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Abstract 

Perfect blazing to the m=-l spectral order was once assumed to be possible for only Bragg 

angle incidence, i.e. for an angled = sin - 1 (^) from the normal to the grating surface, where 

d/A is the grating period in wavelengths. The diffracted beam is then back in the direction 

of incidence, an inconvenience in most applications such as multiplexers, de-multiplexers and 

frequency scanned antennas. Off Bragg blazing is preferable and now can be done with high 

efficiency. Here off Bragg blazing for T M polarized incidence on rectangular groove gratings is 

investigated numerically and design curves are presented. 

It is a consequence of reciprocity that off Bragg blaze angles must occur in pairs #1 and 

62 and these are related by a generalization of the Bragg equation sin 9\ + sin 92 — 2 • F ° r 

groove width to period ratios a/d=0.5 perfect off Bragg blazing occurs most frequently for periods 

0.9<d/A<1.0 and groove depth 0.1<h/A<0.24. It is for periods d/A in this range that the larger 

deviations 6\ — 82 are possible. Off Bragg blazing is found to occur for 0.4<a/d<0.9999, but the 

larger deviations and hence the more potentially useful designs appear to occur foxa/d K, 0.5. 

The numerical results correlate well with earlier numerical and experimental data. 

E.V.J11II 
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Chapter 1. Introduction 

The problem of scattering by electromagnetic waves from a perfectly con

ducting grating with periodic surface was widely considered in the 1970's. To 

eliminate specular reflection from a conducting surface, blazed gratings were pro

posed to eliminate interfering specular reflection from metallic building surfaces 

such as airport hangers [12], as low-loss frequency multiplexers and as reflectors 

for frequency scanned antennas. Their wide potential use resulted in numerous 

published numerical studies as well as experimental results on the blazing property 

of diffraction gratings. A "blazed " grating is one in which the diffracted power 

is concentrated in a particular direction, in this case the direction of backscatter. 

A plane electromagnetic wave incident on a perfectly conducting grating with 

periodic surface produces a scattered electromagnetic field, which is comprised of 

a finite number of homogeneous plane waves and an infinite number of evanescent 

waves. 

The scattering angles 9m, when expressed in terms of the grating period d, 

wavelength A, and the angle of incidence Oi from the surface normal, become: 

sin 9m = sin 0; + (1.1) 
a 

This is called the grating formula in [1], where the mth diffracted order homoge

neous plane wave wil l propagate away from the surface at angle 0m i f and only 
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i f |sin#m| < 1.Otherwise, i f |sin#m| > l,the mth diffracted order corresponds to 

an evanescent field which decays exponentially from the surface of the grating. 

According to the grating formula (1.1. ), the dimensions of a grating can 

be carefully chosen so that the conducting surface wi l l scatter only two spectral 

orders: the specularly reflected ( m=0 ) which propagates at an angle B\, and the 

principal backscatter wave (m=-l) at an angle #_ito the normal. 

From equation (1.1), i f the period d and wavelength A satisfy the 

condition (1.2 ) only the specularly reflected order wi l l propagate. Similarly, i f 

inequality (1.3 ) is satisfied, the principal backscatter mode (m=-l ) appears; 

if inequality (1.4) is satisfied, the second backscatter mode (m=-2) disappears; 

and i f inequality (1.5) is satisfied, the principal forward scatter mode (m=l) 

disappears. So, i f inequality (1.3, 1.4, 1.5 ) are satisfied simultaneously, 

only the m=0 and the m=-l diffracted order wi l l propagate as shown 

in F i g l . l . F i g l . l was first drawn by D.G.Michelson in his Ph.D. thesis 
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[8]. 

= 0 , - 1 , - 2 , - 3 

0.6 
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specular reflection only 

10 20 30 40 50 60 
Angle of Incidence (degrees) 
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Figure 1.1: Propagating diffraction orders as a function of the 
grating period and the angle of incidence. From [8] 

s'm9i < — 1 
a 

sin Oi > — 1 

• a 2 X 1 smOi < — 1 
a 

sin Oi + ^ > 1 
a 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

For the Bragg angle condition, total power is converted into the princi

pal backscatter mode (m=-l ), and propagates back towards the source. So, 

using#_i = — 02and m=-l into equation (1.1), we get the Bragg angle condition 

90 
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as (1.6) which is shown in F ig 1.1 also. 

si„0, = A . ( 1 . 6 ) 

Fig 1.1 also clearly illuminates the range where Bragg blazing occurs (i.e. 19.5° < 

9i < 90°,and 0.5 < f < 1.5). 

Under the Bragg angle condition, we have a " nonreflecting" conducting 

surface, which was first investigated for T M polarization alone with the right-

angle echelette grating profile. Then numerical studies of the blazing of the 

perfectly conducting grating with periodic surface were published for T M and T E 

polarizations separately with sinusoidal groove profiles and for T M and T E with 

comb groove profiles. Some experimental results for the comb groove grating 

were presented by Jull and Ebbeson [16]. 

The first analysis of the rectangular groove profile was by Wirgin [22] for 

T M and T E polarization. Some numerical values for simultaneous blazing in 

both polarization with a rectangular groove profile were published by Hessel et al 

[14], and Heath and Jull obtained complete data for simultaneous blazing under 

the Bragg, angle condition, of which only some examples were published in [17]. 

Although it is clear that the Bragg condition is one condition for the perfect 

blazing of the conducting gratings with the periodic surface, it is not a necessary 

condition. Based on the fact that a perfect blazing violating the Bragg condition 

had never been found, Hessel et al [14], in their remarkable blaze studies, state 
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1) only two space harmonics propagate; 2) the dimensions of the gratings must 

satisfy the Bragg condition (i.e. the Littrow mount only ) as necessary conditions 

for perfect blazing. Wirgin [22] seemed to have obtained perfect blazing while 

violating condition 1, however, it was shown that it was not perfect blazing. So, 

the Bragg condition was regarded as a necessary condition for perfect blazing 

until perfect blazing off Bragg angle for T M polarization with rectangular groove 

profile was reported by Heath, Beaulieu and Jull [11,12] and by Beaulieu in [13]. 

Only isolated data were reported in [11,12,13], and no theoretical explanation 

was given for this interesting property. In 1981, Maystre and Cadilhac [19] 

theoretically predicted this surprising property for a conducting grating with 

sinusoidal profile : a perfect blazing ( an efficiency of 100% in the principal 

backscatter ) can obtained without using Littrow mount. Thus the Bragg condition 

is not a necessary condition for perfect blazing with sinusoidal gratings. A single 

example of such perfect blazing for T M polarization with sinusoidal grating was 

presented in the same paper. This was followed by an example for echelette and 

rectangular profiles [21]. 

Furthermore, according to the equivalence rule [18] between the sinusoidal, 

ruled and rectangular gratings, one may also predict that such perfect blazing 

( off Bragg angle ) exists for other types of periodic profile gratings. So, the 

earlier works [11,12,13] were recalled, and become the motivation of the study 

of this thesis. 
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The object of this thesis is to further investigate the existence of off Bragg 

angle blazing with the rectangular gratings, Some basic properties of such perfect 

blazing wi l l be shown. After exhaustive numerical calculation, the design curves 

are drawn and analyzed. 

Here we give the basic equations to study the problems of scattering by a 

periodic structure, and a review of the literature on the perfect blazing of the 

periodic gratings. 

In Chapter 2, the numerical technique for analyzing the scattering field with 

rectangular profile gratings, mode matching across the interface between the free 

space region and waveguide region is again presented. 

In Chapter 3, combining the scattering matrix technique [19] and the mode 

matching method[14], we predict the existence of off Bragg angle blazing with 

the rectangular gratings. Furthermore, some particular characteristics for such 

perfect blazing are also derived in this chapter. 

Perfect blazing for T M polarization with different rectangular gratings off 

the Bragg angle is reported in chapter 4. Design curves are plotted in the same 

chapter. Included also in chapter 4 is an analyses of the numerical solution of 

the problem. 

In Chapter 5 verification, conclusions and recommendations for future studies 

are given . 
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Chapter 2. Mode Match ing Method 

§2.1 Introduction 

Only a very limited number of waveguide grating diffraction problems can 

be solved exactly, and most solutions depend on numerical computation. Mode 

matching is one method for such problems, and is very useful when the geometry 

of the structure can be described as a junction of two regions, and each of 

them independently gives a set of well-defined solutions of Maxwel l 's equations 

satisfying the boundary conditions. It also permits the study of deep groove 

gratings. 

Commonly, there are three steps included in the mode matching procedure. 

