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Abstract. This paper focuses on adapting and applying a genetic al-
gorithm (GA) and differential evolution (DE) to solve the grain (wheat)
mixing problem. The proposed algorithms explore a search space that
aims at finding a quality mixing of wheat from grain bins that produce
the maximum profit at a grain elevator. The experimental results demon-
strate that mixing bins provide more profit than not mixing, and that
the evolutionary approaches lead to consistently higher profits than the
non-evolutionary methods.
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1 Introduction

Agriculture and agricultural products are essential in sustaining lives on the
planet. To feed the population on the Earth efficiently, considerable planning
is required. Issues, such as crop rotation or mixed cropping techniques, optimal
seeding and fertilizing, proper irrigation, and efficient harvest and distribution
are all required for agriculture to meet the needs of most people.

In this paper, we consider an important component of the food supply chain,
referred to as grain mixing. The grain considered in our case is wheat that has
been stored in different bins in preparation for being sent to a local grain elevator
for dissemination. The farmers load the grain from these bins into trucks and
sell the wheat at the nearest elevators/markets. The price they get from the
elevators depends on the quality (protein level) of the wheat.

Several factors play an essential role when determining the profit from wheat
production. One of the critical elements determining the price of a bushel of
wheat is protein content, which is affected by several environmental factors,
including temperature during the growing season, soil nitrogen levels, genetics,
timing, and precipitation. Due to the resulting variation, protein content might
change, not only from year to year but also from crop to crop. The technology
is available to track the protein content in a bushel of wheat on site; however,
it is expensive, making it inaccessible to several smaller farmers. Consequently,
most wheat producers end up taking their harvest to the closest elevators and
collecting whatever amount is paid.
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The purpose of this project was two-fold. First, we investigated if mixing
grain increases the profitability of the farmers. The general approach involved
comparing a näıve strategy for delivering grain, as if no protein tracking were
done, to that of using the protein content to determine a quality mix for delivery.
Constrained evolutionary algorithms: specifically a Genetic Algorithm (GA) and
Differential Evolution (DE), was used to optimize the mixing of the grain. These
methods were also compared to a greedy mixing strategy to determine if the
added complexity is beneficial. The final goal was to see if it is worth investing
in the technology and infrastructure needed to track the protein level and mix
the wheat on site.

The remainder of this paper is structured as follows. In Section 2, we discuss
work related to ours. In Section 3, we present the grain mixing problem. We then
present the formal problem statement in Section 4. The data collected for this
study is introduced in Section 5 followed by our methodology and experimental
design in Sections 6 and 7 respectively. We present our results in Section 8,
followed by a discussion of those results in Section 9. The paper ends with future
work and our conclusions in Sections 10 and 11.

2 Related Work

The grain mixing problem studied in this paper relates to the classical blending
optimization problem. The blending problem seeks to find blends of materials by
mixing them to meet specific requirements that lower overall production cost.
It is possible to solve the classical blending problems by linear programming
(LP) methods if both the objective function and the constraints are linear [9].
There exist a few works that attempted to solve the decision version of the
grain mixing problem (also known as wheat blending) with linear programming.
Hayka and Cakmalki utilized LP methods capable of predicting the optimal
wheat blend ratio for a targeted final quality to produce a bread making flour
[6]. Haas used the simplex algorithm to find the optimum blend that satisfies
the customer’s specific solvent retention capacities (SRC) [5]. In our case, the
objective function is non-linear and there is no specific targeted wheat quality,
which makes it challenging to solve the problem by only using LP.

Mixed-integer linear programming (MILP) is often used to solve many real-
world blending problems [14]; however, MILP is known to be NP-hard. Bilgen
and Ozkarahan proposed a MILP model to optimize the cost for the wheat
supply chain (blending, loading, transportation, and storage), where the model
used a specific blending formula for the mixing [3]. MILP has also been used in
the blending of oil [12], water [15], gasoline [8], and chemical fertilizer [2].

