summing forces
in the x-direction. Make a section cut at an arbitrary location x and
sum the forces on the lower section; see Fig. 2.15. This tells us that
R(x) = (L− x)Aγ. Inserting into the previous equation gives us g

R(x)

L
 −

 x
x

Fig. 2.15 One-dimensional bar under
the action of gravity with section cut.

Δ =
1

AE

∫ L

0

R(x) dx =
γL2

2E
. (2.18)

Remarks:

(1) In coming to the last result we have used the boundary condition
at x = 0, viz., u(0) = 0.

(2) To find the deflection at any other point in the bar we simply
integrate from 0 to that point; i.e.

u(x) = u(x)− u(0)︸︷︷︸
0

=
1

AE

∫ x

0

Aγ(L− x) dx =
γ

E
(Lx− x2/2).

(2.19)

(3) These past two examples rely on knowing what R(x) is through
the application of statics. This can only be achieved for statically
determinate problems. When the problem is indeterminate the
procedure we have followed still holds true, but there is an added
complication to which one must attend.
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Example 2.3

Statically indeterminate bar with a point load. Consider the bar as shown
in Fig. 2.16. Assume E and A are constants and determine the internal
force, stress, strain, and displacement fields.

x

P

P RR

(Free-body diagram)
1 2

a L−a

Fig. 2.16 Statically indeterminate one-
dimensional bar.

Solution
The free-body diagram for the bar shows two unknown reactions, but
there is only one meaningful equilibrium equation for us to use. Thus the
problem is statically indeterminate (can not be determined solely from
statics). A general procedure that will work for such problems (linear or
non-linear) is:

(1) Assume that enough reactions are known so that the system is
statically determinate.

(2) Solve the problem in terms of the assumed reactions.

(3) Eliminate the assumed reactions from the solution using the kine-
matic information associated with the location of the assumed
reactions.

For our bar let us apply this procedure by assuming we know the
reaction at x = 0. Let us call this reaction R1; see Fig. 2.17. We

x

L−a

P

R(x)

R1

a

Fig. 2.17 Statically indeterminate bar
with assumed (known) reaction R1.

can now apply equilibrium in the horizontal direction to determine the
internal forces in the bar, as shown in Fig. 2.18 (top). Dividing these
by A gives us the stresses (Fig. 2.18, middle) and further division by E
gives us the strains (Fig. 2.18, bottom). If we now integrate from 0 to L
we will find

u(L)− u(0) =

∫ L

0

R(x)

AE
dx =

R1a

AE
+

R1 − P

AE
(L− a). (2.20)

We can now apply the known kinematic information about the system;
viz., u(0) = u(L) = 0. This then gives an expression for R1:

R1 = P (1− a

L
). (2.21)

This allows us to go back and correct our diagrams of the system to
give an accurate picture of the state of the bar; see Fig. 2.19 where the
displacement field is also plotted.

Remarks:

(1) For this problem we have taken a step-by-step approach, drawing
the relevant functions that describe the state of the bar. We could
have easily done this solely working with the appropriate equa-
tions. The process of going step-by-step with figures, however, has
its merits in that it helps to emphasize the connections between
the steps that are being executed in arriving at the final answer.

(2) A look at the diagrams also shows visually how the bar carries the
load – tension to the left and compression to the right. Note that
material motion is always to the right (positive u).
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R1

σ(   )x

x

R1 / A

(R1 − P)/A

x

R1 / AE

(R1 − P)/AE

ε(   )x

x

L

a

PR1

x

R(x)

R1 − P

Fig. 2.18 Internal force, stress, and
strain diagrams.

Example 2.4

Indeterminate bar under a constant body force. Consider the bar shown
in Fig. 2.20. The bar shown is indeterminate and loaded by a distributed
body force b(x) = bo, a constant. Find the internal force, stress, strain,
and displacement fields in the bar.

Solution
Since the bar is indeterminate with two unknown vertical reactions we
will need to assume that one of them is known. Let us take the top
reaction as known and call it R2. Applying equilibrium to the bar with a
section cut located at x yields an expression for the internal force field as



24 Tension–Compression Bars: The One-Dimensional Case

x

L

a

PR1

x

R(x)

P(1−a/L)

−Pa/L

x

P(1−a/L)/A

−Pa/LA

x

ε(   )x

P(1−a/L)/AE
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x

σ(   )

u(x)

x

Fig. 2.19 Corrected internal force,
stress, strain, and displacement dia-
grams.
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R(x) = R2 − box. (2.22)

Dividing now by the area gives the stress

L

R2

R(x)

x

R2

b(x) = bo

Fig. 2.20 One-dimensional statically
indeterminate bar under the action of
a uniform body force.

σ(x) =
R2 − box

A
. (2.23)

Division by the modulus will give the strain

ε(x) =
R2 − box

AE
. (2.24)

The displacement field in the bar is found by integrating the strain to
give

u(x)− u(0) =

∫ x

0

ε(x) dx =
R2x

AE
− box

2

2AE
. (2.25)

We can now determine R2 by applying our kinematic information
u(L) = u(0) = 0. This yields

R2 =
1

2
boL. (2.26)

We can now substitute this expression back into all our relations to
obtain the final fields:

R(x) = bo(
L

2
− x) (2.27)

σ(x) =
bo
A
(
L

2
− x) (2.28)

ε(x) =
bo
AE

(
L

2
− x) (2.29)

u(x) =
bo

2AE
x(L− x) (2.30)

Remarks:

(1) All the material points in the bar are moving downwards.

(2) The top half experiences a positive strain and is extending, and the
bottom half is experiencing a negative strain and is contracting.

(3) The top half has a positive stress and is therefore in tension,
and the bottom half has a negative stress and is therefore in
compression.

Example 2.5

Indeterminate bar with thermal loading and a point force. Let us recon-
sider the problem originally shown in Fig. 2.16 with the added condition
of a change in temperature ΔT . Find R(x), σ(x), ε(x), and u(x).

Solution
Assume that the left-most reaction is known, and call it R1. Equilibrium
then tells us that
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R(x) =

{
R1 x < a
R1 − P x > a .

(2.31)

Divide by the area to obtain the stress

σ(x) =

⎧⎨⎩
R1

A
x < a

R1−P
A x > a .

(2.32)

Now apply the constitutive relation to obtain the strain. Note that we
have to do more than simply divide the stress by the modulus. The
thermal loading comes into play to give

ε(x) =
σ(x)

E
+ αΔT =

⎧⎨⎩
R1

AE + αΔT x < a

R1−P
AE + αΔT x > a .

(2.33)

The displacement field is then determined via integration to yield

u(x)− u(0) =

∫ x

0

ε(x)

=

⎧⎨⎩
R1x
AE + αΔTx x < a

R1a
AE + αΔTa+ R1−P

AE (x− a) + αΔT (x− a) x > a.

(2.34)

If we now apply our kinematic boundary conditions u(0) = u(L) = 0 we
can determine R1 as

R1 = P (1− a/L)− αΔTAE. (2.35)

This result can now be substituted back into the previous relations to
give the final expressions for the unknown fields.

Remarks:

(1) Note the ease with which we were able to handle a problem with
a change in temperature. The reason for this is that our solution
procedure is designed to expose the interaction of the fundamental
principles of equilibrium, kinematics, and constitutive relations.
By keeping all the pieces separate in the process it was a simple
matter to change the constitutive relation in the problem to the
one appropriate for thermal loads.

2.4.2 Differential equation approach

The steps outlined in the examples help in seeing the interaction of the
various pieces to problems in mechanics – viz., kinematics, equilibrium,
and constitutive relations. From a mathematical viewpoint, however,
there is no reason to introduce unknown reaction forces. In fact there is
no reason to have separate solution procedures for statically determinate
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and indeterminate problems. To appreciate this point, let us concentrate
on the linear elastic case.
There are three basic unknowns in our problems: stress, strain, and

displacement. We have three relations governing them: equilibrium,
strain-displacement, and the constitutive relation. If we wish we can
combine these relations into a single one by first substituting the strain-
displacement relation into the constitutive one to eliminate the strain;
then we can substitute this new stress-displacement constitutive law into
the equilibrium relation to yield:

d

dx

(
A(x)E(x)

du

dx

)
+ b(x) = 0. (2.36)

This equation is a second-order ordinary differential equation for the
displacement field. In the case where A(x)E(x) is a constant it is a
second-order ordinary differential equation with constant coefficients. To
solve such an equation one needs two boundary conditions. We normally
encounter two types of boundary conditions: displacement boundary
conditions and force boundary conditions. Displacement boundary con-
ditions will simply be the specification of the displacement at either end
of the bar. Force boundary conditions will involve the specification of the
rate of change of the displacement at either end of the bar. This stems
from the fact that the force on a section is given by the strain times the
modulus times the area. Recall that forces are related to the stresses
by multiplication by the area, stresses are related to strains through the
constitutive relation, and finally, strains are related to the displacements
through the strain displacement expression.
As examples let us consider the problems of the previous section and

first identify the distributed load function and the boundary conditions
for each.

Example 2.6

End-loaded bar revisited. This problem was originally shown in Fig. 2.3.
Here we have:

b(x) = 0 (2.37)

u(0) = 0 (2.38)

AE
du

dx
(L) = P, (2.39)

i.e. no distributed load, fixed motion at x = 0, and an applied force P
at x = L.
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Example 2.7

Gravity-loaded bar revisited. This example was originally shown in
Fig. 2.14; for this example we have

b(x) = γA (2.40)

u(0) = 0 (2.41)

AE
du

dx
(L) = 0. (2.42)

Example 2.8

Statically indeterminate bar with a point load revisited. This example
was originally shown in Fig. 2.16; for this example we have

b(x) = Pδ(x− a) (2.43)

u(0) = 0 (2.44)

u(L) = 0, (2.45)

where δ(x− a) is a Dirac delta function located at x = a.

Remarks:

(1) The Dirac delta function from the study of ordinary differential

x

ζ

f ζ(x)

2/ζ

Fig. 2.21 Distributed load represen-
tation of a localized force.

equations is the proper mathematical representation of a point
force. To see this, one must first observe that point forces are
merely mathematical idealizations which we employ for conve-
nience. In reality, it is impossible to apply a force at a point. Forces
must be applied over finite areas. Figure 2.21 shows one possible
representation, fζ(x), of a distributed load that is localized in a
region of width ζ near x = 0. Note that the total load represented
by fζ(x) is given by

Total force =

∫ ζ/2

−ζ/2

fζ(x) dx =
1

2
ζ
2

ζ
= 1, (2.46)

independent of ζ. The idealization of a point force of magnitude
1 will then be given by fζ(x) in the limit as ζ goes to zero. We
define this limit as δ(x); i.e.

δ(x) = lim
ζ→0

fζ(x). (2.47)

We call this function the Dirac delta function.

(2) As defined, the Dirac delta function has the following indefinite
integration property ∫

δ(x) dx = H(x) + C, (2.48)
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where H(x) is the Heaviside step function defined by:

H(x) =

{
0 x < 0
1 x > 0 .

(2.49)

(3) It is also useful to introduce the the Macaulay bracket notation,
where angle brackets have the following special meaning:

〈x〉 =
{
0 x < 0
x x ≥ 0.

(2.50)

With these definitions one can deduce the following useful inte-
gration rules: ∫

H(x) dx = 〈x〉+ C (2.51)∫
〈x〉n dx =

1

n+ 1
〈x〉n+1 + C. (2.52)

(4) Note that the definition we have introduced for the Dirac delta
function also possesses the familiar property that for a continuous
function g(x), ∫ 0+

0−
g(x)δ(x) dx = g(0). (2.53)

Example 2.9

Indeterminate bar with thermal loading and a point load revisited. This
example uses the same setup as in Fig. 2.16 but with the addition of a
temperature change. Here we have

b(x) = Pδ(x− a) (2.54)

u(0) = 0 (2.55)

u(L) = 0. (2.56)

Note that our governing differential equation will need modification in
this case, as eqn (2.36) was derived for a linear elastic material and not
for a linear thermo-elastic material. The needed modification results in
the following governing equation:

d

dx

(
A(x)E(x)

du

dx
− α(x)A(x)E(x)ΔT (x)

)
+ b(x) = 0. (2.57)

If there were force boundary conditions, they would also have to be
suitably modified. For example, if we change the boundary condition at
x = L to an applied force of magnitude P , then we would write

AE
du

dx
(L) = P +AEαΔT (2.58)

for the boundary condition at x = L.
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Solution method
A basic solution method for treating such equations, especially with
non-constant coefficients, is to integrate both sides of the governing
differential equation step by step using indefinite integration. The inte-
gration constants that will appear in this process can be eliminated by
applying the boundary conditions. Note that the usual methods taught
for ordinary differential equations can also be successfully applied here –
viz., finding the homogeneous and particular solution and adding them
together to give the general solution.

Example 2.10

End-loaded bar. Consider the end-loaded bar case given above, and find
u(x). Assume A and E are constants.

Solution
Begin with eqn (2.36) and integrate both sides twice, each time intro-
ducing a constant of integration.

d

dx

(
AE

du

dx

)
= 0 (2.59)

AE
du

dx
= C1 (2.60)

AEu = C1x+ C2. (2.61)

To eliminate the constants of integration apply the boundary conditions.

u(0) = 0 ⇒ C2 = 0 (2.62)

and

AE
du

dx
(L) = P ⇒ C1 = P. (2.63)

Thus

u(x) =
Px

AE
. (2.64)

Other quantities of interest such as strains, stresses, and reactions can
be easily computed once u(x) is known.

Example 2.11

Statically indeterminate bar with a point load. Consider the statically
indeterminate bar with a point load given above and find u(x). Assume
A and E are constants.

Solution
Begin with eqn (2.36) and integrate both sides twice, each time intro-
ducing a constant of integration. Applying the rules for the Dirac delta
function and its integrals, we find:
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d

dx

(
AE

du

dx

)
+ b(x) = 0 (2.65)

d

dx

(
AE

du

dx

)
= −Pδ(x− a) (2.66)

AE
du

dx
= −PH(x− a) + C1 (2.67)

AEu = −P 〈x− a〉+ C1x+ C2. (2.68)

To eliminate the constants of integration, apply the boundary conditions.

u(0) = 0 ⇒ C2 = 0 (2.69)

and

u(L) = 0 ⇒ C1 = P
L− a

L
. (2.70)

Thus

u(x) =
P

AE

[
−〈x− a〉+ L− a

L
x

]
. (2.71)

Other quantities of interest such as strains, stresses, and reactions can
be easily computed once u(x) is known.

2.5 Energy methods

Starting from our basic equations of kinematics, equilibrium, and mate-
rial response is not always the most convenient route to answering a
particular question. An alternative and very important set of methods
which we will use throughout this book are energy methods. There are
a variety of energy methods, but in this section we will concentrate on
just one: conservation of energy. For our purposes we will restrict our
attention to cases where the material of our (one-dimensional) systems is
elastic. In this setting, any work we do on the material system is stored
elastically:

Win = Wstored. (2.72)

In other words, we will assume that our material system does not
dissipate energy. In this case Win is the energy lost from the loading
system and by conservation it is stored in the material of our body as
Wstored.

Consider now an elastic rod (not necessarily linear elastic) which we
extend with an end-load. If we measure the displacement at the end of
the rod, then we can make a plot of force versus displacement, as shown
in Fig. 2.22. The work that we have done on the rod is the area under
this curve:
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F

xΔ

P

General Elastic Linear Elastic

F

xΔ

P

Fig. 2.22 Force deflection curves for
elastic rods.

Win =

∫ Δ

0

F (x) dx. (2.73)

If the material is linear elastic then the response will be linear and we
find Win = 1

2PΔ.
The energy stored in the material is exactly equal to this amount when

the material is elastic. On a per unit volume basis, this stored energy is
given by

Wstored

AL
=

∫ Δ

0

F (x)

A

dx

L
=

∫ ε

0

σ(ε) dε. (2.74)

Thus the energy stored (per unit volume) or strain energy density is
given by

w =

∫ ε

0

σ(ε) dε. (2.75)

In a linear elastic material this reduces to w = 1
2σε =

1
2Eε2 = 1

2σ
2/E. If

one integrates this density over the volume of the material then we will
come to an expression for the energy stored in the material:

Wstored =

∫
V

1

2
σεdV. (2.76)

Using eqn (2.72) we find in the linear elastic case that

1

2
PΔ =

∫
V

1

2
σεdV. (2.77)

What use is this relation? This is best seen by example.

Example 2.12

Deflection of an end-loaded rod by conservation of energy. Find the
deflection of an end-loaded bar. Assume A and E to be constants.
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Solution
Starting from eqn (2.77) we have

1

2
PΔ =

∫
V

1

2
σεdV (2.78)

=

∫ L

0

∫
A

1

2
σεdAdx (2.79)

=

∫ L

0

1

2
σεAdx (2.80)

=

∫ L

0

1

2

(
P

A

)(
P

AE

)
Adx (2.81)

=
1

2

P 2L

AE
(2.82)

If we now cancel 1
2
P from both sides we find Δ = PL/AE – a result

we had from before. Thus we see that by using conservation of energy
it is possible to determine deflections in elastic systems. To see the real
power of this method, consider the next example.

Example 2.13

Deflection of a two-bar truss. Consider the two-bar truss shown in
Fig. 2.23. Find the horizontal deflection of the truss at the point of
application of the load.

Cross−sectional areas 1"sq

100 lbf

Al
12"

Steel
12"

12"

Fig. 2.23 Two-bar truss.

Solution
Using energy conservation we have that

Wstored = WAl +WSteel

=

(
P 2L

2AE

)
Al

+

(
P 2L

2AE

)
Steel

.
(2.83)

From statics one has that PSteel = 100 and PAl = −100. Thus,

Wstored = 1002
[(

L

2AE

)
Al

+

(
L

2AE

)
Steel

]
. (2.84)

Setting this equal to the work done on the truss (Win = 1
2
100ΔH) gives

the final result:

ΔH = 100

[(
L

AE

)
Al

+

(
L

AE

)
Steel

]
= 16× 10−5 inches. (2.85)

Remarks:

(1) Note that the method only gives the deflection in the direction
of the applied load. No information is garnered about the vertical
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deflection. Nonetheless, it is easy to see how this simple idea makes
a somewhat complex problem rather tractable.

Example 2.14

Elastic impact barrier. Consider a rigid object of weight W dropping
from a height h above an elastic bar of length L, area A, and modulus
E as shown in Fig. 2.24. Find the maximum force carried by the elastic
bar before elastic release.

Solution
This system is conservative. The total initial energy of the system is
W (h+ L). After the object drops it impacts the bar and deforms it. The
maximum force will occur at maximum deformation, Δ, which we take
as positive in contraction for this problem. At the point of maximum
deformation, the weight is momentarily at rest and has zero kinetic
energy. At this state, the total energy of the system will be given by

W (L−Δ) + 1
2
P 2L
AE

– the potential energy of the weight plus the stored
energy in the elastic bar. By conservation of energy we have that

W (h+ L) = W (L−Δ) +
1

2

P 2L

AE
. (2.86)

Noting that Δ = PL/AE, we find through a little algebra that

P 2 − 2WP − 2WhAE/L = 0. (2.87)

Solving shows

P = W [1±
√
1 + 2h/Δs], (2.88)

where Δs = WL/AE is the static deflection of the bar.
There are two solutions to this problem, but one is physically mean-

ingless – the one giving negative values of P . Note also that in this
problem independent of h and Δs the minimum force in the bar before
elastic release is 2W .

2.6 Stress-based design

The methods we have developed in this chapter can be easily incor-
porated into a stress-based design methodology for structural members
that carry their loads axially (such as truss bars). Simply put, we can
take our system of interest and apply our methodology to determine the
stress field in the bar. Such information can then be used in simple stress-
based design procedures when the allowable stresses for the materials of
the body are known. The allowable stresses σa are normally either the
yield stress of the material σY or the ultimate stress of the material
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L
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Δ

= WL/AE

s

s

Fig. 2.24 Elastic impact.

σu. To take into account uncertainties associated with the system under
analysis (loading, geometry, material, and analysis model) stress-based
design usually also introduces safety factors, SF . Simply put, the safety
factor is the ratio of the allowable stress to the design stress σd (the
stress that is computed from the analysis):

SF =
σa

σd
. (2.89)

Typical values for the safety factor vary from discipline to discipline and
even within sub-disciplines. In mechanical engineering typical values are
3 on the yield stress and 4 on the ultimate stress. In civil engineering
typical values are in the range 1.6–2.0 on the yield stress. In aerospace
engineering the range is approximately 1.2–1.5 on the yield stress. Figure
2.25 shows an example of what happens if one exceeds the ultimate

Fig. 2.25 A steel pipe that has been
pulled in tension beyond its ultimate
stress point.

stress in a steel pipe. The pipe has split in two and displays evidence of
extensive plastic yielding; this is inferred by noting the flaking-off of the
whitewash which was painted on the pipe before the application of the
load.
Design with safety factors is only one method of design. It is simple

and rather common in certain industries, but there are also other design
methodologies. In further design studies one will be exposed to these
other methodologies.

Chapter summary

� The essential elements that govern the analysis of a deformable
mechanical system are its kinematics, its equilibrium, and its
constitutive response. For an elastic tension–compression bar, the
primary governing relations are:

� Strain-displacement relation

ε =
du

dx
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� Internal (resultant) force to stress relation

R = σA

� Equilibrium relation

dR

dx
+ b = 0

� Hooke’s Law

σ = Eε

� Differential equation for displacement

(AEu′)′ + b = 0

� Boundary conditions: fixed and forced

u = 0, AE
du

dx
= P

� For elastic material systems

Win = Wstored

For a linear elastic system the strain energy density is w = 1
2σε

and the work input is 1
2
PΔ.

Exercises

(2.1) A compression support is constructed by welding
two round solid steel bars end-to-end as shown
below. If the allowable stress in compression is 100
MPa, what is the allowable load P1, if P2 = 150 kN.

P1

P2

diameter 100 mm diameter 50 mm

(2.2) Consider one of the concrete specimens shown in
Fig. 2.8. In an experiment with applied end-forces
a stress of 4.0 ksi was required to axially crush the
cylinder. How much force did the testing machine
exert on the specimen at crush?

(2.3) A 10-m long steel linkage is to be designed so
that it can transmit 2 kN of force without stretch-
ing more than 5 mm nor having a stress state
greater than 200 N/mm2. If the linkage is to be
constructed from solid round stock, what is the
minimum required diameter?

(2.4) Estimate the amount of force it would take to
(axially) crush your femur. Reasonable values to

use for the Young’s modulus are 17 GPa and for
the compressive strength 190 MPa.

(2.5) Consider the Campanile (shown in the photo-
graph). Introduce appropriate variables for the
relevant dimensions, densities, etc., and derive an
expression for the internal force field, R(x). You
may ignore the complexities associated with the
openings for the bells, but make sure you account
for the taper at the top.
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(2.6) Consider a bar of length L built-in at x = L
and subjected to a constant body force b(x) = bo.
Derive an expression for the cross-sectional area of
the bar, A(x), such that the stress in the bar is a
constant (i.e. not a function of x). Assume E to be
a constant. You may assume that area at x = L is
given; i.e. assume A(L) is given data.

(2.7) State which fundamental concept is represented by

dR

dx
+ b(x) = 0.

(2.8) Using the governing ordinary differential equation
for the axial deformation of a bar, argue why the
displacement field must be linear, independent of
the boundary conditions for the bar, in the absence
of any distributed body forces; i.e. for the case
where b(x) = 0. Assume AE is constant.

(2.9) Using the governing equation for the axial defor-
mation of a bar, argue why the displacement field
must be quadratic (independent of the boundary
conditions for the bar) in the presence of a con-
stant distributed body force; i.e. for the case where
b(x) = bo a constant. Assume AE is constant.

(2.10) Find u(L) for the following bar. Assume A and E
are constants.

L

d

P

b −− constant

A, E −− constant

(2.11) Consider a bar which is built-in at x = 0, free at
x = L, and loaded with a distributed load b(x) =
10x, where the constant 10 has units of N/mm2.
Find the displacement field u(x) assuming that
E = 500 N/mm2, A = 500 mm2, and L = 500 mm.

(2.12) For the bar shown determine the displacement field
u(x).

AE − constant

L

b(x) = cos(x)

(2.13) The system shown has a linear spring support.
State the relevant boundary conditions in terms
of the kinematic variables and give an appropriate
expression for the distributed load acting on the
system.

P AE −− constant

L

k

(2.14) A square rod with side length a and span L is
to be used as an elastic spring. If the rod needs
to be 10 mm long and the spring-constant needs
to be 5 kN/mm, how big should a be? Assume
E = 70GPa.

(2.15) Consider a steel tape measure with cross-sectional
area, A = 0.0625 inches squared, and length L =
3, 600 inches at room temperature. How much error
will occur if this tape measure is used on a hot day?
Assume it is 130F and the coefficient of thermal
expansion is α = 5× 10−6 1/F. Does the error
depend on the distance being measured?

(2.16) Consider the two loading cases shown on the left.
By solving each case separately and adding the
solutions together, show that “superposition” of
the solutions is the solution of the case shown
on the right. Show this for all the relevant field
quantities (u(x), ε(x), σ(x), R(x)).

L
L

A, E −− constant

L

P

P

b(x) = b −− constantb(x) = b −− constant

(2.17) Using a differential equation method, find the axial
deflection in this spring-supported bar, u(x).

x

b = constant

EA

k

(2.18) For the linear elastic bar shown, determine the
axial displacement as a function of x. Note that
there is a distributed load and a point load.
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a

Distributed Load b(x) = Cx

x

AE −− constant

L − a

P

(2.19) The bar shown below has a constant cross-sectional
area, A, and is made of a non-linear elastic material
whose constitutive relation is given by

σ = Cεn,

where C and n are given material constants. Find
the elongation of the bar in terms of the applied
force, P , and the geometry.

P

L

(2.20) Consider the bar in the previous exercise. If one
doubles the load to 2P , by what factor does the dis-
placement on the end increase? For what value(s)
of n does the displacement double?

(2.21) You are given a prismatic bar with constant cross-
sectional area A and length L. The bar is function-
ally graded so that the Young’s modulus is given
as E(x) = Eo + E1

x
L
. Determine the reaction force

at x = L due to the load P . Express your answer in
terms of Eo = E(0), EL/2 = E(L/2), EL = E(L),
and the other given dimensions and load.

P
x

L/2 L/2

(2.22) The following bar has a linearly varying coefficient
of thermal expansion. It is subjected to a gravita-
tional acceleration and a temperature change. Find
the support reaction at the top of the bar.

g

x

ΔT

A, E, ρ, α(x)  =  αo + αsx

(2.23) Shown below is a slender bar with constant cross-
sectional area and homogeneous linear elastic
properties. Find an expression for u(x), the axial
displacement field in the bar. Accurately sketch
u(x), labeling the values of all critical points.

a L−a

b(x)

b(x)

x

C

(2.24) Consider an elastic bar with constant Young’s
modulus, E, and cross-sectional area, A. The bar
is built-in at both ends and subject to a spatially
varying distributed axial load

b(x) = bo sin(
2π

L
x),

where bo is a constant with dimensions of force per
unit length. Determine the largest compressive
internal force in the bar.

(2.25) You are given a slender prismatic bar with constant
cross-sectional area A, Young’s modulus E, and
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length L. The bar is built in at both ends and acted
upon only by gravity; assume the gravitational
constant is g. If the mass density is ρ, determine
R(x), σ(x), ε(x), and u(x). Make accurate plots
of these functions, labeling all important points:
maxima, minima, zero crossings, etc.

x

g

(2.26) The bar shown below is made of two pieces of metal
that are welded together. The two pieces have the
same cross-sectional area A and Young’s modulus
E; however α1 > α2, where α1 and α2 are the
coefficients of thermal expansion of the two pieces.
For a given temperature change ΔT , determine the
internal force R(x), the stress σ(x), the strain ε(x),
and the displacement u(x).

L/2

1 2

L/2

(2.27) The bar shown is built-in at the left and supported
by a spring with spring constant k at the right. List
the boundary conditions at x = 0 and x = L. Find
the expression for u(x).

AE − constant

L

b(x) = exp(x/L)

kx

(2.28) Consider a spring-supported elastic bar with
length L and constant AE that is subjected to a
point force at x = a. Find u(x).

P
kL

x

kR

(2.29) A bolt with properties shown is inserted into a
sleeve with the properties shown. A nut is threaded
onto the other end and turned until it is just in
contact with the sleeve. The bolt has x threads
per inch. How many turns of the bolt are required
to initiate yield in the system if the bolt yields at
σb
Y and the sleeve at σs

Y .

L

Es, As

Eb, Ab

(2.30) One of the major new application areas for
mechanics is in the design of devices that operate
at the micron and nanometer scales. At these scales
there are a number of interesting non-intuitive
effects that arise. Consider a rod that spins about a
post at a frequency ω. If the material can support a
stress of σmax before failing, then for given dimen-
sions and density there will be a corresponding
maximum rate of spin (ωc). Let us see how this
critical rate of spin depends on the scale of the
device.
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ω

L

Let the length be given as sLo, where s is a scale
factor and Lo = 1 m. Let the cross-sectional area
be given as s2Ao where Ao = 25 cm2. Thus when
s = 1, the scale of the rod is quite macroscopic (1 m
long with a 20 to 1 aspect ratio). When s = 10−6,
we will be looking at a rod with nanoscale dimen-
sions but the same aspect ratio. Plot ωc versus s for
s ∈ (10−6, 1). Assume the material to be copper:
E = 128 GPa, σmax = 100 MPa, ρ = 8960 kg/m3.
Your plot should have properly labeled axes etc.

(2.31) Consider a bar of length L with constant EA and
constant density ρ. The bar is supported by a
fixed pivot and spun about it at angular frequency
ω. Doing so produces a distributed body force
b(x) = Aρω2x, where x is measured from the pivot.
Find the maximum and minimum strains and their
locations.

ω

L

(2.32) For the system described in Exercise 2.31, find an
expression for the maximum displacement and its
location.

(2.33) For the two-bar truss shown, find an expression for
the vertical deflection at the point of application
of the load. Assume both truss bars are made
from the same material with modulus E and have
constant cross-sectional areas A.

P

2500 mm

1000 mm

4000 mm 2000 mm

(2.34) How much energy does it take to compress a
round bar of diameter 5 mm and length 300 mm
to a length of 299.9 mm. Assume E = 200 GPa.
Assume the load is applied at the ends of the bar
with two opposing forces.

(2.35) Using an energy method verify the solution to
Exercise 2.19. First, using your solution to Exercise
2.19, show that the work-in expression is given as

1
n+1

PΔ, where n is the material exponent, P is the
total applied load, and Δ is the total elongation.
Second, equate the work-in to the work-stored.
Now, using the notion of energy conservation, ver-
ify your elongation formula for Exercise 2.19.
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Stress

In the last chapter we presented an overview of mechanics through the
one-dimensional problem of an axially loaded bar. The bar problem
introduced us to the concepts of equilibrium, kinematics, and consti-
tutive behavior in a deformable mechanical system; additionally we
were exposed to the notions of displacement, strain, stress, and energy.
In this chapter we will examine in detail the concept of stress in the
general three-dimensional setting; this will be followed in the next two
chapters by discussions of strain and constitutive relations in three
dimensions.
We have already seen stress defined as force divided by area. This

definition is quite basic and gives us a scalar that is more properly called
average normal stress. In actuality, stress is a more complex concept
than just force divided by area. Stress is really a tensor and not just
a number. Without going into the details of defining a tensor, we can
appreciate the distinction as something similar to the difference between
the speed of an object (a scalar) and its velocity (a vector). If one knows
the velocity of something v, then its speed is ‖v‖. Velocity involves
both speed (i.e. magnitude) and direction. A similar distinction holds
for stress; it involves magnitudes and directions but in a more complex
fashion than vectors.

3.1 Average normal and shear stress

As a first step to refining our understanding of stress, consider the body
shown in Fig. 3.1. A force F acts on a section cut with area A. The force
on the section cut is a vector, and it is not exactly clear how we should
apply our previously developed definition of stress to compute the stress
on the section cut. It proves convenient to first decompose F into its
components normal and tangential to the section cut; i.e.

Ft
A t

n

FFn

Fig. 3.1 Section cut with generally
oriented force.

Fn = F · n (3.1)

Ft = F · t, (3.2)

where n and t are unit vectors normal and tangent to the section cut.
We can now define average normal stress as

σ =
Fn

A
(3.3)
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and average shear stress as

τ =
Ft

A
. (3.4)

Already one can see that stress is a somewhat complex entity. It involves
forces and more specifically their components. It also involves the area
of the section cut (something that we will see can change).

3.1.1 Average stresses for a bar under axial load

To gain some appreciation for the last comment, consider the axially
loaded bar shown Fig. 3.2 with cross-sectional area Ao. Under the given
load (F = Fex) the bar will be in a state of stress. To see what this
state of stress is, make a section cut through the bar at some angle θ.
The normal to the section cut will be

n = sin(θ)ex + cos(θ)ey (3.5)

and a tangent to the section cut will be

t = − cos(θ)ex + sin(θ)ey. (3.6)

Note that ex and ey are the unit vectors in the x- and y-directions.1 The1 The unit vectors in the coordinate
directions are also commonly denoted
by ı̂ and ĵ.

components of the force normal and tangential to the section cut will
be Fn = F sin(θ) and Ft = −F cos(θ). The area of the section cut will be
Ao/ sin(θ). Applying our definitions from above we have for the average
normal stress

F

F

θ

θ

y

x
n

t

Ao

Fig. 3.2 Bar with angled section cut.
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σ =
F

Ao
sin2(θ) (3.7)

and for the average shear stress

τ = − F

Ao
cos(θ) sin(θ). (3.8)

It should be clear that our values of average normal and shear stress
strongly depend on the section cut we make, even though the state of
load in the material is fixed.
This brings up the natural question: For which section cut angles are

the stresses maximum? From a plot (see Exercise 3.2), one finds that
the average shear stress will be extremal at an angle of θ = ±π/4 with a
value of τ = F/2Ao, and the average normal stress will be maximum at
an angle of θ = π/2 with a value of σ = F/Ao. The importance of these
extremal values is that different materials are more sensitive to different
kinds of stress. Loosely, one can can say that when designing with brittle
materials such as cast iron and concrete one has to worry about tensile
normal stresses, but when designing with ductile materials such as mild
steel and aluminum one has to worry about shear stresses.

3.1.2 Design with average stresses

At this stage one can already perform some very basic engineering
analysis of the stresses in a body. If the body is statically determinate
we can define a simple procedure for stress analysis that is an extension
of statics:

(1) Use equilibrium (statics) to find support reactions.

(2) Determine the internal forces2 in the system. 2 Note that we have intentionally not
mentioned internal moments here; to
discuss the connection between internal
moments and stress will require us to
refine our definition of stress one more
time.

(3) Resolve the internal forces into normal and tangential components.

(4) Compute the average normal and average shear stresses.

Example 3.1

Analysis of a shear key. Figure 3.3 shows a gear on a drive shaft. In these
types of system the keys which couple the gears to the shaft are designed
as the weakest link. In this way, failure due to overloading destroys an
inexpensive part such as the key instead of an expensive part such as a
shaft or gear. Given the dimensions of the system and knowledge of the
yield stress (in shear) for the key, find an expression for the maximum
design torque when allowing for a safety factor on yield.

Solution
Start by isolating the shaft with half of the shear keys left intact.
Summing the moments about the shaft center gives 2FR = M ; see
Fig. 3.3 (bottom left). The force acts parallel to a surface with area
Lt; thus the shear stress in the key is
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M

L

d
M

M

a

a t

M
Section a − a

Gear

2R

F

F

Section Cuts

Drive Shaft

Shear Key

M

Fig. 3.3 Gear affixed to a drive shaft
by two shear keys.

τ = F/Lt = M/2LRt. (3.9)

Our safety factor and yield requirement imposes the restriction

τ · SF ≤ τY . (3.10)

This then implies

M ≤ 2LRtτY
SF

. (3.11)

To get a sense of order of magnitude of numbers, consider the following
parameters (for a steel key):

SF = 3.0

τY = 20 ksi

L = 3/4 inches

t = 3/16 inches

d = 1/4 inches

R = 1/2 inches.

(3.12)

Inserting these values into our result gives M ≤ 938 in-lbf. As a point
of reference, a decent four-cylinder car has about a 100-hp engine with
a peak torque output of 100 ft-lbf (equal to 1200 in-lbf).
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Example 3.2

Welded lap-joint. A common joining technology is electric arc welding.
Figure 3.4 shows a typical welded lap joint of two plates. The welds are
designed to resist shear when the parts are pulled apart as shown. The
limiting material property is given as the yield stress in shear for the
weld material, τY . Find the allowed load Pa.

Solution
Find the loads on the weld by making section cuts as shown in Fig. 3.4
(bottom left). Equilibrium of forces tells us that the shear force on each
the weld is P/2. To find the stress in the weld we need to divide by the
area over which the force is transmitted. At first glance it appears that
this area should be Lw. This, however, does not provide the maximal
shear stress in the weld. One needs to consider additional section cuts
to find the one giving the minimum area. This is as shown in the lower
right of Fig. 3.4, which gives Lt, where t = w/

√
2 for a 45o weld. Putting

this together one finds that:

τ =
P/2

Lt
. (3.13)

Thus,

Pa = 2τY Lt. (3.14)

t

P

L

w

a

w

Weld throat

P

P/2

P/2

Free-body diagram

t

w

P/2

a

P/2

Leg width

Fig. 3.4 Welded lap joint with 45◦

fillet welds.



46 Stress

To get a sense of numbers, assume L = 1 inch, w = 1/4 inch, and τY = 21
ksi (typical for E70 electrodes a very common welding metal). Then,
Pa = 7.4 kips. Note that 1 kip = 1,000 lbf.

3.2 Stress at a point

The stresses we have defined so far are average stresses on a section
cut. This notion, however, is not sufficiently refined to allow us to have
a complete picture of stress. For instance, our definition provides no
connection yet between moments on a section cut and stresses. Consider
the section cut shown in Fig. 3.6 with an internal moment acting on it.
Let us now imagine that this moment is actually the result of a statically
equivalent set of forces as shown on the right. There are an infinite
number of statically equivalent force distributions for any given moment,
but considering only one will suffice to motivate our main observation;
viz., that the forces acting on a section cut in most cases will vary over
the section cut. More generally, when one has an internal force and/or
moment acting on a section cut, it is transmitted across the section cut
by a distribution of forces that vary from point-to-point; see Fig. 3.5.

ΔF5

ΔF2

ΔF1

ΔF3ΔF4

F

M

Section cut

Fig. 3.5 General distribution on a
cross-section; total force is the sum of
individual forces (ΔF1, ΔF2, etc.).

If we consider the section cut as shown in Fig. 3.5 and look at just
one patch of material on that cut, we will find a force ΔF acting on it.
The sum over all the patches gives the total force on the cut:

F =
∑

patches

ΔF . (3.15)

Similarly, the sum of the areas of the patches ΔA gives the area of the
cut:

A =
∑

patches

ΔA. (3.16)

Note that each patch can have a different area and force acting on it.
For each patch define a normal stress and shear stress with our formulae
from before:

M

h/4

h/2

h/4 2M/h

2M/h

Statically Equivalent Set of Forces

Fig. 3.6 Section cut with an internal
moment.
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σ =
ΔFn

ΔA
(3.17)

τ =
ΔFt

ΔA
. (3.18)

In the limit as ΔA → 0 the patches will shrink to points, and we will
recover a definition of stress at each point on the cross-section.

3.2.1 Nomenclature

At each point in a body, one can consider an infinite number of
section cuts which pass through a particular point. This will lead to
an infinite number of possible normal stresses and shear stresses at
a point. Remarkably, knowing the normal stress and the shear stress
on just three orthogonal planes passing through the point of interest
permits one to know the stresses on any other section cut through the
given point. In two-dimensional problems this is the case with only two
orthogonal planes. In this regard, when stating the stress at a point there
is a standard convention that is employed in choosing these orthogonal
planes. We adorn our symbol σ for stress with two subscripts:

σ��. (3.19)

The first subscript is used to define the section cut orientation, and
takes on the values {x, y, z} or {1, 2, 3}. An ‘x’ is used, for instance,
if the section cut normal is in the x-direction. The second subscript is
used to indicate the component of the force vector involved, and takes
on values {x, y, z} or {1, 2, 3}.
For example, the stress component σxx corresponds to a normal stress

on a section cut with normal in the x-direction. The symbol σ12, for
instance, corresponds to a shear stress in the 2-direction on a section
cut with normal in the 1-direction. Quite often one will see the symbol
τ used instead of σ when the subscripts are not equal, and when the
subscripts are equal one will often see the second subscript dropped.
The convention for reporting the stress components at a point is to
place them in a matrix using the following ordering:⎡⎣ σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎤⎦ or

⎡⎣ σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

⎤⎦. (3.20)

Just as for forces (i.e. vectors) there is also a pictorial representation for
stresses (tensors). The convention is to draw a set of orthogonal planes
with arrows in the positive directions and to place the magnitude of the
various components by the arrows. This is illustrated in Fig. 3.7, where
the planes correspond to the section cuts and the arrows correspond to
the directions of the force components.

Stress (tensor)

vx

vx
vy

σxxσxx

σxy
σxy

σyx

σyx

σyy

σyy

Vectors

or

4

5 or 
4

5

or

1

3

1 5
or

5 1

1 3

vy

Fig. 3.7 Vector and tensor drawing
conventions.
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3.2.2 Internal reactions in terms of stressesey

y

x
z

Fig. 3.8 Body with section cut with
normal ey .

With our established definitions we can now make precise the connection
between internal forces on a section cut and the stresses on the section
cut. Consider, for example, the section cut shown in Fig. 3.8 with normal
ey. At each point on the cut we will find stresses σyy, σyx, and σyz;
these stresses represent the force intensities (force per unit area) in the
y, x, and z directions, respectively. Thus to find the total force in the y
direction, one can simply integrate σyy over the area of the cut:

Fy =

∫
A

σyy dA. (3.21)

The total forces in the x and z directions on the section cut are given by

Fx =

∫
A

σyx dA and Fz =

∫
A

σyz dA. (3.22)

To determine the total moments on the section requires us to define
a point about which the moments will be computed. For convenience
let us take this as the origin of our coordinate system which we will
assume to be located on our cut. The stresses on our section cut give
us three forces σyxdA, σyydA, and σyzdA on an elemental area dA in
the three coordinate directions x, y, and z. The force in the y-direction
gives us moments about the x and z axes with lever arms −z and x,
respectively. The shear forces both contribute to the moment about the
y-axis with lever arms of z and −x. Adding the contributions from all
the area elements on the section cut gives us

Mx =

∫
A

−zσyy dA (3.23)

My =

∫
A

zσyx − xσyz dA (3.24)

Mz =

∫
A

xσyy dA. (3.25)

For section cuts with normals in the x and z directions similar arguments
can be used to develop the appropriate expressions for the forces and
moments.

Forces and moments on arbitrary section cuts

For section cuts with arbitrary normals the expressions are a little more
complex to develop – though the principles are exactly the same. For
the total force vector acting on a section cut with normal n and area A,
one has:

F =

∫
A

σTn dA, (3.26)

where σ is the stress tensor and σTn denotes the matrix-vector product
of the transpose of the stress tensor with the normal vector. The moment
acting on the section cut relative to a point xo is given as:
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M =

∫
A

(x− xo)× σTn dA, (3.27)

where x is the position vector and × is the cross product symbol.
These two relations imply that on a section cut with normal n the force

per unit area, the traction t, is given by σTn. This fact can be proved
using an equilibrium argument. Consider the body shown in Fig. 3.9.
From this body, local to a point, we cut out a small triangular wedge.
Force balance on this wedge involves the balance between the surface
forces (tractions) and the body forces. Let us assume without loss of
generality that the stress field and the body force field are constant over
the wedge. Further, let us assume that the body is two-dimensional with
thickness w. Summing the forces on the wedge gives

0 =
∑

F = Δyw(−σxxex − σxyey)

+ Δxw(−σyyey − σyxex)

+
√

Δy2 +Δx2w(txex + tyey)

+
1

2
ΔxΔyw(bxex + byey).

(3.28)

We can divide out the thickness from each term. Further, if we note that
the x component of the normal vector is nx = Δy/

√
Δy2 +Δx2 and the

y component is ny = Δx/
√
Δy2 +Δx2, then we can rewrite the force

balance as

0 = nx(−σxxex − σxyey)

+ ny(−σyyey − σyxex)

+ (txex + tyey) +
1

2

ΔxΔy√
Δy2 +Δx2

(bxex + byey).

(3.29)

y

ey −σxxex

y
(x, y)

by

n

t = x+

Δy

Δx
bx

t

Applied body force
b(x) per unit volume

x

txe ye

−σxy

ey −σyxex−σyy
Fig. 3.9 Wedge construction for
Cauchy’s Law.
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If we now take the limit as Δx,Δy → 0, then the body force term
disappears and we are left with:

nx(σxxex + σxyey) + ny(σyyey + σyxex) = (txex + tyey). (3.30)

This can be expanded in matrix form to show that[
σxx σxy

σyx σyy

]T (
nx

ny

)
=

(
tx
ty

)
. (3.31)

In compact form this reads σTn = t; i.e. the transpose of the stress
times the normal vector of the section cut is equal to the traction vector
(force per unit area) on the cut. This result is known as Cauchy’s Law.
It also holds in three dimensions in the same form.

3.2.3 Equilibrium in terms of stresses

The discussion so far should give one the feeling that stresses are in
some ways the representation of forces at a point. This notion leads
to the natural question of whether or not we can expresses equilibrium
in terms of stresses. There are two ways of approaching this question,
and we will look at both. The first is the more common approach and
provides some practice in utilizing a very basic method for developing
many fundamental equations in engineering and science. The second
approach is rather less common but mathematically more precise.

Differential element approach

To keep things simple we will carry out the derivations in two dimen-
sions. Consider a body under load and look at a finite rectangular chunk
of material that has a corner at the point (x, y); see Fig. 3.10. The piece of
material has dimensions Δx and Δy. Let us start with force equilibrium

Δx

Δy bxσxx

σyx

σyx+ Δσyx

σxx+ Δσxx

x

y

Applied body force
b(x) per unit volume

(x, y)

Fig. 3.10 Two-dimensional body with
applied body force b(x).
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in the x-direction. The stresses that will contribute to forces in the x
directions will be σxx and σyx. The x-component of the body force, bx,
will also contribute to the forces in the x-direction. If we assume that
the stresses are relatively constant over the sides then we can add up the
total force in the x direction very easily. To do this, on the bottom and
left sides we will assume the stresses to have the values of the stresses
at the point (x, y). On the right and top the stresses will have different
values that we will define in terms of their change from those on the
bottom and left. Multiplying the stresses by the areas over which they
act gives the appropriate force values, and multiplying the body force
by the volume over which it is distributed gives a force. Summing all the
forces results in∑

Fx = (σxx +Δσxx)tΔy − (σxx)tΔy

+ (σyx +Δσyx)tΔx− (σyx)tΔx

+ bxtΔxΔy = 0.

(3.32)

In the last expression, t represents the thickness of the two-dimensional
body. It is only used to get the units correct; its exact value is not
required, since it drops out of the equations. Now, divide through by
tΔxΔy to give

Δσxx

Δx
+

Δσyx

Δy
+ bx = 0. (3.33)

Taking the limit as Δx,Δy → 0 gives the partial differential equation

∂σxx

∂x
+

∂σyx

∂y
+ bx = 0. (3.34)

Thus the statement “sum of the forces in the x-direction equals zero”
is replaced by a partial differential equation. We can follow the same
argument for the y direction to obtain the relation:

∂σxy

∂x
+

∂σyy

∂y
+ by = 0. (3.35)

σyx

σyx + Δσyx

σxy + Δσxy
bx

by
σxy

Fig. 3.11 Small piece of material with
stresses and body forces which con-
tribute to moment about the z axis.

For moment equilibrium we will take moments about the lower left
corner. Figure 3.11 shows all the stresses components that will contribute
to the moment. Note that it suffices to only include the shear stresses.
Computing the moment about the lower left corner then gives:∑

Mz = (σxy +Δσxy)tΔyΔx− (σyx +Δσyx)tΔxΔy

+ bxtΔxΔy(Δy/2)− bytΔxΔy(Δx/2) = 0.
(3.36)

Now divide by tΔxΔy and take the limit as Δx,Δy → 0. This yields the
result:

σxy = σyx. (3.37)
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So the standard force and moment equilibrium equations in two dimen-
sions give rise to two partial differential equations and one algebraic
equation when written in terms of stresses.

In three dimensions one has a very similar set of results; three partial
differential equations and three algebraic relations:∑

Fx = 0 ⇒ ∂σxx

∂x
+

∂σyx

∂y
+

∂σzx

∂z
+ bx = 0 (3.38)

∑
Fy = 0 ⇒ ∂σxy

∂x
+

∂σyy

∂y
+

∂σzy

∂z
+ by = 0 (3.39)

∑
Fz = 0 ⇒ ∂σxz

∂x
+

∂σyz

∂y
+

∂σzz

∂z
+ bz = 0 (3.40)∑

Mx = 0 ⇒ σyz = σzy (3.41)∑
My = 0 ⇒ σzx = σxz (3.42)∑
Mz = 0 ⇒ σxy = σyx. (3.43)

Remarks:

(1) The implication here is that the concept of equilibrium restricts
how the stresses can vary from point to point in a body, and
further, that the stress tensor is symmetric.

Integral theorem approach

Through the integral theorems of calculus one can also derive the above
expressions. This method permits one to execute the argument in a
mathematically cleaner manner. Note that there is nothing incorrect
about what was done in the previous section. It is merely that we
executed the argument without a detailed specification of a number of
assumptions (which as it turns out are perfectly valid).

R

x

y

R

l

Fig. 3.12 Two-dimensional body with
partRusedforanalysis.

Again we will do everything in two dimensions to reduce the amount of
writing required. To simplify things we will ignore body forces. Consider
first an arbitrary region, R, of material as shown in Fig. 3.12 with
boundary curve ∂R. In equilibrium the total force on this region is zero;
thus by eqn (3.26) we have that(

0
0

)
=

(
Fx

Fy

)
=

∫
∂R

(
σxxnx + σyxny

σxynx + σyyny

)
dl. (3.44)

If we now apply the divergence theorem, we have that(
0
0

)
=

∫
R

(
∂σxx

∂x +
∂σyx

∂y
∂σxy

∂x +
∂σyy

∂y

)
dxdy. (3.45)

Since the region R is arbitrary this implies by the localization theorem
that the integrand must be equal to zero. Thus we recover our partial
differential equations of equilibrium, eqns (3.34) and (3.35).
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For moment equilibrium of region R (about the origin) in two dimen-
sions we have, using eqn (3.27):

0 = Mz =

∫
∂R

x(σxynx + σyyny)− y(σxxnx + σyxny) dl. (3.46)

The application of the divergence theorem to this integral gives:

0 =

∫
R

σxy + x(
∂σxy

∂x
+

∂σyy

∂y
)− σyx − y(

∂σxx

∂x
+

∂σyx

∂y
) dxdy. (3.47)

By force equilibrium the second and fourth terms are zero, and we are
left with the result that

0 =

∫
R

(σxy − σyx) dxdy. (3.48)

Noting that this has to hold for all regions R, an application of the
localization theorem tells us that the integrand must be zero; i.e.

σxy = σyx. (3.49)

3.3 Polar and spherical coordinates

So far we have described our mechanics in terms of Cartesian coordi-
nates. While this is the easiest way of doing things it is not always
the most convenient. In particular, one often finds it easier to use
polar(cylindrical) or spherical coordinates. Figure 3.13 shows the def-
initions of these orthogonal coordinate systems. Note that while the
definition of the cylindrical coordinate system is standard, the defini-
tion of the spherical coordinate system varies from book to book. For
cylindrical coordinates one has

x1 = r cos(θ),
x2 = r sin(θ),
x3 = z,

r =
√
x2
1 + x2

2,

θ = tan−1(x2/x1),
z = x3.

(3.50)

1

3

1

x2 x2

x3

r

ϕ

z

θ
r

θ

e

e

er

θ

z

eθ

e

e

ϕ

r

x x

x

Fig. 3.13 Definition of the cylindrical
and spherical coordinate systems.
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σrr

σrr

σrθ

σrθ

σθr

σθr

σθθ

σθθ

x

y

z

x

y

θ

r

σzz

σθθ

σrr

Fig. 3.14 Cylindrical stresses. (Right)
Three-dimensional representation with
some stresses labeled. (Left) Two-
dimensional case with all stresses
labeled.

and for spherical coordinates one has

x1 = r sin(ϕ) cos(θ),

x2 = r sin(ϕ) sin(θ),

x3 = r cos(ϕ),

r =
√
x2
1 + x2

2 + x2
3,

ϕ = cos−1(
x3√

x2
1 + x2

2 + x2
3

),

θ = tan−1(x2/x1).

(3.51)

3.3.1 Cylindrical/polar stresses

Just as with Cartesian stresses we define polar stresses with reference to
section cuts and force directions. For example, σrθ represents forces per
unit area in the θ-direction on a section cut with normal vector er. Such
a surface is a cylinder. Similar meaning can be ascribed to other stress
components taking {r, z, θ} for subscripts. Figure 3.14 shows some of
these stresses on the standard polar/cylindrical element cut from a solid.

The equilibrium equations in cylindrical coordinates can be derived
using differential element arguments (where the shape of the differential
element is the same as the integration volume in cylindrical coordinates).
The result of such an exercise is that∑

Fr =
∂σrr

∂r
+

1

r

∂σrθ

∂θ
+

∂σrz

∂z
+

σrr − σθθ

r
+ br = 0∑

Fθ =
∂σθr

∂r
+

1

r

∂σθθ

∂θ
+

∂σθz

∂z
+

2σθr

r
+ bθ = 0∑

Fz =
∂σzr

∂r
+

1

r

∂σzθ

∂θ
+

∂σzz

∂z
+

σzr

r
+ bz = 0

(3.52)

Note that moment equilibrium requires that σzr = σrz, σrθ = σθr, and
σzθ = σθz. Thus just as with Cartesian stresses, the cylindrical/polar
stresses are symmetric when placed in a matrix. In other words, the
order of the subscripts does not matter.
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σθr

σϕr

σϕθ
σθϕ

x

z

y

σϕϕ

σrr
σθθ

θ

ϕ
r

Fig. 3.15 Spherical stresses. Three-
dimensional representation with some
stresses labeled on the standard spher-
ical element.

3.3.2 Spherical stresses

A similar interpretation of stress in spherical coordinates also holds. The
first subscript always refers to the normal vector of the section cut, and
the second the direction of the force. Some of the stresses are labeled
in Fig. 3.15. Applying equilibrium to a differential element yields the
relations:

∑
Fr =

∂σrr

∂r
+

1

r

∂σrϕ

∂ϕ
+

1

r sin(ϕ)

∂σrθ

∂θ

+
2σrr − σϕϕ − σθθ + σrϕ cot(ϕ)

r
+ br = 0∑

Fϕ =
∂σϕr

∂r
+

1

r

∂σϕϕ

∂ϕ
+

1

r sin(ϕ)

∂σϕθ

∂θ

+
3σϕr + (σϕϕ − σθθ) cot(ϕ)

r
+ bϕ = 0∑

Fθ =
∂σθr

∂r
+

1

r

∂σθϕ

∂ϕ
+

1

r sin(ϕ)

∂σθθ

∂θ

+
3σrθ + 2σϕθ cot(ϕ)

r
+ bθ = 0

(3.53)

Note that moment equilibrium requires σϕr = σrϕ, σrθ = σθr, and
σϕθ = σθϕ. Thus just as with Cartesian and cylindrical/polar stresses,
the spherical stresses are symmetric when placed in a matrix. In other
words, the order of the subscripts does not matter here either.
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Chapter summary

� Average normal stresses on a section cut

σ =
Fn

A
� Average shear stresses on a section cut

τ =
Ft

A
� Three-dimensional stress at a point is given by σ��, where the
first index gives the direction of the section cut and the second
the direction of the force. This holds for both Cartesian as well as
non-Cartesian orthogonal coordinate systems.

� Cauchy’s Law: the traction on a section cut in terms of the stresses
and the normal vector to the section cut

t = σTn

� Total force on a section cut

F =

∫
A

σTn dA

� Total moment on a section cut

M =

∫
A

(x− xo)× σTn dA

� Force equilibrium in terms of stresses is given by a set of partial
differential equations.

� Moment equilibrium in terms of stresses is given by the require-
ment that the stress tensor be symmetric; i.e. shear stresses on
orthogonal planes must be equal.

Exercises

(3.1) Two pieces of wood are to be glued together using
a lap joint. The shear strength of the glue is 10
N/mm2. Find the maximum permissible load F .

100 x 200 mm

F

F
20 degrees

(3.2) Consider Fig. 3.2 and plot the average shear and
normal stresses on the section as a function of
angle θ ∈ [0, π]. Normalize your stresses by F/Ao.
Remember to properly label your graph.

(3.3) A common method of joining rods is to use a
pin joint as shown. If the cross-sectional area of
the pin is A and the applied load is F , what is
the maximum shear stress in the pin? (Hint: this
configuration is known as double shear.)
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Pin

Side View

Pin

Top View

(3.4) The lap joint shown is made by gluing three pieces
of metal together. The glue can support a shear
stress of τmax. Develop a formula for the maximum
allowed load P . Assume a safety factor of 2.

Top View

Glue joint

P
P/2

Side View

w1

L

w2

P/2

(3.5) Two truss bars are to be pinned to together to
make a support frame. The load to be supported
is a round barrel weighing 10, 000 lbf. If the pin
at A is in double shear (see Exercise 3.3) with a
1 inch diameter, find the shear stress in the pin.

10k

120"

50"

40"A

(3.6) Consider the frame that follows. If the pins at
A, B, and C are 3 cm in diameter and in double
shear (see Exercise 3.3), find the shear stress in
each pin?

1.5m

3m 2.2m

10kNB

A

C

(3.7) Consider an arbitrary three-dimensional body with
a section cut with normal ez. Give expressions for
Fx, Fy, and Fz on the cut in terms of the stress
components.

(3.8) Given:

σ =

⎡⎣10 12 13
12 11 15
13 15 20

⎤⎦ MPa

at a point. What is the force per unit area at this
point acting normal to the surface with unit nor-
mal vector n = (1/

√
2)ex + (1/

√
2)ez? Are there

any shear stresses acting on this surface?

(3.9) Consider a hydrostatic state of stress

σ =

⎡⎣10 0 0
0 10 0
0 0 10

⎤⎦ MPa

at a point. Consider an arbitrary section cut
through this point. What is the force per unit area
acting parallel to the section cut?

(3.10) You are given a body with no body forces and told
that the stress state is given as:⎡⎣ 3αx 5βx2 + αy γz3

5βx2 + αy βx2 0
γz3 0 5

⎤⎦ psi,

where (α, β, γ) are constants with the follow-
ing values: α = 1 psi/in, β = 1 psi/in2, and γ =
1 psi/in3. Does this represent an equilibrium state
of stress? Assume the body occupies the domain
Ω = [0, 1]× [0, 1]× [0, 1] (in inches).

(3.11) Show that force equilibrium in the x-direction
implies

∂σxx

∂x
+

∂σyx

∂y
= 0.

Assume plane stress and no distributed loads. Jus-
tify each step with a short complete sentence.
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(3.12) Using a differential element argument derive
eqn (3.35). Make sure you explain each step with
a short complete sentence.

(3.13) Using a differential element argument derive
eqn (3.40). Make sure you explain each step with
a short complete sentence.

(3.14) Using a differential element argument derive
eqn (3.42). Make sure you explain each step with
a short complete sentence.

(3.15) Consider the section cut shown opposite. If the
stress distribution on the cut is given by

σ =

⎡⎣−20y/h 0 0
0 0 0
0 0 0

⎤⎦ ksi.

What is the total force acting on the cut? What
is the total moment acting on the cut (take
moments about the origin)? Assume h = 5 inches
and b = 9 inches.

x

y

z

h

b

(3.16) Consider two-dimensional stress analysis where
inertial forces cannot be ignored – i.e. the dynamic
case. Using a differential element argument show
that

∂σxx

∂x
+

∂σyx

∂y
+ bx = ρ

∂2ux

∂t2
,

where ρ is the material density, t is time, and ux

is the material displacement in the x direction.
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Strain

In this chapter we turn our attention to the concept of strain. We have
already been exposed to this notion as the statement of change in length
divided by length. We will try to refine this definition of strain to make
it a pointwise definition in three dimensions in the same sense as we did
with stress.

4.1 Shear strain

The notion of strain that we have seen already is more properly called
normal strain. It is related to changes in length. There is one additional
important strain concept associated with deforming bodies: changes in
angle. Shear strain is the type of strain that is associated with changes in
angle. The notion of shear strain takes into account “straining” motions
that are not associated with length changes. In its simplest form it
is defined by considering a motion of a rectangular body as shown in
Fig. 4.1 and measuring the decrease in the right angle in the lower left
corner. This definition will serve as our working definition of average
shear strain, γ.

4.2 Pointwise strain

To refine our concept of strain, we will take our simple definitions of
average normal and shear strain and make them pointwise definitions
using differential constructions similar to the ones we have already seen.
To keep things modestly simple we will consider only two-dimensional

γ

Fig. 4.1 Shear strain, γ, definition.
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bodies in the x-y plane. As our body deforms every point in the body
will be displaced. Let u(x, y) be the displacement in the x-direction at
a point (x, y) and let v(x, y) be the y-displacement at this same point.

4.2.1 Normal strain at a point

Δ

x

y
u(x,y)

u(x + Δx,y)

x

Fig. 4.2 Construction for εxx.

To obtain an expression for normal strain at a point consider what
happens to a line of material points that starts at (x, y) and ends at
(x+Δx, y). By looking at the change in length of this line segment
divided by its original length we will come to an expression for average
normal strain in the x-direction. By taking the limit as Δx → 0 we will
then obtain an expression for normal strain in the x-direction at that
point.
In Fig. 4.2 the overall x-direction elongation of this particular line

segment is seen to be u(x+Δx, y)− u(x, y). The average normal strain
of the segment is then

ε =
u(x+Δx, y)− u(x, y)

Δx
. (4.1)

If we take the limit as Δx → 0 we will have a notion of normal strain at
a point. The limit gives us

εxx(x, y) =
∂u

∂x
. (4.2)

This is the definition of normal strain in the x direction at a point.
By considering a small line of material points in the vertical direction

of length Δy we can develop an expression for pointwise normal strain
in the y-direction. Applying our technique gives rise to

εyy(x, y) = lim
Δy→0

v(x, y +Δy)− v(x, y)

Δy
=

∂v

∂y
; (4.3)

see Fig. 4.3
x

y

Δ y

v(x,y)

v(x,y +    y)Δ

Fig. 4.3 Construction for εyy .
Remarks:

(1) The sign convention for strain indicates that positive values of nor-
mal strain correspond to the elongation of material and negative
values correspond to the contraction of material.

(2) The arguments above are somewhat imprecise. In each normal
strain derivation we have accounted only for elongational motion
of the end points of the line segments in the direction of interest.
We have not taken into account what happens if the line segments
also displace in the transverse direction. If we had, we would have
found extra terms appearing in our expressions for the normal
strains. These terms would have been non-linear in the derivatives
of the displacements. In this book we will ignore such terms. The
resulting theory that we will work with will then be called a
small displacement or infinitesimal strain theory. The importance
of these neglected terms occurs when the strains are large. To



4.2 Pointwise strain 61

make these phrases more precise, consider eqn (4.2); the hidden
assumption we have made is that∣∣∣∣∣12

[(
∂u

∂x

)2

+

(
∂v

∂x

)2
]∣∣∣∣∣�

∣∣∣∣∂u∂x
∣∣∣∣ . (4.4)

Such a situation will certainly occur if the first derivatives of
the displacements are all small in comparison to unity. As it so
happens this is true for a wide class of engineering systems –
though certainly not all.

4.2.2 Shear strain at a point

To find an expression for shear strain at a point we can draw a right
angle at the point of interest with leg lengths of Δx and Δy; see Fig. 4.4.
Upon deformation the point of interest as well as the two end-points
will be displaced an amount u and v-depending on the values of their
coordinates. We now compute the change in angle between the three
points; it will be composed of two contributions β1 and β2, as shown in
Fig. 4.4 (bottom). As long as the deformation is not large we will have

β1 =
d

c
=

v(x+Δx, y)− v(x, y)

Δx+ u(x+Δx, y)− u(x, y)
. (4.5)

β2

β1

a

b

c

d

x

yy

x

y

x

Δ

Δ

Fig. 4.4 Construction for γxy.
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Dividing the top and bottom by Δx and taking the limit Δx → 0 gives:

β1 =
∂v/∂x

1 + ∂u/∂x
. (4.6)

In keeping with our previous assumptions, we will assume∣∣∣∣∂u∂x
∣∣∣∣� 1; (4.7)

thus,

β1 ≈ ∂v

∂x
. (4.8)

A similar argument can be utilized to show that

β2 =
b

a
≈ ∂u

∂y
(4.9)

under the assumption that ∣∣∣∣∂v∂y
∣∣∣∣� 1. (4.10)

Combining our results gives us our final small strain expression for the
shear strain at a point in the x-y plane:

γxy =
∂v

∂x
+

∂u

∂y
. (4.11)

4.2.3 Two-dimensional strains

With the previous developments we now have expressions for the strains
in two-dimensional problems; viz.,

εxx =
∂u

∂x
(4.12)

εyy =
∂v

∂y
(4.13)

γxy =
∂u

∂y
+

∂v

∂x
. (4.14)

These relations define the components of the strain tensor. By conven-
tion, when reported, they are usually placed in a matrix in the following
manner:

ε =

[
εxx

1
2
γxy

1
2
γxy εyy

]
. (4.15)

Remarks:

(1) The off-diagonal term 1
2γxy is often denoted as εxy. γxy is known

as the engineering shear strain, and εxy is known as the tensorial
shear strain. The distinction is very important, as they differ
numerically by a factor of 2; i.e. εxy = 1

2γxy.
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Example 4.1

Homogeneously strained plate. Consider a thin (1-m x 1-m x 1-cm) steel
plate which is loaded on one edge with a uniformly distributed 10-
kN load and supported on the other end with a center pin and edge
rollers, as shown in Fig. 4.5. Assume we make a measurement of the
displacement field and find that u(x, y) = (5× 10−6)x [m], and that
v(x, y) = (−0.15× 10−6)y [m]. Determine the strain field in the plate.

Thickness 1 cm

10 kN
x

y

1 m

1 m

Fig. 4.5 Homogeneously strained
plate.

Solution
Knowing the displacement field the strain field can be determined by
computing the appropriate derivatives of the displacement field.

ε(x, y) =

[
εxx

1
2γxy

1
2γxy εyy

]
=

[
5 0
0 −0.15

]
× 10−6. (4.16)

Remarks:

(1) The result tells us that the material elongates in the x-direction
and contracts in the y-direction, and further, that these strains
are homogeneous – are everywhere the same.

(2) The shear strain is everywhere zero, and this tells us that there
are no angle changes between vertical and horizontal lines in the
plate when the load is applied.

4.2.4 Three-dimensional strain

In three dimensions we can execute similar arguments to arrive at
expressions for strain in three dimension. Here we will find three normal
strains for the three coordinate directions and three shear strains – one
for each coordinate plane. If we let w(x, y, z) denote displacement in the
z-direction we will have:

εxx =
∂u

∂x
(4.17)

εyy =
∂v

∂y
(4.18)

εzz =
∂w

∂z
(4.19)

γxy =
∂u

∂y
+

∂v

∂x
(4.20)

γyz =
∂v

∂z
+

∂w

∂y
(4.21)

γzx =
∂w

∂x
+

∂u

∂z
. (4.22)
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The matrix convention for reporting the components of the strain tensor
in three dimensions is:

ε =

⎡⎢⎣ εxx
1
2γxy

1
2γzx

1
2γxy εyy

1
2γyz

1
2
γzx

1
2
γyz εzz

⎤⎥⎦. (4.23)

4.3 Polar/cylindrical and spherical strain

Just as with stresses we can also define strains with respect to polar and
spherical coordinate systems. Quantities such as εθθ represent normal
strains in the θ-direction at a point; a quantity such as γθz would
represent a change in angle in the θ-z coordinate plane passing through
a point.