First the expansion of the fields in the individual regions in terms of their 

respective normal modes, so the problem is reduced to determining the set of 

modal coefficients in the expansions of the electromagnetic fields. Next, by using 

the boundary conditions at the junction of regions, we can get an infinite set 

of linear simultaneous equations for the unknown modal coefficients. Finally, 

applying the orthonormal property of the modes and truncating the infinite set of 

linear equations , we can get a solution to the problem. 

Because approximate techniques (truncation ) are used in the mode matching 

method, the accuracy of the approximated results should be verified carefully. 

In this chapter, the problem of scattering with perfectly conducting rectangular 
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gratings by the incident plane electromagnetic wave which is perpendicular to 

the groove axis is solved by using a mode matching method. The procedure 

which follows is due to Hessel et al in [14] and was used by Heath in [10] and 

Michelson in [8]. 

The coordinate system is shown in Fig 2.1, with the dimensions of grating 

including width a, depth h, and period d. 

u • H — H 
r d 1 a 

Figure 2.1 Coordinate system of the problem for 
scattering with a conducting rectangular grating 

§2.2 T M Polar izat ion 

§ 2.2.1 Expansion of the Fields 

A T M polarized plane wave is incident on a grating shown as Fig2.1, with 

the incidence perpendicular to the groove axis, so that only a z component of 

the magnetic fields exists. Assuming that the time dependence is exp(ju;t), and 
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using the Rayleigh expansion for the scattered field in the free space region 

(x>0), the tangential component of the magnetic fields (H\ = H\ + H* ) in free 

space becomes: 

oo 

Hz(x,y) = A^kcpsd'xf0+ J ] Arnt-3kCOS*mXfm (2.1) 

m=—oo 

where 

In, = -Le-^sh1^'" . (2.2) 
cos 6m = JI - s i n 2 9m | s i n # m | < l 

• • (2-3) 
= -jysin29m - 1 |sin '0m| > 1 

The functions f are chosen as normal modes in free space for both T M and 

T E polarization, and s i n 0 m satisfies the grating formula in (1.1). The value of 

c o s # m should be either positive real or negative imaginary. The positive real 

value represents a propagating plane wave, and the negative imaginary represents 

an evanescent wave ( Ame~k^sm2 dm~1fm ) which propagates in the y-direction 

and is exponentially damped in the x-direction. 

By applying the Maxwel l equation Ey(x,y) = ^f2-^^ to equation 2.1, the 

tangential components of the electric fields in the free space are given as: 

oo 

Ey(x:y) = -Alr,ocos0leikcosd'xfo+ £ Amr,0 cos eme^kcos6-x fm (2.4) 
m=—oo 

where r/o = is the characteristic impedance of free space. 
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In the waveguide region (groove region ), because of the transverse boundary, 

the fields are in the form of standing waves that have a node at x=-h. In the 

waveguide, the electric and magnetic fields are given by [14]: 

where 

^—' cos knh 
n=0 

(2.5) 

n=0 

770^ sin(A: r a(x + h)) 
k n cos knh 

9n (2.6). 

9n 
e I n-K 
— cos 
a \ a 

6=1, 

= 2 

V(T)'-41 

nir 
< k 

a 

> k 
a 

n -= o, 

n = 1,2, 3,.. . 

the functions gn are normal mode in amplitude the groove region for both T M 

and T E polarizations. 

§2.2.2 Mode Matching 

10 



The x=0 plane is the junction between the free space and groove regions. 

The boundary conditions are: 

Hz{0+,y)=Hz(0-,y) \y\< 

Hz(0+,y) = -Jy(0,y) % < \y\< 

(2.7) 

a 

2 
a , , d 

where Jy is the surface current density, and 

(2.8) 

a 
Ey(0+,y)=Ey(0-,y) \y\< g 

Ev{Q+,y)=0 2 < l 2 / | < 2 

We now apply the boundary condition by mode matching the tangential electric 

and magnetic fields in both regions across the plane x=0. Substituting (2.1) (2.5) 

into (2.7), we have: 

oo oo 

Aih + Yl Amfm = ^ °n9n (2.9) 
m——oo n=0 

For simplicity, we redefined AQ = A{ + Aref where A{ and Aref (formerly A0 in 

(2.1) (2.5))are the complex coefficients of the incident wave and of the specularly 

11 



reflected wave respectively. Then equation (2.7) becomes: 

oo oo 

(2.10) 
m=—oo n=0 

and, substituting (2.4) (2.6) into (2.8), we have the other equation: 

oo oo ^ 

-2A;cos0;/o + ] P A m c o s 0 m / m = ^ C r a ^ - t a n |y| < -
m = - o o n=0 J (2.11) 

a . . <i 
= 0 2 < W < 2 

§2.2.3 Solution 

Defining the inner products of.the normal modes as: 

d 2 

{fm,9n) = J fm-9*n-dx (2.12) 
_ d 2 

and from the orthonormal property of the normal modes, we have: 

( / m i fn) = &m 

(2.13) 

{9m,gn) = £ 

where 8 is Kronecker delta. 

The inner product of both sides of equation (2.10) with gn, gives us the 

representation of groove mode coefficient Cn in terms of A m : 

oo 

Am{fm,gn) = Cn (2.14) 

Similarly, the inner product of both sides of equation (2.11) with / m g ives : 

ljk 
2Ai cos 0,-£{J, + A m c o s 0 m = Cn-^rtan (knh){gn, fm) (2.15) 

n=0 

12 



For two independent equations (2.14) and (2.15), we have two ways of solving 

for the unknown coefficients Am . Instead of substituting one equation onto the 

other, considering the cost of computation time, we chose the following indirect 

procedure as the way to get the coefficients of the free space modes. 

First, substituting (2.15) into (2.14) gives us: 

E (f;c.4^^to.'./-) + 2A14)</-.*.> = f > * ' 
m = - o o \ n ' = 0 J m J n , _ Q 

(2.16) 

for convenience, and by some rearranging steps, the equation (2.16) can be written 

in the form of the matrix equation as: 
B + G ) x = F (2.17) 

where: 

Cnm — (fmiQn) 

B m n > = jk cos eJ9n'Jm) 

Gnn' = -£>n<kniCOtknih 

Xn< = Cn' tan kn'h 

F'n = -2Ai(fagn) 

and finally, the solution of A , can be given by applying equation (2.15) as: 

A B X + 2Ai8\ (2.18) 
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§2.3 T E Polarizat ion 

When a T E polarized plane wave is incident on the same grating shown 

as Fig2.1, with the incidence perpendicular to the groove axis, so that only a 

component of the electric field exists, the tangential components of both electric 

and magnetic fields in the free space , x> 0 , are given by: 

oo 

Ez(x,y) = Bleikcos6'xfo+ Bme^kcose-xfm (2.19) 
m=—oo 

H f X i y ) = B1c^6lejkcose,x/q _ y Bmcos0me_jkcos6mX^ ( 2 2 Q ) 

and the tangential components of fields in the groove region are given as: 

Ez{x,y) = YDn — — gn (2.21) 
sin knh 

n = l 

Hv(x,y)-Y-jDnWo—-^jr-9n (2.22) 

n-l 
where g'n is the normal modes for T E polarization in the groove region 

(2 . /mr(y + f) 
sin 

a y a 

The boundary conditions in x=0 plane are: 

Hy(0+,y)=Hy(0-,y), \y\<-

Hy(0+,y)=Jz(0,y), f ^ M ^ 

and (2.23) 

Ez{0+,y)=Eg(0-,y), \y\<^ 

Ez(0+,y)=0, 2 - | y | < 2 

14 



Following the same steps described above for T M polarization, and redefining 

BQ = Bi + Bref for the same reason as before, the unknown coefficients of B 

can be given from the solution of following matrix equations: 

where: 

B\ G \ + [G\)X = F 

Bnm — {Jmi9n 

C'mn = j k COS 6m(gn,fm 

G'nn< = Sl'knCOt{knh) 

K=Dn 

Fn = 2Bljkcos0i(fo,gn 

(2.24) 

and 

B m = _ J _ 
jk cos 6Tl 

B X 

§2.4 Val idity of Numer ica l Solutions 

The numbers of both free space and groove modes in equations (2.17) and 

(2.24) are infinite, so, they should be truncated into a definite number M and 

N respectively before the matrix equations can be solved, because of the finite 

computer capacity. This raises the problem of verification of the numerical results. 

15 



Normally there are three ways used to verify the numerical results besides 

the using of experimental results: checking conservation of energy, reciprocity 

and convergence. According to the analysis given before, for the problem of 

a diffraction grating, conservation of energy in the free space region can be 

expressed as: 

and the summation includes only those free space propagating harmonics. But, 

unfortunately according to the result given by Hessel et al in [14], it can be shown 

that energy conservation is independent of the truncation used. Thus conservation 

of the energy, while necessary, can not be used here as a sufficient check of the 

accuracy of the solution. However, conservation of the energy is used in our 

program mainly to indicate the error information produced by the problems in 

coding or excessive round-off during computation. 