Xiang et al. proposed a Hybrid-Evolutionary method to solve the wheat
blending problem in Australia [10]. Their method used a GA with a heuristic
method and a liner-relaxed version of the simplex algorithm to solve the blending
problem. Their work closely relates to our mixing problem; however, the problem
formulation differs based on the US wheat market. In our problem, there is an
added constraint on the capacity a truck can carry, and the farmers have the
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Fig. 1. Grain mixing example

choice of delivering wheat to multiple elevators. Evolutionary approaches have
also been used for blending gasoline [4] and composite laminates [1].

Most of the work for the wheat blending problem in the US market has been
done in the milling companies to produce client-specific bread making flour. To
the best of our knowledge, our approach is the first to address the grain-mixing
problem to increase the profitability of the farmers.

3 Grain-Mixing Problem

The objective of this study was to develop a method for farmers to maximize
their profit when selling wheat at local grain elevators. When selling wheat, the
price per bushel of grain varies based on a range of protein levels. For example,
if the protein level is 10–11%, the price might be $3 per bushel where it might
increase to $4/bu with protein levels of 12–13%. The overall profit of a truck
depends on the number of bushels and the average protein level. At times, there
are many cases where the protein level of a bin is short of reaching a higher price
range; therefore, it might be possible to mix grain from a high-quality (in terms
of protein level) bin with a low-quality bin to make a better overall profit.

Figure 1 illustrates the grain-mixing process. In the example, there are three
bins with different numbers of bushels and protein levels. The table presents
elevator prices for different quality grains. Without mixing, the profit obtained
from all the bins would be (50∗$3+100∗$4+50∗$6) = $850. However, if we mix
grain as shown in the figure, the overall profit would be (100 ∗ $4 + 100 ∗ $6) =
$1000, which increases the profit by $150. There are other factors like mixing
cost and delivery cost involved in the overall profit. Only the effect of protein
content is shown for simplicity.
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4 Problem Statement

The grain mixing problem aims to determine the optimal mix of wheat from
storage bins to maximize profit when sold to a set of elevators. More formally, let
B = {b1, b2, ..., bn}, E = {e1, e2, ..., em} ,and T = {t1, t2, ..., tl} represents the set
of bins, elevators, and trucks respectively. Each bin contains a different number
of bushels and protein levels represented by bBu

i , and bPr
i ∀bi ∈ B respectively.

For this problem, the mixing of wheat is restricted to drawing from only two bins
at a time based on the physical limitations of the farmers. Therefore, a loaded
truck will only contain bushels from a maximum of two bins (or one bin if there
is no wheat left in the second bin). For example, truck 1 may mix bushels from
b1 and b5 but not from the combination of b1, b5, and b7. The mixing ratio of a
truck is represented by α ∈ [0, 1]. A truck mixing bins b1 and b5 with α = 0.2
will fill 20% of the truck with bushels from b1 and 80% from b5.

4.1 Cost Model

Let C denote the total number of bushels a truck can carry. If a truck ti mixes
grain from two bins bj and bk with a mixing ratio α, the total number of bushels
in the truck is computed as follows.

tBu
i = bBu

i,j + bBu
i,k

where, bBu
i,j represents (C × α) bushels drawn from bj to ti and bBu

i,k represents

(C× (1−α)) bushels drawn from bk to ti. The remaining bushels of bBu
j and bBu

k

is updated by subtracting the used amount respectively. Moreover, by mixing
grain from two bins, the weighted average protein level of ti is computed as

tPr
i = α · bPr

j + (1− α) · bPr
k .

Finally, the revenue of truck ti depends on the elevator/market prices and the
average protein level in the truck. The revenue of truck ti going to elevator ej is
computed as

tRev
i,j =

[
eb price
j +

(⌊
|tPr
i − eb Pr

j |

e
up/down Pr
j

⌋)
× eup/down price

j

]
× tBu

i

where, eb price
j is the base protein price of the elevator, tPr

i is the truck’s protein

level per unit bushel, eb Pr
j is the base protein level of the elevator, e

up/down Pr
j

is the up or down protein level, e
up/down price
j is the up or down price, and tBu

i

is the total number of bushels in the truck.
To calculate the profit of a truck ti, the associated mixing cost and delivery

cost need to be deducted from the final revenue of the truck. The mixing cost
(tmix cost

i ) is associated with the mixing difficulty of the two bins used in the
truck, and the delivery cost depends on the cost to deliver the grain to the
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elevators. The delivery cost is represented as tdel cost
i,j for ti going to the elevator

ej . The individual profit for truck ti is then calculated as

tProfit
i = max

j
{tRev

i,j − (tmix cost
i + tdel cost

i,j )} (1)

