
Modern C++ Programming
Cookbook
Second Edition

Master C++ core language and standard library
features, with over 100 recipes, updated to C++20

Marius Bancila

Packt>
B IRM IN G H AM - M U M BA I

Modern C++ Programming Cookbook
Second Edition

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded
in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages
caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Producer: Ben Renow-Clarke
Acquisition Editor - Peer Reviews: Suresh Jain
Project Editors: Carol Lewis and Tom Jacob
Content Development Editor Alex Patterson
Copy Editor Safis Editing
Technical Editor Saby D'silva
Proofreader Safis Editing
Indexer Priyanka Dhadke
Presentation Designer Sandip Tadge

First published: May 2017
Second Edition: September 2020

Production reference: 1090920

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-80020-898-8

www.packt.com

http://www.packt.com

Contributors

About the author
Marius Bancila is a software engineer with almost two decades of experience
in developing solutions for the industrial and financial sectors. He is the author
of The Modern C++ Challenge and coauthor of Learn C# Programming. He works as
a software architect and is focused on Microsoft technologies, mainly developing
desktop applications with C++ and C#, but not solely. He is passionate about sharing
his technical expertise with others and, for that reason, he has been recognized as
a Microsoft MVP for C++ and later developer technologies since 2006.

I would like to thank all the people at Packt that worked on this project and
helped to make a better book updated with the latest C++ changes. To Carol,
Alex, Tom, and Sabyfor their efforts and coordination of the project. And to
my family for their support during the time spent writing this book.

About the reviewer
Steve Oualline wrote his first program at age 11. He's been programming ever
since. He has worked at a variety of programming jobs since then.

Table of Contents
Preface__ xxi
Chapter 1: Learning Modern Core Language Features_____________ 1

Using auto whenever possible 2
How to do it... 2
How it works... 3
See also 7

Creating type aliases and alias templates 7
How to do it... 8
How it works... 9
See also 10

Understanding uniform initialization 10
Getting ready 10
How to do it... 11
How it works... 12
There's more... 16
See also 17

Understanding the various forms of non-static member initialization 17
How to do it... 18
How it works... 19
See also 22

Controlling and querying object alignment 22
Getting ready 23
How to do it... 23
How it works... 24
See also 28

Using scoped enumerations 28
How to do it... 28
How it works... 30
See also 32

Using override and final for virtual methods 32
Getting ready 33
How to do it... 33
How it works... 34
See also 36

Using range-based for loops to iterate on a range 36
Getting ready 36
How to do it... 37
How it works... 38
See also 39

Enabling range-based for loops for custom types 39
Getting ready 40
How to do it... 41
How it works... 43
See also 44

Using explicit constructors and conversion operators to avoid implicit
conversion 44

Getting ready 44
How to do it... 44
How it works... 45
See also 49

Using unnamed namespaces instead of static globals 49
Getting ready 50
How to do it... 50
How it works... 51
See also 52

Using inline namespaces for symbol versioning 53
Getting ready 53
How to do it... 53
How it works... 54
See also 56

Using structured bindings to handle multi-return values 57
Getting ready 57
How to do it... 57
How it works... 58
There's more... 60
See also 62

Simplifying code with class template argument deduction 62
How to do it... 62
How it works... 63
See also 65

Chapter 2: Working with Numbers and Strings___________________67
Converting between numeric and string types 68

Getting ready 68
How to do it... 68
How it works... 69
See also 74

Limits and other properties of numeric types 74
Getting ready 74
How to do it... 75
How it works... 76
See also 78

Generating pseudo-random numbers 79
Getting ready 79
How to do it... 79
How it works... 80
See also 86

Initializing all bits of internal state of a pseudo-random
number generator 86

Getting ready 87
How to do it... 87
How it works... 88
See also 88

Creating cooked user-defined literals 88
Getting ready 89
How to do it... 89
How it works... 90
There's more... 94
See also 95

Creating raw user-defined literals 95
Getting ready 95
How to do it... 96
How it works... 98
See also 100

Using raw string literals to avoid escaping characters 101
Getting ready 101
How to do it... 101
How it works... 102
See also 103

Creating a library of string helpers 103
Getting ready 103
How to do it... 104

How it works... 107
See also 110

Verifying the format of a string using regular expressions 110
Getting ready 110
How to do it... 110
How it works... 111
There's more... 116
See also 118

Parsing the content of a string using regular expressions 118
Getting ready 119
How to do it... 119
How it works... 120
See also 123

Replacing the content of a string using regular expressions 124
Getting ready 124
How to do it... 124
How it works... 125
See also 127

Using string_view instead of constant string references 127
Getting ready 128
How to do it... 128
How it works... 128
See also 131

Formatting text with std::format 131
Getting ready 131
How to do it... 132
How it works... 133
See also 138

Using std::format with user-defined types 138
Getting ready 138
How to do it... 139
How it works... 139
See also 142

Chapter 3: Exploring Functions_______________________________ 143
Defaulted and deleted functions 144

Getting started 144
How to do it... 144
How it works... 146
See also 148

Using lambdas with standard algorithms 149
Getting ready 149

How to do it... 149
How it works... 150
See also 154

Using generic and template lambdas 155
Getting started 155
How to do it... 155
How it works... 156
See also 159

Writing a recursive lambda 160
Getting ready 160
How to do it... 160
How it works... 161
See also 163

Writing a function template with a variable number of arguments 163
Getting ready 163
How to do it... 164
How it works... 165
See also 168

Using fold expressions to simplify variadic function templates 169
Getting ready 169
How to do it... 170
How it works... 170
There's more... 172
See also 173

Implementing the higher-order functions map and fold 174
Getting ready 174
How to do it... 174
How it works... 176
There's more... 180
See also 182