Using constructions like those in the Cartesian case one finds that⎡⎢⎢⎣
εrr

1
2
γrθ

1
2
γrz

εθθ
1
2γθz

sym. εzz

⎤⎥⎥⎦ =

⎡⎢⎢⎣
ur,r

1
2

(
1
r
∂ur

∂θ + r ∂(uθ/r)
∂r

)
1
2(

∂ur

∂z + ∂uz

∂r )

1
r (

∂uθ

∂θ + ur)
1
2(

∂uθ

∂z + 1
r
∂uz

∂θ )

sym. ∂uz

∂z

⎤⎥⎥⎦.
(4.24)

⎡⎢⎢⎣
εrr

1
2γrϕ

1
2γrθ

εϕϕ
1
2
γϕθ

sym. εθθ

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
ur,r

1
2

(
1
r
∂ur

∂ϕ + r
∂(uϕ/r)

∂r

)
1
2

(
1

r sin(ϕ)
∂ur

∂θ + r ∂(uθ/r)
∂r

)
1
r (

∂uϕ

∂ϕ + ur)
1
2

(
1
r
∂uθ

∂ϕ + 1
r sin(ϕ)

∂uϕ

∂θ

)
sym. 1

r sin(ϕ)
∂uθ

∂θ + ur/r + uϕ cot(ϕ)/r

⎤⎥⎥⎥⎥⎦ .
(4.25)

4.4 Number of unknowns and equations

If we look over our theory as developed we find in three dimensions that
there are six strains, three displacements and nine stresses – giving a
total of 18 possible unknown quantities. In two dimensions we find that
we have three strains, two displacements, and four stresses – giving nine
possible unknown quantities. The total number of equations at hand in
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three dimensions is six equilibrium and six strain-displacement equations
– for a total of twelve equations.1 In two dimensions we will have three 1 When discussing the number of

unknowns, many presentations explic-
itly assume that the stress tensor is
symmetric. This reduces the number of
unknown stresses in three dimensions
to six and in two dimensions to three.
Of course if one does this, then one
should not count the moment equilib-
rium equations in the number of avail-
able equations.

equilibrium and three strain-displacement equations – for a total of
six equations. Since the theory is linear we are missing six equations
for three-dimensional problems and three equations in two-dimensional
problems. These missing equations are the constitutive equations. In
the next chapter we will look at the generalization of Hooke’s Law to
two- and three-dimensional problems.

Chapter summary

� The general state of deformation of a body is given by the dis-
placement field: u(x, y, z), v(x, y, z), w(x, y, x).

� Normal strains at a point represent relative changes in length in
particular directions; e.g. εyy gives the relative change in length of
a body in the y-direction.

εxx =
∂u

∂x

εyy =
∂v

∂y

εzz =
∂w

∂z
� Shear strains at a point represent the decrease in angle between
the coordinate lines at a given point; e.g. γzx gives the decrease in
angle between the x- and z-coordinate lines at a given point.

γxy =
∂u

∂y
+

∂v

∂x

γyz =
∂v

∂z
+

∂w

∂y

γzx =
∂w

∂x
+

∂u

∂z
� Our interpretations of the strain components in Cartesian coordi-
nates carry over to polar and spherical coordinates without change.

Exercises

(4.1) Consider the two-dimensional body shown. The
undeformed state of the body is shown on the
left. After the application of load the body

takes on the configuration shown on the right.
What is the average shear strain, γxy, in the
body?



66 Exercises

x

2 
in

ch
es

2 inches

0.02 inches

2 inches

2 inches

y

(4.2) Consider a two-dimensional body occupying the
region [0, 1]× [0, 1] whose displacement field is
given by u = (4x2 + 2)× 10−4 and v = (2x4 +
3y4)× 10−4. What is the strain field for the body?
Assume the numerical constants have consistent
units.

(4.3) Consider a two-dimensional body occupying the
region [0, 1]× [0, 1] whose displacement field is
given by u = (4x+ 6y)× 10−4 and v = (3x+
5y)× 10−4. What is the strain field for the body?
Assume the numerical constants have consistent
units.

(4.4) Consider a two-dimensional body occupying the
region [0, 1]× [0, 1] whose displacement field is
given by u = (4y2 + 6y)× 10−4 and v = (1x2 +
2x)× 10−4. What is change in angle between the x
and y coordinate directions at the point (0.5, 0.5).
Assume the numerical constants have consistent
units.

(4.5) Consider the strain field of Exercise 4.2. Sketch the
deformed shape of a small square of material near
the point (0.2, 0.2).

(4.6) Consider the strain field of Exercise 4.3. Sketch the
deformed shape of a small square of material near
the point (0.1, 0.2).

(4.7) Consider the strain field of Exercise 4.4. Sketch the
deformed shape of a small square of material near
the point (0.2, 0.1).

(4.8) Shown below is a two-dimensional beam that
is being bent by an applied moment, M . The
motion of the material has been measured as ux =
−κyx, uy = κx2/2, where κ is a given constant
with dimensions of 1 over length. Find the strain
field in the beam.

x

y

M

(4.9) Derive eqn (4.19).

(4.10) Derive eqn (4.21).

(4.11) Consider the ring of material shown below. Before
deformation the ring has a radius of 50 mm. After
deformation it has a radius of 51 mm. Assume that
the ring is thin and that all the motion is in the
radial direction. What is the hoop strain, εθθ, in
the ring?

50 mm

x

y

51 mm

x

y

(4.12) Shown below is a solid circular rod of material. The
bottom is clamped and a torque is applied at the
top. The motion of the material has been mea-
sured in cylindrical coordinates as ur = 0, uθ =
αrz, uz = 0, where α is a given constant with
appropriate dimensions. What is the strain field
in the rod?

y

z

T

x

(4.13) Sketch a construction that allows one to derive the
relation for εθθ in polar coordinates; i.e. draw a
modified version of Fig. 4.2 from which one can
show that εθθ = 1

r
[∂uθ/∂θ + ur].

(4.14) Use the construction of Exercise 4.13 to derive the
relation for the hoop strain.
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Constitutive Response

In Chapter 2 we looked at some simple models of material behavior
in one dimension. In this chapter we will extend these notions to two
and three dimensions. Due to the complexity of constitutive relations in
higher dimensions we will restrict our attention to isotropic linear elastic-
ity and isotropic linear thermo-elasticity; these are the multi-dimensional
counterparts to Hooke’s Law and Hooke’s Law with thermal effects.

5.1 Three-dimensional Hooke’s Law

In three-dimensional isotropic1 linear thermo-elasticity we have two
1 Isotropic means the mechanical prop-
erties are the same in all directions; this
is the case for a wide variety of common
engineering materials.

basic material constants (Young’s modulus, E, and Poisson’s ratio, ν)
plus the coefficient of thermal expansion α.

P

x

y

P

Fig. 5.1 Geometric definition of Pois-
son’s ratio.

Young’s modulus, we have seen, gives the relation of normal strain
to normal stress (in a given direction). Poisson’s ratio is an additional
material constant that accounts for the fact that, generally, if one
stresses a material in one direction there is a strain in the transverse
direction. Consider, for example, Fig. 5.1 where a two-dimensional body
has been stressed in the x-direction and a strain is generated in the y-
direction. The stress σxx induces a εyy strain that is characterized by the
relation εyy = −νσxx/E. A similar relation holds for induced strain in
the z-direction due to normal stress in the x-direction. Likewise normal
stresses in the z- and y-directions will induces Poisson effects in the y-, x-
and x-, z-directions, respectively. Note that thermodynamic restrictions
only allow ν ∈ [−1, 12 ). Common metals have ν = 0.3; polymers tend
to have ν ≈ 0.45 or slightly higher. Some structured foams have ν < 0,
which implies that they expand laterally when extended in one direction.
With Young’s modulus and Poisson’s ratio we can model the relation

between normal strains and normal stress in an isotropic linear elastic
solid. To fully characterize the response of such a solid we also need to
specify the constitutive relations that govern the behavior of the material
in shear. For the linear isotropic case at hand, this is given by relations
of the form σxy = Gγxy for each shear stress–shear strain pair. Hence,
shear strains are generated by the application of shear stresses. The
shear modulus G is a material parameter and is related to E and ν as
G = E/(2(1 + ν)); a proof of this will be given later in Chapter 9.2 2 An alternative common symbol for G

is μ.Temperature changes in linear isotropic solids generally produce
expansion and contraction that is uniform in space. Thus if one heats a
solid and it expands, then the expansion is the same in all coordinate
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directions. As such, for a temperature change ΔT , the material strains as
εxx = εyy = εzz = αΔT , where α is the coefficient of thermal expansion.
If we now assume that each of the effects just described are inde-

pendent of each other, then we can superpose them to find the overall
constitutive relations for use when all are present. Doing so gives the
strain tensor components as

εxx =
σxx

E
− νσyy

E
− νσzz

E
+ αΔT (5.1)

εyy =
σyy

E
− νσzz

E
− νσxx

E
+ αΔT (5.2)

εzz =
σzz

E
− νσxx

E
− νσyy

E
+ αΔT (5.3)

γxy =
σxy

G
(5.4)

γyz =
σyz

G
(5.5)

γzx =
σzx

G
. (5.6)

Remarks:

(1) The eqns (5.1)–(5.6) constitute the six equations which are needed
for a complete description of the mechanical behavior of an
isotropic linear elastic solid, as was discussed in Section 4.4.

Example 5.1

Strain due to stress and temperature change. Consider a linear thermoe-
lastic body under the action of a temperature change of 1 F, where the
stress state at a given point is known to be

σ =

⎡⎣ 300 1200 0
1200 −300 0

0 0 0

⎤⎦ psi. (5.7)

The material constants are E = 30× 106 psi, G = 12× 106 psi, ν = 0.25,
and α = 12× 10−6 1/F. Determine the state of strain at this point and
sketch the motion of the material in the vicinity of the point in the x-y
plane.

Solution
Using the thermoelastic Hooke’s Law one finds

εxx =
300

E
− ν

E
(−300 + 0) + α1 (5.8)

εyy = −300

E
− ν

E
(300) + α1 (5.9)

εzz = − ν

E
(300− 300) + α1 (5.10)
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(Stress state units psi)

300

300

1200

Temperature change = 1 F
Resulting deformation state Fig. 5.2 State of stress and resulting

deformation.

γxy =
1200

G
(5.11)

γyz =
0

G
(5.12)

γzx =
0

G
(5.13)

or in matrix form

ε =

⎡⎣ 25 100 0
100 −0.5 0

0 0 12

⎤⎦× 10−6. (5.14)

In the x-y plane there is an extension in the x-direction and a relatively
small contraction in the y-direction. In this plane the angle between the
x- and y-coordinate axes is decreased by 200 μradians. This state of
deformation is sketched in Fig. 5.2.

5.1.1 Pressure

It is often useful to talk about pressure in a solid. Pressure is defined to
be the mean normal stress:

p =
1

3
(σxx + σyy + σzz). (5.15)

In isotropic solids, pressures give rise to changes in volume, and this
is commonly measured as volumetric strain (change in volume per unit
volume) θ = εxx + εyy + εzz. By adding eqns (5.1)–(5.3), one can show
that

θ = p/K, (5.16)

where K = E/(3(1− 2ν)) is known as the bulk modulus, and thermal
effects have been ignored.

Remarks:

(1) The mean normal stress, or pressure, is also commonly known as
the “hydrostatic pressure”.
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(2) Beware that in some fields, such as fluid mechanics and geotech-
nical engineering, the pressure is defined as the negative of our
definition, i.e. as p = − 1

3
(σxx + σyy + σzz). The convention which

we adopt is common in solid mechanics.

5.1.2 Strain energy in three dimensions

The strain energy per unit volume in a linear elastic isotropic body
(ignoring thermal effects) is given as

w =
1

2
(σxxεxx + σyyεyy + σzzεzz + σxyγxy + σyzγyz + σzxγzx). (5.17)

This relation is a generalization of the relation derived in one dimension
for the strain energy density in an axially loaded rod. The derivation
follows directly along the same lines as the one in Section 2.5. Each
term in eqn (5.17) can be observed to consist of matching pairs of like
stresses and strains. Each pair contributes an additive contribution to
the total strain energy density.

5.2 Two-dimensional Hooke’s Law

When possible it is nice to reduce the dimensionality of a physical
problem. Thus, if at all possible we try and take three-dimensional
problems and turn them into two- and one-dimensional problems, since
they are much easier to solve. This poses the question of how one takes a
three-dimensional constitutive relation and turns it into one appropriate
for one- and two-dimensional problems. There are many ways of doing
this, but there are two very common sets of assumptions of which one
should definitely be aware.

5.2.1 Two-dimensional plane stress

In plane-stress problems, we assume σzz = σyz = σzx = 0. This set of
assumptions is useful near the free surface of a body where the normal
to the surface is in the z-direction. It is also commonly used when the
z-direction of the body is thin in comparison to the x- and y-directions.
Note that this is done even if there are loads applied in the z-direction.
While this may seem rather implausible, one can show from the three-
dimensional theory of elasticity that it is a good assumption for a wide
range of practical situations.
If we take these assumptions and re-evaluate the full three-dimensional

theory we can shown that

εxx =
σxx

E
− νσyy

E
+ αΔT (5.18)

εyy =
σyy

E
− νσxx

E
+ αΔT (5.19)
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εzz = −νσxx

E
− νσyy

E
+ αΔT (5.20)

γxy =
τxy
G

(5.21)

γyz = 0 (5.22)

γzx = 0. (5.23)

Remarks:

(1) Equations (5.18), (5.19), and (5.21) constitute the three needed
equations to complete the mechanical description for a two-
dimensional problem as described in Section 4.4. Equation (5.20) is
an extra equation that is not needed in a two-dimensional descrip-
tion of mechanical response. However, after a two-dimensional
problem has been solved it can be used after the fact to compute
the (Poisson) strain in the z-direction.

5.2.2 Two-dimensional plane strain

In plane strain we assume εzz = εyz = εzx = 0. This is basically the same
as assuming that there is no displacement in the z-direction, w = 0, and
that nothing varies in the z-direction, ∂

∂z
(·) = 0. These assumptions are

appropriate when the body in question is restrained from motion in the
z-direction. This is something that happens often when the z-direction
dimension of the body is quite large in comparison to the x- and y-
dimensions. If we insert these assumptions into the three-dimensional
theory we can show that

εxx =
(1− ν2)σxx

E
− ν(1 + ν)σyy

E
+ (1 + ν)αΔT (5.24)

εyy =
(1− ν2)σyy

E
− ν(1 + ν)σxx

E
+ (1 + ν)αΔT (5.25)

0 =
σzz

E
− νσxx

E
− νσyy

E
+ αΔT (5.26)

γxy =
σxy

G
(5.27)

0 = σyz (5.28)

0 = σzx. (5.29)

Remarks:

(1) Equations (5.24), (5.25), and (5.27) constitute the three needed
equations to complete the mechanical description for a two-
dimensional problem as described in Section 4.4. Equation (5.26) is
an extra equation that is not need in a two-dimensional description
of mechanical response. However, after a two-dimensional problem
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has been solved it can be used after the fact to compute the
(constraint) stress in the z-direction.

5.3 One-dimensional Hooke’s Law:
Uniaxial state of stress

The last common assumption that is often made is that of a uniaxial
state of stress. The assumption here is that σxx is the only possible non-
zero stress. This assumption is useful for thin slender bodies under the
action of axial or bending loads. Applying this assumption gives

εxx =
σxx

E
+ αΔT (5.30)

εyy = −νσxx

E
+ αΔT (5.31)

εzz = −νσxx

E
+ αΔT (5.32)

γxy = 0 (5.33)

γyz = 0 (5.34)

γzx = 0. (5.35)

Remarks:

(1) For the one-dimensional rod problems with axial loads we have
used the result of this assumption: viz., eqn (5.30).

(2) Equations (5.31) and (5.32) can be used after the completion of a
one dimensional analysis to compute the (Poisson) strains in the
transverse directions.

5.4 Polar/cylindrical and spherical
coordinates

The preceding relations also hold for other orthonormal coordinate
systems such as polar/cylindrical and spherical coordinates. One sim-
ply needs to make the substitutions (x, y, z) → (r, θ, z) or (x, y, z) →
(r, ϕ, θ).

Chapter summary

� For linear elastic isotropic solids, the normal strain in a given
coordinate direction is composed of a term directly related to
the load in that direction plus terms associated with Poisson
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contraction due to loads in the other two coordinate directions and
any thermal strains:

εxx =
σxx

E
− νσyy

E
− νσzz

E
+ αΔT

εyy =
σyy

E
− νσzz

E
− νσxx

E
+ αΔT

εzz =
σzz

E
− νσxx

E
− νσyy

E
+ αΔT

� For linear elastic isotropic solids, the shear strains are only related
to the corresponding shear stresses:

γxy =
σxy

G

γyz =
σyz

G

γzx =
σzx

G
� The two principal assumptions for two-dimensional problems are
plane stress σzz = σzx = σzy = 0 and plane strain εzz = εzx =
εzy = 0.

� The common elastic constants are Young’s modulus E, Poisson’s
ratio ν, bulk modulus K, shear modulus G, and the coefficient of
thermal expansion α.

� Pressure is defined as the mean normal stress:

p =
1

3
(σxx + σyy + σzz)

� The volume strain is given as θ = εxx + εyy + εzz.
� The strain energy density in a linear elastic body is composed of
sums of corresponding stress–strain pairs:

w =
1

2
(σxxεxx + σyyεyy + σzzεzz + σxyγxy + σyzγyz + σzxγzx)

Exercises

(5.1) What happens in the transverse direction if one
puts a rod in tension when the Poisson’s ratio is
negative?

(5.2) What set of strains will be generated by the follow-
ing stresses:

⎡⎣ 50 −10 0
−10 20 8

0 8 0

⎤⎦MPa.

Assume E = 100 GPa, ν = 0.3.
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(5.3) What set of stresses is required to generate the
following set of strains:⎡⎣ 5 1 −4

1 2 7
−4 7 −10

⎤⎦μstrain.
Assume E = 100 GPa, G = 45 GPa.

(5.4) Consider a square steel plate under the following
plane state of stress:⎡⎣ 300 1200 0

1200 −300 0
0 0 0

⎤⎦ psi.
Further, the plate is subjected to a temperature rise
of 10F. Assume E = 30× 106 psi, G = 12× 106 psi,
α = 6.5× 10−6 1/F, and find the strain state of the
plate. Once you have determined the strain state,
accurately sketch the deformed shape of the plate
assuming that it occupies the region [0, 10]× [0, 10]
(inches × inches).

(5.5) Consider the two-dimensional body, shown below,
that is to be homogeneously stressed in the x-
direction until its length (in the x-direction) has
been increased by 1%. What value of σxx is required
if one assumes (a) two-dimensional plane-strain
and (b) two-dimensional plane-stress? Assume the
material is ABS (Acrylonitrile Butadiene Styrene,
a common engineering thermoplastic) with E =
3.2× 105 psi, ν = 0.35.

σxx σxx

x

y

(5.6) Consider a three-dimensional thermo-elastic body
that is restrained so that all strains are zero. What
temperature change would be required to produce a
compressive state of stress σxx = σyy = σzz = −20
ksi. Assume α = 12μstrain/F, E = 30× 106 psi,
ν = 0.3.

(5.7) Consider a rubber sphere of radius 5 cm. How much
pressure would be required to squeeze the sphere
down to a radius of 4.9 cm? Assume E = 1 MPa
and ν = 0.49.

(5.8) How much total strain energy is stored in the sphere
in Exercise 5.7? Make a plot of strain energy in the
sphere as a function of radius for radii from 5.1 cm
to 4.9 cm.

(5.9) Compute the stress field associated with the strain
field in Exercise 4.12.

(5.10) Explain why a material is said to be “incompress-
ible” when ν approaches 1

2
.

(5.11) A foam rod of length L = 50 mm and diameter
d = 10 mm has a Poisson’s ratio ν = −0.7 and
a Young’s modulus E = 10 MPa. The rod is to
be inserted into a hole with diameter δ = 9 mm.
To do this the rod is first axially compressed and
then slid into the hole after which the axial com-
pression is released. How much axial compression
stress is required for the insertion step? After the
axial compression is released, what is the stress
state in the rod? Assume the plate is rigid and
that there is no friction between the rod and
the plate.

(5.12) Write the stress components as a function of the
strain components for the case of two-dimensional
plane strain.

(5.13) Write the stress components as a function of the
strain components for the case of two-dimensional
plane stress.
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Basic Techniques
of Strength of Materials

The complete set of equations that describe three-dimensional (elastic)
mechanical systems are rather involved, and their solution requires
modestly sophisticated mathematical and numerical methods. In engi-
neering mechanics one employs carefully chosen assumptions to reduce
the governing system of equations to a more practical and easier-to-solve
set. The principal techniques of engineering mechanics are based upon
kinematic assumptions and stress-distribution assumptions. These two
sets of assumptions when combined with an appropriate constitutive
model render the generally complex problem of determining the stress,
strain, and displacement state of a body tractable. In other words, by
a careful selection of assumptions we can turn a problem that involves
the solution of coupled partial differential and algebraic equations into
something quite achievable. In fact, we already performed such an
exercise when we studied the behavior of axial loaded bars in Chapter
2. In this chapter we will revisit the one-dimensional axial loaded rod
from our new perspective on the three-dimensional theory. We will see
that the analysis we originally performed can be understood from the
perspective of a kinematic assumption and a stress assumption on the
full multi-dimensional theory. We will also look at the notion of thinness
and its implications on functional variation; this will be done within the
context of analyzing the behavior of thin-walled pressure vessels. This
will be followed by a brief discussion of the validity of such procedures
and important caveats which should always be kept in mind.

6.1 One-dimensional axially loaded rod
revisited

How is the three-dimensional theory related to what we did earlier when
looking at rods under the action of axial loads? The answer lies in making
physical observations on the motion of three-dimensional bars under
axial loads. The fundamental observation one makes when examining the
deformation of axially loaded bars is that if one selects a plane orthogonal
to the loading axis (i.e. a cross-sectional plane) before loading, then after
loading the plane will still be a plane and will have merely displaced
in the (axial) x-direction. This observation is known to engineers as



76 Basic Techniques of Strength of Materials

the well-worn phrase: “Plane sections remain plane”. The observation
is amazingly robust, and even holds when the material properties are
inhomogeneous1 and the cross-sectional area is non-constant. Naturally,1 Inhomogeneous means not constant

from point to point. there are other aspects to the deformation such as thinning of the cross-
section due to Poisson’s effect, complexities of motion near points of
loading and support, etc., but overall, the dominant feature of the motion
is the displacement of the cross-sections in the x-direction.

In terms of equations we are led to assume that

u = û(x) (6.1)

and that v = w = 0. The most important feature of this assumption is
that u has gone from a function of x, y and z to one that just depends
on x. The assumptions on v and w are made since these displacements
do not appear (feel) central to the dominant motion. This leads to only
one fundamental strain-displacement relation:

εxx(x) =
du

dx
(x). (6.2)

All the other strains are predicted to be zero according to the full three-
dimensional strain-displacement relations.

To further the analysis we assume we are developing a theory for
slender bodies so that the cross-sectional dimensions are small in
comparison to the length. If we are not applying opposing loads in
the y- and z-directions along the lateral surfaces then we know that
the stresses associated with the y- and z-directions will be zero on the
lateral surfaces. Since the body is thin we then assume that this holds
throughout; this leads us to assume a uniaxial state of stress. The
resulting strains are thus:

ε =

⎡⎢⎣
1
Eσxx 0 0

0 − ν
Eσxx 0

0 0 − ν
E
σxx

⎤⎥⎦. (6.3)

Note that this assumption gives rise to transverse strains εyy and εzz.
This is at odds with the kinematic assumption which predicts zero
transverse strains. This situation of incompatible assumptions is a com-
mon problem with analysis techniques in engineering mechanics. We are
making assumptions to solve a complex problem, and in general it will
be very hard to render everything compatible. The only way for us to
decide whether or not we have done the correct thing is to either solve the
complete three-dimensional problem or to compare our predictions with
experiments. It turns out in this case that these opposing assumptions
are “correct”. One way of seeing that allowing for transverse strains is
acceptable is to note that the contribution to the strain energy from
the transverse motion is zero. Why? Because the transverse stresses
are assumed zero. If one adopts an energy viewpoint of the behavior
of the system, then allowing for these strains even though they are in
contradiction to the kinematic assumption should not affect the final
results, since there is no energy associated with them.
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If we now take our stress assumption and look at the equilibrium
equations we find that there is only one non-trivial equilibrium equation:

∂σxx

∂x
+ bx = 0. (6.4)

If we note that the total axial force on a cross-section is given by

R =

∫
A

σxx dA, (6.5)

then we can also rewrite this equation as:

dR

dx
+ b = 0, (6.6)

where b =
∫
A
bx dA, whose units are force per unit length.

Our assumptions concerning the kinematics and the stresses thus lead
us from a complex system of partial differential and algebraic equations
in three dimensions to the following, much simpler, system of governing
equations in one dimension for u, εxx, σxx, and R:

εxx(x) =
du

dx
(x) (6.7)

dR

dx
(x) + b(x) = 0 (6.8)

εxx(x) =
σxx(x, y, z)

E(x, y, z)
(6.9)

R(x) =

∫
A(x)

σxx(x, y, z) dA. (6.10)

Note that these are the same equations which we used previously –
with the exception of eqn (6.10), which is a generalization of R = σA.
Thus our one-dimensional rod formulation from earlier in the text can
be interpreted as a tractable set of equations based upon full three-
dimensional theory plus two fundamental assumptions – one kinematic
(plane-sections-remain-plane) and one stress-based (uniaxial stress with
respect to the x-direction). Additional information can now also be
gleaned, such as information about the transverse strains.

Example 6.1

Extension of a composite bar. As an application of our new understand-
ing of the theory of axially loaded bars, let us consider the composite
bar shown in Fig. 6.1 and attempt to compute the end deflection of the
bar assuming it is restrained at its far end.

Solution
If we construct an internal force diagram for the bar we see that
equilibrium requires

R(x) = F, (6.11)
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Area 2

Material 1

Material 2

Area 1

F

0.5t1

t2

0.5t1

w

Fig. 6.1 Axially loaded composite bar.

the applied end-load. The expression for the internal force tells us that

R(x) =

∫
A1

σ dA+

∫
A2

σ dA = t1wσ1(x) + t2wσ2(x). (6.12)

If we now apply our constitutive law we find that

R(x) = t1wE1ε(x) + t2wE2ε(x). (6.13)

Solving for the strain gives

ε(x) =
R(x)

t1wE1 + t2wE2
. (6.14)

Integrating, finally gives us:

Δ = u(L)− u(0) =

∫ L

0

du

dx
dx =

FL

t1wE1 + t2wE2
. (6.15)

Remarks:

(1) While the strains are constant on the cross-section, the stresses
are not, because of the inhomogeneous moduli (in terms of y and
z). For example, if ε(x) = εo, then the stresses in material 1 are
E1εo, while those in material 2 would be E2εo.

(2) The use of a kinematic assumption to simplify the strain field
will be a central element of all the major problem classes we
will treat in this book. Such assumptions generally emanate from
physical observation, and their purpose is to reduce the number of
unknowns in a problem and to reduce the space dimension of the
problem being studied. In the remainder, such assumptions will
always turn problems governed by partial differential equations
into problems governed by ordinary differential equations.

(3) The use of a stress assumption will be a feature of some, but not
all, problem classes with which we will work.
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Example 6.2

Plastic loading. Consider the bar from Example 6.1 now using an elastic-
perfectly plastic material model. Suppose the yield strain of material 2
is greater than the yield strain of material 1: ε2Y > ε1Y . (1) Assume the
bar has been strained such that the strain is above the yield strain for
material 1 but below that for material 2; i.e. that ε2Y > ε > ε1Y . Sketch
the stress distribution. (2) Suppose ε is increased to ε = ε2Y . What is
the load in the bar?

E2ε

σ2Y

y

σ1Y

σ

Fig. 6.2 Stress distribution beyond
yield.

Solution
For part (1) the stress in material 1 will be limited to σ1Y , since it has
been strained beyond yield. Material 2 is will still behave elastically and
have a stress of E2ε. The distribution is sketched in Fig. 6.2. For part
(2) the stress in material 2 will now also be at yield. Thus

R(x) =

∫
A

σ dA =

∫
A1

σ dA+

∫
A2

σ dA = t1wσ1Y + t2wσ2Y . (6.16)

Remarks:

(1) This load is sometimes termed the ultimate load for the bar, since
it represents the maximum possible load one can apply.

6.2 Thinness

Many practical engineering structures can in some ways be considered
thin. The meaning of thin in this context is that the changes in the
coordinates in a particular direction are small when compared to the
absolute values of the coordinates. As a particular example consider a
function f(x) where the x-coordinate can vary from x = a to x = b;
see Fig. 6.3. We will assume this situation qualifies as thin if 1

2
|(a+

b)/(b− a)| > 10. The importance of this situation arises when we can
additionally assume that the derivative df/dx is small; i.e. |df/dx| � 1
for x ∈ (a, b). In this situation we are justified in assuming that the
function and its derivative are constant over the interval (a, b). How we
can take advantage of this is shown in the next few sections, where we
analyze the behavior of thin-walled pressure vessels. ba

x

f(x)

Fig. 6.3 Graph of a generic function.
6.2.1 Cylindrical thin-walled pressure vessels

Figure 6.4 shows a thin-walled cylindrical pressure vessel under internal
pressure p. The important dimension that we will assume to be thin in
this situation is the radial one; i.e. we will require that the wall thickness
be small in comparison to the radius:
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Internal Pressure p

z

r

x

y

r

θ

2R

t

a

a

Section a−aFig. 6.4 Cylindrical thin-walled pres-
sure vessel.

R/t > 10. (6.17)

The primary implication of this is that we can assume the strains are
constants as a function of r. In particular we will assume that the hoop
strain, εθθ, the axial strain, εzz, and the radial strain εrr are all constants
as a function of r. Note also that by symmetry of the system nothing
can be a function of θ; i.e. the problem is axis-symmetric.

Section Cut

pressure p acting
normal to center
part of section cut

σzzacting normal
to vessel wall

Fig. 6.5 Cylindrical thin-walled pres-
sure vessel with section cut whose nor-
mal is ez .

Let us examine the use of this assumption on a cylinder made of an
homogeneous linear elastic isotropic material. Since we are assuming that
the strains are constant as a function of r, we also have that the stresses
are constant as a function of r. Consider now a free-body diagram that
is constructed by slicing the cylinder perpendicular to the z-axis with a
section cut; see Fig. 6.5. If we sum the forces in the z-direction, then we
have ∑

Fz = 0 = −pπR2 + σzz2πRt (6.18)

σzz =
pR

2t
. (6.19)

Thus our assumption allows us to determine the axial stress in terms
of the applied pressure. The main thing we have taken advantage of
here is that the integral of the stress over the material cross-section is
simply the stress times the area, since the stress is a constant in terms r
and θ.

σθθ

σθθ

p

L

Fig. 6.6 Cylindrical thin-walled pres-
sure vessel with section cut whose nor-
mal is eθ at the top and −eθ at the
bottom.

If we now consider the free-body diagram shown in Fig. 6.6, we can
determine the hoop stress by summing the forces in the θ-direction:∑

Fθ = 0 = −p2RL+ σθθ2Lt (6.20)

σθθ =
pR

t
. (6.21)

The radial stresses are −p on the inner radius and 0 on the outer
radius. If we continue with our thinness assumption we need to pick a
representative value for this stress. Since both the hoop and axial stresses
are p times a number that is at least 5 (for the axial) or 10 (for the hoop),
we can see that the radial stress is small in comparison.
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Remarks:

(1) The conventional assumption is σrr = 0. This is clearly question-
able at R/t = 10, but rapidly becomes acceptable as R/t grows.

Example 6.3

Circumference changes. Suppose you are given a thin-walled cylindrical
pressure vessel with welded end-caps, radius R, thickness t, modulus
E and Poisson ratio ν. How much pressure is required to increase the
circumference by 1%? How much pressure is required to decrease the
thickness by 1%?

Solution
The state of stress in the vessel walls is given by σzz = pR/2t, σθθ =
pR/t, and σrr ≈ 0. Changes in circumference will be related to hoop
strains as ΔC = Cεθθ, where C is the circumference. Thus one needs a
pressure such that

0.01 = εθθ =
σθθ

E
− νσzz

E
(6.22)

=
pR

tE
− νpR

2tE
(6.23)

p =
0.02tE

R(2− ν)
. (6.24)

Similarly, the change in wall thickness is related to εrr. Thus one needs

−0.01 = εrr = −νσθθ

E
− νσzz

E
(6.25)

= −3νpR

2Et
(6.26)

p =
0.02tE

3Rν
. (6.27)

y

2R

z

t

x

Fig. 6.7 Spherical thin-walled pres-
sure vessel.

6.2.2 Spherical thin-walled pressure vessels

Figure 6.7 shows a spherical pressure vessel with internal pressure p. The
important dimension that we will assume to be thin in this situation is
the radial one again; i.e. we will require that the wall thickness be small
in comparison to the radius:

R/t > 10. (6.28)

The main implication of this is that we can assume the strains are
constants as a function of r. In particular we will assume that the
spherical hoop strain, εθθ, the azimuthal strain, εϕϕ, and the radial
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strain, εrr, are all constants as a function of r. Note also that by
symmetry of the system nothing can be a function of θ or ϕ.

p

σϕϕ

x

y

z

Fig. 6.8 Spherical thin-walled pres-
sure vessel with section cut whose nor-
mal is −eϕ.

Let us assume that the sphere is made of an homogeneous linear elastic
isotropic material. Since we have assumed that the strains are constant
as a function of r, we also have that the stresses are constant as a function
of r. Consider now a free-body diagram that is constructed by isolating
the bottom half of the sphere with a section cut; see Fig. 6.8. If we sum
the forces orthogonal to the section cut we have:∑

Fn = 0 = pπR2 − σϕϕ2πRt (6.29)

σϕϕ =
pR

2t
. (6.30)

Thus our simple assumption allows us to determine the azimuthal
stress in terms of the applied pressure. The main thing we have taken
advantage of here is that the integral of the stress over the cross-section
is the stress times the area, since the stress is a constant in terms of r
and θ (and ϕ).
If we now consider the free-body diagram shown in Fig. 6.9, then

we can determine the spherical hoop stress by summing the forces
orthogonal to the section cut:∑

Fn = 0 = pπR2 − σθθ2πRt (6.31)

σθθ =
pR

2t
. (6.32)

This is also a result we could have also argued from symmetry.

p

σθθ

z

y

x

Fig. 6.9 Spherical thin-walled pres-
sure vessel with section cut whose nor-
mal is eθ in the front part and −eθ in
the back part.

The radial stresses are −p on the inner radius and 0 on the outer
radius. If we continue with our thinness assumption we need to choose a
representative value for this stress. Since both the hoop and azimuthal
stresses are p times a number that is at least 5, we can see that the radial
stress is small in comparison. The conventional assumption is that we
assume σrr ≈ 0.

6.3 Saint-Venant’s principle

The analysis in which we have engaged so far has always depended
upon assumptions about the kinematics and also possibly the stresses.
Before moving on to other types of load-bearing systems, it is worthwhile
looking at the limitations of these assumptions. Firstly, the only real way
to assess the limitations of such assumptions is to either solve the full set
of governing equations or to perform extensive experimentation. Both of
these topics are outside the scope of this text. Nonetheless, we can still
have a qualitative discussion of the issue to gain some appreciation of
the limitations.

If we look, for example, at a bar with an axial load, then our kinematic
assumptions lead us to assume that the stresses are constant on the
cross-section (for an homogeneous material); see Fig. 6.10. Clearly this
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w

P

Assumption Reality

Transitions to our
assumption as one
moves away from
the point of load
application

x

P P

Fig. 6.10 Bar with a point force.

cannot be true, for example, right at the end section unless the applied
force is uniformly distributed to start with. If it is applied in any other
way the stresses will have to transition from those consistent with the
application of the load to a uniform distribution. Figure 6.10 qualita-
tively indicates the actual transition that takes place for a single point
force.
The situation diagrammed in Fig. 6.10 is described by Saint-Venant’s

Principle:

The manner in which loads are applied only matters near the points of
application.

Thus in Fig. 6.10, according to Saint-Venant’s Principle, we can rea-
sonably expect our basic computation of σxx = R/A to be valid if we
are sufficiently far from the application of the load, which in this case
includes both the top and bottom ends of the bar. For slender bodies
(such as those we deal with in this text), ‘sufficiently far’ is defined
as one characteristic length. And characteristic length refers to some
representative dimension of the cross-section of the body. As a quanti-
tative example, consider that the bar in Fig. 6.10 is an homogeneous
linear elastic bar, and that the load is applied by a single point force
on the end. If we solve the complete equations for the two-dimensional
theory, then we will find that the stresses one characteristic distance2

2 For a two-dimensional bar the char-
acteristic distance is the width, w.

from the end differ from those we would assume in our one-dimensional
engineering mechanics solution by only 2.5%.
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Our theories, in addition to giving inaccurate results near supports
and points of load application, give inaccurate results near rapid changes
in cross-sectional area or modulus. For example, in a bar with a hole
(Fig. 6.11) we would predict a stress σxx = P/t(w − d) at the section
with the hole. However, the hole represents a rapid change in area
and leads, in reality, to a stress distribution more like that shown in

σ
P

a

b

K = 1 + 2a/b

P P

x Thickness = t

w

d

= K* P/t(w−d)
max
xx

Fig. 6.11 Bar with a hole showing a
stress concentration.

d

r

r

K

r/d

Qualitative behavior of stress concentration factor
at the change in diameter of the bar

Fig. 6.12 Stepped bar that will dis-
play a stress concentration at the fillet.
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the middle part of Fig. 6.11. For such situations one defines a quantity
called the stress concentration factor, K, to characterize the ratio of the
maximum true stress to that computed from the engineering mechanics
solution. In the case of an elliptic hole with semi-radii a/2 and b/2
the stress concentration factor is estimated (from the governing partial
differential equations) to be K = 1 + 2a/b. This estimate is valid as long
as a is small in comparison to w; see Fig. 6.11. Figure 6.12 shows
an example of another situation where one needs to be mindful of
stress concentrations. The evaluation of stress concentration factors is
most readily accomplished by numerical solution of the governing par-
tial differential equations. Alternatively, for common situations, tables
and graphs of stress concentrations are available in standard reference
books.

Chapter summary

� The fundamental kinematic assumption for axially loaded bars is
that plane sections remain plane. This assumption together with
the three-dimensional theory implies ε = du/dx.

� For axially loaded bars the general relation for the internal force is

R =

∫
A

σ dA

� In a thin-walled cylindrical pressure vessel (R/t > 10), the strains
are a constant through the wall thickness and

σθθ =
pR

t

σzz =
pR

2t

σrr ≈ 0

� In a thin-walled spherical pressure vessel (R/t > 10), the strains
are a constant through the wall thickness and

σθθ =
pR

2t

σϕϕ =
pR

2t

σrr ≈ 0

� Saint-Venant’s principle states:

The manner in which loads are applied only matters near the points of
application.

� Stress concentrations arise near rapid changes in dimensions.
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Exercises

(6.1) Consider a composite rod with steel core and alu-
minum casing under the action of arbitrary axial
loads. If at a particular cross-section the stress in
the steel is σxx = 100 MPa, what is σxx in the
aluminum at the same cross-section? What is the
strain εxx at this same cross-section?

Steel

Aluminum

(6.2) For an elastic circular bar with homogeneous
Young’s modulus we know that the normal stress
is given in terms of the axial force as σ = R/A.
Find the corresponding formula for a bar that has
been functionally graded in the radial direction so
that the Young’s modulus can be expressed as

E(r) = B + Cr,

where B and C are given material constants.
Assume the bar has a radius a. (Hint: your answer
should be equivalent to σxx(r, z) = R(z)(B +
Cr)/[2π(Ba2/2 + Ca3/3)], where z is the axial
coordinate.)

(6.3) The functionally graded round bar shown below
is subjected to an axial force F . The Young’s
modulus is given as a function of radial position
as E(r) = Eo + Êr2, where Eo and Ê and known
material constants. By assuming that planar sec-
tions remain planar, find the axial displacement of
the bar u(x).

Section a−a

F θ
r

x a

a
Ο2c

(6.4) The round slender composite bar, following is
deformed by an end-load. The strain in the center
of the rod is measured by neutron scattering to

be εcenter. And εcenter is found to lie between the
yield strains for material 1 (inner material) and
material 2 (outer material). How much force is
being applied to the rod? Express your answer
in terms of the material properties and the cross-
sectional geometry. Assume the Young’s modulus,
E, for material 1 and 2 is the same. The radius of
the inner rod is R1 and the radius of the outer rod
is R2.

P

a

a Material 2

Material 1

σ2Y

σ1Y

εcenterε1Y
Section a−a

ε2Y

(6.5) In 1960 NASA launched its first communications
satellite, ECHO. ECHO was a spherical Mylar
balloon with a microwave reflective coating. Mylar
is a registered DUPONT trademark for a thermo-
plastic composed of biaxially oriented polyethylene
terephalate (BOPET); PET is the same material
used in plastic soda bottles. Mylar sheet yields at
4 ksi and breaks at 27 ksi. ECHO was 100 feet in
diameter and 0.0005 inches thick. What differential
pressure would have caused ECHO to yield?

(6.6) Consider a thin-walled cylindrical pressure ves-
sel of radius R, wall thickness t, and length L.
Determine the changes in diameter and length of
the vessel due to an internal pressure p. Assume
homogeneous linear elastic material.

(6.7) A long cylindrical pressure vessel of length L,
radius R, and thickness t is subject simultaneously
to an internal pressure p and an axial force F . Find
the relationship between F and p such that the
axial stress and hoop stress are equal in the main
part of the vessel.

p
FF

L

R

t
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(6.8) Determine εθθ, εϕϕ, and εrr for a thin-walled
spherical pressure vessel with internal pressure p.
Assume homogeneous linear elastic material.

(6.9) How much pressure is required to thin the walls
of a thin-walled spherical pressure vessel by 1%?
Assume homogeneous elastic properties.

(6.10) You are to design a cylindrical pressure vessel
with spherical end caps as shown below. The caps
and the main part of the vessel are to have the
same thickness (which you need to determine). The
radius of the vessel and the length are specified to
be R and L, respectively. The internal pressure is
specified to be p. Design the vessel against yield
using the following multi-axial criteria in the cylin-
drical portion of the vessel

√
(σr − σθ)2 + (σθ − σz)2 + (σz − σr)2 ≤

√
2σY

and

√
(σr − σθ)2 + (σθ − σϕ)2 + (σϕ − σr)2 ≤

√
2σY

in the spherical portion of the vessel. Allow for a
safety factor of SF against yield. In choosing the
wall thickness, choose a material that minimizes
the weight of the vessel. Choose your material from
Table 6.1.

Table 6.1 Material selection list.

Material E σY Density
(GPa) (MPa) (kg/m3)

Al 70 470 2700
Mild Steel 200 260 7850
HS Steel 208 1300 7850
HTS graphite-
5208 epoxy 183 1250 1550

What is the best material and what is the required
wall thickness?

R L R

2R

SIDE VIEW END VIEW

R
p

All walls have the same 
thickness t

(6.11) A pressure vessel of radius R, length L, and wall
thickness t is constructed with a weld line at
angle β. The dimensions are such that t � R and
L � R. The vessel is pressurized to a pressure p.
What is the shear stress on the weld? Assume that
the pressure vessel is closed on the ends.

p

β

(6.12) A linear elastic tube with radius (R− δ) is to be
shrink-fit on a rigid shaft of radius R. The tube
is first heated so as to expand its inner radius to
at least R. It is then slipped over the rigid shaft,
and is allowed to cool. Assuming that the shaft
is well lubricated, find a relation for the contact
pressure between the tube and the shaft. Your
final answer should be given in terms the isotropic
elastic material constants, misfit δ, thickness t, and
rigid shaft radius R.

Rigid shaft Tube thickness t << R

Radius R
δ << R
Inner radius (R − δ)

(6.13) Consider the following cross section of a com-
posite cylindrical pressure vessel. Assume that
the radius is much greater than the wall thick-
nesses. Assume that the strains are constants as a
function of r. Thus, in particular, ε

(1)
zz = ε

(2)
zz and
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ε
(1)
θθ = ε

(2)
θθ . Also assume that the radial stresses are

zero. Show that the hoop and axial stresses in the
two materials are governed by the solution of the
following linear equations.

⎛⎜⎜⎜⎜⎝
p

p

0

0

⎞⎟⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎣
2t1
R

2t2
R

0 0

0 0 t1
R

t2
R

1
E1

− 1
E2

− ν1
E1

ν2
E2

− ν1
E1

ν2
E2

1
E1

− 1
E2

⎤⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎜⎝

σ
(1)
zz

σ
(2)
zz

σ
(1)
θθ

σ
(2)
θθ

⎞⎟⎟⎟⎟⎟⎠

Material 1

Material 2

internal pressure p

Hint: The first two relations are related to force
equilibrium and the second two equations are
related to kinematic considerations.
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Circular and Thin-Wall
Torsion

The application of torsional loads to slender bars can be analyzed very
effectively utilizing the techniques developed in Chapter 6. In particular,
by making an appropriate kinematic assumptions we will be able to
nicely analyze the behavior of twisted circular bars. For the case of bars
with more general cross-sections the situation is a little more complex.
But if we include the added requirement that the cross-section have the
geometry of a thin-walled tube, then we will be able to take advantage
of thinness to drive an effective analytical method for arbitrary thin-
walled cross-sections. The subject of torsion of solid non-circular bars is
left for more advanced courses where the solution of partial differential
equations can be more comfortably tackled. Figures 7.1 and 7.2 shows
some example situations where one finds structural members under
torsional loads.

Fig. 7.1 An electric motor’s shaft is
loaded in torsion when in operation.

Fig. 7.2 Both the screwdriver shaft
and the screw are loaded in torsion
when driving the screw into the wood
member.

7.1 Circular bars: Kinematic assumption

The fundamental observation associated with the motion of circular bars
in torsion is that the bar cross-sections remain planar and rigidly rotate
under load. This observation is predominantly true over a very wide
range of loadings, elastic and plastic behavior, and material inhomo-
geneities (with circular symmetry). Figure 7.3a shows a solid circular bar
that is clamped at the base. At the top is a lever arm that allows one to
apply a torque to the bar. Figure 7.3b shows a close-up of the square grid
that has been painted on the surface of the bar. After the application
of a torque to the bar the grid distorts as shown in Fig. 7.3c. Note
that the horizontal lines remain planar and that there is a progressive
rotation that is increasing at a constant rate as one moves up the bar.
In the special case of torsion of an infinitely long bar, one can show via
symmetry arguments that these observations are exact.
These physical observations can be turned into a usable kinematic

relation by considering the geometric construction in Fig. 7.4, showing
a circular bar under the action of two applied torques. First we slice the
torsion bar at two elevations z and z +Δz. Due to the applied torque
the bottom of the piece rotates an amount φ(z) and the top an amount
φ(z +Δz). In the theory of torsion, the rotation of the section φ is similar
to the displacement u in the theory of axial extension.
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(a) Overall system. (b) Close-up of the square grid
ruled on the outer surface.

(c) Close-up of the square
grid after the application of
a torque to the bar.Fig. 7.3 Torsion experiment used to

understand kinematics of torsion.

Before applying any torque to the bar we imagine that markers a, b,
c, and d have been placed on a core of radius r. After the application of
the torque the markers will move as shown to locations a′, b′, c′, and d′.
The physical arclength of displacement of markers c and d will be rφ(z)
and that of a and b will be rφ(z +Δz). If we unwrap the picture we can
better see the main characteristics of the deformation; see Fig. 7.5. It is
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a′ b′
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z)

φ( z)rotation

z

rotation
φ(z + Δb

Fig. 7.4 Kinematic assumption of cir-
cular torsion.

clear from this figure that the state of deformation is shear. Using our
nomenclature from Chapter 4, we would characterize this deformation
by the shear strain γzθ – change in angle in the “z-θ plane”. Note that
the “plane” in question is really a surface, and we adopt the convention
that a surface is defined by the two basis vector which are tangent to
the surface.
The expression for the average value of γzθ in the piece can be

derived by applying the definition of shear strain from Chapter 4 to
the construction in Fig. 7.5:

γzθ =
rφ(z +Δz)− rφ(z)

Δz
. (7.1)

In eqn (7.1) we have assumed that the angle change is small so that the
arctangent of the right-hand side is equal to itself. To arrive at a fully
pointwise measure of shear strain in the bar we need to take the limit
as Δz goes to zero. This then gives a pointwise measure of shear strain
in the bar as a function of radial position r and vertical location z.

γzθ(r, z) = lim
Δz→0

rφ(z +Δz)− rφ(z)

Δz
= r

dφ

dz
. (7.2)
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c d

a b

c′ d′

a′ b′

r φ(z)

r φ(z + Δz)

γzθ

Fig. 7.5 z-θ plane unwrapped to high-
light kinematics.

Remarks:

(1) Equation (7.2) is the circular torsion counterpart to ε = du/dx
from Chapter 2.

(2) Observe that γzθ is a function of r and z but is not a function of
θ. The problem is axis-symmetric.

(3) The derivation just given is completely independent of material
response or the manner of application of the loads. It depends
only upon the validity of the assumption (which in principle comes
from a history of experimental observation).

(4) At any given cross-section the shear strain distribution is a linear
function of radial position; see Fig. 7.6. It is zero at the center and
takes its maximal value on the outer radius of the bar.

r

γ (r)

R

dφ/dz = dγ/dr

Center Outer Radius

Fig. 7.6 Shear strain distribution on a
cross-section.

(5) Mathematically we could have expressed our kinematic assump-
tion as uθ = rφ(z), ur = 0, uz = 0. Writing it this way allows us
to use eqn (4.24) to show that γzθ is the only non-zero strain in
the bar. Because of this we will from now on simply refer to γzθ
as γ – i.e. we will drop the subscripts when considering circular
bars under torsion.

7.2 Circular bars: Equilibrium

Just as with the bar under axial forces we need to consider the torsional
equilibrium of the bar. Paralleling the development in Section 2.2.2 we
will look at a differential construction. Figure 7.7 shows a bar in torsion
under the action of an end torque M and a distributed body torque
t(z). t(z) has units of torque per unit length and is similar to b(x) which
had units of force per unit length from Chapter 2. As shown, we will
make two section cuts (one at z and one at z +Δz) and then apply
global equilibrium to the isolated segment. Summing the moments in
the z-direction we find:
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∑
Mz = 0 = T (z +Δz) + t(z)Δz − T (z), (7.3)

where T (z) represents the internal torque about the z-axis on the section
cut. If we divide through by Δz and take the limit as Δz → 0, we will
arrive at a pointwise expression of moment equilibrium about the z-axis:

dT

dz
+ t = 0. (7.4)

z

t(z)

M

t(z)
z

Δz

T(z) T(z + Δz)

Fig. 7.7 Construction for the deri-
vation of the torsional equilibrium
equation.

Remarks:

(1) Equation (7.4) is the torsion counterpart to dR
dx

+ b = 0 from
Chapter 2; see Section 2.2.2.

7.2.1 Internal torque–stress relation

θ
reθ

er

dA = r dr dθ

Fθ Fr

Fz

Fig. 7.8 Stress contributions to forces
on a differential patch on a torsion bar
cross-section.

In our development of a theory to describe the behavior of bars under
axial forces we profitably related the internal forces R(x) to the stresses
on the cross-section through the relation R(x) =

∫
A
σxx dA. For a bar in

torsion there is a similar relation which we will derive through a direct
construction. Figure 7.8 shows a cross-sectional slice at an arbitrary
location along the z-axis. On each differential patch, dA, there is a force:

F = Fzez + Frer + Fθeθ, (7.5)

where

Fz = σzzdA (7.6)

Fr = σzrdA (7.7)

Fθ = σzθdA. (7.8)

The z-component of the moment of this force about the origin will give
the contribution of the stresses on this patch to the overall torque on the
cross-section. Adding it over the whole cross-section will give the desired
relation. Noting that the contribution from Fr passes through the origin
and that Fz is parallel to the axis of interest, we see that the only
contributions from the stresses to the moment about the z-axis come
through Fθeθ. The lever arm to the patch of material is simply r, and
adding up we find that

T (z) =

∫
A(z)

σzθrdA =

∫
A(z)

σzθr
2drdθ . (7.9)

Remarks:

(1) Equation (7.9) gives the desired expression connecting stresses on
a cross-section to internal torque.

(2) An alternative method of arriving at this relation comes from an
application of the general expression for internal moments, eqn
(3.27). To use eqn (3.27), one needs to take the dot product of
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both sides with ez to obtain the z-component, and further note
that the cross-section normal n = ez.

(3) As there is only one stress component contributing to the internal
torque, we will by convention refer to the shear stress as τ when
there is no chance of confusion.

7.3 Circular bars: Elastic response

The kinematic relation, γ = rdφ/dz, the equilibrium relation, dT/dz +
t = 0, and the resultant definition, T =

∫
A
rτdA, provide three of the

needed expressions for a complete theory of one-dimensional torsion of
circular bars. To close the set of equations we need one other ingredient:
a description of the material response – i.e. the constitutive relation.
In the case of isotropic linear elastic materials this is given by

τ = Gγ, (7.10)

where G is the shear modulus of the material.

7.3.1 Elastic examples

At this stage we have a completely defined theory appropriate for solving
problems associated with torsional loads on circular bars. The governing
system of equations is given by the fundamental kinematic relation11 This involves the plane-sections-

remain-plane assumption, and is only
appropriate for bars with circular cross-
sections.

γ = r
dφ

dz
, (7.11)

the equilibrium relation

dT

dz
+ t = 0, (7.12)

the internal torque relation

T =

∫
A

rτdA, (7.13)

and the constitutive relation

τ = Gγ. (7.14)

In total we have four linear equations in four variables: φ, γ, T, and τ .
Below we consider some example applications.

Example 7.1

Twist rate to torque relation. Consider a linear elastic homogeneous
circular bar and find the relation between the twist rate and the internal
torque.
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Solution
This problem asks us to connect kinematics to resultants. Start with the
expression for the definition of the resultant

T =

∫
A

rτdA. (7.15)

Substitute for the shear stress in terms of the shear strain:

T =

∫
A

rGγdA. (7.16)

Substitute for the shear strain in terms of the twist rate:

T =

∫
A

r2G
dφ

dz
dA. (7.17)

Since the bar is homogeneous, G is a constant and can be pulled out
from under the integral sign. Also note that dφ/dz is only a function of
z so we have

T = G

[∫
A

r2dA

]
︸ ︷︷ ︸

J

dφ

dz
= GJ

dφ

dz
. (7.18)

Remarks:

(1) J =
∫
A
r2dA is known as the polar moment of inertia. In the theory

of torsion it occupies a position similar to that occupied by area in
the theory of axial extension. For a solid circular section of radius
R, J = πR4/2. For a hollow tube, J = π(R4

o −R4
i )/2, where Ro is

the outer radius and Ri is the inner radius.

(2) In cases where the bar is inhomogeneous on the cross-section (i.e.
G is a function of r), G cannot be removed from underneath
the integral sign in eqn (7.17). In such cases one often defines
an effective (GJ)eff =

∫
A
Gr2dA. With this definition one can

write T = (GJ)effdφ/dz. This is a handy device for dealing with
composite bars.

(3) In the case of inhomogeneous bars, G is not permitted to be a
function of θ, because in such cases our kinematic assumption is
known to be invalid.

Example 7.2

Elastic stress distribution. Consider the same linear elastic homogeneous
circular bar as in the last example, and find the relation between the
stress on a cross-section and the internal torque on the cross-section.
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Solution
Starting from the result of the last example we have that

dφ

dz
= T/GJ. (7.19)

Thus γ = rdφ/dz = rT/GJ in this special case. Substituting into the
constitutive relation gives:

τ(r, z) = Gγ =
T (z)r

J
. (7.20)

Remarks:

(1) Note that the shear stress varies linearly on the cross-section as
long as the cross-section is homogeneous. The maximum value
occurs at the outer radius.

(2) If the bar were not homogeneous on the cross-section, one can use
(GJ)eff . In this case one finds τ(r, z) = rG(r)T (z)/(GJ)eff , and
the maximum stress occurs wherever the term rG(r) is maximum
(not necessarily at the outer radius).

Example 7.3

Stresses in a composite bar. Consider an elastic composite bar as shown
in Fig. 7.9a. If the applied twist rate is 10−4 rad/mm, what is the
maximum stress in the bar, and where does it occur?

Solution
The stresses are given as

τ(r) = G(r)γ(r), (7.21)

where γ(r) = 10−4r and

G(r) =

{
100 r < 20 mm
50 r > 20 mm

GPa. (7.22)

Thus,

τ(r) =

{
10r r < 20 mm
5r r > 20 mm

MPa. (7.23)

The maximum happens at r = 20 mm just inside the inner material with
a value of 200 MPa; see Fig. 7.9b, which shows the shear strain and shear
stress distributions.

Example 7.4

Power transmission. Structural elements carrying torques often occur
in power transmission systems. Consider the 1− kW motor shown in
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25 mm

G = 100 GPa

G = 50 GPa

20 mm

(a) Composite torsion bar cross-
section.

(b) Shear strain and stress distribu-
tion.

100

r (mm)

r (mm)

γ

25

25

τ (MPa)

0.0025

20

200

125

Fig. 7.9 Example of a composite tor-
sion bar.

Fig. 7.10. It is steadily spinning at 5, 000 rpm, and is attached to an
elastic shaft which is connected to two belts that deliver energy to two
pieces of equipment in the amount of 700 W and 300 W, respectively.
Determine (1) the internal torque distribution in the shaft, and (2) the
shaft diameter between the two equipment loads such that the maximum
shear stress along the entire length of the shaft is a constant. For part
(2), express the answer relative to the diameter of the shaft between the
motor and the first load.

d2

5000 rpm
Load2 = 300 W

d1

Load1= 700 W

Motor (1 kW)

Fig. 7.10 1− kW motor driving two
belt loads at 5, 000 rpm.

Solution
First we need to determine how the power ratings of the motor and the
loads are related to applied torques. From elementary physics we recall
that work input is force times displacement or torque times rotation
depending upon the method of application of a load. Thus power input
is either force times velocity or torque times angular velocity. Applying
this concept to the motor tells us that

1, 000 W = TM (5, 000 rpm)

(
2π rad

1 rev

)(
1 min

60 sec

)
(7.24)

⇒ TM =
6

π
N ·m, (7.25)

where TM is the output torque of the motor at this speed and power
level. The sense of this torque is in the same direction as the rotation.
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At each of the loads we have a similar relation. The only question really
is: What is the angular velocity at each of the loads? Since the shaft
is in steady rotation, we immediately have that the angular velocity at
each load point is the same as at the motor and in the same rotational
direction. Thus each load imposes a torque on the shaft. For load 1, we
have:

−700 W = T1 (5000 rpm)
(
2π rad
1 rev

) (
1 min
60 sec

)
(7.26)

⇒ T1 = − 42
10π N ·m. (7.27)

Likewise, for load 2 it can be shown that

T2 = − 18

10π
N ·m. (7.28)

Note that here, power is given with a negative sign because the power
is being drawn off of the shaft. With these values determined we can
make a free-body diagram as shown in Fig. 7.11. Making section cuts as
shown allows us to determine the internal torque diagram for part (1)
of the question.

T = − TM

T = −TM − T1

T = −TM − T1 − T2

z

−TM

−TM −T1
−TM− T1− T2

T1

T1

T1 T2

TM

TM

TM

TM

T(z)

T2

Fig. 7.11 Internal torque diagram
determined using section cuts.

For part (2) of the question, first determine the maximum shear stress
as a function of z. We note that the maximum values will occur on the
outer radius and be given by τmax(z) = T (z)rmax/J(z). Since τmax is to
be a constant, we have the requirement that

TMr1
J1

=
(TM + T1)r2

J2
. (7.29)

Substituting in for the polar moment of inertia gives the answer to part
(2) as:

d2 = d1

(
TM + T1

TM

)1/3

(7.30)

d2 = d1(0.3)
1/3 ≈ 0.7d1. (7.31)

Remarks:

(1) Notice that even though the internal torque between the two belts
is one-third the internal torque between the motor and the first
load, we cannot reduce the size of the shaft in the same proportion;
i.e. we can not let d2 = 0.3d1. Rather, we must have d2 ≈ 0.7d1.
The reason this occurs is two-fold: (1) the stresses are not constant
on the cross-section (they are linear) and (2) the area measure that
appears in the theory is non-linear in the cross-sectional dimension
(it is quartic).

(2) Notice that on the last section of the shaft the internal torque is
computed to be zero. This make sense, since the end of the shaft
is free of applied load.
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Example 7.5

Remote switch. In hazardous environments equipment is often turned on
and off using remote activation. One very simple such configuration is
shown in Fig. 7.12. Here we have a linear elastic homogeneous wire of
radius c inside a sleeve (just like a brake cable housing on a bicycle). One
end of the wire is attached to a rotary switch on some equipment which
requires a torque Td to actuate it. The other end of the wire is located in a
safe area where the operator twists it to activate the equipment. Assume
that the sleeve provides a constant frictional resistance to rotation of the
wire of an amount tf in units of torque per unit length. If the maximum
allowed stress in the wire is τY , how long can the actuation wire be? T(z)

z

Torque Td needed at this end to turn equipment on and off 

Equipment

Operator
Ta

Wire in housing

t(z) = tf

Td

Free-body diagram of wire with housing removed

Fig. 7.12 Equipment operated via a
remote switch using a cable in a fric-
tional cable housing.

Solution
First determine the internal torque in the wire using a free-body diagram
as shown. Summing the moments in the z-direction gives

T (z) = Td + tfz. (7.32)

Since the wire is homogeneous we have that

τmax(z) =
c(Td + tfz)

πc4/2
≤ τY . (7.33)

This implies that

z ≤
(
τY πc

3

2
− Td

)
/tf . (7.34)

Remarks:

(1) To get a feel for numbers, let c = 1.5 mm, tf = 0.45 N ·mm/mm,
Td = 100 N ·mm, and τY = 100 N/mm2, then zmax = 0.96 m; i.e.
the maximum wire length is about one meter for these properties.

Example 7.6

Torsional stiffness of an end-loaded bar. Consider an homogeneous end-
loaded circular torsion bar of length L, polar moment of inertia J , and
shear modulus G. Find its torsional stiffness.

L

G,J −− constant

z

T(z)
Free-body diagram

M

θ = φ(L )

M

Fig. 7.13 End-loaded torsion bar.

Solution
Torsional stiffness is defined as applied end-torque divided by net twist
(k = M/θ); see Fig. 7.13. The net rotation can be found by integrating
the relation for the twist rate:

θ = φ(L)− φ(0) =

∫ L

0

dφ

dz
dz. (7.35)

Since the problem is homogeneous linear elastic we have

θ = φ(L)− φ(0) =

∫ L

0

T

GJ
dz. (7.36)
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Note that by equilibrium T (z) = M a constant. Thus the entire inte-
grand is a constant. Further, there is no rotation at z = 0; so we have
that

k =
M

θ
=

M

φ(L)
=

GJ

L
. (7.37)

Remarks:

(1) Compare this to the similar result for an end-loaded bar with axial
forces, k = AE/L.

Example 7.7

Rotation of bar with a point torque. Consider the circular linear elastic
homogeneous bar shown in Fig. 7.14a. Determine the rotation field, φ(z),
the stress field, τ(r, z), the strain field, γ(r, z), and the internal torque
field, T (z).

Solution
Begin first with a free-body diagram as shown in Fig. 7.14b. Making
section cuts as indicated we see that the internal torque field is given by:

T (z) =

{
−M z < a

0 z > a.
(7.38)

Since the bar is linear elastic homogeneous we know that τ = Tr/J ; thus

τ(r, z) =

{
−Mr/J z < a

0 z > a.
(7.39)

z

a

(a) Torsion bar with applied point moment.

(b) Free-body diagram and sections cuts used to determine
internal torque field.

M

z

M
–M

z
−M T(z) = −M

z

M−M T(z) = 0

Fig. 7.14 Analysis of torsion bar with
an applied point torque using the
method of section cuts.
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The strains are connected to the stresses via the constitutive relation
γ = τ/G which gives:

γ(r, z) =

{
−Mr/GJ z < a

0 z > a.
(7.40)

The rotation field can now be found by integrating the fundamental
kinematic relation

φ(z)− φ(0)︸︷︷︸
0

=

∫ z

0

dφ

dz
dz =

∫ z

0

γ

r
dz =

⎧⎨⎩−Mz/GJ z < a

−Ma/GJ z ≥ a.
(7.41)

Remarks:

(1) Notice that the resulting rotation of the bar is negative. This
simply means that the rotation is in the opposite sense as that
defined by a right-hand rule about the z-axis.

(2) Notice that in this problem we were able to determine the inter-
nal torque field simply from statics. This problem was statically
determinate. There was only one unknown support torque, and
one equilibrium equation.

Example 7.8

Indeterminate system. Figure 7.15 shows a linear elastic homogeneous
torsion bar with a distributed torque. Make a graph of the internal torque
field (i.e. a torque diagram) and a graph of the rotation field.

L/2 L/2

G,J −− constantt(z) = t −− a constant

Fig. 7.15 Indeterminate torsion bar
with loads and supports.

t

t

T(z)

z

T(z)To

To

T1
tTo

Fig. 7.16 Free-body diagram and sec-
tion cuts used in finding internal torque
field.

Solution
First make a free-body diagram of the bar as shown in Fig. 7.16. From
this diagram it is clear that the problem is statically indeterminate.
There are two unknown support torques. Following the techniques devel-
oped in Chapter 2, let us assume that To is known. At the end we will
eliminate To using the known kinematic information of the problem.
From the free-body diagram, we can make section cuts progressively
along the length of the bar (in this case only two are needed) to show
that

T (z) =

⎧⎨⎩To − tz z < L/2

To − tL2 z ≥ L/2.
(7.42)

Since the bar is homogeneous as in the last example we have that
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τ(r, z) =
Tr

J
=

⎧⎨⎩
(To−tz)r

J
z < L/2

(To−tL/2)r
J

z ≥ L/2,

(7.43)

γ(r, z) =
τ

G
=

⎧⎨⎩
(To−tz)r

GJ
z < L/2

(To−tL/2)r
GJ

z ≥ L/2,

(7.44)

and that

dφ

dz
(z) =

γ

r
=

⎧⎨⎩
(To−tz)

GJ
z < L/2

(To−tL/2)
GJ

z ≥ L/2.

(7.45)

To eliminate the unknown To, we can integrate the twist rate from 0 to
L and apply the known kinematic information that there is no rotation
at either end.

φ(L)︸︷︷︸
=0

−φ(0)︸︷︷︸
=0

=

∫ L

0

dφ

dz
dz (7.46)

0 =

∫ L/2

0

(To − tz)

GJ
dz +

∫ L

L/2

(To − tL/2)

GJ
dz (7.47)

0 = ToL− 3

8
tL2. (7.48)

Thus To = 3
8 tL. If we now plug back into eqn (7.42) we find that

T (z) =

⎧⎨⎩
3
8 tL− tz z < L/2

− 1
8 tL z ≥ L/2.