A maximum of l trucks are loaded until there are no bushels left in the
respective bins. A truck may contain a single bin if there are no bushels left to
fill the second bin. In that case, the truck protein level would be the same as the
single bin and there will be no mixing cost. Finally, the objective is to maximize
the total profit from l trucks given by

maximize

(
l∑

i=1

tProfit
i

)
(2)

The constraints involved in the optimization problem are as follows:

– For a truck ti with bBu
i,j bushels drawn from bj and bBu

i,k bushels drawn from
bk, the total bushels of the truck cannot exceed maximum capacity C.

tBu
i = bBu

i,j + bBu
i,k ≤ C ∀ti ∈ T, ∀j, k ∈ B

– The bushels from bin bj loaded in multiple trucks cannot exceed the total
bushels in that bin.

l∑
i=1

bBu
i,j ≤ bBu

j ∀bj ∈ B

– For all trucks and bins,

tBu
i ≥ 0 ∀ti ∈ T
bBu
j ≥ 0 ∀bj ∈ B

4.2 Hypothesis

Our goal is to find the best set of bin pairs and the mixing ratios α for l trucks
that yield maximum profit. Several optimization techniques will be considered
to assess the solution quality. The NoMix algorithm will be used to obtain the
baseline profit when the trucks contain grain from a single bin to assess if it is
better to mix bins in the first place. The GreedyMix algorithm will mix grain
based on a lookup profit table by taking all the pairwise combinations of bins
and α and greedily fill the trucks based on the maximum profit combination (see
Section 6.2 for more details). We also apply a genetic algorithm (GA) [7] and
differential evolution algorithm (DE) [16] as alternative optimization methods.

We hypothesize that the GreedyMix algorithm will yield a higher profit than
the NoMix algorithm as the expectation is that mixing bins provide a better
solution. We hypothesize further that the GA and DE algorithms will yield
higher profit than the GreedyMix as they provide a more comprehensive search
of the search space. For the proposed GA and DE algorithm, both algorithms
have been adapted to fit the problem definition (constraint validation), and we
hypothesize that both algorithms will yield similar solution quality.
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Table 1. Wheat distribution across 16 bins

Year Tot Bush Max Bu/Bin Min Bu/Bin Avg Bu/Bin

2016 114284.8 14836.8 1712.7 7142.8

2017 112417.5 14836.8 2985.3 7026.1

Year Tot Prot Max Prot/Bin Min Prot/Bin Avg Prot/Bin

2016 191.3 13.3 10.1 12.0

2017 190.1 13.8 10.1 11.9

Table 2. Market price for different elevators

Year Market BasePrice BaseProtein upPrice upProtein downPrice downProtein

2016
1 3.32 11.25 0.03 0.75 -0.06 0.75
2 3.84 11.75 0.25 0.50 -0.30 0.50
3 3.54 12.00 0.50 0.60 -0.40 0.30

2017
1 4.42 11.50 0.05 0.50 -0.10 0.50
2 4.47 12.00 0.25 0.50 -0.30 0.50
3 4.39 12.20 0.50 0.60 -0.40 0.30

5 Dataset

The dataset used in this project was collected from a local Montana farmer who
tracks the protein level of his wheat. The data collected is for wheat harvested
in 2016 and 2017. All of the wheat was distributed among various bins. For our
problem, a bin entry includes the bin id, the average protein level of wheat in
that bin, the number of bushels stored, and the site number where the wheat
was harvested. Our farmer used 16 bins with different numbers of bushels and
protein levels in each bin (Table 1).