The reciprocity in our problem can be generally described as [1] : The 

efficiency in the mth order does not change when the grating is rotated by 180° 

about an axis perpendicular to the plane on which it has been ruled. Furthermore, 

the special property of the reciprocity in our topic wi l l be discussed in detail 

in following chapter. But unfortunately it is not a sufficient condition for the 

validity of out numerical solution either. 

(2.25) 
m 
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A series can be truncated only i f it is convergent or at least semi-convergent. 

A traditional way that plots the numerical values of some desired parameters 

versus the number of terms retained meets its limitation here, for the reason that 

to use the mode matching method, we need to truncate two or more infinite series 

simultaneously. The numerical results may converge to different values depending 

on the way we truncate the two series, which is called " relative convergence", 

and the ratio of waveguide modes to free space modes N/M can be as important 

as the values of N and M . 

Values of the reflection efficiency of a selected grating ( a/d=0.5, 

d/A=0.87,h/A=0.231 ) so that only specular reflected (m=0) and principal 

backscattering (m=-l) modes exist, are shown in F ig 2.2 as a function of the 

number of free space modes M , with different N/M ratios. In all cases the 

grating is illuminated perpendicular to the groove axis with the Bragg angle 

as the incident angle. 

17 



0.05 

20 25 30 35 
Number of Free Space Modes(M) 

50 

Figure 2.2 Convergence of the reflection efficiency for Bragg 
angle incidence with the number of the free space modes with 
a/d=0.5, d/k=0.87, h/A^O.231 
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0.025 

10 15 20 25 30 35 
Number of Free Space Modes(M) 

40 45 50 

Figure 2 . 3 Convergence of the reflection efficiency with the 
number of free space modes for TM polarization for a/d=0.5 
d/A^0.87, h/k=0.231 

From F ig 2.2, it can be seen that the numerical results given from equation 

(2.18) fortunately suffer very little from the relative convergence phenomena, 

which means that the method we use in this thesis is quite reasonable. 

Now, how to choose the ratio of groove modes N to free space modes M 

becomes a question. From F ig 2.3 in which we keep the groove modes N 

unchanged, it can be seen that the numerical value converges monotonically when 

the ratio of groove modes to space modes reaches about the point which equals 
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the aspect ratio (a/d=0.5 in this example ) but, when we continue to increase the 

value of the M , the results are influenced by relative convergence. A lso from 

Fig2.2, compared with other curves with different N/M ratios, the N/M=0.5 curve 

drops quite abruptly, and converges at the small value of M . So,, it is supposed 

that the optimum value of the ratio N/M can be chosen about as same as the 

value of the aspect ratio of the grating, which agrees with other studies reported 

by Michelson in his PhD thesis [8] . 

Because the computer time used to solve an (m,m) matrix is proportional to 

m 3 , according to the conclusion we derived from figure 2.2 and figure 2.3, we 

can use smaller values of M and N than those large values chosen by Hessel et 

al ( for example, Hessel et al [14] and Heath [10] used M=50 and N=10 for all 

dimensions of the gratings ). Thus the computation used for the results in the 

following chapters can proceed efficiently. 
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Chapter 3. Off Bragg Blazing With Rectangular Gratings 

§3.1 Introduction 

The Bragg angle condition seems no longer a necessary condition for the 

perfect blazing, after the earlier reports [11,12,13] and reports of perfect blazing 

in a non-zero deviation mounting (i.e. without using the Bragg condition ) with 

sinusoidal, echelette and symmetrical rectangular profiles for the T M polarization 

were published in 1981 by Maystre et al[19] and [21] in 1981. No other papers 

on this surprising phenomenon appear to have been published since then. 

In this chapter, using the scattering matrix technique combined with an 

adequate coordinate translation used by Maystre et al [19], the possibility of 

the existence of such off Bragg angle blazing is shown. Furthermore, according 

to the "equivalence rules" proposed by Maystre et al [18], such blazing exists in 

the ruled and sinusoidal gratings[21]. Using the reciprocity theorem and results 

given before, the dimensions of rectangular gratings for off Bragg angle blazing 

is discussed. 

§3.2 The Off Bragg Angle Blazing 

In this section we restrict our discussion to the situation in which only two 

propagating orders are diffracted (i.e. the specular reflection m=0 and the principal 

backscattering m=-l), and we adopt the coordinate system used before (fig 2.1) 

Assuming a T M polarized plane wave illuminates the grating at an an-
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gle of incidence of 61, because of the assumption of only two orders of 

diffraction, we get two propagating diffraction waves at the diffraction angles 

#o = 0i and 9-\. The incident field, from equation 2.1, becomes H% = 

Aiexp(jk(x cos 0i — y sin 0,-))where A{ is a complex amplitude coefficient. 

Taking into account reciprocity , an incident wave illuminating the grating 

under the incidence of 0 _ i also generates two diffracted propagating orders at 

diffraction angles #oand So, to set up the scattering matrix, we assume that 

two incident waves with coefficients A\ and A2 incident at 6\ = 9Q and 62 = 6-1 

respectively, illuminate the grating, the total incident field becomes: 

H% = A\(exp(jk(xcos6\ — ysin9\))) + A2(exp(jk(xcos62 — ysin#2))) (3.1) 

By assuming the complex coefficients of the diffraction orders as B\, B2, the 

diffraction fields can be written as: 

Hd = Bi(exp(—jk(x cos 9\ + ys'mdi))) + B2(exp(— jk(x cos 62 + j/s in^) ) ) 

(3.2) 

By denoting the complex vectors: a = ( A i V c o s 0\, A 2 \ / c o s # 2 ) ; b = 

(J5i V c o s 9i, ^ V c o s ^ 2 ) the scattering matrix S can be set as: 

S = 
Sn S\2 

S21 ' S22 
(3.3) 

where, the component of the element of S, Smn, represents the complex reflection 

coefficient for the mth order diffraction wave which is excited by the nth incident 
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wave. The S matrix, which depends on both the dimension of the grating and 

the characteristics of the incident waves such as the wave length and the angle of 

incidence, can be calculated by the means of the mode matching method outlined 

in last chapter. 

But, four complex coefficients of the S matrix are quite difficult to analyze. 

So, in the remainder of the section, we reduce these complex coefficient to real 

ones by the means of a coordinate translation. 

Assuming the new coordinate system given by: 

x = x — A x 

y = y - Ay (3.4) 

then, by using equations (3.1) (3.2), we can get the new vectors a'andfe' and the 

new S matrix S' can be written from S as: 
Sn = Si\exp(—2jkAx cos 0\) 

S22 = S22&xp(—2j kAx cos 62) 

$12 — Si2exp{—jkAx(cos9i + cos 92))exp^—j— 

S2i — S2\zxp(— jkAx{cos9\ + cos92))exp^j— 

where the phase differences caused by the shifts A x , A y are accounted for. From 

equations (3.5) we can see that: 

d e t ( V ) = exp(-2jk(cos 0i + c o s 92)Ax) d e t (S) 

S\0 S l ~ / A - T T A o / \ (3-6) 
' 1 2 _ £ 1 2 

S'21 S21 

( MAy\ 
exp^-j—j 
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If we adopt an appropriate coordinate translation, by carefully choosing A x and 

A y , we can get a particular matrix S', denoted as U , so that: 

det (U) = 1 

U12 

U21 
1 

(3.7) 

Equations (3.7) can be used to calculate the value of A x and A y . Now, U becomes 

the matrix that is symmetrical, unitary with determinant 1. Taking into account 

an elementary property of linear algebra, U can be expanded by a symmetrical 

and Hermitian matrix A in terms of: 

U = exp(jA) = I + j A + 
2! + ... + 

(JA)n 

+ 
n< 

(3.8) 

Because det(U)=l, trace(A) may be zero, A takes the simple form: 

A 7 P 

a - 7 

(3.9) 

with real parameters B and 7. If we rewrite the real parameters B and 7 in the 

form of another two real numbers p and a by 7=/9COsa and B=ps\na, then: 

A = pA = p sm a 
cos a 

cos cn 

— sin a 
(3.10) 

Because A'2 = I then 

U 

U = I + JPA - — - — + — + 

= / cos p + j A sin p 

cos p + j sin p sin a j sin p cos a 
j sin p cos a cos p — j sin p sin a 

(3.11) 

(3.12) 
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Now, taking into account the reciprocity theorem described in chapter 1, 

under the Bragg angle condition and considering the specular reflection wave 

(m=0) only, we can get a quite simple result as Sn = 5"22- From (3.12) for this 

we can choose a=0 or p=0. Because when p=0, Un = U21 = 0, so, generally 

we should choose o:=0 for the Bragg angle condition. 