Composing functions into a higher-order function 182
Getting ready 182
How to do it... 182
How it works... 183
There's more... 184
See also 186

Uniformly invoking anything callable 186
Getting ready 186
How to do it... 187
How it works... 188
See also 190

Chapter 4: Preprocessing and Compilation_____________________ 191
Conditionally compiling your source code 192

Getting ready 192
How to do it... 192
How it works... 194
See also 196

Using the indirection pattern for preprocessor stringification and
concatenation 196

Getting ready 196
How to do it... 197
How it works... 197
See also 199

Performing compile-time assertion checks with static_assert 199
Getting ready 200
How to do it... 200
How it works... 201
See also 201

Conditionally compiling classes and functions with enable_if 202
Getting ready 202
How to do it... 202
How it works... 204
There's more... 206
See also 208

Selecting branches at compile time with constexpr if 208
Getting ready 208
How to do it... 209
How it works... 211
See also 212

Providing metadata to the compiler with attributes 212
How to do it... 212
How it works... 215
See also 217

Chapter 5: Standard Library Containers, Algorithms,
and Iterators___ 219

Using vector as a default container 220
Getting ready 220
How to do it... 220
How it works... 223
See also 225

Using bitset for fixed-size sequences of bits 225
Getting ready 226
How to do it... 226
How it works... 228
There's more... 230
See also 232

Using vector<bool> for variable-size sequences of bits 232
Getting ready... 232
How to do it... 233
How it works... 233
There's more... 234
See also 236

Using the bit manipulation utilities 237
Getting ready 237
How to do it... 237
How it works. 239
See also 240

Finding elements in a range 240
Getting ready 240
How to do it... 241
How it works... 244
See also 245

Sorting a range 246
Getting ready 246
How to do it... 246
How it works... 248
See also 250

Initializing a range 250
Getting ready 250
How to do it... 251
How it works... 252
See also 252

Using set operations on a range 253
Getting ready 253
How to do it... 253
How it works... 255
See also 258

Using iterators to insert new elements into a container 258
Getting ready 258
How to do it... 258

How it works... 259
There's more... 261
See also 261

Writing your own random-access iterator 261
Getting ready 262
How to do it... 262
How it works... 268
There's more... 269
See also 269

Container access with non-member functions 270
Getting ready 270
How to do it... 270
How it works... 272
There's more... 276
See also 276

Chapter 6: General-Purpose Utilities___________________________ 277
Expressing time intervals with chrono::duration 278

Getting ready 278
How to do it... 278
How it works... 280
There's more... 282
See also 282

Working with calendars 282
Getting ready 283
How to do it... 283
How it works. 285
There's more. 287
See also 287

Converting times between time zones 287
Getting ready 287
How to do it . 287
How it works. 289
See also 290

Measuring function execution time with a standard clock 290
Getting ready 291
How to do it... 291
How it works... 292
See also 295

Generating hash values for custom types 295
Getting ready 296

How to do it... 296
How it works... 298
See also 299

Using std::any to store any value 299
Getting ready 299
How to do it... 299
How it works... 301
See also 303

Using std::optional to store optional values 303
Getting ready 303
How to do it... 303
How it works... 306
See also 307

Using std::variant as a type-safe union 308
Getting ready 308
How to do it... 308
How it works... 310
There's more... 311
See also 311

Visiting an std::variant 311
Getting ready 311
How to do it... 312
How it works... 315
See also 316

Using std::span for contiguous sequences of objects 316
Getting ready 316
How to do it... 317
How it works. 318
See also 319

Registering a function to be called when a program exits normally 319
Getting ready 320
How to do it... 320
How it works... 321
See also 322

Using type traits to query properties of types 323
Getting ready 323
How to do it... 323
How it works... 325
There's more... 327
See also 327

Writing your own type traits 327
Getting ready 328
How to do it... 328
How it works... 330
See also 331

Using std::conditional to choose between types 331
Getting ready 331
How to do it... 331
How it works... 333
See also 334

Chapter 7: Working with Files and Streams____________________ 335
Reading and writing raw data from/to binary files 336

Getting ready 336
How to do it... 336
How it works... 338
There's more... 343
See also 345

Reading and writing objects from/to binary files 345
Getting ready 345
How to do it... 347
How it works... 349
See also 351

Using localized settings for streams 351
Getting ready 351
How to do it... 352
How it works... 354
See also 356

Using I/O manipulators to control the output of a stream 357
Getting ready 357
How to do it... 357
How it works... 358
See also 365

Using monetary I/O manipulators 365
Getting ready 365
How to do it... 366
How it works... 367
See also 368

Using time I/O manipulators 368
Getting ready 368
How to do it... 368

How it works... 370
See also 372

Working with filesystem paths 372
Getting ready 372
How to do it... 372
How it works... 375
See also 376

Creating, copying, and deleting files and directories 377
Getting ready 377
How to do it... 377
How it works... 379
See also 382

Removing content from a file 382
Getting ready 382
How to do it... 383
How it works... 384
See also 385

Checking the properties of an existing file or directory 385
Getting ready 385
How to do it... 386
How it works... 388
See also 389

Enumerating the content of a directory 390
Getting ready 390
How to do it... 390
How it works... 392
There's more... 394
See also 395

Finding a file 396
Getting ready 396
How to do it... 396
How it works... 397
See also 398

Chapter 8: Leveraging Threading and Concurrency_____________ 399
Working with threads 400

Getting ready 400
How to do it... 401
How it works... 403
See also 405

Synchronizing access to shared data with mutexes and locks 405
Getting ready 406
How to do it... 406
How it works... 407
See also 412

Avoiding using recursive mutexes 412
Getting ready 413
How to do it... 413
How it works... 414
See also 415

Handling exceptions from thread functions 415
Getting ready 415
How to do it... 415
How it works... 417
See also 418

