Quadrilaterals and Their Properties A 4-gon Hypothesis

ACTIVITY 15 PRACTICE

Write your answers on notebook paper. Show your work.

Lesson 15-1

- 1. Tell whether each statement about kites is *always*, *sometimes*, or *never* true.
 - **a.** Exactly two pairs of consecutive sides are congruent.
 - **b.** The diagonals divide the kite into four congruent triangles.
 - c. The diagonals are perpendicular.
 - **d.** A kite is a parallelogram.
 - e. One diagonal bisects a pair of opposite angles.
 - **f.** A kite is a rhombus.

Lesson 15-2

- **2.** Make a true statement by filling in each blank with *always, sometimes*, or *never*.
 - a. A trapezoid is _____ isosceles.
 - **b.** A trapezoid is ______ a quadrilateral.
 - c. The length of the median of a trapezoid is equal to the sum of the lengths of the bases.
 - **d.** Trapezoids <u>have a pair of parallel</u> sides.
 - **e.** Trapezoids <u>have two pairs of supplementary consecutive angles.</u>
- **3.** Given quad *GHJK* is a trapezoid. \overline{PQ} is the median.

a. If *HJ* = 40 and *PQ* = 28, find *GK*.
b. If *HJ* = 5*x*, *PQ* = 5*x* - 9, and *GK* = 3*x* + 2, then solve for *x*.

4. Given quad *JONE* is a trapezoid.

b. If
$$OJ \cong NE$$
, then $OE \cong$ _____.
c. If $OJ \cong NE$, then $\angle NEJ \cong$ _____.

Lesson 15-3

C.

5. Quadrilateral *XENA* is a parallelogram. *T* is the point of intersection of the diagonals. For each situation, write an equation and solve for *y*.

- **a.** EN = 5y + 1 and AX = 8y 5
- **b.** $m \angle ANX = 3y 1$ and $m \angle NXE = 2y + 1$
- **c.** ET = y 1 and EA = 3y 10**d.** $m \angle ANE = 7y - 5$ and $m \angle NEX = 3y + 5$
- 6. *M* is the fourth vertex of a parallelogram. The coordinates of the other vertices are (6, 4), (8, 1), and (2, 0). *M* can have any of the following coordinates except:
 A. (6, -2)
 B. (12, 5)

$$(6, -2)$$
 $B. (12, 5)$ $(4, -3)$ $D. (0, 3)$

- 7. Given quad *QRST* with coordinates *Q*(0, 0), *R*(2, 6), *S*(12, 6), and *T*(12, 0).
 a. What is the best name for quad *QRST*?
 - Explain. **b.** Find the coordinates of the midpoint for each
 - b. Find the coordinates of the midpoint for each side of quad QRST and label them M, N, O, and P. What is the best name for quad MNOP? Explain.

ACTIVITY 15 Continued

ACTIVITY PRACTICE

- 1. a. always
 - **b.** never
 - **c.** always
 - **d.** never
 - e. always
 - f. never
- 2. a. sometimes
 - **b.** always
 - c. never
 - **d.** always
- e. always
- **3. a.** 16
- **b.** x = 10
- **4. a.** ∠*NJE*
- **b.** \overline{NJ}
- **c.** ∠OJE
- **5.** a. 5y + 1 = 8y 5; y = 2
- **b.** 3y 1 = 2y + 1; y = 2
- **c.** 2(y-1) = 3y 10; y = 8
- **d.** 7y 5 + 3y + 5 = 180; y = 18
- **6.** A
- **7. a.** trapezoid; Quad *QRST* has only one pair of parallel sides.
 - **b.** parallelogram; Both pairs of opposite sides are parallel (or congruent).

ACTIVITY 15 Continued

8. D

- **9.** $m \angle 1 = 32^{\circ}; m \angle 2 = 90^{\circ};$
- $m \angle 3 = 58^\circ; m \angle 4 = 32^\circ$
- **10. a.** 36
- **b.** 4.5
- **11.** Sample proof: $\overline{PQ}||\overline{SR} \text{ and } \overline{PS}||\overline{QR}$ (definition of parallelogram); $\angle PRS \cong \angle RPQ$ and $\angle RPS \cong \angle QRP$ (if lines are parallel, alternate interior angles are congruent); $\overline{PR} \cong \overline{PR}$ (reflexive property); $\triangle PQR \cong \triangle RSP$ (ASA).

12.

16.			
Statements		Reasons	
1.	Quad <i>WIND</i> is a rhombus	1.	Assumption
2.	WI = IN	2.	Definition of a rhombus
3.	$\triangle WIN$ is isosceles	3.	Def of isosceles triangle
		4.	Given
4.	$\triangle WIN$ is not isosceles	5.	The assumption
5.	not a rhombus		contradiction between steps 3 and 4.

13. Sample answer: The legs of Ginger's piano stand are congruent and connected at the midpoint of each leg. Therefore, the four vertices form a rectangle, which would guarantee the keyboard to be parallel to the floor and centered over the diagonals (legs).

ADDITIONAL PRACTICE

If students need more practice on the concepts in this activity, see the Teacher Resources at SpringBoard Digital for additional practice problems. ACTIVITY 15 continued

- 8. Given quad WHAT with vertices W(2, 4), H(5, 8), A(9, 5), and T(6, 1). What is the best name for this quadrilateral?
 A. parallelogram
 B. rhombus
 - C. rectangle D. square
- **9.** Given quad *ABCD* is a rhombus and $m \angle ABD = 32^{\circ}$. Find the measure of each numbered angle.

10. Given quad *RIGH* is a rectangle.

- **a.** If *RT* = 18, then *RG* = _____
- **b.** If RG = 4x + 12 and HI = 10x 15, then x =_____.
- **11.** Given: Parallelogram *PQRS* with diagonal *PR*. Prove: $\triangle PQR \cong \triangle RSP$

