Note on the derivation of the angular momentum and spin precessing equations in SpinTaylor codes.

Riccardo Sturani
International Institute of Physics (IIP), Universidade Federal do Rio Grande do Norte (UFRN)
CP 1613, 59078-970 Natal-RN Brazil

Abstract

This is a technical note meant to accompany the SpinTaylor waveform review to explain how the derivative of the Newtonian angular momentum is computed. A future development would be to include in the code instantaneous spin ${ }^{2}$ terms.

Keywords: SpinTaylor approximant, precessing spins

I. TIME DERIVATIVE OF THE NEWTONIAN ANGULAR MOMENTUM UNIT VECTOR

The evolution equations for precessing spins and orbital angular momentum are obtained by imposing

$$
\begin{equation*}
\dot{\vec{L}}=-\dot{\vec{S}}_{1}-\dot{\vec{S}}_{2}, \tag{1}
\end{equation*}
$$

i.e. imposing total angular momentum conservation and neglecting angular momentum emission by radiation, which is given by, see e.g. (4.115) of [1]

$$
\begin{equation*}
\frac{d L}{d t}=\frac{32}{5} \eta^{2} M v^{7}=\frac{32}{5 M} \eta v^{8} L \tag{2}
\end{equation*}
$$

with $\eta \equiv m_{1} m_{2} / M^{2}$ the symmetric mass ratio, $m_{1,2}$ individual binary constituent masses and $M \equiv m_{1}+m_{2}$.

At leading order in the PN expansion parameter $x\left(x=v^{2}=(M \omega)^{2 / 3}\right.$ in LAL codes, with ω the orbital phase derivative) one has, see e.g. eqs. (8-10) of [2]:

$$
\begin{align*}
\dot{\vec{S}}_{1} & =\frac{x^{5 / 2}}{2 M}\left(3-2 \frac{m_{1}}{M}-\frac{m_{1}^{2}}{M^{2}}\right) \vec{S}_{1} \times \hat{L} \tag{3}\\
\dot{\hat{L}} & =\frac{x^{3}}{2 M}\left(1+3 \frac{M}{m_{1}}\right) \hat{L} \times \vec{S}_{1}+1 \leftrightarrow 2
\end{align*}
$$

At alternate PN orders spin derivatives receive contributions from spin^{2} terms $\left(x^{n}\right.$ in the
spin-dot equations) and from $L \times S$ terms $\left(x^{(2 n+1) / 2}\right)$, with $n=2$ for the leading order, and L precession equation can be inferred from (1).

At leading order (and up to v^{2} order included with respect to the leading) we can assume that Newtonian angular momentum and \vec{L} are parallel: $\hat{L}_{N}=\hat{L}$, however at higher order the relationship between \vec{L} and \vec{L}_{N} is actually, see eq. 4.7 of [3]

$$
\begin{align*}
\vec{L}= & \hat{L}_{N}\left|\vec{L}_{N}^{(0)}\right|\left(1+v^{2} L_{1 P N}+v^{4} L_{2 P N}+v^{6} L_{3 P N}\right)+ \\
& v^{2}\left[-\frac{5}{6}\left(1+3 \frac{M}{m_{1}}\right) \vec{S}_{1 l}-\frac{1}{2}\left(1-\frac{M}{m_{1}}\right) \vec{S}_{1 n}-\left(1+\frac{M}{m_{1}}\right) \vec{S}_{1 \lambda}+\right] \\
& +v^{4}\left[\vec{S}_{1 n}\left(-\frac{11}{8}\left(1-\frac{M}{m_{1}}\right)+\frac{\eta}{24}\left(1-10 \frac{M}{m_{1}}\right)\right)+\vec{S}_{1 \lambda}\left(-\frac{5}{2}\left(1+\frac{M}{5 m_{1}}\right)+\frac{\eta}{3}\left(1+4 \frac{M}{m_{1}}\right)\right)\right. \\
& \left.+\vec{S}_{1 L}\left(-\frac{7}{8}\left(5+3 \frac{M}{5 m_{1}}\right)+7 \frac{\eta}{72}\left(1+30 \frac{M}{m_{1}}\right)\right)\right]+1 \leftrightarrow 2, \tag{4}
\end{align*}
$$