Sending notifications between threads 418
Getting ready 419
How to do it... 419
How it works... 420
See also 426

Using promises and futures to return values from threads 426
Getting ready 426
How to do it... 426
How it works... 427
There's more... 429
See also 429

Executing functions asynchronously 429
Getting ready 430
How to do it... 431
How it works... 432
See also 434

Using atomic types 434
Getting ready 434
How to do it... 434
How it works... 437
See also 443

Implementing parallel map and fold with threads 444
Getting ready 444
How to do it... 445
How it works... 449

See also 452
Implementing parallel map and fold with tasks 453

Getting ready 453
How to do it... 453
How it works... 457
There's more... 461
See also 463

Implementing parallel map and fold with standard parallel algorithms 464
Getting ready 464
How to do it... 464
How it works... 465
There's more... 467
See also 469

Using joinable threads and cancellation mechanisms 469
Getting ready 469
How to do it... 469
How it works... 473
See also 474

Using thread synchronization mechanisms 474
Getting ready 475
How to do it... 475
How it works... 478
See also 481

Chapter 9: Robustness and Performance______________________ 483
Using exceptions for error handling 484

Getting ready 484
How to do it... 484
How it works... 486
There's more... 489
See also 491

Using noexcept for functions that do not throw exceptions 491
How to do it... 492
How it works... 493
There's more... 495
See also 496

Ensuring constant correctness for a program 496
How to do it... 496
How it works... 497
There's more... 501
See also 501

Creating compile-time constant expressions 502
Getting ready 502
How to do it... 503
How it works... 504
There's more... 506
See also 507

Creating immediate functions 508
How to do it . 508
How it works. 509
See also 510

Performing correct type casts 510
How to do it... 511
How it works... 513
There's more... 515
See also 516

Using unique_ptr to uniquely own a memory resource 516
Getting ready 516
How to do it... 517
How it works... 519
See also 522

Using shared_ptr to share a memory resource 522
Getting ready 523
How to do it... 523
How it works... 527
See also 529

Implementing move semantics 529
Getting ready 529
How to do it... 531
How it works... 533
There's more... 535
See also 535

Consistent comparison with the operator <=> 535
Getting ready 536
How to do it . 536
How it works. 537
See also 543

Chapter 10: Implementing Patterns and Idioms_________________ 545
Avoiding repetitive if...else statements in factory patterns 546

Getting ready 546
How to do it... 547

How it works... 548
There's more... 548
See also 550

Implementing the pimpl idiom 550
Getting ready 550
How to do it... 552
How it works... 554
There's more... 555
See also 557

Implementing the named parameter idiom 557
Getting ready 558
How to do it... 558
How it works... 561
See also 562

Separating interfaces and implementations with the
non-virtual interface idiom 562

Getting ready 563
How to do it... 563
How it works... 564
See also 567

Handling friendship with the attorney-client idiom 567
Getting ready 568
How to do it... 568
How it works... 570
See also 571

Static polymorphism with the curiously recurring template pattern 571
Getting ready 572
How to do it... 572
How it works... 574
There's more... 575
See also 576

Implementing a thread-safe singleton 576
Getting ready 577
How to do it... 577
How it works... 578
There's more... 579
See also 580

Chapter 11: Exploring Testing Frameworks_____________________581
Getting started with Boost.Test 582

Getting ready 583

How to do it... 583
How it works... 584
There's more... 585
See also 587

Writing and invoking tests with Boost.Test 587
Getting ready 587
How to do it... 589
How it works... 592
See also 593

Asserting with Boost.Test 593
Getting ready 594
How to do it... 594
How it works... 595
See also 597

Using fixtures in Boost.Test 597
Getting ready 598
How to do it... 599
How it works... 600
See also 601

Controlling outputs with Boost.Test 601
Getting ready 602
How to do it... 602
How it works... 603
There's more... 606
See also 606

Getting started with Google Test 606
Getting ready 606
How to do it... 607
How it works... 607
There's more... 609
See also 610

Writing and invoking tests with Google Test 610
Getting ready 610
How to do it... 610
How it works... 611
See also 613

Asserting with Google Test 613
How to do it... 614
How it works... 616
See also 617

Using test fixtures with Google Test 617
Getting ready 617
How to do it... 618
How it works... 619
See also 620

Controlling output with Google Test 620
Getting ready 621
How to do it... 622
How it works... 623
See also 623

Getting started with Catch2 624
Getting ready 624
How to do it... 624
How it works... 625
There's more... 626
See also 627

Writing and invoking tests with Catch2 627
How to do it... 627
How it works... 630
See also 632

Asserting with Catch2 632
Getting ready 632
How to do it... 633
How it works... 634
See also 637

Controlling output with Catch2 637
Getting ready 638
How to do it... 639
How it works... 641
See also 642

Chapter 12: C++20 Core Features_____________________________ 643
Working with modules 644

Getting ready 644
How to do it... 645
How it works... 648
See also 650

Understanding module partitions 650
Getting ready 651
How to do it... 651
How it works... 654

There's more... 655
See also 657

Specifying requirements on template arguments with concepts 657
Getting ready 658
How to do it... 658
How it works... 659
There's more... 663
See also 663

Using requires expressions and clauses 663
Getting ready 663
How to do it... 664
How it works... 667
See also 668

Iterating over collections with the ranges library 668
Getting ready 669
How to do it... 669
How it works... 672
There's more... 674
See also 675

Creating your own range view 675
Getting ready 675
How to do it... 675
How it works... 680
See also 681

Creating a coroutine task type for asynchronous computations 681
Getting ready 682
How to do it... 683
How it works... 687
There's more... 691
See also 692

Creating a coroutine generator type for sequences of values 692
Getting ready 692
How to do it... 694
How it works... 698
There's more... 700
See also 700