The data used also includes a list of elevators that provide the market price
for selling wheat. An entry in the elevator list contains the base protein level, the
price for the base protein level, the payment added to the base price for higher
protein level (upPrice), and the payment deducted from the base price for lower
protein level (downPrice). We collected information on three elevators for both
years. The market price for different elevators is shown in Table 2.

Figure 2 illustrates the cost function for elevator 3 for year 2017. The orange
dot shows the base protein level and base protein price for that elevator. As
shown, the price of protein changes as a step function, and the step size differs
based on the upProtein (or downProtein) levels from the base protein level.

Multiple trucks, each with a fixed capacity of 8000 bushels, were used to
carry the wheat to the elevators. A delivery cost was charged for a fully loaded
truck, ranging from $960 to $2000 based on the distance between a bin site
and an elevator. Moreover, mixing the wheat from multiple bins to change the
protein level incurs a mixing cost, ranging from $8 to $800. The mixing cost also
depends on the site number of the bins; mixing two bins from the same site is
less expensive than mixing bins from different sites.
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Fig. 2. Cost function of elevator 3 for 2017 dataset

6 Methodology

6.1 No Mixing

The NoMix algorithm calculates the overall profit without any bin mixing. The
algorithm takes one bin at a time and fills the trucks with the wheat from that
bin. If there is not enough wheat to load a truck fully, the algorithm checks if
the partially filled truck provides a positive profit. If the profit of a partially
filled truck is positive, it takes the truck to the elevator. If not, the grain in that
truck is discarded without penalty, and the truck is freed up for use on another
bin. The algorithm fills up to l trucks, and the total profit is calculated using
the sum in Equation 2.

6.2 Greedy Mix

The GreedyMix algorithm first generates a profit table by taking all of the pos-
sible combinations of two bins and the mixing ratio α. The value of α is selected
from a discrete set of values in increments of 0.1: {0.1, 0.2, ..., 0.9} to generate a
finite combination set. When generating the lookup table, we compute the profit
of a fully loaded truck using Equation 1 based on the selection of two bins and
the mixing ratio. The dataset contains a total of 16 bins so there are

(
16
2

)
= 240

ways to select two bins maintaining the order. Then there exist 9 discrete val-
ues for α which provides a total combination of 240 × 9 = 2160 unique truck
entries in the profit table. Notice that the combinations ((1, 2), α = 0.5) and
((2, 1), α = 0.5) provide a different profit since delivery cost only depends on the
distance between the second bin and the elevator. Therefore, the table contains
an entry for 2160 mixing combinations.

To find a solution, the algorithm sorts the profit table in descending order of
mixing profit and traverses it from the top. For any particular combination, if
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both bins have enough grain left to fill a new truck at a given α, the algorithm
fills the truck and records the profit. Otherwise, it partially fills the truck with
the remaining grain from both bins, updates the new mixing ratio, and includes
it in the solution if the truck provides a positive profit.

After the first sweep through the profit table, if there exists a bin with suffi-
cient grain remaining to make a profit (where other bins do not have any bushels
left to make a combination), a new truck with id 0 is filled with the remaining
grain from that bin. Finally, the overall profit of l trucks is obtained using the
sum in Equation 2.

6.3 Genetic Algorithm

For this experiment, we introduced a novel permutation-based GA representation
to apply to the grain mixing problem. We use the permutation to determine how
to fill the trucks so as to ensure the constraints remain satisfied. Here, we discuss
our specific implementation of the GA.

Population: An individual in the population of the GA algorithm contains
a list of candidate trucks. The number of available trucks is set to be suffi-
ciently large to transport all of the grain, and each candidate truck contains a
random entry from the profit table (total 2160 mixing combination) defined for
the GreedyMix algorithm. Therefore, for an individual, the gene contains the tu-
ple (truck id, bin pair, α), and the list of genes (candidate trucks) represents the
chromosome. Each gene in the chromosome represents a unique tuple (a truck id
is going to appear exactly once), which ensures a feasible solution in the search
space. Finally, to evaluate the fitness of an individual, the candidate truck list
is used in the IndividualMix method. The IndividualMix method traverse the
candidate trucks in order and load trucks fully/partially based on grain avail-
ability. For an individual I with list candidateTrucks, the fitness is determined
as follows.

fitness(I) = IndividualMix()

Note that the candidate trucks only provide the bin-pair combination with the
mixing ratio; however, the IndividualMix generates the final solutions by assign-
ing bushels based on the bin-pair combinations without violating any constraints.
IndividualMix skips a particular combination in the candidate trucks if both the
bins are already empty and then move to the next combination. Therefore, for
a candidate truck size of m, only l trucks are used in the final solution (l < m)
returned by the IndividualMix method.