(7.49)

To determine the rotation field we need to integrate eqn (7.45):

φ(z)− φ(0)︸︷︷︸
=0

=

∫ z

0

dφ

dz
dz =

⎧⎨⎩
tLz
2GJ

(
3
4 − z

L

)
z < L/2

tL2

8GJ

(
1− z

L

)
z ≥ L/2.

(7.50)

Both relations are plotted in Fig. 7.17.

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

z/L

2T
/tL

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

z/L

2G
Jφ

/tL
2

Fig. 7.17 Torque diagram (top); rota-
tion field (bottom).

Remarks:

(1) Observe that the final plots are given in non-dimensional form.
This is useful for generating plots that can be used even when
system parameters are varied.

(2) Note that the maximum rotation field in the bar does not occur
in the middle. It occurs at z = 3

8
L; this point is easily located by

finding where dφ/dz equals zero which is the same point where
the internal torque is zero. The rotation at this point is φ( 38L) =
9tL2/128GJ .

(3) Notice that when the internal torque field is a constant the rotation
field is linear, and when the internal torque field is linear the
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rotation field is quadratic. This is a general relation between poly-
nomial orders in such problems; note here that dφ/dz = T/GJ .

7.3.2 Differential equation approach

When we studied bars loaded by axial forces we solved many such
problems using a methodology identical to the one just presented for
torsion of bars. In a similar way we also have a method of solving torsion
problems using second-order differential equations. One advantage of
this scheme is that determinate and indeterminate problems are handled
via a single-solution methodology.
We proceed in a manner similar to that in Chapter 2. Our first aim

is to combine eqns (7.11)–(7.14) into a single equation. We start by
substituting eqn (7.11) into eqn (7.14). Next, this result is inserted into
eqn (7.13) to yield the intermediate result T = GJdφ/dz. Finally, this
result is substituted in the remaining equation, eqn (7.12), to give

d

dz

(
G(z)J(z)

dφ

dz

)
+ t(z) = 0. (7.51)

Remarks:

(1) This equation is a second-order ordinary differential equation
for the rotation field. In the case where G(z)J(z) is a constant
it is a second-order ordinary differential equation with constant
coefficients.

(2) To solve such an equation one needs two boundary conditions.
Normally, we encounter two types of boundary condition: rotation
boundary conditions and torque boundary conditions. Rotation
boundary conditions will simply be the specification of the rota-
tion at either end of the bar. Torque boundary conditions will
involve the specification of the rate of change of rotation at
either end of the bar. In particular, we will exploit the relation
T = GJdφ/dz.

(3) In the case that the system is radially inhomogeneous, then GJ is
replaced by (GJ)eff , which can possibly be a function of z.

(4) Once one has solved eqn (7.51) for φ(z), all other quantities of
interest can be determined by substitution into eqns (7.11)–(7.12).

As applications consider the prior examples.

Example 7.9

Torsional stiffness of an end-loaded bar revisited. For this example we
will just set up the problem. What is needed is a specification of the
distributed load and the conditions at the two ends (the boundary
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conditions). For this example we have

t(z) = 0 (7.52)

φ(0) = 0 (7.53)

GJ
dφ

dz
(L) = M ; (7.54)

i.e. no applied distributed torques, fixed rotation at z = 0, and an
imposed torque M at z = L.

Example 7.10

Rotation of bar with a point torque revisited. For this example we will
also just set up the problem. Here we have

t(z) = −Mδ(z − a) (7.55)

φ(0) = 0 (7.56)

GJ
dφ

dz
(L) = 0. (7.57)

Just as with axial loads, point loads (torque in this case) are properly
represented by Dirac delta functions. There is no rotation at z = 0, and
at z = L we have a free end which is properly represented by a zero
torque condition.

Example 7.11

Indeterminate system revisited. Here we have

t(z) = t− tH(z − L

2
) (7.58)

φ(0) = 0 (7.59)

φ(L) = 0. (7.60)

Recall that H(·) is the Heaviside step function. For this example let us
continue and actually complete the solution by integrating eqn (7.51)
twice:

d

dz

(
GJ

dφ

dz

)
= tH(z − L

2
)− t (7.61)

GJ
dφ

dz
= t〈z − L

2
〉 − tz + C1 (7.62)

GJφ = t
1

2
〈z − L

2
〉2 − t

1

2
z2 + C1z + C2. (7.63)
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We can eliminate the integration constants using the boundary condi-
tions. First,

φ(0) = 0 ⇒ t
1

2
〈0− L

2
〉2︸ ︷︷ ︸

=0

−t
1

2
02 + C10 + C2 (7.64)

⇒ C2 = 0.

Second,

φ(L) = 0 ⇒ t
1

2
〈L− L

2
〉2 − t

1

2
L2 + C1L = 0 (7.65)

⇒ C1 =
3

8
tL.

The final result is:

T (z) = GJ
dφ

dz
= t〈z − L

2
〉 − tz +

3

8
tL (7.66)

and

φ(z) =
1

GJ

[
t
1

2
〈z − L

2
〉2 − t

1

2
z2 +

3

8
tLz

]
. (7.67)

Remarks:

(1) On the surface this solution looks different from our previous one.
However, this is only for cosmetic reasons, since here we have used
Macaulay brackets to represent our solution. A plot of this solution
against the prior one easily shows that they are the same.

Example 7.12

Linearly varying distributed torque. Consider the elastic homogeneous
bar shown in Fig. 7.18, where k is a constant with units of torque per
unit length squared. Find the rotation field.

z

t(z) = kz

Fig. 7.18 Torsion bar with a linearly
varying load.

Solution
First identify the expression for the applied distributed torque and
the boundary conditions. Here we see that t(z) = kz. The boundary
conditions are a fixed end φ(0) = 0 and a free end GJφ′(L) = 0.2 Using 2 For convenience, we will often use a

prime (·)′ to denote the derivative of a
function with respect to its argument.
In this case the prime indicates differ-
entiation with respect to z.

eqn (7.51), by integration we have:

GJφ′′ + kz = 0 (7.68)

φ′′ = −kz/GJ (7.69)

φ′ = −kz2/2GJ + C (7.70)

φ = −kz3/6GJ + Cz +D. (7.71)

Now apply the boundary conditions to show that
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φ(0) = 0 (7.72)

⇒ D = 0

and

φ′(L) = 0 (7.73)

⇒ C = kL2/2GJ.

Thus our final answer is:

φ(z) =
zkL2

2GJ

[
1− 1

3

z2

L2

]
. (7.74)

Example 7.13

Indeterminate bar with linearly varying distributed torque. Suppose in
the prior example the right-end was not free but rather built-in. Find
the rotation field.

Solution
The procedure is the same as above except that in this case the boundary
condition of the right-end is now φ(L) = 0. From above we have that

φ = −kz3/6GJ + Cz +D. (7.75)

Now apply the boundary conditions to show:

φ(0) = 0 (7.76)

⇒ D = 0

and

φ(L) = 0 (7.77)

⇒ C = kL2/6GJ.

Thus our final answer is:

φ(z) =
zkL2

6GJ

[
1− z2

L2

]
. (7.78)

Remarks:

(1) Notice that in this example and the prior one, some pains have
been taken to express the final answer in a form different from
simply inserting C and D back into, say, eqn (7.75). The manner
in which this has been achieved involved two principles: (1) the
answer should readily make evident the value of the function
at the ends, and (2) the answer should be expressed in as non-
dimensional a fashion as possible. This practice make the result
easier to use and it also serves as a way to quickly spot errors.
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7.4 Energy methods

In Chapter 2 we introduced the important concept of conservation-of-
energy methods for elastic bars with axial loads. A similar notion exists
for bars in torsion. First recall that any work we do on the system is
stored (elastically) in the system:

Win = Wstored. (7.79)

From elementary physics we know that work equals force times dis-
tance, which is the same as torque times rotation angle. If we twist
an elastic rod (not necessarily linear elastic) and measure the angle of
rotation, then we can make a plot of torque versus rotation as shown in
Fig. 7.19. The work that we have done on the rod is the area under the
curve:

Win =

∫ θf

0

M(θ) dθ. (7.80)

If the material is linear elastic then the response will be linear and we
find Win = 1

2
Mfθf .

The energy stored in the material can be found from the general
expression for the strain energy density eqn (5.17). This expression is in
terms of Cartesian coordinates, which is not convenient. However, by the
discussion in Section 5.4, it is easily converted for use with cylindrical
coordinates. In our case all the terms are zero except γzθ and τzθ.

3 This 3 We will drop the subscripts for con-
venience, as we have done throughout
this chapter.

then gives the stored energy density in a linear elastic bar in torsion as
w = 1

2τγ = 1
2Gγ2 = 1

2τ
2/G. If one integrates this over the volume of the

material, then one will come to an expression for the energy stored in
the material:

Wstored =

∫
V

1

2
τγ dV. (7.81)

M

θf

Mf

θ

General elastic Linear elastic

M

θf

Mf

θ Fig. 7.19 Torque-rotation response
curves for elastic materials.



108 Circular and Thin-Wall Torsion

Thus we come to the final result (by conservation of energy) that in the
linear elastic case:

1

2
Mfθf =

∫
V

1

2
τγ dV. (7.82)

Example 7.14

Rotation of an end-loaded rod by conservation of energy. Find the
rotation of an end-loaded bar. Assume J and G to be constants.

Solution
Starting from eqn (7.82) we have

1

2
Mfθf =

∫
V

1

2
τγ dV (7.83)

=

∫ L

0

∫
A

1

2
τγ dAdz (7.84)

=

∫ L

0

∫
A

1

2

1

G
τ2 dAdz (7.85)

=

∫ L

0

∫
A

1

2

1

G

(
Tr

J

)2

dAdz (7.86)

=

∫ L

0

1

2

T 2

GJ
dz (7.87)

=
1

2

M2
f

GJ

∫ L

0

dz (7.88)

=
1

2

M2
fL

GJ
. (7.89)

If we now cancel 1
2Mf from both sides we find θf = MfL/GJ – a result

we had from before. Thus we see that by using conservation of energy it
is possible to determine rotations in elastic systems.

7.5 Torsional failure: Brittle materials

For circular bars in torsion there are two basic failure mechanisms
depending upon the bar’s material. In this section we will examine briefly
what happens when a brittle bar fails in torsion, and in the next section,
what happens when a ductile bar fails in torsion. Recall, first, that brittle
materials fail by cracking (fracturing). The characteristic feature of such
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failures is that the fracture surface appears orthogonal to the direction
of maximum (tensile) normal stress.

So how can the twisting of a such a bar cause brittle failure? After all, we have
just computed that there are only shear stresses present when twisting a bar.

The answer is intimately connected to the discussion in Section 3.1.1,
where we saw that depending upon the orientation of a section cut one
can compute different amounts of shear and normal stress at the same
location. Thus, for the section cuts we have chosen so far in this chapter
we have only seen shear stresses. However, if we reorient our section cuts
we will be able to see that the bar also carries normal stresses.
To proceed, let us consider an equilibrium construction. Shown in

Fig. 7.20 is a bar with applied torque. Let us consider cutting out a thin
polar wedge-shaped piece of material from the outer surface of the bar.
The piece is thin in the r-direction. On the top and bottom surfaces we
have stresses τ = TR/J as shown. By moment equilibrium, we have the
same stresses on the sides (recall the discussion of Section 3.2.3). By a
thinness assumption in the r-direction we can assume that these stresses
are constant on all four sides; see Fig. 7.21.

M

M

Fig. 7.20 Construction for finding the
stresses on an inclined plane in a tor-
sion bar.

τ = TR/J

τ = TR/J

τ =TR/J 
τ = TR/J

Δr

l

l

Fig. 7.21 Small section from outer
surface.

τ

z

σ 

α)l sec(
α)l tan(

l

1 2

α

τ
θ

Fig. 7.22 View down r-axis.

Let us now determine the normal stress on a plane inclined α radians
with respect to the z-axis. Figure 7.22 shows our piece with a section cut
with normal e1. The forces on the piece are given by the constant stress
values times the areas over which they act: σ is the unknown normal
stress we are trying to determine. If we sum the forces in the 1-direction
we find:

σΔrl sec(α) = τΔrl sin(α) + τΔrl tan(α) cos(α) (7.90)

⇒ σ = 2τ sin(α) cos(α). (7.91)

If we maximize this function with respect to α we find that α = π/4 and
that the maximum normal stress is given by σ = τ . Thus we see, by an
equilibrium argument, that the maximum normal stress σ = TR/J on
a plane inclined π/4 radians to the axis of the bar. Thus if one twists
a brittle bar one would expect a fracture to appear that is aligned π/4
radians to the bar axis. Figure 7.23 shows a piece of chalk that has been
so twisted. The failure orientation at all points on the surface of the bar is
π/4 radians to the bar axis; the net result is a π/4 radian helical failure.

Remarks:

(1) One may be concerned with the fact that the piece we have cut out
of the bar is curved. Thus, while the stress values may be constant
their direction is not, and this would invalidate the idea of simply
multiplying stresses by area to get forces. After-all τ = σzθ and
eθ changes direction from point to point. If one performs a more
rigorous analysis by integrating the stress fields over the surfaces
of the piece, followed by shrinking the size of the piece to a point,
then one recovers exactly the same result as we have found. Thus
our result is correct even if our method of analysis was not 100%
rigorous.
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(a) Chalk before applied torque exceeds critical value.

(b) Chalk after applied torque exceeds critical value.

Fig. 7.23 Demonstration of the frac-
ture of a brittle solid due to the appli-
cation of torques.

7.6 Torsional failure: Ductile materials

In ductile materials, torsional failure follows a completely different path.
In brittle failure, when the normal stress on the π/4 radian inclined plane
reaches the fracture strength of the material, the bar fails suddenly and
the load-carrying capacity of the bar is lost immediately. In ductile
failure, failure proceeds in a much more gradual and less dramatic
fashion. Thus sometimes one defines torsional failure as simply reaching
the yield torque, TY , the torque at which yielding starts, and sometimes
one defines it as reaching the ultimate torque, Tu �= TY , the torque
associated with complete yielding of the cross-section.

7.6.1 Twist-rate at and beyond yield

First recall that when the bar is elastic the stress and strain distributions
are linear, as shown in Fig. 7.24. The connection between the strain
distribution and the stress distribution is through the stress–strain
relation for shear, τ = Gγ. This is valid as long as the stresses stay below
the yield stress, τY , or equivalently the strains stay below the yield strain,
γY = τY /G. If we increase the twist rate in the bar beyond the elastic
limit, some things change but some do not. The shear strains stay linear
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Fig. 7.24 Shear strain and stress dis-
tribution when the response is fully
elastic.

on the cross-section because we continue to assume that our kinematic
assumption holds. However, the shear stresses are no longer linear on
the cross-section, because τ �= Gγ at all points on the cross-section. As
we progressively increase the twist rate the shear strain begins to exceed
the yield strain on the outside of the bar. As the twist rate is further
increased the radial location where the shear strain is equal to the yield
strain moves inwards, with the material inside this radius still elastic and
the material outside this radius plastically deformed. The radial location
is known as the elastic–plastic interface. Figure 7.25 shows three different
cases, each with an increasing amount of twist rate. Case 1 is elastic and
cases 2 and 3 go beyond yield.

φ

r
R

loading case 2
Elastic−Plastic interface
loading case 3

1

Elastic−Plastic interface

γ γY
(d    /dz)2φ

(d    /dz)1φ

(d    /dz)3

Fig. 7.25 Shear strain distribution for
three progressively increasing twist
rates: (dφ/dz)1< (dφ/dz)2< (dφ/dz)3.
States 2 and 3 represent twist rates
beyond yield.

The relation between an applied twist rate and the location of the
elastic–plastic interface is easy to determine, since we continue to assume
the validity of our fundamental kinematic assumption, γ = rdφ/dz. At
the interface we know that γ = γY ; thus

dφ

dz
=

γY
rp

, (7.92)

where rp is the symbol we use for the interface location. For a given yield
stress, we can also write

dφ

dz
=

τY
Grp

. (7.93)

When rp = R, i.e. the initiation of yield, we denote the applied twist
rate as (dφ/dz)Y = γY /R = τY /(GR) – the twist rate at initial yield. τY

τ

γ

G

1

Fig. 7.26 Elastic–perfectly plastic re-
sponse curve.

7.6.2 Stresses beyond yield

If we assume the constitutive relation is elastic–perfectly plastic (as
shown in Fig. 7.26), then we can determine the stress distribution for
a given twist rate beyond yield. Note that given a twist rate the shear
strains are known, γ = rdφ/dz. Thus for each radial location r we can
“look up” the corresponding stress from the stress–strain diagram which
gives
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τ =

⎧⎨⎩
τY

r
rp

r < rp

τY r ≥ rp,

(7.94)

where rp = γY /(dφ/dz). For the strain distributions shown in Fig. 7.25,
the resulting stress distributions are given in Fig. 7.27.

7.6.3 Torque beyond yield

To determine the torque beyond yield for a given twist rate, we need
to apply the general relation between torque and shear stresses, eqn
(7.13). Note that eqn (7.13) holds independent of constitutive response.
Inserting eqn (7.94) into eqn (7.13), gives

T =

∫
A

rτ dA =

∫ 2π

0

∫ R

0

rτ rdrdθ (7.95)

= 2π

[∫ rp

0

τY
r3

rp
dr +

∫ R

rp

τyr
2 dr

]
(7.96)

= τY

[
2πR3

3
−

πr3p
6

]
. (7.97)

This is also conveniently written as:

G(dφ/dz)3

rR

loading case 2
Elastic−Plastic interface

loading case 3
Elastic−Plastic interface

τY

τ

1

Slope

Slope
G(dφ/dz)2

G(dφ/dz)1

Fig. 7.27 Stress response for an
elastic–perfectly plastic material for
the twist rates in Fig. 7.25.

T = Tu

[
1− 1

4

(rp
R

)3]
, (7.98)

or

T = Tu

[
1− 1

4

(
(dφ/dz)Y
dφ/dz

)3
]
, (7.99)

where Tu = τY 2πR
3/3.

Remarks:

(1) In the final result we have used the symbol Tu. This is known as
the ultimate torque that the bar can carry, and it occurs when
the entire cross-section of the bar is fully yielded; i.e. τ = τY
everywhere. This is the same as saying rp = 0, for the solid bar.

(2) The torque at initial yield is given as TY = τY πR
3/2. This occurs

when rp = R. Notice that TY = 3Tu/4. Thus after yield initiates
one can continue to increase the torque on the bar another 33%.

(3) This last remark can be better appreciated by making a plot of
torque versus applied twist rate as shown in Fig. 7.28. Before yield
the response is linear. After yield the response is non-linear due
to the plastic yielding. Note that the ultimate torque can never
be reached, as it represents an asymptote that is only approached
in the limit as the twist rate goes to infinity.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(dφ/dz)/(dφ/dz)Y

T
/T

Y

Fig. 7.28 Torque versus twist rate
for an homogeneous solid circular bar
made from an elastic–perfectly plastic
material.
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τY
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γi

γY

rp

Fig. 7.29 Initial stress and strain
fields.

7.6.4 Unloading after yield

In the preceding sub-sections we have considered the case of yielding
a bar in torsion through the progressive increase in applied twist rate.
Let us now consider what happens when one releases a circular elastic–
perfectly plastic bar that has been twisted beyond yield. Assume the bar
has been twisted so that the elastic–plastic interface is now located at a
radius rp. We will call this the initial state and denote quantities at this
state by a subscript i. Figure 7.29 plots of the initial stress and strain in
the bar as a function of radial position, r. The value of the initial twist
rate is (

dϕ

dz

)
i

=
γY
rp

=
τY
Grp

(7.100)

and the value of the initial torque is given by

Ti =

∫
A

rτ dA = τY

[
2πR3

3
−

πr3p
6

]
. (7.101)

R
r

Δγ

rp

Fig. 7.30 Increment of shear strain
from initial to final configuration.

When we let go of the bar the state changes. We will call the new
state the final state and denote quantities at this state by a subscript f .
There are two observations we can immediately make about the final
state:

(1) Tf = 0 since we have let go of the bar, and

(2) γf = r(dϕ/dz)f holds since the strain is assumed linear, indepen-
dent of material behavior from our physical observations. Note
that we do not yet know what (dϕ/dz)f equals.

Using observation (2) we can define the change in the strain as a function
of radial position as Δγ(r) = γf (r)− γi(r); i.e.

Δγ = r

((
dϕ

dz

)
f

−
(
dϕ

dz

)
i

)
. (7.102)

Figure 7.30 qualitatively shows this relation. Note that in Fig. 7.30 we
have assumed that (dϕ/dz)f < (dϕ/dz)i; i.e. we have assumed that the
bar springs back when released.
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Consider now what happens to the stresses. For a point located
between 0 and rp, the stress–strain behavior appears as shown in
Fig. 7.31. For a point located between rp andR the stress–strain behavior
looks as shown in Fig. 7.32. Thus we can write an expression for the final
stress state as

(strain)
γ

Δγ(r) G

τ

r < rp
τY

τi

τf

γf γi

Fig. 7.31 Stress–strain behavior for
points 0 < r < rp.

γ (strain)

τ
r > rp

Δγ(r) G
τY=τi

τf

γf γi

Fig. 7.32 Stress–strain behavior for
points rp < r < R.

τf (r) =

{ τY
rp

r +Δγ(r)G for 0 < r < rp
τY +Δγ(r)G for rp < r < R .

(7.103)

The expression for Δγ is still in terms of the unknown final twist rate,
(dϕ/dz)f . To determine this we use the other bit of information that we
know about that final state; viz. Tf = 0. If we use eqn (7.103) and the
general relation between stress and torque, eqn (7.13), then

0 = Tf =

∫
A

rτf dA (7.104)

= 2π

{∫ rp

0

r2[
τY
rp

r +Δγ(r)G] dr

+

∫ R

rp

r2[τY +Δγ(r)G] dr

}
(7.105)

= τY

[
R3

3
−

r3p
12

]
+

R4

4

[(
dϕ

dz

)
f

−
(
dϕ

dz

)
i

]
G. (7.106)

This equation can be solved for the unknown twist rate; doing so gives(
dϕ

dz

)
f

=

(
dϕ

dz

)
i

− 4τY
3GR

[
1− 1

4

(rp
R

)3]
(7.107)

=

(
dϕ

dz

)
i

− Ti

GJ
. (7.108)
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Fig. 7.33 Torque versus twist rate
response with unloading after an ini-
tial twist of (dφ/dz)i = 2(dφ/dz)Y .
The initial torque T = (31/24)TY and
the final twist rate is (dφ/dz)f =
(17/24)(dφ/dz)Y .

Remarks:

(1) Figure 7.33 shows the complete load/unload curve for the torque
versus twist rate. Here we have assumed that the initial twist
rate is (dφ/dz)i = 2(dφ/dz)Y . As just computed the unloading
process is completely elastic and thus appears as a straight line.
Beware, however, as unloading is not completely elastic in all
cases. The present result holds only for the case of a solid bar
with homogeneous elastic–perfectly plastic material properties.
In particular, for composite bars reverse yielding can take place
during unloading, and this must be checked for.

(2) Having determined (dφ/dz)f we can substitute back into the
previous expressions to get the final strain and stress states in
the bar. Since (dφ/dz)f �= (dφ/dz)i, we will have a residual stress
and strain field in the bar; i.e. even though there is no torque on
the bar there are non-zero stresses and strains in it.
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(3) If the bar were to be retorqued it would remain elastic until the
applied torque reached Ti. Thus by such a procedure the effective
yield torque of the bar has been increased in the direction of
initial twisting. Such procedures are often used, for example, in
the manufacture of stabilizing bars for vehicle suspensions.

Example 7.15

Plastically twisted bar. Consider a solid 24–inch long metal rod with a
1–inch radius. Determine how much torque is required to yield the bar
halfway through (rp = 0.5 inch). Also compute the amount of residual
twist and stress in the bar if it is subsequently released. Assume G =
12× 106 psi and that the material is elastic–perfectly plastic with yield
stress τY = 24 ksi.

Solution
Starting from eqn (7.97) we find that the required torque is given by

Ti = 24000

[
2π13

3
− π0.53

6

]
= 48.7× 103 in · lbf. (7.109)

Since the bar is solid and elastic–perfectly plastic, we can utilize the
results of the last section. First we have that:(

dφ

dz

)
i

=
24000

12× 106 · 0.5 = 4× 10−3 rad/in. (7.110)

So the final twist rate is given by:(
dφ

dz

)
f

=

(
dφ

dz

)
i

− Ti

GJ
= 4× 10−3 − 48.7× 103

12× 106 · π14/2

= 1.4× 10−3 rad/in.

(7.111)

Knowing this value, we can now use eqn (7.103) to find the residual
stress field as:

τf (r) =

⎧⎨⎩ 24000 r
0.5

− 48.7×103r
π14/2

r < 0.5

24000− 48.7×103r
π14/2

r ≥ 0.5.
(7.112)

A plot of this stress field is shown in Fig. 7.34 along with the initially
applied stress field.

Remarks:

(1) The initial twist rate is roughly 2.8o/ft which says that the differ-
ential rotation between the ends of the bar is initially 5.6o.

(2) After the load is released the twist rate is approximately 1o/ft; so
there is a differential rotation between the ends of 2o even after
release.
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Fig. 7.34 Stress distribution on cross-
section during and after loading past
the elastic limit.

(3) The residual shear stress distribution displays both positive and
negative stresses. The inner parts of the bar have a shear stress
which has the same sense (sign) as the initially applied stress;
however, the outer parts of the bar have a stress of opposite sense.
This negative stress is needed so that the integral of rτf over the
cross-section equals zero; i.e. the final torque needs to be zero.

7.7 Thin-walled tubes

So far we have concentrated on the torsion of circular bars. While
this is a very important class of structural members that experience
torsion, it is far from comprehensive. The torsion of non-circular cross-
sectional shapes is a fair bit more complex than what we have seen.
This occurs because our fundamental kinematic observation that plane
sections remain plane and only rotate is no longer true. Very basic
observation of the torsion of non-circular cross-sections shows quite
clearly that the cross-sections warp in addition to rotating. Warping
refers to displacements in the z-direction. Thus the observed motion
consists of rigid rotation of the cross-section coupled with out-of-plane
displacements. The pattern of the out-of-plane displacements, warping,
is also seen to be quite complex. The net result is that in general
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the solution of the problem of non-circular torsion requires the explicit
solution of the governing partial differential equations. Notwithstanding,
there is one case where we can effectively deal with non-circular torsion
without solving partial differential equations. This case arises when we
make the added assumption of thinness; i.e. here we assume that the
member in question is hollow with arbitrary cross-sectional shape but
where the tube walls are assumed thin.

7.7.1 Equilibrium

Equilibrium in a thin-walled tube under torsion is governed by the same
expression as we used for the circular bar, viz. eqn (7.12). This follows
because the expression was derived solely using equilibrium concepts
independent of the kinematic assumption. To connect the stresses on
the section to the internal torque we can also use the same relations
as before, viz. eqn (7.13). However, because of the thinness assumption
we can actually reduce this expression to an explicit algebraic relation
that gives the stress for a given torque, and vice versa. In contrast to
the circular bar case, we can do this without employing a kinematic
assumption. This occurs because we will be using a thinness assumption.

7.7.2 Shear flow

T

a

a
z

Fig. 7.35 Thin-walled tube under
load.

Consider the tube shown in Fig. 7.35. It is subjected to a torque, T ,
at one end and is fixed at the other. Points on the tube cross-section
will be described either by the angle α which is measured counter-
clockwise from the x-axis, or by arclength s, also measured counter-
clockwise from the x-axis; see Fig. 7.36. The origin of the x-y coordinate
system is taken at the center of twist; the point about which the section
rigidly rotates. Knowledge of this location is not needed in general, and
its determination is beyond the scope of this text as it involves the
solution of partial differential equations. The geometry of the tube is
fully specified when one is given the two functions r(·) and t(·), where
r(α) denotes the distance from the center of twist to the tube wall
at angle α, and t(α) denotes the wall thickness at angle α. The wall
thickness is measured perpendicular to the tube wall and not along the
radial ray. The assumption of thinness amounts to assuming that

t(α)

r(α)
< 10 (7.113)

for all α.

x

y

α

t(α)

s

es
en

er r(α)

Fig. 7.36 Section a-a from Fig. 7.35;
coordinate definitions for thin-walled
tube geometry.

To support the applied torque there must be a shear stress on the
cross-section. Further, because we are assuming the walls to be thin we
can assume that the shear stress at each location α is constant across
the thickness. We also have that the shear stress at each location α must
be tangential to the wall. If the stresses were not tangential to the wall,
then moment equilibrium expressed in terms of stresses would require
shear stresses on the surface of the tube in contradiction to the manner
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in which the load is being applied. Thus the appropriate designation
for this stress would be τzs(α) – stress on the z-face in the s-direction
(arclength direction).

τsz(α2)

τzs(α2)
τzs(α1)

τsz(α1)

x

y

z

L

α2 α1

Fig. 7.37 Free-body diagram for find-
ing shear flow in a thin-walled tube.

As a step in determining the value of the shear stress in the tube for a
given torque let us consider the free-body diagram shown in Fig. 7.37. By
moment equilibrium we have that the shear stress τsz(α) = τzs(α); thus
we can express the shear stresses on the longitudinal slices at α1 and
α2 by the corresponding shear stress on the cross-section. Since these
are the only stresses that will appear in the analysis, we will drop the
subscripts for convenience. If we now sum the forces on our free-body
diagram in the z-direction we find that∑

Fz = τ(α1)t(α1)L− τ(α2)t(α2)L = 0 (7.114)

⇒ τ(α1)t(α1) = τ(α2)t(α2). (7.115)

Since the locations of the longitudinal cuts were arbitrary we have that

τ(α)t(α) = q, (7.116)

a constant for all α. q is known as the shear flow. The fact that it is
a constant on the cross-section is a consequence of force equilibrium in
the z-direction.

7.7.3 Internal torque–stress relation

Now that we have a characterization of the shear stress on the cross-
section let us try to relate it to the applied torque. If we examine a
small piece of the tube wall of length ds we see that there is a force on
this piece equal to τ(s)t(s)es ds; see Fig. 7.38. This force will generate a
torque about the center of twist of amount (rer)× (τ(s)t(s)es) ds. We
can now sum the contributions to the torque over the whole cross-section
to find that:

Tez =

∮
(rer)× (τ(s)t(s)es) ds (7.117)

= q

∮
rer × es ds (7.118)

= q

∮
rer · en dsez (7.119)

= q

∮
(xex + yey) · en dsez (7.120)

= q

∫
Ae

div[xex + yey] dAez (7.121)

= q

∫
Ae

2 dAez (7.122)

= q2Aeez (7.123)
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where Ae represents the area enclosed by the cross-section. Thus we see
that

q =
T

2Ae
(7.124)

and that

τ(s) t(s)dses

x

y

α s

ds

es

er
en

r(s)

t(s)

Fig. 7.38 Construction for finding the
torque-stress relation in a thin-walled
tube.

τ(α) =
T

2Aet(α)
. (7.125)

Remarks:

(1) In the above, es is the unit vector tangent to the tube, and en is
the unit vector normal to the tube. Note that er �= en in general.

(2) In going from eqn (7.118) to eqn (7.119) we have exploited the
fact that we can decompose any vector v in the plane as v =
(v · es)es + (v · en)en, and additionally that en × es = ez.

(3) In going from eqn (7.119) to eqn (7.120) we have used the fact
that rer = xex + yey.

(4) In going from eqn (7.120) to eqn (7.121) we have employed the
divergence theorem.

(5) In going from eqn (7.121) to eqn (7.122) we used the fact that
div[xex + yey] = ∂x/∂x+ ∂y/∂y = 1 + 1 = 2.

7.7.4 Kinematics of thin-walled tubes

The preceding relations provide us with the equation for equilibrium in
the tube in terms of the internal torque, dT/dz + t = 0, and the relation
between internal torque and shear stress, τ = T/(2Aet). The only thing
missing is a characterization of the kinematics of the tube. We shall pose
the question here in terms of finding the connection between the twist
rate of the tube and the internal torque, and will restrict ourselves to
the case of linear elastic homogeneous materials. Our approach will be
an energetic one. Thus, in contrast to the theory of circular bars we
will not derive a general kinematic relation that is valid independent of
equilibrium and constitutive response.
If we consider an end-loaded thin-walled tube, the work input to the

tube is given by:

Win =
1

2
Mθ, (7.126)

where M is the applied torque and θ = φ(L) is the end-rotation. The
twist rate for this type of loading is constant, and thus dφ/dz = θ/L.
The stored energy density in the tube is given by w = (1/2)τ2/G since
there is only one stress in the tube and the total stored energy in the
tube can be expressed as

Wstored =

∫
V

1

2

τ2

G
dV. (7.127)



120 Circular and Thin-Wall Torsion

The integration volume can be written as dV = dtdsdz. Since the stresses
are constant across the thickness due to the thinness assumption, we can
explicitly integrate out the thickness to give

Wstored =

∫
V

1

2

τ2

G
dV (7.128)

=

∮ ∫ L

0

1

2

τ2

G
t(s) dzds (7.129)

=

∮ ∫ L

0

T 2

8A2
etG

dzds (7.130)

=

∮
L

T 2

8A2
etG

ds (7.131)

= L
T 2

8A2
eG

∮
1

t
ds. (7.132)

Setting this equal to the work input and noting that T = M , we find
that

θ

L
=

M

4A2
eG

∮
1

t
ds. (7.133)

Remarks:

(1) By analogy to the relation dφ/dz = T/(GJ)eff in the circular bar
case, we identify (GJ)eff = 4A2

eG/
∮
(1/t) ds for a thin-walled tube.

T

a

a
z

L = 3000 mm

b1=b3= 200 mm

t2 = t4= 2 mm

t1= t3= 1 mm

Section a − a

b2= b4= 300 mm

23

4

1

Fig. 7.39 Torsion of a thin-walled box
tube.

Example 7.16

Stiffness of a thin-walled tube. Consider the thin-walled tube shown in
Fig. 7.39. Compute the tube’s torsional stiffness and determine the max-
imum permissible applied torque before yielding. Assume G = 10 GPa
and τY = 100 MPa.

Solution
The torsional stiffness is given by kT = M/θ for an end-loaded tube.
Thus we have, using eqn (7.133):

kT =
4A2

eG

L
∮

1
t ds

. (7.134)

The line integral is most easily computed by breaking up the integration
to sections of constant thickness

kT =
4A2

eG

L
4∑

i=1

bi
ti

. (7.135)
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The yield torque will be given by the torque value at which any part of
the cross-section starts to yield. Since τ = T/2Aet, this will occur at the
thinnest section. Hence

TY = 2AetminτY . (7.136)

Using the given dimensions and material properties we find

kT =
4 · (200 · 300)2 · 10000
3000

[
2 200

1 + 2300
2

] = 68.6 kN ·m/rad (7.137)

and

TY = 2 · (200 · 300)2 · 1 · 100 = 12.0 kN ·m. (7.138)

Chapter summary

� General torsion bars

− Equilibrium: dT/dz + t = 0

− Resultant-stress relation: T =
∫
A
rτ dA

� Cylindrical bars

− Kinematic assumption: γ = rdφ/dz
� Homogeneous cylindrical linear elastic bars

− Constitutive relation: τ = Gγ

− Stress–torque: τ = Tr/J

− Polar moment of inertia: J =
∫
A
r2 dA

− Twist rate: dφ/dz = T/GJ

− Differential equation: (GJφ′)′ + t = 0

− Boundary conditions: fixed and forced

φ = 0 , GJ
dφ

dz
= M

� Energy: elastic

Win = Wstored

For linear elastic systems the strain energy density is w = 1
2τγ and

the work input is 1
2Mθ.

� Solid elastic–perfectly plastic cylindrical bars

− Torque at yield: TY = τY πR
3/2

− Ultimate torque: Tu = τY 2πR
3/3

− Torque general: T = Tu

(
1− (rp/R)3/4

)
− Twist rate: dφ/dz = γY /rp
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� Thin-walled tubes

− Shear flow: q = τ(α)t(α) = T/2Ae

− Shear stress: τ = q/t = T/(2Aet)

− Effective stiffness:

(GJ)eff = 4A2
eG

(∮
1

t
ds

)−1

Exercises

(7.1) Show that the state of strain in a slender circu-
lar prismatic bar under torsion can be expressed
as γzθ = r dϕ

dz
. Assume that planar cross-sections

remain plane after deformation and radial lines
remain straight after deformation. Assume small
deformations, and clearly state the reasoning for
all steps.

(7.2) Complete the missing entries in Table 7.1.

Table 7.1 Analogy table for Exercise 7.2.

Axial loads Circular torsion

Kinematic relation ε = du
dx

Resultant definition T =
∫
A
rτ dA

Equilibrium dR
dx

+ b = 0

Elastic Law τ = Gγ

(7.3) State which global equilibrium principle is asso-
ciated with each of the following equations. Be
specific about the direction.

dR

dx
+ b(x) = 0

dT

dz
+ t(z) = 0

σxz = σzx

(7.4) Each of the equations in Table 7.2 corresponds to
a form of global equilibrium:

∑
Fx = 0,

∑
Fy =

0,
∑

Fz = 0,
∑

Mx = 0,
∑

My = 0, or
∑

Mz =
0. For each equation, identify the corresponding
global form.

Table 7.2 Equilibrium equations for Exercise 7.4.

Given equation

σxy = σyx

dT/dz + t = 0

∂σxz/∂x+ ∂σyz/∂y + ∂σzz/∂z + bz = 0

dR/dx+ b = 0

σzx = σxz

∂σxy/∂x+ ∂σyy/∂y + ∂σzy/∂z + by = 0

σyz = σzy

∂σxx/∂x+ ∂σyx/∂y + ∂σzx/∂z + bx = 0

(7.5) An elastic solid stepped cylindrical shaft is shown
below with shear modulus G = 50 MPa. It is sub-
ject to a set of torques as shown from a set of gears
(not shown). Make a torque diagram, a max shear
strain diagram, and a max shear stress diagram
for the shaft. What is the maximum shear stress
in the shaft, and between which two gears does it
occur?

310 N−m

30 mm50 mm
20 mm

100 mm

10 N−m200 N−m100 N−m

(7.6) A solid cylindrical shaft of radius r1 has a hole
bored out of it of radius r2 so that it is now a
hollow cylinder. Derive a formula for the percent
reduction in torsional strength induced by the
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boring operation. Note that torsional strength in
this context is defined as the torque at which the
shaft first starts to yield.

(7.7) A 12-mm diameter steel shaft is used to deliver
rotary power at 1, 000 rpm. The differential twist
from one end to the other is measured to be 5o.
Assuming the shaft is 300 mm long, how much
power is being transmitted through the shaft?
Assume G = 80 GPa.

(7.8) Determine the torsional stiffness of the solid circu-
lar cone shown below.

10 mm
60 mm

280 mm

G = 100 GPa

(7.9) (a) Determine the support reactions for the
stepped circular shaft shown below. (b) Plot the
angle-of-twist diagram for the shaft. The applied
torques are T1 = 200 lbf · in, T2 = 100 lbf · in,
T3 = 500 lbf · in. The shaft diameters are d1 = 3
in and d2 = 2 in. Let E = 30× 106 psi and
ν = 0.3.

20" 20" 15" 15"

T2 T3

d2d1
T1

(7.10) What is the second-order ordinary differential
equation that governs the rotation of an elastic
circular bar in torsion?

(7.11) Using eqn (3.27), derive eqn (7.9).

(7.12) Prove that dT
dz

+ t(z) = 0 for a bar in torsion
where T is the internal torque and t is the dis-
tributed torque; further, use this result to show

that GJ d2φ
dz2

+ t(z) = 0 for an homogeneous linear
elastic circular bar, where φ is the section rota-
tion. Explain each step by a concise and complete
sentence.

(7.13) Consider a composite circular bar of length L
with cross-section as shown in the following (the
materials are bonded together). Find the torsional
stiffness assuming both materials are linear elastic.

Section a−aa

a

Material 1
Outer Radius R1
Modulus G1

Outer Radius R2

Material 2

Modulus G2

T

(7.14) Consider an elastic circular torsion bar of radius R
where the shear modulus is a function of position
G(r) = A+Br. Assume that A > 0 and B < 0 are
given constants. For a given twist rate dφ/dz at a
given location z, find the radius r at which the
shear stress will be maximum?

(7.15) Consider a circular bar of length L = 300 mm and
diameter d = 5 mm. The bar is built-in at z = 0
and is subjected to a distributed torque t(z) = 50z,
where the constant (50) has units of N/mm. At
z = 300 mm the bar is free. Find the rotation in
the bar as a function of z. Assume G to be a
constant.

(7.16) Resolve Exercise 7.15 with an additional built-in
end at z = 300 mm.

(7.17) Consider a circular bar which is built-in at both
ends and loaded by a constant distributed torque.
Derive a formula that gives the amount of load
needed to induce a rotation θ̂ at the mid-point of
the bar. Assume GJ is a constant.

(7.18) Consider a circular bar which is built-in at both
ends and loaded by a linear distributed torque,
t(z) = to z. By solving the governing second-order
ordinary differential equation find a relation that
gives the amount of load needed to induce yield in
the bar. Assume GJ is a constant and τY given.

(7.19) A motor shaft is driven with a 10-kW motor at
500 rpm. Every 0.5 meters the shaft drives a
2-kW load. Assume G = 100 GPa and that the
maximum allowable shear stress is 50 MPa. If the
shaft is solid, what diameter is required between
each load? For this sizing, plot the twist rate and
maximum shear stress in the shaft.

(7.20) Consider a β-kW motor that drives a round elastic
shaft at ω rad/s with two loads of power P1 = αβ
and P2 = (1− α)β, where 0 < α < 1. If the maxi-
mum allowable shear stress in the shaft is the yield
stress τY and we desire a safety factor SF against
yield, how large must the shaft be between the
two loads. Assume that the load P1 is closest to
the motor.
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(7.21) An elastic circular bar is fixed at one end and
attached to a rubber grommet at the other end.
The grommet functions as a torsional spring with
spring constant k. If a concentrated torque of mag-
nitude Ta is applied in the center of the bar, what
is the rotation at the end of the bar, φ(L)? Assume
a constant shear modulus G and polar moment of
inertia J .

Ta

k

L

L/2

(7.22) For the system shown: (1) state the relevant
boundary conditions in terms of the kinematic
variables and (2) give an appropriate expression
for the distributed load acting on the system.

a

T
z

Ta

GJ = C + Dz

L−a

(7.23) An elastic solid circular bar of length L with polar
moment of inertia J and shear modulus G is built-
in at both ends and subject to a system of dis-
tributed torques:

t(z) =

{
0 z < d
c z ≥ d

Determine the support torques T (0) and T (L) at
the two ends of the bar.

c

d L − d

T(0) T(L)

(7.24) A circular rod of length L in made of a non-
linear elastic material with constitutive relation
τ = Cγn, where C and n are given material con-
stants. Find an expression for the torsional stiffness
of the bar, k = T/θ. Note that your answer will not
be independent of T as it is in the linear case.

T

Fixed Base

θ

(7.25) The circular bar shown below is made of a
non-linear elastic material which is governed by
the constitutive relation τ = Bsign(γ)|γ|n, where
B > 0 and n are material constants. The bar is
subjected to an end torque, Ta > 0, and a constant
distributed load, to > 0. Find φ(z).

t(z) = to

L

z

Ta

(7.26) Consider a solid round elastic bar with constant
shear modulus, G, and cross-sectional area, A.
The bar is built-in at both ends and subject to
a spatially varying distributed torsional load

t(x) = p sin(
2π

L
x) ,

where p is a constant with units of torque per unit
length. Determine the location and magnitude of
the maximum internal torque in the bar.

L

x

t(x)
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(7.27) A tapered circular torsion bar is built-in at both
ends and subjected along its length to a con-
stant distributed torque of 10 N-cm/cm: (1) Deter-
mine and plot the internal torque diagram. (2)
Determine the twist rate as a function of axial
coordinate. Assume the shear modulus G is a
given constant and that the outer radius as a
function of axial coordinate z is given by R(z) =
(1 cm) exp (−z/(4 cm)).

z

4 cm

t(x) = 10 N−cm/cm

(7.28) A non-linear elastic solid circular bar, as shown, is
subjected to a torque of 100 N-mm. The constitu-
tive relation for the material is given as

τ = Bsign(γ)|γ|n ,

where B = 60 MPa and n = 1
2
. What is the maxi-

mum shear stress in the bar?

T = 100  N−mm

d = 4 mm

L = 100 mm

(7.29) The stepped round bar shown below is subjected
to two opposing torques. Find the support torque
at the right-end.

L1 L2 L3

TBTA
(GJ)1

(GJ)2 (GJ)3

(7.30) For an elastic circular bar with constant shear
modulus we know that the shear stress is given
in terms of the torque as τ = Tr/J . Find the
corresponding formula for a circular bar that has
been functionally graded in the radial direction so
that the shear modulus can be expressed as

G(r) = A+Br,

where A and B are given constants.

(7.31) A cylindrical torsion bar is made by bonding a
solid bar made of material 1 inside a tube made
of material 2. Material 1 has a yield stress in shear
τY 1 = C/4 and material 2 has a yield stress in
shear τY 2 = C, where C is a given constant. Both
materials have the same shear modulus G and can
be considered to be elastic–perfectly plastic. What
twist rate dφ

dz
is required to yield all of material 2?

Accurately plot the shear stress τ as a function of
r (radius) at this state of twist.

2

r2

1

r1

(7.32) A solid shaft, with a diameter of 20 mm and
1, 000 mm in length, is twisted by end-torques such
that it yields to a point where there is an elastic
core of 16 mm. (a) How much torque is being
applied to the shaft? (b) Assume the applied load
is released. Plot the residual stress distribution. (c)
What is the residual twist rate in the shaft? For
all parts, assume G = 50 kN/mm2, ν = 0.1, and
τY = 50 N/mm2.

(7.33) If the shaft in Exercise 7.32 was twisted so that the
differential end-rotation was 1.0 radians and then
released, how much differential end-rotation would
remain?

(7.34) Consider a hollow circular tube under torsional
loads with inner radius a and outer radius b. The
tube is made of an elastic–perfectly plastic mate-
rial with shear modulus G and shear yield stress
τY . What is the ultimate torque capacity of the
tube?
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(7.35) A thin tube of high-strength steel alloy is shrink-
fitted to a solid circular rod of low-carbon steel.
The low-carbon steel rod has a diameter of 12 mm
and the high-strength steel alloy tube has a thick-
ness of 2 mm. An end-torque is applied to the
composite shaft and the outer surface stress is
determined to be 500 N/mm2. What is the value
of the applied torque? Assume both steels have a
shear modulus G = 120kN/mm2. The low-carbon
steel has a yield stress in shear of 100 N/mm2; the
high-strength alloy has a yield stress in shear of
600 N/mm2.

(7.36) For a solid circular bar in pure torsion, derive
the relation between the applied torque and the
radius of the elastic–plastic interface. Assume the
material is elastic–perfectly plastic. Express your
answer in terms of the applied torque T , bar radius
R, elastic-plastic interface radius rp, and shear
yield stress τY . For each step, write one or two
complete sentences describing the step.

(7.37) Consider a solid elastic–perfectly plastic circular
bar of length L and radius c. What amount of
imposed rotation at the end is required to yield
a layer of material of thickness 0.1c? Give your
answer in terms of L, G, τY , and c.

Imposed rotation
here

Center portion elastic

Shaded region plastic

L

0.9c

c

(7.38) A composite torsion bar of length L is to carry
a given ultimate torque Tu and be of minimum
weight. The bar is stipulated to have an aluminum
core of given radius R and a bonded thin jacket
of unknown thickness t. Select the material for
the jacket from Table 7.3 that will minimize the
weight of the bar. To simplify the analysis, you
should assume that t � R. (Hint: First determine
an expression for the given ultimate torque Tu

in terms of the thickness of the jacket and the
other parameters in the exercise; next, solve for
the thickness; then determine the mass of the bar
in terms of the jacket thickness etc; note that
Tu > 2πR3τAl

Y /3.)

t

R

Aluminum

Jacket

Table 7.3 Material selection list.

Material G τY Density
(GPa) (MPa) (kg/m3)

Al 28.5 275 2700
Mild steel 80 154 7850
HS Steel 80 770 7850
HTS graphite-
5208 epoxy 61 740 1550
Alumina (Al2O3) 161 9350 4000

(7.39) A solid circular shaft of radius c is made of a
material with the following stress–strain relation
in shear:

τ =

{
Gγ, γ < γY
Hγ + (G−H)γY , γ ≥ γY

Find the relation between the torque T and the
twist rate φ′ = dφ/dz. Express your result in terms
of G, c, φ′, H, and γY .

(7.40) Shown below is the cross-section of an elastic–
perfectly plastic thin-walled tube. The dimensions
a, b, and d are all much greater than the wall
thicknesses. Assume t1 < t2 < t3 < t4. Find the
yield torque for the tube in terms of the given
dimensions and the shear yield stress τY .

a d a

b

b

t4

t2t1

t3
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(7.41) Consider the thin-walled tube shown. Find the
maximum shear stress, τmax, in terms of the
applied torque, T , and the geometry. Assume
t1 < t2

T

h

h

w

t2

t1t2

t1

(7.42) Consider a thin-walled tube with cross-sectional
geometry as shown below. Assuming that all wall
thicknesses are small in comparison to the side
lengths, determine the torsional stiffness per unit
length of the tube.

c

a

b

ta

Thin-walled Tube Cross−section

tc tc

tb

(7.43) A hollow tube is fabricated by joining a rectan-
gular channel section of uniform thickness t2 to a
semicircular channel of uniform thickness t1. Both
channels are made of the same material which has
a yield stress in shear of τY . The dimensions are
such that t1 < t2 and both thicknesses are much
less than h and w. Determine the torque at which
the section will yield.

w

h

w/2
t1

t2

(7.44) What is the relation between shear stress and
torque in a thin-walled tube?

(7.45) Consider the section shown in Exercise 7.43. If
the channel has a length L and shear modulus G,
derive an expression for the torsional stiffness of
the tube.
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Bending of Beams

So far we have addressed the analysis of slender bodies under the action
of forces and moments (torques) aligned with the axial direction. In this
chapter we will complete our basic development on the mechanics of
slender bodies by looking at the case of applied moments and forces
that are orthogonal to the axis of the body. Such loadings are known
as bending loads. In many mechanical systems one can easily identify
structural elements that act by resisting bending loads: vehicle axles,
bridge decks, beams in buildings, flag poles, bones in animals, etc. To
construct a viable theory for systems with these types of loads we will
proceed in a manner similar to what we did for torsion. We will start with
a kinematic assumption and then proceed to derive consequences of this
assumption. To make the introduction to the bending behavior of beams
tractable we will initially restrict ourselves to the case of symmetric
bending of prismatic beams about a single axis. In the last sections of
this chapter will briefly take up the topic of multi-axis bending and skew
bending as well as the effects of plasticity.

Fig. 8.1 The support arm for this
traffic light is being bent by its own
weight and the weight of the two traffic
lights.

8.1 Symmetric bending: Kinematics

Consider a prismatic slender body that has a cross-section with a
vertical line of symmetry as shown in Fig. 8.2. For our analyses we
will by convention take the x-axis as the axis of the body, the y-axis
as the vertical axis, and the z-axis as their right-hand complement.
The distance from the lower chord of the beam to the x-axis is as yet
unspecified. If the body has a length to depth ratio of over 10, after
the application of bending loads, one observes the following kinematic
response:

(1) Plane cross-sections remain plane. Their motion can be fully
characterized by a single displacement field and a rotation
field.

(2) Normals remain normal; i.e. if one scribes two orthogonal lines
(in the x-and y-directions) on the beam before the application
of loads, then after the loads are applied the two lines remain
orthogonal.

(3) The rotation of the cross-sections occurs about the same line for
all cross-sections; i.e. the center of rotation for every cross-section
is located at the same distance from the bottom of the beam.



8.1 Symmetric bending: Kinematics 129

x

y

Plane of symmetry

a

a
Section a−a

z
x

z

y

Fig. 8.2 Beam with transverse loads
and a cross-section with a vertical line
of symmetry.

This situation is shown schematically in Fig. 8.3. The function v(x)
characterizes the displacement of the beam, and the function θ(x)
characterizes the rotation of the cross-sections relative to the vertical.

Remarks:

(1) By this characterization the vertical motion of every point on
a given cross-section is the same as long as one assumes small
displacements and rotations.

(2) Because normals remain normals we have that tan(θ) = dv/dx. If
we further assume small rotations, then we have that tan(θ) ≈ θ
and thus θ = dv/dx.

(3) It is useful to also note that the curvature, κ, of any curve is given
by dθ/ds, where θ is the orientation of the curve’s tangent to the
horizontal and s is the arc-length coordinate of the curve. If we
assume small deformations and rotations, then we have for the
beam that its curvature is approximately κ = dθ/dx. Note, it is
only a function of x and is a constant for each cross-section. We
also note that our assumptions imply that κ = dθ/dx = d2v/dx2.

(4) Beams that obey these kinematic observations are known as
Bernoulli–Euler beams.

These observations are very robust as long as the beam has a length
to depth ratio of at least 10. They hold for both elastic and plastic

θ(x) = dv/dx

v(x)

Fig. 8.3 Beam kinematics.
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material response. They even hold for composite material cross-sections
(providing the vertical line of symmetry is preserved by the material
distribution). In the special case of pure bending (zero internal shear
forces), one can show via symmetry arguments that these assumption
are exactly satisfied for infinitely long beams.

Strains in bending

The essential motion of bending occurs in the x-y plane. In this plane
there are three components of the strain tensor that need to be deter-
mined. If we assume a plane stress conditions in the y-direction then
we can safely ignore having to determine εyy, for the same reasons as
discussed in Chapter 6. Because the normals remain normal there are
no angles changes in the x-y plane. Thus, γxy = 0. The remaining strain
to be determined in the plane is εxx.

To determine εxx we can use a differential construction. Figure 8.4
shows a segment of length Δx cut from the middle of a bent beam.
The deformed shape of the differential element is shown shifted to the

A’

Δ

B’

After Deformation

A

y

x

B

Before Deformation
x

x

y

Fig. 8.4 Bending strain construction.

right for clarity. For convenience let us locate the x-axis along the line
of centers of rotation. If we consider a strip of material at elevation y
from the x-axis, then it originally has a length Δx. After the segment
deforms, it takes on the new length

Δx− yθ(x+Δx)− [−yθ(x)]. (8.1)

In this expression we have assumed that the rotation is small. Thus the
change in length of the strip is

Δx− yθ(x+Δx) + yθ(x)−Δx. (8.2)

Dividing by the original length and taking the limit as Δx → 0, we find

εxx = lim
Δx→0

−yθ(x+Δx) + yθ(x)

Δx
= −y

dθ

dx
= −y

d2v

dx2
= −yκ. (8.3)

Remarks:

(1) Equation (8.3) is the fundamental kinematic relation for the
bending of beams. It is a direct consequence of our kinematic
assumptions. As long as these hold, the strains will be given by
eqn (8.3).

(2) The place of eqn (8.3) in the theory of beams is analogous to
γ = rdφ/dz in the theory of torsion of circular bars.

(3) εxx is usually called the bending strain. When there is no chance
of confusion, we will omit the subscripts.

(4) Just as in torsion, our kinematic assumptions lead to a situation
where the (bending) strains are linear on the cross-section; see
Fig. 8.5.

−κ

y

ε x

Slope = 

Fig. 8.5 Bending strain distribution.
(5) The loci of points where the bending strains are zero is usually

called the neutral axis, which may or may not lie in the center of
the cross-section.
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8.2 Symmetric bending: Equilibrium q(x) − force/length

x

y

Differential Element

Fig. 8.6 Beam with distributed load.

Paralleling our developments of equilibrium for bars with axial forces and
rods in torsion, we will consider the equilibrium of beams in differential
form. Figure 8.6 shows a generically loaded beam. Let us consider a
differential element of the beam as shown in Fig. 8.7. The segment is
subject to a distributed load q(x) which has units of force per unit length.
On the two section cuts which define the segment, there are internal
axial forces R(x), shear forces V (x), and bending moments M(x). The
axial force, shear force, and bending moments are drawn in the assumed
positive sense.1 1 In many books the reverse sign con-

vention is used for the shear forces.
There is nothing wrong with using a
different convention for positive shear
forces. However, the convention we
adopt here is consistent with the sign
conventions we have used so far. When
dealing with beam problems one should
always make clear the assumed sign
conventions.

Δ

q(x)

M(x)

R(x)

V(x)

x
Δx

A

V(x +   x)

M(x +    x)Δ

Δ

R(x +    x)

Fig. 8.7 Differential element for deri-
ving differential equilibrium equations.

Let us first consider force equilibrium in the x-direction. This trivially
tells us that R(x) equals a constant. If we assume that there are no
applied axial loads, then we have that

R(x) = 0. (8.4)

If there are applied axial loaded, then R(x) �= 0. The case R(x) = 0, is
the one we will deal with the most.
If we now consider force equilibrium in the y-direction, then summing

the forces gives us

0 =
∑

Fy = −V (x) + V (x+Δx) +

∫ x+Δx

x

q(s) ds

≈ −V (x) + V (x+Δx) + Δxq(x).

(8.5)

We can divide through by Δx and take the limit as Δx → 0 to arrive at

dV

dx
+ q(x) = 0. (8.6)

Equation (8.6) is the statement of force equilibrium in the vertical
direction in differential form for a beam.
The third equilibrium equation in the plane is moment equilibrium

about the z-axis. Let us sum moments about the point A shown in
Fig. 8.7. This gives

0 =
∑

Mz = M(x+Δx)−M(x) + V (x)Δx

−
∫ x+Δx

x

q(s)(x+Δx− s) ds

≈ M(x+Δx)−M(x) + V (x)Δx− q(x)Δx2/2.

(8.7)

If we divide through by Δx and take the limit Δx → 0, then we find the
differential expression for moment equilibrium for the beam:

dM

dx
+ V = 0. (8.8)
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Remarks:

(1) Equations (8.4), (8.6), and (8.8) provide the governing equations
for equilibrium of internal forces in a beam. They play the same
role as dR/dx+ b = 0 did in bars with axial forces and dT/dz +
t = 0 in rods with torsional loads.

(2) These equilibrium equations are independent of material response.

(3) It should be noted that the slope of the (internal) shear force
diagram will always be equal to −q(x) and the the slope of the
(internal) moment diagram will always be equal to −V (x). For
example, if the distributed load is a constant, then the shear force
will be linear in x, and the moment will be quadratic in x.

(4) An alternative way of expressing the equilibrium relations is to
write them in integral form:

V (x) = V (0)−
∫ x

0

q(x) dx (8.9)

M(x) = M(0)−
∫ x

0

V (x) dx. (8.10)

This form is sometimes useful in practical problems. Note that
V (0) and M(0) will need to be found from the boundary reactions
of the particular problem.

(5) If the distributed load has point loads then q(x) should be rep-
resented by a Dirac delta function, just as we did with point
torques in torsion problems and point forces in axial load prob-
lems. If we have point moments in a beam we can represent
them by a distribution of load over a small region ζ just as we
did when we defined the Dirac delta function. Figure 8.8 shows
one such possible distribution of load. The distribution gζ(x) has
zero net force and a unit moment about the center point. Note
also that gζ(x) =

d
dx
fζ(x), where fζ(x) was the function used to

define the Dirac delta function in Fig. 2.21. The idealization of a
point moment comes in the limit ζ → 0, which implies that point
moments (of unit magnitude) can be represented by δ′(x). Note
the integration rule ∫

δ′(x) dx = δ(x) + C. (8.11)

It should also be observed that the sense of the moment is clock-
wise.

g  (x)

x

4/ζ

4/ζ

ζ/2 ζ/2

2

2

ζ

Fig. 8.8 Doublet function construc-
tion.

8.2.1 Internal resultant definitions

The internal forces/moments (the internal resultants) arise from a dis-
tribution of stresses on the cross-section. The traction on the cross-
section is given by Cauchy’s law, eqn (3.31). Noting that the normal to
our section cut is ex, Fig. 8.9 shows that the relevant two-dimensional
traction components are given by:
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x

y

z

σxx

σxy

σxz

dA

Fig. 8.9 Traction components on
beam cross-section.

σTex =

(
σxx

σxy

)
. (8.12)

The force normal to the section is given as it was when we treated axial
force problems by

R =

∫
A

σxx dA. (8.13)

The shear force will be given by integrating the shear stress contributions
over the cross-section:

V =

∫
A

σxy dA, (8.14)

where we have taken care to account for our assumed sign convention
concerning the shear force. The moment about the z-axis will arise from
the normal stresses σxx. The lever arm that the normal stresses act
through is of length y. Taking care of the sense of the induced moment
we have that

M =

∫
A

−yσxx dA. (8.15)

Remarks:

(1) Equations (8.13)–(8.15) are analogous to R =
∫
A
σxx dA in the

axial force problems and T =
∫
A
rσzθ dA in torsion problems.

(2) These relations are independent of material response.

x

M

d

Fig. 8.10 Beam of length L with an
applied point moment at x = d.

Example 8.1

Shear-moment diagram: Section cuts. Consider the beam shown in
Fig. 8.10. Determine the internal force and moment distributions using
a section cut method.
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Solution
Figure 8.11 shows a free-body diagram of the beam with the supports
removed. Force equilibrium in the x-direction tells us that R1 = 0
and force equilibrium in the y-direction tells us that R2 = R3. Tak-
ing moments about any point along the axis of the beam shows that
R2 = M̄/L and, hence, R3 = M̄/L.

Internal force and moment diagrams can now be constructed by
making successive section cuts and applying force/moment balance for
different values of x, as shown in Fig. 8.11. For axial force balance, only a
single section cut is necessary, since there are no distributed axial forces.
This gives

0 =
∑

Fx = R(x) +R1 ⇒ R(x) = 0. (8.16)

For vertical force balance we can also make just a single arbitrary cut.
This yields

0 =
∑

Fy = −M̄

L
+ V (x) ⇒ V (x) =

M̄

L
. (8.17)

For moment equilibrium we need to make two different cuts – i.e. one
before the applied point moment and one after. This gives

0 =
∑

Mz = M(x) +
M̄

L
x ⇒ M(x) = −M̄

L
x x < d

(8.18)

0 =
∑

Mz = M(x) +
M̄

L
x− M̄ ⇒ M(x) = M̄ − M̄

L
x x > d.

(8.19)

The resulting graphs are shown in Fig. 8.11.

V(x)M
M/L

R2

V(x)

R2

M(x)

M(x)

V(x)
x=d

Jump height equals M

M

R1

R2
R3

M(x)

Fig. 8.11 Free-body diagram for
Example 8.1 and internal force
diagrams.
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Example 8.2

Shear-moment diagram: Integration. Resolve Example 8.1 using the
differential expressions for equilibrium.

Solution
The distributed load is given by q(x) = M̄δ′(x− d). Integrating the
vertical force balance equation gives

V (x)− V (0) =

∫ x

0

dV

dx
= −

∫ x

0

q(x)dx = −M̄δ(x− d). (8.20)

Using the fact that V (0) = M̄/L from the computed support reactions,
we have

V (x) =
M̄

L
− M̄δ(x− d). (8.21)

Integrating the moment equilibrium equation gives

M(x)−M(0) =

∫ x

0

dM

dx
= −

∫ x

0

V (x)dx = −M̄

L
x+ M̄H(x− d).

(8.22)
Using the fact that M(0) = 0 from the computed support reactions, we
have

M(x) = −M̄

L
x+ M̄H(x− d). (8.23)

Remarks:

(1) This result is the same as that obtained in Example 8.1, except
that the result for the shear force diagram has an extra term here
(the delta function). This term did not appear when using the
section cut method because it is only located at a single point – the
point of the applied load. We do not make section cuts at applied
point loads because we do not really know the exact distribution
of the forces at such points. To make such cuts we would have
to assume things which we probably do not know. Comparison of
the two results shows that one needs to be cautious in interpreting
results in the neighborhood of point moments (and forces).

Example 8.3

Shear-moment diagram: Cantilever beam. Determine the shear and
moment diagrams for the cantilever beam shown in Fig. 8.12.

L

P

Fig. 8.12 Cantilever beam for Exam-
ple 8.3.

Solution
A free-body diagram, Fig. 8.13, shows that the support reactions at
x = 0 are V (0) = −P and M(0) = −PL. The distributed load q(x) = 0.
Thus
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V (x)− V (0) =

∫ x

0

dV

dx
=

∫ x

0

0dx = 0

V (x) = −P

(8.24)

and

M(x)−M(0) =

∫ x

0

dM

dx
= −

∫ x

0

V (x)dx = Px

M(x) = P (x− L).

(8.25)

The results are sketched in Fig. 8.13.

x

P

−PL

−P

V(0)

V(x)

M(x)

P

M(0)

x

Fig. 8.13 Free-body diagram and
shear moment diagrams for the
cantilever beam in Example 8.3.

8.3 Symmetric bending: Elastic response

In the last section we saw that it was possible to determine the internal
force and moment distribution in a beam from the equilibrium equations.
This was possible solely from equilibrium, because the problems that
were posed were statically determinate. To be able to handle statically
indeterminate problems, to be able to say anything about the stress
distribution, the strain distribution, or the deflection and rotation of
the beam, we will need to specify the constitutive relation for the beam.
Let us start by considering linear elastic response, such that

y

σ x

Slope = −Eκ

Fig. 8.14 Stress distribution in elastic
bending of an homogeneous material.

σ = Eε. (8.26)

Given our kinematic assumptions we see that σ = −Eκy; i.e. the stress
distribution is linear on the cross-section as shown in Fig. 8.14 (assuming
that E is a constant).22 We have dropped the subscripts on

the stress and strain, since it is clear we
are discussing the bending stress and
bending strain, σxx and εxx. 8.3.1 Neutral axis

It is important to note that we have yet to determine the location of
the neutral axis of the beam. We have stipulated that it corresponds
to the loci of centers of rotation of the cross-sections, but we have not
yet determined its location in terms of the other parameters of a beam
bending problem. The location of the neutral axis of a beam is dependent
upon the geometry of the beam cross-section, the distribution of material
properties on the cross-section, and the type of material response elastic,
plastic, etc. To determine its location we will use the fact that for a beam
without axial loads, R(x) = 0. Thus

∫
A
σ dA = 0 on each cross-section.

This tells us that the tensile forces on the section exactly balance the
compressive forces on the section.

Using the stress–strain relation combined with the kinematic assump-
tions, we find

0 = R =

∫
A

−EyκdA. (8.27)



8.3 Symmetric bending: Elastic response 137

Let us determine the location of the neutral axis relative to the bottom
chord of the beam for a generic symmetric cross-section. As shown in
Fig. 8.15, we introduce a second coordinate yb which measures distance

y

z

yb
yna

Fig. 8.15 Generic symmetric cross-
section for neutral axis construction.

from the bottom chord. The origin of the yb−z coordinate system is
offset a distance yna from the origin of the y-z coordinate system. yna is
the quantity that we would like to determine. The relation between the
vertical measures is given by y = yb − yna. Substituting into eqn (8.27)
we find

0 =

∫
A

−Eκ(yb − yna) dA. (8.28)

Because κ is only a function of x, and yna is a constant, they can be
pulled out from under the integral sign to yield

yna =

∫
A
Eyb dA∫

A
E dA

. (8.29)

Remarks:

(1) When performing the integrations indicated in eqn (8.29), the area
measure dA should be taken as dybdz.

(2) In the special case where the beam cross-section is homogeneous
(i.e. E(y, z) = E a constant), one can pull the modulus out from
under the integral signs and then they cancel. This leaves the
special result for homogeneous cross-sections:

yna =

∫
A
yb dA∫

A
dA

. (8.30)

This is recognized to be the equation for the centroid of the cross-
section. So in the homogeneous case, yna = yc. The cross-sections
rotate about the line of centroids.

b

h

Fig. 8.16 Rectangular cross-section.