On the other hand for the case of arbitrary dimensions of the grating, from 

equation 3.12, it is interesting to see that the diffraction efficiency of the principal 

backscatter order (m=-l), or the ratio of the power in the m=-l order to the 

incident power, is 

E~l = s in 2 p cos 2 a (3.13) 

So, to obtain a perfect blazing, generally two conditions should be satisfied 

simultaneously as: 

p = nn + -
1 (3.14) 

a = mir 

where n and m are integers. 

Combining this S matrix technique above of Maystre et at [19] with the mode 

matching method outlined in detail in the previous chapter, we developed our 

program to find perfect blazing without satisfying the Bragg angle condition. 

Defining the deviation!) = \6\ + 62], where #1 is incident angle while 62 is 

the diffraction angle for backscatter order ( when the Bragg angle condition is 
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satisfied, D should be zero). We draw a set of parametric curves giving p ( in 

obsicissa) and a (in ordinate) as functions of d/A for various deviations . As 

an example, we made our calculation for the gratings with the dimensions as 

a/d=0.5,h/d=0.25. The result for T M polarization is given in fig 3.1. The curve 

met the point of a=T,p=ir/2, for d/A is chosen as about 0.92, and the deviation 

is chosen as 19.8° (0i = 23.7°,62 = -43.5°;0i = 43.5°,92 = -23.7°), and the 

behavior of the reflection efficiency at this point is shown in figure 3.2. 
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Figure 3.1 Parametric curves of d/X for various deviations 
(a/d=0.5) 
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Figure 3.2 Reflection efficiency as a function of the angle 
of the incidence, with a/d=0.5,h/d=0.25,d/X^0.92, dev=19.8 

It is quite interesting to analyze the properties shown in figure 3.1 and to 

find out the possibility of the occurrence of off Bragg angle blazing. First, the 

curves drawn in fig. 3.1 are quite similar with the curves published by Maystre 

et al [19] for T M polarization with sinusoidal gratings, which satisfies what the 

equivalence rules described. For D=10, the curve first approaches the a=% line 

at the point of p < 90°; then we increase D=20, and the curve almost meets the 

perfect blazing point (a=w,p=Tr/2); Finally, we continue to increase D=30, the 

first intersection of the curve and the line of a=7r passes the perfect blazing point 

27 



at the point about a. — 91.7 . So, it is very easy for us to conclude that perfect 

blazing may occur near D=20. A t last, under the accuracy which our calculation 

program can provide, we find the perfect blazing occurs at D = 19.8° which is 

proven by figure3.2. 

Now, choosing another dimension of the grating arbitrarily, with a/d=0.5, and 

keeping h unchanged as h/A=0.206, we draw another set of parametric curves 

for T M polarization given in figure 3.3. From the figure perfect blazing may be 

obtained at the point of D=52.8, d/A=0.99, which can be displayed in detail in 

the reflection efficiency curve in figure 3.4. 

d/k=0.99 
180 

a 

d / M ) . 8 i 
164 80 85 90 95 100 105 110 

p(degree) 

Figure 3.3 Parametric curves of dfk with a/d=0.5,h/A^0.206 
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Figure 3.4 Reflection efficiency as a function of the 
incidence angle for a/d=0.5, h/AM).206,d/k=0.99 

In figure 3.3, it is interesting to see that, as deviation D increases, the inter

section of the curves with the line a=ir moves towards the point of P=TT/2. When 

D is chosen as 52.8°, the curve meets the perfect blazing point'at a=7r,p=Tr/2. 

A n d if we increase further the values of deviation, the curves move away from 

this perfect blazing point. 

So, from figure 3.1 and figure 3.2, we can conclude that perfect blazing may 

be obtained while the Bragg angle condition is not satisfied, at least in the case 

of the T M polarization with conducting symmetrical rectangular gratings. 
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Because the first theoretical prediction of off Bragg angle blazing was pub

lished with sinusoidal gratings, and only between the sinusoidal and the sym

metrical rectangular (a/d=0.5) gratings there exists the equivalence rules which 

wi l l be described in detail in Appendix A . l , until now, we restrict our discussion 

within the range of the symmetrical rectangular gratings. 

But, as can be shown from the examples of figure 3.1 and figure 3.2, the 

dimensions of the grating can be chosen quite arbitrarily. We can expect that 

such off Bragg angle blazing may occur for other dimensions of symmetrical 

rectangular gratings, further more, it can also be expected that such perfect blazing 

may occur for ordinary rectangular gratings ( a/d not equal to 0.5). This is the 

motivation and main topic of the research in next chapter. 

§3.3 The Range for Of f Bragg Blaz ing 

Now that we shown the possibility of off Bragg angle blazing, to define the 

range where such perfect blazing may occur becomes quite important for the 

following discussion and calculation. 

From figure 3.2 and figure 3.4, we can conclude that: Assuming only two 

orders of diffraction occur (m=0, m=-l), i f off Bragg angle blazing can be found, 

it w i l l be found in pairs of angles, which can be shown immediately by taking 

into account reciprocity [12]. 

Let's consider the situation when such blazing occurs, with reference to 
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figure3.5: Figure 3.5 Off Bragg Blazing 

When a plane wave illuminates the grating with incidence of Oi as shown 

in figure 3.5, assuming the diffraction angle of the principal backscatter is 

according to the elementary grating formula, there exists the relationship between 

these two angles as: 

s in f l i j = s i n 0 * - ^ (3.15) 

where the superscript 1 represents the first incidence. When the plane wave 

illuminates the same grating with incidence of 9j = — f l i j , we can get another 

equation: 

s i n f l 2 ! = s i n ^ 2 - ^ (3.16) 

Taking into account the reciprocity theorem, it can be written immediately 

that: 

(3.17) 
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substituting the equations (3.17) into (3.15), we can get a very useful equation: 

1 o A s i n 6: + s i n 9: = — 
1 1 d 

(3.18) 

also, the equation 3.17 was verified by figure 3.2 3.4, which means that the off 

Bragg angle blazing angles may occur in pairs. For convenience, we redraw figure 

1.1 here to show the shaded region in which off Bragg angle blazing can occur. 
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Figure 1.1: Propagating diffraction orders as a function of the 
grating period and the angle of incidence. Off Bragg blazing 
angles may occur in pairs on opposite side of the Bragg angle 
curve in the shaded region 

90 

Combining the Bragg angle condition with equation 3.17, we can get the 
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relationship between them as: 

sin Of - sin 9Bragg = sin 9Bragg - sin 9} (3.19) 

where #(Bragg) satisfies the Bragg angle condition s in#Bragg = JJ-

Equation (3.19) tells us that 9} and Of should be on opposite sides of the Bragg 

angle respectively, or , in figure 1.1a, one of these two angles should be left of 

the Bragg angle curve and the other located to the right of the Bragg angle curve. 

It is very interesting to find that i f one of these two angles is on the left solid 

curve of sin 9 = 1 — ^ the other is on the right solid curve of sin 9 = rj — 1. Figure 

3.6 gives an example of such situation (a/d=0.5, d/A=1.32,h/A=0.647). Note that, 

from figure 1.1 a, in addition to the m=0,-l spectral orders, the m=+l order exists 

for 9{ < i^and the m=-2 order exists for 02 > 0 2 
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Figure 3.6 Reflection efficiency with a/d=0.5, d/?i=1.32, 
h.A^O.647, to demonstrate that sin0l=1-A/d, sine2=2A/d-1 

We can find off Bragg angle blazing in the whole region where only two 

propagation orders exist (m=0, m=-l). It is quite interesting to compare our 

results with those for Littrow mounting. The Bragg angle blazing occurs in the 

region of 19.5° < Q{ < 90°, while the off Bragg angle blazing may occur in the 

region of 0° < B{ < 90°. However, from figure 1.1, d/A should be chosen in the 

same region as that for Littrow mounting (i.e. 0.5<d/A<1.5). 

It is also very interesting to find that i f we choose 9} = 8f , equation 3.18 

becomes the famous Bragg angle condition. So, we can conjecture that the Bragg 

angle blazing is probably a particular case of off Bragg angle blazing. 
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Chapter 4. Numer ica l Results 

§4.1 Introduction 

As was pointed out in the previous chapter and in earlier works [11,12,13], 

an occurrence of off Bragg angle blazing for other dimensions than a=0.5d of 

rectangular gratings is expected. The object of this chapter is to demonstrate our 

assumption and to find the relations among the dimensions of rectangular gratings 

for off Bragg angle blazing. Here we wi l l try to extend the single example of 

off Bragg blazing, used as the evidence of the existence of such perfect blazing , 

to the whole range of dimensions of the rectangular grating. These may be used 

for design curves. 