Selection: The GA uses tournament selection [11] to select parents from
the current population to generate new offspring for the next generation. A
tournament consists of s randomly selected individuals from the population,
and the individual with the highest fitness (tournament winner) is sent to the
mating pool to generate new offspring.

Crossover: After selecting the parents, the GA generates offspring using a
variant on the ordered crossover (OX) operator [13], which ensures that the new
offspring contains a valid permutation of unique genes in its chromosome. To
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Fig. 3. Crossover operator example

generate the offspring from two parents, a random crossover point is selected
from parent 1. Then the offspring copies genes from parent 1 up to the crossover
point. Then the offspring sweeps through the genes of parent 2 and copies the
gene if it is not already in the gene sequence. The process stops when the sequence
is full. Figure 3 shows an example of the crossover operator with five trucks in
a pair of chromosomes. The fitness of the new offspring differs due to different
truck order in the chromosome.

Mutation: Our mutation operator takes a gene sequence (bin-pair combina-
tions) and randomly swaps the genes of an individual depending on the mutation
probability. The operator replaces a gene of a randomly chosen individual with
an entry from the profit table that is not already present in the gene sequence.

6.4 Differential Evolution (DE)

The computational steps for our implementation of DE resemble that of the GA
so as to limit the differences in performance to the mechanics of the algorithm
alone. The initialization of the population and the fitness function used in DE
is the same as the GA. The major difference lies in the selection, crossover, and
mutation operators.

Selection: The selection operator selects the better individual by comparing
the fitness of the trial vector ui,g, and the target vector xi,g. The selected vector
replaces the current vector individual for the next generation as follows.

xi,g+1 =

{
ui,g, if f(ui,g) ≤ f(xi,g)

xi,g, otherwise

Crossover: The crossover operator closely follows the standard DE crossover
operator. After the mutation phase, the crossover operation is applied on the
target vector xi,g and the mutant vector vi,g to obtain the offspring/trial vector
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ui,g. The following is a common crossover technique known as binomial crossover
to obtain the trial vector ui,g.

ugi,j =

{
vgi,j , if rand(0, 1) ≤ CR or j = jrand

xgi,j , otherwise

where CR represents the crossover rate: a user defined parameter ranges in [0, 1).
jrand represents a random value in the vector dimension [1, D]. The trial vector
ui,g takes the jth real-value of either the target vector or mutant vector based on
the condition specified above. Our implementation uses this process to generate
a new trial vector; however, the trial vector first copies the chromosome of the
mutant vector vi,g and replaces the gene with the target vector xi,g if it is not
already present in the trial vector and (rand(0, 1) ≤ CR or j = jrand) condition
is satisfied, as in the OX operator. Here, CR represents the probability of the
crossover rate.

Mutation: The algorithm uses the “DE/Best/1” strategy to create the mu-
tant vector. The first donor vector represents the best individual in the current
generation, the second donor vector is a random individual selected from the cur-
rent generation, and the third donor vector is selected randomly from the profit
table to add diversity in the population. All of the donor vectors are mutually
exclusive.

The chromosome representation is not real-valued and therefore the standard
mutation equation had to be changed to adapt to the problem representation.
The new mutant vector copies genes from the three donor vectors based on the
mutation factor F . In this case, the mutant vector copies genes from the first
donor vector (generation best) with probability F and from either the second or
third donor vector with probability (1−F ). It excludes genes if they already exist
in the gene sequence to maintain a valid permutation. The process is similar to
the GA crossover (Figure 3), but instead of two parents, the operator uses the
three donor vectors to create a mutant individual.