(3) The result shown in eqn (8.29) and the centroid result are
restricted to the elastic case. For inelastic material behavior one
needs to directly apply R(x) = 0 to determine the neutral axis
location.

Example 8.4

Centroid of a rectangular cross-section. Consider the rectangular cross-
section shown in Fig. 8.16. Find the location of the neutral axis, assuming
the material is linear elastic homogeneous.

Solution
Apply eqn (8.29).

yna =

∫
A
Eyb dA∫

A
E dA

=

∫ b/2

−b/2

∫ h

0
yb dybdz

bh
=

b12h
2

bh
=

h

2
. (8.31)
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This gives the distance as measured from the bottom of the
beam, and it lies right in the center of the section, as was easily
anticipated.

Remarks:

(1) This result shows that in a linear elastic homogeneous beam the
bending strains and stress will be zero at the centroid of a cross-
section. It also shows that the strains and stresses in such a beam
will be maximum at the outer chords of the beam.

(2) For more general cross-sectional shapes, depending on the location
of the centroid, the maximum stress and strain may occur at either
the top or bottom chords or simultaneously at both the top and
bottom.

8.3.2 Elastic examples: Symmetric bending stresses

At this stage we have a complete theory that can be utilized to solve
a wide variety of beam bending problems. The governing system of
equations is given by the fundamental kinematic relation (which depends
upon our stated assumptions)

εxx = −yκ , (8.32)

the equilibrium relations

R = 0 , (8.33)

dV

dx
+ q = 0 , (8.34)

dM

dx
+ V = 0 , (8.35)

the internal resultant relations

R =

∫
A

σxx dA , (8.36)

V =

∫
A

σxy dA , (8.37)

M =

∫
A

−yσxx dA , (8.38)

and the constitutive relation

σxx = Eεxx , (8.39)

where κ = dθ/dx = d2v/dx2.
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Example 8.5

Moment-curvature relation. Consider a linear elastic homogeneous beam
and find the relation between the moment and the curvature at a given
cross-sectional location x.

Solution
This problem asks us to connect the kinematics of bending to the internal
bending moment. Start with the expression for the bending moment

M =

∫
A

−yσ dA. (8.40)

Substitute for the bending stress in terms of the bending strain:

M =

∫
A

y2EκdA. (8.41)

Since E and κ are not functions of y and z. We find

M = E

∫
A

y2 dA︸ ︷︷ ︸
Iz

κ = EIzκ. (8.42)

Remarks:

(1) Iz =
∫
A
y2 dA is known as the moment of inertia of the cross-

section about the z-axis. It is sometimes also call the second area
moment. In the theory of bending it occupies the same place that
J , the polar moment of inertia, did in the theory of torsion. For a
solid rectangular section, for example, Iz = bh3/12, where b is the
beam width and h the beam height/depth.

(2) In many situations one drops the subscript on Iz and simply writes
I. This can be done as long as no confusion could arise.

(3) The product EI is often termed the bending stiffness.

(4) M = EIκ is the bending counterpart to the relation T = GJdφ/dz
from torsion.

(5) In cases where the bar is inhomogeneous on the cross-section (i.e.
E is a function of y and/or z), E cannot be removed from under
the integral sign in eqn (8.41). In this situation one often defines an
effective (EI)eff =

∫
A
Ey2 dA. With this definition one can write

M = (EI)effκ. This is a useful device for dealing with composite
cross-sections.

(6) Note that in the case of inhomogeneous material properties the
dependency of E on z must be an even function; i.e. E(z) =
E(−z). This will insure that the vertical plane of symmetry we
have been assuming is present.
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Example 8.6

Elastic stress distribution. Consider the same elastic homogeneous beam
as in the last example, and find the relation between the bending stress
on the cross-section and the bending moment on the cross-section.

Solution
Starting from the result of the last example we have that

κ =
M

EI
. (8.43)

We know κ = −ε/y = −σ/(yE). Substituting in for κ, we find:

σ(x, y) = −M(x)y

I
. (8.44)

Remarks:

(1) This relation is the bending counterpart to τ = Tr/J .

(2) If the beam cross-section is not homogeneous, then one can
use (EI)eff . In this case, one finds σ(x, y, z) = −M(x)yE(y, z)/
(EI)eff . The maximum bending stress on a given cross-section
does not need to appear at the outer chords for such situations.

Example 8.7

Maximum stress: T-beam. Consider a linear elastic homogeneous T-beam
with cross-sectional dimensions as shown in Fig. 8.17. For a given
moment M acting at some location x, determine the maximum bending
stress (in absolute magnitude).

Solution
|σmax| = Mymax

I
. We need to determine ymax and I. Since the beam is

homogeneous,

yna =

∫
A
y dA∫

A
dA

. (8.45)

To make the computation of the integrals easier one can break up the
domain of integration into a set of simpler shapes. In this case we can

Solution

z

y

4.13

1.87

yb

5

6

1

1

Beam Cross−Section
All dimensions in inches

Flange

Web Location of
heighest magnitude stressesFig. 8.17 Cross-section of a T-beam.
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break up the integral into an integral over the rectangular area of the
flange and the rectangular area of the web. We can also simplify the
process by noting that

∫
A
y dA = ȳA, where ȳ is the average value of y

over the area. Using these two devices,

yna =
Aflangeȳflange +Awebȳweb

A
(8.46)

=
1× 6× 5.5 + 5× 1× 2.5

11
= 4.13 in, (8.47)

where the distances have been measured from the bottom of the beam.
ymax = max{yna, 6− yna} = 4.13 in. This represents the distance to the
chord furthest from the neutral axis.
To compute I, we need to compute it relative to the neutral axis.

Again, it is convenient to break up the needed integral into an integral
over the flange and one over the web. A second device that helps in the
evaluation of the integrals is the Parallel Axis Theorem. This theorem
(see Appendix D4) allows one to express the moment of inertia about a
centroidal axis in terms of the moment of inertia about another (parallel)
axis. Given the centroidal axis zc and a second parallel axis z the
moments of inertia of a given area A about the two axes are related
by the relation

Iz = Izc +Ad2 , (8.48)

where d is the distance separating the two axes. The expression for the
moment of inertia is written as

Iz =

∫
A

y2 dA =

∫
Aweb

y2 dA+

∫
Aflange

y2 dA. (8.49)

Because we already know the moment of inertia of a rectangle about its
own centroid, we can easily evaluate each term on the right-hand side
using the parallel axis theorem:

Iz =

∫
Aweb

y2 dA+

∫
Aflange

y2 dA (8.50)

= Ic,web +Awebd
2
web + Ic,flange +Aflanged

2
flange (8.51)

=
1× 53

12
+ 5× (4.13− 2.5)2

+
6× 13

12
+ 6× (4.13− 5.5)2 (8.52)

= 35.5 in4. (8.53)

Putting our results together, one finds

|σmax| (psi) =
M

I/ymax
=

M

S
=

M (lbf − in)

8.59 in3
, (8.54)

where S = I/ymax is known as the section modulus.
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b

h

h/2

b/2

A = bh

z
z

R
z

b

h

h/3

A = bh/2

Iz = bh3/ 12

J = 2Iz

A = πR2

Iz = πR4/4 Iz = bh3/36

Fig. 8.18 Centroid locations, areas,
and moments of inertia of a few com-
mon shapes.

Remarks:

(1) Tables listing moments of inertia and section moduli for commonly
manufactured beams’ cross-sections are printed in all standard
mechanical and civil engineering handbooks.

(2) Figure 8.18 provides some useful relations regarding the moments
of inertia and centroid locations for a few basic shapes. For hollow
sections one can use a similar procedure as used in this example,
except that one subtracts values for missing areas.

Example 8.8

Bending of a composite beam. Consider the beam cross-section shown
in Fig. 8.19. Find: (1) the location of the neutral axis of the beam,
(2) the moment-curvature relation for the beam, and (3) sketch the
bending strain and stress distributions on the cross-section. Assume
linear elasticity.

Solution
(1) Find the location of the neutral axis. From eqn (8.29) we have

yna =

∫
A
Ey dA∫

A
E dA

=

∫
Aw

Ewy dA+
∫
As

Esy dA∫
Aw

Ew dA+
∫
As

Es dA
(8.55)

=
EwAw ȳw + EsAsȳs

EwAw + EsAs
. (8.56)

All dimensions in inches

8

0.5

6

Wood: E = 1.8 x 106 psi

Steel: E = 30 x 106 psiFig. 8.19 Composite beam cross-
section made of wood and steel for
Example 8.8.
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Noting that ȳs = 0.25 in and ȳw = 4.5 in from the bottom of the beam,
one finds

yna = 2.3 in. (8.57)

(2) Since the beam has inhomogeneous material properties we can
utilize an effective bending stiffness. In this case M = (EI)effκ, where

(EI)eff =

∫
A

y2E(y) dA. (8.58)

In this expression y is measured from the neutral axis. Thus

(EI)eff = b

[∫ −yna+0.5

−yna

y2Es dy

∫ 8.5−yna

−yna+0.5

y2Ew dy

]
(8.59)

= bEs
y3

3

∣∣∣∣−yna+0.5

−yna

+ bEw
y3

3

∣∣∣∣8.5−yna

−yna+0.5

(8.60)

= 668× 106 lbf − in2. (8.61)

Knowing this, the moment-curvature relation is fully defined.
(3) The strain distribution is linear, as shown in Fig. 8.20 (left). The

stresses are given by multiplying by the modulus which is a discontinuous
function of y. The result is shown in Fig. 8.20 (right).

Remarks:

(1) Note the low location of the neutral axis. The neutral axis is always
“attracted” to the stiffest part of the cross-section.

Example 8.9

Stiffness of an end-loaded cantilever. Compute the stiffness of the linear
elastic cantilever shown in Fig. 8.12. Assume homogeneous material
properties and a general but symmetric cross-section.

Solution
The stiffness of the cantilever will be the ratio of the applied force P
to the downward deflection of the beam at the tip. From the results
of Example 8.3 the internal shear force in the beam V (x) = −P and

yy

ε
σ

Fig. 8.20 Sketch of strain and stress
distributions for the composite beam of
Example 8.8.
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the internal bending moment M(x) = P (x− L). Thus the curvature in
the beam is given by κ(x) = P (x− L)/EI. The curvature can now be
integrated to compute the rotation field:

θ(x)− θ(0)︸︷︷︸
=0

=

∫ x

0

κ dx =
P

EI

(
x2

2
− Lx

)
. (8.62)

Integrating the rotation field gives

v(x)− v(0)︸︷︷︸
=0

=

∫ x

0

θ(x) dx =
Px2

2EI

(x
3
− L
)
. (8.63)

Evaluating at the tip, we find Δ = v(L) = −PL3/3EI. The stiffness is
thus k = 3EI/L3.

Remarks:

(1) The appropriate boundary conditions at a built-in support are
zero displacement and zero rotation.

8.4 Symmetric bending: Elastic
deflections by differential equations

In Example 8.9 we were able to compute the deflection of the cantilever
by first computing the bending moment in the beam and then relating it
to the curvature, followed by double integration. This type of procedure
will work only for statically determinate beams. For statically indeter-
minate beams we can apply either an assumed support reaction method
such as was done in the earlier chapters or by employing a differential
equation approach. Let us pursue this second option and restrict our
attention to the linear elastic case where we will presume that EI is
known. To derive the governing differential equation for the deflection
v(x) of the beam we will proceed in a fashion similar to what we followed
in Chapter 7 for torsion problems.
First, note that if we substitute the vertical force equilibrium equation

into the moment equilibrium equation, then we have

d2M

dx2
= q. (8.64)

We can introduce the kinematics into this by using the moment-
curvature expression to give

d2

dx2
(EIκ) = q. (8.65)
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Using our small deformation approximation that κ = d2v/dx2, we come
to a single differential equation for elastic beam deflections:

d2

dx2

(
EI

d2v

dx2

)
= q. (8.66)

Remarks:

(1) This equation embodies all the main equations of beam bending:
equilibrium, kinematics, and constitutive response. It is a fourth-
order ordinary differential equation.

(2) If EI is not a function of x (i.e. is a constant), then the governing
differential equation simplifies to

EI
d4v

dx4
= q, (8.67)

which is a fourth-order ordinary differential equation with con-
stant coefficients.

(3) Equation (8.66) is the beam counterpart to eqn (7.51) for torsion
bars.

(4) To solve eqn (8.66) we need four boundary conditions. Normally,
one will encounter kinematic boundary conditions on v and θ and
force/moment boundary conditions on V andM . As with the axial
force and torque problems, the force/moment boundary conditions
need to be converted to conditions on the derivatives of v. This is
achieved by noting that M = EId2v/dx2 and V = −EId3v/dx3.

(5) In the case of inhomogeneous cross-sections one can replace EI
with (EI)eff .

(6) For a given problem, once v(x) has been determined, all other
quantities of interest can be determined by differentiation and
algebra.

Example 8.10

End-loaded cantilever revisited. Let us reconsider the end-loaded can-
tilever from Example 8.9 and compute the deflection v(x).

Solution
The distributed load q(x) = 0. We can identify two boundary conditions
at x = 0 of v(0) = v′(0) = 0 and two boundary conditions at x = L of
EIv′′(L) = 0 and EIv′′′(L) = P .3 We can now proceed to integrate eqn 3 As a short-hand we use a prime

to indicate differentiation with respect
to x.

(8.67) four times and then eliminate the constants of integration using
the boundary conditions.

EIv′′′′ = 0 (8.68)

EIv′′′ = C1 (8.69)
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EIv′′ = C1x+ C2 (8.70)

EIv′ = C1x
2/2 + C2x+ C3 (8.71)

EIv = C1x
3/6 + C2x

2/2 + C3x+ C4. (8.72)

Applying the boundary conditions, the conditions at x = 0 give C3 =
C4 = 0, the shear force condition at x = L gives C1 = P and the moment
condition gives C2 = −PL. The final result is

v(x) =
Px2

2EI

(x
3
− L
)
. (8.73)

Remarks:

(1) This is the same result that we obtained in Example 8.9.

Example 8.11

Cantilever with two point loads. Find the deflection v(x) of the beam
shown in Fig. 8.21.

a

PP

a

Fig. 8.21 Cantilever with two point
loads.

Solution
The distributed load for this beam is q(x) = −Pδ(x− a). The bound-
ary conditions are the same as in the last example: v(0) = v′(0) = 0,
EIv′′(2a) = 0, and EIv′′′(2a) = P . We can now integrate eqn (8.66)
four times.

EIv′′′′ = −Pδ(x− a) (8.74)

EIv′′′ = −PH(x− a) + C1 (8.75)

EIv′′ = −P 〈x− a〉+ C1x+ C2 (8.76)

EIv′ = −P 〈x− a〉2/2 + C1x
2/2 + C2x+ C3 (8.77)

EIv = −P 〈x− a〉3/6 + C1x
3/6 + C2x

2/2 + C3x+ C4. (8.78)

Application of the conditions at x = 0, gives C3 = C4 = 0. The shear
force condition at x = 2a, gives C1 = 2P . The moment condition at
x = L gives C2 = −3Pa. Substituting back in, we have

v(x) =
1

EI

[
−P

6
〈x− a〉3 + 2Px3

6
− 3Pax2

2

]
. (8.79)

Example 8.12

Displacement based beam selection. Consider a simply supported beam
(Fig. 8.22) that is to carry a uniform load of k (force per unit length)
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with a maximum allowed deflection of Δmax. Determine a formula for
the required moment of inertia of the cross-section.

distributed load k (force/length)

L

Fig. 8.22 Simply supported beam
with a uniform distributed load.

Solution
The distributed load for this beam is q(x) = −k. The boundary condi-
tions for the pin supports are zero displacement and zero moment. Thus
v(0) = EIv′′(0) = 0 and v(L) = EIv′′(L) = 0. Starting from eqn (8.66):

EIv′′′′ = −k (8.80)

EIv′′′ = −kx+ C1 (8.81)

EIv′′ = −kx2/2 + C1x+ C2 (8.82)

EIv′ = −kx3/6 + C1x
2/2 + C2x+ C3 (8.83)

EIv = −kx4/24 + C1x
3/6 + C2x

2/2 + C3x+ C4. (8.84)

The boundary conditions can be applied to find the values of the
constants. The net result is

v(x) =
kL4

24EI

[
−
( x
L

)4
+ 2
( x
L

)3
− x

L

]
. (8.85)

By inspection (or by computing where the rotation θ is zero) we note
that the deflection will be maximum at the center x = L/2. Evaluating,
one finds

v(L/2) = − 5kL4

384EI
. (8.86)

The requirement is gives Δmax ≥ 5kL4/(384EI). Thus we find

I ≥ 5kL4

384EΔmax
. (8.87)

Remarks:

(1) To give a numerical sense to this result, consider a 40-ft span car-
rying a load k = 100 lbf/in, a displacement requirement Δmax = 1
in, and a steel material with modulus E = 30× 106 psi. Utilizing
our result one finds the requirement of I ≥ 2304 in4. If one looks
in a table of standard steel I-beams, then one finds that this
requirement can be fulfilled by choosing a beam with a depth
of around 20 inches.

Example 8.13

Boundary conditions and distributed loads. Figure 8.23 shows a num-
ber of beams with a variety of loadings and boundary conditions.
For each beam state the distributed load function and the boundary
conditions.
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(c)

a b−a L−b

(d)

(b)
L/2 L/2

F

F

d
Mθ

L

(a)

P

L/2L/2

k

Rigid Bars With Welded Connections

k

Fig. 8.23 Beams for Example 8.13.

Solution
For beam (a) there is no distributed load, so, q(x) = 0. The pins prevent
vertical displacement and allow free rotation. Thus one has v(0) = 0,

θ(0) = v′(0) = θ̂, v(L) = 0, and M(L) = EIv′′(L) = M̂ .
For beam (b) the applied force delivers a point moment to the center

of the beam. Thus q(x) = 2Fdδ′(x− L/2). The built-in end requires
boundary conditions of v(0) = v′(0) = 0. The pinned end gives boundary
conditions v(L) = 0 and M(L) = EIv′′(L) = 0.

For beam (c) there is a distributed load that can be composed by
superposing two step loadings as q(x) = −kH(x− a) + kH(x− b). The
pin end of the beam has zero deflection and moment, so v(L) = 0 and
M(0) = EIv′′(L) = 0. The left end of the beam is a slider. It travels
freely in a slot, but cannot rotate. This implies V (0) = −EIv′′′(0) = 0
and θ(0) = v′(0) = 0.

For beam (d) the point load gives q(x) = −Pδ(x− L/2) and the pin
connection at the left gives v(0) = 0 and M(0) = EIv′′(0) = 0. At the
right the beam is supported by a linear spring through a pin. Thus
the moment at the end is zero, M(L) = EIv′′(L) = 0. We can use the
behavior of the spring to determine the final boundary condition. The
deflection of the end is related to the force at the end through the spring
constant. Thus, EIv′′′(L) = kv(L).

8.5 Symmetric multi-axis bending

In the developments to this point we have restricted our attention to
bending about the z-axis. In a more general setting one could have
loads applied in a fashion to cause bending about both the z- and
y-axes.
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8.5.1 Symmetric multi-axis bending: Kinematics

If one observes the motion of a slender beam under multi-axis bending,
then one sees a motion nearly identical to that observed for single-axis
bending. In particular, one observes that a planar cross-section of a
beam remains planar after deformation. The section will be seen to
displace in both the y- and z-directions and to rotate about some axis.
This leads naturally to the observation that the bending strain is a
linear function of both y and z. The general form for such a function
is εxx = A+By + Cz. In the case of bending about just the z-axis, the
case we have treated to this point, C = 0, B = −κz, and we selected the
origin of the coordinate system such that A = 0. Note we have placed a
subscript on the curvature to indicate that it represents curvature “about
the z-axis”. In the general case, using the additional assumption that
normals remain normal one can show that B = −κz(x) = −v′′(x) and
C = κy(x) = −w′′(x), where w(x) is the deflection of the cross-section
in the z direction. Note that there has been a switch of sign; i.e., κy �=
w′′(x). We have done this so that later, positive bending moments (about
the y-axis) produce positive curvature “about the y-axis”. In what fol-
lows we will not necessarily assume that A = 0. We will consider a fixed
placement of the coordinate axes and determine A from axial equilib-
rium. Note that A represents the normal strain at the origin of the coor-
dinate system so we will call it εo. Thus the main kinematic assumption
will be

εxx = εo − κzy + κyz. (8.88)

8.5.2 Symmetric multi-axis bending: Equilibrium

Following a differential element equilibrium construction similar to what
we followed for single axis bending it is not difficult to show that force
balance in the three coordinate directions gives:

dR

dx
+ b = 0 (8.89)

dVy

dx
+ qy = 0 (8.90)

dVz

dx
+ qz = 0, (8.91)

where we now permit distributed axial loads; see Fig. 8.24. If there are
no axial loads then we recover the case of R(x) = 0 as we had in the
prior sections. Subscripts have been added to indicate the directions of
the internal forces, moments, and loads. If we take moment equilibrium
about the y and z axes one finds

dMz

dx
+ Vy = 0 (8.92)

dMy

dx
− Vz = 0. (8.93)
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R

Vy

My

Mz

Vz
qz

z

y

x

qy

Fig. 8.24 Differential element for
multi-axial bending.

The internal forces and moments can be related to the stresses on the
cross-section as

R =

∫
A

σxx dA (8.94)

Vy =

∫
A

σxy dA (8.95)

Vz =

∫
A

σxz dA. (8.96)

It is likewise easy to show that the internal moments are given by

Mz =

∫
A

−yσxx dA (8.97)

My =

∫
A

zσxx dA. (8.98)

8.5.3 Symmetric multi-axis bending: Elastic

In the case of an elastic beam the necessary constitutive relation is σxx =
Eεxx. In order to gain a better understanding of multi-axis bending, let
us look at an example problem.

Example 8.14

Moment-curvature and stresses. Consider a rectangular cross-section
with width b and depth h under the action of an axial load P and
bending moments Mz and My. Find a relation between the applied loads
and the bending curvatures κz and κy. Determine the stress distribution
on the cross-section. Assume that the load P is applied at the origin of
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the coordinate system which is located at the cross-section centroid.
Assume linear elastic homogeneous material properties.

Solution
We can begin by replacing the bending stress in the resultant definitions
by its expression in terms of bending strain. Further, we can use the
kinematic assumption to yield:

P =

∫
A

E(εo − κzy + κyz) dA (8.99)

= AEεo. (8.100)

The integrals for the second and third terms drop out, since the integral
of an odd function over an even interval will always be zero. If we proceed
in the same manner with the moments we find:

Mz =

∫
A

−yE(εo − κzy + κyz) dA (8.101)

=

∫
A

Ey2κz dA (8.102)

= EIzκz. (8.103)

Note that the first and third integrals drop out again because the
integrands are odd and the intervals of integration are even. The moment
about the y-axis yields

My =

∫
A

zE(εo − κzy + κyz) dA (8.104)

=

∫
A

Ez2κy dA (8.105)

= EIyκy, (8.106)

where Iy =
∫
A
z2 dA is the moment of inertia about the y-axis.

With these results we can solve for the coefficients in the strain
distribution and insert into the constitutive relation to arrive at

σxx =
P

A
− Mzy

Iz
+

Myz

Iy
. (8.107)

Remarks:

(1) Notice that the resulting stress state is a summation of the stresses
caused by each individual internal force/moment on the cross-
section. This is an example of the superposition principle; i.e. in
linear problems solutions add.

(2) The symmetry of the cross-section and the placement of the
coordinate origin played a crucial role in simplifying the analysis of
this problem. By proper placement of the coordinate system origin
we were able to eliminate a number of terms in the expressions.
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(3) In a more general situation – for example, a non-symmetric cross-
section – terms such as Qz =

∫
A
y dA and Iyz =

∫
A
yz dA etc. do

not necessarily equal zero. Qz is known as the first moment of
the area about the z-axis and there is similarly a Qy. Iyz = Izy is
known as the cross-product of inertia. If the coordinate system is
placed at the centroid of a cross-section, then one always has that
Qz = Qy = 0. Iyz, however, may still be non-zero. This situation
is often known as skew-bending and it couples moments about one
axis to bending about another axis; for example, Mz produces a
κy. More specifically, we have that(

My

Mz

)
=

[
EIy −EIyz

−EIyz EIz

](
κy

κz

)
, (8.108)

or the other way around, that,(
κy

κz

)
=

1

E(IyIz − I2yz)

[
Iz Iyz
Iyz Iy

](
My

Mz

)
. (8.109)

8.6 Shear stresses

In the preceding sections we have analyzed a number of different fea-
tures of beam bending: bending stresses, bending strains, and bending
deflections. Throughout this entire development we have ignored the
issue of shear stresses in bending (which is sometimes referred to as
direct shear). In this section we will examine the issue of shear stresses
in beams. For the sake of simplicity, we will restrict our attention to
linear elastic homogeneous beams.

To begin, let us recall our basic kinematic assumptions: plane sec-
tions remain plane and normals remain normal. The last of these two
assumptions led us in Section 8.1 to the conclusion that γxy = 0. If we
are assuming linear elastic behavior, then we are then naturally led to
the conclusion that σxy = Gγxy will also be zero. This, however, seems
to be in direct contradiction to the resultant relation V =

∫
A
σxy dA.

If the shear stresses are zero, then so must the shear forces. The
apparent paradox is circumvented by noting that if we assume that
normals always remain normal, then we are in a way assuming that
the material is infinitely stiff in shear; i.e. G = ∞. Thus the theory
with which we are working actually gives σxy = ∞ · 0, with the product
being finite. The Bernoulli–Euler theory is what is known as a non-
shear deformable theory of beams. The reality is, of course, that there is
a small amount of shear strain (and shear stress) in the beam. As a first-
order estimate we can of course simply note that the average shear stress
σxy,avg = V/A, and thus γxy,avg = V/GA. These estimates, however, can
be substantially improved upon, and we will do so using an equilibrium
argument.
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8.6.1 Equilibrium construction for shear stresses

Let us begin with a qualitative discussion. Consider an I-beam that is
loaded in a fashion to produce a non-zero internal shear force. If we
consider a differential section cut from such a beam we will find that the
stress distribution on the two sides of the section will differ as is shown in
Fig. 8.25(a). The reason for this is that non-zero internal shear force leads
to a moment variation (in x), and the stresses are directly proportional
to the bending moments. If we consider making a horizontal section cut
(see Fig. 8.25(b)) through our differential element at the neutral axis,
then we clearly see that there will be a need for a shear stress σyx �= 0
in order to balance the unequal stress distributions on either side of the
differential element. This can be made more evident by subtracting an
equal distribution of stresses from both sides, as shown in Fig. 8.25(c).

(a) Differential section  of beam.

(c) Equal stresses(moments) subtracted. (d) Stresses on orthogonal faces.

(e) Stresses depend on horizontal slice. (f) szx is also possible.

(b) Horizontal slice.

Fig. 8.25 Shear stress equilibrium
construction.
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If there is a shear stress σyx then we know by moment equilibrium in
terms of stresses that there will be an equal magnitude shear stress σxy;
i.e. σxy = σyx pointwise in a solid, always, as shown in Fig. 8.25(d).
Note that if one changes the location of the horizontal slice, to say just
under the flange, then the amount of shear stress will necessarily have
to change as the amount of differential bending stress to be balanced
will change; see Fig. 8.25(e). This implies that the shear stresses will be
functions of y. The beam shown in Fig. 8.25 is an I-beam, and in such
beams there is also the possibility for non-zero stresses in the z-direction.
The existence of these stresses can be seen by adjusting our horizontal
section cut to intersect the beam flange, as shown in Fig. 8.25(f).
Given this qualitative discussion, one can now formulate the expres-

sion for the shear stress σxy in a beam. Assume a horizontal section cut
through a differential element at a distance y1 from the neutral axis, as
shown in Fig. 8.26. The total force on the horizontal cut (for small Δx)
will be σyxbΔx, where b is the width of the beam at the location of the
cut. This force arises in response to the difference of the forces generated
by the bending stresses. If we define A(y1) to be the cross-sectional area
above y1, then by force equilibrium in the x-direction we have in the
limit as Δx → 0 that

σyxbΔx = −
∫
A(y1)

M(x+Δx)y

I
dA

+

∫
A(y1)

M(x)y

I
dA (8.110)

σyxb = −
∫
A(y1)

M(x+Δx)−M(x)

Δx

y

I
dA (8.111)

σyxb =
V

I
Q(y1), (8.112)

y

Δx

b

h x

y

z

y1
x

Fig. 8.26 Section from a beam with a
rectangular cross-section.
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where Q(y1) =
∫
A(y1)

y dA is the first moment of the area above y = y1.

Thus,

σxy(x, y) =
V (x)Q(y)

Ib
. (8.113)

Remarks:

(1) The product σxyb is known as the shear flow, and is typically
denoted by the letter q. Shear flow represents the force per unit
length along the horizontal cut.

Example 8.15

Glued T-beam. Consider the T-beam shown in Fig. 8.27. The beam is
constructed by gluing two boards together. If the maximum allowable
shear stress in the glue is τmax, how much force can the beam support.
Assume that I and yglue are given, and that the coordinate axes have
been aligned with the neutral axis.

Solution
The internal shear force in the beam V (x) = P . The shear stress in the
glue is thus

σyx(yglue) =
PQ(yglue)

bI
. (8.114)

The first moment of A(yglue) is

Q(yglue) = tw(yglue + t/2) (8.115)

This gives the requirement that

P <
τmaxbI

tw(yglue + t/2)
. (8.116)

P
t

b

h

w

z

y

yglue

Fig. 8.27 Cantilevered T-beam with
glue joint.
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112 kip

V

x

−56 kip

56 kip

Top View

6"

z

6.78"

11.5"

3/4" bolts

0.698"

End View

Channel Area = 6.09 in 2

Total I = 1120 in4

Fig. 8.28 Built-up beam made from a
channel section and I-beam.

Example 8.16

Shear stress distribution. Compute the shear stress distribution in a
beam with rectangular cross-section – height h and width b.

Solution
From eqn (8.113) one has

σxy(y1) =
V Q(y1)

Ib
(8.117)

=
V

Ib

∫
A(y1)

y dA (8.118)

=
V

Ib
(h/2− y1)b(h/2 + y1)/2 (8.119)

=
V

2I

(
(h/2)2 − y21

)
(8.120)

Remarks:

(1) The shear stress distribution is parabolic on the cross-section.

(2) The maximum value, 3V/2A occurs at the neutral axis and is 50%
higher that the average shear stress values, V/A.

Example 8.17

Built-up beam. Consider a simply supported beam with a central point
load. The beam is constructed by bolting together an I-beam and a
channel section. The bolting is done pairwise with a 6-inch spacing.
What is the shear stress in the bolts? See Fig. 8.28 for all dimensions
and properties.
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Solution
Make a horizontal section cut that cuts only through the bolts as shown
in Fig. 8.29 (note it need not be flat!). The shear flow with respect to
this cut will be

Fig. 8.29 Horizontal cut just thor-
ough the bolts.

q =
56× 6.09× (6.78− 0.698)

1120
= 1.85 kip/in. (8.121)

The force carried per bolt pair will be

1.85
kip

in
× 6

in

bolt pair
= 11.10

kip

bolt pair
. (8.122)

This gives 5.55 kip per bolt. Dividing by the area of the bolt, one finds
a shear stress in the bolts of 12.6 ksi.

Example 8.18

σxz in flanges. For a given shear force on the cross-section shown in
Fig. 8.30, find the horizontal shear stresses in the upper flange.

13

50

y

z

13

Fig. 8.30 Thin-walled section. Flan-
ges and webs have thickness t = 1.

Solution
At an arbitrary location α from the right end of the flange, make a
section cut as shown in Fig. 8.31. The shear stress is then given via a
modification to eqn (8.113) as

σxz =
V

It
(αt)24.5 =

V

I
(α)24.5. (8.123)

If we do the same for the flange portion to the left we find

σxz = −V

It
(βt)24.5 = −V

I
(β)24.5. (8.124)

β
α

y

z

Fig. 8.31 Shear stress distribution in
a thin-walled section. Linear in the
flanges and parabolic in the web.

Remarks:

(1) The horizontal shear stresses are seen to vary linearly in the flange.

(2) At the intersection with the web the value computed from the
right and that from the left are not the same (in general). This
is a deficiency in the theory, and highlights the fact that the
stress state at the intersection of the flange and the web is rather
complex. The solution computed is acceptable outside this region.

(3) If one were to compute the vertical shear stress distribution in the
web, one would find a parabolic stress distribution just as we did
with the rectangular cross-section beam. The only difference being
that the value at the top of the web will not be zero but rather
(V/I)× 24.5× 26.

(4) The horizontal shear stresses in the lower flange are the same as
in the upper flange, except that they are flipped in sign.
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8.6.2 Energy methods: Shear deformation of beams

If there are non-zero shear stresses then there are in reality non-zero
shear strains. It is natural to ask if these shears have any impact upon
the beam deflection computations we performed in Section 8.4. One way
of approaching this question is to consider an energy method.

As a concrete example, consider a linear elastic cantilevered beam
of length L with a tip load P . Assume that the cross-section of the
beam is rectangular. In this case, the work input, Win = 1

2PΔ, where
Δ is the tip deflection. The work input is stored as strain energy
in the beam. If we account for bending stresses and direct shear
stresses we find that the strain energy density w = 1

2σxxεxx + 1
2σxyγxy =

1
2σ

2
xx/E + 1

2σ
2
xy/G. Integrating over the volume of the beam gives the

stored energy as:

Wstored =

∫ L

0

∫
A

1

2

σ2
xx

E
dAdx+

∫ L

0

∫
A

1

2

σ2
xy

G
dAdx. (8.125)

Recalling that σxx = −My/I = −Pxy/I and that σxy =
(P/2I)((h/2)2 − y2) one finds

Wstored =
P 2L3

6EI
+

3P 2L

5AG
, (8.126)

where the first term is from the bending stresses and the second from
the shearing stresses. Setting this equal to the work input we arrive at

Δ =
PL3

3EI

[
1 +

3E

10G

(
h

L

)2
]
, (8.127)

where we have factored out the bending stress contribution (i.e. our
solution obtained by ignoring shear stresses). Thus the second term in
the square brackets represents the error one makes when ignoring shear
effects on deflections. A typical situation (for a metal) is that E/G ≈ 2.5.
In this case one can see that for a beam that has L/h > 10, the error in
tip deflection is already less that 0.75%. This result justifies our neglect
of shear effects on deflection for cases where beams are “slender”.

8.7 Plastic bending

In ductile beams it is possible to apply loads beyond those that cause
initial yielding. This is a situation similar to that which occurs in ductile
torsion. Plastic failure proceeds in a gradual fashion with yield initiating
on the outer fibers and then progressing with increasing load towards
the center of the beam. Sometimes one defines bending failure as simply
reaching the yield moment, MY , the moment at which yielding starts,
and sometimes one defines it as reaching the ultimate moment, Mu �=
MY , the moment associated with complete yielding of the cross-section.
Throughout the process of plastic deformation of a beam, one can
reasonably assume that our kinematic assumptions hold. In particular,
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ε = −κy. In order to simplify the discussion throughout this section we
will assume that the beam is loaded in pure bending, V (x) = 0, so that
we can simply discuss the system behavior by considering a single cross-
section of the beam and so that we can ignore the complexity of dealing
with yield under the simultaneous action of normal and shear stresses.
Further, we will always assume linear elastic–perfectly plastic behavior.

8.7.1 Limit cases

The first limit case mentioned above is the case of initiation of yield.
This capacity of a beam cross-section can be easily computed using the
elastic analysis developed to this point. Using our moment-stress relation
gives

MY =
σY I

ymax
, (8.128)

where σY is the uniaxial yield stress and ymax is the maximal distance
of a material point on the cross-section from the neutral axis. In cases
where the yield stress differs in compression and tension, then one must
pay careful attention to the signs as the yield moment will differ for
positive and negative moments.
The second limit case occurs with full yield of the cross-section. In

such a case

σ =

{
−σY y > 0

+σY y < 0
, (8.129)

where for simplicity we have assumed the same yield stress in tension
and compression. The ultimate moment is then given by integrating this
stress distribution (against y) over the cross-section. An added difficulty
that arises in plastic bending of beams is that one must take care of
the position of the neutral axis (y = 0). In particular it should be noted
that in plastic bending the neutral axis (where the bending strains are
zero) is not necessarily co-located with the neutral axis of the elastic
case. In fact, for some beams the neutral axis moves continuously as the
loads are increased (in the plastic range). To determine the location of
the neutral axis we apply our basic technique, which says that at all
times,

∫
A
σ dA = 0 (assuming no axial loads); i.e. the total axial tensile

resultant must be equal to the total axial compressive resultant.

Example 8.19

Limit moments: Rectangular beam. Compute the yield and ultimate
moments for a rectangular cross-section with width b and height h.
Assume an homogeneous material.
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Solution
The yield moment is given by

MY =
σY bh

2/12

h/2
= σY

bh2

6
. (8.130)

This is the moment at which yielding first starts. For the ultimate
moment, one assumes that material points are either at the positive
yield stress or at the negative yield stress. The transition location (the
neutral axis) is found by requiring that

∫
A
σ dA = 0. In the homogeneous

rectangular cross-section case, this simply means that the neutral axis is
located in the middle (i.e. it does not move); see Fig. 8.32. The ultimate
moment is then computed as

y

σ

σY

−σY

Fig. 8.32 Ultimate stress distribution
rectangular cross-section.

Mu =

∫
A

−yσ dA =

∫ b/2

−b/2

∫ h/2

0

yσY dydz

+

∫ b/2

−b/2

∫ 0

−h/2

−yσY dydz (8.131)

=
bh

2
σY

h

4
− bh

2
σY

−h

4
(8.132)

=
bh2

4
σY =

3

2
MY . (8.133)

Remarks:

(1) The ultimate moment capacity of a rectangular cross-section is
50% higher than the initial yield moment.

(2) The expressions for the yield moment and the ultimate moment
are unique to the shape of the cross-section, as is the ratio between
the two.

(3) For doubly symmetric cross-sections the neutral axis does not
move as long as the yield stress in tension and compression are
the same.

Example 8.20

Ultimate moment of a T-beam. Consider a T-beam as shown in Fig. 8.33
(left). Find the ultimate moment.

Solution
If the tensile (axial) force on the cross-section is to equal the compressive
(axial) force, then the area in compression must equal the area in tension.
This will occur if the neutral axis is located at the intersection of the
web and flange. The stress distribution is then as shown in Fig. 8.33
(right). The ultimate moment is then
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−σY

4"

1"

Cross−Section

y

σ

0.5"

y

2"

(neutral axis
for elastic
case)

z

(Neutral axis at
the ultimate
moment state)

σY

Side View
Fig. 8.33 T-beam (left) with the ulti-
mate moment stress state (right).

Mu (lbf − in) =

∫
A

−yσ dA (8.134)

= (2× 1)× σY × 1

2
+ (4× 1

2
)× σY × 2 (8.135)

= 5 (in3)σY (psi). (8.136)

Remarks:

(1) Notice that the neutral axis at the start of yield will be located 1.75
inches from the bottom of the cross-section. As yield progresses
to the ultimate state the neutral axis translates downwards until
it reaches 1 inch from the bottom. At all times the strain distri-
bution remains linear and of the form ε = −κy, where y is always
measured from the present location of the neutral axis.

8.7.2 Bending at and beyond yield: Rectangular

cross-section

To understand the behavior of a plastically bent beam for loads between
the yield moment and the ultimate moment, let as focus upon the behav-
ior of the doubly symmetric rectangular cross-section with equal yield
stresses in tension and compression. With these assumptions the neutral
axis will not shift, and this greatly simplifies the analysis. To begin,
recall that when a beam is elastic the stress and strain distributions
are linear, as shown in Figs. 8.5 and 8.14. The connection between
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the strain distribution and the stress distribution is through the stress–
strain relation, σ = Eε. This is valid as long as the stresses stay below
the yield stress, σY , or equivalently the strains stay below the yield
strain, εY = σY /E. If we increase the curvature in the beam beyond
the elastic limit, some things change but some do not. The bending
strains stay linear on the cross-section because we continue to assume
that our kinematic assumption holds. However, the bending stresses are
no longer linear on the cross-section because σ �= Eε at all points on the
cross-section. As we progressively increase the curvature the bending
strain begins to exceed the yield strain on the outer fibers of the beam.
As the curvature is further increased the vertical location where the
bending strain is equal to the yield strain moves inwards (from the top
and bottom), with the material inside these limits still elastic and the
material outside these limits plastically deformed. This vertical location
is known as the elastic-plastic interface. Figure 8.34 shows three different
cases, each with an increasing amount of curvature. Case 1 is elastic, and
cases 2 and 3 go beyond yield.

The relation between an applied curvature and the location of the
elastic–plastic interface is easy to determine since we continue to assume
the validity of our fundamental kinematic assumption, ε = −yκ. At the
interface we know that ε = εY ; thus

κ =
εY
yp

, (8.137)

where yp > 0 is the symbol we use for the interface location. For a given
yield stress, we can also write

κ =
σY

Eyp
. (8.138)

When yp = ymax, i.e. the initiation of yield, we denote the applied
curvature as κY = εY /ymax = σY /(Eymax) – the curvature at initial
yield. Note that the MY = EIκY .

y

ε
εY

κ1  <   κ2    <      κ3

−εY

Fig. 8.34 Bending strain distribution
for three progressively increasing cur-
vatures: κ1 < κ2 < κ3. Cases 2 and 3
represent curvatures beyond yield.
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8.7.3 Stresses beyond yield: Rectangular cross-section

If we assume that the constitutive relation is elastic–perfectly plastic (as
shown in Fig. 8.35), then we can determine the stress distribution for a
given curvature beyond yield. Note that given a curvature, the bending
strains are known, ε = −yκ. Thus for each vertical location y we can
“look up” the corresponding stress from the stress–strain diagram, which
gives

ε
εY

σ

−σY

σY

Fig. 8.35 Elastic–perfectly plastic
response curve.

σ =

⎧⎪⎨⎪⎩
−σY y ≥ yp

−σY
y
yp

|y| < yp

σY y ≤ −yp ,

(8.139)

where yp = εY /κ. For the strain distributions shown in Fig. 8.34, the
resulting stress distributions are given in Fig. 8.36.

3

y

−σY

σY σ

1 2

Fig. 8.36 Stress response for an
elastic–perfectly plastic material for
the curvatures in Fig. 8.34.

8.7.4 Moment beyond yield: Rectangular

cross-section

To determine the moment beyond yield for a given curvature, we need
to apply the general relation between moment and bending stresses, eqn
(8.15). Note that eqn (8.15) holds independent of constitutive response.
Inserting eqn (8.139) into eqn (8.15), gives

M =

∫
A

−yσ dA (8.140)

= −b

{∫ yp

−yp

y
−σY y

yp
dy +

∫ h/2

yp

y(−σY ) dy

+

∫ −yp

−h/2

yσY dy

}
(8.141)

= b

{
2σY y

2
p

3
+ σY

(
h2

4
− y2p

)}
(8.142)

= σY
bh2

4
−

bσY y
2
p

3
(8.143)

This is also conveniently written as:

M = Mu

[
1− 1

3

(
yp
h/2

)2
]
, (8.144)

or

M = Mu

[
1− 1

3

(κY

κ

)2]
(8.145)

where Mu = σY bh
2/4.
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Remarks:

(1) A plot of moment versus applied curvature is shown in Fig. 8.37.
Before yield the response is linear. After yield the response is non-
linear due to the plastic yielding. Note that the ultimate moment
can never be reached, as it represents an asymptote that is only
approached in the limit as the curvature goes to infinity. This
situation is in complete correspondence to what occurs in plastic
torsion; see Fig. 7.28.0 1 2 3 4

0

0.5

1

1.5

κ/κY

M
/M

Y

Fig. 8.37 Moment versus curvature
for an homogeneous rectangular cross-
section made from an elastic–perfectly
plastic material.

8.7.5 Unloading after yield: Rectangular cross-section

In the preceding sub-sections we have considered the case of yielding a
beam in bending through the progressive increase in applied curvature.
Let us now consider what happens when one releases the applied loads.
The situation is quite similar to what we had for the analogous problem
in torsion. Let us assume that the beam has been bent initially so that
the elastic–plastic interface is located at yp. The stress state will be as
shown in Fig. 8.38.

y

σ
yp

Fig. 8.38 Initial stress field.

The initially applied curvature, κi, will change upon release to a final
curvature, κf , which is not necessarily zero.

κf − κi = Δκ. (8.146)

This will induce a change in bending strain

Δε = −yΔκ. (8.147)

Following the same argument as in the torsion case, we note that the
change in stress will be such that

σf = σi + EΔε = σi − yEΔκ. (8.148)

Since we know that the bar has been released, we know that the final
moment is zero, Mf = 0. Using eqn (8.15), this tells us

0 = Mf =

∫
A

−yσf dA = Mi + EIΔκ , (8.149)

where Mi is the initially applied moment, Mi =
∫
A
−yσi dA. Thus we

find that Δκ = −Mi/EI and

κf = κi −
Mi

EI
. (8.150)

The final stress state is then given as:

σf =

⎧⎪⎪⎨⎪⎪⎩
−σY + Miy

I y > yp

−σY
y
yp

+ Miy
I |y| < yp

σY + Miy
I y < −yp.

(8.151)
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Remarks:

(1) Figure 8.39 shows the complete load/unload curve for the moment
versus curvature, where the initial curvature κi = 2κY . As just
computed, the unloading process is completely elastic and thus
appears as a straight line. Beware, however, that unloading is not
completely elastic in all cases. The present result only holds for
the case of a rectangular cross-section with homogeneous elastic–
perfectly plastic material properties. In particular, for composite
beams reverse yielding can take place during unloading, and this
must be checked for.

0 0.5 1 1.5 2
0

0.5

1

1.5

κ/κY

M
/M

Y

Fig. 8.39 Moment versus curvature
response with unloading after an ini-
tial curvature of κi = 2κY . The ini-
tial moment M = (33/24)MY , and the
final curvature is κf = (15/24)κY .

(2) Since Δκ �= −κi, we have a residual stress and strain field in the
beam after release; i.e. even though there is no net moment on the
cross-section there are non-zero stresses and strains on it.

(3) If the cross-section were to be reloaded it would remain elastic
until the applied moment reached Mi. Thus by such a procedure
the effective yield moment of the bar has been increased in the
direction of initial bending.

Example 8.21

Partial yield of a rectangular beam. Consider a beam in pure bending
with a rectangular cross-section with width b = 3 mm and height h = 20
mm. The Young’s modulus is E = 200 GPa, and the yield stress in ten-
sion and compression is σY = 200 MPa. (1) Find the yield moment and
the ultimate moment. (2) Assume that the beam has been loaded in pure
bending to the point where yp = 5 mm. Find the applied moment and
compute the residual curvature and stress field upon release of the load.

Solution
The yield moment is given as

MY =
σY I

ymax
=

200× 3× 203/12

10
= 40 kN−mm. (8.152)

The ultimate moment comes by integrating the ultimate stress state
times minus y over the cross-section; for the rectangular cross-section
this will give

Mu =
3

2
MY = 60 kN−mm. (8.153)

For part (2) the initially applied moment is

Mi =

∫
A

−yσxx dA = Mu

[
1−
(

yp
h/2

)2
]
= 55 kN−mm. (8.154)
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The initial curvature is

κi =
εY
yp

=
200

200× 103 × 5
= 2× 10−4 1/mm. (8.155)

The unloading curvature will be Δκ = −Mi/EI = −1.38× 10−4 1/mm,
and thus the residual beam curvature will be

κf = κi +Δκ = 6.25× 10−5 1/mm. (8.156)

The residual stress field (in MPa) will then be

σf =

⎧⎪⎪⎨⎪⎪⎩
−200 + 27.5y y > 5

−40y + 27.5y |y| < 5

200 + 27.5y y < −5

, (8.157)

where y is measured in mm. A plot of the stress field is given in Fig. 8.40.

5mm

y

σ (N/mm2)

75

−62.5

62.5

−75

Fig. 8.40 Residual stress field after
unloading. Example 8.22

Plastically deformed composite beam. Shown in Fig. 8.41 is a composite
beam cross-section. The core of the beam is made of high-strength steel,
and the faces are made from an ordinary aluminum. The beam is placed
in pure bending, and the strain at the top of the beam is measured to be
ε(20) = −7.5× 10−3. What moment is being applied to the beam? Find
the residual stress distribution upon removal of the applied moment.

Solution
The strain at the top face exceeds the yield strain of the aluminum. Thus
it has yielded at least partially. Since we know the strain at the top we
can compute the curvature of the beam to be

κ = −ε(20)

20
=

7.5× 10−3

20
= 3.75× 10−4 1/mm. (8.158)

This tells us that the strain at y = 16 mm is ε(16) = −16κ = −6.0×
10−3. This is also above the yield strain for the aluminum. Thus the
aluminum is fully yielded. This strain is, however, below the yield strain

SteelAl

40mm

32mm

4mm

4mm

ε

1350

350

(Not to scale)

σ (MPa)

Eal = 70 GPa

Est = 200 GPa

Fig. 8.41 Composite beam made of a
steel core and aluminum faces.



Chapter summary 167

of the steel, εstY = 6.75× 10−3. Thus the steel is completely elastic. The
stress distribution is as sketched in Fig. 8.42. The applied moment is
then given as

y

σ

Fig. 8.42 Initial stress distribution.

M =

∫
A

−yσ dA (8.159)

= 2× 40

[∫ 16

0

200× 103 × 3.75× 10−4y2 dy

+

∫ 20

16

350y dy

]
(8.160)

= 10.2 kN−m. (8.161)

Upon unload we will have κf = κi +Δκ, and thus εf = εi − yΔκ.
Assuming elastic unloading the residual stresses will be

σf =

⎧⎪⎪⎨⎪⎪⎩
−σal

Y − EalΔκy y > 16

−Estκiy − EstΔκy |y| < 16

σal
Y − EalΔκy y < −16

. (8.162)

Since the final moment is zero, we have

0 =

∫
A

−yσf dA (8.163)

0 = 10.2 (kN−m) + 2× 40

[∫ 16

0

EstΔκy2 dy

+

∫ 20

16

EalΔκy2 dy

]
(8.164)

= 10.2× 106 + 80

[
200× 103 × 163

3

+ 70× 103 × 203 − 163

3

]
Δκ. (8.165)

Solving for the unloading curvature gives Δκ = −3.5× 10−4 1/mm. The
final curvature is then κf = 0.25× 10−4 1/mm. Note that |Δκ× 20×
70× 103| = 490 MPa < 2× 350 MPa. Thus our assumption of elastic
unloading is valid; i.e. the aluminum does not reverse yield during the
unloading process. The final stress distribution is shown in Fig. 8.43.

y

σ (MPa)

140
42

77
−42

−77

−140

Fig. 8.43 Final stress distribution.

Chapter summary

� Bending of symmetric beams

− Kinematic assumption: εxx = −yκ



168 Exercises

− Equilibrium: R = 0, dM/dx+ V = 0, dV/dx+ q = 0

− Neutral Axis Condition: R = 0

− Resultant-stress relations: R =
∫
A
σxx dA, M =

∫
−yσxx dA,

V =
∫
A
σxy dA

− Moment of inertia: I =
∫
A
y2 dA

� Bending of symmetric linear elastic beams

− Constitutive relation: σ = Eε

− Stress-moment: σ = −My/I

− Neutral axis: yna =
∫
A
Eyb dA/

∫
A
E dA

− Moment-curvature: M = EIκ

− Differential equation: (EIv′′)′′ = q

� Boundary conditions: fixed and forced

v, v′ = 0 , EIv′′ = M, −EIv′′′ = V

� Shear in beams

− Shear flow: q = V Q/I

− First moment of area: Q(y1) =
∫
A(y1)

y dA

− Shear stress: τ = q/b

� Energy: elastic

Win = Wstored

For linear elastic systems the strain energy density is w =
1
2
(σxxεxx + σxyγxy) and the work input is 1

2
Mθ or 1

2
PΔ.

� Elastic–perfectly plastic bending

− Moment at yield: MY = σY I/ymax

− Ultimate moment: Mu =
∫
A
σ dA, where σ = ±σY

− Curvature: κ = εY /yp

Exercises

(8.1) Derive the fundamental kinematic relation ε =
−yκ using appropriate differential arguments. Be
specific and explain your steps with short phrases.

(8.2) The composite cross-section shown experiences a
curvature κ = 10−4 mm−1 (bending about the
z-axis). Plot the stress distribution on the cross-
section, assuming linear elastic behavior. E = 50 N/mm2

E = 200 N/mm2z

y

30

30

30

30
Cross−section

[All dimensions mm]

E = 50 N/mm2
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(8.3) Consider a slender rectangular beam with cross-
sectional dimensions of b and h. The material is
non-linearly elastic with the following constitutive
law σ = C1ε+ C2ε

3, where C1 and C2 are given
material constants. If the beam is in a state of pure
bending with constant curvature κ, what will the
bending moment M in the beam be? Express your
answer in terms of the given constants: b, h, κ, C1

and C2.

(8.4) Derive the differential equations of vertical and
moment equilibrium for a beam. Explain each
major step with a short concise phrase.

(8.5) For the following equations, state the physical
principle that each represents in at most one sen-
tence.

(a) :
dM

dx
+ V = 0

(b) :
dV

dx
+ q = 0

(8.6) For the beam shown, determine the shear and
moment diagrams. (Note the hinge.)

2 MN−m
5 MN

1 MN/m

5m 5m 5m 5m 5m 5m

(8.7) Certain nickel–titanium alloys display stress-strain
behavior as shown below; the behavior in compres-
sion is the same as in tension. The beam shown
is in pure bending about the z-axis. The strain
on the top face has been measured to be εg with
εg > εb.

(a) Accurately sketch the strain distribution.

(b) Accurately sketch the stress distribution.

Label all critical points and values on the graphs
in terms of εg , εa, εb, σp, h, b, and E.

E

E

εbεa

x

z
b

h

Strain Gauge y

σp

(8.8) A beam is constructed by joining a triangular
prism with a rectangular prism. The cross-section
is shown in the following. Determine the loca-
tion of the neutral axis, assuming bending about

a horizontal axis; assume homogeneous material
properties. Find, also, the moment of inertia about
this axis.

100

50

25 2550

All dimensions in mm 

(8.9) Consider a beam with an elliptical cross-section.
Assume the major axis is parallel to the y-axis and
the minor axis is parallel to the z-axis. What is the
moment of inertia of the cross-section about the
z-axis? Define any needed quantities.

(8.10) Consider a generic doubly symmetric I-beam cross-
section. Determine an expression for the moment
of inertia. Define any dimensions needed.

(8.11) Find the location of the neutral axis and the
moment of inertia about the neutral axis of a
T-beam cross-section with flange width 400 mm,
flange thickness 40 mm, web height 200 mm, and
web thickness 20 mm. Assume homogeneous prop-
erties.

(8.12) Find the neutral axis location in Exercise 8.11
assuming that the Young’s modulus of the flange
is E = 100 MPa and the Young’s modulus of the
web is E = 200 MPa.

(8.13) Consider a beam cross-section composed of an
elastomer square stock with side length 200 mm
and modulus E = 10 MPa. To the lower side of
the bar we have glued a 1-mm thick sheet of steel
(width 200 mm) whose modulus is E = 200 GPa.
Determine the effective bending stiffness of the
cross-section (EI)eff .

(8.14) The following beam has an inhomogeneous linear
coefficient of thermal expansion that is a function
of depth, α(y′), where y′ is distance measured up
from the bottom of the beam. Find the formula for
the location of the neutral axis when the beam is
subjected to a temperature change. Assume the
beam is linear elastic with a constant Young’s
modulus.
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x

y

L

(8.15) A strain gauge has been placed on the cantilever
beam shown at a distance L/2 from the support
and at a distance h/4 from the top face of the
beam. The beam is subjected to an unspecified
load and the gauge gives a reading of εg for the
bending strain at this location. Find the curvature
of the beam at x = L/2 in terms of this gauge
value, the geometric dimensions, and the material
properties. Note that the beam is composed of two
different materials with differing elastic moduli E1

and E2.

L/2 L/2 b

h/2

Strain Gauge

Strain Gauge
h/4

h/2E1

E2

(8.16) An elastic beam with Young’s modulus E and
moment of inertia I is shown below. Find v(x) (the
displacement field) for the given load.

x

a L−a

1 (force/length)

(8.17) In the statically indeterminate beam shown, find
the reactions at the wall by integrating the dif-
ferential equation for the deflection of the beam.
Assume EI is a constant.

L

q(x)=3Wx2 / L3

x

(8.18) For each of the four elastic structure (a)–(d), deter-
mine the appropriate boundary conditions (at both
ends of the structure) and the distributed load
function that would be needed to determine the
deformation of the structural element via integra-
tion. Express all boundary conditions in terms of
E, G, I, J, A, v, u, φ and their derivatives as
appropriate.

M

k

Beam

L

L

Beam g N/mm

Axial Bar

P

b a

b a

T

Torsion Bar

(a)

(b)

(c)

(d)

T
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(8.19) For the beam shown below, with imposed deflec-
tion Δ, find the deflection curve v(x) and the
location and magnitude of the maximum bending
stress. Assume EI is constant and the maximum
distance from the neutral axis to the outer fibers
of the beam is c.

Δ

L

(8.20) For the system shown: (1) state the relevant
boundary conditions in terms of the kinematic
variables, and (2) give an appropriate expression
for the distributed load acting on the system.

h

L

EI −− constant

y
x

y

z

w

dg

Sand Pile
Density = ρ

(8.21) Consider an elastic beam of length L+ a with
constant Young’s modulus, E, and cross-sectional
area moment of inertia, I. The beam is subject to a
point moment as shown. Determine the deflection
of the beam as a function of x.

S

La

x

(8.22) Consider an elastic beam of length L with con-
stant Young’s modulus, E, and cross-sectional area
moment of inertia, I. The beam is subject to a
point moment as shown. Determine the torsional
stiffness at x = a; i.e. determine kT = S/θ(a).

a

S

x

L−a

(8.23) Consider an elastic beam of length L with a con-
stant Young’s modulus, E, and cross-sectional area
moment of inertia, I. The beam is subject to a
point force as shown. Determine the transverse
stiffness at x = b; i.e. determine k = P/v(b).

P

L

b

(8.24) For the four beams (a)–(d): state (a) the boundary
conditions, and (b) the distributed load function
q(x). Assume all beams are of length L.

L/3 L/3 L/3

(a)

(b)

(c)

(d)

P

m

1

a

b

w

w

M M
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(8.25) For each of the four elastic beams (a)–(d) write
down the appropriate boundary conditions and
distributed load function that would be needed to
determine the deflection of the beam via integra-
tion. Express all boundary conditions in terms of
E, I, v and its derivatives.

(a) L/2

P

L/2

(b)

w–force/length

L/3 L/3 L/3

(c)

M

L/2 L/2

(d)
L

M

k

(8.26) For each of the four beams (a)–(d), write down the
appropriate boundary conditions and distributed
load expression, which are needed to compute
each beam’s deflection via the ODE (EIv′′)′′ = q.
Express all boundary conditions in terms of E, I,
v and its derivatives.

(a)
L

a
1

aL

(b)
a

b

L

(c)

V

L

(d)

M

L

a

b

P

(8.27) The beam shown below is loaded by a point
moment at x = 2; find the maximum internal
moment. Assume consistent units.

M = 100

2 1

EI − constant

x

(8.28) Find the equation for the deflection of the beam
shown. Assume a constant value for EI.

a L−a

x

q

(8.29) For the following linear elastic beam, determine
the deflection v(x). Assume a constant value E for
the Young’s modulus.
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Cross−Section100 in 100 in

12 lbf/in2

10 in

5 in

(8.30) Consider a simply supported beam with a trans-
verse load P applied at its mid-span. Determine
the deflection of the beam from the governing
ordinary differential equation.

P
x

L

EI −− constant

(8.31) Determine the deflection v(x) for the beam shown
below. Assume a constant EI. Hint: the intermedi-
ate roller support can be replaced by an unknown
reaction plus an additional kinematic conditions.

a

P

a

(8.32) Consider a beam supported by a distributed
spring foundation (such as a railroad rail or
grade-beam); such supports are know as Win-
kler Foundations. Assume the beam is 100 ft
long with a Young’s modulus of E = 30× 106 psi
and a cross-sectional area moment of inertia I =
77.4 in4. Assume a foundation stiffness of k =
100 lb/in2 and determine the maximum posi-
tive and negative moments in the beam for a
30× 103 lb load distributed over 3 in around
the beam’s center. Note that for this exercise
the governing equation is given by EIv(x)′′′′ =
q(x), where q(x) = qapplied(x)− kv(x). For bound-
ary conditions, assume zero moment and shear at
each end.

L/2

3"
30,000 lbf

L/2

(8.33) Consider the beam in Exercise 8.32 and determine
the maximum rotation (in absolute value) and the
location at which it occurs.

(8.34) A device has been proposed as a momentum sen-
sor for molecular beams. A molecular beam when
it hits a solid object imparts a force, P , to the
object. In our case the object is a pin-clamped
beam. The force bends the beam and the bending
is detected using a light source that reflects off
the surface of a beam. The angle of reflection is
measured on a circular screen at some distance
from the beam. Determine the sensitivity of the
device (S/P ) assuming L = 300 mm, a = 85 mm,
b = 0.5L, E = 70 GPa, and R = 1.5 m. The beam
has a 4-mm by 0.9-mm cross-section, and bends
about the weak axis.

R

P, force of the molecular beam

b

a

Light Source

S

Screen

(8.35) A thermoelastic switch is made by bonding
together two materials of differing linear thermal
expansion coefficients. Upon a change in temper-
ature the system will deflect up or down, depend-
ing upon the sign of the temperature change and
the difference in thermal expansion coefficients.
Assuming the materials have the same Young’s
modulus, find an expression for the deflection of
the tip of the beam as a function of temperature
change.

b

L

Material 1

Material 2

a

a

h
h

Section a−a

(8.36) Using a differential element argument, show that

dMy

dx
− Vz = 0.

Clearly explain all steps.



174 Exercises

(8.37) Using a differential element argument show that

dVz

dx
+ qz = 0.

Clearly explain all steps.

(8.38) Consider the beam shown with an offset axial force
P and moment M . What is the minimum value of
P for which the normal stress σxx is everywhere
non-negative. Assume L = 3 ft, h = 5 in, c = 4 in,
a = 0.25 in, b = 1 in, and M = 100 in− lbf,

c

L

x

y y

P
c

b

a

M
h

z
M P

(8.39) Shown is a beam with a square cross-section (a×
a). The beam is built-in at one end and has a
plate welded onto the other. There is an applied
force −Pey at the center of the plate. There is a
second force Pex applied to the plate. Determine
the possible points of application of this second
load so that the neutral axis is oriented at 45o with
respect to the z-axis at mid-span.

Length = L z
x

y

P

y

z

P

P

P

Square cross−section with side length = a

(8.40) Consider a spread footing as shown in the follow-
ing. By treating the footing as a beam, show that
one may misplace the applied load P in the z
direction by an amount ±h/6 from the centroid
and the base of the footing will still be entirely
in compression. A similar result holds in the y
direction, and the region on the top of the footing
where “misplacement” is allowed is known as the
kern of the footing (or column).

P

h

b

y

z

(8.41) Shown below is a 10-ft long cantilevered W21×62
I-beam. Consider a section cut made at x = 5 ft
and determine the stress state at points A and B
in terms of the load P . This is a standard wide-
flange steel section with the following properties:
area 18.3 in2, depth 20.99 in, flange width 8.240 in,
flange thickness 0.615 in, web thickness 0.400 in,
moment of inertia about z-axis 1330 in4, moment
of inertia about y-axis 57.5 in4.

A
z

y

P

x

y
Web Flange

B

(8.42) What is the magnitude of the uniform load q that
the beam shown can carry? The beam is made of
two wooden planks which are bolted together at a
spacing of 150 mm. The allowable normal stress in
the wood is 5 MPa, the allowable shear stress is
0.8 MPa, and the allowable shear force per bolt is
30 kN. Check all critical sections.

75 mm

q

5 m 2 m

Cross−section

200 mm

30 mm

160 mm

50 mm 75 mm
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(8.43) Consider a T-beam with cross-section dimensions
as shown. The section is subject to a shear force of
10 kN. Find the magnitude of the maximum shear
stress on the cross-section.

w = 400 mm

t = 40 mm

t = 40 mm

h = 400 mm

V = 10 kN

(8.44) Derive the formula q = V Q/I. Define all terms in
your derivation, and clearly state the meaning of
each step.

(8.45) The beam shown below is to be made by joining
two pieces of wood together with uniformly spaced
dowels. If the shear force capacity of each dowel
is Fd, what is the maximum allowable spacing
between the dowels?

End View

P

a 3a

b

s Top View

Side View h1
h2

b

(8.46) A beam is made by gluing together two pieces
of wood. The beam is to be loaded as shown.
What is the required shear stress strength of the
glue? Express your answer in terms of the geomet-
ric dimensions of the system and the constitutive
properties.

b

h

h w

L

Glue Joint

(8.47) Consider the 1,500-mm long simply-supported
beam shown. The beam cross-section in an

inverted T, which has been made by welding two
plates together with a series of short strip welds.
The welds are spaced apart every 60 mm and are
20 mm in length. The welds are able to hold 600
N per mm of weld. What load P will cause weld
failure?

20 mm

P

[Top View]750 mm 750 mm
20 mm

100 mm
20 mm

100 mm
[End View] [Side View]

60 mm

Welds

(8.48) The beam shown has a rectangular cross-section
with a glue joint as indicated. Determine the
required shear-stress strength of the glue to pre-
vent shear failure in the joint. Assume a � b and
a � h.

L

c

w

b

h

Glue Joint

a

a

(8.49) Consider the beam in Exercise 8.41. Determine the
length of the beam so that the tip deflection due to
shear is equal to the tip deflection due to bending.

(8.50) A slender metal band with constant EI, as shown,
is subjected to a force P . Find the horizontal
deflection at the point where the load is applied
using conservation of energy. Ignore axial and
shear effects.

b

P

aa LL

b

(8.51) For the composite cross-section shown, find the
yield moment MY and the ultimate moment Mu.
Let E1 = 20,000 (ksi), E2 = 40,000 (ksi), σ1Y = 60
(ksi), σ2Y = 50 (ksi).
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(cross−section)

1"

3"

1"

Material 1

Material 2

(8.52) Consider an elastic–perfectly plastic beam with a
rectangular cross-section. The beam has an inho-
mogeneous yield stress

σY (ŷ) = 200 + 4ŷ,

where ŷ is measured from the bottom face of the
beam. Find the ultimate moment capacity of the
beam. Assume consistent units.

x50

10

y

z

y

(8.53) Shown in the following is the cross-section of
a composite beam. Both materials are elastic–
perfectly plastic with the same Young’s modulus.
The cross-hatched material has a yield stress of
100 MPa, and the remaining material has a yield

stress of 300 MPa. The beam has been bent so that
at a given cross-section the cross-hatched material
has just completely yielded. What is the applied
moment at this cross-section?

z

y 30 mm

30 mm

10 mm

20 mm
Beam Cross Section
E  =  (1/3) x 105 MPa

(8.54) Consider the I-beam cross-section shown below.
Assume the material to be elastic–perfectly plastic
with yield stress σY and Young’s modulus E.

(a) What moment is required to completely yield
the flanges with the web remaining elastic?
Express your answer in terms of σY and
the geometric parameters defining the cross-
section.

(b) What will the curvature be at this state of load.
Express your answer in terms of σY , E, and
the geometric parameters defining the cross-
section.