There are two difficulties we wi l l meet in our numerical calculation. One 

of them is that there are few previous research results on this topic to be used 

as the reference for the verification for our numerical results. The other is that, 

compared with the numerical calculation for the Bragg angle blazing in which 

only the angle satisfying the Bragg condition should be checked, here, according 

to the results of last chapter, for each value of A/d, all the deviations (0<D<90) 

should be checked, which means much more extensive calculations. 

To overcome the first difficulty, we should always keep in mind during the 

calculations those conventional methods of verification such as conservation of 

energy and reciprocity theorem. Fortunately sometimes the comparison of some 
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results obtained previously for Bragg angle blazing with our numerical results 

may also make them reasonable. 

When using the mode matching method to obtain the numerical solution, there 

is one more variable — deviation should be considered, Because unfortunately 

there is no simple equation between the deviation and other dimensions of the 

rectangular grating has been derived, such as the Bragg angle condition used for 

the Bragg blazing, it requires much more computing time to get numerical results. 

However, given the deviation of the incident angle and backscattering angle, 

the period d, and the wavelength A, from the definition of deviation: 

Z> = |0,- + 0 _ i | (4.1) 

and from the Bragg angle condition which is rewritten in equation (4.2) 

s i n 0 _ i = sin0 f- - X/d (4.2) 

we can calculate the angle of incidence from these two equations. In our program, 

only the case of Oi + 0 _ i > 0 is considered, and we remove the absolute 

value symbols in equation (4.1). Taking into account the reciprocity theorem we 

discussed in detail in last chapter, we can obtain the other result by considering 

of = -elv 

For off Bragg blazing , because of all the variables, incidence angle Oi, 

wavelength A, period d, groove depth h, and width a, are largely independent 
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of each other, and because the total range of the incident angle (from zero to ir/2) 

should be checked, an exhaustive search may be required here. Generally the 

range where the off Bragg blazing occurs for the certain value of a/d is defined 

first, then a more accurate numerical technique wi l l be used to get the exact value. 

Following these two steps, in next section, we constrict our discussion on 

the off Bragg angle blazing for the symmetrical (a=0.5d) rectangular gratings, 

then we extend our research to other ordinary rectangular gratings. Some of the 

corresponding design curves are given in the next two sections. 

§4.2 Symmetr ical Rectangular Grat ings 

Since the terms involving the groove depth h in equation (2.17) are periodic, 

keeping other variables (a,d,D and A) unchanged, it is expected that there exists 

more than one value of h at which all reflected power is eliminated. For Bragg 

angle blazing, it has been already discovered that the groove depth dependence is 

a quasiperiodical function for both T E and T M polarization. It is very interesting 

to extend such results to our off Bragg blazing situation here. 

When we choose a/d=0.5 for the symmetrical rectangular gratings, D as 19.8 

degrees, and d/A=0.917, the similar periodical phenomenon of the groovedepth 

for the T M polarization is shown in figure 4.1, in which the first perfect blazing 

point can be verified by figure 3.2. 
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Figure 4.1 Periodicity of the symmetrical rectangular 
grating with a/d=0.5, D=19.8, d/A^O.917 

Comparing with similar reports published for the Littrow mounting [7] [14], 

it is quite satisfying to find that the shape of the curve drawn here is very similar 

to that for Bragg angle blazing. This interesting comparison at least tells us 

two things. First it confirms the assumption proposed by Maystre in [19] and a 

similar assumption adopted in the last chapter that " such off Bragg angle blazing 

may occur for other dimensions of the symmetrical rectangular gratings ". and 

furthermore, from figure 4.1, it can be seen that i f we choose the depth h as the only 

changing parameter, we can get the off Bragg angle blazing point periodically. 
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Secondly, such similarity between our results and those for the Littrow mounting 

may also provide the evidence for our another conjecture in the last chapter that 

" Bragg angle blazing is probably a particular case for off Bragg angle blazing". 

However, for practical reasons such as grating fabrication and frequency 

bandwidth, usually the shallow gratings are generally used. In the following 

discussion, we wi l l pay much attention to the shallow gratings i.e., we wi l l discuss 

in detail the situation when the smallest values of the groove depth are chosen 

for off Bragg perfect blazing. 

For the symmetrical rectangular gratings (a/d=0.5), an exhaustive search for 

the off Bragg angle blazing was made by choosing h/A and d/A as the variable 

parameters and checking the whole range of incident angles for each given h/A 

and d/A. The result is shown in figure 4.2. In figure 4.2, it can be seen that 

for the T M polarization, perfect blazing (both Bragg and off Bragg blazing) most 

frequently occurs in the range 0.1<h/A<0.24 and 0.9<d/A<1.0. 
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Figure 4.2 Demonstration for the range of the 
off Bragg blazing (a/d=0.5) 

To obtain the exact perfect blazing point, we adopt a more accurate algorithm 

called golden section search in both h and d dimensions within the above range. 

The resulting data are listed in Appendix A.3 and the algorithm is also described 

in detail in Appendix A.2. The results are shown in figure 4.3. 

It can be found in figure 4.3 that, first, the points of the off Bragg angle blazing 

are continuous which means that for each value of h/A we can find a definite d/A 

correspondingly to obtain perfect blazing, and vice versa, and all these points 

makes a continuous curve which meets the curve for the Bragg blazing at about 

h/A=0.232,d/A=0.902. From the data behind, when the deviation becomes larger 
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off Bragg blazing diverges further from the curve of Bragg blazing. 

0.241 1 1 r 

1.02 
da 

Figure 4.3 Design curve of off Bragg blazing with 
symmetrical rectangular gratings (a/d=0.5) 
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Figure 4.4 Groove depth vs. deviation for off 
Bragg blazing (a/d=0.5) 
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Figure 4.5 Grating period vs. deviation for off 
Bragg blazing 
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Figure 4.6 Grating depth h/d vs. the deviation for 
off Bragg blazing (a/d=0.5) 

The curve of groove depth (h) vs. deviation is shown in figure 4.4, in which 

we can see that the larger the deviation the smaller the value of the h/A should 

be to obtain off Bragg blazing. 

Figure 4.5 shows the curve of period d/A vs. the deviation. From figure 4.5 

we find that for larger deviations we should chose larger values of the period d/A 

to obtain off Bragg blazing. 

From both figure 4.4 and figure 4.5, the tendency of the change of the blazing 

depth (h/d) vs. the deviation which is shown in the figure 4.6 can be predicted. 

When the deviation increases the blazing depth decreases. 
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If we exchange the x and y axes in figure 4.6, we get figure 4.7 which agrees 

almost exactly with results published by M.Breidne et al in [21] . Although the 

method used in [21] was an Integral Equation method, the results are same. This 

is a strong support for the accuracy of all our results. 
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Figure 4.7 Comparison of results of fig.4.6 
with results reported by Breidne [21, fig5]. 
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Now, the question may be asked why we don't continue our search for 

h/A<0.1. Since larger deviation may occur, the answer is that higher diffracted 

orders appear. As we shown before, off Bragg angle blazing angle wi l l occur 

in pairs with two incidence angles 8}and6] . Taking into account the reciprocity 

theorem, the deviation (4.1) can also be written as: 

D = \e\-B}\ (4.3) 

From the figure 4.3, we find that the further the curve leaves the Bragg angle 

blazing curve, the larger the value of the deviation. So, when we continue to 

decrease the value of the groove depth h/A, we encounter large values of deviation 

which means that, considering equation 4.3, we can cope with a situation in which 

the incident electromagnetic field illuminates the grating with a very large angle 

of incidence. Unfortunately, the required value of d/A is larger than 1.0 for 

large values of incident angle. Taking into account figure 1.1,-2 or +1 orders 

of diffraction may appear in addition to 0,-1 orders. We have restricted our 

discussion to the case that only two diffraction modes (m=0, -1) are considered. 

So, in figure 4.3, and in the following discussion, we wi l l not continue searching 

for very large values of deviation. 