7 Experimental Design

Twelve additional datasets along with the two real datasets were created to eval-
uate the performance of all algorithms. Among the twelve datasets, two datasets
were created by flipping the elevator prices of the real dataset (using 2017 ele-
vator data with 2016 bin data and vice-versa). The remaining ten datasets were
created by randomly varying the number of bushels and the protein levels of
each bin in the original datasets. Therefore, there are five simulated datasets for
the year 2016 and five for the year 2017.

The results of the NoMix and GreedyMix algorithms are deterministic; how-
ever, GA and DE are stochastic. Therefore, to evaluate the performance of the
stochastic algorithms, we ran 10 experiments for each dataset and recorded the
average overall profit.

The GA and DE implementations create random individuals by taking a
small subset of the profit table entry for the initial population. The intuition is
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Table 3. Parameter settings for GA and DE algorithms.

Algo Population #Iteration Tournament Mutation

GA 100 500 5 0.2

Algo Population #Iteration CR Mutation

DE 100 500 0.9 0.5

that for a small subset of the profit table, the IndividualMix method returns a
different result than the GreedyMix algorithm based on the few choices of bin
combinations, and the goal of the GA and DE algorithms is to find the best
sequence from the profit table for which the profit is maximum. Therefore, the
subset size (candidate trucks) plays an important role in the overall solution. The
subset has to be selected in a way so that it contains enough bin combinations
to empty all the bushels of the bins. If the subset is too small, then it may not
contain an entry for a particular bin; therefore, all of the bushels of that bin may
be unused in the solution. If the subset is too large, then it will perform like the
GreedyMix algorithm with all the choices of filling a truck.

To select the subset size, random individuals were created with subset size
ranges from 50 to 150, increasing by 10 on each experiment. Then the solution
returned from the individual was checked to see if they collected all of the wheat
available. For a subset size of 100, more than 90% of the individuals returned
solutions collecting all of the wheat; therefore, the number of candidate trucks
was fixed to 100. Even if an individual fails to utilize all the bushels and excludes
a significant portion of the wheat, the intuition is that the individual will be
replaced by others with higher fitness. And sometimes excluding a small portion
of wheat might increase the overall profit because the cost of using an extra
truck for that small amount might decrease the overall profit.

The hyperparameters used in the GA and DE algorithms were tuned manu-
ally. Table 3 shows all the parameter values used in the GA and DE algorithms
for all test cases. These sets of parameters provided the highest average profit
for the real datasets.

To evaluate the effectiveness of the evolutionary algorithms further, we also
introduced a Random algorithm that creates 100 random individuals from the
profit table and returns the solution from the best individual. The Random al-
gorithm helps us assess if the evolutionary algorithms are exploring the search-
space efficiently to provide a better solution than random search. Due to stochas-
tic nature, the Random algorithm was also run 10 times, and the average overall
profit was recorded.

8 Results

Table 4 shows the overall profit obtained from the different algorithms for each of
the test cases studied. The notation R year denotes the real dataset for respec-
tive years and RF year denotes the flipped version of the real dataset. A∗ year
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Table 4. Algorithm performance (Profit in thousands of dollars).