W

t

h

b

t

(8.55) A rectangular beam is made of an elastic–perfectly
plastic material with differing properties in tension
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and compression as indicated. Find the ulti-
mate moment, Mu, for bending about the z-axis.
Express your answer in terms of B, b, h.

B

h

b

z

x

y σ

ε

−3B

(8.56) Consider a rectangular beam of cross-sectional
width b and depth h. The beam has been surface
hardened by rolling so that the yield stress varies
quadratically with depth:

σY (y) =

{
A+By2 Tension

−(A+By2) Compression

Assume A > 0 and B > 0. What is the ultimate
moment for the beam? What curvature corre-
sponds to the ultimate moment?

(8.57) Compute the ultimate moment for a beam with the
cross-section shown below. Assume perfect plastic-
ity with a yield stress σY = 100 ksi; all dimensions
are in inches.

5

0.5

1

10

3

1

(8.58) An elastic–perfectly plastic beam with rectangular
cross-section is shown below. It is loaded with
forces P = (1.4MY )/a, where MY is the initial
yield moment. Find the deflection at the center.
Suggested method: Find the extent of the plastic
deformation; get the curvature; knowing the cur-
vature, find the deflection.

L

PP

aa

(8.59) The elastic–perfectly plastic beam shown below
is loaded past the yield moment, MY . Find the
deflection at mid-span.

x

y

M = 1.47 MY

z

y

b

h

E,      −− constantσ Y

Length = L

(8.60) The beam below has a rectangular cross-section
and is elastic–perfectly plastic. The load is
increased slowly from zero to a value of P = 1.1MY

a

and then slowly decreased again to zero. Determine
the final deflection of the center of the beam at the
end of the loading cycle.

L

PP

aa

(8.61) Shape memory alloys are rapidly becoming very
important materials in engineering applications.
Above their austenite finish temperature they have
the unusual stress–strain behavior as shown on the
left in the figure. In pure bending the moment-
curvature relation for a rectangular b× h beam
made of such a material is as shown on the right in
the figure. The response curve can be expressed as
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M(κ) =

⎧⎪⎪⎨⎪⎪⎩
EaIκ κ < κs

3
2
Ms[1− 1

3
(κs/κ)

2] κs < κ < κf

?? κ > κf

where κs = 2εs/h, κf = 2εf/h, and Ms = EaIκs.
Determine the appropriate relation for the case
where κ > κf .

Em

EaI

σs

σ

Ea

εs εf
ε

M

Mf
Ms

κs κf
κ

EmI
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Analysis of Multi-Axial
Stress and Strain

We now have at our disposal the means to determine the stress state
of a variety of common mechanical elements. If the element is under
multiple types of loading and is elastic, then the total stress state can
be computed using superposition. For each of these computations, a
preferred coordinate system is used to determine the stresses. Sometimes
the coordinate systems to do not coincide, and thus there is a need to
transform stresses associated with one coordinate system to those of
another. Further, as we saw in Chapter 7 when we analyzed brittle failure
in torsion, there is sometimes a utility in expressing a result computed
in one coordinate system in another. Both of these points brings up the
need to develop some machinery for computing the transformations of
stress (and strain). We will begin by first reviewing the transformation
rules for vectors and then move on to look at tensors. Later in this
chapter we will use our understanding to examine failure criteria for
multi-axial states of stress.

9.1 Transformation of vectors y�

θ
x

y

x�

F

Fig. 9.1 Relative orientation of two
given coordinate systems.

The central question in the transformation of vectors is to compute
the components of a given vector in one coordinate system in terms of
the components of the same vector in a second coordinate system
when the relative orientation between the coordinate frames is known.
Consider the vector F shown in Fig. 9.1. The components of the vector
in the x-y coordinate system are given by the orthogonal projections of
F onto the coordinate axes. Thus

Fx = ex · F (9.1)

Fy = ey · F , (9.2)

where ex and ey are the unit vectors in the coordinate directions.
Combined together we can write

F = Fxex + Fyey. (9.3)

Similarly, in the x′-y′ coordinate system we have

Fx′ = ex′ · F (9.4)

Fy′ = ey′ · F , (9.5)
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where ex′ and ey′ are the unit vectors in the x′- and y′-coordinate
directions. Combined together we can also write

F = Fx′ex′ + Fy′ey′ . (9.6)

Because both decompositions (eqns (9.3) and (9.6)) refer to the same
physical vector we can assert the equality

Fxex + Fyey = Fx′ex′ + Fy′ey′ . (9.7)

Equation (9.7) can be used to derive the transformation rules between
coordinate systems. For example, if we want to find Fx′ in terms of Fx

and Fy we can dot both sides of eqn (9.7) with ex′ . This yields

Fxex′ · ex + Fyex′ · ey = Fx′ . (9.8)

Noting the relation between the coordinate axes this can also be written
as

Fx′ = Fx cos(θ) + Fy sin(θ). (9.9)

Likewise one can show that

Fy′ = −Fx sin(θ) + Fy cos(θ). (9.10)

These are the desired transformation rules.

Remarks:

(1) The results can be collected in matrix-vector form so that(
Fx′

Fy′

)
=

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

](
Fx

Fy

)
. (9.11)

(2) The matrix in the above expression is recognized to be a rotation
matrix (of rotation θ); i.e. its transpose is its inverse. The elements
of the rotation matrix are sometimes called the direction cosines
as they represent the dot products between the unit vectors in the
coordinate directions. These happen to be equal to the cosines of
the angles between the coordinate axes.

(3) The analysis presented is for two-dimensional vectors. For three-
dimensional vectors one has a similar result except that the rota-
tion matrix is a three dimensional rotation matrix.

9.2 Transformation of stress

The objective of stress transformation rules is similar to the objective
of vector transformation rules. For simplicity we will begin with the
analysis of two-dimensional states of stress. Given the components of the
stress tensor in the x-y coordinate system we wish to find the components
of the stress tensor in the x′-y′ coordinate system. To develop the
transformation rules we can utilize the technique developed for vectors.
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9.2.1 Traction vector method

Consider a point, P, in a body. At this point we will assume that we
know the stress state relative to the x-y coordinate system; i.e., we will
assume that we know the stress tensor components σxx, σyy, and σxy.
We wish to determine the components of the stress tensor relative to
the x′-y′ coordinate system. Assuming the angle between the coordinate
systems is θ, this means that we wish to find the normal and tangential
components of the traction vector on planes with normal vectors ex′ and
ey′ . Referring to Fig. 9.2, these vectors are given by

ex′ = cos(θ)ex + sin(θ)ey, (9.12)

ey′ = − sin(θ)ex + cos(θ)ey. (9.13)

Using Cauchy’s Law we know that the traction vector on any plane
with normal vector n is given by

t(n) = σTn. (9.14)

Thus we know that on the plane with normal vector ex′ , the traction
vector is (

tx(θ)

ty(θ)

)
=

[
σxx σyx

σxy σyy

](
cos(θ)
sin(θ)

)

=

(
cos(θ)σxx + sin(θ)σyx

cos(θ)σxy + sin(θ)σyy

)
.

(9.15)

t(ey�)

θ
x

y

x�

P t(ex )

t(ey )

At point P

x�

y�

At point P

y�

t(ex�)

Fig. 9.2 Geometry used for deriving
stress transformation rules.
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Notice that the traction vector can be written as t = txex + tyey, or
equivalently as t = σx′x′ex′ + σx′y′ey′ . Thus we take the dot product of
eqn (9.15) with ex′ to find an expression for σx′x′ . This gives

σx′x′ = +σxx cos(θ) cos(θ) + σyx sin(θ) cos(θ)

+ σxy cos(θ) sin(θ) + σyy sin(θ) sin(θ).
(9.16)

If we take the dot product of eqn (9.15) with ey′ then we find the
transformation rule which gives σx′y′ :

σx′y′ = −σxx cos(θ) sin(θ)− σyx sin(θ) sin(θ)

+ σxy cos(θ) cos(θ) + σyy sin(θ) cos(θ).
(9.17)

If we consider the plane with normal ey′ , we can additionally show that

σy′y′ = +σxx sin(θ) sin(θ)− σyx cos(θ) sin(θ)

− σxy sin(θ) cos(θ) + σyy cos(θ) cos(θ).
(9.18)

Remarks:

(1) The three transformation rules can be conveniently re-expressed
in matrix form as:[

σx′x′ σx′y′

σy′x′ σy′y′

]
=

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

] [
σxx σxy

σyx σyy

]
[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
.

(9.19)

(2) The transformation rules are often written with aide of the double-
angle formulae

cos2(θ) =
1

2
[1 + cos(2θ)] (9.20)

sin2(θ) =
1

2
[1− cos(2θ)] (9.21)

sin(θ) cos(θ) =
1

2
sin(2θ). (9.22)

This allows one to write the transformation rules in the following
form:

σx′x′ =
σxx + σyy

2
+

σxx − σyy

2
cos(2θ) + σxy sin(2θ) (9.23)

σy′y′ =
σxx + σyy

2
− σxx − σyy

2
cos(2θ)− σxy sin(2θ) (9.24)

σx′y′ = − σxx − σyy

2
sin(2θ) + σxy cos(2θ). (9.25)

(3) The two-dimensional stress tensor possesses two invariants. The
first is the trace of the tensor and the second is the determinant of
the tensor. The trace and determinant are called invariants of the
tensor because their numerical value does not depend upon the
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coordinate system used to express the components of the tensor.
In terms of the components this implies:

Iσ = trace[σ] = σxx + σyy = σx′x′ + σy′y′ (9.26)

IIσ = det[σ] = σxxσyy + σ2
xy = σx′x′σy′y′ + σ2

x′y′ . (9.27)

The invariants are useful for double-checking numerical computa-
tions. They are also useful as they represent intrinsic properties
of the state of stress independent of coordinate system.

(4) For three-dimensional stress transformations we have a result
similar to the one presented except, that the rotation matrix is
replaced by a three-dimensional rotation matrix. In three dimen-
sions the invariants are defined as

Iσ = trace[σ] (9.28)

IIσ =
1

2
[trace(σ2)− (trace(σ))2] (9.29)

IIIσ = det[σ]. (9.30)

Example 9.1

Transformation of stress. Consider a welded plate, as shown in Fig. 9.3,
with applied loads such that it is in an homogeneous state of two-
dimensional stress relative to the x-y axes of[

100 50
50 20

]
xy

ksi. (9.31)

Find the state of stress in the plate relative to a set of axes aligned with
the weld. x

y

x'

y'

100˚

Fig. 9.3 Uniformly stressed plate with
a weld.

Solution
Select the x′ axis to be orthogonal to the weld line. Then we have
that θ = 10× π/180 rad. Inserting into the double angle transformation
equations, we find

σx′x′ = 60 + 40 cos(2θ) + 50 sin(2θ) (9.32)

σy′y′ = 60− 40 cos(2θ)− 50 sin(2θ) (9.33)

σx′y′ = − 40 sin(2θ) + 50 cos(2θ), (9.34)

which results in [
114.7 33.3
33.3 5.3

]
x′y′

ksi. (9.35)

Remarks:

(1) The matrix answer has been subscripted with the coordinate
frame. This is to remind us that the components in the matrix
are relative to the x′-y′ frame and not the x-y coordinate frame.
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Whenever expressing components of a tensor and confusion is
possible, one should explicitly note the coordinate frame used.

(2) It is easily checked here that the invariants of the stress matrix
did not change with coordinate frame. The trace is Iσ = 120 ksi
and the determinant is IIσ = −500 ksi2, in both frames.

9.2.2 Maximum normal and shear stresses

The results of the previous section allow us to compute the normal
stresses and shear stresses relative to an arbitrarily oriented coordinate
system. Having this, it is natural to ask: what is the maximum value the
normal stress can take, and what is the maximum value the shear stress
can take?

To find the maximum normal stress we need to set the first derivative
of eqn (9.23) to zero. This is the necessary condition for a maximum:

0 =
dσx′x′

dθ
= −(σxx − σyy) sin(2θ) + 2σxy cos(2θ). (9.36)

The solution to this equation is termed the principal angle, θp, and is
given by

tan(2θp) =
2σxy

σxx − σyy
. (9.37)

Note that this equation shows that there are two solutions which differ
from each other by π/2. One of these solutions corresponds to a max-
imum and the other to a minimum. If we evaluate the transformation
equations for θ = θp, then we find

σx′y′(θp) = 0 (9.38)

σx′x′(θp) =
σxx + σyy

2
+

√(
σxx − σyy

2

)2

+ σ2
xy (9.39)

σy′y′(θp) =
σxx + σyy

2
−

√(
σxx − σyy

2

)2

+ σ2
xy. (9.40)σ1

σ2σ1

θp

x

y

1

2

σ2

Fig. 9.4 Stress in the principal frame.

Remarks:

(1) In the principal coordinate frame (principal axes) the shear
stresses are zero. The two normal stresses in the principal frame
are called the principal stresses. The larger represents the maxi-
mum normal stress and the smaller the minimum normal stresses.
These are often denoted as σ1 and σ2, and by convention we order
them as σ1 ≥ σ2.

(2) Schematically, in the principal axes, we have the situation shown
in Fig. 9.4.

(3) The principal axes are also often called the principal directions.
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The orientation of the coordinate system in which the maximum shear
stresses occur can be found in a similar manner:

0 =
dσx′y′

dθ
= −(σxx − σyy) cos(2θ)− 2σxy sin(2θ). (9.41)

The solution to this equation gives the maximum shear angle, θs, which
is given by

tan(2θs) = −σxx − σyy

2σxy
. (9.42)

Just as above there are two solutions to this equation which differ from
each other by π/2. One solution gives the maximum and the other the
minimum. If we evaluate the stresses components in the maximum shear
coordinate frame we find:

σx′y′(θs) =

√(
σxx − σyy

2

)2

+ σ2
xy (9.43)

σx′x′(θs) =
σxx + σyy

2
(9.44)

σy′y′(θs) =
σxx + σyy

2
. (9.45)

Remarks:

(1) The normal stresses in the maximum shear coordinate frame are
equal to the average normal stress in the plane, σm.

(2) The maximum shear stress is often denoted by the symbol τmax.
Note that τmax = 1

2
(σ1 − σ2) in two dimensions.

(3) Schematically, in the maximum shear coordinate frame, we have
the situation shown in Fig. 9.5.

θs

x

y

x�

y�

σm

σm
σm

σm
τmax

τmax

Fig. 9.5 Stress in the maximum shear
frame.

(4) The maximum shear angle and the principal angle are related to
each other by π/4:

θp − θs =
π

4
. (9.46)

9.2.3 Eigenvalues and eigenvectors

If we evaluate the stress transformation eqn (9.19) for θ = θp, then we
find that [

σ1 0
0 σ2

]
=

[
cos(θp) sin(θp)

− sin(θp) cos(θp)

][
σxx σxy

σyx σyy

]
[
cos(θp) − sin(θp)

sin(θp) cos(θp)

]
.

(9.47)

We can separate out the matrix products into two separate equations as:
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[
σxx σxy

σyx σyy

](
cos(θp)

sin(θp)

)
= σ1

(
cos(θp)

sin(θp)

)
(9.48)

[
σxx σxy

σyx σyy

](
− sin(θp)

cos(θp)

)
= σ2

(
− sin(θp)

cos(θp)

)
. (9.49)

This reveals that the principal values are nothing more that the eigen-
values of the stress tensor and that the eigenvectors of the stress tensor
correspond to the principal directions. The classical eigenvalue problem
is usually written as

(σ − λ1)n = 0, (9.50)

where λ is the eigenvalue and n is the eigenvector. The condition for
a non-trivial solution to these homogeneous equations is that det(σ −
λ1) = 0. This (in two dimensions) produces a quadratic polynomial in
λ (the characteristic polynomial):

−λ2 + Iσλ− IIσ = 0. (9.51)

The two roots of this equation are the principal values.

Remarks:

(1) This observation about the connection between principal values
and eigenvalues also holds true in three dimensions. In three
dimensions the characteristic polynomial is given as

−λ3 + Iσλ
2 − IIσλ+ IIIσ = 0 (9.52)

and there will be three principal values (σ1 ≥ σ2 ≥ σ3) and three
principal directions.

(2) While it may seem more complex to discuss the eigenvalues of a
tensor, this is in practice the easiest way to compute the prin-
cipal values of a general three-dimensional state of stress. This
especially holds true due to efficient algorithms for numerically
computing eigenvalues and eigenvectors.

(3) By the properties of symmetric tensors, we also have the result
that the principal directions will always be orthogonal to each
other – the eigenvectors of symmetric matrices can always be
chosen to be orthogonal.

(4) The maximum shear stress is given by τmax = 1
2
(σ1 − σ2) in two

dimensions and τmax = 1
2 (σ1 − σ3) in three dimensions.

Example 9.2

Principal stresses. Given a state of stress[
1.0 10.0
10.0 3.0

]
MPa (9.53)

find the principal values and principal directions.
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Solutions
Compute the eigenvalues as the roots of the characteristic polynomial

det

[
1.0− λ 10.0
10.0 3.0− λ

]
= 0 (9.54)

(1.0− λ)(3.0− λ)− 100.0 = 0. (9.55)

Using the quadratic formula we find

σ1 = 12.0 MPa (9.56)

σ2 = −8.0 MPa. (9.57)

The principal directions are given by the eigenvectors which are found
by solving the linear equations[

1.0− 12.0 10.0
10.0 3.0− 12.0

](
nx

ny

)
= 0 (9.58)

and [
1.0 + 8.0 10.0

10.0 3.0 + 8.0

](
nx

ny

)
= 0. (9.59)

The first principal direction is found to be(
0.6710
0.7415

)
(9.60)

and the second (
−0.7415
0.6710

)
. (9.61)

To compute the principal angle we can always use the relation θp =
cos−1(ex · n1) = 0.8352 rad, where n1 is the first principal direction.

9.2.4 Mohr’s circle of stress

Mohr’s circle is a graphical device that allows one to have a visual
picture of all the normal and shear stress combinations which are possible
by a change of coordinate basis. The device is usually applied to two-
dimensional states of stress. It can, however, also be applied to three-
dimensional states of stress when one of the principal stresses is known
a priori.

Mohr’s circle (of stress) is based upon the following writing of the
transformation equations:
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⎛⎝ σx′x′

−σx′y′

⎞⎠ =

⎡⎣ cos(2θ) − sin(2θ)

sin(2θ) cos(2θ)

⎤⎦⎛⎝ σd

−σxy

⎞⎠
+

⎛⎝σm

0

⎞⎠ ,

(9.62)

where σm = (σxx + σyy)/2 and σd = (σxx − σyy)/2. These equations are
observed to be the parametric equations for a circle centered at the point

(σm, 0) in the σx′x′–σx′y′ plane. The radius of the circle is
√
σ2
d + σ2

xy.

Remarks:

(1) A plot of these equations is shown in Fig. 9.6. The loci of points
shows all possible combinations of the normal and shear stresses
on the plane with normal ex′ .

(2) The intersections of the circle with the abscissa provides the
principal values, and the angle from the dashed line to the abscissa
gives twice the principal angle.

σx' x'

σx' y'

θ = 0

(σm , 0 )

2θ
(σxx , σxy)

Fig. 9.6 Mohr’s circle.
(3) The maximum shear stresses can be identified as the radius of the

circle. The maximum shear angle is also identifiable as half the
angle to the lowest point on the circle.

(4) Care should always be exercised in that rotations on the circle are
double the physical rotation angles, and by convention we plot
σx′y′ as positive downwards.11 In some presentations, authors

choose to plot σx′y′ as positive
upwards. In this case, physical
rotations occur in the direction
opposite to the rotations on Mohr’s
circle.

Example 9.3

Mohr’s circle. Consider the two-dimensional state of stresses shown in
Fig. 9.7. Using Mohr’s circle find the principal values, the principal angle,
the maximum shear, and the maximum shear angle. Sketch the principal
stresses on a properly oriented element. Sketch the maximum shear state
on a properly oriented element.

6

3

Fig. 9.7 Stress state for Example 9.3.

Solution
The center of the Mohr’s circle is located at (1.5, 0) and the radius
is

√
1.52 + 62 = 6.2. Plotting the circle, we have the diagram shown

in Fig. 9.8. From the diagram we can see that σ1 = 1.5 + 6.2 = 7.7
and σ2 = 1.5− 6.2 = −4.7. The principal angle is seen to be θp =
1
2 tan

−1(6/1.5) = 38.0o (counter-clockwise). The maximum shear is seen
to be τmax = 6.2 and the maximum shear angle is seen to be θs =
1
2 [−2θp + 90o] = 7.0o (clockwise). The corresponding states of stress are
also sketched in Fig. 9.8.
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7.0

2θp

2θs

σ1σ2

7.74.7

[Principal State]

1.5

1.5

6.2

[Max Shear State]

38.0

Fig. 9.8 Mohr’s circle for Example
9.3.

Example 9.4

Mohr’s circle for torsion. Consider the state of stress on the surface of
an elastic circular bar of radius R, polar moment of inertia J , in torsion
with an applied torque T : [

0 TR
J

TR
J 0

]
θz

. (9.63)

Draw the Mohr’s circle and determine the principal stresses. Sketch them
on a properly oriented element.

Solution
The center of the Mohr’s circle is located at (0, 0) and the radius is√
0 + T 2R2

J2 = TR
J . Plotting the circle, we have the diagram shown in

Fig. 9.9. From the diagram we can see that σ1 = TR
J

and σ2 = −TR
J
.

The principal angle is seen to be θp = 45.0o (counter-clockwise). The
principal state of stress is also sketched in Fig. 9.9.

Remarks:

(1) This analysis confirms our discussion in Section 7.5 on brittle
failure in torsion, where we claimed that the maximum normal
stress occurred on a plane angled at 45o to the bar axis.
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45

2θp

σ1σ2

(0 , TR/J)

TR/J
TR/J

Fig. 9.9 Mohr’s circle for Example
9.4.

9.2.5 Three-dimensional Mohr’s circles of stress

Mohr’s circle as developed so far is a strictly two-dimensional device.
We can, however, extend its use to three dimensions by noting that we
have been implicitly assuming that σzz = σzx = σyz = 0. The key point
to observe is that we have been assuming that there are no shear stresses
on the plane normal to ez. So, we have been tacitly assuming that the
z-direction is a principal direction with corresponding principal stress
σ3 = 0. Another way of stating this is that the Mohr’s circle we have
drawn corresponds to looking down the z-axis at the material in the x-y
plane. The generalization to this is that given a principal axis one can
always draw a Mohr’s circle for the state of stress in the plane normal
to the the given axis. Since in three dimensions there are three principal
axes, it is possible to draw three Mohr’s circles for a general state of
stress – one circle for each plane normal to a principal axis. This is
sketched in Fig. 9.10.

Remarks:

(1) To construct the three Mohr’s circles one must a priori know one
of the principal values. The value is first plotted as a value on the
abscissa. Then the two-dimensional Mohr’s circle normal to this
principal direction is drawn. The intersections with the abscissa
can then be connected to create the three circles.
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σ3 σ1

Circle looking down the
first principal axis

Circle looking down the
third principal axis

Circle looking down the
second principal axis

σ2

Fig. 9.10 Three-dimensional Mohr’s
circles.

(2) Each individual circle has the same interpretation as we had
before.

(3) The true maximum shear stress in three dimensions occurs on the
circle with greatest radius.

(4) It can proved that all possible values for the normal stresses
and shear stresses for any orientation of the coordinate axes is
contained in the hatched region in Fig. 9.10.

Example 9.5

Three-dimensional Mohr’s circles. Consider the state of stress:⎡⎣ 2 0 1
0 −2 0
1 0 0

⎤⎦ ksi. (9.64)

Find the principal values and the maximum shear stress for this state of
stress.

1

z

x

2

Fig. 9.11 z-x plane state of stress.

Solution
The y-axis is seen to be a principal axis since the plane with normal
vector in the y-direction has no shear stresses on it (σyx = σyz = 0).
Looking down the y-axis at the material in the z-x plane, we have the
state of stress shown in Fig. 9.11. The Mohr’s circle for this state is
shown in Fig. 9.12. If we add the principal value −2 ksi to the diagram
we can then construct the three circles of stress as shown in Fig. 9.13.

Fig. 9.12 Mohr’s circle in the z-x
plane.

Remarks:

(1) The principal stresses can be determined from the diagram to be
−2, 1±

√
2 ksi.
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(2) The maximum shear stress is the radius of the largest circle, (3 +√
2)/2 ksi.

(3) This construction cannot be performed unless at least one of
the principal values is known a priori. In the situation where no
principal values are known one must use the eigenvalue method
to compute the principal values.

Fig. 9.13 Three-dimensional Mohr’s
circles.

9.3 Transformation of strains

In multi-dimensions, strains, like stresses, are represented by tensors. As
such they also obey transformation rules upon change of coordinates. In
fact, they obey the exact same transformation rules. To see this, let us
derive the expression for the normal strain in the, say, x′-direction in
terms of the strains expressed relative to an x-y coordinate system. The
setup will be identical to the one we used to discuss stress transforma-
tions; the angle between the x-axis and the x′-axis will be θ.

By definition, the normal strain in the x′-direction is given by:

εx′x′ =
∂ux′

∂x′ . (9.65)

Our goal is to expand the right-hand-side of eqn (9.65) in terms of the
strain components in the x-y coordinate basis – i.e. in terms of εxx, εyy,
and εxy = γxy/2. To do this, we need expression for ux′ in terms of ux

and uy. We also need an expression for ∂
∂x′ in terms of ∂

∂x and ∂
∂y . Both

relations can be derived using the transformation rules for vectors from
Section 9.1. In particular,

ux′ = ex′ · u = ex′ · (uxex + uyey)

= ux cos(θ) + uy sin(θ).
(9.66)

To transform the derivative, note that the chain rule tells us that:

∂

∂x′ =
∂x

∂x′
∂

∂x
+

∂y

∂x′
∂

∂y
. (9.67)

To compute the coefficients in this relations, note that the position vector
transforms as (

x′

y′

)
=

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

](
x
y

)
(9.68)

and the inverse of this is(
x
y

)
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

](
x′

y′

)
. (9.69)

Thus, ∂x/∂x′ = cos(θ) and ∂y/∂x′ = sin(θ). Combining these results
gives
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εx′x′ =

(
cos(θ)

∂

∂x
+ sin(θ)

∂

∂y

)
(ux cos(θ) + uy sin(θ))

= cos2(θ)
∂ux

∂x
+ cos(θ) sin(θ)

(
∂ux

∂y
+

∂uy

∂x

)
+ sin2(θ)

∂uy

∂y

= cos2(θ)εxx + 2 cos(θ) sin(θ)εxy + sin2(θ)εyy. (9.70)

Similar expressions can be derived for εy′y′ = ∂uy′/∂y′ and εx′y′ =
1
2 (∂ux′/∂y′ + ∂uy′/∂x′). When combined, we find[

εx′x′ εx′y′

εy′x′ εy′y′

]
=

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

] [
εxx εxy
εyx εyy

]
[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
.

(9.71)

Remarks:

(1) Equation (9.71) is identical in form to the transformation rule for
stresses given in eqn (9.19).

(2) Just as for stresses, the transformation rules for strain are often
expressed using the double angle formulae:

εx′x′ =
εxx + εyy

2
+

εxx − εyy
2

cos(2θ) + εxy sin(2θ) (9.72)

εy′y′ =
εxx + εyy

2
− εxx − εyy

2
cos(2θ)− εxy sin(2θ) (9.73)

εx′y′ = − εxx − εyy
2

sin(2θ) + εxy cos(2θ). (9.74)

(3) For the same reason as with the stress tensor, the strain tensor also
possesses two invariants in two dimensions. These are Iε = trace[ε]
and IIε = det[ε] with associated characteristic polynomial:

−λ2 + Iελ− IIε = 0. (9.75)

In three dimensions Iε = trace[ε], IIε = 1
2 (trace[ε

2]− (trace[ε])2),
and IIIε = det[ε] with associated characteristic polynomial:

−λ3 + Iελ
2 − IIελ+ IIIε = 0. (9.76)

9.3.1 Maximum normal and shear strains

As with stresses, we can speak of principal strains. In two dimensions,
principal strains will represent the maximum and minimum normal
strains in the plane. The mathematics of computing these values follows
exactly our developments for stress. In this regard we can follow any of
the approaches shown for stresses.
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(1) We can simply maximize the expressions for the normal strain and
the shear strain. For the normal strains, this will give

ε1 = εx′x′(θp) =
εxx + εyy

2
(9.77)

+

√(
εxx − εyy

2

)2

+ ε2xy (9.78)

ε2 = εy′y′(θp) =
εxx + εyy

2
(9.79)

−

√(
εxx − εyy

2

)2

+ ε2xy, (9.80)

where tan(2θp) = 2εxy/(εxx − εyy). Again, like with stresses, the
shear strain is zero in the principal frame. For the maximum shear
strains we have:

1

2
γmax = εx′y′(θs) =

√(
εxx − εyy

2

)2

+ ε2xy (9.81)

εx′x′(θs) =
εxx + εyy

2
(9.82)

εy′y′(θs) =
εxx + εyy

2
, (9.83)

where tan(2θs) = −(εxx − εyy)/2εxy.

(2) We can also utilize an eigenvalue approach. In this case we can
solve the polynomial det[ε− λ1] = 0 for the eigenvalues of ε.
These will be the principal values. In two dimensions 1

2
γmax =

(ε1 − ε2)/2, and in three dimensions 1
2γmax = (ε1 − ε3)/2. The

eigenvectors will point in the directions of the principal axes.
This approach is required for general states of strain in three
dimensions.

(3) We can apply a Mohr’s circle idea. In this case the axes on the
Mohr diagram will be εx′x′ on the abscissa and εx′y′ on the ordi-
nate (pointing down). As with stresses, this approach is limited to
two-dimensional planar cases and three-dimensional cases where
one of the principal strains is already known.

x

y
200 x 10−6

Fig. 9.14 Sketch of deformation of a
square aligned with the x-y axes in
Example 9.6.

Example 9.6

Mohr’s circle for strain. Consider a two-dimensional state of pure
shear γxy = 2εxy = 200× 10−6 = 200 μstrain and εxx = εyy = 0. Sketch
the deformation associated with this strain state for an homogeneously
strained square of material that is aligned with the x-y coordinate axes.
Compute the principal strains and sketch the deformation associated
with this strain state for an homogeneously strained square of material
which is aligned with the principal axes.
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2θp

(0 , 100 x 10−6)

45°
εx' x'

ε1

εx' y'

ε2

Fig. 9.15 Mohr’s circle of strain for
Example 9.6.

Solution
For the first part of the question we need to consider a square of material
that is aligned with the coordinate axes. The square undergoes no normal
strains in the x- or y-directions but it does experience a change in angle
of 200× 10−6 rad. This is sketched in Fig. 9.14. To compute the principal
strains we plot Mohr’s circle of strain. The center of the circle is the mean

normal strain equal to zero. The radius of the circle is
√

εxx−εyy

2 + ε2xy =

100× 10−6. The circle is plotted in Fig. 9.15. The principal angle is seen
to be 45o and in the principal frame the normal strains are ±100× 10−6.
The deformation state aligned with the principal frame is also sketched
in Fig. 9.15. There is no angle change in the frame, and there is an
elongational strain in the first principal direction and a contraction in
the second.

Example 9.7

Strain rosette. The measurement of strains is often performed using
strain gauges – small strips of electrically conductive wire. They are
glued to the surface of an object. When the object is strained the
gauges are strained by the same amount. Strain in the gauge changes the
electrical resistance of the wire. This can be detected electronically and
converted to strain. The gauges are designed so that they only measure
normal strains in a single direction. In order to measure a complete
two-dimensional state of strain, several gauges are needed. Consider the
layout of strain gauges shown in Fig. 9.16. Given the normal strains in
gauges a, b, and c determine the two-dimensional state of strain; i.e. find
expressions for εxx, εyy, and εxy. x

y

(a)

(c)
(b) 45˚

Fig. 9.16 0-45-90 strain-gauge
rosette.

Solution
Gauges a and b immediately tell us that εxx = εa and εyy = εb. Gauge
c tells us the normal strain in the 45o direction. Thus we have:
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εc = εx′x′(π/4) =
εa + εb

2
+

εa − εb
2

cos(π/2) + εxy sin(π/2) . (9.84)

Solving this for εxy, gives

εxy = εc −
εa + εb

2
. (9.85)

Assembling together we find⎡⎣ εa εc − εa+εb
2

εc − εa+εb
2 εb

⎤⎦
xy

. (9.86)

Example 9.8

Relation between elastic constants. Use an energy argument to show that
G = E/[2(1 + ν)].

Solution
Let us consider a state of pure shear stress in two dimensions. The stress
tensor is given by [

0 c
c 0

]
xy

, (9.87)

where c is a constant representing the magnitude of the shear stress. This
exact same state of stress can be represented in a coordinate system
oriented at 45o to the x-y axes. In this second coordinate system the
state of stress appears as [

c 0
0 −c

]
x′y′

, (9.88)

where the x′- and y′-axes are rotated 45o relative to the x- and y-axes.
Because both sets of stress components represent the same state of stress,
one can claim that the associated strain energy density should be the
same. In the original coordinate frame we find (using eqn (5.17)):

w =
1

2
(σxxεxx + σyyεyy + σzzεzz + σxyγxy + σyzγyz + σzxγzx)

=
1

2
(σxyγxy)

=
1

2
(σ2

xy/G)

=
1

2
(c2/G). (9.89)

In the rotated frame we have

w =
1

2
(σx′x′εx′x′ + σy′y′εy′y′ + σz′z′εz′z′

+ σx′y′γx′y′ + σy′z′γy′z′ + σz′x′γz′x′)
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=
1

2
(σx′x′εx′x′ + σy′y′εy′y′)

=
1

2

(
σx′x′

[σx′x′

E
− ν

E
σy′y′

]
+ σy′y′

[σy′y′

E
− ν

E
σx′x′

])
=

1

2
c2

2 + 2ν

E
. (9.90)

If we equate the two results, which describe the exact same physical
state, then we see that

G =
E

2(1 + ν)
. (9.91)

9.4 Multi-axial failure criteria

In the chapters up to this point we have analyzed systems dominated by
a single component of the stress tensor. For this reason, we have been
able to simply determine the load-carrying capacity of different systems
by requiring that

|σ| ≤ σY (9.92)

for systems that are dominated by a single normal stress, or that

|τ | ≤ τY (9.93)

for systems that are dominated by a single shear stress τ . When we have
a multi-axial state of stress (more that one non-zero stress component),
then we are faced with a new problem. Do we simply enforce eqns (9.92)
and (9.93) component-by-component or should we do something else?
As it turns out, component-by-component enforcement of eqns (9.92)
and (9.93) does not comport with experimental experience. Further, it
has the unfortunate side-effect of being coordinate system dependent. In
other words, component by component enforcement of eqns (9.92) and
(9.93) will not be able to predict material yielding/failure independent
of the coordinate system used to express the stress components. What
we would like is a criterion that evaluates some function of the stress
tensor and outputs a value indicating yield/failure or not yield/failure.
The function should be independent of coordinate system for it to be
physically meaningful. Thus we would like something of the form

f(σ) ≤ critial value. (9.94)

For polycrystalline metallic materials at room temperature the two most
common criteria of this form are Tresca’s yield condition and the Henky–
von Mises yield condition; these are both discussed next. Criteria for the
multi-axial failure/yield of brittle materials and materials with different
properties in tension and compression is left for more advanced texts.
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9.4.1 Tresca’s yield condition

Tresca’s yield condition simply states that the maximum shear stress
(in three dimensions) should be less that τY the yield stress in shear. If
τmax < τY , then the stress state is elastic. Yield occurs where τmax = τY .
A Mohr diagram is one way to visualize Tresca’s yield condition. As long
as the three circles of stress remain between τY and −τY the state of
stress is elastic; see Fig. 9.17.σx' y'

Yield

Elas
tic

 R
an

ge

−τY

τY

σx' x'

Fig. 9.17 Admissible elastic range
according to Tresca’s condition.

Remarks:

(1) Tresca’s condition meshes nicely with ideas from material science
on dislocations. At a fundamental level, yield is associated with
dislocation glide on slip planes, and this motion is driven by
Schmidt resolved shear stress on the glide planes. In a polycrys-
talline material there are glide planes in all directions, and thus
yield takes place when the shear stress on any plane reaches a
critical value.

(2) Tresca’s condition is often easy to use in hand computations.
Simply figure out the three circles of stress and check that they
lie within the admissible range.

(3) It has been experimentally determined that room-temperature
yield in metals is independent of the hydrostatic (or volumetric)
component of the stress state. The volumetric part of the stress
state is defined to be

σvol = p1, (9.95)

where p = 1
3trace[σ] =

1
3 (σxx + σyy + σzz) is the mean normal

stress (otherwise known as the pressure). The remaining part of
the stress tensor is known as the deviatoric part of the stress, and
is usually denoted by the symbol s. Thus

s = σ − σvol (9.96)⎡⎣ sxx sxy sxz
syx syy syz
szx szy szz

⎤⎦ =

⎡⎣σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎤⎦
− p

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ . (9.97)

The statement that yield is independent of pressure implies that
yield depends only on the deviatoric part of the stress. It is easy
to see that Tresca’s conditions satisfies this observation. Adding a
hydrostatic component to any given stress state will only shift the
corresponding three circles of stress to the right or left on the Mohr
diagram. It will not affect the radius of the largest circle of stress.

(4) Tresca’s condition can be written in the form of eqn (9.94) but
it is not very convenient to use it in that format; so, we do not
include it here.
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Example 9.9

Tresca’s condition. Consider the state of stress in Example 9.5, but scaled
by the factor k.

k

⎡⎣ 2 0 1
0 −2 0
1 0 0

⎤⎦ ksi (9.98)

If τY = 20 ksi, what value of k causes yield?

Solution
Using the results from Example 9.5 we know that the radius of the
largest circle of stress will be k(3 +

√
2)/2. Thus we have that a value of

k =
40

3 +
√
2

(9.99)

will initiate yield according to Tresca’s condition.

Remarks:

(1) It is important to note that one needs to check the radius of the
largest of the three circles of stress. It is not enough to check only
the stresses in a single plane.

Example 9.10

Calibration of τY . The typical test for calibrating yield criteria is to use
a uniaxial tension test to determine the yield stress σY . What is the
relation between σY and the τY ?

σx' y'

σY σx' x'

−τY

τY

Fig. 9.18 Uniaxial tension test on a
Mohr diagram.

Solution
In a uniaxial tension test at the point of yield the three-dimensional
state of stress is ⎡⎣σY 0 0

0 0 0
0 0 0

⎤⎦ . (9.100)

On a Mohr diagram, we have the situation sketched in Fig. 9.18. All
three circle of stress are shown. One circle is centered at (0, 0) and has
zero radius. The other two circles are centered at (σY /2, 0) and have
radius σY /2. Thus

τY =
σY

2
(9.101)

according to Tresca’s condition.
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9.4.2 Henky–von Mises condition

The Henky–von Mises condition for yield is based upon an energetic idea.
Their idea was that yield in a multi-axial state of stress will occur when
the strain energy density reaches a critical value. The critical value is
found by computing the strain energy density in a uniaxial test specimen
at the moment of initial yield. Because yield is generally observed to be
independent of pressure, the Henky–von Mises condition involves only
the part of the strain energy associated with the deviatoric stresses. The
strain energy density is given by:

w =
1

2
(σxxεxx + σyyεyy + σzzεzz + σxyγxy + σyzγyz + σzxγzx).

(9.102)

If we substitute in for the strains using Hooke’s Law and separate the
pressure contributions from the deviatoric contributions, then we find
that

w =
1 + ν

2E
(s2xx + s2yy + s2zz + 2s2xy + 2s2yz + 2s2zx)︸ ︷︷ ︸

wdev

+
3(1− 2ν)

2E
p2︸ ︷︷ ︸

wvol

.

(9.103)

The Henky–von Mises condition then provides that

wdev ≤ w1−D
dev , (9.104)

where w1−D
dev is the calibration constant determined from a uniaxial test.

In a uniaxial test at yield the stress is given as:⎡⎣σY 0 0
0 0 0
0 0 0

⎤⎦ . (9.105)

Thus the pressure is p = 1
3
σY and the deviatoric stress is given as⎡⎢⎣

2
3σY 0 0

0 −1
3σY 0

0 0 −1
3σY

⎤⎥⎦ . (9.106)

This gives

w1−D
dev =

2(1 + ν)

6E
σ2
Y . (9.107)

So we have as our yield criteria

(s2xx + s2yy + s2zz + 2s2xy + 2s2yz + 2s2zx) ≤
2

3
σ2
Y . (9.108)

This expression can be made a little more convenient by expressing it
directly in terms of the stress components instead of the components of
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the deviatoric stress; this can be done using the definition of the stress
deviator, eqn (9.97). The net result is given as

1

2

(
(σxx − σyy)

2 + (σyy − σzz)
2 + (σzz − σxx)

2
)

+3(σ2
xy + σ2

yz + σ2
zx) ≤ σ2

Y .

(9.109)

As long as the strict inequality is satisfied, the multi-axial stress state
represents an elastic state of stress. When the equality is satisfied, yield
starts.

Remarks:

(1) One advantage of the Henky–von Mises condition is that there
is no need to determine Mohr’s circles, principal stresses, or
maximum shears. It works directly with the stress components.
This point makes it especially easier to use in computer programs
for automated stress analysis.

(2) Though not obvious, as written, the Henky–von Mises condition
is independent of coordinate system.

(3) By construction, the Henky–von Mises condition is independent
of pressure.

(4) Equation (9.109) is given in terms of an x-y-z Cartesian coordinate
system. It is also valid for any other orthonormal coordinate sys-
tem. For example, for cylindrical/polar coordinates or for spher-
ical coordinates under the substitutions (x, y, z) → (r, θ, z) and
(x, y, z) → (r, ϕ, θ), respectively.

(5) The Henky–von Mises condition for yield is a model just as the
Tresca condition is a model for yield. They are both models for
the same phenomena and will differ slightly in their predictions.
One way to appreciate their differences is to consider a state of
plane stress in principal coordinates:⎡⎣σ1 0 0

0 σ2 0
0 0 0

⎤⎦ . (9.110)

Applying the Henky–von Mises condition to this state of stress we
see that

(σ1 − σ2)
2 + σ2

2 + σ2
1 ≤ 2σ2

Y . (9.111)

Elas
tic

σ1

σ2
Henky−von Mises

Tresca

σY

Fig. 9.19 Comparison of Henky–von
Mises condition with Tresca’s criteria
in plane stress.

This expression tells us that in the σ1-σ2 plane that the set of elas-
tic stress states is contained in an elliptical region. The application
of Tresca’s condition to this state of stress gives a hexagonal region
of elastic states in the same plane. The situation is sketched in
Fig. 9.19. As can be seen, both criteria are in reasonable agreement
with each other. In terms of ability to accurately model data, both
criteria provide decent accuracy for polycrystalline metals at room
temperature.
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Example 9.11

Thin-walled tube in axial and torsional loading. Consider the thin-walled
tube shown in Fig. 9.20. Determine the limits on P and T for combined
states of loading according to the Henky–von Mises condition.

Radius = R

P

T

Wall thickness = t

Fig. 9.20 Thin-walled tube in torsion
and axial loading.

Solution
There are two non-zero stresses in the tube. Assuming that the axis of
the tube is in the z direction, the axial force gives rise to

σzz =
P

A
=

P

2πRt
. (9.112)

The torque gives rise to a shear stress:

σzθ =
q

t
=

T

2Aenclosedt
=

T

2πR2t
. (9.113)

In matrix form we have:⎡⎣ 0 0 0
0 0 T/2πR2t
0 T/2πR2t P/2πRt

⎤⎦
rθz

. (9.114)

Applying eqn (9.109) in cylindrical coordinates gives:

1

2

{(
P

2πRt

)2

+ (0)
2
+

(
− P

2πRt

)2
}

+ 3

(
T

2πR2t

)2

≤ σ2
Y (9.115)

P 2

(2πRtσY )2
+

T 2

( 2√
3
πR2tσY )2

≤ 1 (9.116)

P 2

P 2
Y

+
T 2

T 2
Y

≤ 1, (9.117)

where PY = 2πRtσY and TY = 2√
3
πR2tσY . The loci of points in the

P -T plane that correspond to yield are shown in Fig. 9.21. The interior
of the ellipse corresponds to elastic states of loading, and yield occurs
for any (P, T ) combination on the ellipse.

T

P

Elastic

Yield

TY

PY

Fig. 9.21 Elastic zone for extension
and twist of a thin-walled tube.

Remarks:

(1) Notice that if one biases a torsional loading with any amount of
axial force, then the permissible amount of torque is decreased.
Likewise if one biases an axial loading with any amount of torque,
then the permissible amount of axial force decreases.

Example 9.12

Thin-walled cylindrical pressure vessel. Consider a thin-walled cylindri-
cal pressure vessel of radius R and wall thickness t. How much pressure
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can be applied before yield takes place according to the Henky–von Mises
condition?

Solution
The state of stress in a cylindrical pressure vessel (see Section 6.2.1) is⎡⎢⎣ 0 0 0

0 pR
t

0

0 0 pR
2t

⎤⎥⎦
rθz

. (9.118)

Thus by eqn (9.109) we have that(
pR

t
− pR

2t

)2

+

(
pR

2t
− 0

)2

+

(
pR

t
− 0

)2

≤ 2σ2
Y (9.119)

p ≤ t

R

2√
3
σY . (9.120)

Example 9.13

Relation of τY to σY according to the Henky-von Mises condition.
Consider an experiment that produces a state of yield in pure shear.
Find the relation between a measured yield stress in shear, τY , and the
yield stress in tension, σY .

Solution
At yield, the stress is given by⎡⎢⎣ 0 τY 0

τY 0 0

0 0 0

⎤⎥⎦ . (9.121)

Evaluating the Henky–von Mises condition for this state of stress gives

3τ2Y = σ2
Y . (9.122)

Thus,

τY =
σY√
3
. (9.123)

Remarks:

(1) Note that this relation is different than the one we derived in the
section on Tresca’s condition. The relation between the yield stress
in shear and the yield stress in uniaxial tension is model-dependent
– hence the difference.
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Chapter summary

� Vector transformation rules:(
Fx′

Fy′

)
=

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

](
Fx

Fy

)
� Stress transformation rules:[

σx′x′ σx′y′

σy′x′ σy′y′

]
=

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

][
σxx σxy

σyx σyy

]
[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
− Double-angle form:

σx′x′ =
σxx + σyy

2
+

σxx − σyy

2
cos(2θ) + σxy sin(2θ)

σy′y′ =
σxx + σyy

2
− σxx − σyy

2
cos(2θ)− σxy sin(2θ)

σx′y′ = − σxx − σyy

2
sin(2θ) + σxy cos(2θ)

� Principal angle (maximum and minimum normal stresses with no
shear)

tan(2θp) =
2σxy

σxx − σyy

� Maximum shear orientation (normal stress take their mean value)

tan(2θs) = −σxx − σyy

2σxy

− Angle relation: θp − θs = π/4

− Principal value form: τmax = (σ1 − σ3)/2
� Mohr’s circle: The center of the circle is the mean normal stress.
The radius is the distance from the center to the point (σxx, σxy)

� Three-dimensional case: Compute the eigenvalues and eigenvectors
of σ from the characteristic polynomial:

−λ3 + Iσλ
2 − IIσλ+ IIIσ = 0

where Iσ = trace[σ], IIσ = 1
2
[trace(σ2)− (trace(σ))2], IIIσ = det[σ]

� Strains transform the same way as stresses, but one needs to use
the tensorial shear strain instead of the engineering shear strain.

� Tresca’s yield condition: τmax ≤ τY
� Deviatoric stress: s = σ − p1; pressure p = 1

3(σxx + σyy + σzz)
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� Henky–von Mises yield condition:

1

2

(
(σxx − σyy)

2 + (σyy − σzz)
2 + (σzz − σxx)

2
)

+3(σ2
xy + σ2

yz + σ2
zx) ≤ σ2

Y

Exercises

(9.1) The state of stress at a point in a solid is given as[
10 5

5 7

]
xy

MPa.

Consider a plane passing through this point with
normal vector n = (1/

√
2)ex + (1/

√
2)ey. What

are the normal and shear stresses on this plane?

(9.2) Given the following two-dimensional state of
stress, find the principal values and directions.[

60 80

80 −90

]
MPa

(9.3) Given the following two-dimensional state of
stress, find the maximum shear and sketch the
state of stress on a properly oriented element.[

60 80

80 −90

]
MPa

(9.4) Given the following two-dimensional state of
stress, find the angles of rotation which cause the
normal stress in the x′ direction to be zero.[

60 80

80 −90

]
MPa

(9.5) Using an eigenvalue technique, find the principal
values and directions for the following state of
stress. [

10 −50

−50 5

]
ksi

(9.6) Find the principal values of stress for the following
three-dimensional state of stress. Sketch the three
circles of stress on a Mohr diagram.⎡⎢⎣ 10 −50 0

−50 5 0

0 0 60

⎤⎥⎦ ksi

(9.7) Find the principal values and directions for the
following three-dimensional state of stress. Sketch
the three circles of stress on a Mohr diagram.⎡⎢⎣ 10 −50 2

−50 5 0

2 0 60

⎤⎥⎦ ksi

(9.8) Find the principal values of stress for the following
three-dimensional state of stress. Sketch the three
circles of stress on a Mohr diagram.⎡⎢⎣ 10 0 10

0 5 0

10 0 60

⎤⎥⎦ ksi

(9.9) Find the principal values of stress for the following
three-dimensional state of stress. Sketch the three
circles of stress on a Mohr diagram.⎡⎢⎣ 10 2 1

2 5 0

1 0 6

⎤⎥⎦ MPa

(9.10) For the state of stress that follows, find the prin-
cipal stresses and principal directions. Draw the
principal stresses on a properly oriented three-
dimensional element.
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z

y

x

10 psi

4 psi

4 psi

3 psi

(9.11) For the beam shown below, determine the principal
stresses at point A and show them on a properly
oriented element. What is the maximum shear
stress at point A. Assume P = 1 and T = 1000 in
consistent units.

Wall Thickness = 0.1P

T
20A

1000 1000

5
A

20
Cross−Section

(9.12) For the state of stress shown, determine and
show the magnitude and direction of the principal
stresses. How large is the maximum shear stress
(not necessarily in the x− y plane)? In what plane
does it occur? Note, σz = τxz = τyz = 0. Assume
stress units of kPa.

25,000

10,000

10,000

x

y

(9.13) Consider the two-dimensional state of stress
shown; assume units of psi.

(a) Determine the principal stresses and show
them on a properly oriented element.

(b) Determine the maximum shear stress in the
plane and show this state on a properly ori-
ented element.

(c) If the third principal stress is given as 10 psi,
what is τmax?

8

4

2

(9.14) For the two-dimensional state of plane stress

σ =

[
−a −a

−a a

]
,

find the principal stresses, principal angle, maxi-
mum shear, and maximum shear angle. Show your
results on properly oriented elements.

(9.15) The displacement field in a structure has been
measured to be

ux = Ax+Ay

uy = Ax

where A is a given constant. What is the maximum
normal strain in the structure?

(9.16) As shown, a 0-45-90 strain-gauge rosette is applied
to a thin plate of a material with Young’s modulus
E = 12, 500 ksi and shear modulus G = 5, 000 ksi,
produces the following readings: ε0◦ = 200× 10−6,
ε45◦ = 120× 10−6, ε90◦ = −160× 10−6.

(a) Find the principal stresses and the maximum
shear stress (assume plane stress).

(b) Check if this is a possible state of stress if
the material is elastic–perfectly plastic, with
a yield stress σY = 5 ksi, according to the
Henky–von Mises yield criterion.
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45°

Gauge 1

Gauge 2

Gauge 3

(9.17) Consider two coordinate systems that are rotated
an amount θ with respect to each other. Derive
an expression for εx′y′ in terms of εxx, εyy, εxy,
and θ.

θ

x

y

x�y�

(9.18) Drive the expressions for the strain components in
the x-y coordinate system in terms of the output
of a 0-60-120 strain-gauge rosette; i.e. knowing the
normal strains in the three directions oriented 0,
60, and 120 degrees relative to the x-axis find
expressions for εxx, εyy, and εxy.

(9.19) Derive the transformation equation for the normal
strain in the y′ direction:

εy′y′ = εyy cos
2(θ) + εxx sin

2(θ)− 2εxy sin(θ) cos(θ)

(9.20) Show that the principal axes of stress and strain
coincide for isotropic linear elastic materials; see
Chapter 5.

(9.21) Consider a linear elastic isotropic material with
E = 100 MPa and ν = −0.1. The state of strain
is known at a particular point to be[

10 −50
−50 5

]
xy

μstrain

Find the principal stresses and the principal angle.
Assume plane stress.

(9.22) Consider a linear elastic isotropic material with
E = 200 MPa and ν = 0.3. The state of stress is
known at a particular point to be

[
100 −60

−60 70

]
xy

MPa

Find the principal strains and the principal angle.
Assume plane stress.

(9.23) Shown below is a thin-walled cylindrical balloon
with internal pressure p, radius R, and thickness t.
Due to the thinness of the balloon walls they are
incapable of supporting any compressive stresses.
Find a relation for the maximum torque that the
balloon will support. Express your answer in terms
of p and R.

Balloon radius R, thickness t

Internal pressure p
TT

(9.24) Consider the following state of stress:

k

⎡⎣ 10 −6 5
−6 7 5
5 5 0

⎤⎦ MPa.

Determine the value of the parameter k for yield
according to the Henky–von Mises condition.
Assume σY = 100 MPa.

(9.25) Is the following stress state elastic according to
Tresca’s condition:⎡⎣ 100 −6 5

−6 100 5
5 5 100

⎤⎦ MPa.

Assume τY = 20 MPa.

(9.26) Solve Exercise 9.25 using the Henky–von Mises
condition with σY = 30 MPa.

(9.27) What is the pressure (mean normal stress) for the
following state of stresses:⎡⎣ 30 −6 8

−6 10 15
8 15 10

⎤⎦ ksi.

What is the corresponding deviatoric stress for this
state of stress?

(9.28) Consider a solid round bar of radius R and length
L. Compute the total elastic energy in the bar
when it is subjected to an axial end-load P . Com-
pute the total deviatoric energy in the bar. Com-
pute the total hydrostatic/volumetric energy in the
bar. Do your last two expressions add up to the
first?
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(9.29) Consider the thin-walled tube as shown. The tube
is subjected to a bending moment and a torque.
The inner and outer walls are also subject to a
(uniform) pressure. The tube has a yield stress in
shear τY = 1.25 N/mm2. Apply Tresca’s condition
and determine whether or not the tube will yield
under the given loads.

p = 2.5 N/mm^2

L = 1000 mm

p = 2.5 N/mm^2

p = 2.5 N/mm^2
2 mm

100 mmM = 5000π N mm

T = 5000 3π N mm

(9.30) Solve Exercise 9.29 using the Henky–von Mises
conditions. Assume σY = 1.25

√
3 N/mm2.

(9.31) At what internal pressure does a spherical pressure
vessel yield according to Tresca’s condition?

(9.32) Consider a cantilevered solid round bar of length
L and radius R. Determine the allowable combina-
tions of applied end-moment M and end-torque T
according to the Henky–von Mises condition. Make
a plot of the elastic domain in the M -T plane,
and clearly label all important points defining the
elastic domain.
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Virtual Work Methods:
Virtual Forces

At this point in our developments we have modestly sophisticated
methods for dealing with the deformation, strain, and stress analysis
of mechanical systems under the action of axial forces, axial torques,
and bending loads. Through a clever combination of assumptions we
know how to take a complex phenomena governed by partial differential
equations and analyze them efficiently with a small set of ordinary
differential equations.
In the next four chapters we will examine the development and

application of energy methods that will allow us to solve a larger class
of problems than we can at present. In particular, the methods we will
examine will allow us to treat problems with more geometric complexity
than we can easily handle with the methods we have developed to this
point. The methods to be described will be presented in the context of
engineering mechanics, but the reader should note that they have wide
and important applications in many fields of study. In particular, these
methods form the basis of the finite element method – arguably, modern
engineering’s most important numerical tool.

10.1 The virtual work theorem: Virtual
force version

In this first chapter on energy methods, the technique we will look at
is the method of virtual work – also known as the principle of virtual
work. As the name implies we will be dealing with work-like quantities
with virtual components. This is in contrast to the energy method we
have been using up to this point – viz., conservation of energy. The main
theorem we will use is deceptively simple and can be stated as follows:

External Virtual Work = Internal Virtual Work

Of course, to make productive use of the theorem one needs to have
usable definitions of external and internal virtual work. To keep things
as concrete as possible, we will introduce these definitions through an
example. P

u = ?

A, E, L2

30˚

A, E, L1

Fig. 10.1 Two-bar truss: real system.

Suppose we wish to analyze the two-bar truss shown in Fig. 10.1 for the
horizontal deflection, u, at the point of application of the vertical load.



210 Virtual Work Methods: Virtual Forces

We will refer to the system shown in Fig. 10.1 as the real system. It is the
system we wish to really analyze. In order to analyze the system using
the principle of virtual work we will introduce a virtual system as shown
in Fig. 10.2. The virtual system is geometrically identical to the real
system; it has the same geometry and kinematic boundary conditions.
It is also subject to a virtual force. This virtual force, f̄ , is applied at
the point of interest and in the direction of the kinematic quantity of
interest.11 We will denote virtual force-like

quantities with an over-bar. It is also
very common to denote virtual quanti-
ties with a prepended δ; i.e. one often
writes δf in place of f̄ .

A, L2

A, L1

30˚
f

Fig. 10.2 Two-bar truss: virtual sys-
tem.

The external virtual work (Ext. V.W.) is defined as the externally
applied virtual force times the real displacement occurring at the point
of application of the virtual force. Thus in our example,

Ext. V.W. = virtual force× real displacement = f̄u. (10.1)

The internal virtual work (Int. V.W.) is defined as the integral of the
stresses in the virtual system times the strains in the real system. For
our two-bar truss system we have

Int. V.W. =

∫
V

σ̄ε dV (10.2)

=

∫
Bar 1

σ̄ε dV +

∫
Bar 2

σ̄ε dV (10.3)

=

∫
Bar 1

R̄1

A1

R1

A1E1
dV +

∫
Bar 2

R̄2

A2

R2

A2E2
dV (10.4)

=
R̄1R1L1

A1E1
+

R̄2R2L2

A2E2
. (10.5)

In the above, R̄i refers to the internal force in bar i of the virtual system
and Ri refers to the internal force in bar i of the real system.
If we put this together with the expression for the external virtual work

and employ the virtual work theorem, we find the following expression
for the horizontal deflection we were seeking:

u =
1

f̄

[
R̄1R1L1

A1E1
+

R̄2R2L2

A2E2

]
. (10.6)

For our geometry, from statics we can easily show that R̄1 = 0 and R̄2 =
f̄ . Also from statics, we have that R1 = 2P and R2 = −

√
3P . Thus we

have as a final answer:

u = −
√
3PL2

A2E2
. (10.7)

Remarks:

(1) As a habit, we will always decorate quantities associated with the
virtual system with an over-bar.

(2) In the scheme shown we have introduced virtual forces, and thus
the method shown is often known as the method of virtual forces
or the principle of virtual forces.
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(3) Virtual work quantities will always be the product of a real
quantity times an energetically conjugate virtual quantity –
displacements times forces, stresses times strains, rotations times
moments/torques. In the method of virtual forces the real quan-
tities will be displacements, rotations, or strains and the virtual
quantities will be forces, moments, or stresses.

(4) The kinematic quantity that one determines with this method
will always be the displacement at the point of application of the
virtual force in the direction of the virtual force; or rotation if one
uses a virtual moment.

(5) The generalization of our truss-bar result to a truss system with
N bars is

u =
1

f̄

N∑
k=1

R̄kRkLk

AkEk
. (10.8)

(6) Note that the magnitude of the virtual force always drops out of
the computations. So it is common to set it equal to 1. Sometimes,
to emphasize the virtual nature of the unit force, it is written as 1̄.

(7) In systems that are simultaneously reacting to their load in mul-
tiple ways, say in torsion and bending, one can simply add up all
the external virtual work quantities and set them equal to the sum
of all the internal virtual work quantities; i.e., virtual work, like
real work, is an additive quantity.

10.2 Virtual work expressions

In order to apply the principle of virtual forces to a larger variety of
systems we will need additional expressions for external and internal
virtual work. For each case presented, a simple example will also be
given to place the concepts in concrete terms. Later, in Section 10.3,
we will look at a proof of the virtual work theorem in order to better
understand its meaning.

10.2.1 Determination of displacements

As noted above, to determine displacements at a point in a given
direction we place a virtual force at that point in the direction of interest.
The resultant external virtual work expression is then given by:

Ext. V.W. = f̄u. (10.9)

10.2.2 Determination of rotations

If instead one wishes to determine the rotation of a point in a given
sense, we place a virtual moment at that point in the sense of interest.
The resultant external virtual work expression is then given by:
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Ext. V.W. = m̄θ, (10.10)

where m̄ is the applied virtual moment.

10.2.3 Axial rods

If an element in a mechanical system of length L is loaded with axial
forces, then the internal virtual work in the element is given by

Int. V.W. =

∫
V

σ̄xxεxx dV (10.11)

=

∫
V

R̄

A
ε dV (10.12)

=

∫ L

0

R̄ε dx . (10.13)

If and only if the system is elastic, one can also write

Int. V.W. =

∫ L

0

R̄
R

AE
dx. (10.14)

b(x) = kx

a L−a

AE −− constant

Fig. 10.3 Axial bar with linear dis-
tributed load: linear elastic (real
system).

Example 10.1

Axial rod. As an example application, consider the rod shown in Fig. 10.3
and determine using the principle of virtual forces the displacement at
x = a.

Solution
To begin, we construct the virtual system shown in Fig. 10.4; the virtual
system is identical to the real system but with all real loads removed
and a virtual force introduced at x = a. The external virtual work is

a L−a

f

Fig. 10.4 Virtual system for finding
the displacement at x = a for the bar
shown in Fig. 10.3.

Ext. V.W. = f̄u(a). (10.15)

The internal virtual work is

Int. V.W. =

∫ L

0

R̄ε dx. (10.16)

From equilibrium of the virtual system we have that R̄ = f̄H(a− x).
From equilibrium for the real system we have that R(x) = 1

2k(L
2 − x2).

Employing the constitutive relation for the real system we find that
ε = R/AE = 1

2k(L
2 − x2)/AE. Inserting these results into the virtual

work theorem, we find that:

f̄u(a) =

∫ L

0

R̄ε dx (10.17)
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=

∫ L

0

f̄H(a− x)
1

2AE
k(L2 − x2) dx (10.18)

=

∫ a

0

f̄
1

2AE
k(L2 − x2) dx (10.19)

= f̄
1

2AE
k(L2a− a3/3) (10.20)

u(a) =
ka

2AE
(L2 − a2/3). (10.21)

Remarks:

(1) It is an easy matter to verify this result using the techniques
developed in Chapter 2.

GJ −− constant

T2
T1

L/2 L/2

θ(b) = ?
b

Fig. 10.5 Torsion bar with two-point
loads: linear elastic (real system).

10.2.4 Torsion rods

If an element in a mechanical system of length L is loaded with a torque,
then the internal virtual work in the element is given by

Int. V.W. =

∫
V

σ̄zθγzθ dV (10.22)

=

∫
V

τ̄ r
dφ

dz
dV (10.23)

=

∫ L

0

dφ

dz

[∫
A

τ̄ r dA

]
dz (10.24)

=

∫ L

0

T̄
dφ

dz
dz. (10.25)

If and only if the system is elastic, one can also write

Int. V.W. =

∫ L

0

T̄
T

GJ
dz. (10.26)

Example 10.2

L/2L/2

b

m

Fig. 10.6 Virtual system for finding
the rotation at z = b for the bar shown
in Fig. 10.5.

Torsion rod. As an example application, consider the torsion rod shown
in Fig. 10.5, and using the principle of virtual forces (moments), deter-
mine the rotation at z = b.

Solution
To begin, we construct the virtual system shown in Fig. 10.6; the virtual
system is identical to the real system but with all real loads removed
and a virtual moment introduced at z = b. The external virtual work is
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Ext. V.W. = m̄θ(b). (10.27)

The internal virtual work is

Int. V.W. =

∫ L

0

T̄
dφ

dz
dz. (10.28)

From equilibrium of the virtual system we have that T̄ = m̄H(b− z).
From equilibrium for the real system we have that T (z) = (T1 + T2)−
T2H(z − L/2). Employing the constitutive relation for the real system
we find that dφ/dz = T/GJ . Inserting these results into the virtual work
theorem, we find that

m̄θ(b) =

∫ L

0

T̄
dφ

dz
dz (10.29)

=

∫ L

0

m̄H(b− z)[(T1 + T2)

− T2H(z − L/2)]/GJ dz (10.30)

=

∫ b

0

m̄[(T1 + T2)− T2H(z − L/2)]/GJ dz (10.31)

= m̄[(T1 + T2)b− T2(b− L/2)]/GJ (10.32)

θ(b) =
T2L

2GJ
+

T1b

GJ
. (10.33)

Remarks:

(1) This is exactly the result we would have obtained had we followed
the procedures developed in Chapter 7.

10.2.5 Bending of beams

If an element in a mechanical system of length L is loaded with a bending
moment then the internal virtual work in the element is given by

Int. V.W. =

∫
V

σ̄xxεxx dV (10.34)

=

∫
V

σ̄(−y)κ dV (10.35)

=

∫ L

0

κ

[∫
A

−yσ̄ dA

]
dx (10.36)

=

∫ L

0

M̄κ dx. (10.37)
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If and only if the system is elastic, one can also write

Int. V.W. =

∫ L

0

M̄
M

EI
dx. (10.38)

L

M1
EI −− constant

Δ = ?

Fig. 10.7 Beam bent by an end-
moment: linear elastic (real system).

Example 10.3

Bending of a beam. As an example application, consider the beam shown
in Fig. 10.7, and using the principle of virtual forces, determine the tip
displacement, Δ.

Solution
To begin, we construct the virtual system shown in Fig. 10.8; the virtual
system is identical to the real system but with all real loads removed
and a virtual force introduced at x = L. The external virtual work is

L

f

Fig. 10.8 Virtual system for deter-
mining the tip deflection for the beam
shown in Fig. 10.7.

Ext. V.W. = f̄Δ. (10.39)

The internal virtual work is

Int. V.W. =

∫ L

0

M̄κ dx. (10.40)

From equilibrium of the virtual system we have that M̄(x) = f̄(L− x).
From equilibrium for the real system we have that M(x) = M1. Employ-
ing the constitutive relation for the real system we find that κ = M/EI.
Inserting these results into the virtual work theorem, we find that:

f̄Δ =

∫ L

0

M̄κ dx (10.41)

=

∫ L

0

f̄(L− x)M1/EI dx (10.42)

=
M1f̄

EI
[L2 − L2/2] (10.43)

Δ =
M1L

2

2EI
. (10.44)

Remarks:

(1) This result is fully consistent to what we would have obtained if
we had followed our methods from Chapter 8.

10.2.6 Direct shear in beams (elastic only)

If an elastic element in a mechanical system of length L is loaded in
direct shear then the internal virtual work in the element is given by
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Int. V.W. =

∫
V

σ̄xyγxy dV (10.45)

=

∫
V

σ̄xy
σxy

G
dV (10.46)

=

∫ L

0

[∫
A

V̄

A
f(y)

V

AG
f(y) dA

]
dx (10.47)

= α

∫ L

0

V̄ V

AG
dx, (10.48)

where α =
∫
A
f2(y) dA and f(y) is the shear stress distribution pattern

for the cross-section of interest. Recall that f(y) is determined from a
shear flow analysis. For solid rectangular cross-sections α = 6/5 and for
solid circular cross-sections α = 10/9.