where

$$
\begin{align*}
& \left|\vec{L}_{N}^{(0)}\right|=\frac{m_{1} m_{2}}{v}, \\
& L_{1 P N}=\frac{3}{2}+\frac{\eta}{6}, \\
& L_{2 P N}=\frac{27}{8}-\frac{19}{8} \eta+\frac{1}{24} \eta^{2}, \tag{5}\\
& L_{3 P N}=\frac{135}{16}+\left[-\frac{6889}{144}+\frac{41}{24} \pi^{2}\right] \eta+\frac{31}{24} \eta^{2}+\frac{7}{1296} \eta^{3},
\end{align*}
$$

and we remind that

$$
\begin{equation*}
\vec{L}_{N}^{(0)} \equiv \frac{m_{1} m_{2}}{v} \hat{L}_{N} \neq \frac{m_{1} m_{2}}{\omega r} \hat{L}_{N}, \tag{6}
\end{equation*}
$$

and $\vec{S}_{1 n} \equiv \hat{n}^{i}\left(\hat{n} \cdot \vec{S}_{1}\right), \vec{S}_{1 \lambda} \equiv \hat{\lambda}^{i}\left(\hat{\lambda} \cdot \vec{S}_{1}\right)$, and $\vec{S}_{1 l} \equiv \hat{L}_{N}^{i}\left(\hat{L}_{N} \cdot \vec{S}_{1}\right)$, being $\hat{n}, \hat{\lambda}$ the unit vectors in the direction respectively of binary relative separation and velocity.

Note that we may want to average over one orbit, so that

$$
\begin{align*}
\left\langle n^{i}\right\rangle=\left\langle\lambda^{i}\right\rangle & =0, \\
\left\langle\hat{n}^{i} \hat{n}^{j}\right\rangle=\left\langle\hat{\lambda}^{i} \hat{\lambda}^{j}\right\rangle & =\frac{1}{2}\left(\delta_{i j}-\hat{L}_{N}^{i} \hat{L}_{N}^{j}\right) . \tag{7}
\end{align*}
$$

The spin corrections to the orbital angular momentum are $x^{3 / 2}$ order with respect to the leading contribution to \vec{L}, that comes from the Newtonian angular momentum. Note also that the spins in this formulae are the physical ones related to the LAL convention $\vec{S}_{L A L}$ by $\vec{S}_{i L A L} \equiv \vec{S}_{i} / M^{2}$ (we use here units $G_{N}=c=1$). The velocity symbol v in [4] (denoted below $v_{\text {Kidder }}$) differs from the one adopted in LAL (and also in this document):

$$
\begin{equation*}
v_{\text {Kidder }} \equiv \omega r \neq v_{L A L} \equiv(M \omega)^{1 / 3} \tag{8}
\end{equation*}
$$

We have thus a simple precession equation for \vec{L}, but \vec{L}_{N}, or \hat{L}_{N} is needed to construct the waveform, since \hat{L}_{N} is the unit vector perpendicular to the instantaneous orbital plane. We can construct the $\dot{\hat{L}}_{N}$ by short-circuiting eq. (1) and eq. (4), to first obtain

$$
\begin{align*}
\left|L_{N}\right| \dot{\hat{L}}_{N}= & \frac{d}{d t}\left\{\vec{L}-v^{2}\left[-\frac{1}{4}\left(3+\frac{M}{m_{1}}\right) \vec{S}_{1}-\frac{1}{12}\left(1+27 \frac{M}{m_{1}}\right)\left(\hat{L}_{N} \cdot \vec{S}_{1}\right) \hat{L}_{N}+1 \leftrightarrow 2\right]\right\}= \\
= & \frac{v}{\eta M}\left(1-L_{1 P N} v^{2}+\ldots\right)\left\{-\dot{\vec{S}}_{1}-\dot{\vec{S}}_{2}-v^{2}\left[-\frac{1}{4}\left(3+\frac{M}{m_{1}}\right) \dot{\vec{S}}_{1}\right.\right. \tag{9}\\
& \left.\left.-\frac{1}{12}\left(1+27 \frac{M}{m_{1}}\right) \frac{d\left(\left(\hat{L}_{N} \cdot \vec{S}_{1}\right) \hat{L}_{N}\right)}{d t}\right]+1 \leftrightarrow 2\right\},
\end{align*}
$$

where we averaged over an orbit and the change in L due to GW emission has been neglected. We can then see various effect here at play:

- $\vec{S} \cdot \hat{L}_{N}$ interaction at $v^{2 n-1}$ order in $\dot{\vec{S}}$ equations starting from $n=2$
- spin 2 terms appearing at $v^{2 n}$ order, coded only for $\mathrm{n}=2$ (leading term) in the orbit averaged version
- terms due to S contamination to L, which affect $\dot{\hat{L}}_{N}$ equations starting from v^{7} order can be turned on by the LALDict structure via XLALSimInspiralWaveformParamsInsertLscorr().