§4.3 Unsymmetrical Rectangular Gratings 

§4.3.1 Off Bragg Blazing for Unsymmetrical Rectangular Gratings 
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As stated earlier, the report of off Bragg angle blazing with the sinusoidal 

gratings motivates us to develop a research topic — off Bragg angle blazing with 

the rectangular gratings. Because only between the sinusoidal and symmetrical 

rectangular (a/d=0.5) gratings there exists the equivalence rule which wi l l be 

described in Appendix A l , until now, all we discussed is T M polarization 

with the symmetrical rectangular gratings. Now that we have obtained some 

interesting results for the symmetrical rectangular gratings, naturally, we extend 

our investigation to the ordinary rectangular gratings whose a/d is not equal to 0.5. 

Similarly, we consider the periodicity of the rectangular gratings first. But, 

unfortunately, the interesting periodicity that occurs for the symmetrical rectan

gular gratings does not appear for the unsymmetrical ones. However, keeping 

other parameters unchanged, there does exist more than one value of h at which 

the off Bragg angle blazing occurs. 

Choosing a/d=0.6, 2/3, 0.7, 0.75 as examples, after the same exhaustive search 

as in the last section, it is interesting to find that off Bragg blazing for those four 

grating ratios (a/d) occur within a quite narrow range of h/A. 

Now, we adopt the same accurate searching algorithm as in the last section, 

and the design curves of groove depth (h/A) vs groove period (d/A) are shown 

in the figure 4.8. 
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Figure 4.8 Design curves of off Bragg blazing for TM 
polarization with unsymmetrical rectangular gratings 
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Figure 4.9 Off Bragg blazing as a function of the grating period 
vs. the deviation (when D=0, Bragg blazing occurs) 
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Figure 4.10 Off Bragg blazing as a function of groove depth 
vs. deviation 
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Figure 4.11 Off Bragg blazing as a function of the grating depth 
vs. deviation 

A l l these curves begin from the curve for the Bragg angle blazing where the 

deviation is zero. In Figure 4.8 the further off the Bragg angle blazing curve, 

the larger the deviation is , which is similar to the behavior of the symmetrical 

rectangular gratings obtained in the last section. However, for the symmetrical 

rectangular gratings, when the deviation increases, the curve leaves the Bragg 

blazing curve and goes downwards, In contrast, here all these curves go upwards 

when the deviation increases. 
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Curves of the period d/A vs the deviation are shown in figure 4.9. Figure 4.10 

and 4.11 represent the groove depth (h/A) and the relative grating depth (h/d) vs 

the deviation respectively. From those figures, we can find the property of the 

beginning points of these curves as that when the grating ratio (a/d) increases, 

the beginning point has a larger value of groove depth (h/A) but a smaller value 

of period (d/A). 

There is apparently a continuity between the curves as the aspect ratio (a/d) 

varies, which makes figure 4.8 useful to predict the position of the similar curves 

for other values of a/d. 

Because of the parity property of angles for off—Bragg blazing, and con

sidering equation (4.3), off—Bragg blazing wi l l disappear when the deviation is 

too large. So, all the curves of Figures 4-.8-4.11 are continuous in a definite 

region and stop at a larger value of the deviation. In comparison, Bragg blazing 

is continuous in the whole region. 

§4.3.2 Fur ther Discussion 

There also remains some interesting phenomena, details of which are dis

cussed in this section. As seen in Figure 4.8 all the curves go upwards when 

the deviation increases. On the other hand the curve of off Bragg blazing for 

symmetrical rectangular (a/d=0.5) goes downwards. 

From figure 4.12, we can discover when this change occurs. In figure 4.12 two 
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curves (a/d=0.58, a/d=0.56) go upwards while another two curves go downwards 

(a/d=0.54, a/d=0.52). So, we can predict that the change occurs at about a/d=0.55. 

0.4 

0.3 

0.25 

0.2 

0.15 

0.1 

1 1 1 1 

a/d=0.58\ \ a/d=0.56 

\ \ 0.52 

a/d=0.54 \ 

1 

Bragg blazing 

a/d=0.52 

0.9 0.95 1.05 1.1 
d/X 

1.15 

Figure 4.12 Bragg and Off Bragg Design Curves 
for a/d=0.52,0.54,0.56,0.58 

Another phenomena which should be discussed here is that from both figure 

4.11 and figure 4.12, curves for a/d=0.6,0.58,0.56 go downwards first then go 

upwards. Thus all these curves have a singular point. Furthermore, the curves 

form an angle at this point, and when the a/d decreases, the degree of the angle 

decreases also. 

Because the curve goes downwards then upwards, the curve of off Bragg 

blazing wi l l cross the curve of Bragg blazing at a certain point. This interesting 
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phenomena wi l l be discussed next. 

Now we choose a/d=0.56 as an example which is replotted in figure 4.13. We 

find that the cross over point occurs at about d/A=0.98,h/A=0.25. After calculations 

in the area around this point, we plot our results in figures 4.14 and 4.15. 

0.361 1 1 1 1 1 1 1 1 r 

Figure 4.13 Bragg and Off Bragg blazing curves for a/d=0.56 

Figure 4.14 shows the trend of the change for values of h/A just below 

the cross over value. Choosing h/A=0.2, d/A=0.98, we find off Bragg blazing 

. Increasing h/A to about 0.21, we find that off Bragg blazing has decreased; 

Continue increasing the depth of groove until h/A=0.24, we find that off Bragg 

blazing has almost disappeared, and instead, we find Bragg blazing . 
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incident angle (degree) 

Figure 4.14 Reflected power vs. angle of incidence 
for various groove depth with a/d=0.56, d/?t=0.98 
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incident angle (degree) 

Figure 4.15 Reflected power vs. angle of incidence for various 
groove depth a/d=0.56, d/A=0.98 

Similarly, figure 4.15 shows the trend of the change for h/A just above the 

cross over value. Starting from the cross over point, while h/A increases, the Bragg 

blazing phenomena decreases until h/A=0.28 where off Bragg blazing appears. 

From figures 4.13, 4.14 and 4.15, we find that near the cross over point, there 

exists a quite large region ( in our example, h/A from 0.21 to 0.28) where it is 

quite difficult to distinguish between these two kinds of blazing. In this region, 

there is a change from one blazing to the other, and this indicates the relationship 

between these two kinds of blazing. 
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The changing from one blazing to the other was first reported earlier [12] 

from numerical results. The difference is that frequency and groove width were 

used as a variable parameters, while we change the depth of groove. However, 

the results are quite similar. 

The third problem we wi l l discuss in this section is off Bragg blazing for 

comb gratings. From figure 4.8, it can be seen that when a/d increases, off 

Bragg blazing may occur for deeper groove gratings. We use the mode match 

method here which allows us to check deep groove gratings. Results are shown 

in figure 4.16. In figure 4.16, we checked a/d=0.8,0.9 and 0.9999, and found off 

Bragg blazing there. If we approximate a/d=0.9999 to a comb grating, we can 

get the result that off Bragg blazing also occurs for comb gratings which was 

first observed in unpublished results by N.C. Beaulieu, E.V.Jul l in 1981. Only an 

isolated example was given at that time, while here we provide the design curves. 
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Figure 4.16 Design Curves for a/d=0.8,0.9,0.9999 

Finally, we should discuss off Bragg blazing for narrow grooves. Unti l now, 

all gratings we checked have a/d greater than or equal to 0.5. So, it's quite 

natural to check gratings with a/d less than 0.5. However, unfortunately during 

the research of this thesis we didn't find off Bragg blazing occurring for the 

gratings with a/d much less than 0.5. From figure 4.8, 4.12 we can predict that 

when the value of a/d decreases, design curves shift right. From figure 4.3 when 

a/d is equal to 0.5, part of design curve enter the region where d/A bigger than 

1.0. So, i f we choose a/d much less than 0.5, design curves may be plotted in 
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the region where d/A bigger than 1.0, then unfortunately from figure 1.1, m=+l 

or m=-2 mode wi l l appear, and high efficiency diffract gratings are not obtained. 
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Chap 5. Verification, Conclusions and Recommendation 

Nothing provides more powerful evidence to verify the numerical results than 

experimental measurements. For this, we rely on previous measurements. After 

checking earlier experimental data, it is very interesting to find that a set of 

experimental data which was expected to be used to verify the result of the Bragg 

blazing [10] did display the particular property of off Bragg blazing. Using our 

program with the dimensions of the experimental grating, we find our result for 

off Bragg blazing is closer to the measurements than the previous numerical result 

for Bragg blazing. This is shown in the figure 5.1. 