Δ = ?

EI −− constant

L

P

Fig. 10.9 Beam bent by an end-force:
linear Elastic (real system).

Example 10.4

A shear beam. As an example application, consider the beam shown
in Fig. 10.9 and determine using the principle of virtual forces the tip
displacement due to direct shear and bending, Δ.

Solution
Note that in this problem the beam is carrying its load both in shear and
in bending. Thus there will be two contributions to the internal virtual
work – one from the bending terms and one from the direct shear terms.
To begin, we construct the virtual system shown in Fig. 10.10; the virtual
system is identical to the real system but with all real loads removed
and a virtual force introduced at x = L. The external virtual work is

L

f

Fig. 10.10 Virtual system for deter-
mining the tip deflection for the beam
shown in Fig. 10.9.

Ext. V.W. = f̄Δ. (10.49)

The internal virtual work is

Int. V.W. =

∫ L

0

M̄κ dx+ α

∫ L

0

V̄ V

AG
dx. (10.50)

From equilibrium of the virtual system we have that M̄(x) =
f̄(L− x) and V̄ (x) = f̄ . From equilibrium for the real system we have
that M(x) = P (L− x) and V (x) = P . Inserting these results into the
virtual work theorem, we find that:

f̄Δ =

∫ L

0

M̄M

EI
+ α

V̄ V

AG
dx (10.51)

=

∫ L

0

f̄P

EI
(L− x)2 + α

f̄P

AG
dx (10.52)

= f̄

[
PL3

3EI
+ α

PL

AG

]
(10.53)

Δ =
PL3

3EI
+ α

PL

AG
. (10.54)
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Remarks:

(1) If you compare this result to the one derived from energy conserva-
tion in Chapter 8, you will see that it is the same. The first term on
the right-hand side gives the bending contribution, and the second
term gives the shear “correction”. As seen earlier in Chapter 8,
for slender beams the direct shear contribution to the overall
deflection is small in comparison to the bending contribution.

(2) This example demonstrates the remark made earlier that in sys-
tems that are simultaneously reacting to their load in multiple
ways, one can simply add up all the external virtual work quan-
tities and set them equal to the sum of all the internal virtual
work quantities; i.e., virtual work, like real work, is an additive
quantity.

10.3 Principle of virtual forces: Proof

The virtual work theorem which we stated and used in Sections 10.1
and 10.2 can be derived using the results from the prior chapters.
In this section, we will give two proof-of-concept proofs to show
that external virtual work is equal to internal virtual work. The
proofs will also illuminate the real meaning of the principle of virtual
forces.

10.3.1 Axial bar: Proof

b(x)

a L−a

AE −− constant

P

Fig. 10.11 Axial bar with distributed
load and end-load: linear Elastic (real
system).

Let us consider the problem shown in Fig. 10.11 and determine the axial
displacement at x = a. For the real problem, we know from Chapter 2
that we need to satisfy the equilibrium equation, dR/dx+ b(x) = 0,
the kinematic equation, ε = du/dx, and the constitutive equation, ε =
R/AE. It is emphasized that these items must be satisfied with respect
to the real system. Let us start with the kinematic equation for the real
system:

a L−a

f

Fig. 10.12 Virtual system for deter-
mining the displacement at x = a for
the bar shown in Fig. 10.11.

ε =
du

dx
. (10.55)

Using the virtual system shown in Fig. 10.12, we have from equilibrium
of the virtual system that R̄(x) = f̄H(a− x). Let us multiply both sides
of eqn (10.55) by R̄(x) and then integrate both sides from x = 0 to x = L∫ L

0

R̄ε dx =

∫ L

0

R̄
du

dx
dx. (10.56)

Equation (10.56) holds true, as it is simply an algebraic and calculus
manipulation of a true statement – viz. eqn (10.55). Note that the left-
hand side already gives the internal virtual work for a bar with axial
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forces. Let us now expand the right-hand side using the product rule of

differentiation: d(fg)
dx = df

dxg + f dg
dx .∫ L

0

R̄ε dx =

∫ L

0

d

dx

(
R̄u
)
− dR̄

dx
u dx. (10.57)

By equilibrium of the virtual system we see that dR̄/dx = −f̄ δ(x− a).
Substituting in and integrating both terms, one finds∫ L

0

R̄ε dx = R̄(L)u(L)− R̄(0)u(0) + f̄u(a). (10.58)

Noting that R̄(L) = 0 and u(0) = 0, we find that∫ L

0

R̄ε dx = f̄u(a). (10.59)

Or in other words, that internal virtual work equals external virtual
work.

Remarks:

(1) The proof of the virtual work theorem just given is, of course,
specific to the problem analyzed. The result, however, is very
general.

(2) More deeply, we can now understand the meaning of the principle
of virtual forces. If one closely examines the proof just given, one
sees that the final result, eqn (10.59), depends only on one thing
about the real system: its kinematic relation. All the manipula-
tions in the proof are either algebra, calculus, or associated with
the virtual system. If fact, with respect to the virtual system, we
have used only its equilibrium.

(3) The ability to apply eqn (10.59) to an actual problem requires one
to know ε(x) – the strains in the real system. To find these, one
needs to separately apply equilibrium to the real system to find
R(x) and to apply the constitutive relation to the real system to
find ε(x) = R(x)/AE. Thus one sees that the method of virtual
forces is simply a way of rewriting the kinematic relation for the
system. Equilibrium and the constitutive relation must be utilized
separately in coming to a “final answer” in any given problem.

(4) For the virtual system we have used only the property of equilib-
rium. The satisfaction of the kinematic relation and the constitu-
tive relation is not required for the virtual system. In reality, the
virtual system is merely a convenient device for finding an internal
force field in equilibrium.

10.3.2 Beam bending: Proof

EI −− constant
P

L

x

Fig. 10.13 Cantilever beam: linear
elastic (real system).

Let us consider the problem shown in Fig. 10.13 and determine the
rotation at x = a. Further, let us consider only the contributions from
bending; i.e. let us assume the beam is slender so that we may ignore
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direct shear. For the real problem, we know from Chapter 8 that we need
to satisfy the equilibrium relations

dV

dx
+ q(x) = 0 (10.60)

dM

dx
+ V (x) = 0, (10.61)

the (moment–curvature) constitutive relation

M = EIκ, (10.62)

and the kinematic relations

κ =
dθ

dx
(10.63)

θ =
dv

dx
. (10.64)

Let us start by combining the two kinematic relations into a single
equation for the real system:

a L−a

m

Fig. 10.14 Virtual system for finding
the rotation at x = a for the beam
shown in Fig. 10.13.

κ =
d2v

dx2
. (10.65)

Using the virtual system shown in Fig. 10.14, we have from equilibrium
of the virtual system that

M̄(x) = m̄H(a− x). (10.66)

Let us multiply both sides of eqn (10.65) by M̄(x), and then integrate
both sides of the result from x = 0 to x = L to give∫ L

0

M̄κ dx =

∫ L

0

M̄
d2v

dx2
dx. (10.67)

Equation (10.67) holds true, as it is simply an algebraic and calculus
manipulation of a true statement – viz., κ = d2v/dx2. Note that the
left-hand side already gives the internal virtual work for a beam in
bending. Let us now expand the right-hand side using the product rule

of differentiation: d(fg)
dx

= df
dx
g + f dg

dx
.∫ L

0

M̄κ dx =

∫ L

0

d

dx

(
M̄

dv

dx

)
− dM̄

dx

dv

dx
dx. (10.68)

By equilibrium of the virtual system we see that dM̄/dx = −m̄δ(x− a).
Substituting in and integrating both terms, one finds∫ L

0

M̄κ dx = M̄(L)
dv

dx
(L)− M̄(0)

dv

dx
(0) + m̄

dv

dx
(a). (10.69)

Noting that M̄(L) = 0 and θ(0) = 0, we find that∫ L

0

M̄κ dx = m̄θ(a). (10.70)
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Or in other words, as before, internal virtual work equals external virtual
work.

Remarks:

(1) As in the prior proof, the result demonstrated is particular to the
problem analyzed, but it does indeed hold true more generally.

(2) Note that with respect to the real system, eqn (10.70) involves
only the kinematic relations. Thus the principle of virtual forces/
moments again represents only the kinematics of the real system.

(3) To profitably employ eqn (10.70) one needs to separately solve for
the real moments in the beam using the equilibrium equations, and
then apply the constitutive relation to find the real curvatures.

(4) Proofs that internal virtual work equals external virtual work
in more general settings can be approached in a fashion similar
to what we have done here. However, this rapidly becomes very
tedious. In advanced courses on mechanics and structural analysis
these proofs are taken up utilizing advanced concepts that make
the proofs less tedious and more illuminating. Thus we omit, here,
the proofs for more general cases.

x

EI, GJ −− constant

Δ = ?

2L

L

P
Px

y

x

P

yPPL

Py
x

PP

Fig. 10.15 L-shaped hanger: linear
elastic (real system).

10.4 Applications: Method of virtual
forces

In this section, we will look at a series of examples to further illustrate
the use of the method of virtual forces.

Example 10.5

f

2L

L

y

x

f

fL f

fy x

y

f

f
fx

x

Fig. 10.16 Virtual system for finding
the tip deflection for the hanger shown
in Fig. 10.15.

L-shaped hanger. So far our examples have been ones which we could
have easily solved using techniques from earlier chapters. Let us now
consider an example that would be a little difficult to deal with directly
from the point of view of a differential equation formulation. For the L-
shaped hanger shown in Fig. 10.15 let us determine, using the principle
of virtual forces, the tip displacement, Δ.

Solution
To begin, we construct the virtual system shown in Fig. 10.16; the virtual
system is identical to the real system but with all real loads removed and
a virtual force introduced at the end of the hanger arm. The external
virtual work is

Ext. V.W. = f̄Δ. (10.71)

The internal virtual work consists of three contributions: bending in the
two segments of the L, and torsion in the section directly attached to the
wall. In this example we will ignore direct shear. Assuming everything
is elastic one has
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Int. V.W. =

∫ L

0

M̄M

EI
dx+

∫ 2L

0

M̄M

EI
dy +

∫ 2L

0

T̄ T

GJ
dy. (10.72)

We now make section cuts in the two arms of the hanger to find that

M(x) = Px M̄(x) = f̄x (10.73)

M(y) = Py M̄(y) = f̄y (10.74)

T (y) = PL T̄ (y) = f̄L. (10.75)

With the aid of the principle of virtual forces, we find

f̄Δ =

∫ L

0

f̄Px2

EI
dx+

∫ 2L

0

f̄Py2

EI
dy +

∫ 2L

0

f̄PL2

GJ
dy (10.76)

= f̄

[
PL3

3EI
+

8PL3

3EI
+

2PL3

GJ

]
(10.77)

Δ =
3PL3

EI
+

2PL3

GJ
. (10.78)

Remarks:

(1) To have solved this problem using the methods from the earlier
chapters would have been possible but more difficult. The principle
of virtual forces can be a very effective technique in problems with
these sorts of geometric complexity.

Example 10.6

Curved band. Our last example showed the ease with which we can
handle more geometric complexity if we use virtual work methods. Let
us continue with another example that is not easily treated using the
methods of the earlier chapters due to geometric features. Shown in
Fig. 10.17(a) is a thin metal band – clamped at one end and subject to
a horizontal force at the other. Let us determine, using the principle of
virtual forces, the end displacement, Δ.

Solution
To begin, we construct the virtual system shown in Fig. 10.17(b); the
virtual system is identical to the real system but with all real loads
removed and a virtual force introduced at the end of the band. The
external virtual work is

Ext. V.W. = f̄Δ. (10.79)

If we make a section cut at an arbitrary angle θ from the horizontal, we
see that there are internal moments, shear forces, and axial forces. Let
us assume that the band is sufficiently slender so that it is reasonable
to ignore direct shear and axial contributions. Thus, the internal virtual
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(a) Real system.

(b) Virtual system.

a

P

EI, EA, GA − constant

P

a

θ

P
M(θ) = Pasin(θ)

θ
a

ff

a

θ

f
θM(  ) = fasin(  )

Fig. 10.17 Curved band: linear elas-
tic.

work consists only of a bending contribution. Assuming everything is
elastic one has

Int. V.W. =

∫ π

0

M̄M

EI
adθ. (10.80)

From our section cut we see that M̄(θ) = f̄a sin(θ) and M(θ) =
Pa sin(θ). Combining now with the principle of virtual forces we find:

f̄Δ =

∫ π

0

P f̄ sin2(θ)
a3

EI
dθ (10.81)

=

∫ π

0

P f̄

[
1

2
− 1

2
cos(2θ)

]
a3

EI
dθ (10.82)

=
P f̄a3

EI

∫ π

0

1

2
− 1

2
cos(2θ) dθ (10.83)

=
P f̄a3

EI

[
θ

2
− 1

4
sin(2θ)

]π
0

(10.84)

= f̄
Pa3π

2EI
(10.85)

Δ =
Pa3π

2EI
. (10.86)

Remarks:

(1) This example shows the application of the principle of virtual work
to a situation where our methods from the earlier chapters would
not have helped us directly.
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Example 10.7

Beam supported by a truss rod. Here we wish to analyze the system shown
in Fig. 10.18 for the rotation at the point of application of the force.

Solution
To solve we will employ the virtual system shown in Fig. 10.19. The
external virtual work will be

Ext. V.W. = m̄θ(3). (10.87)

For the internal virtual work let us account for all modes of loading and
determine their relative contribution to the end-rotation. Using statics,
we find that the truss rod is in a state of axial load and that the beam
is in a state of bending, direct shear, and axial load. Thus there will
be four contributions to the internal virtual work. Using the internal
force diagrams given in Figs. 10.18 and 10.19, one finds the following
contributions.

−P

P

3 sqrt(2) P

x

x

x

P

1m 2m

3P
2P

1m

−2P

M

R

3P

V
2P

Fig. 10.18 Beam supported by a
truss rod: linear elastic (real sys-
tem). Atruss = 10−2 m2, Abeam = 2×
10−2 m2, Ibeam = 0.66× 10−4 m4,
E = 250 GPa, G = 100 GPa.

Truss contribution:

(−
√
2m̄)

−3
√
2P

√
2

AE
=

6
√
2Pm̄

AE
(10.88)

Axial contribution: ∫ 1

0

m̄
3P

AE
dy =

3Pm̄

AE
. (10.89)

Direct shear contribution:

α

∫ 1

0

(m̄)
2P

GA
dx = α

2Pm̄

GA
. (10.90)

Bending contribution:∫ 1

0

(−m̄x)
−2Px

EI
dx+

∫ 3

1

(−m̄)
−3P + Px

EI
dx =

3Pm̄

EI
. (10.91)

If we set the external virtual work equal to the sum of the internal virtual
work contributions and then factor out the bending part, we have

θ(3) =
3P

EI

⎡⎢⎢⎣ 1︸︷︷︸
Bending

+α
2EI

3GA︸ ︷︷ ︸
D.Shear

+
I

A︸︷︷︸
Axial

+2
√
2

I

AT︸ ︷︷ ︸
Truss

⎤⎥⎥⎦ . (10.92)

If we insert the given dimensions and material properties, we find that

θ(3) =
3P

EI

⎡⎣ 1︸︷︷︸
Bending

+ 0.007︸ ︷︷ ︸
D.Shear

+0.003︸ ︷︷ ︸
Axial

+ 0.02︸︷︷︸
Truss

⎤⎦ , (10.93)

where it is assumed that the beam cross-section is rectangular, (α =
6/5).
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Remarks:

(1) Thus for these dimensions and material properties we would
have been fully justified in ignoring direct shear and axial force
contributions from the beam. The truss contributions are, how-
ever, 2% of the bending contributions, and in many situations
should be retained.

V
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x

x

1m 2m

m
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m
m

M

−m
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m

m

Fig. 10.19 Virtual system for find-
ing the end rotation for the beam in
Fig. 10.18.

Example 10.8

Indeterminate truss. To apply the method of virtual forces, as illustrated
by all our examples so far, one needs to be able to compute the internal
forces in the real and virtual systems. If, however, one is faced with
an indeterminate problem, then this will not be directly possible. To
treat such problems we can look back to the method introduced in
earlier chapters where redundant supports are removed and replaced
by unknown reactions. The unknown reactions are then determined by
imposing the kinematic constraint of zero motion at the support location.
As an example application of this methodology, consider the truss system
shown in Fig. 10.20(a) and determine the vertical deflection at the point
of load application.

Solution
The system is statically indeterminate of degree one, and thus can be
made determinate by removing one support, as shown in Fig. 10.20(b).
In order to solve for the two unknowns in the problem, Δ and F , we will
need two virtual systems as shown in Fig. 10.20(c). The virtual system
on the left will allow us to determine an expression for F , and the system
on the right will allow us to determine Δ.

We start with an application of statics to the three systems. For the
real system one has that the internal forces in the truss bars are

R1 = P − F/
√
2 R2 = F R3 = −F/

√
2. (10.94)

For the virtual system on the left one has

R̄1 = −1̄/
√
2 R̄2 = 1̄ R̄3 = −1̄/

√
2. (10.95)

For the virtual system on the right one has

R̄1 = 0 R̄2 = 0 R̄3 = 1̄. (10.96)

Applying the principle of virtual forces using the virtual system on the
left gives

ΔF 1̄ =
(−1̄/

√
2)(P − F/

√
2)L

AE
+

1̄F
√
2L

AE
+

(−1̄/
√
2)(−F/

√
2)L

AE
.

(10.97)

Since we know that ΔF is zero, we can use this equation to solve for F :

F =
P

2 +
√
2
. (10.98)
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Δ = ?
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AE −− constant

(a) Real system. (b) Modified real system.

(c) Virtual systems.

P

Δ = ?

F ΔF = 0

1

2
3

Fig. 10.20 Indeterminate truss sys-
tem: linear elastic.

Applying the principle of virtual forces using the virtual system on the
right gives:

Δ1̄ =
0(P − F/

√
2)L

AE
+

0F
√
2L

AE
+

1̄(−F/
√
2)L

AE
(10.99)

and upon use of eqn (10.98) we arrive at

Δ = −PL

AE

1

2 +
√
2
. (10.100)

Chapter summary

� Virtual work theorem: Ext. V.W. = Int. V.W.
� The principle of virtual forces is an alternative expression of the
kinematic relations for a mechanical system.

� Ext. V.W. (virtual forces): f̄Δ or m̄θ
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� Int. V.W. (virtual forces):

− Axial forces:
∫
L
R̄ε dx, (elastic)

∫
L
R̄ R

AE
dx

− Torsion:
∫
L
T̄ φ′ dz, (elastic)

∫
L
T̄ T

GJ
dz

− Bending:
∫
L
M̄κ dx, (elastic)

∫
L
M̄ M

EI
dx

− Direct shear (elastic only): α
∫
L
V̄ V

AG
dx (α = 6/5, rectangular;

α = 10/9, solid round)

Exercises

(10.1) A solid circular bar is bent 90o at two locations and
is built-in at one end. (a) Determine a formula for
the vertical deflection at the point of load appli-
cation. Assume A, I, J, E, and G are constants.
(b) Let L = 200 mm and the diameter of the bar
be d = 30 mm. What is the percent contribution
to the total deflection from axial loading, bending,
torsion, and direct shear? Assume E/G = 2. (c)
Repeat part (b) with L = 500 mm and d = 10 mm.

L

L

L

P

(10.2) Derive the formula for the tip deflection of a can-
tilever beam with a transverse load at the tip using
virtual work. Assume linear elasticity and ignore
direct shear.

(10.3) Find the vertical deflection at the tip of the struc-
ture shown below. Assume all sections are slender.

b

PEI −− constant

a

b b

(10.4) Determine the vertical deflection at the upper
point of loading for the structure shown. Ignore
direct shear effects. (Recall that sin2(θ) = 1

2
−

1
2
cos(2θ), cos2(θ) = 1

2
+ 1

2
cos(2θ).)

R

(EI)2

(EI)1

L

L

w
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(10.5) Shown is a serpentine spring, composed of N
“hairpin” segments of a round wire. Determine an
expression for the torsional stiffness of the spring.
Express your answer in terms of E, I, J, G,
a, L, N .

T
L

1 2 3 4 5 N

a/2 a a/2

(10.6) Using virtual work, find the horizontal deflection
at point A for the elastic system shown below.
Assume all members are slender and that the sec-
tion properties are the same constant throughout.

L1

L2

F A

(10.7) By exploiting symmetry, find the beam deflections
at the load points. Assume a flexural rigidity EI
and ignore direct shear effects.

L/4 L/4L/2

P P

(10.8) For the structure shown, determine the deflection
at the center of the beam. Assume the truss mem-
bers have a cross-sectional area A and a Young’s
modulus E; assume the beam has a flexural rigidity
EI. Ignore direct shear in the beam.

LL

L

L/2

P

(10.9) Using the geometry and load in Exercise 10.1(c),
determine the deflections at the load point perpen-
dicular to the direction of P .

(10.10) Using the geometry and load in Exercise 10.4,
determine the rotation at the point where the
curved arc meets the horizontal beam.

(10.11) For the truss shown, find the horizontal deflection
at the load point.

2A, E, 2L

P

A, E, 3L/2

A, E, 3L/2
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(10.12) Using the geometry and load in Exercise 10.11,
determine the vertical deflection at the load
point.

(10.13) Using the geometry and load in Exercise 10.11,
determine the vertical motion of the roller.

(10.14) Find the the deflection at the hinge in the beam
shown. Assume EI constant, and that the beam
is slender.

Me

L 3L

Hinge

(10.15) Using the geometry and load in Exercise 10.14,
determine the rotation at the point of application
of the end moment, Me.

(10.16) Find the rotation at point B in the slender frame
below. Assume EI constant.

B

1 kN/m

30 kN/m

2 m

2 m

(10.17) Using the geometry and loading in Exercise 10.16,
determine the horizontal deflection at point B.

(10.18) Consider the following U-shaped structure. (a)
Find the formula for the change in separation of
the load points. Assume EI constant and ignore
direct shear effects. (b) Assume the structure is
formed from a solid round wire with L = 100 mm,
R = 15 mm, and a diameter of d = 2 mm. Find
the stiffness of the U (for opening).

PP

R

L

(10.19) For the frame shown below, determine the deflec-
tion in the direction of the applied force P . Do
not ignore any terms. Assume all elastic and
geometric properties are given constants.

L

P

Δ = ?
L

(10.20) Determine the vertical displacement at the point
of load for the structure shown. Assume all sec-
tion properties are constants; the length of each
arm is L, and they meet at 90o. Neglect the effects
of direct shear.

P

L

L
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(10.21) Find the rotation at the point of application of
the end-moment, Me, in the beam shown below.
Assume EI and GA are constants. Include the
effects of direct shear.

Me

L 3L

(10.22) Using the geometry and load in Exercise 10.21,
determine the deflection at the load point.

(10.23) Using the geometry and load in Exercise 10.21,
determine the rotation at the location of the pin
support.

(10.24) Using the geometry and load in Exercise 10.21,
determine the reaction at the location of the pin
support.

(10.25) Derive the virtual work equation that is used
to solve Exercise 10.14. (Hint: Start with the
relation κ = d2v/dx2.)

(10.26) Derive the virtual work equation that would
be used to determine θ in the exercise shown.
Assume the bar is linear elastic and circular.
(Hint: start with the basic kinematic relation for
torsion.)

L

Ta
t(z)

θ = ?

(10.27) Consider Example 10.7. Assume that in addi-
tion to the indicated load there is a temperature
increase of 50oC and that the coefficient of ther-
mal expansion for the beam and truss bar mate-
rial is 25× 10−6 /C. Find the vertical deflection
at the point of load application.

(10.28) In the statically indeterminate system shown: (a)
find the force in the truss bar; (b) find the deflec-
tion Δ at the point of load application.

L

EI

aEA

F
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Potential-Energy Methods

In this chapter we will examine the use of potential-energy methods to
solve problems similar to those we looked at in Chapter 10. In fact, we
will see in the second part of this chapter that the methods we will
develop will lead to equations that are strikingly similar to those used in
the method of virtual forces. This similarity is not accidental as potential
energy methods are intimately related virtual work methods. Thus the
techniques we will use in this chapter can be used as an alternate way
of understanding virtual work. It is, however, noted that the concepts of
virtual work are more general than potential energy methods – potential-
energy methods apply only to conservative systems, while virtual work
methods can be applied to conservative and non-conservative systems.

11.1 Potential energy: Spring-mass
system

As an introduction to potential-energy methods let us recall the familiar
example of a mass with weight P resting on top of a linear spring with
spring constant k, as shown in Fig. 11.1. Before we place the mass on
the spring, let us assume that it has a length zo. After we place the mass
on the spring, the spring will compress an amount Δ and the mass will
come to a static equilibrium position z = zo −Δ. We know for static
equilibrium of the mass that the sum of the gravitational force and the
spring force (sum of the forces in the z-direction) must be zero:

z

k

P

Δ

Fig. 11.1 Spring-mass system.

kΔ− P = 0. (11.1)

Both of the forces acting on the mass happen to be conservative. From
Chapter 1, we know that the gravitational force can be expressed as the
potential

Πgravity = Pz = P (zo −Δ), (11.2)

where gravity is acting downwards and thus the gravity force acting on
the mass is Fgravity = −dΠ/dz = −P . The spring force itself is Fspring =
kΔ = k(zo − z); i.e. for positive motion Δ the spring pushes up on the
mass. If we want, we can also express this force in terms of the potential

Πspring =
1

2
k(zo − z)2 =

1

2
kΔ2 (11.3)
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Note that −dΠspring/dz = k(zo − z) as desired. Also observe that the
potential energy for the spring is simply the stored elastic energy in the
spring.
The total potential energy of the system is given by

Π(z) = Πspring(z) + Πgravity(z) =
1

2
k(zo − z)2 + Pz (11.4)

and the force balance will be given by

Fspring + Fgravity = −dΠspring

dz
− dΠgravity

dz
= −dΠ

dz
= 0. (11.5)

This last expression is our main result. It says that for a static equilib-
rium, the total potential energy of a system must be stationary. In other
words, we can express static equilibrium directly by saying the sum of
the forces must be zero or indirectly by asserting that the total potential
energy of a conservative system must be stationary. This is known as the
principle of stationary potential energy.

Remarks:

(1) It is usually more convenient to express the potentials in terms
of the displacement of the system as opposed to in terms of the
absolute position of the system. In this case we will have

Π(Δ) = Πspring(Δ) + Πgravity(Δ) =
1

2
kΔ2 − PΔ. (11.6)

In eqn (11.6) we have omitted the constant term Pzo, since
upon differentiation it will disappear. Requiring stationarity with
respect to Δ will give dΠ/dΔ = kΔ− P = 0 as expected.

(2) The potential energy of an elastic system will always be its stored
elastic energy.

(3) All loads which are constant can always be modeled as being pro-
vided by gravitational weights. For an arbitrary constant load F ,
the potential of the load can always be expressed as Πload = −FΔ,
where Δ is the motion at the point of application of the load in
the direction in which the load is applied.

(4) It is important to pay attention to what it means to require the
total potential energy of a system to be stationary. This principle
has been derived from the notion of static equilibrium. Thus to
come to a complete solution to a given mechanical problem will
also require the separate application of kinematic and constitutive
relations. In the example we have used to develop this principle,
we have used a constitutive relation for the spring with parameter
k. The kinematics of the problem have also been employed in the
hidden assumption that the displacement of the mass and the
spring are the same. So in summary, the principle of stationary
potential energy is equivalent to equilibrium, and to solve any
problem using the principle of stationary potential energy will, in
general, require the separate application of kinematic relations.
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The constitutive relation will a priori be embedded in the defini-
tion of the stored energy, and need not be introduced separately.

(5) In many texts one will see the phrase minimum potential energy.
The notion of stationary potential energy is slightly more gen-
eral. Stationary potential energy is equivalent to the notion of
static equilibrium and this equilibrium can be stable, unstable,
or neutral. Minimum potential energy is associated with stable
static equilibria. We will investigate this issue in more detail in
Chapter 12. All the problems in the present chapter, however, are
associated with stable equilibria and thus are in fact minimum
problems.

11.2 Stored elastic energy: Continuous
systems

To be able to exploit the concept of stationary potential energy for struc-
tural systems we will need expressions for the stored elastic energy, W ,
for various load-bearing cases. The needed expressions were developed in
the prior chapters based upon the notion that the total stored energy in
a body is given by integrating the strain energy density over the volume.
In the general linear elastic setting the strain energy density is recalled
to be

w =
1

2
(σxxεxx + σyyεyy + σzzεzz + σxyγxy + σyzγyz + σzxγzx). (11.7)

For the different types of loadings we study, this expression, when
integrated over the volume of a load bearing member, reduces to:
Axial forces:

W =

∫
V

1

2
σxxεxx dV =

∫
L

∫
A

1

2
Eε2 dAdx (11.8)

=

∫ L

0

1

2
AE

(
du

dx

)2

dx. (11.9)

Torsional loads:

W =

∫
V

1

2
σzθγzθ dV =

∫
L

∫
A

1

2
Gγ2 dAdz (11.10)

=

∫ L

0

∫
A

1

2
Gr2

(
dφ

dz

)2

dAdz (11.11)

=

∫ L

0

1

2
GJ

(
dφ

dz

)2

dz. (11.12)

Bending loads:

W =

∫
V

1

2
σxxεxx dV =

∫
L

∫
A

1

2
Eε2 dAdx (11.13)
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=

∫ L

0

∫
A

1

2
Ey2

(
d2v

dx2

)2

dAdx (11.14)

=

∫ L

0

1

2
EI

(
d2v

dx2

)2

dx. (11.15)

Remarks:

(1) We have not provided an expression for the stored energy due to
direct shear. You will notice that all of the expressions are given
in terms of the relevant measure of strain: normal strain du/dx,
twist rate dφ/dz, and curvature d2v/dx2. With our assumed beam
kinematics we do not have such a measure of strain for direct shear.
Thus we are not able to provide, within the assumptions of our
beam theory, an expression for the stored energy in direct shear
in terms of a kinematic measure.

(2) In a linear system that is carrying its load in multiple ways, one
can simply add up all the different stored energy terms to compute
the total stored energy. This functions just as it did with virtual
work.

To illustrate the use of these expressions let us look at two simple
examples, in which we will assume that we are dealing with dead loads.
We will also examine only problems associated with point loads, which
will greatly simplify the computation of the stored elastic energies.

Example 11.1

Bar with two axial forces For the bar shown in Fig. 11.2, determine
the relation between the applied forces (P1 and P2) and the resulting
displacements (Δ1 and Δ2).

Δ1

P1

L−aa
x

AE −− constant

P2

Δ2

Fig. 11.2 Bar with two axial forces.
Solution
The potential energy for the total system is given by:

Π =

∫ L

0

1

2
AEε2 dx− P1Δ1 − P2Δ2. (11.16)

In order to further the analysis we note that between the loads the
displacement field is linear and thus the strains are constant in each
segment. Additionally, the strains are expressible in terms of the dis-
placements Δ1 and Δ2. Thus,

Π(Δ1,Δ2) =

∫ a

0

1

2
AE

(
Δ2

a

)2

dx+

∫ L

a

1

2
AE

(
Δ1 −Δ2

L− a

)2

dx

− P1Δ1 − P2Δ2. (11.17)
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For equilibrium, the potential energy will be stationary (according to the
principle of stationary potential energy). This results in two equations:

∂Π

∂Δ1
= 0 (11.18)

∂Π

∂Δ2
= 0. (11.19)

Computing the indicated derivatives gives two linear relations between
the applied forces and the resulting displacements:

AE(Δ1 −Δ2)

L− a
= P1 (11.20)

AEΔ2

a
− AE(Δ1 −Δ2)

L− a
= P2 . (11.21)

Remarks:

(1) The solution as given provides the required loads for known dis-
placements. One can of course invert the relations (two equations
in two unknowns) to find the displacements for given forces.

Example 11.2

Statically indeterminate rod with a point torque. For the rod shown in
Fig. 11.3 determine the relation between the applied torque, T1, and the
resulting rotation at the point of application, θ1.

z

T1

a L−a

θ1

GJ −− constant

Fig. 11.3 Rod with a single-point
torque. Solution

The potential energy for the total system is given by:

Π =

∫ L

0

1

2
GJ

(
dφ

dz

)2

dz − T1θ1. (11.22)

We note that between the load and the supports the rotation field is
linear and thus the twist rates are constant in each segment. This holds,
since there are no distributed torques on the rod. The twist state is thus
expressible in terms of the rotation θ1 and the location of the applied
torque. This leads to

Π(θ1) =

∫ a

0

1

2
GJ

(
θ1
a

)2

dz +

∫ L

a

1

2
GJ

( −θ1
L− a

)2

dz − T1θ1. (11.23)

For equilibrium, the potential energy will be stationary (according to the
principle of stationary potential energy). This results in the equation:
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dΠ

dθ1
= 0. (11.24)

Computing the indicated derivative gives

T1 = GJ
θ1
a

+GJ
θ1

L− a
. (11.25)

Remarks:

(1) Note that the static indeterminacy did not create any difficulties
for the application of the principle of stationary potential energy.
Static indeterminacy is naturally handled by the kinematic nature
of the principle.

11.3 Castigliano’s first theorem

The results of the last two examples illustrate a theorem known as
Castigliano’s first theorem:

If the total stored energy, W , in an elastic body is expressed in terms of the
displacements/rotations at the points of application of isolated forces/torques,
then those forces/torques are given by the derivatives of the stored energy with
respect to the corresponding displacements/rotations.

To express this statement in equation form, suppose one has an elastic
body subject to point forces Pk and point torques Mk. Let the motion at
these locations be given by Δk and θk. If the total stored elastic energy
in the body is given by W (Δ1,Δ2, · · · , θ1, θ2, · · · ), then

Pk =
∂W

∂Δk
(11.26)

Mk =
∂W

∂θk
. (11.27)

Remarks:

(1) To solve problems in mechanics we generally need to use equi-
librium, kinematic, and constitutive relations. The principle of
stationary potential energy and Castigliano’s first theorem are
really re-statements of the equilibrium relations for a system. Thus
to come to a “solution” of a problem we must independently deter-
mine the kinematic response of the system in order to compute the
integrand for the stored energy. Likewise the constitutive relation
is already buried in the stored energy relation via the explicit
presence of the material constants in the integrals.
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11.4 Stationary complementary potential
energy

W*

Δ

P

Fo
rc

e

Displacement

W

Fig. 11.4 Response of a non-linear
spring.

Every elastic system can have its energetics described in two ways:
energy and complementary energy. Consider a non-linear elastic spring
whose force-displacement response is shown in Fig. 11.4. If the spring is
extended with a force P to a displacement Δ, the energy stored in the
spring is given by the area under the curve, W (Δ). The complementary
energy in the spring is defined to be the area above the curve W ∗(P ).
The two are related as

W (Δ) +W ∗(P ) = PΔ . (11.28)

If the spring is linear elastic with spring constant k, then W (Δ) = 1
2
kΔ2

(as before) and W ∗(P ) = 1
2
1
kP

2.

Remarks:

(1) In linear elastic systems, W and W ∗ are numerically equivalent.
In non-linear elastic systems they are not.

(2) The relation between energy and complementary energy defined
here is analogous to the relations between different types of state
functions in thermodynamics. In fact, eqn (11.28) is nothing more
that the Legendre transformation that one studies in thermody-
namics.

With a definition of complementary stored energy, we can now define
complementary potential energy. Consider again the linear spring shown
in Fig. 11.1, but this time subjected to a fixed displacement Δ instead of
a fixed load P . The complementary potential energy of the total system
is composed of the stored complementary energy of the spring, 1

2kP
2,

and the complementary potential energy of the load which is again
given as −PΔ. Thus we have for the total complementary potential
energy:

Π∗(P ) =
1

2k
P 2 − PΔ, (11.29)

where the independent variable is the force P in the spring. The principle
which we wish to exploit is that conservative systems have stationary
complementary potential energy when they satisfy their fundamental
kinematic relations. Thus, when the system is in a kinematically com-
patible configuration we have

dΠ∗

dP
= 0. (11.30)

For the linear spring system, this leads to

0 =
dΠ∗

dP
=

P

k
−Δ. (11.31)
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Remarks:

(1) As with the concept of stationary potential energy, it is impor-
tant to notice what type of relation we have arrived at via the
principle of stationary complementary potential energy : kinematic,
constitutive, or equilibrium. Equation (11.31) says that the spring
displacement, P/k, is equal to the applied displacement (where
use has been made of the constitutive parameter for the spring, k).
Thus, by finding the stationary complementary potential energy
states of the system we have arrived at a statement of kinematic
compatibility with aid of the constitutive relation. The notion of
stationary complementary potential energy is equivalent to assert-
ing that a system satisfies its relevant kinematic relations and to
solve any problem using the principle of stationary complementary
potential energy will require the separate application of the equi-
librium equations. The constitutive relation is already included in
the analysis by way of the definition of the complementary stored
energy.

(2) Note that the (negative) derivative of each contribution to the
total complementary potential energy gives the motion of the
individual elements of the mechanical system. For the system to
remain connected, kinematically compatible, the motions must
sum to zero.

(3) This kinematic interpretation of the principle of stationary com-
plementary potential energy shows, also, that this concept is
equivalent (for elastic systems) to the principle of virtual forces.

(4) Later, in Chapter 13 we will see that the principle of stationary
potential energy is related to a concept known as the principle of
virtual displacements.

11.5 Stored complementary energy:
Continuous systems

To exploit the principle of stationary complementary potential energy
we will need expressions for the stored complementary energy in various
types of structural systems. In Section 11.2 we derived the expressions
for the stored elastic energy, and these can be easily converted to
complementary energy expressions using the notion that complementary
energy is represented by the area above the response curve of a system,
while the area under the response curve is the energy in the system.
If we consider only linear elastic systems, then for our various types of
load-bearing members we find:
Axial forces:

W ∗ =

∫
V

1

2
σxxεxx dV =

∫
L

∫
A

1

2E
σ2 dAdx (11.32)

=

∫ L

0

1

2

R2

AE
dx. (11.33)
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Torsional loads:

W ∗ =

∫
V

1

2
σzθγzθ dV =

∫
L

∫
A

1

2G
τ2 dAdz (11.34)

=

∫ L

0

1

2

T 2

GJ
dz. (11.35)

Bending loads:

W ∗ =

∫
V

1

2
σxxεxx dV =

∫
L

∫
A

1

2E
σ2 dAdx (11.36)

=

∫ L

0

1

2

M2

EI
dx . (11.37)

Direct shear:

W ∗ =

∫
V

1

2
σxyγxy dV =

∫
L

∫
A

1

2G
τ2 dAdx (11.38)

= α

∫ L

0

1

2

V 2

GA
dx . (11.39)

Remarks:

(1) As with “regular” energy, if an element in a linear system is
carrying its load in multiple ways, then one can simply add up
all the terms to find the total stored complementary energy.

Let us now consider two examples using the concept of stationary
complementary potential energy.

Example 11.3

Bar with two axial forces revisited. In this example we will re-solve
Example 11.1 using stationary complementary potential energy.

Solution
The complementary potential energy for the system is given as

Π∗ =

∫ L

0

1

2

R2

AE
dx− P1Δ1 − P2Δ2. (11.40)

By separately using the equilibrium equations for the system, we find
the internal forces to be P1 + P2 and P1 in the two segments of the bar.
Thus,

Π∗(P1, P2) =

∫ a

0

1

2

(P1 + P2)
2

AE
dx+

∫ L

a

1

2

P 2
1

AE
dx

− P1Δ1 − P2Δ2.

(11.41)

The complementary potential energy should be stationary according to
the principle of stationary complementary potential energy. This results
in two equations:
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∂Π∗

∂P1
= 0 (11.42)

∂Π∗

∂P2
= 0. (11.43)

Computing the indicated derivatives gives two linear relations between
the applied forces and the resulting displacements:

(P1 + P2)a

AE
+

P1(L− a)

AE
= Δ1 (11.44)

(P1 + P2)a

AE
= Δ2. (11.45)

Remarks:

(1) This result is entirely equivalent to eqns (11.20) and (11.21), which
we obtained using stationary potential energy.

(2) Note that to solve the problem using stationary complementary
potential energy, we needed to separately invoke the equilibrium
equations to determine R(x) in terms of the applied loads. The
constitutive relation is already embedded in the complementary
energy expression. Thus the principle of stationary complementary
potential energy represents the governing kinematic relations of
the problem. It is, in the elastic case, equivalent to the method of
virtual forces introduced in Chapter 10.

Example 11.4

Cantilever beam. Figure 11.5 shows a cantilever beam with an end-load.
Find the deflection of the tip of the beam.

P

L

EI −− constant

x

Fig. 11.5 Cantilever beam.Solution
First let us construct the complementary potential for the system. If we
ignore direct shear, then we have

Π∗ =

∫ L

0

1

2

M2

EI
dx− PΔ. (11.46)

From the equilibrium equations for the beam one finds that M(x) = Px;
thus

Π∗(P ) =

∫ L

0

1

2

(Px)2

EI
dx− PΔ. (11.47)

From the requirement of stationarity with respect to P , one can compute
that

Δ =

∫ L

0

1

2
2
Px2

EI
dx =

PL3

3EI
. (11.48)
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Remarks:

(1) Notice that we recover the same answer that we found when we
solved this type of problem via direct integration of the ordinary
differential equation EIv′′′′ = q.

11.6 Castigliano’s second theorem

The results of the last two examples illustrate a theorem known as
Castigliano’s second theorem:

If the total stored complementary energy,W ∗, in an elastic body is expressed in
terms of isolated applied forces/torques, then the displacements/rotations at
the points of application of the loads are given by the derivatives of the stored
complementary energy with respect to the corresponding forces/torques.

To express in equation form, suppose one has an elastic body subject to
point forces Pk and point torques Mk. Let the motion at these locations
be given by Δk and θk. If the total stored complementary elastic energy
in the body is given by W ∗(P1, P2, · · · ,M1,M2, · · · ), then

Δk =
∂W ∗

∂Pk
(11.49)

θk =
∂W ∗

∂Mk
. (11.50)

Remarks:

(1) As seen throughout, to solve problems in mechanics we need to use
equilibrium, kinematic, and constitutive relations. The principle
of stationary complementary potential energy and Castigliano’s
second theorem are really restatements of the kinematic relations
for a system. Notice that to come to a “solution” of a problem
we must independently apply equilibrium of the system in order
to compute the integrand for the stored complementary energy.
Likewise the constitutive relation is already embedded in the
relation via the explicit presence of the material constants in the
integrals.

(GJ)2 −− constant

L L

M1

(GJ)1 −− constant

M2

z

Fig. 11.6 Torsion bar with two app-
lied loads.

Let us now consider a series of examples using Castigliano’s second
theorem.

Example 11.5

Torsion bar with two loads. Shown in Fig. 11.6 is a stepped torsion bar
with two applied loads. Find the rotation of the bar at z = L.
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Solution
First write down the complementary stored energy as

W ∗(M1,M2) =

∫ 2L

0

T 2

2GJ
dz

=

∫ L

0

M2
2

2G2J2
dz +

∫ 2L

L

(M1 +M2)
2

2G1J1
dz.

(11.51)

The desired rotation is given via Castigliano’s second theorem as

θ1 =
∂W ∗

∂M1
=

∫ 2L

L

2(M1 +M2)

2G1J1
dz =

(M1 +M2)L

G1J1
. (11.52)

Remarks:

(1) The sense of the rotation computed is the same as the sense of the
applied torque. This is just as we had when using the method of
virtual forces.

(2) To be able to complete the computation, we had to solve separately
for T (z) using the governing equilibrium equations.

Example 11.6

Mid-span deflection in a cantilever beam. Consider the cantilever beam
shown in Fig. 11.5, and find the upward deflection of the beam at mid-
span using Castigliano’s second theorem.

Solution
First note that there is no load at mid-span. Thus we can not just form
the complementary stored energy and take its derivative with respect
to the corresponding load – as it does not exist. To be able to apply
Castigliano’s second theorem to this problem we will need to modify the
problem by adding a force, f , at x = L/2. At the end of the solution we
will make use of the fact that we know that f = 0. The modified system
is shown in Fig. 11.7. The complementary stored energy is given as

EI −− constant

P

L

x

f

L/2

Fig. 11.7 Cantilever with added force
at mid-span.

W ∗(f, P ) =

∫ L

0

1

2

M2

EI
dx, (11.53)

where by equilibrium M(x) = −Px+ f〈x− L
2 〉. The desired deflection

is then given by

v

(
L

2

)
=

∂W ∗

∂f
(0, P ) =

∫ L

0

[
M

EI

∂M

∂f

]
f=0

dx (11.54)
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=

∫ L

0

[
−Px+ f〈x− L

2 〉
EI

〈x− L

2
〉
]
f=0

dx (11.55)

=

∫ L

L
2

−Px

EI
(x− L

2
) dx (11.56)

= −5PL3

48EI
. (11.57)

Remarks:

(1) When applying Castigliano’s second theorem in problems where
there is no load at the location of interest, one must first introduce
an extra load at that location. After the taking of the required
derivative, one can then set this extra load to zero. Remember to
set it to zero after taking the derivative not before; otherwise you
will always get zero for an answer.

Example 11.7

Closely coiled helical spring. Figure 11.8 shows a closely coiled helical
spring. It is made of a thin wire of radius r that has been wound into
a coil of radius R. Using Castigliano’s second theorem, find the spring
constant for the spring.

P

P

Fig. 11.8 Helical spring with eight
coils.

P

P

PR

R

Fig. 11.9 Free-body diagram of heli-
cal spring.

Solution
The spring constant for the spring gives the relationship between the
applied force and the extension of the spring Δ = P/k. If we make a
free-body diagram of the spring as shown in Fig. 11.9, then we see that
the wire is in a state of torsion and direct shear. As long as the length
of the wire is large in comparison to the radius of the wire we are safe
in ignoring the direct shear contribution to the overall deflection. Thus
we can write

W ∗(P ) =

∫
arc−length

1

2

T 2

GJ
ds , (11.58)

where the integral is taken over the helical contour of the wire, T =
PR from our free-body diagram, J = πr4/2, and ds is the arc-length
integration parameter. The total arc-length of the wire L = 2πRNcoils,
where Ncoils is the number of complete coils in the spring. Substituting
this into the expression for the stored complementary energy gives

W ∗(P ) =
2P 2R3Ncoils

Gr4
. (11.59)

We can now apply Castigliano’s second theorem to find

Δ =
∂W ∗

∂P
=

4R3Ncoils

Gr4
P (11.60)
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and we can identify the expression for the spring constant of a closely
coiled helical spring as

k =
Gr4

4R3Ncoils
. (11.61)

Remarks:

(1) As with the method of virtual forces, the concept of stationary
complementary potential can be used profitably on geometrically
complex systems.

Example 11.8

L2

P

Δ

y

x

L1

Fig. 11.10 Angle frame with EI, AE,
GA constant.

Angle frame. Consider the frame shown in Fig. 11.10 and find the tip-
deflection in the direction of the applied load. Do not assume that the
members are slender.

PL2

P

x

P

L2

Fig. 11.11 Free-body diagram of hor-
izontal segment of angle frame.

P

y

P
Py

Fig. 11.12 Free-body diagram of ver-
tical segment of angle frame.

Solution
The frame is composed of two segments. From a free-body diagram as
shown in Fig. 11.11 we see that the horizontal segment is in a state
of axial load and bending. From a free-body diagram of the vertical
segment, Fig. 11.12, we see that it is in a state of bending and direct
shear. Thus for the total complementary stored energy we find

W ∗ =

∫ L2

0

M2

2EI
dx+

∫ L2

0

R2

2AE
dx

+

∫ L1

0

M2

2EI
dy + α

∫ L1

0

V 2

2GA
dy. (11.62)

The desired deflection is given by

Δ =
∂W ∗

∂P
=

∫ L1

0

M

EI

∂M

∂P
dx+

∫ L1

0

R

AE

∂R

∂P
dx

+

∫ L2

0

M

EI

∂M

∂P
dy + α

∫ L2

0

V

GA

∂V

∂P
dy. (11.63)

From equilibrium applied to the free body diagrams one has thatM(x) =
PL2, R(x) = P , M(y) = Py, and V (y) = P . Inserting these expressions
and their derivatives, one finds:

Δ =
PL1

AE
+

PL2
2L1

EI
+

PL3
2

3EI
+ α

PL2

GA
. (11.64)

Remarks:

(1) The final result is observed to be a superposition of the extension
of the horizontal arm, the rotation of the horizontal arm times the
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length of the vertical arm, the bending of the vertical arm, and
the shear deformation of the vertical arm.

Example 11.9

Beam and truss system. Consider the beam and truss system shown in
Fig. 11.13(a). Find the downward deflection at the point where the load
is applied. Assume that all members are slender.

Solution
Free-body diagrams of the system, Fig. 11.13(b), show that the beam is
in a state of bending with M(x) = F

√
2x and that the truss bars have

internal forces of R1 = F
√
2 and R2 = F . Since all members are slender,

we will ignore the direct shear and axial effects in the beam. The total
stored complementary energy in the system is

W ∗ =

∫ √
2L

0

M2

2EI
dx+

∫ √
2L

0

R2
1

2AE
dy +

∫ L

0

R2
2

2AE
dz. (11.65)

The desired deflection is then given as

Δ =
∂W ∗

∂P
= F

[
4
√
2L3

3EI
+

(1 + 2
√
2)L

AE

]
. (11.66)

(a) System to be analyzed.

(b) Free-body diagrams.

Δ
F

L

L L L

EI −− constant

AE −− constant

x
y

z

R2 = F

F

sqrt(2) F

sqrt(2)Fx

x

sqrt(2) F

R1 = sqrt(2) F

Fig. 11.13 Beam and truss system.
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Remarks:

(1) In this example the system was composed of different types of
load bearing elements. Notwithstanding, the principle of station-
ary complimentary potential energy still holds as long as one
accounts for all contributions to the complementary potential
energy.

Example 11.10

Statically indeterminate truss. Consider now the statically indeterminate
truss shown in Fig. 11.14(a). Find the horizontal deflection at the point
of application of the load.

Solution
The system is statically indeterminate; thus, we cannot a priori solve for
the equilibrium state of the system in terms of the applied load alone.
We will instead follow the assumed reaction force methodology which we
have used previously; viz., we will remove one of the supports and make
the system determinate. At the end of the solution procedure we will
enforce the kinematic constraint that the motion is zero at the support
which we removed.
Figure 11.14(b) shows our truss structure with one support removed.

From statics we easily see that the bar forces are R1 = P − F/
√
2, R2 =

F , and R3 = −F/
√
2. The stored complementary energy is

W ∗ =

∫ L

0

R2
1

2AE
dx+

∫ √
2L

0

R2
2

2AE
dy +

∫ L

0

R2
3

2AE
dz. (11.67)

P

Δ = ?

L

L

AE −− constant

P

Δ = ?

F ΔF = 0

1

2
3

(a) System to be analyzed. (b) System with support removed.
Fig. 11.14 Indeterminate truss sys-
tem.
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Taking the required derivative we obtain

Δ =
∂W ∗

∂P
=

∫ L

0

R1

AE

∂R1

∂P︸︷︷︸
=1

dx+

∫ √
2L

0

R2

AE

∂R2

∂P︸︷︷︸
=0

dy

+

∫ L

0

R3

AE

∂R3

∂P︸︷︷︸
=0

dz (11.68)

=
(P − F/

√
2)L

AE
. (11.69)

This answer involves the unknown support reaction F . To eliminate F ,
we can solve for it using the fact that the displacement at the support
is to be zero. Thus we can use the fact that ∂W ∗/∂F = 0. This gives:

0 =

∫ L

0

R1

AE

∂R1

∂F︸︷︷︸
=−1/

√
2

dx+

∫ √
2L

0

R2

AE

∂R2

∂F︸︷︷︸
=1

dy

+

∫ L

0

R3

AE

∂R3

∂F︸︷︷︸
=−1/

√
2

dz (11.70)

=
FL

AE

[
1

2
+
√
2 +

1

2

]
− PL√

2AE
(11.71)

F =
P

2 +
√
2
. (11.72)

Substituting this result back into our expression for the displacement
gives the final result of

Δ =
PL

AE

2
√
2 + 1

2
√
2 + 2

. (11.73)

Remarks:

(1) The same mechanical system was examined in Example 10.8 for
the vertical motion at the load point using the method of virtual
forces. Note the similarity in analysis methodology.

11.7 Stationary potential energy:
Approximate methods

For the problems we have treated so far, we have taken a set of governing
equations and solved them exactly. This has been done either by way
of direct integration, the method of virtual forces, or through potential
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energy methods. In a large class of engineering problems, it is rather
difficult to find exact solutions and, further, exact solutions are often
not needed; approximate solutions will suffice. After all, the governing
equations really only represent a model of reality. The notion that the
solution to a problem is related to the stationarity of a certain quantity
provides a natural setting for finding approximate solutions. Instead
of exactly finding the stationarity conditions we can consider finding
approximate stationarity conditions. In this section we will examine
using stationary potential energy to find approximate solutions.

P

L

EI −− constant

x

Fig. 11.15 Cantilever beam with a
dead-load.

We will introduce the basic concepts via the problem illustrated in
Fig. 11.15. Let us determine the deflection of the beam. The potential
energy for this system is given by

Π(v(x)) =

∫ L

0

1

2
EI (v′′)

2
dx+ Pv(L) (11.74)

and we know from the principle of stationary potential energy that Π
takes on a stationary value at equilibrium. Notice that Π is a function of a
function; it is what is sometimes called a functional. The true equilibrium
displacement field, v(x), for the beam will be the one that makes Π
stationary. v(x), however, cannot be arbitrarily chosen, since v(x) must
a priori satisfy the kinematic boundary conditions. Thus we should only
consider functions in the set:

S = {v(x) | v(0) = 0 and v′(0) = 0} . (11.75)

The set of functions S is known as the space of trial solutions – the true
equilibrium displacement field lies someplace within this set of functions.
We could try to solve the problem by simply checking all the functions

v(x) ∈ S until we find one that makes Π stationary. This, however, is
a rather daunting task, since S is infinite dimensional. If we were to
follow the standard methods learned in calculus, we would be tempted
to take the derivative of Π with respect to the function v(x), set the
result equal to zero, and then solve for the appropriate function within
S. The taking of the derivative of a functional with respect to a function,
however, is a somewhat sophisticated mathematical concept outside the
scope of this book. What we can do, however, is solve the stationarity
problem approximately by searching only for a stationary state over a
well-chosen subset of S. This will result in an approximate solution for
the equilibrium displacement field.
To be specific, let us consider the subset of functions

S̃1 =
{
v(x) | v(x) = Cx2 , C ∈ R

}
⊂ S. (11.76)

The set S̃1 is composed of a set of parabolas parameterized by the param-
eter C which is an arbitrary real number.1 Finding a stationary state of Π

1 S̃1 is a one-dimensional set; one can
specify any element of the set by giving
a value to a single scalar parameter.

over S̃1 is substantially easier, since all we need to determine is the value
of C which makes Π stationary when evaluated on functions in S̃1. Let
us plug our approximation into the expression for the potential energy:

Π(C) =

∫ L

0

1

2
EI4C2 dx+ PCL2. (11.77)
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The functional Π now becomes just an ordinary function of C. We can
now use standard calculus to find the stationary condition:

0 =
dΠ

dC
= 4EICL+ PL2 . (11.78)

Solving for C gives C = −PL/4EI. Thus we find an approximation for
the deflection

v1(x) ≈ −PLx2

4EI
. (11.79)

Remarks:

(1) The given solution was obtained by making the potential energy
stationary, not over all trial solutions, but rather over a small sub-
set of trial solutions. This produces only an approximate answer.
The better the guess for the functional form of the solution the
better the quality of the approximation. If the guess for the form
of the approximate solution contains the exact solution, then one
will obtain the exact answer.

(2) Notice that this methods yields a solution for the deformation of
the beam at all points – not just at a single point. This permits
one to also compute approximate values for bending moments, etc.

(3) To have a sense of the quality of the approximate solution, let
us evaluate the solution at x = L. From the approximation we
obtain a tip deflection Δ = PL3/4EI. The exact answer is Δ =
PL3/3EI. Thus the deflection error at the end of the cantilever is
about 25%.

(4) Notice that each function in S̃1 satisfies the conditions for func-

tions in S. Thus S̃1 is a subset of S. Failure to adhere to this
requirement will produce erroneous results.

(5) Good use of this methodology requires an intuitive sense of the
deflected shape of a structure. The better the guess for the
deflected shape, the better the result. If we had instead chosen
as our space of approximate trial solutions2

2 S̃2 is a two-dimensional set; one can
specify any element in the set by pro-
viding numerical values for two scalar
parameters.

S̃2 =
{
v(x) | v(x) = C1x

2 + C2x
3
}
⊂ S , (11.80)

then Π would have become a function of C1 and C2; i.e. Π(C1, C2).
Finding the stationary state would then require solving

0 =
∂Π

∂C1
(11.81)

0 =
∂Π

∂C2
(11.82)

for C1 and C2. This would have resulted in C1 = −PL/2EI
and C2 = P/6EI and a v2(x) ≈ −PLx2/2EI + Px3/6EI, which
happens to be the exact answer.
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(6) The relation between S, S̃1, and S̃2 is depicted in Fig. 11.16.
Our first selection was a one-dimensional subset of the space of
trial solutions and did not contain the exact solution. Our second
selection was a two-dimensional subset of S and happened to
contain the exact solution. The basic property of the method is
that it gives you the best answer within the set of functions you
have picked. Thus one recovers the exact solution if it is contained
within one’s guess. If not, one ends up computing the best possible
solution of the assumed form – the one with minimum error.

1st set (finite, 1 parameter)

Set of all possible solutions
(infinite)

v1
v2 = vexact

2nd set (finite, 2 parameters)

Fig. 11.16 Geometric relation bet-

ween S, S̃1 and S̃2, and the exact solu-
tion for the cantilever beam.

x

EI −− constant

q(x) = w

Fig. 11.17 Built-in beam with a dis-
tributed dead-load.

Example 11.11

Built-in beam with a distributed dead-load. Consider the beam shown in
Fig. 11.17. Find an approximation for the deflection of the beam.

Solution
The space of trial solutions contains functions that have zero displace-
ment and rotation at both ends:

S = {v(x) | v(0) = v′(0) = v(L) = v′(L) = 0} . (11.83)

x
q(x) = w

Fig. 11.18 Guess for deflected shape
of beam in Fig. 11.17.

Since the beam is uniformly loaded we can guess that the displacement
will be symmetric with respect to x = L/2, having maximum displace-
ment in the center, as has been sketched in Fig. 11.18. A reasonable
guess for the form of this function would be

S̃ = {v(x) | v(x) = C (cos(2πx/L)− 1)} . (11.84)

Note that S̃ ⊂ S and contains only a single parameter. To proceed
further, we need an expression for the potential energy for the system
and in particular for the distributed dead-load. If we consider a small
segment of length dx along the beam, then the load on this segment will
be w dx. Thus the potential for the load over this small segment will be

wv dx, and the total potential for the load will be
∫ L

0
wv dx. With this,

our condition for stationarity becomes

0 =
d

dC

[∫ L

0

1

2
EIC2 16π

4

L4
cos2(2πx/L) dx

+

∫ L

0

wC (cos(2πx/L)− 1) dx

]
(11.85)
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=

∫ L

0

EIC
16π4

L4
cos2(2πx/L) dx

+

∫ L

0

w (cos(2πx/L)− 1) dx (11.86)

= EIC
16π4

L4

1

2
L− wL (11.87)

C =
wL4

8π4EI
. (11.88)

The final approximate solution is:

v(x) ≈ wL4

8π4EI
(cos(2πx/L)− 1) . (11.89)

Remarks:

(1) As a check on the accuracy of the solution we can evaluate the dis-
placement at the mid-span. From the approximate solution we find
Δ = −wL4/4π4EI. The exact solution gives Δ = −wL4/384EI.
Thus the deflection error at the mid-span is only 1.4%. A good
guess can produce excellent answers.

11.8 Ritz’s method

The method illustrated for finding approximate solutions is often known
as Ritz’s method, by which one constructs an N -dimensional space of
approximate solutions of the form

S̃ =

{
v(x)

∣∣∣ v(x) = N∑
i=1

Cifi(x)

}
⊂ S. (11.90)

The functions fi(x) must be known and selected to give flexibility to the
solution and at the same time satisfy the kinematic boundary conditions.
The stationary conditions for the total potential energy result in N
simultaneous equations in the N unknowns C1, C2, · · · , CN :

∂Π

∂Ci
= 0 i = 1, 2, · · · , N. (11.91)

Remarks:

(1) For torsion problems, the space of solutions will be for the rotation
field φ(z). Thus one will be guessing a functional form for rotations
rather than transverse displacements.
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(2) For problems with axial forces, the space of solutions will be for the
axial displacement field u(x) and one will be guessing a functional
form for the axial displacements.

(3) In problems where the system is carrying its load in multiple ways
one can still employ Ritz’s methods by guessing forms for all the
relevant motions and including all the types of potential energy
appearing in the system.

(4) In general, for stable mechanical systems, adding more terms
(increasing N) will always improve the approximation.

Example 11.12

Tension–compression bar with three point loads. Consider the tension–
compression bar shown in Fig. 11.19. The bar is loaded with three point
loads P1, P2, and P3 at x1 = L/4, x2 = L/2, and x3 = 3L/4, respectively.
Find an approximation for the axial motion of the bar. x

P1 P2 P3

L/4 L/4 L/4 L/4

Fig. 11.19 Tension–compression bar
with three point loads, constant AE.

Solution
The potential energy for this system is given by

Π(u(x)) =

∫ L

0

1

2
AE(u′)2 dx−

3∑
j=1

Pjv(xj). (11.92)

Let us look for an approximate solution of the form

u(x) =
N∑
i=1

Cifi(x), (11.93)

where for our approximation functions fi(x) we will choose the
polynomials

fi(x) =
( x
L

)i
. (11.94)

Note that each function satisfies the kinematic boundary condition for
the problem; i.e. fi(0) = 0 for all i.
In this case, we have

Π(C1, C2, . . . , CN ) =

∫ L

0

1

2
AE

(
N∑
i=1

Cif
′
i(x)

)2

dx

−
3∑

j=1

Pj

(
N∑
i=1

Cifi(xj)

)
.

(11.95)

The potential energy will be stationary if

∂Π

∂Ck
= 0 (11.96)
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for each k = 1, . . . , N . In order to execute the needed derivatives, it is
useful to note that for a fixed k:

∂

∂Ck

N∑
i=1

Cifi(x) =
∂

∂Ck

k−1∑
i=1

Cifi(x) +
∂

∂Ck
(Ckfk(x))

+
∂

∂Ck

N∑
i=k+1

Cifi(x).

(11.97)

On the right-hand side the first sum does not involve Ck and thus the
derivative is equal to zero; the same holds for the last term on the right-
hand side. Only the middle term on the right-hand side involves Ck, and
the indicated derivative yields the simple result:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x/L

u/
(P

1L
/A

E
)

Exact
Approximate

Fig. 11.20 Approximate and exact
solutions for N = 1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x/L

u/
(P

1L
/A

E
)

Exact
Approximate

Fig. 11.21 Approximate and exact
solutions for N = 2.

∂

∂Ck

N∑
i=1

Cifi(x) = fk(x). (11.98)

If one exploits this result, one finds (after a little manipulation) that eqn
(11.96) gives:

N∑
i=1

(∫ L

0

f ′
k(x)AEf ′

i(x) dx

)
Ci =

3∑
j=1

Pjfk(xj). (11.99)

This is a system of N linear equations for the N unknown parameters
Ci. In matrix form, this gives

KC = F , (11.100)

where the entries of the matrix K are given by

Kki =

∫ L

0

f ′
k(x)AEf ′

i(x) dx =
ki

k + i− 1

AE

L
(11.101)

and the entries of the vector F are given by

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x/L

u/
(P

1L
/A

E
)

Exact
Approximate

Fig. 11.22 Approximate and exact
solutions for N = 10.

Fk =

3∑
j=1

Pjfk(xj) = P1

(
1

4

)k

+ P2

(
1

2

)k

+ P3

(
3

4

)k

. (11.102)

Remarks:

(1) The final set of matrix equations can be used to compute numerical
solutions. For small values of N this is tractable by hand. For
larger values a small computer program can be used to solve the
equations.

(2) Increasing the number N increases the accuracy of the approxi-
mation. Figures 11.20–11.22 show the solution for N = 1, 2, and
10, respectively, for the case where P1 = P2 = P3. Also shown is
the exact solution.
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Example 11.13

Cantilever with general loading. Let us consider a beam with known
kinematic boundary conditions. The beam is subjected to Np point
loads Pl (l = 1, . . . , Np) at locations xp

l (l = 1, . . . , Np) and Nm point
moments Mk (k = 1, . . . , Nm) at locations xm

k (k = 1, . . . , Nm). Find an
approximate expression for the deflection of the beam.

Solution
The total potential energy is

Π(v(x)) =

∫ L

0

1

2
EI(v′′)2 dx−

Np∑
l=1

Plv(x
p
l )−

Nm∑
k=1

Mkv
′(xm

k ). (11.103)

Let us find the stationary solution over all functions v(x) in the set:

S̃ =

⎧⎨⎩v(x)
∣∣∣ v(x) = N∑

j=1

Cjfj(x) , {Cj}Nj=1 ∈ R

⎫⎬⎭, (11.104)

where each function fj(x) is taken as known and assumed to satisfy the
kinematic boundary conditions for the beam. Then,

Π(v(x)) ⇒ Π(C1, . . . , CN ) =

∫ L

0

1

2
EI

⎛⎝ N∑
j=1

Cjf
′′
j (x)

⎞⎠2

dx

−
Np∑
l=1

Pl

⎛⎝ N∑
j=1

Cjfj(x
p
l )

⎞⎠−
Nm∑
k=1

Mk

⎛⎝ N∑
j=1

Cjf
′
j(x

m
k )

⎞⎠.

(11.105)

The stationary conditions with respect to the parameters {Ci}Ni=1 require

∂Π

∂Ci
= 0 (i = 1, . . . , N). (11.106)

This yields

0 =

∫ L

0

2 · 1
2
EI

⎛⎝ N∑
j=1

Cjf
′′
j (x)

⎞⎠ · f ′′
i (x) dx

−
Np∑
l=1

Plfi(x
p
l )−

Nm∑
k=1

Mkf
′
i(x

m
k ) (11.107)

⇒
N∑
j=1

(∫ L

0

f ′′
i (x)EIf ′′

j (x) dx

)
Cj =

Np∑
l=1

Plfi(x
p
l )

+

Nm∑
k=1

Mkf
′
i(x

m
k ) (11.108)
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⇒
N∑
j=1

KijCj = Fi (11.109)

⇒ KC = F . (11.110)

The entries of the matrix K and the vector F are

Kij =

∫ L

0

f ′′
i (x)EIf ′′

j (x) dx , (11.111)

Fi =

Np∑
l=1

Plfi(x
p
l ) +

Nm∑
k=1

Mkf
′
i(x

m
k ) , (11.112)

respectively. By solving the linear system of equations KC = F for
the vector of generalized displacements C, one obtains the approximate
solution

v(x) ≈
N∑
i=1

Cifi(x) . (11.113)

Remarks:

(1) The final result is an N -dimensional approximation to the true
solution.

(2) A judicious choice for the Ritz functions fi(x) can lead to a very
good answer with only a few functions.

(3) The accuracy of the method in general increases with increas-
ing N .

11.9 Approximation errors

As we have seen, a reasonable guess to the deflected shape of a system
can provide an excellent approximation to the exact solution when using
the principle of stationary potential energy. Also, using a higher dimen-
sional approximation space leads to better answers. However, without
knowing the exact solution ahead of time it is not easy to assess how
much error one has made in any given problem. A complete discussion of
approximation errors is beyond the scope of this book. Notwithstanding,
it is useful to understand a few basic concepts.