Dataset
GA DE Random Greedy NoMix

Profit TR Profit TR Profit TR Profit TR Profit TR

R 2016 435.8 19 435.4 19 428.9 19 430.5 20 424.5 18

R 2017 496.2 18 497.0 18 491.2 18 491.6 20 487.1 19

RF 2016 506.2 19 505.9 19 501.9 19 499.9 21 499.7 18

RF 2017 428.9 18 427.8 18 421.2 18 423.1 19 418.0 19

A1 2016 415.7 19 416.0 19 407.6 19 394.5 19 395.4 20

A2 2016 562.0 22 562.4 22 550.8 22 533.1 23 545.4 23

A3 2016 591.1 24 589.0 27 569.8 26 543.9 31 570.0 25

A4 2016 573.9 24 571.0 26 558.0 25 520.4 29 539.9 25

A5 2016 533.8 25 534.0 25 517.6 25 496.9 23 512.2 24

A1 2017 621.5 22 617.9 24 599.2 23 581.7 20 608.9 23

A2 2017 537.0 20 536.8 21 522.0 20 515.8 18 520.6 22

A3 2017 676.0 25 672.5 26 664.3 26 655.8 25 643.9 24

A4 2017 450.5 16 452.5 17 443.5 16 435.6 16 430.1 18

A5 2017 685.4 24 685.4 25 672.4 24 656.0 25 663.5 23

denotes the artificial dataset for respective years. The stochastic algorithm’s re-
sults are the average of 10 runs. The column “Profit” shows the average best
profit in thousands of US dollars, and “TR” shows the average number of trucks
used in the solution. The bold values represent the best profit obtained for a
dataset, and the underlined values represent a substantial profit increase (more
than $5000) comparing with the base value (NoMix results)1. Unfortunately, we
do not have the cost associated with the production (harvesting) that would be
necessary to provide a more complete estimate of profit.

For all test cases, the evolutionary algorithms performed significantly better
than all other methods. For real datasets (including the flipped versions), the
GreedyMix and Random algorithms always performed better than the NoMix.
However, for the artificial datasets, GreedyMix failed to outperform NoMix 80%
of the time, and the Random algorithm failed to outperform NoMix 20% of the
time. The performance of the evolutionary algorithms shows that grain mixing
always provides a higher profit than no mixing at all.

Table 5 shows an example of one complete solution obtained from the GA
algorithm for the R 2017 dataset. In the table, the column name “Bin Pair”
shows the pair of bins mixed to fill the truck, “Pair1 Bu” and “Pair2 Bu” show
the number of bushels taken from each bin in the pair, “Protein” shows the
weighted average protein level, “Load” gives the total amount of wheat loaded

1 Note that statistical hypothesis testing was not done since NoMix and GreedyMix
only yield a single, deterministic solution.
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Table 5. Best solution from the GA algorithm for dataset R 2017.

Bin Pair MixRatio Pair1 Bu Pair2 Bu Protein Load Elevator Profit

(1, 2) 0.20 1600.0 6400.0 13.49 8000.0 3 41992.0

(15, 2) 0.77 2985.3 892.5 13.50 3877.8 3 20147.5

(9, 12) 0.89 6539.8 800.0 13.03 7339.8 2 35378.0

(3, 12) 0.80 6395.3 1600.0 12.57 7995.3 2 36538.5

(6, 12) 0.90 7200.0 800.0 12.52 8000.0 2 36240.0

(8, 12) 0.38 2400.0 3889.7 11.52 6289.7 2 27228.0

(11, 7) 0.74 4921.3 1712.7 11.85 6634.0 2 28658.8

(1, 4) 0.60 4800.0 3200.0 11.93 8000.0 2 34552.0

(1, 4) 0.23 1600.0 5325.5 11.57 6925.5 2 29911.2

(1, 5) 0.60 4800.0 3200.0 11.74 8000.0 2 34480.0

(1, 5) 0.46 2036.8 2400.0 11.54 4436.8 2 19122.6

(16, 6) 0.93 7200.0 503.7 11.48 7703.7 1 32124.3

(14, 5) 0.98 5600.0 113.4 12.11 5713.4 2 24110.4

(14, 8) 0.63 3057.4 1792.7 11.61 4850.1 2 20224.8

(13, 10) 0.68 5050.0 2400.0 10.60 7450.0 1 30470.5

10 1.00 4892.5 0.0 10.11 4892.5 1 19765.7

16 1.00 6309.0 0.0 11.40 6309.0 1 26308.5

Total 112417.5 497252.8

in the truck (max 8000) and “Elevator” identifies the elevator where the truck
gets the highest profit.

All of the grain-mixing algorithms provide a similar solution format but with
different bin-pair mixing. A complete solution shows a farmer how to load each
truck with bushels from respective bins to accomplish the solution’s overall profit.

9 Analysis and Discussion of Results

In most of the cases, the results obtained from the experiments supported the
hypothesis. The proposed GA and DE algorithms yielded higher profits than the
NoMix algorithm for all test cases, demonstrating their efficiency and effective-
ness in grain mixing. The GreedyMix algorithm, however, did not appear to be
an obvious choice as its profits degraded than that of the NoMix algorithm in
case of the artificial datasets only.