Bibliography 701
Websites 701
Articles and books 701

Other Books You May Enjoy 707
Index 711

Preface

C++ is one of the most popular and most widely used programming languages,
and it has been like that for three decades. Designed with a focus on performance,
efficiency, and flexibility, C++ combines paradigms such as object-oriented,
imperative, generic, and functional programming. C++ is standardized by the
International Organization for Standardization (ISO) and has undergone massive
changes over the last decade. With the standardization of C++11, the language
has entered into a new age, which has been widely referred to as modem C++.
Type inference, move semantics, lambda expressions, smart pointers, uniform
initialization, variadic templates, and many other recent features have changed the
way we write code in C++ to the point that it almost looks like a new programming
language. This change is being further advanced with the release of the C++20
standard that is supposed to happen during 2020. The new standard includes many
new changes to the language, such as modules, concepts, and coroutines, as well as
to the standard library, such as ranges, text formatting, and calendars.

This book addresses many of the new features included in C++11, C++14, C++17,
and the forthcoming C++20. This book is organized in recipes, each covering one
particular language or library feature, or a common problem that developers face
and its typical solution using modern C++. Through more than 130 recipes, you
will leam to master both core language features and the standard libraries, including
those for strings, containers, algorithms, iterators, streams, regular expressions,
threads, filesystem, atomic operations, utilities, and ranges.

This second edition of the book took several months to write, and during this
time the work on the C++20 standard has been completed. However, at the time
of writing this preface, the standard is yet to be approved and will be published
later this year.

More than 30 new or updated recipes in this book cover C++20 features, including
modules, concepts, coroutines, ranges, threads and synchronization mechanisms,
text formatting, calendars and time zones, immediate functions, the three-way
comparison operator, and the new span class.

All the recipes in the book contain code samples that show how to use a feature
or how to solve a problem. These code samples have been written using Visual
Studio 2019, but have been also compiled using Clang and GCC. Since the support
for various language and library features has been gradually added to all these
compilers, it is recommended that you use the latest version to ensure that all of
them are supported. At the time of writing this preface, the latest versions are GCC
10.1, Clang 12.0 (in progress), and VC++ 2019 version 14.27 (from Visual Studio 2019
version 16.7). Although all these compilers are C++17 complete, the support for
C++20 varies from compiler to compiler. Please refer to https: //en. cppreference.
com/w/cpp/compiler_support to check your compiler's support for C++20 features.

Who this book is for
This book is intended for all C++ developers, regardless of their experience level.
The typical reader is an entry- or medium-level C++ developer who wants to master
the language and become a prolific modern C++ developer. The experienced C++
developer will find a good reference for many C++11, C++14, C++17, and C++20
language and library features that may come in handy from time to time. The
book consists of more than 130 recipes that are simple, intermediate, or advanced.
However, they all require prior knowledge of C++, and that includes functions,
classes, templates, namespaces, macros, and others. Therefore, if you are not familiar
with the language, it is recommended that you first read an introductory book to
familiarize yourself with the core aspects, and then proceed with this book.

What this book covers
Chapter 1, Learning Modern Core Language Features, teaches you about modern
core language features, including type inference, uniform initialization, scoped
enumerations, range-based for loops, structured bindings, class template argument
deduction, and others.

Chapter 2, Working with Numbers and Strings, discusses how to convert between
numbers and strings, generate pseudo-random numbers, work with regular
expressions and various types of string, as well as how to format text using the
C++20 text formatting library.

Chapter 3, Exploring Functions, dives into defaulted and deleted functions, variadic
templates, lambda expressions, and higher-order functions.

Chapter 4, Preprocessing and Compilation, takes a look at various aspects of
compilation, from how to perform conditional compilation, to compile-time
assertions, code generation, and hinting the compiler with attributes.

Chapter 5, Standard Library Containers, Algorithms, and Iterators, introduces you to
several standard containers, many algorithms, and teaches you how to write your
own random-access iterator.

Chapter 6, General-Purpose Utilities, dives into the chnono library, including the C++20
calendars and time zones support; the any, optional, variant, and span types; and
type traits.

Chapter 7, Working with Files and Streams, explains how to read and write data to/
from streams, use 1/O manipulators to control streams, and explores the filesystem
library.

Chapter 8, Leveraging Threading and Concurrency, teaches you how to work with
threads, mutexes, locks, condition variables, promises, futures, atomic types, as well
as the C++20 latches, barriers, and semaphores.

Chapter 9, Robustness and Performance, focuses on exceptions, constant correctness,
type casts, smart pointers, and move semantics.

Chapter 10, Implementing Patterns and Idioms, covers various useful patterns and
idioms, such as the pimpl idiom, the non-virtual interface idiom, and the curiously
recurring template pattern.

Chapter 11, Exploring Testing Frameworks, gives you a kickstart with three of the most
widely used testing frameworks, Boost.Test, Google Test, and Catch2.

Chapter 12, C++20 Core Features, introduces you to the most important new additions
to the C++20 standard—modules, concepts, coroutines, and ranges.

To get the most out of this book
The code presented in the book is available for download from https: //github. com/
PacktPublishing/Modern-Cpp-Cookbook-Second-Edition, although I encourage you
to try writing all the samples by yourself. In order to compile them, you need VC++
201916.7 on Windows and GCC 10.1 or Clang 12.0 on Linux and Mac. If you don't
have the latest version of the compiler, or you want to try another compiler, you can
use one that is available online.

Although there are various online platforms that you could use, I recommend
Wandbox, available at https: //wandbox.ong/, and Compiler Explorer, available
at https://godbolt.ong/.