11.9.1 Types of error

In the problems we have been treating we have been solving for a function
which is an approximation to another function. In order to be concrete,
let us call va(x) the approximate solution and ve(x) the exact solution.
The pointwise error in the approximation is
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e(x) = va(x)− ve(x). (11.114)

It is in fact a function of position. At some points it may be zero, while
at others it may be large. It can vary from point to point. The relative
pointwise error is

er(x) =
va(x)− ve(x)

ve(x)
(11.115)

and it simply expresses the error in the approximation in relative
terms – i.e. as a percentage of the exact solution. It too is a function
of position. These expressions for the error give a lot of detail about
the approximate solution, but they are also somewhat inconvenient in
that one cannot simply say, for example, “my approximate solution has
10% error”. There is no single number to speak of since the errors are
functions. Also, the relative error expression is undefined when the exact
solution is zero. For this reason, we often introduce other measures for
the error.
The most common measure of error is known as the L2 error, and

for a given function it is a scalar number. In the present context it is
quite similar to the error one computes when performing a least-squares
fit – i.e. it represents a squared difference. The L2 measure or norm of
a function f(x) is defined as:

‖f(x)‖ =

√∫ L

0

f2(x) dx (11.116)

and the L2 error is defined as

E = ‖e(x)‖ = ‖va(x)− ve(x)‖ =

√∫ L

0

(va(x)− ve(x))
2
dx ; (11.117)

i.e. to compute the L2 error one squares the pointwise error, integrates
it over the system, and then takes the square-root. The result is a single
number which we can refer to as the error in the approximation. In order
to compute a relative L2 error, one can compute

Er =
‖e(x)‖
‖ve(x)‖

. (11.118)

This expression also has the advantage that it is well-defined except in
the case where the exact solution is identically zero everywhere – a case
rarely of interest.

11.9.2 Estimating error in Ritz’s method

The objective of Ritz’s method is to reduce the error in the approx-
imation. With respect to our new definitions, this means that what
we would like to happen is that E → 0 as N → ∞. Knowing how E
depends upon N (once the approximation functions have been chosen)
is crucial to being able to estimate the error that one has made. This is an
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advanced topic which we will not treat in extensive detail. But it should
be observed that the general characteristic of Ritz’s method applied to
elastic systems is that convergence to zero error occurs starting with the
most significant digit in va(x) and continuing to the least significant
digit. Thus one can perform computations with increasing values of
N and compare solutions from one value to another. As the digits
of the approximate solution take on the values of the exact solution
they will stop changing as N increases. In this way one can estimate
how may digits of accuracy one has in the approximation, and thus
one can also estimate the percent error one has made. This can be
done on a pointwise basis using va(x) or on an average basis using
‖va(x)‖.

Example 11.14

Double built-in beam with a point load. Consider a beam that is built in at
both ends and subjected to a point force P at mid-span. Approximately
solve for the beam’s deflection and estimate the number of correct digits.

Table 11.1 Convergence be-
havior of approximate solu-
tion.

No. Terms Norm

1 1.22474487139
2 1.23487650463
3 1.23618903404
4 1.23653070762
5 1.23665574650
6 1.23671178040
7 1.23674050485
8 1.23675671035
9 1.23676653310
10 1.23677282839

Exact 1.23678983555

Solution
The solution space for this problem was given in eqn (11.83). As an
approximation space we will use functions in the set

S̃ =

{
v(x)

∣∣∣ v(x) = ∑
i∈odd

Ci[cos(2πix/L)− 1]

}
. (11.119)

Note that we restrict our sum to functions which are symmetric about
the center of the span, and each function individually satisfies the
kinematic boundary conditions. Employing the principle of stationary
potential energy one can solve for the Ci by hand to give:

Ci = − 4PL3

EI(2πi)4
. (11.120)

In order to estimate the error in the approximate solution, we compute
the L2 norm of the approximate deflection as a function of the number
of terms in the approximation. Doing so gives:

‖v(x)‖ =
|P |L7/2

4EIπ4

√√√√1

2

∑
i∈odd

1

i8
+

( ∑
i∈odd

1

i4

)2

. (11.121)

Table 11.1 shows the result of this computation, where the first column
indicates how many terms we have used in our approximation and the
second column gives values of the L2 norm divided by |P |L7/2/4EIπ4.
The underline indicates the digits which remain unchanged as we add
new terms to our approximation. We can assume these digits are con-
verged.
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Remarks:

(1) From the result we can conclude with some confidence, for exam-
ple, that with only three terms our result is accurate to three digits
or has error less than 0.1%. Also shown in Table 11.1 is the exact
solution computed by solving the governing differential equation.
This verifies our conclusion.

(2) This type of analysis is not an exact error analysis but suffices in
most situations.

(3) If we had not restricted i to be odd, we would have had essentially
the same result. The main difference would have been that half of
the generalized displacements would have been zero.

11.9.3 Selecting functions for Ritz’s method

An important aspect of selecting the functions for Ritz’s method, beyond
the requirement that they satisfy the kinematic boundary conditions, is
that with increasingN the new functions add to the approximation space
without overlapping too much with the other functions. Mathematically
this is expressed by trying to use functions that are as orthogonal to
each other as possible. With ordinary vectors, say a = a1e1 + a2e2 and
b = b1e1 + b2e2, we define orthogonality as the requirement that their
inner (or dot) product be zero:

〈a, b〉 = a1b1 + a2b2 = ‖a‖ ‖b‖ cos(θab) = 0, (11.122)

where we have utilized the corresponding norm for such vectors ‖a‖ =√
〈a,a〉, and θab is the angle between the two vectors. When we are

measuring error with the L2 norm we also have a corresponding L2

inner product between functions. If f(x) and g(x) are two functions,
then their L2 inner product is given as

〈f(x), g(x)〉 =

√∫ L

0

f(x)g(x) dx. (11.123)

The abstract angle between two functions is defined via

cos(θfg) =
〈f(x), g(x)〉
‖f(x)‖ ‖g(x)‖ . (11.124)

So orthogonality between functions occurs when their inner product is
zero – just as with ordinary vectors.

Remarks:

(1) In certain problems it is convenient to choose a set of orthogonal
functions but in others it is not. Even if full orthogonality can
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not be achieved, it is helpful if the chosen functions are mostly
orthogonal; i.e. their inner products are close to zero.

(2) Common functions which are orthogonal over the interval [0, L]
are trigonometric functions such as fn(x) = cos(nπx/L) and fm =
sin(mπx/L).

(3) Polynomials such as fi = (x/L)i are not orthogonal over [0, L] and
if one uses many of them, one will encounter numerical difficulties
due to their non-orthogonal nature.

(4) Polynomials which are orthogonal over the interval [0, L] would
be Legendre polynomials. The first three of these are f1(x) = 1,
f2(x) = 2x/L− 1, and f3 = (3/2)(2x/L− 1)2 − 1/2.

(5) For hand solutions, one usually picks only one or two func-
tions based on intuition and does not worry about orthogonality.
Orthogonality is more important when using many functions.

Chapter summary

� Potential energy: Πtotal = Πelastic +Πload

� Stationary potential energy is an alternative statement of equilib-
rium for a system.

� Potential energy of an elastic system is equal to its stored elastic
energy:

− Axial forces: W =
∫
L

1
2
AE(du/dx)2 dx

− Torsion loads: W =
∫
L

1
2GJ(dφ/dz)2 dz

− Bending loads: W =
∫
L

1
2EI(d2v/dx2)2 dx

� Potential energy of loads:

− Dead loads (point): −PΔ or −Mθ

− Dead loads (distributed): −
∫
L
bu dx, −

∫
L
tφ dz, −

∫
L
qv dx

� Castigliano’s first theorem: Pk = ∂W/∂Δk and Mk = ∂W/∂θk
� Method of Ritz: Select a subset S̃ of the space of trial solutions S,
that is parameterized by a finite number of parameters, and find
the stationary point of the system’s total potential energy with
respect to these parameters.

� L2 norm ‖f(x)‖ =
√∫

f2 dx

� L2 error E = ‖va − ve‖
� Complementary potential energy: Π∗

total = Π∗
elastic +Π∗

load
� Stationary complementary potential energy is an alternative state-
ment of kinematic compatibility of a system.

� Complementary potential energy of an elastic system is equal to
its complementary stored energy: W ∗ = −W + PΔ:
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− Axial forces: W ∗ =
∫
L

1
2R

2/AE dx

− Torsion loads: W ∗ =
∫
L

1
2
T 2/GJ dz

− Bending loads: W ∗ =
∫
L

1
2M

2/EI dx

− Direct shear loads: α
∫
L

1
2V

2/GAdx
� Complementary potential energy of loads:

− Dead loads (point): −PΔ or −Mθ
� Castigliano’s second theorem: Δk = ∂W/∂Pk and θk = ∂W/∂Mk

Exercises

(11.1) For the truss shown below, use Castigliano’s first
theorem to find the deflection at the load point
in the direction of the load. Let L = 24 in, AE =
15× 106 lb, and P = 100ex + 20ey lb.

P

L L 3L/4

2L

(11.2) Consider the truss system shown. Using the prin-
ciple of stationary potential energy, determine the
vertical deflection at the point of application of the
load.

L

L L LL

AE −− constant

P

(11.3) For the stepped torsion bar, determine the rotation
at the point of application of the load.

M1

(GJ)1−− constant (GJ)2−− constant

L L

(11.4) For the truss given in Exercise 10.11 of Chapter
10, find the vertical motion of the roller and the
horizontal and vertical motions of the load point
using the principle of stationary potential energy.
(Hint: you will end up with a system of three
equations in three unknowns that you will need
to solve.)

(11.5) An elastic circular bar is fixed at one end and
attached to a rubber grommet at the other end.
The grommet functions as a torsional spring with
spring constant k. What magnitude torque Ta

is required in the center of the bar to rotate
the center an amount θa? Assume a constant
shear modulus G and polar moment of inertia
J . Use Castigliano’s first theorem to solve this
exercise.

Ta

k

L

L/2

(11.6) Consider an inhomogeneous bar with AE(x) =
C +Dx, where C and D are given constants. How
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much force is required to displace the end of the bar
an amount Δ? Use Castigliano’s second theorem to
solve this exercise.

x

P

Δ

L

(11.7) Solve Exercise 10.1 from Chapter 10 using the
principle of stationary complementary potential
energy.

(11.8) Solve Exercise 10.5 from Chapter 10 using the
principle of stationary complementary potential
energy.

(11.9) For the round elastic torsion bar shown, deter-
mine the rotation at the point of application of
the torque using Castigliano’s second theorem.
Assume GJ(z) = A exp[z/L], where A is a given
constant.

z

a

M

L−a

(11.10) For the system shown, use Castigliano’s second
theorem to determine the deflection of the disk in
the direction of the load at the point where the
load is applied. You may assume that GJ , EI,
AE, and αAG are all given and constant.

Rigid Disky

x

P P
y

z
b

L

(11.11) Solve Exercise 10.3 from Chapter 10 using Cas-
tigliano’s second theorem.

(11.12) Solve Exercise 10.4 from Chapter 10 using Cas-
tigliano’s second theorem.

(11.13) Shown is an S-shaped hanger made of a slender
curved beam. Using Castigliano’s second theorem,
find the stiffness of the hanger.

P

R

REI −− constant

(11.14) Solve Exercise 10.6 from Chapter 10 using Cas-
tigliano’s second theorem.

(11.15) Solve Exercise 10.8 from Chapter 10 using Cas-
tigliano’s second theorem.

(11.16) Shown below is a circular ring structure
subjected to diametrically opposed forces. Using
Castigliano’s second theorem, determine the stiff-
ness of the ring. Include only bending energy con-
tributions; assume moduli and section properties
are constants.

P

R

P

(11.17) Solve Exercise 10.16 from Chapter 10 using
Castigliano’s second theorem.

(11.18) Solve Exercise 10.18 from Chapter 10 using
Castigliano’s second theorem.

(11.19) Solve Exercise 10.19 from Chapter 10 using
Castigliano’s second theorem; ignore direct shear.

(11.20) Solve Exercise 10.20 from Chapter 10 using
Castigliano’s second theorem.

(11.21) Consider a cantilever beam with a uniform dis-
tributed load q(x) = qo. Assume a deflection solu-
tion of the form v(x) = Cx2 and determine an
approximate solution using the principle of sta-
tionary potential energy. Compare the tip deflec-
tion to the exact solution.
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(11.22) Consider a simply supported beam, pinned at
both ends, of length L with equal transverse loads
of magnitude P in the positive and negative direc-
tions at x = L/4 and x = 3L/4, respectively. By
approximately minimizing the potential energy of
the system with a single function find the displace-
ment field for the beam. Compare your approxi-
mation to the exact answer.

(11.23) Solve Exercise 10.7 from Chapter 10 by approxi-
mately solving the principle of stationary poten-
tial energy with a two term approximation. Com-
pare your answer to the exact deflection of the
beam computed by solving the governing ordinary
differential equation.

(11.24) Consider a round elastic bar of length L with
constant shear modulus, G, and polar moment of
inertia, J . The bar is built-in at both ends and
subject to a spatially varying distributed torsional
load

t(z) = p sin(
2π

L
z) ,

where p is a constant with units of torque per
unit length. Find an approximate expression for
the rotation field using the principle of stationary
potential energy. Compare your result to the exact
solution.

t(z)

z

L

(11.25) Consider the torsion bar shown below. Determine
the end-rotation of the bar by approximately solv-
ing the principle of stationary potential energy.
Compare your result to the exact solution. Assume
GJ is a constant.

t(z) = kz

z

L

(11.26) The stepped beam shown is to be designed such
that the tip rotation does not exceed θmax. L1 and
L2 are given fixed values. Find a formula for the
minimum acceptable values for (EI)1 and (EI)2.
Develop your result by approximately solving the
principle of stationary potential energy.

L1 L2

(EI)1

(EI)2
M

(11.27) Approximately solve Exercise 11.16 using the
principle of stationary potential energy.

(11.28) Consider a doubly built-in beam of length L with
a transverse load of magnitude P in the positive
direction at x = L/2. (a) By approximately mini-
mizing the potential energy of the system find the
displacement field for the beam: use an approx-
imation space with one parameter. (b) Compare
your approximation to the exact answer with an
accurate plot. (c) Assess your accuracy by com-
puting the relative displacement error at the mid-
dle of the beam (as a percentage).

(11.29) Carefully derive the matrix equations that would
result from using the method of Ritz on an elastic
tension-compression bar problem fixed at its right
end and subject to a distributed force b(x).

(11.30) Consider a linear elastic bar with cross-sectional
properties AE = 330× 106 lbf and length 4 ft
which is built-in at both ends. The bar is loaded
with a distributed force b(x) = 100 kips/ft. Solve
for the displacement and strain fields in the bar
using the method of Ritz and the approximation
functions fn(x) = sin(nπx/L) for n = 1, 2, 3, . . ..
How many terms in the expansion are required
to reduce the relative L2 error in the displace-
ments to 1%? To compute the errors you can use
an approximate quadrature – something simple,
like Riemann sums. How many terms are needed
to achieve the same with respect to the strains?
(Hint: A small computer program is helpful for
this exercise.)

(11.31) Consider the elastic rod shown with AE a con-
stant. Using an approximate potential energy
method find the displacement field of the rod;
use the space of approximate solutions S̃ =
{u(x) | u(x) = C sin(2πx/L)}. Also determine the
strain at the center of the rod.

P

L/2 L/4L/4

P
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(11.32) Consider the beam shown and find its tip
deflection using an approximate potential energy
method; assume deflections of the form v(x) =∑N

j=1 Cj(x/L)
j+1. Assume: EI = 106 lbf · in2,

P = 23 lbf, L = 55 in, a = 5 in, and qo =
0.70 lbf/in. (Hint: A small computer program is
helpful for this exercise.)

L

P

qo

a
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Geometric Instability

In Chapter 9 we examined the multi-axial failure of systems under
combined states of stress. The failure in these cases was associated with
the load-bearing capacity of the material – i.e. with the yield limit of
the material. This, however, is not the only way in which a mechanical
system can fail. A second major type of failure mechanism is geometric
instability – also known as buckling. A geometric instability (or buckling
instability) in a system allows the system to undergo very large and
sudden deformations when a critical amount of load is applied to the
system. Figure 12.1, for example, shows a beam that is pinned at the top
and clamped at the bottom with a small amount of load applied axially.
With the application of a specific amount of load, which is well below
the axial yield load for the beam, it buckles suddenly to the right, as
shown in Fig. 12.2. When designing a load carrying structure, one often
has to check not only for yielding, but also for buckling. In this chapter
we will first examine the general mechanical principles associated with
buckling failure. Then we will apply this understanding to the buckling
failure of beams with compressive axial loads.

Fig. 12.1 Pin-clamped beam subject
to a load below the buckling load.

12.1 Point-mass pendulum: Stability

To understand the concept of stability, let us start by examining a simple
mechanical system – a point-mass pendulum. The system as shown in
Fig. 12.3 consists of a point mass supported by a rigid massless bar fixed
to a frictionless pivot. The total potential energy of the system is given
solely by the gravitational potential energy of the mass:

Π(θ) = MgL(1− cos(θ)). (12.1)

Note that there are no elastic storage elements in the system. One should
also recall that the negative derivative of the potential will give the total
torque on the pendulum; i.e.

T = −dΠ

dθ
= −MgL sin(θ). (12.2)

Because the system is conservative we know the potential energy must
be stationary for equilibrium – principle of stationary potential energy.
This implies T = 0, and consequently that θ = 0 or θ = π. The first
of these solutions corresponds to the pendulum pointing straight down
and the other straight up; see Fig. 12.4. Both solutions are equilibria.
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Intuitively we know that the θ = 0 solution is stable and that the θ = π
solution is unstable. Our intuition is based on the basic observation that
any small perturbation of the position of the pendulum, when pointing
up, will cause it to fall away from the computed equilibrium. Whereas
any small perturbation of the position of the pendulum, when pointing
down, will cause it to return to the equilibrium. We can use our intuition
as the basis for a sound mathematical definition of stability.

Fig. 12.2 Pin-clamped beam subject
to a load above the buckling load.

Consider first the case of θ = 0 and a small perturbation of the position
of the pendulum by an amount |δθ| � 1. If δθ > 0, then T (0 + δθ) < 0.
This implies that a positive perturbation of the position of the system
will result in a negative torque being applied to the pendulum. Thus
the torque (from the gravitational forces) opposes the perturbation
and brings the system back towards the equilibrium position θ = 0.
Likewise, if δθ < 0, then T (0 + δθ) > 0. Thus this perturbation is also
opposed by the loading system. The result is the conclusion that the
equilibrium solution θ = 0 is stable; i.e. all perturbations of the system
away from the equilibrium position are opposed by the loading system.
For the second equilibrium solution θ = π we have a completely different
situation. Consider again the perturbations |δθ| � 1. If δθ > 0, then
T (π + δθ) > 0. This implies that a positive perturbation of the position
of the system will result in a positive torque being applied to the
pendulum. Thus the torque (from the gravitational forces) works in
concert with the perturbation and brings the system further away from
the equilibrium position θ = π. Likewise, if δθ < 0, then T (π + δθ) < 0.
Thus this perturbation is also reinforced by the gravitational load.

Lg

θ
L(1−cos(θ))

Fig. 12.3 Point-mass pendulum geo-
metry.

θ = πθ = 0

Fig. 12.4 Equilibrium configurations
of a point-mass pendulum.

These results can be succinctly summarized by the condition that the
sign of the second derivative of the potential energy can be used as a test
of stability. If we evaluate the second derivative of the potential energy
at an equilibrium position, then we may conclude:

d2Π

dθ2
> 0 ⇒ stable equilibrium, (12.3)

d2Π

dθ2
= 0 ⇒ neutral equilibrium, (12.4)

d2Π

dθ2
< 0 ⇒ unstable equilibrium. (12.5)

Note further that a stable equilibrium also implies that the potential
energy is minimal at equilibrium.

12.2 Instability: Rigid links

As a next step towards understanding buckling let us look at a slightly
more complex system. The system will be composed of a single rigid link
and a linear torsional spring as shown in Fig. 12.5. For small values of
the load P the stable equilibrium position of the link is vertical, or, in
other words, the rotation θ of the link about the pivot is zero. If the
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load is progressively increased, we will reach a critical load at which this
equilibrium position becomes unstable and the link (under any small
perturbation) will buckle sideways. To see this more quantitatively, con-
sider the free-body diagram shown in Fig. 12.6. If we consider moment
balance about the pin, we find

L

k

P

Fig. 12.5 Rigid link supported by a
torsional spring.

L

P

kθ

θ L( 1 − cos(θ))

P

Fig. 12.6 Free-body diagram of rigid
link in a buckled state.

0 =
∑

Mpin = PL sin(θ)− kθ. (12.6)

Equation (12.6) admits two solutions:

(1) For any P , θ = 0 satisfies the equilibrium equation. Thus the
vertical position of the link is always an equilibrium solution.

(2) The second solution to the equilibrium equation is

P =
k

L

θ

sin(θ)
. (12.7)

A plot of the two solutions (see Fig. 12.7) displays the characteristic
features of a buckling solution.

(1) For values of P < k
L , there is only one possible solution

θ = 0, (12.8)

which is represented by the vertical curve in Fig. 12.7.

(2) For values of P > k
L there are multiple solutions possible. One

possibility is θ = 0; the other two are are represented by the
rotation values given by the nearly horizontal curve (plus and
minus rotations for a give value of P ).

(3) The load value at which multiple solutions first appear is known
as the critical load (or critical buckling load). In our example, we
have Pcrit =

k
L .

(4) Though we have not yet proved it, the solution θ = 0 is unstable
for P > Pcrit. The solution given by the nearly horizontal curve
is stable for P > Pcrit. Thus as the load is increased from zero
to above Pcrit the link will spontaneously rotate about the pin.
Due to the very shallow curvature of the second solution, the
rotation observed in practice is visually very dramatic. Because
the motions associated with buckled states are typically large,
buckling is usually considered to be synonymous with failure –
buckling failure.

12.2.1 Potential energy: Stability

For our system there are two contributions to the potential energy: (1)
the potential of the load and (2) the potential energy of the spring.
Assuming that the load is a dead-load (i.e. is just a static weight applied
to the top of the link), we have that

Πload = −PL(1− cos(θ)). (12.9)
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Fig. 12.7 Equilibrium solutions to
eqn (12.6). The rotation θ is shown in
radians.

Thus the load’s potential energy decreases with buckling rotation. The
potential energy of the spring (which we assume to be linear) is given
by the expression

Πspring =
1

2
kθ2. (12.10)

The total potential energy is given by

Π(θ) = Πspring +Πload. (12.11)

For the system to be in equilibrium, the first derivative of the potential
needs to be zero. This yields

0 =
dΠ

dθ
= kθ − PL sin(θ), (12.12)

which is nothing more that the moment equilibrium equation for the
system.

To assess the stability we need to examine the value of the second
derivative of the potential energy along the various equilibrium solutions.
The second derivative is given by:

d2Π

dθ2
= k − PL cos(θ). (12.13)

We are now in a position to test the stability of the two equilibrium
solutions we have computed.

(1) Along the equilibrium solution θ = 0, we find d2Π/dθ2 = k − PL.
Thus, as long as P < k/L, we have a stable solution. For P > k/L,
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we see that d2Π/dθ2 < 0. Thus θ = 0 is an unstable equilibrium
for P > Pcrit.

(2) Along the second equilibrium solution, we find that

d2Π

dθ2
= k (1− θ cot(θ)) , (12.14)

which is positive for θ �= 0. Thus the second solution, which
appears for P > Pcrit, is stable.

12.2.2 Small deformation assumption

If one is only interested in finding the critical load of a system and
an indication of the post buckling deformation pattern, then it is
appropriate to employ a small deformation assumption to the analy-
sis and linearize all terms associated with large motion. In the case
of the rigid link example of the previous sections, this amounts to
replacing the trigonometric functions with appropriate linearizations. In
our example we can substitute sin(θ) ≈ θ, and the equilibrium equation
becomes:

kθ − PLθ = 0. (12.15)

As before, we find two solutions:

(1) θ = 0 for any values of P ; this is the trivial solution.

(2) P = k
L and θ arbitrary. This solution is the linearization of the

second equilibrium solution from above. It provides the critical
load, as it tells us that this value of the load is associated with
some non-zero rotation about the pin. It unfortunately does not
tell us the actual magnitude of the rotation. This information is
lost by the linearization process. Notwithstanding, the buckling
load is determined properly.

The utility of linearizing the equations becomes all the more apparent
when one deals with systems more complex than a single rigid link.

Example 12.1

Multiple rigid links and springs. Consider the system shown in Fig. 12.8.
It is composed of two rigid links that are connected by a torsional spring.
The bottom support is also composed of a torsional spring. What is the
buckling load for the system?

Solution
The system is shown in Fig. 12.8 with its degrees of freedom defined. In
contrast to our first system, this system has multiple degrees of freedom.
Nonetheless, the techniques developed in the previous sections can be
applied. Let us first find the equilibrium equations for the system (in
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linearized form) and then search for load values at which we can have
non-zero motion of the system. Figure 12.9 shows free-body diagrams
of the two links. If we write down moment equilibrium for each link we
find for the lower link that

0 = kθ1 − k(θ2 − θ1)− PLθ1 (12.16)

and for the upper link that

k

k

P

L

L

P
θ2

θ1

Fig. 12.8 Two rigid links with two
torsional springs.

0 = k(θ2 − θ1)− PLθ2. (12.17)

If we divide both equations through by L, we can arrange the equations
in the following form:⎡⎣ 2k

L − P − k
L

− k
L

k
L − P

⎤⎦⎛⎝ θ1

θ2

⎞⎠ =

⎛⎝0

0

⎞⎠. (12.18)

This is a system of homogeneous equations and it has the trivial solution
(θ1, θ2)

T = (0, 0)T . This, of course, is the “un”-buckled solution. Our
objective is to find load values, P , at which this system of equations
has non-trivial solutions. For a linear system of homogeneous equations
to have a non-trivial solution, we know from linear algebra that the
determinant of the matrix must equal zero. Applying this condition, we
find a quadratic equation for P :

0 =

(
2k

L
− P

)(
k

L
− P

)
−
(
− k

L

)(
− k

L

)
(12.19)

0 = P 2 − 3k

L
P +

k2

L2
. (12.20)

This equation has two solutions P = k
L

3±
√
5

2 . For each of these values
the system admits non-trivial motion of the system. The lesser of the
two values gives the critical load for the system. Thus,

Pcrit =
k

L

3−
√
5

2
. (12.21)

P

P

P

kθ1

P

k (θ2 − θ1)

k (θ2 − θ1)

Fig. 12.9 Free-body diagrams for two
rigid links with two torsional springs.

Remarks:

(1) The problem above should be recognized as the classical eigenvalue
problem from linear algebra. The load values leading to non-trivial
motions of the system are the system eigenvalues.

(2) The eigenvectors associated with each eigenvalue provide informa-
tion on the expected buckling shapes. Since the eigenvectors have
arbitrary magnitude, we obtain information only on the shape,
not the magnitude of deformation. For our solution, we find the
following two eigenvectors:

v1 =

⎛⎝1

1+
√
5

2

⎞⎠ v2 =

⎛⎝1

1−
√
5

2

⎞⎠, (12.22)
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which are sketched in Fig. 12.10. From Fig. 12.10 (left) we see that
for our system the expected buckling mode will be a leaning-over
motion as opposed to the scissor-mode associated with the second
eigenvector.

First Eigenvector

1

Second Eigenvector

0.62

1

1.62

Fig. 12.10 Sketch of eigenvectors.

(3) The larger eigenvalue is associated with a non-trivial motion of
the system. However, the buckling mode associated with this
eigenvalue will rarely be seen in practice. This is because once the
load reaches the first eigenvalue, the system will start to buckle
into the mode associated with the smaller of the two eigenvalues.
In some special cases, such as with dynamically applied loads it
may be possible to increase the load up to the higher eigenvalue
before the system begins to buckle. In such a special situation it
may be possible to drive the system into the second buckling mode.

(4) Figure 12.11 sketches the (full non-linear) equilibrium solutions
to this problem in a manner similar to that shown in Fig. 12.7.
Plotted on the horizontal axis is the norm of the motion.
The vertical line represents the trivial solution which becomes
unstable for all P > Pcrit. The lower nearly horizontal solution
is associated with the first buckling mode and its zero crossing
defines the critical load for the system. The upper nearly
horizontal solution is associated with the second buckling mode.

(5) To verify that the various solutions are stable or unstable is more
involved when a system has multiple degrees of freedom. The
conceptual idea is similar to the case of a single degree of freedom
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Second Buckling Mode 

First Buckling Mode 
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Fig. 12.11 Equilibrium solutions for
Example 12.1. Rotations are given in
radians.
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system but the reasoning and mathematics are slightly more com-
plex. When a system has N degrees of freedom, then there are N2

possible second derivatives of the potential energy ∂2Π/∂xi∂xj ,
where we have used the labels xi and xj to denote a degree of
freedom and i, j = 1, . . . , N . The extension of the idea that the sec-
ond derivative should be positive for a stable equilibrium solution
is that the N by N matrix of partial derivatives of the potential
energy,Hij = ∂2Π/∂xi∂xj , should be positive definite. The matrix
Hij is known as the Hessian matrix of the system; note also that
it is symmetric for reasonable1 potential energy functions.1 This amounts to saying that the

mixed second partial derivatives of Π
are equal. This is guaranteed, for exam-
ple, if Π and its first and second deriva-
tives are all continuous.

12.3 Euler buckling of beam-columns

In this section we will extend the ideas developed in Section 12.2 to
the buckling of beams that are subject to compressive axial loads –
i.e. columns. A column is similar to the multiple rigid link system which
we have already examined. The primary difference is that it can bend
at an infinite number of locations as opposed to a finite number of
pre-specified joints. In this sense we should be able to write down the
equilibrium equations for a beam with an axial load, and then search
for axial load values that lead to non-trivial transverse motions. Because
the beam can bend at an infinite number of points we should expect to
find an infinite number of such axial loads. We will take the smallest of
such loads to be the critical load for the system.

12.3.1 Equilibrium

Let us begin by deriving the equilibrium equations for a beam where we
account for the possibility of buckling motions. Consider a beam with
an axial load and consider the equilibrium of a differential element cut
from the beam as shown in Fig. 12.12. The expression for vertical force
equilibrium leads to2

2 In eqn (12.23) we have ignored the
fact that the distributed load is a func-
tion of x. One can always appeal to the
mean-value theorem to make this part
of the analysis more precise; however,
the final result does not change.

0 =
∑

Fy = −V (x) + q(x)Δx+ V (x+Δx). (12.23)

P

P

P

V(x)

M(x)

q(x)

Δ
M(x +    x)Δ

V(x +    x)Δ

v(x +    x) − v(x)

Fig. 12.12 Equilibrium of a buckled
beam.
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Dividing through by Δx and taking the limit as Δx → 0 gives

dV

dx
+ q(x) = 0. (12.24)

This is identical to the expression we found earlier in Chapter 8. If we
now consider moment equilibrium about the z-axis through the left-side
of the differential element we find:

0 =
∑

Mz =−M(x) + V (x)Δx+M(x+Δx)

+ P [v(x+Δx)− v(x)].
(12.25)

Note that in this expression we have omitted the term associated with
the distributed load, q(x), as it drops out just as it did in Chapter 8.
Dividing through by Δx and taking the limit at Δx → 0 gives

dM

dx
+ V + P

dv

dx
= 0. (12.26)

Here, in contrast to Chapter 8, we have an additional term associated
with the axial load, P .
Let us now combine our two new equilibrium equations with the

moment–curvature relation, M = EIκ, and the kinematic equation,
κ = v′′. Substituting one into the other leads to the following result:

EIv′′′′ + Pv′′ = q, (12.27)

where we have assumed that EI is not a function of x.

12.3.2 Applications

The application of eqn (12.27) will closely follow the steps used in the
analysis of systems composed of rigid links. For each particular system
we will seek the minimum value of the axial load, P , at which it is
possible to have a non-zero solution v(x) to the equilibrium equations
for the beam as represented by eqn (12.27).

Example 12.2

Pin–pin column. Consider the column shown in Fig. 12.13; see also
Fig. 12.14. Determine its critical buckling load.

P

x

L

Fig. 12.13 Pin-pin column with an
axial load.

Solution
To look for equilibrium solutions of this problem we need to identify the
appropriate boundary conditions and the distributed load. Since the only
applied load is the axial compression, we have that q(x) = 0. The ends
are pinned, so we have that v(0) = v′′(0) = 0 and that v(L) = v′′(L) =
0. Due to the term Pv′′ in eqn (12.27), we cannot simply integrate
the ordinary differential equation four times like we did in Chapter 8.
Here we will need to employ the classical technique for solving ordinary
differential equations with constant coefficients. To this end, we will
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assume a solution of the form v(x) = Aesx. Substituting into eqn (12.27)
we find the characteristic equation for the parameter s:

s2(EIs2 + P ) = 0. (12.28)

Fig. 12.14 Pin-pin beam subject to a
load below the buckling load.

The solutions to this equation are s = 0, 0, iλ, and −iλ, where λ =√
P/EI and i =

√
−1. For each root we obtain one possible solution

to our ordinary differential equation. Because of the repeated root we
need to employ variation of parameters. After doing so we find that our
(homogeneous) solution3 is of the general form:

3 There is no particular solution to find
in this problem, as the differential equa-
tion is homogeneous.

v(x) = A1 cos(λx) +A2 sin(λx) +A3x+A4. (12.29)

We can determine the unknown coefficients through the application of
the boundary conditions.

v(0) = 0 ⇒ A1 +A4 = 0 (12.30)

v′′(0) = 0 ⇒ −A1λ
2 = 0 (12.31)

v(L) = 0 ⇒ A1 cos(λL) +A2 sin(λL) +A3L+A4 = 0 (12.32)

v′′(L) = 0 ⇒ −A1λ
2 cos(λL)−A2λ

2 sin(λL) = 0. (12.33)

Equation (12.31) implies that A1 = 0. Combined with eqn (12.30), we
see that A4 = 0. These two results with eqns (12.32) and (12.33) show
that A3 = 0, also. We are thus left with the result that

v(x) = A2 sin(λx), (12.34)

where

A2 sin(λL) = 0. (12.35)

Looking at this we see two basic solution classes:

(1) A2 = 0 and P is arbitrary. This is the trivial solution associated
with no buckling deformation.

(2) sin(λL) = 0 and A2 is arbitrary. This is the buckling solution.
sin(λL) will be zero whenever λL = nπ, where n is an integer.
Since λ =

√
P/EI, we see that there is an infinite number of

buckling loads,

Pn =
n2π2EI

L2
n = 1, 2, 3, · · · . (12.36)

The critical buckling value is taken as the minimum element of
this sequence; viz.

Pcrit = P1 =
π2EI

L2
. (12.37)

Remarks:

(1) Reiterating the basic procedure: (1) We examine the equilibrium of
the system under consideration. (2) We look for values of the load
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parameter at which non-trivial solutions exist. (3) The minimum
of these load parameters is taken as the critical load.

(2) The basic statements about stable and unstable solutions which
we proved for the rigid link example carry over to the column case
without modification. The trivial solution is stable up to the first
buckling load. For P > Pcrit the trivial solution becomes unstable.

(3) The buckling mode associated with the critical load according to
eqn (12.34) is a half-period sine wave as shown in Fig. 12.15. The
higher buckling loads are associated with higher-frequency sine-
waves.

(4) The critical load associated with pin-pin buckling of a column is
often known as the Euler buckling load.

Fig. 12.15 Pin-pin beam subject to a
load above the buckling load.

Example 12.3

Pin-clamped column. Consider a pin-clamped column of length L as
shown in Fig. 12.1. Determine its critical buckling load.

Solution
The difference between this problem and the prior example is only in
the boundary conditions. There is no distributed load; i.e. q(x) = 0. The
top end is pinned so we have that v(0) = v′′(0) = 0, and the bottom
end is clamped so we that v(L) = v′(L) = 0. We can now reuse the
homogeneous solution, eqn (12.29), which we found in the prior example,
and search for values of the load parameter which allow for non-trivial
solutions. Application of our new boundary conditions gives

v(0) = 0 ⇒ A1 +A4 = 0 (12.38)

v′′(0) = 0 ⇒ −A1λ
2 = 0 (12.39)

v(L) = 0 ⇒ A1 cos(λL) +A2 sin(λL) +A3L+A4 = 0 (12.40)

v′(L) = 0 ⇒ −A1λ sin(λL) +A2λ cos(λL) +A3 = 0. (12.41)

Equation (12.39) implies that A1 = 0. Combined with eqn (12.38), we
see that A4 = 0. The solution is seen to be

v(x) = A2 sin(λx) +A3x, (12.42)

where eqns (12.40) and (12.41) require⎡⎣ sin(λL) L

λ cos(λL) 1

⎤⎦⎛⎝A2

A3

⎞⎠ =

⎛⎝0

0

⎞⎠ . (12.43)

Looking at this, we again see two basic solution classes:

(1) The trivial solution where A2 = A3 = 0 and P is arbitrary. This
is the solution associated with no buckling deformation.
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(2) The other solution class will occur when the homogeneous system
of equations (12.43) has a non-trivial solution. This will happen
when the coefficient matrix has zero determinant. Taking the
determinant one finds

tan(λL)− λL = 0. (12.44)

There is an infinite sequence of values of λL which satisfies this
equation. The smallest (non-zero) value for which this occurs is
λL = 4.493. Thus we have

Pcrit =
(4.493)2EI

L2
. (12.45)

Remarks:

(1) Notice that the additional boundary restraint associated with
clamping one end of the column increases the critical buckling
load by a factor of about 2 over the Euler buckling load.

(2) It is typical to phrase buckling loads in terms of the Euler buckling
load (the value for the pin-pin case). For the clamped-clamped case
the buckling load is four times the Euler load. For the free-clamped
case the buckling load is 1/4 of the Euler load.

(3) It is important to ascertain the exact boundary conditions when
computing buckling loads. In particular, if the column in question
can bend about two axes then the moment of inertia used in the
buckling formulae should be the minimum of the two principal
moments of inertia.

12.3.3 Limitations to the buckling formulae

The analysis carried out for the buckling of columns has three principal
limitations that should be kept in mind:

(1) The analysis carried out utilizes linearized equations. Thus the
analysis can only provide the buckling loads. It cannot provide
quantitative information about the post-buckled condition of a
column. It can only provide qualitative information about the
general shape of the column after buckling. This is given, as in the
rigid link case, by the associated eigenvectors (or more properly
in this setting, eigenfunctions).

(2) The analysis carried out assumed an elastic response of the system.
Thus one must check the validity of Pcrit by ensuring that σcrit =
Pcrit/A < σY . In the pin-pin case, for example, we have

σcrit =
π2EI

AL2
=

π2E

(L/r)2
, (12.46)
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where r =
√

I/A is known as the radius of gyration. Columns for
which the critical stress is less than the yield stress are known as
slender columns. The governing parameter for slenderness is seen
to be L/r. A plot of σcrit in eqn (12.46) as a function of L/r is
often known as Euler’s hyperbola. In a column that is not slender,
yielding will precede buckling. The analysis of post-yield buckling
is left to more advanced texts.

(3) The last important limitation that one should be aware of regard-
ing the analysis presented is that throughout we have assumed
that the axial loads are always perfectly applied. In reality, loads
are never perfectly placed. This limitation is taken up in more
detail in the next section.

12.4 Eccentric loads

Eccentric loads on a column are loads that are not perfectly aligned
with the centroid of the cross-section. In such situations we encounter
a buckling-like behavior. As load is applied, the column appears to
remain in a stable trivial equilibrium state. Then when the load reaches
some critical value the column undergoes sudden transverse motion. This
appears on the surface to behave just like buckling. However, it is asso-
ciated with only a single equilibrium solution. We will begin our quanti-
tative discussion of eccentric loads by first looking at a rigid link system;
this will be followed by studying an eccentric load on a pin-pin column.

12.4.1 Rigid links

Consider the rigid link shown in Fig. 12.16(a). The link is of length L,
is supported by a linear torsional spring with spring constant k, and the

(a) Eccentrically loaded
rigid link supported by a
torsional spring.

(b) Free-body diagram of eccentrically loaded
rigid link.

L

k

P

e

L

kθ

θ

P

P

Fig. 12.16 Single rigid link with an
eccentric load.
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Fig. 12.17 Equilibrium solutions for
an eccentrically loaded rigid link.
Eccentricity ratios shown from the
lower curve to the upper curve are:
0.1, 0.01, 0.001, 0. The solution for
zero eccentricity also includes the triv-
ial vertical solution θ = 0.

load has an eccentricity e. Using the free-body diagram in Fig. 12.16(b),
we have by moment equilibrium that:

0 =
∑

Mpin = kθ − P [L sin(θ) + e cos(θ)] . (12.47)

For non-zero eccentricity, i.e. e �= 0, this equation has only one solution:

P =
k

L

θ

sin(θ) + e
L cos(θ)

. (12.48)

To gain an understanding of the solution and its relation to buckling,
the solution has been has been plotted for various values of e/L in
Fig. 12.17. Also, plotted in this figure are the two solutions for zero
eccentricity. As can been seen, for small values of the eccentricity
the solution closely follows the stable equilibrium solution of the zero
eccentricity case. The system stays nearly vertical and then suddenly, as
Pcrit (of the e = 0 case) is approached, the system rotates substantially.
For larger eccentricities, the deviation is larger but the trend is similar.

Remarks:

(1) Systems with small eccentricities can be effectively analyzed by
assuming that the load placement is perfect. The buckling load is
seen to operate as an upper bound to the load at which the system
will begin to undergo large motions.
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12.4.2 Euler columns

x

L

P

e

y

P

Fig. 12.18 Pin-pin column with an
eccentric axial load.

The analysis of the prior section can be carried over to the beam-column
case. Figure 12.18 shows a pin-pin column with an eccentrically applied
axial load. The eccentricity provides a moment at the pin location; thus
the boundary conditions for this problem are given by

v(0) = 0 (12.49)

EIv′′(0) = −Pe (12.50)

v(L) = 0 (12.51)

EIv′′(L) = −Pe. (12.52)

The distributed load is again q(x) = 0. Because of this we can reuse our
homogeneous solution, eqn (12.29). Applying our boundary conditions
we find:

v(0) = 0 ⇒A1 +A4 = 0 (12.53)

EIv′′(0) = −Pe ⇒EI(−A1λ
2) = −Pe (12.54)

v(L) = 0 ⇒A1 cos(λL) +A2 sin(λL) +A3L+A4 = 0 (12.55)

EIv′′(L) = −Pe ⇒− EIλ2(A1 cos(λL) +A2 sin(λL))

= −Pe. (12.56)

Equation (12.54) tells us that A1 = e. Combined with eqn (12.53) we
see that A4 = −e. Equation (12.56) can now be solved to show that
A2 = e tan(λL/2). Equation (12.55) then reveals that A3 = 0. Combin-
ing these results together we find a single equilibrium solution for e �= 0:

v(x) = e

[
(cos(λx)− 1) + tan

(
λL

2

)
sin(λx)

]
. (12.57)

Remarks:

(1) Notice that when λL/2 is small the (transverse) deformation of
the column is O(e). However, as (λL/2) → π/2, which is the same
as P → Pcrit,e=0, the magnitude of the deflection increases rapidly.

(2) Just as in the eccentrically loaded rigid link case, the solution
closely tracks the stable equilibrium solution to the e = 0 problem.
Hence, the critical loads from the ideal case can be used as effective
upper bounds for the eccentrically loaded cases.

(3) As before, one should check the validity of the analysis. In par-
ticular, one should check the validity of the elasticity assumption.
The maximum stresses will occur at mid-span where the bending
moment is largest.

σmax =
P

A
+

Mmaxymax

I
. (12.58)
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Rearranging terms and using our deflection solution one can show:

σmax = σN

[
1 +

eymax

r2
sec

(√
σN

E

(L/r)

2

)]
, (12.59)

where σN = P/A and ymax is the distance from the neutral axis
to the compression chord. For our solution to make sense we need
to always check that σmax < σY .

12.5 Approximate solutions

It is also possible to solve buckling problems using approximation meth-
ods. In fact, for many practical problems this is the only possibility,
as it is often not feasible to exactly solve the governing equilibrium
equations. As we know, equilibrium equations can be obtained from the
stationary conditions of a (conservative) system’s total potential energy.
If we approximately solve the stationary potential energy problem, then
we will obtain an approximate equilibrium solution. In the setting of
this chapter, this will lead to approximate buckling loads. Just as seen
above, the resulting mathematical structure will be that of an eigenvalue
problem.

Our main ingredient for the solution of approximate buckling problems
will be the system’s total potential energy. If we restrict ourselves to the
buckling of slender beam-columns with an end-load P , then the required
potential energy is given by

Π = Πbeam +Πload, (12.60)

where

Πbeam(v(x)) =

∫ L

0

1

2
EI(v′′)2 dx (12.61)

and

Πload = −P · displacement at the load point (12.62)

= −P

∫ L

0

1

2
θ2 dx, (12.63)

= −P

∫ L

0

1

2
(v′)2 dx. (12.64)

The expression for the potential energy associated with the elastic energy
of the beam is quite familiar now; however, the expression for the
potential for the load is a bit more tricky. The fundamentals, however,
are the same as before: the potential of the load is minus the magnitude
of the load times the displacement at the load point in the direction of the
load. Consider, for example, a beam-column as in Fig. 12.19. If we look
at an infinitesimal segment of the beam-column of length dx, then this
segment will rotate (during buckling) by an angle θ = v′. The resultant
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vertical drop associated with the segment is equal to − 1
2θ

2 dx; here we
have assumed that 1− cos(θ) ≈ 1

2
θ2. To find the vertical drop at the

end of the beam-column, we need to add up the contributions from each
segment of the structure; i.e., one must integrate the expression over the
interval [0, L]. This results in the final expression in eqn (12.64) and the
total potential energy will be given by

Π(v(x)) = Πbeam +Πload (12.65)

=

∫ L

0

1

2
EI(v′′)2 dx− P

∫ L

0

1

2
(v′)2 dx . (12.66)

To estimate buckling loads and buckling modes/shapes, one can apply
Ritz’s method to this potential energy. The procedure is identical to what
we saw in Section 11.7, and we will illustrate it by several examples.

Example 12.4

Clamped-free beam-column buckling. Consider a beam-column which is
built-in at one end and free from kinematic boundary conditions at the
other. The system is subjected to an axial (compressive) load P ; see
Fig. 12.19. Find the system’s critical load via approximation.

x

P

L

Fig. 12.19 Clamped-free beam-col-
umn subjected to an axial compression.

Solution
Let us consider a simple one-parameter approximation for v(x) of the
form: v(x) ≈ Cx2. Inserting this expression into eqn (12.66) yields:

Π(C) =

∫ L

0

1

2
EI4C2 dx− P

∫ L

0

1

2
4C2x2 dx. (12.67)

The stationary conditions for this potential energy are easily found via
conventional calculus as:

dΠ

dC
= 4EICL− P4C · 1

3
L3 (12.68)

= C

[
4EIL− P

4

3
L3

]
= 0 . (12.69)

There are two possible solutions to this (equilibrium) equation. The first
is C = 0; this is the trivial solution with v(x) = 0 corresponding to any
load P . The second occurs when P = 3EI/L2. At this value of the load,
C can take on any arbitrary value. This is the critical load at which
instability occurs.

Remarks:

(1) The exact critical buckling load for this configuration is, P exact
cr =

π2EI/4L2. The relative error in the approximation is:

er =
π2/4− 3

π2/4
= 1− 12

π2
= 21% . (12.70)
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(2) The structure of the equilibrium equations does not change from
what we saw when we computed exact buckling loads. The equi-
librium equations possess trivial solutions for arbitrary loads, and
for certain loads they possess non-trivial solutions.

(3) In this example only one critical load appears, since our approx-
imation space was one-dimensional. For each dimension of the
approximation space one will normally compute one buckling load.
The minimum of these loads is an approximation to the critical
load for the system.

Example 12.5

Clamped-free buckling: Two parameters. Improve the solution in Exam-
ple 12.4 by finding a two-parameter approximate solution.

Solution
Consider the two-parameter polynomial approximation
v(x) ≈ C (x/L)

2
+D (x/L)

3
, which satisfies the kinematic boundary

conditions. If we insert this into the expression for the potential energy,
then

Π(C,D) =

∫ L

0

1

2
EI

[
2C

L2
+

6D

L2

( x
L

)]2
dx

−P

∫ L

0

1

2

[
2C

L

( x
L

)
+

3D

L

( x
L

)2]2
dx .

(12.71)

The stationary conditions for this potential are

∂Π
∂C = 0

∂Π
∂D

= 0

}
⇒
[

4EI
L3 − P

L
4
3

6EI
L3 − P

L
3
2

6EI
L3 − P

L
3
2

12EI
L3 − P

L
9
5

][
C

D

]
=

[
0

0

]
. (12.72)

Equation (12.72) is a system of homogeneous linear equations in two
unknowns. One solution is the trivial solution C = D = 0 for arbitrary
values of the load. The case in which we are interested is the one where
C and/or D are possibly non-zero, as this corresponds to a bending of
the beam-column – a state of buckling. For this to occur the coefficient
matrix in eqn (12.72) must have zero determinant. Computing the
determinant of the matrix and setting it equal to zero results in a second-
order polynomial (the characteristic polynomial) in P which we can solve
to determine two buckling loads: P1, P2. The minimum of these will be
the critical load for the system.
In order to emphasize better that this is an eigenvalue problem we

first rewrite eqn (12.72) in the form([
4 6
6 12

]
− PL2

EI

[
4/3 3/2
3/2 9/5

])[
C
D

]
=

[
0
0

]
. (12.73)
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If we now introduce the following definitions:

A =

[
4 6
6 12

]
, (12.74)

B =

[
4/3 3/2
3/2 9/5

]
, (12.75)

λ =
PL2

EI
, (12.76)

x =

[
C
D

]
, (12.77)

then our equilibrium equations have the compact form

(A− λB)x = 0, (12.78)

which is known as a generalized eigenvalue problem. In the case where
B is the identity matrix, one has Ax = λx, which is the standard
eigenvalue problem. The two eigenvalues are computed by setting the
determinant of A− λB zero which results in a quadratic polynomial for
λ. The solutions are

λ =
PL2

EI
= 2.49, 32.2. (12.79)

Since the smallest buckling load is the critical load,

Pcr = 2.49
EI

L2
. (12.80)

Remarks:

(1) In this problem we have chosen non-dimensional forms for the
functions in Ritz’s method. This turns out to be advantageous
numerically and in terms of understanding. It also results in a
situation where all the Ritz parameters have the same dimensions
– that of displacement. For this reason, the coefficients C and D
are often referred to as generalized displacements.

(2) With respect to the exact solution, our approximate result for Pcr

has a relative error of only 0.75%.

x

Fig. 12.20 Approximate buckling
mode from two-parameter solution.

(3) If one computes the associated eigenvector [C,D]T , then one can
plot the basic shape of the buckling mode as v(x) = C(x/L)2 +
D(x/L)3. Doing so results in [C,D]T = [−1.30, 0.392]T , and the
corresponding buckling mode is shown in Fig. 12.20.

Example 12.6

Clamped-free beam-column with mid-span spring support. Consider a
clamped-free beam-column, but now with a lateral spring support at
mid-span as shown in Fig. 12.21. Determine the buckling load for this
system using an approximation method.
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Solution
The calculation involves only a slight modification of our previous
example. One only has to account for the additional contribution of
the elastic potential energy associated with the spring. This is simply
added to the total potential energy:

k

P

x

L/2

L/2

Fig. 12.21 Clamped-free beam-column
with spring support.

Π = Πbeam +Πspring +Πload, (12.81)

where

Πspring =
1

2
k

[
v

(
L

2

)]2
. (12.82)

If we use the same approximation space as in Example 12.5, then

Πspring =
1

2
k

[
C

(
1

2

)2

+D

(
1

2

)3
]2

. (12.83)

Taking partial derivatives with respect to C and D of this added term
yields a new contribution to the equilibrium equations in terms of the
spring constant k:(

kL3

64EI

[
4 2
2 1

]
+

[
4 6
6 12

]
− PL2

EI

[
4/3 3/2
3/2 9/5

])[
C
D

]
=

[
0
0

]
.

(12.84)

Taking the determinant of the (entire) coefficient matrix and setting it
equal to zero yields a second-order polynomial for the eigenvalues – the
smallest of which is the critical load. The corresponding eigenvector then
defines the general buckled shape of the system.

Remarks:

(1) Unlike the prior two examples, an exact solution of the governing
differential equation is rather involved. The computation of an
approximate solution is much more feasible.

12.5.1 Buckling with distributed loads

End-loads are not the only types of load that can appear in buckling
problems. For example, one can also have distributed axial loads, b(x),
along the length of the beam-column. In this case the total potential
energy for the beam-column will be given as

Π =

∫ L

0

1

2
EI(v′′)2 dx−

∫ L

0

[
b(x)

{∫ x

0

1

2
(v′(x̄))2 dx̄

}
dx

]
, (12.85)
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where the first integral is the elastic potential energy for the beam-
column and the second term represents the potential of the load. The
expression for the potential of the load appears rather complex, but
can be justified if examined closely. The product b(x) dx is the load
acting on a small segment of material near the point x. When the beam-
column buckles, this point moves downwards an amount given by the
expression in the curly braces; this expression is the same one as we
had before except that it gives the motion at an arbitrary point x as
opposed to at the end of the beam-column. Thus the term in the square
brackets represents the potential energy of the distributed load acting
on a segment of length dx at x of the beam-column. To account for the
entire distributed load we need to integrate this expression from 0 to L.
With a simple end-load P , the contribution to the potential energy due
to the load is

−P

∫ L

0

1

2
(v′)2 dx. (12.86)

What has been done is a replacement of L with x and P with b(x)dx
and the summation of this contribution from 0 to L.

Example 12.7

Buckling due to self-weight. Consider a tall narrow tree loaded only by
gravitationally forces. For a given material density and effective cross-
sectional area, determine how tall the tree can be before it buckles under
its own weight. For simplicity, assume the cross-sectional area, A, the
Young’s modulus, E, and the second moment of the area, I, to all be
constants. Use an approximation method.

Solution
In this situation the load is a constant distributed load b(x) = Aρg = γ,
where ρ is the mass density of the column and g is the gravitational
constant. Thus γ is the weight per unit length of the tree. To solve let us
determine the buckling condition for the system in terms of γ. We will
then invert this relation at the end to find a restriction of the height of
the tree in terms of γ.
The potential energy when the distributed load is a constant can be

written as:

Π =

∫ L

0

1

2
EI(v′′)2 dx− γ

∫ L

0

{∫ x

0

1

2
(v′(x̄))2 dx̄

}
dx. (12.87)

To approximately solve this problem, consider a one-parameter approx-
imation for the solution in the form: v(x) ≈ Cf(x), where C is the
undetermined coefficient. For this assumed form,

Π(v) ⇒ Π(C) =

∫ L

0

1

2
EI(Cf ′′)2 dx

− γ

∫ L

0

{∫ x

0

1

2
(Cf ′(x̄))2 dx̄

}
dx.

(12.88)
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For stationarity,

dΠ(C)

dC
= C

[∫ L

0

EI(f ′′)2 dx

−γ

∫ L

0

{∫ x

0

(f ′(x̄))2 dx̄

}
dx

]
= 0.

(12.89)

For a non-trivial solution, C �= 0, one must have

γ =

∫ L

0
EI(f ′′)2 dx∫ L

0

{∫ x

0
(f ′(x̄))2 dx̄

}
dx

. (12.90)

Selecting f(x) = x2, for our functional form, yields

γ =

∫ L

0
EI(2)2 dx∫ L

0

{∫ x

0
(2x̄)2 dx̄

}
dx

(12.91)

=
4EIL∫ L

0

{
4
3x

3
}
dx

(12.92)

=
4EIL
1
3L

4
(12.93)

=
12EI

L3
. (12.94)

For γ < 12EI/L3 there will be no buckling; thus the height restriction is

L3 <
12EI

γ
=

12EI

ρgA
=

12Er2

ρg
, (12.95)

where for the last equality we have introduced the radius of gyration
r2 = I/A of the cross-section.

Remarks:

(1) From the result, we see that denser trees are necessarily shorter.
Likewise, a tree can grow taller if it increases its radius of gyration.

(2) We can assess the accuracy of our computation, since there is a
known reference solution. Up to four digits this is44 This solution can be computed

from the governing ordinary differential
equation. However, it requires knowl-
edge of Bessel functions of fractional
order.

γexact = 7.837
EI

L3
. (12.96)

Comparing, we find that the relative error for our simple approx-
imation is |(12− 7.837)/(7.837)| ≈ 53%, which is not too good.
Adding additional polynomial terms would greatly improve the
accuracy.

(3) As an alternative choice one can pick f(x) = 1− cos
(
π
2

x
L

)
. This

yields
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γ = 8.2979
EI

L3
, (12.97)

which results in a relative error of approximately 6%.

(4) Every tree you see must know this relation!

12.5.2 Deflection behavior for beam-columns with

combined axial and transverse loads

f

P

x

L/2

L/2

Fig. 12.22 Beam-column with axial
and transverse loads.

Energy methods of the type we have just examined are also useful for
other buckling-like problems. Consider, for example, a simply supported
beam with a load f applied at mid-span that is also subject to an
axial compression P ; see Fig. 12.22. The total potential energy for this
mechanical system is

Π =

∫ L

0

1

2
EI(v′′)2 dx− P

∫ L

0

1

2
(v′)2 dx− fv

(
L

2

)
. (12.98)

If f = 0, we are looking at a classical buckling problem; viz., the
beam remains straight until a critical load is reached, after which, the
beam bends suddenly. The critical load for the configuration shown is
Pcr = π2EI/L2. In the case where f �= 0, the beam no longer has a buck-
ling response where there are trivial and non-trivial solutions. Instead,
the system responds with only a single solution that has buckling-like
behavior.
The stationary conditions for the potential energy of the system will

still give us the equilibrium equations for v(x). To be concrete, let us
focus on approximate solutions of the form v(x) ≈ C sin (πx/L). If we
introduce this expression into the potential energy eqn (12.98), then we
find that

Πtotal =
1

4
EI
(π
L

)4
C2L− P

1

4

(π
L

)2
C2L− fC. (12.99)

The stationary condition yields

dΠ

dC
=

1

2
EI
(π
L

)4
CL− P

1

2

(π
L

)2
CL− f (12.100)

= C

{
1

2
EI
(π
L

)4
L− P

1

2

(π
L

)2
L

}
− f = 0, (12.101)

and thus we find that

C =
f

EIπ4

2L3
− P

π2

2L

(12.102)

=
f 2L/π2

EIπ2

L2
− P

(12.103)
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=
2L

π2

f

Pcr − P
. (12.104)

Putting everything back together, we have an approximate solution of
the form:

v(x) ≈ 2L

π2

f

Pcr − P
sin
(
π
x

L

)
. (12.105)

Remarks:

(1) For fixed values of P , the transverse deflection is seen to be a
linear function of f . However, the magnitude of the deflection for
a fixed values of f increases hyperbolically as P approaches Pcr of
the Euler column.

(2) The response is quite similar to what we saw when we considered
eccentrically loaded beam-columns.

(3) This result illustrates a reasonable rule of thumb: The deflection
response of a beam subjected to transverse loads is amplified by
a factor of 1/(Pcr − P ) in the presence of compressive axial loads.
The value of Pcr is the one appropriate for the same kinematic
boundary conditions without any transverse loads.

Chapter summary

� Equilibrium of conservative systems: dΠ/dθ = 0

− Non-trivial solution conditions lead to buckling loads – eigen-
value problems, eigenvectors give buckling modes

� Stability of conservative systems:

− d2Π/dθ2 > 0 – stable

− d2Π/dθ2 = 0 – neutral

− d2Π/dθ2 < 0 – unstable

� Beam-column: EIv′′′ + Pv′′ = q

− Pin-pin (Euler load): Pcr = π2EI/L2

− Pin-clamped Pcr = (4.493)2EI/L2

− Clamped-free Pcr = π2EI/4L2

− Clamped-clamped Pcr = 4π2EI/L2

� Eccentrically loaded structures display buckling-like response as an
upper bound.

� Axial loads amplify transverse deflections by ≈ 1/(Pcr − P ).

� For approximate solutions, choose S̃ ⊂ S and solve eigenvalue
problem that arises from the stationarity conditions of the poten-
tial energy.
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Exercises

(12.1) The structure shown is composed of two hinged
rigid bars, a displacement spring, and a torsional
spring. Find the buckling load and sketch the
associated buckling shape. Assume ka = 2 kN/m,
kb = 1 kN ·m/rad, and L = 1 m.

P

L

L

ka

kb

(12.2) For the two-degree-of-freedom system made up of
rigid bars and torsional springs, as shown,
(a) find the total potential energy Π, assuming θ1
and θ2 small;
(b) derive the equation governing the critical buck-
ling loads by applying the principle of stationary
potential energy.

θ2
P

L2

L1

k2
θ1

k1

(12.3) The linkage shown is made of three rigid bars,
three torsional springs, and one extensional spring.
Set up the system of equations that one would have
to solve in order to determine the critical load;
write your answer in matrix form and indicate in
words the remaining steps that would be needed
to solve the exercise. Do not solve the equations.

P

LLL/2 L/2

k3 k4k2
k1

(12.4) Consider the three (rigid) bar system shown where
k = 100 kN/m and L = 0.3 m.

(a) Find the three buckling loads and their
associated buckling modes/shapes. Accurately
sketch/plot the buckling modes.

(b) Which of the three is the critical mode shape?

(c) If the spring constant nearest the left support
is quadrupled in value, what is the new critical
load and mode shape? Accurately sketch/plot
the critical mode.

L

P

kkk

L L

(12.5) As the load P is increased on the structure shown,
the rigid inverted-T will displace uniformly down-
wards. At a certain load P the structure will expe-
rience a rotational instability. Determine the load
P at which this occurs. Assume that the vertical
and horizontal segments have length Lv and Lh,
respectively. (Hint: The system has 2 degrees of
freedom, θ and Δ.)

θ

k k

P

Δ

P

k

Rigid welded bars Rotational Instability

k
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(12.6) Similar to Exercise 12.5, find the buckling load
for the rigid inverted-T now supported by three
springs of equal stiffness.

P

Δ

P

k

k

k

θ

Rotational InstabilityRigid welded bars

b b

h

(12.7) Shown is a structure composed of two rigid links
of length L = 2 m that are joined by a torsional
spring with spring constant c = 2 kN ·m/rad. The
top of the structure is supported by a flexible sup-
port with spring constant k = 1 kN/m. Determine
the critical load of the structure and sketch the
deflected shape just after collapse.

P

L

L

k

c

(12.8) The system shown is composed of two rigid bars
connected by a (long) slider. This system displays
a critical buckling load in tension. Find an expres-
sion for the critical load in terms of the bar lengths
and the torsional spring constant.

P

Pk

L L

(12.9) Derive the buckling load for a cantilevered column
with an axial end-load; i.e. determine the buckling
load for a free-clamped column.

(12.10) Derive the buckling load for a column which is
free to shorten but has restrained end-deflections
and restrained end-rotations; i.e. determine the
buckling load for a clamped-clamped column.

(12.11) Consider the linear elastic beam shown. Set up
the determinant condition for finding the buckling
load. Show that it is satisfied by the Euler solution;
i.e. this system has the same buckling load as the
pin-pin case.

P
EI −− constant

Length = L

(12.12) A free-standing (cantilever) rectangular post of
cross-sectional dimensions a and b (b > a) and
height L is made of lumber with compressive
crushing strength σB and Young’s modulus E.
Find L such that the post is equally likely to fail
by crushing and by buckling.

a

b

L

P

(12.13) Explain in words the essential elements of a buck-
ling analysis. Make sure to discuss how one checks
the stability of an equilibrium solution.

(12.14) A toothbrush is an interesting example of a force-
limiting system that employs buckling in its basic
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design. When you brush your teeth, your hand
applies a loading that essentially sets up a reaction
force on the brush-head from the teeth which is
distributed (approximately) in an even manner
over the bristles of the brush as an axial load.
Idealize the brush-head as a regular array of N
bristles spread evenly over an area w by l, and
determine an expression for the maximum force
one can apply to the brush-head. Assume each
individual bristle has a length h, radius r, and
modulus E.

(12.15) A truss is loaded with a vertical force at the top
pin. Determine the buckling load and sketch all
the possible ways the system could buckle in the
plane under the first buckling load.

P

h

2b

EI − constant

(12.16) Consider the beam-column shown with constant
EI. Find an expression for the deflection of the
beam-column, when q(x) = qo, a constant.

q(x)

P

L

(12.17) Thin-walled pressure vessels made of very flex-
ible materials have a torsional buckling failure
mode that is associated with compressive normal
stresses. Assuming that the pressure vessel shown
below cannot support any compressive normal
stresses (in the plane of the vessel walls), find the
maximum allowable torque that one can apply to
the pressure vessel.

Balloon Radius R, Thickness t

Internal pressure p
TT

(12.18) The elastic bar shown has a linearly varying coeffi-
cient of thermal expansion α(x) = C +Dx. What
temperature change is needed to cause the bar to
buckle. Assume that the constants C and D are
both positive; also assume that h > b.

z

L

b

hx

y
y

(12.19) Solve Exercise 12.10 using an approximate station-
ary potential energy method. Use a one-parameter
solution space.

(12.20) Solve Exercise 12.11 using an approximate station-
ary potential energy method. Use a one-parameter
solution space.

(12.21) Consider a beam-column with length L = 1.5 m
and a 1.2× 1.2 cm2 square cross-section. The
column is pinned at x = 0 and is supported by a
pin-roller at x = L – i.e. it is simply supported.
Further, it is supported at x = L/4 by a lin-
ear spring with spring constant k = 0.5 N/mm.
The column is subjected to an axial compres-
sive force P at the pin-roller support. Estimate
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the critical load using an approximate potential
energy method with a single parameter. Assume
E = 200 kN/mm2.

(12.22) Consider the system in Exercise 12.21 except that
the axial compressive load is now applied at x =
3L/4 instead of at x = L. Find the critical load
using an approximate potential energy method.
Provide an answer accurate to at least two digits.
(Hint: A small computer program is helpful for this
problem.)

(12.23) Consider a beam supported by a Winkler foun-
dation. The beam is 100 ft long with a
Young’s modulus of E = 30× 106 psi and a cross-
sectional area moment of inertia I = 77.4 in4.
Assume a (continuously distributed) founda-
tion stiffness k = 100 lb/in2 and find the axial
buckling load (with small deformation assump-
tions) and buckling mode. To solve this exer-
cise assume an approximation of the form v(x) =∑n

i=1 Cifi(x) where fi = sin(iπx/L). Increase n
as appropriate and provide accurate plots of the
solution.

x

L

P
Winkler Foundation

(12.24) Consider a beam supported by a partial dis-
tributed spring foundation with spring foun-
dation constant k [F/L2] for x ∈ (a, b). Using
a single term approximation of the form
v(x) = Cx(x− L), find an approximation for the
system’s buckling load.

b

Px

L

k

EI −− constant
Distributed elastic foundation

a

(12.25) A pin-pin beam-column with constant bending
stiffness EI has a rigid bar welded to one end,
as shown. The rigid bar is subjected to a point
load, and the beam-column supports a uniform
distributed load plus an applied moment at x = 0.
Determine an approximate solution for the deflec-
tion of the beam. A single-term parameterization
is sufficient for this exercise.

x

L

P
a

q − Load per unit length

Pa
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Virtual Work Methods:
Virtual Displacements

Up to this point we have looked at several different types of energy
methods for the formulation and solution of different classes of mechan-
ical problems. We started in Chapter 10 with the concept of virutal
work and the method/principle of virtual forces. Then, in Chapter 11
we introduced the principle of stationary potential energy followed by the
principle of stationary complementary potential energy. One observation
that we made was that the principle of virtual forces was equivalent to
the principle of stationary complementary potential energy (for conser-
vative systems). They both were seen to be alternative ways of expressing
the fundamental kinematic relations that governed a mechanical prob-
lem. Stationary potential energy, on the other hand, was seen to be an
alternative way of expressing the equilibrium relations for a conservative
mechanical system. In this chapter we will examine one last energy
concept: the principle of virtual displacements. The principle or method
of virtual displacements will be seen to be the virtual work counterpart
to the principle of stationary potential energy. It is an alternative way
of expressing the equilibirum equations for a mechanical system and, as
with the principle of virtual forces, it applies to both conservative and
non-conservative systems. L

P

Δ

Fig. 13.1 Bar with an axial end-load.