At first glance, it may appear that the GreedyMix algorithm should provide
the optimal results as it creates all possible combinations of mixes and greedily
selects the mix based on the maximum profit. This claim might be true if there
existed an infinite number of bushels in all of the bins. But, in the real world,
our problem contains a different number of bushels for the different bins, and
filling a truck greedily based on profit may not be always possible if there are
no bushels left in a specific bin. Furthermore, the truck might be partially filled
based on the remaining bushels of bins giving a lower profit than the actual one.
Therefore, for all the test cases, GreedyMix not only failed to provide optimal
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Fig. 4. Convergence example of the GA algorithm (R 2016)

results but also gave a lower profit (in the artificial test cases) than the NoMix
algorithm. The evolutionary methods do suggest, however, that taking a sub-
optimal bin-pair combination can yield a higher overall profit than the greedy
optimal choice due to the varying bin sizes.

The example solution in Table 5 contains two trucks with a single bin (bin 10
and 16). These trucks suggest that after the first sweep in the candidate trucks
list, grain remained in bin 10 and bin 16. This indicates that the candidate trucks
do not have any truck entry with bin pair (10, 16). Therefore, the solution loads
the truck by separately taking bushels from each bin (no mixing cost incurred).
Even without bin pair (10, 16), this solution returned the best profit for the
dataset.

To check the convergence of the GA and DE algorithms, the best individual in
each generation, and the average fitness of the total population in each generation
were tracked. If the generation best individual did not change for more than
100 consecutive iterations, the algorithm was determined to have converged to
a solution. Figure 4 and figure 5 shows the convergence of the GA and DE
algorithms respectively for a test run with R 2016 dataset.

The average population fitness in Figure 4 is a spiked curve because the
crossover and mutation operator in the GA may create a new individual with
a lower/higher fitness giving a lower/higher average profit. However, for DE,
Figure 5 shows the average population is a smooth curve since DE always re-
places a current individual with a better-fit individual and improving the average
population fitness for each generation. The results obtained from the Random
algorithm also suggest that the evolutionary algorithms are efficiently exploring
the search-space for finding a better solution.
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Fig. 5. Convergence example of the DE algorithm (R 2016)

10 Future Work

This work has considered several approaches to determining how to maximize
the profit of wheat production by mixing different numbers of bushels to change
the protein level contained in a truck being delivered to an elevator. The price
of a bushel of wheat depends on its protein level as measured at the elevator.
The idea is to see if mixing different protein levels can yield a mix such that the
farmer will receive more profit than taking them separately. This work makes
certain assumptions for the problem representation like mixing only two bins
at a time and used a discrete mixing ratio α for mixing two bins. The effect of
using more than two bins in the mixing and using a continuous value for mixing
ratio α ∈ [0, 1] will be considered as future work. In addition, using different
mutation operators for the DE algorithm and the crossover operator for the GA
algorithm and their impact on the overall solution quality will be considered.
It is also our intent to explore the suitability of comparing to an MILP model;
however, the inherent nonlinearity of the objective function would seem to sug-
gest optimization quality would be limited. Furthermore, a more realistic cost
model that includes the production cost associated with harvesting, cost of the
protein device and supporting infrastructure, and alternative representations of
the model will be considered.

11 Conclusion

In this paper, we evaluated two different evolutionary algorithms—the genetic
algorithm and differential evolution—to solve the grain (wheat) mixing problem.
The algorithms explore a search space that aims at finding the best mix of wheat
that will produce the maximum profit on a farm. This wheat is usually stored in
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grain bins and are subsequently delivered to elevators for sale. These elevators
buy the wheat from the farmers before being sold to customers. The experimental
results show that both the GA and DE algorithms find better solutions (increased
profit) than no mixing, random mixing, and greedy mixing, which implies that
the farmers should invest in the infrastructure of grain mixing as long as the
profit exceeds the amortized cost of that infrastructure.
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