According to the dimensions of the experimental plate, a/d=0.39,d/A=1.46, 

h/A=0.65, and from figure 1.1 we can predict that off Bragg blazing may occur 

in a very narrow region around 20 degrees, which was shown exactly in figure 

5.1. The two singular points in figure5.1 are Wood's anomalies [1]. 

As indicated in the first chapter, the aim of this study is to check the existence 

of off Bragg angle blazing and try to find some.properties for such blazing with 

rectangular gratings. A t the end of this thesis, a review of all results displayed 

before allows the following conclusions to be drawn. 
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incident angle (degrees) 

Figure 5.1 Measured and Calculated Reflected Power 
vs. incident angle ( experimental data is from [10]: 
d=12.54mm,a=4.9mm,h=5,58mm f=35.0Ghz) 
experimental data: - e — © — - o 

calculated data: 

(1) Following the similar procedures proposed by Maystre et al [19] to find 

out off Bragg blazing with the sinusoidal gratings, by using the scattering matrix 

technique and the mode matching method, we first theoretically show the existence 

of the off Bragg blazing with rectangular gratings. 

(2) Using the reciprocity theorem, we first define the range of the incident 

angle for off Bragg blazing, and find that when only two scattering orders exist, 

off Bragg blazing angles should occur in pairs. Furthermore, we give the basic 
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equation between these two incident angles. 

(3)Using the mode matching method and a numerical search technique we first 

report design curves for off Bragg angle blazing in the last chapter, from which 

we find some interesting properties for such perfect blazing for T M polarization 

with the rectangular gratings. 

First, we find that for symmetrical rectangular (a/d=0.5) gratings, there exists 

a periodicity which is very similar to the situation for Littrow mounting. Although 

such periodicity is not found for the unsymmetrical rectangular gratings, i f we 

keep other variables (a,d,A and deviation) unchanged, there exists more than one 

value of the groove depth h at which off Bragg angle blazing occurs 

Then, we find that all design curves start from the Bragg angle blazing for 

which deviation equals to zero. When the deviation increases, the curve for off 

Bragg blazing leaves the curve for Bragg blazing. A l l these curves end with very 

large value of deviation at which the off Bragg blazing disappears. Compared 

with the continuity of the Bragg blazing in the whole range of dimensions, off 

Bragg blazing may be continuous only within some finite range. 

Finally, by using these design curves, perfect blazing for other dimensions can 

be predicted. Moreover, taking into account equivalence rules, similar properties 

may be also found in other commercial gratings such as sinusoidal and echelette 

gratings. 
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A l l our results are for the T M polarization. However, i f we review the 

chapter 3, it can be seen that we did not restrict our derivation to T M polarization 

only, which means that there is a possibility that off Bragg blazing exists for T E 

polarization. This should be investigated. 

From the last chapter, we can see that i f we carefully choose the parameters 

a/d, d/A, h/A and deviation, we can obtain off Bragg blazing. Not all the 

relationships among them have been discovered in this thesis. To find these 

relationships, to give reasonable explanations, and to derive analytic equations 

for them may be another direction of future work. 
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Appendix A . l Equivalence Rules 

Maystre et al [18] in 1980 first proposed the equivalence of symmetrical 

triangular, sinusoidal and symmetrically rectangular gratings. For equivalence 

these three different grating profiles have almost the same efficiency curves. 

However, the equivalence rule is applicable in the case of the following two 

conditions being satisfied. First, only two orders propagate — specular reflection 

(m=0) and principal backscattering(m=-l); Second, the gratings must have a 

profile with a centre of symmetry i.e. only gratings having a profile that can 

be expanded in a Fourier sine series satisfy the equivalence rule. 

( b ) 
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(c) 

Figure A.1 Equivalent grating profiles 

Figure A . l (a) (b) (c) display three kinds of gratings that can be expanded 

in a sine series: 

CO 

f(x) = bn sin Kx 

n=l 
K = 2ir/d 

For the ruled grating with triangular profile in figure A . 1(a): 

(A.1) 

-[tan a — tan (A + a)}, sin 
irn sin (A + a) cos a 

sin A 
(A.2) 

Similarly equation (A.3)(A.4) represent the b for the sinusoidal and symmet

rical rectangular gratings respectively: 

h = H/2, bn = 0,n = 1,2,... 

2H 
b n - n = 1,3,5, ..;bn = 0 n = 2,4,6, 

(A.3) 

(A.4) 

When only two diffraction orders are considered, it can be shown that even 

the first harmonic in the Fourier series above has little influence on the efficiency. 

The proof is given below: 
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Assuming a profile given only by the fundamental and the first harmonic of 

a Fourier sine series: 

y = /(x) = b\ sin Kx + b2 sin2Kx (A.5) 

Keeping other parameters unchanged, the efficiency of the ith order of diffrac

tion is a function of b l and b2 such as Ei(bi,b2). The efficiency is unchanged 

by a translation along the x axis. In particular for a translation d/2, we get 

El(-b1\b2) = El(b1,b2) (A.6) 

Taking into account reciprocity for grating having the profile given by y=f(-

x), we can get: 

El(-bl,-b2) = El(b1,b2) (A.7) 

Because only two orders of diffraction propagate, so: 

E0(bub2) + E-1(b1,b2) = l . (A.S) 

From (A.6),(A.7),(A.8), we get: 

£ , • ( 6 1 , 6 2 ) = Ei(-b1,b2) = Ei{b1,-b2) = Ei{-bu-b2),i = 0 , - 1 (A.9) 

Considering the development of E-\(b\,b2)ix\ a Taylor series. Equation A.8 

makes the series have only even terms: 

£ _ i ( & i , & 2 ) = a o + a i & i + a 2 & ^ - r a 3 & i + a 4 & 2 + " ( A ' I 0 ) 
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For the gratings in figure A.1 b\ « b\, so that the amplitude of the first 

harmonic has much less influence on the efficiency than the amplitude of the 

fundamental. 

If only the fundamental term is considered only, from equation A.2 and 

A .3 , the symmetrical rectangular grating whose depth is TT/4 times that of the 

associated sinusoidal grating may has almost the same efficiency curve as that of 

the associated sinusoidal grating. Other equivalence rules are described in detail 

in [18]. 
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Appendix A.2 Golden Section Search 

A minimum is known to be bracketed between a and c only when there is a 

triplet of points, a<b<c such that f(b) is less than both f(a) and f(c). In this case 

we know that the function has a minimum in the interval (a,c). 

The algorithm of minimum search is to choose a new point of x either between 

a and b or between b and c. Suppose here we make the latter choice. Then if 

f(b)<f(x) then the new bracketing triplet is (a,b,x), otherwise, it is (b,x,c). We 

continue the process until the distance between the two outer points of the triplet 

is tolerably small. 

Now the problem is that how to choose the position of the new point of x. 

Assuming a,b,c satisfy equation A . l l : 

b — a c — b 

= w, = l — i o ( A . l l ) 
c — a c — a 

and assuming that the new point x satisfies equation A . 12: 

X ~ b : (A.12) 
c — a 

Then, the next bracketing segment wi l l wither be w+z or 1-w, to minimize 

the worst case possibility, we should choose z to make them equal 

z = \-2w (A.13) 

Furthermore, i f z is chosen to be optimal, then so was w before it, which 

implies that x should be the same fraction of the way from b to c as was b from 
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a to c or: 

—^— = w (A. 14) 
1 — w 

Solving equations A . 13, A . 14, we get w=0.38197 which is called the golden 

mean or golden section. 
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Appendix A .3 Data L is t 

The following is a collection of data, most of which appears in graphical 
form in Chapter 3 and Chapter 4 

Table 1. T M polarization for a/d=0.5 

Depth (h/A) Period(d/A) Reflection Deviation 
Efficiency(db) (degree) 

0.10 1.00 -44.39 77.20 
0.11 1.01 -47.28 75.69 
0.12 1.01 -47.59 74.14 
0.13 1.01 -52.16 72.77 
0.14 1.01 -51.05 71.36 
0.15 1.01 -50.97 69.41 
0.16 1.00 -51.94 67.72 
0.17 1.01 -57.45 65.45 
0.18 1.00 -59.78 62.91 
0.19 0.99 -62.09 59.74 
0.20 0.99 -62.22 55.03 
0.21 0.97 -83.45 48.57 
0.22 0.95 -81.05 37.89 
0.23 0.90 -95.25 1.12 
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Table 2. T M polarization for a/d=0.6 

Depth (h/A) Period (d/A) Reflection Deviation 
Efficiency (db) (degree) 

0.20 0.60 -64.75 0.08 
0.22 0.65 -66.38 0.03 
0.23 0.70 -60.13 0.03 
0.23 0.75 -63.47 0.02 
0.24 0.82 -61.61 0.06 
0.25 0.87 -60.90 0.04 
0.24 0.83 -62.60 32.54 
0.23 0.88 -66.10 53.38 
0.23 0.93 -63.96 68.72 
0.29 0.94 -48.58 80.93 
0.31 0.94 -49.21 81.38 
0.35 0!92 -39.96 81.72 
0.38 0.91 -47.75 81.87 
0.40 0.91 -36.65 81.98 
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Table 3. T M polarization for a/d=0.7 