Download the example code files
You can download the example code files for this book from your account at http: / /
www. packtpub. com. If you purchased this book elsewhere, you can visit http: //www.
packtpub. com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at http://www. packtpub. com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the on-screen

instructions.
Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https: //github. com/
PacktPublishing/Modern-CPP-Programming-Cookbook-Second-Edition. We also have
other code bundles from our rich catalog of books and videos available at https: / /
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/ diagrams
used in this book. You can download it here: https://static .packt-cdn .com/
downloads/9781800208988_ColorTmages.pdf.

https://godbolt.ong/
http://www
https://static

Conventions used
There are a number of text conventions used throughout this book.

CodelnText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. For example: "The geometry module was defined in a file called geometry,
ixx/. cppm, although any file name would have had the same result."

A block of code is set as follows:

static std::map<
std::string,
std::function<std::unique_ptr<Image>()>> mapping

{
{ "bmp", []() {return std::make_unique<BitmapImage>(); } },
{ "png", []() {return std::make_unique<PngImage>(); } },
{ "jpg", []() {return std::make_unique<DpgImage>()j } }

};

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are highlighted:

static std::map<
std::string,
std::function<std::unique_ptr<Image>()>> mapping

{
{ "bmp", []() {return std::make_unique<BitmapImage> () ; } },
{ "Png", []() {return std::make_unique<PngImage>()j } },
{ "jpg", []() {return std: :make_uniqueCpgImage> () ; } }

};

Any command-line input or output is written as follows:

running thread 140296854550272
running thread 140296846157568
running thread 140296837764864

Bold: Indicates a new term, an important word, or words that you see on the screen,
for example, in menus or dialog boxes, also appear in the text like this. For example:
"Select System info from the Administration panel."

W a r n in g s o r im p o r ta n t n o te s a p p e a r l ik e th is .

s
T ip s a n d tr ic k s a p p e a r l ik e th is .

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub. com, and mention the book's title in the
subject of your message. If you have questions about any aspect of this book, please
email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be grateful
if you would report this to us. Please visit, packtpub. com/support/errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copynight@packtpub. com with a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit http://authons.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packtpub.com.

mailto:questions@packtpub.com
http://authons.packtpub.com

Learning Modern Core
Language Features

The C++ language has gone through a major transformation in the past decade
with the development and release of C++11 and then, later, with its newer versions:
C++14, C++17, and C++20. These new standards have introduced new concepts,
simplified and extended existing syntax and semantics, and overall transformed the
way we write code. C++11 looks like a new language, and code written using the
new standards is called modern C++ code.

The recipes included in this chapter are as follows:

• Using auto whenever possible
• Creating type aliases and alias templates
• Understanding uniform initialization
• Understanding the various forms of non-static member initialization
• Controlling and querying object alignment
• Using scoped enumerations
• Using override and final for virtual methods
• Using range-based for loops to iterate on a range
• Enabling range-based for loops for custom types
• Using explicit constructors and conversion operators to avoid implicit

conversion
• Using unnamed namespaces instead of static globals

• Using inline namespaces for symbol versioning
• Using structured bindings to handle multi-return values
• Simplifying code with class template argument deduction

Let's start by learning about automatic type deduction.

Using auto whenever possible
Automatic type deduction is one of the most important and widely used features
in modern C++. The new C++ standards have made it possible to use auto as a
placeholder for types in various contexts and let the compiler deduce the actual type.
In C++11, auto can be used for declaring local variables and for the return type of a
function with a trailing return type. In C++14, auto can be used for the return type
of a function without specifying a trailing type and for parameter declarations in
lambda expressions. Future standard versions are likely to expand the use of auto to
even more cases. The use of auto in these contexts has several important benefits, all
of which will be discussed in the How it works... section. Developers should be aware
of them, and prefer auto whenever possible. An actual term was coined for this by
Andrei Alexandrescu and promoted by Herb Sutter — almost always auto (AAA).

How to do it...
Consider using auto as a placeholder for the actual type in the following situations:

• To declare local variables with the form auto name = expression when you
do not want to commit to a specific type:

auto i = 42; // int
auto d = 42.5; // double
auto s = "text"; // char const *
auto v = { 1, 2, 3 }; // std::initializer_list<int>

• To declare local variables with the auto name = type-id { expression }
form when you need to commit to a specific type:

auto b = new char[10]{ 0 }; // char*
auto si = std::string {"text"}; // std: -.string
auto vl = std::vector<int> { 1, 2, 3 }; // std::vector<int>
auto p = std::make_shared<int>(42); // std::shared_ptr<int>

• To declare named lambda functions, with the form auto name = lambda-
expression, unless the lambda needs to be passed or returned to a function:

auto upper = [](char const c) {return toupper(c); };

• To declare lambda parameters and return values:
auto add = [](auto const a, auto const b) {return a + b;};

• To declare a function return type when you don't want to commit to a
specific type:

template <typename F, typename T>
auto apply(F&& f , T value)
{

return f(value);
}

How it works...
The auto specifier is basically a placeholder for an actual type. When using auto, the
compiler deduces the actual type from the following instances:

• From the type of expression used to initialize a variable, when auto is used to
declare variables.

• From the trailing return type or the type of the return expression of a
function, when auto is used as a placeholder for the return type of a function.

In some cases, it is necessary to commit to a specific type. For instance, in the first
example in the previous section, the compiler deduces the type of s to be char const
*. If the intention was to have an std: : string, then the type must be specified
explicitly. Similarly, the type of v was deduced as std: : initializer_list<int>.
However, the intention could be to have an std: : vector<int>. In such cases, the type
must be specified explicitly on the right side of the assignment.

There are some important benefits of using the auto specifier instead of actual types;
the following is a list of, perhaps, the most important ones: •

• It is not possible to leave a variable uninitialized. This is a common mistake
that developers make when declaring variables specifying the actual type.
However, this is not possible with auto, which requires an initialization of
the variable in order to deduce the type.