This is summarized in tab.I.
On the right hand side for the computation of $\dot{\vec{L}}$ we have to consider spin derivatives up to next ${ }^{4}$ leading order v^{9} whereas in the rest of the terms we can use spin derivative at next-to-next leading order and angular momentum derivatives at next-to leading order.

To conclude the implementation of precessional equation we define a precession vector

$$
\begin{equation*}
\vec{\Omega}_{\vec{L}_{N}} \equiv \hat{L}_{N} \times \frac{d \hat{L}_{N}}{d t} \tag{10}
\end{equation*}
$$

such that one can define and implement in LAL

$$
\begin{equation*}
\frac{d \hat{L}_{N}^{(L A L)}}{d t} \equiv \vec{\Omega}_{\hat{L}_{N}} \times \hat{L}_{N}=\frac{d \hat{L}_{N}}{d t}-\left(\frac{d \hat{L}_{N}}{d t} \cdot \hat{L}_{N}\right) \hat{L}_{N} \tag{11}
\end{equation*}
$$

which can be derived by aid of the identity $(\vec{A} \times \vec{B}) \times C=(\vec{A} \cdot \vec{C}) \vec{B}-(\vec{B} \cdot \vec{C}) \vec{A}$. The pseudo-vector $\vec{\Omega}_{\vec{L}_{N}}$ is orthogonal to \hat{L}_{N} and so it takes into account of only the genuine precession of \hat{L}_{N}.

order	L	NL	$\mathrm{N}^{2} \mathrm{~L}$	$\mathrm{~N}^{3} \mathrm{~L}$	$\mathrm{~N}^{4} \mathrm{~L}$
spinO	3	4	5	6	7
v order	v^{5}	v^{6}	v^{7}	v^{8}	v^{9}
$\vec{S} \times \hat{L}$	\checkmark		\checkmark		\checkmark
\vec{S}^{2}		$\checkmark_{\text {avg }}$		\times	
\vec{S}^{3}					\times
J_{S}			$\checkmark_{\text {flag }}$	$\checkmark_{\text {flag }}$	$\checkmark_{\text {flag }}$

TABLE I: Summary of spin precession effects implemented in the LALSimInspiralSpinTaylor.c code in the $\dot{S}_{1,2}$ equations.

II. SPINTAYLORT5

The SpinTaylorT5 waveform construction is explained in [5], here we just recall the basic definitions of the main orbital phase:

$$
\begin{equation*}
\frac{d \omega}{d t}=\frac{1}{\frac{d E(\omega) / d \omega}{d E / d t}}=\frac{96 M_{c}^{5 / 3} \omega^{11 / 3}}{5\left(1+2 E_{1 P N}-F_{1 P N} \cdots\right)} \tag{12}
\end{equation*}
$$

with the usual identification $v \equiv(M \omega)^{1 / 3}$, being M the total mass of the binary system and M_{c} the chirp mass and we assumed $E=-1 / 2 \eta M(M \omega)^{2 / 3}\left(1+E_{1 P N} \ldots\right)$ and $d E / d t=$ $32 / 5 \eta^{2}(M \omega)^{10 / 3}\left(1+F_{1 P N}+\ldots\right)$.
[1] M. Maggiore, "Gravitational Waves: Volume 1: Theory and Experiments", Oxford University Press, 2008, OUP Oxford.
[2] A. Buonanno, Y. B. Chen, Y. Pan and M. Vallisneri, "A Quasi-physical family of gravity-wave templates for precessing binaries of spinning compact objects. 2. Application to double-spin precessing binaries," Phys. Rev. D 70 (2004) 104003 [Phys. Rev. D 74 (2006) 029902] [grqc/0405090].
[3] A. Bohe, S. Marsat, G. Faye and L. Blanchet, "Next-to-next-to-leading order spin-orbit effects in the near-zone metric and precession equations of compact binaries," Class. Quant. Grav. 30 (2013) 075017 [arXiv:1212.5520].
[4] L. E. Kidder, "Coalescing binary systems of compact objects to postNewtonian $5 / 2$ order. 5. Spin effects," Phys. Rev. D 52 (1995) 821 [gr-qc/9506022].
[5] P. Ajith, "Addressing the spin question in gravitational-wave searches: Waveform templates for inspiralling compact binaries with nonprecessing spins," Phys. Rev. D 84 (2011) 084037 doi:10.1103/PhysRevD.84.084037 [arXiv:1107.1267 [gr-qc]].