Depth (h/A) Period (d/A) Reflection Deviation 
Efficiency (db) (degree) 

0.20 0.60 -59.06 0.08 
0.22 0.63 -66.72 0.05 
0.23 0.66 -62.29 0.10 
0.24 0.69 -69.66 0.08 
0.25 0.72 -58.24 0.03 
0.26 0.75 -82.67 21.57 
0.28 0.81 -65.91 54.30 
0.31 0.82 -60.29 6133 
0.33 0.81 -58.86 63.21 
0.34 0.81 -50.76 64.76 
0.36 0.80 -62.94 65.98 
0.37 0.80 -47.83 67.01 
0.39 0.79 -46.03 67.84 
0.40 0.79 -55.41 68.73 
0.42 0.78 -44.34 69.40 
0.43 0.78 -40.38 69.90 
0.45 0.77 -32.25 70.32 
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Table 4. T M polarization for a/d=0.8 

Depth (h/A) Period (d/A) Reflection Deviation 
Efficiency (db) (degree) 

0.26 0.65 -65.13 0.03 
0.28 0.68 -68.97 0.06 
0.30 0.71 -87.08 0.05 
0.32 0.71 -65.35 34.06 
0.34 0.71 -59.33 39.20 
0.35 0.71 -75.47 42.92 
0.37 0.70 -52.20 45.96 
0.38 0.70 -51.09 48.56 
0.40 0.69 -51.52 50.85 
0.41 0.69 -53.78 52.75 
0.43 . 0.69 -42.93 54.37 
0.44 0.68 -48.19 55.81 
0.46 0.67 -43.56 56.78 
0.47 0.67 -34.21 57.53 
0.49 0.66 -28.41 57.89 
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Table 5. T M polarization for a/d=0.9 

Depth (h/A) Period (d/A) Reflection Deviation 
Efficiency (dbj (degree) 

0.30 0.59 -61.67 0.07 
0.32 0.60 -56.43 0.03 
0.33 0.61 -63.82 0.00 
0.35 0.61 -59.39 0.01 
0.36 0.62 -62.15 0.10 
0.38 0.62 -57.51 4.67 
0.39 0.62 -65.89 17.37 
0.41 0.62 -71.62 24.60 
0.42 0.61 -61.53 . 29.85 
0.44 0.61 -45.45 34.12 
0.45 0.60 -49.21 37.23 
0.47 0.60 -52.13 39.78 
0.48 0.59 -43.29 41.62 
0.50 0.59 -42.68 42.62 
0.51 0.58 -31.30 42.64 
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Table 6. T M polarization for a/d=0.9999 

Depth (h/A) Period (d/A) Reflection Deviation 
Efficiency (db) (degree) 

0.48 5 0.54 -69.53 3.92 
0.49 0 0.54 -59.43 9.69 
0.495 0.53 -66.66 12.73 
0.500 0.53 -51.06 15.05 
0.505 0.53 -48.20 16.63 
0.510 0.53 -48.84 17.80 
0.515 0.53 -45.92 18.62 
0.520 0.52 -56.55 19.07 
0.525 0.52 -53.46 19.08 
0.530 0.52 -44.52 18.59 
0.535 0.51 -37.00 17.63 
0.540 0.51 -30.95 15.57 

Table 7. T M polarization for a/d=0.4 

Depth (h/A) Period (d/A) Reflection Deviation 
Efficiency (db) (degree) 

0.150 1.02 -55.50 81.59 
0.155 1.03 -56.79 81.38 
0.160 1.03 -62.37 81.07 
0.165 1.03 -53.12 80.79 
0.170 1.04 -56.55 80.63 
0.175 1.04 -56.31 80.38 
0.180 1.05 -63.09 80.20 
0.185 1.05 -62.25 80.0347 79.92 
0.190 1.06 -58.05 79.92 
0.195 1.07 -58.67 81.18 
0.210 1.12 -64.90 81.64 
0.212 1.13 -55.37 82.52 
0.215 1.15 -62.20 

78 



Table 8. T M polarization for a/d=0.52 

Depth (h/A) Period (d/A) Reflection Deviation 
Efficiency (db) (degree) 

0.10 1.00 -54.91 80.91 
0.11 1.00 -51.44 79.66 
0.12 1.00 -43.11 78.36 
0.13 1.00 -47.49 76.93 
0.14 1.00 -66.66 75.44 
0.15 1.00. -53.16 73.89 
0.16 1.00 -50.83 72.15 
0.17 1.00 -55.31 70.08 
0.18 1.00 -64.49 67.63 
0.19 0.99 -61.62 64.53 
0.20 0.98 -57.92 60.57 
0.21 0.96 -65.46 54.86 
0.22 0.94 -85.41 45.91 
0.23 0.90 -77.75 27.57 
0.24 1.03 -70.50 0.06 
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Table 9. T M polarization for a/d=0.54 

Depth (h/A) Period (d/A) Reflection Deviation 
Efficiency (db) (degree) 

0.10 1.00 -44.11 84.22 
0.11 1.00 -40.12 82.89 
0.12 1.00 -44.06 81.85 
0.13 1.00 -44.08 80.46 
0.14 1.00 -55.73 79.23 
0.15 1.00 -48.45 77.62 
0.16 0.99 -58.86 76.03 
0.17 0.99 -53.72 74.02 
0.18 0.99 -66.34 71.73 
0.19 0.98 -70.20 68.88 
0.20 0.97 -63.78 65.09 
0.21 0.95 -60.59 59.59 
0.22 0.93 -85.09 51.17 
0.23 0.90 -43.85 36.33 
0.24 0.93 -77.04 0.09 
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Table 10. T M polarization for a/d=0.56 

Depth (h/A) Period (d/A) Reflection Deviation 
Efficiency (db) (degree) 

0.23 0.90 -69.23 47.92 

0.22 0.92 -64.43 55.16 

0.21 0.94 -62.67 61.79 
0.20 0.96 -63.19 68.09 

0.18 0.98 -68.44 75.09 

0.28 0.98 -37.60 87.07 

0.29 0.98 -39.88 86.97 

0.30 0.98 -45.49 86.85 

0.32 0.97 -34.59 86.71 

0.33 0.97 -37.33 86.71 

0.34 0.97 -34.92 86.57 

0.35 0.97 -37.62 86.55 

Table 11. T M polarization for a/d=0.58 

Depth (h/A) Period (d/A) Reflection Deviation 
Efficiency (db) (degree) 

0.23 0.90 -71.15 54.46 

0.22 0.92 -74.67 60.86 

0.22 0.94 -62.84 66.96 

0.21 0.96 -62.48 73.02 

0.23 0.98 -63.64 84.26 

0.27 0.97 -48.85 84.32 

0.29 0.97 -44.43 84.26 

0.30 0.96 -53.72 84.30 

0.31 0.96 -40.33 84.22 

0.32 0.96 -49.88 84.26 

0.33 0.95 -43.70 84.30 

0.34 0.95 -41.79 84.20 
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Table 12. T M polarization for a/d=2/3 

Depth (h/A) Period (d/A) Reflection Deviation 
Efficiency (db) (degree) 

0.20 0.60 -60.11 0.11 
0.22 0.64 -64.72 0.05 
0.23 0.68 -62.86 0.06 
0.24 0.72 -61.93 0.03 
0.25 0.77 -69.34 0.02 
0.25 0.78 -74.07 30.20 
0.25 0.82 -59.60 48.89 
0.30 0.86 -58.97 67.01 
0.32 0.85 -49.85 69.08 
0.34 0.85 -61.04 70.58 
0.36 0.84 -52.46 71.71 
0.38 0.83 -40.12 72.59 
0.40 0.83 -46.46 73.27 
0:42 0.82 -51.87 73.89 
0.44 0.81 -43.74 74.26 
0.46 0.80 -39.85 74.47 
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Table 13. T M polarization for a/d=0.75 

Depth (h/A) Period (d/A) Reflection Deviation 
Efficiency (db) (degree) 

0.21 0.60 -56.12 0.08 
0.24 0.64 -72.36 0.05 
0.25 0.68 -65.09 0.06 
0.27 0.72 -75.36 18.45 
0.32 0.76 -66.18 50.36 
0.34 0.76 -62.59 54.02 
0.36 0.75 -51.53 56.73 
0.38 0.75 -45.99 58.93 
0.40 0.74 -57.01 60.75 
0.44 0.72 -41.36 63.39 
0.46 0.72 -46.25 64.17 
0.48 0.71 -33.41 64.48 
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