• Using auto ensures that you always use the correct type and that implicit
conversion will not occur. Consider the following example where we retrieve
the size of a vector to a local variable. In the first case, the type of the variable
is int, though the size() method returns size_t. This means an implicit
conversion from size t to int will occur. However, using auto for the type
will deduce the correct type; that is, size_t:

auto v = std::vector<int>{ 1, 2, 3 };

// implicit conversion, possible loss of data
int s iz e l = v.sizeQ;

// OK
auto size2 = v.sizeQ;

// ill-formed (warning in gcc/clang, error in VC++)
auto size3 = int{ v.sizeQ };

• Using auto promotes good object-oriented practices, such as preferring
interfaces over implementations. The fewer the number of types specified,
the more generic the code is and more open to future changes, which is a
fundamental principle of object-oriented programming.

• It means less typing and less concern for actual types that we don't care about
anyway. It is very often the case that even though we explicitly specify the
type, we don't actually care about it. A very common case is with iterators,
but there are many more. When you want to iterate over a range, you don't
care about the actual type of the iterator. You are only interested in the
iterator itself; so, using auto saves time used for typing possibly long names
and helps you focus on actual code and not type names. In the following
example, in the first for loop, we explicitly use the type of the iterator. It
is a lot of text to type; the long statements can actually make the code less
readable, and you also need to know the type name that you actually don't
care about. The second loop with the auto specifier looks simpler and saves
you from typing and caring about actual types:

std::map<int, std::stning> m;
for (std::map<int, std::string>::const_iterator

i t = m.cbegin();
it != m.cend(); ++it)

{/*...*/}

for (auto i t = m.cbegin(); i t != m.cendQ; ++it)
{ / * . . . * / } •

• Declaring variables with auto provides a consistent coding style with the
type always in the right-hand side. If you allocate objects dynamically, you
need to write the type both on the left and right side of the assignment, for
example, int* p = new int(42). With auto, the type is specified only once on
the right side.

However, there are some gotchas when using auto:

• The auto specifier is only a placeholder for the type, not for the const/
volatile and references specifiers. If you need a const/volatile and/or
reference type, then you need to specify them explicitly. In the following
example, foo. get() returns a reference to int; when the variable x is
initialized from the return value, the type deduced by the compiler is int,
not int&. Therefore, any change made to x will not propagate to foo. x_.
In order to do so, we should use auto&:

class foo {
int x_;

public:
foofint const x = 0) :x_{ x } {}
int& get() { return x_; }

};

foo f(42);
auto x = f.getQ;
x = 100;
std::cout << f.getQ << ' \n'; //prints 42

• It is not possible to use auto for types that are not moveable:
auto ai = std: :atomic<int>(42); // error

• It is not possible to use auto for multi-word types, such as long long, long
double, or struct foo. However, in the first case, the possible workarounds
are to use literals or type aliases; as for the second, using struct/class
in that form is only supported in C++ for C compatibility and should be
avoided anyway:

auto 11 = long long{ 42 }; // error

using llong = long long;
auto 12 = llong{ 42 }; // OK
auto 13 = 42LL; // OK •

• If you use the auto specifier but still need to know the type, you can do so in
most IDEs by putting the cursor over a variable, for instance. If you leave the
IDE, however, that is not possible anymore, and the only way to know the
actual type is to deduce it yourself from the initialization expression, which
could mean searching through the code for function return types.

The auto can be used to specify the return type from a function. In C++11, this
requires a trailing return type in the function declaration. In C++14, this has been
relaxed, and the type of the return value is deduced by the compiler from the return
expression. If there are multiple return values, they should have the same type:

// C++U
auto funcl(int const i) -> int
{ return 2*i; }

// C++14
auto func2(int const i)
{ return 2*i; }

As mentioned earlier, auto does not retain const/volatile and reference qualifiers.
This leads to problems with auto as a placeholder for the return type from a function.
To explain this, let's consider the preceding example with f oo. get (). This time,
we have a wrapper function called proxy_get () that takes a reference to a foo,
calls get (), and returns the value returned by get (), which is an int&. However,
the compiler will deduce the return type of pnoxy_get() as being int, not int&.
Trying to assign that value to an int& fails with an error:

class foo
{

int x_j
public:

foo(int const x = 0) :x_{ x } {}
int& get() { return x_; }

};

auto proxy_get(foo& f) { return f.getQj }

auto f = foo{ 42 };
auto& x = proxy_get(f); // ca n n o t c o n v e r t fro m ' i n t ' to ' i n t &'

To fix this, we need to actually return auto&. However, this is a problem with
templates and perfect forwarding the return type without knowing whether it is
a value or a reference. The solution to this problem in C++14 is decltype(auto),
which will correctly deduce the type:

decltype(auto) proxy_get(foo& f) { return f.getQ; }
auto f = foo{ 42 };
decltype(auto) x = proxy_get(f);

The decltype specifier is used to inspect the declared type of an entity or an
expression. It's mostly useful when declaring types are cumbersome or not possible
at all to declare with the standard notation. Examples of this include declaring
lambda types and types that depend on template parameters.

The last important case where auto can be used is with lambdas. As of C++14,
both lambda return types and lambda parameter types can be auto. Such a lambda
is called a generic lambda because the closure type defined by the lambda has
a templated call operator. The following shows a generic lambda that takes two
auto parameters and returns the result of applying openaton+ to the actual types:

auto ladd = [] (auto const a, auto const b) { return a + b; };
struct
{
templatectypename T, typename U>
auto operator () (T const a, U const b) const { return a+bj }

} L;

This lambda can be used to add anything for which the operator+ is defined,
as shown in the following snippet:

auto i = ladd(40, 2); / / 42
auto s = ladd("forty"s, "two"s)j // "fortytwo"s

In this example, we used the ladd lambda to add two integers and to concatenate
to std:: string objects (using the C++14 user-defined literal operator ""s).