13.1 The virtual work theorem: Virtual
displacement version

In Chapter 10 we introduced the virtual work theorem. In its most
elementary form it states:

External Virtual Work = Internal Virtual Work

To exploit the theorem we introduced the concept of virtual forces, and
this allowed us to generate concrete expressions for internal and external
virtual work. Here we wish to look an alternative definition for virtual
work that is based upon virtual displacements instead of virtual forces.
To keep the presentation concrete, consider the linear elastic bar

shown in Fig. 13.1. The bar is subjected to an end-load P , and suppose
we would like to determine the deflection Δ at the end of the bar in
terms of the applied load using the method of virtual displacements.
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To do so we will consider a virtual displacement field for our bar ū(x).11 We will denote virtual kinematic
quantities with an over-bar. It is also
very common to denote virtual quanti-
ties with a prepended δ; i.e. one often
writes δu in place of ū.

This virtual motion need not have anything to do with the actual motion
of our bar; its selection is entirely our choice. For our example, let us
assume ū(x) = 1̄x2.
The external virtual work (Ext. V.W.) in this context is defined as

the virtual motion at the point of application of the load times the real
load. Thus for our example,

Ext. V.W. = real force× virtual displacement

= P ū(L) = P 1̄L2.
(13.1)

Similarly, the internal virtual work (Int. V.W.) is defined as the integral
of the real stresses times the virtual strains, where the virtual strains
are the strains associated with the virtual displacements (ε̄ = dū/dx).
For our example system we have

Int. V.W. =

∫
V

σε̄ dV (13.2)

=

∫
L

Aσε̄ dx (13.3)

=

∫
L

Rε̄ dx =

∫
L

R× 1̄× 2x dx. (13.4)

If we put this last expression for the internal virtual work together with
our expression for the external virtual work in the virtual work theorem,
then we find that ∫

L

R× 1̄× 2x dx = P 1̄L2. (13.5)

Since we know that the strains are constant between point loads, we can
express the internal force as R(x) = AEΔ/L, which results in

AE
Δ

L
1̄× 2

L2

2
= P 1̄L2 (13.6)

Δ =
PL

AE
. (13.7)

Remarks:

(1) Our result is far from astounding as we have seen it many times
before, but it does give some confidence in our definitions of
internal and external virtual work for the method of virtual
displacements.

(2) As before, we will decorate virtual quantities (those not associated
with our real system) with an over-bar. The unit value 1̄ is
optional.

(3) Virtual work quantities in the method of virtual displacements
will always be virtual kinematic quantities times an energetically
conjugate force-like quantity – displacements times forces, strains
times stresses, rotations times moments (equivalently torques). For
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forces and moments, the virtual work will be assumed positive
when the force or moment is in the same direction as the virtual
displacement or virtual rotation.

(4) Internal and external virtual work quantities in the method of
virtual displacements are additive quantities just like they were
in the method of virtual forces. Thus when dealing with systems
carrying loads in multiple ways, one can simply add up all the
external and internal work quantities and set them equal to each
other.

(5) The effective use of the method of virtual displacements can
require a bit of creativity in the selection of the virtual displace-
ment field. The essential point is that one needs to select a virtual
motion that will help one isolate the part of the system’s response
that is of interest. In statics for example, where the question is
usually associated with determination of support forces or internal
forces, it is quite common to select virtual displacements that are
composed of rigid motions over most of a system and contain
jumps at the points of interest. Note that rigid motions will lead
to zero virtual strains and an easy evaluation of the internal virtual
work.

(6) In the example, it should be noted that ū(0) was zero. If it had not
been, then there would have been an added contribution from the
support force to the external virtual work – viz., −R(0)× ū(0).

13.2 The virtual work expressions

As with the principle of virtual forces, one needs virtual work expressions
for a variety of loading cases, if one is to effectively tackle a wide class of
problems. The needed expressions are quite similar to those we used with
the principle of virtual forces. We simply need to swap which quantities
are virtual and which ones are real.

13.2.1 External work expressions

The loading cases of interest are point loads and distributed loads. For
point forces we will use expressions of the form

Ext. V.W. = P × ū, (13.8)

where P is a given real force and ū is a virtual displacement at the point
of application of the force in the direction in which P acts. For point
moments, the appropriate expression is

Ext. V.W. = M × θ̄, (13.9)

where M is a given real moment (or torque) and θ̄ is a virtual rotation
at the point of application of the moment about the axis of the moment.
In the case of distributed loads we can employ these two definitions
on small segments of the system and then add up the result. For an
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axially loaded bar with distributed load b(x), the total applied load on a
small segment of length dx would be b(x) dx, and the contribution to the
external virtual work for this segment would be b(x)ū(x)dx. Summing
over the entire bar yields the expression for the total external work as

Ext. V.W. =

∫ L

0

b(x)ū(x) dx. (13.10)

In a similar fashion, for beams one has

Ext. V.W. =

∫ L

0

q(x)v̄(x) dx (13.11)

and for torsion rods

Ext. V.W. =

∫ L

0

t(z)φ̄(z) dz. (13.12)

13.2.2 Axial rods

If an element in a mechanical system of length L is loaded with axial
forces then the internal virtual work in the element for the method of
virtual displacements is given by

Int. V.W. =

∫
V

σxxε̄xx dV (13.13)

=

∫
V

R

A
ε̄ dV (13.14)

=

∫ L

0

Rε̄ dx. (13.15)

If and only if the system is elastic, one can also write

Int. V.W. =

∫ L

0

εAEε̄ dx. (13.16)

Example 13.1

Bar with two axial forces. Let us revisit Example 11.1, in which the
bar shown in Fig. 13.2 was to be analyzed to determine the relation
between the applied forces (P1 and P2) and the resulting displacements
(Δ1 and Δ2).

Δ1

P1

L−aa
x

AE −− constant

P2

Δ2

Fig. 13.2 Bar with two axial forces.

Solution
Use the principle of virtual displacements. One first needs expressions
for the internal and external virtual work. The external virtual work
(accounting also for support forces) is

Ext. V.W. = P2ū(a) + P1ū(L)−R(0)ū(0). (13.17)
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Assuming the bar to be linear elastic, we can employ eqn (13.16) for
the internal virtual work. Since we know that the strains are constant
in each segment between the loads, we can write

Int. V.W. =

∫ a

0

(
Δ2

a

)
AEε̄ dx+

∫ L

a

(
Δ1 −Δ2

L− a

)
AEε̄ dx. (13.18)

To proceed further, we now need to pick a virtual displacement field in
a manner that will allow us to isolate the information in which we are
interested. Let us start by selecting the field ū(x) = 〈x− a〉. In this case
ε̄ = H(x− a), and the principle of virtual displacements tells us that

P2ū(a) + P1ū(L)−R(0)ū(0) =

∫ a

0

(
Δ2

a

)
AEε̄ dx+

∫ L

a

(
Δ1 −Δ2

L− a

)
AEε̄ dx

(13.19)

P1 =

(
Δ1 −Δ2

L− a

)
AE . (13.20)

This is one relation between the loads and the displacements. To have a
complete description we need a second equation. To generate a second
relation we will choose a second virtual displacement field. The selection
of a second virtual motion needs to be done in a way that generates
an expression involving P2. One possible choice is ū(x) = x− 〈x− a〉,
which gives ε̄ = 1−H(x− a). The virtual work theorem then tells us
that

P2 + P1 =
Δ2

a
AE. (13.21)

Equations (13.20) and (13.21) form a system of two equations that allow
one to compute the loads if the displacements are known or, vice versa,
the displacements if the loads are known.

Remarks:

(1) Every choice of a virtual displacement field in the principle of
virtual displacements generates a single equation that character-
izes the response of the system. In this example we needed two
relations to have a complete system of equations, and thus we
needed to apply the principle of virtual displacements twice.

(2) It should be observed that each equation generated in this example
by the principle of virtual displacements is a type of force equi-
libirum equation. Later, when we give a proof of the principle of
virtual displacements for the axially loaded bar, we will see that
it is nothing more than a clever reformulation of the governing
differential equation of equilibrium in the bar.

(3) Any other two choices of the virtual displacement field would have
been perfectly valid for this problem. Alternative choices would
likely have led to equations that superficially appeared different
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but upon numerical solution would have yielded the same result.
Note, however, that choosing the second virtual field as a simple
scaling of the first, say ū2 = Cū1, where C is a constant, would
not be helpful, as the equation generated with ū2 would not be
independent from the one generated by ū1.

(4) For the selections made we had the property that ū(0) = 0. By
doing this we avoided having to find a third equation to determine
the support force R(0).

13.2.3 Torsion rods

If an element in a mechanical system of length L is loaded with a torque,
then the internal virtual work in the element for the principle of virtual
displacements is given by

Int. V.W. =

∫
V

σzθγ̄zθ dV (13.22)

=

∫
V

τr
dφ̄

dz
dV (13.23)

=

∫ L

0

dφ̄

dz

[∫
A

τr dA

]
dz (13.24)

=

∫ L

0

T
dφ̄

dz
dz. (13.25)

If and only if the system is elastic, one can also write

Int. V.W. =

∫ L

0

dφ

dz
GJ

dφ̄

dz
dz. (13.26)

Example 13.2

Statically indeterminate rod with a point torque. Let us revisit Exam-
ple 11.2 and determine the relation between the applied torque, T1, and
the resulting rotation at the point of application, θ1; see Fig. 13.3.z

T

a L−a

θ
1

1

GJ −− constant

Fig. 13.3 Rod with a single-point
torque.

Solution
The external virtual work for this system (including the support
torques) is

Ext. V.W. = T1φ̄(a) + T (L)φ̄(L)− T (0)φ̄(0). (13.27)

We note that between the applied load and the supports the rotation
field is linear, and thus the twist rates are constant in each segment. This
holds, since there are no distributed torques on the rod. This allows us
to write the internal virtual work as
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Int. V.W. =

∫ a

0

(
θ1
a

)
GJ

dφ̄

dz
dz +

∫ L

a

( −θ1
L− a

)
GJ

dφ̄

dz
dz. (13.28)

Let us now select as our virtual rotation field

φ̄(z) = z − 〈z − a〉 L

L− a
. (13.29)

This function is zero at the two supports and otherwise as simple as
possible – i.e. linear. If we plug this into the expressions for internal and
external virtual work and set them equal to each other, we find

T1 = GJ
θ1
a

+GJ
θ1

L− a
. (13.30)

Remarks:

(1) Note that the static indeterminacy did not create any difficulties
for the principle of virtual displacements.

(2) Our choice of a virtual rotation field that is zero at the supports
conveniently eliminated the need to determine the support torques
for the bar.

(3) The choice of a piecewise linear function was a matter of preference
which led to simple integrands. Other choices would have given the
same final result. The principle of virtual displacements holds for
any choice of the virtual motion.

(4) Note that the final expression derived from the principle in this
setting is a type of torque equilibrium equation for the bar.

13.2.4 Bending of beams

If an element in a mechanical system of length L is loaded in bending,
then the internal virtual work (ignoring possible shear effects) in the
element is given for the case of virtual displacements as

Int. V.W. =

∫
V

σxxε̄xx dV (13.31)

=

∫
V

σ(−y)κ̄ dV (13.32)

=

∫ L

0

κ̄

[∫
A

−yσ̄ dA

]
dx (13.33)

=

∫ L

0

Mκ̄dx. (13.34)

If and only if the system is elastic, one can also write

Int. V.W. =

∫ L

0

κEIκ̄ dx. (13.35)
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Example 13.3

External equilibrium of a statically indeterminate beam. Consider the
beam shown in Fig. 13.4 and determine a set of equations that relate
the support forces to the applied load.x

a L−a

EI − constant P

Fig. 13.4 Indeterminate beam with
point load.

M1

V1

x

a L−a

EI − constant P
V2

Fig. 13.5 Indeterminate beam with
point load: free-body diagram.

Solution
Using the free-body diagram shown in Fig. 13.5, we can write the virtual
work theorem as:

V1v̄(0) +M1θ̄(0) + V2v̄(L)− P v̄(a) =

∫ L

0

Mκ̄dx. (13.36)

To find a relation between the forces we can choose v̄1 = 1. This implies
that θ̄1 = κ̄1 = 0, from which it follows that

V1 + V2 − P = 0. (13.37)

To find a relation involving the support moment we need a virtual
deflection that has non-zero rotation at x = 0. A suitable choice is
v̄2 = x. This implies θ̄2 = 1 and κ̄2 = 0, from which it follows that

M1 + V2L− Pa = 0. (13.38)

Remarks:

(1) Since we were interested in relations having only to do with the
external loads, we chose virtual deflections that generated zero
virtual curvature and hence no internal virtual work.

(2) The two relations generated are recognized to be the equilibrium of
forces in the vertical direction and equilibrium of moments about
the left support.

13.3 Principle of virtual displacements:
Proof

Up to this point we have been applying the principle of virtual displace-
ments to simple problems and observing that the results are consistent
with results from earlier chapters. The observation has also been made
that the principle leads to equilibrium-like equations. In this section
we will give some proof-of-concept proofs to show that the principle is
nothing more that a rewriting of the governing differential equation of
equilibrium for a given problem. This is similar to the fact that the
principle of virtual forces is just a rewriting of the governing kinematic
expression for a given problem.
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13.3.1 Axial bar: Proof

x

b(x)
P

Fig. 13.6 Bar with axial distributed
load and end-load.

Let us consider the system shown in Fig. 13.6 and try to derive the
principle of virtual displacements from the govering equations for the bar
which consist of the equilibrium equation dR/dx+ b = 0, the kinematic
equation ε = du/dx, and the constitive relation as appropriate for the
material. Since we have noted already that the results of applying the
principle of virtual displacements leads to equilibrium-like equations, let
us start with the equilibrium equation:

dR

dx
+ b = 0. (13.39)

First multiply eqn (13.39) by an arbitrary function ū(x), which we will
choose to call a virtual displacement. This results in

dR

dx
ū+ bū = 0. (13.40)

We can now integrate eqn (13.40) over the domain to give∫ L

0

dR

dx
ū dx+

∫ L

0

bū dx = 0. (13.41)

Using the product rule of differentiation, the first integral can be
re-written as ∫ L

0

dR

dx
ū dx =

∫ L

0

d

dx
(Rū)−R

dū

dx
dx (13.42)

= Rū
∣∣L
0
−
∫ L

0

Rε̄ dx. (13.43)

In the last step we introduced the definition ε̄ = dū/dx. Using this result
in eqn (13.41) and the fact that R(L) = P gives

P ū(L)−R(0)ū(0) +

∫ L

0

bū dx =

∫ L

0

Rε̄ dx, (13.44)

which in nothing more than external virtual work equals internal virtual
work – i.e. the virtual work theorem for the case of virtual displacements.

Remarks:

(1) The proof given is, of course, specific to the specific case examined;
however, the result is in fact quite general.

(2) From the proof, one should observe that the final result only
depended upon the equilibirum equation for the real system.
Nowhere did we employ the kinematic equation for the real bar,
nor did we employ the constitutive relation for the real bar. Thus
the final result is nothing more than an alternative statement of
equilibrium for the bar.

(3) The steps used in the derivation were strictly algebraic and
calculus-based, and were independent of any particular choice of
virtual displacement. For this reason the steps can be reversed,
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and one sees that the principle of virtual displacements holds if
and only if the equilibrium equation for the bar is satisfied.

13.3.2 Beam bending: Proof

As a second proof-of-concept consider a beam with distributed load q(x).
Proceeding as with the axial bar, let us start with the two governing
differential equations for force and moment equilibrium

dV

dx
+ q = 0 (13.45)

dM

dx
+ V = 0 (13.46)

and combine them into a single equation

d2M

dx2
= q. (13.47)

Now multiply both sides of this equation by an arbitrary function v̄(x)
(the virtual deflection) and integrate over the domain. Employing the
definitions of θ̄ = dv̄/dx and κ̄ = dθ̄/dx results in∫ L

0

qv̄ dx =

∫ L

0

d2M

dx2
v̄ dx (13.48)

=

∫ L

0

d

dx

(
dM

dx
v̄

)
− dM

dx
θ̄ dx (13.49)

=
dM

dx
v̄

∣∣∣∣L
0

−
∫ L

0

dM

dx
θ̄ dx (13.50)

=
dM

dx
v̄

∣∣∣∣L
0

−
(∫ L

0

d

dx

(
Mθ̄
)
−Mκ̄dx

)
(13.51)

=
dM

dx
v̄

∣∣∣∣L
0

−Mθ̄
∣∣L
0
+

∫ L

0

Mκ̄dx. (13.52)

Moving the leading terms on the right-hand side to the left gives the
final result:

M(L)θ̄(L)−M(0)θ̄(0)

+ V (L)v̄(L)− V (0)v̄(0)

+

∫ L

0

qv̄ dx =

∫ L

0

Mκ̄dx;

(13.53)

viz., external virtual work equals internal virtual work.

Remarks:

(1) In the derviation, the only information that we used about the
real system were the equations of equilibrium. Thus the principle
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of virtual work is again seen to only be a special way of expressing
the equilibirum equations for a mechanical system.

(2) The virtual deflection of the beam was arbitrary. The virtual work
theorem holds for all choices of the virtual deflection field, and all
the mathematical steps are reversible.

13.4 Approximate methods

In the examples which we have seen so far using the method of virtual
displacements, the complete behavior of the system of interest could
easily be characterized by a finite number of unknowns. In Example 13.1
we had Δ1 and Δ2, in Example 13.2 it was θ1, and in Example 13.4 it was
M1, V1, and V2. In a wide class of problems this will be true; however,
in a larger class of problems this will not be case. The situation is rather
similar to what was seen in Chapter 11 with respect to solving problems
via the principle of stationary potential energy, and in a similar fashion
we can also utilize the principle of virtual displacements to compute
approximate solutions.
We will introduce the basic concepts via the problem illustrated in

Fig. 13.7; this is the same problem we started with in Chapter 11 when
we introduced approximate solutions via stationary potential energy.
The question at hand is to determine the deflection of the beam. The
principle of virtual displacements for this problem states

−M(0)v̄′(0)− V (0)v̄(0)− P v̄(L) =

∫ L

0

v′′EIv̄′′ dx. (13.54) x

P

L

EI −− constant

Fig. 13.7 Cantilever beam with a
dead-load.

The unknown in which we are interested is v(x), the beam’s deflection,
and we would like to use eqn (13.54) to determine it. As before, we note
that v(x) is not just any function, since it must satisfy the kinematic
boundary conditions. In other words, we should only consider functions
in the set

S = {v(x) | v(0) = 0 and v′(0) = 0} . (13.55)

As before, the set of functions S is known as the space of trial solutions –
the true equilibrium displacement field lies somewhere within this set of
functions. Note that for the actual solution v(x), eqn (13.54) holds true
for any virtual displacement v̄(x). The virtual displacements are said to
be in the set of functions V defined as

V = {v̄ | (no restrictions)} . (13.56)

This set is sometimes called the space of virtual displacements or the
space of test functions.
Just as with Ritz’s method, we will simplify the situation by only

considering possible solutions from a subset of S that can be defined by
a finite number of parameters. For example, if we we look for an approxi-
mate solution in the set S̃N ⊂ S which has N unknown parameters, then
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we will need to generate N equations to determine the N parameters.
To do so, we will need to consider N different virtual displacement
fields. In the Bubnov–Galerkin approximation scheme, these functions
are selected from a set ṼN ⊂ V, where ṼN contains functions of the same
form as those in S̃N .

To be concrete, consider the subsets

S̃1 =
{
v(x) | v(x) = Cx2, C ∈ R

}
⊂ S (13.57)

and

Ṽ1 =
{
v̄(x) | v̄(x) = C̄x2, C̄ ∈ R

}
⊂ V. (13.58)

The set S̃1 is composed of a set of parabolas parameterized by the
parameter C which is an arbitrary real number and likewise for Ṽ1.

2 To
2 S̃1 and Ṽ1 are one-dimensional sets;
one can specify any element in each
set by giving a value to a single scalar
parameter.

determine the approximate solution we need to determine C. We do this
by examining the consequences of requiring the virtual work expression
eqn (13.54) to hold true for all v̄ ∈ Ṽ1. If we plug our approximations
into the virtual work expression, we find

−PC̄L2 =

∫ L

0

4C × EI × C̄ dx. (13.59)

This can be rearranged as

C̄
[
4C × EIL+ PL2

]
= 0. (13.60)

Since we require this to be true for all values of C̄, this tells us that the
the expression in the square brackets must be zero. In other words, that
C = −PL/4EI. Thus we find an approximation for the deflection as

v(x) ≈ −PLx2

4EI
. (13.61)

Remarks:

(1) The solution we have arrived at is an approximation to the true
solution to this problem. The approximation can be improved
by adding further terms (and parameters) to our approximation
space.

(2) Our final result is in fact identical to our result from Section
11.7. For conservative problems, the Bubnov–Galerkin method will
always yield the same result as Ritz’s method.

(3) In this example our selection of functions eliminated the
(unknown) support reactions from the final equations. This is
typically desirable, and will work out automatically as long as
the given kinematic boundary conditions are zero.

Example 13.4

Bar with a constant distributed load. Consider a bar with one end fixed,
the other free, and loaded by a constant distributed load b(x) = bo, as
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shown in Fig. 13.8. Find an approximate solution for u(x) the bar’s
displacement.

x

b(x) = bo

L

AE − constant

Fig. 13.8 Linear elastic bar with con-
stant distributed load.

Solution
Let us look for an approximate linear solution. The virtual work theorem
tells us that

−R(0)ū(0) +

∫ L

0

boū dx =

∫ L

0

εAEε̄ dx. (13.62)

For approximation spaces let us select

S̃1 = {u(x) | u(x) = Cx, C ∈ R} ⊂ S (13.63)

and

Ṽ1 =
{
ū(x) | ū(x) = C̄x, C̄ ∈ R

}
⊂ V. (13.64)

With these selections, ε = C and ε̄ = C̄, and we find that

C̄

[
bo
L2

2
− CAEL

]
= 0. (13.65)

Requiring this later result to be true for all functions in Ṽ1 implies

C =
boL

2AE
(13.66)

and that our approximate defelction is given by u(x) ≈ boL
2AE

x.

Remarks:

(1) Figure 13.9 compares the exact quadratic solution to the approx-
imate one. The approximation is seen to be quite reasonable for a
single parameter solution.

(2) If we had used S̃1 in the principle of stationary energy for this
problem, we would have come to the same result, as the problem
is conservative. 0 0.2 0.4 0.6 0.8 1
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Fig. 13.9 Exact (solid line) versus
approximate (dashed line) solution for
Example 13.4.In the case where a single term provides insufficient accuracy for a given

problem, one can add additional terms to the approximation spaces. To
be concrete, consider the problem of Example 13.4, but this time with
an arbitrary distributed load b(x). For a better approximation consider

S̃N =

{
u(x)

∣∣∣ u(x) = N∑
i=1

Cifi(x), {Ci}Ni=1 ∈ R

}
⊂ S, (13.67)

where the functions fi(x) are known and have the property that
fi(0) = 0. For example, they could be the polynomials fi(x) = xi. In
the Bubnov–Galerkin method we then select the space of virtual dis-
placement to have the same form; i.e.
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ṼN =

⎧⎨⎩ū(x)
∣∣∣ ū(x) = N∑

j=1

C̄jfj(x), {C̄j}Nj=1 ∈ R

⎫⎬⎭ ⊂ V. (13.68)

Inserting into the principle of virtual displacements, eqn (13.62), gives

N∑
j=1

C̄j

[∫ L

0

b(x)fj(x) dx−
N∑
i=1

(∫ L

0

f ′
j(x)AEf ′

i(x) dx

)
Ci

]
= 0.

(13.69)

If we require this expression to be true for any function in ṼN , i.e. for
arbitrary parameters C̄j , then the term in the square brackets must be
zero:

N∑
i=1

(∫ L

0

f ′
j(x)AEf ′

i(x) dx

)
Ci =

∫ L

0

b(x)fj(x) dx. (13.70)

If we define the N ×N matrix K to have components

Kji =

∫ L

0

f ′
j(x)AEf ′

i(x) dx (13.71)

and the vector F of length N to have components

Fj =

∫ L

0

b(x)fj(x) dx, (13.72)

then we see that we have a system of N linear equations in the N
unknowns Ci; i.e. the problem reduces to finding the solution to the
following system of matrix equations:

KC = F , (13.73)

where C is a vector with components Ci.

Remarks:

(1) The entire discussion of Section 11.7 about approximation proper-
ties and their improvement also applies to the principle of virtual
displacements.

(2) The use of an N function approximation in the setting given
here is the basis of the well-known finite element method. The
only difference is the specific choice of approximation functions.
The finite element method is essentially a careful and precise
specification of the selection/construction of the approximating
functions.

Example 13.5

Two-term approximation with non-zero kinematic boundary conditions.
Consider the pin-clamped beam shown in Fig. 13.10 and determine an
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approximate expression for the beam’s deflection using the principle of
virtual displacements.

L

qo

Δ

x

EI −− constant

Fig. 13.10 Pin-clamped beam with
constant distributed load and
imposed non-zero kinematic boundary
condition.

Solution
In this problem their is a non-zero kinematic boundary condition. To
appropriately handle this we will need to carefully set up our space of
solutions and space of virtual deflections. For the space of trial solutions
we will select a two-parameter space

S̃2 =

{
v(x)

∣∣∣ v(x) = 2∑
i=1

Cifi(x) + g(x)

}
⊂ S, (13.74)

where

f1(x) =
( x
L

)2 x− L

L
, (13.75)

f2(x) =
( x
L

)3 x− L

L
, (13.76)

g(x) = Δ
( x
L

)2
. (13.77)

Note that the fi(x) satisfy the kinematic boundary conditions at the wall
and are zero at the end with the imposed displacement. The function
g(x) additionally satisfies the non-zero kinematic boundary condition at
the right-end of the beam. The space of virtual deflections is constructed
to have the same form as the space of trial solutions minus the terms
associated with the non-zero kinematic boundary conditions. Thus we
chose

Ṽ2 =

⎧⎨⎩v̄(x)
∣∣∣ v̄(x) = 2∑

j=1

C̄jfj(x)

⎫⎬⎭ ⊂ V. (13.78)

The principle of virtual displacements for this problem is given by∫ L

0

−qov̄(x) dx =

∫ L

0

v′′(x)EIv̄′′(x) dx. (13.79)

Inserting our approximate forms yields

2∑
j=1

C̄j

[∫ L

0

g′′EIf ′′
j + qofj dx+

2∑
i=1

(∫ L

0

f ′′
j EIf ′′

i dx

)
Ci

]
= 0.

(13.80)

For this to be zero for all functions in Ṽ2, the term in the square brackets
must be zero. This is a system of linear equations in the form KC = F ,
where the matrix K has components

Kji =

∫ L

0

f ′′
j EIf ′′

i dx (13.81)
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and the vector F has components

Fj = −
∫ L

0

g′′EIf ′′
j + qofj dx. (13.82)

Using our assumed forms, the governing system of equations is given by

EI

L3

[
4 4

4 24
5

](
C1

C2

)
=

(
qoL
12 − 2ΔEI

L3

qoL
20

+ 2ΔEI
L3

)
. (13.83)

Solving this system of linear equations gives:

C1 =
qoL

4

16EI
− Δ

2
(13.84)

C2 = − qoL
4

24EI
. (13.85)

Remarks:

(1) This problem is modestly simple and can be solved using the
differential equations governing beam deflection. In comparing
the results, one finds that our approximate solution is exact. The
Bubnov–Galerkin method returns the exact solution should it lie
in S̃N .

(2) For more complex problems with a larger number of terms one
can automate the generation of the components of the matrix K
and the vector F , as well as their solution.

Example 13.6

Non-conservative load. The beam shown in Fig. 13.11 is subjected to a
force that remains perpendicular to the beam even as it rotates. Such
a force is known as a follower force, and is a type of non-conservative
load. Use the principle of virtual displacements to find an approximate
expression for the beam’s deflection.

L

EI −− constant

x

P

Fig. 13.11 Cantilever beam subjec-
ted to a follower force.

Solution
The definitions for the internal virtual work do not change due to the
presence of the follower load. The only issue that requires attention is
the fact that the vertical component of the force will be P cos(v′(L)).
Thus the virtual work theorem will read

P cos (v′(L)) v̄(L) =

∫ L

0

v′′EIv̄′′ dx. (13.86)

In what follows we will approximate cos((v′(L)) as 1− (v′(L))2/2, and
for approximate function spaces we will pick the forms v ≈ Cx2 and
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v̄ = C̄x2. Inserting the approximations into the virtual work theorem,
and requiring it to hold true for all C̄, yields

(2PL4)C2 + (4EIL)C − PL2 = 0. (13.87)

Solving for C gives

C =
−4EIL±

√
(4EIL)2 + 8P 2L6

4PL4
. (13.88)

There are two solutions; however, the solution associated with the
negative sign in front of the radical leads to the non-physical result that
the beam moves in the opposite direction of the load. Thus we discard
that possibility, and find that

C =
−4EIL+

√
(4EIL)2 + 8P 2L6

4PL4
(13.89)

=
EI

PL3

⎡⎣−1 +

√
1 +

1

2

(
PL2

EI

)2
⎤⎦ . (13.90)

Remarks:

(1) This problem illustrates two important features of the principle
of virtual work: (a) it applies to non-linear problems, and (b) it
applies to non-conservative problems. The load in this case was
not conservative, and thus the use of Ritz’s method is precluded.

(2) Note that if the load is very small, then the radical can be
expanded in a Taylor series to show that C ≈ PL/4EI, which is
the result we had for this level of approxiation when we treated the
case of a dead-loaded cantilever. So for small forces, follower loads
and dead-loads give the same response as one would intuitively
expect.

Chapter summary

� Virtual work theorem: Ext. V.W. = Int. V.W.
� The principle of virtual displacements is an alternative way to
express the equilibrium relations for a mechanical system.

� Ext. V.W. (virtual displacements): P ū or Mθ̄
� Int. V.W. (virtual displacements):

− Axial forces:
∫
L
Rε̄ dx, (elastic)

∫
L
εAEε̄ dx
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− Torsion:
∫
L
T φ̄′ dz, (elastic)

∫
L
φ′GJφ̄′ dz

− Bending:
∫
L
Mκ̄dx, (elastic)

∫
L
κEIκ̄ dx

� Bubnov–Galerkin scheme: Select S̃ ⊂ S to have same functional
form as Ṽ ⊂ V

Exercises

(13.1) Find an exact solution to Exercise 11.1 from Chap-
ter 11 using the principle of virtual displacements.

(13.2) Find an exact solution to Exercise 11.2 from Chap-
ter 11 using the principle of virtual displacements.

(13.3) Find an exact solution to Exercise 11.3 from Chap-
ter 11 using the principle of virtual displacements.

(13.4) For the truss given in Exercise 10.11 of Chapter 10,
find all the support reactions using the principle
of virtual displacements.

(13.5)Write the virtual work theorem for the following
system. Make sure to define the solution space S;
use no restrictions on the test function space V.

a L−a

P1 P2

(13.6)Write the virtual work theorem for the following
system. Make sure to define the solution space S;
use no restrictions on the test function space V.

a

T1 T2

L−a

(13.7)Write the virtual work theorem for the following
system. Make sure to define the solution space S;
use no restrictions on the test function space V.

a L−a

P1

M2

qo
P2

(13.8)Write the virtual work theorem for the following
system. Make sure to define the solution space
S; use a test function space V that eliminates
support reactions. (Hint: Virtual work expressions
are additive like real work.)

L−a

P1 qo

M
2

P3

a

P2

(13.9) For the beam shown write the virtual work the-
orem. Use a test function space that eliminates
support reactions.

1

F

a

x

EI −− constant

L

(13.10) Consider an elastic beam of length L and bend-
ing stiffness EI subject to a transverse load q(x)
and boundary conditions θ(0) = θo, V (0) = Vo,
V (L) = VL, and θ(L) = θL. Formulate the princi-
ple of virtual displacements for this system using
a test function space that eliminates support reac-
tions.

(13.11) Starting from the differential equation of equilib-
rium for a torsion bar, derive the virtual work
theorem for the case where the left-end of the bar
is subject to the torque T (0) = −T̂ and the right-
end is fixed.
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(13.12) Consider a bar subjected to N applied forces Pi

acting at locations xi = iL/N for i = 1, 2, . . . , N .
Formulate the principle of virtual work for this
system assuming that R(0) = 0.

(13.13) For the beam shown, write an expression for the
principle of virtual displacements. Clearly define
the space of solutions and the space of test func-
tions. Assume the beam is linear elastic with slen-
der prismatic proportions.

a L a

EI −− Constant
M1 V1

(13.14) For the configuration shown, derive the virtual
work equation starting from d2M/dx2 = q.

V

L−a

qo

M

a

(13.15) Consider the elastic rod shown. Starting from the
relevant governing ordinary differential equation,
derive the applicable principle of virtual displace-
ments. Be sure to explicitly define your space of
trial solutions; use test functions that eliminate
support reactions.

u(0) = 0.25 in

L = 24 in

b(x) = 2 lbf/in

AE = 8000 lbf

(13.16) A pin-pin beam-column with constant bending
stiffness EI has a rigid bar welded to one end
as shown. The rigid bar is subjected to a point
load and the beam-column supports a uniform
distributed load plus an applied moment at x = 0.
Determine an approximate solution for the deflec-
tion of the beam using the principle of virtual dis-
placements. One-dimensional function spaces are
sufficient for this exercise.

x

L

P
a

q − Load per unit length

Pa

(13.17) Approximately solve Exercise 11.21 from Chap-
ter 11 with the principle of virtual displacements
using a single quadratic term.

(13.18) Approximately solve Exercise 11.22 from Chap-
ter 11 using the principle of virtual displacements.

(13.19) Approximately solve Exercise 11.25 from Chap-
ter 11 using the principle of virtual displacements.

(13.20) Approximately solve Exercise 11.32 from Chap-
ter 11 using the principle of virtual displacements.

(13.21) Consider the system shown in Exercise 11.6
from Chapter 11 and approximately solve for the
bar’s displacement field using a two-parameter
approximation with the principle of virtual
displacements.
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Appendix

BUnits, Constants,
and Symbols

To convert between SI units and USCS units Table B.1 provides a set of helpful
conversion relations. Tables B.1–B.5 provide additional useful information. For
additional information on units, see the National Institute of Standards Specifi-
cations, Tolerances, and Other Technical Requirements for Weighing and Mea-
suring Devices, National Institute of Standards Handbook 44 – 2008 Edition.
Of particular interest is Appendix C of this handbook, which lists many useful

Table B.1 Unit conversion table.

To convert To Multiply by

Length

Inches (in) Millimeters (mm) 25.400

Inches (in) Meters (m) 0.025400

Feet (ft) Meters (m) 0.304800

Angles

Degrees (deg) Radians (rad) π/180

Area

Square inches (in2) Square meters (m2) 0.000645

Force

Pounds Force (lbf) Newtons (N) 4.448222

Pressure

Pounds per sq. inch (psi) Pascal (Pa = N/m2) 6894.757

Thousand pounds per sq.
inch (ksi)

Mega-Pascal (MPa = N/mm2) 6.894757

Million pounds per sq.
inch (msi)

Giga-Pascal (GPa = kN/m2) 6.894757

(cont.)
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Table B.1 (Cont.)

Mass

Pound Mass (lbm) Kilogram (kg) 0.45359237

Torque

Inch pound force (lbf-in) Newton-meter (N-m) 0.112985

Foot pound force (lbf-ft) Newton-meter (N-m) 1.355818

Power

Horsepower (hp = 550 lbf-ft/s) Watt (W = N-m/s) 745.700

conversion factors between different systems of units. A brief historical discus-
sion of units can be found in Appendix B of this handbook, which is available
online at http://ts.nist.gov/WeightsAndMeasures/Publications/H44-08.cfm

Table B.2 Prefixes used in the SI system.

Prefix Symbol Multiplying factor

Yotta Y 1024

Zetta Z 1021

Exa E 1018

Peta P 1015

Tera T 1012

Giga G 109

Mega M 106

Kilo k 103

Milli m 10−3

Micro μ 10−6

Nano n 10−9

Pico p 10−12

Femto f 10−15

Atto a 10−18

Zepto z 10−21

Yocto y 10−24

http://ts.nist.gov/WeightsAndMeasures/Publications/H44-08.cfm
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Table B.3 Useful physical constants.

Gravitational constant (g) 9.80665 (m/s2)

Gravitational constant (g) 32.1740 (ft/s2)

Natural Logarithm Base (e) 2.718281828

Pi (π) 3.14159265 (rad)

Speed of light (c) 299792458 (m/s)

Standard atmosphere 101325 (Pa)

Table B.4 Greek alphabet.

Symbol Name

Upper case Lower case

A α alpha

B β beta

Γ γ gamma

Δ δ delta

E ε, ε epsilon

Z ζ zeta

H η eta

Θ θ, ϑ theta

I ι iota

K κ kappa

Λ λ lambda

M μ mu

N ν nu

Ξ ξ xi

O o omicron

Π π, � pi

P ρ, � rho

Σ σ, ς sigma

T τ tau

Υ υ upsilon

Φ φ, ϕ phi

X χ chi

Ψ ψ psi

Ω ω omega
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Table B.5 Common Latin abbreviations.

Abbreviation Latin English

e.g. exempli gratia for example

et al. et alii and others

etc. et cetera and so on

ibid. ibidem in the same place

i.e. id est that is

q.e.d. quod erat demonstrandum which was to be demonstrated

viz. videlicet namely
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CRepresentative Material
Properties

Table C.1 lists representative material properties for a variety of different
materials. The numbers given are approximated for easy recall. Thus interre-
lations between elastic properties are not preserved nor are strict unit conver-
sions. Allowed stresses are given as initial yield stresses for ductile materials,
and fracture stresses for brittle materials. For actual design computations one

Table C.1 Material property values.

Material E ν G σa α

(msi) (-) (msi) (ksi) (μstrain/F)
(GPa) (-) (GPa) (MPa) (μstrain/C)

Alumina 55 0.22 22 380 4.7
Al2O3 (99.5%) 375 0.22 150 2600 8.4

Aluminum 11 0.33 4 40 14
(6061-T6) 77 0.33 30 280 24

Diamond 175 0.2 73 170 0.66
1220 0.2 510 1200 1.2

Cast iron 15 0.21 6 8 6.6
105 0.21 43 56 12

Copper 17 0.34 7 10 9
(99.9%) 120 0.34 50 70 16

Polyamide 0.47 0.4 0.17 11 55
(Nylon 6/6) 3.25 0.4 1.2 75 95

Polycarbonate 0.33 0.38 0.12 8.5 40
(Lexan R©) 2.3 0.38 0.83 60 70

Polychloroprene 250e-6 0.46 85e-6 4 130
(Neoprene) 1.7e-3 0.46 0.60e-3 30 230

Polyethelyne 0.11 0.45 0.038 4 100
(HDPE) 0.8 0.45 .28 30 180

Steel 30 0.3 12 35 6
(Low Carbon) 210 0.3 80 250 11

(cont.)
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Table C.1 (Cont.)

Material E ν G σa α

(msi) (-) (msi) (ksi) (μstrain/F)
(GPa) (-) (GPa) (MPa) (μstrain/C)

Steel 30 0.3 12 270 5.5
(440A tempered) 210 0.3 80 1900 10

Titanium 15 0.33 5.6 120 5
105 0.33 40 840 10

Tungsten 50 0.28 20 100 2.5
350 0.28 135 700 4.5

Uranium 24 0.21 10 30 6
(D-38) 170 0.21 70 210 11

Wood 2 4
(Douglas-fir, ‖-grain) 14 30

Zerodur R© 13 0.24 5.2 6 0.01
(glass) 90 0.24 36 42 0.02

must use reliably measured data associated with the actual material supply,
as material properties can vary substantially, depending upon processing
parameters.
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DParallel-Axis Theorem

The area moments of inertia of a given area A are defined as

Iz = Izz =

∫
A

y2dA,

Iy = Iyy =

∫
A

z2dA,

Izy = Iyz =

∫
A

yzdA.

(D.1)

If the area moments of inertia (Izc , Iyc , Iyczc) of an area are known with respect
to the centroidal axes of the area, then the parallel-axis theorem tells us that
the area moments of inertia with respect to any other set of (parallel) axes
are given by:

A

dyz

y

zc dz

yc

Fig. D.1 Parallel-axis theorem con-
struction. The axes yc and zc represent
the centroidal axes.

Iz = Izz =

∫
A

y2dA = Izc +Ad2y (D.2)

Iy = Iyy =

∫
A

z2dA = Iyc +Ad2z (D.3)

Iyz = Izy =

∫
A

yzdA = Iyczc +Adydz, (D.4)

where dy and dz are the (centroidal) coordinates of the y-z frame (see Fig. D.1).
The proof of the theorem follows directly from eqn (D.1) under the substitution
y = yc − dy and z = zc − dz, and the fact that

∫
A
zc dA =

∫
A
yc dA = 0 by

definition of the centroid.
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Integration Facts

In calculus courses one usually learns the mechanics of integration and becomes
adept at the computation of given integrals. In engineering, this skill is impor-
tant, as the computation of a particular integral is often the final step in the
development of a solution to a particular problem. However, in engineering one
also faces the need to create models, and these models often contain integral
terms. In order to construct these models, one needs to have a firm grasp of
the meaning of an integral. In this Appendix we first address integration at
a conceptual level and then list some important facts – all associated with
Riemannian integration.

E.1 Integration is addition in the limit

At an elementary level, (Riemannian) integration is nothing more than a
formal (and very useful) methodology for expressing the result of an infinite
sum. Given an (integrable) function f : [a, b] → R, the integral

∫ b

a

f(x) dx (E.1)

is defined as the limit value of the Riemannian sum

lim
N→∞

N+1∑
k=1

f(xk)Δxk, (E.2)

where x0 = a < x1 < x2 < · · · < xN < b = xN+1, Δxk = xk − xk−1, and all
Δxk → 0 as N → ∞.

The key to understanding integration from a model-building perspective is the
understanding of this definition.

In particular, one should observe that the summand in eqn (E.2) represents
the value of a function in the neighborhood of a point times a measure of the
size of the neighborhood. The summation process then adds all these values
over a given region.
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Example E.1

Integral of f(x) = x. As a first example let us verify that this definition of the
integral gives us what we expect for f(x) = x and a = 0 and b = 3.

Solution
We know from elementary calculus that∫ 3

0

x dx =
1

2
x2

∣∣∣∣3
0

=
9

2
. (E.3)

To compute the Riemann sum we need to select values for the xks. Any
selection that satisfies the ordering requirement given above will suffice. Let us
assume that xk = 3k/(N + 1); thus Δxk = 3/(N + 1). The summand is then

f(xk)Δxk =
3k

N + 1

3

N + 1
. (E.4)

The sum is thus

N+1∑
k=1

3k

N + 1

3

N + 1
=

9

(N + 1)2

N+1∑
k=1

k =
9

(N + 1)2
(N + 1)(N + 2)

2
. (E.5)

In the limit N → ∞, we see that our sum gives us

lim
N→∞

N+1∑
k=1

f(xk)Δxk = lim
N→∞

9

(N + 1)2
(N + 1)(N + 2)

2
=

9

2
. (E.6)

Thus we see that the definition given above does provide the expected result.

Example E.2

Sand-pile. Let us assume that we have a board upon which is a pile of sand;
see Fig. E.1. The height of the sand is given by a function h(x). What is the
total weight which the board supports? Assume that the weight density of the
sand is γ and the width of the board into the page is w.

Δ x k
y

a b x

h(x)

xk

Fig. E.1 Sand-pile.Solution
If we consider a small segment of the board located at xk of length Δxk,
then an approximation to the volume of the sand over this segment is
h(xk)wΔxk. Thus, the approximate weight that this segment carries is given
by γh(xk)wΔxk. The smaller Δxk, the more accurate the estimate. The total
weight being supported by the board can be estimated by choosing many such
xks between a and b, and adding all the terms. In the limit that one takes
an infinite number of such points we will obtain an exact result. But this is
simply the Riemann sum

lim
N→∞

N+1∑
k=1

wγh(xk)Δxk. (E.7)
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Thus the total weight supported by the board is given by the integral

γw

∫ b

a

h(x) dx. (E.8)

Example E.3

Mass flow. Let us assume that we have a two-dimensional box, and that across
the top of the box there is a flow of gas; see Fig. E.2. The gas flow is defined by
a function g(x) : [a, b] → R which gives the mass per unit time per unit length
flowing across the top of the box; i.e. the dimensions of g are [g] = [M/TL].
We would like to determine an expression for the total mass per unit time
that flows across the top of the box.

x

Δ x k

y

a

g(x)

bxk

Fig. E.2 Two-dimensional box. Solution
If we consider the top of the box and look at a small segment at xk of length
Δxk, then the flow rate across this segment can be approximated by g(xk)Δxk.
The smaller Δxk is, the more accurate is the estimate. The total flow rate
across the top of the box can be estimated by choosing many such xks between
a and b and adding up all the terms. In the limit that one takes an infinite
number of such points, we will obtain an exact result. But this is simply the
Riemann sum

lim
N→∞

N+1∑
k=1

g(xk)Δxk. (E.9)

Thus the total mass flow rate across the top of the box is given by the
integral ∫ b

a

g(x) dx. (E.10)

E.2 Additivity

It should be observed that if one integrates over a domain Ω = (a, b) ∪ (c, d)
where (a, b) ∩ (c, d) = ∅, then the integral∫

Ω

f(x) dx =

∫
(a,b)

f(x) dx+

∫
(c,d)

f(x) dx;

i.e., integration is an additive process. This follows directly from our definition
of integration in the previous section. This observation is quite helpful when
faced with complex integration domains, if one can decompose the domain
into a set of simpler domains. This result also holds in higher dimensions.
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Example E.4

Exploitation of additivity. Suppose you wish to integrate f(x, y) = xy over the
domain Ω shown in Fig. E.3. In this case one can breakup the domain, Ω into

e

x

y

a

b

d

c

Ω

Fig. E.3 Easily-decomposable
domain of integration.

two domains, Ω1 = (0, a)× (0, b) and Ω2 = (a, c)× (e, d); i.e. Ω = Ω1 ∪ Ω2 and
Ω1 ∩ Ω2 = ∅. We then have that∫

Ω

xy dxdy =

∫
Ω1

xy dxdy +

∫
Ω2

xy dxdy =
a2b2

4
+

(c2 − a2)(d2 − e2)

4

E.3 Fundamental theorem of calculus

The fundamental theorem of calculus states that for a function f : [a, b] → R,

f(b)− f(a) =

∫ b

a

df(x)

dx
dx

(when df/dx is integrable). The theorem is used quite often in mechanics when
one knows the rate of change of a quantity and one wishes to know the overall
change in the quantity over a given interval.

Example E.5

Application of the fundamental theorem of calculus. Suppose one knows that
the rate of change of the internal force in a rod (see Fig. E.4) is given
by dR/dx = −b(x) = −3x (assuming consistent units), then one immediately
knows that the difference between the forces on the two ends of the rod is

R(L)−R(0) =

∫ L

0

−(3x) dx = −3L2

2
.

R(0)

x
L

 b(x)
R(L)

Fig. E.4 Rod with internal force dis-
tribution.

E.4 Mean value

The mean value (or average value) of a function over a domain Ω is defined by

fmean =

∫
Ω
f dA∫

Ω
1 dA

,

where we have implicitly assumed that the domain is two-dimensional. Trans-
lations to one and three dimensions are obvious. The average value of a
function has many uses. For example, it is used in defining the centroid of
an area or volume. The definition can also be exploited to compute various
integrals if one already knows the mean value of an integrand; i.e. one can
rewrite the expression as
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∫
Ω

f dA = AΩfmean,

where AΩ is the area of the domain Ω.

Example E.6

Integration using the mean value. Consider the computation of the integral of
the function

f(x, y) =

{
y (x, y) ∈ Ω1

k (x, y) ∈ Ω2

over Ω in Fig. E.3, where k is a constant. The mean value of f(x, y) over Ω1

is b/2 and the mean value over Ω2 is k. Thus∫
Ω

f(x, y) dxdy =

∫
Ω1

f(x, y) dxdy +

∫
Ω2

f(x, y) dxdy

= ab
b

2
+ (c− a)(d− e)k.

E.5 The product rule and integration
by parts

The product rule of differentiation states that for two functions f(x) and g(x),
the derivative of their product is given by

d

dx
(fg) =

df

dx
g + f

dg

dx
.

We can use this result to our advantage in certain integration problems by
combining it with the fundamental theorem of calculus. In particular, if we
integrate both sides of this expression over a given interval [a, b], then we have:

[f(b)g(b)− f(a)g(a)] =

∫ b

a

df

dx
g dx+

∫ b

a

f
dg

dx
dx.

This result is normally written by moving one of the integrals to the other
side of the equals sign – for example, as:

∫ b

a

df

dx
g dx = [f(b)g(b)− f(a)g(a)]−

∫ b

a

f
dg

dx
dx.

This formula, or a small variant of it, is known as the integration by parts
rule.
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Example E.7

Derivation of a weak form. Suppose we have the second-order ordinary differ-
ential equation

d2u

dx2
+ h(x) = 0 (E.11)

over the interval (a, b), where h(x) is known, as are the boundary conditions
u(a) = ua and u(b) = ub. The usual problem statement is: find a function u(x)
with u(a) = ua and u(b) = ub such that it satisfies eqn (E.11).

A very important restatement of this problem is found by multiplying eqn
(E.11) by an arbitrary function v̄(x), which has the properties that v̄(a) =
v̄(b) = 0, and then integrating by parts. This gives:

0 = v̄
d2u

dx2
+ v̄h (E.12)

0 =

∫ b

a

v̄
d2u

dx2
+ v̄h dx (E.13)

0 =

∫ b

a

d

dx

(
v̄
du

dx

)
− dv̄

dx

du

dx
+ v̄h dx (E.14)

0 =

[
v̄
du

dx

]b
a︸ ︷︷ ︸

=0

+

∫ b

a

−dv̄

dx

du

dx
+ v̄h dx (E.15)

0 =

∫ b

a

dv̄

dx

du

dx
− v̄h dx. (E.16)

Equation (E.16) is known as the weak form of the ordinary differential
equation1. A restatement of the problem is then: find a function u(x) with 1 The ordinary differential equation is

sometimes known as the strong form.
u(a) = ua and u(b) = ub such that eqn (E.16) is satisfied for all functions
v̄(x), where v̄(a) = v̄(b) = 0. This form of the problem statement is essentially
equivalent to the form with the ordinary differential equation modulo a few
technical mathematical details associated with the types of function one may
use. The weak form of the problem may seem rather complicated, but it has
some very important advantages over the standard differential equation form.
It is intimately related to the principle of virtual power/work, and is the basis
for the finite-element method for solving many engineering problems.

E.6 Integral theorems

E.6.1 Mean value theorem

Given a continuous function f(x) over a region Ω, then there exists a point
x̂ ∈ Ω such that
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∫
Ω

f(x) dx = meas(Ω)f(x̂), (E.17)

where meas(Ω) is the measure of Ω – its length, area, or volume, dependent
upon the dimension of the domain. Note that this theorem states also that
the function takes on its mean value at the point x̂; i.e. f(x̂) = fmean.

E.6.2 Localization theorem

Given a continuous function f(x) over a region Ω for which∫
B

f(x) dx = 0, (E.18)

for all B ⊆ Ω, then f(x) = 0 for all x ∈ Ω.

E.6.3 Divergence theorem

Given a differentiable vector valued function f(x) over a regular2 region Ω2 Roughly speaking, a regular region is
a closed domain with piecewise smooth
boundaries.

with boundary ∂Ω having outward normal field n(x), then∫
∂Ω

f ·n dA =

∫
Ω

div[f ] dV. (E.19)

For example in two dimensions and Cartesian coordinates,∫
∂Ω

fxnx + fyny dΓ =

∫
Ω

∂fx
∂x

+
∂fy
∂y

dA. (E.20)

In the three main coordinate systems the divergence operator acts on a
vector as

div[f ] =
∂

∂x
(fx) +

∂

∂y
(fy) +

∂

∂z
(fz) (E.21)

=
1

r

∂

∂r
(rfr) +

1

r

∂

∂θ
(fθ) +

∂

∂z
(fz) (E.22)

=
1

r2
∂

∂r

(
r2fr

)
+

1

r sin(φ)

∂

∂θ
(fθ) (E.23)

+
1

r sin(φ)

∂

∂φ
(fφ sin(φ)) .
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Bending without Twisting:
Shear Center

In Chapter 8 we treated the problem of bending about one axis when the
cross-section of the beam possessed a single plane of symmetry and bending
about two axes when the cross-section possessed two planes of symmetry. In all
the cases treated the applied transverse loads were assumed to pass through
the centroid of the cross-section. Without these assumptions it is possible
that the beam will twist in addition to bend. In many situations this is an
undesirable effect, and one wishes to know how to place the transverse load
such that the beam only bends and does not twist. The net result is that there
is a point on each cross-section through which the transverse load must pass
in order to avoid twisting. This point is known as the shear center. For circular
and rectangular cross-sections this point lies at the centroid of the cross-
section, but for more complex cross-sections it does not. An exact analysis
of this situation is rather complex, but can be very reasonably estimated and
understood as outlined below.

F.1 Shear center

Consider a beam with an arbitrary cross-section, where we will assume that
the x-axis is coincident with the centroidal axis of the beam. For simplicity we
will further assume that the beam is linear elastic, isotropic, and homogeneous,
and loaded only with transverse forces. The stresses on a given cross-section
(the tractions) consist of the normal stress σxx and the two shear stresses σxy

and σxz. The resultants on the cross-section consist of the bending moments,
the axial torque, the axial force, and the two shear forces. These are given in
terms of the stress components as

R =

∫
A

σxx dA , (F.1)

Vy =

∫
A

σxy dA , (F.2)

Vz =

∫
A

σxz dA , (F.3)

T =

∫
A

−σxyz + σxzy dA , (F.4)



326 Bending without Twisting: Shear Center

Mz =

∫
A

−σxxy dA , (F.5)

My =

∫
A

σxxz dA . (F.6)

To understand the issue of twisting we need to consider the shear stresses
on the cross-section in detail. When we bend a beam with transverse forces
we will directly generate shear stresses, say, σDS

xy and σDS
xz ; i.e. direct shear

stresses. If we separately twist the beam we will also have contributions to
the shear stresses due to the applied twist, say σAT

xy and σAT
xz . The total

shear stresses on the cross-section, in general, will be the sum of these two
contributions.

The torque associated with the shear stresses from the applied twist is
given by

TAT =

∫
A

−σAT
xy z + σAT

xz y dA . (F.7)

Since we are assuming that the system is linear elastic, we can also assume
that this torque is related to the applied twist rate as:

TAT = C
dφ

dx
, (F.8)

where C represents the effective torsional stiffness of the cross-section – i.e. a
sort of (GJ)eff . Thus the we can express the total torque on the cross-section as

T = C
dφ

dx
+

∫
A

−σDS
xy z + σDS

xz y dA . (F.9)

If it is desired that dφ/dx = 0 (i.e. the beam does not twist), then there must
be a net torque on the cross-section (about the centroidal axis) of

Tno twist =

∫
A

−σDS
xy z + σDS

xz y dA . (F.10)

Remarks:

(1) This final result states that if we wish to bend a beam with shear
forces through the centroid of a cross-section without it simultaneously
twisting, then in general we will need to also apply a torque about the
the centroidal axis of the beam. For circular and rectangular cross-
sections this torque turns out to be zero. However, for more general
shapes it is often non-zero.

(2) One common way of generating this torque is to shift the applied shear
forces away from the centroid, as we will see in the example below.

(3) Note that for the argument presented, one in principle needs to know
how to compute the torsional stiffness of a general cross-section.
However, in the end, we want to enforce the desire that the twist
is zero, and thus we never actually need to be able to compute the
constant C above.
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Example F.1

Bending a C-section without twisting. Consider a cantilevered beam with an
end-load and cross-section as shown in Fig. F.1(a). We would like to bend the
beam with the force P without the beam twisting. What additional torque
needs to be applied to the beam so that it does not twist?

Solution
Since the cross-section is thin-walled we can determine the direct shear stress
distribution using the thin-walled approximation. The area moment of inertia
of the cross-section is

I =
0.1× 103

12
+ 2

[
10× 0.13

12
+ 0.1× 10× 52

]
= 58.3 mm4 . (F.11)

Thus the shear flow at the junction of the web and the flanges is given by

q =
PQ

I
=

P

I
5× 10× 0.1 = 0.0857P (F.12)

and the total horizontal shear force in the upper and lower flanges is

Fflange = 0.5× 10× 0.0857P = 0.429P . (F.13)

So the required torque about the centroid, to keep the section from twisting
while bending, is

T = 2× 5× Fflange︸ ︷︷ ︸
Flange Contribution

+ P × zc︸ ︷︷ ︸
Web Contribution

= (4.29 + zc)P ,

(F.14)

where zc is the distance of the centroid from the web; see Fig. F.1(b).

Remarks:

(1) The torque T = (4.29 + zc)P needs to be applied about the centroidal
axis if we want to prevent the beam from twisting while we bend it
with a shear force of magnitude P .

(2) One way to effect this is to shift the point of application of the shear
force to the left by an amount zc + e. The shift has been written in
this way so that e represents the magnitude of the shift from the web
– a convenient reference point, since we have not yet computed the
location of the centroid. The requirement for a statically equivalent
force system will be that

(zc + e)P = (4.29 + zc)P

e = 4.29 mm ;
(F.15)

see Fig. F.1(b)(right). Note that this shift of the load lies outside the
cross-section of the beam. In practice one would overcome this point
by welding a small plate onto the beam so that the load could be
properly applied; see Fig. F.1(c).

(3) Any point along the line shifted a distance of 4.29 mm from the web
will suffice as shown in Fig. F.1(b). If the beam is also bent with a
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(a) Cantilever beam with C-section.

y

P

y

z

10 mm

10
 m

m

Uniform Wall Thickness = 0.1 mm

zc

P

x

(b) Two loading cases that generate bending without twist.

Shear CenterP

y

z zc

T = (4.29 + zc)P

y

zc

P 4.29 mm

No Twist Resultants Equivalent No Twist Force System

z

(c) One technique to effect the needed torque using only the given shear force.

P

Use of offset plate to
apply load through the shear center

Fig. F.1 C-section loaded with a sin-
gle transverse shear force avoiding
twisting.
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shear force about the y-axis, then we will come up with a second line
of points of application. The intersection of these two lines is known
as the shear center (as shown in Fig. F.1(b)(right)). For zero-twist
bending of the beam, all transverse shear forces must pass through
this point if additional torques are not applied to the beam. It should
be noted that the shear center always lies along lines of symmetry of
the cross-section.
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273–4, 280

Hooke’s Law 67–72
one-dimensional 18, 72
three-dimensional 67–8, 73
two-dimensional 70–1, 73
plane stress 70, 73
plane strain 71, 73

integral theorems
divergence 52–3, 324
localization 52–3, 324
mean value 270, 323

integration
additivity 320–1
definition 318–20
fundamental theorem 321–2
integration by parts 218–19,

299–300, 322–3
mean value 321–2, 324

internal
force diagram 9–10, 77, 134, 223
resultant force, see force, resultant
resultant moment, see moment,

resultant
torque diagram 98, 100–2
torque, see torque, resultant

kern of a column 174 (8.40)
kinematic assumptions
axial deformation of bars 75–8, 82
beams 128–30, 136, 149, 151–2, 158,

162
torsion 89–92, 95, 111, 117

L2

inner product 257–8
norm 255–8

lap-joint 45–6
Latin abbreviations 312
Legendre polynomials 258
linear hardening model 126 (7.39)
localization theorem 52–3, 324

Macaulay bracket 29, 31, 104–5, 146
integration rule 29

material properties 18, 315–16
mean value, see integration, mean

value
mean value theorem 270, 322–3
Mohr’s circle

strain 194–5
stress 187–90, 198–9
three-dimensional 190–2

moment of inertia, see area, moment of
inertia
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moment
resultant 4–6, 10, 46–9, 56, 131–3,

139, 150–1, 168, 326

non-conservative
force, see force, non-conservative

orthogonality
functions 257–8
vectors 257

parallel axis theorem 141, 317
physical constants 18, 313, 315–16
plane strain 71
plane stress 70
plastic response
elastic–perfectly plastic 19–20, 79,

111–16, 159–67
yield condition
Henky–von Mises 197, 200–3, 205
one dimension 197
plane stress 201
Tresca 197–99, 201, 203–4

point moment, see Dirac delta
function, derivative

Poisson’s ratio, see elastic constants
polar coordinates 53–4
polar moment of inertia, see area, polar

moment of inertia
potential energy, see energy, potential
buckling, see buckling, potential

energy
minimum 232, 264, see also energy

methods
power 6–7, 96–8
virtual 8–9

prefixes, see unit prefixes
pressure, see stress, pressure
principle of stationary potential energy,

see energy methods, principle of
stationary potential energy

principle of virtual displacements, see
virtual work, theorem

principle of virtual forces, see virtual
work, theorem

product rule of differentiation 218–19,
299–300, 322

radius of gyration 275, 284
reading
advanced undergraduate solid

mechanics 310
engineering mathematics 310
statics 310

resultant
force, see force, resultant
moment, see moment, resultant

Ritz’s method 250–8, 302, 307, see also
energy methods, principle of
stationary potential energy

buckling 278–86
digits of accuracy 255–7
errors 248–50, 254–7, 279, 281,

284–5
estimating errors 255–7
space of trial solutions 247–50, 301–5
approximate 247–58, 278–86,

301–7
rotation matrix 180, 182, 185, 188,

192–3

safety factor, see design, safety factor
Saint-Venant’s principle 82–5
section modulus, see bending, section

modulus
shear center 325–9
shear flow

bending 155, 157, 216, 327
torsion 117–19

shear key 43–4
shear modulus, see elastic constants
shear-moment diagrams, see bending,

shear-moment diagrams
sign convention

curvature 149
forces 9, 11, 17
for stability 264
potential energy 9
power 98
shear forces in beams 131, 133
strain 16, 60
stress 17

spherical coordinates 53–5
spring, see helical spring
stability 263–70, see also buckling,

see also equilibrium
pendulum 263–4
rigid links 264–70, 275–6

static equilibrium 8–11, see also
equilibrium

step function, see Heaviside step
function

stiffness
bar 21
bending 139, 143–4
effective 139, 143

thin-walled torsion 120–2
torsion 99–100
effective 95, 326

strain
average 13–16
curvilinear coordinates 64, 80–2,

91–2
engineering shear strain 62–3
invariants 193
maximum normal 193–5
maximum shear 193–5
Mohr’s circle 194–5
normal 13, 15, 63–5, 67, 149, 192–6,

233

pointwise 15–16, 59–64, 91–2
polar coordinates 64, 80–1
principal directions 193–5
principal strains 193–5
rosette 195–6
shear 59, 61–5, 67–8, 91–2, 96–7,

110–11, 152, 158, 193–5
spherical coordinates 64, 81–2
tensorial shear strain 62–3
thermal 18
three-dimensional 63–4
transformation 192–7
two-dimensional 59–63
volumetric 69, 73

strain energy
deviatoric 200
see energy, strain energy
volumetric 200

stress
allowable 34–5, 315–16
average normal 17, 41–3, 56, 185
average shear 41–3, 56, 152, 156
bending 136, 138–40, 151–2, 154,

158, 162–3
Cauchy’s law 48–50, 56, 132–3,

181
concentration 84–5
curvilinear coordinates 53–5, 80–2,

93–4
deviatoric 198, 200–1, 204
equilibrium 18, 50–5, 77
hydrostatic pressure 69–70
invariants 182–4, 204
maximum normal 43, 109–10,

184–92, 204
maximum shear 43, 97–8, 184–92,

204
Mohr’s circle 187–92, 198–9, 201,

204
mean normal stress, see stress,

pressure
normal 17, 41–3, 46–7, 67, 69,

108–10, 184–92, 197–8
nomenclature 47, 56
pointwise 46–55
pressure 69–70, 73, 198, 200, 204
principal angle 184–5, 204
principal directions 184–92, 201,

204
principal stresses 184–92, 201,

204
principal values, see principal

stresses
shear stresses in bending 152–8
transformation 42–3, 108–10, 180–92,

204
two and three dimensions 47–55
ultimate 19–20, 34–5, 160, 165
yield 19–20, 34–5, 43, 45–6, 110–16,

159–67, 198–203, 275, 315–16
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stress resultants, see moment, resultant
and force, resultant and torque,
resultant

superposition 37 (2.16)
system of linear equations,

homogeneous, see homogeneous
equations

thermal strain, see strain, thermal
thermoelastic response 18, 25–6, 29
thermoelastic switch 173 (8.35)
thin-walled pressure vessels 79–82, 85
composite 87–8 (6.13)

thinness assumptions 79–80
torsion
boundary conditions 103–6, 121
circular cross-section 89–116
elastic response 94–108, 121
governing differential
equation 103–6, 121

kinematic assumption 89–92, 94–5,
111, 116, 121

stress-torque relationship 93–6,
121

twist rate 95, 121
composite cross-section 96–7
effective stiffness, see stiffness,

torsional, effective
energy methods 107–8, 121, see also

energy methods
equilibrium 92–4, 121
failure
brittle 108–10
ductile 110–6

plastic 110–6, 121
residual twist 113–6
twist rate 111, 113, 121
ultimate torque 112,
121

yield torque 112, 121
shaft power 96–8
stiffness, see stiffness, torsion
thin-walled sections 116–21

equilibrium 117
kinematics 119–20
shear flow 117–19, 122
see stiffness, thin-walled torsion
stresses 118–19, 122

torque
distributed 92–3, 101–2, 105–6
resultant 94–5, 121

trace 183
traction 2–4, 48–50, 132–3, 181–2,

325
Tresca, see plastic response

units 2–3, 11
conversion table 311–12
distributed load 17, 92, 131
force 2
prefixes 312
strain 14–15
stress 17
traction 3

virtual power 8–9, 323
virtual work 8–9, 209–26, 230,

291–308

approximation methods, see
Bubnov–Galerkin

axially loaded bars 212–13, 226,
294–6, 307

bending 214–17, 220–2, 226, 297–8,
308

direct shear 215–16, 226
expressions 211–24
external virtual work 210–12, 225,

292–4, 307
distributed loads 294

indeterminate system 224–5
internal virtual work 210, 212–16,

292, 307–8
proof 217–20, 298–301
shear deformation 215–16, 226
theorem 209–10, 225, 291–3, 307
torsion 213–14, 220–1, 226, 296–7,

308
truss 209–11, 224–5
virtual displacements 291–3
virtual force 209
virtual moment 211–12
virtual rotation 293
virtual system 210, 212–13, 215–17,

219–20, 222, 224, 225

work 6–7, 31–3, 97, 107–8, 119–20, 158

yield stress
315–16
see also stress

Young’s modulus, see elastic
constants
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