See also
• Creating type aliases and alias templates to learn about aliases for types
• Understanding uniform initialization to see how brace-initialization works

Creating type aliases and alias templates
In C++, it is possible to create synonyms that can be used instead of a type name.
This is achieved by creating a typedef declaration. This is useful in several cases,
such as creating shorter or more meaningful names for a type or names for
function pointers. However, typedef declarations cannot be used with templates
to create template type aliases. An std:: vector<T>, for instance, is not a type
(std:: vector<int> is a type), but a sort of family of all types that can be created
when the type placeholder T is replaced with an actual type.

In C++11, a type alias is a nam e for another already declared type, and an alias
template is a n ame for another already declared template. Both of these types
of aliases are introduced with a n e w using syntax.

How to do it...
• Create type aliases with the form using identifier = type-id, as in the

following examples:

using byte = unsigned char;
using byte_ptr = unsigned char *;
using array_t = int[10];
using fn = void(byte, double);

void func(byte b, double d) { /*...*/ }

byte b{42};
byte_ptr pb = new byte[10] {0};
array_t a{0,1,2,3,4,5,6,7,8,9};
fn* f = func;

• Create alias templates with the form template<template-params-list>
identifier = type-id, as in the following examples:

template <class T>
class custom_allocator { /* ... */ };

template <typename T>
using vec_t = std::vector<T, custom_allocator<T>>;

vec_t<int> vi;
vec_t<std::string> vs;

For consistency and readability, you should do the following:

• Not mix typedef and using declarations w h e n creating aliases

• Prefer the using syntax to create names of function pointer types

How it works...
A typedef declaration introduces a synonym (an alias, in other words) for a type.
It does not introduce another type (like a class, struct, union, or enum declaration).
Type names introduced with a typedef declaration follow the same hiding rules
as identifier names. They can also be redeclared, but only to refer to the same type
(therefore, you can have valid multiple typedef declarations that introduce the same
type name synonym in a translation unit, as long as it is a synonym for the same
type). The following are typical examples of typedef declarations:

typedef unsigned char
typedef unsigned char *
typedef in t
typedef void(*fn)(byte,

byte;
byte_ptr;
array_t[10];
double);

templatectypename T>
class foo {

typedef T value_type;
};

typedef std::vector<int> vint_t;

A type alias declaration is equivalent to a typedef declaration. It can appear in a
block scope, class scope, or namespace scope. According to C++11 paragraph 7.1.3.2:

"A typedef-name can also be introduced by an alias declaration. The identifier
following the using keyword becomes a typedef-name and the optional attribute-
specifier-seq following the identifier appertains to that typedef-name. It has the same
semantics as if it were introduced by the typedef specifier. In particular, it does not
define a new type and it shall not appear in the type-id."

An alias declaration is, however, more readable and clearer about the actual type
that is aliased when it comes to creating aliases for array types and function pointer
types. In the examples from the How to do it... section, it is easily understandable that
arrayjt is a name for the type array of 10 integers, while fn is a name for a function
type that takes two parameters of the type byte and double and returns void. This
is also consistent with the syntax for declaring std :: function objects (for example,
std::function<void(byte, double)> f).

It is important to take note of the following things:

• Alias templates cannot be partially or explicitly specialized.
• Alias templates are never deduced by template argument deduction when

deducing a template parameter.
• The type produced when specializing an alias template is not allowed to

directly or indirectly make use of its own type.

The driving purpose of the new syntax is to define alias templates. These are
templates that, when specialized, are equivalent to the result of substituting the
template arguments of the alias template for the template parameters in the type-id.

See also
• Simplifying code with class template argument deduction to learn how to use class

templates without explicitly specifying template arguments

Understanding uniform initialization
Brace-initialization is a uniform method for initializing data in C++11. For this
reason, it is also called uniform initialization. It is arguably one of the most important
features from C++11 that developers should understand and use. It removes
previous distinctions between initializing fundamental types, aggregate and
non-aggregate types, and arrays and standard containers.

Getting ready
To continue with this recipe, you need to be familiar with direct initialization,
which initializes an object from an explicit set of constructor arguments, and
copy initialization, which initializes an object from another object. The following
is a simple example of both types of initialization:

std ::s tr in g s l(" te st") ; // direct initialization
std ::s tr in g s2 = "test"; // copy initialization

With these in mind, let's explore how to perform uniform initialization.

How to do it...
To uniformly initialize objects regardless of their type, use the brace-initialization
form {}, which can be used for both direct initialization and copy initialization.
When used with brace-initialization, these are called direct-list and copy-list-
initialization:

T object {other}; // direct-List-initiaLization
T object = {other}; // copy-List-initiaLization

Examples of uniform initialization are as follows:

• Standard containers:
std::vector<int> v { 1, 2, 3 };
std::map<int, std::string> m { {1, "one"}, { 2, "two" }};

• Dynamically allocated arrays:
int* arr2 = new int[3]{ 1, 2, 3 };

• Arrays:
int arr1[3] { 1, 2, 3 };

• Built-in types:
int i { 42 };
double d { 1.2 };

• User-defined types:
class foo
{

int a_;
double b_;

public:
foo():a_(0), b_(0) {}
foo(int a, double b = 0.0):a_(a), b_(b) {}

};

foo f1{};
foo f2{ 42, 1.2 };
foo f3{ 42 };

• User-defined POD types:
struct bar { int a_; double b_;};
bar b{ 42, 1.2 };

How it works...
Before C++11, objects required different types of initialization based on their type:

• Fundamental types could be initialized using assignment:
int a = 42;
double b = 1.2;

• Class objects could also be initialized using assignment from a single value if
they had a conversion constructor (prior to C++11, a constructor with a single
parameter was called a conversion constructor):

class foo

{
int a_;

public:
foo(int a):a_(a) {}

};
foo fl = 42;

• Non-aggregate classes could be initialized with parentheses (the functional
form) when arguments were provided and only without any parentheses
when default initialization was performed (call to the default constructor).
In the next example, foo is the structure defined in the H ow to do it... section:

foo fl; // defauLt initialization
foo f2(42, 1.2);
foo f3(42);
foo f4(); // function declaration •

• Aggregate and POD types could be initialized with brace-initialization. In the
following example, bar is the structure defined in the H ow to do it... section:

bar b = {42, 1.2};
int a[] = {1, 2, 3, 4, 5};

A P la i n O ld D a t a (P O D) ty p e is a ty p e th a t is b o th tr iv ia l (h a s
s p e c ia l m e m b e r s th a t a r e c o m p ile r -p r o v id e d o r e x p l ic it ly d e fa u lte d
a n d o c c u p y a c o n t ig u o u s m e m o r y a r e a) a n d h a s a s ta n d a r d la y o u t
(a c la s s th a t d o e s n o t c o n ta in la n g u a g e fe a tu r e s , s u c h a s v ir tu a l
fu n c t io n s , w h ic h a r e in c o m p a t ib le w i t h th e C la n g u a g e , a n d a ll
m e m b e r s h a v e th e s a m e a c c e s s c o n t r o l) . T h e c o n c e p t o f P O D ty p e s
h a s b e e n d e p r e c a te d in C + + 2 0 in fa v o r o f t r iv ia l a n d s ta n d a r d

la y o u t ty p e s .

Apart from the different methods of initializing the data, there are also some
limitations. For instance, the only way to initialize a standard container (apart
from copy constructing) is to first declare an object and then insert elements into
it; std:: vector was an exception because it is possible to assign values from an
array that can be initialized prior using aggregate initialization. On the other hand,
however, dynamically allocated aggregates could not be initialized directly.

All the examples in the H ow to do it... section use direct initialization, but copy
initialization is also possible with brace-initialization. These two forms, direct
and copy initialization, may be equivalent in most cases, but copy initialization
is less permissive because it does not consider explicit constructors in its implicit
conversion sequence, which must produce an object directly from the initializer,
whereas direct initialization expects an implicit conversion from the initializer to
an argument of the constructor. Dynamically allocated arrays can only be initialized
using direct initialization.

Of the classes shown in the preceding examples, f oo is the one class that has
both a default constructor and a constructor with parameters. To use the default
constructor to perform default initialization, we need to use empty braces; that is,
{}. To use the constructor with parameters, we need to provide the values for all
the arguments in braces {}. Unlike non-aggregate types, where default initialization
means invoking the default constructor, for aggregate types, default initialization
means initializing with zeros.

Initialization of standard containers, such as the vector and the map, also shown
previously, is possible because all standard containers have an additional constructor
in C++11 that takes an argument of the type std:: initializen_list<T>. This is
basically a lightweight proxy over an array of elements of the type T const. These
constructors then initialize the internal data from the values in the initializer list.

The way initialization using std:: initializen_list works is as follows:

• The compiler resolves the types of the elements in the initialization list
(all the elements must have the same type).

• The compiler creates an array with the elements in the initializer list.
• The compiler creates an std: :initializen_list<T> object to wrap the

previously created array.
• The std:: initializen_list<T> object is passed as an argument to the

constructor.

An initializer list always takes precedence over other constructors where brace-
initialization is used. If such a constructor exists for a class, it will be called when
brace-initialization is performed:

class foo
{

int a_;
int b_ ;

public:
foo() :a_(0), b_(0) {}

foo(int a, int b = 0) :a_(a), b_(b) {}
foo(std::initializen_list<int> 1) {}

};

foo f{ 1, 2 }; // caLLs constructor with xnxtxaLxzer_Lxst<xnt>

The precedence rule applies to any function, not just constructors. In the following
example, two overloads of the same function exist. Calling the function with an
initializer list resolves to a call to the overload with an std: : in it ia liz e r_ lis t :

void func(int const a, int const b, int const c)
{

std::cout << a << b << c << '\n';
}

void func(std::initializer_list<int> const list)
{
for (auto const & e : list)

std::cout << e << '\n';
}

func({ 1,2,3 }); // caLLs second overLoad

This, however, has the potential of leading to bugs. Let's take, for example, the
std :: vector type. Among the constructors of the vector, there is one that has a single
argument, representing the initial number of elements to be allocated, and another
one that has an std :: in i t i a l i z e r _ l i s t as an argument. If the intention is to create
a vector with a preallocated size, using brace-initialization will not work as the
constructor with the std :: in i t i a l i z e r _ l i s t will be the best overload to be called:

std::vector<int> v {5};

The preceding code does not create a vector with five elements, but a vector with one
element with a value of 5. To be able to actually create a vector with five elements,
initialization with the parentheses form must be used:

std::vector<int> v (5);

Another thing to note is that brace-initialization does not allow narrowing
conversion. According to the C++ standard (refer to paragraph 8.5.4 of the standard),
a narrowing conversion is an implicit conversion:

From a floating-point type to an integer type.

- From long double to double or float, or from double to float, except where the source
is a constant expression and the actual value after conversion is within the range of
values that can be represented (even if it cannot be represented exactly).

- From an integer type or unscoped enumeration type to a floating-point type, except
where the source is a constant expression and the actual value after conversion will
fit into the target type and will produce the original value when converted to its
original type.

- From an integer type or unscoped enumeration type to an integer type that cannot
represent all the values of the original type, except where the source is a constant
expression and the actual value after conversion will fit into the target type and will
produce the original value when converted to its original type."

The following declarations trigger compiler errors because they require a narrowing
conversion:

in t i{ 1.2 }; // error

double d = 47 / 13;
f lo a t f l{ d }; // error

